Science.gov

Sample records for acute neutrophilic inflammation

  1. Inactivation of heparan sulfate 2-O-sulfotransferase accentuates neutrophil infiltration during acute inflammation in mice

    PubMed Central

    Axelsson, Jakob; Xu, Ding; Na Kang, Bit; Nussbacher, Julia K.; Handel, Tracy M.; Ley, Klaus; Sriramarao, P.

    2012-01-01

    Neutrophil recruitment and extravasation at sites of inflammation provide a mechanism for host defense. We showed previously that heparan sulfate, a type of sulfated glycosaminoglycan, facilitates neutrophil recruitment based on the reduction of neutrophil infiltration in mice in which the overall sulfation of the chains was reduced by selective inactivation of N-acetylglucosamine N-deacetylase-N-sulfotransferase (Ndst1) in endothelial cells. Here we show that inactivation of uronyl 2-O-sulfotransferase in endothelial cells (Hs2st), an enzyme that acts downstream from Ndst1, results in enhanced neutrophil recruitment in several models of acute inflammation. Enhanced neutrophil infiltration resulted in part from reduced rolling velocity under flow both in vivo and in vitro, which correlated with stronger binding of neutrophil L-selectin to mutant endothelial cells. Hs2st-deficient endothelial cells also displayed a striking increase in binding of IL-8 and macrophage inflammatory protein-2. The enhanced binding of these mediators of neutrophil recruitment resulted from a change in heparan sulfate structure caused by increased N-sulfation and 6-O-sulfation of glucosamine units in response to the decrease in 2-O-sulfation of uronic acid residues. This gain-of-function phenotype provides formidable evidence demonstrating the importance of endothelial heparan sulfate in inflammation and suggests a novel enzyme target for enhancing the innate immune response. PMID:22791291

  2. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice.

    PubMed

    Duerschmied, Daniel; Suidan, Georgette L; Demers, Melanie; Herr, Nadine; Carbo, Carla; Brill, Alexander; Cifuni, Stephen M; Mauler, Maximilian; Cicko, Sanja; Bader, Michael; Idzko, Marco; Bode, Christoph; Wagner, Denisa D

    2013-02-01

    The majority of peripheral serotonin is stored in platelets, which secrete it on activation. Serotonin releases Weibel-Palade bodies (WPBs) and we asked whether absence of platelet serotonin affects neutrophil recruitment in inflammatory responses. Tryptophan hydroxylase (Tph)1–deficient mice, lacking non-neuronal serotonin, showed mild leukocytosis compared with wild-type (WT), primarily driven by an elevated neutrophil count. Despite this, 50% fewer leukocytes rolled on unstimulated mesenteric venous endothelium of Tph1(-/-) mice. The velocity of rolling leukocytes was higher in Tph1(-/-) mice, indicating fewer selectin-mediated interactions with endothelium. Stimulation of endothelium with histamine, a secretagogue of WPBs, or injection of serotonin normalized the rolling in Tph1(-/-) mice. Diminished rolling in Tph1(-/-) mice resulted in reduced firm adhesion of leukocytes after lipopolysaccharide treatment. Blocking platelet serotonin uptake with fluoxetine in WT mice reduced serum serotonin by > 80% and similarly reduced leukocyte rolling and adhesion. Four hours after inflammatory stimulation, neutrophil extravasation into lung, peritoneum, and skin wounds was reduced in Tph1(-/-) mice, whereas in vitro neutrophil chemotaxis was independent of serotonin. Survival of lipopolysaccharide-induced endotoxic shock was improved in Tph1(-/-) mice. In conclusion, platelet serotonin promotes the recruitment of neutrophils in acute inflammation, supporting an important role for platelet serotonin in innate immunity. PMID:23243271

  3. Neutrophil DNA contributes to the antielastase barrier during acute lung inflammation.

    PubMed

    Balloy, Viviane; Sallenave, Jean-Michel; Crestani, Bruno; Dehoux, Monique; Chignard, Michel

    2003-06-01

    During acute lung inflammation, the airspaces are invaded by circulating neutrophils. These may then injure tissues through the release of elastase. Different natural specific inhibitors such as alpha1-proteinase inhibitor, secretory leukocyte proteinase inhibitor, and elafin are nonetheless able to counteract the enzymatic activity of elastase. The present study was undertaken to assess the role of these different inhibitors in the intrinsic antielastase barrier during lipopolysaccharide-induced lung inflammation in mice. Upon intranasal administration of lipopolysaccharide to mice, the antielastase activity recovered from bronchoalveolar lavage fluids (BALF) increases progressively up to 48 h (7-fold) and returns to the basal level within 72 h. By contrast, when the same experiments are performed with neutropenic mice (pretreatment with an antigranulocyte antibody, or vinblastine), the increase is almost totally absent. Ultrafiltration of BALF through 100 kD cutoff membranes shows that the activity remains in the retentate, thus ruling out a role for native alpha1-proteinase inhibitor, secretory leukocyte proteinase inhibitor, and elafin. Gel filtration and fraction analysis show that the material eluted with a Mr of 600 kD. Agarose gel electrophoresis and ethidium bromide staining reveal that the activity corresponds to the presence a large amount of DNA. Interestingly, DNase treatment of the active fraction suppresses the antielastase activity. Analysis of BALF from patients with acute lung inflammation shows the presence of DNA with antielastase activity. We therefore concluded that during acute lung inflammation, the recruitment of neutrophils in the airspaces accounts for the increased presence of DNA, which in turn contributes to the antielastase barrier. PMID:12600833

  4. Neutrophils come of age in chronic inflammation

    PubMed Central

    Caielli, Simone; Banchereau, Jacques; Pascual, Virginia

    2013-01-01

    Neutrophils have long been known to participate in acute inflammation, but a role in chronic inflammatory and autoimmune diseases is now emerging. These cells are key players in the recognition and elimination of pathogens, but they also sense self components, including nucleic acids and products of sterile tissue damage. While this normally contributes to tissue repair, it can also lead to the release of highly immunogenic products that can trigger and/or amplify autoimmune pathogenic loops. Understanding the mechanisms that underlie neutrophil activation, migration, survival and their various forms of death in health and disease might provide us with new approaches to treat chronic inflammatory conditions. PMID:23127555

  5. Neutrophils counteract autophagy-mediated anti-inflammatory mechanisms in alveolar macrophage: role in posthemorrhagic shock acute lung inflammation.

    PubMed

    Wen, Zongmei; Fan, Liyan; Li, Yuehua; Zou, Zui; Scott, Melanie J; Xiao, Guozhi; Li, Song; Billiar, Timothy R; Wilson, Mark A; Shi, Xueyin; Fan, Jie

    2014-11-01

    Acute lung injury (ALI) is a major component of multiple organ dysfunction syndrome after hemorrhagic shock (HS) resulting from major surgery and trauma. The increased susceptibility in HS patients to the development of ALI suggests not yet fully elucidated mechanisms that enhance proinflammatory responses and/or suppress anti-inflammatory responses in the lung. Alveolar macrophages (AMϕ) are at the center of the pathogenesis of ALI after HS. We have previously reported that HS-activated polymorphonuclear neutrophils (PMNs) interact with macrophages to influence inflammation progress. In this study, we explore a novel function of PMNs regulating AMϕ anti-inflammatory mechanisms involving autophagy. Using a mouse "two-hit" model of HS/resuscitation followed by intratracheal injection of muramyl dipeptide, we demonstrate that HS initiates high mobility group box 1/TLR4 signaling, which upregulates NOD2 expression in AMϕ and sensitizes them to subsequent NOD2 ligand muramyl dipeptide to augment lung inflammation. In addition, upregulated NOD2 signaling induces autophagy in AMϕ, which negatively regulates lung inflammation through feedback suppression of NOD2-RIP2 signaling and inflammasome activation. Importantly, we further demonstrate that HS-activated PMNs that migrate in alveoli counteract the anti-inflammatory effect of autophagy in AMϕ, possibly through NAD(P)H oxidase-mediated signaling to enhance I-κB kinase γ phosphorylation, NF-κB activation, and nucleotide-binding oligomerization domain protein 3 inflammasome activation, and therefore augment post-HS lung inflammation. These findings explore a previously unidentified complexity in the mechanisms of ALI, which involves cell-cell interaction and receptor cross talk. PMID:25267975

  6. The role of neutrophils in inflammation resolution.

    PubMed

    Jones, Hefin R; Robb, Calum T; Perretti, Mauro; Rossi, Adriano G

    2016-04-01

    The fundamental role played by neutrophils for an efficient, acute inflammatory response has long been appreciated, with the underlying molecular and cellular mechanisms largely elucidated over the past decades. However, more recent work suggests that the biological functions exerted by this fascinating leucocyte are somewhat more extensive than previously acknowledged. Here we discuss how extravasated neutrophils govern the initiation of the resolution phase of inflammation by enabling activation of pro-resolving circuits to ensure the safe conclusion of the inflammatory response. The neutrophil 'alarm bell' on resolution is effected through release of soluble mediators as well as apoptotic bodies and other vesicles, which, in turn, can inform and modify the microenvironment ultimately leading to termination of the inflammatory response coinciding with re-establishment of tissue homeostasis and functionality. PMID:27021499

  7. The Role of Formylated Peptides and Formyl Peptide Receptor 1 in Governing Neutrophil Function during Acute Inflammation

    PubMed Central

    Dorward, David A.; Lucas, Christopher D.; Chapman, Gavin B.; Haslett, Christopher; Dhaliwal, Kevin; Rossi, Adriano G.

    2015-01-01

    Neutrophil migration to sites of inflammation and the subsequent execution of multiple functions are designed to contain and kill invading pathogens. These highly regulated and orchestrated processes are controlled by interactions between numerous receptors and their cognate ligands. Unraveling and identifying those that are central to inflammatory processes may represent novel therapeutic targets for the treatment of neutrophil-dominant inflammatory disorders in which dysregulated neutrophil recruitment, function, and elimination serve to potentiate rather than resolve an initial inflammatory insult. The first G protein–coupled receptor to be described on human neutrophils, formyl peptide receptor 1 (FPR1), is one such receptor that plays a significant role in the execution of these functions through multiple intracellular signaling pathways. Recent work has highlighted important observations with regard to both receptor function and the importance and functional relevance of FPR1 in the pathogenesis of a range of both sterile and infective inflammatory conditions. In this review, we explore the multiple components of neutrophil migration and function in both health and disease, with a focus on the role of FPR1 in these processes. The current understanding of FPR1 structure, function, and signaling is examined, alongside discussion of the potential importance of FPR1 in inflammatory diseases suggesting that FPR1 is a key regulator of the inflammatory environment. PMID:25791526

  8. Heme oxygenase-1 attenuates acute pulmonary inflammation by decreasing the release of segmented neutrophils from the bone marrow.

    PubMed

    Konrad, Franziska M; Braun, Stefan; Ngamsri, Kristian-Christos; Vollmer, Irene; Reutershan, Jörg

    2014-11-01

    Recruiting polymorphonuclear neutrophil granulocytes (PMNs) from circulation and bone marrow to the site of inflammation is one of the pivotal mechanisms of the innate immune system. During inflammation, the enzyme heme oxygenase 1 (HO-1) has been shown to reduce PMN migration. Although these effects have been described in various models, underlying mechanisms remain elusive. Recent studies revealed an influence of HO-1 on different cells of the bone marrow. We investigated the particular role of the bone marrow in terms of HO-1-dependent pulmonary inflammation. In a murine model of LPS inhalation, stimulation of HO-1 by cobalt (III) protoporphyrin-IX-chloride (CoPP) resulted in reduced segmented PMN migration into the alveolar space. In the CoPP group, segmented PMNs were also decreased intravascularly, and concordantly, mature and immature PMN populations were higher in the bone marrow. Inhibition of the enzyme by tin protoporphyrin-IX increased segmented and banded PMN migration into the bronchoalveolar lavage fluid with enhanced PMN release from the bone marrow and aggravated parameters of tissue inflammation. Oxidative burst activity was significantly higher in immature compared with mature PMNs. The chemokine stromal-derived factor-1 (SDF-1), which mediates homing of leukocytes into the bone marrow and is decreased in inflammation, was increased by CoPP. When SDF-1 was blocked by the specific antagonist AMD3100, HO-1 activation was no longer effective in curbing PMN trafficking to the inflamed lungs. In conclusion, we show evidence that the anti-inflammatory effects of HO-1 are largely mediated by inhibiting the release of segmented PMNs from the bone marrow rather than direct effects within the lung. PMID:25172914

  9. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils

    NASA Astrophysics Data System (ADS)

    Wang, Zhenjia; Li, Jing; Cho, Jaehyung; Malik, Asrar B.

    2014-03-01

    Inflammatory diseases such as acute lung injury and ischaemic tissue injury are caused by the adhesion of a type of white blood cell--polymorphonuclear neutrophils--to the lining of the circulatory system or vascular endothelium and unchecked neutrophil transmigration. Nanoparticle-mediated targeting of activated neutrophils on vascular endothelial cells at the site of injury may be a useful means of directly inactivating neutrophil transmigration and hence mitigating vascular inflammation. Here, we report a method employing drug-loaded albumin nanoparticles, which efficiently deliver drugs into neutrophils adherent to the surface of the inflamed endothelium. Using intravital microscopy of tumour necrosis factor-α-challenged mouse cremaster post-capillary venules, we demonstrate that fluorescently tagged albumin nanoparticles are largely internalized by neutrophils adherent to the activated endothelium via cell surface Fcɣ receptors. Administration of albumin nanoparticles loaded with the spleen tyrosine kinase inhibitor, piceatannol, which blocks `outside-in' β2 integrin signalling in leukocytes, detached the adherent neutrophils and elicited their release into the circulation. Thus, internalization of drug-loaded albumin nanoparticles into neutrophils inactivates the pro-inflammatory function of activated neutrophils, thereby offering a promising approach for treating inflammatory diseases resulting from inappropriate neutrophil sequestration and activation.

  10. New compact-type latex photometric immunoassay system for hemoglobin and three acute inflammation markers: neutrophil count, C-reactive protein, and anti-streptolysin O.

    PubMed

    Fukumori, Tatsuo; Ohta, Hironobu; Okubo, Akio; Hino, Masayuki; Ohta, Kensuke; Yamane, Takahisa; Tatsumi, Noriyuki

    2002-01-01

    A new compact-type latex photometric immunoassay system, SPOTCHEM IM SI-3510 (ARKRAY, Inc., Kyoto, Japan), which assays three kinds of inflammatory markers-neutrophil count (NPC), C-reactive protein (CRP), and anti-streptolysin O (ASO)-was evaluated. Hemoglobin (Hb), which is a good marker for anemia, can also be measured with it. NPC and CRP are measured using antibodies against neutrophilic elastase and CRP, purified streptolysin O was used for ASO determination, and Hb was measured by an azide-methemoglobin method. Whole blood, serum, and plasma specimens can be used as samples with this system. In this study, whole blood treated with dipotassium ethylenediamine tetraacetic acid was used for evaluation. Linearity and reproducibility were good for all of the items studied. Good correlations were observed between the results obtained by this system and those obtained by routine methods. Since NPC exhibited a high correlation with the routine white blood cell (WBC) counts, it was judged to be useful as a substitute for WBC counting. Since this system is small and easy to operate, and evaluation revealed reliable results, it was judged to be practical for small laboratories, and satellite testing in hospitals and physicians' office laboratories for patients suspected to have acute inflammation. PMID:11948799

  11. Marine Natural Product Inhibitors of Neutrophil-Associated Inflammation.

    PubMed

    Chen, Chun-Yu; Tsai, Yung-Fong; Chang, Wen-Yi; Yang, Shun-Chin; Hwang, Tsong-Long

    2016-01-01

    Neutrophils are widely recognized to play an important role in acute inflammatory responses, and recent evidence has expanded their role to modulating chronic inflammatory and autoimmune diseases. Reactive oxygen species (ROS) and microbicidal compounds released from neutrophils that are recruited to the site of inflammation contribute to the pathogenesis of multiple inflammation-associated diseases such as chronic obstructive pulmonary disease, atherosclerosis, and hepatitis. Marine organisms are a valuable source of bioactive compounds with potential for industrial and pharmaceutical application. Marine natural products that inhibit neutrophil activation could be used as drugs for the treatment of inflammatory diseases. Numerous studies investigating marine natural products have reported novel anti-inflammatory agents. Nevertheless, the detailed mechanisms underlying their actions, which could facilitate our understanding of the molecular events occurring in neutrophils, have not been reported in most of the associated research studies. Therefore, in this review, we will present marine products that inhibit neutrophil-associated inflammation. Furthermore, we will be limiting the detailed discussion to agents with well-investigated molecular targets. PMID:27472345

  12. Marine Natural Product Inhibitors of Neutrophil-Associated Inflammation

    PubMed Central

    Chen, Chun-Yu; Tsai, Yung-Fong; Chang, Wen-Yi; Yang, Shun-Chin; Hwang, Tsong-Long

    2016-01-01

    Neutrophils are widely recognized to play an important role in acute inflammatory responses, and recent evidence has expanded their role to modulating chronic inflammatory and autoimmune diseases. Reactive oxygen species (ROS) and microbicidal compounds released from neutrophils that are recruited to the site of inflammation contribute to the pathogenesis of multiple inflammation-associated diseases such as chronic obstructive pulmonary disease, atherosclerosis, and hepatitis. Marine organisms are a valuable source of bioactive compounds with potential for industrial and pharmaceutical application. Marine natural products that inhibit neutrophil activation could be used as drugs for the treatment of inflammatory diseases. Numerous studies investigating marine natural products have reported novel anti-inflammatory agents. Nevertheless, the detailed mechanisms underlying their actions, which could facilitate our understanding of the molecular events occurring in neutrophils, have not been reported in most of the associated research studies. Therefore, in this review, we will present marine products that inhibit neutrophil-associated inflammation. Furthermore, we will be limiting the detailed discussion to agents with well-investigated molecular targets. PMID:27472345

  13. Role of reverse transendothelial migration of neutrophils in inflammation.

    PubMed

    Hirano, Yohei; Aziz, Monowar; Wang, Ping

    2016-06-01

    Transmigration of neutrophils through vascular endothelial walls into the inflamed tissues is a critical defense mechanism of innate immune system against infection and injury caused by sepsis, trauma, ischemia-reperfusion, and other acute or chronic inflammatory diseases. However, their excessive infiltration and uncontrolled activation may lead to the destruction of normal tissue architecture and unrestrained inflammation. Transendothelial migration (TEM) in a luminal-to-abluminal direction is widely known as the final step of neutrophil migration cascade into the inflamed tissues. Recent studies have shown that neutrophils not necessarily move from the vascular lumen to the extravascular tissues in a one way direction; they also proceed in an opposite direction, known as reverse transendothelial migration (rTEM) to get back into the vascular lumen again. This novel paradigm of neutrophil round trip is currently on the spotlight due to its possible interaction with immune system. Current review highlighting the growing demand of this newly identified neutrophil migratory event will not only rewrite the disease pathophysiology, but also help scientists design novel therapeutic strategy leading to the remission of inflammatory diseases in which controlling exaggerated neutrophil infiltration is a major challenge. PMID:26872312

  14. Points of control exerted along the macrophage-endothelial cell-polymorphonuclear neutrophil axis by PECAM-1 in the innate immune response of acute colonic inflammation.

    PubMed

    Sugimoto, Naohito; Rui, Tao; Yang, Min; Bharwani, Sulaiman; Handa, Osamu; Yoshida, Norimasa; Yoshikawa, Toshikazu; Kvietys, Peter R

    2008-08-01

    PECAM-1 is expressed on endothelial cells and leukocytes. Its extracellular domain has been implicated in leukocyte diapedesis. In this study, we used PECAM-1(-/-) mice and relevant cells derived from them to assess the role of PECAM-1 in an experimental model of acute colonic inflammation with a predominant innate immune response, i.e., 2,4,6-trinitrobenzine sulfonic acid (TNBS). Using chimeric approaches, we addressed the points of control exerted by PECAM-1 along the macrophage-endothelial cell-polymorphonuclear neutrophil (PMN) axis. In vivo, TNBS-induced colitis was ameliorated in PECAM-1(-/-) mice, an event attributed to PECAM-1 on hematopoietic cells rather than to PECAM-1 on endothelial cells. The in vivo innate immune response was mimicked in vitro by using a construct of the vascular-interstitial interface, i.e., PMN transendothelial migration was induced by colonic lavage fluid (CLF) from TNBS mice or macrophages (MPhi) challenged with CLF. Using the construct, we confirmed that endothelial cell PECAM-1 does not play a role in PMN transendothelial migration. Although MPhi activation (NF-kappaB nuclear binding) and function (keratinocyte-derived chemokine production) induced by CLF was diminished in PECAM-1(-/-) MPhi, this did not affect their ability to promote PMN transendothelial migration. By contrast, PECAM-1(-/-) PMN did not adhere to or migrate across endothelial cell monolayers in response to CLF. Further, as compared with PECAM-1(+/+) PMN, PECAM-1(-/-) PMN were less effective in orientating their CXCR2 receptors (polarization) in the direction of a chemotactic gradient. Collectively, our findings indicate that PECAM-1 modulation of PMN function (at a step before diapedesis) most likely contributes to the inflammation in a colitis model with a strong innate immune component. PMID:18641353

  15. Inhibition of Neutrophil Exocytosis Ameliorates Acute Lung Injury in Rats

    PubMed Central

    Uriarte, Silvia M.; Rane, Madhavi J.; Merchant, Michael L.; Jin, Shunying; Lentsch, Alex B.; Ward, Richard A.; McLeish, Kenneth R.

    2013-01-01

    Exocytosis of neutrophil granules contributes to acute lung injury (ALI) induced by infection or inflammation, suggesting that inhibition of neutrophil exocytosis in vivo could be a viable therapeutic strategy. This study was conducted to determine the effect of a cell-permeable fusion protein that inhibits neutrophil exocytosis (TAT-SNAP-23) on ALI using an immune complex deposition model in rats. The effect of inhibition of neutrophil exocytosis by intravenous administration of TAT-SNAP-23 on ALI was assessed by albumin leakage, neutrophil infiltration, lung histology, and proteomic analysis of bronchoalveolar lavage fluid (BALf). Administration of TAT-SNAP-23, but not TAT-Control, significantly reduced albumin leakage, total protein levels in the BALf, and intra-alveolar edema and hemorrhage. Evidence that TAT-SNAP-23 inhibits neutrophil exocytosis included a reduction in plasma membrane CD18 expression by BALf neutrophils and a decrease in neutrophil granule proteins in BALf. Similar degree of neutrophil accumulation in the lungs and/or BALf suggests that TAT-SNAP-23 did not alter vascular endothelial cell function. Proteomic analysis of BALf revealed that components of the complement and coagulation pathways were significantly reduced in BALf from TAT-SNAP-23-treated animals. Our results indicate that administration of a TAT-fusion protein that inhibits neutrophil exocytosis reduces in vivo ALI. Targeting neutrophil exocytosis is a potential therapeutic strategy to ameliorate ALI. PMID:23364427

  16. Low intensity laser therapy (LILT) in vivo acts on the neutrophils recruitment and chemokines/cytokines levels in a model of acute pulmonary inflammation induced by aerosol of lipopolysaccharide from Escherichia coli in rat.

    PubMed

    Mafra de Lima, F; Villaverde, A B; Salgado, M A; Castro-Faria-Neto, H C; Munin, E; Albertini, R; Aimbire, F

    2010-12-01

    It has been suggested that low intensity laser therapy (LILT) acts on pulmonary inflammation. Thus, we investigate in this work if LILT (650nm, 2.5mW, 31.2mW/cm(2), 1.3J/cm(2), laser spot size of 0.08cm(2) and irradiation time of 42s) can attenuate edema, neutrophil recruitment and inflammatory mediators in acute lung inflammation. Thirty-five male Wistar rats (n=7 per group) were distributed in the following experimental groups: control, laser, LPS, LPS+laser and dexamethasone+LPS. Airway inflammation was measured 4h post-LPS challenge. Pulmonary microvascular leakage was used for measuring pulmonary edema. Bronchoalveolar lavage fluid (BALF) cellularity and myeloperoxidase (MPO) were used for measuring neutrophil recruitment and activation. RT-PCR was performed in lung tissue to assess mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin (IL-10), cytokine-induced neutrophil chemoattractant-1 (CINC-1), macrophage inflammatory protein-2 (MIP-2) and intercellular adhesion molecule-1 (ICAM-1). Protein levels in both BALF and lung were determined by ELISA. LILT inhibited pulmonary edema and endothelial cytoskeleton damage, as well as neutrophil influx and activation. Similarly, the LILT reduced the TNF-α and IL-1β, in lung and BALF. LILT prevented lung ICAM-1 up-regulation. The rise of CINC-1 and MIP-2 protein levels in both lung and BALF, and the lung mRNA expressions for IL-10, were unaffected. Data suggest that the LILT effect is due to the inhibition of ICAM-1 via the inhibition of TNF-α and IL-1β. PMID:20728373

  17. Effect of low-level laser therapy on the expression of inflammatory mediators and on neutrophils and macrophages in acute joint inflammation

    PubMed Central

    2013-01-01

    Introduction Inflammation of the synovial membrane plays an important role in the pathophysiology of osteoarthritis (OA). The synovial tissue of patients with initial OA is characterized by infiltration of mononuclear cells and production of proinflammatory cytokines and other mediators of joint injury. The objective was to evaluate the effect of low-level laser therapy (LLLT) operating at 50 mW and 100 mW on joint inflammation in rats induced by papain, through histopathological analysis, differential counts of inflammatory cells (macrophages and neutrophils), as well as gene expression of interleukin 1-beta and 6 (IL-1β and IL-6), and protein expression of tumor necrosis factor alpha (TNFα). Methods Male Wistar rats (n = 60) were randomly divided into four groups of 15 animals, namely: a negative control group; an inflammation injury positive control group; a 50 mW LLLT group, subjected to injury and treated with 50 mW LLLT; and a 100 mW LLLT group, subjected to injury and treated with 100 mW LLLT. The animals were subject to joint inflammation (papain solution, 4%) and then treated with LLLT (808 nm, 4 J, 142.4 J/cm2, spot size 0.028 for both groups). On the day of euthanasia, articular lavage was collected and immediately centrifuged; the supernatant was saved for analysis of expression of TNFα protein by enzyme-linked immunosorbent assay and expression of IL-1β and IL-6 mRNA by real-time polymerase chain reaction. A histologic examination of joint tissue was also performed. For the statistical analysis, analysis of variance with Tukey's post-hoc test was used for comparisons between each group. All data are expressed as mean values and standard deviation, with P < 0.05. Results Laser treatment with 50 mW was more efficient than 100 mW in reducing cellular inflammation, and decreased the expression of IL-1β and IL-6. However, the 100 mW treatment led to a higher reduction of TNFα compared with the 50 mW treatment. Conclusions LLLT with 50 mW was more

  18. IRF5 controls both acute and chronic inflammation

    PubMed Central

    Weiss, Miriam; Byrne, Adam J.; Blazek, Katrina; Saliba, David G.; Pease, James E.; Perocheau, Dany; Feldmann, Marc; Udalova, Irina A.

    2015-01-01

    Whereas the importance of macrophages in chronic inflammatory diseases is well recognized, there is an increasing awareness that neutrophils may also play an important role. In addition to the well-documented heterogeneity of macrophage phenotypes and functions, neutrophils also show remarkable phenotypic diversity among tissues. Understanding the molecular pathways that control this heterogeneity should provide abundant scope for the generation of more specific and effective therapeutics. We have shown that the transcription factor IFN regulatory factor 5 (IRF5) polarizes macrophages toward an inflammatory phenotype. IRF5 is also expressed in other myeloid cells, including neutrophils, where it was linked to neutrophil function. In this study we explored the role of IRF5 in models of acute inflammation, including antigen-induced inflammatory arthritis and lung injury, both involving an extensive influx of neutrophils. Mice lacking IRF5 accumulate far fewer neutrophils at the site of inflammation due to the reduced levels of chemokines important for neutrophil recruitment, such as the chemokine (C-X-C motif) ligand 1. Furthermore we found that neutrophils express little IRF5 in the joints and that their migratory properties are not affected by the IRF5 deficiency. These studies extend prior ones suggesting that inhibiting IRF5 might be useful for chronic macrophage-induced inflammation and suggest that IRF5 blockade would ameliorate more acute forms of inflammation, including lung injury. PMID:26283380

  19. Cellular Mechanisms Underlying Eosinophilic and Neutrophilic Airway Inflammation in Asthma

    PubMed Central

    Vatrella, Alessandro; Busceti, Maria Teresa; Gallelli, Luca; Calabrese, Cecilia; Terracciano, Rosa

    2015-01-01

    Asthma is a phenotypically heterogeneous chronic disease of the airways, characterized by either predominant eosinophilic or neutrophilic, or even mixed eosinophilic/neutrophilic inflammatory patterns. Eosinophilic inflammation can be associated with the whole spectrum of asthma severity, ranging from mild-to-moderate to severe uncontrolled disease, whereas neutrophilic inflammation occurs mostly in more severe asthma. Eosinophilic asthma includes either allergic or nonallergic phenotypes underlying immune responses mediated by T helper (Th)2 cell-derived cytokines, whilst neutrophilic asthma is mostly dependent on Th17 cell-induced mechanisms. These immune-inflammatory profiles develop as a consequence of a functional impairment of T regulatory (Treg) lymphocytes, which promotes the activation of dendritic cells directing the differentiation of distinct Th cell subsets. The recent advances in the knowledge of the cellular and molecular mechanisms underlying asthmatic inflammation are contributing to the identification of novel therapeutic targets, potentially suitable for the implementation of future improvements in antiasthma pharmacologic treatments. PMID:25878402

  20. Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma.

    PubMed

    Pelaia, Girolamo; Vatrella, Alessandro; Busceti, Maria Teresa; Gallelli, Luca; Calabrese, Cecilia; Terracciano, Rosa; Maselli, Rosario

    2015-01-01

    Asthma is a phenotypically heterogeneous chronic disease of the airways, characterized by either predominant eosinophilic or neutrophilic, or even mixed eosinophilic/neutrophilic inflammatory patterns. Eosinophilic inflammation can be associated with the whole spectrum of asthma severity, ranging from mild-to-moderate to severe uncontrolled disease, whereas neutrophilic inflammation occurs mostly in more severe asthma. Eosinophilic asthma includes either allergic or nonallergic phenotypes underlying immune responses mediated by T helper (Th)2 cell-derived cytokines, whilst neutrophilic asthma is mostly dependent on Th17 cell-induced mechanisms. These immune-inflammatory profiles develop as a consequence of a functional impairment of T regulatory (Treg) lymphocytes, which promotes the activation of dendritic cells directing the differentiation of distinct Th cell subsets. The recent advances in the knowledge of the cellular and molecular mechanisms underlying asthmatic inflammation are contributing to the identification of novel therapeutic targets, potentially suitable for the implementation of future improvements in antiasthma pharmacologic treatments. PMID:25878402

  1. Neutrophils and neutrophil extracellular traps orchestrate initiation and resolution of inflammation.

    PubMed

    Hahn, Jonas; Knopf, Jasmin; Maueröder, Christian; Kienhöfer, Deborah; Leppkes, Moritz; Herrmann, Martin

    2016-01-01

    Neutrophils, the most abundant leukocytes in the human body, are considered to be the first line of defense in the fight against microorganisms. In this fight neutrophils employ weaponry such as reactive oxygen species produced via the NADPH oxidase complex 2 together with the release of intracellular granules containing antimicrobial agents. The discovery that activated neutrophils release decondensed chromatin as DNase-sensitive neutrophil extracellular traps (NETs) lead to a renewed interest in these leukocytes and the function of NETs in vivo. In this review, we will focus on desirable as well as detrimental features of NETs by the example of gout and pancreatitis. In our models we observed that neutrophils drive the initiation of inflammation and are required for the resolution of inflammation. PMID:27586795

  2. Central role of neutrophil in the pathogenesis of severe acute pancreatitis

    PubMed Central

    Yang, Zhi-wen; Meng, Xiao-xiao; Xu, Ping

    2015-01-01

    Severe acute pancreatitis (SAP) is an acute abdominal disease with the strong systemic inflammatory response, and rapidly progresses from a local pancreatic damage into multiple organ dysfunction. For many decades, the contributions of neutrophils to the pathology of SAP were traditionally thought to be the chemokine and cytokine cascades that accompany inflammation. In this review, we focus mainly on those recently recognized aspects of neutrophils in SAP processes. First, emerging evidence suggests that therapeutic interventions targeting neutrophils significantly lower tissue damage and protect against the occurrence of pancreatitis. Second, trypsin activation promotes the initial neutrophils recruitment into local pancreas, and subsequently neutrophils infiltration in turn triggers trypsin production. Finally, neutrophils have the unique ability to release neutrophil extracellular traps even in the absence of pathogens. PMID:26249268

  3. Central role of neutrophil in the pathogenesis of severe acute pancreatitis.

    PubMed

    Yang, Zhi-Wen; Meng, Xiao-Xiao; Xu, Ping

    2015-11-01

    Severe acute pancreatitis (SAP) is an acute abdominal disease with the strong systemic inflammatory response, and rapidly progresses from a local pancreatic damage into multiple organ dysfunction. For many decades, the contributions of neutrophils to the pathology of SAP were traditionally thought to be the chemokine and cytokine cascades that accompany inflammation. In this review, we focus mainly on those recently recognized aspects of neutrophils in SAP processes. First, emerging evidence suggests that therapeutic interventions targeting neutrophils significantly lower tissue damage and protect against the occurrence of pancreatitis. Second, trypsin activation promotes the initial neutrophils recruitment into local pancreas, and subsequently neutrophils infiltration in turn triggers trypsin production. Finally, neutrophils have the unique ability to release neutrophil extracellular traps even in the absence of pathogens. PMID:26249268

  4. SRF is required for neutrophil migration in response to inflammation

    PubMed Central

    Taylor, Ashley; Tang, Wenwen; Bruscia, Emanuela M.; Zhang, Ping-Xia; Lin, Aiping; Gaines, Peter; Wu, Dianqing

    2014-01-01

    Serum response factor (SRF) is a ubiquitously expressed transcription factor and master regulator of the actin cytoskeleton. We have previously shown that SRF is essential for megakaryocyte maturation and platelet formation and function. Here we elucidate the role of SRF in neutrophils, the primary defense against infections. To study the effect of SRF loss in neutrophils, we crossed Srffl/fl mice with select Cre-expressing mice and studied neutrophil function in vitro and in vivo. Despite normal neutrophil numbers, neutrophil function is severely impaired in Srf knockout (KO) neutrophils. Srf KO neutrophils fail to polymerize globular actin to filamentous actin in response to N-formyl-methionine-leucine-phenylalanine, resulting in significantly disrupted cytoskeletal remodeling. Srf KO neutrophils fail to migrate to sites of inflammation in vivo and along chemokine gradients in vitro. Polarization in response to cytokine stimuli is absent and Srf KO neutrophils show markedly reduced adhesion. Integrins play an essential role in cellular adhesion, and although integrin expression levels are maintained with loss of SRF, integrin activation and trafficking are disrupted. Migration and cellular adhesion are essential for normal cell function, but also for malignant processes such as metastasis, underscoring an essential function for SRF and its pathway in health and disease. PMID:24574460

  5. Clearance of apoptotic neutrophils and resolution of inflammation.

    PubMed

    Greenlee-Wacker, Mallary C

    2016-09-01

    The engulfment of apoptotic cells by phagocytes, a process referred to as efferocytosis, is essential for maintenance of normal tissue homeostasis and a prerequisite for the resolution of inflammation. Neutrophils are the predominant circulating white blood cell in humans, and contain an arsenal of toxic substances that kill and degrade microbes. Neutrophils are short-lived and spontaneously die by apoptosis. This review will highlight how the engulfment of apoptotic neutrophils by human phagocytes occurs, how heterogeneity of phagocyte populations influences efferocytosis signaling, and downstream consequences of efferocytosis. The efferocytosis of apoptotic neutrophils by macrophages promotes anti-inflammatory signaling, prevents neutrophil lysis, and dampens immune responses. Given the immunomodulatory properties of efferocytosis, understanding pathways that regulate and enhance efferocytosis could be harnessed to combat infection and chronic inflammatory conditions. PMID:27558346

  6. Neutrophils Self-Regulate Immune Complex-Mediated Cutaneous Inflammation through CXCL2.

    PubMed

    Li, Jackson LiangYao; Lim, Chun Hwee; Tay, Fen Wei; Goh, Chi Ching; Devi, Sapna; Malleret, Benoit; Lee, Bernett; Bakocevic, Nadja; Chong, Shu Zhen; Evrard, Maximilien; Tanizaki, Hideaki; Lim, Hwee Ying; Russell, Bruce; Renia, Laurent; Zolezzi, Francesca; Poidinger, Michael; Angeli, Veronique; St John, Ashley L; Harris, John E; Tey, Hong Liang; Tan, Suet Mien; Kabashima, Kenji; Weninger, Wolfgang; Larbi, Anis; Ng, Lai Guan

    2016-02-01

    Deposition of immune complexes (ICs) in tissues triggers acute inflammatory pathology characterized by massive neutrophil influx leading to edema and hemorrhage, and is especially associated with vasculitis of the skin, but the mechanisms that regulate this type III hypersensitivity process remain poorly understood. Here, using a combination of multiphoton intravital microscopy and genomic approaches, we re-examined the cutaneous reverse passive Arthus reaction and observed that IC-activated neutrophils underwent transmigration, triggered further IC formation, and transported these ICs into the interstitium, whereas neutrophil depletion drastically reduced IC formation and ameliorated vascular leakage in vivo. Thereafter, we show that these neutrophils expressed high levels of CXCL2, which further amplified neutrophil recruitment and activation in an autocrine and/or paracrine manner. Notably, CXCL1 expression was restricted to tissue-resident cell types, but IC-activated neutrophils may also indirectly, via soluble factors, modulate macrophage CXCL1 expression. Consistent with their distinct cellular origins and localization, only neutralization of CXCL2 but not CXCL1 in the interstitium effectively reduced neutrophil recruitment. In summary, our study establishes that neutrophils are able to self-regulate their own recruitment and responses during IC-mediated inflammation through a CXCL2-driven feed forward loop. PMID:26802238

  7. Necrostatin-1 enhances the resolution of inflammation by specifically inducing neutrophil apoptosis

    PubMed Central

    Jie, Hongyu; He, Yi; Huang, Xuechan; Zhou, Qingyou; Han, Yanping; Li, Xing; Bai, Yongkun; Sun, Erwei

    2016-01-01

    Neutrophils play a central role in innate immunity and are rapidly recruited to sites of infection and injury. Neutrophil apoptosis is essential for the successful resolution of inflammation. Necrostatin-1 (Nec-1,methyl-thiohydantoin-tryptophan (MTH-Trp)), is a potent and specific inhibitor of necroptosis[1] (a newly identified type of cell death representing a form of programmed necrosis or regulated non apoptotic cell death) by inhibiting the receptor interacting protein 1(RIP1) kinase. Here we report that Nec-1 specifically induces caspase-dependent neutrophils apoptosis and overrides powerful anti-apoptosis signaling from survival factors such as GM-CSF and LPS. We showed that Nec-1 markedly enhanced the resolution of established neutrophil-dependent inflammation in LPS-induced acute lung injury in mice. We also provided evidence that Nec-1 promoted apoptosis by reducing the expression of the anti-apoptotic protein Mcl-1 and increasing the expression of pro-apoptotic protein Bax. Thus, Nec-1 is not only an inhibitor of necroptosis, but also a promoter of apoptosis, of neutrophils, enhancing the resolution of established inflammation by inducing apoptosis of inflammatory cells. Our results suggest that Nec-1 may have potential roles for the treatment of diseases with increased or persistent inflammatory responses. PMID:27027357

  8. CXCR2 inhibition suppresses acute and chronic pancreatic inflammation.

    PubMed

    Steele, Colin W; Karim, Saadia A; Foth, Mona; Rishi, Loveena; Leach, Joshua D G; Porter, Ross J; Nixon, Colin; Jeffry Evans, T R; Carter, C Ross; Nibbs, Robert J B; Sansom, Owen J; Morton, Jennifer P

    2015-09-01

    Pancreatitis is a significant clinical problem and the lack of effective therapeutic options means that treatment is often palliative rather than curative. A deeper understanding of the pathogenesis of both acute and chronic pancreatitis is necessary to develop new therapies. Pathological changes in pancreatitis are dependent on innate immune cell recruitment to the site of initial tissue damage, and on the coordination of downstream inflammatory pathways. The chemokine receptor CXCR2 drives neutrophil recruitment during inflammation, and to investigate its role in pancreatic inflammation, we induced acute and chronic pancreatitis in wild-type and Cxcr2(-/-) mice. Strikingly, Cxcr2(-/-) mice were strongly protected from tissue damage in models of acute pancreatitis, and this could be recapitulated by neutrophil depletion or by the specific deletion of Cxcr2 from myeloid cells. The pancreata of Cxcr2(-/-) mice were also substantially protected from damage during chronic pancreatitis. Neutrophil depletion was less effective in this model, suggesting that CXCR2 on non-neutrophils contributes to the development of chronic pancreatitis. Importantly, pharmacological inhibition of CXCR2 in wild-type mice replicated the protection seen in Cxcr2(-/-) mice in acute and chronic models of pancreatitis. Moreover, acute pancreatic inflammation was reversible by inhibition of CXCR2. Thus, CXCR2 is critically involved in the development of acute and chronic pancreatitis in mice, and its inhibition or loss protects against pancreatic damage. CXCR2 may therefore be a viable therapeutic target in the treatment of pancreatitis. PMID:25950520

  9. Effect of acute airway inflammation on the pulmonary antioxidant status.

    PubMed

    Deaton, Christopher M; Marlin, David J; Smith, Nicola C; Harris, Patricia A; Dagleish, Mark P; Schroter, Robert C; Kelly, Frank J

    2005-09-01

    Effects of acute airway inflammation induced by organic dust inhalation on pulmonary antioxidant status were investigated in healthy horses and horses affected by recurrent airway obstruction. Exposure to organic dust induced acute airway neutrophilia, which was associated with increases in elastase and decreases in ascorbic acid concentrations in bronchoalveolar lavage fluid. However, markers of oxidative stress were unaffected, as was hydrogen peroxide in breath condensate. Decreases in ascorbic acid correlated with increased respiratory resistance (P = .001) when both groups were combined. In conclusion, acute neutrophilic airway inflammation does not result in significant evidence of oxidative stress in horses affected by recurrent airway obstruction. PMID:16203621

  10. Protective effect of erdosteine against hypochlorous acid-induced acute lung injury and lipopolysaccharide-induced neutrophilic lung inflammation in mice.

    PubMed

    Hayashi, K; Hosoe, H; Kaise, T; Ohmori, K

    2000-11-01

    The effect of erdosteine, a mucoactive drug, on hypochlorous acid (HOCl)-induced lung injury, and the lipopolysaccharide (LPS)-induced increase in tumour necrosis factor-alpha (TNF-alpha) production and neutrophil recruitment into the airway, was investigated. Male BALB/c mice were orally administered erdosteine (3-100 mgkg(-1)), ambroxol hydrochloride (ambroxol) (3-30 mgkg(-1)), S-carboxymethyl-L-cysteine (S-CMC) (100-600 mgkg(-1)) or prednisolone (10 mgkg(-1)), 1 h before intratracheal injection of HOCl or LPS. In the HOCl-injected mice, erdosteine markedly suppressed increases in the ratios of lung wet weight to bodyweight and lung dry weight to bodyweight, whereas the other mucoactive drugs ambroxol and S-CMC had little effect. Erdosteine also inhibited the LPS-induced neutrophil influx, although it did not affect the increased level of TNF-alpha in the bronchoalveolar lavage fluid. The results suggest that attenuation of reactive oxygen species and neutrophil recruitment is involved in the clinical efficacy of erdosteine in the treatment of chronic bronchitis. PMID:11186250

  11. Alpha4-integrin (CD49d) expression on bovine peripheral blood neutrophils is related to inflammation of the respiratory system.

    PubMed

    Soethout, Ernst C; Rutten, Victor P M G; Houwers, Dirk J; de Groot, Hugo S J; Antonis, Adriaan F G; Niewold, Theo A; Müller, Kerstin E

    2003-05-30

    Neutrophil emigration from the pulmonary vasculature, is mediated by cellular adhesion molecules (CAM) expressed on the outer membranes of endothelial cells and neutrophils. Although beta(2)-integrin-dependent migration is a major mechanism of neutrophil migration, which was demonstrated by extensive invasion of neutrophils in pulmonary tissue of calves suffering from a genetic deficit in expression of beta(2)-integrins, termed bovine leukocyte adhesion deficiency (LAD), the role of alternative CAM is still unclear. We investigated whether an alternate CAM for beta(2)-integrin function, i.e. the alpha(4)-integrin, was expressed on peripheral blood neutrophils of calves. As we detected basal but significant expression, the effect of naturally acquired pulmonary infection on the expression of either integrin was determined, as an indication for its function in the migration process. In our experiments, basal expression of alpha(4)-integrins on peripheral blood neutrophils from clinically healthy calves was detected. On neutrophils of calves, experiencing field outbreaks of enzootic bronchopneumonia, higher expression of the alpha(4)-integrin was detected, which returned to normal after successful treatment of the disease. In addition, its level of expression was linearly related to plasma acute phase protein (haptoglobin) concentrations, which is a sensitive parameter for severity of respiratory inflammation. Increased expression of the alpha(4)-integrin on peripheral blood neutrophils during pulmonary inflammation indicates a role for this CAM in neutrophil migration in the lung. PMID:12753772

  12. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation.

    PubMed

    Campbell, Eric L; Bruyninckx, Walter J; Kelly, Caleb J; Glover, Louise E; McNamee, Eóin N; Bowers, Brittelle E; Bayless, Amanda J; Scully, Melanie; Saeedi, Bejan J; Golden-Mason, Lucy; Ehrentraut, Stefan F; Curtis, Valerie F; Burgess, Adrianne; Garvey, John F; Sorensen, Amber; Nemenoff, Raphael; Jedlicka, Paul; Taylor, Cormac T; Kominsky, Douglas J; Colgan, Sean P

    2014-01-16

    Acute intestinal inflammation involves early accumulation of neutrophils (PMNs) followed by either resolution or progression to chronic inflammation. Based on recent evidence that mucosal metabolism influences disease outcomes, we hypothesized that transmigrating PMNs influence the transcriptional profile of the surrounding mucosa. Microarray studies revealed a cohort of hypoxia-responsive genes regulated by PMN-epithelial crosstalk. Transmigrating PMNs rapidly depleted microenvironmental O2 sufficiently to stabilize intestinal epithelial cell hypoxia-inducible factor (HIF). By utilizing HIF reporter mice in an acute colitis model, we investigated the relative contribution of PMNs and the respiratory burst to "inflammatory hypoxia" in vivo. CGD mice, lacking a respiratory burst, developed accentuated colitis compared to control, with exaggerated PMN infiltration and diminished inflammatory hypoxia. Finally, pharmacological HIF stabilization within the mucosa protected CGD mice from severe colitis. In conclusion, transcriptional imprinting by infiltrating neutrophils modulates the host response to inflammation, via localized O2 depletion, resulting in microenvironmental hypoxia and effective inflammatory resolution. PMID:24412613

  13. Neutrophils aggravate acute liver injury during obstructive cholestasis in bile duct-ligated mice.

    PubMed

    Gujral, Jaspreet S; Farhood, Anwar; Bajt, Mary Lynn; Jaeschke, Hartmut

    2003-08-01

    Obstruction of the common bile duct in a variety of clinical settings leads to cholestatic liver injury. An important aspect of this injury is hepatic inflammation, with neutrophils as the prominent cell type involved. However, the pathophysiologic role of the infiltrating neutrophils during cholestatic liver injury remains unclear. Therefore, we tested the hypothesis that neutrophils contribute to the overall pathophysiology by using bile duct-ligated (BDL) wild-type animals and mice deficient in the beta(2) integrin CD18. In wild-type animals, neutrophils were activated systemically as indicated by the increased expression of Mac-1 (CD11b/CD18) and L-selectin shedding 3 days after BDL. Histologic evaluation (48 +/- 10% necrosis) and plasma transaminase levels showed severe liver injury. Compared with sham-operated controls (< 10 neutrophils per 20 high-power fields), large numbers of neutrophils were present in livers of BDL mice (425 +/- 64). About 60% of these neutrophils had extravasated into the parenchyma. In addition, a substantial number of extravasated neutrophils were found in the portal tract. In contrast, Mac-1 was not up-regulated and plasma transaminase activities and the area of necrosis (21 +/- 9%) were significantly reduced in CD18-deficient animals. These mice had overall 62% less neutrophils in the liver. In particular, extravasation from sinusoids and portal venules (PV) was reduced by 91% and 47%, respectively. Immunohistochemical staining for chlorotyrosine, a marker of neutrophil-derived oxidant stress, was observed in the parenchyma of BDL wild-type but not CD18-deficient mice. In conclusion, neutrophils aggravated acute cholestatic liver injury after BDL. This inflammatory injury involves CD18-dependent extravasation of neutrophils from sinusoids and reactive oxygen formation. PMID:12883479

  14. Role of neutrophilic inflammation in ozone-induced epithelial alterations in the nasal airways of rats

    NASA Astrophysics Data System (ADS)

    Cho, Hye Youn

    Ozone is a principal oxidant air pollutant in photochemical smog. Epithelial cells lining the centriacinar region of lung and the proximal aspects of nasal passage are primary target sites for ozone-induced injury in laboratory animals. Acute exposure of rats to high ambient concentrations of ozone (e.g., 0.5 ppm) results in neutrophilic inflammation, epithelial hyperplasia and mucous cell metaplasia (MCM) in the nasal transitional epithelium (NTE) lining the proximal nasal airways. The principal purpose of the present study was to investigate the role of pre-metaplastic cellular responses, especially neutrophilic inflammation, in the pathogenesis of ozone-induced MCM in rat NTE. For this purpose, three specific hypotheses-based whole-animal inhalation studies were conducted. Male F344/N rats were exposed in whole-body inhalation chambers to 0 (filtered air) or 0.5 ppm ozone for 1-3 days (8 h/day). Histochemical, immunochemical, molecular and morphometric techniques were used to investigate the ozone-induced cellular and molecular events in the NTE. Two in vitro studies were also conducted to examine the effects of ozone-inducible cytokines (i.e., tumor necrosis factor-alpha; TNF- a, and interleukin-6; IL-6) on mucin gene (rMuc-5AC) expression. Ozone induced a rapid increase of rMuc-5AC mRNA in nasal tissues within hours after the start of exposure. It preceded the appearance of MCM, and persisted with MCM. Ozone-induced neutrophilic inflammation accompanied the mucin gene upregulation, but was resolved when MCM first appeared in the NTE. Antibody-mediated depletion of circulating neutrophils attenuated ozone-induced MCM, although it did not affect the ozone-induced epithelial hyperplasia and mucin mRNA upregulation. In another study, it was found that preexisting neutrophilic rhinitis induced by endotoxin augmented the ozone-induced MCM. However, pre-existing rhinitis did not alter the severity of ozone-induced epithelial hyperplasia and mucin gene upregulation

  15. Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin

    PubMed Central

    Kessenbrock, Kai; Fröhlich, Leopold; Sixt, Michael; Lämmermann, Tim; Pfister, Heiko; Bateman, Andrew; Belaaouaj, Azzaq; Ring, Johannes; Ollert, Markus; Fässler, Reinhard; Jenne, Dieter E.

    2008-01-01

    Neutrophil granulocytes form the body’s first line of antibacterial defense, but they also contribute to tissue injury and noninfectious, chronic inflammation. Proteinase 3 (PR3) and neutrophil elastase (NE) are 2 abundant neutrophil serine proteases implicated in antimicrobial defense with overlapping and potentially redundant substrate specificity. Here, we unraveled a cooperative role for PR3 and NE in neutrophil activation and noninfectious inflammation in vivo, which we believe to be novel. Mice lacking both PR3 and NE demonstrated strongly diminished immune complex–mediated (IC-mediated) neutrophil infiltration in vivo as well as reduced activation of isolated neutrophils by ICs in vitro. In contrast, in mice lacking just NE, neutrophil recruitment to ICs was only marginally impaired. The defects in mice lacking both PR3 and NE were directly linked to the accumulation of antiinflammatory progranulin (PGRN). Both PR3 and NE cleaved PGRN in vitro and during neutrophil activation and inflammation in vivo. Local administration of recombinant PGRN potently inhibited neutrophilic inflammation in vivo, demonstrating that PGRN represents a crucial inflammation-suppressing mediator. We conclude that PR3 and NE enhance neutrophil-dependent inflammation by eliminating the local antiinflammatory activity of PGRN. Our results support the use of serine protease inhibitors as antiinflammatory agents. PMID:18568075

  16. Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1

    PubMed Central

    El Rayes, Tina; Catena, Raúl; Lee, Sharrell; Stawowczyk, Marcin; Joshi, Natasha; Fischbach, Claudia; Powell, Charles A.; Dannenberg, Andrew J.; Altorki, Nasser K.; Gao, Dingcheng; Mittal, Vivek

    2015-01-01

    Inflammation is inextricably associated with primary tumor progression. However, the contribution of inflammation to tumor outgrowth in metastatic organs has remained underexplored. Here, we show that extrinsic inflammation in the lungs leads to the recruitment of bone marrow-derived neutrophils, which degranulate azurophilic granules to release the Ser proteases, elastase and cathepsin G, resulting in the proteolytic destruction of the antitumorigenic factor thrombospondin-1 (Tsp-1). Genetic ablation of these neutrophil proteases protected Tsp-1 from degradation and suppressed lung metastasis. These results provide mechanistic insights into the contribution of inflammatory neutrophils to metastasis and highlight the unique neutrophil protease–Tsp-1 axis as a potential antimetastatic therapeutic target. PMID:26668367

  17. Neutrophil recruitment by allergens contribute to allergic sensitization and allergic inflammation

    PubMed Central

    Hosoki, Koa; Boldogh, Istvan; Sur, Sanjiv

    2016-01-01

    Purpose of review To discuss the presence and role of neutrophils in asthma and allergic diseases, and outline importance of pollen and cat dander-induced innate neutrophil recruitment in induction of allergic sensitization and allergic inflammation. Recent findings Uncontrolled asthma is associated with elevated numbers of neutrophils, and levels of neutrophil-attracting chemokine IL-8 and IL-17 in BAL fluids. These parameters negatively correlate with lung function. Pollen allergens and cat dander recruit neutrophils to the airways in a TLR4, MD2 and CXCR2-dependent manner. Repeated recruitment of activated neutrophils by these allergens facilitates allergic sensitization and airway inflammation. Inhibition of neutrophil recruitment with CXCR2 inhibitor, disruption of TLR4, or siRNA against MD2 also inhibits allergic inflammation. The molecular mechanisms by which neutrophils shift the inflammatory response of the airways to inhaled allergens to an allergic phenotype is an area of active research. Summary Recent studies have revealed that neutrophil recruitment is important in development of allergic sensitization and inflammation. Inhibition of neutrophils recruitment may be strategy to control allergic inflammation. PMID:26694038

  18. Excessive Neutrophils and Neutrophil Extracellular Traps Contribute to Acute Lung Injury of Influenza Pneumonitis

    PubMed Central

    Narasaraju, Teluguakula; Yang, Edwin; Samy, Ramar Perumal; Ng, Huey Hian; Poh, Wee Peng; Liew, Audrey-Ann; Phoon, Meng Chee; van Rooijen, Nico; Chow, Vincent T.

    2011-01-01

    Complications of acute respiratory distress syndrome (ARDS) are common among critically ill patients infected with highly pathogenic influenza viruses. Macrophages and neutrophils constitute the majority of cells recruited into infected lungs, and are associated with immunopathology in influenza pneumonia. We examined pathological manifestations in models of macrophage- or neutrophil-depleted mice challenged with sublethal doses of influenza A virus H1N1 strain PR8. Infected mice depleted of macrophages displayed excessive neutrophilic infiltration, alveolar damage, and increased viral load, later progressing into ARDS-like pathological signs with diffuse alveolar damage, pulmonary edema, hemorrhage, and hypoxemia. In contrast, neutrophil-depleted animals showed mild pathology in lungs. The brochoalveolar lavage fluid of infected macrophage-depleted mice exhibited elevated protein content, T1-α, thrombomodulin, matrix metalloproteinase-9, and myeloperoxidase activities indicating augmented alveolar-capillary damage, compared to neutrophil-depleted animals. We provide evidence for the formation of neutrophil extracellular traps (NETs), entangled with alveoli in areas of tissue injury, suggesting their potential link with lung damage. When co-incubated with infected alveolar epithelial cells in vitro, neutrophils from infected lungs strongly induced NETs generation, and augmented endothelial damage. NETs induction was abrogated by anti-myeloperoxidase antibody and an inhibitor of superoxide dismutase, thus implying that NETs generation is induced by redox enzymes in influenza pneumonia. These findings support the pathogenic effects of excessive neutrophils in acute lung injury of influenza pneumonia by instigating alveolar-capillary damage. PMID:21703402

  19. Facilitation of Allergic Sensitization and Allergic Airway Inflammation by Pollen-Induced Innate Neutrophil Recruitment.

