Science.gov

Sample records for acute neurotoxic effects

  1. Aflatrem: a tremorgenic mycotoxin with acute neurotoxic effects.

    PubMed Central

    Valdes, J J; Cameron, J E; Cole, R J

    1985-01-01

    Tremorgenic mycotoxins induce neurologic symptoms ranging from mental confusion to tremors, seizures and death, and are apparently the only class of mycotoxins with significant central nervous system activity. Tremorgens have been implicated in a number of neurologic diseases of cattle collectively known as staggers syndromes, and pose significant agricultural and health problems for both cattle and humans. Although the effects of tremorgens are thought to result from transient perturbations of amino acid neurotransmitter release mechanisms, there is reason to believe that acute exposures to toxins with such synaptic effects may result in degeneration of neuronal fiber processes. To test this hypothesis, rats were given a single tremorgenic (3 mg/kg, IP) dose of aflatrem, and kinetics of amino acid neurotransmitter uptake was assessed in isolated hippocampal nerve terminals at 1 day, 1 week, and 2 weeks after injection. Results indicate a decrease in the capacity of the GABA and glutamate uptake systems, which was interpreted as a loss of nerve terminals. The affinity constants suggest a decrease in release of these transmitters as well. In addition to its transient influence on transmitter release, a single low dose of aflatrem is able to induce degeneration of neuronal processes in hippocampal neurotransmitter systems and therefore represents a long-term health threat. PMID:2867895

  2. Effect of acute renal failure on neurotoxicity of enoxacin in rats.

    PubMed

    Kawakami, J; Ohashi, K; Yamamoto, K; Sawada, Y; Iga, T

    1997-08-01

    We investigated the effect of acute renal failure on the neurotoxicity of enoxacin (ENX) in rats. Experimental acute renal failure was produced by bilateral ureteral ligation. ENX was intravenously infused to ureter ligated (UL) and control rats, and its concentration in plasma, brain and cerebrospinal fluid (CSF) was compared. Plasma concentration of ENX increased rapidly in UL rats as compared with control rats. Brain/plasma concentration ratio (Kp)-time profile of ENX was similar in UL and control rats. Brain concentration of ENX at the occurrence of convulsion did not depend on the infusion rate, suggesting that in the brain tissue it equilibrates rapidly with the site of action for clonic convulsion. Brain concentration of ENX in UL rats at the occurrence of clonic convulsion was lower than that in control rats. A similar tendency was also observed with CSF concentration. In conclusion, the potentiation of neurotoxicity of ENX with acute renal failure may be caused by not only decreased capability for renal elimination of ENX but also increased sensitivity to convulsant activity of ENX in the central nervous system.

  3. Fish embryo toxicity test: identification of compounds with weak toxicity and analysis of behavioral effects to improve prediction of acute toxicity for neurotoxic compounds.

    PubMed

    Klüver, Nils; König, Maria; Ortmann, Julia; Massei, Riccardo; Paschke, Albrecht; Kühne, Ralph; Scholz, Stefan

    2015-06-01

    The fish embryo toxicity test has been proposed as an alternative for the acute fish toxicity test, but concerns have been raised for its predictivity given that a few compounds have been shown to exhibit a weak acute toxicity in the fish embryo. In order to better define the applicability domain and improve the predictive capacity of the fish embryo test, we performed a systematic analysis of existing fish embryo and acute fish toxicity data. A correlation analysis of a total of 153 compounds identified 28 compounds with a weaker or no toxicity in the fish embryo test. Eleven of these compounds exhibited a neurotoxic mode of action. We selected a subset of eight compounds with weaker or no embryo toxicity (cyanazine, picloram, aldicarb, azinphos-methyl, dieldrin, diquat dibromide, endosulfan, and esfenvalerate) to study toxicokinetics and a neurotoxic mode of action as potential reasons for the deviating fish embryo toxicity. Published fish embryo LC50 values were confirmed by experimental analysis of zebrafish embryo LC50 according to OECD guideline 236. Except for diquat dibromide, internal concentration analysis did not indicate a potential relation of the low sensitivity of fish embryos to a limited uptake of the compounds. Analysis of locomotor activity of diquat dibromide and the neurotoxic compounds in 98 hpf embryos (exposed for 96 h) indicated a specific effect on behavior (embryonic movement) for the neurotoxic compounds. The EC50s of behavior for neurotoxic compounds were close to the acute fish toxicity LC50. Our data provided the first evidence that the applicability domain of the fish embryo test (LC50s determination) may exclude neurotoxic compounds. However, neurotoxic compounds could be identified by changes in embryonic locomotion. Although a quantitative prediction of acute fish toxicity LC50 using behavioral assays in fish embryos may not yet be possible, the identification of neurotoxicity could trigger the conduction of a conventional fish

  4. Acute effects of tetracycline exposure in the freshwater fish Gambusia holbrooki: antioxidant effects, neurotoxicity and histological alterations.

    PubMed

    Nunes, B; Antunes, S C; Gomes, R; Campos, J C; Braga, M R; Ramos, A S; Correia, A T

    2015-02-01

    A large body of evidence was compiled in the recent decades showing a noteworthy increase in the detection of pharmaceutical drugs in aquatic ecosystems. Due to its ubiquitous presence, chemical nature, and practical purpose, this type of contaminant can exert toxic effects in nontarget organisms. Exposure to pharmaceutical drugs can result in adaptive alterations, such as changes in tissues, or in key homeostatic mechanisms, such as antioxidant mechanisms, biochemical/physiological pathways, and cellular damage. These alterations can be monitored to determine the impact of these compounds on exposed aquatic organisms. Among pharmaceutical drugs in the environment, antibiotics are particularly important because they include a variety of substances widely used in medical and veterinary practice, livestock production, and aquaculture. This wide use constitutes a decisive factor contributing for their frequent detection in the aquatic environment. Tetracyclines are the individual antibiotic subclass with the second highest frequency of detection in environmental matrices. The characterization of the potential ecotoxicological effects of tetracycline is a much-required task; to attain this objective, the present study assessed the acute toxic effects of tetracycline in the freshwater fish species Gambusia holbrooki by the determination of histological changes in the gills and liver, changes in antioxidant defense [glutathione S-transferase (GST), catalase (CAT), and lipoperoxidative damage] as well as potential neurotoxicity (acetylcholinesterase activity). The obtained results suggest the existence of a cause-and-effect relationship between the exposure to tetracycline and histological alterations (more specifically in gills) and enzymatic activity (particularly the enzyme CAT in liver and GST in gills) indicating that this compound can exert a pro-oxidative activity. PMID:25475590

  5. Dopamine transporter down-regulation following repeated cocaine: implications for 3,4-methylenedioxymethamphetamine-induced acute effects and long-term neurotoxicity in mice

    PubMed Central

    Peraile, I; Torres, E; Mayado, A; Izco, M; Lopez-Jimenez, A; Lopez-Moreno, JA; Colado, MI; O'Shea, E

    2010-01-01

    Background and purpose: 3,4-Methylenedioxymethamphetamine (MDMA) and cocaine are two widely abused psychostimulant drugs targeting the dopamine transporter (DAT). DAT availability regulates dopamine neurotransmission and uptake of MDMA-derived neurotoxic metabolites. We aimed to determine the effect of cocaine pre-exposure on the acute and long-term effects of MDMA in mice. Experimental approach: Mice received a course of cocaine (20 mg·kg−1, ×2 for 3 days) followed by MDMA (20 mg·kg−1, ×2, 3 h apart). Locomotor activity, extracellular dopamine levels and dopaminergic neurotoxicity were determined. Furthermore, following the course of cocaine, DAT density in striatal plasma membrane and endosome fractions was measured. Key results: Four days after the course of cocaine, challenge with MDMA attenuated the MDMA-induced striatal dopaminergic neurotoxicity. Co-administration of the protein kinase C (PKC) inhibitor NPC 15437 prevented cocaine protection. At the same time, after the course of cocaine, DAT density was reduced in the plasma membrane and increased in the endosome fraction, and this effect was prevented by NPC 15437. The course of cocaine potentiated the MDMA-induced increase in extracellular dopamine and locomotor activity, following challenge 4 days later, compared with those pretreated with saline. Conclusions and implications: Repeated cocaine treatment followed by withdrawal protected against MDMA-induced dopaminergic neurotoxicity by internalizing DAT via a mechanism which may involve PKC. Furthermore, repeated cocaine followed by withdrawal induced behavioural and neurochemical sensitization to MDMA, measures which could be indicative of increased rewarding effects of MDMA. PMID:20015297

  6. The effect of stress on the acute neurotoxicity of the organophosphate insecticide chlorpyrifos

    SciTech Connect

    Hancock, Sandra; Ehrich, Marion; Hinckley, Jonathan; Pung, Thitiya; Jortner, Bernard S. . E-mail: bjortner@vt.edu

    2007-03-15

    A study was conducted to determine if multiple exposures to several stress paradigms might affect the anticholinesterase effect of subsequently administered organophosphate insecticide chlorpyrifos. Male Sprague-Dawley rats were subject to daily periods of restraint, swimming, a combination of the two, or neither of the two (controls) (n = 8/group) for 5 days per week over a six-week period. The most profound stress, as measured by reduced body weight gain and elevated levels of plasma corticosterone, was swimming. On day 39 of the study, shortly after the daily stress episode, one half of the rats in each group was dosed with 60 mg/kg chlorpyrifos subcutaneously. This had no effect on subsequent levels of plasma corticosterone. There were no stress-related differences in the degree of chlorpyrifos-induced inhibition of brain acetylcholinesterase in animals sacrificed on day 43.

  7. Anticonvulsant and acute neurotoxic effects of imperatorin, osthole and valproate in the maximal electroshock seizure and chimney tests in mice: a comparative study.

    PubMed

    Luszczki, Jarogniew J; Wojda, Ewa; Andres-Mach, Marta; Cisowski, Wojciech; Glensk, Michal; Glowniak, Kazimierz; Czuczwar, Stanislaw J

    2009-08-01

    The aim of this study was to determine and compare the anticonvulsant and acute adverse (neurotoxic) effects of imperatorin and osthole (two natural coumarin derivatives) with valproate (a classical antiepileptic drug) in the maximal electroshock seizure and chimney tests in mice. The anticonvulsant and acute adverse effects of imperatorin, osthole and valproate were determined at 15, 30, 60 and 120 min after their systemic (i.p.) administration. The evaluation of time-course and dose-response relationships for imperatorin, osthole and valproate in the maximal electroshock seizure test revealed that the compounds produced a clear-cut antielectroshock action in mice and the experimentally derived ED(50) values for imperatorin ranged between 167 and 290 mg/kg, those for osthole ranged from 253 to 639 mg/kg, whereas the ED(50) values for valproate ranged from 189 to 255 mg/kg. The evaluation of acute neurotoxic effects in the chimney test revealed that the TD(50) values for imperatorin ranged between 329 and 443 mg/kg, the TD(50) values for osthole ranged from 531 to 648 mg/kg, while the TD(50) values for valproate ranged from 363 to 512 mg/kg. The protective index (as a ratio of TD(50) and ED(50) values) for imperatorin ranged between 1.13 and 2.60, for osthole ranged from 0.83 to 2.44, and for valproate ranged between 1.72 and 2.00. In conclusion, both natural coumarin derivatives deserve more attention from a preclinical point of view as compounds possessing some potentially favorable activities in terms of suppression of seizures, quite similar to those reported for valproate. PMID:19406619

  8. Effect of enoxacin on theophylline neurotoxicity.

    PubMed

    Hoffman, A; Levy, G

    1989-01-01

    Concomitant use of the bronchodilator theophylline and the antibacterial agent enoxacin has been associated with significant neurologic and other adverse effects. Enoxacin and certain other quinolones are known to inhibit the biotransformation of theophylline, thereby increasing the plasma concentrations of the bronchodilator. It was considered possible that this may not be the only interaction because theophylline as well as enoxacin are known to have neurotoxic potential. To explore the possibility of a pharmacodynamic interaction, rats pretreated orally with enoxacin or water (controls) were slowly infused i.v. with theophylline until the onset of a maximal seizure. Neither 100 nor 400 mg/kg enoxacin 1 hour before the infusion had any significant effect on the infused dose or on the concentrations of theophylline in serum, brain and cerebrospinal fluid at onset of seizures. On the other hand, 400 mg/kg enoxacin reduced the total serum clearance of a 12 mg/kg i.v. bolus dose of theophylline from 2.56 +/- 0.37 to 1.00 +/- 0.13 ml min-1kg-1 (mean +/- SD). It is concluded that acutely administered enoxacin in a dose sufficient to inhibit the elimination of theophylline has no direct effect on theophylline neurotoxicity in rats.

  9. ASSESSING HIPPOCAMPAL CHANGES INDICATIVE OF NEUROTOXIC EFFECTS.

    EPA Science Inventory

    Subtle changes in cognitive function are often the earliest indication of neurotoxic effects in humans. The hippocampus is a large forebrain structure subserving specific kinds of information encoding and consolidation in humans and other animals. Because of it laminar structur...

  10. Neurotoxic effects of gasoline and gasoline constituents.

    PubMed Central

    Burbacher, T M

    1993-01-01

    This overview was developed as part of a symposium on noncancer end points of gasoline and key gasoline components. The specific components included are methyl tertiary butyl ether, ethyl tertiary butyl ether, tertiary amyl methyl ether, butadiene, benzene, xylene, toluene, methyl alcohol, and ethyl alcohol. The overview focuses on neurotoxic effects related to chronic low-level exposures. A few general conclusions and recommendations can be made based on the results of the studies to date. a) All the compounds reviewed are neuroactive and, as such, should be examined for their neurotoxicity. b) For most of the compounds, there is a substantial margin of safety between the current permissible exposure levels and levels that would be expected to cause overt signs of neurotoxicity in humans. This is not the case for xylene, toluene, and methanol, however, where neurologic effects are observed at or below the current Threshold Limit Value. c) For most of the compounds, the relationship between chronic low-level exposure and subtle neurotoxic effects has not been studied. Studies therefore should focus on examining the dose-response relationship between chronic low-level exposure and subtle changes in central nervous system function. PMID:8020437

  11. ACUTE NEUROTOXIC EFFECTS OF INHALED PERCHLOROETHYLENE ON PATTERN VISUAL EVOKED POTENTIALS AS A FUNCTION OF EXPOSURE AND ESTIMATED BLOOD AND BRAIN CONCENTRATION.

    EPA Science Inventory

    Previous experiments have shown the effects of acute inhalation exposure to trichloroethylene (TCE) and toluene are related to the target tissue concentration at the time of testing. The current studies examined exposure to another volatile organic compound, perchloroethylene (P...

  12. A novel antibody-based biomarker for chronic algal toxin exposure and sub-acute neurotoxicity

    USGS Publications Warehouse

    Lefebvre, Kathi A.; Frame, Elizabeth R.; Gulland, Frances; Hansen, John D.; Kendrick, Preston S.; Beyer, Richard P.; Bammler, Theo K.; Farin, Frederico M.; Hiolski, Emma M.; Smith, Donald R.; Marcinek, David J.

    2012-01-01

    The neurotoxic amino acid, domoic acid (DA), is naturally produced by marine phytoplankton and presents a significant threat to the health of marine mammals, seabirds and humans via transfer of the toxin through the foodweb. In humans, acute exposure causes a neurotoxic illness known as amnesic shellfish poisoning characterized by seizures, memory loss, coma and death. Regular monitoring for high DA levels in edible shellfish tissues has been effective in protecting human consumers from acute DA exposure. However, chronic low-level DA exposure remains a concern, particularly in coastal and tribal communities that subsistence harvest shellfish known to contain low levels of the toxin. Domoic acid exposure via consumption of planktivorous fish also has a profound health impact on California sea lions (Zalophus californianus) affecting hundreds of animals yearly. Due to increasing algal toxin exposure threats globally, there is a critical need for reliable diagnostic tests for assessing chronic DA exposure in humans and wildlife. Here we report the discovery of a novel DA-specific antibody response that is a signature of chronic low-level exposure identified initially in a zebrafish exposure model and confirmed in naturally exposed wild sea lions. Additionally, we found that chronic exposure in zebrafish caused increased neurologic sensitivity to DA, revealing that repetitive exposure to DA well below the threshold for acute behavioral toxicity has underlying neurotoxic consequences. The discovery that chronic exposure to low levels of a small, water-soluble single amino acid triggers a detectable antibody response is surprising and has profound implications for the development of diagnostic tests for exposure to other pervasive environmental toxins.

  13. A Novel Antibody-Based Biomarker for Chronic Algal Toxin Exposure and Sub-Acute Neurotoxicity

    PubMed Central

    Lefebvre, Kathi A.; Frame, Elizabeth R.; Gulland, Frances; Hansen, John D.; Kendrick, Preston S.; Beyer, Richard P.; Bammler, Theo K.; Farin, Frederico M.; Hiolski, Emma M.; Smith, Donald R.; Marcinek, David J.

    2012-01-01

    The neurotoxic amino acid, domoic acid (DA), is naturally produced by marine phytoplankton and presents a significant threat to the health of marine mammals, seabirds and humans via transfer of the toxin through the foodweb. In humans, acute exposure causes a neurotoxic illness known as amnesic shellfish poisoning characterized by seizures, memory loss, coma and death. Regular monitoring for high DA levels in edible shellfish tissues has been effective in protecting human consumers from acute DA exposure. However, chronic low-level DA exposure remains a concern, particularly in coastal and tribal communities that subsistence harvest shellfish known to contain low levels of the toxin. Domoic acid exposure via consumption of planktivorous fish also has a profound health impact on California sea lions (Zalophus californianus) affecting hundreds of animals yearly. Due to increasing algal toxin exposure threats globally, there is a critical need for reliable diagnostic tests for assessing chronic DA exposure in humans and wildlife. Here we report the discovery of a novel DA-specific antibody response that is a signature of chronic low-level exposure identified initially in a zebrafish exposure model and confirmed in naturally exposed wild sea lions. Additionally, we found that chronic exposure in zebrafish caused increased neurologic sensitivity to DA, revealing that repetitive exposure to DA well below the threshold for acute behavioral toxicity has underlying neurotoxic consequences. The discovery that chronic exposure to low levels of a small, water-soluble single amino acid triggers a detectable antibody response is surprising and has profound implications for the development of diagnostic tests for exposure to other pervasive environmental toxins. PMID:22567140

  14. A novel antibody-based biomarker for chronic algal toxin exposure and sub-acute neurotoxicity.

    PubMed

    Lefebvre, Kathi A; Frame, Elizabeth R; Gulland, Frances; Hansen, John D; Kendrick, Preston S; Beyer, Richard P; Bammler, Theo K; Farin, Frederico M; Hiolski, Emma M; Smith, Donald R; Marcinek, David J

    2012-01-01

    The neurotoxic amino acid, domoic acid (DA), is naturally produced by marine phytoplankton and presents a significant threat to the health of marine mammals, seabirds and humans via transfer of the toxin through the foodweb. In humans, acute exposure causes a neurotoxic illness known as amnesic shellfish poisoning characterized by seizures, memory loss, coma and death. Regular monitoring for high DA levels in edible shellfish tissues has been effective in protecting human consumers from acute DA exposure. However, chronic low-level DA exposure remains a concern, particularly in coastal and tribal communities that subsistence harvest shellfish known to contain low levels of the toxin. Domoic acid exposure via consumption of planktivorous fish also has a profound health impact on California sea lions (Zalophus californianus) affecting hundreds of animals yearly. Due to increasing algal toxin exposure threats globally, there is a critical need for reliable diagnostic tests for assessing chronic DA exposure in humans and wildlife. Here we report the discovery of a novel DA-specific antibody response that is a signature of chronic low-level exposure identified initially in a zebrafish exposure model and confirmed in naturally exposed wild sea lions. Additionally, we found that chronic exposure in zebrafish caused increased neurologic sensitivity to DA, revealing that repetitive exposure to DA well below the threshold for acute behavioral toxicity has underlying neurotoxic consequences. The discovery that chronic exposure to low levels of a small, water-soluble single amino acid triggers a detectable antibody response is surprising and has profound implications for the development of diagnostic tests for exposure to other pervasive environmental toxins. PMID:22567140

  15. Methotrexate-Induced Neurotoxicity and Leukoencephalopathy in Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Bhojwani, Deepa; Sabin, Noah D.; Pei, Deqing; Yang, Jun J.; Khan, Raja B.; Panetta, John C.; Krull, Kevin R.; Inaba, Hiroto; Rubnitz, Jeffrey E.; Metzger, Monika L.; Howard, Scott C.; Ribeiro, Raul C.; Cheng, Cheng; Reddick, Wilburn E.; Jeha, Sima; Sandlund, John T.; Evans, William E.; Pui, Ching-Hon; Relling, Mary V.

    2014-01-01

    Purpose Methotrexate (MTX) can cause significant clinical neurotoxicity and asymptomatic leukoencephalopathy. We sought to identify clinical, pharmacokinetic, and genetic risk factors for these MTX-related toxicities during childhood acute lymphoblastic leukemia (ALL) therapy and provide data on safety of intrathecal and high-dose MTX rechallenge in patients with neurotoxicity. Patients and Methods Prospective brain magnetic resonance imaging was performed at four time points for 369 children with ALL treated in a contemporary study that included five courses of high-dose MTX and 13 to 25 doses of triple intrathecal therapy. Logistic regression modeling was used to evaluate clinical and pharmacokinetic factors, and a genome-wide association study (GWAS) was performed to identify germline polymorphisms for their association with neurotoxicities. Results Fourteen patients (3.8%) developed MTX-related clinical neurotoxicity. Of 13 patients rechallenged with intrathecal and/or high-dose MTX, 12 did not experience recurrence of neurotoxicity. Leukoencephalopathy was found in 73 (20.6%) of 355 asymptomatic patients and in all symptomatic patients and persisted in 74% of asymptomatic and 58% of symptomatic patients at the end of therapy. A high 42-hour plasma MTX to leucovorin ratio (measure of MTX exposure) was associated with increased risk of leukoencephalopathy in multivariable analysis (P = .038). GWAS revealed polymorphisms in genes enriched for neurodevelopmental pathways with plausible mechanistic roles in neurotoxicity. Conclusion MTX-related clinical neurotoxicity is transient, and most patients can receive subsequent MTX without recurrence of acute or subacute symptoms. All symptomatic patients and one in five asymptomatic patients develop leukoencephalopathy that can persist until the end of therapy. Polymorphisms in genes related to neurogenesis may contribute to susceptibility to MTX-related neurotoxicity. PMID:24550419

  16. [Manganese neurotoxic effect and its susceptibility biomarkers of choice].

    PubMed

    Shao, Hua

    2015-10-01

    Long-term occupational exposure to manganese might cause manganese poisoning, which would had adverse effects on nervous system of workers. The basal nucleus was damaged and dopaminergic neuron was injuried by manganese. The mechanism could be related with interfering the energy metabolism of central nerve, changing neurotransmitters, activating oxidation system and so on. Genetic factors may also plays a significant role in the neurotoxicity caused by manganese. Study the effects of manganese exposure biomarker, the neurotoxicity of biomarkers and the genetic susceptibility to early and susceptibility biomarkers will contribute to the prevention and control of manganese neurotoxicity.

  17. Delayed Neurotoxicity Associated with Therapy for Children with Acute Lymphoblastic Leukemia

    ERIC Educational Resources Information Center

    Cole, Peter D.; Kamen, Barton A.

    2006-01-01

    Most children diagnosed today with acute lymphoblastic leukemia (ALL) will be cured. However, treatment entails risk of neurotoxicity, causing deficits in neurocognitive function that can persist in the years after treatment is completed. Many of the components of leukemia therapy can contribute to adverse neurologic sequelae, including…

  18. Age-related differences in acute neurotoxicity produced by mevinphos, monocrotophos, dicrotophos, and phosphamidon

    EPA Science Inventory

    Age-related differences in the acute neurotoxicity of cholinesterase (ChE)-inhibiting pesticides have been well-studied for a few organophosphates, but not for many others. In this study, we directly compared dose-responses using brain and red blood cell (RBC) ChE measurements, a...

  19. Developmental neurotoxic effects of two pesticides: Behavior and biomolecular studies on chlorpyrifos and carbaryl.

    PubMed

    Lee, Iwa; Eriksson, Per; Fredriksson, Anders; Buratovic, Sonja; Viberg, Henrik

    2015-11-01

    In recent times, an increased occurrence of neurodevelopmental disorders, such as neurodevelopmental delays and cognitive abnormalities has been recognized. Exposure to pesticides has been suspected to be a possible cause of these disorders, as these compounds target the nervous system of pests. Due to the similarities of brain development and composition, these pesticides may also be neurotoxic to humans. We studied two different pesticides, chlorpyrifos and carbaryl, which specifically inhibit acetylcholinesterase (AChE) in the nervous system. The aim of the study was to investigate if the pesticides can induce neurotoxic effects, when exposure occurs during a period of rapid brain growth and maturation. The results from the present study show that both compounds can affect protein levels in the developing brain and induce persistent adult behavior and cognitive impairments, in mice neonatally exposed to a single oral dose of chlorpyrifos (0.1, 1.0 or 5mg/kg body weight) or carbaryl (0.5, 5.0 or 20.0mg/kg body weight) on postnatal day 10. The results also indicate that the developmental neurotoxic effects induced are not related to the classical mechanism of acute cholinergic hyperstimulation, as the AChE inhibition level (8-12%) remained below the threshold for causing systemic toxicity. The neurotoxic effects are more likely caused by a disturbed neurodevelopment, as similar behavioral neurotoxic effects have been reported in studies with pesticides such as organochlorines, organophosphates, pyrethroids and POPs, when exposed during a critical window of neonatal brain development.

  20. Kinetics of drug action in disease states. XXXVII. Effects of acute fluid overload and water deprivation on the hypnotic activity of phenobarbital and the neurotoxicity of theophylline in rats.

    PubMed

    Zhi, J G; Levy, G

    1989-12-01

    Fluid overload and dehydration are potentially serious physiologic perturbations. Their effects on the pharmacodynamics of drugs are essentially unknown. This investigation was designed to determine the effects of acute fluid overload or water deprivation on the hypnotic activity of phenobarbital and on the neurotoxicity of theophylline in male Lewis rats. In the first experiment, 5% dextrose in water (D5W) was infused i.v. in an amount equal to 5 or 10% of body weight and phenobarbital was infused immediately thereafter until the onset of loss of righting reflex (LRR). The total infused dose and the serum and cerebrospinal fluid (CSF) concentrations of phenobarbital at that time were significantly lower than in control animals. When phenobarbital was infused about 2.5 hr after D5W, the infused dose and the serum and CSF concentrations of phenobarbital at LRR were normal. When the rats received D5W and an injection of vasopressin, 25 I.U./kg, or vasopressin only, the infused dose and the serum and CSF concentrations of phenobarbital at LRR were significantly lower than in controls despite the 2.5-hr interval between the respective pretreatments and the phenobarbital infusion. Water deprivation for 24 or 48 hr had no significant effect on phenobarbital dose and concentrations at LRR. Intravenous infusion of D5W to 10% of body weight immediately or 2.5 hr before theophylline infusion had no significant effect on the total infused dose and the serum and CSF concentrations of theophylline at onset of maximal seizures. This lack of effect occurred despite appreciable hyponatremia and hypomagnesemia immediately after D5W infusion.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Neurotoxic effects induced by gammahydroxybutyric acid (GHB) in male rats.

    PubMed

    Pedraza, Carmen; García, Francisca Belén; Navarro, José Francisco

    2009-10-01

    Gammahydroxybutyric acid (GHB) is an endogenous constituent of the central nervous system that has acquired great social relevance for its use as a recreational 'club drug'. GHB, popularly known as 'liquid ecstasy', is addictive when used continuously. Although the symptoms associated with acute intoxication are well known, the effects of prolonged use remain uncertain. We examined in male rats the effect of repeated administration of GHB (10 and 100 mg/kg) on various parameters: neurological damage, working memory and spatial memory, using neurological tests, the Morris water maze and the hole-board test. The results showed that repeated administration of GHB, especially at doses of 10 mg/kg, causes neurological damage, affecting the 'grasping' reflex, as well as alteration in spatial and working memories. Stereological quantification showed that this drug produces a drastic neuronal loss in the CA1 hippocampal region and in the prefrontal cortex, two areas clearly involved in cognitive and neurological functions. No effects were noted after quantification in the periaqueductal grey matter (PAG), a region lacking GHB receptors. Moreover, NCS-382, a putative antagonist of GHB receptor, prevented both neurological damage and working- memory impairment induced by GHB. This suggests that the effects of administration of this compound may be mediated, at least partly, by specific receptors in the nervous system. The results show for the first time that the repeated administration of GHB, especially at very low doses, produces neurotoxic effects. This is very relevant because its abuse, especially by young persons, could produce considerable neurological alterations after prolonged abuse.

  2. Developmental neurotoxic effects of Malathion on 3D neurosphere system

    PubMed Central

    Salama, Mohamed; Lotfy, Ahmed; Fathy, Khaled; Makar, Maria; El-emam, Mona; El-gamal, Aya; El-gamal, Mohamed; Badawy, Ahmad; Mohamed, Wael M.Y.; Sobh, Mohamed

    2015-01-01

    Developmental neurotoxicity (DNT) refers to the toxic effects induced by various chemicals on brain during the early childhood period. As human brains are vulnerable during this period, various chemicals would have significant effects on brains during early childhood. Some toxicants have been confirmed to induce developmental toxic effects on CNS; however, most of agents cannot be identified with certainty. This is because available animal models do not cover the whole spectrum of CNS developmental periods. A novel alternative method that can overcome most of the limitations of the conventional techniques is the use of 3D neurosphere system. This in-vitro system can recapitulate many of the changes during the period of brain development making it an ideal model for predicting developmental neurotoxic effects. In the present study we verified the possible DNT of Malathion, which is one of organophosphate pesticides with suggested possible neurotoxic effects on nursing children. Three doses of Malathion (0.25 μM, 1 μM and 10 μM) were used in cultured neurospheres for a period of 14 days. Malathion was found to affect proliferation, differentiation and viability of neurospheres, these effects were positively correlated to doses and time progress. This study confirms the DNT effects of Malathion on 3D neurosphere model. Further epidemiological studies will be needed to link these results to human exposure and effects data. PMID:27054080

  3. Phthalates and neurotoxic effects on hippocampal network plasticity.

    PubMed

    Holahan, Matthew R; Smith, Catherine A

    2015-05-01

    Phthalates are synthetically derived chemicals used as plasticizers in a variety of common household products. They are not chemically bound to plastic polymers and over time, easily migrate out of these products and into the environment. Experimental investigations evaluating the biological impact of phthalate exposure on developing organisms are critical given that estimates of phthalate exposure are considerably higher in infants and children compared to adults. Extensive growth and re-organization of neurocircuitry occurs during development leaving the brain highly susceptible to environmental insults. This review summarizes the effects of phthalate exposure on brain structure and function with particular emphasis on developmental aspects of hippocampal structural and functional plasticity. In general, it appears that widespread disruptions in hippocampal functional and structural plasticity occur following developmental (pre-, peri- and post-natal) exposure to phthalates. Whether these changes occur as a direct neurotoxic effect of phthalates or an indirect effect through disruption of endogenous endocrine functions is not fully understood. Comprehensive investigations that simultaneously assess the neurodevelopmental, neurotoxic, neuroendocrine and behavioral correlates of phthalate exposure are needed to provide an opportunity to thoroughly evaluate the neurotoxic potential of phthalates throughout the lifespan.

  4. Phthalates and neurotoxic effects on hippocampal network plasticity.

    PubMed

    Holahan, Matthew R; Smith, Catherine A

    2015-05-01

    Phthalates are synthetically derived chemicals used as plasticizers in a variety of common household products. They are not chemically bound to plastic polymers and over time, easily migrate out of these products and into the environment. Experimental investigations evaluating the biological impact of phthalate exposure on developing organisms are critical given that estimates of phthalate exposure are considerably higher in infants and children compared to adults. Extensive growth and re-organization of neurocircuitry occurs during development leaving the brain highly susceptible to environmental insults. This review summarizes the effects of phthalate exposure on brain structure and function with particular emphasis on developmental aspects of hippocampal structural and functional plasticity. In general, it appears that widespread disruptions in hippocampal functional and structural plasticity occur following developmental (pre-, peri- and post-natal) exposure to phthalates. Whether these changes occur as a direct neurotoxic effect of phthalates or an indirect effect through disruption of endogenous endocrine functions is not fully understood. Comprehensive investigations that simultaneously assess the neurodevelopmental, neurotoxic, neuroendocrine and behavioral correlates of phthalate exposure are needed to provide an opportunity to thoroughly evaluate the neurotoxic potential of phthalates throughout the lifespan. PMID:25749100

  5. Evaluation of Caenorhabditis elegans as an acute lethality and a neurotoxicity screening model

    SciTech Connect

    Williams, P.L.

    1988-01-01

    This investigation evaluated C. elegans as a lethality and neurotoxicity screening model. The lethality experiments were performed in both agar and an aquatic medium. The salts of 8 metals (Hg, Be, Al, Cu, Zn, Pb, Cd, and Sr) were used in the agar studies and the salts of 14 metals (Ag, Hg, Cu, Be, Al, Pb, Cr, As, Tl, Zn, Cd, Ni, Sr, and Sb) were used in the aquatic tests. In each of these tests an LC50 value was determined. The data from the agar plates were compared to the published mammalian oral LD50 values for salts of the same metals. Within this set of chemicals C. elegans was found to be a predictor of mammalian acute lethality, generating LC50 values parallel to the rat and mouse LD50 values. The aquatic data were compared to data from EPA Ambient Water Quality Criteria documents. C. elegans was found to be less sensitive than Daphnia but generally more sensitive than the other invertebrate organisms that are presently used. The neurotoxicity testing also was performed in both agar and an aquatic media. The testing in agar was conducted with the salts of 4 metals (Cu, Be, Pb, and Hg) and 2 organophosphate pesticides (malathion and vapona). The studies in an aquatic medium tested the salts of 4 metals (Cu, Be, Pb, and Hg).

  6. Genetic or pharmacological blockade of noradrenaline synthesis enhances the neurochemical, behavioural, and neurotoxic effects of methamphetamine

    PubMed Central

    Weinshenker, David; Ferrucci, Michela; Busceti, Carla L.; Biagioni, Francesca; Lazzeri, Gloria; Liles, L. Cameron; Lenzi, Paola; Murri, Luigi; Paparelli, Antonio; Fornai, Francesco

    2008-01-01

    N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) lesions of the locus coeruleus (LC), the major brain noradrenergic nucleus, exacerbate the damage to nigrostriatal dopamine (DA) terminals caused by the psychostimulant methamphetamine (METH). However, because noradrenergic terminals contain other neuromodulators and the noradrenaline (NA) transporter, which may act as a neuroprotective buffer, it was unclear whether this enhancement of METH neurotoxicity was caused by the loss of noradrenergic innervation or the loss of NA itself. We addressed the specific role of NA by comparing the effects of METH in mice with noradrenergic lesions (DSP-4) and those with intact noradrenergic terminals but specifically lacking NA (genetic or acute pharmacological blockade of the NA biosynthetic enzyme dopamine β-hydroxylase; DBH). We found that genetic deletion of DBH (DBH −/− mice) and acute treatment of wild-type mice with a DBH inhibitor (fusaric acid) recapitulated the effects of DSP-4 lesions on METH responses. All three methods of NA depletion enhanced striatal DA release, extracellular oxidative stress (as measured by in vivo microdialysis of DA and 2,3-dihydroxybenzoic acid), and behavioural stereotypies following repeated METH administration. These effects accompanied a worsening of the striatal DA neuron terminal damage and ultrastructural changes to medium spiny neurons. We conclude that NA itself is neuroprotective and plays a fundamental role in the sensitivity of striatal DA terminals to the neurochemical, behavioural, and neurotoxic effects of METH. PMID:18042179

  7. Recurrent Intrathecal Methotrexate Induced Neurotoxicity in an Adolescent with Acute Lymphoblastic Leukemia: Serial Clinical and Radiologic Findings

    PubMed Central

    Brugnoletti, Fulvia; Morris, E. Brannon; Laningham, Fred H.; Patay, Zoltán; Pauley, Jennifer L; Pui, Ching-Hon; Jeha, Sima; Inaba, Hiroto

    2008-01-01

    Systemic and intrathecal methotrexate (MTX) are integral components of acute lymphoblastic leukemia (ALL) therapy, but can be associated with neurotoxicity. We describe here the case of an adolescent male with T-cell ALL who developed recurrent episodes of subacute neurotoxicity characterized by slurred speech, emotional lability, and hemiparesis after intrathecal MTX administration. Serial magnetic resonance imaging with diffusion-weighted imaging showed recurrent areas of restricted diffusion within cerebral hemispheric white matter, which correlated chronologically with the administration of intrathecal therapy and severity of clinical symptoms. Resolution of diffusion abnormalities did not preclude further toxicity and a large lesion could cause persisting symptoms. PMID:18831032

  8. Neurotoxic effects of alcohol in adolescence.

    PubMed

    Jacobus, Joanna; Tapert, Susan F

    2013-01-01

    This review examines neuroimaging and neurocognitive findings on alcohol-related toxicity in adolescents. Teens who meet criteria for alcohol use disorders, as well as those who engage in subdiagnostic binge drinking behaviors, often show poorer neurocognitive performance, alterations in gray and white matter brain structure, and discrepant functional brain activation patterns when compared to nonusing and demographically matched controls. Abnormalities are also observed in teens with a family history of alcoholism, and such differences in neuromaturation may leave youths at increased risk for the development of an alcohol use disorder or increased substance use severity. More prospective investigations are needed, and future work should focus on disentangling preexisting differences from dose-dependent effects of alcohol on neurodevelopment. Intervention strategies that utilize neuroimaging findings (e.g., identified weaknesses in particular neural substrates and behavioral correlates) may be helpful in both prevention and intervention campaigns for teens both pre- and postinitiation of alcohol use.

  9. Subacute methotrexate neurotoxicity and cerebral venous sinus thrombosis in a 12-year-old with acute lymphoblastic leukemia and methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: homocysteine-mediated methotrexate neurotoxicity via direct endothelial injury.

    PubMed

    Mahadeo, Kris M; Dhall, Girish; Panigrahy, Ashok; Lastra, Carlos; Ettinger, Lawrence J

    2010-02-01

    From as early as the 1970s methotrexate has been associated with disseminated necrotizing leukoencephalopathy and other neurotoxic sequelae. Yet, a clear mechanism for methotrexate-induced neurotoxicity has not been established. The authors describe the case of a 12-year-old male with acute lymphoblastic leukemia and a homozygous methylenetetrahydrofolate reductase C677T mutation, who developed subacute methotrexate-induced toxicity and cerebral venous thrombosis after receiving intrathecal methotrexate. The role of homocysteine as a possible mediator in methotrexate-induced neurotoxicity via direct endothelial injury is discussed. PMID:20121554

  10. Neurotoxic Effects and Biomarkers of Lead Exposure: A Review

    PubMed Central

    Sanders, Talia; Liu, Yiming; Buchner, Virginia; Tchounwou, Paul B.

    2010-01-01

    Biological monitoring techniques are useful for risk assessment of toxic agents in the field of environmental health. Lead, a systemic toxicant affecting virtually every organ system, primarily affects the central nervous system, particularly the developing brain. Consequently, children are at a greater risk than adults of suffering from the neurotoxic effects of lead. The ability of lead to pass through the blood-brain barrier is due in large part to its ability to substitute for calcium ions. Within the brain, lead-induced damage in the prefrontal cerebral cortex, hippocampus, and cerebellum can lead to a variety of neurological disorders, such as brain damage, mental retardation, behavioral problems, nerve damage, and possibly Alzheimer’s disease, Parkinson’s disease, and schizophrenia. At the molecular level, lead interferes with the regulatory action of calcium on cell functions and disrupts many intracellular biological activities. Experimental studies have also shown that lead exposure may have genotoxic effects, especially in the brain, bone marrow, liver, and lung cells. This paper presents an overview of biomarkers of lead exposure and discusses the neurotoxic effects of lead with regard to children, adults, and experimental animals, updated to January 2009. PMID:19476290

  11. Neurotoxic behavioral effects of Lake Ontario salmon diets in rats

    SciTech Connect

    Hertzler, D.R. )

    1990-03-01

    Six experiments were conducted to examine possible neurotoxic effects of the exposure to contaminants in Lake Ontario salmon administered through the diets of rats. Rats were fed different concentrations of fish (8%, 15% or 30%) in one of three diet conditions: Lake Ontario salmon, Pacific Ocean salmon, or laboratory rat chow only. Following 20 days on the diets, rats were tested for five minutes per day in a modified open field for one or three days. Lake Ontario salmon diets consistently produced significantly lower activity, rearing, and nosepoke behaviors in comparison with ocean salmon or rat chow diet conditions. A dose-response effect for concentration of lake salmon was obtained, and the attenuation effect occurred in males, females, adult or young animals, and postweaning females, with fish sampled over a five-year period. While only two of several potential contaminants were tested, both fish and brain analyses of mirex and PCBs relate to the behavioral effects.

  12. Protective Role of Oleuropein against Acute Deltamethrin-Induced Neurotoxicity in Rat Brain

    PubMed Central

    Khalatbary, Ali Reza; Ghaffari, Elmira; Mohammadnegad, Behrooz

    2015-01-01

    Background: Deltamethrin (DM) is a synthetic pyrethroid insecticide that can elicit neurotoxicity, leading to apoptosis. There is accumulating evidence that oleuropein (OE) has anti-apoptotic effect. The purpose of this study was to determine the anti-apoptotic effect of OE pretreatment in the neuronal cells of cerebral cortex. Methods: Rats were randomly divided into four groups each containing five rats: DM-treated group (12.5 mg/kg, a single dose), OE-treated group (20 mg/kg per day), DM + OE-treated group, and vehicle group. Sections of the brain were obtained 24 hours after DM injection and studied for histopathological and immunohistochemistry assessment. Results: The histopathological assessments showed lesser characteristics of neural degeneration in DM + OE group compared with DM group. Greater Bcl-2 and attenuated Bax expression could be detected in the DM + OE treated-mice compared with DM group. Conclusion: The results suggested that DM-induced neurotoxicity can be subsided by OE. PMID:26216399

  13. Acrylamide neurotoxicity.

    PubMed

    Erkekoglu, Pinar; Baydar, Terken

    2014-02-01

    Acrylamide, a food contaminant, belongs to a large class of structurally similar toxic chemicals, 'type-2 alkenes', to which humans are widely exposed. Besides, occupational exposure to acrylamide has received wide attention through the last decades. It is classified as a neurotoxin and there are three important hypothesis considering acrylamide neurotoxicity: inhibition of kinesin-based fast axonal transport, alteration of neurotransmitter levels, and direct inhibition of neurotransmission. While many researchers believe that exposure of humans to relatively low levels of acrylamide in the diet will not result in clinical neuropathy, some neurotoxicologists are concerned about the potential for its cumulative neurotoxicity. It has been shown in several studies that the same neurotoxic effects can be observed at low and high doses of acrylamide, with the low doses simply requiring longer exposures. This review is focused on the neurotoxicity of acrylamide and its possible outcomes.

  14. Neurotoxic effects of trans-glutaconic acid in rats.

    PubMed

    Schuck, Patrícia F; Busanello, Estela N B; Tonin, Anelise M; Viegas, Carolina M; Ferreira, Gustavo C

    2013-01-01

    trans-Glutaconic acid (tGA) is an unsaturated C5-dicarboxylic acid which may be found accumulated in glutaric aciduria type I, whose pathophysiology is still uncertain. In the present work it was investigated the in vitro effect of increasing tGA concentrations on neurochemical and oxidative stress parameters in rat cerebral cortex. We observed that Na(+), K(+)-ATPase activity was reduced by tGA, but not creatine kinase, respiratory chain complex IV, and ATP synthase activities. On the other hand, tGA significantly increased lipid peroxidation (thiobarbituric acid-reactive species levels and spontaneous chemiluminescence), as well as protein oxidative damage (oxidation of sulfhydryl groups). tGA also significantly decreased nonenzymatic antioxidant defenses (TRAP and reduced glutathione levels). Our data suggest that tGA may be neurotoxic in rat brain.

  15. Possible long-term effects of γ-hydroxybutyric acid (GHB) due to neurotoxicity and overdose.

    PubMed

    van Amsterdam, Jan G C; Brunt, Tibor M; McMaster, Minni T B; Niesink, Raymond J M

    2012-04-01

    In several countries, including the Netherlands, the use of GHB seems to be rising. GHB is regarded by recreational users as an innocent drug without any side effects. Recently, the number of patients in treatment due to GHB addiction sharply increased. In addition, various studies report incidents following risky GHB use or GHB overdosing. Other sedative drugs, like ketamine and alcohol have been shown to result in unintended neurotoxic harm at the level of memory and cognitive function. As outlined in the present review, GHB and ketamine have a common mode of action, which suggests that GHB may also lead to similar neurotoxicity as ketamine. GHB overdosing, as well as binge drinking (and high ketamine doses), induce profound coma which is probably neurotoxic for the brain especially in the maturing brain of young adults. It is therefore advocated to investigate possible long-term neurotoxic effects in recreational GHB users e.g. by studying the residual effects on cognition and memory.

  16. Alternating hemiparesis and orolingual apraxia as manifestations of methotrexate neurotoxicity in a paediatric case of acute lymphoblastic leukaemia.

    PubMed

    Yap, Siew Mei; MacEneaney, Peter; Ryan, Clodagh; O'Toole, Orna

    2016-01-01

    A 15-year-old girl with a recent diagnosis of acute lymphoblastic leukaemia was admitted to hospital with pancytopaenia after having received high-dose intrathecal methotrexate 1 day prior. During the next week she had intermittent episodes of alternating hemiparesis associated with speech arrest lasting minutes to hours at a time. The episodes were not associated with altered level of consciousness or headache. MRI of the brain showed features consistent with methotrexate encephalopathy. This report discusses the typical clinical and radiological features of methotrexate neurotoxicity in addition to differential diagnoses and the proposed pathophysiological mechanisms. PMID:27113788

  17. Age-related differences in neurotoxicity produced by organophosphorus and N-methyl carbamate pesticides

    EPA Science Inventory

    Potential pesticide effects in infants and toddlers have received much attention in the scientific literature and the public media, including the concern for increased response to acute or shortterm exposures. Age-related differences in the acute neurotoxicity of acetylcholinest...

  18. Recovery study of cholinesterases and neurotoxic signs in the non-target freshwater invertebrate Chilina gibbosa after an acute exposure to an environmental concentration of azinphos-methyl.

    PubMed

    Cossi, Paula Fanny; Beverly, Boburg; Carlos, Luquet; Kristoff, Gisela

    2015-10-01

    lethality (30%) was registered in treated snails. C. gibbosa is a very sensitive organism to azinphos-methyl. These snails play an important role in the structure and function of aquatic food webs in this region. Thus, a decline of this species' population would probably have an impact on aquatic and non-aquatic communities. Our results show that C. gibbosa is a relevant sentinel species for studying exposure and effects of azinphos-methyl using behavioral and biochemical biomarkers. Neurotoxic behavioral signs are very sensitive, non-destructive biomarkers, which can be easily detected for about one week after acute exposure. Cholinesterse activity is a very useful biomarker showing a high sensitivity and a slow recovery capacity increasing the possibility to indirectly detect organophosphates for long periods after a contaminant event. PMID:26364254

  19. Recovery study of cholinesterases and neurotoxic signs in the non-target freshwater invertebrate Chilina gibbosa after an acute exposure to an environmental concentration of azinphos-methyl.

    PubMed

    Cossi, Paula Fanny; Beverly, Boburg; Carlos, Luquet; Kristoff, Gisela

    2015-10-01

    lethality (30%) was registered in treated snails. C. gibbosa is a very sensitive organism to azinphos-methyl. These snails play an important role in the structure and function of aquatic food webs in this region. Thus, a decline of this species' population would probably have an impact on aquatic and non-aquatic communities. Our results show that C. gibbosa is a relevant sentinel species for studying exposure and effects of azinphos-methyl using behavioral and biochemical biomarkers. Neurotoxic behavioral signs are very sensitive, non-destructive biomarkers, which can be easily detected for about one week after acute exposure. Cholinesterse activity is a very useful biomarker showing a high sensitivity and a slow recovery capacity increasing the possibility to indirectly detect organophosphates for long periods after a contaminant event.

  20. 1,3-Dinitrobenzene neurotoxicity - Passage effect in immortalized astrocytes.

    PubMed

    Maurer, Laura L; Latham, Jackelyn D; Landis, Rory W; Song, Dong Hoon; Epstein, Tamir; Philbert, Martin A

    2016-03-01

    Age-related disturbances in astrocytic mitochondrial function are linked to loss of neuroprotection and decrements in neurological function. The immortalized rat neocortical astrocyte-derived cell line, DI-TNC1, provides a convenient model for the examination of cellular aging processes that are difficult to study in primary cell isolates from aged brain. Successive passages in culture may serve as a surrogate of aging in which time-dependent adaptation to culture conditions may result in altered responses to xenobiotic challenge. To investigate the hypothesis that astrocytic mitochondrial homeostatic function is decreased with time in culture, low passage DI-TNC1 astrocytes (LP; #2-8) and high passage DI-TNC1 astrocytes (HP; #17-28) were exposed to the mitochondrial neurotoxicant 1,3-dinitrobenzene (DNB). Cells were exposed in either monoculture or in co-culture with primary cortical neurons. Astrocyte mitochondrial membrane potential, morphology, ATP production and proliferation were monitored in monoculture, and the ability of DI-TNC1 cells to buffer K(+)-induced neuronal depolarization was examined in co-cultures. In HP DI-TNC1 cells, DNB exposure decreased proliferation, reduced mitochondrial membrane potential and significantly decreased mitochondrial form factor. Low passage DI-TNC1 cells effectively attenuated K(+)-induced neuronal depolarization in the presence of DNB whereas HP counterparts were unable to buffer K(+) in DNB challenge. Following DNB challenge, LP DI-TNC1 cells exhibited greater viability in co-culture than HP. The data provide compelling evidence that there is an abrupt phenotypic change in DI-TNC1 cells between passage #9-16 that significantly diminishes the ability of DI-TNC1 cells to compensate for neurotoxic challenge and provide neuroprotective spatial buffering. Whether or not these functional changes have an in vivo analog in aging brain remains to be determined. PMID:26769196

  1. Acute Cerebrovascular Radiation Syndrome: Radiation Neurotoxicity , mechanisms of CNS radiation injury, advanced countermeasures for Radiation Protection of Central Nervous System.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    Key words: Cerebrovascular Acute Radiation Syndrome (Cv ARS), Radiation Neurotoxins (RNT), Neurotransmitters, Radiation Countermeasures, Antiradiation Vaccine (ArV), Antiradiation Blocking Antibodies, Antiradiation Antidote. Psychoneuroimmunology, Neurotoxicity. ABSTRACT: To review the role of Radiation Neurotoxins in triggering, developing of radiation induced central nervous system injury. Radiation Neurotoxins - rapidly acting blood toxic lethal agent, which activated after irradiation and concentrated, circulated in interstitial fluid, lymph, blood with interactions with cell membranes, receptors and cell compartments. Radiation Neurotoxins - biological molecules with high enzymatic activity and/or specific lipids and activated or modified after irradiation. The Radiation Neurotoxins induce increased permeability of blood vessels, disruption of the blood-brain barrier, blood-cerebrospinal fluid (CSF) barrier and developing severe disorder of blood macro- and micro-circulation. Principles of Radiation Psychoneuro-immunology and Psychoneuro-allergology were applied for determination of pathological processes developed after irradiation or selective administration of Radiation Neurotoxins to radiation naïve mammals. Effects of radiation and exposure to radiation can develop severe irreversible abnormalities of Central Nervous System, brain structures and functions. Antiradiation Vaccine - most effective, advanced methods of protection, prevention, mitigation and treatment and was used for of Acute Radiation Syndromes and elaboration of new technology for immune-prophylaxis and immune-protection against ϒ, Heavy Ion, Neutron irradiation. Results of experiments suggested that blocking, antitoxic, antiradiation antibodies can significantly reduce toxicity of Radiation Toxins. New advanced technology include active immune-prophylaxis with Antiradiation Vaccine and Antiradiation therapy that included specific blocking antibodies to Radiation Neurotoxins

  2. β-cypermethrin-induced acute neurotoxicity in the cerebral cortex of mice.

    PubMed

    Cao, DeQing; Chen, Nan; Zhu, ChunXiao; Zhao, Yue; Liu, Li; Yang, Jun; An, Li

    2015-01-01

    A Type II pyrethroid pesticide β-cypermethrin is widely used in agriculture and domestic applications for pest control. However, the effect of β-cypermethrin on the glutamate neurotransmitter has not been well-documented. In the current study, mice were treated with 20, 40, or 80 mg/kg β-cypermethrin by a single oral gavage, with corn oil as a vehicle control. Four hours after treatment, we investigated glutamate levels and glutamate-metabolizing enzyme (phosphate-activated glutaminase, PAG; glutamine synthetase, GS) activities in the cerebral cortex of mice, using a HPLC system with ultraviolet detectors and a colorimetric assay. Glutamate uptake levels in the synaptosomes of cerebral cortex and mRNA expression levels of PAG, GS, and glutamate transporter-1 (GLT-1) in the cerebral cortex were detected by a radioactive labeling method and qRT-PCR, respectively. Toxic symptoms were observed in mice treated with 40 or 80 mg/kg β-cypermethrin. Compared with the control, significant decreases in glutamate level and GS activity, and an obvious increase in synaptosomal glutamate uptake, were found in the cerebral cortex of mice treated with 80 mg/kg β-cypermethrin. No significant changes were found among groups in PAG activity or PAG, GS, and GLT-1 mRNA expression levels. These results suggest that β-cypermethrin treatment may reduce the glutamate level in the mouse cerebral cortex, which is associated with decreased GS activity and increased synaptosomal glutamate uptake. Our findings provide a partial explanation for the neurotoxic effects of synthetic β-cypermethrin insecticides.

  3. TIME-COURSE OF ACUTE NEUROTOXICITY PRODUCED BY N-METHYL CARBAMATES IN PREWEANLING RATS.

    EPA Science Inventory

    N-methyl carbamate insecticides are reversible inhibitors of central and peripheral acetylcholinesterease (ChE). Despite their widespread and long-term use, we could find no studies of a systematic comparison of neurotoxicity in young animals across this group of chemicals. To ...

  4. Effects of peak concentrations on the neurotoxicity of styrene in volunteers.

    PubMed

    Ska, B; Vyskocil, A; Tardif, R; Carrier, G; Thuot, R; Muray, K; Viau, C

    2003-08-01

    The manufacture of fibreglass reinforced plastic products may give rise to substantial peak exposures to styrene. Such exposure patterns need further consideration in terms of styrene neurotoxicity. The aim of this study was to evaluate the neurotoxic effects of short-term peak exposures in volunteers, at levels respecting the Quebec occupational exposure limits (8 hours time weighed average of 213 mg/m3 and 15 min average of 426 mg/ m3). The volunteers had not been previously exposed to styrene and they had no documented exposure to known neurotoxicants during the study. Twenty-four volunteers were exposed to five exposure scenarios during 6 hours: a, stable exposure to 106 mg/m3; b, variable exposure with a mean concentration of 106 mg/m3 with four 15 min peaks mounting up to 213 mg/m3; c, stable exposure to 213 mg/m3; d, variable exposure with a mean concentration of 213 mg/m3 and four peaks of 426 mg/m3 and e, two stable exposures to 5 mg/m3 (control). Before and after each exposure scenario, volunteers were submitted to a battery of sensory tests (visual and olfactory), neuropsychological tests (reaction time, attention, memory, psychomotor function), and self-evaluation questionnaires (mood and symptoms) in a test-retest design. The results show that the different exposure scenarios involving peak exposures did not influence either the performance to any test or subjective signs and symptoms. However, due caution must be exercised in extrapolation of the current results to occupational exposure since only acute exposures were tested and volunteers were at rest during exposure, which resulted in lower doses than those experienced by physically active workers. PMID:12948080

  5. Neurotoxicity of solvents.

    PubMed

    Sainio, Markku Alarik

    2015-01-01

    Worldwide, several hundred million tons of organic solvents are used annually in household, industry, and other occupational settings. Millions of workers are regularly exposed to organic solvents considered neurotoxic. Acute neurotoxicity due to high exposure of solvent is usually evident, but the nature of long-term effects, such as chronic solvent encephalopathy (CSE), has raised uncertainty even among experts. Earlier studies were criticized for their methodology, mainly epidemiologic studies or investigations of exposed groups with many possible confounders and inadequate exposure assessment. However, an increasing number of studies have been performed since, also on workers with defined CSE based on differential diagnostics. During the last decade, evidence has emerged to enable identification of CSE, a necessity for the early recognition and prevention of progression of dysfunction and disability. Selected chemicals are presented here due to their widespread use, neurotoxic potential, and ability to cause solvent encephalopathy. Constant introduction of new chemicals may introduce new hazardous chemicals or known chemicals may reveal new health effects. It is important to keep an open mind for new findings of solvent-related neurobehavioral effects. PMID:26563785

  6. Acute toxic effects of fragrance products.

    PubMed

    Anderson, R C; Anderson, J H

    1998-01-01

    To evaluate whether fragrance products can produce acute toxic effects in mammals, we allowed groups of male Swiss-Webster mice to breathe the emissions of five commercial colognes or toilet water for 1 h. We used the ASTM-E-981 test method to evaluate sensory irritation and pulmonary irritation. We used a computerized version of this test to measure the duration of the break at the end of inspiration and the duration of the pause at the end of expiration. Decreases in expiratory flow velocity indicated airflow limitation. We subjected the mice to a functional observational battery to probe for changes in nervous system function. The emissions of these fragrance products caused various combinations of sensory irritation, pulmonary irritation, decreases in expiratory airflow velocity, as well as alterations of the functional observational battery indicative of neurotoxicity. Neurotoxicity was more severe after mice were repeatedly exposed to the fragrance products. Evaluation of one of the test atmospheres with gas chromatography/mass spectrometry revealed the presence of chemicals for which irritant and neurotoxic properties had been documented previously. In summary, some fragrance products emitted chemicals that caused a variety of acute toxicities in mice.

  7. Neurotoxicity following acute inhalation of aerosols generated during resistance spot weld-bonding of carbon steel

    PubMed Central

    Sriram, Krishnan; Jefferson, Amy M.; Lin, Gary X.; Afshari, Aliakbar; Zeidler-Erdely, Patti C.; Meighan, Terence G.; McKinney, Walter; Jackson, Mark; Cumpston, Amy; Cumpston, Jared L.; Leonard, Howard D.; Frazer, David G.; Antonini, James M.

    2015-01-01

    divulge the differential effects of LM and HM aerosols in the brain and suggest that exposure to weld-bonding aerosols can potentially elicit neurotoxicity following a short-term exposure. However, further investigations are warranted to determine if the aerosols generated by weld-bonding can contribute to persistent long-term neurological deficits and/or neurodegeneration. PMID:25265048

  8. Neurotoxicity following acute inhalation of aerosols generated during resistance spot weld-bonding of carbon steel.

    PubMed

    Sriram, Krishnan; Jefferson, Amy M; Lin, Gary X; Afshari, Aliakbar; Zeidler-Erdely, Patti C; Meighan, Terence G; McKinney, Walter; Jackson, Mark; Cumpston, Amy; Cumpston, Jared L; Leonard, Howard D; Frazer, David G; Antonini, James M

    2014-10-01

    divulge the differential effects of LM and HM aerosols in the brain and suggest that exposure to weld-bonding aerosols can potentially elicit neurotoxicity following a short-term exposure. However, further investigations are warranted to determine if the aerosols generated by weld-bonding can contribute to persistent long-term neurological deficits and/or neurodegeneration.

  9. The effect of phenytoin, phenobarbitone, dexamethasone and flurbiprofen on misonidazole neurotoxicity in mice.

    PubMed Central

    Sheldon, P. W.; Clarke, C.; Dawson, K. B.

    1984-01-01

    Using a quantitative cytochemical technique for measuring beta-glucuronidase activity in the peripheral nerves of mice, we have investigated the effectiveness of four potential adjuncts for reducing the dose limiting neurotoxicity of misonidazole (MISO) in the clinic. Under the conditions used, the most effective adjunct was the steroid anti-inflammatory agent dexamethasone. When given over the week previous to MISO treatment, this agent almost completely eliminated the MISO neurotoxicity as determined at week 4 after commencement of MISO dosing. The second most effective adjunct was phenytoin, the third flurbiprofen and the last adjunct, phenobarbitone, was ineffective. Dexamethasone, phenytoin and phenobarbitone all reduced the clearance half-life of MISO and hence the drug exposure dose calculated as the area under the curve of MISO tissue concentration against time. However, no correlation was evident with these parameters and MISO neurotoxicity in the mouse. Dexamethasone, whilst affording protection against MISO toxicity, did not alter the radiosensitivity of the anaplastic MT tumour. PMID:6696821

  10. Dual effects of neuroprotection and neurotoxicity by general anesthetics: Role of intracellular calcium homeostasis

    PubMed Central

    Wei, Huafeng; Inan, Saadet

    2013-01-01

    Although general anesthetics have long been considered neuroprotective, there are growing concerns about neurotoxicity. Preclinical studies clearly demonstrated that commonly used general anesthetics are both neuroprotective and neurotoxic, with unclear mechanisms. Recent studies suggest that differential activation of inositol 1,4,5-trisphosphate receptors, a calcium release channel located on the membrane of endoplasmic reticulum (ER), play important role on determining the fate of neuroprotection or neurotoxicity by general anesthetics. General anesthetics at low concentrations for short duration are sublethal stress factors which induce endogenous neuroprotective mechanisms and provide neuroprotection via adequate activation of InsP3R and moderate calcium release from ER. On the other hand, general anesthetics at high concentrations for prolonged duration are lethal stress factors which induce neuronal damage by over activation of InsP3R and excessive and abnormal Ca2+ release from ER. This review emphasizes the duel effects of both neuroprotection and neurotoxicity via differential regulation of intracellular Ca2+ homeostasis by commonly used general anesthetics and recommends strategy to maximize neuroprotective but minimize neurotoxic effects of general anesthetics. PMID:23721657

  11. Protective effects of a Chotosan Fraction and its active components on β-amyloid-induced neurotoxicity.

    PubMed

    Wei, Menglin; Chen, Lei; Liu, Jiazhuo; Zhao, Jiaojiao; Liu, Wenyuan; Feng, Feng

    2016-03-23

    Chotosan (CTS) is a traditional Kampo prescription used to treat chronic headache and hypertension. Recent clinical studies demonstrated that CTS has ameliorative effects on dementia. This study aims to identify the anti-Alzheimer components in CTS. β-amyloid (Aβ) is considered to play a central role in the pathophysiology of Alzheimer's disease. CTS-E, a fraction of CTS, showed significant protective effects on Aβ-induced neurotoxicity. High-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was used for the qualitative analysis of it. Among the identified constituents, neuroprotective effects against Aβ(25-35)-induced neurotoxicity of 10 major compounds were tested by MTT assay. Their inhibitory action on Aβ(1-42) self-induced aggregation was measured by Thioflavin T-binding assay. The results showed that caffeic acid, chlorogenic acid, 1,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid had significant neuroprotective effects on Aβ(25-35)-induced neurotoxicity. Besides these phenolic acids, nobiletin and hesperidin could also inhibit Aβ(1-42) self-induced aggregation. In conclusion, the neuroprotective fraction, CTS-E, could protect PC12 cells from Aβ-induced neurotoxicity. Anti-oxidative effects may at least partly mediate the neuroprotective effects of it. Phenolic acids from Chrysanthemi Flos and flavonoids from Citri Reticulatae Pericarpium might be the effective constituents in CTS-E.

  12. Protective effects of a Chotosan Fraction and its active components on β-amyloid-induced neurotoxicity.

    PubMed

    Wei, Menglin; Chen, Lei; Liu, Jiazhuo; Zhao, Jiaojiao; Liu, Wenyuan; Feng, Feng

    2016-03-23

    Chotosan (CTS) is a traditional Kampo prescription used to treat chronic headache and hypertension. Recent clinical studies demonstrated that CTS has ameliorative effects on dementia. This study aims to identify the anti-Alzheimer components in CTS. β-amyloid (Aβ) is considered to play a central role in the pathophysiology of Alzheimer's disease. CTS-E, a fraction of CTS, showed significant protective effects on Aβ-induced neurotoxicity. High-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was used for the qualitative analysis of it. Among the identified constituents, neuroprotective effects against Aβ(25-35)-induced neurotoxicity of 10 major compounds were tested by MTT assay. Their inhibitory action on Aβ(1-42) self-induced aggregation was measured by Thioflavin T-binding assay. The results showed that caffeic acid, chlorogenic acid, 1,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid had significant neuroprotective effects on Aβ(25-35)-induced neurotoxicity. Besides these phenolic acids, nobiletin and hesperidin could also inhibit Aβ(1-42) self-induced aggregation. In conclusion, the neuroprotective fraction, CTS-E, could protect PC12 cells from Aβ-induced neurotoxicity. Anti-oxidative effects may at least partly mediate the neuroprotective effects of it. Phenolic acids from Chrysanthemi Flos and flavonoids from Citri Reticulatae Pericarpium might be the effective constituents in CTS-E. PMID:26876445

  13. Effects of potential neurotoxic pesticides on hearing loss: a review.

    PubMed

    Gatto, M P; Fioretti, M; Fabrizi, G; Gherardi, M; Strafella, E; Santarelli, L

    2014-05-01

    Several pesticides are supposed to be neurotoxic for humans, consequently, they may also affect the auditory system. This review analyzes human and experimental animal studies testing the hypothesis that exposure to pesticides is associated with hearing loss. The literature on this topic is still sparse and methodological limitations of some papers evaluated are identified. As a whole, available data indicate a possible ototoxic action of pesticides, but alternative hypotheses could not be ruled out, also considering some confounders, such as the co-exposure to noise. Therefore, further studies are necessary in order to clarify the association between pesticides exposure and hearing loss. While awaiting more evidence, for precautionary action we recommend considering pesticides as possible ototoxic agents, in particular for vulnerable targets, such as pregnant women and children during early development.

  14. Chemotherapy-Related Neurotoxicity.

    PubMed

    Taillibert, Sophie; Le Rhun, Emilie; Chamberlain, Marc C

    2016-09-01

    Chemotherapy may have detrimental effects on either the central or peripheral nervous system. Central nervous system neurotoxicity resulting from chemotherapy manifests as a wide range of clinical syndromes including acute, subacute, and chronic encephalopathies, posterior reversible encephalopathy, acute cerebellar dysfunction, chronic cognitive impairment, myelopathy, meningitis, and neurovascular syndromes. These clinical entities vary by causative agent, degree of severity, evolution, and timing of occurrence. In the peripheral nervous system, chemotherapy-induced peripheral neuropathy (CIPN) and myopathy are the two main complications of chemotherapy. CIPN is the most common complication, and the majority manifest as a dose-dependent length-dependent sensory axonopathy. In severe cases of CIPN, the dose of chemotherapy is reduced, the administration delayed, or the treatment discontinued. Few treatments are available for CIPN and based on meta-analysis, duloxetine is the preferred symptomatic treatment. Myopathy due to corticosteroid use is the most frequent cause of muscle disorders in patients with cancer. PMID:27443648

  15. Features of Neurotoxicity on Brain CT of Acutely Intoxicated Unconscious Patients

    PubMed Central

    Sanei Taheri, Morteza; Noori, Maryam; Nahvi, Vahideh; Moharamzad, Yashar

    2010-01-01

    Diagnostic imaging is a valuable device in clinical management of poisoned patients presenting to emergency units in a comatose state. Some toxic agents have adverse effects on the central nervous system (CNS). Non-contrast computed tomography (CT) of the brain, as an available diagnostic method with a high resolution, can provide useful information about structural disturbances of unconscious patients with suspected drug or chemical intoxication. The authors would describe various presentations of toxic substances detected on the brain CT scans of ten patients with acute intoxication. While non-specific, CT findings of low-attenuation lesions in the basal ganglia, infarctions in young patients, or diffuse edema should raise suspicion for poisoning or overdose. PMID:21270943

  16. Neurotoxic effects of methamphetamine on rat hippocampus pyramidal neurons.

    PubMed

    Hori, N; Kadota, M T; Watanabe, M; Ito, Y; Akaike, N; Carpenter, D O

    2010-08-01

    Methamphetamine (MAP) is known to alter behavior and cause deficits in learning and memory. While the major site of action of MAP is on mesolimbic dopaminergic pathways, the effects on learning and memory raise the possibility of important actions in the hippocampus. We have studied electrophysiologic and morphologic effects of MAP in the CA1 region of hippocampus from young male rats chronically exposed to MAP, male rats exposed during gestation only and the effects of bath perfusion of MAP onto brain slices from control rats. Pyramidal neurons in brain slices from chronically exposed rats had reduced membrane potential and membrane resistance. Long-term potentiation (LTP) was reduced as compared to control, but when MAP was acutely perfused over control slices the amplitude of LTP was increased. LTP in young adult animals that had been gestationally exposed to MAP showed reduced LTP as compared to controls. Morphologically CA1 pyramidal neurons in chronically exposed animals showed a high prevalence of extensive blebbing of dendrites. We conclude that the NMDA receptor and the process of LTP are also targets of MAP dysfunction, at least in the hippocampus.

  17. NEUROTOXIC EFFECTS OF ENVIRONMENTAL AGENTS: DATA GAPS THAT CHALLENGE DOSE-RESPONSE ESTIMATION

    EPA Science Inventory

    Neurotoxic effects of environmental agents: Data gaps that challenge dose-response estimation
    S Gutter*, P Mendola+, SG Selevan**, D Rice** (*UNC Chapel Hill; +US EPA, NHEERL; **US EPA, NCEA)

    Dose-response estimation is a critical feature of risk assessment. It can be...

  18. Neurotoxic and Cytotoxic Effects of Venom from Different Populations of the Egyptian Scorpio Maurus Palmatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neurotoxic and cytotoxic effects of venoms from Scorpio maurus palmatus taken from different populations were assessed for geographic based variability in toxicity and to evaluate their insecticidal potency. Scorpions were collected from four regions. Three locations were mutually isolated pockets i...

  19. Local effects and global impact in neurotoxicity and neurodegeneration: The Xi’an International Neurotoxicology Conference

    EPA Science Inventory

    Neurotoxicity and Neurodegeneration: Local Effect and Global Impact” was the theme of the Xi’an International Neurotoxicology Conference (XINC), held in Xi’an, June 2011. The Conference was a joint event of the 13th Biennal Meeting of the International Neurotoxicology Associatio...

  20. The neurotoxic effects of manganese on the dopaminergic innervation of the gill of the bivalve mollusc, Crassostrea virginica.

    PubMed

    Martin, Kesha; Huggins, Turkesha; King, Candice; Carroll, Margaret A; Catapane, Edward J

    2008-08-01

    We examined effects of manganese on the nervous system and innervation of lateral cilia of Crassostrea virginica. While essential in trace amounts, tissue manganese accumulation is neurotoxic, inducing Manganism, a Parkinson's-like disease in humans. Lateral cilia of the gill of C. virginica are controlled by a reciprocal serotonergic-dopaminergic innervation from their ganglia. Oysters were incubated 3 days in the presence of up to 1 mM manganese, followed by superfusion of the cerebral ganglia, visceral ganglia or gill with dopamine or serotonin. Beating rates of cilia were measured by stroboscopic microscopy of isolated gill preparations or gill preparations with the ipsilateral cerebral and/or visceral ganglia attached. Acute manganese treatments impaired the dopaminergic, cilio-inhibitory system, while having no effect on the serotonergic, cilio-excitatory system, which is in agreement with the proposed mechanism of manganese toxicity in humans. Manganese treatments also decreased endogenous dopamine levels in the cerebral and visceral ganglia, and gills, but not serotonin levels. We demonstrated that manganese disrupts the animal's dopaminergic system, and also that this preparation can be used to investigate mechanisms that underlie manganese neurotoxicity. It also may serve as a model in pharmacological studies of drugs to treat or prevent Manganism and other dopaminergic cell disorders. PMID:18547869

  1. Acute neurotoxicity associated with recreational use of methylmethaqualone confirmed by liquid chromatography tandem mass spectrometry.

    PubMed

    Ceschi, A; Giardelli, G; Müller, D M; Elavumkudy, S; Manini, A F; Rauber-Lüthy, C; Hofer, K E

    2013-01-01

    Methylmethaqualone is a sedative designer drug created by adding a methyl group to the 3-phenyl ring of methaqualone, and is at present not subject to restrictive regulation in many countries. To our knowledge, no case of methylmethaqualone abuse has been published to date in the scientific literature, and the only sources of information are users' reports on Web discussion forums and data from preclinical animal studies. We report a case of oral methylmethaqualone abuse confirmed by liquid chromatography tandem mass spectrometry in a 24-year-old previously healthy Caucasian male. Observed symptoms and signs such as central nervous system depression alternating with excitation, psychomotor agitation, muscle hyperactivity, and tachycardia were compatible with methaqualone-induced adverse effects. Except for the mild tachycardia (115 beats/min), other vital signs were normal: blood pressure 134/89 mmHg, body temperature 36.2°C (97.16°F), and peripheral oxygen saturation 99% while breathing room air. The ECG showed no prolongation of the QT interval and the QRS duration was normal. Laboratory analysis revealed a slight increase in creatine kinase (368 U/L) and alanine aminotransferase (90 U/L) serum concentrations. Blood alcohol concentration was 0.32 g/L. Methylmethaqualone was identified in a serum sample collected on admission which was analyzed by a liquid chromatography tandem mass spectrometry toxicological screening method using turbulent flow online extraction. After a few days the patient ingested the same amount of substance with identical symptoms. Based on the chemical structure and animal data, and according to this case report and users' Web reports, methylmethaqualone appears to have a similar acute toxicity profile to methaqualone, with marked psychomotor stimulation. Symptoms of acute toxicity can be expected to resolve with supportive care.

  2. The developmental neurotoxicity of polybrominated diphenyl ethers: Effect of DE-71 on dopamine in zebrafish larvae.

    PubMed

    Wang, Xianfeng; Yang, Lihua; Wu, Yuanyuan; Huang, Changjiang; Wang, Qiangwei; Han, Jian; Guo, Yongyong; Shi, Xiongjie; Zhou, Bingsheng

    2015-05-01

    The potential neurotoxicity of polybrominated diphenyl ethers (PBDEs) is still a great concern. In the present study, the authors investigated whether exposure to PBDEs could affect the neurotransmitter system and cause developmental neurotoxicity in zebrafish. Zebrafish embryos (2 h postfertilization) were exposed to different concentrations of the PBDE mixture DE-71 (0-100 μg/L). The larvae were harvested at 120 h postfertilization, and the impact on dopaminergic signaling was investigated. The results revealed significant reductions in content of whole-body dopamine and its metabolite, dihydroxyphenylacetic acid, in DE-71-exposed larvae. The transcription of genes involved in the development of dopaminergic neurons (e.g., manf, bdnf, and nr4a2b) was significantly downregulated upon exposure to DE-71. Also, DE-71 resulted in a significant decrease of tyrosine hydroxylase and dopamine transporter protein levels in dopaminergic neurons. The expression level of tyrosine hydroxylase in forebrain neurons was assessed by whole-mount immunofluorescence, and the results further demonstrated that the tyrosine hydroxylase protein expression level was reduced in dopaminergic neurons. In addition to these molecular changes, the authors observed reduced locomotor activity in DE-71-exposed larvae. Taken together, the results of the present study demonstrate that acute exposure to PBDEs can affect dopaminergic signaling by disrupting the synthesis and transportation of dopamine in zebrafish, thereby disrupting normal neurodevelopment. In accord with its experimental findings, the present study extends knowledge of the mechanisms governing PBDE-induced developmental neurotoxicity. PMID:25651517

  3. Effect of pleiotrophin on glutamate-induced neurotoxicity in cultured hippocampal neurons.

    PubMed

    Asai, Hitomi; Morita, Shoko; Miyata, Seiji

    2011-12-01

    Pleiotrophin (PTN) is a secreted heparin-binding cytokine that signals diverse functions, including lineage-specific differentiation of glial progenitor cells, axonal outgrowth and angiogenesis. Neurotoxicity mediated by glutamate receptor is thought to play a role in various neurodegenerative disorders. In the present study, we examined the effect of PTN on the neuronal viability of hippocampal neurons in vitro by using the immunostaining of MAP2 and permeability of propidium iodide. PTN significantly prevented glutamate-induced neurotoxicity when hippocampal neurons were treated with PTN after the glutamate stimulation. PTN significantly promoted glutamate-induced neurotoxicity, when cells were incubated with PTN before and after the glutamate stimulation. Thus, the effect of PTN on the neuronal viability of hippocampal neurons largely depends on the timing of the treatment of PTN. The treatment of PTN promoted dendrite-specific expression of MAP2, indicating that PTN stabilizes microtubule system at dendrites. The data suggest that PTN may be relevant to be concerned with glutamate-induced neurotoxicity of hippocampal neurons.

  4. Effect of Gene-Mercury Interactions on Mercury Toxicokinetics and Neurotoxicity.

    PubMed

    Llop, Sabrina; Ballester, Ferran; Broberg, Karin

    2015-06-01

    Individuals differ in susceptibility to mercury neurotoxicity, in part, due to underlying genetic differences. This review aims to evaluate the state-of-the-art of the effect of (1) genetics on mercury toxicokinetics and (2) gene-mercury interactions on neurodevelopment and neurotoxicity. We conducted a PubMed search in September 2014 and retrieved 14 studies on the influence of genetics on mercury toxicokinetics and ten on neurological effects of gene-mercury interactions. Genes frequently studied for their influence on mercury toxicokinetics were mainly related to the metabolism of glutathione, but the results were contradictory for most of the genes. The gene-mercury interactions on child neurodevelopment and adult neurotoxicity reported were too few to draw any definite conclusion. So far, candidate gene approaches have not identified any major gene/s modifying the kinetics or toxicity of mercury, suggesting that these might be polygenic traits. More research is highly warranted to clarify if there are vulnerable subgroups to mercury neurotoxicity in humans. PMID:26231367

  5. Neurotoxicity following acute inhalation exposure to the oil dispersant COREXIT EC9500A.

    PubMed

    Sriram, Krishnan; Lin, Gary X; Jefferson, Amy M; Goldsmith, William T; Jackson, Mark; McKinney, Walter; Frazer, David G; Robinson, Victor A; Castranova, Vincent

    2011-01-01

    Consequent to the 2010 Deepwater Horizon oil spill in the Gulf of Mexico, there is an emergent concern about the short- and long-term adverse health effects of exposure to crude oil, weathered-oil products, and oil dispersants among the workforce employed to contain and clean up the spill. Oil dispersants typically comprise of a mixture of solvents and surfactants that break down floating oil to micrometer-sized droplets within the water column, thus preventing it from reaching the shorelines. As dispersants are generally sprayed from the air, workers are at risk for exposure primarily via inhalation. Such inhaled fractions might potentially permeate or translocate to the brain via olfactory or systemic circulation, producing central nervous system (CNS) abnormalities. To determine whether oil dispersants pose a neurological risk, male Sprague-Dawley rats were exposed by whole-body inhalation exposure to a model oil dispersant, COREXIT EC9500A (CE; approximately 27 mg/m(3) × 5 h/d × 1 d), and various molecular indices of neural dysfunction were evaluated in discrete brain areas, at 1 or 7 d postexposure. Exposure to CE produced partial loss of olfactory marker protein in the olfactory bulb. CE also reduced tyrosine hydroxylase protein content in the striatum. Further, CE altered the levels of various synaptic and neuronal intermediate filament proteins in specific brain areas. Reactive astrogliosis, as evidenced by increased expression of glial fibrillary acidic protein, was observed in the hippocampus and frontal cortex following exposure to CE. Collectively, these findings are suggestive of disruptions in olfactory signal transduction, axonal function, and synaptic vesicle fusion, events that potentially result in an imbalance in neurotransmitter signaling. Whether such acute molecular aberrations might persist and produce chronic neurological deficits remains to be ascertained. PMID:21916746

  6. Neurotoxicity following acute inhalation exposure to the oil dispersant COREXIT EC9500A.

    PubMed

    Sriram, Krishnan; Lin, Gary X; Jefferson, Amy M; Goldsmith, William T; Jackson, Mark; McKinney, Walter; Frazer, David G; Robinson, Victor A; Castranova, Vincent

    2011-01-01

    Consequent to the 2010 Deepwater Horizon oil spill in the Gulf of Mexico, there is an emergent concern about the short- and long-term adverse health effects of exposure to crude oil, weathered-oil products, and oil dispersants among the workforce employed to contain and clean up the spill. Oil dispersants typically comprise of a mixture of solvents and surfactants that break down floating oil to micrometer-sized droplets within the water column, thus preventing it from reaching the shorelines. As dispersants are generally sprayed from the air, workers are at risk for exposure primarily via inhalation. Such inhaled fractions might potentially permeate or translocate to the brain via olfactory or systemic circulation, producing central nervous system (CNS) abnormalities. To determine whether oil dispersants pose a neurological risk, male Sprague-Dawley rats were exposed by whole-body inhalation exposure to a model oil dispersant, COREXIT EC9500A (CE; approximately 27 mg/m(3) × 5 h/d × 1 d), and various molecular indices of neural dysfunction were evaluated in discrete brain areas, at 1 or 7 d postexposure. Exposure to CE produced partial loss of olfactory marker protein in the olfactory bulb. CE also reduced tyrosine hydroxylase protein content in the striatum. Further, CE altered the levels of various synaptic and neuronal intermediate filament proteins in specific brain areas. Reactive astrogliosis, as evidenced by increased expression of glial fibrillary acidic protein, was observed in the hippocampus and frontal cortex following exposure to CE. Collectively, these findings are suggestive of disruptions in olfactory signal transduction, axonal function, and synaptic vesicle fusion, events that potentially result in an imbalance in neurotransmitter signaling. Whether such acute molecular aberrations might persist and produce chronic neurological deficits remains to be ascertained.