    PubMed

    Hosoki, Koa; Aguilera-Aguirre, Leopoldo; Brasier, Allan R; Kurosky, Alexander; Boldogh, Istvan; Sur, Sanjiv

    2016-01-01

    Neutrophil recruitment is a hallmark of rapid innate immune responses. Exposure of airways of naive mice to pollens rapidly induces neutrophil recruitment. The innate mechanisms that regulate pollen-induced neutrophil recruitment and the contribution of this neutrophilic response to subsequent induction of allergic sensitization and inflammation need to be elucidated. Here we show that ragweed pollen extract (RWPE) challenge in naive mice induces C-X-C motif ligand (CXCL) chemokine synthesis, which stimulates chemokine (C-X-C motif) receptor 2 (CXCR2)-dependent recruitment of neutrophils into the airways. Deletion of Toll-like receptor 4 (TLR4) abolishes CXCL chemokine secretion and neutrophil recruitment induced by a single RWPE challenge and inhibits induction of allergic sensitization and airway inflammation after repeated exposures to RWPE. Forced induction of CXCL chemokine secretion and neutrophil recruitment in mice lacking TLR4 also reconstitutes the ability of multiple challenges of RWPE to induce allergic airway inflammation. Blocking RWPE-induced neutrophil recruitment in wild-type mice by administration of a CXCR2 inhibitor inhibits the ability of repeated exposures to RWPE to stimulate allergic sensitization and airway inflammation. Administration of neutrophils derived from naive donor mice into the airways of Tlr4 knockout recipient mice after each repeated RWPE challenge reconstitutes allergic sensitization and inflammation in these mice. Together these observations indicate that pollen-induced recruitment of neutrophils is TLR4 and CXCR2 dependent and that recruitment of neutrophils is a critical rate-limiting event that stimulates induction of allergic sensitization and airway inflammation. Inhibiting pollen-induced recruitment of neutrophils, such as by administration of CXCR2 antagonists, may be a novel strategy to prevent initiation of pollen-induced allergic airway inflammation. PMID:26086549

  20. Tumor Necrosis Factor, but Not Neutrophils, Alters the Metabolic Profile in Acute Experimental Arthritis.

    PubMed

    Oliveira, Marina C; Tavares, Luciana P; Vago, Juliana P; Batista, Nathália V; Queiroz-Junior, Celso M; Vieira, Angelica T; Menezes, Gustavo B; Sousa, Lirlândia P; van de Loo, Fons A J; Teixeira, Mauro M; Amaral, Flávio A; Ferreira, Adaliene V M

    2016-01-01

    Metabolic alterations are associated with arthritis apart from obesity. However, it is still unclear which is the underlying process behind these metabolic changes. Here, we investigate the role of tumor necrosis factor (TNF) in this process in an acute model of antigen-induced arthritis (AIA). Immunized male BALB/c mice received an intra-articular injection of PBS (control) or methylated bovine serum albumin (mBSA) into their knees, and were also pre-treated with different drugs: Etanercept, an anti-TNF drug, DF2156A, a CXCR1/2 receptor antagonist, or a monoclonal antibody RB6-8C5 to deplete neutrophils. Local challenge with mBSA evoked an acute neutrophil influx into the knee joint, and enhanced the joint nociception, along with a transient systemic metabolic alteration (higher levels of glucose and lipids, and altered adipocytokines). Pre-treatment with the conventional biological Etanercept, an inhibitor of TNF action, ameliorated the nociception and the acute joint inflammation dominated by neutrophils, and markedly improved many of the altered systemic metabolites (glucose and lipids), adipocytokines and PTX3. However, the lessening of metabolic changes was not due to diminished accumulation of neutrophils in the joint by Etanercept. Reduction of neutrophil recruitment by pre-treating AIA mice with DF2156A, or even the depletion of these cells by using RB6-8C5 reduced all of the inflammatory parameters and hypernociception developed after AIA challenge, but could not prevent the metabolic changes. Therefore, the induction of joint inflammation provoked acute metabolic alterations which were involved with TNF. We suggest that the role of TNF in arthritis-associated metabolic changes is not due to local neutrophils, which are the major cells present in this model, but rather due to cytokines. PMID:26742100

  1. Tumor Necrosis Factor, but Not Neutrophils, Alters the Metabolic Profile in Acute Experimental Arthritis

    PubMed Central

    Oliveira, Marina C.; Tavares, Luciana P.; Vago, Juliana P.; Batista, Nathália V.; Queiroz-Junior, Celso M.; Vieira, Angelica T.; Menezes, Gustavo B.; Sousa, Lirlândia P.; van de Loo, Fons A. J.; Teixeira, Mauro M.; Amaral, Flávio A.; Ferreira, Adaliene V. M.

    2016-01-01

    Metabolic alterations are associated with arthritis apart from obesity. However, it is still unclear which is the underlying process behind these metabolic changes. Here, we investigate the role of tumor necrosis factor (TNF) in this process in an acute model of antigen-induced arthritis (AIA). Immunized male BALB/c mice received an intra-articular injection of PBS (control) or methylated bovine serum albumin (mBSA) into their knees, and were also pre-treated with different drugs: Etanercept, an anti-TNF drug, DF2156A, a CXCR1/2 receptor antagonist, or a monoclonal antibody RB6-8C5 to deplete neutrophils. Local challenge with mBSA evoked an acute neutrophil influx into the knee joint, and enhanced the joint nociception, along with a transient systemic metabolic alteration (higher levels of glucose and lipids, and altered adipocytokines). Pre-treatment with the conventional biological Etanercept, an inhibitor of TNF action, ameliorated the nociception and the acute joint inflammation dominated by neutrophils, and markedly improved many of the altered systemic metabolites (glucose and lipids), adipocytokines and PTX3. However, the lessening of metabolic changes was not due to diminished accumulation of neutrophils in the joint by Etanercept. Reduction of neutrophil recruitment by pre-treating AIA mice with DF2156A, or even the depletion of these cells by using RB6-8C5 reduced all of the inflammatory parameters and hypernociception developed after AIA challenge, but could not prevent the metabolic changes. Therefore, the induction of joint inflammation provoked acute metabolic alterations which were involved with TNF. We suggest that the role of TNF in arthritis-associated metabolic changes is not due to local neutrophils, which are the major cells present in this model, but rather due to cytokines. PMID:26742100

  2. Frontline Science: Splenic progenitors aid in maintaining high neutrophil numbers at sites of sterile chronic inflammation.

    PubMed

    Jhunjhunwala, Siddharth; Alvarez, David; Aresta-DaSilva, Stephanie; Tang, Katherine; Tang, Benjamin C; Greiner, Dale L; Newburger, Peter E; von Andrian, Ulrich H; Langer, Robert; Anderson, Daniel G

    2016-08-01

    Neutrophils are constantly generated from hematopoietic stem and progenitor cells in the bone marrow to maintain high numbers in circulation. A considerable number of neutrophils and their progenitors have been shown to be present in the spleen too; however, their exact role in this organ remains unclear. Herein, we sought to study the function of splenic neutrophils and their progenitors using a mouse model for sterile, peritoneal inflammation. In this microcapsule device implantation model, we show chronic neutrophil presence at implant sites, with recruitment from circulation as the primary mechanism for their prevalence in the peritoneal exudate. Furthermore, we demonstrate that progenitor populations in the spleen play a key role in maintaining elevated neutrophil numbers. Our results provide new insight into the role for splenic neutrophils and their progenitors and establish a model to study neutrophil function during sterile inflammation. PMID:26965635

  3. Neutrophil AKT2 regulates heterotypic cell-cell interactions during vascular inflammation.

    PubMed

    Li, Jing; Kim, Kyungho; Hahm, Eunsil; Molokie, Robert; Hay, Nissim; Gordeuk, Victor R; Du, Xiaoping; Cho, Jaehyung

    2014-04-01

    Interactions between platelets, leukocytes, and activated endothelial cells are important during microvascular occlusion; however, the regulatory mechanisms of these heterotypic cell-cell interactions remain unclear. Here, using intravital microscopy to evaluate mice lacking specific isoforms of the serine/threonine kinase AKT and bone marrow chimeras, we found that hematopoietic cell-associated AKT2 is important for neutrophil adhesion and crawling and neutrophil-platelet interactions on activated endothelial cells during TNF-α-induced venular inflammation. Studies with an AKT2-specific inhibitor and cells isolated from WT and Akt KO mice revealed that platelet- and neutrophil-associated AKT2 regulates heterotypic neutrophil-platelet aggregation under shear conditions. In particular, neutrophil AKT2 was critical for membrane translocation of αMβ2 integrin, β2-talin1 interaction, and intracellular Ca2+ mobilization. We found that the basal phosphorylation levels of AKT isoforms were markedly increased in neutrophils and platelets isolated from patients with sickle cell disease (SCD), an inherited hematological disorder associated with vascular inflammation and occlusion. AKT2 inhibition reduced heterotypic aggregation of neutrophils and platelets isolated from SCD patients and diminished neutrophil adhesion and neutrophil-platelet aggregation in SCD mice, thereby improving blood flow rates. Our results provide evidence that neutrophil AKT2 regulates αMβ2 integrin function and suggest that AKT2 is important for neutrophil recruitment and neutrophil-platelet interactions under thromboinflammatory conditions such as SCD. PMID:24642468

  4. Reverse-migrated neutrophils regulated by JAM-C are involved in acute pancreatitis-associated lung injury.

    PubMed

    Wu, Deqing; Zeng, Yue; Fan, Yuting; Wu, Jianghong; Mulatibieke, Tunike; Ni, Jianbo; Yu, Ge; Wan, Rong; Wang, Xingpeng; Hu, Guoyong

    2016-01-01

    Junctional adhesion molecule-C (JAM-C) plays a key role in the promotion of the reverse transendothelial migration (rTEM) of neutrophils, which contributes to the dissemination of systemic inflammation and to secondary organ damage. During acute pancreatitis (AP), systemic inflammatory responses lead to distant organ damage and typically result in acute lung injury (ALI). Here, we investigated the role of rTEM neutrophils in AP-associated ALI and the molecular mechanisms by which JAM-C regulates neutrophil rTEM in this disorder. In this study, rTEM neutrophils were identified in the peripheral blood both in murine model of AP and human patients with AP, which elevated with increased severity of lung injury. Pancreatic JAM-C was downregulated during murine experimental pancreatitis, whose expression levels were inversely correlated with both increased neutrophil rTEM and severity of lung injury. Knockout of JAM-C resulted in more severe lung injury and systemic inflammation. Significantly greater numbers of rTEM neutrophils were present both in the circulation and pulmonary vascular washout in JAM-C knockout mice with AP. This study demonstrates that during AP, neutrophils that are recruited to the pancreas may migrate back into the circulation and then contribute to ALI. JAM-C downregulation may contribute to AP-associated ALI via promoting neutrophil rTEM. PMID:26841848

  5. Reverse-migrated neutrophils regulated by JAM-C are involved in acute pancreatitis-associated lung injury

    PubMed Central

    Wu, Deqing; Zeng, Yue; Fan, Yuting; Wu, Jianghong; Mulatibieke, Tunike; Ni, Jianbo; Yu, Ge; Wan, Rong; Wang, Xingpeng; Hu, Guoyong

    2016-01-01

    Junctional adhesion molecule-C (JAM-C) plays a key role in the promotion of the reverse transendothelial migration (rTEM) of neutrophils, which contributes to the dissemination of systemic inflammation and to secondary organ damage. During acute pancreatitis (AP), systemic inflammatory responses lead to distant organ damage and typically result in acute lung injury (ALI). Here, we investigated the role of rTEM neutrophils in AP-associated ALI and the molecular mechanisms by which JAM-C regulates neutrophil rTEM in this disorder. In this study, rTEM neutrophils were identified in the peripheral blood both in murine model of AP and human patients with AP, which elevated with increased severity of lung injury. Pancreatic JAM-C was downregulated during murine experimental pancreatitis, whose expression levels were inversely correlated with both increased neutrophil rTEM and severity of lung injury. Knockout of JAM-C resulted in more severe lung injury and systemic inflammation. Significantly greater numbers of rTEM neutrophils were present both in the circulation and pulmonary vascular washout in JAM-C knockout mice with AP. This study demonstrates that during AP, neutrophils that are recruited to the pancreas may migrate back into the circulation and then contribute to ALI. JAM-C downregulation may contribute to AP-associated ALI via promoting neutrophil rTEM. PMID:26841848

  6. Neutrophil lipoxygenase metabolism and adhesive function following acute thermal injury.

    PubMed

    Damtew, B; Marino, J A; Fratianne, R B; Spagnuolo, P J

    1993-02-01

    Leukotrienes, especially leukotriene B4, are important modulators of various neutrophil functions including adherence and chemotaxis. In previous work, we demonstrated that neutrophil adherence to extracellular matrixes was diminished in the acute stages of burn injury. In this study, we demonstrated that neutrophil adhesion to human and bovine endothelium in the baseline state and after stimulation with leukotriene B4 is depressed markedly after burn injury. The defect in stimulated adherence to endothelium was not specific to leukotriene B4 because impaired adhesion was observed with n-formyl-methionyl-leucyl-phenylalanine and ionophore A23187 as well. Moreover, the adherence defect correlated with 95% and 81% decreases in the release of leukotriene B4 and 5-hydroxy-(6E,87,117,147)-eicosatetraenoic acid, respectively, from burn PMN treated with A23187. Burn neutrophils also released proportionately more byproducts of leukotriene B4 omega oxidation, particularly 20-COOH-leukotriene B4, than did control neutrophils. When examined 3 1/2 weeks after injury, abnormalities in neutrophil leukotriene B4 generation and the adherence of burn neutrophils had recovered to near normal values. To determine whether the decreased release of leukotriene B4 from burn neutrophils was due to increased degradation or diminished synthesis of leukotriene B4, we examined the degradation of exogenous tritiated leukotriene B4 as well as the production of leukotriene B4 from tritiated arachidonic acid in neutrophils. Burn neutrophils converted significantly greater quantities of tritiated leukotriene B4 to tritiated 20-COOH-leukotriene B4 and synthesized markedly less tritiated leukotriene B4 from tritiated arachidonic acid than did control neutrophils, suggesting that decreased leukotriene B4 release by burn neutrophils was the result of both enhanced degradation and decreased synthesis.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8381849

  7. Carrageenan-induced inflammation promotes ROS generation and neutrophil extracellular trap formation in a mouse model of peritonitis.

    PubMed

    Barth, Cristiane R; Funchal, Giselle A; Luft, Carolina; de Oliveira, Jarbas R; Porto, Bárbara N; Donadio, Márcio V F

    2016-04-01

    Neutrophil extracellular traps (NETs) are a combination of DNA fibers and granular proteins, such as neutrophil elastase (NE). NETs are released in the extracellular space in response to different stimuli. Carrageenan is a sulfated polysaccharide extracted from Chondrus crispus, a marine algae, used for decades in research for its potential to induce inflammation in different animal models. In this study, we show for the first time that carrageenan injection can induce NET release in a mouse model of acute peritonitis. Carrageenan induced NET release by viable neutrophils with NE and myeloperoxidase (MPO) expressed on DNA fibers. Furthermore, although this polysaccharide was able to stimulate reactive oxygen species (ROS) generation by peritoneal neutrophils, NADPH oxidase derived ROS were dispensable for NET formation by carrageenan. In conclusion, our results show that carrageenan-induced inflammation in the peritoneum of mice can induce NET formation in an ROS-independent manner. These results may add important information to the field of inflammation and potentially lead to novel anti-inflammatory agents targeting the production of NETs. PMID:26786873

  8. Neutrophils Are a Source of Gamma Interferon during Acute Salmonella enterica Serovar Typhimurium Colitis

    PubMed Central

    Spees, Alanna M.; Kingsbury, Dawn D.; Wangdi, Tamding; Xavier, Mariana N.; Tsolis, Renée M.

    2014-01-01

    Gamma interferon (IFN-γ) is an important driver of intestinal inflammation during colitis caused by Salmonella enterica serovar Typhimurium. Here we used the mouse colitis model to investigate the cellular sources of IFN-γ in the cecal mucosa during the acute phase of an S. Typhimurium infection. While IFN-γ staining was detected in T cells, NK cells, and inflammatory monocytes at 2 days after infection, the majority of IFN-γ-positive cells in the cecal mucosa were neutrophils. Furthermore, neutrophil depletion blunted mucosal Ifng expression and reduced the severity of intestinal lesions during S. Typhimurium infection. We conclude that neutrophils are a prominent cellular source of IFN-γ during the innate phase of S. Typhimurium-induced colitis. PMID:24421037

  9. Proteinase 3–dependent caspase-3 cleavage modulates neutrophil death and inflammation

    PubMed Central

    Loison, Fabien; Zhu, Haiyan; Karatepe, Kutay; Kasorn, Anongnard; Liu, Peng; Ye, Keqiang; Zhou, Jiaxi; Cao, Shannan; Gong, Haiyan; Jenne, Dieter E.; Remold-O’Donnell, Eileen; Xu, Yuanfu; Luo, Hongbo R.

    2014-01-01

    Caspase-3–mediated spontaneous death in neutrophils is a prototype of programmed cell death and is critical for modulating physiopathological inflammatory responses; however, the underlying regulatory pathways remain ill defined. Here we determined that in aging neutrophils, the cleavage and activation of caspase-3 is independent of the canonical caspase-8– or caspase-9–mediated pathway. Instead, caspase-3 activation was mediated by serine protease proteinase 3 (PR3), which is present in the cytosol of aging neutrophils. Specifically, PR3 cleaved procaspase-3 at a site upstream of the canonical caspase-9 cleavage site. In mature neutrophils, PR3 was sequestered in granules and released during aging via lysosomal membrane permeabilization (LMP), leading to procaspase-3 cleavage and apoptosis. Pharmacological inhibition or knockdown of PR3 delayed neutrophil death in vitro and consistently delayed neutrophil death and augmented neutrophil accumulation at sites of inflammation in a murine model of peritonitis. Adoptive transfer of both WT and PR3-deficient neutrophils revealed that the delayed death of neutrophils lacking PR3 is due to an altered intrinsic apoptosis/survival pathway, rather than the inflammatory microenvironment. The presence of the suicide protease inhibitor SERPINB1 counterbalanced the protease activity of PR3 in aging neutrophils, and deletion of Serpinb1 accelerated neutrophil death. Taken together, our results reveal that PR3-mediated caspase-3 activation controls neutrophil spontaneous death. PMID:25180606

  10. Neutrophilic oxidative stress mediates organic dust-induced pulmonary inflammation and airway hyperresponsiveness.

    PubMed

    McGovern, Toby K; Chen, Michael; Allard, Benoit; Larsson, Kjell; Martin, James G; Adner, Mikael

    2016-01-15

    Airway exposure to organic dust (OD) from swine confinement facilities induces airway inflammation dominated by neutrophils and airway hyperresponsiveness (AHR). One important neutrophilic innate defense mechanism is the induction of oxidative stress. Therefore, we hypothesized that neutrophils exacerbate airway dysfunction following OD exposure by increasing oxidant burden. BALB/C mice were given intranasal challenges with OD or PBS (1/day for 3 days). Mice were untreated or treated with a neutrophil-depleting antibody, anti-Ly6G, or the antioxidant dimethylthiourea (DMTU) prior to OD exposure. Twenty-four hours after the final exposure, we measured airway responsiveness in response to methacholine (MCh) and collected bronchoalveolar lavage fluid to assess pulmonary inflammation and total antioxidant capacity. Lung tissue was harvested to examine the effect of OD-induced antioxidant gene expression and the effect of anti-Ly6G or DMTU. OD exposure induced a dose-dependent increase of airway responsiveness, a neutrophilic pulmonary inflammation, and secretion of keratinocyte cytokine. Depletion of neutrophils reduced OD-induced AHR. DMTU prevented pulmonary inflammation involving macrophages and neutrophils. Neutrophil depletion and DMTU were highly effective in preventing OD-induced AHR affecting large, conducting airways and tissue elastance. OD induced an increase in total antioxidant capacity and mRNA levels of NRF-2-dependent antioxidant genes, effects that are prevented by administration of DMTU and neutrophil depletion. We conclude that an increase in oxidative stress and neutrophilia is critical in the induction of OD-induced AHR. Prevention of oxidative stress diminishes neutrophil influx and AHR, suggesting that mechanisms driving OD-induced AHR may be dependent on neutrophil-mediated oxidant pathways. PMID:26545900

  11. The dynamics of acute inflammation

    NASA Astrophysics Data System (ADS)

    Kumar, Rukmini

    The acute inflammatory response is the non-specific and immediate reaction of the body to pathogenic organisms, tissue trauma and unregulated cell growth. An imbalance in this response could lead to a condition commonly known as "shock" or "sepsis". This thesis is an attempt to elucidate the dynamics of acute inflammatory response to infection and contribute to its systemic understanding through mathematical modeling and analysis. The models of immunity discussed use Ordinary Differential Equations (ODEs) to model the variation of concentration in time of the various interacting species. Chapter 2 discusses three such models of increasing complexity. Sections 2.1 and 2.2 discuss smaller models that capture the core features of inflammation and offer general predictions concerning the design of the system. Phase-space and bifurcation analyses have been used to examine the behavior at various parameter regimes. Section 2.3 discusses a global physiological model that includes several equations modeling the concentration (or numbers) of cells, cytokines and other mediators. The conclusions drawn from the reduced and detailed models about the qualitative effects of the parameters are very similar and these similarities have also been discussed. In Chapter 3, the specific applications of the biologically detailed model are discussed in greater detail. These include a simulation of anthrax infection and an in silico simulation of a clinical trial. Such simulations are very useful to biologists and could prove to be invaluable tools in drug design. Finally, Chapter 4 discusses the general problem of extinction of populations modeled as continuous variables in ODES is discussed. The average time to extinction and threshold are estimated based on analyzing the equivalent stochastic processes.

  12. Helicobacter pylori neutrophil activating protein as target for new drugs against H. pylori inflammation

    PubMed Central

    Choli-Papadopoulou, Theodora; Kottakis, Filippos; Papadopoulos, Georgios; Pendas, Stefanos

    2011-01-01

    Helicobacter pylori (H. pylori) infection is among the most common human infections and the major risk factor for peptic ulcer disease and gastric cancer. Within this work we present the implication of C-terminal region of H. pylori neutrophil activating protein in the stimulation of neutrophil activation as well as the evidence that the C-terminal region of H. pylori activating protein is indispensable for neutrophil adhesion to endothelial cells, a step necessary to H. pylori inflammation. In addition we show that arabino galactan proteins derived from chios mastic gum, the natural resin of the plant Pistacia lentiscus var. Chia inhibit neutrophil activation in vitro. PMID:21677824

  13. Resolution of Acute Inflammation In The Lung

    PubMed Central

    Levy, Bruce D.; Serhan, Charles N.

    2015-01-01

    Acute inflammation in the lung is essential to health. So too is its resolution. In response to invading microbes, noxious stimuli or tissue injury, an acute inflammatory response is mounted to protect the host. To limit inflammation and prevent collateral injury of healthy, uninvolved tissue, the lung orchestrates the formation of specialized pro-resolving mediators, specifically lipoxins, resolvins, protectins and maresins. These immunoresolvents are agonists for resolution that interact with specific receptors on leukocytes and structural cells to blunt further inflammation and promote catabasis. This process appears to be defective in several common lung diseases that are characterized by excess or chronic inflammation. Here, we review the molecular and cellular effectors of resolution of acute inflammation in the lung. PMID:24313723

  14. Resolution of acute inflammation in the lung.

    PubMed

    Levy, Bruce D; Serhan, Charles N

    2014-01-01

    Acute inflammation in the lung is essential to health. So too is its resolution. In response to invading microbes, noxious stimuli, or tissue injury, an acute inflammatory response is mounted to protect the host. To limit inflammation and prevent collateral injury of healthy, uninvolved tissue, the lung orchestrates the formation of specialized proresolving mediators, specifically lipoxins, resolvins, protectins, and maresins. These immunoresolvents are agonists for resolution that interact with specific receptors on leukocytes and structural cells to blunt further inflammation and promote catabasis. This process appears to be defective in several common lung diseases that are characterized by excess or chronic inflammation. Here, we review the molecular and cellular effectors of resolution of acute inflammation in the lung. PMID:24313723

  15. Whole blood human neutrophil trafficking in a microfluidic model of infection and inflammation.

    PubMed

    Hamza, Bashar; Irimia, Daniel

    2015-06-21

    Appropriate inflammatory responses to wounds and infections require adequate numbers of neutrophils arriving at injury sites. Both insufficient and excessive neutrophil recruitment can be detrimental, favouring systemic spread of microbes or triggering severe tissue damage. Despite its importance in health and disease, the trafficking of neutrophils through tissues remains difficult to control and the mechanisms regulating it are insufficiently understood. These mechanisms are also complex and difficult to isolate using traditional in vivo models. Here we designed a microfluidic model of tissue infection/inflammation, in which human neutrophils emerge from a droplet-size samples of whole blood and display bi-directional traffic between this and micro-chambers containing chemoattractant and microbe-like particles. Two geometrical barriers restrict the entrance of red blood cells from the blood to the micro-chambers and simulate the mechanical function of the endothelial barrier separating the cells in blood from cells in tissues. We found that in the presence of chemoattractant, the number of neutrophils departing the chambers by retrotaxis is in dynamic equilibrium with the neutrophils recruited by chemotaxis. We also found that in the presence of microbe-like particles, the number of neutrophils trapped in the chambers is proportional to the number of particles. Together, the dynamic equilibrium between migration, reversed-migration and trapping processes determine the optimal number of neutrophils at a site. These neutrophils are continuously refreshed and responsive to the number of microbes. Further studies using this infection-inflammation-on-a-chip-model could help study the processes of inflammation resolution. The new in vitro experimental tools may also eventually help testing new therapeutic strategies to limit neutrophil accumulation in tissues during chronic inflammation, without increasing the risk for infections. PMID:25987163

  16. Suppressed neutrophil function in children with acute lymphoblastic leukemia.

    PubMed

    Tanaka, Fumiko; Goto, Hiroaki; Yokosuka, Tomoko; Yanagimachi, Masakatsu; Kajiwara, Ryosuke; Naruto, Takuya; Nishimaki, Shigeru; Yokota, Shumpei

    2009-10-01

    Infection is a major obstacle in cancer chemotherapy. Neutropenia has been considered to be the most important risk factor for severe infection; however, other factors, such as impaired neutrophil function, may be involved in susceptibility to infection in patients undergoing chemotherapy. In this study, we analyzed neutrophil function in children with acute lymphoblastic leukemia (ALL). Whole blood samples were obtained from 16 children with ALL at diagnosis, after induction chemotherapy, and after consolidation chemotherapy. Oxidative burst and phagocytic activity of neutrophils were analyzed by flow cytometry. Oxidative burst of neutrophils was impaired in ALL patients. The percentage of neutrophils with normal oxidative burst after PMA stimulation was 59.0 +/- 13.2 or 70.0 +/- 21.0% at diagnosis or after induction chemotherapy, respectively, which was significantly lower compared with 93.8 +/- 6.1% in healthy control subjects (P = 0.00004, or 0.002, respectively); however, this value was normal after consolidation chemotherapy. No significant differences were noted in phagocytic activity in children with ALL compared with healthy control subjects. Impaired oxidative burst of neutrophils may be one risk factor for infections in children with ALL, especially in the initial periods of treatment. PMID:19728023

  17. Phagocyte respiratory burst activates macrophage erythropoietin signalling to promote acute inflammation resolution.

    PubMed

    Luo, Bangwei; Wang, Jinsong; Liu, Zongwei; Shen, Zigang; Shi, Rongchen; Liu, Yu-Qi; Liu, Yu; Jiang, Man; Wu, Yuzhang; Zhang, Zhiren

    2016-01-01

    Inflammation resolution is an active process, the failure of which causes uncontrolled inflammation which underlies many chronic diseases. Therefore, endogenous pathways that regulate inflammation resolution are fundamental and of wide interest. Here, we demonstrate that phagocyte respiratory burst-induced hypoxia activates macrophage erythropoietin signalling to promote acute inflammation resolution. This signalling is activated following acute but not chronic inflammation. Pharmacological or genetical inhibition of the respiratory burst suppresses hypoxia and macrophage erythropoietin signalling. Macrophage-specific erythropoietin receptor-deficient mice and chronic granulomatous disease (CGD) mice, which lack the capacity for respiratory burst, display impaired inflammation resolution, and exogenous erythropoietin enhances this resolution in WT and CGD mice. Mechanistically, erythropoietin increases macrophage engulfment of apoptotic neutrophils via PPARγ, promotes macrophage removal of debris and enhances macrophage migration to draining lymph nodes. Together, our results provide evidences of an endogenous pathway that regulates inflammation resolution, with important implications for treating inflammatory conditions. PMID:27397585

  18. Neutrophils confer T cell resistance to myeloid-derived suppressor cell-mediated suppression to promote chronic inflammation.

    PubMed

    Ryan, Sean O; Johnson, Jenny L; Cobb, Brian A

    2013-05-15

    Low-grade chronic inflammation can persist in aging humans unnoticed for years or even decades, inflicting continuous damage that can culminate later in life as organ dysfunction, physical frailty, and some of the most prominent debilitating and deadly age-associated diseases, including rheumatoid arthritis, diabetes, heart disease, and cancer. Despite the near universal acceptance of these associations, the mechanisms underlying unresolved inflammation remain poorly understood. In this study, we describe a novel inducible method to examine systemic chronic inflammation using susceptible animal models. Induced inflammation results in unresolved innate cellular responses and persistence of the same serum proinflammatory molecules used as diagnostic biomarkers and therapeutic targets for chronic inflammation in humans. Surprisingly, we found long-term persistence of an inflammation-associated neutrophil cell population constitutively producing the proinflammatory IFN-γ cytokine, which until now has only been detected transiently in acute inflammatory responses. Interestingly, these cells appear to confer T cell resistance to the otherwise potent anti-inflammatory function of myeloid-derived suppressor cells, revealing a novel mechanism for the maintenance of chronic inflammatory responses over time. This discovery represents an attractive target to resolve inflammation and prevent the inflammation-induced pathologies that are of critical concern for the well-being of the aging population. PMID:23576679

  19. Lung Neutrophilia in Myeloperoxidase Deficient Mice during the Course of Acute Pulmonary Inflammation.

    PubMed

    Kremserova, Silvie; Perecko, Tomas; Soucek, Karel; Klinke, Anna; Baldus, Stephan; Eiserich, Jason P; Kubala, Lukas

    2016-01-01

    Systemic inflammation accompanying diseases such as sepsis affects primarily lungs and induces their failure. This remains the most common cause of sepsis induced mortality. While neutrophils play a key role in pulmonary failure, the mechanisms remain incompletely characterized. We report that myeloperoxidase (MPO), abundant enzyme in neutrophil granules, modulates the course of acute pulmonary inflammatory responses induced by intranasal application of lipopolysaccharide. MPO deficient mice had significantly increased numbers of airway infiltrated neutrophils compared to wild-type mice during the whole course of lung inflammation. This was accompanied by higher levels of RANTES in bronchoalveolar lavage fluid from the MPO deficient mice. Other markers of lung injury and inflammation, which contribute to recruitment of neutrophils into the inflamed lungs, including total protein and other selected proinflammatory cytokines did not significantly differ in bronchoalveolar lavage fluid from the wild-type and the MPO deficient mice. Interestingly, MPO deficient neutrophils revealed a decreased rate of cell death characterized by phosphatidylserine surface expression. Collectively, the importance of MPO in regulation of pulmonary inflammation, independent of its putative microbicidal functions, can be potentially linked to MPO ability to modulate the life span of neutrophils and to affect accumulation of chemotactic factors at the inflammatory site. PMID:26998194

  20. Lung Neutrophilia in Myeloperoxidase Deficient Mice during the Course of Acute Pulmonary Inflammation

    PubMed Central

    Kremserova, Silvie; Perecko, Tomas; Soucek, Karel; Klinke, Anna; Baldus, Stephan; Eiserich, Jason P.; Kubala, Lukas

    2016-01-01

    Systemic inflammation accompanying diseases such as sepsis affects primarily lungs and induces their failure. This remains the most common cause of sepsis induced mortality. While neutrophils play a key role in pulmonary failure, the mechanisms remain incompletely characterized. We report that myeloperoxidase (MPO), abundant enzyme in neutrophil granules, modulates the course of acute pulmonary inflammatory responses induced by intranasal application of lipopolysaccharide. MPO deficient mice had significantly increased numbers of airway infiltrated neutrophils compared to wild-type mice during the whole course of lung inflammation. This was accompanied by higher levels of RANTES in bronchoalveolar lavage fluid from the MPO deficient mice. Other markers of lung injury and inflammation, which contribute to recruitment of neutrophils into the inflamed lungs, including total protein and other selected proinflammatory cytokines did not significantly differ in bronchoalveolar lavage fluid from the wild-type and the MPO deficient mice. Interestingly, MPO deficient neutrophils revealed a decreased rate of cell death characterized by phosphatidylserine surface expression. Collectively, the importance of MPO in regulation of pulmonary inflammation, independent of its putative microbicidal functions, can be potentially linked to MPO ability to modulate the life span of neutrophils and to affect accumulation of chemotactic factors at the inflammatory site. PMID:26998194

  1. An aqueous pomegranate peel extract inhibits neutrophil myeloperoxidase in vitro and attenuates lung inflammation in mice.

    PubMed

    Bachoual, Rafik; Talmoudi, Wifak; Boussetta, Tarek; Braut, Françoise; El-Benna, Jamel

    2011-06-01

    Punica granatum peel aqueous extract (PGE) is widely used to treat disorders such as inflammation, ulcers and infections, but its pharmacological target is not known. In this study we investigated the effect of PGE on human neutrophil reactive oxygen species (ROS) production in vitro and on LPS-induced lung inflammation in vivo in mice. Neutrophils were isolated and ROS generation was measured by luminol-amplified chemiluminescence. Superoxide anion generation was detected by the cytochrome c reduction assay. H(2)O(2) was detected by DCFH fluorescence assay. Myeloperoxidase (MPO) activity was measured by the tetramethyl benzidine oxidation method. Lung inflammation was induced in mice by LPS instillation. PGE inhibited luminol-amplified chemiluminescence of resting neutrophils and N-formyl-methionyl-leucyl-phenylalanine (fMLF)- or phorbol myristate acetate (PMA)-stimulated neutrophils, in a concentration-dependent manner. PGE had no effect on superoxide anion generation, suggesting that it does not directly inhibit NADPH oxidase activity or activation pathways, or scavenge superoxide anions. PGE did not scavenge H(2)O(2) but directly inhibited myeloperoxidase activity in vitro. In vivo studies showed that PGE also attenuated LPS-induced lung inflammation in mice. So this study reveals that PGE inhibits neutrophil MPO activity and attenuates LPS-induced lung inflammation in mice. Inhibition of MPO activity by PGE could explain its anti-inflammatory action. PMID:21376769

  2. Nutrition, Inflammation, and Acute Pancreatitis

    PubMed Central

    Petrov, Max

    2013-01-01

    Acute pancreatitis is acute inflammatory disease of the pancreas. Nutrition has a number of anti-inflammatory effects that could affect outcomes of patients with pancreatitis. Further, it is the most promising nonspecific treatment modality in acute pancreatitis to date. This paper summarizes the best available evidence regarding the use of nutrition with a view of optimising clinical management of patients with acute pancreatitis. PMID:24490104

  3. Sulphonamides as anti-inflammatory agents: old drugs for new therapeutic strategies in neutrophilic inflammation?

    PubMed

    Ottonello, L; Dapino, P; Scirocco, M C; Balbi, A; Bevilacqua, M; Dallegri, F

    1995-03-01

    1. It is well known that neutrophils act as mediators of tissue injury in a variety of inflammatory diseases. Their histotoxic activity is presently thought to involve proteinases and oxidants, primarily hypochlorous acid (HOCl). This oxidant is also capable of inactivating the specific inhibitor of neutrophil elastase (alpha 1-antitrypsin), thereby favouring digestion of the connective matrix. 2. In the present work, we found that sulphanilamide and some sulphanilamide-related anti-inflammatory drugs such as dapsone, nimesulide and sulphapyridine reduce the availability of HOCl in the extracellular microenvironment of activated neutrophils and prevent the inactivation of alpha 1-antitrypsin by these cells in a dose-dependent manner. The ability of each drug to prevent alpha 1-antitrypsin from inactivation by neutrophils correlates significantly with its capacity to reduce the recovery of HOCl from neutrophils. Five other non-steroidal anti-inflammatory drugs were completely ineffective. 3. Therefore, sulphanilamide-related drugs, i.e. dapsone, nimesulide and sulphapyridine, have the potential to reduce the bioavailability of neutrophil-derived HOCl and, in turn, to favour the alpha 1-antitrypsin-dependent control of neutrophil elastolytic activity. These drugs appear as a well-defined group of agents which are particularly prone to attenuate neutrophil histotoxicity. They can also be viewed as a previously unrecognized starting point for the development of new compounds in order to plan rational therapeutic strategies for controlling tissue injury during neutrophilic inflammation. PMID:7736703

  4. [Role of neutrophil-derived reactive oxygen species in host defense and inflammation].

    PubMed

    Aratani, Yasuaki; Miura, Noriko; Ohno, Naohito; Suzuki, Kazuo

    2012-01-01

    Neutrophil accumulation is a critical event in the pathogenesis of inflammation. The generation of hypochlorous acid by myeloperoxidase (MPO) in neutrophils is crucial to the host defense response. MPO-deficient (MPO-KO) mice showed severely reduced cytotoxicity to Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans and other microorganisms, demonstrating that an MPO-dependent oxidative system is important for in vivo host defense against fungi. On the other hand, impaired reactive oxygen species (ROS) production by neutrophils has previously been shown to cause an abnormal inflammatory response. In the present study, we have found that MPO-KO mice exhibit more severe pulmonary inflammation than wild-type mice when challenged with an intranasal administration of zymosan. In addition to measuring the kinetics of neutrophil accumulation, we also measured the production of macrophage inflammatory protein-2 (MIP-2) in the lung, and we correlate the degree of neutrophil accumulation with the production of this mediator. Our results demonstrate that MPO regulates the production of MIP-2, which may modulate neutrophil accumulation during lung inflammation. PMID:22728595

  5. Synthesis and biological evaluation of neutrophilic inflammation inhibitors.

    PubMed

    Bruno, Olga; Brullo, Chiara; Arduino, Nicoletta; Schenone, Silvia; Ranise, Angelo; Bondavalli, Francesco; Ottonello, Luciano; Dapino, Patrizia; Dallegri, Franco

    2004-03-01

    In several non-infectious human diseases, such as ulcerous colitis, rheumatoid arthritis, chronic obstructive pulmonary disease (COPD), the extravasal recruitment of neutrophils plays a crucial role in the development of tissue damage, which, when persistent, can lead to the irreversible organ dysfunction. The neutrophil activation is controlled by a number of intracellular pathways, particularly by a cAMP-dependent protein kinase A (PKA) which also acts on phosphodiesterase IV (PDE4) gene stimulating the synthesis of this enzyme, able to transform cAMP to inactive AMP. PDE4 inhibitors enhance intracellular cAMP and decrease inflammatory cell activation. Several 3-cyclopentyloxy-4-methoxybenzaldehyde and 3-cyclopentyloxy-4-methoxybenzoic acid derivatives were synthesized and studied by us to evaluate their ability to inhibit the superoxide anion production in human neutrophils. These compounds were found able to inhibit the neutrophil activation and some of them increased the cAMP level on tumor necrosis factor-alpha-stimulated neutrophils. Moreover, they also inhibited selectively the human PDE4 enzyme, although they are less potent than the reference compound Rolipram. We report here synthesis, biological studies and some SAR considerations concerning the above mentioned compounds. PMID:14987986

  6. Orai1 controls C5a-induced neutrophil recruitment in inflammation.

    PubMed

    Sogkas, Georgios; Vögtle, Timo; Rau, Eduard; Gewecke, Britta; Stegner, David; Schmidt, Reinhold E; Nieswandt, Bernhard; Gessner, J Engelbert

    2015-07-01

    Stromal interaction molecule 1 (STIM1)-dependent store operated calcium-entry (SOCE) through Orai1-mediated calcium (Ca(2+) ) influx is considered a major pathway of Ca(2+) signaling, serving T-cell, mast cell, and platelet responses. Here, we show that Orai1 is critical for neutrophil function. Orai1-deficient neutrophils present defects in fMLP and complement C5a-induced Ca(2+) influx and migration, although they respond normally to another chemoattractant, CXCL2. Up until now, no specific contribution of Orai1 independent from STIM1 or SOCE has been recognized in immune cells. Here, we observe that Orai1-deficient neutrophils exhibit normal STIM1-dependent SOCE and STIM1-deficient neutrophils respond to fMLP and C5a efficiently. Despite substantial cytokine production, Orai1(-/-) chimeric mice show impaired neutrophil recruitment in LPS-induced peritonitis. Moreover, Orai1 deficiency results in profoundly defective C5a-triggered neutrophil lung recruitment in hypersensitivity pneumonitis. Comparative evaluation of inflammation in Stim1(-/-) chimeras reveals a distinct pathogenic contribution of STIM1, including its involvement in IgG-induced C5a production. Our data establish Orai1 as key signal mediator of C5aR activation, contributing to inflammation by a STIM1-independent pathway of Ca(2+) -influx in neutrophils. PMID:25912155

  7. Inflammation: a trigger for acute coronary syndrome.

    PubMed

    Sager, Hendrik B; Nahrendorf, Matthias

    2016-09-01

    Atherosclerosis is a chronic inflammatory disease of the vessel wall and a major cause of death worldwide. One of atherosclerosis' most dreadful complications are acute coronary syndromes that comprise ST-segment elevation myocardial infarction, non-ST-segment elevation myocardial infarction, and unstable angina. We now understand that inflammation substantially contributes to the initiation, progression, and destabilization of atherosclerosis. In this review, we will focus on the role of inflammatory leukocytes, which are the cellular protagonists of vascular inflammation, in triggering disease progression and, ultimately, the destabilization that causes acute coronary syndromes. PMID:27273431

  8. Fenofibrate Attenuates Neutrophilic Inflammation in Airway Epithelia: Potential Drug Repurposing for Cystic Fibrosis.

    PubMed

    Stolarz, Amanda J; Farris, Ryan A; Wiley, Charla A; O'Brien, Catherine E; Price, Elvin T

    2015-12-01

    A hallmark of cystic fibrosis (CF) lung disease is neutrophilic airway inflammation. Elevated neutrophil counts have been associated with decreased forced expiratory volume in 1 second and poor clinical measures in patients with CF. Interleukin 8 (IL-8), epithelial neutrophil activating protein 78 (ENA-78), tumor necrosis factor alpha (TNF-α), granulocyte macrophage colony-stimulating factor (GM-CSF), and granulocyte colony-stimulating factor (G-CSF) contribute to neutrophil activation and disease pathogenesis in the airways of patients with CF. Drugs that modify the production of these chemokines in the airways could potentially benefit CF patients. Thus, we determined the effects of fenofibrate on their production in cell populations obtained from the airways. Human small airway epithelial cells and CF bronchial epithelial cells were treated with IL-1β to induce inflammation. We cotreated the cells with fenofibrate at concentrations ranging from 10 to 50 μM to determine if this drug could attenuate the inflammation. IL-8, ENA-78, TNF-α, GM-CSF, and G-CSF production were measured from the cell culture supernates by ELISA. ANOVA statistical testing was conducted using SPSS 17.0. IL-1β increased the production of each of the chemokines by several fold. Fenofibrate reduced IL-1β induced production of each of these neutrophilic chemokines at the concentrations used. IL-1β increases the production of neutrophilic chemokines in airway epithelial cells. Cotreatment with fenofibrate blunts these processes. Fenofibrate should be explored as a therapeutic option to modulate the abundant neutrophilic inflammation observed in CF. PMID:26258991

  9. Human resistin promotes neutrophil proinflammatory activation and neutrophil extracellular trap formation and increases severity of acute lung injury.

    PubMed

    Jiang, Shaoning; Park, Dae Won; Tadie, Jean-Marc; Gregoire, Murielle; Deshane, Jessy; Pittet, Jean Francois; Abraham, Edward; Zmijewski, Jaroslaw W

    2014-05-15

    Although resistin was recently found to modulate insulin resistance in preclinical models of type II diabetes and obesity, recent studies also suggested that resistin has proinflammatory properties. We examined whether the human-specific variant of resistin affects neutrophil activation and the severity of LPS-induced acute lung injury. Because human and mouse resistin have distinct patterns of tissue distribution, experiments were performed using humanized resistin mice that exclusively express human resistin (hRTN(+/-)(/-)) but are deficient in mouse resistin. Enhanced production of TNF-α or MIP-2 was found in LPS-treated hRtn(+/-/-) neutrophils compared with control Rtn(-/-/-) neutrophils. Expression of human resistin inhibited the activation of AMP-activated protein kinase, a major sensor and regulator of cellular bioenergetics that also is implicated in inhibiting inflammatory activity of neutrophils and macrophages. In addition to the ability of resistin to sensitize neutrophils to LPS stimulation, human resistin enhanced neutrophil extracellular trap formation. In LPS-induced acute lung injury, humanized resistin mice demonstrated enhanced production of proinflammatory cytokines, more severe pulmonary edema, increased neutrophil extracellular trap formation, and elevated concentration of the alarmins HMGB1 and histone 3 in the lungs. Our results suggest that human resistin may play an important contributory role in enhancing TLR4-induced inflammatory responses, and it may be a target for future therapies aimed at reducing the severity of acute lung injury and other inflammatory situations in which neutrophils play a major role. PMID:24719460

  10. Neutrophil-derived alpha defensins control inflammation by inhibiting macrophage mRNA translation.

    PubMed

    Brook, Matthew; Tomlinson, Gareth H; Miles, Katherine; Smith, Richard W P; Rossi, Adriano G; Hiemstra, Pieter S; van 't Wout, Emily F A; Dean, Jonathan L E; Gray, Nicola K; Lu, Wuyuan; Gray, Mohini

    2016-04-19

    Neutrophils are the first and most numerous cells to arrive at the site of an inflammatory insult and are among the first to die. We previously reported that alpha defensins, released from apoptotic human neutrophils, augmented the antimicrobial capacity of macrophages while also inhibiting the biosynthesis of proinflammatory cytokines. In vivo, alpha defensin administration protected mice from inflammation, induced by thioglychollate-induced peritonitis or following infection withSalmonella entericaserovar Typhimurium. We have now dissected the antiinflammatory mechanism of action of the most abundant neutrophil alpha defensin, Human Neutrophil Peptide 1 (HNP1). Herein we show that HNP1 enters macrophages and inhibits protein translation without inducing the unfolded-protein response or affecting mRNA stability. In a cell-free in vitro translation system, HNP1 powerfully inhibited both cap-dependent and cap-independent mRNA translation while maintaining mRNA polysomal association. This is, to our knowledge, the first demonstration of a peptide released from one cell type (neutrophils) directly regulating mRNA translation in another (macrophages). By preventing protein translation, HNP1 functions as a "molecular brake" on macrophage-driven inflammation, ensuring both pathogen clearance and the resolution of inflammation with minimal bystander tissue damage. PMID:27044108

  11. Contributions of neutrophils to the adaptive immune response in autoimmune disease

    PubMed Central

    Pietrosimone, Kathryn M; Liu, Peng

    2016-01-01

    Neutrophils are granulocytic cytotoxic leukocytes of the innate immune system that activate during acute inflammation. Neutrophils can also persist beyond the acute phase of inflammation to impact the adaptive immune response during chronic inflammation. In the context of the autoimmune disease, neutrophils modulating T and B cell functions by producing cytokines and chemokines, forming neutrophil extracellular traps, and acting as or priming antigen presentation cells. Thus, neutrophils are actively involved in chronic inflammation and tissue damage in autoimmune disease. Using rheumatoid arthritis as an example, this review focuses on functions of neutrophils in adaptive immunity and the therapeutic potential of these cells in the treatment of autoimmune disease and chronic inflammation. PMID:27042404

  12. Carthami Flos suppresses neutrophilic lung inflammation in mice, for which nuclear factor-erythroid 2-related factor-1 is required.

    PubMed

    Kim, Jeehye; Woo, Juyoun; Lyu, Ji Hyo; Song, Hyuk-Hwan; Jeong, Han-Sol; Ha, Ki-Tae; Choi, Jun-Yong; Han, Chang Woo; Ahn, Kyung-Seop; Oh, Sei-Ryang; Sadikot, Ruxana T; Kim, Kyun Ha; Joo, Myungsoo

    2014-03-15

    Carthami Flos (CF) is used in traditional Asian medicine to treat blood stagnation and its associated diseases in patients. While the underlying mechanism for this effect remains unknown, CF has been reported to activate Nrf2, a transcription factor that is critical in protecting from various inflammatory lung diseases including acute lung injury (ALI). Here, we examined whether CF has a therapeutic effect on lung inflammation and assessed the impact of Nrf2 on the effect of CF using an ALI mouse model. Treatment of bone marrow derived macrophages with standardized aqueous extract of CF (AECF) activated Nrf2, resulting in the expression of Nrf2 dependent genes including GCLC, NQO-1 and HO-1. While intranasal LPS treatment of wild type mice resulted in neutrophilic infiltration and a concomitant expression of pro-inflammatory cytokine genes in the lung, the hallmarks of ALI, an intratracheal spraying of AECF to the lung 2h after LPS treatment suppressed the inflammatory response. By contrast, similar treatment in nrf2(-/-) mice with AECF failed to attenuate the inflammatory response. Thus, our results show that AECF attenuated neutrophilic lung inflammation in mice, which required Nrf2. Since AECF administration abrogates lung inflammation after LPS treatment, we propose CF as a potential therapeutics in the management of ALI. PMID:24252335

  13. CAPing inflammation and acute kidney injury.

    PubMed

    Inoue, Tsuyoshi; Rosin, Diane L; Okusa, Mark D

    2016-09-01

    The cholinergic anti-inflammatory pathway has been shown to modulate inflammation in disease models such as rheumatoid arthritis and inflammatory bowel disease. A recent study demonstrated a protective effect of vagus nerve stimulation with activation of the cholinergic anti-inflammatory pathway in the ischemia reperfusion model of acute kidney injury. PMID:27521104

  14. Serum and glucocorticoid-regulated kinase 1 regulates neutrophil clearance during inflammation resolution.

    PubMed

    Burgon, Joseph; Robertson, Anne L; Sadiku, Pranvera; Wang, Xingang; Hooper-Greenhill, Edward; Prince, Lynne R; Walker, Paul; Hoggett, Emily E; Ward, Jonathan R; Farrow, Stuart N; Zuercher, William J; Jeffrey, Philip; Savage, Caroline O; Ingham, Philip W; Hurlstone, Adam F; Whyte, Moira K B; Renshaw, Stephen A

    2014-02-15

    The inflammatory response is integral to maintaining health by functioning to resist microbial infection and repair tissue damage. Large numbers of neutrophils are recruited to inflammatory sites to neutralize invading bacteria through phagocytosis and the release of proteases and reactive oxygen species into the extracellular environment. Removal of the original inflammatory stimulus must be accompanied by resolution of the inflammatory response, including neutrophil clearance, to prevent inadvertent tissue damage. Neutrophil apoptosis and its temporary inhibition by survival signals provides a target for anti-inflammatory therapeutics, making it essential to better understand this process. GM-CSF, a neutrophil survival factor, causes a significant increase in mRNA levels for the known anti-apoptotic protein serum and glucocorticoid-regulated kinase 1 (SGK1). We have characterized the expression patterns and regulation of SGK family members in human neutrophils and shown that inhibition of SGK activity completely abrogates the antiapoptotic effect of GM-CSF. Using a transgenic zebrafish model, we have disrupted sgk1 gene function and shown this specifically delays inflammation resolution, without altering neutrophil recruitment to inflammatory sites in vivo. These data suggest SGK1 plays a key role in regulating neutrophil survival signaling and thus may prove a valuable therapeutic target for the treatment of inflammatory disease. PMID:24431232

  15. Serum and Glucocorticoid Regulated Kinase 1 (SGK1) Regulates Neutrophil Clearance During Inflammation Resolution

    PubMed Central

    Burgon, Joseph; Robertson, Anne L.; Sadiku, Pranvera; Wang, Xingang; Hooper-Greenhill, Edward; Prince, Lynne R.; Walker, Paul; Hoggett, Emily E.; Ward, Jonathan R.; Farrow, Stuart N.; Zuercher, William J.; Jeffrey, Philip; Savage, Caroline O.; Ingham, Philip W.; Hurlstone, Adam F.; Whyte, Moira K. B.; Renshaw, Stephen A.

    2013-01-01

    The inflammatory response is integral to maintaining health, by functioning to resist microbial infection and repair tissue damage. Large numbers of neutrophils are recruited to inflammatory sites to neutralise invading bacteria through phagocytosis and the release of proteases and reactive oxygen species into the extracellular environment. Removal of the original inflammatory stimulus must be accompanied by resolution of the inflammatory response, including neutrophil clearance, to prevent inadvertent tissue damage. Neutrophil apoptosis and its temporary inhibition by survival signals provides a target for anti-inflammatory therapeutics, making it essential to better understand this process. GM-CSF, a neutrophil survival factor, causes a significant increase in mRNA levels for the known anti-apoptotic protein Serum and Glucocorticoid Regulated Kinase 1 (SGK1). We have characterised the expression patterns and regulation of SGK family members in human neutrophils, and shown that inhibition of SGK activity completely abrogates the anti-apoptotic effect of GM-CSF. Using a transgenic zebrafish model, we have disrupted sgk1 gene function and shown this specifically delays inflammation resolution, without altering neutrophil recruitment to inflammatory sites in vivo. These data suggest SGK1 plays a key role in regulating neutrophil survival signalling, and thus may prove a valuable therapeutic target for the treatment of inflammatory disease. PMID:24431232

  16. Reactive oxygen species in peripheral blood and sputum neutrophils during bacterial and nonbacterial acute exacerbation of chronic obstructive pulmonary disease.

    PubMed

    Vaitkus, Mindaugas; Lavinskiene, Simona; Barkauskiene, Diana; Bieksiene, Kristina; Jeroch, Jolanta; Sakalauskas, Raimundas

    2013-12-01

    Chronic airway inflammation can be mediated by an enhanced neutrophil oxidative burst. However, the role of bacteria in the pathogenesis of chronic obstructive pulmonary disease (COPD) exacerbations is highly controversial. The aim of this study was to evaluate the production of reactive oxygen species (ROS) in peripheral blood and sputum neutrophils during bacterial and nonbacterial acute exacerbations of COPD (AECOPD). A total of 40 patients with AECOPD, 10 healthy nonsmokers, and 10 "healthy" smokers were enrolled into the study. Peripheral blood and sputum samples were obtained during exacerbation and after recovery. Neutrophils were isolated by high-density gradient centrifugation and magnetic separation. ROS production by neutrophils was investigated after stimulation with phorbol-myristate-acetate and Staphylococcus aureus bacteria. ROS production by neutrophils was assessed as the mean fluorescent intensity using a flow cytometer. IL-8 levels in serum and induced sputum were determinant by ELISA. Spontaneous ROS production was significantly higher in neutrophils from the patients with bacterial AECOPD as compared with nonbacterial AECOPD and stable COPD (P <0.05). ROS production stimulated with PMA and with Staphylococcus aureus was significantly higher in neutrophils isolated from the patients with bacterial AECOPD as compared with nonbacterial and stable COPD (P <0.05). The serum and induced sputum IL-8 levels were significantly increased in the patients with bacterial AECOPD than nonbacterial AECOPD, stable COPS, and "healthy" smokers and nonsmokers (P <0.05) and higher in the induced sputum as the compared with serum in all studied groups (P <0.05). Enlarge CRP level was documented during AECOPD than in all other groups (P <0.05). A markedly increased ROS production in sputum neutrophils during bacterial AECOPD shows an inflammatory response reflecting enhanced local inflammation, which can be mediated by bacterial colonization. PMID:23872721

  17. C1P Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Preventing NF-κB Activation in Neutrophils.

    PubMed

    Baudiß, Kristin; de Paula Vieira, Rodolfo; Cicko, Sanja; Ayata, Korcan; Hossfeld, Madelon; Ehrat, Nicolas; Gómez-Muñoz, Antonio; Eltzschig, Holger K; Idzko, Marco

    2016-03-01

    Recently, ceramide-1-phosphate (C1P) has been shown to modulate acute inflammatory events. Acute lung injury (Arnalich et al. 2000. Infect. Immun. 68: 1942-1945) is characterized by rapid alveolar injury, lung inflammation, induced cytokine production, neutrophil accumulation, and vascular leakage leading to lung edema. The aim of this study was to investigate the role of C1P during LPS-induced acute lung injury in mice. To evaluate the effect of C1P, we used a prophylactic and therapeutic LPS-induced ALI model in C57BL/6 male mice. Our studies revealed that intrapulmonary application of C1P before (prophylactic) or 24 h after (therapeutic) LPS instillation decreased neutrophil trafficking to the lung, proinflammatory cytokine levels in bronchoalveolar lavage, and alveolar capillary leakage. Mechanistically, C1P inhibited the LPS-triggered NF-κB levels in lung tissue in vivo. In addition, ex vivo experiments revealed that C1P also attenuates LPS-induced NF-κB phosphorylation and IL-8 production in human neutrophils. These results indicate C1P playing a role in dampening LPS-induced acute lung inflammation and suggest that C1P could be a valuable candidate for treatment of ALI. PMID:26800872

  18. Role of CD 11/CD 18 in neutrophil emigration during acute and recurrent Pseudomonas aeruginosa-induced pneumonia in rabbits.

    PubMed Central

    Kumasaka, T.; Doyle, N. A.; Quinlan, W. M.; Graham, L.; Doerschuk, C. M.