  7. NEUROTOXICITY FOLLOWING ACUTE INHALATION EXPOSURE TO THE OIL DISPERSANT COREXIT EC9500A

    PubMed Central

    Sriram, Krishnan; Lin, Gary X.; Jefferson, Amy M.; Goldsmith, William T.; Jackson, Mark; McKinney, Walter; Frazer, David G.; Robinson, Victor A.; Castranova, Vincent

    2015-01-01

    Consequent to the 2010 Deepwater Horizon oil spill in the Gulf of Mexico, there is an emergent concern about the short- and long-term adverse health effects of exposure to crude oil, weathered-oil products, and oil dispersants among the workforce employed to contain and clean up the spill. Oil dispersants typically comprise of a mixture of solvents and surfactants that break down floating oil to micrometer-sized droplets within the water column, thus preventing it from reaching the shorelines. As dispersants are generally sprayed from the air, workers are at risk for exposure primarily via inhalation. Such inhaled fractions might potentially permeate or translocate to the brain via olfactory or systemic circulation, producing central nervous system (CNS) abnormalities. To determine whether oil dispersants pose a neurological risk, male Sprague-Dawley rats were exposed by whole-body inhalation exposure to a model oil dispersant, COREXIT EC9500A (CE; approximately 27 mg/m3 × 5 h/d × 1 d), and various molecular indices of neural dysfunction were evaluated in discrete brain areas, at 1 or 7 d postexposure. Exposure to CE produced partial loss of olfactory marker protein in the olfactory bulb. CE also reduced tyrosine hydroxylase protein content in the striatum. Further, CE altered the levels of various synaptic and neuronal intermediate filament proteins in specific brain areas. Reactive astrogliosis, as evidenced by increased expression of glial fibrillary acidic protein, was observed in the hippocampus and frontal cortex following exposure to CE. Collectively, these findings are suggestive of disruptions in olfactory signal transduction, axonal function, and synaptic vesicle fusion, events that potentially result in an imbalance in neurotransmitter signaling. Whether such acute molecular aberrations might persist and produce chronic neurological deficits remains to be ascertained. PMID:21916746

  8. Developmental neurotoxic effects of two pesticides: Behavior and neuroprotein studies on endosulfan and cypermethrin.

    PubMed

    Lee, Iwa; Eriksson, Per; Fredriksson, Anders; Buratovic, Sonja; Viberg, Henrik

    2015-09-01

    Developmental neurotoxicity of industrial chemicals and pharmaceuticals have been of growing interest in recent years due to the increasing reports of neuropsychiatric disorders, such as attention deficit hyperactivity disorder (ADHD) and autism. Exposure to these substances during early development may lead to adverse behavior effects manifested at a later phase of life. Pesticides are a wide group of chemicals which are still actively used and residues are found in the environment and in food products. The present study investigated the potential developmental neurotoxic effects of two different types of pesticides, endosulfan and cypermethrin, after a single neonatal exposure during a critical period of brain development. Ten-day-old male NMRI mice were administrated an oral dose of endosulfan or cypermethrin (0.1 or 0.5 mg/kg body weight, respectively). Levels of proteins were measured in the neonatal and adult brain, and adult behavioral testing was performed. The results indicate that both pesticides may induce altered levels of neuroproteins, important for normal brain development, and neurobehavioral abnormalities manifested as altered adult spontaneous behavior and ability to habituate to a novel home environment. The neurotoxic behavioral effects were also presentseveral months after the initial testing, indicating long-lasting or even persistent irreversible effects. Also, the present study suggests a possible link between the altered levels of neuroprotein and changes in behavior when exposed during a critical period of brain development.

  9. Etiology of autistic features: the persisting neurotoxic effects of propionic acid

    PubMed Central

    2012-01-01

    Background Recent clinical observations suggest that certain gut and dietary factors may transiently worsen symptoms in autism. Propionic acid (PA) is a short chain fatty acid and an important intermediate of cellular metabolism. Although PA has several beneficial biological effects, its accumulation is neurotoxic. Methods Two groups of young Western albino male rats weighing about 45 to 60 grams (approximately 21 days old) were used in the present study. The first group consisted of oral buffered PA-treated rats that were given a neurotoxic dose of 250 mg/kg body weight/day for three days, n = eight; the second group of rats were given only phosphate buffered saline and used as a control. Biochemical parameters representing oxidative stress, energy metabolism, neuroinflammation, neurotransmission, and apoptosis were investigated in brain homogenates of both groups. Results Biochemical analyses of brain homogenates from PA-treated rats showed an increase in oxidative stress markers (for example, lipid peroxidation), coupled with a decrease in glutathione (GSH) and glutathione peroxidase (GPX) and catalase activities. Impaired energy metabolism was ascertained through the decrease of lactate dehydrogenase and activation of creatine kinase (CK). Elevated IL-6, TNFα, IFNγ and heat shock protein 70 (HSP70) confirmed the neuroinflammatory effect of PA. Moreover, elevation of caspase3 and DNA fragmentation proved the pro-apoptotic and neurotoxic effect of PA to rat pups Conclusion By comparing the results obtained with those from animal models of autism or with clinical data on the biochemical profile of autistic patients, this study showed that the neurotoxicity of PA as an environmental factor could play a central role in the etiology of autistic biochemical features. PMID:22531301

  10. The Protective Effects of Nigella sativa and Its Constituents on Induced Neurotoxicity.

    PubMed

    Khazdair, Mohammad Reza

    2015-01-01

    Nigella sativa (N. sativa) is an annual plant and widely used as medicinal plant throughout the world. The seeds of the plant have been used traditionally in various disorders and as a spice to ranges of Persian foods. N. sativa has therapeutic effects on tracheal responsiveness (TR) and lung inflammation on induced toxicity by Sulfur mustard. N. sativa has been widely used in treatment of various nervous system disorders such as Alzheimer disease, epilepsy, and neurotoxicity. Most of the therapeutic properties of this plant are due to the presence of some phenolic compounds especially thymoquinone (TQ), which is major bioactive component of the essential oil. The present review is an effort to provide a comprehensive study of the literature on scientific researches of pharmacological activities of the seeds of this plant on induced neurotoxicity. PMID:26604923

  11. The Protective Effects of Nigella sativa and Its Constituents on Induced Neurotoxicity

    PubMed Central

    Khazdair, Mohammad Reza

    2015-01-01

    Nigella sativa (N. sativa) is an annual plant and widely used as medicinal plant throughout the world. The seeds of the plant have been used traditionally in various disorders and as a spice to ranges of Persian foods. N. sativa has therapeutic effects on tracheal responsiveness (TR) and lung inflammation on induced toxicity by Sulfur mustard. N. sativa has been widely used in treatment of various nervous system disorders such as Alzheimer disease, epilepsy, and neurotoxicity. Most of the therapeutic properties of this plant are due to the presence of some phenolic compounds especially thymoquinone (TQ), which is major bioactive component of the essential oil. The present review is an effort to provide a comprehensive study of the literature on scientific researches of pharmacological activities of the seeds of this plant on induced neurotoxicity. PMID:26604923

  12. Afobazole modifies the neurotoxic and genotoxic effects in rat prenatal alcoholization model.

    PubMed

    Shreder, E D; Shreder, O V; Zabrodina, V V; Durnev, A D; Seredenin, S B

    2014-08-01

    Prenatal ethanol leads to the formation of a wide spectrum of neurotoxic injuries to the brain in embryos by day 20 of intrauterine development. High levels of DNA aberrations and apoptotic comets were detected in tissues of 13-day embryos and placentas of rats receiving 40% ethanol orally (4 ml/kg) during gestation. The increase in the levels of DNA aberrations and apoptotic comets in the embryonic and placental tissues of alcoholic rats on day 13 of gestation correlated with the emergence of morphological abnormalities of the brain in the embryos on day 20 of intrauterine development. Afobazole (antimutagen) in doses of 1 and 10 mg/kg reduced the genotoxic effects of ethanol in embryonic and placental tissues and the relevant neurotoxic involvement of the brain. PMID:25110091

  13. Brain Function in Young Patients Receiving Methotrexate for Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-04-08

    Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Cognitive Side Effects of Cancer Therapy; Long-Term Effects Secondary to Cancer Therapy in Children; Neurotoxicity Syndrome; Psychological Impact of Cancer; Untreated Childhood Acute Lymphoblastic Leukemia

  14. Amphetamine- and methamphetamine-induced hyperthermia: Implications of the effects produced in brain vasculature and peripheral organs to forebrain neurotoxicity

    PubMed Central

    Bowyer, John F; Hanig, Joseph P

    2014-01-01

    The adverse effects of amphetamine- (AMPH) and methamphetamine- (METH) induced hyperthermia on vasculature, peripheral organs and peripheral immune system are discussed. Hyperthermia alone does not produce amphetamine-like neurotoxicity but AMPH and METH exposures that do not produce hyperthermia (≥40°C) are minimally neurotoxic. Hyperthermia likely enhances AMPH and METH neurotoxicity directly through disruption of protein function, ion channels and enhanced ROS production. Forebrain neurotoxicity can also be indirectly influenced through the effects of AMPH- and METH- induced hyperthermia on vasculature. The hyperthermia and the hypertension produced by high doses amphetamines are a primary cause of transient breakdowns in the blood-brain barrier (BBB) resulting in concomitant regional neurodegeneration and neuroinflammation in laboratory animals. This BBB breakdown can occur in the amygdala, thalamus, striatum, sensory and motor cortex and hippocampus. Under these conditions, repetitive seizures greatly enhance neurodegeneration in hippocampus, thalamus and amygdala. Even when the BBB is less disrupted, AMPH- or METH- induced hyperthermia effects on brain vasculature may play a role in neurotoxicity. In this case, striatal and cortical vascular function are adversely affected, and even greater ROS, immune and damage responses are seen in the meninges and cortical surface vasculature. Finally, muscle and liver damage and elevated cytokines in blood can result when amphetamines produce hyperthermia. Proteins, from damaged muscle may activate the peripheral immune system and exacerbate liver damage. Liver damage can further increase cytokine levels, immune system activation and increase ammonia levels. These effects could potentially enhance vascular damage and neurotoxicity. PMID:27626044

  15. Amphetamine- and methamphetamine-induced hyperthermia: Implications of the effects produced in brain vasculature and peripheral organs to forebrain neurotoxicity

    PubMed Central

    Bowyer, John F; Hanig, Joseph P

    2014-01-01

    The adverse effects of amphetamine- (AMPH) and methamphetamine- (METH) induced hyperthermia on vasculature, peripheral organs and peripheral immune system are discussed. Hyperthermia alone does not produce amphetamine-like neurotoxicity but AMPH and METH exposures that do not produce hyperthermia (≥40°C) are minimally neurotoxic. Hyperthermia likely enhances AMPH and METH neurotoxicity directly through disruption of protein function, ion channels and enhanced ROS production. Forebrain neurotoxicity can also be indirectly influenced through the effects of AMPH- and METH- induced hyperthermia on vasculature. The hyperthermia and the hypertension produced by high doses amphetamines are a primary cause of transient breakdowns in the blood-brain barrier (BBB) resulting in concomitant regional neurodegeneration and neuroinflammation in laboratory animals. This BBB breakdown can occur in the amygdala, thalamus, striatum, sensory and motor cortex and hippocampus. Under these conditions, repetitive seizures greatly enhance neurodegeneration in hippocampus, thalamus and amygdala. Even when the BBB is less disrupted, AMPH- or METH- induced hyperthermia effects on brain vasculature may play a role in neurotoxicity. In this case, striatal and cortical vascular function are adversely affected, and even greater ROS, immune and damage responses are seen in the meninges and cortical surface vasculature. Finally, muscle and liver damage and elevated cytokines in blood can result when amphetamines produce hyperthermia. Proteins, from damaged muscle may activate the peripheral immune system and exacerbate liver damage. Liver damage can further increase cytokine levels, immune system activation and increase ammonia levels. These effects could potentially enhance vascular damage and neurotoxicity.

  16. Neurotoxicity in Snakebite—The Limits of Our Knowledge

    PubMed Central

    Ranawaka, Udaya K.; Lalloo, David G.; de Silva, H. Janaka

    2013-01-01

    Snakebite is classified by the WHO as a neglected tropical disease. Envenoming is a significant public health problem in tropical and subtropical regions. Neurotoxicity is a key feature of some envenomings, and there are many unanswered questions regarding this manifestation. Acute neuromuscular weakness with respiratory involvement is the most clinically important neurotoxic effect. Data is limited on the many other acute neurotoxic manifestations, and especially delayed neurotoxicity. Symptom evolution and recovery, patterns of weakness, respiratory involvement, and response to antivenom and acetyl cholinesterase inhibitors are variable, and seem to depend on the snake species, type of neurotoxicity, and geographical variations. Recent data have challenged the traditional concepts of neurotoxicity in snake envenoming, and highlight the rich diversity of snake neurotoxins. A uniform system of classification of the pattern of neuromuscular weakness and models for predicting type of toxicity and development of respiratory weakness are still lacking, and would greatly aid clinical decision making and future research. This review attempts to update the reader on the current state of knowledge regarding this important issue. PMID:24130909

  17. Neurotoxic effects of AZT on developing and adult neurogenesis

    PubMed Central

    Demir, Meryem; Laywell, Eric D.

    2015-01-01

    Azidothymidine (AZT) is a synthetic, chain-terminating nucleoside analog used to treat HIV-1 infection. While AZT is not actively transported across the blood brain barrier, it does accumulate at high levels in cerebrospinal fluid, and subsequently diffuses into the overlying parenchyma. Due to the close anatomical proximity of the neurogenic niches to the ventricular system, we hypothesize that diffusion from CSF exposes neural stem/progenitor cells and their progeny to biologically relevant levels of AZT sufficient to perturb normal cell functions. We employed in vitro and in vivo models of mouse neurogenesis in order to assess the effects of AZT on developing and adult neurogenesis. Using in vitro assays we show that AZT reduces the population expansion potential of neural stem/progenitor cells by inducing senescence. Additionally, in a model of in vitro neurogenesis AZT severely attenuates neuroblast production. These effects are mirrored in vivo by clinically-relevant animal models. We show that in utero AZT exposure perturbs both population expansion and neurogenesis among neural stem/progenitor cells. Additionally, a short-term AZT regimen in adult mice suppresses subependymal zone neurogenesis. These data reveal novel negative effects of AZT on neural stem cell biology. Given that the sequelae of HIV infection often include neurologic deficits—subsumed under AIDS Dementia Complex (Brew, 1999)—it is important to determine to what extent AZT negatively affects neurological function in ways that contribute to, or exacerbate, ADC in order to avoid attributing iatrogenic drug effects to the underlying disease process, and thereby skewing the risk/benefit analysis of AZT therapy. PMID:25852464

  18. Neurotoxic effects of AZT on developing and adult neurogenesis.

    PubMed

    Demir, Meryem; Laywell, Eric D

    2015-01-01

    Azidothymidine (AZT) is a synthetic, chain-terminating nucleoside analog used to treat HIV-1 infection. While AZT is not actively transported across the blood brain barrier, it does accumulate at high levels in cerebrospinal fluid, and subsequently diffuses into the overlying parenchyma. Due to the close anatomical proximity of the neurogenic niches to the ventricular system, we hypothesize that diffusion from CSF exposes neural stem/progenitor cells and their progeny to biologically relevant levels of AZT sufficient to perturb normal cell functions. We employed in vitro and in vivo models of mouse neurogenesis in order to assess the effects of AZT on developing and adult neurogenesis. Using in vitro assays we show that AZT reduces the population expansion potential of neural stem/progenitor cells by inducing senescence. Additionally, in a model of in vitro neurogenesis AZT severely attenuates neuroblast production. These effects are mirrored in vivo by clinically-relevant animal models. We show that in utero AZT exposure perturbs both population expansion and neurogenesis among neural stem/progenitor cells. Additionally, a short-term AZT regimen in adult mice suppresses subependymal zone neurogenesis. These data reveal novel negative effects of AZT on neural stem cell biology. Given that the sequelae of HIV infection often include neurologic deficits-subsumed under AIDS Dementia Complex (Brew, 1999)-it is important to determine to what extent AZT negatively affects neurological function in ways that contribute to, or exacerbate, ADC in order to avoid attributing iatrogenic drug effects to the underlying disease process, and thereby skewing the risk/benefit analysis of AZT therapy. PMID:25852464

  19. Effective suppression of acrylamide neurotoxicity by lithium in mouse.

    PubMed

    Song, Lingzhen; Wang, Jiutao; Zhang, Wei; Yan, Runchuan; Hu, Xinde; Chen, Shulin; Zhao, Shanting

    2014-11-01

    The primary objective of this investigation was to assess the neuroprotective efficacy of lithium in an acrylamide (ACR)-induced neuropathy model in mice. In this study, Kunming male mice were administered ACR (25 mg/kg bw, i.p. once a day) with or without lithium (25 mg/kg bw, i.p. once a day) for 2 weeks. All ACR-administered mice exhibited severe symptoms of neuropathy. We found that treatment with lithium effectively alleviated behavioral deficits in animals elicited by acrylamide. Interestingly, the reduction of hippocampal neurogenesis resulting from ACR injection was promoted by administration of lithium. Further, lithium treatment significantly offset ACR-induced depletion in p-GSK-3β (Ser9) levels in hippocampus. Collectively our findings suggest the propensity of lithium to attenuate ACR-induced neuropathy. Further studies are necessary to understand the precise molecular mechanism by which the lithium attenuates neuropathy. Nevertheless, our data clearly demonstrate the beneficial effects of lithium on ACR-induced neuropathy in mice and suggest its possible therapeutic application as an adjuvant in the management of other forms of neuropathy in humans.

  20. Neurotoxic effects of solvent exposure on sewage treatment workers

    SciTech Connect

    Kraut, A.; Lilis, R.; Marcus, M.; Valciukas, J.A.; Wolff, M.S.; Landrigan, P.J.

    1988-07-01

    Nineteen Sewage Treatment Workers (STWs) exposed to industrial sewage that contained benzene, toluene, and other organic solvents at a primary sewage treatment plant in New York City (Plant A) were examined for evidence of solvent toxicity. Fourteen (74%) complained of central nervous system (CNS) symptoms consistent with solvent exposure, including lightheadedness, fatigue, increased sleep requirement, and headache. The majority of these symptoms resolved with transfer from the plant. Men working less than 1 yr at Plant A were more likely to complain of two or more CNS symptoms than men who were working there longer than 1 yr (p = .055). Objective abnormalities in neurobehavioral testing were found in all 4 men working longer than 9 yr at this plant, but in only 5 of 15 employed there for a shorter period (p = .03). These results are consistent with the known effects of solvent exposure. Occupational health personnel must be aware that STWs can be exposed to solvents and other industrial wastes.

  1. Cyclooxygenase-independent neuroprotective effects of aspirin against dopamine quinone-induced neurotoxicity.

    PubMed

    Asanuma, Masato; Miyazaki, Ikuko; Kikkawa, Yuri; Kimoto, Naotaka; Takeshima, Mika; Murakami, Shinki; Miyoshi, Ko

    2012-09-01

    Prostaglandin H synthase exerts not only cyclooxygenase activity but also peroxidase activity. The latter activity of the enzyme is thought to couple with oxidation of dopamine to dopamine quinone. Therefore, it has been proposed that cyclooxygenase inhibitors could suppress dopamine quinone formation. In the present study, we examined effects of various cyclooxygenase inhibitors against excess methyl L-3,4-dihydroxyphenylalanine (L-DOPA)-induced quinoprotein (protein-bound quinone) formation and neurotoxicity using dopaminergic CATH.a cells. The treatment with aspirin inhibited excess methyl L-DOPA-induced quinoprotein formation and cell death. However, acetaminophen did not show protective effects, and indomethacin and meloxicam rather aggravated these methyl L-DOPA-induced changes. Aspirin and indomethacin did not affect the level of glutathione that exerts quenching dopamine quinone in dopaminergic cells. In contrast with inhibiting effects of higher dose in the previous reports, relatively lower dose of aspirin that affected methyl L-DOPA-induced quinoprotein formation and cell death failed to prevent cyclooxygenase-induced dopamine chrome generation in cell-free system. Furthermore, aspirin but not acetaminophen or meloxicam showed direct dopamine quinone-scavenging effects in dopamine-semiquinone generating systems. The present results suggest that cyclooxygenase shows little contribution to dopamine oxidation in dopaminergic cells and that protective effects of aspirin against methyl L-DOPA-induced dopamine quinone neurotoxicity are based on its cyclooxygenase-independent property. PMID:22674083

  2. Vanadium carcinogenic, immunotoxic and neurotoxic effects: a review of in vitro studies.

    PubMed

    Zwolak, Iwona

    2014-01-01

    Deleterious health effects induced by inorganic vanadium compounds are linked with carcinogenic, immunotoxic and neurotoxic insults. The goal of this review is to provide a summary of mammalian cell culture studies (from the 1990s to most recent) looking into the mode of the above-mentioned adverse actions of vanadium. Regarding the carcinogenicity potential, the key cell-based studies have evidenced the ability of vanadium to induce genotoxic lesions, cell morphological transformation and anti-apoptotic effects in a certain type of cells. Two contradictory effects of vanadium on the immune functions of cells have been observed in cell culture studies. The first effect involves reduction of cell immune responses such as vanadium-dependent inhibition of cytokine-inducible functions, which may underlie the mechanism of vanadium-induced immunosuppression. The second one involves stimulation of immune activity, for example, a vanadium-mediated increase in cytokine production, which may contribute to vanadium-related inflammation. So far, an in vitro evaluation of vanadium neurotoxicity has only been reported in few articles. These papers indicate probable cytotoxic mechanisms resulting from exposure of neurons and glial cells to vanadium. In summary, this literature review collects in vitro reports on adverse vanadium effects and thus provides vanadium researchers with a single, concise source of data.

  3. Evidence of Neurotoxicity of Ecstasy: Sustained Effects on Electroencephalographic Activity in Polydrug Users

    PubMed Central

    Adamaszek, Michael; Khaw, Alexander V.; Buck, Ulrike; Andresen, Burghard; Thomasius, Rainer

    2010-01-01

    Objective According to previous EEG reports of indicative disturbances in Alpha and Beta activities, a systematic search for distinct EEG abnormalities in a broader population of Ecstasy users may especially corroborate the presumed specific neurotoxicity of Ecstasy in humans. Methods 105 poly-drug consumers with former Ecstasy use and 41 persons with comparable drug history without Ecstasy use, and 11 drug naives were investigated for EEG features. Conventional EEG derivations of 19 electrodes according to the 10-20-system were conducted. Besides standard EEG bands, quantitative EEG analyses of 1-Hz-subdivided power ranges of Alpha, Theta and Beta bands have been considered. Results Ecstasy users with medium and high cumulative Ecstasy doses revealed an increase in Theta and lower Alpha activities, significant increases in Beta activities, and a reduction of background activity. Ecstasy users with low cumulative Ecstasy doses showed a significant Alpha activity at 11 Hz. Interestingly, the spectral power of low frequencies in medium and high Ecstasy users was already significantly increased in the early phase of EEG recording. Statistical analyses suggested the main effect of Ecstasy to EEG results. Conclusions Our data from a major sample of Ecstasy users support previous data revealing alterations of EEG frequency spectrum due rather to neurotoxic effects of Ecstasy on serotonergic systems in more detail. Accordingly, our data may be in line with the observation of attentional and memory impairments in Ecstasy users with moderate to high misuse. Despite the methodological problem of polydrug use also in our approach, our EEG results may be indicative of the neuropathophysiological background of the reported memory and attentional deficits in Ecstasy abusers. Overall, our findings may suggest the usefulness of EEG in diagnostic approaches in assessing neurotoxic sequela of this common drug abuse. PMID:21124854

  4. Dopamine D(1) receptor deletion strongly reduces neurotoxic effects of methamphetamine.

    PubMed

    Ares-Santos, S; Granado, N; Oliva, I; O'Shea, E; Martin, E D; Colado, M I; Moratalla, R

    2012-02-01

    Methamphetamine (METH) is a potent, highly addictive psychostimulant consumed worldwide. In humans and experimental animals, repeated exposure to this drug induces persistent neurodegenerative changes. Damage occurs primarily to dopaminergic neurons, accompanied by gliosis. The toxic effects of METH involve excessive dopamine (DA) release, thus DA receptors are highly likely to play a role in this process. To define the role of D(1) receptors in the neurotoxic effects of METH we used D(1) receptor knock-out mice (D(1)R(-/-)) and their WT littermates. Inactivation of D(1)R prevented METH-induced dopamine fibre loss and hyperthermia, and increases in gliosis and pro-inflammatory molecules such as iNOS in the striatum. In addition, D(1)R inactivation prevented METH-induced loss of dopaminergic neurons in the substantia nigra. To explore the relationship between hyperthermia and neurotoxicity, METH was given at high ambient temperature (29 °C). In this condition, D(1)R(-/-) mice developed hyperthermia following drug delivery and the neuroprotection provided by D(1)R inactivation at 23 °C was no longer observed. However, reserpine, which empties vesicular dopamine stores, blocked hyperthermia and strongly potentiated dopamine toxicity in D(1)R(-/-) mice, suggesting that the protection afforded by D(1)R inactivation is due to both hypothermia and higher stored vesicular dopamine. Moreover, electrical stimulation evoked higher DA overflow in D(1)R(-/-) mice as demonstrated by fast scan cyclic voltammetry despite their lower basal DA content, suggesting higher vesicular DA content in D(1)R(-/-) than in WT mice. Altogether, these results indicate that the D(1)R plays a significant role in METH-induced neurotoxicity by mediating drug-induced hyperthermia and increasing the releasable cytosolic DA pool.

  5. Neurotoxic aspects of porphyinopathies: lead and succinylacetone

    SciTech Connect

    Silbergeld, E.K.; Hruska, R.E.; Bradley, D.; Lamon, J.M.; Frykholm, B.C.

    1982-12-01

    Neurotoxic effects of heavy metals and polyhalogenated hydrocarbons frequently occur at low levels of exposure, in some cases below those levels where direct toxic actions of these compounds have been demonstrated. Rats with acute and chronic lead exposure were compared to rats whose heme synthesis was inhibited by succinylacetone, as a semichronic model of the hereditary heme synthesis disorder, acute intermittent porphyria. Both treatments produce significant inhibition in activity of the enzyme delta-aminolevulinic acid dehydrase and elevations in the heme precursor delta-aminolevulinic acid (ALA) in tissues and urine. Associated with increased ALA is a significant inhibition of neurotransmission utilizing the amino acid ..gamma..-aminobutyric acid (GABA), expressed chemically and behaviorally. The results suggest that in addition to their direct molecular neurotoxicity, porphyrinopathic compounds such as lead may, through altering heme synthesis, adversely affect the brain at low levels of exposure.

  6. In vitro neurotoxic effects of 1 GeV/n iron particles assessed in retinal explants.

    PubMed

    Vazquez, M E; Kirk, E

    2000-01-01

    The heavy ion component of the cosmic radiation remains problematic to the assessment of risk in manned space flight. The biological effectiveness of HZE particles has yet to be established, particularly with regard to nervous tissue. Using heavy ions accelerated at the AGS of Brookhaven National Laboratory, we study the neurotoxic effects of iron particles. We exposed retinal explants, taken from chick embryos, to determine the dose response relationships for neurite outgrowth. Morphometric techniques were used to evaluate the in vitro effects of 1 GeV/a iron particles (LET 148 keV/micrometer). Iron particles produced a dose-dependent reduction of neurite outgrowth with a maximal effect achieved with a dose of 100 cGy. Doses as low as 10-50 cGy were able to induce reductions of the neurite outgrowth as compared to the control group. Neurite generation is a more sensitive parameter than neurite elongation, suggesting different mechanism of radiation damage in our model. These results showed that low doses/fluences of iron particles could impair the retinal ganglion cells' capacity to generate neurites indicating the highly neurotoxic capability of this heavy charged particle.

  7. In vitro neurotoxic effects of 1 GeV/n iron particles assessed in retinal explants.

    PubMed

    Vazquez, M E; Kirk, E

    2000-01-01

    The heavy ion component of the cosmic radiation remains problematic to the assessment of risk in manned space flight. The biological effectiveness of HZE particles has yet to be established, particularly with regard to nervous tissue. Using heavy ions accelerated at the AGS of Brookhaven National Laboratory, we study the neurotoxic effects of iron particles. We exposed retinal explants, taken from chick embryos, to determine the dose response relationships for neurite outgrowth. Morphometric techniques were used to evaluate the in vitro effects of 1 GeV/a iron particles (LET 148 keV/micrometer). Iron particles produced a dose-dependent reduction of neurite outgrowth with a maximal effect achieved with a dose of 100 cGy. Doses as low as 10-50 cGy were able to induce reductions of the neurite outgrowth as compared to the control group. Neurite generation is a more sensitive parameter than neurite elongation, suggesting different mechanism of radiation damage in our model. These results showed that low doses/fluences of iron particles could impair the retinal ganglion cells' capacity to generate neurites indicating the highly neurotoxic capability of this heavy charged particle. PMID:11542855

  8. Protective effects of naringenin on iron-overload-induced cerebral cortex neurotoxicity correlated with oxidative stress.

    PubMed

    Chtourou, Yassine; Fetoui, Hamadi; Gdoura, Radhouane

    2014-06-01

    Iron is a component of several metalloproteins involved in crucial metabolic processes such as oxygen sensing and transport, energy metabolism, and DNA synthesis. This metal progressively accumulates in the pathogenesis of Alzheimer's (AD) and Parkinson's (PD) diseases. Naringenin (NGEN), a natural flavonoid compound, has been reported to possess neuroprotective effect against PD-related pathology, however, the mechanisms underlying its beneficial effects are poorly defined. Thus, the aim of this study is to investigate the potential mechanism involved in the cytoprotection of NGEN against iron-induced neurotoxicity in the cerebral cortex of Wistar rats. Animals that were given repetitive injections of iron dextran for a total of 4 weeks showed a significant increase in lipid and protein markers such as thiobarbituric reactive acid substances, protein carbonyl product content levels, and DNA apoptosis in the cerebral cortex. These changes were accompanied by a decrease of enzymatic antioxidants like superoxide dismutase and catalase and in the levels of nonenzymatic antioxidants like total thiols and ascorbic acid. The activity of glutathione peroxidase remained unchanged in rats. A significant decrease in acetylcholinesterase and Na(+)/K(+)-ATPase activities was also shown, with a substantial rise in the nitric oxide levels. Coadministration of NGEN to iron-treated rats significantly improved antioxidant enzyme activities and attenuated oxidative damages observed in the cerebral cortex. The potential effect of NGEN to prevent iron-induced neurotoxicity was also reflected by the microscopic study, indicative of its neuroprotective effects. PMID:24682942

  9. Pyrroloquinoline quinine protects rat brain cortex against acute glutamate-induced neurotoxicity.

    PubMed

    Zhang, Qi; Ding, Mei; Cao, Zheng; Zhang, Jingjing; Ding, Fei; Ke, Kaifu

    2013-08-01

    To investigate possible protective effects of pyrroloquinoline quinone (PQQ) on the rat cortex with glutamate injection and to understand the mechanisms linking the in vivo neuroprotection of PQQ. Adult Sprague-Dawley rats received glutamate injection into the rat cortex. Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling assay was performed to observe influences of co-treatment with PQQ (simultaneous injection with PQQ and glutamate) on neural cell apoptosis in the rat cortex. The production of reactive oxygen species (ROS) in the rat cortex was detected by flow cytometry using 2',7'-dichlorofluorescin diacetate labeling, and the activity of superoxide dismutase, glutathione and malondialdehyde was respectively determined. Real time quantitative RT-PCR and Western blot were applied to measure the mRNA and protein expressions of Nrf1, Nrf2, HO-1 and GCLC in the rat cortex. Western blot was used to detect the phosphorylation of Akt and GSK3β in the rat cortex. Co-treatment with PQQ protected neural cells in the rat cortex from glutamate-induced apoptosis. PQQ decreased the ROS production induced by glutamate injection. PQQ increased the mRNA and protein expressions of Nrf2, HO-1 and GCLC and the phosphorylation of Akt and GSK3β in the cortex of glutamate-injected rats. PQQ could produce neuroprotective effects on the rat cortex. The antioxidant properties of PQQ and PQQ-induced activation of Akt/GSK3β signal pathway might be responsible for the in vivo neuroprotection of PQQ.

  10. Protective effects of minocycline on behavioral changes and neurotoxicity in mice after administration of methamphetamine.

    PubMed

    Zhang, Lin; Kitaichi, Kiyoyuki; Fujimoto, Yohei; Nakayama, Hironao; Shimizu, Eiji; Iyo, Masaomi; Hashimoto, Kenji

    2006-12-30

    The effects of minocycline on behavioral changes and neurotoxicity in the dopaminergic neurons induced by the administration of methamphetamine (METH) were studied. Pretreatment with minocycline (40 mg/kg) was found to attenuate hyperlocomotion in mice after a single administration of METH (3 mg/kg). The development of behavioral sensitization after repeated administration of METH (3 mg/kg/day, once daily for 5 days) was significantly attenuated by pretreatment with minocycline (40 mg/kg). A reduction in the level of dopamine (DA) and its major metabolite, 3,4-dihydroxyphenyl acetic acid (DOPAC), in the striatum after the repeated administration of METH (3 mg/kg x 3, 3-h interval) was attenuated in a dose-dependent manner by pretreatment with and the subsequent administration of minocycline (10, 20, or 40 mg/kg). Furthermore, minocycline (40 mg/kg) significantly attenuated a reduction in DA transporter (DAT)-immunoreactivity in the striatum after repeated administration of METH. In vivo microdialysis study demonstrated that pretreatment with minocycline (40 mg/kg) significantly attenuated increased extracellular DA levels in the striatum after the administration of METH (3 mg/kg). In addition, minocycline was not found to alter the concentrations of METH in the plasma or the brain after three injections of METH (3 mg/kg), suggesting that minocycline does not alter the pharmacokinetics of METH in mice. Interestingly, METH-induced neurotoxicity in the striatum was significantly attenuated by the post-treatment and subsequent administration of minocycline (40 mg/kg). These findings suggest that minocycline may be able to ameliorate behavioral changes as well as neurotoxicity in dopaminergic terminals after the administration of METH. Therefore, minocycline could be considered as a useful drug for the treatment of several symptoms associated with METH abuse in humans.

  11. Evaluating the Effects and Safety of Intravenous Lipid Emulsion on Haloperidol-Induced Neurotoxicity in Rabbit

    PubMed Central

    Moshiri, Mohammad; Mohammadpour, Amir Hooshang; Vahabzadeh, Maryam; Etemad, Leila; Memar, Bahram; Hosseinzadeh, Hossein

    2014-01-01

    There are many reports on the effect of intravenous lipid emulsion (ILE) as an antidote in drugs related toxicities. We determined the effects of ILE on neurotoxicity of haloperidol (HA), a highly lipophilic antipsychotic, as a model of antipsychotics poisoning. We used six groups of five male rabbits. Two groups received distilled water intravenously followed by infusions of either 18 mL/kg of normal saline or ILE 20%, after 30 minutes. The third group received 18 mL/kg of normal saline after HA (2.6 mg/kg) administration. The three other groups received ILE 20% solution (6, 12, and 18 mL/kg) following HA injection. Catalepsy scores, temperature, pupil size, and mortality rate were measured at 0, 0.5, 1, 2, 3, 4, 8, and 24 hours after HA administration began. Blood and tissue samples were taken from all animals at 24 hours or at death time for biochemical, cell count, and pathological studies. ILE reversed cataleptic scores, miotic pupils, and hypothermia of HA intoxication much faster than normal saline (P < 0.001). Biochemical complications and mortality rate of the animals were significantly higher in the HA + 18 mL/Kg ILE group. ILE reversed sings of HA neurotoxicity; however, synergistic effect of high dose of ILE and HA increased complications and mortality. PMID:24971362

  12. Evaluating the effects and safety of intravenous lipid emulsion on haloperidol-induced neurotoxicity in rabbit.

    PubMed

    Moshiri, Mohammad; Mohammadpour, Amir Hooshang; Vahabzadeh, Maryam; Etemad, Leila; Memar, Bahram; Hosseinzadeh, Hossein

    2014-01-01

    There are many reports on the effect of intravenous lipid emulsion (ILE) as an antidote in drugs related toxicities. We determined the effects of ILE on neurotoxicity of haloperidol (HA), a highly lipophilic antipsychotic, as a model of antipsychotics poisoning. We used six groups of five male rabbits. Two groups received distilled water intravenously followed by infusions of either 18 mL/kg of normal saline or ILE 20%, after 30 minutes. The third group received 18 mL/kg of normal saline after HA (2.6 mg/kg) administration. The three other groups received ILE 20% solution (6, 12, and 18 mL/kg) following HA injection. Catalepsy scores, temperature, pupil size, and mortality rate were measured at 0, 0.5, 1, 2, 3, 4, 8, and 24 hours after HA administration began. Blood and tissue samples were taken from all animals at 24 hours or at death time for biochemical, cell count, and pathological studies. ILE reversed cataleptic scores, miotic pupils, and hypothermia of HA intoxication much faster than normal saline (P < 0.001). Biochemical complications and mortality rate of the animals were significantly higher in the HA + 18 mL/Kg ILE group. ILE reversed sings of HA neurotoxicity; however, synergistic effect of high dose of ILE and HA increased complications and mortality. PMID:24971362

  13. Inhibitory effects of pain relief drugs on neurological enzymes: implications on their potential neurotoxicity to aquatic animals.

    PubMed

    Wu, Jui-Pin; Li, Mei-Hui

    2015-03-01

    Pain relief medications commonly occur in the aquatic environment at measurable levels. While the neurotoxicity of pain relievers to higher vertebrates is currently known, little is known about their effects on aquatic animals. This study investigated the neurotoxicity of pain relievers to aquatic animals. We used three neurological enzymes, cholinesterase (ChE), adenosine triphosphatase (ATPase), and monoamine oxidase (MAO), from a freshwater planarian (Dugesia japonica) and green neon shrimp (Neocaridina denticulata) as biomarkers to examine the effects of pain relievers on in vitro activity. The activity of MAO and ChE, but not ATPase, was significantly inhibited by acetaminophen, but not by other pain relievers examined. It was likely that the inhibitory effects of acetaminophen on shrimp neurological enzymes were more severe than on the planarian. These findings suggest that acetaminophen is potentially neurotoxic to aquatic animals, at least in terms of neurotransmission disturbance.

  14. Inhibitory effects of pain relief drugs on neurological enzymes: implications on their potential neurotoxicity to aquatic animals.

    PubMed

    Wu, Jui-Pin; Li, Mei-Hui

    2015-03-01

    Pain relief medications commonly occur in the aquatic environment at measurable levels. While the neurotoxicity of pain relievers to higher vertebrates is currently known, little is known about their effects on aquatic animals. This study investigated the neurotoxicity of pain relievers to aquatic animals. We used three neurological enzymes, cholinesterase (ChE), adenosine triphosphatase (ATPase), and monoamine oxidase (MAO), from a freshwater planarian (Dugesia japonica) and green neon shrimp (Neocaridina denticulata) as biomarkers to examine the effects of pain relievers on in vitro activity. The activity of MAO and ChE, but not ATPase, was significantly inhibited by acetaminophen, but not by other pain relievers examined. It was likely that the inhibitory effects of acetaminophen on shrimp neurological enzymes were more severe than on the planarian. These findings suggest that acetaminophen is potentially neurotoxic to aquatic animals, at least in terms of neurotransmission disturbance. PMID:25801321

  15. Quantification of neurotoxic effects on individual neuron cells using optical diffraction tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yoon, Jonghee; Yang, Su-a.; Kim, Kyoohyun; Park, YongKeun

    2016-03-01

    Parkinson's disease (PD) is a common neurodegenerative disease that causes symptoms of postural instability and slowness of movement. Neurodegeneration in dopaminergic neurons at the substantia nigra has been reported as pathologic features, however, detailed mechanisms underlying neurodegeneration are still remain unclear. To investigate a neurodegenerative process, various imaging tools including phase contrast microscopy, electron microscopy, and fluorescence microscopy are utilized. However, these imaging methods provide qualitative information and require invasive approaches such as the use of fluorescence agents or chemical fixation procedures that disturb normal physiological conditions of neuron cells. In order to quantify the neurodegenerative process in a non-invasive manner, we exploited optical diffraction tomography (ODT). ODT is a 3D quantitative phase imaging method that measures 3D refractive index (RI) distributions of a sample which provide quantitative structural (volume, surface area, sphericity) and biochemical (protein concentration, total cellular dry mass) information. We investigated neurotoxic effects of MPP+ on SH-SY5Y cells by using quantitative information obtained from 3D RI distributions. We also performed temporal measurements of 3D RI distributions of an individual SH-SY5Y cell to analyze neurotoxic effects on intracellular vesicle dynamics.

  16. Differential contribution of perirhinal cortex and hippocampus to taste neophobia: effect of neurotoxic lesions.

    PubMed

    Ramos, Juan M J

    2015-05-01

    Although the perirhinal cortex (Prh) has been extensively related to recognition memory, little is known about its specific role in taste memories. The main aim of the present series was therefore to examine the effect of neurotoxic lesions of the Prh on taste neophobia, a phenomenon consisting of a low intake of a novel food until its postingestive consequences are determined. The results showed that Prh-lesioned rats consumed significantly more novel saccharin in trial 1 than control subjects when a saccharin solution of 0.3% (expt. 1a) and 0.5% (expt. 1b) was presented. However, when the saccharin concentration was high and qualitatively more aversive, Prh lesions did not affect the neophobic response (0.7%, expt. 1c) and the lesioned and control animals consumed a similar amount of the fluid during the first and subsequent test trials. In all three experiments, Prh-lesioned and control rats showed a comparable intake at asymptote. Experiment 2 and 3 showed that neurotoxic lesions to the dorsal hippocampus prior to or 24h after the intake of the novel taste (0.3% saccharin) had no effect on the initial occurrence of the neophobic response or on the consolidation of safe taste memory, respectively. These findings support a dissociation of functions between the Prh and the hippocampus in taste neophobia. Also, the data suggests that the Prh plays an essential role in detecting the novelty of the new tastant.

  17. The Neurotoxic Effects of Manganese on the Dopaminergic Innervation of the Gill of the Bivalve Mollusc, Crassostrea virginica

    PubMed Central

    Martin, Kesha; Huggins, Turkesha; King, Candice; Carroll, Margaret A.; Catapane, Edward J.

    2008-01-01

    We examined effects of manganese on the nervous system and innervation of lateral cilia of Crassostrea virginica. While essential in trace amounts, tissue manganese accumulation is neurotoxic, inducing Manganism, a Parkinson’s-like disease in humans. Lateral cilia of the gill of C. virginica are controlled by a reciprocal serotonergic-dopaminergic innervation from their ganglia. Oysters were incubated 3 days in the presence of up to 1 mM manganese, followed by superfusion of the cerebral ganglia, visceral ganglia or gill with dopamine or serotonin. Beating rates of cilia were measured by stroboscopic microscopy of isolated gill preparations or gill preparations with the ipsilateral cerebral and/or visceral ganglia attached. Acute manganese treatments impaired the dopaminergic, cilio-inhibitory system, while having no effect on the serotonergic, cilio-excitatory system, which is in agreement with the proposed mechanism of manganese toxicity in humans. Manganese treatments also decreased endogenous dopamine levels in the cerebral and visceral ganglia, and gills, but not serotonin levels. We demonstrated that manganese disrupts the animal’s dopaminergic system, and also that this preparation can be used to investigate mechanisms that underlie manganese neurotoxcity. It also may serve as a model in pharmacological studies of drugs to treat or prevent Manganism and other dopaminergic cell disorders. PMID:18547869

  18. Protective effect of arctigenin against MPP+ and MPTP-induced neurotoxicity.

    PubMed

    Li, Dongwei; Liu, Qingping; Jia, Dong; Dou, Deqiang; Wang, Xiaofei; Kang, Tingguo

    2014-01-01

    The potential protective effects of arctigenin on 1-methyl-4-phenylpyridinium ion and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyride-induced neurotoxicity were examined, and the results indicated that arctigenin could improve the movement behaviors and upregulate dopamine and γ-aminobutyric acid levels in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyride-induced neurotoxicity mouse model. A further in vitro experiment showed that the pretreatment with arctigenin on cultured human neuroblastoma SH-SY5Y cells could obviously attenuate the decrease of cell survival rates caused by treatment with 1-methyl-4-phenylpyridinium ion by way of acting against cell apoptosis through the decrease of Bax/Bcl-2 and caspase-3, and by antioxidative action through reduction of the surplus reactive oxygen species production and downregulation of mitochondrial membrane potential. It is for the first time that a neuroprotective activity of arctigenin in both in vitro and in vivo experiments was reported, enlightening that arctigenin could be useful as a potential therapeutic agent for Parkinson's disease.

  19. Protective effect of arctigenin against MPP+ and MPTP-induced neurotoxicity.

    PubMed

    Li, Dongwei; Liu, Qingping; Jia, Dong; Dou, Deqiang; Wang, Xiaofei; Kang, Tingguo

    2014-01-01

    The potential protective effects of arctigenin on 1-methyl-4-phenylpyridinium ion and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyride-induced neurotoxicity were examined, and the results indicated that arctigenin could improve the movement behaviors and upregulate dopamine and γ-aminobutyric acid levels in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyride-induced neurotoxicity mouse model. A further in vitro experiment showed that the pretreatment with arctigenin on cultured human neuroblastoma SH-SY5Y cells could obviously attenuate the decrease of cell survival rates caused by treatment with 1-methyl-4-phenylpyridinium ion by way of acting against cell apoptosis through the decrease of Bax/Bcl-2 and caspase-3, and by antioxidative action through reduction of the surplus reactive oxygen species production and downregulation of mitochondrial membrane potential. It is for the first time that a neuroprotective activity of arctigenin in both in vitro and in vivo experiments was reported, enlightening that arctigenin could be useful as a potential therapeutic agent for Parkinson's disease. PMID:24414307

  20. Neurotoxic effect of linamarin in rats associated with cassava (Manihot esculenta Crantz) consumption.

    PubMed

    Rivadeneyra-Domínguez, Eduardo; Vázquez-Luna, Alma; Rodríguez-Landa, Juan Francisco; Díaz-Sobac, Rafael

    2013-09-01

    Cassava (Manihot esculenta Crantz) is a plant widely used for food consumption in different processed products in rural areas of Africa, Asia, and Latin America. Cassava is a good source of carbohydrates and micronutrients. However, if it is not adequately processed or the consumer has nutritional deficiencies, then its cyanogenic glycoside (i.e., linamarin and lotaustralin) content makes it potentially neurotoxic. In the present study, the neurotoxic effects of different concentrations of linamarin (0.075, 0.15, 0.22, and 0.30 mg/kg) contained in cassava juice were evaluated in the open field and swim tests to identify locomotor alterations in adult male Wistar rats. The linamarin concentration in cassava juice was determined by high-performance liquid chromatography, and the juice was administered intraesophageally for 28 days. The results suggested that the consumption of linamarin in cassava juice increased the number of crossings and rearings in the open field test and caused behavioral deficiency, reflected by lateral swimming, in the swim test on days 21 and 28 of treatment. These alterations are possibly related to neuronal damage caused by linamarin in cassava juice in structures of the central nervous system involved in motor processing.

  1. Neurotoxicity of acrylamide and its analogues and effects of these analogues and other agents on acrylamide neuropathy.

    PubMed Central

    Edwards, P M

    1975-01-01

    N-Hydroxymethylacrylamide, N-methylacrylamide, and N,N-diethylacrylamide produce peripheral neuropathy in rats. Seven other compounds related to acrylamide do not produce neuropathy. Rats given one of the three neurotoxic compounds are more susceptible to acrylamide. A regime for testing acrylamide analogues for neuro-toxicity is suggested. DDT, phenobarbitone, or high dietary concentrations of vitamin A or E have no effect on the development of acrylamide neuropathy in rats. Acrylamide produces neuropathy in hens but not in frogs or goldfish. PMID:164879

  2. Effect of venoruton on hypoxic stress-induced neurotoxicity in mice and oxygen free radical generation by human neutrophils.

    PubMed

    Shukla, V K; Sethi, A K; Garg, S K; Ganguly, N K; Kulkarni, S K

    1989-01-01

    Venoruton offers a protection against hypoxic stress-induced neurotoxicity (convulsions and death) in mice. It also inhibits free radical generation, since it produces a concentration-dependent (5-160 micrograms/10(6) cells/ml) decrease of chemiluminescence response from human neutrophils. The maximum inhibition was observed at 140 micrograms/10(6) cells/ml. The in vivo protective effect against hypoxic stress-induced neurotoxicity has been correlated to the inhibitory action of venoruton on oxygen free radical generation.

  3. Neurotrophic and Neurotoxic Effects of Amyloid |beta Protein: Reversal by Tachykinin Neuropeptides

    NASA Astrophysics Data System (ADS)

    Yankner, Bruce A.; Duffy, Lawrence K.; Kirschner, Daniel A.

    1990-10-01

    The amyloid β protein is deposited in the brains of patients with Alzheimer's disease but its pathogenic role is unknown. In culture, the amyloid β protein was neurotrophic to undifferentiated hippocampal neurons at low concentrations and neurotoxic to mature neurons at higher concentrations. In differentiated neurons, amyloid β protein caused dendritic and axonal retraction followed by neuronal death. A portion of the amyloid β protein (amino acids 25 to 35) mediated both the trophic and toxic effects and was homologous to the tachykinin neuropeptide family. The effects of the amyloid β protein were mimicked by tachykinin antagonists and completely reversed by specific tachykinin agonists. Thus, the amyloid β protein could function as a neurotrophic factor for differentiating neurons, but at high concentrations in mature neurons, as in Alzheimer's disease, could cause neuronal degeneration.

  4. Toxic effects of silver nanoparticles in mammals--does a risk of neurotoxicity exist?

    PubMed

    Skalska, Joanna; Strużyńska, Lidia

    2015-01-01

    Over the last decade, silver nanoparticles have become an important class of nanomaterials utilized in the development of new nanotechnologies. Despite the fact that nanosilver is used in many commercial applications, our knowledge about its associated risks is incomplete. Although a number of studies have been undertaken to better understand the impact of silver nanoparticles on the environment, aquatic organisms and cell lines, little is known about their side effects in mammalian organisms. This review summarizes relevant data and the current state of knowledge regarding toxicity of silver nanoparticles in mammals, as well as the accumulated evidence for potent neurotoxic effects. The influence of nanosilver on the central nervous system is significant because of evidence indicating that it accumulates in mammalian brain tissue. PMID:26785363

  5. Combination Chemotherapy in Treating Young Patients With Newly Diagnosed High-Risk B Acute Lymphoblastic Leukemia and Ph-Like TKI Sensitive Mutations

    ClinicalTrials.gov

    2016-11-02

    B Acute Lymphoblastic Leukemia; Bone Necrosis; Central Nervous System Leukemia; Cognitive Side Effects of Cancer Therapy; Neurotoxicity Syndrome; Pain; Testicular Leukemia; Therapy-Related Toxicity; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  6. EVALUATION OF HUMAN NEURAL PROGENITOR CELLS FOR DEVELOPMENTAL NEUROTOXICITY SCREENING: TIME COURSE OF EFFECTS ON CELL PROLIFERATION AND VIABILITY.

    EPA Science Inventory

    Current testing methods for developmental neurotoxicity (DNT) make evaluation of the effects of large numbers of chemicals impractical and prohibitively expensive. As such, we are evaluating human neural progenitor cells (NPCs) as a screen for DNT. ReNcell CX (ReN CX) cells are a...

  7. Effect of Selenium on Neurotoxicity in Adult Male Mice Exposed to Formaldehyde

    PubMed Central

    Mohammadi, Shabnam

    2014-01-01

    Background: Formaldehyde is used in medicine and industry, and it is known to have detrimental effects on various systems including the nervous system, by increasing oxidative stress. However, data are scarce related to substances that can protect against the neurotoxicity induced by formaldehyde. Therefore, this study was designed to assess the protective effects of selenium against the toxic effect of this compound. Methods: A total of 48 adult male mice were divided randomly into six groups, i.e., (1) control, (2) treated with formaldehyde, (3) treated with formaldehyde plus 0.1 mg/kg selenium, (4) treated with formaldehyde plus 0.2 mg/kg selenium, (5) treated with formaldehyde plus 0.4 mg/kg selenium, and (6) treated with formaldehyde plus 0.8 mg/kg selenium. At the end of 14 days, the cerebellums were removed for histological evaluation. Morphological changes were examined using Image J software. The data were analyzed using SPSS software version 20.0 and analysis of variance (ANOVA). Results: Formaldehyde caused a reduction in the numbers and sizes of Purkinje cells and granular cells; in addition, the thickness of the granular layer was thinner than that in the control mice (P < 0.05). Treatment with 0.1 mg/kg selenium resulted in an increase in the number of Purkinje cells as well as the area of the gray matter compared to those of the control mice. Conclusion: Formaldehyde-induced neuronal damage was prevented by the administration of 0.1 mg/kg selenium, hence this treatment shows therapeutic potential for the treatment of neurotoxicity PMID:25763172

  8. ATP13A2 (PARK9) polymorphisms influence the neurotoxic effects of manganese

    PubMed Central

    Rentschler, Gerda; Covolo, Loredana; Haddad, Amelia Ahmadi; Lucchini, Roberto G; Zoni, Silvia; Broberg, Karin

    2012-01-01

    Introduction A higher prevalence of individuals affected by Parkinsonism was found in Valcamonica, Italy. This may be related to ferro-alloy smelters in the area, releasing manganese (Mn) in the air, soil and water for about a century. There exists individual susceptibility for Mn neurotoxicity. Aim To analyse how polymorphism in genes regulating Mn metabolism and toxicity can modify neurophysiological effects of Mn exposure. Materials and Methods Elderly (N=255) and adolescents (N=311) from Northern Italy were examined for neuromotor and olfactory functions. Exposure to Mn was assessed in blood and urine by atomic absorption spectroscopy and in soil by a portable instrument based on X-Ray fluorescence technology. Polymorphisms in the Parkinson-related gene ATPase type 13A2 (ATP13A2, also called PARK9: rs3738815, rs2076602, rs4920608, rs2871776, rs2076600), and in the secretory pathway Ca2+/ Mn2+ ATPase isoform 1 gene (SPCA1: rs218498, rs3773814, rs2669858) were analysed by TaqMan probes. Results For both adolescents and elderly, negative correlations between Mn in soil and motor coordination (Rs=−0.20, p<0.001, Rs=−0.13, p=0.05 respectively) were demonstrated. Also among adolescents, negative correlations were seen between Mn in soil with odor identification (Rs=−0.17, p<0.01). No associations were seen for Mn in blood or urine. ATP13A2 polymorphisms rs4920608 and rs2871776 significantly modified the effects of Mn exposure on impaired motor coordination in elderly (p for interaction= 0.029, p= 0.041 respectively), also after adjustments for age and gender. The rs2871776 altered a binding site for transcription factor Insulinoma-associated 1. Conclusions ATP13A2 variation may be a risk marker for neurotoxic effects of Mn in humans. PMID:22285144

  9. Mechanisms involved in the neurotoxic and cognitive effects of developmental methamphetamine exposure.

    PubMed

    Jablonski, Sarah A; Williams, Michael T; Vorhees, Charles V

    2016-06-01

    Methamphetamine exposure in utero leads to a variety of higher-order cognitive deficits, such as decreased attention and working, and spatial memory impairments in exposed children (Piper et al., 2011; Roussotte et al., 2011; Kiblawi et al., 2011). As with other teratogens, the timing of methamphetamine exposure greatly determines its effects on both neuroanatomical and behavioral outcomes. Methamphetamine exposure in rodents during the third trimester human equivalent period of brain development results in distinct and long-lasting route-based and spatial navigation deficits (Williams et al., 2003; Vorhees et al., 2005, 2008, 2009;). Here, we examine the impact of neonatal methamphetamine-induced neurotoxicity on behavioral outcomes, neurotransmission, receptor changes, plasticity proteins, and DNA damage. Birth Defects Research (Part C) 108:131-141, 2016. © 2016 Wiley Periodicals, Inc. PMID:27297291

  10. Maternal milk as methylmercury source for suckling mice: neurotoxic effects involved with the cerebellar glutamatergic system.

    PubMed

    Manfroi, C B; Schwalm, F D; Cereser, V; Abreu, F; Oliveira, A; Bizarro, L; Rocha, J B T; Frizzo, M E S; Souza, D O; Farina, M

    2004-09-01

    Methylmercury (MeHg) is a highly neurotoxic compound and several studies have reported intoxication signs in children whose mothers were exposed to this environmental toxicant. Although it is well established that the in utero exposure to MeHg causes neurological deficits in animals and humans, there is no evidence of the exclusive contribution of lactational exposure to MeHg as a possible cause of neurotoxicity in the offspring. In this study, we investigated the exclusive contribution of MeHg exposure through maternal milk on biochemical parameters related to the glutamatergic homeostasis (glutamate uptake by slices) and to the oxidative stress (total and nonprotein sulfhydryl groups, nonprotein hydroperoxides, glutathione peroxidase and catalase activities) in the cerebellum of suckling mice (Swiss albino). The same parameters were also evaluated in the cerebellum of mothers. Our results showed, for the first time, that lactational exposure to MeHg caused a high percent of inhibition (50%) on glutamate uptake by cerebellar slices in pups. Contrarily, this effect was not observed in mothers, which were submitted to a direct oral exposure to MeHg (15 mg/l in drinking water). In addition, behavioral/functional changes were observed in the weaning mice exposed to MeHg. It was observed an increase in the levels of nonprotein hydroperoxides in cerebellum, and this increase was negatively correlated to the glutamate uptake by cerebellar slices. This study indicates that (1) the exposure of lactating mice to MeHg causes inhibition of the glutamate uptake by cerebellar slices in the offspring; (2) this inhibitory effect seems to be related to increased levels of hydroperoxide. PMID:15201443

  11. Effect of temperature on dopamine transporter function and intracellular accumulation of methamphetamine: implications for methamphetamine-induced dopaminergic neurotoxicity.

    PubMed

    Xie, T; McCann, U D; Kim, S; Yuan, J; Ricaurte, G A

    2000-10-15

    Hyperthermia exacerbates and hypothermia attenuates methamphetamine (METH)-induced dopamine (DA) neurotoxicity. The mechanisms underlying these temperature effects are unknown. Given the essential role of the DA transporter (DAT) in the expression of METH-induced DA neurotoxicity, we hypothesized that the effect of temperature on METH-induced DA neurotoxicity is mediated, at least in part, at the level of the DAT. To test this hypothesis, the effects of small, physiologically relevant temperature changes on DAT function were evaluated in two types of cultured neuronal cells: (1) a neuroblastoma cell line stably transfected with human DAT cDNA and (2) rat embryonic mesencephalic primary cells that naturally express the DAT. Temperatures for studies of DAT function were selected based on core temperature measurements in animals exposed to METH under usual ambient (22 degrees C) and hypothermic (6 degrees C) temperature conditions, where METH neurotoxicity was fully expressed and blocked, respectively. DAT function, determined by measuring accumulation of radiolabeled DA and 1-methyl-4-phenylpyridinium (MPP(+)), was found to directly correlate with temperature, with higher levels of substrate uptake at 40 degrees C, intermediate levels at 37 degrees C, and lower levels at 34 degrees C. DAT-mediated accumulation of METH also directly correlated with temperature, with greater accumulation at higher temperatures. These findings indicate that relatively small, physiologically relevant changes in temperature significantly alter DAT function and intracellular METH accumulation, and suggest that the effect of temperature on METH-induced DA neurotoxicity is mediated, at least in part, at the level of the DAT.

  12. Delayed application of the anesthetic propofol contrasts the neurotoxic effects of kainate on rat organotypic spinal slice cultures.

    PubMed

    Bajrektarevic, Dzejla; Nistri, Andrea

    2016-05-01

    Excitotoxicity due to hyperactivation of glutamate receptors is thought to underlie acute spinal injury with subsequent strong deficit in spinal network function. Devising an efficacious protocol of neuroprotection to arrest excitotoxicity might, therefore, spare a substantial number of neurons and allow later recovery. In vitro preparations of the spinal cord enable detailed measurement of spinal damage evoked by the potent glutamate analogue kainate. Any clinically-relevant neuroprotective treatment should start after the initial lesion and spare networks for at least 24h when cell damage plateaus. Using this strategy, we have observed that the gas anesthetic methoxyflurane provided strong, delayed neuroprotection. It is unclear if this beneficial effect was due to the mechanism of action by methoxyflurane, or it was the consequence of anesthetic depression. To test this hypothesis, we investigated the effect by propofol (commonly injected i.v. for general anesthesia) after kainate excitotoxicity induced on organotypic spinal slices. At 5μM concentration, propofol significantly attenuated cell death, including neuronal losses and, especially, damage to the highly vulnerable motoneurons. The action by propofol was fully prevented when co-applied with the GABAA antagonist bicuculline, indicating that neuroprotection required intact GABAA receptor function. Although bicuculline per se was not neurotoxic, it largely enhanced the lesional effects of kainate, suggesting that GABAA receptor activity could limit excitotoxicity. Our data might offer an explanation for the beneficial clinical outcome of neurosurgery performed as soon as possible after spinal lesion: we posit that general anesthesia contributes to this outcome, regardless of the type of anesthetic used. PMID:26947011

  13. Inhibitory effects of imidazoline receptor ligands on basal and kainic acid-induced neurotoxic signalling in mice.

    PubMed

    Keller, Benjamin; García-Sevilla, Jesús A

    2016-09-01

    This in vivo study assessed the potential of the imidazoline receptor (IR) ligands moxonidine (selective I1-IR), BU224 (selective I2-IR) and LSL61122 (mixed I1/I2-IR) to dampen excitotoxic signalling induced by kainic acid (KA; 45 mg/kg) in the mouse brain (hippocampus and cerebral cortex). KA triggered a strong behavioural syndrome (seizures; maximal at 60-90 minutes) and sustained stimulation (at 72 hours with otherwise normal mouse behaviour) of pro-apoptotic c-Jun-N-terminal kinases (JNK) and calpain with increased cleavage of p35 into neurotoxic p25 (cyclin-dependent kinase 5 [Cdk5] activators) in mouse hippocampus. Pretreatment (five days) with LSL61122 (10 mg/kg), but not moxonidine (1 mg/kg) or BU224 (20 mg/kg), attenuated the KA-induced behavioural syndrome, and all three IR ligands inhibited JNK and calpain activation, as well as p35/p25 cleavage after KA in the hippocampus (effects also observed after acute IR drug treatments). Efaroxan (I1-IR, 10 mg/kg) and idazoxan (I2-IR, 10 mg/kg), postulated IR antagonists, did not antagonise the effects of moxonidine and LSL61122 on KA targets (these IR ligands showed agonistic properties inhibiting pro-apoptotic JNK). Brain subcellular preparations revealed reduced synaptosomal postsynaptic density-95 protein contents (a mediator of JNK activation) and indicated increased p35/Cdk5 complexes (with pro-survival functions) after treatment with moxonidine, BU224 and LSL61122. These results showed that I1- and I2-IR ligands (moxonidine and BU224), and especially the mixed I1/I2-IR ligand LSL61122, are partly neuroprotective against KA-induced excitotoxic signalling. These findings suggest a therapeutic potential of IR drugs in disorders associated with glutamate-mediated neurodegeneration. PMID:27302941

  14. Inhibitory effects of imidazoline receptor ligands on basal and kainic acid-induced neurotoxic signalling in mice.

    PubMed

    Keller, Benjamin; García-Sevilla, Jesús A

    2016-09-01

    This in vivo study assessed the potential of the imidazoline receptor (IR) ligands moxonidine (selective I1-IR), BU224 (selective I2-IR) and LSL61122 (mixed I1/I2-IR) to dampen excitotoxic signalling induced by kainic acid (KA; 45 mg/kg) in the mouse brain (hippocampus and cerebral cortex). KA triggered a strong behavioural syndrome (seizures; maximal at 60-90 minutes) and sustained stimulation (at 72 hours with otherwise normal mouse behaviour) of pro-apoptotic c-Jun-N-terminal kinases (JNK) and calpain with increased cleavage of p35 into neurotoxic p25 (cyclin-dependent kinase 5 [Cdk5] activators) in mouse hippocampus. Pretreatment (five days) with LSL61122 (10 mg/kg), but not moxonidine (1 mg/kg) or BU224 (20 mg/kg), attenuated the KA-induced behavioural syndrome, and all three IR ligands inhibited JNK and calpain activation, as well as p35/p25 cleavage after KA in the hippocampus (effects also observed after acute IR drug treatments). Efaroxan (I1-IR, 10 mg/kg) and idazoxan (I2-IR, 10 mg/kg), postulated IR antagonists, did not antagonise the effects of moxonidine and LSL61122 on KA targets (these IR ligands showed agonistic properties inhibiting pro-apoptotic JNK). Brain subcellular preparations revealed reduced synaptosomal postsynaptic density-95 protein contents (a mediator of JNK activation) and indicated increased p35/Cdk5 complexes (with pro-survival functions) after treatment with moxonidine, BU224 and LSL61122. These results showed that I1- and I2-IR ligands (moxonidine and BU224), and especially the mixed I1/I2-IR ligand LSL61122, are partly neuroprotective against KA-induced excitotoxic signalling. These findings suggest a therapeutic potential of IR drugs in disorders associated with glutamate-mediated neurodegeneration.

  15. Developmental neurotoxicity to methamphetamines.

    PubMed

    Weissman, A D; Caldecott-Hazard, S

    1995-05-01

    1. To investigate the long-term changes caused by amphetamines in the developing brain, we used both an in vivo and in vitro model of chronic fetal exposure to methamphetamine and related drugs. 2. Offspring of rats, treated with either saline, 2 mg/kg twice a day (b.i.d.) or 10 mg/kg b.i.d. methamphetamine throughout gestation, were examined at 30 days of age for changes in the monoamine system of their brains. 3. At the lower dose methamphetamine was neurotoxic to specific neuronal populations, mostly serotonergic. At the higher dose, methamphetamine retained its neurotoxic properties, but also stimulated the growth of axonal terminals in specific regions as evidenced by an increase in monoamine uptake sites. The neurochemical changes at the higher dose were correlated with deficits in adult behavioural measures. 4. Corresponding in vitro drug treatments of rat neuroblastomas cells also produced a dose-related effect on cellular growth and differentiation patterns. Neurotoxic as well as stimulatory effects of methamphetamine and some related compounds were seen in culture. 5. Our in vivo and in vitro observations demonstrate neurotoxic effects of amphetamines and the remodelling of synaptic morphology in response.

  16. Effects of iron oxide nanoparticles: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity.

    PubMed

    Valdiglesias, Vanessa; Kiliç, Gözde; Costa, Carla; Fernández-Bertólez, Natalia; Pásaro, Eduardo; Teixeira, João Paulo; Laffon, Blanca

    2015-03-01

    Iron oxide nanoparticles (ION) with superparamagnetic properties hold great promise for use in various biomedical applications; specific examples include use as contrast agents for magnetic resonance imaging, in targeted drug delivery, and for induced hyperthermia cancer treatments. Increasing potential applications raise concerns over their potential effects on human health. Nevertheless, very little is currently known about the toxicity associated with exposure to these nanoparticles at different levels of biological organization. This article provides an overview of recent studies evaluating ION cytotoxicity, genotoxicity, developmental toxicity and neurotoxicity. Although the results of these studies are sometimes controversial, they generally indicate that surface coatings and particle size seem to be crucial for the observed ION-induced effects, as they are critical determinants of cellular responses and intensity of effects, and influence potential mechanisms of toxicity. The studies also suggest that some ION are safe for certain biomedical applications, while other uses need to be considered more carefully. Overall, the available studies provide insufficient evidence to fully assess the potential risks for human health related to ION exposure. Additional research in this area is required including studies on potential long-term effects. PMID:25209650

  17. Neurotoxic Weapons and Syndromes.

    PubMed

    Carota, Antonio; Calabrese, Pasquale; Bogousslavsky, Julien

    2016-01-01

    The modern era of chemical and biological warfare began in World War I with the large-scale production and use of blistering and choking agents (chlorine, phosgene and mustard gases) in the battlefield. International treaties (the 1925 Geneva Protocol, the 1975 Biological and Toxin Weapons Convention and the 1993 Chemical Weapons Convention) banned biological and chemical weapons. However, several countries are probably still engaged in their development. Hence, there is risk of these weapons being used in the future. This chapter will focus on neurotoxic weapons (e.g. nerve agents, chemical and biological neurotoxins, psychostimulants), which act specifically or preeminently on the central nervous system and/or the neuromuscular junction. Deeply affecting the function of the nervous system, these agents either have incapacitating effects or cause clusters of casualties who manifest primary symptoms of encephalopathy, seizures, muscle paralysis and respiratory failure. The neurologist should be prepared both to notice patterns of symptoms and signs that are sufficiently consistent to raise the alarm of neurotoxic attacks and to define specific therapeutic interventions. Additionally, extensive knowledge on neurotoxic syndromes should stimulate scientific research to produce more effective antidotes and antibodies (which are still lacking for most neurotoxic weapons) for rapid administration in aerosolized forms in the case of terrorist or warfare scenarios.

  18. Neurotoxic Weapons and Syndromes.

    PubMed

    Carota, Antonio; Calabrese, Pasquale; Bogousslavsky, Julien

    2016-01-01

    The modern era of chemical and biological warfare began in World War I with the large-scale production and use of blistering and choking agents (chlorine, phosgene and mustard gases) in the battlefield. International treaties (the 1925 Geneva Protocol, the 1975 Biological and Toxin Weapons Convention and the 1993 Chemical Weapons Convention) banned biological and chemical weapons. However, several countries are probably still engaged in their development. Hence, there is risk of these weapons being used in the future. This chapter will focus on neurotoxic weapons (e.g. nerve agents, chemical and biological neurotoxins, psychostimulants), which act specifically or preeminently on the central nervous system and/or the neuromuscular junction. Deeply affecting the function of the nervous system, these agents either have incapacitating effects or cause clusters of casualties who manifest primary symptoms of encephalopathy, seizures, muscle paralysis and respiratory failure. The neurologist should be prepared both to notice patterns of symptoms and signs that are sufficiently consistent to raise the alarm of neurotoxic attacks and to define specific therapeutic interventions. Additionally, extensive knowledge on neurotoxic syndromes should stimulate scientific research to produce more effective antidotes and antibodies (which are still lacking for most neurotoxic weapons) for rapid administration in aerosolized forms in the case of terrorist or warfare scenarios. PMID:27035576

  19. On the protective effect of omega-3 against propionic acid-induced neurotoxicity in rat pups

    PubMed Central

    2011-01-01

    Backgrounds The investigation of the environmental contribution for developmental neurotoxicity is very important. Many environmental chemical exposures are now thought to contribute to the development of neurological disorders, especially in children. Results from animal studies may guide investigations of human populations toward identifying environmental contaminants and drugs that produce or protect from neurotoxicity and may help in the treatment of neurodevelopmental disorders. Objective To study the protective effects of omega-3 polyunsaturated fatty acid on brain intoxication induced by propionic acid (PPA) in rats. Methods 24 young male Western Albino rats were enrolled in the present study. They were grouped into three equal groups; oral buffered PPA-treated group given a nuerotoxic dose of 250 mg/Kg body weight/day for 3 days; omega-3 - protected group given a dose of 100 mg/kg body weight/day omega-3 orally daily for 5 days followed by PPA for 3 days, and a third group as control given only phosphate buffered saline. Tumor necrosis factor-α, caspase-3, interlukin-6, gamma amino-buteric acid (GABA), serotonin, dopamine and phospholipids were then assayed in the rats brain's tissue of different groups. Results The obtained data showed that PPA caused multiple signs of brain toxicity as measured by depletion of gamaaminobyteric acid (GABA), serotonin (5HT) and dopamine (DA) as three important neurotransmitters that reflect brain function. A high significant increase of interlukin-6 (Il-6), tumor necrosis factor-α (TNF-α) as excellent markers of proinflammation and caspase-3 as a proapotic marker were remarkably elevated in the intoxicated group of rats. Moreover, brain phospholipid profile was impaired in PPA-treated young rats recording lower levels of phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylcholine (PC). Conclusions Omega-3 fatty acids showed a protective effects on PPA - induced changes in rats as there was a remarkable

  20. IDENTIFICATION AND INTERPRETATION OF DEVELOPMENTAL NEUROTOXICITY EFFECTS: A REPORT FROM THE ILSI RESEARCH FOUNDATION/RISK SCIENCE INSTITUTE EXPERT WORKING GROUP ON NEURODEVELOPMENTAL ENDPOINTS

    EPA Science Inventory

    The reliable detection, measurement, and interpretation of treatment-related developmental neurotoxicity (DNT) effects depend on appropriate study design and execution, using scientifically established methodologies, with appropriate controls to minimize confounding factors. App...

  1. Protective effect of fangchinoline on cyanide-induced neurotoxicity in cultured rat cerebellar granule cells.

    PubMed

    Cho, Soon Ok; Seong, Yeon Hee

    2002-06-01

    The present study was performed to examine the effect of fangchinoline, a bis- benzylisoquinoline alkaloid, which exhibits the characteristics of a Ca2+ channel blocker, on cyanide-induced neurotoxicity using cultured rat cerebellar granule neurons. NaCN produced a concentration-dependent reduction of cell viability, which was blocked by MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, verapamil, L-type Ca2+ channel blocker, and L-NAME, a nitric oxide synthase inhibitor. Pretreatment with fangchinoline over a concentration range of 0.1 to 10 microM significantly decreased the NaCN-induced neuronal cell death, glutamate release into medium, and elevation of [Ca2+]i and oxidants generation. These results suggest that fangchinoline may mitigate the harmful effects of cyanide-induced neuronal cell death by interfering with [Ca2+]i influx, due to its function as a Ca2+ channel blocker, and then by inhibiting glutamate release and oxidants generation. PMID:12135109

  2. Neuroprotective effects of sodium hydrosulfide against β-amyloid-induced neurotoxicity.

    PubMed

    Li, Xiao-Hui; Deng, Yuan-Yuan; Li, Fei; Shi, Jing-Shan; Gong, Qi-Hai

    2016-10-01

    Alzheimer's disease (AD) is known to be caused by the accumulation of amyloid-β peptide (Aβ). The accumulation of Aβ has been shown to cause learning and memory impairment in rats, and it has been shown that hydrogen sulfide donors, such as sodium hydrosulfide (NaHS) can attenuate these effects. However, the underlying mechanisms have not yet been fully eludicated. This study was designed to investigate whether NaHS attenuates the inflammation and apoptosis induced by Aβ. We demonstrated that NaHS attenuated Aβ25‑35-induced neuronal reduction and apoptosis, and inhibited the activation of pro-caspase-3. It also decreased the protein expresion of phosphodiesterase 5 (PDE5) in the hippocampus of the rats. In addition, NaHS upregulated the expression of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ, but it did not affect the expression of PPAR-β. Moreover, the Aβ25‑35‑exposed rats exhibited a decrease in IκB-α degradation and an increase in nuclear factor-κB (NF-κB) p65 phosphorylation levels, whereas these effects were attenuated by NaHS. Our data suggest that NaHS prevents Aβ-induced neurotoxicity via the upregulation of PPAR-α and PPAR-γ and the inhibition of PDE5. Hence NaHS may prove to be beneficial in the treatment of AD. PMID:27511125

  3. The effects of hispidulin on bupivacaine-induced neurotoxicity: role of AMPK signaling pathway.

    PubMed

    Niu, Xinhuan; Chen, Jie; Wang, Ping; Zhou, Hui; Li, Song; Zhang, Mengyuan

    2014-09-01

    Bupivacaine is a sodium channel blocker, which is widely used for local infiltration nerve block, epidural and intrathecal anesthesia. However, bupivacaine could cause nerve damage. Hispidulin was shown to be able to penetrate the blood-brain barrier and possess antiepileptic activity. In this study, we investigate whether hispidulin administration could attenuate bupivacaine-induced neurotoxicity. Bupivacaine-challenged mouse neuroblastoma N2a cells were treated with hispidulin. The neuron injury was assessed by examination of cell viability and apoptosis. The levels of activation of AMP-activated protein kinase (AMPK) signaling pathway were examined along with the effect of blocking AMPK signaling on cell viability in the presence of hispidulin and bupivacaine. Our results showed that Bupivacaine treatment significantly decreased cell viability and induced apoptosis. Treatment with hispidulin significantly attenuated bupivacaine-induced cell injury. In addition, hispidulin treatment increased the levels of phospho-AMPK and phospho-GSK3β and attenuated bupivacaine-induced loss in mitochondrial membrane potential. Furthermore, we found that blocking AMPK signaling pathway significantly abolished the cytoprotective effect of hispidulin against bupivacaine-induced cell injury. Our findings suggest that treatment of neuroblastoma cells with hispidulin-protected neural cells from Bupivacaine-induced injury via the activation of the AMPK/GSK3β signaling pathway.

  4. Neuroprotective effects of sodium hydrosulfide against β-amyloid-induced neurotoxicity

    PubMed Central

    Li, Xiao-Hui; Deng, Yuan-Yuan; Li, Fei; Shi, Jing-Shan; Gong, Qi-Hai

    2016-01-01

    Alzheimer's disease (AD) is known to be caused by the accumulation of amyloid-β peptide (Aβ). The accumulation of Aβ has been shown to cause learning and memory impairment in rats, and it has been shown that hydrogen sulfide donors, such as sodium hydrosulfide (NaHS) can attenuate these effects. However, the underlying mechanisms have not yet been fully eludicated. This study was designed to investigate whether NaHS attenuates the inflammation and apoptosis induced by Aβ. We demonstrated that NaHS attenuated Aβ25–35-induced neuronal reduction and apoptosis, and inhibited the activation of pro-caspase-3. It also decreased the protein expresion of phosphodiesterase 5 (PDE5) in the hippocampus of the rats. In addition, NaHS upregulated the expression of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ, but it did not affect the expression of PPAR-β. Moreover, the Aβ25–35-exposed rats exhibited a decrease in IκB-α degradation and an increase in nuclear factor-κB (NF-κB) p65 phosphorylation levels, whereas these effects were attenuated by NaHS. Our data suggest that NaHS prevents Aβ-induced neurotoxicity via the upregulation of PPAR-α and PPAR-γ and the inhibition of PDE5. Hence NaHS may prove to be beneficial in the treatment of AD. PMID:27511125

  5. Neuroprotective effects of sodium hydrosulfide against β-amyloid-induced neurotoxicity.

    PubMed

    Li, Xiao-Hui; Deng, Yuan-Yuan; Li, Fei; Shi, Jing-Shan; Gong, Qi-Hai

    2016-10-01

    Alzheimer's disease (AD) is known to be caused by the accumulation of amyloid-β peptide (Aβ). The accumulation of Aβ has been shown to cause learning and memory impairment in rats, and it has been shown that hydrogen sulfide donors, such as sodium hydrosulfide (NaHS) can attenuate these effects. However, the underlying mechanisms have not yet been fully eludicated. This study was designed to investigate whether NaHS attenuates the inflammation and apoptosis induced by Aβ. We demonstrated that NaHS attenuated Aβ25‑35-induced neuronal reduction and apoptosis, and inhibited the activation of pro-caspase-3. It also decreased the protein expresion of phosphodiesterase 5 (PDE5) in the hippocampus of the rats. In addition, NaHS upregulated the expression of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ, but it did not affect the expression of PPAR-β. Moreover, the Aβ25‑35‑exposed rats exhibited a decrease in IκB-α degradation and an increase in nuclear factor-κB (NF-κB) p65 phosphorylation levels, whereas these effects were attenuated by NaHS. Our data suggest that NaHS prevents Aβ-induced neurotoxicity via the upregulation of PPAR-α and PPAR-γ and the inhibition of PDE5. Hence NaHS may prove to be beneficial in the treatment of AD.