    1996-01-01

    This study examined CD11/CD18-mediated adhesion in neutrophil emigration during acute and recurrent Pseudomonas aeruginosa-induced pneumonia. Neutrophil emigration during acute pneumonia was studied in anti-CD18 antibody or murine-IgG-pretreated rabbits 4 hours after intrabronchial instillation of P. aeruginosa. To examine emigration in recurrent pneumonias, rabbits given P. aeruginosa on day 0 received anti-CD18 antibody or IgG on day 7. A second instillate was placed either at the initial site or in a separate lobe, and emigration into alveolar spaces was quantitated morphometrically after 4 hours. The results show that CD11/CD18 was required for neutrophil emigration in acute pneumonias and in recurrent pneumonias that occurred at a site distant from the initial infection. However, when the recurrent pneumonia occurred in the previously inflamed site, CD11/CD18 was not required. When the same number of organisms were instilled on days 0 and 7, emigration was reduced to 15 to 20 percent of the number that migrated initially and only CD18-independent adhesion pathways were used. Increasing the concentration of organisms threefold increased emigration through both CD18-dependent and CD18-independent pathways. These data indicate that P. aeruginosa induces CD11/CD18-dependent emigration during acute pneumonia and recurrent pneumonia at previously uninflamed sites. However, adhesion pathways are altered in regions of chronic inflammation, and a greater proportion of neutrophil emigration occurs through CD11/CD18-independent pathways. PMID:8644870

  19. S-maltoheptaose targets syndecan-bound effectors to reduce smoking-related neutrophilic inflammation

    PubMed Central

    Lam, David CL; Chan, Stanley CH; Mak, Judith CW; Freeman, Craig; Ip, Mary SM; Shum, Daisy KY

    2015-01-01

    Cigarette smoke induces injury and neutrophilic inflammation in the airways of smokers. The stability and activity of inflammatory effectors, IL8 and neutrophil elastase (NE), can be prolonged by binding to airway heparan sulfate (HS)/syndecan-1, posing risk for developing chronic obstructive pulmonary disease(COPD). We hypothesize that antagonizing HS/syndecan-1 binding of the inflammatory effectors could reduce smoking-related neutrophil-mediated airway inflammation. Analysis of bronchoalveolar lavage fluid(BALF) of COPD patients found both total and unopposed NE levels to be significantly higher among smokers with COPD than non-COPD subjects. Similar NE burden was observed in smoke-exposed rats compared to sham air controls. We chose sulfated-maltoheptaose(SM), a heparin-mimetic, to antagonize HS/sydecan-1 binding of the inflammatory mediators in airway fluids and lung tissues of the smoke-exposed rat model. Airway treatment with SM resulted in displacement of CINC-1 and NE from complexation with bronchio-epithelial HS/syndecan-1, dissipating the chemokine gradient for neutrophil flux across to the bronchial lumen. Following SM displacement of NE from shed HS/syndecan-1 in bronchial fluids, NE became accessible to inhibition by α1-antitrypsin endogenous in test samples. The antagonistic actions of SM against syndecan-1 binding of NE and CINC-1 in smoke-exposed airways suggest new therapeutic opportunities for modulating airway inflammation in smokers with SM delivery. PMID:26256047

  20. Annexin A1 and the Resolution of Inflammation: Modulation of Neutrophil Recruitment, Apoptosis, and Clearance

    PubMed Central

    Sugimoto, Michelle Amantéa; Vago, Juliana Priscila; Teixeira, Mauro Martins; Sousa, Lirlândia Pires

    2016-01-01

    Neutrophils (also named polymorphonuclear leukocytes or PMN) are essential components of the immune system, rapidly recruited to sites of inflammation, providing the first line of defense against invading pathogens. Since neutrophils can also cause tissue damage, their fine-tuned regulation at the inflammatory site is required for proper resolution of inflammation. Annexin A1 (AnxA1), also known as lipocortin-1, is an endogenous glucocorticoid-regulated protein, which is able to counterregulate the inflammatory events restoring homeostasis. AnxA1 and its mimetic peptides inhibit neutrophil tissue accumulation by reducing leukocyte infiltration and activating neutrophil apoptosis. AnxA1 also promotes monocyte recruitment and clearance of apoptotic leukocytes by macrophages. More recently, some evidence has suggested the ability of AnxA1 to induce macrophage reprogramming toward a resolving phenotype, resulting in reduced production of proinflammatory cytokines and increased release of immunosuppressive and proresolving molecules. The combination of these mechanisms results in an effective resolution of inflammation, pointing to AnxA1 as a promising tool for the development of new therapeutic strategies to treat inflammatory diseases. PMID:26885535

  1. Single platelets seal neutrophil-induced vascular breaches via GPVI during immune-complex-mediated inflammation in mice.

    PubMed

    Gros, Angèle; Syvannarath, Varouna; Lamrani, Lamia; Ollivier, Véronique; Loyau, Stéphane; Goerge, Tobias; Nieswandt, Bernhard; Jandrot-Perrus, Martine; Ho-Tin-Noé, Benoît

    2015-08-20

    Platelets protect vascular integrity during inflammation. Recent evidence suggests that this action is independent of thrombus formation and requires the engagement of glycoprotein VI (GPVI), but it remains unclear how platelets prevent inflammatory bleeding. We investigated whether platelets and GPVI act primarily by preventing detrimental effects of neutrophils using models of immune complex (IC)-mediated inflammation in mice immunodepleted in platelets and/or neutrophils or deficient in GPVI. Depletion of neutrophils prevented bleeding in thrombocytopenic and GPVI(-/-) mice during IC-mediated dermatitis. GPVI deficiency did not modify neutrophil recruitment, which was reduced by thrombocytopenia. Neutrophil cytotoxic activities were reduced in thrombocytopenic and GPVI(-/-) mice during IC-mediated inflammation. Intravital microscopy revealed that in this setting, intravascular binding sites for platelets were exposed by neutrophils, and GPVI supported the recruitment of individual platelets to these spots. Furthermore, the platelet secretory response accompanying IC-mediated inflammation was partly mediated by GPVI, and blocking of GPVI signaling impaired the vasculoprotective action of platelets. Together, our results show that GPVI plays a dual role in inflammation by enhancing neutrophil-damaging activities while supporting the activation and hemostatic adhesion of single platelets to neutrophil-induced vascular breaches. PMID:26036804

  2. S100A8/A9 Proteins Mediate Neutrophilic Inflammation and Lung Pathology during Tuberculosis

    PubMed Central

    Gopal, Radha; Monin, Leticia; Torres, Diana; Slight, Samantha; Mehra, Smriti; McKenna, Kyle C.; Fallert Junecko, Beth A.; Reinhart, Todd A.; Kolls, Jay; Báez-Saldaña, Renata; Cruz-Lagunas, Alfredo; Rodríguez-Reyna, Tatiana S.; Kumar, Nathella Pavan; Tessier, Phillipe; Roth, Johannes; Selman, Moisés; Becerril-Villanueva, Enrique; Baquera-Heredia, Javier; Cumming, Bridgette; Kasprowicz, Victoria O.; Steyn, Adrie J. C.; Babu, Subash; Kaushal, Deepak; Zúñiga, Joaquín; Vogl, Thomas; Rangel-Moreno, Javier

    2013-01-01

    Rationale: A hallmark of pulmonary tuberculosis (TB) is the formation of granulomas. However, the immune factors that drive the formation of a protective granuloma during latent TB, and the factors that drive the formation of inflammatory granulomas during active TB, are not well defined. Objectives: The objective of this study was to identify the underlying immune mechanisms involved in formation of inflammatory granulomas seen during active TB. Methods: The immune mediators involved in inflammatory granuloma formation during TB were assessed using human samples and experimental models of Mycobacterium tuberculosis infection, using molecular and immunologic techniques. Measurements and Main Results: We demonstrate that in human patients with active TB and in nonhuman primate models of M. tuberculosis infection, neutrophils producing S100 proteins are dominant within the inflammatory lung granulomas seen during active TB. Using the mouse model of TB, we demonstrate that the exacerbated lung inflammation seen as a result of neutrophilic accumulation is dependent on S100A8/A9 proteins. S100A8/A9 proteins promote neutrophil accumulation by inducing production of proinflammatory chemokines and cytokines, and influencing leukocyte trafficking. Importantly, serum levels of S100A8/A9 proteins along with neutrophil-associated chemokines, such as keratinocyte chemoattractant, can be used as potential surrogate biomarkers to assess lung inflammation and disease severity in human TB. Conclusions: Our results thus show a major pathologic role for S100A8/A9 proteins in mediating neutrophil accumulation and inflammation associated with TB. Thus, targeting specific molecules, such as S100A8/A9 proteins, has the potential to decrease lung tissue damage without impacting protective immunity against TB. PMID:24047412

  3. Lymphatic Vascular Response to Acute Inflammation

    PubMed Central

    Lachance, Pier-Anne; Hazen, Amy; Sevick-Muraca, Eva M.

    2013-01-01

    During acute inflammation, functioning lymphatics are believed to reduce edema and to provide a transiting route for immune cells, but the extent at which the dermal lymphatic remodeling impacts lymphatic transport or the factors regulating these changes remains unclear. Herein we quantify the increase in lymphatic endothelial cells (LECs) and examine the expression of pro-angiogenenic and lymphangiogenic factors during acute cutaneous hypersensitivity (CHS). We found that LECs actively proliferate during CHS but that this proliferation does not affect the lymphatic vessel density. Instead, lymphatic remodeling is accompanied by lymphatic vessel leakiness and lower ejection of lymph fluid, which is observed only in the proximal lymphatic vessel draining the inflamed area. LECs and the immune cells release growth factors and cytokines during inflammation, which impact the lymphatic microenvironment and function. We identified that FGF-2, PLGF-2, HGF, EGF, and KC/CXCL17 are differentially expressed within tissues during acute CHS, but both VEGF-C and VEGF-D levels do not significantly change. Our results indicate that VEGF-C and VEGF-D are not the only players and other factors may be responsible for the LECs proliferation and altered lymphatic function in acute CHS. PMID:24086691

  4. Antioxidant modulation of skin inflammation: preventing inflammatory progression by inhibiting neutrophil influx

    PubMed Central

    McGilvray, Ian D.; Rotstein, Ori D.

    1999-01-01

    Objective To test the hypothesis that antioxidants might affect local inflammation by impairing inflammatory cell influx. Design A laboratory study using a Swiss–Webster mouse model of local inflammation. Setting A university-affiliated hospital. Methods Intradermal injection of 30 μg of S. minnesota endotoxin (LPS) to Swiss–Webster mice initiates a local inflammatory reaction characterized by an early rise in vascular permeability and a later influx of neutrophils. Animals were pretreated intraperitoneally with either pyrrolidine dithiocarbamate (PDTC, 2 mmol/kg), which inhibits free radical generation, or dimethylthiourea (DMTU, 450 mg/kg), a free radical scavenger. Main outcome measures Histologic findings of tissue samples taken at sites of injection; local changes in tissue vascular permeability (PI) determined by iodine-125 albumin injection before sacrifice; neutrophil accumulation quantified by tissue myeloperoxidase levels; tissue levels of the endothelial adhesion molecules intercellular adhesion molecule-1 protein (ICAM-1) and vascular cell adhesion molecule-1 protein (VCAM-1) assessed by immunohistochemistry and Western blot, respectively. Results Neither antioxidant had a significant effect on the early increase in PI, but both decreased the late rise in PI and reduced neutrophil influx. Both ICAM-1 and VCAM-1 were upregulated in response to LPS; however, only the increase in VCAM-1 was attenuated by antioxidant pretreatment. Conclusion These data suggest that antioxidants disrupt the propagation phase of an inflammatory response, possibly by altering neutrophil migration. PMID:10223071

  5. Local and systemic neutrophilic inflammation in patients with lung cancer and chronic obstructive pulmonary disease

    PubMed Central

    2013-01-01

    Background Recent investigations suggest that neutrophils play an important role in the immune response to lung cancer as well as chronic obstructive pulmonary disease (COPD). The aim of this study was to evaluate the amount of neutrophils and markers of their activity in lung cancer and COPD and in coexistence of these two diseases. Methods In total, 267 persons were included in the study: 139 patients with lung cancer, 55 patients with lung cancer and COPD, 40 patients with COPD, and 33 healthy subjects. Peripheral blood and BAL fluid samples were obtained for cell count analysis and determination of NE, MPO levels and ROS production. NE and MPO levels in the serum and BAL fluid were determined by ELISA. ROS production was analyzed by flow cytometer. Results The percentage, cell count of neutrophils and neutrophil to lymphocyte ratio in the peripheral blood were significantly higher in lung cancer patients with or without COPD compared to COPD patients or healthy individuals (P < 0.05). The percentage and cell count of neutrophils in BAL fluid were significantly lower in patients with lung cancer with or without COPD than in patients with COPD (P < 0.05). However, BAL fluid and serum levels of both NE and MPO were significantly higher in patients with lung cancer than COPD patients or healthy individuals (P < 0.05). Neutrophils produced higher amounts of ROS in patients with lung cancer with or without COPD compared with COPD patients or healthy individuals (P < 0.05). Conclusions The results from this study demonstrate higher degree of local and systemic neutrophilic inflammation in patients with lung cancer (with or without COPD) than in patients with COPD. PMID:23919722

  6. NADPH oxidase controls neutrophilic response to sterile inflammation in mice by regulating the IL-1α/G-CSF axis.

    PubMed

    Bagaitkar, Juhi; Pech, Nancy K; Ivanov, Stoyan; Austin, Anthony; Zeng, Melody Yue; Pallat, Sabine; Huang, Guangming; Randolph, Gwendalyn J; Dinauer, Mary C

    2015-12-17

    The leukocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase generates reactive oxygen species essential in microbial killing and regulation of inflammation. Inactivating mutations in this enzyme lead to chronic granulomatous disease (CGD), associated with increased susceptibility to both pyogenic infections and to inflammatory disorders. The role of the NADPH oxidase in regulating inflammation driven by nonmicrobial stimuli is poorly understood. Here, we show that NADPH oxidase deficiency enhances the early local release of interleukin-1α (IL-1α) in response to damaged cells, promoting an excessive granulocyte colony-stimulating factor (G-CSF)-regulated neutrophilic response and prolonged inflammation. In peritoneal inflammation elicited by tissue injury, X-linked Cybb-null (X-CGD) mice exhibited increased release of IL-1α and IL-1 receptor -mediated G-CSF production. In turn, higher levels of systemic G-CSF increased peripheral neutrophilia, which amplified neutrophilic peritoneal inflammation in X-CGD mice. Dampening early neutrophil recruitment by neutralization of IL-1α, G-CSF, or neutrophil depletion itself promoted resolution of otherwise prolonged inflammation in X-CGD. IL-1β played little role. Thus, we identified an excessive IL-1α/G-CSF response as a major driver of enhanced sterile inflammation in CGD in the response to damaged cells. More broadly, these results provide new insights into the regulation of sterile inflammation, and identify the NADPH oxidase in regulating the amplitude of the early neutrophilic response. PMID:26443623

  7. Effect of gedunin on acute articular inflammation and hypernociception in mice.

    PubMed

    Conte, Fernando P; Ferraris, Fausto K; Costa, Thadeu E M M; Pacheco, Patricia; Seito, Leonardo N; Verri, Waldiceu A; Cunha, Fernando Q; Penido, Carmen; Henriques, Maria G

    2015-01-01

    Gedunin, a natural limonoid from Meliaceae species, has been previously described as an antiinflammatory compound in experimental models of allergic inflammation. Here, we report the antiinflammatory and antinociceptive effects of gedunin in an acute model of articular inflammation induced by zymosan (500 μg/cavity; intra-articular) in C57BL/6 mice. Intraperitoneal (i.p.) pretreatment with gedunin (0.005-5 mg/kg) impaired zymosan-induced edema formation, neutrophil accumulation and hypernociception in mouse knee joints, due to decreased expression of preproET-1 mRNA and production of LTB4, PGE2, TNF-α and IL-6. Mouse post-treatment with gedunin (0.05 mg/kg; i.p.) 1 and 6 h after stimulation also impaired articular inflammation, by reverting edema formation, neutrophil accumulation and the production of lipid mediators, cytokines and endothelin. In addition, gedunin directly modulated the functions of neutrophils and macrophages in vitro. The pre-incubation of neutrophil with gedunin (100 µM) impaired shape change, adhesion to endothelial cells, chemotaxis and lipid body formation triggered by different stimuli. Macrophage pretreatment with gedunin impaired intracellular calcium mobilization, nitric oxide production, inducible nitric oxide synthase expression and induced the expression of the antiinflammatory chaperone heat shock protein 70. Our results demonstrate that gedunin presents remarkable antiinflammatory and anti-nociceptive effects on zymosan-induced inflamed knee joints, modulating different cell populations. PMID:25654532

  8. Dasatinib Reduces Lung Inflammation and Fibrosis in Acute Experimental Silicosis

    PubMed Central

    Cruz, Fernanda Ferreira; Horta, Lucas Felipe Bastos; Maia, Lígia de Albuquerque; Lopes-Pacheco, Miquéias; da Silva, André Benedito; Morales, Marcelo Marco; Gonçalves-de-Albuquerque, Cassiano Felippe; Takiya, Christina Maeda; de Castro-Faria-Neto, Hugo Caire; Rocco, Patricia Rieken Macedo

    2016-01-01

    Silicosis is an occupational lung disease with no effective treatment. We hypothesized that dasatinib, a tyrosine kinase inhibitor, might exhibit therapeutic efficacy in silica-induced pulmonary fibrosis. Silicosis was induced in C57BL/6 mice by a single intratracheal administration of silica particles, whereas the control group received saline. After 14 days, when the disease was already established, animals were randomly assigned to receive DMSO or dasatinib (1 mg/kg) by oral gavage, twice daily, for 14 days. On day 28, lung morphofunction, inflammation, and remodeling were investigated. RAW 264.7 cells (a macrophage cell line) were incubated with silica particles, followed by treatment or not with dasatinib, and evaluated for macrophage polarization. On day 28, dasatinib improved lung mechanics, increased M2 macrophage counts in lung parenchyma and granuloma, and was associated with reduction of fraction area of granuloma, fraction area of collapsed alveoli, protein levels of tumor necrosis factor-α, interleukin-1β, transforming growth factor-β, and reduced neutrophils, M1 macrophages, and collagen fiber content in lung tissue and granuloma in silicotic animals. Additionally, dasatinib reduced expression of iNOS and increased expression of arginase and metalloproteinase-9 in silicotic macrophages. Dasatinib was effective at inducing macrophage polarization toward the M2 phenotype and reducing lung inflammation and fibrosis, thus improving lung mechanics in a murine model of acute silicosis. PMID:26789403

  9. Dasatinib Reduces Lung Inflammation and Fibrosis in Acute Experimental Silicosis.

    PubMed

    Cruz, Fernanda Ferreira; Horta, Lucas Felipe Bastos; Maia, Lígia de Albuquerque; Lopes-Pacheco, Miquéias; da Silva, André Benedito; Morales, Marcelo Marco; Gonçalves-de-Albuquerque, Cassiano Felippe; Takiya, Christina Maeda; de Castro-Faria-Neto, Hugo Caire; Rocco, Patricia Rieken Macedo

    2016-01-01

    Silicosis is an occupational lung disease with no effective treatment. We hypothesized that dasatinib, a tyrosine kinase inhibitor, might exhibit therapeutic efficacy in silica-induced pulmonary fibrosis. Silicosis was induced in C57BL/6 mice by a single intratracheal administration of silica particles, whereas the control group received saline. After 14 days, when the disease was already established, animals were randomly assigned to receive DMSO or dasatinib (1 mg/kg) by oral gavage, twice daily, for 14 days. On day 28, lung morphofunction, inflammation, and remodeling were investigated. RAW 264.7 cells (a macrophage cell line) were incubated with silica particles, followed by treatment or not with dasatinib, and evaluated for macrophage polarization. On day 28, dasatinib improved lung mechanics, increased M2 macrophage counts in lung parenchyma and granuloma, and was associated with reduction of fraction area of granuloma, fraction area of collapsed alveoli, protein levels of tumor necrosis factor-α, interleukin-1β, transforming growth factor-β, and reduced neutrophils, M1 macrophages, and collagen fiber content in lung tissue and granuloma in silicotic animals. Additionally, dasatinib reduced expression of iNOS and increased expression of arginase and metalloproteinase-9 in silicotic macrophages. Dasatinib was effective at inducing macrophage polarization toward the M2 phenotype and reducing lung inflammation and fibrosis, thus improving lung mechanics in a murine model of acute silicosis. PMID:26789403

  10. Association of autophagy related gene polymorphisms with neutrophilic airway inflammation in adult asthma

    PubMed Central

    Pham, Duy Le; Kim, Seung-Hyun; Losol, Purevsuren; Yang, Eun-Mi; Shin, Yoo Seob; Ye, Young-Min; Park, Hae-Sim

    2016-01-01

    Background/Aims: Role of autophagy in neutrophil function and the association of autophagy and autophagy related (ATG) gene polymorphisms with asthma susceptibility were suggested. In this study, we investigated the genetic association of ATG5 and ATG7 polymorphisms with asthma risk, severity and neutrophilic airway inflammation. Methods: We recruited 408 asthma patients and 201 healthy controls. Sputum neutrophil counts were determined by H&E staining. Serum interleukin 8 (IL-8) levels were measured by enzyme-linked immunosorbent assay (ELISA). Genetic polymorphisms of ATG5 (–769T>C, –335G>A, and 8830C>T) and ATG7 (–100A>G and 25108G>C) were genotyped. The functional activities of ATG5 –769T>C and –335G>A variants were investigated by luciferase reporter assays. Results: No associations of ATG5 and ATG7 polymorphisms with asthma susceptibility and severity were found. ATG5 –769T>C and –335G>A were in complete linkage disequilibrium. In the asthma group, GA/AA genotypes at ATG5 –335G>A were associated with higher neutrophil counts in sputum (p < 0.05); CC/TT genotype at ATG5 8830C>T associated with lower FEV1% predicted value (p < 0.05). DNA fragments containing ATG5 –769T and –335G alleles had higher promoter activities compared to those with –769C and –335A in both human airway epithelial cells (A549, p < 0.01) and human mast cell (HMC-1, p < 0.001). GG and CC genotype at ATG7 –100A>G and 25108G>C were significantly associated with high serum levels of IL-8 (p < 0.05 for both variants). Conclusions: Genetic polymorphisms of ATG5 and ATG7 could contribute to neutrophilic airway inflammation in the pathogenesis of adult asthma. PMID:26701229

  11. Endothelial leukocyte adhesion molecule-1 mediates antigen-induced acute airway inflammation and late-phase airway obstruction in monkeys.

    PubMed Central

    Gundel, R H; Wegner, C D; Torcellini, C A; Clarke, C C; Haynes, N; Rothlein, R; Smith, C W; Letts, L G

    1991-01-01

    This study examines the role of endothelial leukocyte adhesion molecule-1 (ELAM-1) in the development of the acute airway inflammation (cell influx) and late-phase airway obstruction in a primate model of extrinsic asthma. In animals sensitive to antigen, a single inhalation exposure induced the rapid expression of ELAM-1 (6 h) exclusively on vascular endothelium that correlated with the influx of neutrophils into the lungs and the onset of late-phase airway obstruction. In contrast, basal levels of ICAM-1 was constitutively expressed on vascular endothelium and airway epithelium before antigen challenge. After the single antigen exposure, changes in ICAM-1 expression did not correlate with neutrophil influx or the change in airway caliber. This was confirmed by showing that pretreatment with a monoclonal antibody to ICAM-1 did not inhibit the acute influx of neutrophils associated with late-phase airway obstruction, whereas a monoclonal antibody to ELAM-1 blocked both the influx of neutrophils and the late-phase airway obstruction. This study demonstrates a functional role for ELAM-1 in the development of acute airway inflammation in vivo. We conclude that, in primates, the late-phase response is the result of an ELAM-1 dependent influx of neutrophils. Therefore, the regulation of ELAM-1 expression may provide a novel approach to controlling the acute inflammatory response, and thereby, affecting airway function associated with inflammatory disorders, including asthma. Images PMID:1717514

  12. Plasma Neutrophil Gelatinase-Associated Lipocalin Reflects Both Inflammation and Kidney Function in Patients with Myocardial Infarction

    PubMed Central

    Lindberg, Søren; Jensen, Jan S.; Hoffmann, Søren; Iversen, Allan Z.; Pedersen, Sune H.; Biering-Sørensen, Tor; Galatius, Søren; Flyvbjerg, Allan; Mogelvang, Rasmus; Magnusson, Nils E.

    2016-01-01

    Background/Aims Neutrophil gelatinase-associated lipocalin (NGAL) has emerged as a marker for acute kidney injury and cardiovascular outcome. However, the relative importance of inflammation versus kidney function on plasma NGAL levels is uncertain, making the interpretation of plasma NGAL unclear. Accordingly, we investigated the relationship between plasma NGAL, inflammation and kidney function in patients with myocardial infarction (MI). Methods We prospectively included 584 patients with acute ST-segment elevation MI (STEMI) treated with primary percutaneous coronary intervention (PCI) from 2006 to 2008. Blood samples were drawn immediately before PCI. Additionally, we included 42 patients who had 4 blood samples drawn before and after PCI. Plasma NGAL was measured using a time-resolved immunofluorometric assay. Cross-sectional analyses were performed in these two single-center, prospective study cohorts. Results Estimated glomerular filtration rate (eGFR) was associated significantly more strongly with plasma NGAL when eGFR was abnormal compared to normal eGFR: a decrease in eGFR of 10 ml/min was associated with an increase in NGAL of 27% (18-36%) versus 4% (1-7%), respectively (p < 0.001). Leukocyte count and C-reactive protein were the main determinants of plasma NGAL in patients with normal eGFR, whereas eGFR was the main determinant at reduced kidney function. Conclusions eGFR determines the association of NGAL with either inflammation or kidney function; in patients with normal eGFR, plasma NGAL reflects inflammation but when eGFR is reduced, plasma NGAL reflects kidney function, highlighting the dual perception of plasma NGAL. From a clinical perspective, eGFR may be used to guide the interpretation of elevated NGAL levels in patients with STEMI. PMID:27275154

  13. Mast Cell-Mediated Inhibition of Abdominal Neutrophil Inflammation by a PEGylated TLR7 Ligand

    PubMed Central

    Hayashi, Tomoko; Yao, Shiyin; Crain, Brian; Chan, Michael; Cottam, Howard B.; Lao, Fitzgerald; Carson, Dennis A.; Corr, Maripat

    2012-01-01

    Although the mechanisms for sustained chemokine gradients and recurring cell infiltration in sterile peritonitis have not been elucidated, toll-like receptors (TLRs) have been implicated. To abate the deleterious recruitment of neutrophils in sterile inflammation, we repeatedly administered a TLR7 ligand that hyposensitized to TLR7 and receptors that converged on the MyD88-signaling intermediary and reduced cellular infiltration in murine autoimmune models of multiple sclerosis and arthritis. To reduce potential adverse effects, a polyethylene glycol polymer was covalently attached to the parent compound (Tolerimod1). The proinflammatory potency of Tolerimod1 was 10-fold less than the unconjugated TLR7 ligand, and Tolerimod1 reduced neutrophil recruitment in chemically induced peritonitis and colitis. The effects of Tolerimod1 were mediated by the radioresistant cells in radiation chimeric mice and by mast cells in reconstituted mast cell-deficient mice (KitW-sh). Although the Tolerimod1 had weak proinflammatory agonist activity, it effectively reduced neutrophil recruitment in sterile peritoneal inflammation. PMID:22619481

  14. Neutrophilic Bronchial Inflammation Correlates with Clinical and Functional Findings in Patients with Noncystic Fibrosis Bronchiectasis.

    PubMed

    Dente, Federico L; Bilotta, Marta; Bartoli, Maria Laura; Bacci, Elena; Cianchetti, Silvana; Latorre, Manuela; Malagrinò, Laura; Nieri, Dario; Roggi, Maria Adelaide; Vagaggini, Barbara; Paggiaro, Pierluigi

    2015-01-01

    Background. Neutrophilic bronchial inflammation is a main feature of bronchiectasis, but not much is known about its relationship with other disease features. Aim. To compare airway inflammatory markers with clinical and functional findings in subjects with stable noncystic fibrosis bronchiectasis (NCFB). Methods. 152 NFCB patients (62.6 years; females: 57.2%) underwent clinical and functional cross-sectional evaluation, including microbiologic and inflammatory cell profile in sputum, and exhaled breath condensate malondialdehyde (EBC-MDA). NFCB severity was assessed using BSI and FACED criteria. Results. Sputum neutrophil percentages inversely correlated with FEV1 (P < 0.0001; rho = -0.428), weakly with Leicester Cough Questionnaire score (P = 0.068; rho = -0.58), and directly with duration of the disease (P = 0.004; rho = 0.3) and BSI severity score (P = 0.005; rho = 0.37), but not with FACED. Sputum neutrophilia was higher in colonized subjects, P. aeruginosa colonized subjects showing greater sputum neutrophilia and lower FEV1. Patients with ≥3 exacerbations in the last year showed a significantly greater EBC-MDA than the remaining patients. Conclusions. Sputum neutrophilic inflammation and biomarkers of oxidative stress in EBC can be considered good biomarkers of disease severity in NCFB patients, as confirmed by pulmonary function, disease duration, bacterial colonization, BSI score, and exacerbation rate. PMID:26819500

  15. Neutrophilic Bronchial Inflammation Correlates with Clinical and Functional Findings in Patients with Noncystic Fibrosis Bronchiectasis

    PubMed Central

    Dente, Federico L.; Bilotta, Marta; Bartoli, Maria Laura; Bacci, Elena; Cianchetti, Silvana; Latorre, Manuela; Malagrinò, Laura; Nieri, Dario; Roggi, Maria Adelaide; Vagaggini, Barbara; Paggiaro, Pierluigi

    2015-01-01

    Background. Neutrophilic bronchial inflammation is a main feature of bronchiectasis, but not much is known about its relationship with other disease features. Aim. To compare airway inflammatory markers with clinical and functional findings in subjects with stable noncystic fibrosis bronchiectasis (NCFB). Methods. 152 NFCB patients (62.6 years; females: 57.2%) underwent clinical and functional cross-sectional evaluation, including microbiologic and inflammatory cell profile in sputum, and exhaled breath condensate malondialdehyde (EBC-MDA). NFCB severity was assessed using BSI and FACED criteria. Results. Sputum neutrophil percentages inversely correlated with FEV1 (P < 0.0001; rho = −0.428), weakly with Leicester Cough Questionnaire score (P = 0.068; rho = −0.58), and directly with duration of the disease (P = 0.004; rho = 0.3) and BSI severity score (P = 0.005; rho = 0.37), but not with FACED. Sputum neutrophilia was higher in colonized subjects, P. aeruginosa colonized subjects showing greater sputum neutrophilia and lower FEV1. Patients with ≥3 exacerbations in the last year showed a significantly greater EBC-MDA than the remaining patients. Conclusions. Sputum neutrophilic inflammation and biomarkers of oxidative stress in EBC can be considered good biomarkers of disease severity in NCFB patients, as confirmed by pulmonary function, disease duration, bacterial colonization, BSI score, and exacerbation rate. PMID:26819500

  16. Chronic Inflammation and Neutrophil Activation as Possible Causes of Joint Diseases in Ballet Dancers

    PubMed Central

    Borges, Leandro da Silva; Santos, Vinicius Coneglian; de Moura, Nivaldo Ribeiro; Dermargos, Alexandre; Cury-Boaventura, Maria Fernanda; Gorjão, Renata; Pithon-Curi, Tania Cristina; Hatanaka, Elaine

    2014-01-01

    Herein, we investigated the effects of a ballet class on the kinetic profiles of creatine kinase (CK) and lactate dehydrogenase (LDH) activities, cytokines, complement component 3 (C3), and the concentrations of immunoglobulin (Ig), IgA and IgM, in ballerinas. We also verified neutrophil death and ROS release. Blood samples were taken from 13 dancers before, immediately after, and 18 hours after a ballet class. The ballet class increased the plasma activities of CK-total (2.0-fold) immediately after class, while the activities of CK-cardiac muscle (1.0-fold) and LDH (3.0-fold) were observed to increase 18 hours after the class. Levels of the TNF-α, IL-1β, IgG, and IgA were not affected under the study conditions. The exercise was found to induce neutrophil apoptosis (6.0-fold) 18 hours after the ballet class. Additionally, immediately after the ballet class, the neutrophils from the ballerinas were found to be less responsive to PMA stimulus. Conclusion. Ballet class was found to result in inflammation in dancers. The inflammation caused by the ballet class remained for 18 hours after the exercise. These findings are important in preventing the development of chronic lesions that are commonly observed in dancers, such as those with arthritis and synovitis. PMID:24701035

  17. Acute hypoxemia in humans enhances the neutrophil inflammatory response.

    PubMed

    Tamura, Douglas Y; Moore, Ernest E; Partrick, David A; Johnson, Jeffrey L; Offner, Patrick J; Silliman, Christopher C

    2002-04-01

    The neutrophil (PMN) is regarded as a key component in the hyperinflammatory response known as the systemic inflammatory response syndrome. Acute respiratory distress syndrome (ARDS) and subsequent multiple organ failure (MOF) are related to the severity of this hyperinflammation. ICU patients who are at highest risk of developing MOF may have acute hypoxic events that complicate their hospital course. This study was undertaken to evaluate the effects of acute hypoxia and subsequent hypoxemia on circulating PMNs in human volunteers. Healthy subjects were exposed to a changing O2/N2 mixture until their O2 saturation (SaO2) reached a level of 68% saturation. These subjects were then exposed to room air and then returned to their baseline SaO2. PMNs were isolated from pre- and post-hypoxemic arterial blood samples and were then either stimulated with N-formyl-methionyl-leucyl-phenylalanine (fMLP) or PMA alone, or they were primed with L-alpha-phosphatidylcholine, beta-acetyl-gamma-O-alkyl (PAF) followed by fMLP activation. Reactive oxygen species generation as measured by superoxide anion production was enhanced in primed PMNs after hypoxemia. Protease degranulation as measured by elastase release was enhanced in both quiescent PMNs and primed PMNs after fMLP activation following the hypoxemic event. Adhesion molecule upregulation as measured by CD11b/CD18, however, was not significantly changed after hypoxemia. Apoptosis of quiescent PMNs was delayed after the hypoxemic event. TNFalpha, IL-1, IL-6, and IL-8 cytokine levels were unchanged following hypoxemia. These results indicate that relevant acute hypoxemic events observed in the clinical setting enhance several PMN cytotoxic functions and suggest that a transient hypoxemic insult may promote hyperinflammation. PMID:11954825

  18. Distinct Tlr4-expressing cell compartments control neutrophilic and eosinophilic airway inflammation.

    PubMed

    McAlees, J W; Whitehead, G S; Harley, I T W; Cappelletti, M; Rewerts, C L; Holdcroft, A M; Divanovic, S; Wills-Karp, M; Finkelman, F D; Karp, C L; Cook, D N

    2015-07-01

    Allergic asthma is a chronic, inflammatory lung disease. Some forms of allergic asthma are characterized by T helper type 2 (Th2)-driven eosinophilia, whereas others are distinguished by Th17-driven neutrophilia. Stimulation of Toll-like receptor 4 (TLR4) on hematopoietic and airway epithelial cells (AECs) contributes to the inflammatory response to lipopolysaccharide (LPS) and allergens, but the specific contribution of TLR4 in these cell compartments to airway inflammatory responses remains poorly understood. We used novel, conditionally mutant Tlr4(fl/fl) mice to define the relative contributions of AEC and hematopoietic cell Tlr4 expression to LPS- and allergen-induced airway inflammation. We found that Tlr4 expression by hematopoietic cells is critical for neutrophilic airway inflammation following LPS exposure and for Th17-driven neutrophilic responses to the house dust mite (HDM) lysates and ovalbumin (OVA). Conversely, Tlr4 expression by AECs was found to be important for robust eosinophilic airway inflammation following sensitization and challenge with these same allergens. Thus, Tlr4 expression by hematopoietic and airway epithelial cells controls distinct arms of the immune response to inhaled allergens. PMID:25465099

  19. Type 2 Interleukin-4 Receptor Signaling in Neutrophils Antagonizes Their Expansion and Migration during Infection and Inflammation.

    PubMed

    Woytschak, Janine; Keller, Nadia; Krieg, Carsten; Impellizzieri, Daniela; Thompson, Robert W; Wynn, Thomas A; Zinkernagel, Annelies S; Boyman, Onur

    2016-07-19

    Neutrophils are the first immune cells recruited to sites of inflammation and infection. However, patients with allergic disorders such as atopic dermatitis show a paucity of skin neutrophils and are prone to bacterial skin infections, suggesting that allergic inflammation curtails neutrophil responses. Here we have shown that the type 2 cell signature cytokine interleukin-4 (IL-4) hampers neutrophil expansion and migration by antagonizing granulocyte colony-stimulating factor (G-CSF) and chemokine receptor-mediated signals. Cutaneous bacterial infection in mice was exacerbated by IL-4 signaling and improved with IL-4 inhibition, each outcome inversely correlating with neutrophil migration to skin. Likewise, systemic bacterial infection was worsened by heightened IL-4 activity, with IL-4 restricting G-CSF-induced neutrophil expansion and migration to tissues by affecting CXCR2-CXCR4 chemokine signaling in neutrophils. These effects were dependent on IL-4 acting through type 2 IL-4 receptors on neutrophils. Thus, targeting IL-4 might be beneficial in neutropenic conditions with increased susceptibility to bacterial infections. PMID:27438770

  20. Epithelial neutrophil-activating peptide (ENA-78), acute coronary syndrome prognosis, and modulatory effect of statins.

    PubMed

    Zineh, Issam; Beitelshees, Amber L; Welder, Gregory J; Hou, Wei; Chegini, Nasser; Wu, Jun; Cresci, Sharon; Province, Michael A; Spertus, John A

    2008-01-01

    Endothelial inflammation with chemokine involvement contributes to acute coronary syndromes (ACS). We tested the hypothesis that variation in the chemokine gene CXCL5, which encodes epithelial neutrophil-activating peptide (ENA-78), is associated with ACS prognosis. We also investigated whether statin use, a potent modulator of inflammation, modifies CXCL5's association with outcomes and characterized the in vitro effect of atorvastatin on endothelial ENA-78 production. Using a prospective cohort of ACS patients (n = 704) the association of the CXCL5 -156 G>C polymorphism (rs352046) with 3-year all-cause mortality was estimated with hazard ratios (HR). Models were stratified by genotype and race. To characterize the influence of statins on this association, a statin*genotype interaction was tested. To validate ENA-78 as a statin target in inflammation typical of ACS, endothelial cells (HUVECs) were treated with IL-1beta and atorvastatin with subsequent quantification of CXCL5 expression and ENA-78 protein concentrations. C/C genotype was associated with a 2.7-fold increase in 3-year all-cause mortality compared to G/G+G/C (95%CI 1.19-5.87; p = 0.017). Statins significantly reduced mortality in G/G individuals only (58% relative risk reduction; p = 0.0009). In HUVECs, atorvastatin dose-dependently decreased IL-1beta-stimulated ENA-78 concentrations (p<0.0001). Drug effects persisted over 48 hours (p<0.01). CXCL5 genotype is associated with outcomes after ACS with potential statin modification of this effect. Atorvastatin lowered endothelial ENA-78 production during inflammation typical of ACS. These findings implicate CXCL5/ENA-78 in ACS and the statin response. PMID:18769620

  1. Targeting Prolyl Endopeptidase with Valproic Acid as a Potential Modulator of Neutrophilic Inflammation

    PubMed Central

    Abdul Roda, Mojtaba; Sadik, Mariam; Gaggar, Amit; Hardison, Matthew T.; Jablonsky, Michael J.; Braber, Saskia; Blalock, James Edwin; Redegeld, Frank A.; Folkerts, Gert; Jackson, Patricia L.

    2014-01-01

    A novel neutrophil chemoattractant derived from collagen, proline-glycine-proline (PGP), has been recently characterized in chronic obstructive pulmonary disease (COPD). This peptide is derived via the proteolytic activity of matrix metalloproteases (MMP's)-8/9 and PE, enzymes produced by neutrophils and present in COPD serum and sputum. Valproic acid (VPA) is an inhibitor of PE and could possibly have an effect on the severity of chronic inflammation. Here the interaction site of VPA to PE and the resulting effect on the secondary structure of PE is investigated. Also, the potential inhibition of PGP-generation by VPA was examined in vitro and in vivo to improve our understanding of the biological role of VPA. UV- visible, fluorescence spectroscopy, CD and NMR were used to determine kinetic information and structural interactions between VPA and PE. In vitro, PGP generation was significantly inhibited by VPA. In vivo, VPA significantly reduced cigarette-smoke induced neutrophil influx. Investigating the molecular interaction between VPA and PE showed that VPA modified the secondary structure of PE, making substrate binding at the catalytic side of PE impossible. Revealing the molecular interaction VPA to PE may lead to a better understanding of the involvement of PE and PGP in inflammatory conditions. In addition, the model of VPA interaction with PE suggests that PE inhibitors have a great potential to serve as therapeutics in inflammatory disorders. PMID:24835793

  2. 2-O, 3-O-Desulfated Heparin Inhibits Neutrophil Elastase–Induced HMGB-1 Secretion and Airway Inflammation

    PubMed Central

    Griffin, Kathryn L.; Fischer, Bernard M.; Kummarapurugu, Apparao B.; Zheng, Shuo; Kennedy, Thomas P.; Rao, Narayanam V.; Foster, W. Michael

    2014-01-01

    Neutrophil elastase (NE) is a major inflammatory mediator in cystic fibrosis (CF) that is a robust predictor of lung disease progression. NE directly causes airway injury via protease activity, and propagates persistent neutrophilic inflammation by up-regulation of neutrophil chemokine expression. Despite its key role in the pathogenesis of CF lung disease, there are currently no effective antiprotease therapies available to patients with CF. Although heparin is an effective antiprotease and anti-inflammatory agent, its anticoagulant activity prohibits its use in CF, due to risk of pulmonary hemorrhage. In this report, we demonstrate the efficacy of a 2-O, 3-O-desulfated heparin (ODSH), a modified heparin with minimal anticoagulant activity, to inhibit NE activity and to block NE-induced airway inflammation. Using an established murine model of intratracheal NE-induced airway inflammation, we tested the efficacy of intratracheal ODSH to block NE-generated neutrophil chemoattractants and NE-triggered airway neutrophilic inflammation. ODSH inhibited NE-induced keratinocyte-derived chemoattractant and high-mobility group box 1 release in bronchoalveolar lavage. ODSH also blocked NE-stimulated high-mobility group box 1 release from murine macrophages in vitro, and inhibited NE activity in functional assays consistent with prior reports of antiprotease activity. In summary, this report suggests that ODSH is a promising antiprotease and anti-inflammatory agent that may be useful as an airway therapy in CF. PMID:24325600

  3. Macrophage migration inhibitory factor drives neutrophil accumulation by facilitating IL-1β production in a murine model of acute gout.

    PubMed

    Galvão, Izabela; Dias, Ana Carolina Fialho; Tavares, Livia Duarte; Rodrigues, Irla Paula Stopa; Queiroz-Junior, Celso Martins; Costa, Vivian Vasconcelos; Reis, Alesandra Corte; Ribeiro Oliveira, Rene Donizeti; Louzada-Junior, Paulo; Souza, Daniele Glória; Leng, Lin; Bucala, Richard; Sousa, Lirlândia Pires; Bozza, Marcelo Torres; Teixeira, Mauro Martins; Amaral, Flávio Almeida

    2016-06-01

    This study evaluated the role of macrophage migration inhibitory factor in inflammation caused by monosodium urate crystals. The concentration of macrophage migration inhibitory factor was increased in synovial fluid of patients with acute gout, and there was a positive correlation between intra-articular macrophage migration inhibitory factor and IL-1β concentrations. In mice, the injection of monosodium urate crystals into the knee joint increased the levels of macrophage migration inhibitory factor in macrophages and in inflamed tissue. The injection of recombinant macrophage migration inhibitory factor into the joint of mice reproduced the inflammatory response observed in acute gout, including histologic changes, the recruitment of neutrophils, and increased levels of IL-1β and CXCL1. Importantly, the accumulation of neutrophils and the amount IL-1β in the joints were reduced in macrophage migration inhibitory factor-deficient mice when injected with monosodium urate crystals. We observed a similar effect when we blocked macrophage migration inhibitory factor with (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid or anti-macrophage migration inhibitory factor. In addition, the blockade of IL-1R and CXCR2 reduced recombinant macrophage migration inhibitory factor-induced neutrophil recruitment. Mechanistically, recombinant macrophage migration inhibitory factor is important for the synthesis of il1β mRNA in vivo and in isolated macrophages. Altogether, macrophage migration inhibitory factor promotes neutrophil accumulation and is important for IL-1β production, which are 2 crucial events contributing to the pathogenesis of acute gout. PMID:26868525

  4. Endothelial RAGE exacerbates acute postischaemic cardiac inflammation.

    PubMed

    Ziegler, Tilman; Horstkotte, Melanie; Lange, Philipp; Ng, Judy; Bongiovanni, Dario; Hinkel, Rabea; Laugwitz, Karl-Ludwig; Sperandio, Markus; Horstkotte, Jan; Kupatt, Christian

    2016-08-01

    Advanced glycation end-products (AGEs) interact with their receptor RAGE, leading to an inflammatory state. We investigated the role of RAGE in postischaemic leukocyte adhesion after myocardial infarction and its effect on postischaemic myocardial function. Wildtype (WT), ICAM-1-/-, RAGE-/- or ICAM-1/RAGE-/- mice underwent 20 minutes (min) of LAD-occlusion followed by 15 min of reperfusion. We applied in vivo fluorescence microscopy visualising Rhodamine-6G labelled leukocytes. To differentiate between endothelial and leukocyte RAGE, we generated bone marrow chimeric mice. Invasive hemodynamic measurements were performed in mice undergoing 45 min of myocardial ischaemia (via LAD-occlusion) followed by 24 hours of reperfusion. Left-ventricular developed pressure (LVDP) was assessed by insertion of a millar-tip catheter into the left ventricle. In the acute model of myocardial ischaemia, leukocyte retention (WT 68 ± 4 cells/hpf) was significantly reduced in ICAM-1-/- (40 ± 3 cells/hpf) and RAGE-/- mice (38 ± 4 cells/hpf). ICAM-1/RAGE-/- mice displayed an additive reduction of leukocyte retention (ICAM-1/RAGE-/- 15 ± 3 cells/hpf). Ly-6G+ neutrophil were predominantly reduced in ICAM-1/RAGE-/- hearts (28 %), whereas Ly-6C+ proinflammatory monocytes decreased to a lesser extent (55 %). Interestingly, PMN recruitment was not affected in chimeric mice with RAGE deficiency in BM cells (WT mice reconstituted with ICAM-1/RAGE-/- BM: 55 ± 4 cells/hpf) while in mice with global RAGE deficiency (ICAM-1/RAGE-/- mice reconstituted with ICAM-1/RAGE-/- BM) leucocyte retention was significantly reduced (13 ± 1 cells/hpf), similar to non-transplanted ICAM/RAGE-/- mice. Furthermore, postischaemic LVDP increased in ICAM-1/RAGE-/- animals (98 ± 4 mmHg vs 86 ± 4 mmHg in WT mice). In conclusion, combined deficiency of ICAM-1 and RAGE reduces leukocyte influx into infarcted myocardium and improves LV function during the acute phase after myocardial ischaemia and reperfusion

  5. Therapeutic effect of ent-kaur-16-en-19-oic acid on neutrophilic lung inflammation and sepsis is mediated by Nrf2.

    PubMed

    Kim, Kyun Ha; Sadikot, Ruxana T; Joo, Myungsoo

    2016-06-01

    Kaurenoic acid (ent-kaur-16-en-19-oic acid: KA) is a key constituent found in the roots of Aralia continentalis Kitagawa (Araliaceae), a remedy to treat patients with inflammatory diseases in traditional Asian medicine. Since KA activates Nrf2, a key anti-inflammatory factor, at the cellular level, we explored a possible therapeutic usage of KA against neutrophilic inflammatory lung disease such as acute lung injury (ALI). Intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) to C57BL/6 mice induced lung inflammation as in ALI. 2 h after i.p. LPS, intratracheal (i.t.) delivery of KA (0.3, 3, or 30 μg/kg body weight) improved lung structure and significantly suppressed neutrophil infiltrations to mouse lungs, with concomitant reduction of myeloperoxidase activity and of the expression of pro-inflammatory cytokine genes. While activating Nrf2 and expressing Nrf2-dependent genes in mouse lungs, KA did not significantly suppress neutrophil lung inflammation in Nrf2 KO mice. In a mouse model of sepsis, a major cause of ALI, single i.t. KA (3 μg/kg) 2 h after the onset of sepsis significantly decreased the mortality of mice. Together, these results suggest that KA has a therapeutic potential against inflammatory lung disease, the effect of which is associated with Nrf2 activation. PMID:27133718

  6. Neutrophil-specific deletion of the CARD9 gene expression regulator suppresses autoantibody-induced inflammation in vivo.

    PubMed

    Németh, Tamás; Futosi, Krisztina; Sitaru, Cassian; Ruland, Jürgen; Mócsai, Attila

    2016-01-01

    Neutrophils are terminally differentiated cells with limited transcriptional activity. The biological function of their gene expression changes is poorly understood. CARD9 regulates transcription during antifungal immunity but its role in sterile inflammation is unclear. Here we show that neutrophil CARD9 mediates pro-inflammatory chemokine/cytokine but not lipid mediator release during non-infectious inflammation. Genetic deficiency of CARD9 suppresses autoantibody-induced arthritis and dermatitis in mice. Neutrophil-specific deletion of CARD9 is sufficient to induce that phenotype. Card9(-/-) neutrophils show defective immune complex-induced gene expression changes and pro-inflammatory chemokine/cytokine release but normal LTB4 production and other short-term responses. In vivo deletion of CARD9 reduces tissue levels of pro-inflammatory chemokines and cytokines but not LTB4. The CARD9-mediated signalling pathway involves Src-family kinases, Syk, PLCγ2, Bcl10/Malt1 and NFκB. Collectively, CARD9-mediated gene expression changes within neutrophils play important roles during non-infectious inflammation in vivo and CARD9 acts as a divergence point between chemokine/cytokine and lipid mediator release. PMID:27032818

  7. Neutrophil-specific deletion of the CARD9 gene expression regulator suppresses autoantibody-induced inflammation in vivo

    PubMed Central

    Németh, Tamás; Futosi, Krisztina; Sitaru, Cassian; Ruland, Jürgen; Mócsai, Attila

    2016-01-01

    Neutrophils are terminally differentiated cells with limited transcriptional activity. The biological function of their gene expression changes is poorly understood. CARD9 regulates transcription during antifungal immunity but its role in sterile inflammation is unclear. Here we show that neutrophil CARD9 mediates pro-inflammatory chemokine/cytokine but not lipid mediator release during non-infectious inflammation. Genetic deficiency of CARD9 suppresses autoantibody-induced arthritis and dermatitis in mice. Neutrophil-specific deletion of CARD9 is sufficient to induce that phenotype. Card9−/− neutrophils show defective immune complex-induced gene expression changes and pro-inflammatory chemokine/cytokine release but normal LTB4 production and other short-term responses. In vivo deletion of CARD9 reduces tissue levels of pro-inflammatory chemokines and cytokines but not LTB4. The CARD9-mediated signalling pathway involves Src-family kinases, Syk, PLCγ2, Bcl10/Malt1 and NFκB. Collectively, CARD9-mediated gene expression changes within neutrophils play important roles during non-infectious inflammation in vivo and CARD9 acts as a divergence point between chemokine/cytokine and lipid mediator release. PMID:27032818

  8. Effect of acute exercise on some haematological parameters and neutrophil functions in active and inactive subjects.

    PubMed

    Benoni, G; Bellavite, P; Adami, A; Chirumbolo, S; Lippi, G; Brocco, G; Cuzzolin, L

    1995-01-01

    In this work we studied the possible effects of acute exercise on some haematological parameters and on some functions of neutrophils in seven active and six inactive subjects. Physical exercise (10 min on a cycle ergometer at a heart rate of 150 beats.min-1) induced a significant increase in total leucocyte, lymphocyte and neutrophil concentrations in active subjects; serum iron and ferritin concentrations were lower in active compared to inactive subjects. Cellular adhesion, bactericidal activity and superoxide anion production did not change after exercise, while we also observed some differences between active and inactive subjects before exercise. In particular, the neutrophils from active subjects showed a significantly higher percentage of adhesion, higher bactericidal activity and lower superoxide anion production. In conclusion, the training induced changes in some neutrophil functions, while acute exercise influenced, overall, leucocyte concentrations. PMID:7768243

  9. Inflammatory response, neutrophil activation, and free radical production after acute myocardial infarction: effect of thrombolytic treatment.

    PubMed Central

    Bell, D; Jackson, M; Nicoll, J J; Millar, A; Dawes, J; Muir, A L

    1990-01-01

    Activated neutrophils releasing proteolytic enzymes and oxygen free radicals have been implicated in extending myocardial injury after myocardial infarction. Neutrophil elastase was used as a marker of neutrophil activation and the non-peroxide diene conjugate of linoleic acid was used as an indicator of free radical activity in 32 patients after acute myocardial infarction; 17 were treated by intravenous thrombolysis. Patients with acute myocardial infarction had higher plasma concentrations of neutrophil elastase and the non-peroxide diene conjugated isomer of linoleic acid than normal volunteers or patients with stable ischaemic heart disease. Patients treated by thrombolysis had an early peak of neutrophil elastase at eight hours while those who had not been treated by thrombolysis showed a later peak 40 hours after infarction. The plasma concentration of non-peroxide conjugated diene of linoleic acid was highest 16 hours after the infarction irrespective of treatment by thrombolysis. Quantitative imaging with single photon emission tomography showed decreased uptake of indium-111 labelled neutrophils in the infarcted myocardium (as judged from technetium-99m pyrophosphate) in those who had received thrombolysis, suggesting a decreased inflammatory response. The results indicate increased neutrophil activation and free radical production after myocardial infarction; they also suggest that thrombolysis does not amplify the inflammatory response and may indeed suppress it. Images PMID:2317413

  10. IL-17/IFN-γ interactions regulate intestinal inflammation in TNBS-induced acute colitis.

    PubMed

    Jin, Yu; Lin, Yan; Lin, Lianjie; Zheng, Changqing

    2012-11-01

    Colonic administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS) induced acute colitis in mice and elicited a Th1 immune response. Th17 cells are believed to play a major role in TNBS-induced colitis. The aim of this study is to investigate the roles of interleukin (IL)-17 and interferon (IFN)-γ in the pathogenesis of TNBS-induced acute colitis. We assessed the inflammation scores of TNBS-induced acute colitis in wild-type (WT), IL-17 knockout (KO), and IFN-γ KO mice and measured the levels of inflammatory cytokines using real-time PCR and ELISAs. Histology data showed that IL-17 KO mice with TNBS-induced colitis had significantly lower neutrophil infiltration and inflammatory macroscopic scores compared to the IFN-γ KO mice and WT mice. Intraperitoneal injection of anti-IL-17 monoclonal antibody confirmed a specific role for IL-17 in TNBS-induced acute colitis in the 3 strains of mice. The severity of colitis was higher in IFN-γ KO mice and lower in IL-17 KO mice compared to WT mice. Our data suggested that IL-17 signaling plays a critical role in the local inflammation of TNBS-induced colitis, while IFN-γ was not an important mediator of the local inflammation response. IL-17 may represent a target for therapeutic intervention in inflammatory bowel disease patients. PMID:23030668

  11. Neutrophil-to-lymphocyte ratio: an inflammation marker related to cardiovascular risk in children.

    PubMed

    Prats-Puig, Anna; Gispert-Saüch, Montserrat; Díaz-Roldán, Ferran; Carreras-Badosa, Gemma; Osiniri, Inés; Planella-Colomer, Montserrat; Mayol, Lluís; de Zegher, Francis; Ibánez, Lourdes; Bassols, Judit; López-Bermejo, Abel

    2015-10-01

    Low-grade chronic inflammation plays a pathogenic role in cardiovascular disease. An increase in the ratio of circulating neutrophils to lymphocytes (N/L ratio) may serve as a marker of cardiovascular risk in adults. It was the study objective to study whether N/L ratio associates with vascular parameters in children. Subjects were 501 prepubertal and early pubertal Caucasian children (mean age 8.0 years; mean body mass index (BMI) Z-score 0.2 ± 0.9; 266 boys and 235 girls) recruited within an ongoing population-based study. The subjects were stratified into three groups according to age. Neutrophil, lymphocyte, BMI, waist circumference, systolic blood pressure (SBP) and carotid intima-media thickness (cIMT), assessed in all children. The N/L ratio, derived from the absolute neutrophil and lymphocyte counts. In children aged < 7 years (n=190, all prepubertal), no associations were observed between N/L ratio and either anthropometric or cardiovascular parameters. In children aged 7-9 years (n=171, 1.7% early pubertal), higher N/L ratio associated with higher BMI Z-score and waist circumference (p=0.008 to p < 0.0001). In children aged >9 years (n=140, 29.2% early pubertal), N/L ratio associated again with BMI Z-score and waist circumference and also positively with SBP and cIMT (all p=0.008 to p<0.0001). These associations remained significant in linear regression models following adjustment for possible confounding variables such as age, gender, fasting triglycerides, C-reactive protein and puberty (and for SBP and cIMT, adjustment also for BMI). In conclusion, our results provide the first evidence that a higher N/L ratio is associated with a less favourable cardiovascular profile in children and delineate the development of these associations from late childhood onwards. PMID:26224329

  12. Muscarinic M3 receptors on structural cells regulate cigarette smoke-induced neutrophilic airway inflammation in mice

    PubMed Central

    van Os, Ronald P.; Dethmers-Ausema, Albertina; Bos, I. Sophie T.; Hylkema, Machteld N.; van den Berge, Maarten; Hiemstra, Pieter S.; Wess, Jürgen; Meurs, Herman; Kerstjens, Huib A. M.; Gosens, Reinoud

    2014-01-01

    Anticholinergics, blocking the muscarinic M3 receptor, are effective bronchodilators for patients with chronic obstructive pulmonary disease. Recent evidence from M3 receptor-deficient mice (M3R−/−) indicates that M3 receptors also regulate neutrophilic inflammation in response to cigarette smoke (CS). M3 receptors are present on almost all cell types, and in this study we investigated the relative contribution of M3 receptors on structural cells vs. inflammatory cells to CS-induced inflammation using bone marrow chimeric mice. Bone marrow chimeras (C56Bl/6 mice) were generated, and engraftment was confirmed after 10 wk. Thereafter, irradiated and nonirradiated control animals were exposed to CS or fresh air for four consecutive days. CS induced a significant increase in neutrophil numbers in nonirradiated and irradiated control animals (4- to 35-fold). Interestingly, wild-type animals receiving M3R−/− bone marrow showed a similar increase in neutrophil number (15-fold). In contrast, no increase in the number of neutrophils was observed in M3R−/− animals receiving wild-type bone marrow. The increase in keratinocyte-derived chemokine (KC) levels was similar in all smoke-exposed groups (2.5- to 5.0-fold). Microarray analysis revealed that fibrinogen-α and CD177, both involved in neutrophil migration, were downregulated in CS-exposed M3R−/− animals receiving wild-type bone marrow compared with CS-exposed wild-type animals, which was confirmed by RT-qPCR (1.6–2.5 fold). These findings indicate that the M3 receptor on structural cells plays a proinflammatory role in CS-induced neutrophilic inflammation, whereas the M3 receptor on inflammatory cells does not. This effect is probably not mediated via KC release, but may involve altered adhesion and transmigration of neutrophils via fibrinogen-α and CD177. PMID:25381025

  13. Pre–B cell colony–enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis

    PubMed Central

    Jia, Song Hui; Li, Yue; Parodo, Jean; Kapus, Andras; Fan, Lingzhi; Rotstein, Ori D.; Marshall, John C.

    2004-01-01

    Pre–B cell colony-enhancing factor (PBEF) is a highly conserved 52-kDa protein, originally identified as a growth factor for early stage B cells. We show here that PBEF is also upregulated in neutrophils by IL-1β and functions as a novel inhibitor of apoptosis in response to a variety of inflammatory stimuli. Induction of PBEF occurs 5–10 hours after LPS exposure. Prevention of PBEF translation with an antisense oligonucleotide completely abrogates the inhibitory effects of LPS, IL-1, GM-CSF, IL-8, and TNF-α on neutrophil apoptosis. Immunoreactive PBEF is detectable in culture supernatants from LPS-stimulated neutrophils, and a recombinant PBEF fusion protein inhibits neutrophil apoptosis. PBEF is also expressed in neutrophils from critically ill patients with sepsis in whom rates of apoptosis are profoundly delayed. Expression occurs at higher levels than those seen in experimental inflammation, and a PBEF antisense oligonucleotide significantly restores the normal kinetics of apoptosis in septic polymorphonuclear neutrophils. Inhibition of apoptosis by PBEF is associated with reduced activity of caspases-8 and -3, but not caspase-9. These data identify PBEF as a novel inflammatory cytokine that plays a requisite role in the delayed neutrophil apoptosis of clinical and experimental sepsis. PMID:15124023

  14. Neutrophil gelatinase-associated lipocalin: its response to hypoxia and association with acute mountain sickness.

    PubMed

    Mellor, Adrian; Boos, Christopher; Stacey, Mike; Hooper, Tim; Smith, Chris; Begley, Joe; Yarker, Jo; Piper, Rick; O'Hara, John; King, Rod; Turner, Steve; Woods, David R

    2013-01-01

    Acute Mountain Sickness (AMS) is a common clinical challenge at high altitude (HA). A point-of-care biochemical marker for AMS could have widespread utility. Neutrophil gelatinase-associated lipocalin (NGAL) rises in response to renal injury, inflammation and oxidative stress. We investigated whether NGAL rises with HA and if this rise was related to AMS, hypoxia or exercise. NGAL was assayed in a cohort (n = 22) undertaking 6 hours exercise at near sea-level (SL); a cohort (n = 14) during 3 hours of normobaric hypoxia (FiO2 11.6%) and on two trekking expeditions (n = 52) to over 5000 m. NGAL did not change with exercise at SL or following normobaric hypoxia. During the trekking expeditions NGAL levels (ng/ml, mean ± sd, range) rose significantly (P < 0.001) from 68 ± 14 (60-102) at 1300 m to 183 ± 107 (65-519); 143 ± 66 (60-315) and 150 ± 71 (60-357) at 3400 m, 4270 m and 5150 m respectively. At 5150 m there was a significant difference in NGAL between those with severe AMS (n = 7), mild AMS (n = 16) or no AMS (n = 23): 201 ± 34 versus 171 ± 19 versus 124 ± 12 respectively (P = 0.009 for severe versus no AMS; P = 0.026 for mild versus no AMS). In summary, NGAL rises in response to prolonged hypobaric hypoxia and demonstrates a relationship to the presence and severity of AMS. PMID:24227892

  15. Clinical application of neutrophil CD64 quantification for differential diagnosis of acute scrotum.

    PubMed

    Hayashi, Hirofumi; Mochizuki, Taku; Sanjo, Hiroyuki; Komiya, Akiko; Matsui, Toshihiro; Tohma, Shigeto; Hirai, Kotaro

    2016-03-01

    The management of acute scrotum can be challenging, especially in infants or patients with a neurological or neurodevelopmental disorder in whom presentation, diagnosis and definitive management tends to be delayed. This leads to poor outcomes, such as loss of the affected testis. Here we present two cases of testicular torsion in patients with neurodevelopmental disorders, and a further two cases of epidydimo-orchitis in whom measurement of CD64 expression on neutrophils was helpful for differential diagnosis. These data suggest that the levels of expression of CD64 by neutrophils, known as a marker of infection, could also be useful for differentiating between testicular torsion and infection in acute scrotum. PMID:26690883

  16. Disruption of a Regulatory Network Consisting of Neutrophils and Platelets Fosters Persisting Inflammation in Rheumatic Diseases

    PubMed Central

    Maugeri, Norma; Rovere-Querini, Patrizia; Manfredi, Angelo A.

    2016-01-01

    A network of cellular interactions that involve blood leukocytes and platelets maintains vessel homeostasis. It plays a critical role in the response to invading microbes by recruiting intravascular immunity and through the generation of neutrophil extracellular traps (NETs) and immunothrombosis. Moreover, it enables immune cells to respond to remote chemoattractants by crossing the endothelial barrier and reaching sites of infection. Once the network operating under physiological conditions is disrupted, the reciprocal activation of cells in the blood and the vessel walls determines the vascular remodeling via inflammatory signals delivered to stem/progenitor cells. A deregulated leukocyte/mural cell interaction is an early critical event in the natural history of systemic inflammation. Despite intense efforts, the signals that initiate and sustain the immune-mediated vessel injury, or those that enforce the often-prolonged phases of clinical quiescence in patients with vasculitis, have only been partially elucidated. Here, we discuss recent evidence that implicates the prototypic damage-associated molecular pattern/alarmin, the high mobility group box 1 (HMGB1) protein in systemic vasculitis and in the vascular inflammation associated with systemic sclerosis. HMGB1 could represent a player in the pathogenesis of rheumatic diseases and an attractive target for molecular interventions. PMID:27242789

  17. Disruption of a Regulatory Network Consisting of Neutrophils and Platelets Fosters Persisting Inflammation in Rheumatic Diseases.

    PubMed

    Maugeri, Norma; Rovere-Querini, Patrizia; Manfredi, Angelo A

    2016-01-01

    A network of cellular interactions that involve blood leukocytes and platelets maintains vessel homeostasis. It plays a critical role in the response to invading microbes by recruiting intravascular immunity and through the generation of neutrophil extracellular traps (NETs) and immunothrombosis. Moreover, it enables immune cells to respond to remote chemoattractants by crossing the endothelial barrier and reaching sites of infection. Once the network operating under physiological conditions is disrupted, the reciprocal activation of cells in the blood and the vessel walls determines the vascular remodeling via inflammatory signals delivered to stem/progenitor cells. A deregulated leukocyte/mural cell interaction is an early critical event in the natural history of systemic inflammation. Despite intense efforts, the signals that initiate and sustain the immune-mediated vessel injury, or those that enforce the often-prolonged phases of clinical quiescence in patients with vasculitis, have only been partially elucidated. Here, we discuss recent evidence that implicates the prototypic damage-associated molecular pattern/alarmin, the high mobility group box 1 (HMGB1) protein in systemic vasculitis and in the vascular inflammation associated with systemic sclerosis. HMGB1 could represent a player in the pathogenesis of rheumatic diseases and an attractive target for molecular interventions. PMID:27242789

  18. Pericytes Regulate Vascular Basement Membrane Remodeling and Govern Neutrophil Extravasation during Inflammation

    PubMed Central

    Wang, Shijun; Cao, Canhong; Chen, Zhongming; Bankaitis, Vytas; Tzima, Eleni; Sheibani, Nader; Burridge, Keith

    2012-01-01

    During inflammation polymorphonuclear neutrophils (PMNs) traverse venular walls, composed of the endothelium, pericyte sheath and vascular basement membrane. Compared to PMN transendothelial migration, little is known about how PMNs penetrate the latter barriers. Using mouse models and intravital microscopy, we show that migrating PMNs expand and use the low expression regions (LERs) of matrix proteins in the vascular basement membrane (BM) for their transmigration. Importantly, we demonstrate that this remodeling of LERs is accompanied by the opening of gaps between pericytes, a response that depends on PMN engagement with pericytes. Exploring how PMNs modulate pericyte behavior, we discovered that direct PMN-pericyte contacts induce relaxation rather than contraction of pericyte cytoskeletons, an unexpected response that is mediated by inhibition of the RhoA/ROCK signaling pathway in pericytes. Taking our in vitro results back into mouse models, we present evidence that pericyte relaxation contributes to the opening of the gaps between pericytes and to the enlargement of the LERs in the vascular BM, facilitating PMN extravasation. Our study demonstrates that pericytes can regulate PMN extravasation by controlling the size of pericyte gaps and thickness of LERs in venular walls. This raises the possibility that pericytes may be targeted in therapies aimed at regulating inflammation. PMID:23029055

  19. Roles of resolvins in the resolution of acute inflammation.

    PubMed

    Qu, Qing; Xuan, Wenjuan; Fan, Guo-Huang

    2015-01-01

    Resolution is an active process that terminates inflammatory response to maintain health. Acute inflammation and its timely resolution are important in host response to danger signals. Unresolved inflammation is associated with widely recurrent diseases. Resolvins, including the D and E series, are endogenous lipid mediators generated during the resolution phase of acute of inflammation from the ω-3 PUFAs, DHA, and EPA. They have anti-inflammatory and pro-resolving properties that have been determined in many inflammation studies in animal models. In this review, we provide an updated overview of biosynthesis, actions, and signaling pathways of resolvins, thereby underscoring their diverse protective roles and introducing novel therapeutic strategies for inflammation-associated diseases. PMID:25052386

  20. Association between glucose-regulated protein and neutrophil apoptosis in severe acute pancreatitis

    PubMed Central

    Xu, Lan-Tao; Xu, He-Ling; Fu, Ming-Sheng

    2015-01-01

    Objective: This study aimed to investigate the role of glucose regulated protein 78 (GRP-78) in the apoptosis of neutrophils in rats with severe acute pancreatitis. Methods: A total of 54 SD male rats were randomly assigned into 2 groups: sham group (n=24) and pancreatitis group (n=30). Severe acute pancreatitis was induced by retrograde cholangiopancreatography injection of sodium taurocholate. Rats were sacrified at 3 h, 6 h and 12 h after injection. In control group, rats received laparotomy, but the pancreates remained intact. The serum amylase was detected at different time points, and flow cytometry was done to detect the apoptosis of neutrophils. Proteins were extracted from neutrophils and subjected to detection of GRP78 and Mcl-1 expression by Western blot assay. HE staining was performed for pathological scoring of the pancreas. Results: The serum amylase in pancreatitis group increased markedly when compared with control group (P<0.01). In SAP group, the serum amylase increased gradually over time (P<0.01). HE staining showed a lot of inflammatory cells and infiltration of red blood cells and the apoptosis rate of neutrophils reduced gradually (P<0.01). Western blot assay showed the protein expression of GRP-78 and Mcl-1 increased in neutrophils over time. Conclusion: In rats with SAP, the apoptosis rate of neutrophils reduced over time, which may be associated to the stress induced expression of GRP78 and subsequent activation of Mcl-1 resulting in suppression of neutrphil apoptosis over time. PMID:26464680

  1. Critical role of the C5a-activated neutrophils in high-fat diet-induced vascular inflammation

    PubMed Central

    Osaka, Mizuko; Ito, Shunsuke; Honda, Masaki; Inomata, Yukihiro; Egashira, Kensuke; Yoshida, Masayuki

    2016-01-01

    Exceed and chronic high-fat diet (HFD) contributes to the diagnosis and development of atherosclerosis, obesity, and metabolic syndrome. However, the key molecular component(s) triggered by HFD responsible for initiating vascular inflammation remain unknown. We observed that feeding HFD for 4 weeks is sufficient to induce leukocyte recruitment in the femoral artery of wild-type mice. Neutrophil- and monocyte-depletion analyses confirmed the preferential recruitment of neutrophils in these mice. Protein analysis of sera from HFD-fed mice revealed a marked elevation of complement component C5a levels. Exogenous C5a alone induced leukocyte recruitment, which was abolished by a C5a-receptor antagonist. We also examined the role of neutrophil-derived MCP-1 in accumulation of leukocytes in the artery. These results demonstrated a previously unrecognized role for C5a and neutrophils in the early onset of HFD-induced vascular inflammation. Further study may help in elucidating a novel regulatory pathway to control diet-induced inflammation such as that in case of atherosclerosis. PMID:26893238

  2. Synthetic Amphipathic Helical Peptides Targeting CD36 Attenuate Lipopolysaccharide-Induced Inflammation and Acute Lung Injury.

    PubMed

    Bocharov, Alexander V; Wu, Tinghuai; Baranova, Irina N; Birukova, Anna A; Sviridov, Denis; Vishnyakova, Tatyana G; Remaley, Alan T; Eggerman, Thomas L; Patterson, Amy P; Birukov, Konstantin G

    2016-07-15

    Synthetic amphipathic helical peptides (SAHPs) designed as apolipoprotein A-I mimetics are known to bind to class B scavenger receptors (SR-Bs), SR-BI, SR-BII, and CD36, receptors that mediate lipid transport and facilitate pathogen recognition. In this study, we evaluated SAHPs, selected for targeting human CD36, by their ability to attenuate LPS-induced inflammation, endothelial barrier dysfunction, and acute lung injury (ALI). L37pA, which targets CD36 and SR-BI equally, inhibited LPS-induced IL-8 secretion and barrier dysfunction in cultured endothelial cells while reducing lung neutrophil infiltration by 40% in a mouse model of LPS-induced ALI. A panel of 20 SAHPs was tested in HEK293 cell lines stably transfected with various SR-Bs to identify SAHPs with preferential selectivity toward CD36. Among several SAHPs targeting both SR-BI/BII and CD36 receptors, ELK-B acted predominantly through CD36. Compared with L37pA, 5A, and ELK SAHPs, ELK-B was most effective in reducing the pulmonary barrier dysfunction, neutrophil migration into the lung, and lung inflammation induced by LPS. We conclude that SAHPs with relative selectivity toward CD36 are more potent at inhibiting acute pulmonary inflammation and dysfunction. These data indicate that therapeutic strategies using SAHPs targeting CD36, but not necessarily mimicking all apolipoprotein A-I functions, may be considered a possible new treatment approach for inflammation-induced ALI and pulmonary edema. PMID:27316682

  3. Association of Interleukin-8 and Neutrophils with Nasal Symptom Severity During Acute Respiratory Infection

    PubMed Central

    Henriquez, Kelsey M.; Hayney, Mary S.; Xie, Yaoguo; Zhang, Zhengjun; Barrett, Bruce

    2015-01-01

    Using a large data set (n = 811), the relationship between acute respiratory infection illness severity and inflammatory biomarkers was investigated to determine whether certain symptoms are correlated more closely than others with the inflammatory biomarkers, interleukin-8 (IL-8) and nasal neutrophils. Participants with community acquired acute respiratory infection underwent nasal lavage for IL-8 and neutrophil testing, in addition to multiplex polymerase chain reaction (PCR) methods for the detection and identification of respiratory viruses. Information about symptoms was obtained throughout the duration of the illness episode using the well-validated Wisconsin Upper Respiratory Symptom Survey (WURSS-21). Global symptom severity was calculated by the area under the curve (AUC) plotting duration versus WURSS total. Of the specimens tested, 56% were positively identified for one or more of nine different respiratory viruses. During acute respiratory infection illness, both IL-8 and neutrophils positively correlate with AUC (rs = 0.082, P = 0.022; rs = 0.080, P = 0.030). IL-8 and neutrophils correlate with nasal symptom severity: runny nose (r = 0.13, P = <0.00001; r = 0.18, P = <0.003), plugged nose (r = 0.045, P = 0.003; r = 0.14, P = 0.058), and sneezing (r = −0.02, P = <0.0001; r = −0.0055, P = 0.31). Neutrophils correlate with some quality of life measures such as sleeping well (r = 0.15, P = 0.026). Thus, the study demonstrates that IL-8 and neutrophils are correlated with severity of nasal symptoms during acute respiratory infection. Further research is necessary to determine if the concentration of these or other biomarkers can predict the overall duration and severity of acute respiratory infection illness. PMID:25132248

  4. In vivo hydroquinone exposure alters circulating neutrophil activities and impairs LPS-induced lung inflammation in mice.

    PubMed

    Ribeiro, André Luiz Teroso; Shimada, Ana Lúcia Borges; Hebeda, Cristina Bichels; de Oliveira, Tiago Franco; de Melo Loureiro, Ana Paula; Filho, Walter Dos Reis Pereira; Santos, Alcinéa Meigikos Dos Anjos; de Lima, Wothan Tavares; Farsky, Sandra Helena Poliselli

    2011-10-01

    Hydroquinone (HQ) is an environmental contaminant which causes immune toxicity. In this study, the effects of exposure to low doses of HQ on neutrophil mobilization into the LPS-inflamed lung were investigated. Male Swiss mice were exposed to aerosolized vehicle (control) or 12.5, 25 or 50ppm HQ (1h/day for 5 days). One hour later, oxidative burst, cell cycle, DNA fragmentation and adhesion molecules expressions in circulating neutrophils were determined by flow cytometry, and plasma malondialdehyde (MDA) levels were measured by HPLC. Also, 1h later the last exposures, inflammation was induced by LPS inhalation (0.1mg/ml/10min) and 3h later, the numbers of leukocytes in peripheral blood and in the bronchoalveolar lavage fluid (BALF) were determined using a Neubauer chamber and stained smears; adhesion molecules expressed on lung microvessel endothelial cells were quantified by immunohistochemistry; myeloperoxidase (MPO) activity was measured in the lung tissue by colorimetric assay; and cytokines in the BALF were determined by ELISA. In vivo HQ exposure augmented plasma MDA levels and oxidative activity of neutrophils, but did not cause alterations in cell cycle and DNA fragmentation. Under these conditions, the number of circulating leukocytes was not altered, but HQ exposure reduced LPS-induced neutrophil migration into the alveolar space, as these cells remained in the lung tissue. The impaired neutrophil migration into BALF may not be dependent on reduced cytokines secretions in the BALF and lung endothelial adhesion molecules expressions. However, HQ exposure increased the expression of β(2) and β(3) integrins and platelet-endothelial cell adhesion molecule-1 (PECAM-1) in neutrophils, which were not further enhanced by fMLP in vitro stimulation, indicating that HQ exposure activates circulating neutrophils, impairing further stimulatory responses. Therefore, it has been shown, for the first time, that neutrophils are target of lower levels of in vivo HQ

  5. Montelukast versus Dexamethasone Treatment in a Guinea Pig Model of Chronic Pulmonary Neutrophilic Inflammation.

    PubMed

    Abdel Kawy, Hala S

    2016-08-01

    Airway inflammation in chronic obstructive pulmonary disease (COPD) is refractory to corticosteroids and hence COPD treatment is hindered and insufficient. This study assessed the effects of oral treatment with Montelukast (10 and 30 mg/kg) or dexamethasone (20 mg/kg) for 20 days on COPD model induced by chronic exposure to lipopolysaccharide (LPS). Six groups of male guinea pigs were studied. Group 1: naïve group, group 2: exposed to saline nebulization. Groups 3, 4, 5, and 6: exposed to 9 nebulizations of LPS (30 μg/ml) for 1 hour, 48 hours apart with or without treatment with Montelukast or dexamethasone. Airway hyperreactivity (AHR) to methacholine (MCh), histopathological study and bronchoalveolar lavage fluid (BALF) as well as lung tissue analyses were performed 48 hours after the final exposure to LPS (day 20). LPS-induced pulmonary dysfunction was associated with increased neutrophil count, leukotriene (LT) B4, and tumor necrosis factor (TNF)-α in BALF. Moreover, there was an increase in malondialdehyde (MDA) level and a decrease in histone deacetylases(HDAC) activity in the lung tissue. Both Montelukast (10 or 30 mg /kg) and dexamethasone significantly reduced neutrophil count in BALF and inflammatory cells in lung parenchyma as well as TNF-α, and MDA levels. However, dexamethasone was more effective (p < 0.05). Montelukast, at a dose of 30 mg /kg, significantly reduced specific airway resistance after the 9th LPS exposure, attenuated AHR to MCh, decreased LTB4 and increased HDAC activity in comparison to dexamethasone. These results suggest that treatment with Montelukast can be useful in chronic airway inflammatory diseases including COPD poorly responsive to glucocorticoids. PMID:26751767

  6. [Lipid derivative of benzylidene malononitrile AG490 attenuates airway inflammation of mice with neutrophilic asthma].

    PubMed

    Zhang, Min; Nong, Guangmin; Jiang, Min; Zhan, Wenjie

    2016-06-01

    Objective To observe the effect of lipid derivative of benzylidene malononitrile AG490 on the airway inflammation in a mouse model of neutrophilic asthma (NA). Methods Fifty-four specific pathogen-free (SPF) female C57BL/6 mice were randomly divided into 3 groups: NA group, AG490-treated NA (NAAG) group, and normal control (NC) group, 18 mice in each group. The NA group and the NAAG group were sensitized by airway instillation of ovalbumin (OVA) and lipopolysaccharide (LPS) on day 0, 6 and 13. The NAAG group was injected with AG490 (500 μg/mouse, i.p.) three times a week, from day 0 after the first sensitization, for 3 weeks. Mice were challenged on day 21, 22 for 1 hour/time with an aerosol of 10 g/L OVA. At 24 hours after the final challenge, bronchoalveolar lavage fluid (BALF) was collected. The total number and differential counts of nucleated cells and the percentage of each type were determined. HE staining and PAS staining was employed for observing the lung pathological changes. The percentages of Th17 cells and regulatory T cells (Treg) in the lung issue were determined by flow cytometry. The level of interleukin-17 (IL-17) in BALF was measured using ELISA. Results Compared with the NA group, the total number of nucleated cells, the percentage of neutrophils and the percentage of eosinophils in BALF in the NAAG group were obviously reduced; lung tissue pathologic changes were improved in the NAAG group; goblet cell hyperplasia and the level of IL-17 in BALF in the NAAG group were significantly down-regulated; the proportion of Treg in the lung increased and the proportion of Th17 cells in the lung decreased in the NAAG group. Conclusion After NA mice are treated with AG490 during the sensitization phase, the proportion of Treg in the lung would increase and the proportion of Th17 cells in the lung would decrease. AG490 could attenuate the airway inflammation in the mouse model of NA. PMID:27371836

  7. Time profile of oxidative stress and neutrophil activation in ovine acute lung injury and sepsis.

    PubMed

    Lange, Matthias; Szabo, Csaba; Traber, Daniel L; Horvath, Eszter; Hamahata, Atsumori; Nakano, Yoshimitsu; Traber, Lillian D; Cox, Robert A; Schmalstieg, Frank C; Herndon, David N; Enkhbaatar, Perenlei

    2012-05-01

    The formation of oxidative stress in the lung and activation of neutrophils are major determinants in the development of respiratory failure after acute lung injury and sepsis. However, the time changes of these pathogenic factors have not been sufficiently described. Twenty-four chronically instrumented sheep were subjected to cotton smoke inhalation injury and instillation of live Pseudomonas aeruginosa into both lungs. The sheep were euthanized at 4, 8, 12, 18, and 24 h after injury. Additional sheep received sham injury and were euthanized after 24 h. Pulmonary function was assessed by determination of oxygenation index and pulmonary shunt fraction. In addition, lung tissue was harvested at the respective time points for the measurement of malondialdehyde, interleukin 6, poly(ADP ribose), myeloperoxidase, and alveolar polymorphonuclear neutrophil score. The injury induced severe respiratory failure that was associated with an early increase in lipid peroxidation and interleukin 6 expression. The injury further led to an increase in poly(ADP ribose) activity that reached its peak at 12 h after injury and declined afterward. In addition, progressive increases in markers of neutrophil accumulation in the lung were observed. The peak of neutrophil accumulation in the lung was associated with a severe depletion of circulating neutrophils. The results from our model may enhance the understanding of the pathophysiological alterations after acute lung injury and sepsis and thus be useful in exploring therapeutic interventions directed at modifying the expression or activation of inflammatory mediators. PMID:22266977

  8. Syndecan-4 Regulates Early Neutrophil Migration and Pulmonary Inflammation in Response to Lipopolysaccharide

    PubMed Central

    Chang, Mary Y.; Wang, Xintao; Gill, Sean E.; Skerrett, Shawn; McGuire, John K.; Sato, Suguru; Nikaido, Takefumi; Kojima, Tetsuhito; Munakata, Mitsuru; Mongovin, Steve; Parks, William C.; Martin, Thomas R.; Wight, Thomas N.; Frevert, Charles W.

    2012-01-01

    Proteoglycans (PGs) and their associated glycosaminoglycan side chains are effectors of inflammation, but little is known about changes to the composition of PGs in response to lung infection or injury. The goals of this study were to identify changes to heparan sulfate PGs in a mouse model of gram-negative pneumonia, to identify the Toll-like receptor adaptor molecules responsible for these changes, and to determine the role of the heparan sulfate PG in the innate immune response in the lungs. We treated mice with intratracheal LPS, a component of the cell wall of gram-negative bacteria, to model gram-negative pneumonia. Mice treated with intratracheal LPS had a rapid and selective increase in syndecan-4 mRNA that was regulated through MyD88-dependent mechanisms, whereas expression of several other PGs was not affected. To determine the role of syndecan-4 in the inflammatory response, we exposed mice deficient in syndecan-4 to LPS and found a significant increase in neutrophil numbers and amounts of CXC-chemokines and total protein in bronchoalveolar lavage fluid. In studies performed in vitro, macrophages and epithelial cells treated with LPS had increased expression of syndecan-4. Studies performed using BEAS-2B cells showed that pretreatment with heparin and syndecan-4 decreased the expression of CXCL8 mRNA in response to LPS and TNF-α. These findings indicate that the early inflammatory response to LPS involves marked up-regulation of syndecan-4, which functions to limit the extent of pulmonary inflammation and lung injury. PMID:22427536

  9. The therapeutic effects of tuberostemonine against cigarette smoke-induced acute lung inflammation in mice.

    PubMed

    Jung, Kyung-Hwa; Beak, Hyunjung; Park, Soojin; Shin, Dasom; Jung, Jaehoon; Park, Sangwon; Kim, Jinju; Bae, Hyunsu

    2016-03-01

    Chronic obstructive pulmonary disease (COPD) is mainly caused by cigarette smoking and is characterized by the destruction of lung parenchyma, structural alterations of the small airways, and systemic inflammation. Tuberostemonine (TS) is an alkaloid-type phytochemical from Stemona tuberosa. In the present study, we evaluated the anti-inflammatory effect of TS in a cigarette smoke (CS)-induced mouse model of acute lung inflammation. The mice were whole-body exposed to CS or fresh air for 7 days. TS was administered by an intraperitoneal (i.p.) injection 1h before exposure to CS. To test the effects of TS, the numbers of total cells, neutrophils, macrophages and lymphocytes in the bronchoalveolar lavage (BAL) fluid were counted. Furthermore, we measured the levels of several chemokines, such as GCP-2, MIP-3α, MCP-1 and KC, in the lung tissue. The cellular profiles and histopathological analysis demonstrated that the infiltration of peribronchial and perivascular inflammatory cells significantly decreased in the TS-treated groups compared with the CS-exposure group. The TS treatment significantly ameliorated the airway epithelial thickness induced by CS exposure and caused a significant decrement in the production of chemokines in the lung. These results suggest that TS has anti-inflammatory effects against CS-induced acute lung inflammation. PMID:26849941

  10. Monoclonal antibodies to antigens on human neutrophils, activated T lymphocytes, and acute leukemia blast cells

    SciTech Connect

    Miterev, G.Yu.; Burova, G.F.; Puzhitskaya, M.S.; Danilevich, S.V.; Bulycheva, T.I.

    1987-11-01

    The authors describe the production of two mouse hybridomas secreting monoclonal antibodies to antigenic determinants of the surface membranes of human neutrophils, activated T lymphocytes, and acute leukemic blast cells. The degree of lymphocyte stimulation was estimated from incorporation of /sup 3/H-thymidine with parallel microculture. Monoclonal antibodies of supernatants of hybridoma cultures shown here reacted in both immunofluorescence test and cytotoxicity test with surface membrane antigens on the majority of neutrophils and PHA-activated peripheral blood lymphocytes from healthy subjects, but did not give positive reactions with unactivated lymphocytes, adherent monocytes, erythrocytes, and alloantigen-stimulated lymphocytes.

  11. Platelet-Derived CCL5 Regulates CXC Chemokine Formation and Neutrophil Recruitment in Acute Experimental Colitis.

    PubMed

    Yu, Changhui; Zhang, Songen; Wang, Yongzhi; Zhang, Su; Luo, Lingtao; Thorlacius, Henrik

    2016-02-01

    Accumulating data suggest that platelets not only regulate thrombosis and haemostasis but also inflammatory processes. Platelets contain numerous potent pro-inflammatory compounds, including the chemokines CCL5 and CXCL4, although their role in acute colitis remains elusive. The aim of this study is to examine the role of platelets and platelet-derived chemokines in acute colitis. Acute colitis is induced in female Balb/c mice by administration of 5% dextran sodium sulfate (DSS) for 5 days. Animals receive a platelet-depleting, anti-CCL5, anti-CXCL4, or a control antibody prior to DSS challenge. Colonic tissue is collected for quantification of myeloperoxidase (MPO) activity, CXCL5, CXCL2, interleukin-6 (IL-6), and CCL5 levels as well as morphological analyses. Platelet depletion reduce tissue damage and clinical disease activity index in DSS-exposed animals. Platelet depletion not only reduces levels of CXCL2 and CXCL5 but also levels of CCL5 in the inflamed colon. Immunoneutralization of CCL5 but not CXCL4 reduces tissue damage, CXC chemokine expression, and neutrophil recruitment in DSS-treated animals. These findings show that platelets play a key role in acute colitis by regulating CXC chemokine generation, neutrophil infiltration, and tissue damage in the colon. Moreover, our results suggest that platelet-derived CCL5 is an important link between platelet activation and neutrophil recruitment in acute colitis. PMID:26089223

  12. Neutrophil Gelatinase-Associated Lipocalin: Its Response to Hypoxia and Association with Acute Mountain Sickness

    PubMed Central

    Boos, Christopher; Stacey, Mike; Hooper, Tim; Smith, Chris; Yarker, Jo; Piper, Rick; O'Hara, John; King, Rod; Turner, Steve; Woods, David R.

    2013-01-01

    Acute Mountain Sickness (AMS) is a common clinical challenge at high altitude (HA). A point-of-care biochemical marker for AMS could have widespread utility. Neutrophil gelatinase-associated lipocalin (NGAL) rises in response to renal injury, inflammation and oxidative stress. We investigated whether NGAL rises with HA and if this rise was related to AMS, hypoxia or exercise. NGAL was assayed in a cohort (n = 22) undertaking 6 hours exercise at near sea-level (SL); a cohort (n = 14) during 3 hours of normobaric hypoxia (FiO2 11.6%) and on two trekking expeditions (n = 52) to over 5000 m. NGAL did not change with exercise at SL or following normobaric hypoxia. During the trekking expeditions NGAL levels (ng/ml, mean ± sd, range) rose significantly (P < 0.001) from 68 ± 14 (60–102) at 1300 m to 183 ± 107 (65–519); 143 ± 66 (60–315) and 150 ± 71 (60–357) at 3400 m, 4270 m and 5150 m respectively. At 5150 m there was a significant difference in NGAL between those with severe AMS (n = 7), mild AMS (n = 16) or no AMS (n = 23): 201 ± 34 versus 171 ± 19 versus 124 ± 12 respectively (P = 0.009 for severe versus no AMS; P = 0.026 for mild versus no AMS). In summary, NGAL rises in response to prolonged hypobaric hypoxia and demonstrates a relationship to the presence and severity of AMS. PMID:24227892

  13. Asialoerythropoietin ameliorates bleomycin-induced acute lung injury in rabbits by reducing inflammation.

    PubMed

    Sonoda, Akinaga; Nitta, Norihisa; Tsuchiya, Keiko; Otani, Hideji; Watanabe, Shobu; Mukaisho, Kenichi; Tomozawa, Yuki; Nagatani, Yukihiro; Ohta, Shinichi; Takahashi, Masashi; Murata, Kiyoshi

    2014-11-01

    Acute lung injury, a critical illness characterized by acute respiratory failure with bilateral pulmonary infiltrates, remains unresponsive to current treatments. The condition involves injury to the alveolar capillary barrier, neutrophil accumulation and the induction of proinflammatory cytokines followed by lung fibrosis. In the present study, a rabbit model of bleomycin-induced acute lung injury was established to examine the effects of asialoerythropoietin (AEP), an agent with tissue-protective activities, on pulmonary inflammation. Six Japanese white rabbits were randomly divided into two equal groups. Acute lung injury was induced in all rabbits by intratracheally injecting bleomycin. The control group was injected with bleomycin only; the experimental (AEP) group was injected intravenously with AEP (80 μg/kg) prior to the bleomycin injection. Computed tomography (CT) studies were performed seven days later. The CT inflammatory scores of areas exhibiting abnormal density and the pathological inflammatory scores were recorded as a ratio on a 7×7 mm grid. The CT and pathological inflammatory scores were significantly different between the control and AEP groups [122±10 and 16.3±1.5 (controls) vs. 71±8.5 and 9.7±1.4 (AEP), respectively; P<0.01]. Thus, the present study revealed that AEP prevents bleomycin-induced acute lung injury in rabbits. PMID:25289037

  14. Noninvasive In Vivo Quantification of Neutrophil Elastase Activity in Acute Experimental Mouse Lung Injury

    PubMed Central

    Kossodo, Sylvie; Zhang, Jun; Groves, Kevin; Cuneo, Garry J.; Handy, Emma; Morin, Jeff; Delaney, Jeannine; Yared, Wael; Rajopadhye, Milind; Peterson, Jeffrey D.

    2011-01-01

    We developed a neutrophil elastase-specific near-infrared fluorescence imaging agent, which, combined with fluorescence molecular tomographic imaging, allowed us to detect and quantify neutrophil elastase activity in vivo, in real time, and noninvasively in an acute model of lung injury (ALI). Significantly higher fluorescent signal was quantified in mice with LPS/fMLP-induced ALI as compared to healthy controls, correlating with increases in the number of bronchoalveolar lavage cells, neutrophils, and elastase activity. The agent was significantly activated ex vivo in lung sections from ALI but not from control mice, and this activation was ablated by the specific inhibitor sivelestat. Treatment with the specific inhibitor sivelestat significantly reduced lung signal in mice with ALI. These results underscore the unique ability of fluorescence molecular imaging to quantify specific molecular processes in vivo, crucial for understanding the mechanisms underlying disease progression and for assessing and monitoring novel pharmacological interventions. PMID:21941648

  15. Acute febrile neutrophilic dermatosis associated with JAK-2 positive myeloproliferative disorder.

    PubMed

    Smyth, Dean; Selwyn, Jey

    2016-01-01

    We present a case of a 77-year-old man with a history of myeloproliferative disorder. He was admitted with a 2-week history of erythaema, swelling and significant pain of the right forearm following a mechanical fall at home, which had caused a skin laceration. During his admission, he developed ongoing intermittent fever and persistently elevated C reactive protein, and total white cell count. Initially, he was treated with antibiotics for suspected cellulitis. However, symptoms continued to progress, making a suitable management plan challenging. Wound swabs, blood cultures and viral PCR did not confirm infection. A punch biopsy of a skin lesion on the forearm was performed. The histology demonstrated a dense infiltrate of neutrophils and neutrophilic debris in keeping with acute febrile neutrophilic dermatosis (Sweet's syndrome). He was treated with oral steroids and after that he had a complete resolution of symptoms. However, he required a period of rehabilitation before returning home. PMID:27118753

  16. Quantitative Trait Loci and Candidate Genes for Neutrophil Recruitment in Sterile Inflammation Mapped in AXB-BXA Recombinant Inbred Mice

    PubMed Central

    Cheng, Quyen; Seltzer, Ze’ev; Sima, Corneliu; Lakschevitz, Flavia S.; Glogauer, Michael

    2015-01-01

    Neutrophil recruitment (NR) to sites of sterile inflammation plays a key role in tissue damage and healing potential of lesions characteristic to non-infectious inflammatory diseases. Previous studies suggested significant genetic control of neutrophil survival, function, and migration in inflammatory responses to endogenous and exogenous stimuli. We have mapped the murine genome for quantitative trait loci (QTLs) harbouring genetic determinants that regulate NR in SI using a murine model of chemically-induced peritonitis. NR was quantified in 16 AXB-BXA recombinant inbred strains and their progenitors, A/J (A) and C57BL/6J (B). A continuous distribution of NR was found among the strains, with parent B showing higher NR and parent A showing lower NR (3.0-fold difference, p=0.05). Within the progeny strains, a 5.5-fold difference in NR was observed between the lowest, BXA1, and the highest responders AXB19 (p<0.001). This data was analyzed using GeneNetwork, which linked NR to one significant QTL on chromosome 12 (Peritoneal Neutrophil Recruitment 1, PNR1) and two suggestive QTLs (PNR2, PNR3) on chromosomes 12 and 16 respectively. Sixty-four candidate genes within PNR1 were cross-referenced with currently published data, mRNA expression from two NR microarrays, and single nucleotide polymorphism analysis. The present study brings new light into the genetics of NR in response to cell injury and highlights potential candidate genes Hif1α, Fntb, and Prkch and their products for further studies on neutrophil infiltration and inflammation resolution in sterile inflammation. PMID:25942439

  17. Melatonin reduces acute lung inflammation, edema, and hemorrhage in heatstroke rats

    PubMed Central

    Wu, Wen-shiann; Chou, Ming-ting; Chao, Chien-ming; Chang, Chen-kuei; Lin, Mao-tsun; Chang, Ching-ping

    2012-01-01

    Aim: To assess the therapeutic effect of melatonin on heat-induced acute lung inflammation and injury in rats. Methods: Heatstroke was induced by exposing anesthetized rats to heat stress (36 °C, 100 min). Rats were treated with vehicle or melatonin (0.2, 1, 5 mg/kg) by intravenous administration 100 min after the initiatioin of heatstroke and were allowed to recover at room temperature (26 °C). The acute lung injury was quantified by morphological examination and by determination of the volume of pleural exudates, the number of polymorphonuclear (PMN) cells, and the myeloperoxidase (MPO) activity. The concentrations of tumor necrosis factor, interleukin (IL)-1β, IL-6, and IL-10 in bronchoalveolar fluid (BALF) were measured by ELISA. Nitric oxide (NO) level was determined by Griess method. The levels of glutamate and lactate-to-pyruvate ratio were analyzed by CMA600 microdialysis analyzer. The concentrations of hydroxyl radicals were measured by a procedure based on the hydroxylation of sodium salicylates leading to the production of 2,3-dihydroxybenzoic acid (DHBA). Results: Melatonin (1 and 5 mg/kg) significantly (i) prolonged the survival time of heartstroke rats (117 and 186 min vs 59 min); (ii) attenuated heatstroke-induced hyperthermia and hypotension; (iii) attenuated acute lung injury, including edema, neutrophil infiltration, and hemorrhage scores; (iv) down-regulated exudate volume, BALF PMN cell number, and MPO activity; (v) decreased the BALF levels of lung inflammation response cytokines like TNF-alpha, interleukin (IL)-1β, and IL-6 but further increased the level of an anti-inflammatory cytokine IL-10; (vi) reduced BALF levels of glutamate, lactate-to-pyruvate ratio, NO, 2,3-DHBA, and lactate dehydrogenase. Conclusion: Melatonin may improve the outcome of heatstroke in rats by attenuating acute lung inflammation and injury. PMID:22609835

  18. Priming of the neutrophil respiratory burst: role in host defense and inflammation.

    PubMed

    El-Benna, Jamel; Hurtado-Nedelec, Margarita; Marzaioli, Viviana; Marie, Jean-Claude; Gougerot-Pocidalo, Marie-Anne; Dang, Pham My-Chan

    2016-09-01

    Neutrophils are the major circulating white blood cells in humans. They play an essential role in host defense against pathogens. In healthy individuals, circulating neutrophils are in a dormant state with very low efficiency of capture and arrest on the quiescent endothelium. Upon infection and subsequent release of pro-inflammatory mediators, the vascular endothelium signals to circulating neutrophils to roll, adhere, and cross the endothelial barrier. Neutrophils migrate toward the infection site along a gradient of chemo-attractants, then recognize and engulf the pathogen. To kill this pathogen entrapped inside the vacuole, neutrophils produce and release high quantities of antibacterial peptides, proteases, and reactive oxygen species (ROS). The robust ROS production is also called 'the respiratory burst', and the NADPH oxidase or NOX2 is the enzyme responsible for the production of superoxide anion, leading to other ROS. In vitro, several soluble and particulate agonists induce neutrophil ROS production. This process can be enhanced by prior neutrophil treatment with 'priming' agents, which alone do not induce a respiratory burst. In this review, we will describe the priming process and discuss the beneficial role of controlled neutrophil priming in host defense and the detrimental effect of excessive neutrophil priming in inflammatory diseases. PMID:27558335

  19. Role of Transient Receptor Potential Vanilloid 4 in Neutrophil Activation and Acute Lung Injury.

    PubMed

    Yin, Jun; Michalick, Laura; Tang, Christine; Tabuchi, Arata; Goldenberg, Neil; Dan, Qinghong; Awwad, Khader; Wang, Liming; Erfinanda, Lasti; Nouailles, Geraldine; Witzenrath, Martin; Vogelzang, Alexis; Lv, Lu; Lee, Warren L; Zhang, Haibo; Rotstein, Ori; Kapus, Andras; Szaszi, Katalin; Fleming, Ingrid; Liedtke, Wolfgang B; Kuppe, Hermann; Kuebler, Wolfgang M

    2016-03-01

    The cation channel transient receptor potential vanilloid (TRPV) 4 is expressed in endothelial and immune cells; however, its role in acute lung injury (ALI) is unclear. The functional relevance of TRPV4 was assessed in vivo, in isolated murine lungs, and in isolated neutrophils. Genetic deficiency of TRPV4 attenuated the functional, histological, and inflammatory hallmarks of acid-induced ALI. Similar protection was obtained with prophylactic administration of the TRPV4 inhibitor, GSK2193874; however, therapeutic administration of the TRPV4 inhibitor, HC-067047, after ALI induction had no beneficial effect. In isolated lungs, platelet-activating factor (PAF) increased vascular permeability in lungs perfused with trpv4(+/+) more than with trpv4(-/-) blood, independent of lung genotype, suggesting a contribution of TRPV4 on blood cells to lung vascular barrier failure. In neutrophils, TRPV4 inhibition or deficiency attenuated the PAF-induced increase in intracellular calcium. PAF induced formation of epoxyeicosatrienoic acids by neutrophils, which, in turn, stimulated TRPV4-dependent Ca(2+) signaling, whereas inhibition of epoxyeicosatrienoic acid formation inhibited the Ca(2+) response to PAF. TRPV4 deficiency prevented neutrophil responses to proinflammatory stimuli, including the formation of reactive oxygen species, neutrophil adhesion, and chemotaxis, putatively due to reduced activation of Rac. In chimeric mice, however, the majority of protective effects in acid-induced ALI were attributable to genetic deficiency of TRPV4 in parenchymal tissue, whereas TRPV4 deficiency in circulating blood cells primarily reduced lung myeloperoxidase activity. Our findings identify TRPV4 as novel regulator of neutrophil activation and suggest contributions of both parenchymal and neutrophilic TRPV4 in the pathophysiology of ALI. PMID:26222277

  20. Molecular mechanisms regulating secretory organelles and endosomes in neutrophils and their implications for inflammation.

    PubMed

    Ramadass, Mahalakshmi; Catz, Sergio D

    2016-09-01

    Neutrophils constitute the first line of cellular defense against invading microorganisms and modulate the subsequent innate and adaptive immune responses. In order to execute a rapid and precise response to infections, neutrophils rely on preformed effector molecules stored in a variety of intracellular granules. Neutrophil granules contain microbicidal factors, the membrane-bound components of the respiratory burst oxidase, membrane-bound adhesion molecules, and receptors that facilitate the execution of all neutrophil functions including adhesion, transmigration, phagocytosis, degranulation, and neutrophil extracellular trap formation. The rapid mobilization of intracellular organelles is regulated by vesicular trafficking mechanisms controlled by effector molecules that include small GTPases and their interacting proteins. In this review, we focus on recent discoveries of mechanistic processes that are at center stage of the regulation of neutrophil function, highlighting the discrete and selective pathways controlled by trafficking modulators. In particular, we describe novel pathways controlled by the Rab27a effectors JFC1 and Munc13-4 in the regulation of degranulation, reactive oxygen species and neutrophil extracellular trap production, and endolysosomal signaling. Finally, we discuss the importance of understanding these molecular mechanisms in order to design novel approaches to modulate neutrophil-mediated inflammatory processes in a targeted fashion. PMID:27558339

  1. Neutrophil gelatinase-associated lipocalin: a promising biomarker for human acute kidney injury

    PubMed Central

    Devarajan, Prasad

    2010-01-01

    Acute kidney injury (AKI) is a common and serious condition, the diagnosis of which depends on serum creatinine measurements. Unfortunately, creatinine is a delayed and unreliable indicator of AKI. The lack of early biomarkers has crippled our ability to translate promising experimental therapies to human AKI. Fortunately, understanding the early stress response of the kidney to acute injuries has revealed a number of potential biomarkers. The discovery, translation and validation of neutrophil gelatinase-associated lipocalin, arguably the most promising novel AKI biomarker, are reviewed in this article. Neutrophil gelatinase-associated lipocalin is emerging as an excellent standalone troponin-like biomarker in the plasma and urine for the prediction of AKI, monitoring clinical trials in AKI and for the prognosis of AKI in several common clinical scenarios. PMID:20406069

  2. [Sweet syndrome (acute febrile neutrophilic dermatosis) and erythema nodosum in Crohn disease].

    PubMed

    Schlegel Gómez, R; Kiesewetter, F; von den Driesch, P; Hornstein, O P

    1990-07-01

    We report on 2 patients who developed an acute febrile neutrophilic dermatosis (Sweet's syndrome) and erythema nodosum in association with Crohn's disease. The first patient showed symmetrical painful erythemas on her cheeks after hemicolectomy. Additionally, red painful nodules appeared on her lower legs. The second patient disclosed typical Sweet's syndrome-like lesions with pustules and plaques on her face, scalp and extremities after activation of Crohn's disease. Simultaneously, erythema nodosum-like lesions appeared on her lower legs. PMID:2144848

  3. Kallistatin protects against sepsis-related acute lung injury via inhibiting inflammation and apoptosis

    PubMed Central

    Lin, Wei-Chieh; Chen, Chang-Wen; Huang, Yu-Wen; Chao, Lee; Chao, Julie; Lin, Yee-Shin; Lin, Chiou-Feng

    2015-01-01

    Kallistatin, an endogenous plasma protein, exhibits pleiotropic properties in inhibiting inflammation, oxidative stress and apoptosis, as evidenced in various animal models and cultured cells. Here, we demonstrate that kallistatin levels were positively correlated with the concentration of total protein in bronchoalveolar lavage fluids (BALF) from patients with sepsis-related acute respiratory distress syndrome (ARDS), indicating a compensatory mechanism. Lower ratio of kallistatin to total protein in BALF showed a significant trend toward elevated neutrophil counts (P = 0.002) in BALF and increased mortality (P = 0.046). In lipopolysaccharide (LPS)-treated mice, expression of human kallistatin in lung by gene transfer with human kallistatin-encoding plasmid ameliorated acute lung injury (ALI) and reduced cytokine/chemokine levels in BALF. These mice exhibited attenuated lung epithelial apoptosis and decreased Fas/FasL expression compared to the control mice. Mouse survival was improved by kallistatin gene transfer or recombinant human kallistatin treatment after LPS challenge. In LPS-stimulated A549 human lung epithelial cells, kallistatin attenuated apoptosis, down-regulated Fas/FasL signaling, suppressed intracellular reactive oxygen species (ROS) and inhibited ROS-mediated NF-κB activation and inflammation. Furthermore, LPS-induced apoptosis was blocked by antioxidant N-acetylcysteine or NF-κB inhibitor via down-regulating Fas expression. These findings suggest the therapeutic potential of kallistatin for sepsis-related ALI/ARDS. PMID:26198099

  4. Antithrombin Attenuates Vascular Leakage via Inhibiting Neutrophil Activation in Acute Lung Injury

    PubMed Central

    Rehberg, Sebastian; Yamamoto, Yusuke; Sousse, Linda E.; Jonkam, Collette; Zhu, Yong; Traber, Lillian D.; Cox, Robert A.; Prough, Donald S.; Traber, Daniel L.; Enkhbaatar, Perenlei

    2014-01-01

    Objective To test the hypothesis that restoration of antithrombin plasma concentrations attenuates vascular leakage by inhibiting neutrophil activation through syndecan-4 receptor inhibition in an established ovine model of acute lung injury. Design Randomized controlled laboratory experiment. Setting University animal research facility. Subjects Eighteen chronically instrumented sheep. Interventions Following combined burn and smoke inhalation injury (40% of total body surface area, third-degree flame burn; 4 × 12 breaths of cold cotton smoke), chronically instrumented sheep were randomly assigned to receive an IV infusion of 6 IU/kg/hr recombinant human antithrombin III or normal saline (n = 6 each) during the 48-hour study period. In addition, six sham animals (not injured, continuous infusion of vehicle) were used to obtain reference values for histological and immunohistochemical analyses. Measurements and Main Results Compared to control animals, recombinant human antithrombin III reduced the number of neutrophils per hour in the pulmonary lymph (p < 0.01 at 24 and 48 hr), alveolar neutrophil infiltration (p = 0.04), and pulmonary myeloperoxidase activity (p = 0.026). Flow cytometric analysis revealed a significant reduction of syndecan-4-positive neutrophils (p = 0.002 vs control at 24 hr). Treatment with recombinant human antithrombin III resulted in a reduction of pulmonary nitrosative stress (p = 0.002), airway obstruction (bronchi: p = 0.001, bronchioli: p = 0.013), parenchymal edema (p = 0.044), and lung bloodless wet-to-dry-weight ratio (p = 0.015). Clinically, recombinant human antithrombin III attenuated the increased pulmonary transvascular fluid flux (12–48 hr: p ≤ 0.001 vs control each) and the deteriorated pulmonary gas exchange (12–48 hr: p < 0.05 vs control each) without increasing the risk of bleeding. Conclusions The present study provides evidence for the interaction between antithrombin and neutrophils in vivo, its pathophysiological

  5. The Multifaceted Roles of Neutrophil Gelatinase Associated Lipocalin (NGAL) In Inflammation and Cancer

    PubMed Central

    Chakraborty, Subhankar; Kaur, Sukhwinder; Guha, Sushovan; Batra, Surinder K.

    2012-01-01

    Neutrophil gelatinase associated lipocalin (NGAL), also known as oncogene 24p3, uterocalin, siderocalin or lipocalin 2, is a 24 kDa secreted glycoprotein originally purified from a culture of mouse kidney cells infected with simian virus 40 (SV-40). Subsequent investigations have revealed that it is a member of the lipocalin family of proteins that transport small, hydrophobic ligands. Since then, NGAL expression has been reported in several normal tissues where it serves to provide protection against bacterial infection and modulate oxidative stress. Its expression is also dysregulated in several benign and malignant diseases. Its small size, secreted nature and relative stability have led to it being investigated as a diagnostic and prognostic biomarker in numerous diseases including inflammation and cancer. Functional studies, conducted primarily on lipocalin 2 (Lcn2), the mouse homologue of human NGAL have revealed that Lcn2 has a strong affinity for iron complexed to both bacterial siderophores (iron binding proteins) and certain human proteins like norepinephrine. By sequestering iron-laden siderophores, Lcn2 deprives bacteria of a vital nutrient and thus inhibits their growth (bacteriostatic effect). In malignant cells, its proposed functions range from inhibiting apoptosis (in thyroid cancer cells), invasion and angiogenesis (in pancreatic cancer) to increasing proliferation and metastasis (in breast and colon cancer). Ectopic expression of Lcn2 also promotes BCR-ABL induced chronic myelogenous leukemia in murine models. By transporting iron into and out of the cell, NGAL also regulates iron responsive genes. Further, it stabilizes the proteolytic enzyme matrix metalloprotease-9 (MMP-9) by forming a complex with it, and thereby prevents its autodegradation. The factors regulating NGAL expression are numerous and range from pro-inflammatory cytokines like interleukins, tumor necrosis factor-α and interferons to vitamins like retinoic acid. The purpose of

  6. Inflammation and its resolution as determinants of acute coronary syndromes

    PubMed Central

    Libby, Peter; Tabas, Ira; Fredman, Gabrielle; Fisher, Edward

    2014-01-01

    Inflammation contributes to many of the characteristics of plaques implicated in the pathogenesis of acute coronary syndromes (ACS). Moreover, inflammatory pathways not only regulate properties of plaques that precipitate ACS but also modulate the clinical consequences of the thrombotic complications of atherosclerosis. This synthesis will provide an update on the fundamental mechanisms of inflammatory responses that govern ACS, and also highlight the ongoing balance between pro-inflammatory mechanisms and endogenous pathways that can promote the resolution of inflammation. An appreciation of the countervailing mechanisms that modulate inflammation in relation to ACS enriches our fundamental understanding of the pathophysiology of this important manifestation of atherosclerosis. In addition, these insights furnish glimpses into potential novel therapeutic interventions to forestall this ultimate complication of the disease. PMID:24902971

  7. Novel Lipid Mediators and Resolution Mechanisms in Acute Inflammation

    PubMed Central

    Serhan, Charles N.

    2010-01-01

    Because inflammation is appreciated as a unifying basis of many widely occurring diseases, the mechanisms involved in its natural resolution are of considerable interest. Using contained, self-limited inflammatory exudates and a systems approach, novel lipid-derived mediators and pathways were uncovered in the resolution of inflammatory exudates. These new families of local mediators control both the duration and magnitude of acute inflammation as well as the return of the site to homeostasis in the process of catabasis. This new genus of specialized proresolving mediators (SPM) includes essential fatty acid–derived lipoxins, resolvins, protectins, and, most recently, maresins. These families were named based on their unique structures and potent stereoselective actions. The temporally initiated biosynthesis of SPM and their direct impact on leukocyte trafficking and macrophage-directed clearance mechanisms provide clear evidence that resolution is an active, programmed response at the tissue level. Moreover, SPM that possess anti-inflammatory (ie, limiting PMN infiltration) and proresolving (enhance macrophage uptake and clearance of apoptotic PMN and microbial particles) actions as well as stimulating mucosal antimicrobial responses demonstrate that anti-inflammation and proresolution are different responses of the host and novel defining properties of these molecules. The mapping of new resolution circuits has opened the possibility for understanding mechanisms that lead from acute to chronic inflammation, or to the resolution thereof, as well as to potential, resolution-based immunopharmacological therapies. PMID:20813960

  8. Diverse macrophage populations mediate acute lung inflammation and resolution

    PubMed Central

    King, Landon S.; D'Alessio, Franco R.