  6. Evaluation of Antinociceptive and Neurotoxic Effects of Intrathecal Dexmedetomidine in Rats

    PubMed Central

    İşgüzar, Özgü; Barış, Sibel; Bozkurt, Ayhan; Can, Bilge; Bilge, Sırrı; Türe, Hatice

    2012-01-01

    Objective: Dexmedetomidine has been reported to produce analgesia after intrathecal administration. In the present study the α2-adrenoceptor agonist dexmedetomidine was evaluated for its potential spinal neurotoxic effects. Material and Methods: Three days after intrathecal cannulation, rats were administered either dexmedetomidine (3 μg/30 μL, i.t.) or saline (30 μL, i.t.). Antinociceptive, sedative and motor effects of intrathecal administrations of dexmedetomidine or saline were evaluated during 90 min. The tail-flick and hot plate tests were used to assess the thermal nociceptive threshold. Seven days after drug administration, animals were sacrified and spinal cords were evaluated for histopathological changes by light microscopy. Results: Dexmedetomidine administered intrathecally produced antinociception. Antinociception was accompanied by immediate sedation and loss of placing-stepping reflexes that lasted over 40 min in all dexmedetomidine administered rats. In all rats, microscopic examination revealed mild gliosis and minimal infiltration of inflamatory r cells in posterior white matter. Mild (total score 4–6) histopathologic lesions were seen in four animals in dexmedetomidine adminisered rats, but there was no statistically significant difference when compared with the saline administered rats. Conclusion: We observed that intrathecal injections of dexmedetomidine at the dose of 3 μg/30 μL produce antinociception but did not cause any histopathological sign of injury in the spinal cord. PMID:25207033

  7. Neurotoxic effects of fluorinated glucocorticoid preparations on the developing mouse brain: role of preservatives.

    PubMed

    Baud, O; Laudenbach, V; Evrard, P; Gressens, P

    2001-12-01

    Prenatal betamethasone (Celestene) therapy reduces the incidence of brain damage, whereas prenatal or neonatal dexamethasone (Soludecadron) increases the risk of brain lesions or neuromotor deficits. To determine whether this increase is ascribable to the sulfites used as preservatives in Soludecadron, we investigated the effects of 12 h of exposure to pure dexamethasone, Soludecadron, pure betamethasone, Celestene, and sulfites on in vitro and in vivo death of neurons cultured under basal conditions or with excitotoxic agents (N-methyl-D-aspartate or (S)-5-bromowillardiine) or hypoxia. Apoptotic features were quantitated using a fluorescent chromatin stain (Hoechst 33258). Neuronal viability was unaffected by pure dexamethasone, pure betamethasone, or Celestene. Soludecadron or sulfites significantly increased neuronal loss. Pure dexamethasone or pure betamethasone produced a 40-50% decrease in neuronal death induced by N-methyl-D-aspartate, (S)-5-bromowillardiine, or hypoxia, whereas Soludecadron had no effect and sulfites significantly increased the neurotoxicity of excitotoxic agents. In in vivo experiments involving terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling after several i.p. injections of fluorinated glucocorticoids, Soludecadron, but not pure dexamethasone, significantly increased the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-stained cells in neocortical layers and thalamus. These experimental findings suggest that injectable dexamethasone should be used with caution during the perinatal period.

  8. Neuroprotective effects of MK-801 on L-2-chloropropionic acid-induced neurotoxicity.

    PubMed

    Williams, R E; Lock, E A; Bachelard, H S

    2001-02-01

    L-2-Chloropropionic acid is selectively toxic to the cerebellum in rats; the granule cell necrosis observed within 48 h can be prevented by prior administration of MK-801. Short-term treatment (2 h) with L-2-chloropropionic acid has also been shown to activate the mitochondrial pyruvate dehydrogenase complex in fasted adult rats. This study aimed to investigate the effect of prior exposure to MK-801 on the biochemical and neurotoxicological effects of L-2-chloropropionic acid. Extracts were prepared from the forebrain and cerebellum of animals that had been treated with L-2-chloropropionic acid, with and without prior treatment with MK-801, and were analysed using magnetic resonance spectroscopy and amino acid analysis. Glucose metabolism was studied by monitoring the metabolism of [1-(13)C]-glucose using GC/MS. L-2-Chloropropionic acid caused increased glucose metabolism in both brain regions 6 h after administration, confirming activation of the pyruvate dehydrogenase complex, which was not prevented by MK-801. After 48 h an increase in lactate and a decrease in N-acetylaspartate was observed only in the cerebellum, whereas phosphocreatine and ATP decreased in both tissues. MK-801 prevented the changes in lactate and N:-acetylaspartate, but not those on the energy state. These studies suggest that L-2-chloropropionic acid-induced neurotoxicity is only partly mediated by the NMDA subtype of glutamate receptor.

  9. Neurotoxic effect of triazophos on goldfish (Carassius auratus) and tissue specific antioxidant responses.

    PubMed

    Liu, Lei; Zhu, Bin; Gong, Yu-Xin; Liu, Guang-Lu; Wang, Gao-Xue

    2015-06-01

    Due to the high chemical and photochemical stability, an organophosphorus pesticide triazophos might enter aquatic ecosystems and impose negative effect on aquatic organisms. In order to investigate short-term toxicity of triazophos on goldfish (Carassius auratus), antioxidant response in brain, spleen, kidney and liver was tested in this study. As a confirmation, the impact of triazophos on acetyl cholinesterase (AChE) activity was found a reduction in all studied tissues, especially in brain. In addition, 0.1 and 0.5 mg L(-1) triazophos induced MDA level increased, while glutathione content (GSH), superoxide dismutase (SOD), catalase (CAT) and lactate dehydrogenase (LDH) activities decreased. Of note, more prominent oxidative stress was provoked in kidney and liver, but weaker in brain and spleen. These results revealed that triazophos could cause a generalized oxidative stress and tissue specific antioxidant response in goldfish. Furthermore, neuroendocrine-growth-related gene expression (growth hormone (GH), luteinizing hormone (LH) and peptide YY) in brain was also changed by exposed to triazophos during 4 and 7d exposure periods. Linked with the above results, the present study pointed out that triazophos might induce a neurotoxic effect and oxidative damage in goldfish, and the goldfish brain should be a critical target for triazophos-induced damage.

  10. Long-term Neurotoxicity Effects of Oxaliplatin added to Fluorouracil and Leucovorin as Adjuvant Therapy for Colon Cancer: Results from NSABP trials C-07 and LTS-01

    PubMed Central

    Kidwell, Kelley M.; Yothers, Greg; Ganz, Patricia A.; Land, Stephanie R.; Ko, Clifford Y.; Cecchini, Reena S.; Kopec, Jacek A.; Wolmark, Norman

    2012-01-01

    Purpose Neurotoxicity from adjuvant treatment with oxaliplatin has been studied in colorectal patients in short-term studies, but this is the first long-term assessment from the National Surgical Adjuvant Breast and Bowel Project (NSABP) investigating whether excess neurotoxicity persists beyond 4 years. Patients and Methods As part of a colorectal cancer long-term survivor study (LTS-01), long-term neurotoxicity was assessed in 353 C-07 patients (cross-sectional sample). Ninety-two of these LTS-01 patients also had longitudinal data and were re-assessed at 5-8 (median 7) years from randomization (longitudinal sample). Contingency tables compared cohorts, a mixed model compared neurotoxicity between treatments over time, and a Wilcoxon rank sum test compared neurotoxicity between treatments (cross-sectional sample). Results In the cross-sectional sample, the increase in mean total neurotoxicity scores of 1.8 with oxaliplatin was statistically significant (P= .005), but not clinically significant (minimally important difference was 4 at the long-term assessment. Patients treated with oxaliplatin had increased odds of numbness and tingling in hands (OR= 2.00, P= .015) and feet (OR= 2.78, P< .001) versus patients treated without oxaliplatin. The magnitude of the oxaliplatin effect varied with time (P< .001) in the longitudinal sample such that oxaliplatin-treated patients did not have significantly greater total neurotoxicity scores by 7 years. Conclusion At the long-term endpoint, there was no clinically significant increase in total neurotoxicity scores for patients treated with oxaliplatin, but the specific neurotoxicities of numbness and tingling of the hands and feet remained significantly elevated for oxaliplatin-treated patients. PMID:22569841

  11. Protective effects of ebselen (Ebs) and para-aminosalicylic acid (PAS) against manganese (Mn)-induced neurotoxicity

    SciTech Connect

    Marreilha dos Santos, A.P.; Lucas, Rui L.; Andrade, Vanda; Mateus, M. Luísa; Milatovic, Dejan; Aschner, Michael; Batoreu, M. Camila

    2012-02-01

    Chronic, excessive exposure to manganese (Mn) may induce neurotoxicity and cause an irreversible brain disease, referred to as manganism. Efficacious therapies for the treatment of Mn are lacking, mandating the development of new interventions. The purpose of the present study was to investigate the efficacy of ebselen (Ebs) and para-aminosalicylic acid (PAS) in attenuating the neurotoxic effects of Mn in an in vivo rat model. Exposure biomarkers, inflammatory and oxidative stress biomarkers, as well as behavioral parameters were evaluated. Co-treatment with Mn plus Ebs or Mn plus PAS caused a significant decrease in blood and brain Mn concentrations (compared to rats treated with Mn alone), concomitant with reduced brain E{sub 2} prostaglandin (PGE{sub 2}) and enhanced brain glutathione (GSH) levels, decreased serum prolactin (PRL) levels, and increased ambulation and rearing activities. Taken together, these results establish that both PAS and Ebs are efficacious in reducing Mn body burden, neuroinflammation, oxidative stress and locomotor activity impairments in a rat model of Mn-induced toxicity. -- Highlights: ► The manuscript is unique in its approach to the neurotoxicity of Mn. ► The manuscript incorporates molecular, cellular and functional (behavioral) analyses. ► Both PAS and Ebs are effective in restoring Mn behavioral function. ► Both PAS and Ebs are effective in reducing Mn-induced oxidative stress. ► Both PAS and Ebs led to a decrease in Mn-induced neuro-inflammation.

  12. Cytotoxic, Genotoxic, and Neurotoxic Effects of Mg, Pb, and Fe on Pheochromocytoma (PC-12) Cells

    PubMed Central

    Sanders, Talia; Liu, Yi-Ming; Tchounwou, Paul B.

    2014-01-01

    Metals such as lead (Pb), magnesium (Mg), and iron (Fe) are ubiquitous in the environment as a result of natural occurrence and anthropogenic activities. Although Mg, Fe and others are considered essential elements, high level of exposure has been associated with severe adverse health effects including cardiovascular, hematological, nephrotoxic, hepatotoxic, and neurologic abnormalities in humans. In the present study we hypothesized that Mg, Pb, and Fe are cytotoxic, genotoxic and neurotoxic, and their toxicity is mediated through oxidative stress and alteration in protein expression. To test the hypothesis, we used the pheochromocytoma (PC-12) cell line as a neuro cell model and performed the LDH assay for cell viability, Comet assay for DNA damage, Western blot for oxidative stress, and HPLC-MS to assess the concentration levels of neurological biomarkers such as glutamate, dopamine (DA), and 3-methoxytyramine (3-MT). The results of this study clearly show that Mg, Pb, and Fe, respectively in the form of MgSO4, Pb(NO3)2, FeCl2, and FeCl3 induce cytotoxicity, oxidative stress, and genotoxicity in PC-12 cells. In addition, exposure to these metallic compounds caused significant changes in the concentration levels of glutamate, dopamine, and 3-MT in PC-12 cells. Taken together the findings suggest that MgSO4, Pb(NO3)2, FeCl2, and FeCl3 have the potential to induce substantial toxicity to PC-12 cells. PMID:24942330

  13. Effects of Cymbopogon citratus and Ferula assa-foetida extracts on glutamate-induced neurotoxicity.

    PubMed

    Tayeboon, Ghazaleh S; Tavakoli, Fatemeh; Hassani, Shokoufeh; Khanavi, Mahnaz; Sabzevari, Omid; Ostad, S Nasser

    2013-10-01

    Many of CNS diseases can lead to a great quantity of release of glutamate and the extreme glutamate induces neuronal cell damage and death. Here, we wanted to investigate the effects of Cymbopogon citratus essential oil and Ferula assa-foetida extracts treatment on glutamate-induced cell damage in a primary culture of rat cerebellar granule neurons. Cerebellums were collected from 7-d rat brains and cerebellar granule neurons were obtained after 8-d culture. CGN cells were treated with C. citratus essential oil and F. assa-foetida extracts at concentration of 100 μg/ml before, after, and during exposure to 30 μM glutamate. The cellular viability was evaluated by 3-(4, 5-dimethytthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide (MTT) staining. The flow cytometry assay was used to examine cell cycle and apoptosis. MTT assay showed a glutamate-induced reduction in cellular viability while treatment with C. citratus essential oil and F. assa-foetida extracts before, during, and after exposure to glutamate was increased. Flow cytometric analysis indicated that F. assa-foetida extracts treatment significantly (p < 0.001) attenuated glutamate-induced apoptotic/necrotic cell death and the necrotic rate was decreased by C. citratus essential oil treatment compared to glutamate group, significantly (p < 0.001). The results show that C. citratus essential oil and F. assa-foetida extracts display neuroprotective effects in glutamate-induced neurotoxicity. These extracts exert antiapoptotic activity in cerebellar granule neurons due to cell cycle arrest in G0G1 phase, which explain the beneficial effects of C. citratus essential oil and F. assa-foetida extracts as therapies for neurologic disorders.

  14. Neurotoxicity effects of atrazine-induced SH-SY5Y human dopaminergic neuroblastoma cells via microglial activation.

    PubMed

    Ma, Kun; Wu, Hao-Yu; Zhang, Bo; He, Xi; Li, Bai-Xiang

    2015-11-01

    Atrazine (2-chloro-4-ethytlamino-6-isopropylamine-1,3,5-triazine; ATR) is a broad-spectrum herbicide with a wide range of applications worldwide. However, ATR is neurotoxic; it reduces dopamine levels in the substantia nigra and corpus striatum in the midbrain, affects the absorption of synaptic vesicles and synaptic bodies, and interferes with dopamine storage and uptake in synaptic vesicles, leading to neurodegenerative disorders. Microglia are resident immunocompetent and phagocytic cells that regulate and participate in the microenvironment in the central nervous system. They demonstrate macrophage characteristics after activation by releasing inflammatory cytokines and neurotoxic substances to increase the inflammatory response, and are thus involved in neurodegeneration. The aim of this study was to investigate the neurotoxic effects of ATR-activated microglia-mediated neuronal damage in terms of human dopaminergic neuroblastoma SH-SY5Y cell death. ATR was administered to BV-2 microglial cells at 12.5, 25, and 50 μM for 1, 6, 12, 24 and 48 h, respectively. ATR increased activated-microglia-induced overexpression of reactive oxygen species, inducible nitric oxide synthase, nitric oxide, gp91(phox), p47(phox), and the inflammatory cytokines tumor necrosis factor α and interleukin-1β, thus reducing SH-SY5Y cell viability. These results suggest that activated microglia may play a critical role in inflammation-mediated dopaminergic neuronal death, and provide the basis for further studies on the mechanisms of ATR-induced dopaminergic system toxicity. PMID:26256823

  15. Neurotoxicity effects of atrazine-induced SH-SY5Y human dopaminergic neuroblastoma cells via microglial activation.

    PubMed

    Ma, Kun; Wu, Hao-Yu; Zhang, Bo; He, Xi; Li, Bai-Xiang

    2015-11-01

    Atrazine (2-chloro-4-ethytlamino-6-isopropylamine-1,3,5-triazine; ATR) is a broad-spectrum herbicide with a wide range of applications worldwide. However, ATR is neurotoxic; it reduces dopamine levels in the substantia nigra and corpus striatum in the midbrain, affects the absorption of synaptic vesicles and synaptic bodies, and interferes with dopamine storage and uptake in synaptic vesicles, leading to neurodegenerative disorders. Microglia are resident immunocompetent and phagocytic cells that regulate and participate in the microenvironment in the central nervous system. They demonstrate macrophage characteristics after activation by releasing inflammatory cytokines and neurotoxic substances to increase the inflammatory response, and are thus involved in neurodegeneration. The aim of this study was to investigate the neurotoxic effects of ATR-activated microglia-mediated neuronal damage in terms of human dopaminergic neuroblastoma SH-SY5Y cell death. ATR was administered to BV-2 microglial cells at 12.5, 25, and 50 μM for 1, 6, 12, 24 and 48 h, respectively. ATR increased activated-microglia-induced overexpression of reactive oxygen species, inducible nitric oxide synthase, nitric oxide, gp91(phox), p47(phox), and the inflammatory cytokines tumor necrosis factor α and interleukin-1β, thus reducing SH-SY5Y cell viability. These results suggest that activated microglia may play a critical role in inflammation-mediated dopaminergic neuronal death, and provide the basis for further studies on the mechanisms of ATR-induced dopaminergic system toxicity.

  16. Opiate addiction therapies and HIV-1 Tat: interactive effects on glial [Ca²⁺]i, oxyradical and neuroinflammatory chemokine production and correlative neurotoxicity.

    PubMed

    Fitting, Sylvia; Zou, Shiping; El-Hage, Nazira; Suzuki, Masami; Paris, Jason J; Schier, Christina J; Rodríguez, José W; Rodriguez, Myosotys; Knapp, Pamela E; Hauser, Kurt F

    2014-01-01

    Few preclinical studies have compared the relative therapeutic efficacy of medications used to treat opiate addiction in relation to neuroAIDS. Here we compare the ability of methadone and buprenorphine, and the prototypic opiate morphine, to potentiate the neurotoxic and proinflammatory ([Ca²⁺]i, ROS, H₂O₂, chemokines) effects of HIV-1 Tat in neuronal and/or mixed-glial co-cultures. Repeated observations of neurons during 48 h exposure to combinations of Tat, equimolar concentrations (500 nM) of morphine, methadone, or buprenorphine exacerbated neurotoxicity significantly above levels seen with Tat alone. Buprenorphine alone displayed marked neurotoxicity at 500 nM, prompting additional studies of its neurotoxic effects at 5 nM and 50 nM concentrations ± Tat. In combination with Tat, buprenorphine displayed paradoxical, concentration-dependent, neurotoxic and neuroprotective actions. Buprenorphine neurotoxicity coincided with marked elevations in [Ca²⁺]i, but not increases in glial ROS or chemokine release. Tat by itself elevated the production of CCL5/RANTES, CCL4/MIP-1β, and CCL2/MCP-1. Methadone and buprenorphine alone had no effect, but methadone interacted with Tat to further increase production of CCL5/RANTES. In combination with Tat, all drugs significantly increased glial [Ca²⁺]i, but ROS was only significantly increased by co-exposure with morphine. Taken together, the increases in glial [Ca²⁺]i, ROS, and neuroinflammatory chemokines were not especially accurate predictors of neurotoxicity. Despite similarities, opiates displayed differences in their neurotoxic and neuroinflammatory interactions with Tat. Buprenorphine, in particular, was partially neuroprotective at a low concentration, which may result from its unique pharmacological profile at multiple opioid receptors. Overall, the results reveal differences among addiction medications that may impact neuroAIDS.

  17. Antiperoxidative and antiinflammatory effect of Sida cordifolia Linn. on quinolinic acid induced neurotoxicity.

    PubMed

    Swathy, S S; Panicker, Seema; Nithya, R S; Anuja, M M; Rejitha, S; Indira, M

    2010-09-01

    Sida cordifolia is a plant belonging to the Malvaceae family used in many ayurvedic preparations. This study aimed at assessing the effects of ethanolic extract of Sida cordifolia root on quinolinic acid (QUIN) induced neurotoxicity and to compare its effect with the standard drug deprenyl in rat brain. Rats were divided into six groups: (1) control group (2) QUIN (55 microg/100 g bwt/day) (3) 50% ethanolic plant extract treated group (50 mg/100 g bwt/day) (4) Deprenyl (100 microg/100 g bwt/day) (5) QUIN (55 microg/100 g bwt/day) + 50% ethanolic plant extract treated group (50 mg/100 g bwt/day) (6) QUIN (55 microg/100 g bwt/day) + Deprenyl (100 microg/100 g bwt/day). At the end of the experimental period a status of lipid peroxidation products, protein peroxidation product, activities of the scavenging enzymes and the activities of the inflammatory markers were analyzed. Results revealed that the lipid peroxidation products decreased and the activities of the scavenging enzymes increased significantly in the brain of the plant extract treated group, deprenyl treated group and also in the coadminstered groups. The activities of markers of inflammatory responses such as cyclooxygenase and lipoxygenase were found to be significantly increased in the QUIN treated rats and this was decreased upon the administration of plant extract and deprenyl. In short, the study revealed that 50% ethanolic extract of Sida cordifolia has got potent antioxidant and antiinflammatory activity and the activity is comparable with the standard drug deprenyl.

  18. Transcriptomic analyses of neurotoxic effects in mouse brain after intermittent neonatal administration of thimerosal.

    PubMed

    Li, Xiaoling; Qu, Fengqin; Xie, Wenjuan; Wang, Fengli; Liu, Hongmei; Song, Shuhui; Chen, Tingting; Zhang, Yang; Zhu, Shu; Wang, Yun; Guo, Caixia; Tang, Tie-Shan

    2014-06-01

    Thimerosal is a vaccine antimicrobial preservative which has long been suspected an iatrogenic factor possibly contributing to neurodevelopmental disorders including autism. The association between infant vaccine thimerosal exposure and autism remains an open question. Although thimerosal has been removed from mandatory childhood vaccines in the United States, thimerosal-preserved vaccines are still widely used outside of the United States especially in developing countries. Notably, thimerosal-containing vaccines are being given to the newborns within the first 12-24 h after birth in some countries. To examine the possible neurotoxic effects of early neonatal exposure to a higher level of thimerosal, FVB mice were subcutaneously injected with thimerosal-mercury at a dose which is 20× higher than that used for regular Chinese infant immunization during the first 4 months of life. Thimerosal-treated mice exhibited neural development delay, social interaction deficiency, and inclination of depression. Apparent neuropathological changes were also observed in adult mice neonatally treated with thimerosal. High-throughput RNA sequencing of autistic-behaved mice brains revealed the alternation of a number of canonical pathways involving neuronal development, neuronal synaptic function, and the dysregulation of endocrine system. Intriguingly, the elevation of anterior pituitary secreting hormones occurred exclusively in male but not in female thimerosal-treated mice, demonstrating for the first time the gender bias of thimerosal-mercury toxicity with regard to endocrine system. Our results indicate that higher dose of neonatal thimerosal-mercury (20× higher than that used in human) is capable of inducing long-lasting substantial dysregulation of neurodevelopment, synaptic function, and endocrine system, which could be the causal involvements of autistic-like behavior in mice.

  19. Neuroprotective effect of caffeic acid phenethyl ester in 3-nitropropionic acid-induced striatal neurotoxicity

    PubMed Central

    Bak, Jia; Kim, Hee Jung; Kim, Seong Yun

    2016-01-01

    Caffeic acid phenethyl ester (CAPE), derived from honeybee hives, is a bioactive compound with strong antioxidant activity. This study was designed to test the neuroprotective effect of CAPE in 3-nitropropionic acid (3NP)-induced striatal neurotoxicity, a chemical model of Huntington's disease (HD). Initially, to test CAPE's antioxidant activity, a 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) antioxidant assay was employed, and CAPE showed a strong direct radical-scavenging eff ect. In addition, CAPE provided protection from 3NP-induced neuronal cell death in cultured striatal neurons. Based on these observations, the in vivo therapeutic potential of CAPE in 3NP-induced HD was tested. For this purpose, male C57BL/6 mice were repeatedly given 3NP to induce HD-like pathogenesis, and 30 mg/kg of CAPE or vehicle (5% dimethyl sulfoxide and 95% peanut oil) was administered daily. CAPE did not cause changes in body weight, but it reduced mortality by 29%. In addition, compared to the vehicle-treated group, robustly reduced striatal damage was observed in the CAPE-treated animals, and the 3NP-induced behavioral defi cits on the rotarod test were signifi cantly rescued after the CAPE treatment. Furthermore, immunohistochemical data showed that immunoreactivity to glial fibrillary acidic protein (GFAP) and CD45, markers for astrocyte and microglia activation, respectively, were strikingly reduced. Combined, these data unequivocally indicate that CAPE has a strong antioxidant eff ect and can be used as a potential therapeutic agent against HD. PMID:27162482

  20. Transcriptomic analyses of neurotoxic effects in mouse brain after intermittent neonatal administration of thimerosal.

    PubMed

    Li, Xiaoling; Qu, Fengqin; Xie, Wenjuan; Wang, Fengli; Liu, Hongmei; Song, Shuhui; Chen, Tingting; Zhang, Yang; Zhu, Shu; Wang, Yun; Guo, Caixia; Tang, Tie-Shan

    2014-06-01

    Thimerosal is a vaccine antimicrobial preservative which has long been suspected an iatrogenic factor possibly contributing to neurodevelopmental disorders including autism. The association between infant vaccine thimerosal exposure and autism remains an open question. Although thimerosal has been removed from mandatory childhood vaccines in the United States, thimerosal-preserved vaccines are still widely used outside of the United States especially in developing countries. Notably, thimerosal-containing vaccines are being given to the newborns within the first 12-24 h after birth in some countries. To examine the possible neurotoxic effects of early neonatal exposure to a higher level of thimerosal, FVB mice were subcutaneously injected with thimerosal-mercury at a dose which is 20× higher than that used for regular Chinese infant immunization during the first 4 months of life. Thimerosal-treated mice exhibited neural development delay, social interaction deficiency, and inclination of depression. Apparent neuropathological changes were also observed in adult mice neonatally treated with thimerosal. High-throughput RNA sequencing of autistic-behaved mice brains revealed the alternation of a number of canonical pathways involving neuronal development, neuronal synaptic function, and the dysregulation of endocrine system. Intriguingly, the elevation of anterior pituitary secreting hormones occurred exclusively in male but not in female thimerosal-treated mice, demonstrating for the first time the gender bias of thimerosal-mercury toxicity with regard to endocrine system. Our results indicate that higher dose of neonatal thimerosal-mercury (20× higher than that used in human) is capable of inducing long-lasting substantial dysregulation of neurodevelopment, synaptic function, and endocrine system, which could be the causal involvements of autistic-like behavior in mice. PMID:24675092

  1. Neuroprotective effect of caffeic acid phenethyl ester in 3-nitropropionic acid-induced striatal neurotoxicity.

    PubMed

    Bak, Jia; Kim, Hee Jung; Kim, Seong Yun; Choi, Yun-Sik

    2016-05-01

    Caffeic acid phenethyl ester (CAPE), derived from honeybee hives, is a bioactive compound with strong antioxidant activity. This study was designed to test the neuroprotective effect of CAPE in 3-nitropropionic acid (3NP)-induced striatal neurotoxicity, a chemical model of Huntington's disease (HD). Initially, to test CAPE's antioxidant activity, a 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) antioxidant assay was employed, and CAPE showed a strong direct radical-scavenging eff ect. In addition, CAPE provided protection from 3NP-induced neuronal cell death in cultured striatal neurons. Based on these observations, the in vivo therapeutic potential of CAPE in 3NP-induced HD was tested. For this purpose, male C57BL/6 mice were repeatedly given 3NP to induce HD-like pathogenesis, and 30 mg/kg of CAPE or vehicle (5% dimethyl sulfoxide and 95% peanut oil) was administered daily. CAPE did not cause changes in body weight, but it reduced mortality by 29%. In addition, compared to the vehicle-treated group, robustly reduced striatal damage was observed in the CAPE-treated animals, and the 3NP-induced behavioral defi cits on the rotarod test were signifi cantly rescued after the CAPE treatment. Furthermore, immunohistochemical data showed that immunoreactivity to glial fibrillary acidic protein (GFAP) and CD45, markers for astrocyte and microglia activation, respectively, were strikingly reduced. Combined, these data unequivocally indicate that CAPE has a strong antioxidant eff ect and can be used as a potential therapeutic agent against HD. PMID:27162482

  2. Long-term effects of neonatal methamphetamine exposure in rats on spatial learning in the Barnes maze and on cliff avoidance, corticosterone release, and neurotoxicity in adulthood.

    PubMed

    Williams, Michael T; Blankenmeyer, Tracy L; Schaefer, Tori L; Brown, Carrie A; Gudelsky, Gary A; Vorhees, Charles V

    2003-12-30

    Methamphetamine (MA) is a commonly abused stimulant and because of its addictive properties, abusers may not cease use during pregnancy, thereby exposing the fetus to the drug. The consequences of such exposure remain largely unknown however data from animal models show that long-term deficits in spatial learning and memory in the Morris water maze (MWM) occur. In this study we explored the spatial learning ability of rats treated four times daily with MA (5 mg/kg/dose) during the sensitive period for induction of MWM deficits, postnatal days (P) 11-20, using a different maze. In adulthood the animals were tested in a non-swimming spatial task, the Barnes maze, using either aversive (bright light) or appetitive (food reward) motivation. Approximately 30 days after behavioral testing, the pituitary and adrenal response to forced swim was assessed and susceptibility to MA-induced neurotoxicity measured. MA-treated animals tested in the aversive, but not the appetitive, version of the Barnes maze demonstrated spatial learning deficits. An attenuated corticosterone response in MA-treated animals was observed following forced swimming, however no differences in ACTH were found. Following acute MA administration in adulthood to all animals, the neonatally MA-treated animals displayed longer latencies to fall from a cliff than neonatally saline-treated rats given the same acute MA dose. This effect supports previous data showing hypoactivity in neonatally MA-treated animals. Acute MA treatment caused comparable striatal monoamine depletions in all groups, although females treated with MA as neonates displayed increased basal levels of corticosterone three days after the acute dose. These data demonstrate that MA administration during the neonatal period impairs spatial learning in an aversive non-swimming task and alters the adrenal response to a forced swim stressor, suggesting that the adrenal output during learning may contribute to the spatial learning deficits.

  3. Protective effects of isoatriplicolide tiglate from Paulownia coreana against glutamate-induced neurotoxicity in primary cultured rat cortical cells.

    PubMed

    Chung, Ill-Min; Kim, Eun-Hye; Jeon, Hyun-Seok; Moon, Hyung-In

    2010-06-01

    To examine the neuroprotective effects of Paulownia coreana, we tested its protection against the glutamate-induced neurotoxicity to primary cultured cortical neurons. An aqueous extract of the plants exhibited significant protection against glutamate-induced toxicity in primary cultured rat cortical cells. In order to clarify the neuroprotective mechanism(s) of this observed effect, isolation was performed to seek and identify active fractions and components. By such fractionation, one bioactive sesquiterpene lactone, isoatriplicolide tiglate, was isolated, which exhibited significant neuroprotective activities against glutamate-induced toxicity, exhibiting cell viability of about 50%, at concentrations ranging from 0.1 microM to 10 microM. PMID:20614807

  4. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity.

    PubMed

    Bollimpelli, V Satish; Kumar, Prashant; Kumari, Sonali; Kondapi, Anand K

    2016-05-01

    Curcumin is known to have neuroprotective role and possess antioxidant, anti-inflammatory activities. Rotenone, a flavonoid induced neurotoxicity in dopaminergic cells is being widely studied in Parkinson's Disease (PD) research. In the present study, curcumin loaded lactoferrin nano particles prepared by sol-oil chemistry were used to protect dopaminergic cell line SK-N-SH against rotenone induced neurotoxicity. These curcumin loaded nano particles were of 43-60 nm diameter size and around 100 nm hydrodynamic size as assessed by transmission electron microscopy, atomic force microscopy and dynamic light scattering analysis respectively. The encapsulation efficiency was 61.3% ± 2.4%. Cellular uptake of curcumin through these nano particles was confirmed by confocal imaging and spectrofluorimetric analysis. The curcumin loaded lactoferrin nanoparticles showed greater intracellular drug uptake, sustained retention and greater neuroprotection than soluble counterpart. Neuroprotective activity was characterized through viability assays and by estimating ROS levels. Furthermore rotenone induced PD like features were characterized by decrease in tyrosine hydroxylase expression and increase in α-synuclein expression. Taken together curcumin loaded lactoferrin nanoparticles could be a promising drug delivery strategy against neurotoxicity in dopaminergic neurons. PMID:26826319

  5. Neurotoxicity of metals.

    PubMed

    Caito, Samuel; Aschner, Michael

    2015-01-01

    Metals are frequently used in industry and represent a major source of toxin exposure for workers. For this reason governmental agencies regulate the amount of metal exposure permissible for worker safety. While essential metals serve physiologic roles, metals pose significant health risks upon acute and chronic exposure to high levels. The central nervous system is particularly vulnerable to metals. The brain readily accumulates metals, which under physiologic conditions are incorporated into essential metalloproteins required for neuronal health and energy homeostasis. Severe consequences can arise from circumstances of excess essential metals or exposure to toxic nonessential metal. Herein, we discuss sources of occupational metal exposure, metal homeostasis in the human body, susceptibility of the nervous system to metals, detoxification, detection of metals in biologic samples, and chelation therapeutic strategies. The neurologic pathology and physiology following aluminum, arsenic, lead, manganese, mercury, and trimethyltin exposures are highlighted as classic examples of metal-induced neurotoxicity.

  6. Neurotoxicity of metals.

    PubMed

    Caito, Samuel; Aschner, Michael

    2015-01-01

    Metals are frequently used in industry and represent a major source of toxin exposure for workers. For this reason governmental agencies regulate the amount of metal exposure permissible for worker safety. While essential metals serve physiologic roles, metals pose significant health risks upon acute and chronic exposure to high levels. The central nervous system is particularly vulnerable to metals. The brain readily accumulates metals, which under physiologic conditions are incorporated into essential metalloproteins required for neuronal health and energy homeostasis. Severe consequences can arise from circumstances of excess essential metals or exposure to toxic nonessential metal. Herein, we discuss sources of occupational metal exposure, metal homeostasis in the human body, susceptibility of the nervous system to metals, detoxification, detection of metals in biologic samples, and chelation therapeutic strategies. The neurologic pathology and physiology following aluminum, arsenic, lead, manganese, mercury, and trimethyltin exposures are highlighted as classic examples of metal-induced neurotoxicity. PMID:26563789

  7. Effects of environmentally relevant concentrations of metallic compounds on the flatfish Scophthalmus maximus: biomarkers of neurotoxicity, oxidative stress and metabolism.

    PubMed

    Nunes, Bruno; Brandão, Fátima; Sérgio, Tânia; Rodrigues, Sara; Gonçalves, Fernando; Correia, Alberto Teodorico

    2014-06-01

    Flatfish species, such as the turbot (Scophthalmus maximus), are common targets for toxic effects, since they are exposed through the food chain (ingestion of contaminated preys) and are in direct contact with the waterborne contaminant and sediments. Furthermore, these fish species live in close proximity to interstitial water that frequently dissolves high amounts of contaminants, including metals. Despite this significant set of characteristics, the present knowledge concerning flatfish contamination and toxicity by metals is still scarce. To attain the objective of assessing the effects of metals on a flatfish species, S. maximus specimens were chronically exposed to lead, copper and zinc, at ecologically relevant concentrations, and biochemical (oxidative stress: catalase and glutathione S-transferases activities, and lipid peroxidation; neurotoxicity: cholinesterase activity) parameters were assessed on selected tissues (gills and liver). Copper had no significant effects on all tested parameters; lead was causative of significant increases in liver GSTs activities and also in lipoperoxidation of gill tissue; exposure to zinc caused a significant increase in catalase activity of gill tissue. None of the tested metals elicited noteworthy effects in terms of neurotoxicity. The obtained results showed that only the metal lead is of some environmental importance, since it was able to cause deleterious modifications of oxidative nature at relevant concentrations.

  8. Effects of environmentally relevant concentrations of metallic compounds on the flatfish Scophthalmus maximus: biomarkers of neurotoxicity, oxidative stress and metabolism.

    PubMed

    Nunes, Bruno; Brandão, Fátima; Sérgio, Tânia; Rodrigues, Sara; Gonçalves, Fernando; Correia, Alberto Teodorico

    2014-06-01

    Flatfish species, such as the turbot (Scophthalmus maximus), are common targets for toxic effects, since they are exposed through the food chain (ingestion of contaminated preys) and are in direct contact with the waterborne contaminant and sediments. Furthermore, these fish species live in close proximity to interstitial water that frequently dissolves high amounts of contaminants, including metals. Despite this significant set of characteristics, the present knowledge concerning flatfish contamination and toxicity by metals is still scarce. To attain the objective of assessing the effects of metals on a flatfish species, S. maximus specimens were chronically exposed to lead, copper and zinc, at ecologically relevant concentrations, and biochemical (oxidative stress: catalase and glutathione S-transferases activities, and lipid peroxidation; neurotoxicity: cholinesterase activity) parameters were assessed on selected tissues (gills and liver). Copper had no significant effects on all tested parameters; lead was causative of significant increases in liver GSTs activities and also in lipoperoxidation of gill tissue; exposure to zinc caused a significant increase in catalase activity of gill tissue. None of the tested metals elicited noteworthy effects in terms of neurotoxicity. The obtained results showed that only the metal lead is of some environmental importance, since it was able to cause deleterious modifications of oxidative nature at relevant concentrations. PMID:24595748

  9. EFFECTS OF ACUTE PYRETHROID EXPOSURE ON THERMOREGULATION IN RATS.

    EPA Science Inventory

    Pyrethroid insecticides produce acute neurotoxicity in mammals. According to the FQPA mandate, the USEPA is required to consider the risk of cumulative toxicity posed to humans through exposure to pyrethroid mixtures. Thermoregulatory response (TR) is being used to determine if t...

  10. Assessment of neurotoxic effects of mercury in beluga whales (Delphinapterus leucas), ringed seals (Pusa hispida), and polar bears (Ursus maritimus) from the Canadian Arctic.

    PubMed

    Krey, Anke; Ostertag, Sonja K; Chan, Hing Man

    2015-03-15

    Marine mammals are indicator species of the Arctic ecosystem and an integral component of the traditional Inuit diet. The potential neurotoxic effects of increased mercury (Hg) in beluga whales (Delphinapterus leucas), ringed seals (Pusa hispida), and polar bears (Ursus maritimus) are not clear. We assessed the risk of Hg-associated neurotoxicity to these species by comparing their brain Hg concentrations with threshold concentrations for toxic endpoints detected in laboratory animals and field observations: clinical symptoms (>6.75 mg/kg wet weight (ww)), neuropathological signs (>4 mg/kg ww), neurochemical changes (>0.4 mg/kg ww), and neurobehavioral changes (>0.1mg/kg ww). The total Hg (THg) concentrations in the cerebellum and frontal lobe of ringed seals and polar bears were <0.5mg/kg ww, whereas the average concentration in beluga whale brain was >3mg/kg ww. Our results suggest that brain THg levels in polar bears are below levels that induce neurobehavioral effects as reported in the literature, while THg concentrations in ringed seals are within the range that elicit neurobehavioral effects and individual ringed seals exceed the threshold for neurochemical changes. The relatively high THg concentration in beluga whales exceeds all of the neurotoxicity thresholds assessed. High brain selenium (Se):Hg molar ratios were observed in all three species, suggesting that Se could protect the animals from Hg-associated neurotoxicity. This assessment was limited by several factors that influence neurotoxic effects in animals, including: animal species; form of Hg in the brain; and interactions with modifiers of Hg-associated toxicity, such as Se. Comparing brain Hg concentrations in wildlife with concentrations of appropriate laboratory studies can be used as a tool for risk characterization of the neurotoxic effects of Hg in Arctic marine mammals.

  11. Assessment of neurotoxic effects of mercury in beluga whales (Delphinapterus leucas), ringed seals (Pusa hispida), and polar bears (Ursus maritimus) from the Canadian Arctic.

    PubMed

    Krey, Anke; Ostertag, Sonja K; Chan, Hing Man

    2015-03-15

    Marine mammals are indicator species of the Arctic ecosystem and an integral component of the traditional Inuit diet. The potential neurotoxic effects of increased mercury (Hg) in beluga whales (Delphinapterus leucas), ringed seals (Pusa hispida), and polar bears (Ursus maritimus) are not clear. We assessed the risk of Hg-associated neurotoxicity to these species by comparing their brain Hg concentrations with threshold concentrations for toxic endpoints detected in laboratory animals and field observations: clinical symptoms (>6.75 mg/kg wet weight (ww)), neuropathological signs (>4 mg/kg ww), neurochemical changes (>0.4 mg/kg ww), and neurobehavioral changes (>0.1mg/kg ww). The total Hg (THg) concentrations in the cerebellum and frontal lobe of ringed seals and polar bears were <0.5mg/kg ww, whereas the average concentration in beluga whale brain was >3mg/kg ww. Our results suggest that brain THg levels in polar bears are below levels that induce neurobehavioral effects as reported in the literature, while THg concentrations in ringed seals are within the range that elicit neurobehavioral effects and individual ringed seals exceed the threshold for neurochemical changes. The relatively high THg concentration in beluga whales exceeds all of the neurotoxicity thresholds assessed. High brain selenium (Se):Hg molar ratios were observed in all three species, suggesting that Se could protect the animals from Hg-associated neurotoxicity. This assessment was limited by several factors that influence neurotoxic effects in animals, including: animal species; form of Hg in the brain; and interactions with modifiers of Hg-associated toxicity, such as Se. Comparing brain Hg concentrations in wildlife with concentrations of appropriate laboratory studies can be used as a tool for risk characterization of the neurotoxic effects of Hg in Arctic marine mammals. PMID:24958011

  12. Neuroprotective effects of lotus seedpod procyanidins on extremely low frequency electromagnetic field-induced neurotoxicity in primary cultured hippocampal neurons.

    PubMed

    Yin, Chunchun; Luo, Xiaoping; Duan, Yuqing; Duan, Wenyi; Zhang, Haihui; He, Yuanqing; Sun, Guibo; Sun, Xiaobo

    2016-08-01

    The present study investigated the protective effects of lotus seedpod procyanidins (LSPCs) on extremely low frequency electromagnetic field (ELF-EMF)-induced neurotoxicity in primary cultured rat hippocampal neurons and the underlying molecular mechanism. The results of MTT, morphological observation, superoxide dismutase (SOD) and malondialdehyde (MDA) assays showed that compared with control, incubating neurons under ELF-EMF exposure significantly decreased cell viability and increased the number of apoptotic cells, whereas LSPCs evidently protected the hippocampal neurons against ELF-EMF-induced cell damage. Moreover, a certain concentration of LSPCs inhibited the elevation of intracellular reactive oxygen species (ROS) and Ca(2+) level, as well as prevented the disruption of mitochondrial membrane potential induced by ELF-EMF exposure. In addition, supplementation with LSPCs could alleviate DNA damage, block cell cycle arrest at S phase, and inhibit apoptosis and necrosis of hippocampal neurons under ELF-EMF exposure. Further study demonstrated that LSPCs up-regulated the activations of Bcl-2, Bcl-xl proteins and suppressed the expressions of Bad, Bax proteins caused by ELF-EMF exposure. In conclusion, these findings revealed that LSPCs protected against ELF-EMF-induced neurotoxicity through inhibiting oxidative stress and mitochondrial apoptotic pathway. PMID:27470406

  13. Chronic exposure to corticosterone enhances the neuroinflammatory and neurotoxic responses to methamphetamine.

    PubMed

    Kelly, Kimberly A; Miller, Diane B; Bowyer, John F; O'Callaghan, James P

    2012-09-01

    Up-regulation of proinflammatory cytokines and chemokines in brain ("neuroinflammation") accompanies neurological disease and neurotoxicity. Previously, we documented a striatal neuroinflammatory response to acute administration of a neurotoxic dose of methamphetamine (METH), i.e. one associated with evidence of dopaminergic terminal damage and activation of microglia and astroglia. When we used minocycline to suppress METH-induced neuroinflammation, indices of dopaminergic neurotoxicity were not affected, but suppression of neuroinflammation was incomplete. Here, we administered the classic anti-inflammatory glucocorticoid, corticosterone (CORT), in an attempt to completely suppress METH-related neuroinflammation. METH alone caused large increases in striatal proinflammatory cytokine/chemokine mRNA and subsequent astrocytic hypertrophy, microglial activation, and dopaminergic nerve terminal damage. Pre-treatment of mice with acute CORT failed to prevent neuroinflammatory responses to METH. Surprisingly, when mice were pre-treated with chronic CORT in the drinking water, an enhanced striatal neuroinflammatory response to METH was observed, an effect that was accompanied by enhanced METH-induced astrogliosis and dopaminergic neurotoxicity. Chronic CORT pre-treatment also sensitized frontal cortex and hippocampus to mount a neuroinflammatory response to METH. Because the levels of chronic CORT used are associated with high physiological stress, our data suggest that chronic CORT therapy or sustained physiological stress may sensitize the neuroinflammatory and neurotoxicity responses to METH.

  14. Neuroprotective effect of Allium cepa L. in aluminium chloride induced neurotoxicity.

    PubMed

    Singh, Tanveer; Goel, Rajesh Kumar

    2015-07-01

    The present study was envisaged to investigate the neuroprotective potential of Allium cepa (A. cepa) in aluminium chloride induced neurotoxicity. Aluminium chloride (50 mg/kg/day) was administered orally in mice supplemented with different doses of A. cepa hydroethanolic extract for a period of 60 days. Various behavioural, biochemical and histopathological parameters were estimated in aluminium exposed animals. Chronic aluminium administration resulted in significant motor incoordination and memory deficits, which were also endorsed biochemically as there was increased oxidative stress as well as elevated acetylcholinesterase (AChE) and aluminium levels in the brain. Supplementation with A. cepa in aluminium exposed animals significantly improved muscle coordination and memory deficits as well as reduced oxidative stress, AChE and decreased abnormal aluminium deposition in the brain. Histopathologically, there was marked deterioration visualized as decreased vacuolated cytoplasm as well as decreased pyramidal cells in the hippocampal area of mice brain which were found to be reversed with A. cepa supplementation. Administration of BADGE (PPARγ antagonist) in aluminium exposed animals reversed the neuroprotective potential of A. cepa as assessed with various behavioural, biochemical, neurochemical and histopathological estimations. In conclusion, finding of this study suggested significant neuroprotective potential of A. cepa in aluminium induced neurotoxicity. Further, the role of PPARγ receptor agonism has also been suggested as a putative neuroprotective mechanism of A. cepa, which needs further studies for confirmation.

  15. Existence of glia mitigated ketamine-induced neurotoxicity in neuron-glia mixed cultures of neonatal rat cortex and the glia-mediated protective effect of 2-PMPA.

    PubMed

    Zuo, Daiying; Wang, Chengna; Li, Zengqiang; Lin, Li; Duan, Zhenfang; Qi, Huan; Li, Lin; Sun, Feng; Wu, Yingliang

    2014-09-01

    The present study compared ketamine-induced neurotoxicity in the neuron-glia mixed cultures and neuronal cultures and further explored the neuroprotective effect of the NAAG peptidase inhibitor 2-(phosphonomethyl) pentanedioic acid (2-PMPA). Firstly, Rosenfeld's staining and immunofluorescence staining of microtubule-associated protein 2 (MAP2) and glial fibrillary acidic protein (GFAP) were used to address the difference of morphology in the mixed cultures and neuronal cultures. Our results showed that neurons and astrocytes grew in good conditions. The ratio of neurons and astrocytes in the mixed cultures was around 1:1, and the purity of neurons in the neuronal cultures is 91.3%. Furthermore, ketamine was used to test the hypothesis that the presence of a higher proportion of glia in the mixed cultures would be protective against ketamine-induced neurotoxicity in the mixed cultures compared with neuronal cultures. The results showed that ketamine-induced morphological changes, cell viability decrease and lactate dehydrogenase (LDH) levels increase were significantly mitigated in neuron-glia mixed cultures compared with neuronal cultures. Furthermore, 2-PMPA was included to further explore efficient protective drug for ketamine-induced neurotoxicity. Our results showed that 2-PMPA reduced ketamine-induced decrease of cell viability and increase of LDH levels in the mixed cultures but not in the neuronal cultures. Further morphological changes of neurons and astrocytes also indicated that 2-PMPA could improve ketamine damaged neurons in the mixed cultures instead of neuronal cultures. These results indicate that glia protect neurons from ketamine-induced neurotoxicity. These data further suggest that glia mediate the neuroprotective effect of 2-PMPA and 2-PMPA has the potential to treat ketamine-induced neurotoxicity in vivo. Delineating the mechanisms underlying the communication between neurons and glia and the neuroprotective effects of 2-PMPA in the mixed

  16. Protective effects of flavonoid extract from Apocynum venetum leaves against corticosterone-induced neurotoxicity in PC12 cells.

    PubMed

    Zheng, Meizhu; Liu, Chunming; Pan, Fengguang; Shi, Dongfang; Ma, Fengshan; Zhang, Yuchi; Zhang, Yujing

    2011-04-01

    Depression is a major psychiatric disorder affecting nearly 21% of the world population and imposes a substantial health burden on society. Although significant progress has been made in depression research, the common molecular mechanism of antidepressants is still far from clearly understood. The neuroprotective effect of antidepressants has been proposed as a possible mechanism. Although Apocynum venetum (AV) L. (Apocynaceae) was previously shown to produce an antidepressant-like effect in the tail suspension test, the mechanisms underlying such antidepressant-like effect are yet to be understood. In this work, we studied the neuroprotective effect of AV leaf flavonoid extract in corticosterone-induced neurotoxicity, using PC12 cells as a suitable in vitro model of depression. Cell viability was quantitated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The release amount of lactic dehydrogenase (LDH) and intracellular Ca(2+) concentration were measured using kit, cell period change was tested by flow cytometry, and transcript abundances of brain-derived neurotrophic factor (BDNF) and microtubule-associated protein 4 (MAP4) were determined by real-time RT-PCR. The results showed that AV extract (25, 50, and 100 μg/ml) increased the A490 nm values, but decreased LDH release and Ca(2+) concentration, suppressed the apoptosis of PC12 cells and up-regulated BDNF and MAP4 transcript abundances compared with the corresponding corticosterone-treated group. These results suggest that the AV extract could generate a neuroprotective effect on corticosterone-induced neurotoxicity in PC12 cells, pointing to a possible action pathway by decreasing the Ca(2+) concentration and up-regulating BDNF and MAP4 genes. PMID:21170580

  17. Assessing the neurotoxic potential of methyl ethyl ketoxime in rats.

    PubMed

    Schulze, G E; Derelanko, M J

    1993-11-01

    The potential of methyl ethyl ketoxime (MEKO) to produce neurotoxicity following acute and subchronic exposure was studied in rats. A Functional Observational Battery, assessment of motor activity, and neuropathology evaluations were conducted in the context of acute and subchronic toxicity studies. Three independent studies are reported: a pilot time-effect study designed to determine the time course and time to peak effect following a single high dose of MEKO, a single-dose neurotoxicity study, and a subchronic (13-week) repeated-dose neurotoxicity study in rats. An acrylamide-positive control group was included in the acute and subchronic studies for comparison with MEKO. Following an acute oral exposure of MEKO at a dose level of 900 mg/kg, locomotor activity was decreased compared to control with maximum decreases occurring between 30 and 60 min following oral administration. In the acute study, transient treatment-related changes in ease of cage removal, ease of handling, and in posture and gait were observed 1 hr after dosing with 900 mg/kg MEKO, as were significant depressions in motor activity. Following a single 300 mg/kg dose, transient MEKO-related changes in gait and aerial righting reflex were noted 1 hr after dosing. All effects were reversible within 24 hr of dosing. The single 100 mg/kg dose of MEKO was without observable effects. No acrylamide-related behavioral effects were noted following a single 50 mg/kg dose. In the subchronic study, transient treatment-related changes in ease of cage removal, ease of handling, and in posture, gait, and aerial righting were observed at the 400 mg/kg/day dose level when assessments were conducted immediately after dose administration. No consistent behavioral effects were observed prior to daily dose administration even after 13 weeks of exposure, indicating a lack of cumulative behavioral effect. No consistent behavioral changes were noted at doses of 125 mg/kg/day and below. Significant dose

  18. An In Vitro Study of the Neurotoxic Effects of N-Benzylpiperazine: A Designer Drug of Abuse.

    PubMed

    Persona, Karolina; Polus, Anna; Góralska, Joanna; Gruca, Anna; Dembińska-Kieć, Aldona; Piekoszewski, Wojciech

    2016-05-01

    Recently, the number of new psychoactive substances has significantly increased. Despite the systematic introduction of prohibition in trade of medicinal products which mimic the effects of illegal drugs, the problem concerning this group of drugs is still important although knowledge about the mechanism of action of those types of substances is scarce. This study aimed to follow the neurotoxic effect of N-benzylpiperazine (BZP), the central nervous system psychostimulant, using the human cancer LN-18 cell model. The statistically significant elevation of LDH levels, increased mitochondrial membrane potential, decreased ATP and increased ROS production, increased levels of DNA damage marker (8-OHdG) and activation of caspases: -3 and -9 confirmed by Real-Time PCR imply the activation of mitochondrial proapoptotic pathways induced by BZP after 24 h incubation. This study is a novel, preliminary attempt to explain the toxicity of one of the most popular designer drug of abuse at the cellular level. PMID:26861955

  19. An In Vitro Study of the Neurotoxic Effects of N-Benzylpiperazine: A Designer Drug of Abuse.

    PubMed

    Persona, Karolina; Polus, Anna; Góralska, Joanna; Gruca, Anna; Dembińska-Kieć, Aldona; Piekoszewski, Wojciech

    2016-05-01

    Recently, the number of new psychoactive substances has significantly increased. Despite the systematic introduction of prohibition in trade of medicinal products which mimic the effects of illegal drugs, the problem concerning this group of drugs is still important although knowledge about the mechanism of action of those types of substances is scarce. This study aimed to follow the neurotoxic effect of N-benzylpiperazine (BZP), the central nervous system psychostimulant, using the human cancer LN-18 cell model. The statistically significant elevation of LDH levels, increased mitochondrial membrane potential, decreased ATP and increased ROS production, increased levels of DNA damage marker (8-OHdG) and activation of caspases: -3 and -9 confirmed by Real-Time PCR imply the activation of mitochondrial proapoptotic pathways induced by BZP after 24 h incubation. This study is a novel, preliminary attempt to explain the toxicity of one of the most popular designer drug of abuse at the cellular level.

  20. Effects of glucose administered with lidocaine solution on spinal neurotoxicity in rats

    PubMed Central

    Ma, Hanxiang; Xu, Tingting; Xiong, Xiangsheng; Mao, Jingjing; Yang, Fan; Zhang, Yonghai; Bai, Zhixia; Chen, Xuexin

    2015-01-01

    To investigate whether intrathecal administration of 10% glucose increases functional impairment and histologic damage in rats when mixed with 5% lidocaine. After implanted intrathecal catheter, 32 male Sprague-Dawley rats were randomly assigned to one of four groups: lidocaine group (Group L, n=8) received 5% lidocaine 20 µL, lidocaine with glucose group (Group LG, n=8) received 5% lidocaine with 10% glucose 20 µL, glucose group (Group G, n=8) received 10% glucose 20 µL and normal saline group received normal saline 20 µL (Group NS, n=8). Four days after intrathecal injection, sensory impairments of rats in the four groups were evaluated by using the tail-flick test. The histologic changes of spinal cord and nerve roots were observed by electron microscopy and light microscopy. There was no significant difference in baseline tail-flick latencies between the four groups (P=0.284). On the 4th day after intrathecal injection, the assessment result of sensory function was similar to baseline (P=0.217) in saline-treated animals. Sensory impairment occurred after intrathecal administration of 5% lidocaine, and 10% glucose with 5% lidocaine worsen this satiation (P=0.0001); histologic changes in 10% glucose with 5% lidocaine-treated group has differ significantly from lidocaine-treated group (P=0.001). Sensory function after intrathecal administration of 10% glucose was similar to baseline and did not differ from the saline group (P=0.995); histologic changes in 10% glucose-treated rats did not differ significantly from saline controls (P=0.535). These results suggest that 5% lidocaine can induce spinal neurotoxicity and 10% glucose with 5% lidocaine could worsen spinal neurotoxicity. PMID:26884984

  1. RNAi-mediated silencing of hepatic Alas1 effectively prevents and treats the induced acute attacks in acute intermittent porphyria mice.

    PubMed

    Yasuda, Makiko; Gan, Lin; Chen, Brenden; Kadirvel, Senkottuvelan; Yu, Chunli; Phillips, John D; New, Maria I; Liebow, Abigail; Fitzgerald, Kevin; Querbes, William; Desnick, Robert J

    2014-05-27

    The acute hepatic porphyrias are inherited disorders of heme biosynthesis characterized by life-threatening acute neurovisceral attacks. Factors that induce the expression of hepatic 5-aminolevulinic acid synthase 1 (ALAS1) result in the accumulation of the neurotoxic porphyrin precursors 5-aminolevulinic acid (ALA) and porphobilinogen (PBG), which recent studies indicate are primarily responsible for the acute attacks. Current treatment of these attacks involves i.v. administration of hemin, but a faster-acting, more effective, and safer therapy is needed. Here, we describe preclinical studies of liver-directed small interfering RNAs (siRNAs) targeting Alas1 (Alas1-siRNAs) in a mouse model of acute intermittent porphyria, the most common acute hepatic porphyria. A single i.v. dose of Alas1-siRNA prevented the phenobarbital-induced biochemical acute attacks for approximately 2 wk. Injection of Alas1-siRNA during an induced acute attack significantly decreased plasma ALA and PBG levels within 8 h, more rapidly and effectively than a single hemin infusion. Alas1-siRNA was well tolerated and a therapeutic dose did not cause hepatic heme deficiency. These studies provide proof-of-concept for the clinical development of RNA interference therapy for the prevention and treatment of the acute attacks of the acute hepatic porphyrias.

  2. Glucose Effect in the Acute Porphyrias

    MedlinePlus

    ... You are here Home Diet and Nutrition The glucose effect in acute porphyrias The disorders Acute Intermittent ... are treated initially with the administration of carbohydrate/glucose. This therapy has its basis in the ability ...

  3. The neurotoxic effects of N-methyl-N-nitrosourea on the electrophysiological property and visual signal transmission of rat's retina

    SciTech Connect

    Tao, Ye; Chen, Tao; Liu, Bei; Yang, Guo Qing; Peng, Guanghua; Zhang, Hua; Huang, Yi Fei

    2015-07-01

    The neurotoxic effects of N-methyl-N-nitrosourea (MNU) on the inner retinal neurons and related visual signal circuits have not been described in any animal models or human, despite ample morphological evidences about the MNU induced photoreceptor (PR) degeneration. With the helping of MEA (multielectrode array) recording system, we gained the opportunity to systemically explore the neural activities and visual signal pathways of MNU administrated rats. Our MEA research identified remarkable alterations in the electrophysiological properties and firstly provided instructive information about the neurotoxicity of MNU that affects the signal transmission in the inner retina. Moreover, the spatial electrophysiological functions of retina were monitored and found that the focal PRs had different vulnerabilities to the MNU. The MNU-induced PR dysfunction exhibited a distinct spatial- and time-dependent progression. In contrast, the spiking activities of both central and peripheral RGCs altered synchronously in response to the MNU administration. Pharmacological tests suggested that gap junctions played a pivotal role in this homogeneous response of RGCs. SNR analysis of MNU treated retina suggested that the signaling efficiency and fidelity of inner retinal circuits have been ruined by this toxicant, although the microstructure of the inner retina seemed relatively consolidated. The present study provided an appropriate example of MEA investigations on the toxicant induced pathological models and the effects of the pharmacological compounds on neuron activities. The positional MEA information would enrich our knowledge about the pathology of MNU induced RP models, and eventually be instrumental for elucidating the underlying mechanism of human RP. - Highlights: • We systemically explored the neural activities and visual signal pathways of MNU administrated retinas. • The focal photoreceptors had different vulnerabilities to the MNU administration.

  4. ANALYSIS OF THE MOTOR NEUROTOXICITY INDUCED BY ACUTE ORAL EXPOSURE TO MULTIPLE PYRETHROID COMPOUNDS IN THE RAT USING AN ADDITIVITY MODEL.

    EPA Science Inventory

    Use of pyrethroids has increased in the last decade, and co-exposure to multiple pyrethroids has been reported in humans. Pyrethroids produce neurotoxicity in mammals at dosages far below those producing lethality. The Food Quality Protection Act requires the EPA to consider cumu...

  5. Protective effects of caffeoylquinic acids on the aggregation and neurotoxicity of the 42-residue amyloid β-protein.

    PubMed

    Miyamae, Yusaku; Kurisu, Manami; Murakami, Kazuma; Han, Junkyu; Isoda, Hiroko; Irie, Kazuhiro; Shigemori, Hideyuki

    2012-10-01

    Alzheimer's disease (AD), a neurodegenerative disorder, is characterized by aggregation of 42-mer amyloid β-protein (Aβ42). Aβ42 aggregates through β-sheet formation and induces cytotoxicity against neuronal cells. Aβ42 oligomer, an intermediate of the aggregates, causes memory loss and synaptotoxicity in AD. Inhibition of Aβ42 aggregation by small molecules is thus a promising strategy for the treatment of AD. Caffeoylquinic acid (CQA), a phenylpropanoid found widely in natural sources including foods, shows various biological activities such as anti-oxidative ability. Previously, our group reported that 3,5-di-O-caffeoylquinic acid (3,5-di-CQA) rescued the cognitive impairment in senescence-accelerated-prone mice 8. However, structure-activity relationship of CQA derivatives on the aggregation and neurotoxicity of Aβ42 remains elusive. To evaluate the anti-amyloidogenic property of CQA-related compounds for AD therapy, we examined the effect of CQA and its derivatives on the aggregation and neurotoxicity of Aβ42. In particular, 4,5-di-O-caffeoylquinic acid (4,5-di-CQA) and 3,4,5-tri-O-caffeoylquinic acid (3,4,5-tri-CQA) strongly inhibited the aggregation of Aβ42 in a dose-dependent manner. Structure-activity relationship studies suggested that the caffeoyl group in CQA is essential for the inhibitory activity. These CQAs also suppressed the transformation into β-sheet and cytotoxicity against human neuroblastoma cells of Aβ42. Furthermore, 3,4,5-tri-CQA blocked the formation of Aβ42 oligomer. These results indicate that 3,4,5-tri-CQA could be a potential agent for the prevention of AD.

  6. Exacerbation of Methamphetamine Neurotoxicity in Cold and Hot Environments: Neuroprotective Effects of an Antioxidant Compound H-290/51.

    PubMed

    Sharma, Hari Shanker; Kiyatkin, Eugene A; Patnaik, Ranjana; Lafuente, José Vicente; Muresanu, Dafin F; Sjöquist, Per-Ove; Sharma, Aruna

    2015-10-01

    In this study, we examined the influence of cold and hot environments on methamphetamine (METH) neurotoxicity in both drug-naive rats and animals previously exposed to different types of nanoparticles (NPs). Since METH induces oxidative stress, we also examined how a potential chain-breaking antioxidant H-290/51 (Astra-Zeneca, Mölndal, Sweden) affects METH-induced neurotoxicity. Exposure of drug-naive rats to METH (9 mg/kg, s.c.) at 4, 21, or 34 °C for 3 h resulted in breakdown of the blood-brain barrier (BBB), brain edema, and neuronal injuries, which all differed in severity depending upon ambient temperatures. The changes were moderate at 21 °C, 120-180 % larger at 34 °C, and almost absent at 4 °C. In rats chronically treated with NPs (SiO2, Cu, or Ag; 50-60 nm, 50 mg/kg, i.p. for 7 days), METH-induced brain alterations showed a two- to fourfold increase at 21 °C, a four- to sixfold increase at 34 °C, and three- to fourfold increase at 4 °C. SiO2 exposure showed the most pronounced METH-induced brain pathology at all temperatures followed by Ag and Cu NPs. Pretreatment with a potent antioxidant compound H-290/51 (50 mg/kg, p.o., 30 min before METH) significantly reduced brain pathology in naive animals exposed to METH at 21 and 34 °C. In NPs-treated animals, however, attenuation of METH-induced brain pathology occurred only after repeated exposure of H-290/51 (-30 min, 0 min, and +30 min). These observations are the first to show that NPs exacerbate METH-induced brain pathology in both cold and hot environments and demonstrate that timely intervention with antioxidant H-290/51 could have neuroprotective effects.

  7. Effects of prenatal exposure to antipsychotic risperidone on developmental neurotoxicity, apoptotic neurodegeneration and neurobehavioral sequelae in rat offspring.

    PubMed

    Singh, K P; Singh, Manoj Kr; Singh, Manish

    2016-08-01

    A tremendous increase has been documented in the recent past in prescribing second generation atypical antipsychotic drugs (AAPDs) to the pregnant women with psychosis, considering their reproductive and teratogenic safety. Among AAPDs, risperidone (RIS) ranked third after olanzapine (OLZ) and quetiapine (QUE) used during pregnancy, as OLZ is associated to substantial weight gain in adults and offspring. Although teratogenic safety of RIS has been established, its potential role in developmental neurotoxicity and related neurobehavioral impairments in adolescents has not been documented so far. Therefore, present study has been undertaken to elucidate the effect of prenatal exposure to risperidone (RIS) on developmental neurotoxicity and apoptotic neurodegeneration in neocortical region of fetal brain; and related functional sequelae in young rat offspring. The pregnant Wistar rats were exposed to RIS at 0.8, 1.0 and 2.0mg/kg, at equivalent therapeutic doses, orally from GD 6 to 21. Half of the pregnant rats were sacrificed and their brains were collected, weighed, and processed for neurohistopathological and apoptotic neurodegenerative evaluation. The remaining dams were allowed to deliver naturally, and their offspring were reared up to 10 weeks for neurobehavioral study. Prenatal exposure to RIS induced significant stunting of fetal body and brain weight, substantial reduction in the thickness of neocortical layers and apoptotic neurodegeneration in fetal brains, and delayed postnatal development and growth of the offspring; as well as long- lasting impact on anxiety like impaired behavioral responses on explorative mazes. Therefore, health care providers should be careful in prescribing atypical antipsychotics in general and RIS in particular, to the pregnant psychotic population. PMID:27184437

  8. DEVELOPMENTAL NEUROTOXICITY OF PYRETHROID INSECTICIDES: CRITICAL REVIEW.

    EPA Science Inventory

    Pyrethroids are widely utilized insecticides whose primary action is the disruption of voltage-sensitive sodium channels (VSSC). Although these compounds have been in use for over 30 years and their acute neurotoxicity has been well characterized, there is considerably less info...

  9. Neurotoxic Profiles of HIV, Psychostimulant Drugs of Abuse, and their Concerted Effect on the Brain: Current Status of Dopamine System Vulnerability in NeuroAIDS

    PubMed Central

    Ferris, Mark J.; Mactutus, Charles F.; Booze, Rosemarie M.

    2008-01-01

    There are roughly 30 to 40 million HIV infected individuals in the world as of December 2007, and drug abuse directly contributes to one-third of all HIV-infections in the United States. Antiretroviral therapy has increased the lifespan of HIV-seropositives, but CNS function often remains diminished, effectively decreasing quality of life. A modest proportion may develop HIV-associated dementia, the severity and progression of which is increased with drug abuse. HIV and drugs of abuse in the CNS target subcortical brain structures and DA systems in particular. This toxicity is mediated by a number of neurotoxic mechanisms, including but not limited to, aberrant immune response and oxidative stress. Therefore, novel therapeutic strategies must be developed that can address a wide variety of disparate neurotoxic mechanisms and apoptotic cascades. This paper reviews the research pertaining to the where, what, and how of HIV and cocaine/methamphetamine toxicity in the CNS. Specifically, where these toxins most affect the brain, what aspects of the virus are neurotoxic, and how these toxins mediate neurotoxicity. PMID:18430470

  10. In vitro neurotoxic hazard characterisation of dinitrophenolic herbicides.

    PubMed

    Heusinkveld, Harm J; van Vliet, Arie C; Nijssen, Peter C G; Westerink, Remco H S

    2016-06-11

    Dinitrophenolic compounds are powerful toxicants with a long history of use in agriculture and industry. While (high) human exposure levels are not uncommon, in particular for agricultural workers during the spraying season, the neurotoxic mechanism(s) that underlie the human health effects are largely unknown. We therefore investigated the in vitro effects of two dinitrophenolic herbicides (DNOC and dinoseb) on a battery of neurotoxicity endpoints in (dopaminergic) rat PC12 cells. Cell viability, mitochondrial activity, oxidative stress and caspase activation were assessed using fluorescence-based bioassays (CFDA, alamar Blue, H2DCFDA and Ac-DEVD-AMC, respectively), whereas changes in intracellular [Ca(2+)]i were assessed using single-cell fluorescence microscopy with Fura-2AM. The combined results demonstrate that exposure to both DNOC and dinoseb is linked to calcium release from the endoplasmic reticulum and activation of caspase-mediated apoptotic pathways. In subsequent experiments, immunofluorescent labelling with specific antibodies was used to determine changes in intracellular α-synuclein levels, demonstrating that both DNOC and dinoseb increase levels of intracellular α-synuclein. The combined results indicate that in vitro exposure to DNOC and dinoseb activates pathways that are not only involved in acute neurotoxicity but also in long-term effects as seen in neurodegeneration. PMID:27106277

  11. Behavioural and neurotoxic effects of ayahuasca infusion (Banisteriopsis caapi and Psychotria viridis) in female Wistar rat.

    PubMed

    Pic-Taylor, Aline; da Motta, Luciana Gueiros; de Morais, Juliana Alves; Junior, Willian Melo; Santos, Alana de Fátima Andrade; Campos, Leandro Ambrósio; Mortari, Marcia Renata; von Zuben, Marcus Vinicius; Caldas, Eloisa Dutra

    2015-09-01

    Ayahuasca, a psychoactive beverage used by indigenous and religious groups, is generally prepared by the coction of Psychotria viridis and Banisteriopsis caapi plants containing N,N-dimethyltryptamine (DMT) and β-carboline alkaloids, respectively. To investigate the acute toxicity of ayahuasca, the infusion was administered by gavage to female Wistar rats at doses of 30X and 50X the dose taken during a religious ritual, and the animals observed for 14 days. Behavioural functions were investigated one hour after dosing at 15X and 30X using the open field, elevated plus maze, and forced swimming tests. Neuronal activation (c-fos marked neurons) and toxicity (Fluoro-Jade B and Nissl/Cresyl staining) were investigated in the dorsal raphe nuclei (DRN), amygdaloid nucleus, and hippocampal formation brain areas of rats treated with a 30X ayahuasca dose. The actual lethal oral dose in female Wistar rats could not be determined in this study, but was shown to be higher than the 50X (which corresponds to 15.1mg/kg bw DMT). The ayahuasca and fluoxetine treated groups showed a significant decrease in locomotion in the open field and elevated plus-maze tests compared to controls. In the forced swimming test, ayahuasca treated animals swam more than controls, a behaviour that was not significant in the fluoxetine group. Treated animals showed higher neuronal activation in all brain areas involved in serotoninergic neurotransmission. Although this led to some brain injury, no permanent damage was detected. These results suggest that ayahuasca has antidepressant properties in Wistar female at high doses, an effect that should be further investigated.

  12. Biomarkers of adult and developmental neurotoxicity

    SciTech Connect

    Slikker, William

    2005-08-07

    Neurotoxicity may be defined as any adverse effect on the structure or function of the central and/or peripheral nervous system by a biological, chemical, or physical agent. A multidisciplinary approach is necessary to assess adult and developmental neurotoxicity due to the complex and diverse functions of the nervous system. The overall strategy for understanding developmental neurotoxicity is based on two assumptions: (1) significant differences in the adult versus the developing nervous system susceptibility to neurotoxicity exist and they are often developmental stage dependent; (2) a multidisciplinary approach using neurobiological, including gene expression assays, neurophysiological, neuropathological, and behavioral function is necessary for a precise assessment of neurotoxicity. Application of genomic approaches to developmental studies must use the same criteria for evaluating microarray studies as those in adults including consideration of reproducibility, statistical analysis, homogenous cell populations, and confirmation with non-array methods. A study using amphetamine to induce neurotoxicity supports the following: (1) gene expression data can help define neurotoxic mechanism(s) (2) gene expression changes can be useful biomarkers of effect, and (3) the site-selective nature of gene expression in the nervous system may mandate assessment of selective cell populations.

  13. EVALUATION OF POTENTIAL DEVELOPMENTAL NEUROTOXICITY OF ORGANOTINS.

    EPA Science Inventory

    Organotins, including monomethyltin (MMT), dimethyltin (DMT), and dibutyltin (DBT), are widely used as heat stabilizers in PVC and CPVC piping, which results in their presence in drinking water supplies. Concern for developmental neurotoxic effects were raised by published findi...

  14. Colistin-mediated neurotoxicity

    PubMed Central

    Wadia, Subeer; Tran, Betty

    2014-01-01

    We describe a 51-year-old man who developed renal and neural toxicity after the administration of colistin. He developed respiratory apnoea, neuromuscular blockade and severe comatose encephalopathy with the lack of brainstem reflexes. After discontinuation of the antibiotic, he made a prompt recovery to his baseline neurological function. The case illustrates the importance of recognising the toxicities associated with colistin. Although recent literature details its nephrotoxicity, current data have been discordant with the rare cases of respiratory apnoea or neuromuscular blockade once cited over 30 years ago. Additionally, no cases have ever described the profound encephalopathy with lack of brainstem function described here. The awareness of colistin's potentially fatal effects must be kept in mind when administering this antibiotic. Vigilance of the encephalopathic picture can also facilitate the diagnosis of colistin-mediated neurotoxicity in a patient with altered mental status of otherwise unknown aetiology. PMID:25199193

  15. [Neurotoxicity of intrathecally administrated agents].

    PubMed

    Malinovsky, J M; Pinaud, M

    1996-01-01

    Spinal anaesthetics can induce histopathologic lesions and regional haemodynamic alterations in the spinal cord. There are numerous causes of neurologic lesions, including direct trauma of the spinal cord and nerve roots during puncture or catheter insertion, compromised spinal cord perfusion and direct neurotoxic effect. Histopathologic lesions are localized either in meninges (meningitis or arachnoiditis) or in neuraxis (myelitis or axonal degeneration). Neurotoxicity can result from decrease in neuronal blood supply, elicited by high concentrations of the solutions, long duration exposure to local anaesthetics, and the use of adjuvants. They have been implicated in the occurrence of cauda equina syndrome after continuous spinal anaesthesia using hyperbaric solution of lidocaine and tetracaine given through small diameter catheters. Selective spinal analgesia is induced by spinal opioids without motor blockade except for meperidine. Complications occurred in patients after high doses of morphine, which were related to one of its metabolites, morphine-3-glucuronide. Preservative-free opioid solutions are to be preferred for spinal anaesthesia. There is no report of neurotoxicity neither in animal studies, nor in humans, using spinal clonidine. In order to reduce the incidence of neurotoxicity, some safety rules should be followed. The lowest efficient dose of local anaesthetics must be given. Incomplete blockade should not necessarily lead to a reinjection. Large volume of hyperbaric lidocaine or repeated injections of such solutions must be avoided as well as preservative-containing solutions. The administration of new compounds by the spinal route must be supported by data of spinal neuropharmacology and the lack of neurotoxicity must have been previously checked with animal studies.

  16. Neuroprotective effect of hemeoxygenase-1/glycogen synthase kinase-3β modulators in 3-nitropropionic acid-induced neurotoxicity in rats.

    PubMed

    Khan, A; Jamwal, S; Bijjem, K R V; Prakash, A; Kumar, P

    2015-02-26

    The present study has been designed to explore the possible interaction between hemeoxygenase-1 (HO-1) and glycogen synthase kinase-3β (GSK-3β) pathway in 3-nitropropionic acid (3-NP)-induced neurotoxicity in rats. 3-NP produces neurotoxicity by inhibition of the mitochondrial complex II (enzyme succinate dehydrogenase) and by sensitizing the N-methyl-D-aspartate receptor. Recent studies have reported the therapeutic potential of HO-1/GSK-3β modulators in different neurodegenerative disorders. However, their exact role is yet to be explored. The present study is an attempt to investigate the effect of pharmacological modulation of HO-1/GSK-3β pathway against 3-NP-induced behavioral, biochemical and molecular alterations in rat. Behavioral observation, oxidative stress, pro-inflammatory [tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β)], HO-1 and GSK-3β activity were evaluated post 3-NP treatment. Findings of the present study demonstrate a significant alteration in the locomotor activity, motor coordination, oxidative burden (increased lipid peroxidation, nitrite concentration and decreased endogenous antioxidants), pro-inflammatory mediators [TNF-α, IL-1β], HO-1 and GSK-3β activity in 3-NP-treated animals. Further, administration of hemin (10- and 30-mg/kg; i.p.) and lithium chloride (LiCl) (25- and 50-mg/kg; i.p.) prevented the alteration in body weight, motor impairments, oxidative stress and cellular markers. In addition, combined administration of hemin (10-mg/kg) and LiCl (25-mg/kg) showed synergistic effect on 3-NP-treated rats. Pretreatment with Tin (IV) protoporphyrin (40 μM/kg), HO-1 inhibitor reversed the beneficial effect of LiCl and hemin. Outcomes of the present study suggest that HO-1 and GSK-3β enzymes are involved in the pathophysiology of HD. The modulators of both the pathways might be used as adjuvants or prophylactic therapy for the treatment of HD-like symptoms.

  17. Inhibitory effect of fangchinoline on excitatory amino acids-induced neurotoxicity in cultured rat cerebellar granule cells.

    PubMed

    Kim, S D; Oh, S K; Kim, H S; Seong, Y H

    2001-04-01

    Glutamate receptors-mediated excitotoxicity is believed to play a role in the pathophysiology of neurodegenerative diseases. The present study was performed to evaluate the inhibitory effect of fangchinoline, a bis-benzylisoquinoline alkaloid, which has a characteristic as a Ca2+ channel blocker, on excitatory amino acids (EAAs)-induced neurotoxicity in cultured rat cerebellar granule neuron. Fangchinoline (1 and 5 microM) inhibited glutamate (1 mM), N-methyl-D-aspartate (NMDA; 1 mM) and kainate (100 microM)-induced neuronal cell death which was measured by trypan blue exclusion test. Fangchinoline (1 and 5 microM) inhibited glutamate release into medium induced by NMDA (1 mM) and kainate (100 microM), which was measured by HPLC. And fangchinoline (5 microM) inhibited glutamate (1 mM)-induced elevation of intracellular calcium concentration. These results suggest that inhibition of Ca2+ influx by fangchinoline may contribute to the beneficial effects on neurodegenerative effect of glutamate in pathophysiological conditions. PMID:11339637

  18. Investigation of neurotoxic and immunotoxic effects of some plant growth regulators at subacute and subchronic applications on rats.

    PubMed

    Isik, Ismail; Celik, Ismail

    2015-12-01

    The present study was aimed to investigate the effects of subacute and subchronic treatment of some plant growth regulators (PGRs), such as abscisic acid (ABA) and gibberellic acid (GA3), on neurological and immunological biomarkers in various tissues of rats. The activities of acetylcholinesterase (AChE) and butrylcholinesterase (BChE) were selected as biomarkers for neurotoxic biomarkers. Adenosine deaminase (ADA) and myeloperoxidase (MPO) were measured as indicators for immunotoxic investigation purpose. Wistar albino rats were orally administered with 25 and 50 ppm of PGRs ad libitum for 25-50 days continuously with drinking water. The treatment of PGRs caused different effects on the activities of enzymes. Results showed that the administrations of ABA and GA3 increased AChE and BChE activities in some tissues of rats treated with both the dosages and periods of ABA and GA3. With regard to the immunotoxic effects, ADA activity fluctuated, while MPO activity increased after subacute and subchronic exposure of treated rat tissues to both dosages when compared with the controls. The observations presented led us to conclude that the administrations of PGRs at subacute and subchronic exposure increased AChE, BChE, and MPO activities, while fluctuating the ADA activity in various tissues of rats. This may reflect the potential role of these parameters as useful biomarkers for toxicity of PGRs.

  19. Effects of chronic exposure to benzalkonium chloride in Oncorhynchus mykiss: cholinergic neurotoxicity, oxidative stress, peroxidative damage and genotoxicity.