    2014-01-01

    Acute respiratory distress syndrome (ARDS) is a devastating disease with distinct pathological stages. Fundamental to ARDS is the acute onset of lung inflammation as a part of the body's immune response to a variety of local and systemic stimuli. In patients surviving the inflammatory and subsequent fibroproliferative stages, transition from injury to resolution and recovery is an active process dependent on a series of highly coordinated events regulated by the immune system. Experimental animal models of acute lung injury (ALI) reproduce key components of the injury and resolution phases of human ARDS and provide a methodology to explore mechanisms and potential new therapies. Macrophages are essential to innate immunity and host defense, playing a featured role in the lung and alveolar space. Key aspects of their biological response, including differentiation, phenotype, function, and cellular interactions, are determined in large part by the presence, severity, and chronicity of local inflammation. Studies support the importance of macrophages to initiate and maintain the inflammatory response, as well as a determinant of resolution of lung inflammation and repair. We will discuss distinct roles for lung macrophages during early inflammatory and late resolution phases of ARDS using experimental animal models. In addition, each section will highlight human studies that relate to the diverse role of macrophages in initiation and resolution of ALI and ARDS. PMID:24508730

  9. Short-Term Heat Exposure Inhibits Inflammation by Abrogating Recruitment of and Nuclear Factor-κB Activation in Neutrophils Exposed to Chemotactic Cytokines

    PubMed Central

    Choi, Mira; Salanova, Birgit; Rolle, Susanne; Wellner, Maren; Schneider, Wolfgang; Luft, Friedrich C.; Kettritz, Ralph

    2008-01-01

    Cytokines, such as granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin (IL)-8 attract neutrophils into inflammatory sites. During emigration from the blood neutrophils interact with extracellular matrix proteins such as fibronectin. Fibronectin provides β2-integrin co-stimulation, allowing GM-CSF and IL-8 to activate nuclear factor (NF)-κB, an effect that does not occur in suspension. We tested the hypothesis that exposure of mice to fever-like temperatures abrogates neutrophil recruitment and NF-κB activation in a mouse model of skin inflammation. Mice that were exposed to 40°C for 1 hour showed strongly reduced GM-CSF- and IL-8-induced neutrophilic skin inflammation. In vitro heat exposure did not interfere with neutrophil adhesion or spreading on fibronectin but strongly inhibited migration toward both cytokines. Using specific inhibitors, we found that PI3-K/Akt was pivotal for neutrophil migration and that heat down-regulated this pathway. Furthermore, neutrophils on fibronectin showed abrogated NF-κB activation in response to GM-CSF and IL-8 after heat. In vivo heat exposure of mice followed by ex vivo stimulation of isolated bone marrow neutrophils confirmed these results. Finally, less NF-κB activation was seen in the inflammatory lesions of mice exposed to fever-like temperatures as demonstrated by in situ hybridization for IκBα mRNA. These new findings suggest that heat may have anti-inflammatory effects in neutrophil-dependent inflammation. PMID:18187571

  10. Role of activated neutrophils in chest trauma-induced septic acute lung injury.

    PubMed

    Perl, Mario; Hohmann, Christoph; Denk, Stephanie; Kellermann, Philipp; Lu, Dapeng; Braumüller, Sonja; Bachem, Max G; Thomas, Jörg; Knöferl, Markus W; Ayala, Alfred; Gebhard, Florian; Huber-Lang, Markus S

    2012-07-01

    More than 50% of severely injured patients have chest trauma. Second insults frequently result in acute lung injury (ALI), with sepsis being the main underlying condition. We aimed to develop a standardized, reproducible, and clinically relevant double-hit mouse model of ALI induced by chest trauma and polymicrobial sepsis and to investigate the pathophysiologic role of activated neutrophils. Lung contusion was applied to C57Bl/6 mice via a focused blast wave. Twenty-four hours later, sepsis was induced by cecal ligation and puncture. For polymorphonuclear leukocyte (PMN) depletion, animals received intravenous injections of PMN-depleting antibody. In response to blunt chest trauma followed by sepsis as well as after sepsis alone, a significant local and systemic inflammatory response with increased cytokine/chemokine levels in lung and plasma was observed. In contrast, lung apoptosis was markedly elevated only after a double hit. Intra-alveolar neutrophils and total bronchoalveolar lavage protein concentrations were markedly increased following isolated chest trauma or the combined insult, but not after sepsis alone. Lung myeloperoxidase activity was enhanced only in response to the double hit accompanied by histological disruption of the alveolar architecture, lung congestion, and marked cellular infiltrates. Neutrophil depletion significantly diminished lung interleukin 1β and interleukin 6 concentrations and reduced the degree of septic ALI. Here we have established a novel and highly reproducible mouse model of chest trauma-induced septic ALI characterizing a clinical relevant double-hit scenario. In particular, the depletion of neutrophils substantially mitigated the extent of lung injury, indicating a pathomechanistic role for neutrophils in chest trauma-induced septic ALI. PMID:22552016

  11. Interleukin-10 plays a key role in the modulation of neutrophils recruitment and lung inflammation during infection by Streptococcus pneumoniae

    PubMed Central

    Peñaloza, Hernán F; Nieto, Pamela A; Muñoz-Durango, Natalia; Salazar-Echegarai, Francisco J; Torres, Javiera; Parga, María J; Alvarez-Lobos, Manuel; Riedel, Claudia A; Kalergis, Alexis M; Bueno, Susan M

    2015-01-01

    Streptococcus pneumoniae is a major aetiological agent of pneumonia worldwide, as well as otitis media, sinusitis, meningitis and sepsis. Recent reports have suggested that inflammation of lungs due to S. pneumoniae infection promotes bacterial dissemination and severe disease. However, the contribution of anti-inflammatory molecules to the pathogenesis of S. pneumoniae remains unknown. To elucidate whether the production of the anti-inflammatory cytokine interleukin-10 (IL-10) is beneficial or detrimental for the host during pneumococcal pneumonia, we performed S. pneumoniae infections in mice lacking IL-10 (IL-10−/− mice). The IL-10−/− mice showed increased mortality, higher expression of pro-inflammatory cytokines, and an exacerbated recruitment of neutrophils into the lungs after S. pneumoniae infection. However, IL-10−/− mice showed significantly lower bacterial loads in lungs, spleen, brain and blood, when compared with mice that produced this cytokine. Our results support the notion that production of IL-10 during S. pneumoniae infection modulates the expression of pro-inflammatory cytokines and the infiltration of neutrophils into the lungs. This feature of IL-10 is important to avoid excessive inflammation of tissues and to improve host survival, even though bacterial dissemination is less efficient in the absence of this cytokine. PMID:26032199

  12. Interleukin-10 plays a key role in the modulation of neutrophils recruitment and lung inflammation during infection by Streptococcus pneumoniae.

    PubMed

    Peñaloza, Hernán F; Nieto, Pamela A; Muñoz-Durango, Natalia; Salazar-Echegarai, Francisco J; Torres, Javiera; Parga, María J; Alvarez-Lobos, Manuel; Riedel, Claudia A; Kalergis, Alexis M; Bueno, Susan M

    2015-09-01

    Streptococcus pneumoniae is a major aetiological agent of pneumonia worldwide, as well as otitis media, sinusitis, meningitis and sepsis. Recent reports have suggested that inflammation of lungs due to S. pneumoniae infection promotes bacterial dissemination and severe disease. However, the contribution of anti-inflammatory molecules to the pathogenesis of S. pneumoniae remains unknown. To elucidate whether the production of the anti-inflammatory cytokine interleukin-10 (IL-10) is beneficial or detrimental for the host during pneumococcal pneumonia, we performed S. pneumoniae infections in mice lacking IL-10 (IL-10(-/-) mice). The IL-10(-/-) mice showed increased mortality, higher expression of pro-inflammatory cytokines, and an exacerbated recruitment of neutrophils into the lungs after S. pneumoniae infection. However, IL-10(-/-) mice showed significantly lower bacterial loads in lungs, spleen, brain and blood, when compared with mice that produced this cytokine. Our results support the notion that production of IL-10 during S. pneumoniae infection modulates the expression of pro-inflammatory cytokines and the infiltration of neutrophils into the lungs. This feature of IL-10 is important to avoid excessive inflammation of tissues and to improve host survival, even though bacterial dissemination is less efficient in the absence of this cytokine. PMID:26032199

  13. Mice Lacking beta2-Integrin Function Remain Glucose Tolerant in Spite of Insulin Resistance, Neutrophil Infiltration and Inflammation

    PubMed Central

    Sneddon, Claire C.; Savinko, Terhi; Uotila, Liisa; Jalicy, Susan M.; Gabriel, Jennie L.; Kang, Li; Ashford, Michael L. J.; Fagerholm, Susanna C.

    2015-01-01

    Beta2-integrins are important in leukocyte trafficking and function, and are regulated through the binding of cytoplasmic proteins, such as kindlin-3, to their intracellular domain. Here, we investigate the involvement of beta2-integrins in the regulation of metabolic disease using mice where the kindlin-3 binding site in the beta2-integrin cytoplasmic tail has been mutated (TTT/AAA-beta2-integrin knock-in (KI) mice), leading to expressed but dysfunctional beta2-integrins and significant neutrophilia in vivo. Beta2-integrin KI mice fed on a high fat diet showed normal weight gain, and normal accumulation of macrophages and lymphocytes in white adipose tissue (WAT) and liver, but increased neutrophil numbers especially in WAT. In addition, beta2-integrin KI mice fed on a high fat diet showed significantly increased peripheral insulin resistance in response to high-fat feeding. However, this was associated with improved glucose disposal following glucose load. Interestingly, beta2-integrin KI neutrophils produced more elastase in vitro, in response to stimulation. Beta2-integrin KI mice displayed variability of tissue inflammatory status, with liver and WAT exhibiting little or no difference in inflammation compared to high fat fed controls, whereas skeletal muscle demonstrated a raised inflammatory profile in association with higher elastase levels and diminished signalling through the IRS1-PKB pathway. In conclusion, although expression of dysfunctional beta2-integrins increased neutrophil production and infiltration into tissue, skeletal muscle was the most affected tissue exhibiting evidence of higher neutrophil activity and insulin resistance. Thus, beta2-integrins modulate glucose homeostasis during high fat feeding predominantly through actions on skeletal muscle to affect metabolic phenotype in vivo. PMID:26405763

  14. Mice Lacking beta2-Integrin Function Remain Glucose Tolerant in Spite of Insulin Resistance, Neutrophil Infiltration and Inflammation.

    PubMed

    Meakin, Paul J; Morrison, Vicky L; Sneddon, Claire C; Savinko, Terhi; Uotila, Liisa; Jalicy, Susan M; Gabriel, Jennie L; Kang, Li; Ashford, Michael L J; Fagerholm, Susanna C

    2015-01-01

    Beta2-integrins are important in leukocyte trafficking and function, and are regulated through the binding of cytoplasmic proteins, such as kindlin-3, to their intracellular domain. Here, we investigate the involvement of beta2-integrins in the regulation of metabolic disease using mice where the kindlin-3 binding site in the beta2-integrin cytoplasmic tail has been mutated (TTT/AAA-beta2-integrin knock-in (KI) mice), leading to expressed but dysfunctional beta2-integrins and significant neutrophilia in vivo. Beta2-integrin KI mice fed on a high fat diet showed normal weight gain, and normal accumulation of macrophages and lymphocytes in white adipose tissue (WAT) and liver, but increased neutrophil numbers especially in WAT. In addition, beta2-integrin KI mice fed on a high fat diet showed significantly increased peripheral insulin resistance in response to high-fat feeding. However, this was associated with improved glucose disposal following glucose load. Interestingly, beta2-integrin KI neutrophils produced more elastase in vitro, in response to stimulation. Beta2-integrin KI mice displayed variability of tissue inflammatory status, with liver and WAT exhibiting little or no difference in inflammation compared to high fat fed controls, whereas skeletal muscle demonstrated a raised inflammatory profile in association with higher elastase levels and diminished signalling through the IRS1-PKB pathway. In conclusion, although expression of dysfunctional beta2-integrins increased neutrophil production and infiltration into tissue, skeletal muscle was the most affected tissue exhibiting evidence of higher neutrophil activity and insulin resistance. Thus, beta2-integrins modulate glucose homeostasis during high fat feeding predominantly through actions on skeletal muscle to affect metabolic phenotype in vivo. PMID:26405763

  15. Neutrophil-derived Oxidants and Proteinases as Immunomodulatory Mediators in Inflammation

    PubMed Central

    Witko-Sarsat, V.

    1994-01-01

    Neutrophils generate potent microbicidal molecules via the oxygen-dependent pathway, leading to the generation of reactive oxygen intermediates (ROI), and via the non-oxygen dependent pathway, consisting in the release of serine proteinases and metalloproteinases stored in granules. Over the past years, the concept has emerged that both ROI and proteinases can be viewed as mediators able to modulate neutrophil responses as well as the whole inflammatory process. This is well illustrated by the oxidative regulation of proteinase activity showing that oxidants and proteinases acts is concert to optimize the microbicidal activity and to damage host tissues. ROI and proteinases can modify the activity of several proteins involved in the control of inflammatory process. Among them, tumour necrosis factor-α and interleukin-8, are elective targets for such a modulation. Moreover, ROI and proteinases are also able to modulate the adhesion process of neutrophils to endothelial cells, which is a critical step in the inflammatory process. PMID:18472951

  16. Adenoviral augmentation of elafin protects the lung against acute injury mediated by activated neutrophils and bacterial infection.

    PubMed

    Simpson, A J; Wallace, W A; Marsden, M E; Govan, J R; Porteous, D J; Haslett, C; Sallenave, J M

    2001-08-01

    During acute pulmonary infection, tissue injury may be secondary to the effects of bacterial products or to the effects of the host inflammatory response. An attractive strategy for tissue protection in this setting would combine antimicrobial activity with inhibition of human neutrophil elastase (HNE), a key effector of neutrophil-mediated tissue injury. We postulated that genetic augmentation of elafin (an endogenous inhibitor of HNE with intrinsic antimicrobial activity) could protect the lung against acute inflammatory injury without detriment to host defense. A replication-deficient adenovirus encoding elafin cDNA significantly protected A549 cells against the injurious effects of both HNE and whole activated human neutrophils in vitro. Intratracheal replication-deficient adenovirus encoding elafin cDNA significantly protected murine lungs against injury mediated by Pseudomonas aeruginosa in vivo. Genetic augmentation of elafin therefore has the capacity to protect the lung against the injurious effects of both bacterial pathogens resistant to conventional antibiotics and activated neutrophils. PMID:11466403

  17. Eosinophil-Rich Acute Febrile Neutrophilic Dermatosis in a Patient With Enteropathy-Associated T-cell Lymphoma, Type 1.

    PubMed

    Soon, Christopher W; Kirsch, Ilan R; Connolly, Andrew J; Kwong, Bernice Y; Kim, Jinah

    2016-09-01

    The presence of eosinophils within the neutrophilic infiltrates of acute febrile neutrophilic dermatosis (Sweet syndrome) is documented in the literature. Here, the authors describe a case of eosinophil-rich acute febrile neutrophilic dermatosis in the setting of new onset enteropathy-associated T-cell lymphoma (EATL), type 1. Histopathologic evaluation of the skin biopsies demonstrated a mixed superficial perivascular and inflammatory infiltrate composed of neutrophils, lymphocytes, and abundant eosinophils. EATL, type 1 is an aggressive although rare primary intestinal lymphoma that may be associated with celiac disease. This lymphoma is associated with a poor prognosis due to treatment resistance or bowel perforation. To the authors' knowledge, Sweet syndrome has not been reported in a patient with EATL. PMID:27097333

  18. Activation of μ Opioid Receptors Modulates Inflammation in Acute Experimental Colitis

    PubMed Central

    Anselmi, L.; Huynh, J.; Duraffourd, C.; Jaramillo, I.; Vegezzi, G.; Saccani, F; Boschetti, E.; Brecha, N.C.; De Giorgio, R.; Sternini, C

    2015-01-01

    Background μ opioid receptors (μORs) are expressed by neurons and inflammatory cells and mediate immune response. We tested whether activation of peripheral μORs ameliorates the acute and delayed phase of colitis. Methods C57BL/6J mice were treated with 3% dextran sodium sulfate in water, 5 days (DSS) with or without the peripherally-acting μOR agonist, [D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin (DAMGO) or with DAMGO+μOR antagonist at day 2–5, then euthanized. Other mice received DSS followed by water for 4 weeks, or DSS with DAMGO starting at day 2 of DSS for 2 or 3 weeks followed by water, then euthanized at 4 weeks. Disease activity index (DAI), histological damage, and myeloperoxidase assay (MPO), as index of neutrophil infiltration, were evaluated. Cytokines and μOR mRNAs were measured with RT-PCR, and nuclear factor-kB (NF-kB), the antiapoptotic factor Bcl-xL, and caspase 3 and 7 with Western blot. Key Results DSS induced acute colitis with elevated DAI, tissue damage, apoptosis and increased MPO, cytokines, μOR mRNA and NF-kB. DAMGO significantly reduced DAI, inflammatory indexes, cytokines, and caspases, and NF-kB, and upregulated Bcl-xL, effects prevented by μOR antagonist. In DSS mice plus 4 weeks of water, DAI, NF-kB and μOR were normal, whereas MPO, histological damage and cytokines were still elevated; DAMGO did not reduce inflammation, and did not upregulate Bcl-xL. Conclusions & Inferences μOR activation ameliorated the acute but not the delayed phase of DSS colitis by reducing cytokines, likely through activation of the antiapoptotic factor, Bcl-xL, and suppression of NF- kB, a potentiator of inflammation. PMID:25690069

  19. Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation.

    PubMed

    Progatzky, Fränze; Sangha, Navjyot J; Yoshida, Nagisa; McBrien, Marie; Cheung, Jackie; Shia, Alice; Scott, James; Marchesi, Julian R; Lamb, Jonathan R; Bugeon, Laurence; Dallman, Margaret J

    2014-01-01

    Prolonged ingestion of a cholesterol- or saturated fatty acid-enriched diet induces chronic, often systemic, auto-inflammatory responses resulting in significant health problems worldwide. In vivo information regarding the local and direct inflammatory effect of these dietary components in the intestine and, in particular, on the intestinal epithelium is lacking. Here we report that both mice and zebrafish exposed to high-fat (HFDs) or high-cholesterol (HCDs) diets develop acute innate inflammatory responses within hours, reflected in the localized interleukin-1β-dependent accumulation of myeloid cells in the intestine. Acute HCD-induced intestinal inflammation is dependent on cholesterol uptake via Niemann-Pick C1-like 1 and inflammasome activation involving apoptosis-associated Speck-like protein containing a caspase recruitment domain, which leads to Caspase-1 activity in intestinal epithelial cells. Extended exposure to HCD results in localized, inflammation-dependent, functional dysregulation as well as systemic pathologies. Our model suggests that dietary cholesterol initiates intestinal inflammation in epithelial cells. PMID:25536194

  20. Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation

    PubMed Central

    Progatzky, Fränze; Sangha, Navjyot J.; Yoshida, Nagisa; McBrien, Marie; Cheung, Jackie; Shia, Alice; Scott, James; Marchesi, Julian R.; Lamb, Jonathan R.; Bugeon, Laurence; Dallman, Margaret J.

    2014-01-01

    Prolonged ingestion of a cholesterol- or saturated fatty acid-enriched diet induces chronic, often systemic, auto-inflammatory responses resulting in significant health problems worldwide. In vivo information regarding the local and direct inflammatory effect of these dietary components in the intestine and, in particular, on the intestinal epithelium is lacking. Here we report that both mice and zebrafish exposed to high-fat (HFDs) or high-cholesterol (HCDs) diets develop acute innate inflammatory responses within hours, reflected in the localized interleukin-1β-dependent accumulation of myeloid cells in the intestine. Acute HCD-induced intestinal inflammation is dependent on cholesterol uptake via Niemann-Pick C1-like 1 and inflammasome activation involving apoptosis-associated Speck-like protein containing a caspase recruitment domain, which leads to Caspase-1 activity in intestinal epithelial cells. Extended exposure to HCD results in localized, inflammation-dependent, functional dysregulation as well as systemic pathologies. Our model suggests that dietary cholesterol initiates intestinal inflammation in epithelial cells. PMID:25536194

  1. Trp53 deficiency protects against acute intestinal inflammation1

    PubMed Central

    Spehlmann, Martina E.; Manthey, Carolin F.; Dann, Sara M.; Hanson, Elaine; Sandhu, Sukhman S.; Liu, Linus Y.; Abdelmalak, Farid K.; Diamanti, Michaela A.; Retzlaff, Kristin; Scheller, Jürgen; Rose-John, Stefan; Greten, Florian R.; Wang, Jean Y.J.; Eckmann, Lars

    2013-01-01

    The p53 protein has not only important tumor suppressor activity, but also additional immunological and other functions, whose nature and extent are only beginning to be recognized. Here we show that p53 has a novel inflammation-promoting action in the intestinal tract, since loss of p53 or the upstream activating kinase, ATM, protects against acute intestinal inflammation in murine models. Mechanistically, deficiency in p53 leads to increased survival of epithelial cells and lamina propria macrophages, higher IL-6 expression due to enhanced glucose-dependent NF-κB activation, and increased mucosal STAT3 activation. Blockade or loss of IL-6 signaling reverses the protective effects of p53 deficiency. Conversely, IL-6 treatment protects against acute colitis in a manner dependent on STAT3 signaling and induction of cytoprotective factors in epithelial cells. Together, these results indicate that p53 promotes inflammation in the intestinal tract through suppression of epithelium-protective factors, thus significantly expanding the spectrum of physiological and immunological p53 activities unrelated to cancer formation. PMID:23772033

  2. Maresin-1 reduces airway inflammation associated with acute and repetitive exposures to organic dust.

    PubMed

    Nordgren, Tara M; Bauer, Christopher D; Heires, Art J; Poole, Jill A; Wyatt, Todd A; West, William W; Romberger, Debra J

    2015-07-01

    Agriculture industry workers are at a higher risk for chronic bronchitis and obstructive pulmonary diseases, and current therapeutics are not entirely effective. We previously found that the specialized proresolving lipid mediator maresin-1 (MaR1) reduced proinflammatory cytokine release and intracellular adhesion molecule-1 (ICAM-1) expression in bronchial epithelial cells exposed to extracts of organic dust (DE) derived from swine confinement facilities in vitro. The objective of this study was to determine whether MaR1 is effective at limiting lung inflammation associated with acute and repetitive exposures to DE in an established murine model of inhalant dust exposures. C57Bl/6 mice were treated with MaR1 or vehicle control and intranasally instilled with DE once or daily for 3 weeks. Bronchioalveolar lavage fluid was analyzed for total and differential cell counts and proinflammatory cytokine levels, and lung tissues were assessed for histopathology and ICAM-1 expression. In both single and repetitive DE exposure studies, MaR1 significantly decreased bronchoalveolar lavage neutrophil infiltration, interleukin 6, tumor necrosis factor α, and chemokine C-X-C motif ligand 1 levels without altering repetitive DE-induced bronchioalveolar inflammation or lymphoid aggregate formation. Lung tissue ICAM-1 expression was also reduced in both single and repetitive exposure studies. These data suggest that MaR1 might contribute to an effective strategy to reduce airway inflammatory diseases induced by agricultural-related organic dust environmental exposures. PMID:25655838

  3. Neutrophils: game changers in glomerulonephritis?

    PubMed Central

    Mayadas, Tanya N.; Rosetti, Florencia; Ernandez, Thomas; Sethi, Sanjeev

    2010-01-01

    Glomerulonephritides represent a diverse array of diseases that have in common immune cell-mediated effector mechanisms that cause organ damage. The contribution of neutrophils to the pathogenesis of proliferative glomerulonephritis (GN) is not well recognized. Most equate neutrophils with killing pathogens and causing collateral tissue damage during acute inflammation. However, these phagocytes are endowed with additional characteristics that have been traditionally reserved for cells of the adaptive immune system. They communicate with other cells, exhibit plasticity in their responses and have the potential to coordinate and inform the subsequent immune response, thus countering the notion that they arrive, destroy and then disappear. Therefore, neutrophils, which are the first to arrive at a site of inflammation, are potential game changers in GN. PMID:20667782

  4. Promoting detachment of neutrophils adherent to murine postcapillary venules to control inflammation: Effect of lipocortin 1

    PubMed Central

    Lim, Lina H. K.; Solito, Egle; Russo-Marie, Françoise; Flower, Roderick J.; Perretti, Mauro

    1998-01-01

    In this study we investigated, using intravital microscopy, how neutrophil extravasation across mouse mesenteric postcapillary venules is inhibited by the glucocorticoid-regulated protein lipocortin (LC; also termed annexin) 1. Intraperitoneal injection of 1 mg of zymosan into mice induced neutrophil rolling on the activated mesenteric endothelium followed by adhesion (maximal at 2 hr: 5–6 cells per 100-μm of vessel length) and emigration (maximal at 4 hr: 8–10 cells per high-powered field). Treatment of mice with human recombinant LC1 (2 mg/kg s.c.) or its mimetic peptide Ac2–26 (13 mg/kg s.c.) did not modify cell rolling but markedly reduced (≥50%) the degree of neutrophil adhesion and emigration (P < 0.05). Intravenous treatment with peptide Ac2–26 (13 mg/kg) or recombinant human LC1 (0.7–2 mg/kg) promoted detachment of neutrophils adherent to the endothelium 2 hr after zymosan administration, with adherent cells detaching within 4.12 ± 0.75 min and 2.36 ± 0.31 min, respectively (n = 20–25 cells). Recruitment of newly adherent cells to the endothelium was unaffected. The structurally related protein LC5 was inactive in this assay, whereas a chimeric molecule constructed from the N terminus of LC1 (49 aa) attached to the core region of LC5 produced cell detachment with kinetics similar to LC1. Removal of adherent neutrophils from activated postcapillary endothelium is a novel pharmacological action, and it is at this site where LC1 and its mimetics operate to down-regulate this aspect of the host inflammatory response. PMID:9826735

  5. Vocal exercise may attenuate acute vocal fold inflammation

    PubMed Central

    Abbott, Katherine Verdolini; Li, Nicole Y.K.; Branski, Ryan C.; Rosen, Clark A.; Grillo, Elizabeth; Steinhauer, Kimberly; Hebda, Patricia A.

    2012-01-01

    Objectives/Hypotheses The objective was to assess the utility of selected “resonant voice” exercises for the reduction of acute vocal fold inflammation. The hypothesis was that relatively large-amplitude, low-impact exercises associated with resonant voice would reduce inflammation more than spontaneous speech and possibly more than voice rest. Study Design The study design was prospective, randomized, double-blind. Methods Nine vocally healthy adults underwent a 1-hr vocal loading procedure, followed by randomization to (a) a spontaneous speech condition, (b) a vocal rest condition, or (c) a resonant voice exercise condition. Treatments were monitored in clinic for 4 hr, and continued extra-clinically until the next morning. At baseline, immediately following loading, after the 4-hr in-clinic treatment, and 24 hr post baseline, secretions were suctioned from the vocal folds bilaterally and submitted to enzyme-linked immunosorbent assay (ELISA) to estimate concentrations of key markers of tissue injury and inflammation: IL-1β, IL-6, IL-8, TNF-α, MMP-8, and IL-10. Results Complete data sets were obtained for 3 markers -- IL-1β, IL-6, and MMP-8 -- for one subject in each treatment condition. For those markers, results were poorest at 24-hr follow-up in the spontaneous speech condition, sharply improved in the voice rest condition, and best in the resonant voice condition. Average results for all markers, for all responsive subjects with normal baseline mediator concentrations, revealed an almost identical pattern. Conclusions Some forms of tissue mobilization may be useful to attenuate acute vocal fold inflammation. PMID:23177745

  6. Vitamin D and inflammation: evaluation with neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio

    PubMed Central

    Gungor, Adem; Ozcicek, Adalet; Akbas, Nergis; Askin, Seda; Polat, Murat

    2016-01-01

    Introduction Association of vitamin D, inflammation and endothelial dysfunction, beside the classic bone metabolism disorders, may explain the pathogenesis of numerous diseases associated with vitamin D deficiency. While large numbers of reports support the relationship of vitamin D with inflammation, several reports fail to confirm this relationship. Neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) are novel and inexpensive markers of inflammation that can be studied in all centers. The goal of this study was to investigate the association between 25-hydroxy vitamin D (25(OH)D) and inflammation with the novel inflammatory markers NLR and PLR. Material and methods This study was performed retrospectively. Results of the simultaneously performed 25(OH)D, parathyroid hormone, albumin, calcium, phosphorus, alkaline phosphatase and creatinine level measurements and complete blood count were recorded. The data of 4120 patients were included in the study. Results Between vitamin D deficient and non-deficient groups there were significant differences in PLR (p < 0.001) and NLR (p = 0.001). Vitamin D had a significant negative correlation with PLR (p < 0.001) and NLR (p < 0.001). Multiple regression analysis indicated that 25(OH)D was independently and negatively correlated with PLR (OR = 0.994, 95% CI 0.991–0.998, p = 0.02). Conclusions Platelet-to-lymphocyte ratio and NLR were significantly associated with 25(OH)D levels, and PLR was found to be an independent predictor of 25(OH)D levels. Our study revealed an inverse association of vitamin D levels and inflammation with these inexpensive and universally available markers. PMID:27478451

  7. Correlation of serum C-reactive protein, white blood count and neutrophil percentage with histopathology findings in acute appendicitis

    PubMed Central

    2012-01-01

    Background Acute appendicitis is one of the most common surgical emergencies. Accurate diagnosis of acute appendicitis is based on careful history, physical examination, laboratory and imaging investigation. The aim of the study is to analyze the role of C-reactive protein (CRP), white blood count (WBC) and Neutrophil percentage (NP) in improving the accuracy of diagnosis of acute appendicitis and to compare it with the intraoperative assessment and histopathology findings. Materials and methods This investigation was a prospective double blinded clinical study. The study was done on 173 patients surgically treated for acute appendicitis. The WBC, NP, and measurement of CRP were randomly collected pre-operatively from all involved patients. Macroscopic assessment was made from the operation. Appendectomy and a histopathology examination were performed on all patients. Gross description was compared with histopathology results and then correlated with CRP, WBC, and NP. Results The observational accuracy was 87,3%, as compared to histopathological accuracy which was 85.5% with a total of 173 patients that were operated on. The histopathology showed 25 (14.5%) patients had normal appendices, and 148 (85.5%) patients had acutely inflamed, gangrenous, or perforated appendicitis. 52% were male and 48% were female, with the age ranging from 5 to 59 with a median of 19.7. The gangrenous type was the most frequent (52.6%). The WBC was altered in 77.5% of the cases, NP in 72.3%, and C-reactive protein in 76.9% cases. In those with positive appendicitis, the CRP and WBC values were elevated in 126 patients (72.8%), whereas NP was higher than 75% in 117 patients (67.6%). Out of 106 patients with triple positive tests, 101 (95.2%) had appendicitis. The sensitivity, specificity, and positive predictive values of the 3 tests in combination were 95.3%, 72.2%, and 95.3%, respectively. Conclusion The raised value of the CRP was directly related to the severity of inflammation (p

  8. Macrophage Migration Inhibitory Factor in Acute Adipose Tissue Inflammation.

    PubMed

    Kim, Bong-Sung; Rongisch, Robert; Hager, Stephan; Grieb, Gerrit; Nourbakhsh, Mahtab; Rennekampff, Hans-Oliver; Bucala, Richard; Bernhagen, Juergen; Pallua, Norbert

    2015-01-01

    Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine and has been implicated in inflammatory diseases. However, little is known about the regulation of MIF in adipose tissue and its impact on wound healing. The aim of this study was to investigate MIF expression in inflamed adipose and determine its role in inflammatory cell recruitment and wound healing. Adipose tissue was harvested from subcutaneous adipose tissue layers of 24 healthy subjects and from adipose tissue adjacent to acutely inflamed wounds of 21 patients undergoing wound debridement. MIF protein and mRNA expression were measured by ELISA and RT-PCR. Cell-specific MIF expression was visualized by immunohistochemistry. The functional role of MIF in cell recruitment was investigated by a chemotaxis assay and by flow cytometry of labeled macrophages that were injected into Mif-/-and wildtype mice. Wound healing was evaluated by an in vitro scratch assay on human fibroblast monolayers. MIF protein levels of native adipose tissue and supernatants from acutely inflamed wounds were significantly elevated when compared to healthy controls. MIF mRNA expression was increased in acutely inflamed adipose tissue indicating the activation of MIF gene transcription in response to adipose tissue inflammation. MIF is expressed in mature adipocytes and in infiltrated macrophages. Peripheral blood mononuclear cell migration was significantly increased towards supernatants derived from inflamed adipose tissue. This effect was partially abrogated by MIF-neutralizing antibodies. Moreover, when compared to wildtype mice, Mif-/-mice showed reduced infiltration of labeled macrophages into LPS-stimulated epididymal fat pads in vivo. Finally, MIF antibodies partially neutralized the detrimental effect of MIF on fibroblast wound healing. Our results indicate that increased MIF expression and rapid activation of the MIF gene in fat tissue adjacent to acute wound healing disorders may play a role in cell

  9. Macrophage Migration Inhibitory Factor in Acute Adipose Tissue Inflammation

    PubMed Central

    Kim, Bong-Sung; Rongisch, Robert; Hager, Stephan; Grieb, Gerrit; Nourbakhsh, Mahtab; Rennekampff, Hans-Oliver; Bucala, Richard; Bernhagen, Juergen; Pallua, Norbert

    2015-01-01

    Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine and has been implicated in inflammatory diseases. However, little is known about the regulation of MIF in adipose tissue and its impact on wound healing. The aim of this study was to investigate MIF expression in inflamed adipose and determine its role in inflammatory cell recruitment and wound healing. Adipose tissue was harvested from subcutaneous adipose tissue layers of 24 healthy subjects and from adipose tissue adjacent to acutely inflamed wounds of 21 patients undergoing wound debridement. MIF protein and mRNA expression were measured by ELISA and RT-PCR. Cell-specific MIF expression was visualized by immunohistochemistry. The functional role of MIF in cell recruitment was investigated by a chemotaxis assay and by flow cytometry of labeled macrophages that were injected into Mif–/–and wildtype mice. Wound healing was evaluated by an in vitro scratch assay on human fibroblast monolayers. MIF protein levels of native adipose tissue and supernatants from acutely inflamed wounds were significantly elevated when compared to healthy controls. MIF mRNA expression was increased in acutely inflamed adipose tissue indicating the activation of MIF gene transcription in response to adipose tissue inflammation. MIF is expressed in mature adipocytes and in infiltrated macrophages. Peripheral blood mononuclear cell migration was significantly increased towards supernatants derived from inflamed adipose tissue. This effect was partially abrogated by MIF-neutralizing antibodies. Moreover, when compared to wildtype mice, Mif–/–mice showed reduced infiltration of labeled macrophages into LPS-stimulated epididymal fat pads in vivo. Finally, MIF antibodies partially neutralized the detrimental effect of MIF on fibroblast wound healing. Our results indicate that increased MIF expression and rapid activation of the MIF gene in fat tissue adjacent to acute wound healing disorders may play a role in cell

  10. Role of macrophage chemoattractant protein-1 in acute inflammation after lung contusion.

    PubMed

    Suresh, Madathilparambil V; Yu, Bi; Machado-Aranda, David; Bender, Matthew D; Ochoa-Frongia, Laura; Helinski, Jadwiga D; Davidson, Bruce A; Knight, Paul R; Hogaboam, Cory M; Moore, Bethany B; Raghavendran, Krishnan

    2012-06-01

    Lung contusion (LC), commonly observed in patients with thoracic trauma is a leading risk factor for development of acute lung injury/acute respiratory distress syndrome. Previously, we have shown that CC chemokine ligand (CCL)-2, a monotactic chemokine abundant in the lungs, is significantly elevated in LC. This study investigated the nature of protection afforded by CCL-2 in acute lung injury/acute respiratory distress syndrome during LC, using rats and CC chemokine receptor (CCR) 2 knockout (CCR2(-/-)) mice. Rats injected with a polyclonal antibody to CCL-2 showed higher levels of albumin and IL-6 in the bronchoalveolar lavage and myeloperoxidase in the lung tissue after LC. Closed-chest bilateral LC demonstrated CCL-2 localization in alveolar macrophages (AMs) and epithelial cells. Subsequent experiments performed using a murine model of LC showed that the extent of injury, assessed by pulmonary compliance and albumin levels in the bronchoalveolar lavage, was higher in the CCR2(-/-) mice when compared with the wild-type (WT) mice. We also found increased release of IL-1β, IL-6, macrophage inflammatory protein-1, and keratinocyte chemoattractant, lower recruitment of AMs, and higher neutrophil infiltration and phagocytic activity in CCR2(-/-) mice at 24 hours. However, impaired phagocytic activity was observed at 48 hours compared with the WT. Production of CCL-2 and macrophage chemoattractant protein-5 was increased in the absence of CCR2, thus suggesting a negative feedback mechanism of regulation. Isolated AMs in the CCR2(-/-) mice showed a predominant M1 phenotype compared with the predominant M2 phenotype in WT mice. Taken together, the above results show that CCL-2 is functionally important in the down-modulation of injury and inflammation in LC. PMID:22281985

  11. New Insights into Neutrophil Extracellular Traps: Mechanisms of Formation and Role in Inflammation.

    PubMed

    Yang, Hang; Biermann, Mona Helena; Brauner, Jan Markus; Liu, Yi; Zhao, Yi; Herrmann, Martin

    2016-01-01

    Recent data suggest that NETosis plays a crucial role in the innate immune response and disturbs the homeostasis of the immune system. NETosis is a form of neutrophil-specific cell death characterized by the release of large web-like structures referred to as neutrophil extracellular traps (NETs). NETs are composed of DNA strands associated with histones and decorated with about 20 different proteins, including neutrophil elastase, myeloperoxidase, cathepsin G, proteinase 3, high mobility group protein B1, and LL37. Reportedly, NETosis can be induced by several microbes, and particulate matter including sterile stimuli, via distinct cellular mechanisms. Meanwhile, suicidal NETosis and vital NETosis are controversial. As we enter the second decade of research on NETosis, we have partly understood NETs as double-edged swords of innate immunity. In this review, we will discuss the mechanisms of NETosis, its antimicrobial action, and role in autoimmune diseases, as well as the relatively new field of NET-associated mitochondrial DNA. PMID:27570525

  12. New Insights into Neutrophil Extracellular Traps: Mechanisms of Formation and Role in Inflammation

    PubMed Central

    Yang, Hang; Biermann, Mona Helena; Brauner, Jan Markus; Liu, Yi; Zhao, Yi; Herrmann, Martin

    2016-01-01

    Recent data suggest that NETosis plays a crucial role in the innate immune response and disturbs the homeostasis of the immune system. NETosis is a form of neutrophil-specific cell death characterized by the release of large web-like structures referred to as neutrophil extracellular traps (NETs). NETs are composed of DNA strands associated with histones and decorated with about 20 different proteins, including neutrophil elastase, myeloperoxidase, cathepsin G, proteinase 3, high mobility group protein B1, and LL37. Reportedly, NETosis can be induced by several microbes, and particulate matter including sterile stimuli, via distinct cellular mechanisms. Meanwhile, suicidal NETosis and vital NETosis are controversial. As we enter the second decade of research on NETosis, we have partly understood NETs as double-edged swords of innate immunity. In this review, we will discuss the mechanisms of NETosis, its antimicrobial action, and role in autoimmune diseases, as well as the relatively new field of NET-associated mitochondrial DNA. PMID:27570525

  13. The mechanism of action of a single dose of methylprednisolone on acute inflammation in vivo.

    PubMed Central

    Wiener, S L; Wiener, R; Urivetzky, M; Shafer, S; Isenberg, H D; Janov, C; Meilman, E

    1975-01-01

    A model system for the study of inflammation in vivo has been developed using the 16-h polyvinyl sponge implant in the rat. This system allows for simultaneous measurement of in vivo chemotaxis, volume of fluid influx, and fluid concentrations of lysosomal and lactic dehydrogenase (LDH) enzymes. In addition, the enzyme content of inflammatory fluid neutrophils may also be determined. A parallel time course of neutrophil and lysosomal enzyme influx into sponge implants was observed. This was characterized by an initial lag phase and a rapid increase between 5 and 16 h. The origin of supernatant LDH and lysosomal enzymes was studied with anti-neutrophil serum to produce agranulocytic rats. Inflammatory fluid in these rats was almost acellular and contained decreased concentrations of beta glucuronidase (-96%) and LDH (-74%). In control rats all of the supernatant beta glucuronidase could be accounted for by cell death and lysis, as estimated from measurements of soluble DNA. Only 15-20% of the LDH activity could be accounted for on the basis of cell lysis. The remainder was derived from neutrophil-mediated injury to connective tissue cells. Large intravascular doses of methylprednisolone markedly inhibited neutrophil influx into sponges and adjacent connective tissue. Secondary to decreased neutrophil influx, fewer neutrophils were available for lysis, and lysosomal enzyme levels in inflammatory fluid decreased. No evidence for intracellular or extracellular stabilization of neutrophil lysosomal granules by methylprenisolone was found. Images PMID:1159081

  14. Technical advance: monitoring the trafficking of neutrophil granulocytes and monocytes during the course of tissue inflammation by noninvasive 19F MRI.

    PubMed

    Temme, Sebastian; Jacoby, Christoph; Ding, Zhaoping; Bönner, Florian; Borg, Nadine; Schrader, Jürgen; Flögel, Ulrich

    2014-04-01

    Inflammation results in the recruitment of neutrophils and monocytes, which is crucial for the healing process. In the present study, we used (19)F MRI to monitor in vivo the infiltration of neutrophils and monocytes from the onset of inflammation to the resolution and healing phase. Matrigel, with or without LPS, was s.c.-implanted into C57BL/6 mice. This resulted in a focal inflammation lasting over a period of 20 days, with constantly decreasing LPS levels in doped matrigel plugs. After i.v. administration of (19)F containing contrast agent, (19)F MRI revealed a zonular (19)F signal in the periphery of LPS containing matrigel plugs, which was not observed in control plugs. Analysis of the (19)F signal over the observation period demonstrated the strongest (19)F signal after 24 h, which decreased to nearly zero after 20 days. The (19)F signal was mirrored by the amount of leukocytes in the matrigel, with neutrophils dominating at early time-points and macrophages at later time-points. Both populations were shown to take up the (19)F contrast agent. In conclusion, (19)F MRI, in combination with the matrigel/LPS model, permits the noninvasive analysis of neutrophil and monocyte infiltration over the complete course of inflammation in vivo. PMID:24319285

  15. How neutrophil extracellular traps orchestrate the local immune response in gout.

    PubMed

    Maueröder, Christian; Kienhöfer, Deborah; Hahn, Jonas; Schauer, Christine; Manger, Bernhard; Schett, Georg; Herrmann, Martin; Hoffmann, Markus H

    2015-07-01

    Neutrophil granulocytes possess a large arsenal of pro-inflammatory substances and mechanisms that empower them to drive local acute immune reactions to invading microorganisms or endogenous inflammatory triggers. The use of this armory needs to be tightly controlled to avoid chronic inflammation and collateral tissue damage. In gout, inflammation arises from precipitation of uric acid in the form of needle-shaped monosodium urate crystals. Inflammasome activation by these crystals in local immune cells results in a rapid and dramatic recruitment of neutrophils. This neutrophil influx is accompanied by the infamously intense clinical symptoms of inflammation during an acute gout attack. Neutrophilic inflammation however is equipped with a built-in safeguard; activated neutrophils form neutrophil extracellular traps (NETs). At the very high neutrophil densities that occur at the site of inflammation, NETs build aggregates that densely pack the monosodium urate (MSU) crystals and trap and degrade pro-inflammatory mediators by inherent proteases. Local removal of cytokines and chemokines by aggregated NETs explains how acute inflammation can stop in the consistent presence of the inflammatory trigger. Aggregated NETs resemble early stages of the typical large MSU deposits that constitute the pathognomonic structures of gout, tophi. Although tophi contribute to muscosceletal damage and mortality in patients with chronic gout, they can therefore be considered as a payoff that is necessary to silence the intense inflammatory response during acute gout. PMID:26002146

  16. Effects of COX-2 inhibitor in temporomandibular joint acute inflammation.

    PubMed

    Schütz, T C B; Andersen, M L; Tufik, S

    2007-05-01

    Since it is recognized that cyclo-oxygenase-2 mediates nociception and the sleep-wake cycle as well, and that acute inflammation of the temporomandibular joint (TMJ) results in sleep disturbances, we hypothesized that cyclo-oxygenase-2 inhibitor would restore the sleep pattern in this inflammatory rat model. First, sleep was monitored after the injection of Freund's adjuvant (FA group) or saline (SHAM group) into the rats' temporomandibular joint. Second, etoricoxib was co-administered in these groups. The Freund's adjuvant group showed a reduction in sleep efficiency, in rapid eye movement (REM), and in non-REM sleep, and an increase in sleep and REM sleep latency when compared with the SHAM group, while etoricoxib substantially increased sleep quality in the Freund's adjuvant group. These parameters returned progressively to those found in the SHAM group. Etoricoxib improved the sleep parameters, suggesting the involvement of the cyclo-oxygenase-2 enzyme in acute inflammation of the TMJ, specifically in REM sleep. PMID:17452571

  17. The Use of Delta Neutrophil Index and Myeloperoxidase Index for Predicting Acute Complicated Appendicitis in Children

    PubMed Central

    Kim, Oh Hyun; Cha, Yong Sung; Hwang, Sung Oh; Jang, Ji Young; Choi, Eun Hee; Kim, Hyung Il; Cha, KyoungChul; Kim, Hyun; Lee, Kang Hyun

    2016-01-01

    Background In children with acute appendicitis, 30% to 75% present with a complication, such as perforation, and the early diagnosis of complications is known to improve outcomes. Serum delta neutrophil index (DNI) and myeloperoxidase index (MPXI) are new inflammatory markers, and thus, in the present study, the authors evaluated the predictive values of these two markers for the presence of a complication in children with acute appendicitis. Methods This retrospective observational study was conducted on 105 consecutive children (<12 years old) with acute appendicitis treated over a 31-month period. DNI, MPXI, C-reactive protein (CRP), and white blood cells (WBCs) were measured in an emergency department and investigated with respect to their abilities to predict the presence of acute complicated appendicitis. Results Twenty-nine of the 105 patients (median age, 9 years) were allocated to the complicated group (27.6%) and 76 to the non-complicated group (72.4%). Median serum DNI and CRP were significantly higher in the complicated group [0% vs. 2.2%, p<0.001 and 0.65 mg/dL vs. 8.0 mg/dL, p<0.001], but median MPXI was not (p = 0.316). Area under curve (AUC) for the ability of serum DNI and CRP to predict the presence of acute complicated appendicitis were 0.738 and 0.840, respectively. Multiple logistic regression analyses showed initial CRP [odds ratio 1.301, 95% confidence interval (1.092–1.549), p = 0.003] significantly predicted the presence of a complication. The optimal cutoff for serum CRP was 4.0 mg/dL (sensitivity 69%, specificity 83%, AUC 0.840). Conclusions Although serum DNI values were significantly higher in children with acute complicated appendicitis, no evidence was obtained to support the notion that serum DNI or serum MPXI aid the differentiation of acute complicated and non-complicated appendicitis in the ED setting. PMID:26859663

  18. Oxidative response of neutrophils to platelet-activating factor is altered during acute ruminal acidosis induced by oligofructose in heifers

    PubMed Central

    Concha, Claudia; Carretta, María Daniella; Alarcón, Pablo; Conejeros, Ivan; Gallardo, Diego; Hidalgo, Alejandra Isabel; Tadich, Nestor; Cáceres, Dante Daniel; Hidalgo, María Angélica

    2014-01-01

    Reactive oxygen species (ROS) production is one of the main mechanisms used to kill microbes during innate immune response. D-lactic acid, which is augmented during acute ruminal acidosis, reduces platelet activating factor (PAF)-induced ROS production and L-selectin shedding in bovine neutrophils in vitro. This study was conducted to investigate whether acute ruminal acidosis induced by acute oligofructose overload in heifers interferes with ROS production and L-selectin shedding in blood neutrophils. Blood neutrophils and plasma were obtained by jugular venipuncture, while ruminal samples were collected using rumenocentesis. Lactic acid from plasma and ruminal samples was measured by HPLC. PAF-induced ROS production and L-selectin shedding were measured in vitro in bovine neutrophils by a luminol chemiluminescence assay and flow cytometry, respectively. A significant increase in ruminal and plasma lactic acid was recorded in these animals. Specifically, a decrease in PAF-induced ROS production was observed 8 h after oligofructose overload, and this was sustained until 48 h post oligofructose overload. A reduction in PAF-induced L-selectin shedding was observed at 16 h and 32 h post oligofructose overload. Overall, the results indicated that neutrophil PAF responses were altered in heifers with ruminal acidosis, suggesting a potential dysfunction of the innate immune response. PMID:25013355

  19. Endoplasmic reticulum stress in bone marrow-derived cells prevents acute cardiac inflammation and injury in response to angiotensin II.

    PubMed

    Li, T-T; Jia, L-X; Zhang, W-M; Li, X-Y; Zhang, J; Li, Y-L; Li, H-H; Qi, Y-F; Du, J

    2016-01-01

    Inflammation plays an important role in hypertensive cardiac injury. The endoplasmic reticulum (ER) stress pathway is involved in the inflammatory response. However, the role of ER stress in elevated angiotensin II (Ang II)-induced cardiac injury remains unclear. In this study, we investigated the role of ER stress in Ang II-induced hypertensive cardiac injury. Transcriptome analysis and quantitative real-time PCR showed that Ang II infusion in mice increased ER stress-related genes expression in the heart. C/EBP homologous protein (CHOP) deficiency, a key mediator of ER stress, increased infiltration of inflammatory cells, especially neutrophils, the production of inflammatory cytokines, chemokines in Ang II-infused mouse hearts. CHOP deficiency increased Ang II-induced cardiac fibrotic injury: (1) Masson trichrome staining showed increased fibrotic areas, (2) immunohistochemistry staining showed increased expression of α-smooth muscle actin, transforming growth factor β1 and (3) quantitative real-time PCR showed increased expression of collagen in CHOP-deficient mouse heart. Bone marrow transplantation experiments indicated that CHOP deficiency in bone marrow cells was responsible for Ang II-induced cardiac fibrotic injury. Moreover, TUNEL staining and flow cytometry revealed that CHOP deficiency decreased neutrophil apoptosis in response to Ang II. Taken together, our study demonstrated that hypertension induced ER stress after Ang II infusion. ER stress in bone marrow-derived cells protected acute cardiac inflammation and injury in response to Ang II. PMID:27277680

  20. The Effect of a Selective Inhibitor of Phosphodiesterase-9 on Oxidative Stress, Inflammation and Cytotoxicity in Neutrophils from Patients with Sickle Cell Anaemia.

    PubMed

    Barbosa, Maritza Cavalcante; de Jesus Dos Santos, Talyta Ellen; Santos, Thayna Nogueira Dos; Pedrosa, Alano Martins; Elias, Darcielle Bruna Dias; Leal, Luzia Kalyne Almeida Moreira; de Araújo Lopes, Amanda; Sasahara, Greyce Luri; Gonçalves Lemes, Romélia Pinheiro

    2016-04-01

    The aim of the study was to investigate the possible anti-inflammatory and antioxidant effects of BAY 73-6691 on neutrophils from SCA patients. This study included 35 patients with a molecular diagnosis of SCA, whose neutrophils were isolated and treated with BAY 73-6691 at the concentrations 100, 10, 1.0 and 0.1 μg/mL. LDH release and MTT assays were performed to verify cell viability. To evaluate oxidative stress, the following parameters were determined by spectrophotometric assays: NO and malondialdehyde (MDA) levels and activity of catalase, superoxide dismutase (SOD) and glutathione peroxidase (GPx). As inflammatory markers, myeloperoxidase (MPO) levels were evaluated by colorimetric assay and TNF-α by enzyme immunoassay. The results showed that neutrophils from SCA patients not treated with hydroxyurea (HU) had significantly lower NO levels and catalase and SOD activity, as well as significantly higher MDA, MPO and TNF-α levels when compared with neutrophils from SCA patients treated with HU and neutrophils from control group. Treatment of SCA neutrophils with BAY 73-6691 resulted in 94%, 200% and 168% increase in NOx levels, SOD and catalase activity, respectively. In addition, there was a reduction of approximately 46% and 45% in TNF-α and MPO levels, respectively. In SCAHU neutrophils, there was a 30% and 44% increase in NOx levels and SOD activity, respectively, and a 28% and 37% decrease in TNF-α and MPO levels, respectively. However, these effects were observed at cytotoxic doses only. The results of this study are original and demonstrate that inhibition of phosphodiesterase-9 in neutrophils from SCA patients with BAY 73-6691 was able to increase the NO bioavailability and attenuate oxidative stress and inflammation in neutrophils from patients not treated with HU. PMID:26346295

  1. Sequential generation of cytokines during the initiative phase of inflammation, with reference to neutrophils.

    PubMed

    Matsukawa, A; Yoshinaga, M

    1998-10-01

    Studies have suggested the role of cytokines in inflammation, as determined by results obtained in vitro, or with assessments of clinical samples. However, extrapolation of in vitro results to an in vivo situation must be made with caution, and findings obtained from clinical samples tend to lack a causal relation between cytokines and inflammatory responses. Animal models of inflammation can be useful in understanding roles of cytokines at sites of inflammation. We examined the production kinetics and cellular sources of tumor necrosis factor alpha (TNFalpha), interleukin (IL)-1beta, IL-8, and IL-1 receptor antagonist (IL-1Ra), and obtained evidence for the involvement of these cytokines in a rabbit model of arthritis induced by lipopolysaccharide (LPS). We also attempted to analyze the inflammatory cytokine network among TNFalpha, IL-1beta, IL-8, and IL-1Ra. Understanding the role of cytokines in animal models paves the way to a better understanding of disease in humans. PMID:9831316

  2. Imbalance between neutrophil elastase and its inhibitor α1-antitrypsin in obesity alters insulin sensitivity, inflammation, and energy expenditure.

    PubMed

    Mansuy-Aubert, Virginie; Zhou, Qiong L; Xie, Xiangyang; Gong, Zhenwei; Huang, Jun-Yuan; Khan, Abdul R; Aubert, Gregory; Candelaria, Karla; Thomas, Shantele; Shin, Dong-Ju; Booth, Sarah; Baig, Shahid M; Bilal, Ahmed; Hwang, Daehee; Zhang, Hui; Lovell-Badge, Robin; Smith, Steven R; Awan, Fazli R; Jiang, Zhen Y

    2013-04-01

    The molecular mechanisms involved in the development of obesity and related complications remain unclear. Here, we report that obese mice and human subjects have increased activity of neutrophil elastase (NE) and decreased serum levels of the NE inhibitor α1-antitrypsin (A1AT, SerpinA1). NE null (Ela2(-/-)) mice and A1AT transgenic mice were resistant to high-fat diet (HFD)-induced body weight gain, insulin resistance, inflammation, and fatty liver. NE inhibitor GW311616A reversed insulin resistance and body weight gain in HFD-fed mice. Ela2(-/-) mice also augmented circulating high molecular weight (HMW) adiponectin levels, phosphorylation of AMP-activated protein kinase (AMPK), and fatty acid oxidation (FAO) in the liver and brown adipose tissue (BAT) and uncoupling protein (UCP1) levels in the BAT. These data suggest that the A1AT-NE system regulates AMPK signaling, FAO, and energy expenditure. The imbalance between A1AT and NE contributes to the development of obesity and related inflammation, insulin resistance, and liver steatosis. PMID:23562077

  3. Epigenetic coordination of acute systemic inflammation: potential therapeutic targets

    PubMed Central

    Vachharajani, Vidula; Liu, Tiefu; McCall, Charles E.

    2015-01-01

    Epigenetic reprogramming of thousands of genes directs the course of acute systemic inflammation, which is highly lethal when dysregulated during sepsis. No molecular-based treatments for sepsis are available. A new concept supports that sepsis is an immunometabolic disease and that loss of control of nuclear epigenetic regulator Sirtuin 1 (SIRT-1), a NAD+ sensor directs immune and metabolic pathways during sepsis. SIRT-1, acting as homeostasis checkpoint, controls hyper and hypo inflammatory responses of sepsis at the microvascular interface, which disseminates inflammatory injury to cause multiple organ failure. Modifying SIRT-1 activity, which can prevent or treat established sepsis in mice, may provide a new way treat sepsis by epigenetically restoring immunometabolic homeostasis. PMID:25088223

  4. Assessment of systemic inflammation with neutrophil-lymphocyte ratio in lichen planus

    PubMed Central

    Cemil, Bengü Çevirgen; Kurmuş, Gökçe Işıl; Gönül, Müzeyyen

    2016-01-01

    Introduction Lichen planus (LP) is a papulosquamous eruption of the skin and mucous membranes. Although the exact pathogenesis of the disease remains unclear, it is believed that LP represents an inflammatory disorder. Neutrophil-lymphocyte (N/L) ratio is considered a systemic inflammatory marker that correlated with severity of the diseases. Aim To investigate whether N/L ratio increases in LP and may be an independent severity marker for LP lesions. Material and methods White blood cell (WBC), neutrophil and lymphocyte counts, N/L ratio, erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) were statistically compared between the patient (n = 55) and the control group (n = 48). The relationship of N/L ratio and the body surface area (BSA) was assessed. Results Erythrocyte sedimentation rate and CRP were statistically higher in patients with LP than in controls (p < 0.0001). Our analysis revealed a significantly higher level of N/L ratio in patients with LP compared with controls, respectively (2.5 ±1.1 (1.2–7.3) vs. 1.4 ±0.4 (0.8–2.7), p < 0.0001). Body surface area (p = 0.001), CRP (p = 0.006), and ESR (p = 0.003) were identified as possible predictors of N/L ratio, but only BSA (p = 0.002) and ESR (p = 0.003) were found as significant independent predictors in a multiple linear regression model. Conclusions The inflammatory process in LP was supported by our results. N/L ratio may have an impact to show the inflammatory status in patients with LP as an inexpensive, simple and effective predictor. It may be used for the severity and treatment option of LP. But, N/L ratio and LP relationship could be confirmed by other large prospective studies. PMID:27512353

  5. TRPA1 receptor stimulation by hydrogen peroxide is critical to trigger hyperalgesia and inflammation in a model of acute gout.