    PubMed

    Antunes, S C; Nunes, B; Rodrigues, S; Nunes, R; Fernandes, J; Correia, A T

    2016-07-01

    Benzalkonium chloride (BAC) is one of the most used conservatives in pharmaceutical preparations. However, its use is limited to a small set of external use formulations, due to its high toxicity. Benzalkonium chloride effects are related to the potential exertion of deleterious effects, mediated via oxidative stress and through interaction with membrane enzymes, leading to cellular damage. To address the ecotoxicity of this specific compound rainbow trouts were chronically exposed to BAC at environmental relevant concentrations (ranging from 0.100 to 1.050mg/L), and the biological response of cholinergic neurotoxicity, modulation of the antioxidant defense, phase II metabolism, lipid peroxidation and genotoxicity was studied. The obtained results showed a dual pattern of antioxidant response, with significant alterations in catalase activity (starting at 0.180mg/L), and lipid peroxidation, for intermediate (0.180 and 0.324mg/L) concentrations. No significant alterations occurred for glutathione-S-transferases activity. An unexpected increased of the acetylcholinesterase activity was also recorded for the individuals exposed to higher concentrations of BAC (starting at 0.180mg/L). Furthermore, exposure to BAC resulted in the establishment of genotoxic alterations, observable (for the specific case of the comet assay results) for all tested BAC concentrations. However, and considering that the oxidative response was not devisable, other mechanisms may be involved in the genotoxic effects reported here. PMID:27280532

  20. Protective effects of apigenin against 1-methyl-4-phenylpyridinium ion‑induced neurotoxicity in PC12 cells.

    PubMed

    Liu, Weihai; Kong, Songzhi; Xie, Qingfeng; Su, Jiyan; Li, Wenjie; Guo, Huizhen; Li, Shanshan; Feng, Xuexuan; Su, Ziren; Xu, Yang; Lai, Xiaoping

    2015-03-01

    Parkinson's disease is recognized as the second most common neurodegenerative disorder after Alzheimer's disease, characterized by the loss of dopominergic neurons in the substantia nigra pars compacta and can be experimentally mimicked by the use of the neurotoxin, 1‑methyl‑4‑phenylpyridinium ion (MPP(+)), in in vitro models. In this study, we investigated the potential protective effects of apigenin (AP), galangin and genkwanin, naturally occurring plant flavonoids, on the MPP(+)‑induced cytotoxicity in cultured rat adrenal pheochromocytoma cells (PC12 cells). The PC12 cells were pre-treated with various concentrations of the test compounds for 4 h, followed by the challenge with 1,000 µM MPP(+) for 48 h. We found that only pre-treatment with AP (3, 6 and 12 µM) before injury significantly increased cell viability, decreased the release of lactate dehydrogenase, reduced the level of intracellular reactive oxygen species and elevated mitochondrial membrane potential in the MPP(+)‑treated PC12 cells. In addition, AP markedly suppressed the increased rate of apoptosis and the reduced Bcl‑2/Bax ratio induced by MPP(+) in the PC12 cells. Taken together, the findings of this study demonstrate that AP exerts neuroprotective effects against MPP(+)‑induced neurotoxicity in PC12 cells, at least in part, through the inhibition of oxidative damage and the suppression of apoptosis through the mitochondrial pathway. PMID:25573459

  1. The Neuroprotective Effect of Erythropoietin on Rotenone-Induced Neurotoxicity in SH-SY5Y Cells Through the Induction of Autophagy.

    PubMed

    Jang, Wooyoung; Kim, Hee Ju; Li, Huan; Jo, Kwang Deog; Lee, Moon Kyu; Yang, Hyun Ok

    2016-08-01

    Currently, the autophagy pathway is thought to be important for the pathogenesis of Parkinson's disease (PD), and the modulation of autophagy may be a novel strategy for the treatment of this disease. Erythropoietin (EPO) has been reported to have neuroprotective effects through anti-oxidative, anti-apoptotic, and anti-inflammatory mechanisms, and it has also been shown to modulate autophagy signaling in an oxygen toxicity model. Therefore, we investigated the effects of EPO on autophagy markers and evaluated its neuroprotective effect on rotenone-induced neurotoxicity. We adapted the rotenone-induced neurotoxicity model to SH-SY5Y cells as an in vitro model of PD. We measured cell viability using MTT and annexin V/propidium iodide assays and measured intracellular levels of reactive oxygen species. Immunofluorescence analysis was performed to measure the expression of LC3 and α-synuclein. Intracellular signaling proteins associated with autophagy were examined by immunoblot analysis. EPO mono-treatment increased the levels of mammalian target of rapamycin (mTOR)-independent/upstream autophagy markers, including Beclin-1, AMPK, and ULK-1. Rotenone treatment of SH-SY5Y cells reduced their viability, increased reactive oxygen species levels, and induced apoptosis and α-synuclein expression, and simultaneous exposure to EPO significantly reduced these effects. Rotenone enhanced mTOR expression and suppressed Beclin-1 expression, indicating suppression of the autophagy system. However, combined treatment with EPO restored Beclin-1 expression and decreased mTOR expression. EPO protects against rotenone-induced neurotoxicity in SH-SY5Y cells by enhancing autophagy-related signaling pathways. The experimental evidence for the EPO-induced neuroprotection against rotenone-induced dopaminergic neurotoxicity may significantly impact the development of future PD treatment strategies. PMID:26156288

  2. Conditioning of physical symptoms after neurotoxic exposure.

    PubMed

    Bolla-Wilson, K; Wilson, R J; Bleecker, M L

    1988-09-01

    Psychologic reactions to a neurotoxic exposure can produce prolonged physical symptoms which are as debilitating as the direct effects of the neurotoxic substance. A group of patients exist who experience reoccurrence of exposure-related symptoms when exposed to a variety of common environmental substances, such as perfume, gasoline, and cigarette smoke. We propose a classical conditioning model to explain the development of this phenomenon. Identification and treatment of these individuals are also discussed.

  3. Ester Hydrolysis Differentially Reduces Aconitine-Induced Anti-hypersensitivity and Acute Neurotoxicity: Involvement of Spinal Microglial Dynorphin Expression and Implications for Aconitum Processing

    PubMed Central

    Li, Teng-Fei; Gong, Nian; Wang, Yong-Xiang

    2016-01-01

    Aconitines, including bulleyaconitine A, probably the most bioactive and abundant alkaloids in Aconitum plant, are a group of diester C19-diterpenoid alkaloids with one acetylester group attached to C8 of the diterpenoid skeleton and one benzoylester group to C14. Hydrolysis of both groups is involved in the processing of Aconitum, a traditional Chinese medicinal approach. We recently demonstrated that bulleyaconitine A produced anti-hypersensitivity, which was mediated by stimulation of spinal microglial dynorphin A expression. This study aimed to elucidate whether the acetylester and benzoylester groups are involved in aconitine-induced dynorphin A expression, anti-hypersensitivity, neurotoxicity in neuropathic rats. Intrathecal administration of aconitine and benzoylaconine (but not aconine) attenuated mechanical allodynia and heat hyperalgesia, with normalized ED50 values of 35 pmol and 3.6 nmol, respectively. Aconitine and benzoylaconine anti-allodynia was completely blocked by the microglial inhibitor, dynorphin A antiserum, and κ-opioid receptor antagonist. Aconitine and benzoylaconine, but not aconine, stimulated dynorphin A expression in cultured primary spinal microglia, with EC50 values of 32 nM and 3 μM, respectively. Intrathecal aconitine, benzoylaconine and aconine induced flaccid paralysis and death, with normalized TD50 values of 0.5 nmol, 0.2 μmol, and 1.6 μmol, respectively. The TD50/ED50 ratios of aconitine and benzolyaconine were 14:1 and 56:1. Our results suggest that both the C8-acetyl and C14-benzoyl groups are essential for aconitine to stimulate spinal microglial dynorphin A expression and subsequent anti-hypersensitivity, which can be separated from neurotoxicity, because both benzoylaconine and aconine differentially produced anti-hypersensitivity and neurotoxicity due to their different stimulatory ability on dynorphin A expression. Our results support the scientific rationale for Aconitum processing, but caution should be taken to

  4. Beneficial effect of a novel pentadecapeptide BPC 157 on gastric lesions induced by restraint stress, ethanol, indomethacin, and capsaicin neurotoxicity.

    PubMed

    Sikirić, P; Seiwerth, S; Grabarević, Z; Rucman, R; Petek, M; Jagić, V; Turković, B; Rotkvić, I; Mise, S; Zoricić, I; Gjurasin, M; Konjevoda, P; Separović, J; Ljubanović, D; Artuković, B; Bratulić, M; Tisljar, M; Jurina, L; Buljat, G; Miklić, P; Marović, A

    1996-08-01

    Very recently, the integrity of capsaicin somatosensory neurons and their protection were suggested to be related to the activity in nociception of a newly discovered 15-amino acid peptide, BPC 157, shown to have strong beneficial effect on intestinal and liver lesions. Therefore, from this viewpoint, we have studied the gastroprotective effect of the pentadecapeptide BPC 157, on gastric lesions produced in rats by 96% ethanol, restraint stress, and indomethacin. The possible involvement of sensory neurons in the salutary actions of BPC 157 (10 micrograms/kg, 10 ng/kg intraperitoneally) was studied with capsaicin, which has differential effects on sensory neurons: a high dose in adult (125 mg/kg subcutaneously, 3 months old) or administration (50 mg/kg subcutaneously) to neonatal animals (age of the 7 days) destroys sensory fibers, whereas a low dose (500 micrograms/kg intraperitoneally) activates neurotransmitter release and protective effects on the mucosa. In the absence of capsaicin, BPC 157 protected gastric mucosa against ethanol, restraint, and indomethacin application. In the presence of neurotoxic doses of capsaicin, the negative influence of capsaicin on restraint, ethanol, or indomethacin lesions consistently affected salutary activity of BPC 157. However, BPC 157 protection was still evident in the capsaicin-treated rats (either treated as adults or as newborns) in all of these assays. Interestingly, after neonatal capsaicin treatment, a complete abolition of BPC gastroprotection was noted if BPC 157 was applied as a single nanogram-regimen, but the mucosal protection was fully reversed when the same dose was used daily. In line with the excitatory dose of capsaicin the beneficial effectiveness of BPC 157 appears to be increased as well. Taken together, these data provide evidence for complex synergistic interaction between the beneficial effectiveness of BPC 157 and peptidergic sensory afferent neuron activity. PMID:8769287

  5. An animal model to study toxicity of central nervous system therapy for childhood acute lymphoblastic leukemia: Effects on behavior

    SciTech Connect

    Mullenix, P.J.; Kernan, W.J.; Tassinari, M.S.; Schunior, A.; Waber, D.P.; Howes, A.; Tarbell, N.J. )

    1990-10-15

    Central nervous system prophylactic therapy used in the treatment of acute lymphoblastic leukemia can reduce intelligence quotient scores and impair memory and attention in children. Cranial irradiation, intrathecal methotrexate, and steroids are commonly utilized in acute lymphoblastic leukemia therapy. How they induce neurotoxicity is unknown. This study employs an animal model to explore the induction of neurotoxicity. Male and female Sprague-Dawley rats at 17 and 18 days of age were administered 18 mg/kg prednisolone, 2 mg/kg methotrexate, and 1000 cGy cranial irradiation. Another 18-day-old group was administered 1000 cGy cranial irradiation but no drugs. Matching controls received saline and/or a sham exposure to radiation. All animals at 6 weeks and 4 months of age were tested for alterations in spontaneous behavior. A computer pattern recognition system automatically recorded and classified individual behavioral acts displayed during exploration of a novel environment. Measures of behavioral initiations, total time, and time structure were used to compare treated and control animals. A permanent sex-specific change in the time structure of behavior was induced by the prednisolone, methotrexate, and radiation treatment but not by radiation alone. Unlike hyperactivity, the effect consisted of abnormal clustering and dispersion of acts in a pattern indicative of disrupted development of sexually dimorphic behavior. This study demonstrates the feasibility of an animal model delineating the agent/agents responsible for the neurotoxicity of central nervous system prophylactic therapy.

  6. Acute and neurotoxicity of two structurally related acetylenic compounds: 5,7,11-dodecatriyn-1-ol and 5,7,11,13-octadecatetrayne-1,18-diol.

    PubMed

    Gad, S C; Dunn, B J; Gavigan, F A; Reilly, C; Peckham, J C

    1988-02-01

    Two structurally related acetylenic compounds, 5,7,11-Dodecatriyn-1-ol, (Compound A), and 5,7,11,13-Octadecatetrayne-1,18-Diol (Compound B), were evaluated in a tier I toxicology testing program as part of an ongoing research and development program. This battery of acute tests included acute oral, guinea pig maximization, photosensitization, dermal irritation, Ames and multiple genetic endpoint and a 2 week oral fetotoxicity study. Compound A was found to have an oral LD50 of 0.25 ml/kg, be an extreme dermal sensitizer, a mild dermal irritant (PDII of 1.7), and not mutagenic or fetotoxic in the tests employed. Compound B had an oral LD50 greater than 4 g/kg, was a moderate dermal sensitizer and mild dermal irritant (PDII of 1.4), was not mutagenic in the Ames test but weakly increased the incidence of SCEs and gene mutations in Chinese Hamster Ovary cells, and was not fetotoxic. Neither compound was found to be a photosensitizer, but during the course of the photosensitization study Compound A was found to cause neuromuscular signs (including hind limb paralysis) and a bilateral necrosis of the medulla oblongata in female guinea pigs. A similar lesion was found in female rats receiving a single oral dose of 0.25 ml/kg and in nonpregnant females dosed daily for two weeks at 0.03 ml/kg. Compound B was not found to produce any of these neurologic effects.

  7. [Synthesis and protective effect of ligustrazine intermediates against CoCl2-induced neurotoxicity in differentiated PC12 cell].

    PubMed

    Li, Guo-Liang; Wang, Peng-Long; Xu, Xin; Lin, Jin-Xuan; Chu, Fu-Hao; Song, Ji-Xiang; Zhou, Shen; Wang, Mi-Na; Zhang, Yu-Zhong; Lei, Hai-Min

    2014-07-01

    Ligustrazine, one of the major effective components of the Chinese traditional medicinal herb Ligusticum Chuanxiong Hort, has been reported plenty of biological activities, such as protect cardiovascular and cerebrovascular, neuroprotection and anti-tumor, et al. Because of its remarkable effects, studies on structural modification of ligustrazine have attracted much attention. Ligustrazine synthetic derivatives reported in recent decades are mainly derived from four primary intermediates (TMP-COOH, TMP-OH, TMP-NH2, HO-TMP-OH). To explore the neuroprotection activitiy of ligustrazine intermediates, six ligustrazine intermediates (2, 5, 8, 11, 12, 13) were synthesized and their protective effects against CoCl2-induced neurotoxicity in differentiated PC12 cells were studied. The target compounds were prepared via different chemical methods, including oxidation, substitution, esterification and amidation without changing the structure nucleus of ligustrazine. Compared with TMP (EC50 = 56.03 micromol x L(-1)), four compounds (2, 5, 12 and 13) exhibited higher activity (EC50 < 50 micromol x L(-1)) respectively, of which, compound 2 displayed the highest protective effect against the damaged PC12 cells (EC50 = 32.86 micromol x L(-1)), but target compounds 8 and 11 appeared lower activity (EC50 > 70 micromol x L(-1)). By structure-activity relationships analysis, the introduction of carboxyl, amino to the side chain of ligustrazine and appropriately increase the proportion of ligustrazine may contribute to enhance its neuroprotective activity, which provides a reference for the design, synthesis and activity screening of relevant series of ligustrazine derivatives in the future. PMID:25272495

  8. Comparative protective effects of royal jelly and cod liver oil against neurotoxic impact of tartrazine on male rat pups brain.

    PubMed

    Mohamed, Amany Abdel-Rahman; Galal, Azza A A; Elewa, Yaser H A

    2015-09-01

    This study is aimed to evaluate the possible neurotoxic effect of tartrazine (T), an extensively used synthetic azo dye, as well as to determine the potential modulatory role of cod liver oil (CLO) or royal jelly (RJ) against such effects. For this purpose, thirty-six male rat pups were allocated into six groups. The 1st group received distilled water (control group), the 2nd group was given 300 mg RJ/kg bw (RJ group), the 3rd group was given 0.4 ml CLO/kg bw (CLO group), the 4th was given 500 mg T/kg bw (T group). The 5th group was given T concurrently with RJ (TRJ group) and the 6th group was given T concurrently with CLO (TCLO group), at the same doses as the former groups. All treatments were given orally for 30 consecutive days. The concentrations of different brain neurotransmitters, gamma amino butyric acid (GABA), dopamine (DA) and serotonin (5HT) as well as the antioxidant and oxidative stress biomarkers were measured in the brain homogenates. An immunohistochemical staining of the cerebral cortex was applied with the anti-ssDNA antibody (an apoptotic cell marker) to reveal the changes in brain structure. The T group revealed a significant decrease in the concentration of the brain neurotransmitters, a sharp shortage in the level of antioxidant biomarkers (super oxide dismutase, catalase and the reduced glutathione), a marked increase in malondialdehyde levels, and numerous apoptotic cells in the brain cortex compared with the other groups. Interestingly, all the previously mentioned parameters were almost retrieved in both the TRJ and TCLO groups compared to the T group. These results conclusively demonstrate that RJ and CLO administration provides sufficient protection against the ruinous effects of T on rat pups brain tissue function and structure. PMID:26190785

  9. Comparative protective effects of royal jelly and cod liver oil against neurotoxic impact of tartrazine on male rat pups brain.

    PubMed

    Mohamed, Amany Abdel-Rahman; Galal, Azza A A; Elewa, Yaser H A

    2015-09-01

    This study is aimed to evaluate the possible neurotoxic effect of tartrazine (T), an extensively used synthetic azo dye, as well as to determine the potential modulatory role of cod liver oil (CLO) or royal jelly (RJ) against such effects. For this purpose, thirty-six male rat pups were allocated into six groups. The 1st group received distilled water (control group), the 2nd group was given 300 mg RJ/kg bw (RJ group), the 3rd group was given 0.4 ml CLO/kg bw (CLO group), the 4th was given 500 mg T/kg bw (T group). The 5th group was given T concurrently with RJ (TRJ group) and the 6th group was given T concurrently with CLO (TCLO group), at the same doses as the former groups. All treatments were given orally for 30 consecutive days. The concentrations of different brain neurotransmitters, gamma amino butyric acid (GABA), dopamine (DA) and serotonin (5HT) as well as the antioxidant and oxidative stress biomarkers were measured in the brain homogenates. An immunohistochemical staining of the cerebral cortex was applied with the anti-ssDNA antibody (an apoptotic cell marker) to reveal the changes in brain structure. The T group revealed a significant decrease in the concentration of the brain neurotransmitters, a sharp shortage in the level of antioxidant biomarkers (super oxide dismutase, catalase and the reduced glutathione), a marked increase in malondialdehyde levels, and numerous apoptotic cells in the brain cortex compared with the other groups. Interestingly, all the previously mentioned parameters were almost retrieved in both the TRJ and TCLO groups compared to the T group. These results conclusively demonstrate that RJ and CLO administration provides sufficient protection against the ruinous effects of T on rat pups brain tissue function and structure.

  10. Local Anesthetic-Induced Neurotoxicity

    PubMed Central

    Verlinde, Mark; Hollmann, Markus W.; Stevens, Markus F.; Hermanns, Henning; Werdehausen, Robert; Lirk, Philipp

    2016-01-01

    This review summarizes current knowledge concerning incidence, risk factors, and mechanisms of perioperative nerve injury, with focus on local anesthetic-induced neurotoxicity. Perioperative nerve injury is a complex phenomenon and can be caused by a number of clinical factors. Anesthetic risk factors for perioperative nerve injury include regional block technique, patient risk factors, and local anesthetic-induced neurotoxicity. Surgery can lead to nerve damage by use of tourniquets or by direct mechanical stress on nerves, such as traction, transection, compression, contusion, ischemia, and stretching. Current literature suggests that the majority of perioperative nerve injuries are unrelated to regional anesthesia. Besides the blockade of sodium channels which is responsible for the anesthetic effect, systemic local anesthetics can have a positive influence on the inflammatory response and the hemostatic system in the perioperative period. However, next to these beneficial effects, local anesthetics exhibit time and dose-dependent toxicity to a variety of tissues, including nerves. There is equivocal experimental evidence that the toxicity varies among local anesthetics. Even though the precise order of events during local anesthetic-induced neurotoxicity is not clear, possible cellular mechanisms have been identified. These include the intrinsic caspase-pathway, PI3K-pathway, and MAPK-pathways. Further research will need to determine whether these pathways are non-specifically activated by local anesthetics, or whether there is a single common precipitating factor. PMID:26959012

  11. Developmental neurotoxicity of industrial chemicals.

    PubMed

    Grandjean, P; Landrigan, P J

    2006-12-16

    Neurodevelopmental disorders such as autism, attention deficit disorder, mental retardation, and cerebral palsy are common, costly, and can cause lifelong disability. Their causes are mostly unknown. A few industrial chemicals (eg, lead, methylmercury, polychlorinated biphenyls [PCBs], arsenic, and toluene) are recognised causes of neurodevelopmental disorders and subclinical brain dysfunction. Exposure to these chemicals during early fetal development can cause brain injury at doses much lower than those affecting adult brain function. Recognition of these risks has led to evidence-based programmes of prevention, such as elimination of lead additives in petrol. Although these prevention campaigns are highly successful, most were initiated only after substantial delays. Another 200 chemicals are known to cause clinical neurotoxic effects in adults. Despite an absence of systematic testing, many additional chemicals have been shown to be neurotoxic in laboratory models. The toxic effects of such chemicals in the developing human brain are not known and they are not regulated to protect children. The two main impediments to prevention of neurodevelopmental deficits of chemical origin are the great gaps in testing chemicals for developmental neurotoxicity and the high level of proof required for regulation. New, precautionary approaches that recognise the unique vulnerability of the developing brain are needed for testing and control of chemicals. PMID:17174709

  12. Developmental neurotoxicity of industrial chemicals.

    PubMed

    Grandjean, P; Landrigan, P J

    2006-12-16

    Neurodevelopmental disorders such as autism, attention deficit disorder, mental retardation, and cerebral palsy are common, costly, and can cause lifelong disability. Their causes are mostly unknown. A few industrial chemicals (eg, lead, methylmercury, polychlorinated biphenyls [PCBs], arsenic, and toluene) are recognised causes of neurodevelopmental disorders and subclinical brain dysfunction. Exposure to these chemicals during early fetal development can cause brain injury at doses much lower than those affecting adult brain function. Recognition of these risks has led to evidence-based programmes of prevention, such as elimination of lead additives in petrol. Although these prevention campaigns are highly successful, most were initiated only after substantial delays. Another 200 chemicals are known to cause clinical neurotoxic effects in adults. Despite an absence of systematic testing, many additional chemicals have been shown to be neurotoxic in laboratory models. The toxic effects of such chemicals in the developing human brain are not known and they are not regulated to protect children. The two main impediments to prevention of neurodevelopmental deficits of chemical origin are the great gaps in testing chemicals for developmental neurotoxicity and the high level of proof required for regulation. New, precautionary approaches that recognise the unique vulnerability of the developing brain are needed for testing and control of chemicals.

  13. Multiple mechanisms of PCB neurotoxicity

    SciTech Connect

    Carpenter, D.O.; Stoner, C.T.; Lawrence, D.A.

    1996-12-31

    Polychlorinated biphenyls (PCBs) have been implicated in cancer, but many of the symptoms in humans exposed to PCBs are related to the nervous system and behavior. We demonstrated three different direct mechanisms whereby PCBs are neurotoxic in rats. By using flow cytometry, we demonstrated that the orthosubstituted PCB congener 2,4,4{prime}, but neither TCDD nor the coplanar PCB congener 3,4,5,3{prime},4{prime}, causes rapid death of cerebellar granule cells. The ortho-substituted congener 2,4,4{prime} reduced long-term potentiation, an indicator of cognitive potential, in hippocampal brain slices, but a similar effect was observed for the coplanar congener 3,4,3{prime},4{prime}, indicating that this effect may be caused by both ortho- and coplanar congeners by mechanisms presumably not mediated via the Ah receptor. It was previously shown that some ortho-substituted PCB congeners cause a reduction in levels of the neurotransmitter dopamine, and we present in vitro and in vivo evidence that this is due to reduction of synthesis of dopamine via inhibition of the enzyme tyrosine hydroxylase. Thus, PCBs have a variety of mechanisms of primary neurotoxicity, and neurotoxicity is a characteristic of ortho-substituted, non-dioxin-like congeners as well as some coplanar congeners. The relative contribution of each of these mechanisms to the loss of cognitive function in humans exposed to PCBs remains to be determined. 42 refs., 3 figs., 1 tab.

  14. EPA's neurotoxicity risk assessment guidelines.

    PubMed

    Boyes, W K; Dourson, M L; Patterson, J; Tilson, H A; Sette, W F; MacPhail, R C; Li, A A; O'Donoghue, J L

    1997-12-01

    The proposed Neurotoxicity Risk Assessment Guidelines (U.S. EPA, 1995c Fed. Reg. 60(192), 52032-52056) of the U.S. Environmental Protection Agency (EPA) were the subject of a workshop at the 1997 Meeting of the Society of Toxicology. The workshop considered the role of guidelines in the risk assessment process, the primary features, scientific basis, and implications of the guidelines for EPA program offices, as well as for industrial neurotoxicologists from the perspectives of both pesticides and toxic substances regulation. The U.S. National Academy of Sciences (NAS, 1983, Risk Assessment in the Federal Government: Managing the Process) established a framework for distinguishing risk management from risk assessment, the latter being the result of integrating hazard identification, hazard characterization, and exposure assessment data. The guidelines are intended to establish operating principles that will be used when examining data in a risk assessment context. The proposed neurotoxicity risk assessment guidelines provide a conceptual framework for deciding whether or not a chemically induced effect can be considered to be evidence of neurotoxicity. Topics in the proposed guidelines include structural and functional effects, dose-response and -duration considerations, and relationships between effects. Among the issues that must be considered are the multiplicity of chemical effects, the levels of biological organization in the nervous system, and the tests, measurements, and protocols used. Judgment of the adversity of an effect depends heavily on the amount and types of data available. The attribution of a chemically induced effect to an action on the nervous system depends on several factors such as the quality of the study, the nature of the outcome, dose-response and time-response relationships, and the possible involvement of nonneural factors. The guidelines will also serve as a reference for those conducting neurotoxicity testing, as well as establish a

  15. Antioxidant effect of Spirulina (Arthrospira) maxima in a neurotoxic model caused by 6-OHDA in the rat striatum.

    PubMed

    Tobón-Velasco, J C; Palafox-Sánchez, Victoria; Mendieta, Liliana; García, E; Santamaría, A; Chamorro-Cevallos, G; Limón, I Daniel

    2013-08-01

    There is evidence to support that an impaired energy metabolism and the excessive generation of reactive oxygen species (ROS) contribute to brain injury in neurodegenerative disorders such as Parkinson's disease (PD), whereas diets enriched in foods with an antioxidant action may modulate its progression. Several studies have proved that the antioxidant components produced by Spirulina, a microscopic blue-green alga, might prevent cell death by decreasing free radicals, inhibiting lipoperoxidation and upregulating the antioxidant enzyme systems. In our study, we investigated the protective effect of the Spirulina maxima (S. maxima) against the 6-OHDA-caused toxicity in the rat striatum. The S. maxima (700 mg/kg/day, vo) was administered for 40 days before and 20 days after a single injection of 6-OHDA (16 μg/2 μL) into the dorsal striatum. At 20-day postsurgery, the brain was removed and the striatum was obtained to evaluate the indicators of toxicity, such as nitric oxide levels, ROS formation, lipoperoxidation, and mitochondrial activity. These variables were found significantly stimulated in 6-OHDA-treated rats and were accompanied by declines in dopamine levels and motor activity. In contrast, the animals that received the chronic treatment with S. maxima had a restored locomotor activity, which is associated with the decreased levels of nitric oxide, ROS, and lipoperoxidation in the striatum, although mitochondrial functions and dopamine levels remained preserved. These findings suggest that supplementation with antioxidant phytochemicals (such as contained in S. maxima) represents an effective neuroprotective strategy against 6-OHDA-caused neurotoxicity vía free radical production to preserve striatal dopaminergic neurotransmission in vivo. PMID:23430275

  16. Cannabinoid effects on β amyloid fibril and aggregate formation, neuronal and microglial-activated neurotoxicity in vitro.

    PubMed

    Janefjord, Emelie; Mååg, Jesper L V; Harvey, Benjamin S; Smid, Scott D

    2014-01-01

    Cannabinoid (CB) ligands have demonstrated neuroprotective properties. In this study we compared the effects of a diverse set of CB ligands against β amyloid-mediated neuronal toxicity and activated microglial-conditioned media-based neurotoxicity in vitro, and compared this with a capacity to directly alter β amyloid (Aβ) fibril or aggregate formation. Neuroblastoma (SH-SY5Y) cells were exposed to Aβ1-42 directly or microglial (BV-2 cells) conditioned media activated with lipopolysaccharide (LPS) in the presence of the CB1 receptor-selective agonist ACEA, CB2 receptor-selective agonist JWH-015, phytocannabinoids Δ(9)-THC and cannabidiol (CBD), the endocannabinoids 2-arachidonoyl glycerol (2-AG) and anandamide or putative GPR18/GPR55 ligands O-1602 and abnormal-cannabidiol (Abn-CBD). TNF-α and nitrite production was measured in BV-2 cells to compare activation via LPS or albumin with Aβ1-42. Aβ1-42 evoked a concentration-dependent loss of cell viability in SH-SY5Y cells but negligible TNF-α and nitrite production in BV-2 cells compared to albumin or LPS. Both albumin and LPS-activated BV-2 conditioned media significantly reduced neuronal cell viability but were directly innocuous to SH-SY5Y cells. Of those CB ligands tested, only 2-AG and CBD were directly protective against Aβ-evoked SH-SY5Y cell viability, whereas JWH-015, THC, CBD, Abn-CBD and O-1602 all protected SH-SY5Y cells from BV-2 conditioned media activated via LPS. While CB ligands variably altered the morphology of Aβ fibrils and aggregates, there was no clear correlation between effects on Aβ morphology and neuroprotective actions. These findings indicate a neuroprotective action of CB ligands via actions at microglial and neuronal cells.

  17. Antioxidant effect of Spirulina (Arthrospira) maxima in a neurotoxic model caused by 6-OHDA in the rat striatum.

    PubMed

    Tobón-Velasco, J C; Palafox-Sánchez, Victoria; Mendieta, Liliana; García, E; Santamaría, A; Chamorro-Cevallos, G; Limón, I Daniel

    2013-08-01

    There is evidence to support that an impaired energy metabolism and the excessive generation of reactive oxygen species (ROS) contribute to brain injury in neurodegenerative disorders such as Parkinson's disease (PD), whereas diets enriched in foods with an antioxidant action may modulate its progression. Several studies have proved that the antioxidant components produced by Spirulina, a microscopic blue-green alga, might prevent cell death by decreasing free radicals, inhibiting lipoperoxidation and upregulating the antioxidant enzyme systems. In our study, we investigated the protective effect of the Spirulina maxima (S. maxima) against the 6-OHDA-caused toxicity in the rat striatum. The S. maxima (700 mg/kg/day, vo) was administered for 40 days before and 20 days after a single injection of 6-OHDA (16 μg/2 μL) into the dorsal striatum. At 20-day postsurgery, the brain was removed and the striatum was obtained to evaluate the indicators of toxicity, such as nitric oxide levels, ROS formation, lipoperoxidation, and mitochondrial activity. These variables were found significantly stimulated in 6-OHDA-treated rats and were accompanied by declines in dopamine levels and motor activity. In contrast, the animals that received the chronic treatment with S. maxima had a restored locomotor activity, which is associated with the decreased levels of nitric oxide, ROS, and lipoperoxidation in the striatum, although mitochondrial functions and dopamine levels remained preserved. These findings suggest that supplementation with antioxidant phytochemicals (such as contained in S. maxima) represents an effective neuroprotective strategy against 6-OHDA-caused neurotoxicity vía free radical production to preserve striatal dopaminergic neurotransmission in vivo.

  18. The neurotoxic effects of hydrogen peroxide and copper in Retzius nerve cells of the leech Haemopis sanguisuga

    PubMed Central

    Jovanovic, Zorica D.; Stanojevic, Marija B.; Nedeljkov, Vladimir B.

    2016-01-01

    ABSTRACT Oxidative stress and the generation of reactive oxygen species (ROS) play an important role in cellular damage. Electrophysiological analyses have shown that membrane transport proteins are susceptible to ROS. In the present study, oxidative stress was induced in Retzius nerve cells of the leech Haemopis sanguisuga by bath application of 1 mM of hydrogen peroxide (H2O2) and 0.02 mM of copper (Cu) for 20 min. The H2O2/Cu(II) produced considerable changes in the electrical properties of the Retzius nerve cells. Intracellular recording of the resting membrane potential revealed that the neuronal membrane was depolarized in the presence of H2O2/Cu(II). We found that the amplitude of action potentials decreased, while the duration augmented in a progressive way along the drug exposure time. The combined application of H2O2 and Cu(II) caused an initial excitation followed by depression of the spontaneous electrical activity. Voltage-clamp recordings revealed a second effect of the oxidant, a powerful inhibition of the outward potassium channels responsible for the repolarization of action potentials. The neurotoxic effect of H2O2/Cu(II) on the spontaneous spike electrogenesis and outward K+ current of Retzius nerve cells was reduced in the presence of hydroxyl radical scavengers, dimethylthiourea and dimethyl sulfoxide, but not mannitol. This study provides evidence for the oxidative modification of outward potassium channels in Retzius nerve cells. The oxidative mechanism of the H2O2/Cu(II) system action on the electrical properties of Retzius neurons proposed in this study might have a wider significance, referring not only to leeches but also to mammalian neurons. PMID:26935393

  19. Protective effects of astragaloside IV against amyloid beta1-42 neurotoxicity by inhibiting the mitochondrial permeability transition pore opening.

    PubMed

    Sun, Qinru; Jia, Ning; Wang, Weixi; Jin, Hui; Xu, Jiehua; Hu, Haitao

    2014-01-01

    Mitochondrial dysfunction caused by amyloid β-peptide (Aβ) plays an important role in the pathogenesis of Alzheimer disease (AD). Substantial evidence has indicated that the mitochondrial permeability transition pore (mPTP) opening is involved in Aβ-induced neuronal death and reactive oxygen species (ROS) generation. Astragaloside IV (AS-IV), one of the major active constituents of Astragalus membranaceus, has been reported as an effective anti-oxidant for treating neurodegenerative diseases. However, the molecular mechanisms still need to be clarified. In this study, we investigated whether AS-IV could prevent Aβ1-42-induced neurotoxicity in SK-N-SH cells via inhibiting the mPTP opening. The results showed that pretreatment of AS-IV significantly increased the viability of neuronal cells, reduced apoptosis, decreased the generation of intracellular reactive oxygen species (ROS) and decreased mitochondrial superoxide in the presence of Aβ1-42. In addition, pretreatment of AS-IV inhibited the mPTP opening, rescued mitochondrial membrane potential (ΔΨm), enhanced ATP generation, improved the activity of cytochrome c oxidase and blocked cytochrome c release from mitochondria in Aβ1-42 rich milieu. Moreover, pretreatment of AS-IV reduced the expression of Bax and cleaved caspase-3 and increased the expression of Bcl-2 in an Aβ1-42 rich environment. These data indicate that AS-IV prevents Aβ1-42-induced SK-N-SH cell apoptosis via inhibiting the mPTP opening and ROS generation. These results provide novel insights of AS-IV for the prevention and treatment of neurodegenerative disorders such as AD. PMID:24905226

  20. Neuroprotective effect of L-carnitine in the 3-nitropropionic acid (3-NPA)-evoked neurotoxicity in rats.

    PubMed

    Binienda, Zbigniew; Virmani, Ashraf; Przybyla-Zawislak, Beata; Schmued, Larry

    2004-09-01

    A plant and fungal toxin, 3-NPA, acts as an inhibitor of mitochondrial function via irreversible inactivation of the mitochondrial inner membrane enzyme, succinate dehydrogenase (SDH). Inhibition of SDH disturbs electron transport and leads to cellular energy deficits and neuronal injury. We have shown that pretreatment with l-carnitine, while not significantly attenuating SDH inhibition, prevented hypothermia and oxidative stress-associated increased activity of free radical-scavenging enzymes. Here, a neurohistological method was applied to examine the effect of carnitine pretreatment against 3-NPA-induced neurotoxicity. Twenty adult male Sprague-Dawley rats were randomly divided into two groups (n = 10/group). Rats in the first group were injected twice with 3-NPA at 30 mg/kg s.c., 2 days apart, and the second group of animals received l-carnitine pretreatment at 100 mg/kg 30-40 min before 3-NPA administration. Rats in both groups were perfused 7 days later and their brains harvested. Degenerating neurons were identified and localized via the fluorescent marker Fluoro-Jade B. In the three animals that survived 3-NPA dosing, one exhibited no pathology, one exhibited moderate unilateral damage to the striatum, and the third exhibited extensive bilateral neuronal degeneration in multiple forebrain regions. In the seven surviving animals that received l-carnitine prior to 3-NPA insult, six exhibited no lesions, while one exhibited a modest unilateral lesion in the striatum. It appears that l-carnitine is protective against 3-NPA-induced toxicity, as reflected by both reduced mortality and significantly reduced neuronal degeneration.

  1. Autophagy and ethanol neurotoxicity

    PubMed Central

    Luo, Jia

    2015-01-01

    Excessive ethanol exposure is detrimental to the brain. The developing brain is particularly vulnerable to ethanol such that prenatal ethanol exposure causes fetal alcohol spectrum disorders (FASD). Neuronal loss in the brain is the most devastating consequence and is associated with mental retardation and other behavioral deficits observed in FASD. Since alcohol consumption during pregnancy has not declined, it is imperative to elucidate the underlying mechanisms and develop effective therapeutic strategies. One cellular mechanism that acts as a protective response for the central nervous system (CNS) is autophagy. Autophagy regulates lysosomal turnover of organelles and proteins within cells, and is involved in cell differentiation, survival, metabolism, and immunity. We have recently shown that ethanol activates autophagy in the developing brain. The autophagic preconditioning alleviates ethanol-induced neuron apoptosis, whereas inhibition of autophagy potentiates ethanol-stimulated reactive oxygen species (ROS) and exacerbates ethanol-induced neuroapoptosis. The expression of genes encoding proteins required for autophagy in the CNS is developmentally regulated; their levels are much lower during an ethanol-sensitive period than during an ethanol-resistant period. Ethanol may stimulate autophagy through multiple mechanisms; these include induction of oxidative stress and endoplasmic reticulum stress, modulation of MTOR and AMPK signaling, alterations in BCL2 family proteins, and disruption of intracellular calcium (Ca2+) homeostasis. This review discusses the most recent evidence regarding the involvement of autophagy in ethanol-mediated neurotoxicity as well as the potential therapeutic approach of targeting autophagic pathways. PMID:25484085

  2. Endocrine, teratogenic and neurotoxic effects of cyanobacteria detected by cellular in vitro and zebrafish embryos assays.

    PubMed

    Jonas, Adam; Scholz, Stefan; Fetter, Eva; Sychrova, Eliska; Novakova, Katerina; Ortmann, Julia; Benisek, Martin; Adamovsky, Ondrej; Giesy, John P; Hilscherova, Klara

    2015-02-01

    Cyanobacteria contain various types of bioactive compounds, which could cause adverse effects on organisms. They are released into surface waters during cyanobacterial blooms, but there is little information on their potential relevance for effects in vivo. In this study presence of bioactive compounds was characterized in cyanobacteria Microcystis aeruginosa (Chroococcales), Planktothrix agardhii (Oscillatoriales) and Aphanizomenon gracile (Nostocales) with selected in vitro assays. The in vivo relevance of detected bioactivities was analysed using transgenic zebrafish embryos tg(cyp19a1b-GFP). Teratogenic potency was assessed by analysis of developmental disorders and effects on functions of the neuromuscular system by video tracking of locomotion. Estrogenicity in vitro corresponded to 0.95-54.6 ng estradiol equivalent(g dry weight (dw))(-1). In zebrafish embryos, estrogenic effects could not be detected potentially because they were masked by high toxicity. There was no detectable (anti)androgenic/glucocorticoid activity in any sample. Retinoid-like activity was determined at 1-1.3 μg all-trans-retinoic acid equivalent(g dw)(-1). Corresponding to the retinoid-like activity A. gracile extract also caused teratogenic effects in zebrafish embryos. Furthermore, exposure to biomass extracts at 0.3 gd wL(-1) caused increase of body length in embryos. There were minor effects on locomotion caused by 0.3 gd wL(-1)M. aeruginosa and P. agardhii extracts. The traditionally measured cyanotoxins microcystins did not seem to play significant role in observed effects. This indicates importance of other cyanobacterial compounds at least towards some species or their developmental phases. More attention should be paid to activity of retinoids, estrogens and other bioactive substances in phytoplankton using in vitro and in vivo bioassays. PMID:25170595

  3. Neurotoxicity of pesticides.

    PubMed

    Keifer, Matthew C; Firestone, Jordan

    2007-01-01

    Several pesticides such as organophosphates, carbamates and the organochlorine pesticides directly target nervous tissue as their mechanism of toxicity. In several others, such as the fumigants, the nervous system is affected by toxicological mechanisms that diffusely affect most or all tissues in the body. Both the central and peripheral nervous system are involved in the acute toxidromes of many pesticides resulting in acute short-term effects. There is strong human epidemiological evidence for persistent nervous system damage following acute intoxication with several important pesticide groups such as organophosphates and certain fumigants. However, whether persistent nervous system damage follows chronic low-level exposure to pesticides in adults (particularly organophosphpates), and whether in utero and/or early childhood exposure leads to persistent nervous system damage, is a subject of study at present. Parkinson's Disease, one of the most common chronic central nervous system diseases, has been linked to pesticide exposure in some studies, but other studies have failed to find an association. Several new pesticidal chemicals such as the neo-nicotinoids and fipronil have central nervous system effects, but only case reports are available to date on acute human intoxications with several of these. Little data are yet available on whether long-term effects result from these chemicals. Several ongoing or recently completed studies should add valuable insight into the effects of pesticides on the human nervous system particularly the effect of low-dose, chronic exposure both in adults and children.

  4. Effects of L-carnitine pretreatment in methamphetamine and 3-nitropropionic acid-induced neurotoxicity.

    PubMed

    Binienda, Zbigniew K; Przybyla, Beata D; Robinson, Bonnie L; Salem, Nadia; Virmani, Ashraf; Amato, Antonino; Ali, Syed F

    2006-08-01

    Adult, male Sprague-Dawley rats were injected with 3-ni-tropropionic acid (3-NPA) at 30 mg/kg or methamphetamine (METH) at 20 mg/kg alone or following pretreatment with L-cartnitine (LC) at 100 mg/kg. Rectal temperature was measured before and 4 h following treatment. Animals were sacrificed at 4 h posttreatment. Monoamine neurotransmitters, dopamine (DA) and serotonin (5-HT), and their metabolites were analyzed in the striatum using high-performance liquid chromatography method coupled with electrochemical detection (HPLC/ED). Transcripts of several genes related to DA metabolism were quantified using real time reverse transciption polymerase chain reaction (RT-PCR). Core temperature decreased significantly after 3-NPA acid and increased in METH-treated rats (P < 0.05). Temperature change at 4 h exhibited a significant LC effect for 3-NPA, preventing hypothermia (P < 0.05) and no effect for METH. Concentration of DA and 5-HT, and their metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA), increased significantly in 3-NPA and decreased in METH-treated rats. An increase in DOPAC/DA turnover and serotonin observed after 3-NPA was abolished in LC-/3-NPA-treated rats. In both 3-NPA- and METH-treated rats, LC prevented an increase in DA receptor D(1) gene expression. It appears that carnitine effect preventing hypothermia after 3-NPA treatments may be related not only to its mitochondriotropic actions but also to inhibitory effect on the DA and 5-HT systems activated after the exposure to 3-NPA. The same effect observed at the transcriptional level, at least for the DA receptor D(1), may account for protection against METH toxicity.

  5. Neurotoxicity of artemisinin analogs in vitro.

    PubMed Central

    Wesche, D L; DeCoster, M A; Tortella, F C; Brewer, T G

    1994-01-01

    The sesquiterpene endoperoxide antimalarial agents arteether and artemether have been reported to cause neurotoxicity with a discrete distribution in the brain stems of rats and dogs after multiple doses. The nature and distribution of the brain lesions suggest a specific neuronal target, the identity of which is unknown. In order to further investigate artemisinin analog-induced neurotoxicity, we evaluated several in vitro models: fetal rat primary neuronal cultures, fetal rat secondary astrocyte cultures, and transformed neuronal cultures (rat-derived neuroblastoma NG108-15 and mouse-derived neuroblastoma Neuro-2a). Results indicate that toxicity was specific for neuronal cell types but not glial cells. Neurotoxicity, as indexed by liberation of lactate dehydrogenase and/or inhibition of radiolabelled-leucine uptake, was seen in all three neuronal culture types, implicating a common target. In vitro neurotoxicity was dose and time dependent. Acute exposure to drug results in delayed, but not immediate, manifestations of cell toxicity. Structure-activity comparisons indicate that substitutions at positions 9 and 10 and stereoisomerism at position 10 of the artemisinin backbone influence the degree of toxicity. The endoperoxide is necessary but not sufficient for toxicity. Sodium artesunate and dihydroartemisinin, a metabolite common to all artemisinin analogs currently being developed for clinical use, are the most potent of all analogs tested. These results are consistent with a specific neuronal target, but the identity of the target(s) remains unknown. PMID:7986012

  6. Protective effects of plant seed extracts against amyloid β-induced neurotoxicity in cultured hippocampal neurons

    PubMed Central

    Okada, Yoshinori; Okada, Mizue

    2013-01-01

    AIM: Alzheimer's disease (AD) is characterized by large deposits of amyloid β (Aβ) peptide. Aβ is known to increase reactive oxygen species (ROS) production in neurons, leading to cell death. In this study, we screened 15 plant seeds’ aqueous extracts (PSAE) for inhibitory effects on Aβ (25-35)-induced cell death using hippocampus neurons (HIPN). MATERIALS AND METHODS: Fifteen chosen plants were nine medical herbs (Japanese honeywort, luffa, rapeseed, Chinese colza, potherb mustard, Japanese radish, bitter melon, red shiso, corn, and kaiware radish) and six general commercial plants (common bean, komatsuna, Qing geng cai, bell pepper, kale, and lettuce). PSAE were measured for total phenolic content (TPC) with the Folin–Ciocalteu method, and the 2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging effect of each seed extract was measured. To find a protectant against Aβ-induced oxidative stress, we screened 15 PSAE using a 2’, 7’-dichlorofluorescein diacetate assay. To further unravel the anti-inflammatory effects of PSAE on Aβ-induced inflammation, PSAE were added to HIPN. The neuroprotective effects of the PSAE were evaluated by Cell Counting Kit-8 assay, measuring the cell viability in Aβ-induced HIPN. RESULTS: TPC of 15 PSAE was in the range of 0.024-1.96 mg of chlorogenic acid equivalents/gram. The aqueous extracts showed antioxidant activities. Furthermore, intracellular ROS accumulation resulting from Aβ treatment was reduced when cells were treated with some PSAE. Kale, bitter melon, kaiware radish, red shiso, and corn inhibited tumor necrosis factor-alpha secretion by the Aβ-stimulated neurons and all samples except Japanese honeywort showed enhancement of cell survival. CONCLUSION: From these results, we suggest that some plant seed extracts offer protection against Aβ-mediated cell death. PMID:23833520

  7. Neuroprotective effects of three different sizes nanochelating based nano complexes in MPP(+) induced neurotoxicity.

    PubMed

    Maghsoudi, Amirhossein; Fakharzadeh, Saideh; Hafizi, Maryam; Abbasi, Maryam; Kohram, Fatemeh; Sardab, Shima; Tahzibi, Abbas; Kalanaky, Somayeh; Nazaran, Mohammad Hassan

    2015-03-01

    Parkinson's disease (PD) is the world's second most common dementia, which the drugs available for its treatment have not had effects beyond slowing the disease process. Recently nanotechnology has induced the chance for designing and manufacturing new medicines for neurodegenerative disease. It is demonstrated that by tuning the size of a nanoparticle, the physiological effect of the nanoparticle can be controlled. Using novel nanochelating technology, three nano complexes: Pas (150 nm), Paf (100 nm) and Pac (40 nm) were designed and in the present study their neuroprotective effects were evaluated in PC12 cells treated with 1-methyl-4-phenyl-pyridine ion (MPP (+)). PC12 cells were pre-treated with the Pas, Paf or Pac nano complexes, then they were subjected to 10 μM MPP (+). Subsequently, cell viability, intracellular free Calcium and reactive oxygen species (ROS) levels, mitochondrial membrane potential, catalase (CAT) and superoxide dismutase (SOD) activity, Glutathione (GSH) and malondialdehyde (MDA) levels and Caspase 3 expression were evaluated. All three nano complexes, especially Pac, were able to increase cell viability, SOD and CAT activity, decreased Caspase 3 expression and prevented the generation of ROS and the loss of mitochondrial membrane potential caused by MPP(+). Pre-treatment with Pac and Paf nano complexes lead to a decrease of intracellular free Calcium, but Pas nano complex could not decrease it. Only Pac nano complex decreased MDA levels and other nano complexes could not change this parameter compared to MPP(+) treated cells. Hence according to the results, all nanochelating based nano complexes induced neuroprotective effects in an experimental model of PD, but the smallest nano complex, Pac, showed the best results.

  8. Neurotoxic effects of ochratoxin A on the subventricular zone of adult mouse brain.

    PubMed

    Paradells, Sara; Rocamonde, Brenda; Llinares, Cristina; Herranz-Pérez, Vicente; Jimenez, Misericordia; Garcia-Verdugo, Jose Manuel; Zipancic, Ivan; Soria, Jose Miguel; Garcia-Esparza, Ma Angeles

    2015-07-01

    Ochratoxin A (OTA), a mycotoxin that was discovered as a secondary metabolite of the fungal species Aspergillus and Penicillium, is a common contaminant in food and animal feed. This mycotoxin has been described as teratogenic, carcinogenic, genotoxic, immunotoxic and has been proven a potent neurotoxin. Other authors have previously reported the effects of OTA in different structures of the central nervous system as well as in some neurogenic regions. However, the impact of OTA exposure in the subventricular zone (SVZ) has not been assessed yet. To elucidate whether OTA affects neural precursors of the mouse SVZ we investigated, in vitro and in vivo, the effects of OTA exposure on the SVZ and on the neural precursors obtained from this neurogenic niche. In this work, we prove the cumulative effect of OTA exposure on proliferation, differentiation and depletion of neural stem cells cultured from the SVZ. In addition, we corroborated these results in vivo by immunohistochemistry and electron microscopy. As a result, we found a significant alteration in the proliferation process, which was evidenced by a decrease in the number of 5-bromo-2-deoxyuridine-positive cells and glial cells, as well as, a significant decrease in the number of neuroblasts in the SVZ. To summarize, in this study we demonstrate how OTA could be a threat to the developing and the adult SVZ through its impact in cell viability, proliferation and differentiation in a dose-dependent manner. PMID:25256750

  9. Neurotoxic effects of ochratoxin A on the subventricular zone of adult mouse brain.

    PubMed

    Paradells, Sara; Rocamonde, Brenda; Llinares, Cristina; Herranz-Pérez, Vicente; Jimenez, Misericordia; Garcia-Verdugo, Jose Manuel; Zipancic, Ivan; Soria, Jose Miguel; Garcia-Esparza, Ma Angeles

    2015-07-01

    Ochratoxin A (OTA), a mycotoxin that was discovered as a secondary metabolite of the fungal species Aspergillus and Penicillium, is a common contaminant in food and animal feed. This mycotoxin has been described as teratogenic, carcinogenic, genotoxic, immunotoxic and has been proven a potent neurotoxin. Other authors have previously reported the effects of OTA in different structures of the central nervous system as well as in some neurogenic regions. However, the impact of OTA exposure in the subventricular zone (SVZ) has not been assessed yet. To elucidate whether OTA affects neural precursors of the mouse SVZ we investigated, in vitro and in vivo, the effects of OTA exposure on the SVZ and on the neural precursors obtained from this neurogenic niche. In this work, we prove the cumulative effect of OTA exposure on proliferation, differentiation and depletion of neural stem cells cultured from the SVZ. In addition, we corroborated these results in vivo by immunohistochemistry and electron microscopy. As a result, we found a significant alteration in the proliferation process, which was evidenced by a decrease in the number of 5-bromo-2-deoxyuridine-positive cells and glial cells, as well as, a significant decrease in the number of neuroblasts in the SVZ. To summarize, in this study we demonstrate how OTA could be a threat to the developing and the adult SVZ through its impact in cell viability, proliferation and differentiation in a dose-dependent manner.

  10. A screening approach using zebrafish for the detection and characterization of developmental neurotoxicity.

    EPA Science Inventory

    Thousands of chemicals have little or no data to support developmental neurotoxicity risk assessments. Current developmental neurotoxicity guideline studies mandating mammalian model systems are expensive and time consuming. Therefore a rapid, cost-effective method to assess de...

  11. The neurotoxic effect of clindamycin - induced gut bacterial imbalance and orally administered propionic acid on DNA damage assessed by the comet assay: protective potency of carnosine and carnitine

    PubMed Central

    2013-01-01

    Background Comet assay is a quick method for assessing DNA damage in individual cells. It allows the detection of single and double DNA strand breaks, which represent the direct effect of some damaging agents. This study uses standard comet quantification models to compare the neurotoxic effect of orally administered propionic acid (PA) to that produced as a metabolite of bacterial overgrowth induced by clindamycin. Additionally, the protective effect of carnosine and carnitine as natural dietary supplements is assessed. Methods Single cell gel electrophoresis (comet assays) were performed on brain cortex and medulla samples after removal from nine groups of hamsters including: a control (untreated) group; PA-intoxicated group; clindamycin treated group; clindamycin-carnosine group and; clindamycin-carnitine group. Results There were significant double strand breaks recorded as tail length, tail moment and % DNA damage in PA and clindamycin-treated groups for the cortex and medulla compared to the control group. Neuroprotective effects of carnosine and carnitine were observed. Receiver Operating Characteristics curve (ROC) analysis showed satisfactory values of sensitivity and specificity of the comet assay parameters. Conclusion Percentage DNA damage, tail length, and tail moment are adequate biomarkers of PA neurotoxicity due to oral administration or as a metabolite of induced enteric bacterial overgrowth. Establishing biomarkers of these two exposures is important for protecting children’s health by documenting the role of the imbalance in gut microbiota in the etiology of autism through the gut-brain axis. These outcomes will help efforts directed at controlling the prevalence of autism, a disorder recently related to PA neurotoxicity. PMID:23587115

  12. Effect of vitamin B/sub 6/ on the neurotoxicity and pharmacology of desmethylmisonidazole and misonidazole: clinical and laboratory studies

    SciTech Connect

    Coleman, C.N.; Hirst, V.K.; Brown, D.M.; Halsey, J.

    1984-08-01

    The clinical usefulness of misonidazole (MISO) and desmethylmisonidazole (DMM) is severely limited by neurotoxicity. Based on theoretical considerations and on laboratory data suggesting that pyridoxine (PN) decreased MISO toxicity in mice. The authors attempted to ameliorate the clinical neuropathy of DMM using oral PN. Pharmacokinetic analysis suggested interaction of PN and DMM but no protection against neuropathy was observed. Serial experiments with C3H and BALB/c mice were done using various forms of vitamin B/sub 6/ (PN, pyridoxal, pyridoxal phosphate) administered orally and i.p. No consistent protection was observed. Dexamethasone did not alter MISO toxicity in mice, contrary to the clinical findings. They conclude that vitamin B/sub 6/ is not useful in preventing clinical neurotoxicity of MISO or DMM.

  13. Developmental Neurotoxic Effects of Percutaneous Drug Delivery: Behavior and Neurochemical Studies in C57BL/6 Mice.

    PubMed

    Wu, Huali; Feng, Junyi; Lv, Wenting; Huang, Qiaoling; Fu, Mengsi; Cai, Minxuan; He, Qiangqiang; Shang, Jing

    2016-01-01

    Dermatosis often as a chronic disease requires effective long-term treatment; a comprehensive evaluation of mental health of dermatology drug does not receive enough attention. An interaction between dermatology and psychiatry has been increasingly described. Substantial evidence has accumulated that psychological stress can be associated with pigmentation, endocrine and immune systems in skin to create the optimal responses against pathogens and other physicochemical stressors to maintain or restore internal homeostasis. Additionally, given the common ectodermal origin shared by the brain and skin, we are interested in assessing how disruption of skin systems (pigmentary, endocrine and immune systems) may play a key role in brain functions. Thus, we selected three drugs (hydroquinone, isotretinoin, tacrolimus) with percutaneous excessive delivery to respectively intervene in these systems and then evaluate the potential neurotoxic effects. Firstly, C57BL/6 mice were administrated a dermal dose of hydroquinone cream, isotretinoin gel or tacrolimus ointment (2%, 0.05%, 0.1%, respectively, 5 times of the clinical dose). Behavioral testing was performed and levels of proteins were measured in the hippocampus. It was found that mice treated with isotretinoin or tacrolimus, presented a lower activity in open-field test and obvious depressive-like behavior in tail suspension test. Besides, they damaged cytoarchitecture, reduced the level of 5-HT-5-HT1A/1B system and increased the expression of apoptosis-related proteins in the hippocampus. To enable sensitive monitoring the dose-response characteristics of the consecutive neurobehavioral disorders, mice received gradient concentrations of hydroquinone (2%, 4%, 6%). Subsequently, hydroquinone induced behavioral disorders and hippocampal dysfunction in a dose-dependent response. When doses were high as 6% which was 3 times higher than 2% dose, then 100% of mice exhibited depressive-like behavior. Certainly, 6% hydroquinone

  14. Developmental Neurotoxic Effects of Percutaneous Drug Delivery: Behavior and Neurochemical Studies in C57BL/6 Mice

    PubMed Central

    Lv, Wenting; Huang, Qiaoling; Fu, Mengsi; Cai, Minxuan; He, Qiangqiang

    2016-01-01

    Dermatosis often as a chronic disease requires effective long-term treatment; a comprehensive evaluation of mental health of dermatology drug does not receive enough attention. An interaction between dermatology and psychiatry has been increasingly described. Substantial evidence has accumulated that psychological stress can be associated with pigmentation, endocrine and immune systems in skin to create the optimal responses against pathogens and other physicochemical stressors to maintain or restore internal homeostasis. Additionally, given the common ectodermal origin shared by the brain and skin, we are interested in assessing how disruption of skin systems (pigmentary, endocrine and immune systems) may play a key role in brain functions. Thus, we selected three drugs (hydroquinone, isotretinoin, tacrolimus) with percutaneous excessive delivery to respectively intervene in these systems and then evaluate the potential neurotoxic effects. Firstly, C57BL/6 mice were administrated a dermal dose of hydroquinone cream, isotretinoin gel or tacrolimus ointment (2%, 0.05%, 0.1%, respectively, 5 times of the clinical dose). Behavioral testing was performed and levels of proteins were measured in the hippocampus. It was found that mice treated with isotretinoin or tacrolimus, presented a lower activity in open-field test and obvious depressive-like behavior in tail suspension test. Besides, they damaged cytoarchitecture, reduced the level of 5-HT-5-HT1A/1B system and increased the expression of apoptosis-related proteins in the hippocampus. To enable sensitive monitoring the dose-response characteristics of the consecutive neurobehavioral disorders, mice received gradient concentrations of hydroquinone (2%, 4%, 6%). Subsequently, hydroquinone induced behavioral disorders and hippocampal dysfunction in a dose-dependent response. When doses were high as 6% which was 3 times higher than 2% dose, then 100% of mice exhibited depressive-like behavior. Certainly, 6% hydroquinone

  15. Protective effect of hispidulin on kainic acid-induced seizures and neurotoxicity in rats.

    PubMed

    Lin, Tzu Yu; Lu, Cheng Wei; Wang, Su Jane; Huang, Shu Kuei

    2015-05-15

    Hispidulin is a flavonoid compound which is an active ingredient in a number of traditional Chinese medicinal herbs, and it has been reported to inhibit glutamate release. The purpose of this study was to investigate whether hispidulin protects against seizures induced by kainic acid, a glutamate analog with excitotoxic properties. The results indicated that intraperitoneally administering hispidulin (10 or 50mg/kg) to rats 30 min before intraperitoneally injecting kainic acid (15 mg/kg) increased seizure latency and decreased seizure score. In addition, hispidulin substantially attenuated kainic acid-induced hippocampal neuronal cell death, and this protective effect was accompanied by the suppression of microglial activation and the production of proinflammatory cytokines such as interleukin-1β, interleukin-6, and tumor necrosis factor-α in the hippocampus. Moreover, hispidulin reduced kainic acid-induced c-Fos expression and the activation of mitogen-activated protein kinases in the hippocampus. These data suggest that hispidulin has considerable antiepileptic, neuroprotective, and antiinflammatory effects on kainic acid-induced seizures in rats. PMID:25746462

  16. Misonidazole in patients receiving radical radiotherapy: pharmacokinetic effects of phenytoin tumor response and neurotoxicity

    SciTech Connect

    Moore, J.L.; Biol, F.I.; Patterson, I.C.M.; Dawes, P.J.D.K.; Henk, J.M.

    1982-03-01

    In 1978, a pilot study began of 29 patients with advanced tumors of the head and neck. The study showed an initial peripheral neuropathy rate of 55%, despite a dose limitation of 12 g/m/sup 2/ of misonidazole. Tumor response at 9 months was most encouraging. We are now able to examine tumor response and persistence of neuropathy in these patients 2 1/2 years after radical radiotherapy. The results are comparable with those obtained with hyperbaric oxygen in a clinical trial at this center during the 1970's. Neuropathy was a serious side effect but the drug phenytoin has been shown to shorten the half-life of misonidazole. We have examined the effect of phenytoin on the pharmacokinetics of misonidazole in 13 patients who received radical radiotherapy for advanced head and neck tumors or oesophageal tumors. Misonidazole was given in multiple doses, i.e. daily or weekly as it would be used in conventional therapy. Phenytoin was given either daily throughout treatment, or it was withdrawn during treatment. There were dramatic changes in the half-life of misonidazole, but the concentration at the time of irradiation was little affected. The significant changes in the half-life of misonidazole and the increased concentration of the metabolite desmethylmisonidazole are discussed.

  17. Mechanisms involved in the neurotoxic, cognitive, and neurobehavioral effects of alcohol consumption during adolescence.

    PubMed

    Guerri, Consuelo; Pascual, María

    2010-02-01

    Studies over the last decade demonstrate that adolescence is a brain maturation period from childhood to adulthood. Plastic and dynamic processes drive adolescent brain development, creating flexibility that allows the brain to refine itself, specialize, and sharpen its functions for specific demands. Maturing connections enable increased communication among brain regions, allowing greater integration and complexity. Compelling evidence has shown that the developing brain is vulnerable to the damaging effects of ethanol. It is possible to infer, therefore, that alcohol exposure during the critical adolescent developmental stages could disrupt the brain plasticity and maturation processes, resulting in behavioral and cognitive deficits. Recent neuroimaging studies have provided evidence of the impact of human adolescent drinking in brain structure and functions. Findings in experimental animals have also given new insight into the potential mechanisms of the toxic effects of ethanol on both adolescent brain maturation and the short- and long-term cognitive consequences of adolescent drinking. Adolescence is also characterized by the rapid maturation of brain systems mediating reward and by changes in the secretion of stress-related hormones, events that might participate in the increasing in anxiety and the initiation pattern of alcohol and drug consumption. Studies in human adolescents demonstrate that drinking at early ages can enhance the likelihood of developing alcohol-related problems. Experimental evidence suggests that early exposure to alcohol sensitizes the neurocircuitry of addiction and affects chromatin remodeling, events that could induce abnormal plasticity in reward-related learning processes that contribute to adolescents' vulnerability to drug addiction. In this article, we review the potential mechanisms by which ethanol impacts brain development and lead to brain impairments and cognitive and behavioral dysfunctions as well as the neurobiological

  18. Voluntary exercise reduces the neurotoxic effects of 6-hydroxydopamine in maternally separated rats

    PubMed Central

    Mabandla, Musa Vuyisile; Russell, Vivienne Ann

    2010-01-01

    Maternal separation has been associated with development of anxiety-like behaviour and learning impairments in adult rats. This has been linked to changes in brain morphology observed after exposure to high levels of circulating glucocorticoids during the stress-hyporesponsive period (P4 to P14). In the present study, adult rats that had been subjected to maternal separation (180 min/day for 14 days) during the stress-hyporesponsive period, received unilateral infusions of a small dose of 6-hydroxydopamine (6-OHDA, 5 μg/4 μl saline) into the medial forebrain bundle. The results showed that voluntary exercise had a neuroprotective effect in both non-stressed and maternally separated rats in that there was a decrease in forelimb akinesia (step test) and limb use asymmetry (cylinder test). Maternal separation increased forelimb akinesia and forelimb use asymmetry and reduced the beneficial effect of exercise on forelimb akinesia. It also reduced exploratory behaviour, consistent with anxiety-like behaviour normally associated with maternal separation. Exercise appeared to reduce dopamine neuron destruction in the lesioned substantia nigra when expressed as a percentage of the non-lesioned hemisphere. However, this appeared to be due to a compensatory decrease in completely stained tyrosine hydroxylase positive neurons in the contralateral, non-lesioned substantia nigra. In agreement with reports that maternal separation increases the 6-OHDA-induced loss of dopamine terminals in the striatum, there was a small increase in dopamine neuron destruction when expressed as a percentage of the non-lesioned hemisphere but there was no difference in dopamine cell number, suggesting that exposure to maternal separation did not exacerbate dopamine cell loss. PMID:20206210

  19. Phosphoinositide 3-Kinase γ Restrains Neurotoxic Effects of Microglia After Focal Brain Ischemia.

    PubMed

    Schmidt, Caroline; Frahm, Christiane; Schneble, Nadine; Müller, Jörg P; Brodhun, Michael; Franco, Irene; Witte, Otto W; Hirsch, Emilio; Wetzker, Reinhard; Bauer, Reinhard

    2016-10-01

    Phosphoinositide 3-kinase γ (PI3Kγ) is linked to neuroinflammation and phagocytosis. This study was conducted to elucidate conjectural differences of lipid kinase-dependent and kinase-independent functions of PI3Kγ in the evolvement of brain damage induced by focal cerebral ischemia/reperfusion. Therefore, PI3Kγ wild-type, knockout, and kinase-dead mice were subjected to middle cerebral artery occlusion followed by reperfusion. Tissue damage and cellular composition were assessed by immunohistochemical stainings. In addition, microglial cells derived from respective mouse genotypes were used for analysis of PI3Kγ effects on phagocytic activity, matrix metalloproteinase-9 release, and cAMP content under conditions of oxygen/glucose deprivation and recovery. Brain infarction was more pronounced in PI3Kγ-knockout mice compared to wild-type and kinase-dead mice 48 h after reperfusion. Immunohistochemical analyses revealed a reduced amount of galectin-3/MAC-2-positive microglial cells indicating that activated phagocytosis was reduced in ischemic brains of knockout mice. Cell culture studies disclosed enhanced metalloproteinase-9 secretion in supernatants derived from microglia of PI3Kγ-deficient mice after 2-h oxygen/glucose deprivation and 48-h recovery. Furthermore, PI3Kγ-deficient microglial cells showed a failed phagocytic activation throughout the observed recovery period. Lastly, PI3Kγ-deficient microglia exhibited strongly increased cAMP levels in comparison with wild-type microglia or cells expressing kinase-dead PI3Kγ after oxygen/glucose deprivation and recovery. Our data suggest PI3Kγ kinase activity-independent control of cAMP phosphodiesterase as a crucial mediator of microglial cAMP regulation, MMP-9 expression, and phagocytic activity following focal brain ischemia/recirculation. The suppressive effect of PI3Kγ on cAMP levels appears critical for the restriction of ischemia-induced immune cell functions and in turn tissue damage.

  20. Neurotoxicity of Brominated Flame Retardants: (In)direct Effects of Parent and Hydroxylated Polybrominated Diphenyl Ethers on the (Developing) Nervous System

    PubMed Central

    van den Berg, Martin; Westerink, Remco H.S.

    2011-01-01

    Background/objective: Polybrominated diphenyl ethers (PBDEs) and their hydroxylated (OH-) or methoxylated forms have been detected in humans. Because this raises concern about adverse effects on the developing brain, we reviewed the scientific literature on these mechanisms. Data synthesis: Many rodent studies reported behavioral changes after developmental, neonatal, or adult exposure to PBDEs, and other studies documented subtle structural and functional alterations in brains of PBDE-exposed animals. Functional effects have been observed on synaptic plasticity and the glutamate–nitric oxide–cyclic guanosine monophosphate pathway. In the brain, changes have been observed in the expression of genes and proteins involved in synapse and axon formation, neuronal morphology, cell migration, synaptic plasticity, ion channels, and vesicular neurotransmitter release. Cellular and molecular mechanisms include effects on neuronal viability 
(via apoptosis and oxidative stress), neuronal differentiation and migration, neurotransmitter release/uptake, neurotransmitter receptors and ion channels, calcium (Ca2+) homeostasis, and intracellular signaling pathways. Discussion: Bioactivation of PBDEs by hydroxylation has been observed for several endocrine end points. This has also been observed for mechanisms related to neurodevelopment, including binding to thyroid hormone receptors and transport proteins, disruption of Ca2+ homeostasis, and modulation of GABA and nicotinic acetylcholine receptor function. Conclusions: The increased hazard for developmental neurotoxicity by hydroxylated (OH-)PBDEs compared with their parent congeners via direct neurotoxicity and thyroid disruption clearly warrants further investigation into a) the role of oxidative metabolism in producing active metabolites of PBDEs and their impact on brain development; b) concentrations of parent and OH-PBDEs in the brain; and c) interactions between different environmental contaminants during exposure to

  1. Neuroprotective effect of curcumin in arsenic-induced neurotoxicity in rats.

    PubMed

    Yadav, Rajesh S; Shukla, Rajendra K; Sankhwar, Madhu Lata; Patel, Devendra K; Ansari, Reyaz W; Pant, Aditya B; Islam, Fakhrul; Khanna, Vinay K

    2010-09-01

    Our recent studies have shown that arsenic-induced neurobehavioral toxicity is protected by curcumin by modulating oxidative stress and dopaminergic functions in rats. In addition, the neuroprotective effect of curcumin has been investigated on arsenic-induced alterations in biogenic amines, their metabolites and nitric oxide (NO), which play an important role in neurotransmission process. Decrease in the levels of dopamine (DA, 28%), norepinephrine (NE, 54%), epinephrine (EPN, 46%), serotonin (5-HT, 44%), 3,4-dihydroxyphenylacetic acid (DOPAC, 20%) and homovanillic acid (HVA, 31%) in corpus striatum; DA (51%), NE (22%), EPN (47%), 5-HT (25%), DOPAC (34%) and HVA (41%) in frontal cortex and DA (35%), NE (35%), EPN (29%), 5-HT (54%), DOPAC (37%) and HVA (46%) in hippocampus, observed in arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) treated rats exhibited a trend of recovery in rats simultaneously treated with arsenic and curcumin (100 mg/kg body weight, p.o., 28 days). Increased levels of NO in corpus striatum (2.4-fold), frontal cortex (6.1-fold) and hippocampus (6.2-fold) in arsenic-treated rats were found decreased in rats simultaneously treated with arsenic and curcumin. It is evident that curcumin modulates levels of brain biogenic amines and NO in arsenic-exposed rats and these results further strengthen its neuroprotective efficacy.

  2. BRAIN DEVELOPMENT AND METHYLMERCURY: UNDERESTIMATION OF NEUROTOXICITY

    PubMed Central

    Grandjean, Philippe; Herz, Katherine T.

    2011-01-01

    Methylmercury is now recognized as an important developmental neurotoxicant, though this insight developed slowly over many decades. Developmental neurotoxicity was first reported in a Swedish case report in 1952, and from a serious outbreak in Minamata, Japan a few years later. While the infant suffered congenital poisoning, the mother was barely harmed, thus reflecting a unique vulnerability of the developing nervous system. Nonetheless, exposure limits for this environmental chemical were based solely on adult toxicity until 50 years after the first report on developmental neurotoxicity. Even current evidence is affected by uncertainty, most importantly by imprecision of the exposure assessment in epidemiological studies. Detailed calculations suggest that the relative imprecision may be as much as 50%, or greater, thereby substantially biasing the results toward the null. In addition, as methylmercury exposure usually originates from fish and seafood that also contains essential nutrients, so-called negative confounding may occur. Thus, the beneficial effects of the nutrients may appear to dampen the toxicity, unless proper adjustment is included in the analysis to reveal the true extent of adverse effects. These problems delayed the recognition of low-level methylmercury neurotoxicity. However, such problems are not unique, and many other industrial compounds are thought to cause developmental neurotoxicity, mostly with less epidemiological support than methylmercury. The experience obtained with methylmercury should therefore be taken into account when evaluating the evidence for other substances suspected of being neurotoxic. PMID:21259267

  3. Methamphetamine-, d-Amphetamine-, and p-Chloroamphetamine-Induced Neurotoxicity Differentially Effect Impulsive Responding on the Stop-Signal Task in Rats.

    PubMed

    Furlong, Teri M; Leavitt, Lee S; Keefe, Kristen A; Son, Jong-Hyun

    2016-05-01

    Abused amphetamines, such as d-amphetamine (AMPH) and methamphetamine (METH), are highly addictive and destructive to health and productive lifestyles. The abuse of these drugs is associated with impulsive behavior, which is likely to contribute to addiction. The amphetamines also differentially damage dopamine (DA) and serotonin (5-HT) systems, which regulate impulsive behavior; therefore, exposure to these drugs may differentially alter impulsive behavior to effect the progression of addiction. We examined the impact of neurotoxicity induced by three amphetamines on impulsive action using a stop-signal task in rats. Animals were rewarded with a food pellet after lever pressing (i.e., a go trial), unless an auditory cue was presented and withholding lever press gained reward (i.e., a stop trial). Animals were trained on the task and then exposed to a neurotoxic regimen of either AMPH, p-chloroamphetamine (PCA), or METH. These regimens preferentially reduced DA transporter levels in striatum, 5-HT transporter levels in prefrontal cortex, or both, respectively. Assessment of performance on the stop-signal task beginning 1 week after the treatment revealed that AMPH produced a deficit in go-trial performance, whereas PCA did not alter performance on either trial type. In contrast, METH produced a deficit in stop-trial performance (i.e., impulsive action) but not go-trial performance. These findings suggest that the different neurotoxic consequences of substituted amphetamines are associated with different effects on inhibitory control over behavior. Thus, the course of addiction and maladaptive behavior resulting from exposure to these substances is likely to differ.

  4. Methamphetamine-, d-Amphetamine-, and p-Chloroamphetamine-Induced Neurotoxicity Differentially Effect Impulsive Responding on the Stop-Signal Task in Rats.

    PubMed

    Furlong, Teri M; Leavitt, Lee S; Keefe, Kristen A; Son, Jong-Hyun

    2016-05-01

    Abused amphetamines, such as d-amphetamine (AMPH) and methamphetamine (METH), are highly addictive and destructive to health and productive lifestyles. The abuse of these drugs is associated with impulsive behavior, which is likely to contribute to addiction. The amphetamines also differentially damage dopamine (DA) and serotonin (5-HT) systems, which regulate impulsive behavior; therefore, exposure to these drugs may differentially alter impulsive behavior to effect the progression of addiction. We examined the impact of neurotoxicity induced by three amphetamines on impulsive action using a stop-signal task in rats. Animals were rewarded with a food pellet after lever pressing (i.e., a go trial), unless an auditory cue was presented and withholding lever press gained reward (i.e., a stop trial). Animals were trained on the task and then exposed to a neurotoxic regimen of either AMPH, p-chloroamphetamine (PCA), or METH. These regimens preferentially reduced DA transporter levels in striatum, 5-HT transporter levels in prefrontal cortex, or both, respectively. Assessment of performance on the stop-signal task beginning 1 week after the treatment revealed that AMPH produced a deficit in go-trial performance, whereas PCA did not alter performance on either trial type. In contrast, METH produced a deficit in stop-trial performance (i.e., impulsive action) but not go-trial performance. These findings suggest that the different neurotoxic consequences of substituted amphetamines are associated with different effects on inhibitory control over behavior. Thus, the course of addiction and maladaptive behavior resulting from exposure to these substances is likely to differ. PMID:26846719

  5. Neurotoxicity and Behavior

    EPA Science Inventory

    Neurotoxicity is important to consider as a component of occupational and environmental safety and health programs. The failure to do so has contributed to a number of cases in which workers, consumers of manufactured products, and people exposed in the environment were irreparab...

  6. Acute ethanol effects on focal cerebral ischemia in fasted rats.

    PubMed

    Zhao, Y J; Yang, G Y; Ben-Joseph, O; Ross, B D; Chenevert, T L; Domino, E F

    1998-05-01

    The effects of acute ethanol intoxication were investigated in a rat model of unilateral middle cerebral artery occlusion. Groups of 5 to 8 male Sprague-Dawley rats were subjected to 4 hr of left middle cerebral artery occlusion. All groups were deprived of food overnight and were pretreated intraperitoneally with 5% dextrose solution (10 ml/kg), 20% ethyl alcohol in 5% dextrose solution (2 g/kg), or 30% ethyl alcohol in a 5% dextrose solution (3 g/kg) 1 hr before middle cerebral artery occlusion. Regional cerebral blood flow during ipsilateral occlusion was approximately 9.1 to 10% of baseline in all groups. The mean % brain water content in control, 2 g/kg ethanol-treated groups, and 3 g/kg ethanol-treated groups were: in the ischemic core--81.6, 81.2, and 82.4; intermediate zone--80.5, 80.6, and 81.7; and outer zone--79.7, 79.7, and 80.8, respectively. Brain Na+ and K+ content in the three groups was related to water content, but much greater with ethanol pretreatment. The water content of the intermediate zones in the 3 g/kg ethanol-treated animals was significantly greater than in the control (p < 0.01 and 0.001) and the 2 g/kg ethanol-treated groups. One-way analysis of variance indicated a significant dose-effect relationship in which the lower dose of ethanol tended to reduce ischemic core water content, and the larger dose increased ischemic core water, compared with the control. None of the overnight fasted groups had any significant hyperglycemia. The group given 3 g/kg i.p. ethanol 1 hr before had exacerbated edema formation with a mean whole blood level of ethanol of approximately 230 mg/dl. The neurotoxic effects of high concentrations of ethanol were unrelated to any change in plasma glucose concentrations.

  7. Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: involvement of glutamate excitotoxicity.

    PubMed

    Cattani, Daiane; de Liz Oliveira Cavalli, Vera Lúcia; Heinz Rieg, Carla Elise; Domingues, Juliana Tonietto; Dal-Cim, Tharine; Tasca, Carla Inês; Mena Barreto Silva, Fátima Regina; Zamoner, Ariane

    2014-06-01

    Previous studies demonstrate that glyphosate exposure is associated with oxidative damage and neurotoxicity. Therefore, the mechanism of glyphosate-induced neurotoxic effects needs to be determined. The aim of this study was to investigate whether Roundup(®) (a glyphosate-based herbicide) leads to neurotoxicity in hippocampus of immature rats following acute (30min) and chronic (pregnancy and lactation) pesticide exposure. Maternal exposure to pesticide was undertaken by treating dams orally with 1% Roundup(®) (0.38% glyphosate) during pregnancy and lactation (till 15-day-old). Hippocampal slices from 15 day old rats were acutely exposed to Roundup(®) (0.00005-0.1%) during 30min and experiments were carried out to determine whether glyphosate affects (45)Ca(2+) influx and cell viability. Moreover, we investigated the pesticide effects on oxidative stress parameters, (14)C-α-methyl-amino-isobutyric acid ((14)C-MeAIB) accumulation, as well as glutamate uptake, release and metabolism. Results showed that acute exposure to Roundup(®) (30min) increases (45)Ca(2+) influx by activating NMDA receptors and voltage-dependent Ca(2+) channels, leading to oxidative stress and neural cell death. The mechanisms underlying Roundup(®)-induced neurotoxicity also involve the activation of CaMKII and ERK. Moreover, acute exposure to Roundup(®) increased (3)H-glutamate released into the synaptic cleft, decreased GSH content and increased the lipoperoxidation, characterizing excitotoxicity and oxidative damage. We also observed that both acute and chronic exposure to Roundup(®) decreased (3)H-glutamate uptake and metabolism, while induced (45)Ca(2+) uptake and (14)C-MeAIB accumulation in immature rat hippocampus. Taken together, these results demonstrated that Roundup(®) might lead to excessive extracellular glutamate levels and consequently to glutamate excitotoxicity and oxidative stress in rat hippocampus.

  8. NEUROTOXICITY PRODUCED BY DIBROMOACETIC ACID IN DRINKING WATER OF RATS.

    EPA Science Inventory

    This manuscript examines the neurotoxic potential of a commonly found disinfection by-product (DBP), dibromoacetic acid (DBA). While the Safe Drinking Water Act requires evaluation of DBPs for noncancer health effects, surprisingly few have been tested for neurotoxicity. Rats e...

  9. Neurotoxic and teratogenic effects of an organophosphorus insecticide (phenyl phosphonothioic acid-O-ethyl -O-[4-nitrophenyl] ester) on mallard development

    USGS Publications Warehouse

    Hoffman, D.J.; Sileo, L.

    1984-01-01

    Phenyl phosphonothioic acid-O-ethyl-O-[4-nitrophenyl] ester (EPN) is one of the 10 most frequently used organophosphorus insecticides and causes delayed neurotoxicity in adult chickens and mallards. Small amounts of organophosphorus insecticides placed on birds' eggs are embryotoxic and teratogenic. For this reason, the effects of topical egg application on EPN were examined on mallard (Anas platyrhynchos) embryo development. Mallard eggs were treated topically at 72 hr of incubation with 25 microliter of a nontoxic oil vehicle or with EPN in the vehicle at concentrations of approximately 12, 36, or 108 micrograms/g egg, equivalent to one, three, and nine times the agricultural level of application used to spray crops. Treatment with EPN resulted in 22 to 44% mortality over this dose range by 18 days of development compared with 4 and 5% for untreated and vehicle-treated controls. EPN impaired embryonic growth and was highly teratogenic: 37-42% of the surviving embryos at 18 days were abnormal with cervical and axial scoliosis as well as severe edema. Brain weights were significantly lower in EPN-treated groups at different stages of development including hatchlings. Brain neurotoxic esterase (NTE) activity was inhibited by as much as 91% at 11 days, 81% at 18 days, and 79% in hatchlings. Examination of brain NTE activity during the course of normal development revealed an increase of nearly sixfold from Day 11 through hatching. The most rapid increase occurred between Day 20 and hatching. Brain acetylcholinesterase (AChE) activity was inhibited by as much as 41% at 11 days, 47% at 18 days, and 20% in hatchlings. Plasma cholinesterase and alkaline phosphatase activities were inhibited and plasma aspartate aminotransferase activity was increased at one or more stages of development. Hatchlings from EPN-treated eggs were weaker and slower to right themselves. Histopathological examination did not reveal demyelination and axonopathy of the spinal cord that was

  10. MANAGING EXPOSURES TO NEUROTOXIC AIR POLLUTANTS.

    EPA Science Inventory

    Researchers at EPA's National Health and Environmental Effects Research Laboratory are developing a biologically-based dose-response model to describe the neurotoxic effects of exposure to volatile organic compounds (VOCs). The model is being developed to improve risk assessment...

  11. Effect of process parameters upon the dopamine and lipid peroxidation activity of selected MIG welding fumes as a marker of potential neurotoxicity.

    PubMed

    Hudson, N J; Evans, A T; Yeung, C K; Hewitt, P J

    2001-04-01

    There is growing concern over the neurotoxic effects of chronic occupational exposure to metal fume produced by welding. Elevated iron and manganese levels in the brain have been linked to an increase in lipid peroxidation, dopamine depletion and predisposition to the development of a Parkinson's type condition in advanced cases. Chemical and toxicological analysis of selected welding fumes, generated by model processes, were used in order to evaluate their potential to release solutes that promote oxidation of dopamine and peroxidation of brain lipids in cell free assays. This study compared the effect of shield gas, electrode type and voltage/currect upon the dopamine and brain lipid peroxidation potential of selected welding fume, obtained from metal inert gas (MIG) welding systems. Overall, fume extracts were found to enhance dopamine oxidation and inhibit lipid peroxidation. Significant differences were also found in the oxidising potential of fume generated under differing process conditions; it may therefore be possible to determine the potential neurotoxicity of fumes using this system.

  12. Early Activation of STAT3 Regulates Reactive Astrogliosis Induced by Diverse Forms of Neurotoxicity

    PubMed Central

    O'Callaghan, James P.; Kelly, Kimberly A.; VanGilder, Reyna L.; Sofroniew, Michael V.; Miller, Diane B.

    2014-01-01

    Astrogliosis, a cellular response characterized by astrocytic hypertrophy and accumulation of GFAP, is a hallmark of all types of central nervous system (CNS) injuries. Potential signaling mechanisms driving the conversion of astrocytes into “reactive” phenotypes differ with respect to the injury models employed and can be complicated by factors such as disruption of the blood-brain barrier (BBB). As denervation tools, neurotoxicants have the advantage of selective targeting of brain regions and cell types, often with sparing of the BBB. Previously, we found that neuroinflammation and activation of the JAK2-STAT3 pathway in astrocytes precedes up regulation of GFAP in the MPTP mouse model of dopaminergic neurotoxicity. Here we show that multiple mechanistically distinct mouse models of neurotoxicity (MPTP, AMP, METH, MDA, MDMA, KA, TMT) engender the same neuroinflammatory and STAT3 activation responses in specific regions of the brain targeted by each neurotoxicant. The STAT3 effects seen for TMT in the mouse could be generalized to the rat, demonstrating cross-species validity for STAT3 activation. Pharmacological antagonists of the neurotoxic effects blocked neuroinflammatory responses, pSTAT3tyr705 and GFAP induction, indicating that damage to neuronal targets instigated astrogliosis. Selective deletion of STAT3 from astrocytes in STAT3 conditional knockout mice markedly attenuated MPTP-induced astrogliosis. Monitoring STAT3 translocation in GFAP-positive cells indicated that effects of MPTP, METH and KA on pSTAT3tyr705 were localized to astrocytes. These findings strongly implicate the STAT3 pathway in astrocytes as a broadly triggered signaling pathway for astrogliosis. We also observed, however, that the acute neuroinflammatory response to the known inflammogen, LPS, can activate STAT3 in CNS tissue without inducing classical signs of astrogliosis. Thus, acute phase neuroinflammatory responses and neurotoxicity-induced astrogliosis both signal through

  13. Neuroprotective approaches in experimental models of beta-amyloid neurotoxicity: relevance to Alzheimer's disease.

    PubMed

    Harkany, T; Hortobágyi, T; Sasvári, M; Kónya, C; Penke, B; Luiten, P G; Nyakas, C

    1999-08-01

    1. beta-Amyloid peptides (A beta s) accumulate abundantly in the Alzheimer's disease (AD) brain in areas subserving information acquisition and processing, and memory formation. A beta fragments are produced in a process of abnormal proteolytic cleavage of their precursor, the amyloid precursor protein (APP). While conflicting data exist in the literature on the roles of A beta s in the brain, and particularly in AD, recent studies have provided firm experimental evidence for the direct neurotoxic properties of A beta. 2. Sequence analysis of A beta s revealed a high degree of evolutionary conservation and inter-species homology of the A beta amino acid sequence. In contrast, synthetic A beta fragments, even if modified fluorescent or isotope-labeled derivatives, are pharmacological candidates for in vitro and in vivo modeling of their cellular actions. During the past decade, acute injection, prolonged mini-osmotic brain perfusion approaches or A beta infusions into the blood circulation were developed in order to investigate the effects of synthetic A beta s, whereas transgenic models provided insight into the distinct molecular steps of pathological APP cleavage. 3. The hippocampus, caudate putamen, amygdala and neocortex all formed primary targets of acute neurotoxicity screening, but functional consequences of A beta infusions were primarily demonstrated following either intracerebroventricular or basal forebrain (medial septum or magnocellular basal nucleus (MBN)) infusions of A beta fragments. 4. In vivo investigations confirmed that, while the active core of A beta is located within the beta(25-35) sequence, the flanking peptide regions influence not only the folding properties of the A beta fragments, but also their in vivo neurotoxic potentials. 5. It has recently been established that A beta administration deranges neuron-glia signaling, affects the glial glutamate uptake and thereby induces noxious glutamatergic stimulation of nerve cells. In fact, a

  14. Effect of acute exposure to malathion and lead on sprint performance of the western fence lizard (Sceloporus occidentalis).

    PubMed

    Holem, R R; Hopkins, William A; Talent, Larry G

    2006-07-01

    There are few ecotoxicological studies involving reptiles, despite the fact that anthropogenic pollutants have been identified as a major threat to reptile populations worldwide. Particularly lacking are effects-based studies in reptiles exposed to known concentrations of contaminants. We hypothesized that acute exposure to neurotoxic metals and pesticides could influence locomotor performance of reptiles. To test this hypothesis, we exposed western fence lizards (Sceloporus occidentalis) to two common and widely studied neurotoxic contaminants, malathion and lead (Pb). Single doses were administered via oral gavage at order-of-magnitude levels ranging from 0.2 to 200 and 1.0 to 1,000 mg/kg (body weight basis) for malathion and Pb, respectively. Lizard sprint velocity was determined using a 2.3-m sprint track interfaced with a laptop computer 24 hrs prior to dosing and again at 4, 24, 120, and 312 hrs post-dose. Twenty percent and 30% mortality occurred at the highest malathion and Pb dose levels (200 and 1000 mg/kg) and 70% of the lizards exposed to 200 mg/kg malathion exhibited clinical symptoms of organophosphate poisoning. Contrary to our predictions, exposure to Pb had no effect on locomotor performance, and exposure to the highest concentration of malathion increased sprint velocity. Based on the fact that the lower and most ecologically relevant concentrations of Pb and malathion had no effect on sprint velocity, we suggest that other performance parameters that require fine locomotor skills (e.g., climbing ability) may be more sensitive metrics of acute neurotoxicity and warrant further study. PMID:16465557

  15. Correlation of the clinical neurotoxicity of the vinca alkaloids vincristine, vinblastine, and vindesine with their effects on cultured rat midbrain cells.

    PubMed

    King, K L; Boder, G B

    1979-01-01

    Clinical experience with three vinca alkaloids currently in use as antineoplastic agents has shown a difference in the degree of peripheral neurotoxicity manifested by these compounds: vincristine greater than vindesine greater than vinblastine. This phenomenon may reflect differences in pharmacokinetics and/or the differential response of the nerve tissue itself. Differences in pharmacokinetics can be avoided by studying the direct effects of the vinca alkaloids on primary cultures of neuronal and glial cells. Vincristine at a dose as low as 0.004 microgram/ml affects the cells with processes in cultures of dissociated newborn rat midbrain. In 3-day-old cultures, after 24 h of drug treatment there is a loss of processes and swelling of the cell body. We have used this observation as the basis for a quantitative assay of the toxicity of a series of vinca compounds, and have found that for a dose range of 0.1--0.004 microgram/ml the relative toxicity of vincristine, vinblastine, and vindesine in this system correlates with their relative clinical neurotoxicity. Validation of the predictive elements of this system awaits clinical experience with novel vinca compounds.

  16. Neuroprotective Effect of Total and Sequential Extract of Scrophularia striata Boiss. in Rat Cerebellar Granule Neurons Following Glutamate- Induced Neurotoxicity: An In-vitro Study

    PubMed Central

    Salavati, Parvin; Ramezani, Mina; Monsef-Esfahani, Hamid R; Hajiagha, Reza; Parsa, Maliheh; Tavajohi, Shoreh; Ostad, Seyed Nasser

    2013-01-01

    Neuroprotective effect of the extract from aerial parts of Scrophularia striata Boiss (Scrophulariaceae) was investigated against glutamate-induced neurotoxicity on cultured rat pups Cerebellar Granule Neurons (CGNs). CGNs from 8 days old Sprague-Dawley rat were prepared and cultured. The experiments were performed after 8 days in culture. The plant was collected from the northeastern part (Ruin region) of Iran and air-dried at room temperature. The total extract was prepared with maceration of prepared powder in ethanol 80% for three times. Sequential extracts were obtained using dried and powdered aerial parts with increasingly polar solvents: petroleum ether, chloroform, ethyl acetate and methanol 80% solution. Cultured cells were exposed to 125 μM of glutamate for 12 h following a 24 h of incubation with test fractions at concentration of 10 mcg/mL. Morphological assay was performed using invert light microscope after fixation and staining with haematoxylin. Neuronal viability was measured using MTT assay. Statistical analysis was done using SPSS software. One way analysis of variance (ANOVA) was performed by Tukey post-hoc test. Values were considered statistically significant when p-value ≤ 0.05. Results of this study showed a significant neuroprotective activity of high polarity methanolic fraction of aerial parts of Scrophularia striata against glutamate-induced neurotoxicity in a dosedependent manner. Treatment with 10 mcg/mL of the fractions showed the best result. PMID:24250613

  17. Neurotoxic injury pathways in differentiated mouse motor neuron–neuroblastoma hybrid (NSC-34D) cells in vitro—Limited effect of riluzole on thapsigargin, but not staurosporine, hydrogen peroxide and homocysteine neurotoxicity

    SciTech Connect

    Hemendinger, Richelle A.; Brooks, Benjamin Rix

    2012-01-15

    The neuroblastoma–spinal motor neuron fusion cell line, NSC-34, in its differentiated form, NSC-34D, permits examining the effects of riluzole, a proven treatment for amyotrophic lateral sclerosis (ALS) on cell death induction by staurosporine (STS), thapsigargin (Thaps), hydrogen peroxide (H{sub 2}O{sub 2}) and homocysteine (HCy). These neurotoxins, applied exogenously, have mechanisms of action related to the various proposed molecular pathogenetic pathways in ALS and are differentiated from endogenous cell death that is associated with cytoplasmic aggregate formation in motor neurons. Nuclear morphology, caspase-3/7 activation and high content imaging were used to assess toxicity of these neurotoxins with and without co-treatment with riluzole, a benzothiazole compound with multiple pharmacological actions. STS was the most potent neurotoxin at killing NSC-34D cells with a toxic concentration at which 50% of maximal cell death is achieved (TC{sub 50} = 0.01 μM), followed by Thaps (TC{sub 50} = 0.9 μM) and H{sub 2}O{sub 2} (TC{sub 50} = 15 μM) with HCy requiring higher concentrations to kill at the same level (TC{sub 50} = 2200 μM). Riluzole provided neurorescue with a 20% absolute reduction (47.6% relative reduction) in apoptotic cell death against Thaps-induced NSC-34D cell (p ≤ 0.05), but had no effect on STS-, H{sub 2}O{sub 2}- and HCy-induced NSC-34D cell death. This effect of riluzole on Thaps induction of cell death was independent of caspase-3/7 activation. Riluzole mitigated a toxin that can cause intracellular calcium dysregulation associated with endoplasmic reticulum (ER) stress but not toxins associated with other cell death mechanisms. -- Highlights: ► Calcium-dependent neurotoxins are potent cell death inducers in NSC-34D cells. ► Riluzole provides neurorescue against Thaps-induced NSC-34D cell death. ► Riluzole had no effect on neurotoxicity by STS, H{sub 2}O{sub 2} and Hcy. ► Riluzole reduces NSC-34D cell death independent of

  18. Protective effects of xyloketal B against MPP+-induced neurotoxicity in Caenorhabditis elegans and PC12 cells.

    PubMed

    Lu, Xi-Lin; Yao, Xiao-Li; Liu, Zhiyong; Zhang, Heng; Li, Wei; Li, Zhenxing; Wang, Guan-Lei; Pang, Jiyan; Lin, Yongcheng; Xu, Zhongliang; Chen, Ling; Pei, Zhong; Zeng, Jinsheng

    2010-05-21

    Parkinson's disease (PD) is the second most common neurodegenerative disease, affecting 2% of the population over age 65years. Mitochondrial defect and oxidative stress actively participate in the dopaminergic (DA) neuron degeneration in PD. Xyloketal B is a novel marine compound with unique chemical structure isolated from mangrove fungus Xylaria sp. (no. 2508). Recently, we have demonstrated that Xyloketal B can directly scavenge DPPH free radicals and protects mitochondria against oxidative insult. In the present study, we investigate the neuroprotective action of xyloketal B against MPP+-induced neurotoxicity in Caenorhabditis elegans and PC12 cells. The viability and DA neurodegeneration was assessed in C. elegans selectively expressing green fluorescent protein (GFP) in DA neurons. PC12 cell damage was measured using MTT and nuclear morphology. Intracellular reactive oxygen species (ROS), mitochondrial membrane potential and total GSH were assessed. Xyloketal B dose-dependently protected against MPP+-induced loss of viability and DA neurodegeneration in C. elegans. Similar neuroprotection was replicated in MPP+ PC12 cell model. In addition, xyloketal B attenuated MPP+-induced intracellular ROS accumulation, loss of mitochondrial membrane potential and restored total GSH level in PC12 cells. All together, the present study demonstrates that xyloketal B protects against MPP+-induced neurotoxicity in C. elegans and PC12 cells mainly through its antioxidant property and restoration of total GSH level. PMID:20347725

  19. C-Phycocyanin protects against acute tributyltin chloride neurotoxicity by modulating glial cell activity along with its anti-oxidant and anti-inflammatory property: A comparative efficacy evaluation with N-acetyl cysteine in adult rat brain.

    PubMed

    Mitra, Sumonto; Siddiqui, Waseem A; Khandelwal, Shashi

    2015-08-01

    Spirulina is a widely used health supplement and is a dietary source of C-Phycocyanin (CPC), a potent anti-oxidant. We have previously reported the neurotoxic potential of tributyltin chloride (TBTC), an environmental pollutant and potent biocide. In this study, we have evaluated the protective efficacy of CPC against TBTC induced neurotoxicity. To evaluate the extent of neuroprotection offered by CPC, its efficacy was compared with the degree of protection offered by N-acetylcysteine (NAC) (a well known neuroprotective drug, taken as a positive control). Male Wistar rats (28 day old) were administered with 20mg/kg TBTC (oral) and 50mg/kg CPC or 50mg/kg NAC (i.p.), alone or in combination, and various parameters were evaluated. These include blood-brain barrier (BBB) damage; redox parameters (ROS, GSH, redox pathway associated enzymes, oxidative stress markers); inflammatory, cellular, and stress markers; apoptotic proteins and in situ cell death assay (TUNEL). We observed increased CPC availability in cortical tissue following its administration. Although BBB associated proteins like claudin-5, p-glycoprotein and ZO-1 were restored, CPC/NAC failed to protect against TBTC induced overall BBB permeability (Evans blue extravasation). Both CPC and NAC remarkably reduced oxidative stress and inflammation. NAC effectively modulated redox pathway associated enzymes whereas CPC countered ROS levels efficiently. Interestingly, CPC and NAC were equivalently capable of reducing apoptotic markers, astroglial activation and cell death. This study illustrates the various pathways involved in CPC mediated neuroprotection against this environmental neurotoxicant and highlights its capability to modulate glial cell activity. PMID:26079211

  20. NEUROTOXICITY OF TETRACHLOROETHYLENE (PERCHLOROETHYLENE): DISCUSSION PAPER

    EPA Science Inventory

    This paper is a background document for a meeting of neurotoxicity experts to discuss the central nervous system effects of exposure to perchloroethylene (perc). The document reviews the literature on neurological testing of people exposed to perc occupationally in dry cleanin...

  1. Neuroprotective effects of a sesquiterpene lactone and flavanones from Paulownia tomentosa Steud. against glutamate-induced neurotoxicity in primary cultured rat cortical cells.

    PubMed

    Kim, Soo-Ki; Cho, Sang-Buem; Moon, Hyung-In

    2010-12-01

    The neuroprotective effects of Paulownia tomentosa against glutamate-induced neurotoxicity were studied in primary cultured rat cortical cells. It was found that the aqueous extract of this medicinal plant significantly attenuated glutamate-induced toxicity. In order to clarify the mechanism(s) underlying this neuroprotective effect, the active fractions and components were isolated and identified. Five compounds were isolated as the methanol extracts from air-dried flowers of P. tomentosa. Isoatriplicolide tiglate exhibited significant neuroprotective activity against glutamate-induced toxicity at concentrations ranging from 1 μM to 10 μM, and exhibited cell viability of approximately 43-78%. Therefore, the neuroprotective effect of P. tomentosa might be due to the inhibition of glutamate-induced toxicity by the sesquiterpene lactone derivative it contains. PMID:20683844

  2. Dose-response analysis indicating time-dependent neurotoxicity caused by organic and inorganic mercury-Implications for toxic effects in the developing brain.

    PubMed

    Pletz, Julia; Sánchez-Bayo, Francisco; Tennekes, Henk A

    2016-03-10

    A latency period preceding neurotoxicity is a common characteristic in the dose-response relationship induced by organic mercury. Latency periods have typically been observed with genotoxicants in carcinogenesis, with cancer being manifested a long time after the initiating event. These observations indicate that even a very small dose may cause extensive adverse effects later in life, so the toxicity of the genotoxic compound is dose and time-dependent. In children, methylmercury exposure during pregnancy (in utero) has been associated with delays in reaching developmental milestones (e.g., age at first walking) and decreases in intelligence, increasing in severity with increasing exposure. Ethylmercury exposure from thimerosal in some vaccines has been associated, in some studies, with autism and other neurological disorders in children. In this paper, we have examined whether dose-response data from in vitro and in vivo organic mercury toxicity studies fit the Druckrey-Küpfmüller equation c·t(n)=constant (c=exposure concentration, t=latency period), first established for genotoxic carcinogens, and whether or not irreversible effects are enhanced by time of exposure (n≥1), or else toxic effects are dose-dependent while time has only minor influence on the adverse outcome (n<1). The mode of action underlying time-dependent toxicity is irreversible binding to critical receptors causing adverse and cumulative effects. The results indicate that the Druckrey-Küpfmüller equation describes well the dose-response characteristics of organic mercury induced neurotoxic effects. This amounts to a paradigm shift in chemical risk assessment of mercurial compounds and highlights that it is vital to perform toxicity testing geared to investigate time-dependent effects.

  3. Dose-response analysis indicating time-dependent neurotoxicity caused by organic and inorganic mercury-Implications for toxic effects in the developing brain.

    PubMed

    Pletz, Julia; Sánchez-Bayo, Francisco; Tennekes, Henk A

    2016-03-10

    A latency period preceding neurotoxicity is a common characteristic in the dose-response relationship induced by organic mercury. Latency periods have typically been observed with genotoxicants in carcinogenesis, with cancer being manifested a long time after the initiating event. These observations indicate that even a very small dose may cause extensive adverse effects later in life, so the toxicity of the genotoxic compound is dose and time-dependent. In children, methylmercury exposure during pregnancy (in utero) has been associated with delays in reaching developmental milestones (e.g., age at first walking) and decreases in intelligence, increasing in severity with increasing exposure. Ethylmercury exposure from thimerosal in some vaccines has been associated, in some studies, with autism and other neurological disorders in children. In this paper, we have examined whether dose-response data from in vitro and in vivo organic mercury toxicity studies fit the Druckrey-Küpfmüller equation c·t(n)=constant (c=exposure concentration, t=latency period), first established for genotoxic carcinogens, and whether or not irreversible effects are enhanced by time of exposure (n≥1), or else toxic effects are dose-dependent while time has only minor influence on the adverse outcome (n<1). The mode of action underlying time-dependent toxicity is irreversible binding to critical receptors causing adverse and cumulative effects. The results indicate that the Druckrey-Küpfmüller equation describes well the dose-response characteristics of organic mercury induced neurotoxic effects. This amounts to a paradigm shift in chemical risk assessment of mercurial compounds and highlights that it is vital to perform toxicity testing geared to investigate time-dependent effects. PMID:26945727

  4. Dual modulation of ERK1/2 and p38 MAP kinase activities induced by minocycline reverses the neurotoxic effects of the prion protein fragment 90-231.

    PubMed

    Corsaro, Alessandro; Thellung, Stefano; Chiovitti, Katia; Villa, Valentina; Simi, Alessandro; Raggi, Federica; Paludi, Domenico; Russo, Claudio; Aceto, Antonio; Florio, Tullio

    2009-02-01

    Several in vitro and in vivo studies addressed the identification of molecular determinants of the neuronal death induced by PrP(Sc) or related peptides. We developed an experimental model to assess PrP(Sc) neurotoxicity using a recombinant polypeptide encompassing amino acids 90-231 of human PrP (hPrP90-231) that corresponds to the protease-resistant core of PrP(Sc) identified in prion-infected brains. By means of mild thermal denaturation, we can convert hPrP90-231 from a PrP(C)-like conformation into a PrP(Sc)-like structure. In virtue of these structural changes, hPrP90-231 powerfully affected the survival of SH-SY5Y cells, inducing caspase 3 and p38-dependent apoptosis, while in the native alpha-helix-rich conformation, hPrP90-231 did not induce cell toxicity. The aim of this study was to identify drugs able to block hPrP90-231 neurotoxic effects, focusing on minocycline, a tetracycline with known neuroprotective activity. hPrP90-231 caused a caspase 3-dependent apoptosis via the blockade of ERK1/2 activation and the subsequent activation of p38 MAP kinase. We propose that hPrP90-231-induced apoptosis is dependent on the inhibition of ERK1/2 responsiveness to neurotrophic factors, removing a tonic inhibition of p38 activity and resulting in caspase 3 activation. Minocycline prevented hPrP90-231-induced toxicity interfering with this mechanism: the pretreatment with this tetracycline restored ERK1/2 activity and reverted p38 and caspase 3 activities. The effects of minocycline were not mediated by the prevention of hPrP90-231 structural changes or cell internalization (differently from Congo Red). In conclusion, minocycline elicits anti-apoptotic effects against the neurotoxic activity of hPrP90-231 and these effects are mediated by opposite modulation of ERK1/2 and p38 MAP kinase activities.

  5. Acute marijuana effects on social conversation.

    PubMed

    Higgins, S T; Stitzer, M L

    1986-01-01

    The present study assessed the acute effects of smoked marijuana on social conversation. Speech quantity was recorded continuously in seven moderate marijuana users during separate 1 h experimental sessions following the paced smoking of 0, 1.01, 1.84, and 2.84% THC marijuana cigarettes. Subjects engaged in conversation with undrugged partners who smoked placebo marijuana cigarettes. The active marijuana produced significant decreases in speech quantity, increases in heart rate, and increases in self-reports of "high" and sedation. Partners showed no effects in speech quantity or self-reports of drug effects that were systematically related to the doses administered to the subject pair members. The effects on speech quantity observed in the present study after acute dosing are similar to the effects on social conversation reported previously during chronic marijuana dosing. Marijuana appears to be an exception to the general rule that drugs of abuse increase verbal interaction.

  6. Neurotoxicity in Aquatic Systems: Evaluation of Anthropogenic Trace Substances

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity, as well as acute and developmental neurotoxicity. In this endeavor, one of our focuses is on contaminants found in drinking water. To exp...

  7. Development of a pluripotent stem cell derived neuronal model to identify chemically induced pathway perturbations in relation to neurotoxicity: Effects of CREB pathway inhibition

    SciTech Connect

    Pistollato, Francesca; Louisse, Jochem; Scelfo, Bibiana; Mennecozzi, Milena; Accordi, Benedetta; Basso, Giuseppe; Gaspar, John Antonydas; Zagoura, Dimitra; Barilari, Manuela; Palosaari, Taina; Sachinidis, Agapios; Bremer-Hoffmann, Susanne

    2014-10-15

    According to the advocated paradigm shift in toxicology, acquisition of knowledge on the mechanisms underlying the toxicity of chemicals, such as perturbations of biological pathways, is of primary interest. Pluripotent stem cells (PSCs), such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), offer a unique opportunity to derive physiologically relevant human cell types to measure molecular and cellular effects of such pathway modulations. Here we compared the neuronal differentiation propensity of hESCs and hiPSCs with the aim to develop novel hiPSC-based tools for measuring pathway perturbation in relation to molecular and cellular effects in vitro. Among other fundamental pathways, also, the cAMP responsive element binding protein (CREB) pathway was activated in our neuronal models and gave us the opportunity to study time-dependent effects elicited by chemical perturbations of the CREB pathway in relation to cellular effects. We show that the inhibition of the CREB pathway, using 2-naphthol-AS-E-phosphate (KG-501), induced an inhibition of neurite outgrowth and synaptogenesis, as well as a decrease of MAP2{sup +} neuronal cells. These data indicate that a CREB pathway inhibition can be related to molecular and cellular effects that may be relevant for neurotoxicity testing, and, thus, qualify the use of our hiPSC-derived neuronal model for studying chemical-induced neurotoxicity resulting from pathway perturbations. - Highlights: • HESCs derived neuronal cells serve as benchmark for iPSC based neuronal toxicity test development. • Comparisons between hESCs and hiPSCs demonstrated variability of the epigenetic state • CREB pathway modulation have been explored in relation to the neurotoxicant exposure KG-501 • hiPSC might be promising tools to translate theoretical AoPs into toxicological in vitro tests.

  8. Assessment of neurotoxic effects and brain region distribution in rat offspring prenatally co-exposed to low doses of BDE-99 and methylmercury.

    PubMed

    Zhao, Wenchang; Cheng, Jinping; Gu, Jinmin; Liu, Yuanyuan; Fujimura, Masatake; Wang, Wenhua

    2014-10-01

    Exposure to polybrominated diphenyl ether (PDBE) and methylmercury (MeHg) can occur simultaneously as both contaminants are found in the same food sources, especially fish, seafood, marine mammals and milk. The aim of this study was to assess the effects of exposure to low levels of MeHg (2.0 μg mL(-1) in drinking water) and BDE-99 (0.2 mg kg(-1) d(-1)) from gestational day 6 to postnatal day (PND) 21, alone and in combination, on neurobehavioral development and redox responses in offspring. The present study demonstrated an interaction due to co-exposure with low doses of MeHg and BDE-99 enhanced developmental neurotoxic effects. These effects were manifested as the delayed appearance of negative geotaxis reflexes, impaired motor coordination, and induction of oxidative stress in the cerebellum. In particular, the cerebellum may be a sensitive target for combined MeHg and BDE-99 toxicity. The neurotoxicity of low dose MeHg was exacerbated by the presence of low dose of BDE-99. It is concluded that prenatal co-exposure to MeHg and BDE-99 causes oxidative stress in the cerebellum of offspring by altering the activity of different antioxidant enzymes and producing free radicals. Hg retention was not affected by co-exposure to BDE-99. However, MeHg co-exposure seemed to increase BDE-99 concentrations in selected brain regions in pups compared to pups exposed to BDE-99 only. These results showed that the adverse effects following prenatal co-exposure to MeHg and BDE-99 were associated with tissue concentrations very close to the current human body burden of this persistent bioaccumulative compound.

  9. Neurotoxic and pharmacokinetic responses to trichloroethylene as a function of exposure scenario.

    PubMed Central

    Boyes, W K; Bushnell, P J; Crofton, K M; Evans, M; Simmons, J E

    2000-01-01

    Strategies are needed for assessing the risks of exposures to airborne toxicants that vary over concentrations and durations. The goal of this project was to describe the relationship between the concentration and duration of exposure to inhaled trichloroethylene (TCE), a representative volatile organic chemical, tissue dose as predicted by a physiologically based pharmacokinetic model, and neurotoxicity. Three measures of neurotoxicity were studied: hearing loss, signal detection behavior, and visual function. The null hypothesis was that exposure scenarios having an equivalent product of concentration and duration would produce equal toxic effects, according to the classic linear form of Haber's Rule ((italic)C(/italic) times t = k), where C represents the concentration, t, the time (duration) of exposure, and k, a constant toxic effect. All experiments used adult male, Long-Evans rats. Acute and repeated exposure to TCE increased hearing thresholds, and acute exposure to TCE impaired signal detection behavior and visual function. Examination of all three measures of neurotoxicity showed that if Haber's Rule were used to predict outcomes across exposure durations, the risk would be overestimated when extrapolating from shorter to longer duration exposures, and underestimated when extrapolating from longer to shorter duration exposures. For the acute effects of TCE on behavior and visual function, the estimated concentration of TCE in blood at the time of testing correlated well with outcomes, whereas cumulative exposure, measured as the area under the blood TCE concentration curve, did not. We conclude that models incorporating dosimetry can account for differing exposure scenarios and will therefore improve risk assessments over models considering only parameters of external exposure. PMID:10807561

  10. Acute Biphasic Effects of Ayahuasca.

    PubMed

    Schenberg, Eduardo Ekman; Alexandre, João Felipe Morel; Filev, Renato; Cravo, Andre Mascioli; Sato, João Ricardo; Muthukumaraswamy, Suresh D; Yonamine, Maurício; Waguespack, Marian; Lomnicka, Izabela; Barker, Steven A; da Silveira, Dartiu Xavier

    2015-01-01

    Ritual use of ayahuasca, an amazonian Amerindian medicine turned sacrament in syncretic religions in Brazil, is rapidly growing around the world. Because of this internationalization, a comprehensive understanding of the pharmacological mechanisms of action of the brew and the neural correlates of the modified states of consciousness it induces is important. Employing a combination of electroencephalogram (EEG) recordings and quantification of ayahuasca's compounds and their metabolites in the systemic circulation we found ayahuasca to induce a biphasic effect in the brain. This effect was composed of reduced power in the alpha band (8-13 Hz) after 50 minutes from ingestion of the brew and increased slow- and fast-gamma power (30-50 and 50-100 Hz, respectively) between 75 and 125 minutes. Alpha power reductions were mostly located at left parieto-occipital cortex, slow-gamma power increase was observed at left centro-parieto-occipital, left fronto-temporal and right frontal cortices while fast-gamma increases were significant at left centro-parieto-occipital, left fronto-temporal, right frontal and right parieto-occipital cortices. These effects were significantly associated with circulating levels of ayahuasca's chemical compounds, mostly N,N-dimethyltryptamine (DMT), harmine, harmaline and tetrahydroharmine and some of their metabolites. An interpretation based on a cognitive and emotional framework relevant to the ritual use of ayahuasca, as well as it's potential therapeutic effects is offered. PMID:26421727

  11. Acute Biphasic Effects of Ayahuasca

    PubMed Central

    Schenberg, Eduardo Ekman; Alexandre, João Felipe Morel; Filev, Renato; Cravo, Andre Mascioli; Sato, João Ricardo; Muthukumaraswamy, Suresh D.; Yonamine, Maurício; Waguespack, Marian; Lomnicka, Izabela; Barker, Steven A.; da Silveira, Dartiu Xavier

    2015-01-01

    Ritual use of ayahuasca, an amazonian Amerindian medicine turned sacrament in syncretic religions in Brazil, is rapidly growing around the world. Because of this internationalization, a comprehensive understanding of the pharmacological mechanisms of action of the brew and the neural correlates of the modified states of consciousness it induces is important. Employing a combination of electroencephalogram (EEG) recordings and quantification of ayahuasca's compounds and their metabolites in the systemic circulation we found ayahuasca to induce a biphasic effect in the brain. This effect was composed of reduced power in the alpha band (8–13 Hz) after 50 minutes from ingestion of the brew and increased slow- and fast-gamma power (30–50 and 50–100 Hz, respectively) between 75 and 125 minutes. Alpha power reductions were mostly located at left parieto-occipital cortex, slow-gamma power increase was observed at left centro-parieto-occipital, left fronto-temporal and right frontal cortices while fast-gamma increases were significant at left centro-parieto-occipital, left fronto-temporal, right frontal and right parieto-occipital cortices. These effects were significantly associated with circulating levels of ayahuasca’s chemical compounds, mostly N,N-dimethyltryptamine (DMT), harmine, harmaline and tetrahydroharmine and some of their metabolites. An interpretation based on a cognitive and emotional framework relevant to the ritual use of ayahuasca, as well as it's potential therapeutic effects is offered. PMID:26421727

  12. Arsenic neurotoxicity--a review.

    PubMed

    Vahidnia, A; van der Voet, G B; de Wolff, F A

    2007-10-01

    Arsenic (As) is one of the oldest poisons known to men. Its applications throughout history are wide and varied: murder, make-up, paint and even as a pesticide. Chronic As toxicity is a global environmental health problem, affecting millions of people in the USA and Germany to Bangladesh and Taiwan. Worldwide, As is released into the environment by smelting of various metals, combustion of fossil fuels, as herbicides and fungicides in agricultural products. The drinking water in many countries, which is tapped from natural geological resources, is also contaminated as a result of the high level of As in groundwater. The environmental fate of As is contamination of surface and groundwater with a contaminant level higher than 10 particle per billion (ppb) as set by World Health Organization (WHO). Arsenic exists in both organic and inorganic species and either form can also exist in a trivalent or pentavalent oxidation state. Long-term health effects of exposure to these As metabolites are severe and highly variable: skin and lung cancer, neurological effects, hypertension and cardiovascular diseases. Neurological effects of As may develop within a few hours after ingestion, but usually are seen in 2-8 weeks after exposure. It is usually a symmetrical sensorimotor neuropathy, often resembling the Guillain-Barré syndrome. The predominant clinical features of neuropathy are paresthesias, numbness and pain, particularly in the soles of the feet. Electrophysiological studies performed on patients with As neuropathy have revealed a reduced nerve conduction velocity, typical of those seen in axonal degeneration. Most of the adverse effects of As, are caused by inactivated enzymes in the cellular energy pathway, whereby As reacts with the thiol groups of proteins and enzymes and inhibits their catalytic activity. Furthermore, As-induced neurotoxicity, like many other neurodegenerative diseases, causes changes in cytoskeletal protein composition and hyperphosphorylation

  13. Effects of acute caffeine administration on adolescents.

    PubMed

    Temple, Jennifer L; Dewey, Amber M; Briatico, Laura N

    2010-12-01

    Acute caffeine administration has physiological, behavioral, and subjective effects. Despite its widespread use, few studies have described the impact of caffeine consumption in children and adolescents. The purpose of this study was to investigate the effects of acute caffeine administration in adolescents. We measured cardiovascular responses and snack food intake after acute administration of 0 mg, 50 mg, 100 mg, and 200 mg of caffeine. We also compared usual food intake and subjective effects of caffeine between high- and low-caffeine consumers. Finally, we conducted a detailed analysis of caffeine sources and consumption levels. We found main effects of caffeine dose on heart rate (HR) and diastolic blood pressure (DBP), with HR decreasing and DBP increasing with increasing caffeine dose. There were significant interactions among gender, caffeine use, and time on DBP. High caffeine consumers (>50 mg/day) reported using caffeine to stay awake and drinking coffee, tea, soda, and energy drinks more than low consumers (<50 mg/day). Boys were more likely than girls to report using getting a rush, more energy, or improved athletic performance from caffeine. Finally, when we examined energy and macronutrient intake, we found that caffeine consumption was positively associated with laboratory energy intake, specifically from high-sugar, low-fat foods and also positively associated with protein and fat consumption outside of the laboratory. When taken together, these data suggest that acute caffeine administration has a broad range of effects in adolescents and that the magnitude of these effects is moderated by gender and chronic caffeine consumption. PMID:21186925

  14. The effect of some drugs on acute toxoplasmosis in mice.

    PubMed

    Hamadto, H H; Rashed, S M; Marii, N E; Sobhy, M M; el-Ridi, A M; el-Fakahany, A F

    1989-12-01

    The effect of some chemotherapeutics, on the course of acute toxoplasmosis in experimentally infected mice was studied. Obtained results showed that, praziquantel, levamisole had no effect on acute toxoplasmosis, while trimethoprim-sulphamethoxazole and clindamycin showed some prophylactic effect on acute toxoplasmosis in mice. PMID:2788673

  15. Effect of fraxetin on antioxidant defense and stress proteins in human neuroblastoma cell model of rotenone neurotoxicity. Comparative study with myricetin and N-acetylcysteine

    SciTech Connect

    Molina-Jimenez, Maria Francisca . E-mail: jbenedi@farm.ucm.es

    2005-12-15

    Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Recently, it has been shown that fraxetin (coumarin) and myricetin (flavonoid) have significant neuroprotective effects against apoptosis induced by rotenone, increase the total glutathione levels in vitro, and inhibit lipid peroxidation. Thus, these considerations prompted us to investigate the way in which fraxetin and myricetin affect the endogenous antioxidant defense system, such as Mn and CuZn superoxide dismutase (MnSOD, CuZnSOD), catalase, glutathione reductase (GR), and glutathione peroxidase (GPx) on rotenone neurotoxicity in neuroblastoma cells. N-acetylcysteine (NAC), a potent antioxidant, was employed as a comparative agent. Also, the expression and protein levels of HSP70 by Northern and Western blot analysis were assayed in SH-SY5Y cells. After incubation for 16 h, rotenone significantly increased the expression and activity of MnSOD, GPx, and catalase. When cells were preincubated with fraxetin, there was a decrease in the protein levels and activity of both MnSOD and catalase, in comparison with the rotenone treatment. The myricetin effect was less pronounced. Activity and expression of GPx were increased by rotenone and pre-treatment with fraxetin did not modify significantly these levels. The significant enhancement in HSP70 expression at mRNA and protein levels induced by fraxetin was observed by pre-treatment of cells 0.5 h before rotenone insult. These data suggest that major features of rotenone-induced neurotoxicity are partially mediated by free radical formation and oxidative stress, and that fraxetin partially protects against rotenone toxicity affecting the main protection system of the cells against oxidative injury.

  16. Neuroprotective effects of the anti‐cancer drug sunitinib in models of HIV neurotoxicity suggests potential for the treatment of neurodegenerative disorders

    PubMed Central

    Wrasidlo, Wolf; Crews, Leslie A; Tsigelny, Igor F; Stocking, Emily; Kouznetsova, Valentina L; Price, Diana; Paulino, Amy; Gonzales, Tania; Overk, Cassia R; Patrick, Christina; Rockenstein, Edward; Masliah, Eliezer

    2014-01-01

    Background and Purpose Anti-retrovirals have improved and extended the life expectancy of patients with HIV. However, as this population ages, the prevalence of cognitive changes is increasing. Aberrant activation of kinases, such as receptor tyrosine kinases (RTKs) and cyclin-dependent kinase 5 (CDK5), play a role in the mechanisms of HIV neurotoxicity. Inhibitors of CDK5, such as roscovitine, have neuroprotective effects; however, CNS penetration is low. Interestingly, tyrosine kinase inhibitors (TKIs) display some CDK inhibitory activity and ability to cross the blood–brain barrier. Experimental Approach We screened a small group of known TKIs for a candidate with additional CDK5 inhibitory activity and tested the efficacy of the candidate in in vitro and in vivo models of HIV-gp120 neurotoxicity. Key Results Among 12 different compounds, sunitinib inhibited CDK5 with an IC50 of 4.2 μM. In silico analysis revealed that, similarly to roscovitine, sunitinib fitted 6 of 10 features of the CDK5 pharmacophore. In a cell-based model, sunitinib reduced CDK5 phosphorylation (pCDK5), calpain-dependent p35/p25 conversion and protected neuronal cells from the toxic effects of gp120. In glial fibrillary acidic protein-gp120 transgenic (tg) mice, sunitinib reduced levels of pCDK5, p35/p25 and phosphorylated tau protein, along with amelioration of the neurodegenerative pathology. Conclusions and Implications Compounds such as sunitinib with dual kinase inhibitory activity could ameliorate the cognitive impairment associated with chronic HIV infection of the CNS. Moreover, repositioning existing low MW compounds holds promise for the treatment of patients with neurodegenerative disorders. PMID:25117211

  17. Studies with neuronal cells: From basic studies of mechanisms of neurotoxicity to the prediction of chemical toxicity.

    PubMed

    Suñol, C; Babot, Z; Fonfría, E; Galofré, M; García, D; Herrera, N; Iraola, S; Vendrell, I

    2008-08-01

    Neurotoxicology considers that chemicals perturb neurological functions by interfering with the structure or function of neural pathways, circuits and systems. Using in vitro methods for neurotoxicity studies should include evaluation of specific targets for the functionalism of the nervous system and general cellular targets. In this review we present the neuronal characteristics of primary cultures of cortical neurons and of cerebellar granule cells and their use in neurotoxicity studies. Primary cultures of cortical neurons are constituted by around 40% of GABAergic neurons, whereas primary cultures of cerebellar granule cells are mainly constituted by glutamatergic neurons. Both cultures express functional GABAA and ionotropic glutamate receptors. We present neurotoxicity studies performed in these cell cultures, where specific neural targets related to GABA and glutamate neurotransmission are evaluated. The effects of convulsant polychlorocycloalkane pesticides on the GABAA, glycine and NMDA receptors points to the GABAA receptor as the neural target that accounts for their in vivo acute toxicity, whereas NMDA disturbance might be relevant for long-term toxicity. Several compounds from a list of reference compounds, whose severe human poisoning result in convulsions, inhibited the GABAA receptor. We also present cell proteomic studies showing that the neurotoxic contaminant methylmercury affect mitochondrial proteins. We conclude that the in vitro assays that have been developed can be useful for their inclusion in an in vitro test battery to predict human toxicity.

  18. ONTOGENY OF PROTEINS FOR USE AS BIOMARKERS OF DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    The developing nervous system can be uniquely susceptible to adverse effects following exposure to environmental chemicals, and several advisory panels (e.g. ILSI, NRC, NAS) have highlighted the need for rapid and sensitive developmental neurotoxicity testing methods. Measurement...

  19. TESTING FOR DEVELOPMENTAL NEUROTOXICITY: CURRENT APPROACHES AND FUTURE NEEDS.

    EPA Science Inventory

    There are many adverse effects on the nervous system following exposure to environmental chemicals during development. In a number of cases (e.g., lead, methyl mercury) the developing nervous system is a highly susceptible. Developmental Neurotoxicity Testing (DNT) guidelines...

  20. Corneal Neurotoxicity Due to Topical Benzalkonium Chloride

    PubMed Central

    Sarkar, Joy; Chaudhary, Shweta; Namavari, Abed; Ozturk, Okan; Chang, Jin-Hong; Yco, Lisette; Sonawane, Snehal; Khanolkar, Vishakha; Hallak, Joelle; Jain, Sandeep

    2012-01-01

    Purpose. The aim of this study was to determine and characterize the effect of topical application of benzalkonium chloride (BAK) on corneal nerves in vivo and in vitro. Methods. Thy1-YFP+ neurofluorescent mouse eyes were treated topically with vehicle or BAK (0.01% or 0.1%). Wide-field stereofluorescence microscopy was performed to sequentially image the treated corneas in vivo every week for 4 weeks, and changes in stromal nerve fiber density (NFD) and aqueous tear production were determined. Whole-mount immunofluorescence staining of corneas was performed with antibodies to axonopathy marker SMI-32. Western immunoblot analyses were performed on trigeminal ganglion and corneal lysates to determine abundance of proteins associated with neurotoxicity and regeneration. Compartmental culture of trigeminal ganglion neurons was performed in Campenot devices to determine whether BAK affects neurite outgrowth. Results. BAK-treated corneas exhibited significantly reduced NFD and aqueous tear production, and increased inflammatory cell infiltration and fluorescein staining at 1 week (P < 0.05). These changes were most significant after 0.1% BAK treatment. The extent of inflammatory cell infiltration in the cornea showed a significant negative correlation with NFD. Sequential in vivo imaging of corneas showed two forms of BAK-induced neurotoxicity: reversible neurotoxicity characterized by axonopathy and recovery, and irreversible neurotoxicity characterized by nerve degeneration and regeneration. Increased abundance of beta III tubulin in corneal lysates confirmed regeneration. A dose-related significant reduction in neurites occurred after BAK addition to compartmental cultures of dissociated trigeminal ganglion cells. Although both BAK doses (0.0001% and 0.001%) reduced nerve fiber length, the reduction was significantly more with the higher dose (P < 0.001). Conclusion. Topical application of BAK to the eye causes corneal neurotoxicity, inflammation, and reduced aqueous

  1. Acute effects of meals, noise and nightwork.

    PubMed

    Smith, A; Miles, C

    1986-08-01

    An experimental study of the acute effects of meals, noise and nightwork showed that there was a post-meal impairment in detection of targets in a cognitive vigilance task. This was found both during the day and at night, although certain features of the results suggested that the day and night effects were not equivalent. Noise increased the number of false alarms but reduced the post-meal impairment in hit rate. Subjects with low levels of trait or state anxiety showed the greatest post-lunch impairments in performance, but this effect was reduced when the meal was eaten at night.

  2. Role of p75 Neurotrophin Receptor in the Neurotoxicity by β-amyloid Peptides and Synergistic Effect of Inflammatory Cytokines

    PubMed Central

    Perini, Giovanni; Della-Bianca, Vittorina; Politi, Valeria; Della Valle, Giuliano; Dal-Pra, Ilaria; Rossi, Filippo; Armato, Ubaldo

    2002-01-01

    The neurodegenerative changes in Alzheimer's disease (AD) are elicited by the accumulation of β-amyloid peptides (Aβ), which damage neurons either directly by interacting with components of the cell surface to trigger cell death signaling or indirectly by activating astrocytes and microglia to produce inflammatory mediators. It has been recently proposed that the p75 neurotrophin receptor (p75NTR) is responsible for neuronal damage by interacting with Aβ. By using neuroblastoma cell clones lacking the expression of all neurotrophin receptors or engineered to express full-length or various truncated forms of p75NTR, we could show that p75NTR is involved in the direct signaling of cell death by Aβ via the function of its death domain. This signaling leads to the activation of caspases-8 and -3, the production of reactive oxygen intermediates and the induction of an oxidative stress. We also found that the direct and indirect (inflammatory) mechanisms of neuronal damage by Aβ could act synergistically. In fact, TNF-α and IL-1β, cytokines produced by Aβ-activated microglia, could potentiate the neurotoxic action of Aβ mediated by p75NTR signaling. Together, our results indicate that neurons expressing p75NTR, mostly if expressing also proinflammatory cytokine receptors, might be preferential targets of the cytotoxic action of Aβ in AD. PMID:11927634

  3. Mutual enhancement of central neurotoxicity induced by ketamine followed by methamphetamine

    SciTech Connect

    Ke, J.-J.; Chen, H.-I.; Jen, C.J.; Kuo, Y.-M.; Cherng, C.G.; Tsai, Y.-P.N.; Ho, M.-C.; Tsai, C.-W.; Lung Yu

    2008-03-01

    We hereby report that repeated administration of ketamine (350 mg/kg in total) and methamphetamine (30 mg/kg in total) causes specific glutamatergic and dopaminergic neuron deficits, respectively, in adult mouse brain. Acute ketamine did not affect basal body temperature or the later methamphetamine-induced hyperthermia. However, pretreatment with repeated doses of ketamine aggravated methamphetamine-induced dopaminergic terminal loss as evidenced by a drastic decrease in the levels of dopamine, 3,4-dihydroxyphenylacetic acid, and dopamine transporter density as well as poor gait balance performance. In contrast, methamphetamine-induced serotonergic depletion was not altered by ketamine pretreatment. Likewise, the subsequent treatment with methamphetamine exacerbated the ketamine-induced glutamatergic damage as indicated by reduced levels of the vesicular glutamate transporter in hippocampus and striatum and poor memory performance in the Morris water maze. Finally, since activation of the D1 and AMPA/kainate receptors has been known to be involved in the release of glutamate and dopamine, we examined the effects of co-administration of SCH23390, a D1 antagonist, and CNQX, an AMPA/kainate antagonist. Intraventricular CNQX infusion abolished ketamine's potentiation of methamphetamine-induced dopamine neurotoxicity, while systemic SCH23390 mitigated methamphetamine's potentiation of ketamine-induced glutamatergic toxicity. We conclude that repeated doses of ketamine potentiate methamphetamine-induced dopamine neurotoxicity via AMPA/kainate activation and that conjunctive use of methamphetamine aggravates ketamine-induced glutamatergic neurotoxicity possibly via D1 receptor activation.

  4. Single-neuron axonal pathfinding under geometric guidance: low-dose-methylmercury developmental neurotoxicity test.

    PubMed

    Wei, Lina; Sweeney, Andrew J; Sheng, Liyuan; Fang, Yu; Kindy, Mark S; Xi, Tingfei; Gao, Bruce Z

    2014-09-21

    Because the nervous system is most vulnerable to toxicants during development, there is a crucial need for a highly sensitive developmental-neurotoxicity-test model to detect potential toxicants at low doses. We developed a lab-on-chip wherein single-neuron axonal pathfinding under geometric guidance was created using soft lithography and laser cell-micropatterning techniques. After coating the surface with L1, an axon-specific member of the Ig family of cell adhesion molecules (CAMs), and optimizing microunit geometric parameters, we introduced low-dose methylmercury, a well-known, environmentally significant neurotoxicant, in the shared medium. Its developmental neurotoxicity was evaluated using a novel axonal pathfinding assay including axonal turning and branching rates at turning points in this model. Compared to the conventional neurite-outgrowth assay, this model's detection threshold for low-dose methylmercury was 10-fold more sensitive at comparable exposure durations. These preliminary results support study of developmental effects of known and potential neurotoxicants on axon pathfinding. This novel assay model would be useful to study neuronal disease mechanisms at the single-cell level. To our knowledge, the potential of methylmercury chloride to cause acute in vitro developmental neurotoxicity (DNT) at such a low dosage has not been reported. This is the first DNT test model with high reproducibility to use single-neuron axonal pathfinding under precise geometric guidance. PMID:25041816

  5. Tissue Plasminogen Activator Neurotoxicity is Neutralized by Recombinant ADAMTS 13

    PubMed Central

    Fan, Mengchen; Xu, Haochen; Wang, Lixiang; Luo, Haiyu; Zhu, Ximin; Cai, Ping; Wei, Lixiang; Lu, Lu; Cao, Yongliang; Ye, Rong; Fan, Wenying; Zhao, Bing-Qiao

    2016-01-01

    Tissue plasminogen activator (tPA) is an effective treatment for ischemic stroke, but its neurotoxicity is a significant problem. Here we tested the hypothesis that recombinant ADAMTS 13 (rADAMTS 13) would reduce tPA neurotoxicity in a mouse model of stroke. We show that treatment with rADAMTS 13 in combination with tPA significantly reduced infarct volume compared with mice treated with tPA alone 48 hours after stroke. The combination treatment significantly improved neurological deficits compared with mice treated with tPA or vehicle alone. These neuroprotective effects were associated with significant reductions in fibrin deposits in ischemic vessels and less severe cell death in ischemic brain. The effect of rADAMTS13 on tPA neurotoxicity was mimicked by the N-methyl-D-aspartate (NMDA) receptor antagonist M-801, and was abolished by injection of NMDA. Moreover, rADAMTS 13 prevents the neurotoxicity effect of tPA, by blocking its interaction with the NMDA receptor NR2B and the attendant phosphorylation of NR2B and activation of ERK1/2. Finally, the NR2B-specific NMDA receptor antagonist ifenprodil abolished tPA neurotoxicity and rADAMTS 13 treatment had no further beneficial effect. Our data suggest that the combination of rADAMTS 13 and tPA may provide a novel treatment of ischemic stroke by diminishing the neurotoxic effects of exogenous tPA. PMID:27181025

  6. Application of in vitro neurotoxicity testing for regulatory purposes: Symposium III summary and research needs.

    PubMed

    Bal-Price, Anna K; Suñol, Cristina; Weiss, Dieter G; van Vliet, Erwin; Westerink, Remco H S; Costa, Lucio G

    2008-05-01

    Prediction of neurotoxic effects is a key feature in the toxicological profile of many compounds and therefore is required by regulatory testing schemes. Nowadays neurotoxicity assessment required by the OECD and EC test guidelines is based solely on in vivo testing, evaluating mainly effects on neurobehavior and neuropathology, which is expensive, time consuming and unsuitable for screening large number of chemicals. Additionally, such in vivo tests are not always sensitive enough to predict human neurotoxicity and often do not provide information that facilitates regulatory decision-making processes. Incorporation of alternative tests (in vitro testing, computational modelling, QSARs, grouping, read-across, etc.) in screening strategies would speed up the rate at which compound knowledge and mechanistic data are available and the information obtained could be used in the refinement of future in vivo studies to facilitate predictions of neurotoxicity. On 1st June 2007, the European Commission legislation concerning registration, evaluation and authorisation of chemicals (REACH) has entered into force. REACH addresses one of the key issues for chemicals in Europe, the lack of publicly available safety data sheets. It outlines a plan to test approximately 30,000 existing substances. These chemicals are currently produced in volumes greater than 1ton/year and the essential data on the human health and ecotoxicological effects are lacking. It is estimated that approximately 3.9 million test animals (including 2.6 million vertebrates) (Hartung T, Bremer S, Casati S, Coecke S, Corvi R, Fortnaer S, et al. ECVAM's response to the changing political environment for alternatives: consequences of the European Union chemicals and cosmetics policies. ATLA 2003;31:473-81) would be necessary to fulfill the requirements of REACH if the development and establishment of alternative methods is not accepted by regulatory authorities. In an effort to reduce animal use and testing

  7. The neurotoxicity of amphetamines during the adolescent period.

    PubMed

    Teixeira-Gomes, Armanda; Costa, Vera Marisa; Feio-Azevedo, Rita; Bastos, Maria de Lourdes; Carvalho, Félix; Capela, João Paulo

    2015-04-01

    Amphetamine-type psychostimulants (ATS), such as amphetamine (AMPH), 3,4-methylenedioxymethamphetamine (MDMA), and methamphetamine (METH) are psychoactive substances widely abused, due to their powerful central nervous system (CNS) stimulation ability. Young people particularly use ATS as recreational drugs. Moreover, AMPH is used clinically, particularly for attention deficit hyperactivity disorder, and has the ability to cause structural and functional brain alterations. ATS are known to interact with monoamine transporter sites and easily diffuse across cellular membranes, attaining high levels in several tissues, particularly the brain. Strong evidence suggests that ATS induce neurotoxic effects, raising concerns about the consequences of drug abuse. Considering that many teenagers and young adults commonly use ATS, our main aim was to review the neurotoxic effects of amphetamines, namely AMPH, MDMA, and METH, in the adolescence period of experimental animals. Reports agree that adolescent animals are less susceptible than adult animals to the neurotoxic effects of amphetamines. The susceptibility to the neurotoxic effects of ATS seems roughly located in the early adolescent period of animals. Many authors report that the age of exposure to ATS is crucial for the neurotoxic outcome, showing that the stage of brain maturity has a strong importance. Moreover, recent studies have been undertaken in young adults and/or consumers during adolescence that clearly indicate brain or behavioural damage, arguing for long-term neurotoxic effects in humans. There is an urgent need for more studies during the adolescence period, in order to unveil the mechanisms and the brain dysfunctions promoted by ATS. PMID:25482046

  8. Memory-enhancing effect of aspirin is mediated through opioid system modulation in an AlCl3-induced neurotoxicity mouse model

    PubMed Central

    RIZWAN, SAIMA; IDREES, AYESHA; ASHRAF, MUHAMMAD; AHMED, TOUQEER

    2016-01-01

    Neurodegenerative disorders such as Alzheimers disease (AD) are multifaceted and there are currently a limited number of therapeutic strategies available to treat them. Aspirin is known to act on multiple therapeutic targets and is a successful anti-inflammatory agent in various tissues. The present study aimed to ascertain the performance of aspirin when employed as a therapeutic agent to treat neurodegeneration on novel targets, including opioid system genes, in an AlCl3-induced neurotoxicity mouse model. The effects of two doses of aspirin (5 and 20 mg/kg aspirin for 12 days) were investigated in an AlCl3-induced neurotoxicity mouse model (150 mg/kg AlCl3 for 12 days). Neurological improvements were assessed through different behavioral tests and the effects of aspirin on opioid system gene expression levels were assessed by reverse transcription-polymerase chain reaction. Both doses resulted in improvements in cognitive behavior. A 5 mg/kg dose of aspirin was revealed to be effective for spatial memory improvement (7.14±0.84 sec), whilst a 20 mg/kg dose was superior for improving extinction learning (7.63±4.04%). Aspirin (5 mg/kg) also significantly improved contextual memory (48.05±10.6%) when compared with the AlCl3-treated group (1.49±0.62%; P<0.001). Aspirin was also observed to significantly decrease δ-opioid receptor expression in the cortex (1.09±0.08 and 1.27±0.08, respectively) at both doses (5 and 20 mg/kg) when compared with the AlCl3-treated group (3.69±1.43; P<0.05). Furthermore, aspirin at 5 mg/kg significantly reduced expression of prodynorphin in the cortex (0.57±0.20) when compared with the AlCl3-treated group (1.95±0.84; P<0.05). Notably, the effect of aspirin was significant in the cortex but not in the hippocampus. In summary, aspirin was effective in ameliorating the AD-like symptoms via the modulation of opioid systems. However, additional studies are required to determine the long term effects of aspirin on such conditions. PMID

  9. [Acute tonsillopharyngitis: the effectiveness of topical therapy].

    PubMed

    Nosulya, E V; Kim, I A; Chernykh, N M; Karnoukhova, O A

    2015-01-01

    The objective of the present study was to evaluate the clinical effectiveness of a furasol sore throat gargle solution for the treatment of acute tonsillopharyngitis. Forty patients presenting with acute tonsillopharyngitis were allocated to two groups, 20 subjects in each, by means of independent sequential randomization. Prior to the onset of the treatment, all the patients were examined for determining the species composition of pharyngeal microflora with the use of an «AutoScan4 System» analyzer («Siemens», USA) and estimating the resistance to antibacterial preparations (by the disk diffusion method). All the participants of the study were prescribed antibacterial therapy. In the patients of group 1 (study group), the antibacterial treatment of acute tonsillopharyngitis was supplemented by a furasol sore throat gargle solution whereas those of group 2 (controls) were treated without topical therapy. The quantitative evaluation of the severity of manifestations of the disease before and after the treatment was based on a 5-point visual-analog scale. It was shown that systemic antibacterial therapy resulted in the consistent decrease of the frequency of occurrence of pathogenic and potentially pathogenic microflora in the patients comprising both groups. Treatment with a furasol sore throat gargle solution did not lead to the appearance of bacterial species alien to the oropharynx, nor was it accompanied by the impairment of resistance of its mucous membrane to the colonization by microorganisms. The results of the study give evidence of the well apparent regression of the subjective signs of tonsillopharyngitis and the inflammatory changes in the mucous membrane of the pharynx in the patients given the topical treatment in the form of a furasol sore throat gargle solution in addition to antibacterial therapy. It is concluded that a furasol sore throat gargle solution can be recommended for the introduction into the combined treatment of the patients

  10. Paclitaxel- and/or cisplatin-induced ocular neurotoxicity: a case report and literature review

    PubMed Central

    Li, Ying; Li, Yanping; Li, Junyu; Pi, Guoliang; Tan, Wenyong

    2014-01-01

    Paclitaxel (PTX) and/or cisplatin (CDDP), as important cytotoxic anti-cancer agents, are widely used to treat various solid tumors. Both may cause moderate or severe neurotoxicity, but ocular neurotoxicity is also occasionally reported. A patient diagnosed with nasopharyngeal cancer suffering acute ocular neurotoxicity 10 days after paclitaxel and CDDP administration at the recommended dose is described in the present case report, and PTX- and/or CDDP-induced ocular neurotoxicity are summarized according to previous reports. Possible mechanisms and the potential diagnostic, therapeutic and predictive strategies of PTX- and/or CDDP-induced ocular neurotoxicity are reviewed, to help the oncologist to take the infrequent toxicity of cytotoxic drugs into account and improve patient safety during anti-cancer therapy. PMID:25114574

  11. Acute marijuana effects on human risk taking.

    PubMed

    Lane, Scott D; Cherek, Don R; Tcheremissine, Oleg V; Lieving, Lori M; Pietras, Cythia J

    2005-04-01

    Previous studies have established a relationship between marijuana use and risky behavior in natural settings. A limited number of laboratory investigations of marijuana effects on human risk taking have been conducted. The present study was designed to examine the acute effects of smoked marijuana on human risk taking, and to identify behavioral mechanisms that may be involved in drug-induced changes in the probability of risky behavior. Using a laboratory measure of risk taking designed to address acute drug effects, 10 adults were administered placebo cigarettes and three doses of active marijuana cigarettes (half placebo and half 1.77%; 1.77%; and 3.58% Delta9-THC) in a within-subject repeated-measures experimental design. The risk-taking task presented subjects with a choice between two response options operationally defined as risky and nonrisky. Data analyses examined cardiovascular and subjective effects, response rates, distribution of choices between the risky and nonrisky option, and first-order transition probabilities of trial-by-trial data. The 3.58% THC dose increased selection of the risky response option, and uniquely shifted response probabilities following both winning and losing outcomes following selection of the risky option. Acute marijuana administration thereby produced measurable changes in risky decision making under laboratory conditions. Consistent with previous risk-taking studies, shifts in trial-by-trial response probabilities at the highest dose suggested a change in sensitivity to both reinforced and losing risky outcomes. Altered sensitivity to consequences may be a mechanism in drug-induced changes in risk taking. Possible neurobiological sites of action related to THC are discussed.

  12. Evaluation of drug-induced neurotoxicity based on metabolomics, proteomics and electrical activity measurements in complementary CNS in vitro models.

    PubMed

    Schultz, Luise; Zurich, Marie-Gabrielle; Culot, Maxime; da Costa, Anaelle; Landry, Christophe; Bellwon, Patricia; Kristl, Theresa; Hörmann, Katrin; Ruzek, Silke; Aiche, Stephan; Reinert, Knut; Bielow, Chris; Gosselet, Fabien; Cecchelli, Romeo; Huber, Christian G; Schroeder, Olaf H-U; Gramowski-Voss, Alexandra; Weiss, Dieter G; Bal-Price, Anna

    2015-12-25

    The present study was performed in an attempt to develop an in vitro integrated testing strategy (ITS) to evaluate drug-induced neurotoxicity. A number of endpoints were analyzed using two complementary brain cell culture models and an in vitro blood-brain barrier (BBB) model after single and repeated exposure treatments with selected drugs that covered the major biological, pharmacological and neuro-toxicological responses. Furthermore, four drugs (diazepam, cyclosporine A, chlorpromazine and amiodarone) were tested more in depth as representatives of different classes of neurotoxicants, inducing toxicity through different pathways of toxicity. The developed in vitro BBB model allowed detection of toxic effects at the level of BBB and evaluation of drug transport through the barrier for predicting free brain concentrations of the studied drugs. The measurement of neuronal electrical activity was found to be a sensitive tool to predict the neuroactivity and neurotoxicity of drugs after acute exposure. The histotypic 3D re-aggregating brain cell cultures, containing all brain cell types, were found to be well suited for OMICs analyses after both acute and long term treatment. The obtained data suggest that an in vitro ITS based on the information obtained from BBB studies and combined with metabolomics, proteomics and neuronal electrical activity measurements performed in stable in vitro neuronal cell culture systems, has high potential to improve current in vitro drug-induced neurotoxicity evaluation.

  13. In vitro techniques for the assessment of neurotoxicity.

    PubMed Central

    Harry, G J; Billingsley, M; Bruinink, A; Campbell, I L; Classen, W; Dorman, D C; Galli, C; Ray, D; Smith, R A; Tilson, H A

    1998-01-01

    Risk assessment is a process often divided into the following steps: a) hazard identification, b) dose-response assessment, c) exposure assessment, and d) risk characterization. Regulatory toxicity studies usually are aimed at providing data for the first two steps. Human case reports, environmental research, and in vitro studies may also be used to identify or to further characterize a toxic hazard. In this report the strengths and limitations of in vitro techniques are discussed in light of their usefulness to identify neurotoxic hazards, as well as for the subsequent dose-response assessment. Because of the complexity of the nervous system, multiple functions of individual cells, and our limited knowledge of biochemical processes involved in neurotoxicity, it is not known how well any in vitro system would recapitulate the in vivo system. Thus, it would be difficult to design an in vitro test battery to replace in vivo test systems. In vitro systems are well suited to the study of biological processes in a more isolated context and have been most successfully used to elucidate mechanisms of toxicity, identify target cells of neurotoxicity, and delineate the development and intricate cellular changes induced by neurotoxicants. Both biochemical and morphological end points can be used, but many of the end points used can be altered by pharmacological actions as well as toxicity. Therefore, for many of these end points it is difficult or impossible to set a criterion that allows one to differentiate between a pharmacological and a neurotoxic effect. For the process of risk assessment such a discrimination is central. Therefore, end points used to determine potential neurotoxicity of a compound have to be carefully selected and evaluated with respect to their potential to discriminate between an adverse neurotoxic effect and a pharmacologic effect. It is obvious that for in vitro neurotoxicity studies the primary end points that can be used are those affected

  14. INTRACELLULAR SIGNALING AND DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    A book chapter in ?Molecular Toxicology: Transcriptional Targets? reviewed the role of intracellular signaling in the developmental neurotoxicity of environmental chemicals. This chapter covered a number of aspects including the development of the nervous system, role of intrace...

  15. Effects of acute dieldrin exposure on neurotransmitters and global gene transcription in largemouth bass (Micropterus salmoides) hypothalamus.

    PubMed

    Martyniuk, Christopher J; Feswick, April; Spade, Daniel J; Kroll, Kevin J; Barber, David S; Denslow, Nancy D

    2010-08-01

    Exposure to dieldrin induces neurotoxic effects in the vertebrate CNS and disrupts reproductive processes in teleost fish. Reproductive impairment observed in fish by dieldrin is likely the result of multiple effects along the hypothalamic-pituitary-gonadal axis, but the molecular signaling cascades are not well characterized. To better elucidate the mode of action of dieldrin in the hypothalamus, this study measured neurotransmitter levels and examined the transcriptomic response in female largemouth bass (LMB) to an acute treatment of dieldrin. Male and female LMB were injected with either vehicle or 10 mg dieldrin/kg and sacrificed after 7 days. There were no significant changes in dopamine or DOPAC concentrations in the neuroendocrine brain of males and females after treatment but GABA levels in females were moderately increased 20-30% in the hypothalamus and cerebellum. In the female hypothalamus, there were 227 transcripts (p<0.001) identified as being differentially regulated by dieldrin. Functional enrichment analysis revealed transcription, DNA repair, ubiquitin-proteasome pathway, and cell communication, as biological processes over-represented in the microarray analysis. Pathway analysis identified DNA damage, inflammation, regeneration, and Alzheimer's disease as major cell processes and diseases affected by dieldrin. Using multiple bioinformatics approaches, this study demonstrates that the teleostean hypothalamus is a target for dieldrin-induced neurotoxicity and provides mechanistic evidence that dieldrin activates similar cell pathways and biological processes that are also associated with the etiology of human neurological disorders.

  16. Acute toxic effects of 3,3'-iminodipropionitrile on hypothalamic-pituitary-gonadal axis in male rats.

    PubMed

    Takahashi, Noriyuki; Hamada, Naomi; Ishizuka, Bunpei

    2014-01-01

    Exposure to 3,3'-iminodipropionitrile (IDPN) causes persistent neurotoxicity, while its reproductive toxicity in female rats is transient, indicating that gonadotropin-releasing hormone (GnRH) neurons and gonadotrophs receive little or no damage from IDPN and that the transient gonadal toxicity may be also observed in males. To clarify these points, the acute toxic effects of IDPN on hypothalamic-pituitary-gonadal axis of male rats were examined histologically, biochemically and serologically. A single intraperitoneal injection of IDPN (1000 mg/kg body weight) induced signs of neurotoxicity within a day; nevertheless, GnRH neurons were not affected throughout the experimental period. Four days after IDPN treatment, the plasma level of testosterone but not gonadotropins decreased and active caspase 3-immunopositive spermatids increased; both parameters returned to normal levels afterwards. Data from our studies revealed that while IDPN had little or no toxic effect on GnRH neurons or gonadotrophs it was transiently toxic to gonads in both sexes.

  17. Antagonistic effects of Spirulina platensis against sub-acute deltamethrin toxicity in mice: Biochemical and histopathological studies.

    PubMed

    Abdel-Daim, Mohamed; El-Bialy, Badr E; Rahman, Haidy G Abdel; Radi, Abeer M; Hefny, Hany A; Hassan, Ahmed M

    2016-02-01

    Spirulina platensis (SP); a microalga with high antioxidant and anti-inflammatory activities, acts as a food supplement in human and as many animal species. Deltamethrin (DLM) is a synthetic pyrethroid with broad spectrum activities against acaricides and insects and widely used for veterinary and agricultural purposes. Exposure to DLM leads to hepatotoxic, nephrotoxic and neurotoxic side effects for human and many species, including birds and fish. The present study was undertaken to examine the potential hepatoprotective, nephroprotective, neuroprotective and antioxidant effects of SP against sub-acute DLM toxicity in male mice. DLM intoxicated animals revealed a significant increase in serum hepatic and renal injury biomarkers as well as TNF-α level and AChE activity. Moreover, liver, kidney and brain lipid peroxidation and oxidative stress markers were altered due to DLM toxicity. Spirulina normalized the altered serum levels of AST, ALT, APL, LDH, γ-GT, cholesterol, uric acid, urea, creatinine AChE and TNF-α. Furthermore, it reduced DLM-induced tissue lipid peroxidation, nitric oxide and oxidative stress in a dose-dependent manner. Collectively, that Spirulina supplementation could overcome DLM-induced hepatotoxicty, nephrotoxicity and neurotoxicity by abolishing oxidative tissue injuries. PMID:26796269

  18. After-effects of acute alcohol intoxication.

    PubMed

    York, J L; Regan, S G

    1988-01-01

    Female, Long-Evans hooded rats (N = 10, 4 months of age) were given ethanol via intragastric intubation in doses of 2.0, 3.0 or 4.0 g/kg (repeated measures design). After-effects (hypothermia, free operant activity, motor performance) were measured at six, twelve and sixteen hours, respectively, for the above doses and were compared to the effects observed after the intubation of equivolume amounts of tap water. The after-effects of ethanol on rectal temperature were varied. Both rotarod performance and free operant activity were impaired after each of the above doses of ethanol. Blood ethanol analyses revealed low blood levels of ethanol (range 6.6 +/- 1.5 to 24.6 +/- 3.4 mg/100 ml) at the time behavioral tests were performed. Thus, quantifiable behavioral impairment was observed after blood ethanol values had declined following acute intoxication episodes. These changes may be related to "hangover" symptomatology in man and may serve as a model for investigating the influence of a variety of factors related to drug dosage, rate of ethanol ingestion, type of alcoholic beverage, and prophylactic or acute intervention therapeutics.

  19. Potential developmental neurotoxicity of pesticides used in Europe

    PubMed Central

    Bjørling-Poulsen, Marina; Andersen, Helle Raun; Grandjean, Philippe

    2008-01-01

    Pesticides used in agriculture are designed to protect crops against unwanted species, such as weeds, insects, and fungus. Many compounds target the nervous system of insect pests. Because of the similarity in brain biochemistry, such pesticides may also be neurotoxic to humans. Concerns have been raised that the developing brain may be particularly vulnerable to adverse effects of neurotoxic pesticides. Current requirements for safety testing do not include developmental neurotoxicity. We therefore undertook a systematic evaluation of published evidence on neurotoxicity of pesticides in current use, with specific emphasis on risks during early development. Epidemiologic studies show associations with neurodevelopmental deficits, but mainly deal with mixed exposures to pesticides. Laboratory experimental studies using model compounds suggest that many pesticides currently used in Europe – including organophosphates, carbamates, pyrethroids, ethylenebisdithiocarbamates, and chlorophenoxy herbicides – can cause neurodevelopmental toxicity. Adverse effects on brain development can be severe and irreversible. Prevention should therefore be a public health priority. The occurrence of residues in food and other types of human exposures should be prevented with regard to the pesticide groups that are known to be neurotoxic. For other substances, given their widespread use and the unique vulnerability of the developing brain, the general lack of data on developmental neurotoxicity calls for investment in targeted research. While awaiting more definite evidence, existing uncertainties should be considered in light of the need for precautionary action to protect brain development. PMID:18945337

  20. Conserved toxic responses across divergent phylogenetic lineages: a meta-analysis of the neurotoxic effects of RDX among multiple species using toxicogenomics.

    PubMed

    Garcia-Reyero, Natàlia; Habib, Tanwir; Pirooznia, Mehdi; Gust, Kurt A; Gong, Ping; Warner, Chris; Wilbanks, Mitchell; Perkins, Edward

    2011-05-01

    At military training sites, a variety of pollutants such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), may contaminate the area originating from used munitions. Studies investigating the mechanism of toxicity of RDX have shown that it affects the central nervous system causing seizures in humans and animals. Environmental pollutants such as RDX have the potential to affect many different species, therefore it is important to establish how phylogenetically distant species may respond to these types of emerging pollutants. In this paper, we have used a transcriptional network approach to compare and contrast the neurotoxic effects of RDX among five phylogenetically disparate species: rat (Sprague-Dawley), Northern bobwhite quail (Colinus virginianus), fathead minnow (Pimephales promelas), earthworm (Eisenia fetida), and coral (Acropora formosa). Pathway enrichment analysis indicated a conservation of RDX impacts on pathways related to neuronal function in rat, Northern bobwhite quail, fathead minnows and earthworm, but not in coral. As evolutionary distance increased common responses decreased with impacts on energy and metabolism dominating effects in coral. A neurotransmission related transcriptional network based on whole rat brain responses to RDX exposure was used to identify functionally related modules of genes, components of which were conserved across species depending upon evolutionary distance. Overall, the meta-analysis using genomic data of the effects of RDX on several species suggested a common and conserved mode of action of the chemical throughout phylogenetically remote organisms. PMID:21516383

  1. Effects of p-Aminosalicylic acid on the neurotoxicity of manganese on the dopaminergic innervation of the cilia of the lateral cells of the gill of the bivalve mollusc, Crassostrea virginica

    PubMed Central

    Nelson, Michael; Huggins, Turkesha; Licorish, Roshney; Carroll, Margaret A.; Catapane, Edward J.

    2009-01-01

    The lateral cilia of the gill of Crassostrea virginica are controlled by a dopaminergic–serotonergic innervation. Dopamine is the neurotransmitter causing cilio-inhibition. High levels of manganese are neurotoxic to people, causing Manganism, a Parkinson-like disease. Clinical interventions for Manganism have not been very successful. Recently, p-Aminosalicylic acid (PAS) was reported as an effective treatment of severe Manganism in humans; however, its mechanism of action is unknown. Previously, we reported that manganese treatments caused disruption of the dopaminergic innervation of gill of C. virginica. Here we compared the effects of manganese on gill innervation in the presence of PAS, EDTA or Acetylsalicylic acid (ASA), and examined whether co-treating animals with PAS could block the deleterious effects of manganese on the oyster's dopaminergic innervation of the gill. Beating rates of the lateral cilia of the gill were measured by stroboscopic microscopy. Pre-treating gill preparations with PAS or EDTA blocked the neurotoxic effects of manganese, while ASA did not. In other experiments, animals exposed to three day treatments with manganese produced a dose dependent impairment of the dopaminergic, cilio-inhibitory system, which was decreased by co-treatment with PAS. The study shows that PAS protects the animal against neurotoxic effects of manganese and the mechanism of action of PAS in alleviating Manganism is more likely related to its chelating abilities than its anti-inflammatory actions. PMID:19944778

  2. Effects of p-Aminosalicylic acid on the neurotoxicity of manganese on the dopaminergic innervation of the cilia of the lateral cells of the gill of the bivalve mollusc, Crassostrea virginica.

    PubMed

    Nelson, Michael; Huggins, Turkesha; Licorish, Roshney; Carroll, Margaret A; Catapane, Edward J

    2010-03-01

    The lateral cilia of the gill of Crassostrea virginica are controlled by a dopaminergic-serotonergic innervation. Dopamine is the neurotransmitter causing cilio-inhibition. High levels of manganese are neurotoxic to people, causing Manganism, a Parkinson-like disease. Clinical interventions for Manganism have not been very successful. Recently, p-Aminosalicylic acid (PAS) was reported as an effective treatment of severe Manganism in humans; however, its mechanism of action is unknown. Previously, we reported that manganese treatments caused disruption of the dopaminergic innervation of gill of C. virginica. Here we compared the effects of manganese on gill innervation in the presence of PAS, EDTA or Acetylsalicylic acid (ASA), and examined whether co-treating animals with PAS could block the deleterious effects of manganese on the oyster's dopaminergic innervation of the gill. Beating rates of the lateral cilia of the gill were measured by stroboscopic microscopy. Pre-treating gill preparations with PAS or EDTA blocked the neurotoxic effects of manganese, while ASA did not. In other experiments, animals exposed to three day treatments with manganese produced a dose dependent impairment of the dopaminergic, cilio-inhibitory system, which was decreased by co-treatment with PAS. The study shows that PAS protects the animal against neurotoxic effects of manganese and the mechanism of action of PAS in alleviating Manganism is more likely related to its chelating abilities than its anti-inflammatory actions. PMID:19944778

  3. Mechanisms of lead and manganese neurotoxicity

    PubMed Central

    Neal, April P.; Guilarte, Tomas R.