    PubMed

    Trevisan, Gabriela; Hoffmeister, Carin; Rossato, Mateus Fortes; Oliveira, Sara Marchesan; Silva, Mariane Arnoldi; Silva, Cássia Regina; Fusi, Camilla; Tonello, Raquel; Minocci, Daiana; Guerra, Gustavo Petri; Materazzi, Serena; Nassini, Romina; Geppetti, Pierangelo; Ferreira, Juliano

    2014-07-01

    Acute gout attacks produce severe joint pain and inflammation associated with monosodium urate (MSU) crystals leading to oxidative stress production. The transient potential receptor ankyrin 1 (TRPA1) is expressed by a subpopulation of peptidergic nociceptors and, via its activation by endogenous reactive oxygen species, including hydrogen peroxide (H2O2), contributes to pain and neurogenic inflammation. The aim of this study was to investigate the role of TRPA1 in hyperalgesia and inflammation in a model of acute gout attack in rodents. Inflammatory parameters and mechanical hyperalgesia were measured in male Wistar rats and in wild-type (Trpa1(+/+)) or TRPA1-deficient (Trpa1(-/-)) male mice. Animals received intra-articular (ia, ankle) injection of MSU. The role of TRPA1 was assessed by receptor antagonism, gene deletion or expression, sensory fiber defunctionalization, and calcitonin gene-related peptide (CGRP) release. We found that nociceptor defunctionalization, TRPA1 antagonist treatment (via ia or oral administration), and Trpa1 gene ablation abated hyperalgesia and inflammatory responses (edema, H2O2 generation, interleukin-1β release, and neutrophil infiltration) induced by ia MSU injection. In addition, we showed that MSU evoked generation of H2O2 in synovial tissue, which stimulated TRPA1 producing CGRP release and plasma protein extravasation. The MSU-elicited responses were also reduced by the H2O2-detoxifying enzyme catalase and the reducing agent dithiothreitol. TRPA1 activation by MSU challenge-generated H2O2 mediates the entire inflammatory response in an acute gout attack rodent model, thus strengthening the role of the TRPA1 receptor and H2O2 production as potential targets for treatment of acute gout attacks. PMID:24780252

  6. Diagnostic accuracy of urinary neutrophil gelatinase-associated lipocalin in patients with septic acute kidney injury

    PubMed Central

    Patel, Munna Lal; Sachan, Rekha; Shyam, Radhey; Kumar, Satish; Kamal, Ritul; Misra, Arvind

    2016-01-01

    Background Sepsis is the most common cause of acute kidney injury (AKI). Very few studies have investigated the predictive properties of urinary neutrophil gelatinase-associated lipocalin (uNGAL) as a marker of AKI in septic patients. The aim of this study is to examine uNGAL in septic patients with and without AKI and to evaluate its predictive value. Methods We prospectively studied 155 patients with sepsis over a period of 1 year. Urine was analyzed for neutrophil gelatinase-associated lipocalin at 12, 24, and 48 hours after admission. Patients with <24-hour stay and those with chronic kidney disease were excluded. AKI was classified according to the Acute Kidney Injury Network guidelines. Results The differences in mean change of uNGAL at 12, 24, and 48 hours were 80.00±7.00 ng/mL and 128.13±22.46 ng/mL, respectively in septic AKI, and 02.07±0.80 ng/mL and 26.13±15.12 ng/mL, respectively in septic non-AKI. At baseline or 12 hours, the cutoff value of 34.32 ng/mL had a sensitivity and specificity of 86.36 and 80.60, respectively and an area under curve of 0.81 (95% CI: 0.73–0.89) for predicting AKI. At the cutoff value 199.99 ng/mL sensitivity and specificity of 90.0 and 64.66, respectively and an area under curve of 0.82 (95% CI, 0.75–0.88) for predicting AKI. Conclusion The baseline or 12-hour uNGAL is highly sensitive but a less specific predictor of AKI in septic patients. PMID:27471404

  7. Neutrophils and their Fcγ receptors are essential in a mouse model of transfusion-related acute lung injury

    PubMed Central

    Looney, Mark R.; Su, Xiao; Van Ziffle, Jessica A.; Lowell, Clifford A.; Matthay, Michael A.

    2006-01-01

    Transfusion-related acute lung injury (TRALI) is the most common cause of transfusion-related mortality. To explore the pathogenesis of TRALI, we developed an in vivo mouse model based on the passive transfusion of an MHC class I (MHC I) mAb (H2Kd) to mice with the cognate antigen. Transfusion of the MHC I mAb to BALB/c mice produced acute lung injury with increased excess lung water, increased lung vascular and lung epithelial permeability to protein, and decreased alveolar fluid clearance. There was 50% mortality at a 2-hour time point after Ab administration. Pulmonary histology and immunohistochemistry revealed prominent neutrophil sequestration in the lung microvasculature that occurred concomitantly with acute peripheral blood neutropenia, all within 2 hours of administration of the mAb. Depletion of neutrophils by injection of anti-granulocyte mAb Gr-1 protected mice from lung injury following MHC I mAb challenge. FcRγ–/– mice were resistant to MHC I mAb–induced lung injury, while adoptive transfer of wild-type neutrophils into the FcRγ–/– animals restored lung injury following MHC I mAb challenge. In conclusion, in a clinically relevant in vivo mouse model of TRALI using an MHC I mAb, the mechanism of lung injury was dependent on neutrophils and their Fcγ receptors. PMID:16710475

  8. Salivary Markers of Inflammation in Response to Acute Stress

    PubMed Central

    Slavish, Danica C.; Graham-Engeland, Jennifer E.; Smyth, Joshua M.; Engeland, Christopher G.

    2014-01-01

    There is burgeoning interest in the ability to detect inflammatory markers in response to stress within naturally occurring social contexts and/or across multiple time points per day within individuals. Salivary collection is a less invasive process than current methods of blood collection and enables intensive naturalistic methodologies, such as those involving extensive repeated measures per day over time. Yet the reliability and validity of saliva-based to blood-based inflammatory biomarkers in response to stress remains unclear. We review and synthesize the published studies that have examined salivary markers of inflammation following exposure to an acute laboratory stressor. Results from each study are reviewed by analyte (IL-1β, TNF-α, IL-6, IL-2, IL-4, IL-10, IL-12, CRP) and stress type (social-cognitive and exercise-physical), after which methodological issues and limitations are addressed. Although the literature is limited, several inflammatory markers (including IL-1β, TNF-α, and IL-6) have been reliably determined from saliva and have increased significantly in response to stress across multiple studies, with effect sizes ranging from very small to very large. Although CRP from saliva has been associated with CRP in circulating blood more consistently than other biomarkers have been associated with their counterparts in blood, evidence demonstrating it reliably responds to acute stress is absent. Although the current literature is presently too limited to allow broad assertion that inflammatory biomarkers determined from saliva are valuable for examining acute stress responses, this review suggests that specific targets may be valid and highlights specific areas of need for future research. PMID:25205395

  9. The role of neutrophil lymphocyte ratio to leverage the differential diagnosis of familial Mediterranean fever attack and acute appendicitis

    PubMed Central

    Kucuk, Adem; Erol, Mehmet Fatih; Senel, Soner; Eroler, Emir; Yumun, Havvanur Alparslan; Uslu, Ali Ugur; Erol, Asiye Mukaddes; Tihan, Deniz; Duman, Ugur; Kucukkartallar, Tevfik; Solak, Yalcin

    2016-01-01

    Background/Aims: Familial Mediterranean fever (FMF) is an autosomal recessive disorder characterized by attacks of fever and diffuse abdominal pain. The primary concern with this presentation is to distinguish it from acute appendicitis promptly. Thus, we aimed to evaluate the role of neutrophil lymphocyte ratio (NLR) to leverage the differential diagnosis of acute FMF attack with histologically proven appendicitis. Methods: Twenty-three patients with histologically confirmed acute appendicitis and 88 patients with acute attack of FMF were included in the study. NLR, C-reactive protein and other hematologic parameters were compared between the groups. Results: Neutrophil to lymphocyte ratio was significantly higher in patients with acute appendicitis compared to the FMF attack group (8.24 ± 6.31 vs. 4.16 ± 2.44, p = 0.007). The performance of NLR in diagnosing acute appendicitis with receiver operating characteristic analysis with a cut-off value of 4.03 were; 78% sensitivity, 62% specificity, and area under the curve 0.760 (95% confidence interval, 0.655 to 0.8655; p < 0.001). Conclusions: This study showed that NLR, the simple and readily available inflammatory marker may have a useful role in distinguishing acute FMF attack from acute appendicitis. PMID:26864298

  10. LPS-Induced Lung Inflammation in Marmoset Monkeys – An Acute Model for Anti-Inflammatory Drug Testing

    PubMed Central

    Seehase, Sophie; Lauenstein, Hans-Dieter; Schlumbohm, Christina; Switalla, Simone; Neuhaus, Vanessa; Förster, Christine; Fieguth, Hans-Gerd; Pfennig, Olaf; Fuchs, Eberhard; Kaup, Franz-Josef; Bleyer, Martina; Hohlfeld, Jens M.; Braun, Armin

    2012-01-01

    Increasing incidence and substantial morbidity and mortality of respiratory diseases requires the development of new human-specific anti-inflammatory and disease-modifying therapeutics. Therefore, new predictive animal models that closely reflect human lung pathology are needed. In the current study, a tiered acute lipopolysaccharide (LPS)-induced inflammation model was established in marmoset monkeys (Callithrix jacchus) to reflect crucial features of inflammatory lung diseases. Firstly, in an ex vivo approach marmoset and, for the purposes of comparison, human precision-cut lung slices (PCLS) were stimulated with LPS in the presence or absence of the phosphodiesterase-4 (PDE4) inhibitor roflumilast. Pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α) and macrophage inflammatory protein-1 beta (MIP-1β) were measured. The corticosteroid dexamethasone was used as treatment control. Secondly, in an in vivo approach marmosets were pre-treated with roflumilast or dexamethasone and unilaterally challenged with LPS. Ipsilateral bronchoalveolar lavage (BAL) was conducted 18 hours after LPS challenge. BAL fluid was processed and analyzed for neutrophils, TNF-α, and MIP-1β. TNF-α release in marmoset PCLS correlated significantly with human PCLS. Roflumilast treatment significantly reduced TNF-α secretion ex vivo in both species, with comparable half maximal inhibitory concentration (IC50). LPS instillation into marmoset lungs caused a profound inflammation as shown by neutrophilic influx and increased TNF-α and MIP-1β levels in BAL fluid. This inflammatory response was significantly suppressed by roflumilast and dexamethasone. The close similarity of marmoset and human lungs regarding LPS-induced inflammation and the significant anti-inflammatory effect of approved pharmaceuticals assess the suitability of marmoset monkeys to serve as a promising model for studying anti-inflammatory drugs. PMID:22952743

  11. IL-1β and reactive oxygen species differentially regulate neutrophil directional migration and Basal random motility in a zebrafish injury-induced inflammation model.

    PubMed

    Yan, Bo; Han, Peidong; Pan, Lifeng; Lu, Wei; Xiong, Jingwei; Zhang, Mingjie; Zhang, Wenqing; Li, Li; Wen, Zilong

    2014-06-15

    During inflammation, the proper inflammatory infiltration of neutrophils is crucial for the host to fight against infections and remove damaged cells and detrimental substances. IL-1β and NADPH oxidase-mediated reactive oxygen species (ROS) have been implicated to play important roles in this process. However, the cellular and molecular basis underlying the actions of IL-1β and ROS and their relationship during inflammatory response remains undefined. In this study, we use the zebrafish model to investigate these issues. We find that, similar to that of NADPH oxidase-mediated ROS signaling, the Il-1β-Myd88 pathway is required for the recruitment of neutrophils, but not macrophages, to the injury-induced inflammatory site, whereas it is dispensable for bacterial-induced inflammation. Interestingly, the Il-1β-Myd88 pathway is independent of NADPH oxidase-mediated ROS signaling and critical for the directional migration, but not the basal random movement, of neutrophils. In contrast, the NADPH oxidase-mediated ROS signaling is required for both basal random movement and directional migration of neutrophils. We further document that ectopic expression of Il-1β in zebrafish induces an inflammatory disorder, which can be suppressed by anti-inflammatory treatment. Our findings reveal that the Il-1β-Myd88 axis and NADPH oxidase-mediated ROS signaling are two independent pathways that differentially regulate neutrophil migration during sterile inflammation. In addition, Il-1β overexpressing Tg(hsp70:(m)il-1β_eGFP;lyz:DsRed2)hkz10t;nz50 transgenic zebrafish provides a useful animal model for the study of chronic inflammatory disorder and for anti-inflammatory drug discovery. PMID:24835391

  12. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination.

    PubMed

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani; Qiao, Juan; Lu, Yun

    2016-02-13

    Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies. PMID:26530889

  13. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry.

    PubMed

    Lakschevitz, Flavia S; Hassanpour, Siavash; Rubin, Ayala; Fine, Noah; Sun, Chunxiang; Glogauer, Michael

    2016-03-15

    Neutrophils are the most abundant white blood cell and are an essential component of the innate immune system. A complete cataloguing of cell surface markers has not been undertaken for neutrophils isolated from circulation as well as healthy and inflamed tissues. To identify cell-surface markers specific to human neutrophils, we used high-throughput flow cytometry to screen neutrophil populations isolated from blood and oral rinses from healthy and chronic periodontitis patients against a panel of 374 known cluster of differentiation (CD) antibodies. This screen identified CD11b, CD16, and CD66b as markers that are consistently expressed on neutrophils independent of the cell location, level of activation and disease state. Cell sorting against CD11b, CD16 and CD66b allowed for the enrichment of mature neutrophils, yielding neutrophil populations with up to 99% purity. These findings suggest an ideal surface marker set for isolating mature neutrophils from humans. The screen also demonstrated that tissue neutrophils from chronically inflamed tissue display a unique surface marker set compared to tissue neutrophils present in healthy, non-inflamed tissues. PMID:26970376

  14. Sweet's syndrome – a comprehensive review of an acute febrile neutrophilic dermatosis

    PubMed Central

    Cohen, Philip R

    2007-01-01

    Sweet's syndrome (the eponym for acute febrile neutrophilic dermatosis) is characterized by a constellation of clinical symptoms, physical features, and pathologic findings which include fever, neutrophilia, tender erythematous skin lesions (papules, nodules, and plaques), and a diffuse infiltrate consisting predominantly of mature neutrophils that are typically located in the upper dermis. Several hundreds cases of Sweet's syndrome have been published. Sweet's syndrome presents in three clinical settings: classical (or idiopathic), malignancy-associated, and drug-induced. Classical Sweet's syndrome (CSS) usually presents in women between the age of 30 to 50 years, it is often preceded by an upper respiratory tract infection and may be associated with inflammatory bowel disease and pregnancy. Approximately one-third of patients with CSS experience recurrence of the dermatosis. The malignancy-associated Sweet's syndrome (MASS) can occur as a paraneoplastic syndrome in patients with an established cancer or individuals whose Sweet's syndrome-related hematologic dyscrasia or solid tumor was previously undiscovered; MASS is most commonly related to acute myelogenous leukemia. The dermatosis can precede, follow, or appear concurrent with the diagnosis of the patient's cancer. Hence, MASS can be the cutaneous harbinger of either an undiagnosed visceral malignancy in a previously cancer-free individual or an unsuspected cancer recurrence in an oncology patient. Drug-induced Sweet's syndrome (DISS) most commonly occurs in patients who have been treated with granulocyte-colony stimulating factor, however, other medications may also be associated with DISS. The pathogenesis of Sweet's syndrome may be multifactorial and still remains to be definitively established. Clinical and laboratory evidence suggests that cytokines have an etiologic role. Systemic corticosteroids are the therapeutic gold standard for Sweet's syndrome. After initiation of treatment with systemic

  15. Neutrophil myeloperoxidase and its substrates: formation of specific markers and reactive compounds during inflammation.

    PubMed

    Kato, Yoji

    2016-03-01

    Myeloperoxidase is an inflammatory enzyme that generates reactive hypochlorous acid in the presence of hydrogen peroxide and chloride ion. However, this enzyme also uses bromide ion or thiocyanate as a substrate to form hypobromous or hypothiocyanous acid, respectively. These species play important roles in host defense against the invasion of microorganisms. In contrast, these enzyme products modify biomolecules in hosts during excess inflammation, indicating that the action of myeloperoxidase is both beneficial and harmful. Myeloperoxidase uses other endogenous compounds, such as serotonin, urate, and l-tyrosine, as substrates. This broad-range specificity may have some biological implications. Target molecules of this enzyme and its products vary, including low-molecular weight thiols, proteins, nucleic acids, and lipids. The modified products represent biomarkers of myeloperoxidase action. Moderate inhibition of this enzyme might be critical for the prevention/modulation of excess, uncontrolled inflammatory events. Some phytochemicals inhibit myeloperoxidase, which might explain the reductive effect caused by the intake of vegetables and fruits on cardiovascular diseases. PMID:27013775

  16. Neutrophil myeloperoxidase and its substrates: formation of specific markers and reactive compounds during inflammation

    PubMed Central

    Kato, Yoji

    2016-01-01

    Myeloperoxidase is an inflammatory enzyme that generates reactive hypochlorous acid in the presence of hydrogen peroxide and chloride ion. However, this enzyme also uses bromide ion or thiocyanate as a substrate to form hypobromous or hypothiocyanous acid, respectively. These species play important roles in host defense against the invasion of microorganisms. In contrast, these enzyme products modify biomolecules in hosts during excess inflammation, indicating that the action of myeloperoxidase is both beneficial and harmful. Myeloperoxidase uses other endogenous compounds, such as serotonin, urate, and l-tyrosine, as substrates. This broad-range specificity may have some biological implications. Target molecules of this enzyme and its products vary, including low-molecular weight thiols, proteins, nucleic acids, and lipids. The modified products represent biomarkers of myeloperoxidase action. Moderate inhibition of this enzyme might be critical for the prevention/modulation of excess, uncontrolled inflammatory events. Some phytochemicals inhibit myeloperoxidase, which might explain the reductive effect caused by the intake of vegetables and fruits on cardiovascular diseases. PMID:27013775

  17. Blocking Neurogenic Inflammation for the Treatment of Acute Disorders of the Central Nervous System

    PubMed Central

    Lewis, Kate Marie; Turner, Renée Jade

    2013-01-01

    Classical inflammation is a well-characterized secondary response to many acute disorders of the central nervous system. However, in recent years, the role of neurogenic inflammation in the pathogenesis of neurological diseases has gained increasing attention, with a particular focus on its effects on modulation of the blood-brain barrier BBB. The neuropeptide substance P has been shown to increase blood-brain barrier permeability following acute injury to the brain and is associated with marked cerebral edema. Its release has also been shown to modulate classical inflammation. Accordingly, blocking substance P NK1 receptors may provide a novel alternative treatment to ameliorate the deleterious effects of neurogenic inflammation in the central nervous system. The purpose of this paper is to provide an overview of the role of substance P and neurogenic inflammation in acute injury to the central nervous system following traumatic brain injury, spinal cord injury, stroke, and meningitis. PMID:23819099

  18. Potentiated interaction between ineffective doses of budesonide and formoterol to control the inhaled cadmium-induced up-regulation of metalloproteinases and acute pulmonary inflammation in rats.

    PubMed

    Zhang, Wenhui; Zhi, Jianming; Cui, Yongyao; Zhang, Fan; Habyarimana, Adélite; Cambier, Carole; Gustin, Pascal

    2014-01-01

    The anti-inflammatory properties of glucocorticoids are well known but their protective effects exerted with a low potency against heavy metals-induced pulmonary inflammation remain unclear. In this study, a model of acute pulmonary inflammation induced by a single inhalation of cadmium in male Sprague-Dawley rats was used to investigate whether formoterol can improve the anti-inflammatory effects of budesonide. The cadmium-related inflammatory responses, including matrix metalloproteinase-9 (MMP-9) activity, were evaluated. Compared to the values obtained in rats exposed to cadmium, pretreatment of inhaled budesonide (0.5 mg/15 ml) elicited a significant decrease in total cell and neutrophil counts in bronchoalveolar lavage fluid (BALF) associated with a significant reduction of MMP-9 activity which was highly correlated with the number of inflammatory cells in BALF. Additionally, cadmium-induced lung injuries characterized by inflammatory cell infiltration within alveoli and the interstitium were attenuated by the pre-treatment of budesonide. Though the low concentration of budesonide (0.25 mg/15 ml) exerted a very limited inhibitory effects in the present rat model, its combination with an inefficient concentration of formoterol (0.5 mg/30 ml) showed an enhanced inhibitory effect on neutrophil and total cell counts as well as on the histological lung injuries associated with a potentiation of inhibition on the MMP-9 activity. In conclusion, high concentration of budesonide alone could partially protect the lungs against cadmium exposure induced-acute neutrophilic pulmonary inflammation via the inhibition of MMP-9 activity. The combination with formoterol could enhance the protective effects of both drugs, suggesting a new therapeutic strategy for the treatment of heavy metals-induced lung diseases. PMID:25313925

  19. Potentiated Interaction between Ineffective Doses of Budesonide and Formoterol to Control the Inhaled Cadmium-Induced Up-Regulation of Metalloproteinases and Acute Pulmonary Inflammation in Rats

    PubMed Central

    Zhang, Wenhui; Zhi, Jianming; Cui, Yongyao; Zhang, Fan; Habyarimana, Adélite; Cambier, Carole; Gustin, Pascal

    2014-01-01

    The anti-inflammatory properties of glucocorticoids are well known but their protective effects exerted with a low potency against heavy metals-induced pulmonary inflammation remain unclear. In this study, a model of acute pulmonary inflammation induced by a single inhalation of cadmium in male Sprague-Dawley rats was used to investigate whether formoterol can improve the anti-inflammatory effects of budesonide. The cadmium-related inflammatory responses, including matrix metalloproteinase-9 (MMP-9) activity, were evaluated. Compared to the values obtained in rats exposed to cadmium, pretreatment of inhaled budesonide (0.5 mg/15 ml) elicited a significant decrease in total cell and neutrophil counts in bronchoalveolar lavage fluid (BALF) associated with a significant reduction of MMP-9 activity which was highly correlated with the number of inflammatory cells in BALF. Additionally, cadmium-induced lung injuries characterized by inflammatory cell infiltration within alveoli and the interstitium were attenuated by the pre-treatment of budesonide. Though the low concentration of budesonide (0.25 mg/15 ml) exerted a very limited inhibitory effects in the present rat model, its combination with an inefficient concentration of formoterol (0.5 mg/30 ml) showed an enhanced inhibitory effect on neutrophil and total cell counts as well as on the histological lung injuries associated with a potentiation of inhibition on the MMP-9 activity. In conclusion, high concentration of budesonide alone could partially protect the lungs against cadmium exposure induced-acute neutrophilic pulmonary inflammation via the inhibition of MMP-9 activity. The combination with formoterol could enhance the protective effects of both drugs, suggesting a new therapeutic strategy for the treatment of heavy metals-induced lung diseases. PMID:25313925

  20. Effect of harmless acute pancreatitis score, red cell distribution width and neutrophil/lymphocyte ratio on the mortality of patients with nontraumatic acute pancreatitis at the emergency department

    PubMed Central

    Gülen, Bedia; Sonmez, Ertan; Yaylaci, Serpil; Serinken, Mustafa; Eken, Cenker; Dur, Ali; Turkdogan, Figen Tunali; Söğüt, Özgür

    2015-01-01

    BACKGROUND: Harmless acute pancreatitis score (HAPS), neutrophile/lymphocyte ratio and red blood cell distribution width (RDW) are used to determine the early prognosis of patients diagnosed with nontraumatic acute pancreatitis in the emergency department (ED). METHODS: Patients diagnosed with acute pancreatitis (K 85.9) in the ED according to the ICD10 coding during one year were included in the study. Patients with chronic pancreatitis and those who had missing data in their files were excluded from the study. Patients who did not have computed tomography (CT) in the ED were not included in the study. RESULTS: Ultimately, 322 patients were included in the study. The median age of the patients was 53.1 (IQR=36–64). Of the patients, 68.1% (n=226) had etiological causes of the biliary tract. The mortality rate of these patients within the first 48 hours was 4.3% (n=14). In the logistic regression analysis performed by using Balthazar classification, HAPS score, RDW, neutrophile/lymphocyte ratio, age, diabetes mellitus and systolic blood pressure, the only independent variable in determining mortality was assigned as Balthazar classification (OR: 15; 95% CI: 3.5 to 64.4). CONCLUSIONS: HAPS, neutrophile/lymphocyte ratio and RDW were not effective in determining the mortality of nontraumatic acute pancreatitis cases within the first 48 hours. The only independent variable for determining the mortality was Balthazar classification. PMID:25802563

  1. Matrikines are key regulators in modulating the amplitude of lung inflammation in acute pulmonary infection

    PubMed Central

    Akthar, Samia; Patel, Dhiren F.; Beale, Rebecca C.; Peiró, Teresa; Xu, Xin; Gaggar, Amit; Jackson, Patricia L.; Blalock, J. Edwin; Lloyd, Clare M.; Snelgrove, Robert J.

    2015-01-01

    Bioactive matrix fragments (matrikines) have been identified in a myriad of disorders, but their impact on the evolution of airway inflammation has not been demonstrated. We recently described a pathway where the matrikine and neutrophil chemoattractant proline–glycine–proline (PGP) could be degraded by the enzyme leukotriene A4 hydrolase (LTA4H). LTA4H classically functions in the generation of pro-inflammatory leukotriene B4, thus LTA4H exhibits opposing pro- and anti-inflammatory activities. The physiological significance of this secondary anti-inflammatory activity remains unknown. Here we show, using readily resolving pulmonary inflammation models, that loss of this secondary activity leads to more pronounced and sustained inflammation and illness owing to PGP accumulation. PGP elicits an exacerbated neutrophilic inflammation and protease imbalance that further degrades the extracellular matrix, generating fragments that perpetuate inflammation. This highlights a critical role for the secondary anti-inflammatory activity of LTA4H and thus has consequences for the generation of global LTA4H inhibitors currently being developed. PMID:26400771

  2. Matrikines are key regulators in modulating the amplitude of lung inflammation in acute pulmonary infection.

    PubMed

    Akthar, Samia; Patel, Dhiren F; Beale, Rebecca C; Peiró, Teresa; Xu, Xin; Gaggar, Amit; Jackson, Patricia L; Blalock, J Edwin; Lloyd, Clare M; Snelgrove, Robert J

    2015-01-01

    Bioactive matrix fragments (matrikines) have been identified in a myriad of disorders, but their impact on the evolution of airway inflammation has not been demonstrated. We recently described a pathway where the matrikine and neutrophil chemoattractant proline-glycine-proline (PGP) could be degraded by the enzyme leukotriene A4 hydrolase (LTA4H). LTA4H classically functions in the generation of pro-inflammatory leukotriene B4, thus LTA4H exhibits opposing pro- and anti-inflammatory activities. The physiological significance of this secondary anti-inflammatory activity remains unknown. Here we show, using readily resolving pulmonary inflammation models, that loss of this secondary activity leads to more pronounced and sustained inflammation and illness owing to PGP accumulation. PGP elicits an exacerbated neutrophilic inflammation and protease imbalance that further degrades the extracellular matrix, generating fragments that perpetuate inflammation. This highlights a critical role for the secondary anti-inflammatory activity of LTA4H and thus has consequences for the generation of global LTA4H inhibitors currently being developed. PMID:26400771

  3. Effect of Yi Gong San Decoction on Iron Homeostasis in a Mouse Model of Acute Inflammation

    PubMed Central

    Zheng, Qin; Guan, Yu; Xia, Lemin; Wang, Zhicheng; Jiang, Yiling; Zhang, Xiaofeng; Wang, Jianying; Wang, Guohua; Pu, Yiqiong; Xia, Jing; Luo, Meihong

    2016-01-01

    We investigated the effect of Yi Gong San (YGS) decoction on iron homeostasis and the possible underlying mechanisms in a mouse model of acute inflammation in this study. Our findings suggest that YGS regulates iron homeostasis by downregulating the level of HAMP mRNA, which may depend on regulation of the IL-6/STAT3 or BMP/HJV/SMAD pathway during acute inflammation. PMID:27143982

  4. Importance of Neutrophil Gelatinase-Associated Lipocalin in Differential Diagnosis of Acute and Chronic Renal Failure

    PubMed Central

    Ozkan, Seda; Durukan, Polat; Kavalci, Cemil; Duman, Ali; Sayhan, Mustafa Burak; Salt, Omer; Ipekci, Afsin

    2014-01-01

    Background: Neutrophil Gelatinase-associated Lipocalin (NGAL) protein is easily detected in the blood and urine soon after acute renal injury. NGAL gains features of an early, sensitive and noninvasive biomarker for acute renal injury. Recent evidences suggest that its expression is also increased in CRF reflecting the severity of disease. Objectives: In the present study, we aimed to investigate whether blood NGAL level plays a role in the differential diagnosis of acute and chronic renal failure. Patients and Methods: This was a prospective case-control study. Fifty patients presented to emergency department with acute renal failure (ARF), 30 with chronic renal failure (CRF) and 20 healthy individuals as control group were included in this study. Blood pH, HCO3-, BUN, creatinine and potassium values were evaluated in all patients. Blood NGAL values were evaluated in all groups. BUN, serum creatinine and NGAL values were statistically compared between patients and controls. Results: Median NGAL levels in patients was 304.50 (29), and 60 (0) in control, which was statistically significant between the two groups (Z = -6.477, P < 0.001). The median NGAL values were 261.50 ± 291 in ARF group and 428.50 ± 294 in CRF group. There was a significant difference in NGAL level between ARF and CRF groups (Z = -2.52, P = 0.012). Median BUN values were 153.46 ± 82.47 in ARF group and 169.40 ± 93.94 in CRF group. There was no significant difference in BUN value between ARF and CRF groups (P > 0.05). Median creatinine values were 2.84 ± 2.95 in ARF group and 4.78 ± 4.32 in CRF group. In serum creatinine values, a significant difference was found between ARF and CRF groups (P < 0.05). Conclusions: Serum NGAL levels of ARF and CRF patients were significantly higher than healthy individuals. In addition, NGAL values of patients with CRF were significantly higher than those of ARF. Serum NGAL values can be used to detect renal injury and differentiate ARF and CRF. PMID:25389480

  5. A taurine-supplemented vegan diet may blunt the contribution of neutrophil activation to acute coronary events.

    PubMed

    McCarty, Mark F

    2004-01-01

    Neutrophils are activated in the coronary circulation during acute coronary events (unstable angina and myocardial infarction), often prior to the onset of ischemic damage. Moreover, neutrophils infiltrate coronary plaque in these circumstances, and may contribute to the rupture or erosion of this plaque, triggering thrombosis. Activated neutrophils secrete proteolytic enzymes in latent forms which are activated by the hypochlorous acid (HOCl) generated by myeloperoxidase. These phenomena may help to explain why an elevated white cell count has been found to be an independent coronary risk factor. Low-fat vegan diets can decrease circulating leukocytes--neutrophils and monocytes--possibly owing to down-regulation of systemic IGF-I activity. Thus, a relative neutropenia may contribute to the coronary protection afforded by such diets. However, vegetarian diets are devoid of taurine - the physiological antagonist of HOCl--and tissue levels of this nutrient are relatively low in vegetarians. Taurine has anti-atherosclerotic activity in animal models, possibly reflecting a role for macrophage-derived myeloperoxidase in the atherogenic process. Taurine also has platelet-stabilizing and anti-hypertensive effects that presumably could reduce coronary risk. Thus, it is proposed that a taurine-supplemented low-fat vegan diet represents a rational strategy for diminishing the contribution of activated neutrophils to acute coronary events; moreover, such a regimen would work in a number of other complementary ways to promote cardiovascular health. Moderate alcohol consumption, the well-tolerated drug pentoxifylline, and 5-lipoxygenase inhibitors--zileuton, boswellic acids, fish oil--may also have potential in this regard. PMID:15288360

  6. Natural killer T cells: innate lymphocytes positioned as a bridge between acute and chronic inflammation?

    PubMed Central

    Fox, Lisa; Hegde, Subramanya

    2010-01-01

    Natural killer T cells are an innate population of T lymphocytes that recognize antigens derived from host lipids and glycolipids. In this review, we focus on how these unique T cells are positioned to influence both acute and chronic inflammatory processes through their early recruitment to sites of inflammation, interactions with myeloid antigen presenting cells, and recognition of lipids associated with inflammation. PMID:20850561

  7. Platelets enhance neutrophil transendothelial migration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Platelets are increasingly recognized as important mediators of inflammation in addition to thrombosis. While platelets have been shown to promote neutrophil (PMN) adhesion to endothelium in various inflammatory models, it is unclear whether platelets enhance neutrophil transmigration across inflame...

  8. Functional characterisation of human pulmonary monocyte-like cells in lipopolysaccharide-mediated acute lung inflammation

    PubMed Central

    2014-01-01

    Background We have previously reported the presence of novel subpopulations of pulmonary monocyte-like cells (PMLC) in the human lung; resident PMLC (rPMLC, HLA-DR+CD14++CD16+cells) and inducible PMLC (iPMLC, HLA-DR+CD14++CD16- cells). iPMLC are significantly increased in bronchoalveolar lavage (BAL) fluid following inhalation of lipopolysaccharide (LPS). We have carried out the first functional evaluation of PMLC subpopulations in the inflamed lung, following the isolation of these cells, and other lineages, from BAL fluid using novel and complex protocols. Methods iPMLC, rPMLC, alveolar macrophages (AM), neutrophils, and regulatory T cells were quantified in BAL fluid of healthy subjects at 9 hours post-LPS inhalation (n = 15). Cell surface antigen expression by iPMLC, rPMLC and AM and the ability of each lineage to proliferate and to undergo phagocytosis were investigated using flow cytometry. Basal cytokine production by iPMLC compared to AM following their isolation from BAL fluid and the responsiveness of both cell types following in vitro treatment with the synthetic corticosteroid dexamethasone were assessed. Results rPMLC have a significantly increased expression of mature macrophage markers and of the proliferation antigen Ki67, compared to iPMLC. Our cytokine data revealed a pro-inflammatory, corticosteroid-resistant phenotype of iPMLC in this model. Conclusions These data emphasise the presence of functionally distinct subpopulations of the monocyte/macrophage lineage in the human lung in experimental acute lung inflammation. PMID:24684897

  9. Use of Metal Oxide Nanoparticle Band Gap to Develop a Predictive Paradigm for Oxidative Stress and Acute Pulmonary Inflammation

    PubMed Central

    Zhang, Haiyuan; Ji, Zhaoxia; Xia, Tian; Meng, Huan; Low-Kam, Cecile; Liu, Rong; Pokhrel, Suman; Lin, Sijie; Wang, Xiang; Liao, Yu-Pei; Wang, Meiying; Li, Linjiang; Rallo, Robert; Damoiseaux, Robert; Telesca, Donatello; Mädler, Lutz; Cohen, Yoram; Zink, Jeffrey I.; Nel, Andre E.

    2014-01-01

    We demonstrate for 24 metal oxide (MOx) nanoparticles that it is possible to use conduction band energy levels to delineate their toxicological potential at cellular and whole animal levels. Among the materials, the overlap of conduction band energy (Ec) levels with the cellular redox potential (−4.12 to −4.84 eV) was strongly correlated to the ability of Co3O4, Cr2O3, Ni2O3, Mn2O3 and CoO nanoparticles to induce oxygen radicals, oxidative stress and inflammation. This outcome is premised on permissible electron transfers from the biological redox couples that maintain the cellular redox equilibrium to the conduction band of the semiconductor particles. Both single parameter cytotoxic as well as multi-parameter oxidative stress assays in cells showed excellent correlation to the generation of acute neutrophilic inflammation and cytokine responses in the lungs of CB57 Bl/6 mice. Co3O4, Ni2O3, Mn2O3 and CoO nanoparticles could also oxidize cytochrome c as a representative redox couple involved in redox homeostasis. While CuO and ZnO generated oxidative stress and acute pulmonary inflammation that is not predicted by Ec levels, the adverse biological effects of these materials could be explained by their solubility, as demonstrated by ICP-MS analysis. Taken together, these results demonstrate, for the first time, that it is possible to predict the toxicity of a large series of MOx nanoparticles in the lung premised on semiconductor properties and an integrated in vitro/in vivo hazard ranking model premised on oxidative stress. This establishes a robust platform for modeling of MOx structure-activity relationships based on band gap energy levels and particle dissolution. This predictive toxicological paradigm is also of considerable importance for regulatory decision-making about this important class of engineered nanomaterials. PMID:22502734

  10. Influence of pre-existing inflammation on the outcome of acute coronary syndrome: a cross-sectional study

    PubMed Central

    Odeberg, Jacob; Freitag, Michael; Forssell, Henrik; Vaara, Ivar; Persson, Marie-Louise; Odeberg, Håkan; Halling, Anders; Råstam, Lennart; Lindblad, Ulf

    2016-01-01

    Objectives Inflammation is a well-established risk factor for the development of coronary artery disease (CAD) and acute coronary syndrome (ACS). However, less is known about its influence on the outcome of ACS. The aim of this study was to determine if blood biomarkers of inflammation were associated specifically with acute myocardial infarction (MI) or unstable angina (UA) in patients with ACS. Design Cross-sectional study. Setting Patients admitted to the coronary care unit, via the emergency room, at a central county hospital over a 4-year period (1992–1996). Participants In a substudy of Carlscrona Heart Attack Prognosis Study (CHAPS) of 5292 patients admitted to the coronary care unit, we identified 908 patients aged 30–74 years, who at discharge had received the diagnosis of either MI (527) or UA (381). Main outcome measures MI or UA, based on the diagnosis set at discharge from hospital. Results When adjusted for smoking, age, sex and duration of chest pain, concentrations of plasma biomarkers of inflammation (high-sensitivity C reactive protein>2 mg/L (OR=1.40 (1.00 to 1.96) and fibrinogen (p for trend=0.035)) analysed at admission were found to be associated with MI over UA, in an event of ACS. A strong significant association with MI over UA was found for blood cell markers of inflammation, that is, counts of neutrophils (p for trend<0.001), monocytes (p for trend<0.001) and thrombocytes (p for trend=0.021), while lymphocyte count showed no association. Interestingly, eosinophil count (p for trend=0.003) was found to be significantly lower in patients with MI compared to those with UA. Conclusions Our results show that, in patients with ACS, the blood cell profile and degree of inflammation at admission was associated with the outcome. Furthermore, our data suggest that a pre-existing low-grade inflammation may dispose towards MI over UA. PMID:26758266

  11. Intravenous Immunoglobulin Prevents Murine Antibody-Mediated Acute Lung Injury at the Level of Neutrophil Reactive Oxygen Species (ROS) Production

    PubMed Central

    Semple, John W.; Kim, Michael; Hou, Jing; McVey, Mark; Lee, Young Jin; Tabuchi, Arata; Kuebler, Wolfgang M.; Chai, Zhong-Wei; Lazarus, Alan H.

    2012-01-01

    Transfusion-related acute lung injury (TRALI) is a leading cause of transfusion-associated mortality that can occur with any type of transfusion and is thought to be primarily due to donor antibodies activating pulmonary neutrophils in recipients. Recently, a large prospective case controlled clinical study of cardiac surgery patients demonstrated that despite implementation of male donors, a high incidence of TRALI still occurred and suggested a need for additional interventions in susceptible patient populations. To examine if intravenous immunoglobulin (IVIg) may be effective, a murine model of antibody-mediated acute lung injury that approximates human TRALI was examined. When BALB/c mice were injected with the anti-major histocompatibility complex class I antibody 34-1-2s, mild shock (reduced rectal temperature) and respiratory distress (dyspnea) were observed and pre-treatment of the mice with 2 g/kg IVIg completely prevented these symptoms. To determine IVIg's usefulness to affect severe lung damage, SCID mice, previously shown to be hypersensitive to 34-1-2s were used. SCID mice treated with 34-1-2s underwent severe shock, lung damage (increased wet/dry ratios) and 40% mortality within 2 hours. Treatment with 2 g/kg IVIg 18 hours before 34-1-2s administration completely protected the mice from all adverse events. Treatment with IVIg after symptoms began also reduced lung damage and mortality. While the prophylactic IVIg administration did not affect 34-1-2s-induced pulmonary neutrophil accumulation, bone marrow-derived neutrophils from the IVIg-treated mice displayed no spontaneous ROS production nor could they be stimulated in vitro with fMLP or 34-1-2s. These results suggest that IVIg prevents murine antibody-mediated acute lung injury at the level of neutrophil ROS production and thus, alleviating tissue damage. PMID:22363629

  12. Acute pulmonary inflammation induced by exposure of the airways to staphylococcal enterotoxin type B in rats

    SciTech Connect

    Desouza, Ivani A. . E-mail: ivanidesouza@fcm.unicamp.br; Franco-Penteado, Carla F.; Camargo, Enilton A.; Lima, Carmen S.P.; Teixeira, Simone A.; Muscara, Marcelo N.; De Nucci, Gilberto; Antunes, Edson

    2006-11-15

    Staphylocococcus aureus is a gram-positive bacterium that produces several enterotoxins, which are responsible for most part of pathological conditions associated to staphylococcal infections, including lung inflammation. This study aimed to investigate the underlying inflammatory mechanisms involved in leukocyte recruitment in rats exposed to staphylococcal enterotoxin B (SEB). Rats were anesthetized with pentobarbital sodium and intratracheally injected with either SEB or sterile phosphate-buffered saline (PBS, 0.4 ml). Airways exposition to SEB (7.5-250 ng/trachea) caused a dose- and time-dependent neutrophil accumulation in BAL fluid, the maximal effects of which were observed at 4 h post-SEB exposure (250 ng/trachea). Eosinophils were virtually absent in BAL fluid, whereas mononuclear cell counts increased only at 24 h post-SEB. Significant elevations of granulocytes in bone marrow (mature and immature forms) and peripheral blood have also been detected. In BAL fluid, marked elevations in the levels of lipid mediators (LTB{sub 4} and PGE{sub 2}) and cytokines (TNF-{alpha}, IL-6 and IL-10) were observed after SEB instillation. The SEB-induced neutrophil accumulation in BAL fluid was reduced by pretreatment with dexamethasone (0.5 mg/kg), the COX-2 inhibitor celecoxib (3 mg/kg), the selective iNOS inhibitor compound 1400 W (5 mg/kg) and the lipoxygenase inhibitor AA-861 (200 {mu}g/kg). In separate experiments carried out with rat isolated peripheral neutrophils, SEB failed to induce neutrophil adhesion to serum-coated plates and chemotaxis. In conclusion, rat airways exposition to SEB causes a neutrophil-dependent lung inflammation at 4 h as result of the release of proinflammatory (NO, PGE{sub 2}, LTB{sub 4}, TNF-{alpha}, IL-6) and anti-inflammatory mediators (IL-10)

  13. Impact of clinical context on acute kidney injury biomarker performances: differences between neutrophil gelatinase-associated lipocalin and L-type fatty acid-binding protein

    PubMed Central

    Asada, Toshifumi; Isshiki, Rei; Hayase, Naoki; Sumida, Maki; Inokuchi, Ryota; Noiri, Eisei; Nangaku, Masaomi; Yahagi, Naoki; Doi, Kent

    2016-01-01

    Application of acute kidney injury (AKI) biomarkers with consideration of nonrenal conditions and systemic severity has not been sufficiently determined. Herein, urinary neutrophil gelatinase-associated lipocalin (NGAL), L-type fatty acid-binding protein (L-FABP) and nonrenal disorders, including inflammation, hypoperfusion and liver dysfunction, were evaluated in 249 critically ill patients treated at our intensive care unit. Distinct characteristics of NGAL and L-FABP were revealed using principal component analysis: NGAL showed linear correlations with inflammatory markers (white blood cell count and C-reactive protein), whereas L-FABP showed linear correlations with hypoperfusion and hepatic injury markers (lactate, liver transaminases and bilirubin). We thus developed a new algorithm by combining urinary NGAL and L-FABP with stratification by the Acute Physiology and Chronic Health Evaluation score, presence of sepsis and blood lactate levels to improve their AKI predictive performance, which showed a significantly better area under the receiver operating characteristic curve [AUC-ROC 0.940; 95% confidential interval (CI) 0.793–0.985] than that under NGAL alone (AUC-ROC 0.858, 95% CI 0.741–0.927, P = 0.03) or L-FABP alone (AUC-ROC 0.837, 95% CI 0.697–0.920, P = 0.007) and indicated that nonrenal conditions and systemic severity should be considered for improved AKI prediction by NGAL and L-FABP as biomarkers. PMID:27605390

  14. Impact of clinical context on acute kidney injury biomarker performances: differences between neutrophil gelatinase-associated lipocalin and L-type fatty acid-binding protein.

    PubMed

    Asada, Toshifumi; Isshiki, Rei; Hayase, Naoki; Sumida, Maki; Inokuchi, Ryota; Noiri, Eisei; Nangaku, Masaomi; Yahagi, Naoki; Doi, Kent

    2016-01-01

    Application of acute kidney injury (AKI) biomarkers with consideration of nonrenal conditions and systemic severity has not been sufficiently determined. Herein, urinary neutrophil gelatinase-associated lipocalin (NGAL), L-type fatty acid-binding protein (L-FABP) and nonrenal disorders, including inflammation, hypoperfusion and liver dysfunction, were evaluated in 249 critically ill patients treated at our intensive care unit. Distinct characteristics of NGAL and L-FABP were revealed using principal component analysis: NGAL showed linear correlations with inflammatory markers (white blood cell count and C-reactive protein), whereas L-FABP showed linear correlations with hypoperfusion and hepatic injury markers (lactate, liver transaminases and bilirubin). We thus developed a new algorithm by combining urinary NGAL and L-FABP with stratification by the Acute Physiology and Chronic Health Evaluation score, presence of sepsis and blood lactate levels to improve their AKI predictive performance, which showed a significantly better area under the receiver operating characteristic curve [AUC-ROC 0.940; 95% confidential interval (CI) 0.793-0.985] than that under NGAL alone (AUC-ROC 0.858, 95% CI 0.741-0.927, P = 0.03) or L-FABP alone (AUC-ROC 0.837, 95% CI 0.697-0.920, P = 0.007) and indicated that nonrenal conditions and systemic severity should be considered for improved AKI prediction by NGAL and L-FABP as biomarkers. PMID:27605390

  15. Maresin 1 biosynthesis during platelet-neutrophil interactions is organ-protective.

    PubMed

    Abdulnour, Raja-Elie E; Dalli, Jesmond; Colby, Jennifer K; Krishnamoorthy, Nandini; Timmons, Jack Y; Tan, Sook Hwa; Colas, Romain A; Petasis, Nicos A; Serhan, Charles N; Levy, Bruce D

    2014-11-18

    Unregulated acute inflammation can lead to collateral tissue injury in vital organs, such as the lung during the acute respiratory distress syndrome. In response to tissue injury, circulating platelet-neutrophil aggregates form to augment neutrophil tissue entry. These early cellular events in acute inflammation are pivotal to timely resolution by mechanisms that remain to be elucidated. Here, we identified a previously undescribed biosynthetic route during human platelet-neutrophil interactions for the proresolving mediator maresin 1 (MaR1; 7R,14S-dihydroxy-docosa-4Z,8E,10E,12Z,16Z,19Z-hexaenoic acid). Docosahexaenoic acid was converted by platelet 12-lipoxygenase to 13S,14S-epoxy-maresin, which was further transformed by neutrophils to MaR1. In a murine model of acute respiratory distress syndrome, lipid mediator metabololipidomics uncovered MaR1 generation in vivo in a temporally regulated manner. Early MaR1 production was dependent on platelet-neutrophil interactions, and intravascular MaR1 was organ-protective, leading to decreased lung neutrophils, edema, tissue hypoxia, and prophlogistic mediators. Together, these findings identify a transcellular route for intravascular maresin 1 biosynthesis via platelet-neutrophil interactions that regulates the extent of lung inflammation. PMID:25369934

  16. Role of PECAM-1 (CD31) in neutrophil transmigration in murine models of liver and peritoneal inflammation.

    PubMed

    Chosay, J G; Fisher, M A; Farhood, A; Ready, K A; Dunn, C J; Jaeschke, H

    1998-04-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1) is thought to be critical for transendothelial migration of leukocytes, including neutrophils. Because neutrophil-mediated liver injury during endotoxemia is dependent on transmigration, we investigated the role of PECAM-1 in the pathophysiology of endotoxin-induced liver injury. Male C3Heb/FeJ mice were treated with galactosamine (Gal) and endotoxin (ET) (700 mg/kg Gal/100 micrograms/kg ET), and liver sections were stained for PECAM-1 expression. Control livers showed the presence of PECAM-1 on endothelial cells of large vessels but not in sinusoids. Gal/ET treatment did not change the expression pattern of PECAM-1. Gal/ET-induced liver injury (area of necrosis: 38 +/- 3%) was not attenuated by treatment with 3 mg/kg of the antimurine PECAM-1 antibody 2H8. The antibody had no effect on sequestration and transmigration of neutrophils in sinusoids or the margination of neutrophils in large vessels. In contrast, 2H8 inhibited glycogen-induced neutrophil migration into the peritoneum by 74%; this effect correlated with PECAM-1 expression in the intestinal vasculature. Thus PECAM-1 is neither expressed nor inducible in hepatic sinusoids and is consequently not involved in neutrophil transmigration in the liver during endotoxemia. On the other hand, expression of PECAM-1 in mesenteric veins is critical for peritoneal neutrophil accumulation. PMID:9575861

  17. Distinct effects of Lactobacillus plantarum KL30B and Escherichia coli 3A1 on the induction and development of acute and chronic inflammation

    PubMed Central

    Strus, Magdalena; Okoń, Krzysztof; Nowak, Bernadeta; Pilarczyk-Zurek, Magdalena; Heczko, Piotr; Gawda, Anna; Ciszek-Lenda, Marta; Skowron, Beata; Baranowska, Agnieszka

    2016-01-01

    Objective Enteric bacteria are involved in the pathogenesis of ulcerative colitis. In experimental colitis, a breakdown of the intestinal epithelial barrier results in inflow of various gut bacteria, induction of acute inflammation and finally, progression to chronic colitis. Material and methods In the present study we compared pro-inflammatory properties of two bacterial strains isolated from human microbiome, Escherichia coli 3A1 and Lactobacillus plantarum KL30B. The study was performed using two experimental models of acute inflammation: peritonitis in mice and trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats. Results Both bacterial strains induced massive neutrophil infiltration upon injection into sterile peritoneal cavity. However, peritoneal exudate cells stimulated in vitro with E. coli 3A1, produced far more nitric oxide, than those stimulated with L. plantarum KL30B. Interestingly, distinct effect on the development of TNBS-induced colitis was observed after oral administration of the tested bacteria. Lactobacillus plantarum KL30B evoked strong acute colitis. On the contrary, the administration of E. coli 3A1 resulted in a progression of colitis to chronicity. Conclusions Our results show that distinct effects of bacterial administration on the development of ongoing inflammation is strain specific and depends on the final effect of cross-talk between bacteria and cells of the innate immune system. PMID:26862305

  18. Interleukin-23 (IL-23), independent of IL-17 and IL-22, drives neutrophil recruitment and innate inflammation during Clostridium difficile colitis in mice.

    PubMed

    McDermott, Andrew J; Falkowski, Nicole R; McDonald, Roderick A; Pandit, Chinmay R; Young, Vincent B; Huffnagle, Gary B

    2016-01-01

    Our objective was to determine the role of the inflammatory cytokine interleukin-23 (IL-23) in promoting neutrophil recruitment, inflammatory cytokine expression and intestinal histopathology in response to Clostridium difficile infection. Wild-type (WT) and p19(-/-) (IL-23KO) mice were pre-treated with cefoperazone in their drinking water for 5 days, and after a 2-day recovery period were challenged with spores from C. difficile strain VPI 10463. Interleukin-23 deficiency was associated with significant defects in both the recruitment of CD11b(High) Ly6G(H) (igh) neutrophils to the colon and the expression of neutrophil chemoattractants and stabilization factors including Cxcl1, Cxcl2, Ccl3 and Csf3 within the colonic mucosa as compared with WT animals. Furthermore, the expression of inflammatory cytokines including Il33, Tnf and Il6 was significantly reduced in IL-23-deficient animals. There was also a trend towards less severe colonic histopathology in the absence of IL-23. The induction of Il17a and Il22 was also significantly abrogated in IL-23KO mice. Inflammatory cytokine expression and neutrophilic inflammation were not reduced in IL-17a-deficient mice or in mice treated with anti-IL-22 depleting monoclonal antibody. However, induction of RegIIIg was significantly reduced in animals treated with anti-IL-22 antibody. Taken together, these data indicate that IL-23, but not IL-17a or IL-22, promotes neutrophil recruitment and inflammatory cytokine and chemokine expression in the colon in response to C. difficile infection. PMID:26455347

  19. Neutrophil CD64 as a Marker of Bacterial Infection in Acute Exacerbations of Chronic Obstructive Pulmonary Disease.

    PubMed

    Qian, Wei; Huang, Gao-Zhong

    2016-08-01

    Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) are responsible for most mortality in patients with chronic obstructive pulmonary disease (COPD) and are caused mainly by bacterial infection. We analyzed and compared neutrophil CD64 expression (using the ratio of CD64 level in neutrophils to that in lymphocytes as an index), serum C-reactive protein (CRP), procalcitonin (PCT) levels, white blood cell (WBC) count, and neutrophil percentage among healthy subjects and patients with stable COPD or AECOPD. Compared with patients with COPD and healthy subjects, patients with AECOPD demonstrated significantly increased CD64 index, CRP, PCT, WBC count, and neutrophil percentage. Interestingly, CD64 index and PCT were both significantly higher in patients with AECOPD with positive bacterial sputum culture than those with negative culture. Furthermore, CD64 index and PCT were positively correlated in AECOPD, and there was also correlation between CD64 index and CRP, WBC, and neutrophil percentage. These data suggest that CD64 index is a relevant marker of bacterial infection in AECOPD. We divided patients with AECOPD into CD64-guided group and conventional treatment group. In CD64-guided group, clinicians prescribed antibiotics based on CD64 index; while in the conventional treatment group, clinicians relied on experience and clinical symptoms to determine the necessity for antibiotics. We found that the efficacy of antibiotic treatment in CD64-guided group was significantly improved compared with the conventional treatment group, including reduction of hospital stays and cost and shortened antibiotic treatment duration. Thus, the CD64 index has important diagnostic and therapeutic implications for antibiotic treatment of patients with AECOPD. PMID:27224474

  20. Identifying neutrophils in H&E staining histology tissue images.

    PubMed

    Wang, Jiazhuo; MacKenzie, John D; Ramachandran, Rageshree; Chen, Danny Z

    2014-01-01

    Identifying neutrophils lays a crucial foundation for diagnosing acute inflammation diseases. But, such computerized methods on the commonly used H&E staining histology tissue images are lacking, due to various inherent difficulties of identifying cells in such image modality and the challenge that a considerable portion of neutrophils do not have a "textbook" appearance. In this paper, we propose a new method for identifying neutrophils in H&E staining histology tissue images. We first segment the cells by applying iterative edge labeling, and then identify neutrophils based on the segmentation results by considering the "context" of each candidate cell constructed by a new Voronoi diagram of clusters of other neutrophils. We obtain good performance compared with two baseline algorithms we constructed, on clinical images collected from patients suspected of having inflammatory bowl diseases. PMID:25333103

  1. Neutrophil's weapons in atherosclerosis.

    PubMed

    Chistiakov, Dimitry A; Bobryshev, Yuri V; Orekhov, Alexander N

    2015-12-01

    Neutrophils are important components of immunity associated with inflammatory responses against a broad spectrum of pathogens. These cells could be rapidly activated by proinflammatory stimuli and migrate to the inflamed and infected sites where they release a variety of cytotoxic molecules with antimicrobial activity. Neutrophil antibacterial factors include extracellular proteases, redox enzymes, antimicrobial peptides, and small bioactive molecules. In resting neutrophils, these factors are stored in granules and released upon activation during degranulation. These factors could be also secreted in a neutrophil-derived microparticle-dependent fashion. Neutrophils exhibit a unique property to produce neutrophil extracellular traps (NETs) composed of decondensed chromatin and granular proteins to catch and kill bacteria. Neutrophil-released factors are efficient in inactivation and elimination of pathogens through oxidation-dependent or independent damage of bacterial cells, inactivation and neutralization of virulence factors and other mechanisms. However, in chronic atherosclerosis-associated inflammation, protective function of neutrophils could be impaired and misdirected against own cells. This could lead to deleterious effects and progressive vascular injury. In atherogenesis, a pathogenic role of neutrophils could be especially seen in early stages associated with endothelial dysfunction and induction of vascular inflammation and in late atherosclerosis associated with plaque rupture and atherothrombosis. Assuming a prominent impact of neutrophils in cardiovascular pathology, developing therapeutic strategies targeting neutrophil-specific antigens could have a promising clinical potential. PMID:26551083

  2. Smoking Is Associated with Acute and Chronic Prostatic Inflammation: Results from the REDUCE Study.

    PubMed

    Moreira, Daniel M; Nickel, J Curtis; Gerber, Leah; Muller, Roberto L; Andriole, Gerald L; Castro-Santamaria, Ramiro; Freedland, Stephen J

    2015-04-01

    Both anti- and proinflammatory effects of cigarette smoking have been described. As prostate inflammation is common, we hypothesized smoking could contribute to prostate inflammation. Thus, we evaluated the association of smoking status with acute and chronic inflammation within the prostate of men undergoing prostate biopsy. We retrospectively analyzed 8,190 men ages 50 to 75 years with PSA levels between 2.5 and 10 ng/mL enrolled in the Reduction by Dutasteride of Prostate Cancer Events study. Smoking status was self-defined as never, former, or current. Prostate inflammation was assessed by systematic central review blinded to smoking status. The association of smoking with inflammation in the baseline, 2-year, and 4-year biopsies was evaluated with univariable and multivariable logistic regressions. At study enrollment, 1,233 (15%), 3,203 (39%), and 3,754 (46%) men were current, former, and never smokers, respectively. Current smokers were significantly younger and had smaller prostates than former and never smokers (all P < 0.05). Former smokers were significantly heavier than current and never smokers (P < 0.001). Acute and chronic prostate inflammations were identified in 1,261 (15%) and 6,352 (78%) baseline biopsies, respectively. In univariable analysis, current smokers were more likely to have acute inflammation than former (OR, 1.35; P, 0.001) and never smokers (OR, 1.36; P, 0.001). The results were unchanged at 2- and 4-year biopsies. In contrast, current smoking was linked with chronic inflammation in the baseline biopsy, but not at 2- and 4-year biopsies. In conclusion, among men undergoing prostate biopsy, current smoking was independently associated with acute and possibly chronic prostate inflammations. PMID:25644151

  3. Influence of Vitamin C Supplementation on Oxidative Stress and Neutrophil Inflammatory Response in Acute and Regular Exercise

    PubMed Central

    Popovic, Ljiljana M.; Mitic, Nebojsa R.; Bisevac, Boban; Miric, Mirjana; Popovic, Brankica

    2015-01-01

    Exercise induces a multitude of physiological and biochemical changes in blood affecting its redox status. Tissue damage resulting from exercise induces activation of inflammatory cells followed by the increased activity of myeloperoxidase (MPO) in circulation. Vitamin C readily scavenges free radicals and may thereby prevent oxidative damage of important biological macromolecules. The aim of this study was to examine the effect of vitamin C supplementation on oxidative stress and neutrophil inflammatory response induced by acute and regular exercise. Experiment was conducted on acute exercise group (performing Bruce Treadmill Protocol (BTP)) and regular training group. Markers of lipid peroxidation, malondialdehyde (MDA), MPO activity, and vitamin C status were estimated at rest and after BTP (acute exercise group) and before and after vitamin C supplementation in both groups. Our results showed increased postexercise Asc in serum independently of vitamin supplementation. They also showed that vitamin C can significantly decrease postexercise MDA level in both experimental groups. Increased postexercise MPO activity has been found in both groups and was not affected by vitamin C supplementation. We concluded that vitamin C supplementation can suppress lipid peroxidation process during exercise but cannot affect neutrophil inflammatory response in either exercise group. PMID:25802681

  4. Influence of vitamin C supplementation on oxidative stress and neutrophil inflammatory response in acute and regular exercise.

    PubMed

    Popovic, Ljiljana M; Mitic, Nebojsa R; Miric, Dijana; Bisevac, Boban; Miric, Mirjana; Popovic, Brankica

    2015-01-01

    Exercise induces a multitude of physiological and biochemical changes in blood affecting its redox status. Tissue damage resulting from exercise induces activation of inflammatory cells followed by the increased activity of myeloperoxidase (MPO) in circulation. Vitamin C readily scavenges free radicals and may thereby prevent oxidative damage of important biological macromolecules. The aim of this study was to examine the effect of vitamin C supplementation on oxidative stress and neutrophil inflammatory response induced by acute and regular exercise. Experiment was conducted on acute exercise group (performing Bruce Treadmill Protocol (BTP)) and regular training group. Markers of lipid peroxidation, malondialdehyde (MDA), MPO activity, and vitamin C status were estimated at rest and after BTP (acute exercise group) and before and after vitamin C supplementation in both groups. Our results showed increased postexercise Asc in serum independently of vitamin supplementation. They also showed that vitamin C can significantly decrease postexercise MDA level in both experimental groups. Increased postexercise MPO activity has been found in both groups and was not affected by vitamin C supplementation. We concluded that vitamin C supplementation can suppress lipid peroxidation process during exercise but cannot affect neutrophil inflammatory response in either exercise group. PMID:25802681

  5. Key mechanisms governing resolution of lung inflammation.

    PubMed

    Robb, C T; Regan, K H; Dorward, D A; Rossi, A G

    2016-07-01

    Innate immunity normally provides excellent defence against invading microorganisms. Acute inflammation is a form of innate immune defence and represents one of the primary responses to injury, infection and irritation, largely mediated by granulocyte effector cells such as neutrophils and eosinophils. Failure to remove an inflammatory stimulus (often resulting in failed resolution of inflammation) can lead to chronic inflammation resulting in tissue injury caused by high numbers of infiltrating activated granulocytes. Successful resolution of inflammation is dependent upon the removal of these cells. Under normal physiological conditions, apoptosis (programmed cell death) precedes phagocytic recognition and clearance of these cells by, for example, macrophages, dendritic and epithelial cells (a process known as efferocytosis). Inflammation contributes to immune defence within the respiratory mucosa (responsible for gas exchange) because lung epithelia are continuously exposed to a multiplicity of airborne pathogens, allergens and foreign particles. Failure to resolve inflammation within the respiratory mucosa is a major contributor of numerous lung diseases. This review will summarise the major mechanisms regulating lung inflammation, including key cellular interplays such as apoptotic cell clearance by alveolar macrophages and macrophage/neutrophil/epithelial cell interactions. The different acute and chronic inflammatory disease states caused by dysregulated/impaired resolution of lung inflammation will be discussed. Furthermore, the resolution of lung inflammation during neutrophil/eosinophil-dominant lung injury or enhanced resolution driven via pharmacological manipulation will also be considered. PMID:27116944

  6. Dual function of Ccr5 during Langat virus encephalitis - Reduction of neutrophil-mediated CNS inflammation and increase in T cell-mediated viral clearance

    PubMed Central

    Michlmayr, Daniela; Bardina, Susana V.; Rodriguez, Carlos A.; Pletnev, Alexander G.; Lim, Jean K.

    2016-01-01

    Tick-borne encephalitis virus (TBEV) is a vector-transmitted flavivirus that causes potentially fatal neurological infection. There are thousands of cases reported annually, and despite the availability of an effective vaccine, the incidence of TBEV is increasing worldwide. Importantly, up to thirty percent of affected individuals will develop long-term neurologic sequelae. We investigated the role of chemokine receptor Ccr5 in a mouse model of TBEV infection using the naturally attenuated tick-borne flavivirus, Langat virus (LGTV). Ccr5-deficient mice presented with an increase in viral replication within the CNS and decreased survival during LGTV encephalitis when compared to wild type (WT) controls. This enhanced susceptibility was due to the temporal lag in lymphocyte migration into the CNS. Adoptive transfer of WT T cells, but not Ccr5-deficient T cells, was able to significantly improve survival outcome in LGTV-infected Ccr5-deficient mice. Concomitantly, a significant increase in neutrophil migration into the CNS in LGTV-infected Ccr5−/− mice was documented at the late stage of infection. Antibody-mediated depletion of neutrophils in Ccr5−/− mice resulted in a significant improvement in mortality, a decrease in viral load, and a decrease in overall tissue damage in the CNS when compared to isotype control-treated mice. Ccr5 is crucial in not only directing T cells towards the LGTV-infected brain, but also in suppressing neutrophil-mediated inflammation within the CNS. PMID:27183602

  7. Dual Function of Ccr5 during Langat Virus Encephalitis: Reduction in Neutrophil-Mediated Central Nervous System Inflammation and Increase in T Cell-Mediated Viral Clearance.

    PubMed

    Michlmayr, Daniela; Bardina, Susana V; Rodriguez, Carlos A; Pletnev, Alexander G; Lim, Jean K

    2016-06-01

    Tick-borne encephalitis virus (TBEV) is a vector-transmitted flavivirus that causes potentially fatal neurologic infection. There are thousands of cases reported annually, and despite the availability of an effective vaccine, the incidence of TBEV is increasing worldwide. Importantly, up to 30% of affected individuals develop long-term neurologic sequelae. We investigated the role of chemokine receptor Ccr5 in a mouse model of TBEV infection using the naturally attenuated tick-borne flavivirus Langat virus (LGTV). Ccr5-deficient mice presented with an increase in viral replication within the CNS and decreased survival during LGTV encephalitis compared with wild-type controls. This enhanced susceptibility was due to the temporal lag in lymphocyte migration into the CNS. Adoptive transfer of wild-type T cells, but not Ccr5-deficient T cells, significantly improved survival outcome in LGTV-infected Ccr5-deficient mice. Concomitantly, a significant increase in neutrophil migration into the CNS in LGTV-infected Ccr5(-/-) mice was documented at the late stage of infection. Ab-mediated depletion of neutrophils in Ccr5(-/-) mice resulted in a significant improvement in mortality, a decrease in viral load, and a decrease in overall tissue damage in the CNS compared with isotype control-treated mice. Ccr5 is crucial in directing T cells toward the LGTV-infected brain, as well as in suppressing neutrophil-mediated inflammation within the CNS. PMID:27183602

  8. Heme oxygenase-1 exerts a protective role in ovalbumin-induced neutrophilic airway inflammation by inhibiting Th17 cell-mediated immune response.

    PubMed

    Zhang, Yanjie; Zhang, Liya; Wu, Jinhong; Di, Caixia; Xia, Zhenwei

    2013-11-29

    Allergic asthma is conventionally considered as a Th2 immune response characterized by eosinophilic inflammation. Recent investigations revealed that Th17 cells play an important role in the pathogenesis of non-eosinophilic asthma (NEA), resulting in steroid-resistant neutrophilic airway inflammation. Heme oxygenase-1 (HO-1) has anti-inflammation, anti-oxidation, and anti-apoptosis functions. However, its role in NEA is still unclear. Here, we explore the role of HO-1 in a mouse model of NEA. HO-1 inducer hemin or HO-1 inhibitor tin protoporphyrin IX was injected intraperitoneally into ovalbumin-challenged DO11.10 mice. Small interfering RNA (siRNA) was delivered into mice to knock down HO-1 expression. The results show that induction of HO-1 by hemin attenuated airway inflammation and decreased neutrophil infiltration in bronchial alveolar lavage fluid and was accompanied by a lower proportion of Th17 cells in mediastinal lymph nodes and spleen. More importantly, induction of HO-1 down-regulated Th17-related transcription factor retinoic acid-related orphan receptor γt (RORγt) expression and decreased IL-17A levels, all of which correlated with a decrease in phosphorylated STAT3 (p-STAT3) level and inhibition of Th17 cell differentiation. Consistently, the above events could be reversed by tin protoporphyrin IX. Also, HO-1 siRNA transfection abolished the effect of hemin induced HO-1 in vivo. Meanwhile, the hemin treatment promoted the level of Foxp3 expression and enhanced the proportion of regulatory T cells (Tregs). Collectively, our findings indicate that HO-1 exhibits anti-inflammatory activity in the mouse model of NEA via inhibition of the p-STAT3-RORγt pathway, regulating kinetics of RORγt and Foxp3 expression, thus providing a possible novel therapeutic target in asthmatic patients. PMID:24097973

  9. Oral Administration of Escin Inhibits Acute Inflammation and Reduces Intestinal Mucosal Injury in Animal Models.

    PubMed

    Li, Minmin; Lu, Chengwen; Zhang, Leiming; Zhang, Jianqiao; Du, Yuan; Duan, Sijin; Wang, Tian; Fu, Fenghua

    2015-01-01

    The present study aimed to investigate the effects of oral administration of escin on acute inflammation and intestinal mucosal injury in animal models. The effects of escin on carrageenan-induced paw edema in a rat model of acute inflammation, cecal ligation and puncture (CLP) induced intestinal mucosal injury in a mouse model, were observed. It was shown that oral administration of escin inhibits carrageenan-induced paw edema and decreases the production of prostaglandin E2 (PGE2) and cyclooxygenase- (COX-) 2. In CLP model, low dose of escin ameliorates endotoxin induced liver injury and intestinal mucosal injury and increases the expression of tight junction protein claudin-5 in mice. These findings suggest that escin effectively inhibits acute inflammation and reduces intestinal mucosal injury in animal models. PMID:26199634

  10. Oral Administration of Escin Inhibits Acute Inflammation and Reduces Intestinal Mucosal Injury in Animal Models

    PubMed Central

    Li, Minmin; Lu, Chengwen; Zhang, Leiming; Zhang, Jianqiao; Du, Yuan; Duan, Sijin; Wang, Tian; Fu, Fenghua

    2015-01-01

    The present study aimed to investigate the effects of oral administration of escin on acute inflammation and intestinal mucosal injury in animal models. The effects of escin on carrageenan-induced paw edema in a rat model of acute inflammation, cecal ligation and puncture (CLP) induced intestinal mucosal injury in a mouse model, were observed. It was shown that oral administration of escin inhibits carrageenan-induced paw edema and decreases the production of prostaglandin E2 (PGE2) and cyclooxygenase- (COX-) 2. In CLP model, low dose of escin ameliorates endotoxin induced liver injury and intestinal mucosal injury and increases the expression of tight junction protein claudin-5 in mice. These findings suggest that escin effectively inhibits acute inflammation and reduces intestinal mucosal injury in animal models. PMID:26199634

  11. Effects of an acute bout of moderate-intensity exercise on postprandial lipemia and airway inflammation.

    PubMed

    Johnson, Ariel M; Kurti, Stephanie P; Smith, Joshua R; Rosenkranz, Sara K; Harms, Craig A

    2016-03-01

    A high-fat meal (HFM) induces an increase in blood lipids (postprandial lipemia; PPL), systemic inflammation, and acute airway inflammation. While acute exercise has been shown to have anti-inflammatory and lipid-lowering effects, it is unknown whether exercise prior to an HFM will translate to reduced airway inflammation post-HFM. Our purpose was to determine the effects of an acute bout of exercise on airway inflammation post-HFM and to identify whether any protective effect of exercise on airway inflammation was associated with a reduction in PPL or systemic inflammation. In a randomized cross-over study, 12 healthy, 18- to 29-year-old men (age, 23.0 ± 3.2 years; height, 178.9 ± 5.5 cm; weight, 78.5 ± 11.7 kg) consumed an HFM (1 g fat/1 kg body weight) 12 h following exercise (EX; 60 min at 60% maximal oxygen uptake) or without exercise (CON). Fractional exhaled nitric oxide (FENO; measure of airway inflammation), triglycerides (TG), and inflammatory markers (high-sensitivity C-reactive protein, tumor-necrosis factor-alpha, and interleukin-6) were measured while fasted at 2 h and 4 h post-HFM. FENO increased over time (2 h: CON, p = 0.001; EX, p = 0.002, but not by condition (p = 0.991). TG significantly increased 2 and 4 h post-HFM (p < 0.001), but was not significant between conditions (p = 0.256). Inflammatory markers did not significantly increase by time or condition (p > 0.05). There were no relationships between FENO and TG or systemic inflammatory markers for any time point or condition (p > 0.05). In summary, an acute bout of moderate-intensity exercise performed 12 h prior to an HFM did not change postprandial airway inflammation or lipemia in healthy, 18- to 29-year-old men. PMID:26872295

  12. Commensal microbiota stimulate systemic neutrophil migration through induction of serum amyloid A.

    PubMed

    Kanther, Michelle; Tomkovich, Sarah; Xiaolun, Sun; Grosser, Melinda R; Koo, Jaseol; Flynn, Edward J; Jobin, Christian; Rawls, John F

    2014-07-01

    Neutrophils serve critical roles in inflammatory responses to infection and injury, and mechanisms governing their activity represent attractive targets for controlling inflammation. The commensal microbiota is known to regulate the activity of neutrophils and other leucocytes in the intestine, but the systemic impact of the microbiota on neutrophils remains unknown. Here we utilized in vivo imaging in gnotobiotic zebrafish to reveal diverse effects of microbiota colonization on systemic neutrophil development and function. The presence of a microbiota resulted in increased neutrophil number and myeloperoxidase expression, and altered neutrophil localization and migratory behaviours. These effects of the microbiota on neutrophil homeostasis were accompanied by an increased recruitment of neutrophils to injury. Genetic analysis identified the microbiota-induced acute phase protein serum amyloid A (Saa) as a host factor mediating microbial stimulation of tissue-specific neutrophil migratory behaviours. In vitro studies revealed that zebrafish cells respond to Saa exposure by activating NF-κB, and that Saa-dependent neutrophil migration requires NF-κB-dependent gene expression. These results implicate the commensal microbiota as an important environmental factor regulating diverse aspects of systemic neutrophil development and function, and reveal a critical role for a Saa-NF-κB signalling axis in mediating neutrophil migratory responses. PMID:24373309

  13. Epithelial Cell Apoptosis and Neutrophil Recruitment in Acute Lung Injury—A Unifying Hypothesis? What We Have Learned from Small Interfering RNAs

    PubMed Central

    Perl, Mario; Lomas-Neira, Joanne; Chung, Chun-Shiang; Ayala, Alfred

    2008-01-01

    In spite of protective ventilatory strategies, Acute Lung Injury (ALI) remains associated with high morbidity and mortality. One reason for the lack of therapeutic options might be that ALI is a co-morbid event associated with a diverse family of diseases and, thus, may be the result of distinct pathological processes. Among them, activated neutrophil- (PMN-) induced tissue injury and epithelial cell apoptosis mediated lung damage represent two potentially important candidate pathomechanisms that have been put forward. Several approaches have been undertaken to test these hypotheses, with substantial success in the treatment of experimental forms of ALI. With this in mind, we will summarize these two current hypotheses of ALI briefly, emphasizing the role of apoptosis in regulating PMN and/or lung epithelial cell responses. In addition, the contribution that Fas-mediated inflammation may play as a potential biological link between lung cell apoptosis and PMN recruitment will be considered, as well as the in vivo application of small interfering RNA (siRNA) as a novel approach to the inhibition of ALI and its therapeutic implications. PMID:18368145

  14. Platycodin D attenuates acute lung injury by suppressing apoptosis and inflammation in vivo and in vitro.

    PubMed

    Tao, Weiwei; Su, Qiang; Wang, Hanqin; Guo, Shen; Chen, Yanyan; Duan, Jinao; Wang, Shumin

    2015-07-01

    Platycodin D (PLD) is the major triterpene saponin in the root of Platycodon grandiflorum (Jacq.) with various pharmacological activities. The purpose of the present study was to evaluate the protective effects and possible mechanisms of PLD on acute lung injury (ALI) both in vivo and in vitro. In vivo, we used two ALI models, lipopolysaccharide (LPS)-induced ALI and bleomycin (BLE)-induced ALI to evaluate the protective effects and possible mechanisms of PLD. Female BALB/c mice were randomly divided into the following groups: control group, LPS group, LPS plus pre-treatment with dexamethasone (2 mg/kg) group, LPS plus pre-treatment with PLD groups (50 mg/kg, 100 mg/kg), LPS plus post-treatment with dexamethasone (2 mg/kg) group, LPS plus post-treatment with PLD groups (50 mg/kg, 100 mg/kg), BLE group, BLE plus pre-treatment with dexamethasone (2 mg/kg) group, BLE plus pre-treatment with PLD groups (50 mg/kg, 100 mg/kg), BLE plus post-treatment with dexamethasone (2 mg/kg) group, and BLE plus post-treatment with PLD groups (50 mg/kg, 100 mg/kg). PLD was orally administered before or after LPS or BLE challenge with mice. Mice were sacrificed, and lung tissues and bronchoalveolar fluid (BALF) were prepared for further analysis. Our results showed that PLD significantly decreased lung wet-to-dry weight ratio (lung W/D weight ratio), total leukocyte number and neutrophil percentage in the BALF, and myeloperoxidase (MPO) activity of lung in a dose-dependent manner. Besides, cytokine levels, including interleukin (IL)-6, tumor neurosis factor (TNF)-α were also found significantly inhibited in BALF. Furthermore, PLD effectively inhibited the expressions of nuclear factor κB (NF-κB), Caspase-3 and Bax in the lung tissues, as well as restored the expression of Bcl-2 in the lungs and improved the superoxide dismutase (SOD) activity in BALF. In vitro, we used LPS-challenged cell model to evaluate the protective effects and possible mechanisms of PLD. MLE-12 cells were

  15. Human milk proresolving mediators stimulate resolution of acute inflammation.

    PubMed

    Arnardottir, H; Orr, S K; Dalli, J; Serhan, C N

    2016-05-01

    Human milk contains nutrients and bioactive products relevant to infant development and immunological protection. Here, we investigated the proresolving properties of milk using human milk lipid mediator isolates (HLMIs) and determined their impact on resolution programs in vivo and with human macrophages. HLMIs reduced the maximum neutrophil numbers (14.6±1.2 × 10(6)-11.0±1.0 × 10(6) cells per exudate) and shortened the resolution interval (Ri; 50% neutrophil reduction) by 54% compared with peritonitis. Using rigorous liquid-chromatography tandem-mass spectrometry (LC-MS-MS)-based lipid mediator (LM) metabololipidomics, we demonstrated that human milk possesses a proresolving LM-specialized proresolving mediator (LM-SPM) signature profile, containing SPMs (e.g. resolvins (Rv), protectins (PDs), maresins (MaRs), and lipoxins (LXs)) at bioactive levels (pico-nanomolar concentrations) that enhanced human macrophage efferocytosis and bacterial containment. SPMs identified in human milk included D-series Rvs (e.g., RvD1, RvD2, RvD3, AT-RvD3, and RvD4), PD1, MaR1, E-series Rvs (e.g. RvE1, RvE2, and RvE3), and LXs (LXA4 and LXB4). Of the SPMs identified in human milk, RvD2 and MaR1 (50 ng per mouse) individually shortened Ri by ∼75%. Milk from mastitis gave higher leukotriene B4 and prostanoids and lower SPM levels. Taken together, these findings provide evidence that human milk has proresolving actions via comprehensive LM-SPM profiling, describing a potentially novel mechanism in maternal-infant biochemical imprinting. PMID:26462421

  16. Human Milk Proresolving Mediators Stimulate Resolution of Acute Inflammation

    PubMed Central

    Dalli, Jesmond; Serhan, Charles N

    2015-01-01

    Human milk contains nutrients and bioactive products relevant to infant development and immunological protection. Here, we investigated the pro-resolving properties of milk using human milk lipid mediator isolates (HLMI) and determined their impact on resolution programs in vivo and with human macrophages. HLMI reduced maximum neutrophil numbers (14.6±1.2×106 to 11.0±1.0×106 cells/exudate) and shortened the resolution interval (Ri; 50% neutrophil reduction) 54% compared to peritonitis. Using rigorous liquid-chromatography tandem-mass spectrometry (LC-MS-MS)-based lipid mediator (LM) metabololipidomics, we demonstrated that human milk possesses a proresolving LM-SPM signature profile, containing specialized proresolving mediators (SPM; e.g. resolvins, protectins, maresins and lipoxins) at bioactive levels (pico-nanomolar concentrations) that enhanced human macrophage efferocytosis and bacterial containment. SPM identified in human milk included D-series resolvins, (e.g. Resolvin (Rv) D1, RvD2, RvD3, AT-RvD3 and RvD4), Protectin (PD)1, Maresin (MaR)1, E-series resolvins (e.g. RvE1, RvE2 and RvE3) and lipoxins (LXA4 and LXB4). Of the SPM identified in human milk, RvD2 and MaR1 (50 ng/mouse) individually shortened Ri ~75%. Milk from mastitis gave higher LTB4 and prostanoids and lower SPM levels. Taken together, these findings provide evidence that human milk has pro-resolving actions via comprehensive LM-SPM profiling, describing a potentially novel mechanism in maternal-infant biochemical imprinting. PMID:26462421

  17. North American ginseng protects against muscle damage and reduces neutrophil infiltration after an acute bout of downhill running in rats.

    PubMed

    Estaki, Mehrbod; Noble, Earl G

    2015-02-01

    Eccentric muscle contractions such as those experienced during downhill running are associated with inflammation, delayed-onset of muscle soreness, myofiber damage, and various functional deficits. North American ginseng (Panax quinquefolius L.) has been reported to possess anti-inflammatory properties and thus may offset some of this exercise-induced damage. Hence, we tested the hypothesis that intervention with North American ginseng would reduce eccentric exercise-induced muscle damage and inflammation. Male Wistar rats were fed (300 mg/(kg·day)(-1)) of either an alcohol (AL) or aqueous (AQ) extract of North American ginseng for 14 days before a single bout of downhill running and were compared with matching nonexercised (C) groups. Plasma creatine kinase levels were significantly reduced in both ginseng treated groups compared with the C group that received a water placebo (p < 0.002). Further, the AQ but not AL group also showed attenuated morphological signs of damage (hemotoxylin and eosin) as well as reduced levels of infiltrating neutrophils (HIS48) in the soleus muscle (p < 0.001). In summary, supplementation with an AQ but not AL extract of North American ginseng was able to reduce eccentric exercise-induced muscle damage and inflammation. PMID:25531801

  18. Neutrophil to lymphocyte ratio might help prediction of acute myocardial infarction in patients with elevated serum creatinine

    PubMed Central

    Nalbant, Ahmet; Cinemre, Hakan; Kaya, Tezcan; Varim, Ceyhun; Varim, Perihan; Tamer, Ali

    2016-01-01

    Background and Objective: Diagnostic performance of troponin assays is affected by renal insufficiency. Neutrophil to lymphocyte ratio(NLR) is an independent predictor of acute coronary syndrome. Our objective was to evaluate performance of NLR in diagnosing acute myocardial infarction (AMI) among patients with elevated serum creatinine. Methods: Patients with elevated creatinine levels evaluated for coronary artery disease were included (n=284). Patients were divided into two groups according to having AMI or non-specific chest pain. AMI diagnosis was made based on clinical and laboratory data, including serial EKG and cardiac enzymes, ECHO and coronary angiography. Results: Troponin, neutrophil, and NLR were found to be higher in patients with AMI, compared to patients without AMI (P= 0.001, P= 0.001 and P=0.028, respectively). ROC curve analysis for NLR in diagnosing AMI was significant (AUC: 0.607; P=0.003). Sensitivity, specificity, LR +, LR-, PPV and NPV for NLR>7.4 were found as 42.3%, 74.7%, 1.68%, 0.77%, 77% and 40%, respectively. Logistic regression analysis revealed that patients whose NLR>7.4 were 2.18 times as likely to have AMI. Conclusions: NLR can be used as an independent predictor of AMI in patients with renal insufficiency. This seems to get more important in the era of high sensitivity troponin assays. Our results might also help in early diagnosis of AMI in this high risk population while serial cardiac enzyme results are pending. PMID:27022355

  19. Regulatory T Cells Contribute to the Inhibition of Radiation-Induced Acute Lung Inflammation via Bee Venom Phospholipase A2 in Mice

    PubMed Central

    Shin, Dasom; Lee, Gihyun; Sohn, Sung-Hwa; Park, Soojin; Jung, Kyung-Hwa; Lee, Ji Min; Yang, Jieun; Cho, Jaeho; Bae, Hyunsu

    2016-01-01

    Bee venom has long been used to treat various inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. Previously, we reported that bee venom phospholipase A2 (bvPLA2) has an anti-inflammatory effect through the induction of regulatory T cells. Radiotherapy is a common anti-cancer method, but often causes adverse effects, such as inflammation. This study was conducted to evaluate the protective effects of bvPLA2 in radiation-induced acute lung inflammation. Mice were focally irradiated with 75 Gy of X-rays in the lung and administered bvPLA2 six times after radiation. To evaluate the level of inflammation, the number of immune cells, mRNA level of inflammatory cytokine, and histological changes in the lung were measured. BvPLA2 treatment reduced the accumulation of immune cells, such as macrophages, neutrophils, lymphocytes, and eosinophils. In addition, bvPLA2 treatment decreased inflammasome-, chemokine-, cytokine- and fibrosis-related genes’ mRNA expression. The histological results also demonstrated the attenuating effect of bvPLA2 on radiation-induced lung inflammation. Furthermore, regulatory T cell depletion abolished the therapeutic effects of bvPLA2 in radiation-induced pneumonitis, implicating the anti-inflammatory effects of bvPLA2 are dependent upon regulatory T cells. These results support the therapeutic potential of bvPLA2 in radiation pneumonitis and fibrosis treatments. PMID:27144583

  20. Regulatory T Cells Contribute to the Inhibition of Radiation-Induced Acute Lung Inflammation via Bee Venom Phospholipase A₂ in Mice.

    PubMed

    Shin, Dasom; Lee, Gihyun; Sohn, Sung-Hwa; Park, Soojin; Jung, Kyung-Hwa; Lee, Ji Min; Yang, Jieun; Cho, Jaeho; Bae, Hyunsu

    2016-01-01

    Bee venom has long been used to treat various inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. Previously, we reported that bee venom phospholipase A₂ (bvPLA₂) has an anti-inflammatory effect through the induction of regulatory T cells. Radiotherapy is a common anti-cancer method, but often causes adverse effects, such as inflammation. This study was conducted to evaluate the protective effects of bvPLA₂ in radiation-induced acute lung inflammation. Mice were focally irradiated with 75 Gy of X-rays in the lung and administered bvPLA₂ six times after radiation. To evaluate the level of inflammation, the number of immune cells, mRNA level of inflammatory cytokine, and histological changes in the lung were measured. BvPLA₂ treatment reduced the accumulation of immune cells, such as macrophages, neutrophils, lymphocytes, and eosinophils. In addition, bvPLA₂ treatment decreased inflammasome-, chemokine-, cytokine- and fibrosis-related genes' mRNA expression. The histological results also demonstrated the attenuating effect of bvPLA₂ on radiation-induced lung inflammation. Furthermore, regulatory T cell depletion abolished the therapeutic effects of bvPLA₂ in radiation-induced pneumonitis, implicating the anti-inflammatory effects of bvPLA₂ are dependent upon regulatory T cells. These results support the therapeutic potential of bvPLA₂ in radiation pneumonitis and fibrosis treatments. PMID:27144583

  1. Development of an orofacial model of acute inflammation in the rat.

    PubMed

    Haas, D A; Nakanishi, O; MacMillan, R E; Jordan, R C; Hu, J W

    1992-01-01

    An appropriate model was created by the paraperiosteal injection of mustard oil (20% allyl isothiocyanate dissolved in mineral oil) into the periarticular temporomandibular tissue of anaesthetized rats. Inflammation was assessed by the plasma extravasation of Evans' blue dye bound to plasma protein. This was confirmed visually and compared spectrophotometrically with the contralateral untreated control site (p less than 0.0005). A time-course study of the effect of mustard oil on Evans' blue extravasation revealed a gradually increasing effect that was maximal at 30 min after administration, with no further increase at 60 min. A dose-response study showed that giving 30 microliters of 20% mustard oil produced the maximal effect, with no further increase from 50 microliters. To confirm induction of inflammation, polymorphonuclear neutrophil infiltration was assessed morphometrically and found to increase in the treated tissue compared with the contralateral untreated control (p less than 0.001). PMID:1610310

  2. Infiltration of Neutrophils and Eosinophils during Allergic Inflammation is Regulated by the Inhibitory Receptor gp-49B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    gp49B, an Ig-like receptor, negatively regulates the activity of mast cells and neutrophils through cytoplasmic immuno-receptor tyrosine-based inhibition motifs (ITIM). To further characterize the role of gp49B in vivo, gp49B-deficient mice were tested in two allergic models. Responses to ragweed (R...

  3. Endothelial reticulon-4B (Nogo-B) regulates ICAM-1-mediated leukocyte transmigration and acute inflammation.

    PubMed

    Di Lorenzo, Annarita; Manes, Thomas D; Davalos, Alberto; Wright, Paulette L; Sessa, William C

    2011-02-17

    The reticulon (Rtn) family of proteins are localized primarily to the endoplasmic reticulum (ER) of most cells. The Rtn-4 family, (aka Nogo) consists of 3 splice variants of a common gene called Rtn-4A, Rtn-4B, and Rtn-4C. Recently, we identified the Rtn-4B (Nogo-B) protein in endothelial and smooth muscle cells of the vessel wall, and showed that Nogo-B is a regulator of cell migration in vitro and vascular remodeling and angiogenesis in vivo. However, the role of Nogo-B in inflammation is still largely unknown. In the present study, we use 2 models of inflammation to show that endothelial Nogo-B regulates leukocyte transmigration and intercellular adhesion molecule-1 (ICAM-1)-dependent signaling. Mice lacking Nogo-A/B have a marked reduction in neutrophil and monocyte recruitment to sites of inflammation, while Nogo-A/B(-/-) mice engrafted with wild-type (WT) bone marrow still exhibit impaired inflammation compared with WT mice engrafted with Nogo-A/B(-/-) bone marrow, arguing for a critical role of host Nogo in this response. Using human leukocytes and endothelial cells, we show mechanistically that the silencing of Nogo-B with small interfering RNA (siRNA) impairs the transmigration of neutrophils and reduces ICAM-1-stimulated phosphorylation of vascular endothelial-cell cadherin (VE-cadherin). Our results reveal a novel role of endothelial Nogo-B in basic immune functions and provide a key link in the molecular network governing endothelial-cell regulation of diapedesis. PMID:21183689

  4. Regulatory effect of cytokine-induced neutrophil chemoattractant, epithelial neutrophil-activating peptide 78 and pyrrolidine dithiocarbamate on pulmonary neutrophil aggregation mediated by nuclear factor-κB in lipopolysaccharide-induced acute respiratory distress syndrome mice

    PubMed Central

    Wang, Hongman; Zhao, Jiping; Xue, Guansheng; Wang, Junfei; Wu, Jinxiang; Wang, Donghui; Dong, Liang

    2016-01-01

    In the present study, the regulatory effect of cytokine-induced neutrophil chemoattractant (CINC) and epithelial neutrophil-activating peptide 78 (ENA-78) on pulmonary neutrophil (PMN) accumulation in lipopolysaccharide (LPS)-induced acute respiratory distress syndrome (ARDS) mice, and the therapeutic effect of pyrrolidine dithiocarbamate (PDTC), was investigated. BALB/c mice were divided into control, LPS and PDTC + LPS groups using a random number table. The phosphorylation of nuclear factor-κB (NF-κB) was detected using a western blot, and the mRNA expression levels of CINC were evaluated using reverse transcription-quantitative polymerase chain reaction. The expression of NF-κB, CINC and ENA-78 was detected using immunohistochemistry. The production of interleukin (IL)-8 and IL-10 in serum and broncho-alveolar lavage fluid (BALF) was analyzed using an enzyme-linked immunosorbent assay. The total number of leukocytes and proportion of PMNs in BALF was also determined. Following injection with LPS (20 mg/kg), the expression levels of p-NF-κB, CINC and ENA-78 were increased in lung tissue, and the expression levels of IL-8, IL-10 and the number of PMNs increased in serum and BALF. However, in comparison with the LPS group, the degree of lung injury was reduced in ARDS mice that were treated with PDTC. In addition, the expression level of p-NF-κB and the production of chemokines in lung tissue decreased in ARDS mice that were treated with PDTC, and the number of PMNs in BALF also decreased. In conclusion, the results of the present study suggest that the LPS-induced phosphorylation of NF-κB may result in the synthesis and release of CINC and ENA-78, which induce the accumulation of PMNs in the lung. Therefore, PDTC may be used to reduce the production of chemokines and cytokines, thereby decreasing the activation of PMNs in lung tissue and reducing the damage of lung tissue in ARDS. PMID:27602092

  5. A case report of acute febril neutrophilic dermatosis (Sweet's syndrome) and Crohn's disease.

    PubMed

    Beitner, H; Nakatani, T; Hammar, H

    1991-01-01

    A case of Crohn's disease complicated by Sweet's syndrome is presented. The main ultrastructural findings were the multiplication of basal lamina surrounding the venulea, interendothelial gaps and in perivascular locations mixed infiltrates of neutrophiles and erythrocytes. The changes indicate that the initial site of the reaction was the walls of the dermal vessels. PMID:1681661

  6. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury

    PubMed Central

    Balakrishna, Shrilatha; Song, Weifeng; Achanta, Satyanarayana; Doran, Stephen F.; Liu, Boyi; Kaelberer, Melanie M.; Yu, Zhihong; Sui, Aiwei; Cheung, Mui; Leishman, Emma; Eidam, Hilary S.; Ye, Guosen; Willette, Robert N.; Thorneloe, Kevin S.; Bradshaw, Heather B.; Matalon, Sadis

    2014-01-01

    The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. PMID:24838754

  7. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury.

    PubMed

    Balakrishna, Shrilatha; Song, Weifeng; Achanta, Satyanarayana; Doran, Stephen F; Liu, Boyi; Kaelberer, Melanie M; Yu, Zhihong; Sui, Aiwei; Cheung, Mui; Leishman, Emma; Eidam, Hilary S; Ye, Guosen; Willette, Robert N; Thorneloe, Kevin S; Bradshaw, Heather B; Matalon, Sadis; Jordt, Sven-Eric

    2014-07-15

    The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. PMID:24838754

  8. Inhalation of glycopyrronium inhibits cigarette smoke-induced acute lung inflammation in a murine model of COPD.

    PubMed

    Shen, Liang-liang; Liu, Ya-nan; Shen, Hui-juan; Wen, Chong; Jia, Yong-liang; Dong, Xin-wei; Jin, Fang; Chen, Xiao-ping; Sun, Yun; Xie, Qiang-min

    2014-02-01

    Glycopyrronium bromide (GB) is a muscarinic receptor antagonist that has been used as a long-acting bronchodilator in chronic obstructive pulmonary disease (COPD) patients. The aim of this study was to investigate the anti-inflammatory activity of inhaled GB in a cigarette smoke-induced acute lung inflammation mouse model. We found that aerosol pre-treatment with GB suppresses the accumulation of neutrophils and macrophages in the bronchoalveolar lavage fluid (BALF) in cigarette smoke (CS)-exposed mice. GB at doses of 300 and 600 μg/ml significantly inhibited the CS-induced increases in the mRNA and protein expression levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1 and transforming growth factor (TGF)-β1 in lung tissues and the BALF. Moreover, GB at a dose of 600 μg/ml significantly inhibited the CS-induced changes in glutathione (GSH) and myeloperoxidase (MPO) activities in the BALF, decreased the CS-induced expression of matrix metalloproteinases (MMP)-9, and increased the CS-induced expression of tissue inhibitor of metalloproteinases (TIMP)-1, as determined through the immunohistochemical staining of lung tissue. Our results demonstrate the beneficial effects of inhaled GB on the inflammatory reaction in COPD. PMID:24389380

  9. Acute inflammation stimulates a regenerative response in the neonatal mouse heart

    PubMed Central

    Han, Chunyong; Nie, Yu; Lian, Hong; Liu, Rui; He, Feng; Huang, Huihui; Hu, Shengshou

    2015-01-01

    Cardiac injury in neonatal 1-day-old mice stimulates a regenerative response characterized by reactive cardiomyocyte proliferation, which is distinguished from the fibrotic repair process in adults. Acute inflammation occurs immediately after heart injury and has generally been believed to exert a negative effect on heart regeneration by promoting scar formation in adults; however, little is known about the role of acute inflammation in the cardiac regenerative response in neonatal mice. Here, we show that acute inflammation induced cardiomyocyte proliferation after apical intramyocardial microinjection of immunogenic zymosan A particles into the neonatal mouse heart. We also found that cardiac injury-induced regenerative response was suspended after immunosuppression in neonatal mice, and that cardiomyocytes could not be reactivated to proliferate after neonatal heart injury in the absence of interleukin-6 (IL-6). Furthermore, cardiomyocyte-specific deletion of signal transducer and activator of transcription 3 (STAT3), the major downstream effector of IL-6 signaling, decreased reactive cardiomyocyte proliferation after apical resection. Our results indicate that acute inflammation stimulates the regenerative response in neonatal mouse heart, and suggest that modulation of inflammatory signals might have important implications in cardiac regenerative medicine. PMID:26358185

  10. Promoting inflammatory lymphangiogenesis by vascular endothelial growth factor-C (VEGF-C) aggravated intestinal inflammation in mice with experimental acute colitis

    PubMed Central

    Wang, X.L.; Zhao, J.; Qin, L.; Qiao, M.

    2016-01-01

    Angiogenesis and lymphangiogenesis are thought to play a role in the pathogenesis of inflammatory bowel diseases (IBD). However, it is not understood if inflammatory lymphangiogenesis is a pathological consequence or a productive attempt to resolve the inflammation. This study investigated the effect of lymphangiogenesis on intestinal inflammation by overexpressing a lymphangiogenesis factor, vascular endothelial growth factor-C (VEGF-C), in a mouse model of acute colitis. Forty eight-week-old female C57BL/6 mice were treated with recombinant adenovirus overexpressing VEGF-C or with recombinant VEGF-C156S protein. Acute colitis was then established by exposing the mice to 5% dextran sodium sulfate (DSS) for 7 days. Mice were evaluated for disease activity index (DAI), colonic inflammatory changes, colon edema, microvessel density, lymphatic vessel density (LVD), and VEGFR-3mRNA expression in colon tissue. When acute colitis was induced in mice overexpressing VEGF-C, there was a significant increase in colonic epithelial damage, inflammatory edema, microvessel density, and neutrophil infiltration compared to control mice. These mice also exhibited increased lymphatic vessel density (73.0±3.9 vs 38.2±1.9, P<0.001) and lymphatic vessel size (1974.6±104.3 vs 1639.0±91.5, P<0.001) compared to control mice. Additionally, the expression of VEGFR-3 mRNA was significantly upregulated in VEGF-C156S mice compared to DSS-treated mice after induction of colitis (42.0±1.4 vs 3.5±0.4, P<0.001). Stimulation of lymphangiogenesis by VEGF-C during acute colitis promoted inflammatory lymphangiogenesis in the colon and aggravated intestinal inflammation. Inflammatory lymphangiogenesis may have pleiotropic effects at different stages of IBD. PMID:27074165

  11. Participation of Mammalian Target of Rapamycin Complex 1 in Toll-Like Receptor 2– and 4–Induced Neutrophil Activation and Acute Lung Injury

    PubMed Central

    Lorne, Emmanuel; Zhao, Xia; Zmijewski, Jaroslaw W.; Liu, Gang; Park, Young-Jun; Tsuruta, Yuko; Abraham, Edward

    2009-01-01

    mTOR complex 1 (mTORC1) plays a central role in cell growth and cellular responses to metabolic stress. Although mTORC1 has been shown to be activated after Toll-like receptor (TLR)-4 engagement, there is little information concerning the role that mTORC1 may play in modulating neutrophil function and neutrophil-dependent inflammatory events, such as acute lung injury. To examine these issues, we determined the effects of rapamycin-induced inhibition of mTORC1 on TLR2- and TLR4-induced neutrophil activation. mTORC1 was dose- and time-dependently activated in murine bone marrow neutrophils cultured with the TLR4 ligand, LPS, or the TLR2 ligand, Pam3 Cys-Ser-(Lys)4 (PAM). Incubation of PAM- or LPS-stimulated neutrophils with rapamycin inhibited expression of TNF-α and IL-6, but not IκB-α degradation or nuclear translocation of NF-κB. Exposure of PAM or LPS-stimulated neutrophils to rapamycin inhibited phosphorylation of serine 276 in the NF-κB p65 subunit, a phosphorylation event required for optimal transcriptional activity of NF-κB. Rapamycin pretreatment inhibited PAM- or LPS-induced mTORC1 activation in the lungs. Administration of rapamycin also decreased the severity of lung injury after intratracheal LPS or PAM administration, as determined by diminished neutrophil accumulation in the lungs, reduced interstitial pulmonary edema, and diminished levels of TNF-α and IL-6 in bronchoalveolar lavage fluid. These results indicate that mTORC1 activation is essential in TLR2- and TLR4-induced neutrophil activation, as well as in the development and severity of acute lung injury. PMID:19131641

  12. Effect of Obesity on Acute Ozone-Induced Changes in Airway Function, Reactivity, and Inflammation in Adult Females

    PubMed Central

    Bennett, William D.; Ivins, Sally; Alexis, Neil E.; Wu, Jihong; Bromberg, Philip A.; Brar, Sukhdev S.; Travlos, Gregory; London, Stephanie J.

    2016-01-01

    We previously observed greater ozone-induced lung function decrements in obese than non-obese women. Animal models suggest that obesity enhances ozone-induced airway reactivity and inflammation. In a controlled exposure study, we compared the acute effect of randomized 0.4ppm ozone and air exposures (2 h with intermittent light exercise) in obese (N = 20) (30Inflammation and obesity markers were assessed in the blood (pre, 4h post, and 20h post exposures) and induced-sputum (4h post-exposures and on 24h pre-exposure training day, no exercise): measures of C reactive protein (CRP) (blood only), leptin (blood only), adiponectin, interleukins IL-6, IL-1b, and IL-8, and tumor necrosis factor alpha, and sputum cell differential cell counts. The pre- to post-exposure decrease in forced vital capacity after ozone (adjusted for the change after air exposure) was significantly greater in the obese group (12.5+/-7.5 vs. 8.0+/-5.8%, p<0.05). Post ozone exposure, 6 obese and 6 non-obese subjects responded to methacholine at ≤ 10mg/ml (the maximum dose); the degree of hyperresponsiveness was similar for the two groups. Both BMI groups showed similar and significant ozone-induced increases in sputum neutrophils. Plasma IL-6 was increased by exercise (4 hr post air exposure vs. pre) only in the obese but returned to pre-air exposure levels at 20hr post-exposure. Plasma IL-6 was significantly increased at 4hr post ozone exposure in both groups and returned to pre-exposure levels by 20h post-exposure. These results confirm our previous findings of greater post-ozone spirometric decrements in obese young women. However, acute ozone-induced airway reactivity to methacholine and airway inflammation did not differ by obesity at the exposure and exercise levels used. PMID:27513854

  13. Effect of Obesity on Acute Ozone-Induced Changes in Airway Function, Reactivity, and Inflammation in Adult Females.

    PubMed

    Bennett, William D; Ivins, Sally; Alexis, Neil E; Wu, Jihong; Bromberg, Philip A; Brar, Sukhdev S; Travlos, Gregory; London, Stephanie J

    2016-01-01

    We previously observed greater ozone-induced lung function decrements in obese than non-obese women. Animal models suggest that obesity enhances ozone-induced airway reactivity and inflammation. In a controlled exposure study, we compared the acute effect of randomized 0.4ppm ozone and air exposures (2 h with intermittent light exercise) in obese (N = 20) (30Inflammation and obesity markers were assessed in the blood (pre, 4h post, and 20h post exposures) and induced-sputum (4h post-exposures and on 24h pre-exposure training day, no exercise): measures of C reactive protein (CRP) (blood only), leptin (blood only), adiponectin, interleukins IL-6, IL-1b, and IL-8, and tumor necrosis factor alpha, and sputum cell differential cell counts. The pre- to post-exposure decrease in forced vital capacity after ozone (adjusted for the change after air exposure) was significantly greater in the obese group (12.5+/-7.5 vs. 8.0+/-5.8%, p<0.05). Post ozone exposure, 6 obese and 6 non-obese subjects responded to methacholine at ≤ 10mg/ml (the maximum dose); the degree of hyperresponsiveness was similar for the two groups. Both BMI groups showed similar and significant ozone-induced increases in sputum neutrophils. Plasma IL-6 was increased by exercise (4 hr post air exposure vs. pre) only in the obese but returned to pre-air exposure levels at 20hr post-exposure. Plasma IL-6 was significantly increased at 4hr post ozone exposure in both groups and returned to pre-exposure levels by 20h post-exposure. These results confirm our previous findings of greater post-ozone spirometric decrements in obese young women. However, acute ozone-induced airway reactivity to methacholine and airway inflammation did not differ by obesity at the exposure and exercise levels used. PMID:27513854

  14. Receptor Interacting Protein 3-Mediated Necroptosis Promotes Lipopolysaccharide-Induced Inflammation and Acute Respiratory Distress Syndrome in Mice

    PubMed Central

    Li, Haobo; Liu, Qing; Zhang, Zhongjun; Xie, Wanli; Feng, Yinglu; Socorburam, Tumenjavkhlan; Wu, Gui; Xia, Zhengyuan; Wu, Qingping

    2016-01-01

    Necrosis amplifies inflammation and plays important roles in acute respiratory distress syndrome (ARDS). Necroptosis is a newly identified programmed necrosis that is mediated by receptor interacting protein 3 (RIP3). However, the potential involvement and impact of necroptosis in lipopolysaccharide (LPS)-induced ARDS remains unknown. We therefore explored the role and mechanism of RIP3-mediated necroptosis in LPS-induced ARDS. Mice were instilled with increasing doses of LPS intratracheally to induce different degrees of ARDS. Lung tissues were harvested for histological and TUNEL staining and western blot for RIP3, p-RIP3, X-linked inhibitor of apoptosis protein (XIAP), mixed lineage kinase domain-like protein (MLKL), total and cleaved caspases-3/8. Then, wild-type and RIP3 knock-out mice were induced ARDS with 30 mg/kg LPS. Pulmonary cellular necrosis was labeled by the propidium Iodide (PI) staining. Levels of TNF-a, Interleukin (IL)-1β, IL-6, IL-1α, IL-10 and HMGB1, tissue myeloperoxidase (MPO) activity, neutrophil counts and total protein concentration were measured. Results showed that in high dose LPS (30mg/kg and 40mg/kg) -induced severe ARDS, RIP3 protein was increased significantly, accompanied by increases of p-RIP3 and MLKL, while in low dose LPS (10mg/kg and 20mg/kg) -induced mild ARDS, apoptosis was remarkably increased. In LPS-induced severe ARDS, RIP3 knock-out alleviated the hypothermia symptom, increased survival rate and ameliorated the lung tissue injury RIP3 depletion also attenuated LPS-induced increase in IL-1α/β, IL-6 and HMGB1 release, decreased tissue MPO activity, and reduced neutrophil influx and total protein concentration in BALF in severe ARDS. Further, RIP3 depletion reduced the necrotic cells in the lung and decreased the expression of MLKL, but had no impact on cleaved caspase-3 in LPS-induced ARDS. It is concluded that RIP3-mediated necroptosis is a major mechanism of enhanced inflammation and lung tissue injury in high dose

  15. Myeloid Differentiation Factor 88–Dependent Signaling Is Critical for Acute Organic Dust–Induced Airway Inflammation in Mice

    PubMed Central

    Bauer, Christopher; Kielian, Tammy; Wyatt, Todd A.; Romberger, Debra J.; West, William W.; Gleason, Angela M.

    2013-01-01

    Organic dust exposure within agricultural environments results in airway diseases. Toll-like receptor 2 (TLR2) and TLR4 only partly account for the innate response to these complex dust exposures. To determine the central pathway in mediating complex organic dust–induced airway inflammation, this study targeted the common adaptor protein, myeloid differentiation factor 88 (MyD88), and investigated the relative contributions of receptors upstream from this adaptor. Wild-type, MyD88, TLR9, TLR4, IL-1 receptor I (RI), and IL-18R knockout (KO) mice were challenged intranasally with organic dust extract (ODE) or saline, according to an established protocol. Airway hyperresponsiveness (AHR) was assessed by invasive pulmonary measurements. Bronchoalveolar lavage fluid was collected to quantitate leukocyte influx and cytokine/chemokine (TNF-α, IL-6, chemokine [C-X-C motif] ligands [CXCL1 and CXCL2]) concentrations. Lung tissue was collected for histopathology. Lung cell apoptosis was determined by a terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, and lymphocyte influx and intercellular adhesion molecule–1 (ICAM-1) expression were assessed by immunohistochemistry. ODE-induced AHR was significantly attenuated in MyD88 KO mice, and neutrophil influx and cytokine/chemokine production were nearly absent in MyD88 KO animals after ODE challenges. Despite a near-absent airspace inflammatory response, lung parenchymal inflammation was increased in MyD88 KO mice after repeated ODE exposures. ODE-induced epithelial-cell ICAM-1 expression was diminished in MyD88 KO mice. No difference was evident in the small degree of ODE-induced lung-cell apoptosis. Mice deficient in TLR9, TLR4, and IL-18R, but not IL-1IR, demonstrated partial protection against ODE-induced neutrophil influx and cytokine/chemokine production. Collectively, the acute organic dust–induced airway inflammatory response is highly dependent on MyD88 signaling, and is dictated, in part, by

  16. Acute exposure to silica nanoparticles aggravate airway inflammation: different effects according to surface characteristics

    PubMed Central

    Park, Hye Jung; Sohn, Jung-Ho; Kim, Yoon-Ju; Park, Yoon Hee; Han, Heejae; Park, Kyung Hee; Lee, Kangtaek; Choi, Hoon; Um, Kiju; Choi, In-Hong; Park, Jung-Won; Lee, Jae-Hyun

    2015-01-01

    Silica nanoparticles (SNPs) are widely used in many scientific and industrial fields despite the lack of proper evaluation of their potential toxicity. This study examined the effects of acute exposure to SNPs, either alone or in conjunction with ovalbumin (OVA), by studying the respiratory systems in exposed mouse models. Three types of SNPs were used: spherical SNPs (S-SNPs), mesoporous SNPs (M-SNPs), and PEGylated SNPs (P-SNPs). In the acute SNP exposure model performed, 6-week-old BALB/c female mice were intranasally inoculated with SNPs for 3 consecutive days. In the OVA/SNPs asthma model, the mice were sensitized two times via the peritoneal route with OVA. Additionally, the mice endured OVA with or without SNP challenges intranasally. Acute SNP exposure induced significant airway inflammation and airway hyper-responsiveness, particularly in the S-SNP group. In OVA/SNPs asthma models, OVA with SNP-treated group showed significant airway inflammation, more than those treated with only OVA and without SNPs. In these models, the P-SNP group induced lower levels of inflammation on airways than both the S-SNP or M-SNP groups. Interleukin (IL)-5, IL-13, IL-1β and interferon-γ levels correlated with airway inflammation in the tested models, without statistical significance. In the mouse models studied, increased airway inflammation was associated with acute SNPs exposure, whether exposed solely to SNPs or SNPs in conjunction with OVA. P-SNPs appear to be relatively safer for clinical use than S-SNPs and M-SNPs, as determined by lower observed toxicity and airway system inflammation. PMID:26183169

  17. Microvascular inflammation and acute tubular necrosis are major histologic features of hantavirus nephropathy.

    PubMed

    Gnemmi, Viviane; Verine, Jérôme; Vrigneaud, Laurence; Glowacki, François; Ratsimbazafy, Anderson; Copin, Marie-Christine; Dewilde, Anny; Buob, David

    2015-06-01

    Hantavirus nephropathy (HVN) is an uncommon etiology of acute renal failure due to hantavirus infection. Pathological features suggestive of HVN historically reported are medullary interstitial hemorrhages in a background of acute interstitial nephritis (AIN). However, interstitial hemorrhages may be lacking because of medullary sampling error. This emphasizes that other pathological criteria may be of interest. We performed a retrospective clinicopathological study of 17 serologically proven HVN cases with renal biopsy from 2 nephrology centers in northern France. Histologic analysis was completed by immunohistochemistry with anti-CD3, anti-CD68, and anti-CD34 antibodies. Three control groups were not related to hantavirus infection: acute tubular necrosis (ATN) of ischemic or toxic etiology and AIN were used for comparison. Renal biopsy analysis showed that almost all HVN cases with medullary sampling (9/10) displayed interstitial hemorrhages, whereas focal hemorrhages were detected in 2 of the 7 "cortex-only" specimens. ATN was common, as it was present in 15 (88.2%) of 17 HVN cases. By contrast, interstitial inflammation was scarce with no inflammation or only slight inflammation, representing 15 (88.2%) of 17 cases. Moreover, HVN showed inflammation of renal microvessels with cortical peritubular capillaritis and medullary vasa recta inflammation; peritubular capillaritis was significantly higher in HVN after comparison with ischemic and toxic ATN controls (P = .0001 and P = .003, respectively), but not with AIN controls. Immunohistochemical studies highlighted the involvement of T cells and macrophages in renal microvascular inflammation related to HVN. Our study showed that microvascular inflammation, especially cortical peritubular capillaritis, and ATN are important histologic features of HVN. PMID:25791582

  18. Transepithelial migration of neutrophils into the lung requires TREM-1

    PubMed Central

    Klesney-Tait, Julia; Keck, Kathy; Li, Xiaopeng; Gilfillan, Susan; Otero, Karel; Baruah, Sankar; Meyerholz, David K.; Varga, Steven M.; Knudson, Cory J.; Moninger, Thomas O.; Moreland, Jessica; Zabner, Joseph; Colonna, Marco

    2012-01-01

    Acute respiratory infections are responsible for more than 4 million deaths each year. Neutrophils play an essential role in the innate immune response to lung infection. These cells have an armamentarium of pattern recognition molecules and antimicrobial agents that identify and eliminate pathogens. In the setting of infection, neutrophil triggering receptor expressed on myeloid cells 1 (TREM-1) amplifies inflammatory signaling. Here we demonstrate for the first time that TREM-1 also plays an important role in transepithelial migration of neutrophils into the airspace. We developed a TREM-1/3–deficient mouse model of pneumonia and found that absence of TREM-1/3 markedly increased mortality following Pseudomonas aeruginosa challenge. Unexpectedly, TREM-1/3 deficiency resulted in increased local and systemic cytokine production. TREM-1/3–deficient neutrophils demonstrated intact bacterial killing, phagocytosis, and chemotaxis; however, histologic examination of TREM-1/3–deficient lungs revealed decreased neutrophil infiltration of the airways. TREM-1/3–deficient neutrophils effectively migrated across primary endothelial cell monolayers but failed to migrate across primary airway epithelia grown at the air-liquid interface. These data define a new function for TREM-1 in neutrophil migration across airway epithelial cells and suggest that it amplifies inflammation through targeted neutrophil migration into the lung. PMID:23241959

  19. Neutrophil swarming: an essential process of the neutrophil tissue response.

    PubMed

    Kienle, Korbinian; Lämmermann, Tim

    2016-09-01

    Neutrophil infiltration into inflamed and infected tissues is a fundamental process of the innate immune response. While neutrophil interactions with the blood vessel wall have been intensely studied over the last decades, neutrophil dynamics beyond the vasculature have for a long time remained poorly investigated. Recent intravital microscopy studies of neutrophil populations directly at the site of tissue damage or microbial invasion have changed our perspective on neutrophil responses within tissues. Swarm-like migration patterns of neutrophils, referred to as 'neutrophil swarming', have been detected in diverse tissues under conditions of sterile inflammation and infection with various pathogens, including bacteria, fungi, and parasites. Current work has begun to unravel the molecular pathways choreographing the sequential phases of highly coordinated chemotaxis followed by neutrophil accumulation and the formation of substantial neutrophil clusters. It is now clear that intercellular communication among neutrophils amplifies their recruitment in a feed-forward manner, which provides them with a level of self-organization during neutrophil swarming. This review will summarize recent developments and current concepts on neutrophil swarming, an important process of the neutrophil tissue response with a critical role in maintaining the balance between host protection and inflammation-driven tissue destruction. PMID:27558329

  20. Effect of ICAM-1 blockade on lung inflammation and physiology during acute viral bronchiolitis in rats.

    PubMed

    Sorkness, R L; Mehta, H; Kaplan, M R; Miyasaka, M; Hefle, S L; Lemanske, R F

    2000-06-01

    Viral respiratory infections cause acute bronchiolitis and physiologic dysfunction in human infants and in animals. It is possible that the pulmonary dysfunction is a consequence of the inflammatory cells that are recruited during viral illness. We hypothesized that blockade of intercellular adhesion molecule-1 (ICAM-1), a major cell adhesion molecule, would impede the ingress of leukocytes during viral infection and attenuate virus-induced pulmonary dysfunction. Adult male rats were inoculated with parainfluenza type 1 (Sendai) virus or sterile vehicle, and treated with blocking or nonblocking MAb specific for rat ICAM-1. Respiratory system resistance, oxygenation (PaO2), methacholine responsiveness, and bronchoalveolar lavage (BAL) leukocyte counts were measured in anesthetized, paralyzed, ventilated rats. Treatment with the blocking ICAM-1 antibody reduced virus-induced increases in BAL neutrophils and lymphocytes by 70% (p < 0.001), but did not affect BAL monocytes/macrophages. Peripheral blood leukocyte counts were elevated in anti-ICAM-1 blocking antibody-treated rats (p = 0.0003). Although virus-induced increases in resistance and decreases in PaO2 were not affected by anti-ICAM-1 treatment, there was a small but significant attenuation of virus-induced methacholine hyperresponsiveness (p = 0.02). We conclude that ICAM-1 has an important role in neutrophil and lymphocyte infiltration during respiratory viral illness, and that virus-induced changes in pulmonary physiology are not related directly to the numbers of neutrophils and lymphocytes that migrate to the air spaces during infection. PMID:10832744

  1. Effects of DHA-rich fish oil supplementation on the lipid profile, markers of muscle damage, and neutrophil function in wheelchair basketball athletes before and after acute exercise.