    2015-01-01

    Human exposure to neurotoxic metals is a global public health problem. Metals which cause neurological toxicity, such as lead (Pb) and manganese (Mn), are of particular concern due to the long-lasting and possibly irreversible nature of their effects. Pb exposure in childhood can result in cognitive and behavioural deficits in children. These effects are long-lasting and persist into adulthood even after Pb exposure has been reduced or eliminated. While Mn is an essential element of the human diet and serves many cellular functions in the human body, elevated Mn levels can result in a Parkinson's disease (PD)-like syndrome and developmental Mn exposure can adversely affect childhood neurological development. Due to the ubiquitous presence of both metals, reducing human exposure to toxic levels of Mn and Pb remains a world-wide public health challenge. In this review we summarize the toxicokinetics of Pb and Mn, describe their neurotoxic mechanisms, and discuss common themes in their neurotoxicity. PMID:25722848

  4. Neurotoxic amyloid beta oligomeric assemblies recreated in microfluidic platform with interstitial level of slow flow

    PubMed Central

    Choi, Yoon Jung; Chae, Sukyung; Kim, Jeong Hun; Barald, Kate F.; Park, Joong Yull; Lee, Sang-Hoon

    2013-01-01

    Alzheimer's disease is accompanied by progressive, time-dependent changes of three moieties of amyloid beta. In vitro models therefore should provide same conditions for more physiologic studies. Here we observed changes in the number of fibrils over time and studied the correlation between amyloid beta moieties and neurotoxicity. Although the number of fibrils increased dramatically, the change in neurotoxicity with time was small, suggesting that fibrils make little contribution to neurotoxicity. To study the neurotoxicity of diffusible moieties by regulating microenvironments, we created a bio-mimetic microfluidic system generating spatial gradients of diffusible oligomeric assemblies and assessed their effects on cultured neurons. We found amyloid beta exposure produced an atrophy effect and observed neurite extension during the differentiation of neural progenitor cells increased when cells were cultured with continuous flow. The results demonstrate the potential neurotoxicity of oligomeric assemblies and establish a prospective microfluidic platform for studying the neurotoxicity of amyloid beta. PMID:23719665

  5. Protective effects of caffeic acid and caffeic acid phenethyl ester against acrolein-induced neurotoxicity in HT22 mouse hippocampal cells.

    PubMed

    Huang, Yingjuan; Jin, Minghua; Pi, Rongbiao; Zhang, Junjie; Chen, Meihui; Ouyang, Ying; Liu, Anmin; Chao, Xiaojuan; Liu, Peiqing; Liu, Jun; Ramassamy, Charles; Qin, Jian

    2013-02-22

    Acrolein-induced oxidative stress is hypothesized to involve in the etiology of Alzheimer's disease (AD). Caffeic acid (CA) and caffeic acid phenethyl ester (CAPE) have antioxidative and neuroprotective properties. The present study investigated the protective effects of CA/CAPE on acrolein-induced oxidative neuronal toxicity. HT22 mouse hippocampal cells were pretreated with CA/CAPE and then exposed to acrolein. Cell viability, intracellular reactive oxygen species (ROS), and glutathione (GSH) level were measured. MAPKs and Akt/GSK3β signaling proteins as well as α/β-secretase of amyloid protein precursor were assayed by Western blotting. Pretreatment with CA/CAPE significantly attenuated acrolein-induced neurotoxicity, ROS accumulation, and GSH depletion. Further study suggested that CA/CAPE showed protective effects against acrolein by modulating MAPKs and Akt/GSK3β signaling pathways. Moreover, CA/CAPE restored the changes of β-secretase (BACE-1) and/or activation of α-secretase (ADAM-10) induced by acrolein. These findings suggest that CA/CAPE may provide a promising approach for the treatment of acrolein-related neurodegenerative diseases, such as AD.

  6. Neurotoxic Shellfish Poisoning

    PubMed Central

    Watkins, Sharon M.; Reich, Andrew; Fleming, Lora E.; Hammond, Roberta

    2008-01-01

    Neurotoxic shellfish poisoning (NSP) is caused by consumption of molluscan shellfish contaminated with brevetoxins primarily produced by the dinoflagellate, Karenia brevis. Blooms of K. brevis, called Florida red tide, occur frequently along the Gulf of Mexico. Many shellfish beds in the US (and other nations) are routinely monitored for presence of K. brevis and other brevetoxin-producing organisms. As a result, few NSP cases are reported annually from the US. However, infrequent larger outbreaks do occur. Cases are usually associated with recreationally-harvested shellfish collected during or post red tide blooms. Brevetoxins are neurotoxins which activate voltage-sensitive sodium channels causing sodium influx and nerve membrane depolarization. No fatalities have been reported, but hospitalizations occur. NSP involves a cluster of gastrointestinal and neurological symptoms: nausea and vomiting, paresthesias of the mouth, lips and tongue as well as distal paresthesias, ataxia, slurred speech and dizziness. Neurological symptoms can progress to partial paralysis; respiratory distress has been recorded. Recent research has implicated new species of harmful algal bloom organisms which produce brevetoxins, identified additional marine species which accumulate brevetoxins, and has provided additional information on the toxicity and analysis of brevetoxins. A review of the known epidemiology and recommendations for improved NSP prevention are presented. PMID:19005578

  7. Subchronic inhalation neurotoxicity studies of ethyl acetate in rats.

    PubMed

    Christoph, Greg R; Hansen, John F; Leung, Hon-Wing

    2003-12-01

    Rats were exposed to 0, 350, 750 or 1500 ppm of ethyl acetate by inhalation for 6 h per day, 5 days per week for 13 weeks. Functional observational battery (FOB) and motor activity tests occurred on non-exposure days during weeks 4, 8 and 13, after which tissues were microscopically examined for neuropathology. A subset of rats was monitored during a 4-week recovery period. Exposure to 750 and 1500 ppm, diminished behavioral responses to unexpected auditory stimuli during the exposure session and appeared to be an acute sedative effect. There were no signs of acute intoxication 30 min after exposure sessions ended. Rats exposed to 750 and 1500 ppm had reduced body weight, body weight gain, feed consumption, and feed efficiency, which fully or partially recovered within 4 weeks. Reductions in body weight gain and feed efficiency were observed in male rats exposed to 350 ppm. The principal behavioral effect of subchronic exposure was reduced motor activity in the 1500 ppm females, an effect that was not present after the 4-week recovery period. All other FOB and motor activity parameters were unaffected, and no pathology was observed in nervous system tissues. Operant sessions were conducted in another set of male rats preconditioned to a stable operant baseline under a multiple fixed ratio-fixed interval (FR-FI) schedule of food reinforcement. FR response rate, FR post-reinforcement pause duration, and the pattern of FI responding were not affected during or after the exposure series. In contrast, within-group FI rate for the treatment groups increased over time whereas those of the controls decreased. A historical control group, however, also showed a similar pattern of increase, indicating that these changes did not clearly represent a treatment-related effect. Results from these studies indicate a LOEL of 350 ppm for systemic toxicity based on the decreased body weight gain in male rats, and a LOEL of 1500 ppm for neurotoxicity based on the transient reduction in

  8. Experimental study on the enhancement of the neurotoxicity of methyl n-butyl ketone by non-neurotoxic aliphatic monoketones.

    PubMed Central

    Misumi, J; Nagano, M

    1985-01-01

    The neurotoxicity of methyl n-butyl ketone is known to be enhanced by combination with methyl ethyl ketone. This study was conducted to clarify the potentiating effect of aliphatic monoketones on the neurotoxicity of methyl n-butyl ketone. Rats were subcutaneously injected in the back with 4 mmol/kg/day of methyl ethyl ketone, methyl n-propyl ketone, methyl n-amyl ketone, or methyl n-hexyl ketone mixed with an equimolar dose of methyl n-butyl ketone five days a week for 20 weeks. The maximum motor fibre conduction velocity and the distal latency were measured every two weeks in the tail nerves of the treated animals and controls. All the monoketones tested enhanced the neurotoxicity of methyl n-butyl ketone. Of the compounds tested, methyl n-hexyl ketone, which had the longest carbon chain, enhanced the neurotoxicity of methyl n-butyl ketone most strongly. These results suggest that the length of the carbon chain of the aliphatic monoketones combined with methyl n-butyl ketone was related to the enhancement of the neurotoxicity of the neurotoxic compound. PMID:3970879

  9. Neurobehavioral and neurophysiological effects after acute exposure to a single peak of 200 ppm toluene in healthy volunteers.

    PubMed

    Kobald, S Oliver; Wascher, Edmund; Blaszkewicz, Meinolf; Golka, Klaus; van Thriel, Christoph

    2015-05-01

    The solvent toluene has neurotoxic properties that are especially relevant in the working environment. Short-term exposure limits (STELs) vary from 50 ppm up to 300 ppm across countries but their acute effects remain elusive in humans. Several in vitro and in vivo studies elucidated that toluene acutely acts by perturbations of different neurotransmitter systems. More specifically visual evoked potentials (VEPs) of rats are decreased after acute toluene exposure, leading to the assumption that particularly visual attention processes might be a target of toluene in humans. Therefore a visual change detection task was applied to measure both neurobehavioral and neurophysiological effects by using electroencephalography (EEG) after a single peak exposure to 200 ppm toluene. Performance and event-related components of the EEG were examined before and after exposure in a toluene-exposed and a control group. Thirty-three young healthy volunteers participated in this study. The behavioral results of the experiment indicate that toluene impairs the rate of correct responses especially in task conditions in which an irrelevant distractor is given, while the response times did not differ between both groups. The neurophysiological findings hint toward a less efficient visual processing of behaviorally relevant stimuli and an increased distractibility by irrelevant distractors. Thus the present results are a promising starting point for further research specifically targeting visual attention after toluene exposure and the reconsideration of the presently very heterogeneous STELs.

  10. Sustained Accumulation of Microtubule-Binding Chemotherapy Drugs in the Peripheral Nervous System: Correlations with Time Course and Neurotoxic Severity.

    PubMed

    Wozniak, Krystyna M; Vornov, James J; Wu, Ying; Nomoto, Kenichi; Littlefield, Bruce A; DesJardins, Christopher; Yu, Yanke; Lai, George; Reyderman, Larisa; Wong, Nancy; Slusher, Barbara S

    2016-06-01

    Chemotherapy-induced peripheral neuropathy is a dose-limiting side effect of many antineoplastic agents, but the mechanisms underlying the toxicities are unclear. At their MTDs, the microtubule-binding drugs paclitaxel and ixabepilone induce more severe neuropathy in mice relative to eribulin mesylate, paralleling their toxicity profiles in clinic. We hypothesized that the severity of their neurotoxic effects might be explained by the levels at which they accumulate in the peripheral nervous system. To test this hypothesis, we compared their pharmacokinetics and distribution in peripheral nerve tissue. After administration of a single intravenous dose, each drug was rapidly cleared from plasma but all persisted in the dorsal root ganglia (DRG) and sciatic nerve (SN) for up to 72 hours. Focusing on paclitaxel and eribulin, we performed a 2-week MTD-dosing regimen, followed by a determination of drug pharmacokinetics, tissue distribution, and multiple functional measures of peripheral nerve toxicity for 4 weeks. Consistent with the acute dosing study, both drugs persisted in peripheral nervous tissues for weeks, in contrast to their rapid clearance from plasma. Notably, although eribulin exhibited greater DRG and SN penetration than paclitaxel, the neurotoxicity observed functionally was consistently more severe with paclitaxel. Overall, our results argue that sustained exposure of microtubule-binding chemotherapeutic agents in peripheral nerve tissues cannot by itself account for their associated neurotoxicity. Cancer Res; 76(11); 3332-9. ©2016 AACR. PMID:27197173

  11. The ex vivo neurotoxic, myotoxic and cardiotoxic activity of cucurbituril-based macrocyclic drug delivery vehicles.

    PubMed

    Oun, Rabbab; Floriano, Rafael S; Isaacs, Lyle; Rowan, Edward G; Wheate, Nial J

    2014-11-01

    The cucurbituril family of drug delivery vehicles have been examined for their tissue specific toxicity using ex vivo models. Cucurbit[6]uril (CB[6]), cucurbit[7]uril (CB[7]) and the linear cucurbituril-derivative Motor2 were examined for their neuro-, myo- and cardiotoxic activity and compared with β-cyclodextrin. The protective effect of drug encapsulation by CB[7] was also examined on the platinum-based anticancer drug cisplatin. The results show that none of the cucurbiturils have statistically measurable neurotoxicity as measured using mouse sciatic nerve compound action potential. Cucurbituril myotoxicity was measured by nerve-muscle force of contraction through chemical and electrical stimulation. Motor2 was found to display no myotoxicity, whereas both CB[6] and CB[7] showed myotoxic activity via a presynaptic effect. Finally, cardiotoxicity, which was measured by changes in the rate and force of right and left atria contraction, was observed for all three cucurbiturils. Free cisplatin displays neuro-, myo- and cardiotoxic activity, consistent with the side-effects seen in the clinic. Whilst CB[7] had no effect on the level of cisplatin's neurotoxic activity, drug encapsulation within the macrocycle had a marked reduction in both the drug's myo- and cardiotoxic activity. Overall the results are consistent with the relative lack of toxicity displayed by these macrocycles in whole animal acute systemic toxicity studies and indicate continued potential of cucurbiturils as drug delivery vehicles for the reduction of the side effects associated with platinum-based chemotherapy.

  12. Investigating the protective effect of lithium against high glucose-induced neurotoxicity in PC12 cells: involvements of ROS, JNK and P38 MAPKs, and apoptotic mitochondria pathway.

    PubMed

    Aminzadeh, A; Dehpour, A R; Safa, M; Mirzamohammadi, S; Sharifi, A M

    2014-11-01

    Hyperglycemia that occurs under the diabetic condition is a major cause of diabetic complications such as diabetic neuropathy, one of the most common diabetes-related complications. It is well known that hyperglycemia could result in generation of reactive oxygen species (ROS). Over production of ROS recommended as an important mediator for apoptotic signaling pathway as well as a key early event in the development of diabetic neuropathy. Recently, many studies have indicated that lithium has robust neuroprotective effect in relation to several neurodegenerative diseases. The present study aimed to examine effects of lithium on high glucose (HG)-induced neurotoxicity and to determine some of the underlying molecular mechanisms involved in this response in PC12 cells as a neuronal culture model for diabetic neuropathy. PC12 cells were pretreated with different concentrations of lithium for 7 days, exposed to HG for 24 h. Cell viability was measured by MTT assay. ROS and lipid peroxidation levels as well as superoxide dismutase activity were measured. In order to examine the underlying molecular mechanisms, the expressions of Bax, Bcl-2, Caspase-3, total and phosphorylated JNK and P38 MAPK were also analyzed by Western blotting. The present results indicated that pretreatment with 1 mM lithium has protected PC12 cells against HG-induced apoptotic cell death. It could reduce ROS generation, Bax/Bcl-2 ratio, Caspase-3 activation, and JNK and P38 MAPK phosphorylation. It may be concluded that in HG condition, lithium pretreatment could prevent mitochondrial apoptosis as well as JNK and P38 MAPK pathway in PC12 cells.

  13. Effects of p-Aminosalicylic acid on the Neurotoxicity of Manganese and Levels of Dopamine and Serotonin in the Nervous System and Innervated Organs of Crassostrea virginica.

    PubMed

    King, Candice; Myrthil, Marie; Carroll, Margaret A; Catapane, Edward J

    2008-01-01

    Manganese is a neurotoxin causing Manganism in individuals chronically exposed to elevated levels in their environment. Toxic manganese exposure causes mental and emotional disturbances, and a movement disorder similar to Idiopathic Parkinsons Disease. Manganese interferes with dopamine neurons involved in control of body movements. Recently, p-aminosalicylic acid (PAS) is being used to alleviate symptoms of Manganism, but its mechanism of action is unknown. The eastern oyster, Crassostrea virginica, possesses a dopaminergic innervation of its gill. Oysters exposed to manganese have reduced levels of dopamine in the cerebral ganglia, visceral ganglia and gill, but not of norepinephrine, octopamine or serotonin. Those results are consistent with reported mechanisms of action of manganese in human and mammalian systems. In this study we determined the effects of PAS treatments on dopamine and serotonin levels in oysters exposed to manganese. Adult C. virginica were exposed to 500 µM and 1 mM of manganese with and without 500 µM and 1 mM of PAS by removing one shell and maintaining the animals in individual containers of aerated artificial sea water at 18° C for 3 days. Control animals were similarly treated without manganese or PAS. Dopamine and serotonin levels were measured by HPLC with fluorescence detection. PAS protected the ganglia and gill against the effects of 500 µM manganese, but not against the 1 mM manganese treatments. Serotonin levels were not affected by the treatments. The study demonstrates PAS can protect against reductions in dopamine levels caused by neurotoxic manganese exposure, but is concentration dependent. These findings may provide insights into the actions of PAS in therapeutic treatments of Manganism.

  14. Effects of p-Aminosalicylic acid on the Neurotoxicity of Manganese and Levels of Dopamine and Serotonin in the Nervous System and Innervated Organs of Crassostrea virginica.

    PubMed

    King, Candice; Myrthil, Marie; Carroll, Margaret A; Catapane, Edward J

    2008-01-01

    Manganese is a neurotoxin causing Manganism in individuals chronically exposed to elevated levels in their environment. Toxic manganese exposure causes mental and emotional disturbances, and a movement disorder similar to Idiopathic Parkinsons Disease. Manganese interferes with dopamine neurons involved in control of body movements. Recently, p-aminosalicylic acid (PAS) is being used to alleviate symptoms of Manganism, but its mechanism of action is unknown. The eastern oyster, Crassostrea virginica, possesses a dopaminergic innervation of its gill. Oysters exposed to manganese have reduced levels of dopamine in the cerebral ganglia, visceral ganglia and gill, but not of norepinephrine, octopamine or serotonin. Those results are consistent with reported mechanisms of action of manganese in human and mammalian systems. In this study we determined the effects of PAS treatments on dopamine and serotonin levels in oysters exposed to manganese. Adult C. virginica were exposed to 500 µM and 1 mM of manganese with and without 500 µM and 1 mM of PAS by removing one shell and maintaining the animals in individual containers of aerated artificial sea water at 18° C for 3 days. Control animals were similarly treated without manganese or PAS. Dopamine and serotonin levels were measured by HPLC with fluorescence detection. PAS protected the ganglia and gill against the effects of 500 µM manganese, but not against the 1 mM manganese treatments. Serotonin levels were not affected by the treatments. The study demonstrates PAS can protect against reductions in dopamine levels caused by neurotoxic manganese exposure, but is concentration dependent. These findings may provide insights into the actions of PAS in therapeutic treatments of Manganism. PMID:21841974

  15. Effects of p-Aminosalicylic acid on the Neurotoxicity of Manganese and Levels of Dopamine and Serotonin in the Nervous System and Innervated Organs of Crassostrea virginica

    PubMed Central

    King, Candice; Myrthil, Marie; Carroll, Margaret A; Catapane, Edward J.

    2011-01-01

    Manganese is a neurotoxin causing Manganism in individuals chronically exposed to elevated levels in their environment. Toxic manganese exposure causes mental and emotional disturbances, and a movement disorder similar to Idiopathic Parkinsons Disease. Manganese interferes with dopamine neurons involved in control of body movements. Recently, p-aminosalicylic acid (PAS) is being used to alleviate symptoms of Manganism, but its mechanism of action is unknown. The eastern oyster, Crassostrea virginica, possesses a dopaminergic innervation of its gill. Oysters exposed to manganese have reduced levels of dopamine in the cerebral ganglia, visceral ganglia and gill, but not of norepinephrine, octopamine or serotonin. Those results are consistent with reported mechanisms of action of manganese in human and mammalian systems. In this study we determined the effects of PAS treatments on dopamine and serotonin levels in oysters exposed to manganese. Adult C. virginica were exposed to 500 µM and 1 mM of manganese with and without 500 µM and 1 mM of PAS by removing one shell and maintaining the animals in individual containers of aerated artificial sea water at 18° C for 3 days. Control animals were similarly treated without manganese or PAS. Dopamine and serotonin levels were measured by HPLC with fluorescence detection. PAS protected the ganglia and gill against the effects of 500 µM manganese, but not against the 1 mM manganese treatments. Serotonin levels were not affected by the treatments. The study demonstrates PAS can protect against reductions in dopamine levels caused by neurotoxic manganese exposure, but is concentration dependent. These findings may provide insights into the actions of PAS in therapeutic treatments of Manganism. PMID:21841974

  16. Acute and chronic glue sniffing effects and consequences of withdrawal on aggressive behavior.

    PubMed

    Bouchatta, Otmane; Ouhaz, Zakaria; Ba-Mhamed, Saadia; Kerekes, Nóra; Bennis, Mohamed

    2016-05-01

    Drug abuse act on brain mechanisms that cause a high-risk individual to engage in aggressive and violent behavior. While a drug-violence relationship exists, the nature of this relationship is often complex, with intoxication, neurotoxic, and withdrawal effects often being confused and/or confounded. Glue sniffing is often a springboard to the abuse of more addictive drugs. Despite its high prevalence and serious consequences, we know relatively little about the aggressive behavioral effects of volatile inhalants abuse, especially glue. The aim of the present study was to investigate the link between the duration of glue exposure, a common substance abuse problem in Morocco, and the level of aggressive behavior during withdrawal. For this we used the isolation-induced aggression model "residents" in three groups of mice. The first group served as control resident animals (n=10, without exposure); the second group as experimental resident mice (n=10) tested before and after acute (first day) and chronic exposure to the glue, and at 1 and 2weeks of withdrawal; and the third group of 10 intruder animals. The results showed that the number of attacks decreased (halved) and the latency of the first attack increased (doubled) following acute glue sniffing. However, the effects of chronic exposure and of 1week of withdrawal led to an increase in the intensity of agonistic encounters. After 2weeks of withdrawal, the intensity of aggressive behavior decreased again. These results indicated that chronic glue exposure and the first week of withdrawal are associated with increased aggression in mice. PMID:26969766

  17. The Acute Toxicity and Hematological Characterization of the Effects of Tentacle-Only Extract from the Jellyfish Cyanea capillata

    PubMed Central

    Xiao, Liang; Liu, Sihua; He, Qian; Wang, Qianqian; Ye, Xuting; Liu, Guoyan; Nie, Fei; Zhao, Jie; Zhang, Liming

    2011-01-01

    To investigate the hematologic changes and the activities of jellyfish venoms other than hemolytic and cardiovascular toxicities, the acute toxicity of tentacle-only extract (TOE) from the jellyfish Cyanea capillata was observed in mice, and hematological indexes were examined in rats. The median lethal dose (LD50) of TOE was 4.25 mg/kg, and the acute toxicity involved both heart- and nervous system-related symptoms. Arterial blood gas indexes, including pH, PCO2, HCO3−, HCO3std, TCO2, BEecf and BE (B), decreased significantly. PO2 showed a slight increase, while SO2c (%) had no change at any time. Na+ and Ca2+ decreased, but K+ increased. Biochemical indexes, including LDH, CK, CK-MB, ALT, AST and sCr, significantly increased. Other biochemical indexes, including BUN and hemodiastase, remained normal. Lactic acid significantly increased, while glucose, Hct% and THbc showed slight temporary increases and then returned to normal. These results on the acute toxicity and hematological changes should improve our understanding of the in vivo pathophysiological effects of TOE from C. capillata and indicate that it may also have neurotoxicity, liver toxicity and muscular toxicity in addition to hemolytic and cardiovascular toxicities, but no kidney or pancreatic toxicity. PMID:21731547

  18. Ethoxyquin provides neuroprotection against cisplatin-induced neurotoxicity

    PubMed Central

    Zhu, Jing; Carozzi, Valentina Alda; Reed, Nicole; Mi, Ruifa; Marmiroli, Paola; Cavaletti, Guido; Hoke, Ahmet

    2016-01-01

    Ethoxyquin was recently identified as a neuroprotective compound against toxic neuropathies and efficacy was demonstrated against paclitaxel-induced neurotoxicity in vivo. In this study we examined the efficacy of ethoxyquin in preventing neurotoxicity of cisplatin in rodent models of chemotherapy-induced peripheral neuropathy and explored its mechanism of action. Ethoxyquin prevented neurotoxicity of cisplatin in vitro in a sensory neuronal cell line and primary rat dorsal root ganglion neurons. In vivo, chronic co-administration of ethoxyquin partially abrogated cisplatin-induced behavioral, electrophysiological and morphological abnormalities. Furthermore, ethoxyquin did not interfere with cisplatin’s ability to induce tumor cell death in ovarian cancer cell line in vitro and in vivo. Finally, ethoxyquin reduced the levels of two client proteins (SF3B2 and ataxin-2) of a chaperone protein, heat shock protein 90 (Hsp90) when co-administered with cisplatin in vitro. These results implied that the neuroprotective effect of ethoxyquin is mediated through these two client proteins of Hsp90. In fact, reducing levels of SF3B2 in tissue-cultured neurons was effective against neurotoxicity of cisplatin. These findings suggest that ethoxyquin or other compounds that inhibit chaperone activity of Hsp90 and reduce levels of its client protein, SF3B2 may be developed as an adjuvant therapy to prevent neurotoxicity in cisplatin-based chemotherapy protocols. PMID:27350330

  19. Optimization of recovery patterns in common carp exposed to roundup using response surface methodology: evaluation of neurotoxicity and genotoxicity effects and biochemical parameters.

    PubMed

    Gholami-Seyedkolaei, Seyed Jalil; Mirvaghefi, Alireza; Farahmand, Hamid; Kosari, Ali Asghar; Gholami-Seyedkolaei, Seyed Jalal; Gholami-Seyedkolaei, Seyed Jamal

    2013-12-01

    The present study is the first report on optimization of recovery conditions of fishes exposed to pesticides using response surface methodology-central composite rotatable design (RSM-CCRD). The sub-lethal toxicity bioassay of Roundup® (2 ppm ~10 percent LC₅₀, 96 h) in common carp (1, 4, 9, 16, 25, 35 and 40 day) was investigated. After exposure for 16 days to Roundup®, some the fishes were introduced to herbicide-free water. The effects of four recovery parameters including time (5-25 d), temperature (18-26 °C), water exchange rate (WER, 10-30), and salinity (0-8 ppt) on the levels of biomarkers of genotoxicity (DNA damage), neurotoxicity (acetylcholinesterase activity (AChE)), and the serum alanine (ALT) and aspartate (AST) aminotransferase in plasma were studied. The polynomial equations were significantly fitted for all response variables with high R² values (>0.95), which revealed no indication of lack of fit. The optimum conditions for the maximum AChE activity (37.14 nmol/min/mg protein) and the minimum levels of DNA damage (8.00 percent tail DNA), ALT (27.0 IU/L) and AST (91.0 IU/L) were time of 20 d, temperature of 20 °C, WER of 25 and water salinity of 6 ppt. Thus, a promising improvement for the recovery trend of fishes exposed to Roundup® stress was obtained under the optimized conditions using RSM-CCRD.

  20. Dose-response effects of estrogen and tamoxifen upon methamphetamine-induced behavioral responses and neurotoxicity of the nigrostriatal dopaminergic system in female mice.

    PubMed

    Mickley, Katherine R; Dluzen, Dean E

    2004-01-01

    In the present experiment we evaluated the dose-response effects of estrogen (estradiol benzoate; EB) and tamoxifen (TMX) in modulating the acute behavioral and chronic effects of methamphetamine (MA) upon the nigrostriatal dopaminergic (NSDA) system in ovariectomized (OVX) mice. EB over a range of doses from 1-40 microg resulted in a neuroprotective effect upon the NSDA system as defined by both a preservation of striatal dopamine (DA) concentrations and a decrease in DOPAC/DA ratios. Interestingly, the neuroprotective effect of the 1-microg EB dose occurred in the absence of any statistically significant effect upon the bioassay parameter of uterine weight. With the exception of an increase in stereotypy time as a response to the 40-microg dose, EB at any of the doses tested failed to alter any acute behavioral responses evoked by MA. In response to TMX, a statistically significant NSDA neuroprotectant response was obtained for DOPAC/DA ratios, but not DA concentrations, to doses ranging from 12.5 to 500 microg. No statistically significant effects upon uterine weights were obtained for any of the doses of TMX tested. Behaviorally, TMX at 500 microg had the effect of increasing the amount of time spent in the center of the cage. Taken together these results demonstrate: (1) EB and TMX at relatively low doses can exert a neuroprotective effect against MA; (2) these neuroprotective effects of EB and TMX can occur in the absence of an effect upon the bioassay parameter--uterine weights; (3) the parameter of DOPAC/DA ratio may indicate a more sensitive index of NSDA neuroprotection, and (4) modulatory effects of EB and TMX upon acute behavioral responses of the NSDA system to MA can be distinguished from their neuroprotective actions.

  1. Aciclovir-induced neurotoxicity: Utility of CSF and serum CMMG levels in diagnosis.

    PubMed

    Berry, L; Venkatesan, P

    2014-12-01

    Aciclovir is an anti-viral frequently used for herpes virus infections. Neurotoxicity and nephrotoxicity are uncommon but serious side effects of aciclovir treatment. This case illustrates how aciclovir induced neurotoxicity can present and how it can be diagnosed using quantitative assays of aciclovir and its metabolite in the CSF and serum.

  2. Non-fibrillar amyloid-{beta} peptide reduces NMDA-induced neurotoxicity, but not AMPA-induced neurotoxicity

    SciTech Connect

    Niidome, Tetsuhiro; Goto, Yasuaki; Kato, Masaru; Wang, Pi-Lin; Goh, Saori; Tanaka, Naoki; Akaike, Akinori; Kihara, Takeshi; Sugimoto, Hachiro

    2009-09-04

    Amyloid-{beta} peptide (A{beta}) is thought to be linked to the pathogenesis of Alzheimer's disease. Recent studies suggest that A{beta} has important physiological roles in addition to its pathological roles. We recently demonstrated that A{beta}42 protects hippocampal neurons from glutamate-induced neurotoxicity, but the relationship between A{beta}42 assemblies and their neuroprotective effects remains largely unknown. In this study, we prepared non-fibrillar and fibrillar A{beta}42 based on the results of the thioflavin T assay, Western blot analysis, and atomic force microscopy, and examined the effects of non-fibrillar and fibrillar A{beta}42 on glutamate-induced neurotoxicity. Non-fibrillar A{beta}42, but not fibrillar A{beta}42, protected hippocampal neurons from glutamate-induced neurotoxicity. Furthermore, non-fibrillar A{beta}42 decreased both neurotoxicity and increases in the intracellular Ca{sup 2+} concentration induced by N-methyl-D-aspartate (NMDA), but not by {alpha}-amino-3-hydrozy-5-methyl-4-isoxazole propionic acid (AMPA). Our results suggest that non-fibrillar A{beta}42 protects hippocampal neurons from glutamate-induced neurotoxicity through regulation of the NMDA receptor.

  3. The role of dopamine receptors in the neurotoxicity of methamphetamine.

    PubMed

    Ares-Santos, S; Granado, N; Moratalla, R

    2013-05-01

    Methamphetamine is a synthetic drug consumed by millions of users despite its neurotoxic effects in the brain, leading to loss of dopaminergic fibres and cell bodies. Moreover, clinical reports suggest that methamphetamine abusers are predisposed to Parkinson's disease. Therefore, it is important to elucidate the mechanisms involved in methamphetamine-induced neurotoxicity. Dopamine receptors may be a plausible target to prevent this neurotoxicity. Genetic inactivation of dopamine D1 or D2 receptors protects against the loss of dopaminergic fibres in the striatum and loss of dopaminergic neurons in the substantia nigra. Protection by D1 receptor inactivation is due to blockade of hypothermia, reduced dopamine content and turnover and increased stored vesicular dopamine in D1R(-/-) mice. However, the neuroprotective impact of D2 receptor inactivation is partially dependent on an effect on body temperature, as well as on the blockade of dopamine reuptake by decreased dopamine transporter activity, which results in reduced intracytosolic dopamine levels in D2R(-/-) mice.

  4. Acrylamide neurotoxicity on the cerebrum of weaning rats.

    PubMed

    Tian, Su-Min; Ma, Yu-Xin; Shi, Jing; Lou, Ting-Ye; Liu, Shuai-Shuai; Li, Guo-Ying

    2015-06-01

    The mechanism underlying acrylamide-induced neurotoxicity remains controversial. Previous studies have focused on acrylamide-induced toxicity in adult rodents, but neurotoxicity in weaning rats has not been investigated. To explore the neurotoxic effect of acrylamide on the developing brain, weaning rats were gavaged with 0, 5, 15, and 30 mg/kg acrylamide for 4 consecutive weeks. No obvious neurotoxicity was observed in weaning rats in the low-dose acrylamide group (5 mg/kg). However, rats from the moderate- and high-dose acrylamide groups (15 and 30 mg/kg) had an abnormal gait. Furthermore, biochemical tests in these rats demonstrated that glutamate concentration was significantly reduced, and γ-aminobutyric acid content was significantly increased and was dependent on acrylamide dose. Immunohistochemical staining showed that in the cerebral cortex, γ-aminobutyric acid, glutamic acid decarboxylase and glial fibrillary acidic protein expression increased remarkably in the moderate- and high-dose acrylamide groups. These results indicate that in weaning rats, acrylamide is positively associated with neurotoxicity in a dose-dependent manner, which may correlate with upregulation of γ-aminobutyric acid and subsequent neuronal degeneration after the initial acrylamide exposure.

  5. Acrylamide neurotoxicity on the cerebrum of weaning rats

    PubMed Central

    Tian, Su-min; Ma, Yu-xin; Shi, Jing; Lou, Ting-ye; Liu, Shuai-shuai; Li, Guo-ying

    2015-01-01

    The mechanism underlying acrylamide-induced neurotoxicity remains controversial. Previous studies have focused on acrylamide-induced toxicity in adult rodents, but neurotoxicity in weaning rats has not been investigated. To explore the neurotoxic effect of acrylamide on the developing brain, weaning rats were gavaged with 0, 5, 15, and 30 mg/kg acrylamide for 4 consecutive weeks. No obvious neurotoxicity was observed in weaning rats in the low-dose acrylamide group (5 mg/kg). However, rats from the moderate- and high-dose acrylamide groups (15 and 30 mg/kg) had an abnormal gait. Furthermore, biochemical tests in these rats demonstrated that glutamate concentration was significantly reduced, and γ-aminobutyric acid content was significantly increased and was dependent on acrylamide dose. Immunohistochemical staining showed that in the cerebral cortex, γ-aminobutyric acid, glutamic acid decarboxylase and glial fibrillary acidic protein expression increased remarkably in the moderate- and high-dose acrylamide groups. These results indicate that in weaning rats, acrylamide is positively associated with neurotoxicity in a dose-dependent manner, which may correlate with upregulation of γ-aminobutyric acid and subsequent neuronal degeneration after the initial acrylamide exposure. PMID:26199611

  6. Protective effect of rosemary on acrylamide motor neurotoxicity in spinal cord of rat offspring: postnatal follow-up study

    PubMed Central

    Al-Gholam, Marwa A.; El-Mehi, Abeer E.; El-Barbary, Abd El-Moneum; Fokar, Ahmed Zo El

    2016-01-01

    The direct interactive effects of rosemary and acrylamide on the development of motor neurons in the spinal cord remains unknown. Our goal is to confirm the protective effects of rosemary against motor neuronal degeneration induced by acrylamide in the developing postnatal rat spinal cord using a postnatal rat model. We assigned the offspring of treated female rats into control, rosemary; acrylamide group; and recovery groups. This work depended on clinical, histopathological, morphometrically, immunohistochemical and genetic methods. In the acrylamide group, we observed oxidation, motor neuron degeneration, apoptosis, myelin degeneration, neurofilament reduction, reactive gliosis. Whoever, concomitant rosemary intake and withdrawal of acrylamide modulate these effects. These findings proof that dietary rosemary can directly protect motor neuron against acrylamide toxicity in the mammalian developing spinal cord. PMID:27051566

  7. Protective effect of rosemary on acrylamide motor neurotoxicity in spinal cord of rat offspring: postnatal follow-up study.

    PubMed

    Al-Gholam, Marwa A; Nooh, Hanaa Zakaria; El-Mehi, Abeer E; El-Barbary, Abd El-Moneum; Fokar, Ahmed Zo El

    2016-03-01

    The direct interactive effects of rosemary and acrylamide on the development of motor neurons in the spinal cord remains unknown. Our goal is to confirm the protective effects of rosemary against motor neuronal degeneration induced by acrylamide in the developing postnatal rat spinal cord using a postnatal rat model. We assigned the offspring of treated female rats into control, rosemary; acrylamide group; and recovery groups. This work depended on clinical, histopathological, morphometrically, immunohistochemical and genetic methods. In the acrylamide group, we observed oxidation, motor neuron degeneration, apoptosis, myelin degeneration, neurofilament reduction, reactive gliosis. Whoever, concomitant rosemary intake and withdrawal of acrylamide modulate these effects. These findings proof that dietary rosemary can directly protect motor neuron against acrylamide toxicity in the mammalian developing spinal cord. PMID:27051566

  8. Protective effect of rosemary on acrylamide motor neurotoxicity in spinal cord of rat offspring: postnatal follow-up study.

    PubMed

    Al-Gholam, Marwa A; Nooh, Hanaa Zakaria; El-Mehi, Abeer E; El-Barbary, Abd El-Moneum; Fokar, Ahmed Zo El

    2016-03-01

    The direct interactive effects of rosemary and acrylamide on the development of motor neurons in the spinal cord remains unknown. Our goal is to confirm the protective effects of rosemary against motor neuronal degeneration induced by acrylamide in the developing postnatal rat spinal cord using a postnatal rat model. We assigned the offspring of treated female rats into control, rosemary; acrylamide group; and recovery groups. This work depended on clinical, histopathological, morphometrically, immunohistochemical and genetic methods. In the acrylamide group, we observed oxidation, motor neuron degeneration, apoptosis, myelin degeneration, neurofilament reduction, reactive gliosis. Whoever, concomitant rosemary intake and withdrawal of acrylamide modulate these effects. These findings proof that dietary rosemary can directly protect motor neuron against acrylamide toxicity in the mammalian developing spinal cord.

  9. NEUROTOXIC EFFECTS OF CHRONIC EXPOSURE TO ARSENIC VIA DRINKING WATER IN INNER MONGOLIA: I. SYMPTOMS AND PINPRICK TESTING

    EPA Science Inventory


    This study was designed to assess the effects of exposure to arsenic in drinking water on neurosensory function. A symptom questionnaire and brief neurological exam consisting of pinprick testing of the arms and legs and knee-jerk test were administered to 321 residents of...

  10. Does diisocyanate exposure result in neurotoxicity?

    PubMed Central

    2014-01-01

    Context Diisocyanates have been associated with respiratory and dermal sensitization. Limited number of case reports, and a few case studies, media, and other references suggest potential neurotoxic effects from exposures to toluene diisocyanate (TDI), 1,6 hexamethylene diisocyanate (HDI), and methylene diisocyanate (MDI). However, a systematic review of the literature evaluating the causal association on humans does not exist to support this alleged association. Objective To perform systematic review examining the body of epidemiologic evidence and provide assessment of causal association based on principles of the Sir Austin Bradford Hill criteria or considerations for causal analysis. Methods A comprehensive search of public databases for published abstracts, case reports, cross-sectional surveys, and cohort studies using key search terms was conducted. Additional searches included regulatory reviews, EU IUCLID and EU Risk Assessment databases, and unpublished reports in the International Isocyanate Institute database. An expert panel consisting of physicians, toxicologists, and an epidemiologist critically reviewed accepted papers, providing examination of epidemiologic evidence of each report. Finally, the Hill criteria for causation were applied to the summative analysis of identified reports to estimate probability of causal association. Results Twelve papers reporting exposed populations with a variety of neurological symptoms or findings suitable for analysis were identified, including eleven case or case series reports, and one cross-sectional study. Three papers reported on the same population. Each of the papers was limited by paucity of diisocyanate exposure estimates, the presence of confounding exposures to known or suspected neurotoxicants, a lack of objective biological measures of exposure or neurotoxic effects, and lack of relative strength of association measures. Additionally, reported health symptoms and syndromes lacked consistency or

  11. An invertebrate model of the developmental neurotoxicity of insecticides: effects of chlorpyrifos and dieldrin in sea urchin embryos and larvae.

    PubMed Central

    Buznikov, G A; Nikitina, L A; Bezuglov, V V; Lauder, J M; Padilla, S; Slotkin, T A

    2001-01-01

    Chlorpyrifos targets mammalian brain development through a combination of effects directed at cholinergic receptors and intracellular signaling cascades that are involved in cell differentiation. We used sea urchin embryos as an invertebrate model system to explore the cellular mechanisms underlying the actions of chlorpyrifos and to delineate the critical period of developmental vulnerability. Sea urchin embryos and larvae were exposed to chlorpyrifos at different stages of development ranging from early cell cleavages through the prism stage. Although early cleavages were unaffected even at high chlorpyrifos concentrations, micromolar concentrations added at the mid-blastula stage evoked a prominent change in cell phenotype and overall larval structure, with appearance of pigmented cells followed by their accumulation in an extralarval cap that was extruded from the animal pole. At higher concentrations (20-40 microM), these abnormal cells constituted over 90% of the total cell number. Studies with cholinergic receptor blocking agents and protein kinase C inhibitors indicated two distinct types of effects, one mediated through stimulation of nicotinic cholinergic receptors and the other targeting intracellular signaling. The effects of chlorpyrifos were not mimicked by chlorpyrifos oxon, the active metabolite that inhibits cholinesterase, nor by nonorganophosphate cholinesterase inhibitors. Dieldrin, an organochlorine that targets GABA(A )receptors, was similarly ineffective. The effects of chlorpyrifos and its underlying cholinergic and signaling-related mechanisms parallel prior findings in mammalian embryonic central nervous system. Invertebrate test systems may thus provide both a screening procedure for potential neuroteratogenesis by organophosphate-related compounds, as well as a system with which to uncover novel mechanisms underlying developmental vulnerability. PMID:11485862

  12. Mithramycin protects against dopaminergic neurotoxicity in the mouse brain after administration of methamphetamine.

    PubMed

    Hagiwara, Hiroko; Iyo, Masaomi; Hashimoto, Kenji

    2009-12-01

    The present study was undertaken to examine the effects of mithramycin, an inhibitor of transcription factor Specificity protein (Sp)-1, on the behavioral changes and dopaminergic neurotoxicity in the mouse striatum after administration of methamphetamine (METH). Pretreatment with mithramycin (75, 150 or 300 microg/kg) did not alter acute hyperlocomotion in mice after a single administration of METH (3 mg/kg). However, the development of behavioral sensitization in mice after repeated administration of METH (3 mg/kg/day, once daily for 5 days) was significantly blocked by pretreatment with mithramycin (300 microg/kg). Furthermore, pretreatment with mithramycin (300 microg/kg) significantly attenuated the hyperthermia in mice after repeated administration of METH (3 mg/kgx3, 3-h intervals). Moreover, the combination of pretreatment and subsequent administration of mithramycin (75, 150 or 300 microg/kg) significantly attenuated the reductions of dopamine (DA), its major metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) and DA transporter (DAT) in the striatum after repeated administration of METH (3 mg/kgx3, 3-h intervals), and these attenuations were dose dependent. These findings suggest that mithramycin attenuates the development of behavioral sensitization and dopaminergic neurotoxicity in mice after repeated administration of METH. Therefore, mithramycin could have potential for the treatment of METH abusers, particularly since this drug has been approved by the Food and Drug Administration in the United States. In the future, however, another Sp1 inhibitors with fewer side effects might be more appropriate.

  13. Brain-derived neurotrophic factor as an indicator of chemical neurotoxicity: an animal-free CNS cell culture model.

    PubMed

    Woehrling, Elizabeth K; Hill, Eric J; Nagel, David; Coleman, Michael D

    2013-12-01

    Recent changes to the legislation on chemicals and cosmetics testing call for a change in the paradigm regarding the current 'whole animal' approach for identifying chemical hazards, including the assessment of potential neurotoxins. Accordingly, since 2004, we have worked on the development of the integrated co-culture of post-mitotic, human-derived neurons and astrocytes (NT2.N/A), for use as an in vitro functional central nervous system (CNS) model. We have used it successfully to investigate indicators of neurotoxicity. For this purpose, we used NT2.N/A cells to examine the effects of acute exposure to a range of test chemicals on the cellular release of brain-derived neurotrophic factor (BDNF). It was demonstrated that the release of this protective neurotrophin into the culture medium (above that of control levels) occurred consistently in response to sub-cytotoxic levels of known neurotoxic, but not non-neurotoxic, chemicals. These increases in BDNF release were quantifiable, statistically significant, and occurred at concentrations below those at which cell death was measureable, which potentially indicates specific neurotoxicity, as opposed to general cytotoxicity. The fact that the BDNF immunoassay is non-invasive, and that NT2.N/A cells retain their functionality for a period of months, may make this system useful for repeated-dose toxicity testing, which is of particular relevance to cosmetics testing without the use of laboratory animals. In addition, the production of NT2.N/A cells without the use of animal products, such as fetal bovine serum, is being explored, to produce a fully-humanised cellular model. PMID:24512234

  14. Brain-derived neurotrophic factor as an indicator of chemical neurotoxicity: an animal-free CNS cell culture model.

    PubMed

    Woehrling, Elizabeth K; Hill, Eric J; Nagel, David; Coleman, Michael D

    2013-12-01

    Recent changes to the legislation on chemicals and cosmetics testing call for a change in the paradigm regarding the current 'whole animal' approach for identifying chemical hazards, including the assessment of potential neurotoxins. Accordingly, since 2004, we have worked on the development of the integrated co-culture of post-mitotic, human-derived neurons and astrocytes (NT2.N/A), for use as an in vitro functional central nervous system (CNS) model. We have used it successfully to investigate indicators of neurotoxicity. For this purpose, we used NT2.N/A cells to examine the effects of acute exposure to a range of test chemicals on the cellular release of brain-derived neurotrophic factor (BDNF). It was demonstrated that the release of this protective neurotrophin into the culture medium (above that of control levels) occurred consistently in response to sub-cytotoxic levels of known neurotoxic, but not non-neurotoxic, chemicals. These increases in BDNF release were quantifiable, statistically significant, and occurred at concentrations below those at which cell death was measureable, which potentially indicates specific neurotoxicity, as opposed to general cytotoxicity. The fact that the BDNF immunoassay is non-invasive, and that NT2.N/A cells retain their functionality for a period of months, may make this system useful for repeated-dose toxicity testing, which is of particular relevance to cosmetics testing without the use of laboratory animals. In addition, the production of NT2.N/A cells without the use of animal products, such as fetal bovine serum, is being explored, to produce a fully-humanised cellular model.

  15. The Potential for Plant Derivatives against Acrylamide Neurotoxicity.

    PubMed

    Adewale, O O; Brimson, J M; Odunola, O A; Gbadegesin, M A; Owumi, S E; Isidoro, C; Tencomnao, T

    2015-07-01

    Certain industrial chemicals and food contaminants have been demonstrated to possess neurotoxic activity and have been suspected to cause brain-related disorders in humans. Acrylamide (ACR), a confirmed neurotoxicant, can be found in trace amount in commonly consumed human aliments as a result of food processing or cooking. This discovery aroused a great concern in the public, and increasing efforts are continuously geared towards the resolution of this serious threat. The broad chemical diversity of plants may offer the resources for novel antidotes against neurotoxicants. With the goal of attenuating neurotoxicity of ACR, several plants extracts or derivatives have been employed. This review presents the plants and their derivatives that have been shown most active against ACR-induced neurotoxicity, with a focus on their origin, pharmacological activity, and antidote effects. PMID:25886076

  16. Neurotoxic potential of ingested ZnO nanomaterials on bees.

    PubMed

    Milivojević, Tamara; Glavan, Gordana; Božič, Janko; Sepčić, Kristina; Mesarič, Tina; Drobne, Damjana

    2015-02-01

    The honey bee is among most important pollinators threatened by environmental pollution, pest control and potentially, by products of nanotechnologies. The aim of the current study was an analysis of the neurotoxic potential of ingested zinc oxide nanomaterials (ZnO NMs) or zinc ions (Zn(2+)) on honey bees. We analysed a variety of biomarkers, including metabolic impairment, feeding rate, and survival, as well as the activities of a stress-related enzyme glutathione S-transferase, and the neurotoxicity biomarker acetylcholinesterase. Acetylcholinesterase activity was found to be elevated in bees exposed to either of the tested substances. In addition, we observed increased feeding rate in the group treated with Zn(2+) but not with ZnO NMs or control group. The observed effects we relate primarily to Zn(2+) ions. Here we provide evidence that zinc ions either originating from Zn salt or Zn-based NPs have a neurotoxic potential and thus might contribute to colony survival.

  17. Effect of four medicinal plants on amyloid-β induced neurotoxicity in SH-SY5Y cells.

    PubMed

    Adewusi, Emanuel A; Fouche, Gerda; Steenkamp, Vanessa

    2013-01-01

    Amyloid-beta peptide (Aβ) is implicated in the pathogenesis of Alzheimer's disease (AD), a neurodegenerative disorder. This study was designed to determine the effect of four medicinal plants used to treat neurodegenerative diseases on Aβ-induced cell death. Cytotoxicity of the ethanol extracts of the plants was determined against SH-SY5Y (human neuroblastoma) cells which were untreated, as well as toxically induced with Aβ, using the MTT and neutral red uptake assays. Cell viability was reduced to 16% when exposed to 20 µM Aβ25-35 for 72 h. The methanol extract of the roots of Ziziphus mucronata Willd., Lannea schweinfurthii (Engl.) Engl. and Terminalia sericea Burch. ex DC., were the least toxic to the SH-SY5Ycells at the highest concentration tested (100 µg/ml). All four plants tested were observed to reduce the effects of Aβ-induced neuronal cell death, indicating that they may contain compounds which may be relevant in the prevention of AD progression.

  18. Fragment C Domain of Tetanus Toxin Mitigates Methamphetamine Neurotoxicity and Its Motor Consequences in Mice

    PubMed Central

    Mendieta, Liliana; Granado, Noelia; Aguilera, José; Tizabi, Yousef

    2016-01-01

    Background: The C-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) is a nontoxic peptide with demonstrated in vitro and in vivo neuroprotective effects against striatal dopaminergic damage induced by 1-methyl-4-phenylpyridinium and 6-hydoxydopamine, suggesting its possible therapeutic potential in Parkinson’s disease. Methamphetamine, a widely abused psychostimulant, has selective dopaminergic neurotoxicity in rodents, monkeys, and humans. This study was undertaken to determine whether Hc-TeTx might also protect against methamphetamine-induced dopaminergic neurotoxicity and the consequent motor impairment. Methods: For this purpose, we treated mice with a toxic regimen of methamphetamine (4mg/kg, 3 consecutive i.p. injections, 3 hours apart) followed by 3 injections of 40 ug/kg of Hc-TeTx into grastrocnemius muscle at 1, 24, and 48 hours post methamphetamine treatment. Results: We found that Hc-TeTx significantly reduced the loss of dopaminergic markers tyrosine hydroxylase and dopamine transporter and the increases in silver staining (a well stablished degeneration marker) induced by methamphetamine in the striatum. Moreover, Hc-TeTx prevented the increase of neuronal nitric oxide synthase but did not affect microglia activation induced by methamphetamine. Stereological neuronal count in the substantia nigra indicated loss of tyrosine hydroxylase-positive neurons after methamphetamine that was partially prevented by Hc-TeTx. Importantly, impairment in motor behaviors post methamphetamine treatment were significantly reduced by Hc-TeTx. Conclusions: Here we demonstrate that Hc-TeTx can provide significant protection against acute methamphetamine-induced neurotoxicity and motor impairment, suggesting its therapeutic potential in methamphetamine abusers. PMID:26945022

  19. Neuroprotective Effects of Ginsenoside Rb1 on High Glucose-Induced Neurotoxicity in Primary Cultured Rat Hippocampal Neurons

    PubMed Central

    Liu, Di; Zhang, Hong; Gu, Wenjuan; Liu, Yuqin; Zhang, Mengren

    2013-01-01

    Ginsenoside Rb1 is one of the main active principles in traditional herb ginseng and has been reported to have a wide variety of neuroprotective effects. Endoplasmic reticulum (ER) stress has been implicated in neurodegenerative diseases, so the present study aimed to observe the effects of ginsenoside Rb1 on ER stress signaling pathways in high glucose-treated hippocampal neurons. The results from MTT, TUNEL labeling and Annexin V-FITC/PI/Hoechst assays showed that incubating neurons with 50 mM high glucose for 72h decreased cell viability and increased the number of apoptotic cells whereas treating neurons with 1 μM Rb1 for 72h protected the neurons against high glucose-induced cell damage. Further molecular mechanism study demonstrated that Rb1 suppressed the activation of ER stress-associated proteins including protein kinase RNA (PKR)-like ER kinase (PERK) and C/EBP homology protein (CHOP) and downregulation of Bcl-2 induced by high glucose. Moreover, Rb1 inhibited both the elevation of intracellular reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential induced by high glucose. In addition, the high glucose-induced cell apoptosis, activation of ER stress, ROS accumulation and mitochondrial dysfunction can also be attenuated by the inhibitor of ER stress 4-phenylbutyric acid (4-PBA) and anti-oxidant N-acetylcysteine(NAC). In conclusion, these results suggest that Rb1 may protect neurons against high glucose-induced cell injury through inhibiting CHOP signaling pathway as well as oxidative stress and mitochondrial dysfunction. PMID:24223941

  20. Cancer Treatment-Induced Neurotoxicity: A Focus on Newer Treatments

    PubMed Central

    Stone, Jacqueline B.; DeAngelis, Lisa M.

    2016-01-01

    Neurotoxicity from traditional chemotherapy and radiotherapy is widely recognized. The adverse effects of newer therapeutics such as biological and immunotherapeutic agents are less familiar and they are also associated with significant neurotoxicity in the central and peripheral nervous systems. This review addresses the main toxicities of cancer treatment by symptom with a focus on the newer therapeutics. Recognition of these patterns of toxicity is important as drug discontinuation or dose adjustment may prevent further neurologic injury. Also, knowledge of these toxicities helps to differentiate treatment-related symptoms from progression of cancer or its involvement of the nervous system. PMID:26391778

  1. Pomegranate seed oil: Effect on 3-nitropropionic acid-induced neurotoxicity in PC12 cells and elucidation of unsaturated fatty acids composition.

    PubMed

    Al-Sabahi, Bushra N; Fatope, Majek O; Essa, Musthafa Mohamed; Subash, Selvaraju; Al-Busafi, Saleh N; Al-Kusaibi, Fatma S N; Manivasagam, Thamilarasan

    2014-09-19

    Background Seed oils are used as cosmetics or topical treatment for wounds, allergy, dandruff, and other purposes. Natural antioxidants from plants were recently reported to delay the onset or progress of various neurodegenerative conditions. Over one thousand cultivars of Punica granatum (Punicaceae) are known and some are traditionally used to treat various ailments. Aim The effect of pomegranate oil on 3-nitropropionic acid- (3-NP) induced cytotoxicity in rat pheochromocytoma (PC12) neuronal cells was analyzed in this study. Furthermore, the analysis of unsaturated fatty acid composition of the seed oil of pomegranate by gas chromatography-electron impact mass spectrometry (GC-MS) was done. Results GC-MS study showed the presence of 6,9-octadecadiynoic acid (C18:2(6,9)) as a major component (60%) as 4,4-dimethyloxazoline derivative. The total extractable oil with light petroleum ether by Soxhlet from the dry seed of P. granatum was 4-6%. The oil analyzed for 48.90 ± 1.50 mg gallic acid equivalents/g of oil, and demonstrated radical-scavenging-linked antioxidant activities in various in vitro assays like the DPPH (2,2-diphenyl-l-picrylhydrazyl, % IP = 35.2 ± 0.9%), ABTS (2,2'-azino-bis-3-ethylene benzothiozoline-6-sulfonic acid, % IP 2.2 ± 0.1%), and β-carotene bleaching assay (% IP = 26 ± 3%), respectively, which could be due the possible role of one methylene interrupted diynoic acid system for its radical-scavenging/antioxidant properties of oil. The oil also reduced lipid peroxidation, suppressed reactive oxygen species, extracellular nitric oxide, lactate/pyruvate ratio, and lactase dehydrogenase generated by 3-NP- (100 mM) induced neurotoxicity in PC12 cells, and enhanced the levels of enzymatic and non-enzymatic antioxidants at 40 μg of gallic acid equivalents. Conclusion The protective effect of pomegranate seed oil might be due to the ability of an oil to neutralize ROS or enhance the expression of antioxidant gene.

  2. Pomegranate seed oil: Effect on 3-nitropropionic acid-induced neurotoxicity in PC12 cells and elucidation of unsaturated fatty acids composition.

    PubMed

    Al-Sabahi, Bushra N; Fatope, Majek O; Essa, Musthafa Mohamed; Subash, Selvaraju; Al-Busafi, Saleh N; Al-Kusaibi, Fatma S N; Manivasagam, Thamilarasan

    2014-09-19

    Background Seed oils are used as cosmetics or topical treatment for wounds, allergy, dandruff, and other purposes. Natural antioxidants from plants were recently reported to delay the onset or progress of various neurodegenerative conditions. Over one thousand cultivars of Punica granatum (Punicaceae) are known and some are traditionally used to treat various ailments. Aim The effect of pomegranate oil on 3-nitropropionic acid- (3-NP) induced cytotoxicity in rat pheochromocytoma (PC12) neuronal cells was analyzed in this study. Furthermore, the analysis of unsaturated fatty acid composition of the seed oil of pomegranate by gas chromatography-electron impact mass spectrometry (GC-MS) was done. Results GC-MS study showed the presence of 6,9-octadecadiynoic acid (C18:2(6,9)) as a major component (60%) as 4,4-dimethyloxazoline derivative. The total extractable oil with light petroleum ether by Soxhlet from the dry seed of P. granatum was 4-6%. The oil analyzed for 48.90 ± 1.50 mg gallic acid equivalents/g of oil, and demonstrated radical-scavenging-linked antioxidant activities in various in vitro assays like the DPPH (2,2-diphenyl-l-picrylhydrazyl, % IP = 35.2 ± 0.9%), ABTS (2,2'-azino-bis-3-ethylene benzothiozoline-6-sulfonic acid, % IP 2.2 ± 0.1%), and β-carotene bleaching assay (% IP = 26 ± 3%), respectively, which could be due the possible role of one methylene interrupted diynoic acid system for its radical-scavenging/antioxidant properties of oil. The oil also reduced lipid peroxidation, suppressed reactive oxygen species, extracellular nitric oxide, lactate/pyruvate ratio, and lactase dehydrogenase generated by 3-NP- (100 mM) induced neurotoxicity in PC12 cells, and enhanced the levels of enzymatic and non-enzymatic antioxidants at 40 μg of gallic acid equivalents. Conclusion The protective effect of pomegranate seed oil might be due to the ability of an oil to neutralize ROS or enhance the expression of antioxidant gene. PMID:25238165

  3. Characterizing the Effect of Multivalent Conjugates Composed of Aβ-Specific Ligands and Metal Nanoparticles on Neurotoxic Fibrillar Aggregation.

    PubMed

    Streich, Carmen; Akkari, Laura; Decker, Christina; Bormann, Jenny; Rehbock, Christoph; Müller-Schiffmann, Andreas; Niemeyer, Felix Carlsson; Nagel-Steger, Luitgard; Willbold, Dieter; Sacca, Barbara; Korth, Carsten; Schrader, Thomas; Barcikowski, Stephan

    2016-08-23

    Therapeutically active small molecules represent promising nonimmunogenic alternatives to antibodies for specifically targeting disease-relevant receptors. However, a potential drawback compared to antibody-antigen interactions may be the lower affinity of small molecules toward receptors. Here, we overcome this low-affinity problem by coating the surface of nanoparticles (NPs) with multiple ligands. Specifically, we explored the use of gold and platinum nanoparticles to increase the binding affinity of Aβ-specific small molecules to inhibit Aβ peptide aggregation into fibrils in vitro. The interactions of bare NPs, free ligands, and NP-bound ligands with Aβ are comprehensively studied via physicochemical methods (spectroscopy, microscopy, immunologic tests) and cell assays. Reduction of thioflavin T fluorescence, as an indicator for β-sheet content, and inhibition of cellular Aβ excretion are even more effective with NP-bound ligands than with the free ligands. The results from this study may have implications in the development of therapeutics for treating Alzheimer's disease. PMID:27404114

  4. Effects of glutamate and {alpha}2-noradrenergic receptor antagonists on the development of neurotoxicity produced by chronic rotenone in rats

    SciTech Connect

    Alam, Mesbah Danysz, Wojciech; Schmidt, Werner Juergen; Dekundy, Andrzej

    2009-10-15

    Systemic inhibition of complex I by rotenone in rats represents a model of Parkinson's disease (PD). The aim of this study was to elucidate whether neramexane (NMDA, nicotinic {alpha}9/{alpha}10 and 5-HT{sub 3} receptor antagonist), idazoxan ({alpha}{sub 2}-adrenoceptor antagonist) or 2-methyl-6-(phenyl-ethyl)-pyrimidine (MPEP, metabotropic glutamate receptor 5 antagonist) prevents rotenone-induced parkinsonian-like behaviours and neurochemical changes in rats. Rotenone (2.5 mg/kg i.p. daily) was administered over 60 days together with saline, neramexane (5 mg/kg i.p., b.i.d.), idazoxan (2.5 mg/kg i.p., b.i.d.) or MPEP (2.5 mg/kg i.p., b.i.d.). The same doses of neramexane, idazoxan and MPEP were administered to rats treated with vehicle instead of rotenone. Treatment-related effects on parkinsonian-like behaviours, such as hypokinesia/rigidity and locomotor activity, were evaluated. Moreover, concentrations of dopamine, serotonin and their metabolites were measured in rats from each experimental group. Over the 60-day treatment period, the rotenone + saline treated animals developed hypokinesia, expressed as an increase in the bar and grid descent latencies in the catalepsy test, and a decrease in locomotor activity. Neramexane and idazoxan partially prevented the development of catalepsy in rotenone-treated rats. Co-administration of MPEP with rotenone resulted only in a decrease in descent latency in the grid test on day 60. Chronic rotenone treatment reduced concentrations of dopamine and serotonin in the anterior striatum, which was blocked by co-treatment with neramexane or idazoxan but not with MPEP. Only neramexane treatment blocked the rotenone-induced decrease in dopamine levels in the substantia nigra pars compacta. In conclusion, neramexane and idazoxan counteracted to some extent the development of parkinsonian symptoms and neurochemical alterations in the rotenone model of Parkinson's disease.

  5. Protective Effects of Indole-3-Carbinol-Loaded Poly(lactic-co-glycolic acid) Nanoparticles Against Glutamate-Induced Neurotoxicity.

    PubMed

    Jeong, Ji Heun; Kim, Jwa-Jin; Bak, Dong Ho; Yu, Kwang Sik; Lee, Je Hun; Lee, Nam Seob; Jeong, Young Gil; Kim, Do Kyung; Kim, Dong-Kwan; Han, Seung-Yun

    2015-10-01

    Indole-3-carbinol (I3C) has anti-oxidant and anti-inflammatory properties. Nonetheless, the potential of I3C to treat neurodegenerative diseases remains unclear because of its poor ability to penetrate the blood-brain barrier (BBB). Because polymer-based drug delivery systems stabilized by surfactants have been intensively utilized as a strategy to cross the blood-brain barrier, we prepared I3C-loaded poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) that were stabilized by Tween 80 (T80) (I3C-PLGA-T80-NPs) and examined their neuroprotective potential in vitro. We prepared I3C-PLGA-T80-NPs with an oil-in-water (o/w) emulsion solvent evaporation technique and confirmed their successful synthesis with both transmission electron microscopy and Fourier transform-infrared spectroscopy. I3C-PLGA-T80-NPs were then used to treat PC12 neuronal cells injured by glutamate excitotoxicity (GE) and examined the resulting survival rates compared with PC12 cells treated with I3C only. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay revealed higher survival rates in I3C-PLGA-T80-NPs-treated cells after GE injury compared with those treated with I3C only. Furthermore, I3C-PLGA-T80-NPs decreased the levels of reactive oxygen species (ROS) and apoptosis-related enzymes (Caspase-3 and -8) in GE-damaged neuronal cells. Taken together, I3C-PLGA-T80-NPs might possess neuroprotective effects against GE through ROS scavenging and subsequent apoptosis blockage. PMID:26726441

  6. Synthesis, Pharmacological Assessment, and Molecular Modeling of Acetylcholinesterase/Butyrylcholinesterase Inhibitors: Effect against Amyloid-β-Induced Neurotoxicity

    PubMed Central

    2013-01-01

    The synthesis, molecular modeling, and pharmacological analysis of phenoxyalkylamino-4-phenylnicotinates (2–7), phenoxyalkoxybenzylidenemalononitriles (12, 13), pyridonepezils (14–18), and quinolinodonepezils (19–21) are described. Pyridonepezils 15–18 were found to be selective and moderately potent regarding the inhibition of hAChE, whereas quinolinodonepezils 19–21 were found to be poor inhibitors of hAChE. The most potent and selective hAChE inhibitor was ethyl 6-(4-(1-benzylpiperidin-4-yl)butylamino)-5-cyano-2-methyl-4-phenylnicotinate (18) [IC50 (hAChE) = 0.25 ± 0.02 μM]. Pyridonepezils 15–18 and quinolinodonepezils 20–21 are more potent selective inhibitors of EeAChE than hAChE. The most potent and selective EeAChE inhibitor was ethyl 6-(2-(1-benzylpiperidin-4-yl)ethylamino)-5-cyano-2-methyl-4-phenylnicotinate (16) [IC50 (EeAChE) = 0.0167 ± 0.0002 μM], which exhibits the same inhibitory potency as donepezil against hAChE. Compounds 2, 7, 13, 17, 18, 35, and 36 significantly prevented the decrease in cell viability caused by Aβ1–42. All compounds were effective in preventing the enhancement of AChE activity induced by Aβ1–42. Compounds 2–7 caused a significant reduction whereas pyridonepezils 17 and 18, and compound 16 also showed some activity. The pyrazolo[3,4-b]quinolines 36 and 38 also prevented the upregulation of AChE induced by Aβ1–42. Compounds 2, 7, 12, 13, 17, 18, and 36 may act as antagonists of voltage sensitive calcium channels, since they significantly prevented the Ca2+ influx evoked by KCl depolarization. Docking studies show that compounds 16 and 18 adopted different orientations and conformations inside the active-site gorges of hAChE and hBuChE. The structural and energetic features of the 16-AChE and 18-AChE complexes compared to the 16-BuChE and 18-BuChE complexes account for a higher affinity of the ligand toward AChE. The present data indicate that compounds 2, 7, 17, 18, and 36 may represent attractive

  7. Neurotoxicity of Dietary Supplements from Annonaceae Species.

    PubMed

    Höllerhage, Matthias; Rösler, Thomas W; Berjas, Magda; Luo, Rensheng; Tran, Kevin; Richards, Kristy M; Sabaa-Srur, Armando U; Maia, José Guilherme S; Moraes, Maria Rosa de; Godoy, Helena T; Höglinger, Günter U; Smith, Robert E

    2015-01-01

    Dietary supplements containing plant materials of Annonaceae species (Annona muricata L., A. squamosa L., A. mucosa JACQ., A. squamosa × cherimola Mabb.) were extracted by hot, pressurized ethyl acetate and analyzed for their effect in vitro on Lund human mesencephalic neurons. Cell viability was measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and cell death was determined by lactate dehydrogenase levels. Three supplements strongly decreased the cell viability at extract concentrations of 1 µg/mL, of which 1 decreased cell viability at 0.1 µg/µL. Also, strong neuronal toxicities of these supplements were found. Cell death was observed at concentrations of 10 µg/mL. The degree of toxicity was comparable to the ones found in Annonaceous fruit extracts. Two fruit pulps of Annonaceae (A. muricata and A. squamosa) showed a reduction in cell viability at lower concentrations. The fruit pulp extract of A. muricata revealed the strongest neurotoxic effect, with 67% cell death at a concentration of 1 µg/mL. A high reduction in cell viability coupled with pronounced cell death was found at 0.1 µg/mL for an Annonaceous seed extract. These results demonstrate that the intake of dietary supplements containing plant material from Annonaceae may be hazardous to health in terms of neurotoxicity.

  8. Occupational Neurotoxic Diseases in Taiwan

    PubMed Central

    Liu, Chi-Hung; Huang, Chu-Yun

    2012-01-01

    Occupational neurotoxic diseases have become increasingly common in Taiwan due to industrialization. Over the past 40 years, Taiwan has transformed from an agricultural society to an industrial society. The most common neurotoxic diseases also changed from organophosphate poisoning to heavy metal intoxication, and then to organic solvent and semiconductor agent poisoning. The nervous system is particularly vulnerable to toxic agents because of its high metabolic rate. Neurological manifestations may be transient or permanent, and may range from cognitive dysfunction, cerebellar ataxia, Parkinsonism, sensorimotor neuropathy and autonomic dysfunction to neuromuscular junction disorders. This study attempts to provide a review of the major outbreaks of occupational neurotoxins from 1968 to 2012. A total of 16 occupational neurotoxins, including organophosphates, toxic gases, heavy metals, organic solvents, and other toxic chemicals, were reviewed. Peer-reviewed articles related to the electrophysiology, neuroimaging, treatment and long-term follow up of these neurotoxic diseases were also obtained. The heavy metals involved consisted of lead, manganese, organic tin, mercury, arsenic, and thallium. The organic solvents included n-hexane, toluene, mixed solvents and carbon disulfide. Toxic gases such as carbon monoxide, and hydrogen sulfide were also included, along with toxic chemicals including polychlorinated biphenyls, tetramethylammonium hydroxide, organophosphates, and dimethylamine borane. In addition we attempted to correlate these events to the timeline of industrial development in Taiwan. By researching this topic, the hope is that it may help other developing countries to improve industrial hygiene and promote occupational safety and health care during the process of industrialization. PMID:23251841

  9. Neurotoxicity and risk assessment of brominated and alternative flame retardants.

    PubMed

    Hendriks, Hester S; Westerink, Remco H S

    2015-01-01

    Brominated flame retardants (BFRs) are widely used chemicals that prevent or slow the onset and spreading of fire. Unfortunately, many of these compounds pose serious threats for human health and the environment, indicating an urgent need for safe(r) and less persistent alternative flame retardants (AFRs). As previous research identified the nervous system as a sensitive target organ, the neurotoxicity of past and present flame retardants is reviewed. First, an overview of the neurotoxicity of BFRs in humans and experimental animals is provided, and some common in vitro neurotoxic mechanisms of action are discussed. The combined epidemiological and toxicological studies clearly underline the need for replacing BFRs. Many potentially suitable AFRs are already in use, despite the absence of a full profile of their environmental behavior and toxicological properties. To prioritize the suitability of some selected halogenated and non-halogenated organophosphorous flame retardants and inorganic halogen-free flame retardants, the available neurotoxic data of these AFRs are discussed. The suitability of the AFRs is rank-ordered and combined with human exposure data (serum concentrations, breast milk concentrations and house dust concentrations) and physicochemical properties (useful to predict e.g. bioavailability and persistence in the environment) for a first semi-quantitative risk assessment of the AFRs. As can be concluded from the reviewed data, several BFRs and AFRs share some neurotoxic effects and modes of action. Moreover, the available neurotoxicity data indicate that some AFRs may be suitable substitutes for BFRs. However, proper risk assessment is hampered by an overall scarcity of data, particularly regarding environmental persistence, human exposure levels, and the formation of breakdown products and possible metabolites as well as their toxicity. Until these data gaps in environmental behavioral and toxicological profiles are filled, large scale use of

  10. The use of glial data in neurotoxicity risk assessment

    EPA Science Inventory

    Central nervous system (CNS) glia (i.e., astrocytes, microglia, and oligodendrocytes) are essential for normal brain function, and they orchestrate the CNS response to injury. While effects on glia are important to consider when evaluating the neurotoxicity risk of exposure to xe...

  11. Evaluation of subchronic neurotoxicity of n-butyl acetate vapor.

    PubMed

    David, R M; Tyler, T R; Ouellette, R; Faber, W D; Banton, M I; Garman, R H; Gill, M W; O'Donoghue, J L

    1998-12-01

    n-Butyl acetate, a common industrial solvent, was selected by the US EPA as a chemical of concern for neurotoxicity as part of the Multisubstance Rule for the Testing of Neurotoxicity. The neurotoxic potential of n-butyl acetate was investigated in Sprague-Dawley rats using a functional observational battery, motor activity, neurohistopathology, and schedule-controlled operant behavior (SCOB) as indicators of neurotoxicity. Animals were exposed to concentrations of 0, 500, 1500, or 3000 ppm of n-butyl acetate for 6 hours per day for 65 exposures over 14 weeks. Functional observational battery and motor activity values for ad libitum-fed male and female rats were measured during Weeks -1, 4, 8, and 13. SCOB testing of food-restricted animals, using a multiple fixed ratio/fixed interval schedule, was conducted daily prior to each exposure to maintain the operant behavior; the data from Weeks -1, 4, 8, and 13 were evaluated for evidence of neurotoxicity. Transient signs of sedation and hypoactivity were observed only during exposure to the 1500 and 3000 ppm concentrations. The only signs of systemic toxicity were reduced body weights for the 3000 ppm ad libitum-fed groups and occasionally for the female 1500 ppm ad libitum-fed group. No evidence of neurotoxicity was seen during the functional observational battery examinations. Motor activity for the 3000 ppm male group was significantly (p < or = 0.05) higher than for the control group only during Week 4. No significant differences were observed among groups for Weeks 8 and 13. No significant differences in motor activity values were observed for female rats. No significant differences were seen in operant behavior at any test vapor concentration. Microscopic evaluations of sections from the brain, spinal cord (cervical and lumbar regions), dorsal and ventral spinal roots, dorsal root ganglia, sciatic nerve, and tibial nerve of animals in the control and 3000 ppm groups did not indicate any treatment-related effects

  12. A curious case of oxaliplatin-induced neurotoxicity: recurrent, self-limiting dysarthria.

    PubMed

    Joseph, Ranjit; Dasanu, Constantin A

    2014-10-01

    This report presents a unique case of oxaliplatin-induced neurotoxicity featuring acute, recurrent, self-limiting dysarthria following multiple subsequent infusions of oxaliplatin. A 65-year-old man started chemotherapy for metastatic pancreatic adenocarcinoma with oxaliplatin-irinotecan-leucovorin-5-fluorouracil (FOLFIRINOX). During the first and subsequent infusions of oxaliplatin, the patient developed episodes of dysarthria that lasted between 2 and 4 h after oxaliplatin infusions, followed by their complete and uneventful resolution. A thorough neurological examination showed no new neurologic deficits except for very fine tongue fasciculations. Recognizing this self-limiting toxic effect of oxaliplatin is important in order to avoid dose reductions that may affect clinical outcomes.

  13. Neurotoxic marine poisoning.

    PubMed

    Isbister, Geoffrey K; Kiernan, Matthew C

    2005-04-01

    Marine poisoning results from the ingestion of marine animals that contain toxic substances and causes substantial illness in coastal regions. Three main clinical syndromes of marine poisoning have important neurological symptoms-ciguatera, tetrodotoxin poisoning, and paralytic shellfish poisoning. Ciguatera is the commonest syndrome of marine poisoning and is characterised by moderate to severe gastrointestinal effects (vomiting, diarrhoea, and abdominal cramps) and neurological effects (myalgia, paraesthesia, cold allodynia, and ataxia), but is rarely lethal. Tetrodotoxin poisoning and paralytic shellfish poisoning are less common but have a higher fatality rate than ciguatera. Mild gastrointestinal effects and a descending paralysis are characteristic of these types of poisoning. In severe poisoning, paralysis rapidly progresses to respiratory failure. Diagnosis of all types of marine poisoning is made from the circumstances of ingestion (type of fish and location) and the clinical effects. Because there are no antidotes, supportive care, including mechanical ventilation in patients with severe paralysis, is the mainstay of treatment.

  14. Berberine Reduces Neurotoxicity Related to Nonalcoholic Steatohepatitis in Rats

    PubMed Central

    Ghareeb, Doaa A.; Khalil, Sofia; Hafez, Hani S.; Bajorath, Jürgen; Ahmed, Hany E. A.; Sarhan, Eman; Elwakeel, Eiman; El-Demellawy, Maha A.

    2015-01-01

    Berberine is a plant alkaloid that has several pharmacological effects such as antioxidant, antilipidemic, and anti-inflammatory effects. Nonalcoholic steatohepatitis (NASH) triggers different aspects of disorders such as impaired endogenous lipid metabolism, hypercholesterolemia, oxidative stress, and neurotoxicity. In this study, we examined the mechanism by which NASH induces neurotoxicity and the protective effect of berberine against both NASH and its associated neurotoxicity. NASH induced rats showed significant impairments in lipid metabolism with increased serum triglycerides, cholesterol, and low-density lipoprotein (LDL). The NASH induced group also demonstrated a significant oxidative stress which is characterized by increased TBARs level and decreased antioxidant capacity such as GSH and SOD levels. Moreover, the NASH induction was associated with inflammation which was demonstrated by increased TNFα and nitric oxide levels. Hyperglycemia and hyperinsulinemia were observed in the NASH induced group. Also, our results showed a significant increase in the expression of the acetylcholine esterase (AChE) and amyloid beta precursor protein (AβPP). These changes were significantly correlated with decreased insulin degrading enzyme (IDE) and beta-amyloid40 (Aβ40) and increased beta-amyloid42 (Aβ42) in the hippocampal region. Daily administration of berberine (50 mg/kg) for three weeks ameliorated oxidative stress, inflammation, hyperlipidemia, hyperglycemia, hyperinsulinemia, and the observed neurotoxicity. PMID:26576191

  15. Berberine Reduces Neurotoxicity Related to Nonalcoholic Steatohepatitis in Rats.

    PubMed

    Ghareeb, Doaa A; Khalil, Sofia; Hafez, Hani S; Bajorath, Jürgen; Ahmed, Hany E A; Sarhan, Eman; Elwakeel, Eiman; El-Demellawy, Maha A

    2015-01-01

    Berberine is a plant alkaloid that has several pharmacological effects such as antioxidant, antilipidemic, and anti-inflammatory effects. Nonalcoholic steatohepatitis (NASH) triggers different aspects of disorders such as impaired endogenous lipid metabolism, hypercholesterolemia, oxidative stress, and neurotoxicity. In this study, we examined the mechanism by which NASH induces neurotoxicity and the protective effect of berberine against both NASH and its associated neurotoxicity. NASH induced rats showed significant impairments in lipid metabolism with increased serum triglycerides, cholesterol, and low-density lipoprotein (LDL). The NASH induced group also demonstrated a significant oxidative stress which is characterized by increased TBARs level and decreased antioxidant capacity such as GSH and SOD levels. Moreover, the NASH induction was associated with inflammation which was demonstrated by increased TNFα and nitric oxide levels. Hyperglycemia and hyperinsulinemia were observed in the NASH induced group. Also, our results showed a significant increase in the expression of the acetylcholine esterase (AChE) and amyloid beta precursor protein (AβPP). These changes were significantly correlated with decreased insulin degrading enzyme (IDE) and beta-amyloid40 (Aβ 40) and increased beta-amyloid42 (Aβ 42) in the hippocampal region. Daily administration of berberine (50 mg/kg) for three weeks ameliorated oxidative stress, inflammation, hyperlipidemia, hyperglycemia, hyperinsulinemia, and the observed neurotoxicity.

  16. Neurotoxicity of Adjuvants used in Perineural Anesthesia and Analgesia in Comparison with Ropivacaine

    PubMed Central

    Williams, Brian A.; Hough, Karen A.; Tsui, Becky Y. K.; Ibinson, James W.; Gold, Michael S.; Gebhart, G.F.

    2011-01-01

    Background and Objectives Clonidine, buprenorphine, dexamethasone, and midazolam (C,B,D,M) have been used to prolong perineural local anesthesia in the absence of data on the influence of these adjuvants on local anesthetic (LA)-induced neurotoxicity. Therefore, the impact of these adjuvants on ropivacaine (R)-induced death of isolated sensory neurons was assessed. Methods The trypan blue exclusion assay was used to assess death of sensory neurons isolated from adult male Sprague-Dawley rats. Drugs were applied, alone or in combination, for 2 or 24 hrs at 37°C. Results Neuronal viability was halved by 24 hr exposure to R (2.5 mg/mL), far exceeding the neurotoxicity of C, B, D, or M (at 2–100 times estimated clinical concentrations). Plain M at twice the estimated clinical concentration produced a small but significant increase in neurotoxicity at 24 hr. After 2 hr exposure, high concentrations of B, C, and M increased the neurotoxicity of R; the combination of R+M killed over 90% of neurons. Estimated clinical concentrations of C+B (plus 66 µg/mL D) had no influence on (i) R-induced neurotoxicity, (ii) the increased neurotoxicity associated with the combination of R+M, or (iii) the neurotoxicity associated with estimated clinical concentrations of M. There was dose-response neurotoxicity with 133 µg/mL D combined with R+C+B Conclusions Results with R re-affirm the need to identify ways to mitigate LA-induced neurotoxicity. While having no protective effect on R-induced neurotoxicity in vitro, future research with adjuvants should address if the C+B+D combination can enable reducing R concentrations needed to achieve equi-analgesia (and/or provide equal or superior duration, in preclinical in vivo models). PMID:21519308

  17. Changes in rat urinary porphyrin profiles predict the magnitude of the neurotoxic effects induced by a mixture of lead, arsenic and manganese.

    PubMed

    Andrade, Vanda; Mateus, M Luísa; Batoréu, M Camila; Aschner, Michael; Marreilha dos Santos, A P

    2014-12-01

    The neurotoxic metals lead (Pb), arsenic (As) and manganese (Mn) are ubiquitous contaminants occurring as mixtures in environmental settings. The three metals may interfere with enzymes of the heme bioshyntetic pathway, leading to excessive porphyrin accumulation, which per se may trigger neurotoxicity. Given the multi-mechanisms associated with metal toxicity, we posited that a single biomarker is unlikely to predict neurotoxicity that is induced by a mixture of metals. Our objective was to evaluate the ability of a combination of urinary porphyrins to predict the magnitude of motor activity impairment induced by a mixture of Pb/As/Mn. Five groups of Wistar rats were treated for 8 days with Pb (5mg/kg), As (60 mg/L) or Mn (10mg/kg), and the 3-metal mixture (same doses as the single metals) along with a control group. Motor activity was evaluated after the administration of the last dose and 24-hour (h) urine was also collected after the treatments. Porphyrin profiles were determined both in the urine and brain. Rats treated with the metal-mixture showed a significant decrease in motor parameters compared with controls and the single metal-treated groups. Both brain and urinary porphyrin levels, when combined and analyzed by multiple linear regressions, were predictable of motor activity (p<0.05). The magnitude of change in urinary porphyrin profiles was consistent with the greatest impairments in motor activity as determined by receiver operating characteristic (ROC) curves, with a sensitivity of 88% and a specificity of 96%. Our work strongly suggests that the use of a linear combination of urinary prophyrin levels accurately predicts the magnitude of motor impairments in rats that is induced by a mixture of Pb, As and Mn.

  18. Neurofunctional endpoints assessed in human neuroblastoma SH-SY5Y cells for estimation of acute systemic toxicity

    SciTech Connect

    Gustafsson, Helena; Runesson, Johan; Lundqvist, Jessica; Lindegren, Helene; Axelsson, Viktoria; Forsby, Anna

    2010-06-01

    The objective of the EU-funded integrated project ACuteTox is to develop a strategy in which general cytotoxicity, together with organ-specific toxicity and biokinetic features, are used for the estimation of human acute systemic toxicity. Our role in the project is to characterise the effect of reference chemicals with regard to neurotoxicity. We studied cell membrane potential (CMP), noradrenalin (NA) uptake, acetylcholine esterase (AChE) activity, acetylcholine receptor (AChR) signalling and voltage-operated calcium channel (VOCC) function in human neuroblastoma SH-SY5Y cells after exposure to 23 pharmaceuticals, pesticides or industrial chemicals. Neurotoxic alert chemicals were identified by comparing the obtained data with cytotoxicity data from the neutral red uptake assay in 3T3 mouse fibroblasts. Furthermore, neurotoxic concentrations were correlated with estimated human lethal blood concentrations (LC50). The CMP assay was the most sensitive assay, identifying eight chemicals as neurotoxic alerts and improving the LC50 correlation for nicotine, lindane, atropine and methadone. The NA uptake assay identified five neurotoxic alert chemicals and improved the LC50 correlation for atropine, diazepam, verapamil and methadone. The AChE, AChR and VOCC assays showed limited potential for detection of acute toxicity. The CMP assay was further evaluated by testing 36 additional reference chemicals. Five neurotoxic alert chemicals were generated and orphendrine and amitriptyline showed improved LC50 correlation. Due to the high sensitivity and the simplicity of the test protocol, the CMP assay constitutes a good candidate assay to be included in an in vitro test strategy for prediction of acute systemic toxicity.

  19. BMAA neurotoxicity in Drosophila.

    PubMed

    Zhou, Xianchong; Escala, Wilfredo; Papapetropoulos, Spyridon; Bradley, Walter G; Zhai, R Grace

    2009-01-01

    We report the establishment of an in vivo model using the fruit fly Drosophila melanogaster to investigate the toxic effects of L-BMAA. We found that dietary intake of BMAA reduced the lifespan as well as the neurological functions of flies. Furthermore, we have developed an HPLC method to reliably detect both free and protein-bound BMAA in fly tissue extracts.

  20. Nanoparticles and Neurotoxicity

    PubMed Central

    Win-Shwe, Tin-Tin; Fujimaki, Hidekazu

    2011-01-01

    Humans are exposed to nanoparticles (NPs; diameter < 100 nm) from ambient air and certain workplaces. There are two main types of NPs; combustion-derived NPs (e.g., particulate matters, diesel exhaust particles, welding fumes) and manufactured or engineered NPs (e.g., titanium dioxide, carbon black, carbon nanotubes, silver, zinc oxide, copper oxide). Recently, there have been increasing reports indicating that inhaled NPs can reach the brain and may be associated with neurodegeneration. It is necessary to evaluate the potential toxic effects of NPs on brain because most of the neurobehavioral disorders may be of environmental origin. This review highlights studies on both combustion-derived NP- and manufactured or engineered NP-induced neuroinflammation, oxidative stress, and gene expression, as well as the possible mechanism of these effects in animal models and in humans. PMID:22016657

  1. A critical review of neonicotinoid insecticides for developmental neurotoxicity.

    PubMed

    Sheets, Larry P; Li, Abby A; Minnema, Daniel J; Collier, Richard H; Creek, Moire R; Peffer, Richard C

    2016-02-01

    A comprehensive review of published and previously unpublished studies was performed to evaluate the neonicotinoid insecticides for evidence of developmental neurotoxicity (DNT). These insecticides have favorable safety profiles, due to their preferential affinity for nicotinic receptor (nAChR) subtypes in insects, poor penetration of the mammalian blood-brain barrier, and low application rates. Nevertheless, examination of this issue is warranted, due to their insecticidal mode of action and potential exposure with agricultural and residential uses. This review identified in vitro, in vivo, and epidemiology studies in the literature and studies performed in rats in accordance with GLP standards and EPA guidelines with imidacloprid, acetamiprid, thiacloprid, clothianidin, thiamethoxam, and dinotefuran, which are all the neonicotinoids currently registered in major markets. For the guideline-based studies, treatment was administered via the diet or gavage to primiparous female rats at three dose levels, plus a vehicle control (≥20/dose level), from gestation day 0 or 6 to lactation day 21. F1 males and females were evaluated using measures of motor activity, acoustic startle response, cognition, brain morphometry, and neuropathology. The principal effects in F1 animals were associated with decreased body weight (delayed sexual maturation, decreased brain weight, and morphometric measurements) and acute toxicity (decreased activity during exposure) at high doses, without neuropathology or impaired cognition. No common effects were identified among the neonicotinoids that were consistent with DNT or the neurodevelopmental effects associated with nicotine. Findings at high doses were associated with evidence of systemic toxicity, which indicates that these insecticides do not selectively affect the developing nervous system. PMID:26513508

  2. A critical review of neonicotinoid insecticides for developmental neurotoxicity.

    PubMed

    Sheets, Larry P; Li, Abby A; Minnema, Daniel J; Collier, Richard H; Creek, Moire R; Peffer, Richard C

    2016-02-01

    A comprehensive review of published and previously unpublished studies was performed to evaluate the neonicotinoid insecticides for evidence of developmental neurotoxicity (DNT). These insecticides have favorable safety profiles, due to their preferential affinity for nicotinic receptor (nAChR) subtypes in insects, poor penetration of the mammalian blood-brain barrier, and low application rates. Nevertheless, examination of this issue is warranted, due to their insecticidal mode of action and potential exposure with agricultural and residential uses. This review identified in vitro, in vivo, and epidemiology studies in the literature and studies performed in rats in accordance with GLP standards and EPA guidelines with imidacloprid, acetamiprid, thiacloprid, clothianidin, thiamethoxam, and dinotefuran, which are all the neonicotinoids currently registered in major markets. For the guideline-based studies, treatment was administered via the diet or gavage to primiparous female rats at three dose levels, plus a vehicle control (≥20/dose level), from gestation day 0 or 6 to lactation day 21. F1 males and females were evaluated using measures of motor activity, acoustic startle response, cognition, brain morphometry, and neuropathology. The principal effects in F1 animals were associated with decreased body weight (delayed sexual maturation, decreased brain weight, and morphometric measurements) and acute toxicity (decreased activity during exposure) at high doses, without neuropathology or impaired cognition. No common effects were identified among the neonicotinoids that were consistent with DNT or the neurodevelopmental effects associated with nicotine. Findings at high doses were associated with evidence of systemic toxicity, which indicates that these insecticides do not selectively affect the developing nervous system.

  3. A critical review of neonicotinoid insecticides for developmental neurotoxicity

    PubMed Central

    Sheets, Larry P.; Li, Abby A.; Minnema, Daniel J.; Collier, Richard H.; Creek, Moire R.; Peffer, Richard C.

    2016-01-01

    Abstract A comprehensive review of published and previously unpublished studies was performed to evaluate the neonicotinoid insecticides for evidence of developmental neurotoxicity (DNT). These insecticides have favorable safety profiles, due to their preferential affinity for nicotinic receptor (nAChR) subtypes in insects, poor penetration of the mammalian blood–brain barrier, and low application rates. Nevertheless, examination of this issue is warranted, due to their insecticidal mode of action and potential exposure with agricultural and residential uses. This review identified in vitro, in vivo, and epidemiology studies in the literature and studies performed in rats in accordance with GLP standards and EPA guidelines with imidacloprid, acetamiprid, thiacloprid, clothianidin, thiamethoxam, and dinotefuran, which are all the neonicotinoids currently registered in major markets. For the guideline-based studies, treatment was administered via the diet or gavage to primiparous female rats at three dose levels, plus a vehicle control (≥20/dose level), from gestation day 0 or 6 to lactation day 21. F1 males and females were evaluated using measures of motor activity, acoustic startle response, cognition, brain morphometry, and neuropathology. The principal effects in F1 animals were associated with decreased body weight (delayed sexual maturation, decreased brain weight, and morphometric measurements) and acute toxicity (decreased activity during exposure) at high doses, without neuropathology or impaired cognition. No common effects were identified among the neonicotinoids that were consistent with DNT or the neurodevelopmental effects associated with nicotine. Findings at high doses were associated with evidence of systemic toxicity, which indicates that these insecticides do not selectively affect the developing nervous system. PMID:26513508

  4. Effects of an acute seizure on associative learning and memory.

    PubMed

    Holley, Andrew J; Lugo, Joaquin N

    2016-01-01

    Past studies have demonstrated that inducing several seizures or continuous seizures in neonatal or adult rats results in impairments in learning and memory. The impact of a single acute seizure on learning and memory has not been investigated in mice. In this study, we exposed adult 129SvEvTac mice to the inhalant flurothyl until a behavioral seizure was induced. Our study consisted of 4 experiments where we examined the effect of one seizure before or after delay fear conditioning. We also included a separate cohort of animals that was tested in the open field after a seizure to rule out changes in locomotor activity influencing the results of memory tests. Mice that had experienced a single seizure 1h, but not 6h, prior to training showed a significant impairment in associative conditioning to the conditioned stimulus when compared with controls 24h later. There were no differences in freezing one day later for animals that experienced a single seizure 1h after associative learning. We also found that an acute seizure reduced activity levels in an open-field test 2h but not 24h later. These findings suggest that an acute seizure occurring immediately before learning can have an effect on the recall of events occurring shortly after that seizure. In contrast, an acute seizure occurring shortly after learning appears to have little or no effect on long-term memory. These findings have implications for understanding the acute effects of seizures on the acquisition of new knowledge.

  5. Paeonol attenuates inflammation-mediated neurotoxicity and microglial activation☆

    PubMed Central

    Nam, Kyong Nyon; Woo, Byung-Cheol; Moon, Sang-Kwan; Park, Seong-Uk; Park, Joo-young; Hwang, Jae-Woong; Bae, Hyung-Sup; Ko, Chang-Nam; Lee, Eunjoo Hwang

    2013-01-01

    Chronic activation of microglial cells endangers neuronal survival through the release of various proinflammatory and neurotoxic factors. The root of Paeonia lactiflora Pall has been considered useful for the treatment of various disorders in traditional oriental medicine. Paeonol, found in the root of Paeonia lactiflora Pall, has a wide range of pharmacological functions, including anti-oxidative, anti-inflammatory and neuroprotective activities. The objective of this study was to examine the efficacy of paeonol in the repression of inflammation-induced neurotoxicity and microglial cell activation. Organotypic hippocampal slice cultures and primary microglial cells from rat brain were stimulated with bacterial lipopolysaccharide. Paeonol pretreatment was performed for 30 minutes prior to lipopolysaccharide addition. Cell viability and nitrite (the production of nitric oxide), tumor necrosis factor-alpha and interleukin-1beta products were measured after lipopolysaccharide treatment. In organotypic hippocampal slice cultures, paeonol blocked lipopolysaccharide-related hippocampal cell death and inhibited the release of nitrite and interleukin-1beta. Paeonol was effective in inhibiting nitric oxide release from primary microglial cells. It also reduced the lipopolysaccharide-stimulated release of tumor necrosis factor-alpha and interleukin-1β from microglial cells. Paeonol possesses neuroprotective activity in a model of inflammation-induced neurotoxicity and reduces the release of neurotoxic and proinflammatory factors in activated microglial cells. PMID:25206460

  6. Mental retardation and developmental disabilities influenced by environmental neurotoxic insults.

    PubMed Central

    Schroeder, S R

    2000-01-01

    This paper sets a framework for the discussion of neurotoxicity as a potentially major contributor to the etiology of many types of mental retardation and developmental disabilities. In the past the literatures on developmental neurotoxicology and on mental retardation have evolved independently, yet we know that the developing brain is a target for neurotoxicity in the developing central nervous system through many stages of pregnancy as well as during infancy and early childhood. Our definitions and theories of mental retardation and developmental disabilities affect the models of neurotoxicity we espouse. For instance, models of developmental risk in neurotoxicology have guided environmental regulation to reduce the likelihood of neurotoxic effects. On the other hand, models of developmental risk for mental retardation aim not only at primary prevention,but also at secondary and tertiary prevention through early intervention. In the future, dynamic models of neuroplasticity based on the study of gene-brain-behavior relationships are likely to guide our views of developmental neurotoxicology and prevention of mental retardation and other disabilities. PMID:10852834

  7. Strategies for the prevention of environmental neurotoxic illness.

    PubMed

    Landrigan, P J; Graham, D G; Thomas, R D

    1993-04-01

    Toxic chemicals in the environment can cause a wide range of neurological disease. High-dose exposures to environmental neurotoxicants have produced encephalopathy in children ingesting chips of lead-based paint, blindness in persons who ingested methanol, blindness and ataxia in persons who consumed organic mercury, spinal cord degeneration and peripheral neuropathy in persons exposed to tri-ortho-cresyl phosphate (TOCP), and Parkinsonism in persons exposed to MPTP or to manganese. Environmental neurotoxicants have also been shown to produce a wide range of subclinical neurotoxic effects, including reduction in intelligence, impairment in reasoning ability, shortening of attention span, and alternation of behavior. The first step in the prevention of environmental neurotoxicity is to test chemicals for their toxic potential. More than 70,000 chemicals are currently in commerce. However, except for pharmaceuticals, fewer than 10% of these chemicals have been tested for neurotoxicity. A logical approach to neurotoxicologic assessment of chemical substances will build on and extend currently available test systems. It will have a tiered structure. The first or screening tier will consist of tests to measure obvious structural and functional changes, often a functional observational battery. Subsequent levels of testing will be guided by the results of initial screening. Toxicologic testing must be supplemented by epidemiologic surveillance of populations exposed to known and suspect neurotoxicants. Screening programs in these populations designed to detect excessive absorption of a neurotoxic agent or subclinical neurological dysfunction can be useful in identifying affected individuals before severe disability occurs. PMID:8472670

  8. Neurotoxicity of Synthetic Cannabinoids JWH-081 and JWH-210.

    PubMed

    Cha, Hye Jin; Seong, Yeon-Hee; Song, Min-Ji; Jeong, Ho-Sang; Shin, Jisoon; Yun, Jaesuk; Han, Kyoungmoon; Kim, Young-Hoon; Kang, Hoil; Kim, Hyoung Soo

    2015-11-01

    Synthetic cannabinoids JWH-018 and JWH-250 in 'herbal incense' also called 'spice' were first introduced in many countries. Numerous synthetic cannabinoids with similar chemical structures emerged simultaneously and suddenly. Currently there are not sufficient data on their adverse effects including neurotoxicity. There are only anecdotal reports that suggest their toxicity. In the present study, we evaluated the neurotoxicity of two synthetic cannabinoids (JWH-081 and JWH-210) through observation of various behavioral changes and analysis of histopathological changes using experimental mice with various doses (0.1, 1, 5 mg/kg). In functional observation battery (FOB) test, animals treated with 5 mg/kg of JWH-081 or JWH-210 showed traction and tremor. Their locomotor activities and rotarod retention time were significantly (p<0.05) decreased. However, no significant change was observed in learning or memory function. In histopathological analysis, neural cells of the animals treated with the high dose (5 mg/kg) of JWH-081 or JWH-210 showed distorted nuclei and nucleus membranes in the core shell of nucleus accumbens, suggesting neurotoxicity. Our results suggest that JWH-081 and JWH-210 may be neurotoxic substances through changing neuronal cell damages, especially in the core shell part of nucleus accumbens. To confirm our findings, further studies are needed in the future. PMID:26535086

  9. Prospective, longitudinal assessment of developmental neurotoxicity.

    PubMed Central

    Jacobson, J L; Jacobson, S W

    1996-01-01

    Methodological issues in the design of prospective, longitudinal studies of developmental neurotoxicity in humans are reviewed. A comprehensive assessment of potential confounding influences is important in these studies because inadequate assessment of confounders can threaten the validity of causal inferences drawn from the data. Potential confounders typically include demographic background variables, alcohol and smoking during pregnancy, the quality of parental stimulation, the child's age at test, and the examiner. Exposure to other substances is assessed where significant exposure is expected in the target population. In most studies, control variables even weakly related to outcome are included in all multivariate statistical analyses, and a toxic effect is inferred only if the effect of exposure is significant after controlling for the potential confounders. Once a neurotoxic effect has been identified, suspected mediating variables may be added to the analysis to examine underlying processes or mechanisms through which the exposure may impact on developmental outcome. Individual differences in vulnerability may be examined in terms of either an additive compensatory model or a synergistic "risk and resilience" approach. Failure to detect real effects (Type II error) is of particular concern in these studies because public policy considerations make it likely that negative findings will be interpreted to mean that the exposure is safe. Important sources of Type II error include inadequate representation of highly exposed individuals, overcontrol for confounders, and inappropriate correction for multiple comparisons. Given the high cost and complexity of prospective, longitudinal investigations, cross-sectional pilot studies focusing on highly exposed individuals can be valuable for the initial identification of salient domains of impairment. PMID:9182034

  10. RISK CHARACTERIZATION OF PERSISTENT NEUROTOXIC CONTAMINANTS

    EPA Science Inventory

    Neurotoxicity is an adverse change in structure or function of the central and/or peripheral nervous system following exposure to a chemical, physical, or biological agent. Thousands of chemicals have been estimated to have neurotoxic potential. Many persistent and bioaccumulat...

  11. Current Challenges in Neurotoxicity Risk Assessment

    EPA Science Inventory

    Neurotoxicity risk assessment must continue to evolve in parallel with advances in basic research. Along with this evolution is an expansion in the scope of neurotoxicity assessments of environmental health risks. Examples of this expansion include an increasing emphasis on compl...

  12. Comparative neurotoxicity of two energetic compounds, hexanitrohexaazaisowurtzitane and hexahydro-1,3,5-trinitro-1,3,5-triazine, in the earthworm Eisenia fetida.

    PubMed

    Gong, Ping; Inouye, Laura S; Perkins, Edward J

    2007-05-01

    Hexanitrohexaazaisowurtzitane (CL-20) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), both energetic compounds, share some degree of structural similarity. A noninvasive electrophysiological technique was employed to assess the impacts of acute sublethal exposures on impulse conduction in medial (MGF) and lateral (LGF) giant nerve fiber pathways of the earthworm Eisenia fetida and to evaluate the reversibility of neurotoxic effects. Earthworms were exposed to either 0.02 to 2.15 microg/cm2 of CL-20 or 0.04 to 5.35 microg/cm2 of RDX, for 1 to 14 d, on moistened filter paper. Conduction velocities of MGF and LGF were recorded on a digital oscilloscope before and after exposure. Results indicate that at exposure levels as low as 0.02 microg/cm2 of CL-20 or 0.21 microg/cm2 of RDX, worms exhibited physiological impacts such as retardation, stiffness, and body shrink. Both MGF and LGF conduction velocities were negatively correlated with increasing doses of CL-20 or RDX. However, such neurotoxic effects were alleviated or even eliminated within a few days after exposed worms were transferred to an uncontaminated environment, indicating that the neurotoxicity is reversible even after 6-d exposure. The CL-20 is more potent than RDX, which is consistent with previous studies on lethality, growth, and reproduction endpoints in soil oligochaetes.

  13. Evaluating Neurotoxicity of a Mixture of Five OP Pesticides Using a Composite Score

    EPA Science Inventory

    The evaluation of the cumulative effects of neurotoxic pesticides often involves the analysis of both neurochemical and behavioral endpoints. Multiple statistical tests on many endpoints can greatly inflate Type I error rates. Multiple comparison adjustments are often overly con...

  14. The Potential Contribution of Advanced Imaging Techniques to Developmental Neurotoxicity Risk Assessment

    EPA Science Inventory

    Neuropathologic assessment provides critical data essential to developmental neurotoxicity risk assessment. There are a number of objectives in conducting a neuropathologic assessment to effectively support risk assessment. These include a comprehensive assessment of the adult an...

  15. Rechallenging With Intrathecal Methotrexate After Developing Subacute Neurotoxicity in Children With Hematologic Malignancies.

    PubMed

    Badke, Colleen; Fleming, Amy; Iqbal, Asneha; Khilji, Ohmed; Parhas, Sophia; Weinstein, Joanna; Morgan, Elaine; Hijiya, Nobuko

    2016-04-01

    Methotrexate is associated with neurologic side effects. It is recommended that patients who developed neurotoxicity be rechallenged with methotrexate, but little is known about the safety of this approach. We performed a chart review to identify patients who received high-dose or intrathecal (IT) methotrexate. Twenty-one of 298 patients (7%) experienced neurologic symptoms attributed to methotrexate treatment in the premaintenance phase. Seventeen of these patients were rechallenged with IT methotrexate and 13 (76%) had no further neurotoxic events. No patients rechallenged during maintenance (n = 9) experienced recurrence of neurotoxic events. It is safe to rechallenge with IT methotrexate in maintenance.

  16. Manganese Neurotoxicity: Lessons Learned from Longitudinal Studies in Nonhuman Primates

    PubMed Central

    Burton, Neal C.; Guilarte, Tomás R.

    2009-01-01

    Background Exposure to excess levels of the essential trace element manganese produces cognitive, psychiatric, and motor abnormalities. The understanding of Mn neurotoxicology is heavily governed by pathologic and neurochemical observations derived from rodent studies that often employ acute Mn exposures. The comparatively sparse studies incorporating in vivo neuroimaging in nonhuman primates provide invaluable insights on the effects of Mn on brain chemistry. Objectives The purpose of this review is to discuss important aspects of Mn neurotoxicology and to synthesize recent findings from one of the largest cohorts of nonhuman primates used to study the neurologic effects of chronic Mn exposure. Discussion We reviewed our recent in vivo and ex vivo studies that have significantly advanced the understanding of Mn-induced neurotoxicity. In those studies, we administered weekly doses of 3.3–5.0 (n = 4), 5.0–6.7 (n = 5), or 8.3–10.0 mg Mn/kg (n = 3) for 7–59 weeks to cynomolgus macaque monkeys. Animals expressed subtle deficits in cognition and motor function and decreases in the N-acetylaspartate-to-creatine ratio in the parietal cortex measured by magnetic resonance spectroscopy reflective of neuronal dysfunction. Impaired striatal dopamine release measured by positron emission tomography was observed in the absence of changes in markers of dopamine neuron degeneration. Neuropathology indicated decreased glutamine synthetase expression in the globus pallidus with otherwise normal markers of glutamatergic and GABAergic neurotransmission. Increased amyloid beta (A4) precursor-like protein 1 gene expression with multiple markers of neurodegeneration and glial cell activation was observed in the frontal cortex. Conclusions These findings provide new information on mechanisms by which Mn affects behavior, neurotransmitter function, and neuropathology in nonhuman primates. PMID:19337503

  17. Neurotoxicity

    MedlinePlus

    ... organ transplants, as well as exposure to heavy metals such as lead and mercury, certain foods and food additives, pesticides, industrial and/or cleaning solvents, cosmetics, and some naturally occurring substances. Symptoms may appear immediately after exposure or be ...

  18. A novel nicotinic mechanism underlies β-amyloid-induced neurotoxicity.

    PubMed

    Liu, Qiang; Xie, Xitao; Emadi, Sharareh; Sierks, Michael R; Wu, Jie

    2015-10-01

    Loss of basal forebrain cholinergic neurons (BFCN) correlates with cognitive deficits in Alzheimer disease (AD). Our recent evidence suggests that chronic exposure to Aβ up-regulated neuronal α7-nAChRs and increased neuronal excitability in cultured hippocampal neurons. However, the impact of the up-regulated α7-nAChRs on Aβ-induced neurotoxicity remains unclear. In this study, we investigated the role of α7-nAChRs in the mediation of Aβ-induced neurotoxicity. The effects of Aβ exposure on α7-nAChRs and cytotoxicity were examined using whole-cell patch clamp recordings, atomic force microscope (AFM) imaging, immunoprecipitation, and lactate dehydrogenase (LDH) release assay in primary cultured hippocampal neurons as well as differentiated human neuroblastoma (SH-SY5Y) cells with cholinergic characteristics. We found that α7-nAChRs are necessary for Aβ-induced neurotoxicity in hippocampal neurons because chronic Aβ significantly increased LDH level in hippocampal cultures, which was prevented by either α7-nAChR antagonist methyllycaconitine (MLA) or by α7 subunit gene deletion (cultures prepared from nAChR α7 subunit KO mice), whereas β2-containing nAChR antagonist (dihydro-β-erythroidine, DhβE) or the genetic deletion of nAChR β2 subunit (cultures prepared from β2 KO mice) failed to prevent Aβ-induced toxicity. In SH-SY5Y cells, larger aggregates of Aβ preferentially up-regulated α7-nAChR expression and function accompanied by a significant decrease in cell viability. Co-treatment MLA, but not mecamylamine (MEC), prevented Aβ exposure-induced neurotoxicity. Our results suggest a detrimental role of upregulated α7-nAChRs in the mediation of Aβ-induced neurotoxicity. PMID:25959067

  19. Evidence for effects on thermoregulation after acute oral exposure to type I and type II pyrethroids in infant rats.

    PubMed

    Bardullas, Ulises; Sosa-Holt, Carla Solange; Pato, Alejandro Martín; Nemirovsky, Sergio Iván; Wolansky, Marcelo Javier

    2015-01-01

    Most pyrethroid (PYR) insecticides may be classified either as type-I compounds, which produce whole body tremors and hyperthermia, or type-II compounds, which produce salivation, choreoathetosis, and hypothermia (i.e., producing T and CS neurobehavioral syndromes, respectively). This classification is based on clinical observations in adult rats and mice after intracerebroventricular or intravascular administration of highly effective acute (bolus) doses. PYR neurotoxicity in infant animals is not characterized as much as in adult animals. Endpoints informing on vital determinants of mammal's maturation, such as body temperature may help recognizing age-related differences in susceptibility to PYRs. In this work, body temperature (Tb) was monitored at 30-min intervals after acute oral exposure to T-syndrome PYR bifenthrin (BIF), CS-syndrome PYR cypermethrin (CYPM), and a BIF–CYPM mixture in weanling rats by using a subcutaneous temperature monitoring system. In both single-compound assays, a time- and dose-related decline of Tb was the most evident impact on thermoregulation observed starting at ~2–3 h after dosing.Moreover, 15–18 mg/kg BIF induced a mild increase in Tb before the hypothermic action was apparent. The lowest effective dose for temperature perturbation was 15mg/kg for BIF and 10mg/kg for CYPM, and moderate neurobehavioral alterations were evident at 12 and 10mg/kg, respectively. When low effective doses of BIF and CYPM were co-administered mild behavioral effects and a transient increase in Tb (p=0.02) were observed at 1–2 h, and no Tb decline was apparent afterwards compared to control animals. Noteworthy, the hypothermic action of BIF in infant rats was quite different from the hyperthermia consistently reported in studies using mature animals. Our results suggest that body temperature monitoring may be useful as a complementary assessment to reveal qualitative age-specific pesticide effects in rats.

  20. Dizocilpine and reduced body temperature do not prevent methamphetamine-induced neurotoxicity in the vervet monkey: [11C]WIN 35,428 - positron emission tomography studies.

    PubMed

    Melega, W P; Lacan, G; Harvey, D C; Huang, S C; Phelps, M E

    1998-12-11

    [11C]WIN 35,428 (WIN), a cocaine analog that binds to the dopamine transporter (DAT), and positron emission tomography (PET) were used to evaluate the potential neuroprotective effects of dizocilpine (MK-801) on methamphetamine (MeAmp) induced neurotoxicity in the striatal dopamine system of the vervet monkey. MK-801 (1 mg/kg, i.m.) was administered 30 min prior to a neurotoxic MeAmp dosage for this species (2 x 2 mg/kg, 4 h apart); control subjects received MeAmp. MK-801 treated subjects were anesthetized by the drug for 6-8 h; throughout that period, a 2-3 degrees C decrease in body temperature was measured. At 1-2 weeks post-MeAmp, decreases of approximately 75% in striatal WIN binding were observed for both MK-801/MeAmp and MeAmp subjects. Thus, in this non-human primate species, the combination of MK-801 pretreatment and reduced body temperature did not provide protection from the MeAmp-induced loss of DAT. Further, the absence of an elevated body temperature during the acute MeAmp exposure period indicated that hyperthermia, per se, was not a necessary concomitant of the MeAmp neurotoxicity profile as has been previously demonstrated in rodents. These results provide evidence that different regulatory factors maintain the integrity of the rodent and primate striatal dopamine systems.

  1. Endoplasmic Reticulum Stress and Ethanol Neurotoxicity.

    PubMed

    Yang, Fanmuyi; Luo, Jia

    2015-10-14

    Ethanol abuse affects virtually all organ systems and the central nervous system (CNS) is particularly vulnerable to excessive ethanol exposure. Ethanol exposure causes profound damages to both the adult and developing brain. Prenatal ethanol exposure induces fetal alcohol spectrum disorders (FASD) which is associated with mental retardation and other behavioral deficits. A number of potential mechanisms have been proposed for ethanol-induced brain damage; these include the promotion of neuroinflammation, interference with signaling by neurotrophic factors, induction of oxidative stress, modulation of retinoid acid signaling, and thiamine deficiency. The endoplasmic reticulum (ER) regulates posttranslational protein processing and transport. The accumulation of unfolded or misfolded proteins in the ER lumen triggers ER stress and induces unfolded protein response (UPR) which are mediated by three transmembrane ER signaling proteins: pancreatic endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6). UPR is initiated to protect cells from overwhelming ER protein loading. However, sustained ER stress may result in cell death. ER stress has been implied in various CNS injuries, including brain ischemia, traumatic brain injury, and aging-associated neurodegeneration, such as Alzheimer's disease (AD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). However, effects of ethanol on ER stress in the CNS receive less attention. In this review, we discuss recent progress in the study of ER stress in ethanol-induced neurotoxicity. We also examine the potential mechanisms underlying ethanol-mediated ER stress and the interaction among ER stress, oxidative stress and autophagy in the context of ethanol neurotoxicity.

  2. Does escitalopram reduce neurotoxicity in major depression?

    PubMed

    Halaris, Angelos; Myint, Aye-Mu; Savant, Vidushi; Meresh, Edwin; Lim, Edwin; Guillemin, Gilles; Hoppensteadt, Debra; Fareed, Jawed; Sinacore, James

    2015-01-01

    A pro-inflammatory state and a dysregulation in the tryptophan/kynurenine pathway have been documented in depression. This study examined whether treatment with the SSRI, escitalopram (ESC), could suppress inflammation and favorably shift metabolites of the kynurenine pathway in patients with major depressive disorder (MDD) within the utilized treatment period. Twenty seven healthy control subjects were included for comparison. Thirty patients were enrolled after completing baseline assessments. They received a 12-week ESC monotherapy. Twenty subjects were completers. Clinical assessments were carried out at each visit using the HAM-D, HAM-A, CGI and BDI rating scales. Blood samples were collected at each assessment and stored until analyzed. Cytokines were analyzed with Randox multiplex assay and tryptophan and kynurenine metabolites were analyzed using HPLC/GCMS. Baseline plasma concentrations of hsCRP, TNFα, IL6 and MCP-1 were significantly higher in patients compared to healthy controls. IL10 trended toward an increase. Baseline plasma IL1β correlated significantly with IL1α, and IL4. Patients showed significant improvement in all outcome measures with a high remission rate. Significant correlations were obtained between specific symptoms and certain biomarkers at baseline but these correlations must be viewed as very preliminary. During ESC treatment concentrations of inflammatory biomarkers did not change except for TNFα that trended lower. Metabolites and ratios of the tryptophan/kynurenine pathway showed reductions of the neurotoxic metabolites, 3-hydroxykynurenine and quinolinic acid, 3-hydroxykynurenine/kynurenine, quinolinic acid/tryptophan, kynurenic acid/quinolinic acid and quinolinic acid/3-hydroxykynurenine. The results indicate that ESC may exert its antidepressant effect in part through inhibition of synthesis of certain neurotoxic kynurenine metabolites and possibly also through reduction of the inflammatory response, although there was no

  3. Endoplasmic Reticulum Stress and Ethanol Neurotoxicity

    PubMed Central

    Yang, Fanmuyi; Luo, Jia

    2015-01-01

    Ethanol abuse affects virtually all organ systems and the central nervous system (CNS) is particularly vulnerable to excessive ethanol exposure. Ethanol exposure causes profound damages to both the adult and developing brain. Prenatal ethanol exposure induces fetal alcohol spectrum disorders (FASD) which is associated with mental retardation and other behavioral deficits. A number of potential mechanisms have been proposed for ethanol-induced brain damage; these include the promotion of neuroinflammation, interference with signaling by neurotrophic factors, induction of oxidative stress, modulation of retinoid acid signaling, and thiamine deficiency. The endoplasmic reticulum (ER) regulates posttranslational protein processing and transport. The accumulation of unfolded or misfolded proteins in the ER lumen triggers ER stress and induces unfolded protein response (UPR) which are mediated by three transmembrane ER signaling proteins: pancreatic endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6). UPR is initiated to protect cells from overwhelming ER protein loading. However, sustained ER stress may result in cell death. ER stress has been implied in various CNS injuries, including brain ischemia, traumatic brain injury, and aging-associated neurodegeneration, such as Alzheimer’s disease (AD), Huntington’s disease (HD), Amyotrophic lateral sclerosis (ALS), and Parkinson’s disease (PD). However, effects of ethanol on ER stress in the CNS receive less attention. In this review, we discuss recent progress in the study of ER stress in ethanol-induced neurotoxicity. We also examine the potential mechanisms underlying ethanol-mediated ER stress and the interaction among ER stress, oxidative stress and autophagy in the context of ethanol neurotoxicity. PMID:26473940

  4. Fumonisin B(1): a neurotoxic mycotoxin.

    PubMed

    Domijan, Ana-Marija

    2012-12-01

    Fumonisin B(1) (FB(1)) is a mycotoxin produced by Fusarium spp. moulds that contaminate crop, predominantly maize, all around the world. More than 15 types of fumonisins have been indentified so far, but FB(1) is the most abundant and toxicologically the most significant one. FB(1) has a wide range of toxic effects, depending on animal species. In horses FB(1) causes equine leukoencephalomalacia (ELEM), in pigs pulmonary oedema and in experimental rodents nephrotoxicity and hepatotoxicity. In humans exposure to FB(1) is linked with higher incidence of primary liver cancer and oesophageal cancer, which are frequent in certain regions of the world (such as Transkei region in South Africa) where maize is staple food. The occurrence of neural tube defect in children in some countries of Central America (such as Mexico and Honduras) is connected with the consumption of FB(1)-contaminated maize-based food. However, possible involvement of FB(1) in the development of human diseases is not clear. Nevertheless, the International Agency for Research on Cancer (IARC) has classified FB(1) as a possible carcinogen to humans (group 2B). FB(1) is a causative agent of ELEM, a brain disorder in equines, indicating that brain is a target organ of FB(1) toxicity. Several studies on experimental animals or on cell cultures of neural origin have established that FB(1) has a neurodegenerative potential, although the mechanism of its neurotoxicity is still vague. The aim of this article is to give an overview of available literature on FB(1) neurotoxicity and involved mechanisms, and to offer a new perspective for future studies.

  5. Study of neurotoxic intracellular calcium signalling triggered by amyloids.

    PubMed

    Villalobos, Carlos; Caballero, Erica; Sanz-Blasco, Sara; Núñez, Lucía

    2012-01-01

    Neurotoxicity in Alzheimer's disease (AD) is associated to dishomeostasis of intracellular Ca(2+) induced by amyloid β peptide (Aβ) species. Understanding of the effects of Aβ on intracellular Ca(2+) homeostasis requires preparation of the different Aβ assemblies including oligomers and fibrils and the testing of their effects on cytosolic and mitochondrial Ca(2+) in neurons. Procedures for cerebellar granule cell culture, preparation of Aβ species as well as fluorescence and bioluminescence imaging of cytosolic and mitochondrial Ca(2+) in neurons are described.

  6. Effects of Acute Exercise on Long-Term Memory

    ERIC Educational Resources Information Center

    Labban, Jeffrey D.; Etnier, Jennifer L.

    2011-01-01

    In this study, we tested the effect of acute exercise on long-term memory, specifically the timing of exercise relative to the memory challenge. We assessed memory via paragraph recall, in which participants listened to two paragraphs (exposure) and recounted them following a 35-min delay. Participants (n = 48) were randomly assigned to one of…

  7. Acute Stressor Effects on Goal-Directed Action in Rats

    ERIC Educational Resources Information Center

    Braun, Stephanie; Hauber, Wolfgang

    2013-01-01

    Here we examined effects of acute stressors that involve either systemic coadministration of corticosterone/yohimbine (3 mg/kg each) to increase glucocorticoid/noradrenaline activity (denoted as "pharmacological" stressor) or one or several distinct restraint stressors (denoted as "single" vs. "multiple" stressor) on…

  8. Angiopoietin-1 blocks neurotoxic zinc entry into cortical cells via PIP2 hydrolysis-mediated ion channel inhibition.

    PubMed

    Lim, Joon Seo; Koh, Gou Young; Koh, Jae-Young

    2015-09-01

    Excessive entry of zinc ions into the soma of neurons and glial cells results in extensive oxidative stress and necrosis of cortical cells, which underlies acute neuronal injury in cerebral ischemia and epileptic seizures. Here, we show that angiopoietin-1 (Ang1), a potent angiogenic ligand for the receptor tyrosine kinase Tie2 and integrins, inhibits the entry of zinc into primary mouse cortical cells and exerts a substantial protective effect against zinc-induced neurotoxicity. The neuroprotective effect of Ang1 was mediated by the integrin/focal adhesion kinase (FAK) signaling axis, as evidenced by the blocking effects of a pan-integrin inhibitory RGD peptide and PF-573228, a specific chemical inhibitor of FAK. Notably, blockade of zinc-permeable ion channels by Ang1 was attributable to phospholipase C-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate. Collectively, these data reveal a novel role of Ang1 in regulating the activity of zinc-permeable ion channels, and thereby protecting cortical cells against zinc-induced neurotoxicity.

  9. Is racecadotril effective for acute diarrhea in children? -First update.

    PubMed

    Sáez, Josefina; Cifuentes, Lorena

    2016-05-06

    This article updates the December 2015 Living FRISBEE (Living FRISBEE: Living FRIendly Summary of the Body of Evidence using Epistemonikos), based on the detection of two systematic reviews not identified in the previous version. Gastroenteritis or acute watery diarrhea is usually a self-limited disease, but it is still associated to substantial healthcare costs and remains a frequent demand for medical care. Racecadotril, an intestinal enkephalinase inhibitor, has been used as treatment because it would decrease the duration of acute diarrhea and fluid loss. However there is still no evidence supporting its routine use. Searching in Epistemonikos database, which is maintained by screening 30 databases, we identified five systematic reviews including nine randomized trials relevant for our question. We combined the evidence using meta-analysis and generated a summary of findings table following the GRADE approach. We concluded racecadotril probably reduces the duration of acute diarrhea in pediatric patients, without increasing adverse effects.

  10. Is racecadotril effective for acute diarrhea in children? -First update.

    PubMed

    Sáez, Josefina; Cifuentes, Lorena

    2016-01-01

    This article updates the December 2015 Living FRISBEE (Living FRISBEE: Living FRIendly Summary of the Body of Evidence using Epistemonikos), based on the detection of two systematic reviews not identified in the previous version. Gastroenteritis or acute watery diarrhea is usually a self-limited disease, but it is still associated to substantial healthcare costs and remains a frequent demand for medical care. Racecadotril, an intestinal enkephalinase inhibitor, has been used as treatment because it would decrease the duration of acute diarrhea and fluid loss. However there is still no evidence supporting its routine use. Searching in Epistemonikos database, which is maintained by screening 30 databases, we identified five systematic reviews including nine randomized trials relevant for our question. We combined the evidence using meta-analysis and generated a summary of findings table following the GRADE approach. We concluded racecadotril probably reduces the duration of acute diarrhea in pediatric patients, without increasing adverse effects. PMID:26731112

  11. Fenfluramine-induced serotonergic neurotoxicity in mice: lack of neuroprotection by inhibition/ablation of nNOS.

    PubMed

    Itzhak, Yossef; Ali, Syed F; Anderson, Karen L

    2003-10-01

    Previous studies have implicated a role for nitric oxide (NO) and peroxynitrite in methamphetamine-induced dopaminergic neurotoxicity. The present study was undertaken to investigate whether NO is involved in serotonergic neurotoxicity caused by fenfluramine. In the first experiment, the effect of the neuronal nitric oxide synthase (nNOS) inhibitor 7-nitroindazole (7-NI; 25 mg/kg x 4) on fenfluramine (25 mg/kg x 4)-induced serotonergic neurotoxicity in Swiss Webster mice was investigated. In the second experiment, the effect of fenfluramine (25 mg/kg x 4) on nNOS (-/-) and wild-type (WT) mice was investigated. Fenfluramine induced hypothermia in all three mouse strains, and 7-NI had no thermoregulatory effect. Selective depletion of 5-HT and 5-HT transporter binding sites in the striatum, frontal cortex and hippocampus in all three mouse strains was observed, with no evidence of dopaminergic neurotoxicity. In the first experiment, 7-NI did not attenuate serotonergic neurotoxicity in Swiss Webster mice. In the second experiment, nNOS(-/-) and WT mice were equally sensitive to serotonergic neurotoxicity. These findings suggest that NO and peroxynitrite do not mediate fenfluramine-induced serotonergic neurotoxicity, and that NO is a selective mediator of amphetamines-induced dopaminergic neurotoxicity.

  12. Acute Achilles tendinopathy: effect of pain control on leg stiffness.

    PubMed

    Maquirriain, J; Kokalj, A

    2014-03-01

    Tendinopathies are a major cause of disability in the athletic population; the main purpose of the treatment of these injuries is to reduce pain and improve function. The aim of this study was to evaluate the effect of NSAIDs on leg stiffness of patients suffering acute unilateral Achilles tendinopathy. Twenty-eight eligible male athletes (aged 39.1 ± 10.3 y) suffering acute Achilles tendinopathy were treated with etoricoxib (120 mg oral once daily) during 7 days. Pain (100-mm visual analogue scale-VAS), analgesic effect (percentage of 100-mm VAS reduction), and leg stiffness were evaluated pre- and post- anti-inflammatory treatment. Results of this study showed that over the 7-day treatment period, etoricoxib provided significant relief of Achilles tendon pain (VAS) compared to that experienced at baseline: 54.5 ± 21.6 and 24.5 ± 24.8, respectively (p<0.001). Leg stiffness showed a significant improvement after one-week NSAID therapy: LSR 0.89 ± 0.1 vs. 0.97 ± 0.1; (p=0.02). In conclusion, findings of this study demonstrated that patients suffering acute unilateral Achilles tendinopathy increased their leg stiffness of the affected side after oral anti-inflammatory therapy. Effective control of tendon pain in the acute phase of such sports-related injuries may contribute to improve capabilities associated with high performance like leg stiffness. PMID:24583548

  13. Chronic administration of THC prevents the behavioral effects of intermittent adolescent MDMA administration and attenuates MDMA-induced hyperthermia and neurotoxicity in rats.

    PubMed

    Shen, Erica Y; Ali, Syed F; Meyer, Jerrold S

    2011-12-01

    Most recreational users of 3, 4-methylenedioxymethamphetamine (MDMA or "ecstasy") also take cannabis, in part because cannabis can reduce the dysphoric symptoms of the ecstasy come-down such as agitation and insomnia. Although previous animal studies have examined the acute effects of co-administering MDMA and Δ(9)-tetrahydrocannabinol (THC), which is the major psychoactive ingredient in cannabis, research on chronic exposure to this drug combination is lacking. Therefore, the present study was conducted to investigate the effects of chronic adolescent administration of both THC and MDMA on behavior and on regional serotonin transporter (SERT) binding and serotonin (5-HT) concentrations as indices of serotonergic system integrity. Male Sprague-Dawley rats were divided into four drug administration groups: (1) MDMA alone, (2) THC alone, (3) MDMA plus THC, and (4) vehicle controls. MDMA (2 × 10 mg/kg × 4 h) was administered every fifth day from postnatal day (PD) 35 to 60 to simulate intermittent recreational ecstasy use, whereas THC (5mg/kg) was given once daily over the same time period to simulate heavy cannabis use. THC unexpectedly produced a modest hyperthermic effect when administered alone, but in animals co-treated with both THC and MDMA, there was an attenuation of MDMA-induced hyperthermia on dosing days. Subsequent testing conducted after a drug washout period revealed that THC reduced MDMA-related behavioral changes in the emergence and social interaction tests of anxiety-like behavior and also blunted the MDMA-induced decrease in exploratory behavior in the hole-board test. THC additionally attenuated MDMA -induced decreases in 5-HT levels and in SERT binding in the frontal cortex, parietal cortex, and striatum, but not in the hippocampus. These results suggest that chronic co-administration of THC during adolescence can provide some protection against various adverse physiological, behavioral, and neurochemical effects produced by MDMA. PMID

  14. Acute effects of tea consumption on attention and mood.

    PubMed

    Einöther, Suzanne J; Martens, Vanessa E

    2013-12-01

    Tea has historically been associated with mood and performance benefits, such as relaxation and concentration. This review summarizes the research on the acute effects of tea, and its ingredients theanine and caffeine, on attention and mood. Consistent with abundant research on the benefits of caffeine, the performance benefits of tea were identified in a number of studies, with particularly consistent evidence for improved attention. Tea consumption also consistently improved self-reported alertness and arousal, whereas effects on pleasure or relaxation were less consistent. In addition to the research on caffeine in real-life performance, 2 recent studies have provided a broader perspective on tea's effects on psychological function in that they showed beneficial effects in related areas such as work performance and creativity. These studies showed the validity of laboratory findings by supporting the idea that tea consumption has acute benefits on both mood and performance in real-life situations.

  15. The neurotoxicity of nitrous oxide: the facts and "putative" mechanisms.

    PubMed

    Savage, Sinead; Ma, Daqing

    2014-01-01

    Nitrous oxide is a widely used analgesic agent, used also in combination with anaesthetics during surgery. Recent research has raised concerns about possible neurotoxicity of nitrous oxide, particularly in the developing brain. Nitrous oxide is an N-methyl-d-aspartate (NMDA)-antagonist drug, similar in nature to ketamine, another anaesthetic agent. It has been linked to post-operative cardiovascular problems in clinical studies. It is also widely known that exposure to nitrous oxide during surgery results in elevated homocysteine levels in many patients, but very little work has investigated the long term effect of these increased homocysteine levels. Now research in rodent models has found that homocysteine can be linked to neuronal death and possibly even cognitive deficits. This review aims to examine the current knowledge of mechanisms of action of nitrous oxide, and to describe some pathways by which it may have neurotoxic effects. PMID:24961701

  16. Cholinergic and behavioral neurotoxicity of carbaryl and cadmium to larval rainbow trout (oncorhynchus mykiss)

    USGS Publications Warehouse

    Beauvais, S.L.; Jones, S.B.; Parris, J.T.; Brewer, S.K.; Little, E.E.

    2001-01-01

    Pesticides and heavy metals are common environmental contaminants that can cause neurotoxicity to aquatic organisms, impairing reproduction and survival. Neurotoxic effects of cadmium and carbaryl exposures were estimated in larval rainbow trout (RBT; Oncorhynchus mykiss) using changes in physiological endpoints and correlations with behavioral responses. Following exposures, RBT were videotaped to assess swimming speed. Brain tissue was used to measure cholinesterase (ChE) activity, muscarinic cholinergic receptor (MChR) number, and MChR affinity. ChE activity decreased with increasing concentrations of carbaryl but not of cadmium. MChR were not affected by exposure to either carbaryl or cadmium. Swimming speed correlated with ChE activity in carbaryl-exposed RBT, but no correlation occurred in cadmium-exposed fish. Thus, carbaryl exposure resulted in neurotoxicity reflected by changes in physiological and behavioral parameters measured, while cadmium exposure did not. Correlations between behavior and physiology provide a useful assessment of neurotoxicity. ?? 2001 Academic Press.

  17. Resveratrol attenuates hypoxia-induced neurotoxicity through inhibiting microglial activation.

    PubMed

    Zhang, Qun; Yuan, Lin; Zhang, Qingrui; Gao, Yan; Liu, Guangheng; Xiu, Meng; Wei, Xiang; Wang, Zhen; Liu, Dexiang

    2015-09-01

    Resveratrol is a natural polyphenol enriched in Polygonum cuspidatum and has been found to afford neuroprotective effects against neuroinflammation in the brain. Activated microglia can secrete various pro-inflammatory cytokines and neurotoxic mediators, which may contribute to hypoxic brain injuries. The aim of this study is to investigate the potential role of resveratrol in attenuating hypoxia-induced neurotoxicity via its anti-inflammatory actions through in vitro models of the BV-2 microglial cell line and primary microglia. We found that resveratrol significantly inhibited hypoxia-induced microglial activation and reduced subsequent release of pro-inflammatory factors. In addition, resveratrol inhibited the hypoxia-induced degradation of IκB-alpha and phosphorylation of p65 NF-κB protein. Hypoxia-induced ERK1/2 and JNK phosphorylation was also strongly inhibited by resveratrol, whereas resveratrol had no effect on hypoxia-stimulated p38 MAPK phosphorylation. Importantly, treating primary cortical neurons with conditioned medium (CM) from hypoxia-stimulated microglia induced neuronal apoptosis, which was reversed by CM co-treated with resveratrol. Taken together, resveratrol exerts neuroprotection against hypoxia-induced neurotoxicity through its anti-inflammatory effects in microglia. These effects were mediated, at least in part, by suppressing the activation of NF-ĸB, ERK and JNK MAPK signaling pathways. PMID:26225925

  18. Neurotoxicity and mode of action of N, N-diethyl-meta-toluamide (DEET).

    PubMed

    Swale, Daniel R; Sun, Baonan; Tong, Fan; Bloomquist, Jeffrey R

    2014-01-01

    Recent studies suggest that N, N-diethyl-meta-toluamide (DEET) is an acetylcholinesterase inhibitor and that this action may result in neurotoxicity and pose a risk to humans from its use as an insect repellent. We investigated the mode of action of DEET neurotoxicity in order to define the specific neuronal targets related to its acute toxicity in insects and mammals. Although toxic to mosquitoes (LD50 ca. 1.5 µg/mg), DEET was a poor acetylcholinesterase inhibitor (<10% inhibition), even at a concentration of 10 mM. IC50 values for DEET against Drosophila melanogaster, Musca domestica, and human acetylcholinesterases were 6-12 mM. Neurophysiological recordings showed that DEET had excitatory effects on the housefly larval central nervous system (EC50: 120 µM), but was over 300-fold less potent than propoxur, a standard anticholinesterase insecticide. Phentolamine, an octopamine receptor antagonist, completely blocked the central neuroexcitation by DEET and octopamine, but was essentially ineffective against hyperexcitation by propoxur and 4-aminopyridine, a potassium channel blocker. DEET was found to illuminate the firefly light organ, a tissue utilizing octopamine as the principal neurotransmitter. Additionally, DEET was shown to increase internal free calcium via the octopamine receptors of Sf21 cells, an effect blocked by phentolamine. DEET also blocked Na(+) and K(+) channels in patch clamped rat cortical neurons, with IC50 values in the micromolar range. These findings suggest DEET is likely targeting octopaminergic synapses to induce neuroexcitation and toxicity in insects, while acetylcholinesterase in both insects and mammals has low (mM) sensitivity to DEET. The ion channel blocking action of DEET in neurons may contribute to the numbness experienced after inadvertent application to the lips or mouth of humans. PMID:25101788

  19. The effects of acute and chronic stress on diabetes control.

    PubMed

    Marcovecchio, M Loredana; Chiarelli, Francesco

    2012-10-23

    Stress is an important contributor to pathological conditions in humans. Hormonal changes that occur during acute and chronic stress situations can affect glucose homeostasis in both healthy people and in those with diabetes. Several studies have reported a negative effect of acute stress on maintenance of blood glucose concentrations in patients with type 1 and type 2 diabetes. The effect of stress on glycemic control in people with diabetes may be related to a direct effect of stress hormones on blood glucose levels and an indirect effect of stress on patient behaviors related to diabetes treatment and monitoring and meal and exercise plans. In contrast, there is no clear evidence that stressful life events promote the development of diabetes in children or in adults. Stress hyperglycemia, the development of hyperglycemia during acute illness, represents another interesting connection between the stress system and glucose homeostasis. A large body of evidence supports an association between stress hyperglycemia and increased morbidity and mortality in critically ill patients. Interestingly, there is some evidence supporting a beneficial effect of insulin in reducing morbidity and mortality in patients admitted to intensive care units. Finally, stress can influence the development of type 2 diabetes indirectly by promoting obesity and metabolic syndrome. PMID:23092890

  20. Evaluation of Cisplatin Neurotoxicity in Cultured Rat Dorsal Root Ganglia via Cytosolic Calcium Accumulation

    PubMed Central

    Erol, Kevser; Yiğitaslan, Semra; Ünel, Çiğdem; Kaygısız, Bilgin; Yıldırım, Engin

    2016-01-01

    Background: Calcium homeostasis is considered to be important in antineoplastic as well as in neurotoxic adverse effects of cisplatin. Aims: This study aimed to investigate the role of Ca2+ in cisplatin neurotoxicity in cultured rat dorsal root ganglia (DRG) cells. Study Design: Cell culture study. Methods: DRG cells prepared from 1-day old Sprague-Dawley rats were used to determine the role of Ca2+ in the cisplatin (10–600 μM) neurotoxicity. The cells were incubated with cisplatin plus nimodipine (1–3 μM), dizocilpine (MK-801) (1–3 μM) or thapsigargin (100–300 nM). Toxicity of cisplatinon DRG cells was determined by the MTT assay. Results: The neurotoxicity of cisplatin was significant when used in high concentrations (100–600 μM). Nimodipine (1 μM) but not MK-801 or thapsigargin prevented the neurotoxic effects of 200 μM of cisplatin. Conclusion: Voltage-dependent calcium channels may play a role in cisplatin neurotoxicity. PMID:27403382

  1. Neurotoxic Effect of Benzo[a]pyrene and Its Possible Association with 6-Hydroxydopamine Induced Neurobehavioral Changes during Early Adolescence Period in Rats.

    PubMed

    Das, Saroj Kumar; Patel, Bhupesh; Patri, Manorama

    2016-01-01

    Exposure to persistent genotoxicants like benzo[a]pyrene (B[a]P) during postnatal days causes neurobehavioral changes in animal models. However, neurotoxic potential of B[a]P and its association with 6-hydroxydopamine (6-OHDA) induced neurobehavioral changes are yet to be explored. The growth of rat brain peaks at the first week of birth and continues up to one month with the attainment of adolescence. Hence, the present study was conducted on male Wistar rats at postnatal day 5 (PND 5) following single intracisternal administration of B[a]P to compare with neurobehavioral and neurotransmitter changes induced by 6-OHDA at PND 30. Spontaneous motor activity was significantly increased by 6-OHDA showing similar trend following B[a]P administration. Total distance travelled in novel open field arena and elevated plus maze was significantly increased following B[a]P and 6-OHDA administration. Neurotransmitter estimation showed significant alleviation of dopamine in striatum following B[a]P and 6-OHDA administration. Histopathological studies of striatum by hematoxylin and eosin (H&E) staining revealed the neurodegenerative potential of B[a]P and 6-OHDA. Our results indicate that B[a]P-induced spontaneous motor hyperactivity in rats showed symptomatic similarities with 6-OHDA. In conclusion, early postnatal exposure to B[a]P in rats causing neurobehavioral changes may lead to serious neurodegenerative consequences during adolescence.

  2. Neurotoxic Effect of Benzo[a]pyrene and Its Possible Association with 6-Hydroxydopamine Induced Neurobehavioral Changes during Early Adolescence Period in Rats

    PubMed Central

    Das, Saroj Kumar; Patel, Bhupesh

    2016-01-01

    Exposure to persistent genotoxicants like benzo[a]pyrene (B[a]P) during postnatal days causes neurobehavioral changes in animal models. However, neurotoxic potential of B[a]P and its association with 6-hydroxydopamine (6-OHDA) induced neurobehavioral changes are yet to be explored. The growth of rat brain peaks at the first week of birth and continues up to one month with the attainment of adolescence. Hence, the present study was conducted on male Wistar rats at postnatal day 5 (PND 5) following single intracisternal administration of B[a]P to compare with neurobehavioral and neurotransmitter changes induced by 6-OHDA at PND 30. Spontaneous motor activity was significantly increased by 6-OHDA showing similar trend following B[a]P administration. Total distance travelled in novel open field arena and elevated plus maze was significantly increased following B[a]P and 6-OHDA administration. Neurotransmitter estimation showed significant alleviation of dopamine in striatum following B[a]P and 6-OHDA administration. Histopathological studies of striatum by hematoxylin and eosin (H&E) staining revealed the neurodegenerative potential of B[a]P and 6-OHDA. Our results indicate that B[a]P-induced spontaneous motor hyperactivity in rats showed symptomatic similarities with 6-OHDA. In conclusion, early postnatal exposure to B[a]P in rats causing neurobehavioral changes may lead to serious neurodegenerative consequences during adolescence. PMID:27034665

  3. Alternatively Spliced Methionine Synthase in SH-SY5Y Neuroblastoma Cells: Cobalamin and GSH Dependence and Inhibitory Effects of Neurotoxic Metals and Thimerosal

    PubMed Central

    Power-Charnitsky, Verna-Ann; Sharma, Alok; Audhya, Tapan; Zhang, Yiting

    2016-01-01

    The folate and cobalamin (Cbl-) dependent enzyme methionine synthase (MS) is highly sensitive to oxidation and its activity affects all methylation reactions. Recent studies have revealed alternative splicing of MS mRNA in human brain and patient-derived fibroblasts. Here we show that MS mRNA in SH-SY5Y human neuroblastoma cells is alternatively spliced, resulting in three primary protein species, thus providing a useful model to examine cofactor dependence of these variant enzymes. MS activity was dependent upon methylcobalamin (MeCbl) or the combination of hydroxocobalamin (OHCbl) and S-adenosylmethionine (SAM). OHCbl-based activity was eliminated by depletion of the antioxidant glutathione (GSH) but could be rescued by provision of either glutathionylcobalamin (GSCbl) or MeCbl. Pretreatment of cells with lead, arsenic, aluminum, mercury, or the ethylmercury-containing preservative thimerosal lowered GSH levels and inhibited MS activity in association with decreased uptake of cysteine, which is rate-limiting for GSH synthesis. Thimerosal treatment decreased cellular levels of GSCbl and MeCbl. These findings indicate that the alternatively spliced form of MS expressed in SH-SY5Y human neuronal cells is sensitive to inhibition by thimerosal and neurotoxic metals, and lower GSH levels contribute to their inhibitory action. PMID:26989453

  4. Effect of acute and fractionated irradiation on hippocampal neurogenesis.

    PubMed

    Park, Min-Kyoung; Kim, Seolhwa; Jung, Uhee; Kim, Insub; Kim, Jin Kyu; Roh, Changhyun

    2012-08-08

    Ionizing radiation has become an inevitable health concern emanating from natural sources like space travel and from artificial sources like medical therapies. In general, exposure to ionizing radiation such as γ-rays is one of the methods currently used to stress specific model systems. In this study, we elucidated the long-term effect of acute and fractionated irradiation on DCX-positive cells in hippocampal neurogenesis. Groups of two-month-old C57BL/6 female mice were exposed to whole-body irradiation at acute dose (5 Gy) or fractional doses (1 Gy × 5 times and 0.5 Gy × 10 times). Six months after exposure to γ-irradiation, the hippocampus was analyzed. Doublecortin (DCX) immunohistochemistry was used to measure changes of neurogenesis in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). The number of DCX-positive cells was significantly decreased in all acute and fractionally irradiation groups. The long-term changes in DCX-positive cells triggered by radiation exposure showed a very different pattern to the short-term changes which tended to return to the control level in previous studies. Furthermore, the number of DCX-positive cells was relatively lower in the acute irradiation group than the fractional irradiation groups (approximately 3.6-fold), suggesting the biological change on hippocampal neurogenesis was more susceptible to being damaged by acute than fractional irradiation. These results suggest that the exposure to γ-irradiation as a long-term effect can trigger biological responses resulting in the inhibition of hippocampal neurogenesis.

  5. Acute IOP elevation with scleral suction: effects on retrobulbar haemodynamics.

    PubMed Central

    Harris, A; Joos, K; Kay, M; Evans, D; Shetty, R; Sponsel, W E; Martin, B

    1996-01-01

    AIMS/BACKGROUND: Mechanical and vascular factors may both contribute to glaucoma. This study investigated the relation of mechanical to vascular factors by examining how acute IOP elevation altered flow velocities in the central retinal and ophthalmic arteries. METHODS: IOP was elevated from a baseline near 14 to approximately 45 mm Hg using suction ophthalmodynamometry. During recovery from scleral suction, IOP fell to near 8 mm Hg. At each IOP, peak systolic and end diastolic velocities (PSV and EDV) were measured in the central retinal and ophthalmic arteries using colour Doppler imaging (Siemens Quantum 2000). Eleven healthy people served as subjects. RESULTS: Acute elevation in IOP had no effect upon PSV, EDV, or the derived resistance index in the ophthalmic artery: flow velocities in this vessel were identical at IOP of 8 mm Hg or 45 mm Hg. In contrast, in the central retinal artery, PSV and EDV fell, and the resistance index rose, in steady progression as IOP was acutely elevated (each p < 0.01). At IOP of 45 mm Hg, EDV was virtually absent and the resistance index was very nearly 1.0. CONCLUSION: Ophthalmic arterial haemodynamics are unrelated to acute fluctuations of the IOP over a wide range, suggesting that ocular hypertension itself cannot induce vascular dysfunction in this artery. In contrast, flow velocities in the central retinal artery were highly IOP dependent, implying that haemodynamic and mechanical factors are closely linked in this vascular bed. PMID:9059269

  6. Acute effects of cannabis on breath-holding duration.

    PubMed

    Farris, Samantha G; Metrik, Jane

    2016-08-01

    Distress intolerance (an individual's perceived or actual inability to tolerate distressing psychological or physiological states) is associated with cannabis use. It is unknown whether a biobehavioral index of distress intolerance, breath-holding duration, is acutely influenced (increased or decreased) by cannabis. Such information may further inform understanding of the expression of psychological or physiological distress postcannabis use. This within-subjects study examined whether smoked marijuana with 2.7%-3.0% delta-9-tetrahydrocannabinol (THC), relative to placebo, acutely changed duration of breath holding. Participants (n = 88; 65.9% male) were nontreatment-seeking frequent cannabis users who smoked placebo or active THC cigarette on two separate study days and completed a breath-holding task postsmoking. Controlling for baseline breath-holding duration and participant sex, THC produced significantly shorter breath-holding durations relative to placebo. There was a significant interaction of drug administration × frequency of cannabis use, such that THC decreased breath-holding time among less frequent but not among more frequent users. Findings indicate that cannabis may exacerbate distress intolerance (via shorter breath-holding durations). As compared to less frequent cannabis users, frequent users display tolerance to cannabis' acute effects including increased ability to tolerate respiratory distress when holding breath. Objective measures of distress intolerance are sensitive to contextual factors such as acute drug intoxication, and may inform the link between cannabis use and the expression of psychological distress. (PsycINFO Database Record PMID:27454678

  7. Formaldehyde exposure and acute health effects study

    SciTech Connect

    Quackenboss, J.J.; Lebowitz, M.D.; Michaud, J.P.; Bronnimann, D. )

    1989-01-01

    To assess the effects of formaldehyde exposures on health, exposure groups were defined using baseline exposure and health questionnaires. Formaldehyde concentrations were poorly correlated with these exposure classifications, perhaps due to the time delay between classification and monitoring. The 151 households reported here had a mean HCHO concentration of 35 (S.E. 1.5 and median 30) {mu}g/m{sup 3}. Passive samplers prepared in our lab were calibrated in a chamber to derive an estimated sampling rate of 0.311 {mu}g/(mg {center dot} m{sup {minus}3} {center dot} hr). They were also compared to commercially available samplers inside of the homes, with a correlation coefficient of 0.896 and mean difference of 2.6 {mu}g/m{sup 3}. In this report of initial findings from an ongoing study, daily symptoms and peak expiratory flow measurements were compared with an HCHO exposure classification based on the median measured concentrations. None of the symptoms groups were related to HCHO exposure when controlling for age and sex. There was a significant relationship between HCHO exposure and variability in peak expiratory flows that was dependent on age group. It may be especially important to assess the variability in reactive individuals and children to determine the short-term effects of HCHO exposures and possible long-term consequences.

  8. Acute effects of aerobic exercise promote learning

    PubMed Central

    Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo

    2016-01-01

    The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity–induced plasticity with specific cognitive training–induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity. PMID:27146330

  9. Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts.

    PubMed

    van Thriel, Christoph; Westerink, Remco H S; Beste, Christian; Bale, Ambuja S; Lein, Pamela J; Leist, Marcel

    2012-08-01

    The developing nervous system is particularly vulnerable to chemical insults. Exposure to chemicals can result in neurobehavioural alterations, and these have been used as sensitive readouts to assess neurotoxicity in animals and man. Deconstructing neurobehaviour into relevant cellular and molecular components may allow for detection of specific neurotoxic effects in cell-based systems, which in turn may allow an easier examination of neurotoxic pathways and modes of actions and eventually inform the regulatory assessment of chemicals with potential developmental neurotoxicity. Here, current developments towards these goals are reviewed. Imaging genetics (CB) provides new insights into the neurobiological correlates of cognitive function that are being used to delineate neurotoxic mechanisms. The gaps between in vivo neurobehaviour and real-time in vitro measurements of neuronal function are being bridged by ex vivo measurements of synaptic plasticity (RW). An example of solvent neurotoxicity demonstrates how an in vivo neurological defect can be linked via the N-methyl-d-aspartate (NMDA)-glutamate receptor as a common target to in vitro readouts (AB). Axonal and dendritic morphology in vitro proved to be good correlates of neuronal connectivity and neurobehaviour in animals exposed to polychlorinated biphenyls and organophosphorus pesticides (PJL). Similarly, chemically induced changes in neuronal morphology affected the formation of neuronal networks on structured surfaces. Such network formation may become an important readout for developmental neurotoxicity in vitro (CvT), especially when combined with human neurons derived from embryonic stem cells (ML). We envision that future in vitro test systems for developmental neurotoxicity will combine the above approaches with exposure information, and we suggest a strategy for test system development and cell-based risk assessment. PMID:22008243

  10. Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts

    PubMed Central

    van Thriel, Christoph; Westerink, Remco; Beste, Christian; Bale, Ambuja S.; Lein, Pamela J.; Leist, Marcel

    2011-01-01

    The developing nervous system is particularly vulnerable to chemical insults. Exposure to chemicals can results in neurobehavioural alterations, and these have been be used as sensitive readouts to assess neurotoxicity in animals and man. Deconstructing neurobehaviour into relevant cellular and molecular components may allow for detection of specific neurotoxic effects in cell-based systems, which in turn may allow an easier examination of neurotoxic pathways and modes of actions and eventually inform the regulatory assessment of chemicals with potential developmental neurotoxicity. Here, current developments towards these goals are reviewed. Imaging genetics (CB) provides new insights into the neurobiological correlates of cognitive function that are being used to delineate neurotoxic mechanisms. The gaps between in vivo neurobehaviour and real-time in vitro measurements of neuronal function are being bridged by ex vivo measurements of synaptic plasticity (RW). An example of solvent neurotoxicity demonstrates how an in vivo neurological defect can be linked via the N-methyl-D-aspartate (NMDA)-glutamate receptor as a common target to in vitro readouts (AB). Axonal and dendritic morphology in vitro proved to be good correlates of neuronal connectivity and neurobehaviour in animals exposed to polychlorinated biphenyls and organophosphorus pesticides (PJL). Similarly, chemically-induced changes in neuronal morphology affected the formation of neuronal networks on structured surfaces. Such network formation may become an important readout for developmental neurotoxicity in vitro (CvT), especially when combined with human neurons derived from embryonic stem cells (ML). We envision that future in vitro test systems for developmental neurotoxicity will combine the above approaches with exposure information, and we suggest a strategy for test system development and cell-based risk assessment. PMID:22008243

  11. The Protective Effects of Buzui on Acute Alcoholism in Mice

    PubMed Central

    Wen, Da-Chao; Gao, Shu-di; Hu, Xiao-yu; Yi, Cheng

    2016-01-01

    This study was designed to investigate the role of a traditional buzui recipe in anti-inebriation treatment. Buzui consists of Fructus Schisandrae Chinensis, Fructus Chebulae, Fructus Mume, Fructus Crataegi, Endothelium Corneum Gigeriae Galli, and Excrementum Bombycis. The buzui mixture was delivered by gavage, and ethanol was delivered subsequent to the final treatment. The effects of buzui on the righting reflex, inebriation rates, and the survival curve are depicted. Blood alcohol concentrations, alanine aminotransferase (ALT) levels, aspartate aminotransferase (AST) levels, and alkaline phosphatase (ALP) levels were recorded. The activities of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and superoxide dismutase (SOD), as well as malonaldehyde (MDA) levels, were also measured. Our results demonstrated that a traditional buzui recipe showed significant effects on promoting wakefulness and the prevention of acute alcohol intoxication, accelerating the metabolism of alcohol in the liver and reducing the oxidative damage caused by acute alcoholism. PMID:26884793

  12. Effects of acute exercise on long-term memory.

    PubMed

    Labban, Jeffrey D; Etnier, Jennifer L

    2011-12-01

    In this study, we tested the effect of acute exercise on long-term memory, specifically the timing of exercise relative to the memory challenge. We assessed memory via paragraph recall, in which participants listened to two paragraphs (exposure) and recounted them following a 35-min delay. Participants (n = 48) were randomly assigned to one of three groups: exercise prior to exposure, exercise after exposure, or no-exercise. Exercise consisted of 30 min on a cycle ergometer including 20 min at moderate intensity. Only the exercise prior group recalled significantly more than the control group (p < .05). Differences among the exercise groups failed to reach significance (p = .09). Results indicated that acute exercise positively influenced recall and that exercise timing relative to memory task may have an impact on this effect.

  13. Phytochemicals Mediated Remediation of Neurotoxicity Induced by Heavy Metals

    PubMed Central

    Gupta, Vivek Kumar; Singh, Shweta; Agrawal, Anju; Siddiqi, Nikhat Jamal; Sharma, Bechan

    2015-01-01

    Almost all the environmental components including both the abiotic and biotic factors have been consistently threatened by excessive contamination of heavy metals continuously released from various sources. Different heavy metals have been reported to generate adverse effects in many ways. Heavy metals induced neurotoxicity and impairment in signalling cascade leading to cell death (apoptosis) has been indicated by several workers. On one hand, these metals are required by the cellular systems to regulate various biological functions of normal cells, while on the other their biomagnification in the cellular systems produces adverse effects. The mechanism by which the heavy metals induce neurotoxicity follows free radicals production pathway(s) specially the generation of reactive oxygen species and reactive nitrogen species. These free radicals produced in excess have been shown to create an imbalance between the oxidative and antioxidative systems leading to emergence of oxidative stress, which may cause necrosis, DNA damage, and many neurodegenerative disorders. This mini review summarizes the current knowledge available on the protective role of varied natural products isolated from different herbs/plants in imparting protection against heavy metals (cadmium, lead, arsenic, and mercury) mediated neurotoxicity. PMID:26618004

  14. Homocysteine excess: delineating the possible mechanism of neurotoxicity and depression.

    PubMed

    Bhatia, Pankaj; Singh, Nirmal

    2015-12-01

    Homocysteine (Hcy) is a nonproteogenic sulfur containing amino acid derived from dietary methionine through demethylation. Homocysteine can be re-methylated to methionine [precursor of S-adenosylmethionine (SAM)] via the re-methylation or 5-methyltetrahydrofolate pathway or undergoes transsulfuration to form cysteine by the action of metabolic enzymes and cofactors. Impaired metabolism due to genetic alteration in metabolic enzymes (methionine synthase, methyltetrahydrofolate reductase (MTHFR), cystathionine β-synthase (CβS), and cystathionine-γ-lyase (CγL) or deficiency in cofactors (vitamin B6 , B12 , folate) may lead to acquired metabolic anomaly known as hyperhomocysteinemia. Hcy excess decreases the S-adenosylmethionine (SAM)-dependent synthesis of catecholamines, viz. dopamine, norepinephrine, epinephrine, and noncatecholamine, viz. serotonin (5-HT), due to genetic alteration in key enzyme MTHFR in the homocysteine metabolism pathway that leads to depression. Thus, hyperhomocysteinemia (HHcy)-induced SAM level is influenced by the single nucleotide polymorphism (SNP) MTHFR C677T. Furthermore, HHcy leads to production of precarious neurotoxic product homocysteic acid (HCA) and cysteine sulfinic acid (CSA) which acts as an N-methyl-D-aspartate (NMDA) receptor agonist and has neurotoxic effects on dopaminergic neurons. In the current review, an attempt has been made to discuss the neurotoxic effects of HHcy in the pathogenesis of depression. PMID:26376956

  15. Lead neurotoxicity and socioeconomic status: conceptual and analytical issues.

    PubMed

    Bellinger, David C

    2008-09-01

    Socioeconomic status (SES) is usually considered to be a potential confounder of the association between lead exposure and children's neurodevelopment, but experimental and epidemiological data suggest that SES might also modify lead neurotoxicity. The basis of this effect modification is uncertain, but might include differences among SES strata in co-exposures to other neurotoxicants, genetic susceptibilities, environmental enrichment, and stress. The role of SES in the causal nexus is likely to include other dimensions, however. It conveys information about lead exposure opportunities as well as about predictors of child outcome that are correlated with but causally independent of lead. Failure to distinguish these aspects of SES will lead to an underestimate of lead's contribution, and might even result in attributing to SES health effects that should be attributed to lead. Conventional models, which treat SES and SES-related factors solely as potential confounders, do not capture the possibility that a child's early lead exposure alters the behaviors that the child elicits from others. Failure to model lead's contribution to such time-varying covariates will also tend to bias estimates of lead neurotoxicity toward the null. On a trans-generational level, low SES might be a proxy for vulnerability to lead. To estimate the burden of lead-associated neurotoxicity on a population level, we need to apply analytical approaches that model a child's development and its context as a complex system of interdependent relationships that change over time.

  16. Functional Rehabilitation of Cadmium-Induced Neurotoxicity Despite Persistent Peripheral Pathophysiology in the Olfactory System

    PubMed Central

    Czarnecki, Lindsey A.; Moberly, Andrew H.; Turkel, Daniel J.; Rubinstein, Tom; Pottackal, Joseph; Rosenthal, Michelle C.; McCandlish, Elizabeth F. K.; Buckley, Brian; McGann, John P.

    2012-01-01

    Intranasal exposure to the heavy metal cadmium has been linked to olfactory dysfunction and neurotoxicity. Here, we combine optical imaging of in vivo neurophysiology, genetically defined anatomical tract tracing, mass spectrometry, and behavioral psychophysical methods to evaluate the persistent harmful effects of acute intranasal exposure to cadmium in a mouse model and to investigate the functional consequences of sensory rehabilitation training. We find that an acute intranasal instillation of cadmium chloride leads to an accumulation of cadmium in the brain's olfactory bulb that persists for at least 4 weeks. This is accompanied by persistent severe pathophysiology of the olfactory nerve, a gradual reduction in axonal projections from the olfactory epithelium, and complete impairment on an olfactory detection task. Remarkably, 2 weeks of odorant-guided operant conditioning training proved sufficient to restore olfactory detection performance to control levels in cadmium-exposed mice. Optical imaging from rehabilitated mice showed that this training did not cause any detectable restoration of olfactory nerve function, suggesting that the recovery of function was mediated by central neuroplasticity in which the brain learned to interpret the degraded sensory input. These data demonstrate that sensory learning can mask even severe damage from neurotoxicants and suggest that explicit sensory training may be useful in rehabilitation of olfactory dysfunction. PMID:22287023

  17. Beneficial effects of trypsin inhibitors derived from a spider venom peptide in L-arginine-induced severe acute pancreatitis in mice.

    PubMed

    Ning, Weiwen; Wang, Yongjun; Zhang, Fan; Wang, Hengyun; Wang, Fan; Wang, Xiaojuan; Tang, Huaxin; Liang, Songping; Shi, Xiaoliu; Liu, Zhonghua

    2013-01-01

    HWTI is a 55-residue protein isolated from the venom of the spider Ornithoctonus huwena. It is a potent trypsin inhibitor and a moderate voltage-gated potassium channel blocker. Here, we designed and expressed two HWTI mutants, HWTI-mut1 and HWTI-mut2, in which the potassium channel inhibitory activity was reduced while the trypsin inhibitory activity of the wild type form (approximately 5 EPU/mg) was retained. Animal studies showed that these mutants were less toxic than HWTI. The effects of HWTI and HWTI-mut1 were examined in a mouse model of acute pancreatitis induced by intraperitoneal injection of a large dose of L-arginine (4 mg/kg, twice). Serum amylase and serum lipase activities were assessed, and pathological sections of the pancreas were examined. Treatment with HWTI and HWTI-mut1 significantly reduced serum amylase and lipase levels in a dose dependent manner. Compared with the control group, at 4 mg/kg, HWTI significantly reduced serum amylase level by 47% and serum lipase level by 73%, while HWTI-mut1 significantly reduced serum amylase level by 59% and serum lipase level by 72%. Moreover, HWTI and HWTI-mut1 effectively protected the pancreas from acinar cell damage and inflammatory cell infiltration. The trypsin inhibitory potency and lower neurotoxicity of HWTI-mut1 suggest that it could potentially be developed as a drug for the treatment of acute pancreatitis with few side effects. PMID:23613780

  18. Spaceflight Sensorimotor Analogs: Simulating Acute and Adaptive Effects

    NASA Technical Reports Server (NTRS)

    Taylor, Laura C.; Harm, Deborah L.; Kozlovskaya, Inessa; Reschke, Millard F.; Wood, Scott J.

    2009-01-01

    Adaptive changes in sensorimotor function during spaceflight are reflected by spatial disorientation, motion sickness, gaze destabilization and decrements in balance, locomotion and eye-hand coordination that occur during and following transitions between different gravitational states. The purpose of this study was to conduct a meta-synthesis of data from spaceflight analogs to evaluate their effectiveness in simulating adaptive changes in sensorimotor function. METHODS. The analogs under review were categorized as either acute analogs used to simulate performance decrements accompanied with transient changes, or adaptive analogs used to drive sensorimotor learning to altered sensory feedback. The effectiveness of each analog was evaluated in terms of mechanisms of action, magnitude and time course of observed deficits compared to spaceflight data, and the effects of amplitude and exposure duration. RESULTS. Parabolic flight has been used extensively to examine effects of acute variation in gravitational loads, ranging from hypergravity to microgravity. More recently, galvanic vestibular stimulation has been used to elicit acute postural, locomotor and gaze dysfunction by disrupting vestibular afferents. Patient populations, e.g., with bilateral vestibular loss or cerebellar dysfunction, have been proposed to model acute sensorimotor dysfunction. Early research sponsored by NASA involved living onboard rotating rooms, which appeared to approximate the time course of adaptation and post-exposure recovery observed in astronauts following spaceflight. Exposure to different bed-rest paradigms (6 deg head down, dry immersion) result in similar motor deficits to that observed following spaceflight. Shorter adaptive analogs have incorporated virtual reality environments, visual distortion paradigms, exposure to conflicting tilt-translation cues, and exposure to 3Gx centrifugation. As with spaceflight, there is considerable variability in responses to most of the analogs

  19. Drug-induced neurotoxicity in addiction medicine: From prevention to harm reduction.

    PubMed

    Mohammad Ahmadi Soleimani, S; Ekhtiari, Hamed; Cadet, Jean Lud

    2016-01-01

    Neurotoxicity is considered as a major cause of neurodegenerative disorders. Most drugs of abuse have nonnegligible neurotoxic effects many of which are primarily mediated by several dopaminergic and glutamatergic neurotransmitter systems. Although many researchers have investigated the medical and cognitive consequences of drug abuse, the neurotoxicity induced by these drugs still requires comprehensive attention. The science of neurotoxicity promises to improve preventive and therapeutic strategies for brain disorders such as Alzheimer disease and Parkinson's disease. However, its clinical applications for addiction medicine remain to be defined adequately. This chapter reviews the most commonly discussed mechanisms underlying neurotoxicity induced by common drugs of abuse including amphetamines, cocaine, opiates, and alcohol. In addition, the known factors that trigger and/or predispose to drug-induced neurotoxicity are discussed. These factors include drug-related, individual-related, and environmental insults. Moreover, we introduce some of the potential pharmacological antineurotoxic interventions deduced from experimental animal studies. These interventions involve various targets such as dopaminergic system, mitochondria, cell death signaling, and NMDA receptors, among others. We conclude the chapter with a discussion of addicted patients who might benefit from such interventions.

  20. Kinetics of drug action in disease states. XXXIX. Effect of orally administered activated charcoal on the hypnotic activity of phenobarbital and the neurotoxicity of theophylline administered intravenously to rats with renal failure.

    PubMed

    Hoffman, A; Levy, G

    1990-03-01

    The central nervous system (CNS) sensitivity to the hypnotic (general anesthetic) action of phenobarbital and to the neurotoxic (convulsive) action of theophylline is greater in rats with acute renal failure than in normal animals, consistent with clinical observations. In the case of phenobarbital, this increased sensitivity can be produced in normal rats by infusion of a solution of the lyophilized dialysate of serum from rats with renal failure. It was hypothesized that the relevant constituent(s) of this dialysate may circulate between the blood and the intestinal lumen and that it (they) can be adsorbed by orally administered activated charcoal and thereby removed from the body. If so, treatment of renal failure rats with activated charcoal should partly reverse the increased CNS sensitivity to phenobarbital and to other drugs similarly affected. Accordingly, rats with renal failure produced by bilateral ligation of ureters were given an aqueous suspension of activated charcoal, about 1 g per kg body weight, orally every 8 hr for six doses. Uremic controls received equal volumes of water. About 2 hr after the last dose, the animals were infused i.v. with phenobarbital to onset of loss of righting reflex or with theophylline to onset of maximal seizures. In the phenobarbital study, charcoal treatment partly reversed the hypothermia associated with renal failure and caused a reduction of creatinine and total bilirubin concentrations in serum. The cerebrospinal fluid (CSF) concentration of phenobarbital at onset of loss of the righting reflex was significantly higher in charcoal treated rats than in their controls.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. REINFORCEMENT ENHANCING EFFECTS OF ACUTE NICOTINE VIA ELECTRONIC CIGARETTES

    PubMed Central

    Perkins, Kenneth A.; Karelitz, Joshua L.; Michael, Valerie C.

    2015-01-01

    Background Recent human studies confirm animal research showing that nicotine enhances reinforcement from rewards unrelated to nicotine. These effects of acute nicotine via tobacco smoking may also occur when consumed from non-tobacco products. Methods We assessed acute effects of nicotine via electronic cigarettes (“e-cigarettes”) on responding reinforced by music, video, or monetary rewards, or for no reward (control). In a fully within-subjects design, adult dependent smokers (N=28) participated in three similar experimental sessions, each following overnight abstinence (verified by CO≤10 ppm). Varying only in e-cigarette condition, sessions involved controlled exposure to a nicotine (labeled “36 mg/ml”) or placebo (“0”) e-cigarette, or no e-cigarette use. A fourth session involved smoking one’s own tobacco cigarette brand after no abstinence, specifically to compare responses under typical nicotine satiation with these acute e-cigarette conditions after abstinence. Results Reinforced responding for video reward, but not the other rewards, was greater due to use of the nicotine versus placebo e-cigarette (i.e., nicotine per se), while no differences were found between the placebo e-cigarette and no e-cigarette conditions (i.e., e-cigarette use per se). For nicotine via tobacco smoking, responding compared to the nicotine e-cigarette was similar for video but greater for music, while both video and music reward were enhanced relative to the non-nicotine conditions (placebo and no e-cigarette). Conclusions Acute nicotine from a non-tobacco product has some reinforcement enhancing effects in humans, in a manner partly consistent with nicotine via tobacco smoking and perhaps contributing to the rising popularity of nicotine e-cigarette use. PMID:26070455

  2. Lithium Protects Against Anaesthesia Neurotoxicity In The Infant Primate Brain

    PubMed Central

    Noguchi, Kevin K.; Johnson, Stephen A.; Kristich, Lauren E.; Martin, Lauren D.; Dissen, Gregory A.; Olsen, Emily A.; Olney, John W.; Brambrink, Ansgar M.

    2016-01-01

    Exposure of infant animals, including non-human primates (NHPs), to anaesthetic drugs causes apoptotic death of neurons and oligodendrocytes (oligos) and results in long-term neurodevelopmental impairment (NDI). Moreover, retrospective clinical studies document an association between anaesthesia exposure of human infants and significant increase in NDI. These findings pose a potentially serious dilemma because millions of human infants are exposed to anaesthetic drugs every year as part of routine medical care. Lithium (Li) at clinically established doses is neuroprotective in various cerebral injury models. We therefore investigated whether Li also protects against anaesthesia neurotoxicity in infant NHPs. On postnatal day 6 NHPs were anaesthetized with the widely used anaesthetic isoflurane (ISO) for 5 h employing the same standards as in a human pediatric surgery setting. Co-administration of Li completely prevented the acute ISO-induced neuroapoptosis and significantly reduced ISO-induced apoptosis of oligodendroglia. Our findings are highly encouraging as they suggest that a relatively simple pharmacological manipulation might protect the developing primate brain against the neurotoxic action of anaesthetic drugs while not interfering with the beneficial actions of these drugs. Further research is needed to determine Li’s potential to prevent long-term NDI resulting from ISO anaesthesia, and to establish its safety in human infants. PMID:26951756

  3. A neurotoxic alcohol exposure paradigm does not induce hepatic encephalopathy.

    PubMed

    Hashimoto, Joel G; Wiren, Kristine M; Wilhelm, Clare J

    2016-01-01

    Alcohol abuse is associated with neurological dysfunction, brain morphological deficits and frank neurotoxicity. Although these disruptions may be a secondary effect due to hepatic encephalopathy, no clear evidence of causality is available. This study examined whether a 72h period of alcohol intoxication known to induce physical dependence, followed by a single withdrawal, was sufficient to induce signs of hepatic encephalopathy in male and female mice. Animals were continuously intoxicated via alcohol vapor inhalation, a procedure previously shown to induce significant neurotoxicity in female mice. At peak synchronized withdrawal (8h following the end of alcohol exposure), blood samples were taken and levels of several liver-regulated markers and brain swelling were characterized. Glutathione levels were also determined in the medial frontal cortex (mFC) and hippocampus. Results revealed elevated levels of cholesterol, albumin, alkaline phosphatase (ALP), alanine aminotransferase (ALT) and decreased levels of blood urea nitrogen and total bilirubin in alcohol-exposed male and female groups compared to controls. Brain water weight was not affected by alcohol exposure, though males tended to have slightly more water weight overall. Alcohol exposure led to reductions in tissue levels of glutathione in both the hippocampus and mFC which may indicate increased oxidative stress. Combined, these results suggest that hepatic encephalopathy does not appear to play a significant role in the neurotoxicity observed following alcohol exposure in this model. PMID:27268733

  4. Kisspeptin prevention of amyloid-β peptide neurotoxicity in vitro.

    PubMed

    Milton, Nathaniel G N; Chilumuri, Amrutha; Rocha-Ferreira, Eridan; Nercessian, Amanda N; Ashioti, Maria

    2012-09-19

    Alzheimer's disease (AD) onset is associated with changes in hypothalamic-pituitary-gonadal (HPG) function. The 54 amino acid kisspeptin (KP) peptide regulates the HPG axis and alters antioxidant enzyme expression. The Alzheimer's amyloid-β (Aβ) is neurotoxic, and this action can be prevented by the antioxidant enzyme catalase. Here, we examined the effects of KP peptides on the neurotoxicity of Aβ, prion protein (PrP), and amylin (IAPP) peptides. The Aβ, PrP, and IAPP peptides stimulated the release of KP and KP 45-54. The KP peptides inhibited the neurotoxicity of Aβ, PrP, and IAPP peptides, via an action that could not be blocked by kisspeptin-receptor (GPR-54) or neuropeptide FF (NPFF) receptor antagonists. Knockdown of KiSS-1 gene, which encodes the KP peptides, in human neuronal SH-SY5Y cells with siRNA enhanced the toxicity of amyloid peptides, while KiSS-1 overexpression was neuroprotective. A comparison of the catalase and KP sequences identified a similarity between KP residues 42-51 and the region of catalase that binds Aβ. The KP peptides containing residues 45-50 bound Aβ, PrP, and IAPP, inhibited Congo red binding, and were neuroprotective. These results suggest that KP peptides are neuroprotective against Aβ, IAPP, and PrP peptides via a receptor independent action involving direct binding to the amyloid peptides.

  5. Effect of Taurine on Febrile Episodes in Acute Lymphoblastic Leukemia

    PubMed Central

    Islambulchilar, Mina; Asvadi, Iraj; Sanaat, Zohreh; Esfahani, Ali; Sattari, Mohammadreza

    2015-01-01

    Purpose: The purpose of our study was to evaluate the effect of oral taurine on the incidence of febrile episodes during chemotherapy in young adults with acute lymphoblastic leukemia. Methods: Forty young adults with acute lymphoblastic leukemia, at the beginning of maintenance course of their chemotherapy, were eligible for this study. The study population was randomized in a double blind manner to receive either taurine or placebo (2 gram per day orally). Life quality and side effects including febrile episodes were assessed using questionnaire. Data were analyzed using Pearson’s Chi square test. Results: Of total forty participants, 43.8% were female and 56.3 % were male. The mean age was 19.16±1.95 years (ranges: 16-23 years). The results indicated that the levels of white blood cells are significantly (P<0.05) increased in taurine treated group. There was no elevation in blasts count. A total of 70 febrile episodes were observed during study, febrile episodes were significantly (P<0.05) lower in taurine patients in comparison to the control ones. Conclusion: The overall incidence of febrile episodes and infectious complications in acute lymphoblastic leukemia patients receiving taurine was lower than placebo group. Taurine’s ability to increase leukocyte count may result in lower febrile episodes. PMID:25789226

  6. Cadmium neurotoxicity to a freshwater planarian.

    PubMed

    Wu, Jui-Pin; Lee, Hui-Ling; Li, Mei-Hui

    2014-11-01

    Although freshwater planarians are evolutionarily primitive, they are some of the simplest bilateral animals possessing integrated neural networks similar to those in vertebrates. We attempted to develop planarian Dugesia japonica as a model for investigating the neurotoxicity of environmental pollutants such as cadmium (Cd). This study was therefore designed to study the effects of Cd on the locomotor activity, neurobehavior, and neurological enzymes of D. japonica. After planarians were exposed to Cd at high concentrations, altered neurobehavior was observed that exhibited concentration-dependent patterns. Morphological alterations in Cd-treated planarians included irregular shape, body elongation, screw-like hyperkinesia, and bridge-like position. To study the direct effects of Cd on neurological enzymes, tissue homogenates of planarians were incubated in vitro with Cd before their activity was measured. Results showed that acetylcholinesterase (AChE), adenosine triphosphatase (ATPase), and monoamine oxidase A (MAO-A) activities were inhibited in a concentration-dependent manner. MAO-B activity was significantly induced by Cd at low concentrations and inhibited at high concentrations. Changes in the in vivo activity of AChE and ATPase were also found after planarians were treated with Cd at a sublethal concentration (5.56 μM). These observations indicate that neurotransmission systems in planarians are disturbed after Cd exposure. PMID:24996536

  7. Aluminium neurotoxicity: neurobehavioural and oxidative aspects.

    PubMed

    Kumar, Vijay; Gill, Kiran Dip

    2009-11-01

    Aluminium is the most widely distributed metal in the environment and is extensively used in daily life that provides easy exposure to human beings. The exposure to this toxic metal occurs through air, food and water. However, there is no known physiological role for aluminium within the body and hence this metal may produce adverse physiological effects. Chronic exposure of animals to aluminium is associated with behavioural, neuropathological and neurochemical changes. Among them, deficits of learning and behavioural functions are most evident. Some epidemiological studies have shown poor performance in cognitive tests and a higher abundance of neurological symptoms for workers occupationally exposed to aluminium. However, in contrast to well established neurotoxic effects, neurobehavioural studies of aluminium in rodents have generally not produced consistent results. Current researches show that any impairment in mitochondrial functions may play a major role in many human disorders including neurodegenerative disorders. Being involved in the production of reactive oxygen species, aluminium may cause impairments in mitochondrial bioenergetics and may lead to the generation of oxidative stress which may lead to a gradual accumulation of oxidatively modified cellular proteins. In this review, the neuropathologies associated with aluminium exposure in terms of neurobehavioural changes have been discussed. In addition, the impact of aluminium on the mitochondrial functions has also been highlighted.

  8. Cadmium neurotoxicity to a freshwater planarian.

    PubMed

    Wu, Jui-Pin; Lee, Hui-Ling; Li, Mei-Hui

    2014-11-01

    Although freshwater planarians are evolutionarily primitive, they are some of the simplest bilateral animals possessing integrated neural networks similar to those in vertebrates. We attempted to develop planarian Dugesia japonica as a model for investigating the neurotoxicity of environmental pollutants such as cadmium (Cd). This study was therefore designed to study the effects of Cd on the locomotor activity, neurobehavior, and neurological enzymes of D. japonica. After planarians were exposed to Cd at high concentrations, altered neurobehavior was observed that exhibited concentration-dependent patterns. Morphological alterations in Cd-treated planarians included irregular shape, body elongation, screw-like hyperkinesia, and bridge-like position. To study the direct effects of Cd on neurological enzymes, tissue homogenates of planarians were incubated in vitro with Cd before their activity was measured. Results showed that acetylcholinesterase (AChE), adenosine triphosphatase (ATPase), and monoamine oxidase A (MAO-A) activities were inhibited in a concentration-dependent manner. MAO-B activity was significantly induced by Cd at low concentrations and inhibited at high concentrations. Changes in the in vivo activity of AChE and ATPase were also found after planarians were treated with Cd at a sublethal concentration (5.56 μM). These observations indicate that neurotransmission systems in planarians are disturbed after Cd exposure.

  9. The targets of acetone cyanohydrin neurotoxicity in the rat are not the ones expected in an animal model of konzo.

    PubMed

    Soler-Martín, Carla; Riera, Judith; Seoane, Ana; Cutillas, Blanca; Ambrosio, Santiago; Boadas-Vaello, Pere; Llorens, Jordi

    2010-01-01

    Konzo is a neurotoxic motor disease caused by excess consumption of insufficiently processed cassava. Cassava contains the cyanogenic glucoside linamarin, but konzo does not present the known pathological effects of cyanide. We hypothesized that the aglycone of linamarin, acetone cyanohydrin, may be the cause of konzo. This nitrile rapidly decomposes into cyanide and acetone, but the particular exposure and nutrition conditions involved in the emergence of konzo may favor its stabilization and subsequent acute neurotoxicity. A number of preliminary observations were used to design an experiment to test this hypothesis. In the experiment, young female Long-Evans rats were given 10mM acetone cyanohydrin in drinking water for 2 weeks, and then 20mM for 6 weeks. Nutrition deficits associated with konzo were modeled by providing tapioca (cassava starch) as food for the last 3 of these weeks. After this period, rats were fasted for 24h in order to increase endogenous acetone synthesis, and then exposed to 0 (control group) or 50 micromol/kg-h of acetone cyanohydrin for 24h (treated group) through subcutaneous osmotic minipump infusion (n=6/group). Motor activity and gait were evaluated before exposure (pre-test), and 1 and 6 days after exposure. Brains (n=4) were stained for neuronal degeneration by fluoro-jade B. Rats exposed to 50 micromol/kg-h of acetone cyanohydrin showed acute signs of toxicity, but no persistent motor deficits. Two animals showed fluoro-jade staining in discrete thalamic nuclei, including the paraventricular and the ventral reuniens nuclei; one also exhibited labeling of the dorsal endopiriform nucleus. Similar effects were not elicited by equimolar KCN exposure. Therefore, acetone cyanohydrin may cause selective neuronal degeneration in the rat, but the affected areas are not those expected in an animal model of konzo.

  10. Assessing the Effects of Acute Amyloid β Oligomer Exposure in the Rat

    PubMed Central

    Wong, Ryan S.; Cechetto, David F.; Whitehead, Shawn N.

    2016-01-01

    Alzheimer’s disease (AD) is the most common form of dementia, yet there are no therapeutic treatments that can either cure or delay its onset. Currently, the pathogenesis of AD is still uncertain, especially with respect to how the disease develops from a normal healthy brain. Amyloid β oligomers (AβO) are highly neurotoxic proteins and are considered potential initiators to the pathogenesis of AD. Rat brains were exposed to AβO via bilateral intracerebroventricular injections. Rats were then euthanized at either 1, 3, 7 or 21-days post surgery. Rat behavioural testing was performed using the Morris water maze and open field tests. Post-mortem brain tissue was immunolabelled for Aβ, microglia, and cholinergic neurons. Rats exposed to AβO showed deficits in spatial learning and anxiety-like behaviour. Acute positive staining for Aβ was only observed in the corpus callosum surrounding the lateral ventricles. AβO exposed rat brains also showed a delayed increase in activated microglia within the corpus callosum and a decreased number of cholinergic neurons within the basal forebrain. Acute exposure to AβO resulted in mild learning and memory impairments with co-concomitant white matter pathology within the corpus callosum and cholinergic cell loss within the basal forebrain. Results suggest that acute exposure to AβO in the rat may be a useful tool in assessing the early phases for the pathogenesis of AD. PMID:27563885

  11. Assessing the Effects of Acute Amyloid β Oligomer Exposure in the Rat.

    PubMed

    Wong, Ryan S; Cechetto, David F; Whitehead, Shawn N

    2016-01-01

    Alzheimer's disease (AD) is the most common form of dementia, yet there are no therapeutic treatments that can either cure or delay its onset. Currently, the pathogenesis of AD is still uncertain, especially with respect to how the disease develops from a normal healthy brain. Amyloid β oligomers (AβO) are highly neurotoxic proteins and are considered potential initiators to the pathogenesis of AD. Rat brains were exposed to AβO via bilateral intracerebroventricular injections. Rats were then euthanized at either 1, 3, 7 or 21-days post surgery. Rat behavioural testing was performed using the Morris water maze and open field tests. Post-mortem brain tissue was immunolabelled for Aβ, microglia, and cholinergic neurons. Rats exposed to AβO showed deficits in spatial learning and anxiety-like behaviour. Acute positive staining for Aβ was only observed in the corpus callosum surrounding the lateral ventricles. AβO exposed rat brains also showed a delayed increase in activated microglia within the corpus callosum and a decreased number of cholinergic neurons within the basal forebrain. Acute exposure to AβO resulted in mild learning and memory impairments with co-concomitant white matter pathology within the corpus callosum and cholinergic cell loss within the basal forebrain. Results suggest that acute exposure to AβO in the rat may be a useful tool in assessing the early phases for the pathogenesis of AD. PMID:27563885

  12. Cross-Neutralisation of In Vitro Neurotoxicity of Asian and Australian Snake Neurotoxins and Venoms by Different Antivenoms

    PubMed Central

    Silva, Anjana; Hodgson, Wayne C.; Isbister, Geoffrey K.

    2016-01-01

    venom in an in vitro preparation, cross-neutralization of neurotoxicity means that antivenoms from one region may be effective in other regions which do not have effective antivenoms. TCAV only neutralized post-synaptic neurotoxicity and is potentially useful in distinguishing pre-synaptic and post-synaptic effects in the chick biventer cervicis preparation. PMID:27763543

  13. A rare case of chemotherapy induced reversible cerebral vasoconstriction syndrome in a patient of acute lymphocytic leukemia.

    PubMed

    Sankhe, Shilpa; Kamath, Namita; Sahu, Arpita

    2015-01-01

    Neurotoxic reactions of chemotherapy occur frequently and are often dose limiting side effects of chemotherapy. It is important to differentiate these various nonneoplastic effects from metastases, or sometimes even from each other, since the therapeutic approach differs accordingly. To arrive at a definitive and comprehensive diagnosis, the radiologist should integrate imaging findings, clinical signs, and laboratory results together. Here we present a unique case of chemotherapy induced reversible cerebral vasoconstriction syndrome in a 13-year-old patient of acute lymphoblastic leukemia.

  14. Evaluation of the antidepressant-like effects of acute and sub-acute administration of crocin and crocetin in mice

    PubMed Central

    Amin, Bahareh; Nakhsaz, Alireza; Hosseinzadeh, Hossein

    2015-01-01

    Objective: The present study was designed to investigate the putative antidepressant effects of crocin and crocetin, two major active ingredients of Crocus sativus L. (saffron) using mice in two different regimens of acute and sub-acute administration. Material and Methods: In acute treatment, antidepressant-like activities of crocin and crocetin (10, 20 and 40 mg/kg, i.p.) were evaluated using forced swim test (FST). In sub-acute study (21 times with 24-h intervals), antidepressant-like effects of oral administration of drugs were examined using FST and tail suspension test (TST). Locomotor activity and motor coordination were studied using open field and rotarod tests, respectively. Results: Acute treatment with crocin (40 mg/kg) and crocetin (20 and 40 mg/kg) produced antidepressant-like effect in FST without affecting the baseline locomotion in mice. Sub-acute oral administration of crocin significantly decreased immobility time only at the highest dose (100 mg/kg). Crocetin (12.5, 25 and 50 mg/kg) was able to decrease immobility time in FST and TST. Locomotor activity and coordination of mice were not affected by crocin or crocetin. Conclusion: Since higher doses of crocin was required to show antidepressant effects, more efficacy of crocetin may be concluded. This observation provides further support for metabolism of crocin to crocetin following oral administration. PMID:26468466

  15. Impairment in consolidation of learned place preference following dopaminergic neurotoxicity in mice is ameliorated by N-acetylcysteine but not D1 and D2 dopamine receptor agonists.

    PubMed

    Achat-Mendes, Cindy; Anderson, Karen L; Itzhak, Yossef

    2007-03-01

    Some of the major concerns related to methamphetamine (METH) abuse are the neuronal damage inflicted at dopamine (DA) nerve terminals and the cognitive deficits observed in human METH abusers. We have shown that a high dose of METH selectively depleted dopaminergic markers in striatum, frontal cortex and amygdala of Swiss Webster mice, and impaired learned place preference. In this study, we investigated whether deficits in consolidation of place learning, as a consequence of METH neurotoxicity, underlie the underperformance of cocaine conditioned place preference (CPP). Administration of METH (5 mg/kg x 3) to Swiss Webster mice decreased striatal tyrosine hydroxylase (TH) immunoreactive neurons and significantly increased glial fibrillary acidic protein (GFAP) expression, confirming the neurotoxic potential of METH in mice. This treatment significantly attenuated the establishment of cocaine (15 mg/kg) CPP compared to control. To investigate whether manipulation of the consolidation phase improves learned place preference, mice were trained by cocaine and received daily post-training injections of DA receptor agonists or N-acetylcysteine (NAC). As memory consolidation occurs shortly after training, drugs were administered either immediately or 2 h post-training. Immediate post-training administration of the D1 DA receptor agonist SKF38393 (5, 10, and 20 mg/kg) or the D2 DA receptor agonist quinpirole (0.25, 0.5, and 1.0 mg/kg) did not improve the establishment of CPP following METH neurotoxicity. However, immediate but not delayed NAC administration (50 and 100 mg/kg) enhanced cocaine CPP following METH neurotoxicity and had no effect on control CPP. The levels of the reduced form of glutathione (GSH) in striatum, amygdala, hippocampus and frontal cortex were significantly lower in METH-treated mice compared to control during the period of CPP training. Acute and repeated administration of NAC to METH-treated mice restored the decreased brain GSH but had no effect

  16. A Case Report of Metronidazole Induced Neurotoxicity in Liver Abscess Patient and the Usefulness of MRI for its Diagnosis

    PubMed Central

    Agarwal, Arjit; Shukla, Arvind; Joon, Pawan

    2016-01-01

    Metronidazole is a very widely used drug for the treatment of multiple ailments caused by anaerobic bacteria as well as some protozoan parasites. Though its usual side effects are not very serious, yet sometimes it may cause profound adverse effects like neurotoxicity. We present here a case of liver abscess. The patient was treated for a long time with metronidazole and developed sudden onset neurotoxicity which was diagnosed by MRI. The present case also highlights the need of vigilant monitoring of patients on metronidazole for symptoms of neurotoxicity and the usefulness of MRI for diagnosis of the same. PMID:26894145

  17. ENDOCANNABINOID SIGNALING IN NEUROTOXICITY AND NEUROPROTECTION

    PubMed Central

    Pope, C.; Mechoulam, R.; Parsons, L.

    2010-01-01

    The cannabis plant and products produced from it, such as marijuana and hashish, have been used for centuries for their psychoactive properties. The mechanism for how Δ9 -tetrahydrocannabinol (THC), the active constituent of cannabis, elicits these neurological effects remained elusive until relatively recently, when specific G-protein coupled receptors were discovered that appeared to mediate cellular actions of THC. Shortly after discovery of these specific receptors, endogenous ligands (endocannabinoids) were identified. Since that time, an extensive number of papers have been published on the endocannabinoid signaling system, a widespread neuromodulatory mechanism that influences neurotransmission throughout the nervous system. This paper summarizes presentations given at the 12th International Neurotoxicology Association meeting that described the potential role of endocannabinoids in the expression of neurotoxicity. Dr. Raphael Mechoulam first gave an overview of the discovery of exogenous and endogenous cannabinoids and their potential for neuroprotection in a variety of conditions. Dr. Larry Parsons then described studies suggesting that endocannabinoid signaling may play a selective role in drug reinforcement. Dr. Carey Pope presented information on the role that endocannabinoid signaling may have in the expression of cholinergic toxicity following anticholinesterase exposures. Together, these presentations highlighted the diverse types of neurological insults that may be modulated by endocannabinoids and drugs/toxicants which might influence endocannabinoid signaling pathways. PMID:19969019

  18. The enigma of fetal alcohol neurotoxicity.

    PubMed

    Olney, John W; Wozniak, David F; Farber, Nuri B; Jevtovic-Todorovic, Vesna; Bittigau, Petra; Ikonomidou, Chrysanthy

    2002-01-01

    The neurotoxic effects of ethanol on the human fetal brain (fetal alcohol syndrome, FAS) have been recognized for three decades, but the underlying mechanisms have remained elusive. Recently, we discovered that a single episode of ethanol intoxication lasting for several hours can trigger a massive wave of apoptotic neurodegeneration in the developing rat or mouse brain. The window of vulnerability coincides with the developmental period of synaptogenesis, also known as the brain growth-spurt period, which in rodents is a postnatal event, but in humans extends from the sixth month of gestation to several years after birth. We propose that the N-methyl-D-aspartate (NMDA) antagonist and gamma-aminobutyric (GABA)mimetic properties of ethanol are responsible for its apoptogenic action, in that we have found that other drugs that block NMDA glutamate receptors or mimic GABA at GABA(A) receptors also trigger apoptotic neurodegeneration in the developing brain. Our findings have clinical significance, not only because they can explain the reduced brain mass and neurobehavioral disturbances associated with the human FAS, but because many agents in the human environment, other than ethanol, have NMDA antagonist or GABAmimetic properties. Such agents include drugs that may be abused by pregnant mothers [phencyclidine (angel dust), ketamine (Special K), nitrous oxide (laughing gas), barbiturates, benzodiazepines], and many medicinals used in obstetric and pediatric neurology (anticonvulsants), and anesthesiology (all general anesthetics are either NMDA antagonists or GABAmimetics). PMID:12108574

  19. Acute effects of ethanol on renal folate clearance in rats

    SciTech Connect

    Eisenga, B.H.; McMartin, K.E.

    1986-03-05

    Studies of the renal clearance of folic acid in primates demonstrate net reabsorption of folate by a saturable system. The acute administration of ethanol to rats causes a significant increase in urinary folate excretion. The mechanism for this effect is unknown and thus the effect of acute administration of ethanol on the renal absorption and urinary clearance of folate was studied in rats. Folic acid was administered to male Sprague-Dawley rats via continuous intravenous infusion in doses ranging from 3-75 micromoles/kg and renal clearance relative to inulin was determined. The effects of various dose levels of ethanol on these parameters were then determined. At a dose of 15 micromoles/kg, the renal clearance of folate relative to that of inulin was about 0.65 mg/min. At a plasma ethanol level about 100 mg/dl, the renal clearance of folate was not markedly altered. These results suggests that there is net reabsorption of folate in the rat kidney and that moderate doses of ethanol have little effect on renal effect on renal folate reabsorption.

  20. Toxicological dose assessment and acute health effect criteria

    SciTech Connect

    Stalker, A.C.; White, B.

    1992-01-01

    The use of hazardous materials requires the means of assessing doses from postulated accidental exposures to the hazardous materials. Hazardous materials include radiological and toxicological substances. Health effects are often divided into either acute (short term exposure) or chronic (long-term-exposure)-categories. Dose assessments and health effects are used in Hazard Classification, Safety Analysis Reports and Unreviewed Safety Question Determinations. The use of hazardous substances requires a means of assessing the potential health effects from exposure. Two types of toxicological data exist. The first is measured effects from human exposure, either accidentally or studies. The second consists of data from toxicity and lethality studies on mammals, often mice or rats. Because the data for human exposure is severely limited, an approach is needed that uses basic toxicity and lethality data from animal studies to estimate acute health effects in humans. The approach chosen is the one suggested jointly by the EPA, FEMA, and DOT in their Technical Guidance for Hazards Analysis'', December 1987.

  1. Toxicological dose assessment and acute health effect criteria

    SciTech Connect

    Stalker, A.C.; White, B.

    1992-09-01

    The use of hazardous materials requires the means of assessing doses from postulated accidental exposures to the hazardous materials. Hazardous materials include radiological and toxicological substances. Health effects are often divided into either acute (short term exposure) or chronic (long-term-exposure)-categories. Dose assessments and health effects are used in Hazard Classification, Safety Analysis Reports and Unreviewed Safety Question Determinations. The use of hazardous substances requires a means of assessing the potential health effects from exposure. Two types of toxicological data exist. The first is measured effects from human exposure, either accidentally or studies. The second consists of data from toxicity and lethality studies on mammals, often mice or rats. Because the data for human exposure is severely limited, an approach is needed that uses basic toxicity and lethality data from animal studies to estimate acute health effects in humans. The approach chosen is the one suggested jointly by the EPA, FEMA, and DOT in their ``Technical Guidance for Hazards Analysis``, December 1987.

  2. Effects of acute exposure to aluminum on cognition in humans.

    PubMed

    Molloy, D W; Standish, T I; Nieboer, E; Turnbull, J D; Smith, S D; Dubois, S

    2007-12-01

    There is epidemiological evidence suggesting an association between aluminum in drinking water and Alzheimer's disease (AD), and between aluminum in dialysate and dialysis dementia. The exact role of aluminum in the pathogenesis of these and other dementias is not clear. This study examined the acute effects of aluminum on cognitive function in patients with AD and related dementias and in age-matched and younger volunteers with normal cognitive function. Whether individuals with AD and/or the APOE epsilon4 genotype had enhanced gastrointestinal absorption of aluminum was tested, and whether individuals with elevated blood aluminum concentrations exhibited acute cognitive effects was determined. Subjects were randomized to receive a single dose of aluminum orally (Amphojel plus citrate) for 3 d followed by a 3-wk washout, and then 3 d of matched placebo administration, or vice versa. Serum aluminum levels were measured and the daily dose of Amphojel was adjusted to a target aluminum level between 50 and 150 microg/L. Neuropsychological tests were administered at baseline and 90 min after the third dose of Amphojel or placebo. There was a large interindividual variation in aluminum serum levels in all study groups after the same initial dose of Amphojel. There were no significant differences in neuropsychological test scores after aluminum ingestion in normal volunteers or in patients with cognitive impairment. There was no association between APOE epsilon4 genotype and aluminum absorption. The results did not support the hypothesis that aluminum ingested at these doses produces acute effects on cognition or adverse effects, nor did they reveal that AD patients are more vulnerable to such outcomes. Further inquiry is required to explore any possible association between aluminum and cognition, but controlled trials may be limited by safety concerns.

  3. A 21st Century Update on Neurotoxicity Risk Assessment

    EPA Science Inventory

    In 1998, EPA published Guidelines for Neurotoxicity Risk Assessment as the basis for interpreting neurotoxicity results. At that time, the focus was on traditional toxicity testing and human clinical /epidemiological data. More recently, a change in approach to toxicity testing ...

  4. Can Zebrafish be used to Identify Developmentally Neurotoxic Chemicals

    EPA Science Inventory

    Can Zebrafish be Used to Identify Developmentally Neurotoxic Chemicals? The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental neurotoxicity. We are exploring behavioral methods using zebrafish by desig...

  5. Modulation of benzo[a]pyrene induced neurotoxicity in female mice actively immunized with a B[a]P–diphtheria toxoid conjugate

    SciTech Connect

    Schellenberger, Mario T.; Grova, Nathalie; Farinelle, Sophie; Willième, Stéphanie; Muller, Claude P.

    2013-09-01

    Benzo[a]pyrene (B[a]P) is a small molecular weight carcinogen and the prototype of polycyclic aromatic hydrocarbons (PAHs). While these compounds are primarily known for their carcinogenicity, B[a]P and its metabolites are also neurotoxic for mammalian species. To develop a prophylactic immune strategy against detrimental effects of B[a]P, female Balb/c mice immunized with a B[a]P–diphtheria toxoid (B[a]P–DT) conjugate vaccine were sub-acutely exposed to 2 mg/kg B[a]P and behavioral performances were monitored in tests related to learning and memory, anxiety and motor coordination. mRNA expression of the NMDA receptor (NR1, 2A and 2B subunits) involved in the above behavioral functions was measured in 5 brain regions. B[a]P induced NMDA1 expression in three (hippocampus, amygdala and cerebellum) of five brain regions investigated, and modulated NMDA2 in two of the five brain regions (frontal cortex and cerebellum). Each one of these B[a]P-effects was reversed in mice that were immunized against this PAH, with measurable consequences on behavior such as anxiety, short term learning and memory. Thus active immunization against B[a]P with a B[a]P–DT conjugate vaccine had a protective effect and attenuated the pharmacological and neurotoxic effects even of high concentrations of B[a]P. - Highlights: • B[a]P-antibodies attenuated B[a]P induced NMDA expression in several brain regions. • B[a]P had measurable consequences on anxiety, short term learning and memory. • B[a]P immunization attenuated the pharmacological and neurotoxic effects of B[a]P. • Vaccination may also provide some protection against chemical carcinogenesis.

  6. Changes in gene expression linked to methamphetamine-induced dopaminergic neurotoxicity.

    PubMed

    Xie, Tao; Tong, Liqiong; Barrett, Tanya; Yuan, Jie; Hatzidimitriou, George; McCann, Una D; Becker, Kevin G; Donovan, David M; Ricaurte, George A

    2002-01-01

    The purpose of these studies was to examine the role of gene expression in methamphetamine (METH)-induced dopamine (DA) neurotoxicity. First, the effects of the mRNA synthesis inhibitor, actinomycin-D, and the protein synthesis inhibitor, cycloheximide, were examined. Both agents afforded complete protection against METH-induced DA neurotoxicity and did so independently of effects on core temperature, DA transporter function, or METH brain levels, suggesting that gene transcription and mRNA translation play a role in METH neurotoxicity. Next, microarray technology, in combination with an experimental approach designed to facilitate recognition of relevant gene expression patterns, was used to identify gene products linked to METH-induced DA neurotoxicity. This led to the identification of several genes in the ventral midbrain associated with the neurotoxic process, including genes for energy metabolism [cytochrome c oxidase subunit 1 (COX1), reduced nicotinamide adenine dinucleotide ubiquinone oxidoreductase chain 2, and phosphoglycerate mutase B], ion regulation (members of sodium/hydrogen exchanger and sodium/bile acid cotransporter family), signal transduction (adenylyl cyclase III), and cell differentiation and degeneration (N-myc downstream-regulated gene 3 and tau protein). Of these differentially expressed genes, we elected to further examine the increase in COX1 expression, because of data implicating energy utilization in METH neurotoxicity and the known role of COX1 in energy metabolism. On the basis of time course studies, Northern blot analyses, in situ hybridization results, and temperature studies, we now report that increased COX1 expression in the ventral midbrain is linked to METH-induced DA neuronal injury. The precise role of COX1 and other genes in METH neurotoxicity remains to be elucidated.

  7. Death Adder Envenoming Causes Neurotoxicity Not Reversed by Antivenom - Australian Snakebite Project (ASP-16)

    PubMed Central

    Johnston, Christopher I.; O'Leary, Margaret A.; Brown, Simon G. A.; Currie, Bart J.; Halkidis, Lambros; Whitaker, Richard; Close, Benjamin; Isbister, Geoffrey K.

    2012-01-01

    Background Death adders (Acanthophis spp) are found in Australia, Papua New Guinea and parts of eastern Indonesia. This study aimed to investigate the clinical syndrome of death adder envenoming and response to antivenom treatment. Methodology/Principal Findings Definite death adder bites were recruited from the Australian Snakebite Project (ASP) as defined by expert identification or detection of death adder venom in blood. Clinical effects and laboratory results were collected prospectively, including the time course of neurotoxicity and response to treatment. Enzyme immunoassay was used to measure venom concentrations. Twenty nine patients had definite death adder bites; median age 45 yr (5–74 yr); 25 were male. Envenoming occurred in 14 patients. Two further patients had allergic reactions without envenoming, both snake handlers with previous death adder bites. Of 14 envenomed patients, 12 developed neurotoxicity characterised by ptosis (12), diplopia (9), bulbar weakness (7), intercostal muscle weakness (2) and limb weakness (2). Intubation and mechanical ventilation were required for two patients for 17 and 83 hours. The median time to onset of neurotoxicity was 4 hours (0.5–15.5 hr). One patient bitten by a northern death adder developed myotoxicity and one patient only developed systemic symptoms without neurotoxicity. No patient developed venom induced consumption coagulopathy. Antivenom was administered to 13 patients, all receiving one vial initially. The median time for resolution of neurotoxicity post-antivenom was 21 hours (5–168). The median peak venom concentration in 13 envenomed patients with blood samples was 22 ng/mL (4.4–245 ng/mL). In eight patients where post-antivenom bloods were available, no venom was detected after one vial of antivenom. Conclusions/Significance Death adder envenoming is characterised by neurotoxicity, which is mild in most cases. One vial of death adder antivenom was sufficient to bind all circulating venom. The

  8. Nucleus accumbens invulnerability to methamphetamine neurotoxicity.

    PubMed

    Kuhn, Donald M; Angoa-Pérez, Mariana; Thomas, David M

    2011-01-01

    Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure.

  9. MPA-capped CdTe quantum dots exposure causes neurotoxic effects in nematode Caenorhabditis elegans by affecting the transporters and receptors of glutamate, serotonin and dopamine at the genetic level, or by increasing ROS, or both

    NASA Astrophysics Data System (ADS)

    Wu, Tianshu; He, Keyu; Zhan, Qinglin; Ang, Shengjun; Ying, Jiali; Zhang, Shihan; Zhang, Ting; Xue, Yuying; Tang, Meng

    2015-12-01

    As quantum dots (QDs) are widely used in biomedical applications, the number of studies focusing on their biological properties is increasing. While several studies have attempted to evaluate the toxicity of QDs towards neural cells, the in vivo toxic effects on the nervous system and the molecular mechanisms are unclear. The aim of the present study was to investigate the neurotoxic effects and the underlying mechanisms of water-soluble cadmium telluride (CdTe) QDs capped with 3-mercaptopropionic acid (MPA) in Caenorhabditis elegans (C. elegans). Our results showed that exposure to MPA-capped CdTe QDs induced behavioral defects, including alterations to body bending, head thrashing, pharyngeal pumping and defecation intervals, as well as impaired learning and memory behavior plasticity, based on chemotaxis or thermotaxis, in a dose-, time- and size-dependent manner. Further investigations suggested that MPA-capped CdTe QDs exposure inhibited the transporters and receptors of glutamate, serotonin and dopamine in C. elegans at the genetic level within 24 h, while opposite results were observed after 72 h. Additionally, excessive reactive oxygen species (ROS) generation was observed in the CdTe QD-treated worms, which confirmed the common nanotoxicity mechanism of oxidative stress damage, and might overcome the increased gene expression of neurotransmitter transporters and receptors in C. elegans induced by long-term QD exposure, resulting in more severe behavioral impairments.

  10. MPA-capped CdTe quantum dots exposure causes neurotoxic effects in nematode Caenorhabditis elegans by affecting the transporters and receptors of glutamate, serotonin and dopamine at the genetic level, or by increasing ROS, or both.

    PubMed

    Wu, Tianshu; He, Keyu; Zhan, Qinglin; Ang, Shengjun; Ying, Jiali; Zhang, Shihan; Zhang, Ting; Xue, Yuying; Tang, Meng

    2015-12-28

    As quantum dots (QDs) are widely used in biomedical applications, the number of studies focusing on their biological properties is increasing. While several studies have attempted to evaluate the toxicity of QDs towards neural cells, the in vivo toxic effects on the nervous system and the molecular mechanisms are unclear. The aim of the present study was to investigate the neurotoxic effects and the underlying mechanisms of water-soluble cadmium telluride (CdTe) QDs capped with 3-mercaptopropionic acid (MPA) in Caenorhabditis elegans (C. elegans). Our results showed that exposure to MPA-capped CdTe QDs induced behavioral defects, including alterations to body bending, head thrashing, pharyngeal pumping and defecation intervals, as well as impaired learning and memory behavior plasticity, based on chemotaxis or thermotaxis, in a dose-, time- and size-dependent manner. Further investigations suggested that MPA-capped CdTe QDs exposure inhibited the transporters and receptors of glutamate, serotonin and dopamine in C. elegans at the genetic level within 24 h, while opposite results were observed after 72 h. Additionally, excessive reactive oxygen species (ROS) generation was observed in the CdTe QD-treated worms, which confirmed the common nanotoxicity mechanism of oxidative stress damage, and might overcome the increased gene expression of neurotransmitter transporters and receptors in C. elegans induced by long-term QD exposure, resulting in more severe behavioral impairments.

  11. Acute effects of routine firefighting on lung function.

    PubMed

    Sheppard, D; Distefano, S; Morse, L; Becker, C

    1986-01-01

    We undertook a study to determine the acute effects of routine firefighting on lung function and the relationship between these acute effects and nonspecific airway responsiveness. For 29 firefighters from a single fire station, we calculated the concentration of methacholine aerosol that caused a 100% increase in specific airway resistance (Pc100). Over an 8-week period we than measured FEV1 and FVC in each firefighter before and after each 24-hr workshift and after every fire. From 199 individual workshifts without fires, we calculated the mean +/- 2 SD across-workshift change in FEV1 and FVC for each firefighter. Eighteen of 76 measurements obtained within 2 hr after a fire (24%) showed a greater than 2 SD fall in FEV1 and/or FVC compared to two of 199 obtained after routine workshifts without fires (1%; p less than .001). On 13 of 18 occasions when spirometry decreased significantly, we obtained repeat spirometry (postshift) 3-18.5 hr after fires, and on four of these occasions FEV1 and/or FVC were still more than 2 SD below baseline. Decrements in spirometry occurred as often in firefighters with high Pc100s as in those with low Pc100s. In two firefighters in whom FEV1 and FVC fell by more than 10% after fires, we repeated measurements of methacholine sensitivity, and it was increased over the prestudy baseline. These findings suggest that routine firefighting is associated with a high incidence of acute decrements in lung function.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. The effects of acute nicotine on contextual safety discrimination.

    PubMed

    Kutlu, Munir G; Oliver, Chicora; Gould, Thomas J

    2014-11-01

    Anxiety disorders, such as post-traumatic stress disorder (PTSD), may be related to an inability to distinguish safe versus threatening environments and to extinguish fear memories. Given the high rate of cigarette smoking in patients with PTSD, as well as the recent finding that an acute dose of nicotine impairs extinction of contextual fear memory, we conducted a series of experiments to investigate the effect of acute nicotine in an animal model of contextual safety discrimination. Following saline or nicotine (at 0.0275, 0.045, 0.09 and 0.18 mg/kg) administration, C57BL/6J mice were trained in a contextual discrimination paradigm, in which the subjects received presentations of conditioned stimuli (CS) that co-terminated with a foot-shock in one context (context A (CXA)) and only CS presentations without foot-shock in a different context (context B (CXB)). Therefore, CXA was designated as the 'dangerous context', whereas CXB was designated as the 'safe context'. Our results suggested that saline-treated animals showed a strong discrimination between dangerous and safe contexts, while acute nicotine dose-dependently impaired contextual safety discrimination (Experiment 1). Furthermore, our results demonstrate that nicotine-induced impairment of contextual safety discrimination learning was not a result of increased generalized freezing (Experiment 2) or contingent on the common CS presentations in both contexts (Experiment 3). Finally, our results show that increasing the temporal gap between CXA and CXB during training abolished the impairing effects of nicotine (Experiment 4). The findings of this study may help link nicotine exposure to the safety learning deficits seen in anxiety disorder and PTSD patients.

  13. The effects of acute nicotine on contextual safety discrimination.

    PubMed

    Kutlu, Munir G; Oliver, Chicora; Gould, Thomas J

    2014-11-01

    Anxiety disorders, such as post-traumatic stress disorder (PTSD), may be related to an inability to distinguish safe versus threatening environments and to extinguish fear memories. Given the high rate of cigarette smoking in patients with PTSD, as well as the recent finding that an acute dose of nicotine impairs extinction of contextual fear memory, we conducted a series of experiments to investigate the effect of acute nicotine in an animal model of contextual safety discrimination. Following saline or nicotine (at 0.0275, 0.045, 0.09 and 0.18 mg/kg) administration, C57BL/6J mice were trained in a contextual discrimination paradigm, in which the subjects received presentations of conditioned stimuli (CS) that co-terminated with a foot-shock in one context (context A (CXA)) and only CS presentations without foot-shock in a different context (context B (CXB)). Therefore, CXA was designated as the 'dangerous context', whereas CXB was designated as the 'safe context'. Our results suggested that saline-treated animals showed a strong discrimination between dangerous and safe contexts, while acute nicotine dose-dependently impaired contextual safety discrimination (Experiment 1). Furthermore, our results demonstrate that nicotine-induced impairment of contextual safety discrimination learning was not a result of increased generalized freezing (Experiment 2) or contingent on the common CS presentations in both contexts (Experiment 3). Finally, our results show that increasing the temporal gap between CXA and CXB during training abolished the impairing effects of nicotine (Experiment 4). The findings of this study may help link nicotine exposure to the safety learning deficits seen in anxiety disorder and PTSD patients. PMID:25271215

  14. A comparative study on the acute and long-term effects of MDMA and 3,4-dihydroxymethamphetamine (HHMA) on brain monoamine levels after i.p. or striatal administration in mice

    PubMed Central

    Escobedo, Isabel; O'Shea, Esther; Orio, Laura; Sanchez, Veronica; Segura, Mireia; de la Torre, Rafael; Farre, Magi; Green, Alfred Richard; Colado, Maria Isabel

    2004-01-01

    This study investigated whether the immediate and long-term effects of 3,4-methylenedioxymethamphetamine (MDMA) on monoamines in mouse brain are due to the parent compound and the possible contribution of a major reactive metabolite, 3,4-dihydroxymethamphetamine (HHMA), to these changes. The acute effect of each compound on rectal temperature was also determined. MDMA given i.p. (30 mg kg−1, three times at 3-h intervals), but not into the striatum (1, 10 and 100 μg, three times at 3-h intervals), produced a reduction in striatal dopamine content and modest 5-HT reduction 1 h after the last dose. MDMA does not therefore appear to be responsible for the acute monoamine release that follows its peripheral injection. HHMA does not contribute to the acute MDMA-induced dopamine depletion as the acute central effects of MDMA and HHMA differed following i.p. injection. Both compounds induced hyperthermia, confirming that the acute dopamine depletion is not responsible for the temperature changes. Peripheral administration of MDMA produced dopamine depletion 7 days later. Intrastriatal MDMA administration only produced a long-term loss of dopamine at much higher concentrations than those reached after the i.p. dose and therefore bears little relevance to the neurotoxicity. This indicates that the long-term effect is not attributable to the parent compound. HHMA also appeared not to be responsible as i.p. administration failed to alter the striatal dopamine concentration 7 days later. HHMA was detected in plasma, but not in brain, following MDMA (i.p.), but it can cross the blood–brain barrier as it was detected in the brain following its peripheral injection. The fact that the acute changes induced by i.p. or intrastriatal HHMA administration differed indicates that HHMA is metabolised to other compounds which are responsible for changes observed after i.p. administration. PMID:15665862

  15. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity

    SciTech Connect

    Vilela, Luciano R.; Gobira, Pedro H.; Viana, Thercia G.; Medeiros, Daniel C.; Ferreira-Vieira, Talita H.; Doria, Juliana G.; Rodrigues, Flávia; Aguiar, Daniele C.; Pereira, Grace S.; Massessini, André R.; Ribeiro, Fabíola M.; Oliveira, Antonio Carlos P. de; Moraes, Marcio F.D.; Moreira, Fabricio A.

    2015-08-01

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB{sub 1} receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB{sub 1} receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity. - Highlights: • Cocaine toxicity is characterized by seizures and hippocampal cell death. • The endocannabinoid anandamide acts as a brain protective mechanism. • Inhibition of anandamide hydrolysis

  16. Vincristine and Prednisone for the Induction of Remissions in Acute Childhood Leukaemia

    PubMed Central

    Hardisty, R. M.; McElwain, T. J.; Darby, Caryl W.

    1969-01-01

    A total of 65 children with acute lymphoblastic leukaemia and seven with other types of acute leukaemia received treatment with a combination of vincristine and prednisone. In all 122 courses of treatment were given. Of 22 patients with acute lymphoblastic leukaemia who received this as their first treatment, all achieved complete remission. The complete remission rates were 82% for patients with acute lymphoblastic leukaemia in their first relapse, 63% in the second relapse, and much lower in subsequent relapses and in the patients with other types of acute leukaemia. Alopecia and gastrointestinal and neuromuscular toxicity occurred respectively in 51%, 29%, and 21% of instances, only the last of these side-effects of vincristine being dose-related. Most of the complete remissions were obtained with a total dose of vincristine which carried only a low risk of neurotoxicity. PMID:5254045

  17. Plant terpenoids: acute toxicities and effects on flight motor activity and wing beat frequency in the blow fly Phaenicia sericata.

    PubMed

    Waliwitiya, Ranil; Belton, Peter; Nicholson, Russell A; Lowenberger, Carl A

    2012-02-01

    We evaluated the acute toxicities and the physiological effects of plant monoterpenoids (eugenol, pulegone, citronellal and alpha-terpineol) and neuroactive insecticides (malathion, dieldrin and RH3421) on flight muscle impulses (FMI) and wing beat signals (WBS) of the blow fly (Phaenicia sericata). Topically-applied eugenol, pulegone, citronellal, and alpha-terpineol produced neurotoxic symptoms, but were less toxic than malathion, dieldrin, or RH3421. Topical application of eugenol, pulegone, and citronellal reduced spike amplitude in one of the two banks of blow fly dorsolongitudinal flight muscles within 6-8 min, but with citronellal, the amplitude of FMIs reverted to a normal pattern within 1 hr. In contrast to pulegone and citronellal, where impulse frequency remained relatively constant, eugenol caused a gradual increase, then a decline in the frequency of spikes in each muscle bank. Wing beating was blocked permanently within 6-7 min of administering pulegone or citronellal and within 16 mins with eugenol. alpha-Terpineol-treated blow flies could not beat their wings despite normal FMI patterns. The actions of these monoterpenoids on blow fly flight motor patterns are discussed and compared with those of dieldrin, malathion, RH3421, and a variety of other neuroactive substances we have previously investigated in this system. Eugenol, pulegone and citronellal readily penetrate blow fly cuticle and interfere with flight muscle and/or central nervous function. Although there were differences in the effects of these compounds, they mainly depressed flight-associated responses, and acted similarly to compounds that block sodium channels and facilitate GABA action.

  18. Effectiveness of chelation therapy with time after acute uranium intoxication

    SciTech Connect

    Domingo, J.L.; Ortega, A.; Llobet, J.M.; Corbella, J. )

    1990-01-01

    The effect of increasing the time interval between acute uranium exposure and chelation therapy was studied in male Swiss mice. Gallic acid, 4,5-dihydroxy-1,3- benzenedisulfonic acid (Tiron), diethylenetriaminepentaacetic acid (DTPA), and 5-aminosalicylic acid (5-AS) were administered ip at 0, 0.25, 1, 4, and 24 hr after sc injection of 10 mg/kg of uranyl acetate dihydrate. Chelating agents were given at doses equal to one-fourth of their respective LD50 values. Daily elimination of uranium into urine and feces was determined for 4 days after which time the mice were killed, and the concentration of uranium was measured in kidney, spleen, and bone. The excretion of uranium was especially rapid in the first 24 hr. Treatment with Tiron or gallic acid at 0, 0.25, or 1 hr after uranium exposure significantly increased the total excretion of the metal. In kidney and bone, only administration of Tiron at 0, 0.25, or 1 hr after uranium injection, or gallic acid at 1 hr after uranium exposure significantly reduced tissue uranium concentrations. Treatment at later times (4 to 24 hr) did not increase the total excretion of the metal and did not decrease the tissue uranium concentrations 4 days after uranyl acetate administration. The results show that the length of time before initiating chelation therapy for acute uranium intoxication greatly influences the effectiveness of this therapy.

  19. Mustard gas toxicity: the acute and chronic pathological effects.

    PubMed

    Ghabili, Kamyar; Agutter, Paul S; Ghanei, Mostafa; Ansarin, Khalil; Shoja, Mohammadali M

    2010-10-01

    Ever since it was first used in armed conflict, mustard gas (sulfur mustard, MG) has been known to cause a wide range of acute and chronic injuries to exposure victims. The earliest descriptions of these injuries were published during and in the immediate aftermath of the First World War, and a further series of accounts followed the Second World War. More recently, MG has been deployed in warfare in the Middle East and this resulted in large numbers of victims, whose conditions have been studied in detail at hospitals in the region. In this review, we bring together the older and more recent clinical studies on MG toxicity and summarize what is now known about the acute and chronic effects of the agent on the eyes, skin, respiratory tract and other physiological systems. In the majority of patients, the most clinically serious long-term consequences of MG poisoning are on the respiratory system, but the effects on the skin and other systems also have a significant impact on quality of life. Aspects of the management of these patients are discussed.

  20. Acute effects of carbon monoxide on cardiac electrical stability

    SciTech Connect

    Verrier, R.L.; Mills, A.K.; Skornik, W.A. )

    1990-10-01

    The objective of this project was to determine the effects of acute carbon monoxide exposure on cardiac electrical stability. To obtain a comprehensive assessment, diverse biological models were employed. These involved cardiac electrical testing in the normal and ischemic heart in anesthetized and conscious dogs. The experimental plan was designed both to examine the direct effects of carbon monoxide exposure on the myocardium and to evaluate possible indirect influences through alterations in platelet aggregability or changes in central nervous system activity in the conscious animal. Our results indicate that exposure to relatively high levels of carbon monoxide, leading to carboxyhemoglobin concentrations of up to 20 percent, is without significant effect on ventricular electrical stability. This appears to be the case in the acutely ischemic heart as well as in the normal heart. It is important to note that the total exposure period was in the range of 90 to 124 minutes. The possibility that longer periods of exposure or exacerbation from nicotine in cigarette smoke could have a deleterious effect cannot be excluded. We also examined whether or not alterations in platelet aggregability due to carbon monoxide exposure could be a predisposing factor for cardiac arrhythmias. A model involving partial coronary artery stenosis was used to simulate the conditions under which platelet plugs could lead to myocardial ischemia and life-threatening arrhythmias. We found no changes either in the cycle frequency of coronary blood flow oscillations or in platelet aggregability during carbon monoxide exposure. Thus, carbon monoxide exposure does not appear to alter platelet aggregability or its effect on coronary blood flow during stenosis. In the final series of experiments, we examined the effects of carbon monoxide exposure in the conscious state.

  1. Neurotoxicity may be an overlooked consequence of benzo[a]pyrene exposure that is relevant to human health risk assessment.

    PubMed

    Chepelev, Nikolai L; Moffat, Ivy D; Bowers, Wayne J; Yauk, Carole L

    2015-01-01

    Benzo[a]pyrene (BaP) is a well-studied environmental compound that requires metabolic activation to have a carcinogenic effect. The neurotoxicity of BaP has received considerably less attention than its carcinogenicity. Environmental exposure to BaP correlates with impaired learning and memory in adults, and poor neurodevelopment in children. We carried out a comprehensive literature review to examine the neurotoxicity of BaP. The data were used to identify potential point of departure (POD) values for cancer and neurotoxicity endpoints using benchmark dose (BMD) modelling to compare the utility of both endpoints in the risk assessment of BaP. The POD for neurotoxicity in rodents, based on a standard behavioural test (Morris water maze), was 0.025 mg BaP/kg-bw-day compared to 0.54 mg BaP/kg-bw-day for rodent forestomach carcinogenicity, suggesting that neurotoxic endpoints are more sensitive than cancer endpoints for health risks associated with BaP exposure. Using the limited number of published studies on this topic, we propose a preliminary mode of action (MOA) to explain BaP-induced neurotoxicity in rodents. The MOA includes: (1) BaP binding to the aryl hydrocarbon receptor (AHR); (2) AHR-dependent modulation of the transcription of N-methyl-d-aspartate glutamate receptor (NMDAR) subunits; (3) NMDAR-mediated loss of neuronal activity and decreased long-term potentiation; and (4) compromised learning and memory. More data are needed to explore the proposed neurotoxic MOA. In addition, we consider alternative MOAs, including the hypothesis that BaP-mediated DNA damage may lead to either carcinogenicity or neurotoxicity, depending on the tissue. Our proposed MOA is intended to serve as a basis for hypothesis testing in future studies. We emphasise that further studies are needed to validate the proposed MOA, to evaluate its human relevance, and to explore other potential mechanisms of BaP neurotoxicity. PMID:26041267

  2. Manganese Neurotoxicity: A Focus on the Neonate

    PubMed Central

    Erikson, Keith M.; Thompson, Khristy; Aschner, Judy; Aschner, Michael

    2007-01-01

    Manganese (Mn) is an essential trace metal found in all tissues, and it is required for normal amino acid, lipid, protein, and carbohydrate metabolism. While Mn deficiency is extremely rare in humans, toxicity due to overexposure of Mn is more prevalent. The brain appears to be especially vulnerable. Mn neurotoxicity is most commonly associated with occupational exposure to aerosols or dusts that contain extremely high levels (> 1-5 mg Mn/m3) of Mn, consumption of contaminated well water, or parenteral nutrition therapy in patients with liver disease or immature hepatic functioning such as the neonate. This review will focus primarily on the neurotoxicity of Mn in the neonate. We will discuss putative transporters of the metal in the neonatal brain and then focus on the implications of high Mn exposure to the neonate focusing on typical exposure modes (e.g., dietary and parenteral). Although Mn exposure via parenteral nutrition is uncommon in adults, in premature infants, it is more prevalent, so this mode of exposure becomes salient in this population. We will briefly review some of the mechanisms of Mn neurotoxicity and conclude with a discussion of ripe areas for research in this underreported area of neurotoxicity. PMID:17084903

  3. Ethanol neurotoxicity and dentate gyrus development.

    PubMed

    Miki, Takanori; Yokoyama, Toshifumi; Sumitani, Kazunori; Kusaka, Takashi; Warita, Katsuhiko; Matsumoto, Yoshiki; Wang, Zhi-Yu; Wilce, Peter A; Bedi, Kuldip S; Itoh, Susumu; Takeuchi, Yoshiki

    2008-09-01

    Maternal alcohol ingestion during pregnancy adversely affects the developing fetus, often leading to fetal alcohol syndrome (FAS). One of the most severe consequences of FAS is brain damage that is manifested as cognitive, learning, and behavioral deficits. The hippocampus plays a crucial role in such abilities; it is also known as one of the brain regions most vulnerable to ethanol-induced neurotoxicity. Our recent studies using morphometric techniques have further shown that ethanol neurotoxicity appears to affect the development of the dentate gyrus in a region-specific manner; it was found that early postnatal ethanol exposure causes a transitory deficit in the hilus volume of the dentate gyrus. It is strongly speculated that such structural modifications, even transitory ones, appear to result in developmental abnormalities in the brain circuitry and lead to the learning disabilities observed in FAS children. Based on reports on possible factors deciding ethanol neurotoxicity to the brain, we review developmental neurotoxicity to the dentate gyrus of the hippocampal formation.

  4. Seasonal pattern of the acute mortality effects of air pollution.

    PubMed

    Qian, Zhengmin; Lin, Hung-Mo; Stewart, Walter F; Kong, Linli; Xu, Fen; Zhou, Denjin; Zhu, Zhicao; Liang, Shengwen; Chen, Weiqing; Shah, Nirav; Stetter, Christy; He, Qingci

    2010-04-01

    Evidence of seasonal variation of acute mortality effects of air pollution is inconsistent. The seasonal patterns of associations between daily mortality and daily mean concentrations of particulate matter 10 microm or less in aerodynamic diameter (PM10), sulfur dioxide (SO2), and nitrogen dioxide (NO2) were examined using 4 yr of data (2001-2004) in Wuhan, China. Four distinct seasons occur in Wuhan, where approximately 4.5 million residents live in the city core area of 201 km2. Air pollution levels are higher and pollution ranges are wider in Wuhan than in most cities. Quasi-likelihood estimation within the context of the generalized additive models (natural spline [NS] models in R) was used to model the natural logarithm of the expected daily death counts as a function of the predictor variables. The estimates of the interaction between seasons and pollution were obtained from the main effects and pollutant season interaction models. It was found that the interactions between three pollutants and cause-specific mortality were statistically significant (P < 0.05). The strongest effects occurred consistently in winter for all-natural, cardiovascular, stroke, and respiratory mortality. Every 10-microg/m3 increase in PM10 daily concentration at lag 0-1 days was associated with an increase in all-natural mortality of 0.69% (95% confidence interval [CI]: 0.44-0.94%) for winter, 0.34% (95% CI: 0.00-0.69%) for spring, 0.45% (95% CI: -0.13 to 1.04%) for summer, and -0.21% (95% CI: -0.54 to 0.12%) for fall. The results show a clear seasonal pattern of acute mortality effects of ambient air pollution and the strongest effects occurred during winter in the study city.

  5. The Dynamics of Autism Spectrum Disorders: How Neurotoxic Compounds and Neurotransmitters Interact

    PubMed Central

    Quaak, Ilona; Brouns, Madeleine R.; de Bor, Margot Van

    2013-01-01

    In recent years concern has risen about the increasing prevalence of Autism Spectrum Disorders (ASD). Accumulating evidence shows that exposure to neurotoxic compounds is related to ASD. Neurotransmitters might play a key role, as research has indicated a connection between neurotoxic compounds, neurotransmitters and ASD. In the current review a literature overview with respect to neurotoxic exposure and the effects on neurotransmitter systems is presented. The aim was to identify mechanisms and related factors which together might result in ASD. The literature reported in the current review supports the hypothesis that exposure to neurotoxic compounds can lead to alterations in the GABAergic, glutamatergic, serotonergic and dopaminergic system which have been related to ASD in previous work. However, in several studies findings were reported that are not supportive of this hypothesis. Other factors also might be related, possibly altering the mechanisms at work, such as time and length of exposure as well as dose of the compound. Future research should focus on identifying the pathway through which these factors interact with exposure to neurotoxic compounds making use of human studies. PMID:23924882

  6. Adipose stromal cells-conditioned medium blocks 6-hydroxydopamine-induced neurotoxicity and reactive oxygen species.

    PubMed

    Gu, Huiying; Wang, Jimmy; Du, Nicole; Tan, Jiangning; Johnstone, Brian; Du, Yansheng

    2013-06-01

    A recent in vivo study suggested that the delivery of adipose stromal cells (ASCs) protected rat brains from 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. However, the molecular mechanism that underlies this neuroprotection remains unknown. It was suggested that ASCs-induced neuroprotection possibly resulting from released factors from ASCs. In this study, we investigated whether and how cell-free conditioned media collected from ASCs (ASC-CM) protect neurons against neurotoxicity induced by 6-OHDA in cultured rat rostral mesencephalic neurons (RMN) and cerebellar granule neurons (CGN). We now report that ASC-CM protects both RMN and CGN against 6-OHDA neurotoxicity. Exposure of CGN to 6-OHDA resulted in a significant increases in neuronal ROS and cell death. As expected, pretreatments with ASC-CM dramatically block both 6-OHDA-induced ROS and neurotoxicity. Additionally, ASC-CM also directly attenuated H2O2-induced neuronal death. Our results suggest that ASC-CM could block 6-OHDA-induced neuronal death by inhibiting both 6-OHDA-induced ROS generation and ROS-induced neurotoxicity in neurons. Both antioxidative and neuroprotective effects of ASC-CM may be beneficial in the therapy for Parkinson's disease and other neurodegenerative diseases.

  7. Prediction of neurotoxic potency of hazardous substances with a modular in vitro test battery.

    PubMed

    Binding, N; Madeja, M; Musshoff, U; Neidt, U; Altrup, U; Speckmann, E J; Witting, U

    1996-11-01

    Neurotoxic action was investigated on different model nervous systems linked to a modular in vitro test battery. Voltage operated potassium channels and glutamate operated ion channels expressed in oocytes of the clawed frog Xenopus laevis by injection of cRNA (cloned RNA) or mRNA, respectively, as well as isolated neurons and isolated neuronal networks from the buccal ganglia of the snail Helix pomatia, were used as consecutive modules of different complexity. Lead (Pb2+) was chosen as a known neurotoxic model substance to evaluate the suitability of the test battery to predict the neurotoxic potency of hazardous substances, to establish dose-response relationships, and to investigate the basic mechanisms involved in neurotoxicity. All modules delivered consistent results: potassium currents were reduced by lead with a threshold concentration of 0.1 mumol/l. Membrane currents elicited by the glutamate receptor agonists kainate were decreased by lead with a threshold concentration below 0.1 mumol/l, while currents elicited by the agonist AMPA were not affected. Action potentials generated by the isolated B4 snail neuron showed a decrease of potential amplitude and a prolongation of potential duration after application of lead. The neuronal network controlling the feeding activities of the snail reacted with a decrease of the frequency of the spontaneously generated feeding depolarisations, thus showing the direct neurotoxic effect of lead on body functions and behaviour.

  8. INTERRELATIONSHIPS OF UNDERNUTRITION AND NEUROTOXICITY: FOOD FOR THOUGHT AND RESEARCH ATTENTION

    PubMed Central

    Spencer, Peter S.; Palmer, Valerie S.

    2012-01-01

    The neurotoxic actions of chemical agents on humans and animals are usually studied with little consideration of the subject’s nutritional status. States of protein-calorie, vitamin and mineral undernutrition are associated with a range of neurodevelopmental, neurological and psychiatric disorders, commonly with involvement of both the central and peripheral nervous system. Undernutrition can modify risk for certain chemical-induced neurologic diseases, and in some cases undernutrition may be a prerequisite for neurotoxicity to surface. In addition, neurologic disease associated with undernutrition or neurotoxicity may show similarities in clinical and neuropathological expression, especially in the peripheral nervous system. The combined effects of undernutrition and chemical neurotoxicity are most relevant to people of low-income who experience chronic hunger, parasitism and infectious disease, monotonous diets of plants with neurotoxic potential (notably cassava), environmental pollution from rapid industrial development, chronic alcohol abuse, and prolonged treatment with certain therapeutic drugs. Undernutrition alone or in combination with chemical exposure is also important in high-income societies in the setting of drug and alcohol abuse, old age, food faddism, post-bariatric surgery, and drug treatment for certain medical conditions, including cancer and tuberculosis. The nutritional demands of pregnancy and lactation increases the risk of fetal and infant undernutrition and chemical interactions therewith. PMID:22394483

  9. Evidence for Dose-Additive Effects of Pyrethroids on Motor Activity in Rats

    EPA Science Inventory

    BACKGROUND: Pyrethroids are neurotoxic insecticides used in a variety of indoor and outdoor applications. Previous research characterized the acute dose-effect functions for 11 pyrethroids administered orally in corn oil (1 mL/kg) based on assessment of motor activity. OBJECTIVES...

  10. General Anesthetics and Neurotoxicity: How Much Do We Know?

    PubMed

    Jevtovic-Todorovic, Vesna

    2016-09-01

    Over a decade ago, alarming findings were reported that exposure of the very young and very old animals to clinically used general anesthetics could be detrimental to their brains. The evidence presented suggested that the exposure to commonly used gaseous and intravenous general anesthetics induces the biochemical and morphologic changes in the immature and aging neurons ultimately resulting in their demise. More alarming was the demonstration of significant cognitive and behavioral impairments noted long after the initial anesthesia exposure. This article provides an overview of anesthesia-induced developmental neurotoxicity and commentary on the effects of general anesthesia on the aging brain. PMID:27521190

  11. Federal regulatory response to the problem of neurotoxicity

    SciTech Connect

    Courteau, J.B.; Young, J.S.

    1988-12-01

    The purpose of the chapter is to examine the Federal regulatory response to the control of neurotoxicants. The first section presents an overview of legislation and regulations designed to protect the public from toxic substances and of the specific ways in which the statutes and regulations apply to controlling neurotoxic chemicals. Subsequent sections present the regulatory process in greater detail, describing how information on toxic effects is gathered and evaluated, and outlining some new initiatives in regulating neurotoxins. The chapter concludes with a discussion of the consistency and adequacy of the Federal regulatory framework.

  12. Therapeutic effect of hyperbaric oxygenation in acute acoustic trauma.

    PubMed

    Vavrina, J; Müller, W

    1995-01-01

    Retrospectively 78 patients with uni- or bilateral acute acoustic trauma (AAT) were evaluated to assess the therapeutic effect of hyperbaric oxygenation (HBO). All subjects received saline or dextran (Rheomacodrex) infusions with Ginkgo extracts (Tebonin) and prednisone. Thirty six patients underwent additional hyperbaric oxygenation at a pressure of 2 atmospheres absolute for 60 minutes once daily. Both treatment groups were comparable as far as age, gender, initial hearing loss and prednisone dose are concerned. The delay of therapy onset was 15 hours in both groups and treatment was started within 72 hours in all cases. Control audiometry was performed after 6.5 days, when the HBO group had had 5 exposures to hyperbaric oxygenation. The average hearing gain in the group without HBO was 74.3 dB and in the group treated additionally with HBO 121.3 dB (P < 0.004). It is concluded, that hyperbaric oxygenation significantly improves hearing recovery after AAT. Therefore acute acoustic trauma with significant hearing threshold depression remains an otological emergency. Minimal therapy involving waiting for spontaneous recovery, which is mostly incomplete leaving a residual C5 or C6 and handicapping tinnitus, is not the treatment of choice. Randomized prospective clinical trials with a larger patient series are needed and further experimental studies are required to understand the physiological mechanisms of HBO responsible for the clinical success in AAT.

  13. Acute and chronic respiratory effects of sodium borate particulate exposures.

    PubMed Central

    Wegman, D H; Eisen, E A; Hu, X; Woskie, S R; Smith, R G; Garabrant, D H

    1994-01-01

    This study examined work-related chronic abnormality in pulmonary function and work-related acute irritant symptoms associated with exposure to borate dust in mining and processing operations. Chronic effects were examined by pulmonary function at the beginning and end of a 7-year interval. Time-specific estimates of sodium borate particulate exposures were used to estimate cumulative exposure during the study interval. Change in pulmonary function over the 7 years was found unrelated to the estimate of cumulative exposure during that interval. Exposure-response associations also were examined with respect to short-term peak exposures and incidence of five symptoms of acute respiratory irritation. Hourly measures of health outcome and continuous measures of particulate exposure were made on each subject throughout the day. Whenever a subject reported one of the irritant symptoms, a symptom intensity score was also recorded along with the approximate time of onset. The findings indicated that exposure-response relationships were present for each of the specific symptoms at several symptom intensity levels. The associations were present when exposure was estimated by both day-long and short-term (15-min) time-weighted average exposures. Associations persisted after taking account of smoking, age, and the presence of a common cold. No significant difference in response rate was found between workers exposed to different types of sodium borate dusts. PMID:7889871

  14. Testing methods for developmental neurotoxicity of environmental chemicals.

    PubMed

    Claudio, L; Kwa, W C; Russell, A L; Wallinga, D

    2000-04-01

    Human brain development is slow and delicate, involving many unique, though interrelated, cellular events. The fetus and child are often more susceptible to chemical toxins that alter the structure and/or function of the brain, although susceptibility varies for individual neurotoxicants. Early exposure to neurotoxins has been implicated in neurological diseases and mental retardation. Pesticide exposures pose a particular concern since many are designed to be neurotoxic to pests and can also affect humans. Acknowledging the potential for vulnerability of the developing brain, EPA recently began to "call in" data on developmental neurotoxicity (DNT) from manufacturers of pesticides already registered and considered to be neurotoxic-around 140 pesticides. Chemicals are to be tested following the DNT testing guideline (OPPTS 870.6300). This paper assesses whether tests performed according to this guideline can effectively identify developmental neurotoxicants. We found the testing guideline deficient in several respects, including: It is not always triggered appropriately within the current tiered system for testing; It does not expose developing animals during all critical periods of vulnerability; It does not assess effects that may become evident later in life; It does not include methodology for consideration of pharmacokinetic variables; Methodology for assessment of neurobehavioral, neuropathological, and morphometry is highly variable; Testing of neurochemical changes is limited and not always required. We propose modifications to the EPA testing guideline that would improve its adequacy for assessing and predicting risks to infants and children. This paper emphasizes that deficiencies in the testing methodology for developmental neurotoxicants represent a significant gap and increase the uncertainty in the establishment of safe levels of exposure to developing individuals.

  15. DEVELOPMENTAL NEUROTOXICITY OF POLYBROMINATED DIPHENYL ETHER (PBDE) FLAME RETARDANTS

    PubMed Central

    Costa, Lucio G.; Giordano, Gennaro

    2007-01-01

    Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants used in a variety of consumer products. In the past 25 years, PBDEs have become ubiquitous environmental contaminants. They have been detected in soil, air, sediments, birds, marine species, fish, house dust, and human tissues, blood and breast milk. Diet and house dust appear to be the major sources of PBDE exposure in the general population, though occupational exposure can also occur. Levels of PBDEs in human tissues are particularly high in North America, compared to Asian and European countries, and have been increasing in the past 30 years. Concentrations of PBDEs are particularly high in breast milk, resulting in high exposure of infants. In addition, for toddlers, dust has been estimated to account for a large percentage of exposure. PBDEs can also cross the placenta, as they have been detected in fetal blood and liver. Tetra-, penta- and hexa BDEs are most commonly present in human tissues. The current greatest concern for potential adverse effects of PBDEs relates to their developmental neurotoxicity. Pre- or postnatal exposure of mice or rats to various PBDEs has been shown to cause long-lasting changes in spontaneous motor activity, mostly characterized as hyperactivity or decreased habituation, and to disrupt performance in learning and memory tests. While a reduction in circulating thyroid hormone (T4) may contribute to the developmental neurotoxicity of PBDEs, direct effects on the developing brain have also been reported. Among these, PBDEs have been shown to affect signal transduction pathways and to cause oxidative stress. Levels of PBDEs causing developmental neurotoxicity in animals are not much dissimilar from levels found in highly exposed infants and toddlers. PMID:17904639

  16. Mechanisms of mycotoxin-induced neurotoxicity through oxidative stress-associated pathways.

    PubMed

    Doi, Kunio; Uetsuka, Koji

    2011-01-01

    Among many mycotoxins, T-2 toxin, macrocyclic trichothecenes, fumonisin B(1) (FB(1)) and ochratochin A (OTA) are known to have the potential to induce neurotoxicity in rodent models. T-2 toxin induces neuronal cell apoptosis in the fetal and adult brain. Macrocyclic trichothecenes bring about neuronal cell apoptosis and inflammation in the olfactory epithelium and olfactory bulb. FB(1) induces neuronal degeneration in the cerebral cortex, concurrent with disruption of de novo ceramide synthesis. OTA causes acute depletion of striatal dopamine and its metabolites, accompanying evidence of neuronal cell apoptosis in the substantia nigra, striatum and hippocampus. This paper reviews the mechanisms of neurotoxicity induced by these mycotoxins especially from the viewpoint of oxidative stress-associated pathways. PMID:21954354

  17. A case of delayed oxaliplatin-induced pseudo-obstruction: an atypical presentation of oxaliplatin neurotoxicity.

    PubMed

    Vandamme, M; Pauwels, W; Bleecker, J De

    2015-06-01

    Chemotherapy-induced neurotoxicity is a serious complication of cancer treatment. Oxaliplatin, a third-generation platinum drug, has become one of the first-line therapies used in the treatment of metastatic colorectal cancer. Peripheral neuropathy is a common complication of platinum-based chemotherapy. Most commonly a sensory neuropathy occurs with cold-triggered symptoms in the acute phase and numbness and painful paresthesias as a late presentation. Autonomic neurotoxicity and late presentation, months after cessation of the therapy, has rarely been described. We report a patient who clinically presented with a pseudo-obstruction months after treatment with oxaliplatin for metastatic colorectal cancer. Intestinal adhesions and relapsing malignancy were carefully excluded. By exclusion the pseudo-obstruction was attributed to a toxic oxaliplatin-induced autonomic neuropathy which slowly improved during months of follow-up. PMID:25523317

  18. Mechanisms of Mycotoxin-Induced Neurotoxicity through Oxidative Stress-Associated Pathways

    PubMed Central

    Doi, Kunio; Uetsuka, Koji

    2011-01-01

    Among many mycotoxins, T-2 toxin, macrocyclic trichothecenes, fumonisin B1 (FB1) and ochratochin A (OTA) are known to have the potential to induce neurotoxicity in rodent models. T-2 toxin induces neuronal cell apoptosis in the fetal and adult brain. Macrocyclic trichothecenes bring about neuronal cell apoptosis and inflammation in the olfactory epithelium and olfactory bulb. FB1 induces neuronal degeneration in the cerebral cortex, concurrent with disruption of de novo ceramide synthesis. OTA causes acute depletion of striatal dopamine and its metabolites, accompanying evidence of neuronal cell apoptosis in the substantia nigra, striatum and hippocampus. This paper reviews the mechanisms of neurotoxicity induced by these mycotoxins especially from the viewpoint of oxidative stress-associated pathways. PMID:21954354