    PubMed

    Marques, Camila Garcia; Santos, Vinicius Coneglian; Levada-Pires, Adriana Cristina; Jacintho, Thiago Manzoni; Gorjão, Renata; Pithon-Curi, Tânia Cristina; Cury-Boaventura, Maria Fernanda

    2015-06-01

    We investigated the effects of docosahexaenoic acid (DHA)-rich fish oil (FO) supplementation on the lipid profile, levels of plasma inflammatory mediators, markers of muscle damage, and neutrophil function in wheelchair basketball players before and after acute exercise. We evaluated 8 male basketball wheelchair athletes before and after acute exercise both prior to (S0) and following (S1) FO supplementation. The subjects were supplemented with 3 g of FO daily for 30 days. The following components were measured: the plasma lipid profile (total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides), plasma inflammatory mediators (C-reactive protein, interleukin (IL)-1β, IL-1ra, IL-4, IL-6, IL-8, and tumor necrosis factor-α), markers of muscle damage (creatine kinase and lactate dehydrogenase (LDH)), and neutrophil function (cytokine production, phagocytic capacity, loss of membrane integrity, mitochondrial membrane potential, neutral lipid accumulation, phosphatidylserine externalization, DNA fragmentation, and production of reactive oxygen species (ROS)). Acute exercise increased the plasma levels of total cholesterol, LDH, IL1ra, and IL-6, led to the loss of membrane integrity, ROS production, and a high mitochondrial membrane potential in neutrophils, and reduced the phagocytic capacity and IL-6 production by the neutrophils (S0). However, supplementation prevented the increases in the plasma levels of LDH and IL-6, the loss of membrane integrity, and the alterations in ROS production and mitochondrial membrane potential in the neutrophils that were induced by exercise (S1). In conclusion, DHA-rich FO supplementation reduces the markers of muscle damage, inflammatory disturbances, and neutrophil death induced by acute exercise in wheelchair athletes. PMID:25942100

  2. The acute effects of green tea and carbohydrate coingestion on systemic inflammation and oxidative stress during sprint cycling.

    PubMed

    Suzuki, Katsuhiko; Takahashi, Masaki; Li, Chia-Yang; Lin, Shiuan-Pey; Tomari, Miki; Shing, Cecilia M; Fang, Shih-Hua

    2015-10-01

    Green tea (Camellia sinensis) has anti-oxidative and anti-inflammatory effects, which may be beneficial to athletes performing high-intensity exercise. This study investigated the effects of carbohydrate and green tea coingestion on sprint cycling performance and associated oxidative stress and immunoendocrine responses to exercise. In a crossover design, 9 well-trained male cyclists completed 3 sets of 8 repetitions of 100-m uphill sprint cycling while ingesting green tea and carbohydrate (TEA) (22 mg/kg body mass catechins, 6 mg/kg body mass caffeine, 230 mg/kg glucose, and 110 mg/kg fructose) or carbohydrate only (CHO) (230 mg/kg body mass glucose and 110 mg/kg body mass fructose) during each 10-min recovery period between sets. Blood samples were collected before exercise, 10 min after exercise, and 14 h after exercise. There was no effect of acute TEA ingestion on cycling sprint performance (p = 0.29), although TEA maintained postexercise testosterone and lymphocyte concentrations, which decreased significantly in the CHO group (p < 0.001). While there was a trend for lower postexercise neutrophil count with TEA (p = 0.05), there were no significant differences between TEA and CHO for circulating cytokines (p > 0.20), markers of oxidative stress and antioxidant capacity (p > 0.17), adiponectin concentration (p = 0.60), or muscle damage markers (p > 0.64). While acute green tea ingestion prevents the postexercise decrease in testosterone and lymphocytes, it does not appear to benefit cycling sprint performance or reduce markers of oxidation and inflammation when compared with carbohydrate alone. PMID:26319564

  3. Low-dose exposure of silica nanoparticles induces cardiac dysfunction via neutrophil-mediated inflammation and cardiac contraction in zebrafish embryos.

    PubMed

    Duan, Junchao; Yu, Yang; Li, Yang; Li, Yanbo; Liu, Hongcui; Jing, Li; Yang, Man; Wang, Ji; Li, Chunqi; Sun, Zhiwei

    2016-06-01

    The toxicity mechanism of nanoparticles on vertebrate cardiovascular system is still unclear, especially on the low-level exposure. This study was to explore the toxic effect and mechanisms of low-dose exposure of silica nanoparticles (SiNPs) on cardiac function in zebrafish embryos via the intravenous microinjection. The dosage of SiNPs was based on the no observed adverse effect level (NOAEL) of malformation assessment in zebrafish embryos. The mainly cardiac toxicity phenotypes induced by SiNPs were pericardial edema and bradycardia but had no effect on atrioventricular block. Using o-Dianisidine for erythrocyte staining, the cardiac output of zebrafish embryos was decreased in a dose-dependent manner. Microarray analysis and bioinformatics analysis were performed to screen the differential expression genes and possible pathway involved in cardiac function. SiNPs induced whole-embryo oxidative stress and neutrophil-mediated cardiac inflammation in Tg(mpo:GFP) zebrafish. Inflammatory cells were observed in atrium of SiNPs-treated zebrafish heart by histopathological examination. In addition, the expression of TNNT2 protein, a cardiac contraction marker in heart tissue had been down-regulated compared to control group using immunohistochemistry. Confirmed by qRT-PCR and western blot assays, results showed that SiNPs inhibited the calcium signaling pathway and cardiac muscle contraction via the down-regulated of related genes, such as ATPase-related genes (atp2a1l, atp1b2b, atp1a3b), calcium channel-related genes (cacna1ab, cacna1da) and the regulatory gene tnnc1a for cardiac troponin C. Moreover, the protein level of TNNT2 was decreased in a dose-dependent manner. For the first time, our results demonstrated that SiNPs induced cardiac dysfunction via the neutrophil-mediated cardiac inflammation and cardiac contraction in zebrafish embryos. PMID:26551753

  4. Utility of Neutrophil Fcγ Receptor I (CD64) Index as a Biomarker for Mucosal Inflammation in Pediatric Crohn's Disease

    PubMed Central

    Minar, Phillip; Haberman, Yael; Jurickova, Ingrid; Wen, Ting; Rothenberg, Marc E.; Kim, Mi-Ok; Saeed, Shehzad A.; Baldassano, Robert N.; Stephens, Michael; Markowitz, James; Rosh, Joel; Crandall, Wallace V.; Heyman, Melvin B.; Mack, David R.; Griffiths, Anne M.; Baker, Susan S.; Hyams, Jeffrey S.; Kugathasan, Subra; Denson, Lee A.

    2014-01-01

    Background Neutrophil expression of the Fcγ receptor I (CD64) is upregulated in adult patients with clinically active inflammatory bowel disease (IBD). We tested the relationship of CD64 with mucosal inflammation and clinical relapse in pediatric Crohn's disease (CD). Methods In a cohort of 208 newly diagnosed CD and 43 non-IBD controls, ileal expression of FcγRI/S100A9 was determined by RNA sequencing from biopsies obtained at ileocolonoscopy. In a second cohort, we tested for the peripheral blood polymorphonuclear neutrophil (PMN) CD64 index from 26 newly diagnosed CD, 30 non-IBD controls and 83 children with established CD. Results Ileal FcγRIA mRNA expression was significantly elevated in CD at diagnosis compared with non-IBD controls (p<0.001), and correlated with ileal S100A9 (calprotectin) expression (r=0.83, p<0.001). The median(range) PMN CD64 index for newly diagnosed CD was 2.3(0.74-9.3) compared with 0.76(0.39-1.2) for non-IBD controls (p<0.001) with 96% sensitivity and 90% specificity at the cut point of 1.0. The PMN CD64 index significantly correlated with mucosal injury as measured by the Simple Endoscopic Score-CD (SES-CD, r=0.62, p<0.001). CD patients in clinical remission receiving maintenance therapy with a PMN CD64 index <1.0 had a sustained remission rate of 95% over the following 12 months compared with 56% in those with a PMN CD64 index >1.0 (p<0.01). Conclusions An elevated PMN CD64 index is associated with both mucosal inflammation and an increased risk for clinical relapse in pediatric CD. The PMN CD64 index is a reliable marker for sustained remission in CD patients receiving maintenance therapy. PMID:24788216

  5. Protective effect of Clerodendrum colebrookianum Walp., on acute and chronic inflammation in rats

    PubMed Central

    Deb, Lokesh; Dey, Amitabha; Sakthivel, G.; Bhattamishra, Subrat Kumar; Dutta, Amitsankar

    2013-01-01

    Aim: To evaluate antioxidant, anti-inflammatory potential of the aqueous extracts and its aqueous, n-butanol, ethyl-acetate, and chloroform fractions of Clerodendrum colebrookianum Walp. leaves. Materials and Methods: In this present study, all the test samples were evaluated on in-vivo inflammatory model such as carrageenan and histamine-induced acute-inflammation and cotton pellet induced granuloma formation in albino male rats. Test samples were also employed in in-vitro assays like DPPH* free radical scavenging activity and COX inhibition assay. Results: The test samples at the dose of 200mg/kg/p.o. were found to cause significant inhibition of carrageenan and histamine-induced inflammation and cotton pallet-induced granuloma formation on acute and chronic inflammation in rats. The test samples, except n-butanol fraction, exhibited inhibitory effect for both COX-1 and COX-2, in in-vitro assay but their percentage of inhibition values differs from each other. The test samples (aqueous extracts, aqueous, n-butanol, ethyl-acetate, and chloroform fractions) at 100 μg concentration exhibits 54.37%, 33.88%, 62.85%, 56.28%, and 57.48% DPPH* radical-scavenging effect respectively in in-vitro antioxidant study. Conclusion: These observations established the anti-inflammatory effect of C. colebrookianum leaves in acute and chronic stages of inflammation by free radical scavenging and inhibition of COX-1 and COX-2. PMID:24014914

  6. Interleukin 17A promotes pneumococcal clearance by recruiting neutrophils and inducing apoptosis through a p38 mitogen-activated protein kinase-dependent mechanism in acute otitis media.

    PubMed

    Wang, Wei; Zhou, Aie; Zhang, Xuemei; Xiang, Yun; Huang, Yifei; Wang, Lei; Zhang, Shuai; Liu, Yusi; Yin, Yibing; He, Yujuan

    2014-06-01

    Streptococcus pneumoniae is a Gram-positive and human-restricted pathogen colonizing the nasopharynx with an absence of clinical symptoms as well as a major pathogen causing otitis media (OM), one of the most common childhood infections. Upon bacterial infection, neutrophils are rapidly activated and recruited to the infected site, acting as the frontline defender against emerging microbial pathogens via different ways. Evidence shows that interleukin 17A (IL-17A), a neutrophil-inducing factor, plays important roles in the immune responses in several diseases. However, its function in response to S. pneumoniae OM remains unclear. In this study, the function of IL-17A in response to S. pneumoniae OM was examined using an in vivo model. We developed a model of acute OM (AOM) in C57BL/6 mice and found that neutrophils were the dominant immune cells that infiltrated to the middle ear cavity (MEC) and contributed to bacterial clearance. Using IL-17A knockout (KO) mice, we found that IL-17A boosted neutrophil recruitment to the MEC and afterwards induced apoptosis, which was identified to be conducive to bacterial clearance. In addition, our observation suggested that the p38 mitogen-activated protein kinase (MAPK) signaling pathway was involved in the recruitment and apoptosis of neutrophils mediated by IL-17A. These data support the conclusion that IL-17A contributes to the host immune response against S. pneumoniae by promoting neutrophil recruitment and apoptosis through the p38 MAPK signaling pathway. PMID:24664502

  7. Aspirin-triggered 15-epi-lipoxin A4 regulates neutrophil-platelet aggregation and attenuates acute lung injury in mice

    PubMed Central

    Ortiz-Muñoz, Guadalupe; Mallavia, Beñat; Bins, Adriaan; Headley, Mark; Krummel, Matthew F.

    2014-01-01

    Evidence is emerging that platelets are major contributors to innate immune responses in conditions such as acute lung injury (ALI). Platelets form heterotypic aggregates with neutrophils, and we hypothesized that lipoxin mediators regulate formation of neutrophil-platelet aggregates (NPA) and that NPA significantly contribute to ALI. Lipopolysaccharide (LPS)-induced lung injury was accompanied by platelet sequestration, activation, intra-alveolar accumulation, and NPA formation within both blood and alveolar compartments. Using lung intravital microscopy, we observed the dynamic formation of NPA during physiologic conditions, which sharply increased with ALI. Aspirin (ASA) treatment significantly reduced lung platelet sequestration and activation, NPA formation, and lung injury. ASA treatment increased levels of ASA-triggered lipoxin (ATL; 15-epi-lipoxin A4), and blocking the lipoxin A4 receptor (ALX) with a peptide antagonist (Boc2) or using ALX knockouts (Fpr2/3−/−) reversed this protection. LPS increased NPA formation in vitro, which was reduced by ATL, and engagement of ALX by ATL on both neutrophils and platelets was necessary to prevent aggregation. In a model of transfusion-related acute lung injury (TRALI), Boc2 also reversed ASA protection, and treatment with ATL in both LPS and TRALI models protected from ALI. We conclude that ATL regulates neutrophil-platelet aggregation and that platelet-neutrophil interactions are a therapeutic target in lung injury. PMID:25143486

  8. Animal models to study acute and chronic intestinal inflammation in mammals.

    PubMed

    Jiminez, Janelle A; Uwiera, Trina C; Douglas Inglis, G; Uwiera, Richard R E

    2015-01-01

    Acute and chronic inflammatory diseases of the intestine impart a significant and negative impact on the health and well-being of human and non-human mammalian animals. Understanding the underlying mechanisms of inflammatory disease is mandatory to develop effective treatment and prevention strategies. As inflammatory disease etiologies are multifactorial, the use of appropriate animal models and associated metrics of disease are essential. In this regard, animal models used alone or in combination to study acute and chronic inflammatory disease of the mammalian intestine paired with commonly used inflammation-inducing agents are reviewed. This includes both chemical and biological incitants of inflammation, and both non-mammalian (i.e. nematodes, insects, and fish) and mammalian (i.e. rodents, rabbits, pigs, ruminants, dogs, and non-human primates) models of intestinal inflammation including germ-free, gnotobiotic, as well as surgical, and genetically modified animals. Importantly, chemical and biological incitants induce inflammation via a multitude of mechanisms, and intestinal inflammation and injury can vary greatly according to the incitant and animal model used, allowing studies to ascertain both long-term and short-term effects of inflammation. Thus, researchers and clinicians should be aware of the relative strengths and limitations of the various animal models used to study acute and chronic inflammatory diseases of the mammalian intestine, and the scope and relevance of outcomes achievable based on this knowledge. The ability to induce inflammation to mimic common human diseases is an important factor of a successful animal model, however other mechanisms of disease such as the amount of infective agent to induce disease, invasion mechanisms, and the effect various physiologic changes can have on inducing damage are also important features. In many cases, the use of multiple animal models in combination with both chemical and biological incitants is

  9. Regulatory cells induced by acute toxoplasmosis prevent the development of allergic lung inflammation.

    PubMed

    Fenoy, Ignacio M; Sanchez, Vanesa R; Soto, Ariadna S; Picchio, Mariano S; Maglioco, Andrea; Corigliano, Mariana G; Dran, Graciela I; Martin, Valentina; Goldman, Alejandra

    2015-05-01

    The increased prevalence of allergies in developed countries has been attributed to a reduction of some infections. Supporting epidemiological studies, we previously showed that both acute and chronic Toxoplasma gondii infection can diminish allergic airway inflammation in BALB/c mice. The mechanisms involved when sensitization occurs during acute phase would be related to the strong Th1 response induced by the parasite. Here, we further investigated the mechanisms involved in T. gondii allergy protection in mice sensitized during acute T. gondii infection. Adoptive transference assays and ex vivo co-cultures experiments showed that not only thoracic lymph node cells from infected and sensitized mice but also from non-sensitized infected animals diminished both allergic lung inflammation and the proliferation of effector T cells from allergic mice. This ability was found to be contact-independent and correlated with high levels of CD4(+)FoxP3(+) cells. IL-10 would not be involved in allergy suppression since IL-10-deficient mice behaved similar to wild type mice. Our results extend earlier work and show that, in addition to immune deviation, acute T. gondii infection can suppress allergic airway inflammation through immune suppression. PMID:25532793

  10. Interleukin 6 and lipopolysaccharide binding protein - markers of inflammation in acute appendicitis.

    PubMed

    Brănescu, C; Serban, D; Dascălu, A M; Oprescu, S M; Savlovschi, C

    2013-01-01

    The rate of incidence of acute appendicitis is 12% in the case of male patients and 25% in case of women, which represents about 7% of the world population. The appendectomy rate has remained constant (i.e. 10 out of 10,000 patients per year). Appendicitis most often occurs in patients aged between 11-40 years, on the threshold between the third and fourth decades, the average age being 31.3 years. Since the first appendectomy performed by Claudius Amyand (1681/6 -1740), on December, 6th, 1735 to our days, i.e., 270 years later, time has confirmed the efficiency of both the therapy method and the surgical solution. The surgical cure in case of acute appendicitis has proved to be acceptable within the most widely practised techniques in general surgery. The variety of clinical forms has reached all age ranges, which in its turn has resulted in a large number of semiotic signs. In the case of acute appendicitis, interdisciplinarity has allowed the transfer of concept and methodology transfer among many areas of expertise, aimed at a better, minute understanding of the inflammatory event itself. Acute appendicitis illustrates inflammation development at digestive level and provides for a diagnostic and paraclinical exploration which continually upgrades. The recent inclusion in the studies of the Lipopolysaccharide binding protein (LBP)- type inflammation markers has laid the foundation of the latter's documented presence in the case of acute appendicitis-related inflammation. Proof of the correlation between the histopathological, clinical and evolutive forms can be found by identifying and quantifying these inflammation markers. The importance of studying inflammation markers allows us to conduct studies going beyond the prognosis of the various stages in which these markers were identified. The present article shows the results of a 1-year monitoring of the inflammation markers' values for Interleukin-6 and Lipopolysaccharide binding protein (LBP)-types, both pre

  11. Interleukin-17A and Neutrophils in a Murine Model of Bird-Related Hypersensitivity Pneumonitis

    PubMed Central

    Ishizuka, Masahiro; Miyazaki, Yasunari; Masuo, Masahiro; Suhara, Kozo; Tateishi, Tomoya; Yasui, Makito; Inase, Naohiko

    2015-01-01

    Hypersensitivity pneumonitis (HP) is an immune mediated lung disease induced by the repeated inhalation of a wide variety of antigens. Bird-related hypersensitivity pneumonitis (BRHP) is one of the most common forms of HP in human and results from the inhalation of avian antigens. The findings of a recent clinical analysis suggest that in addition to Th1 factors, the levels of interleukin(IL)-17 and IL-17-associated transcripts are increased in the setting of HP, and that both IL-17A and neutrophils are crucial for the development of pulmonary inflammation in murine models of HP. Our objectives were to investigate the roles of IL-17A and neutrophils in granuloma-forming inflammation in an acute HP model. We developed a mouse model of acute BRHP using pigeon dropping extract. We evaluated the process of granuloma formation and the roles of both IL-17A and neutrophils in a model. We found that the neutralization of IL-17A by the antibody attenuated granuloma formation and the recruitment of neutrophils, and also decreased the expression level of chemokine(C-X-C motif) ligand 5 (CXCL5) in the acute HP model. We confirmed that most of the neutrophils in the acute HP model exhibited immunoreactivity to the anti-IL-17 antibody. We have identified the central roles of both IL-17A and neutrophils in the pathogenesis of granuloma formation in acute HP. We have also assumed that neutrophils are an important source of IL-17A in an acute HP model, and that the IL-17A-CXCL5 pathway may be responsible for the recruitment of neutrophils. PMID:26367130

  12. Delivery of interleukin-10 via injectable hydrogels improves renal outcomes and reduces systemic inflammation following ischemic acute kidney injury in mice.

    PubMed

    Soranno, Danielle E; Rodell, Christopher B; Altmann, Christopher; Duplantis, Jane; Andres-Hernando, Ana; Burdick, Jason A; Faubel, Sarah

    2016-08-01

    Injectable hydrogels can be used to deliver drugs in situ over a sustained period of time. We hypothesized that sustained delivery of interleukin-10 (IL-10) following acute kidney injury (AKI) would mitigate the local and systemic proinflammatory cascade induced by AKI and reduce subsequent fibrosis. Wild-type C57BL/6 mice underwent ischemia-reperfusion AKI with avertin anesthesia. Three days later, mice were treated with either hyaluronic acid injectable hydrogel with or without IL-10, or IL-10 suspended in saline, injected under the capsule of the left kidney, or hydrogel with IL-10 injected subcutaneously. Untreated AKI served as controls. Serial in vivo optical imaging tracked the location and degradation of the hydrogel over time. Kidney function was assessed serially. Animals were killed 28 days following AKI and the following were evaluated: serum IL-6, lung inflammation, urine neutrophil gelatinase-associated lipocalin, and renal histology for fibroblast activity, collagen type III deposition and fibrosis via Picrosirius Red staining and second harmonic imaging. Our model shows persistent systemic inflammation, and renal inflammation and fibrosis 28 days following AKI. The hydrogels are biocompatible and reduced serum IL-6 and renal collagen type III 28 days following AKI even when delivered without IL-10. Treatment with IL-10 reduced renal and systemic inflammation, regardless of whether the IL-10 was delivered in a sustained manner via the injectable hydrogel under the left kidney capsule, as a bolus injection via saline under the left kidney capsule, or via the injectable hydrogel subcutaneously. Injectable hydrogels are suitable for local drug delivery following renal injury, are biocompatible, and help mitigate local and systemic inflammation. PMID:26962109

  13. Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis.

    PubMed

    Weber, Georg F; Chousterman, Benjamin G; He, Shun; Fenn, Ashley M; Nairz, Manfred; Anzai, Atsushi; Brenner, Thorsten; Uhle, Florian; Iwamoto, Yoshiko; Robbins, Clinton S; Noiret, Lorette; Maier, Sarah L; Zönnchen, Tina; Rahbari, Nuh N; Schölch, Sebastian; Klotzsche-von Ameln, Anne; Chavakis, Triantafyllos; Weitz, Jürgen; Hofer, Stefan; Weigand, Markus A; Nahrendorf, Matthias; Weissleder, Ralph; Swirski, Filip K

    2015-03-13

    Sepsis is a frequently fatal condition characterized by an uncontrolled and harmful host reaction to microbial infection. Despite the prevalence and severity of sepsis, we lack a fundamental grasp of its pathophysiology. Here we report that the cytokine interleukin-3 (IL-3) potentiates inflammation in sepsis. Using a mouse model of abdominal sepsis, we showed that innate response activator B cells produce IL-3, which induces myelopoiesis of Ly-6C(high) monocytes and neutrophils and fuels a cytokine storm. IL-3 deficiency protects mice against sepsis. In humans with sepsis, high plasma IL-3 levels are associated with high mortality even after adjusting for prognostic indicators. This study deepens our understanding of immune activation, identifies IL-3 as an orchestrator of emergency myelopoiesis, and reveals a new therapeutic target for treating sepsis. PMID:25766237

  14. Topical Application of Ketoprofen Improves Gait Disturbance in Rat Models of Acute Inflammation

    PubMed Central

    Tanaka, Akane; Matsuda, Akira; Oida, Kumiko; Jung, Kyungsook; Nishikawa, Sho; Jang, Hyosun; Ishizaka, Saori; Matsuda, Hiroshi

    2013-01-01

    Arthritis is a disabling health problem and commonly develops in the late stages of life; the condition is typically accompanied by chronic pain. For the assessment of pain severity and therapeutic effects of analgesic drugs, we recently developed a gait analysis system, which provides an index of pain severity based on walking stride disturbance. Using this system, we evaluated the therapeutic effect of topical nonsteroidal anti-inflammatory drugs (NSAIDs) in rat models of acute inflammation. We found that the gait analysis system is more sensitive than conventional evaluation methods, such as measurement of swelling or analgesia, which indicated the superiority of our system for drug screening. The approach also indicated that ketoprofen is superior to other NSAIDs for providing pain relief because of its higher skin permeability. To the best of our knowledge, this is the first report demonstrating the effectiveness of topical NSAIDs in experimental animal models of acute inflammation. PMID:23991419

  15. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins

    NASA Astrophysics Data System (ADS)

    Meseguer, Victor; Alpizar, Yeranddy A.; Luis, Enoch; Tajada, Sendoa; Denlinger, Bristol; Fajardo, Otto; Manenschijn, Jan-Albert; Fernández-Peña, Carlos; Talavera, Arturo; Kichko, Tatiana; Navia, Belén; Sánchez, Alicia; Señarís, Rosa; Reeh, Peter; Pérez-García, María Teresa; López-López, José Ramón; Voets, Thomas; Belmonte, Carlos; Talavera, Karel; Viana, Félix

    2014-01-01

    Gram-negative bacterial infections are accompanied by inflammation and somatic or visceral pain. These symptoms are generally attributed to sensitization of nociceptors by inflammatory mediators released by immune cells. Nociceptor sensitization during inflammation occurs through activation of the Toll-like receptor 4 (TLR4) signalling pathway by lipopolysaccharide (LPS), a toxic by-product of bacterial lysis. Here we show that LPS exerts fast, membrane delimited, excitatory actions via TRPA1, a transient receptor potential cation channel that is critical for transducing environmental irritant stimuli into nociceptor activity. Moreover, we find that pain and acute vascular reactions, including neurogenic inflammation (CGRP release) caused by LPS are primarily dependent on TRPA1 channel activation in nociceptive sensory neurons, and develop independently of TLR4 activation. The identification of TRPA1 as a molecular determinant of direct LPS effects on nociceptors offers new insights into the pathogenesis of pain and neurovascular responses during bacterial infections and opens novel avenues for their treatment.

  16. Flaxseed lignans enriched in secoisolariciresinol diglucoside prevent acute asbestos-induced peritoneal inflammation in mice

    PubMed Central

    Pietrofesa, Ralph A.; Velalopoulou, Anastasia; Arguiri, Evguenia; Menges, Craig W.; Testa, Joseph R.; Hwang, Wei-Ting; Albelda, Steven M.

    2016-01-01

    Malignant mesothelioma (MM), linked to asbestos exposure, is a highly lethal form of thoracic cancer with a long latency period, high mortality and poor treatment options. Chronic inflammation and oxidative tissue damage caused by asbestos fibers are linked to MM development. Flaxseed lignans, enriched in secoisolariciresinol diglucoside (SDG), have antioxidant, anti-inflammatory and cancer chemopreventive properties. As a prelude to chronic chemoprevention studies for MM development, we tested the ability of flaxseed lignan component (FLC) to prevent acute asbestos-induced inflammation in MM-prone Nf2+/mu mice. Mice (n = 16–17 per group) were placed on control (CTL) or FLC-supplemented diets initiated 7 days prior to a single intraperitoneal bolus of 400 µg of crocidolite asbestos. Three days post asbestos exposure, mice were evaluated for abdominal inflammation, proinflammatory/profibrogenic cytokine release, WBC gene expression changes and oxidative and nitrosative stress in peritoneal lavage fluid (PLF). Asbestos-exposed mice fed CTL diet developed acute inflammation, with significant (P < 0.0001) elevations in WBCs and proinflammatory/profibrogenic cytokines (IL-1ß, IL-6, TNFα, HMGB1 and active TGFß1) relative to baseline (BL) levels. Alternatively, asbestos-exposed FLC-fed mice had a significant (P < 0.0001) decrease in PLF WBCs and proinflammatory/profibrogenic cytokine levels relative to CTL-fed mice. Importantly, PLF WBC gene expression of cytokines (IL-1ß, IL-6, TNFα, HMGB1 and TGFß1) and cytokine receptors (TNFαR1 and TGFßR1) were also downregulated by FLC. FLC also significantly (P < 0.0001) blunted asbestos-induced nitrosative and oxidative stress. FLC reduces acute asbestos-induced peritoneal inflammation, nitrosative and oxidative stress and may thus prove to be a promising agent in the chemoprevention of MM. PMID:26678224

  17. Flaxseed lignans enriched in secoisolariciresinol diglucoside prevent acute asbestos-induced peritoneal inflammation in mice.

    PubMed

    Pietrofesa, Ralph A; Velalopoulou, Anastasia; Arguiri, Evguenia; Menges, Craig W; Testa, Joseph R; Hwang, Wei-Ting; Albelda, Steven M; Christofidou-Solomidou, Melpo

    2016-02-01

    Malignant mesothelioma (MM), linked to asbestos exposure, is a highly lethal form of thoracic cancer with a long latency period, high mortality and poor treatment options. Chronic inflammation and oxidative tissue damage caused by asbestos fibers are linked to MM development. Flaxseed lignans, enriched in secoisolariciresinol diglucoside (SDG), have antioxidant, anti-inflammatory and cancer chemopreventive properties. As a prelude to chronic chemoprevention studies for MM development, we tested the ability of flaxseed lignan component (FLC) to prevent acute asbestos-induced inflammation in MM-prone Nf2(+/mu) mice. Mice (n = 16-17 per group) were placed on control (CTL) or FLC-supplemented diets initiated 7 days prior to a single intraperitoneal bolus of 400 µg of crocidolite asbestos. Three days post asbestos exposure, mice were evaluated for abdominal inflammation, proinflammatory/profibrogenic cytokine release, WBC gene expression changes and oxidative and nitrosative stress in peritoneal lavage fluid (PLF). Asbestos-exposed mice fed CTL diet developed acute inflammation, with significant (P < 0.0001) elevations in WBCs and proinflammatory/profibrogenic cytokines (IL-1ß, IL-6, TNFα, HMGB1 and active TGFß1) relative to baseline (BL) levels. Alternatively, asbestos-exposed FLC-fed mice had a significant (P < 0.0001) decrease in PLF WBCs and proinflammatory/profibrogenic cytokine levels relative to CTL-fed mice. Importantly, PLF WBC gene expression of cytokines (IL-1ß, IL-6, TNFα, HMGB1 and TGFß1) and cytokine receptors (TNFαR1 and TGFßR1) were also downregulated by FLC. FLC also significantly (P < 0.0001) blunted asbestos-induced nitrosative and oxidative stress. FLC reduces acute asbestos-induced peritoneal inflammation, nitrosative and oxidative stress and may thus prove to be a promising agent in the chemoprevention of MM. PMID:26678224

  18. Temporal effects on bovine neutrophil function following an intravenous endotoxin challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neutrophils possess a large array of antimicrobial effector functions. The acute phase response is a complex series of events including a period of inflammation followed by a counter anti-inflammatory state. This study was performed to elucidate any temporal effect of an endotoxin challenge on bovin...

  19. Particle-Induced Pulmonary Acute Phase Response Correlates with Neutrophil Influx Linking Inhaled Particles and Cardiovascular Risk

    PubMed Central

    Saber, Anne Thoustrup; Lamson, Jacob Stuart; Jacobsen, Nicklas Raun; Ravn-Haren, Gitte; Hougaard, Karin Sørig; Nyendi, Allen Njimeri; Wahlberg, Pia; Madsen, Anne Mette; Jackson, Petra; Wallin, Håkan; Vogel, Ulla

    2013-01-01

    Background Particulate air pollution is associated with cardiovascular disease. Acute phase response is causally linked to cardiovascular disease. Here, we propose that particle-induced pulmonary acute phase response provides an underlying mechanism for particle-induced cardiovascular risk. Methods We analysed the mRNA expression of Serum Amyloid A (Saa3) in lung tissue from female C57BL/6J mice exposed to different particles including nanomaterials (carbon black and titanium dioxide nanoparticles, multi- and single walled carbon nanotubes), diesel exhaust particles and airborne dust collected at a biofuel plant. Mice were exposed to single or multiple doses of particles by inhalation or intratracheal instillation and pulmonary mRNA expression of Saa3 was determined at different time points of up to 4 weeks after exposure. Also hepatic mRNA expression of Saa3, SAA3 protein levels in broncheoalveolar lavage fluid and in plasma and high density lipoprotein levels in plasma were determined in mice exposed to multiwalled carbon nanotubes. Results Pulmonary exposure to particles strongly increased Saa3 mRNA levels in lung tissue and elevated SAA3 protein levels in broncheoalveolar lavage fluid and plasma, whereas hepatic Saa3 levels were much less affected. Pulmonary Saa3 expression correlated with the number of neutrophils in BAL across different dosing regimens, doses and time points. Conclusions Pulmonary acute phase response may constitute a direct link between particle inhalation and risk of cardiovascular disease. We propose that the particle-induced pulmonary acute phase response may predict risk for cardiovascular disease. PMID:23894396

  20. Natural resolution of inflammation.

    PubMed

    Freire, Marcelo O; Van Dyke, Thomas E

    2013-10-01

    Inflammation is a protective response essential for maintaining human health and for fighting disease. As an active innate immune reaction to challenge, inflammation gives rise to clinical cardinal signs: rubor, calor, dolor, tumor and functio laesa. Termination of acute inflammation was previously recognized as a passive process; a natural decay of pro-inflammatory signals. We now understand that the natural resolution of inflammation involves well-integrated, active, biochemical programs that return tissues to homeostasis. This review focuses on recent advances in the understanding of the role of endogenous lipid mediators that modulate cellular fate and inflammation. Biosynthesis of eicosanoids and other lipids in exudates coincides with changes in the types of inflammatory cells. Resolution of inflammation is initiated by an active class switch in lipid mediators, such as classic prostaglandins and leukotrienes, to the production of proresolution mediators. Endogenous pro-resolving lipid mediators, including arachidonic acid-derived lipoxins, aspirin-triggered lipoxins, ω3-eicosapentaenoic acid-derived resolvins of the E-series, docosahexaenoic acid-derived resolvins of the D-series, protectins and maresins, are biosynthesized during the resolution phase of acute inflammation. Depending on the type of injury and the type of tissue, the initial cells that respond are polymorphonuclear leukocytes, monocytes/macrophages, epithelial cells or endothelial cells. The selective interaction of specific lipid mediators with G protein-coupled receptors expressed on innate immune cells (e.g. G protein-coupled receptor 32, lipoxin A4 receptor/formyl peptide receptor2, chemokine-like receptor 1, leukotriene B4 receptor type 1 and cabannoid receptor 2) induces cessation of leukocyte infiltration; vascular permeability/edema returns to normal with polymorphonuclear neutrophil death (mostly via apoptosis), the nonphlogistic infiltration of monocyte/macrophages and the removal

  1. The Multifaceted Functions of Neutrophils

    PubMed Central

    Mayadas, Tanya N.; Cullere, Xavier; Lowell, Clifford A.

    2014-01-01

    Neutrophils and neutrophil-like cells are the major pathogen-fighting immune cells in organisms ranging from slime molds to mammals. Central to their function is their ability to be recruited to sites of infection, to recognize and phagocytose microbes, and then to kill pathogens through a combination of cytotoxic mechanisms. These include the production of reactive oxygen species, the release of antimicrobial peptides, and the recently discovered expulsion of their nuclear contents to form neutrophil extracellular traps. Here we discuss these primordial neutrophil functions, which also play key roles in tissue injury, by providing details of neutrophil cytotoxic functions and congenital disorders of neutrophils. In addition, we present more recent evidence that interactions between neutrophils and adaptive immune cells establish a feed-forward mechanism that amplifies pathologic inflammation. These newly appreciated contributions of neutrophils are described in the setting of several inflammatory and autoimmune diseases. PMID:24050624

  2. The central role of hypothalamic inflammation in the acute illness response and cachexia.

    PubMed

    Burfeind, Kevin G; Michaelis, Katherine A; Marks, Daniel L

    2016-06-01

    When challenged with a variety of inflammatory threats, multiple systems across the body undergo physiological responses to promote defense and survival. The constellation of fever, anorexia, and fatigue is known as the acute illness response, and represents an adaptive behavioral and physiological reaction to stimuli such as infection. On the other end of the spectrum, cachexia is a deadly and clinically challenging syndrome involving anorexia, fatigue, and muscle wasting. Both of these processes are governed by inflammatory mediators including cytokines, chemokines, and immune cells. Though the effects of cachexia can be partially explained by direct effects of disease processes on wasting tissues, a growing body of evidence shows the central nervous system (CNS) also plays an essential mechanistic role in cachexia. In the context of inflammatory stress, the hypothalamus integrates signals from peripheral systems, which it translates into neuroendocrine perturbations, altered neuronal signaling, and global metabolic derangements. Therefore, we will discuss how hypothalamic inflammation is an essential driver of both the acute illness response and cachexia, and why this organ is uniquely equipped to generate and maintain chronic inflammation. First, we will focus on the role of the hypothalamus in acute responses to dietary and infectious stimuli. Next, we will discuss the role of cytokines in driving homeostatic disequilibrium, resulting in muscle wasting, anorexia, and weight loss. Finally, we will address mechanisms and mediators of chronic hypothalamic inflammation, including endothelial cells, chemokines, and peripheral leukocytes. PMID:26541482

  3. Plasma Neutrophil Elastase and Elafin Imbalance Is Associated with Acute Respiratory Distress Syndrome (ARDS) Development

    PubMed Central

    Wang, Zhaoxi; Chen, Feng; Zhai, Rihong; Zhang, Lingsong; Su, Li; Lin, Xihong; Thompson, Taylor; Christiani, David C.

    2009-01-01

    Background We conducted an exploratory study of genome-wide gene expression in whole blood and found that the expression of neutrophil elastase inhibitor (PI3, elafin) was down-regulated during the early phase of ARDS. Further analyses of plasma PI3 levels revealed a rapid decrease during early ARDS development. PI3 and secretory leukocyte proteinase inhibitor (SLPI) are important low-molecular-weight proteinase inhibitors produced locally at neutrophil infiltration site in the lung. In this study, we tested the hypothesis that an imbalance between neutrophil elastase (HNE) and its inhibitors in blood is related to the development of ARDS. Methodology/Principal Findings PI3, SLPI, and HNE were measured in plasma samples collected from 148 ARDS patients and 63 critical ill patients at risk for ARDS (controls). Compared with the controls, the ARDS patients had higher HNE, but lower PI3, at the onset of ARDS, resulting in increased HNE/PI3 ratio (mean = 14.5; 95% CI, 10.9–19.4, P<0.0001), whereas plasma SLPI was not associated with the risk of ARDS development. Although the controls had elevated plasma PI3 and HNE, their HNE/PI3 ratio (mean = 6.5; 95% CI, 4.9–8.8) was not significantly different from the healthy individuals (mean = 3.9; 95% CI, 2.7–5.9). Before the onset (7-days period prior to ARDS diagnosis), we only observed significantly elevated HNE, but the HNE-PI3 balance remained normal. With the progress from prior to the onset of ARDS, the plasma level of PI3 declined, whereas HNE was maintained at a higher level, tilting the balance toward more HNE in the circulation as characterized by an increased HNE/PI3 ratio. In contrast, three days after ICU admission, there was a significant drop of HNE/PI3 ratio in the at-risk controls. Conclusions/Significance Plasma profiles of PI3, HNE, and HNE/PI3 may be useful clinical biomarkers in monitoring the development of ARDS. PMID:19197381

  4. B7H3 ameliorates LPS-induced acute lung injury via attenuation of neutrophil migration and infiltration

    PubMed Central

    Li, Yan; Huang, Jie; Foley, Niamh M.; Xu, Yunyun; Li, Yi Ping; Pan, Jian; Redmond, H. Paul; Wang, Jiang Huai; Wang, Jian

    2016-01-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by an excessive inflammatory response within the lungs and severely impaired gas exchange resulting from alveolar-capillary barrier disruption and pulmonary edema. The costimulatory protein B7H3 functions as both a costimulator and coinhibitor to regulate the adaptive and innate immune response, thus participating in the development of microbial sepsis and pneumococcal meningitis. However, it is unclear whether B7H3 exerts a beneficial or detrimental role during ALI. In the present study we examined the impact of B7H3 on pulmonary inflammatory response, polymorphonuclear neutrophil (PMN) influx, and lung tissue damage in a murine model of lipopolysaccharide (LPS)-induced direct ALI. Treatment with B7H3 protected mice against LPS-induced ALI, with significantly attenuated pulmonary PMN infiltration, decreased lung myeloperoxidase (MPO) activity, reduced bronchoalveolar lavage fluid (BALF) protein content, and ameliorated lung pathological changes. In addition, B7H3 significantly diminished LPS-stimulated PMN chemoattractant CXCL2 production by inhibiting NF-κB p65 phosphorylation, and substantially attenuated LPS-induced PMN chemotaxis and transendothelial migration by down-regulating CXCR2 and Mac-1 expression. These results demonstrate that B7H3 substantially ameliorates LPS-induced ALI and this protection afforded by B7H3 is predominantly associated with its inhibitory effect on pulmonary PMN migration and infiltration. PMID:27515382

  5. B7H3 ameliorates LPS-induced acute lung injury via attenuation of neutrophil migration and infiltration.

    PubMed

    Li, Yan; Huang, Jie; Foley, Niamh M; Xu, Yunyun; Li, Yi Ping; Pan, Jian; Redmond, H Paul; Wang, Jiang Huai; Wang, Jian

    2016-01-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by an excessive inflammatory response within the lungs and severely impaired gas exchange resulting from alveolar-capillary barrier disruption and pulmonary edema. The costimulatory protein B7H3 functions as both a costimulator and coinhibitor to regulate the adaptive and innate immune response, thus participating in the development of microbial sepsis and pneumococcal meningitis. However, it is unclear whether B7H3 exerts a beneficial or detrimental role during ALI. In the present study we examined the impact of B7H3 on pulmonary inflammatory response, polymorphonuclear neutrophil (PMN) influx, and lung tissue damage in a murine model of lipopolysaccharide (LPS)-induced direct ALI. Treatment with B7H3 protected mice against LPS-induced ALI, with significantly attenuated pulmonary PMN infiltration, decreased lung myeloperoxidase (MPO) activity, reduced bronchoalveolar lavage fluid (BALF) protein content, and ameliorated lung pathological changes. In addition, B7H3 significantly diminished LPS-stimulated PMN chemoattractant CXCL2 production by inhibiting NF-κB p65 phosphorylation, and substantially attenuated LPS-induced PMN chemotaxis and transendothelial migration by down-regulating CXCR2 and Mac-1 expression. These results demonstrate that B7H3 substantially ameliorates LPS-induced ALI and this protection afforded by B7H3 is predominantly associated with its inhibitory effect on pulmonary PMN migration and infiltration. PMID:27515382

  6. The time-of-day of myocardial infarction onset affects healing through oscillations in cardiac neutrophil recruitment.

    PubMed

    Schloss, Maximilian J; Horckmans, Michael; Nitz, Katrin; Duchene, Johan; Drechsler, Maik; Bidzhekov, Kiril; Scheiermann, Christoph; Weber, Christian; Soehnlein, Oliver; Steffens, Sabine

    2016-01-01

    Myocardial infarction (MI) is the leading cause of death in Western countries. Epidemiological studies show acute MI to be more prevalent in the morning and to be associated with a poorer outcome in terms of mortality and recovery. The mechanisms behind this association are not fully understood. Here, we report that circadian oscillations of neutrophil recruitment to the heart determine infarct size, healing, and cardiac function after MI Preferential cardiac neutrophil recruitment during the active phase (Zeitgeber time, ZT13) was paralleled by enhanced myeloid progenitor production, increased circulating numbers of CXCR2(hi) neutrophils as well as upregulated cardiac adhesion molecule and chemokine expression. MI at ZT13 resulted in significantly higher cardiac neutrophil infiltration compared to ZT5, which was inhibited by CXCR2 antagonism or neutrophil-specific CXCR2 knockout. Limiting exaggerated neutrophilic inflammation at this time point significantly reduced the infarct size and improved cardiac function. PMID:27226028

  7. Highly sensitive electrochemical determination of neutrophil gelatinase-associated lipocalin for acute kidney injury.

    PubMed

    Kannan, Palanisamy; Tiong, Ho Yee; Kim, Dong-Hwan

    2012-01-15

    A label-free electrochemical immunosensor for the detection of neutrophil gelatinase-associated lipocalin (NGAL) is developed by the immobilization of rabbit polygonal lipocalin-2 antibody on gold nanoparticles attached on generation-1polyamidoamine (PAMAM) dendrimer (LA2/AuNPs/PAMAM)-modified gold electrode. The modification procedure was characterized by UV-vis, surface enhanced Raman spectroscopy and field-emission scanning electron microscopy techniques. The detection of NGAL is based on the enhancement of oxidation current on the modified electrodes upon the antigen-antibody interaction. The electrochemical immunosensor exhibited high sensitivity (1 ng mL(-1) (280 pM) based on the signal-to-noise ratio 3), wide linear range (50-250 ng mL(-1)) and long-term stability. The reliability of the developed immunosensor was investigated by the detection of NGAL in both blood serum and urine samples. PMID:22019102

  8. Myeloperoxidase Stimulates Neutrophil Degranulation.

    PubMed

    Grigorieva, D V; Gorudko, I V; Sokolov, A V; Kostevich, V A; Vasilyev, V B; Cherenkevich, S N; Panasenko, O M

    2016-08-01

    Myeloperoxidase, heme enzyme of azurophilic granules in neutrophils, is released into the extracellular space in the inflammation foci. In neutrophils, it stimulates a dose-dependent release of lactoferrin (a protein of specific granules), lysozyme (a protein of specific and azurophilic granules), and elastase (a protein of azurophilic granules). 4-Aminobenzoic acid hydrazide, a potent inhibitor of peroxidase activity of myeloperoxidase, produced no effect on neutrophil degranulation. Using signal transduction inhibitors (genistein, methoxyverapamil, wortmannin, and NiCl2), we demonstrated that myeloperoxidase-induced degranulation of neutrophils resulted from enzyme interaction with the plasma membrane and depends on activation of tyrosine kinases, phosphatidylinositol 3-kinases (PI3K), and calcium signaling. Myeloperoxidase modified by oxidative/halogenation stress (chlorinated and monomeric forms of the enzyme) lost the potency to activate neutrophil degranulation. PMID:27597056

  9. Serum biomarkers and source of inflammation in acute coronary syndromes and percutaneous coronary interventions.

    PubMed

    Centurión, Osmar Antonio

    2016-03-01

    There is robust information that confirms the enormous contribution of inflammation to plaque development, progression and vulnerability. The presence of plaques with inflammatory components associates with a greater likelihood of future cardiovascular events. The inflammatory cascade has been implicated during the entire plaque formation, from the early stages of endothelial dysfunction to the development of acute coronary syndromes (ACS). The presence of macrophages, T lymphocytes, dendritic cells, and mast cells in atherosclerotic lesions; the detection of HLA class II antigen expression; and the finding of secretion of several cytokines point to the involvement of immune inflammatory mechanisms in the pathogenesis of atherosclerosis. Serum biomarkers reflecting the activity of biological processes involved in plaque growth or destabilization may provide great help in establishing the appropriate clinical management, and therapeutic interventions. Evidence for a role of inflammation in plaque rupture has been demonstrated by localization of inflammation at plaque rupture sites. However, the focus of inflammation may not precisely reside within the coronary vessel itself but rather in the injured myocardium distal to the disrupted plaque. These observations outline the potential benefits of therapies targeting inflammation in the arterial wall and cardiovascular system. Emerging anti-inflammatory approaches to vascular protection have the potential to benefit patients by marked reductions in serum biomarkers of inflammation and reduce vascular events. With ongoing technical advances, percutaneous coronary interventions (PCI) will continue to play a critical role in the evaluation of novel compounds designed to modulate inflammation. The constant refinements in the different therapeutic strategies, the combination of scientific understanding in the adequate utilization of novel inflammatory markers, the new pharmacologic agents, and the new techniques in PCI will

  10. Selenium Inhibits Renal Oxidation and Inflammation But Not Acute Kidney Injury in an Animal Model of Rhabdomyolysis

    PubMed Central

    Shanu, Anu; Groebler, Ludwig; Kim, Hyun Bo; Wood, Sarah; Weekley, Claire M.; Aitken, Jade B.; Harris, Hugh H.

    2013-01-01

    Abstract Acute kidney injury (AKI) is a manifestation of rhabdomyolysis (RM). Extracellular myoglobin accumulating in the kidney after RM promotes oxidative damage, which is implicated in AKI. Aim: To test whether selenium (Se) supplementation diminishes AKI and improves renal function. Results: Dietary selenite increased Se in the renal cortex, as demonstrated by X-ray fluorescence microscopy. Experimental RM-stimulated AKI as judged by increased urinary protein/creatinine, clusterin, and kidney injury molecule-1 (KIM-1), decreased creatinine clearance (CCr), increased plasma urea, and damage to renal tubules. Concentrations of cholesterylester (hydro)peroxides and F2-isoprostanes increased in plasma and renal tissues after RM, while aortic and renal cyclic guanidine monophosphate (cGMP; marker of nitric oxide (NO) bioavailability) decreased. Renal superoxide dismutase-1, phospho-P65, TNFα gene, MCP-1 protein, and the 3-chloro-tyrosine/tyrosine ratio (Cl-Tyr/Tyr; marker of neutrophil activation) all increased after RM. Dietary Se significantly decreased renal lipid oxidation, phospho-P65, TNFα gene expression, MCP-1 and Cl-Tyr/Tyr, improved NO bioavailability in aorta but not in the renal microvasculature, and inhibited proteinuria. However, CCr, plasma urea and creatinine, urinary clusterin, and histopathological assessment of AKI remained unchanged. Except for the Se++ group, renal angiotensin-receptor-1/2 gene/protein expression increased after RM with parallel increases in MEK1/2 inhibitor-sensitive MAPkinase (ERK) activity. Innovation: We employed synchrotron radiation to identify Se distribution in kidneys, in addition to assessing reno-protection after RM. Conclusion: Se treatment has some potential as a therapeutic for AKI as it inhibits oxidative damage and inflammation and decreases proteinuria, albeit histopathological changes to the kidney and some plasma and urinary markers of AKI remain unaffected after RM. Antioxid Redox Signal. 18, 756–769

  11. Cyclosporine Does Not Prevent Microvascular Loss in Transplantation but Can Synergize With a Neutrophil Elastase Inhibitor, Elafin, to Maintain Graft Perfusion During Acute Rejection.

    PubMed

    Jiang, X; Nguyen, T T; Tian, W; Sung, Y K; Yuan, K; Qian, J; Rajadas, J; Sallenave, J-M; Nickel, N P; de Jesus Perez, V; Rabinovitch, M; Nicolls, M R

    2015-07-01

    The loss of a functional microvascular bed in rejecting solid organ transplants is correlated with fibrotic remodeling and chronic rejection; in lung allografts, this pathology is predicted by bronchoalveolar fluid neutrophilia which suggests a role for polymorphonuclear cells in microcirculatory injury. In a mouse orthotopic tracheal transplant model, cyclosporine, which primarily inhibits T cells, failed as a monotherapy for preventing microvessel rejection and graft ischemia. To target neutrophil action that may be contributing to vascular injury, we examined the effect of a neutrophil elastase inhibitor, elafin, on the microvascular health of transplant tissue. We showed that elafin monotherapy prolonged microvascular perfusion and enhanced tissue oxygenation while diminishing the infiltration of neutrophils and macrophages and decreasing tissue deposition of complement C3 and the membrane attack complex, C5b-9. Elafin was also found to promote angiogenesis through activation of the extracellular signal-regulated kinase (ERK) signaling pathway but was insufficient as a single agent to completely prevent tissue ischemia during acute rejection episodes. However, when combined with cyclosporine, elafin effectively preserved airway microvascular perfusion and oxygenation. The therapeutic strategy of targeting neutrophil elastase activity alongside standard immunosuppression during acute rejection episodes may be an effective approach for preventing the development of irreversible fibrotic remodeling. PMID:25727073

  12. Cyclosporine does not prevent microvascular loss in transplantation but can synergize with a neutrophil elastase inhibitor, elafin, to maintain graft perfusion during acute rejection

    PubMed Central

    Jiang, Xinguo; Nguyen, Tom T.; Tian, Wen; Sung, Yon K.; Yuan, Ke; Qian, Jin; Rajadas, Jayakumar; Sallenave, Jean-Michel; Nickel, Nils P.; de Jesus Perez, Vinicio; Rabinovitch, Marlene; Nicolls, Mark R.

    2015-01-01

    The loss of a functional microvascular bed in rejecting solid organ transplants is correlated with fibrotic remodeling and chronic rejection; in lung allografts, this pathology is predicted by bronchoalveolar fluid neutrophilia which suggests a role for polymorphonuclear cells in microcirculatory injury. In a mouse orthotopic tracheal transplant model, cyclosporine, which primarily inhibits T cells, failed as a monotherapy for preventing microvessel rejection and graft ischemia. To target neutrophil action that may be contributing to vascular injury, we examined the effect of a neutrophil elastase inhibitor, elafin, on the microvascular health of transplant tissue. We showed that elafin monotherapy prolonged microvascular perfusion and enhanced tissue oxygenation while diminishing the infiltration of neutrophils and macrophages and decreasing tissue deposition of complement C3 and the membrane attack complex, C5b-9. Elafin was also found to promote angiogenesis through activation of the extracellular signal-regulated kinase (ERK) signaling pathway but was insufficient as a single agent to completely prevent tissue ischemia during acute rejection episodes. However, when combined with cyclosporine, elafin effectively preserved airway microvascular perfusion and oxygenation. The therapeutic strategy of targeting neutrophil elastase activity alongside standard immunosuppression during acute rejection episodes may be an effective approach for preventing the development of irreversible fibrotic remodeling. PMID:25727073

  13. The crosstalk between gut inflammation and gastrointestinal disorders during acute pancreatitis.

    PubMed

    Guo, Zhen-Zhen; Wang, Pu; Yi, Zhi-Hui; Huang, Zhi-Yin; Tang, Cheng-Wei

    2014-01-01

    The intestinal inflammation caused by intestinal ischemia reperfusion during acute pancreatitis (AP) often leads to multiple organ dysfunction and aggravation of acute pancreatitis. This review concerns up-date progress of the pathophysiology and molecular mechanism of the excessive production of gut-derived cytokines. The regulation effects of immuno-neuro-endocrine network for pancreatic necrosis are the basis for pharmacological therapeutic in AP. The translation from basic research to clinical trials for the prevention or treatment of severe acute pancreatitis (SAP) is of great value. Early enteral nutrition is necessary for the restitution, proliferation, and differentiation of the intestinal epithelial cells adjacent to the wounded area. Clearance of the excess intestinal bacteria and supplement of probiotics may be helpful to prevent bacterial translocation and infection of pancreas. PMID:23782148

  14. Passage of CD18- and CD18+ bovine neutrophils into pulmonary alveoli during acute Pasteurella haemolytica pneumonia.

    PubMed

    Ackermann, M R; Kehrli, M E; Brogden, K A

    1996-11-01

    CD18 is a subunit for three beta 2 integrin molecules (Mac-1, p150, 95, LFA-1), which are expressed on the plasma membrane of neutrophils. These molecules mediate passage of neutrophils into sites of infection. In children and animals that lack CD18 expression, neutrophil infiltration is impaired in most tissues. However, in lung, CD18- neutrophils have been identified in the airway spaces during spontaneous episodes of pneumonia. To determine whether CD18 is vital for passage through the pulmonary alveolar wall, lung lobes of cattle with neutrophils that were deficient in CD18 expression (CD18-) and cattle with normal CD18 expression (CD18+) were inoculated with Pasteurella haemolytica by fiberoptic bronchoscopy; control lobes were inoculated with pyrogen-free saline (PFS). Neutrophil passage into alveolar lumina at 4 and 6 hours postinoculation was measured by computerized image analysis. Blood levels of neutrophils for CD18- cattle ranged from 12- to 26-fold higher than for CD18+ cattle prior to inoculation, and counts in both groups rose slightly postinoculation. In P. haemolytica-inoculated lobes, total numbers of neutrophils in alveolar lumina of the two groups were similar. An increase in the number of neutrophils in the alveolar wall was fourfold greater in CD18- cattle than in CD18+ cattle. In PFS-inoculated lobes, the number of neutrophils in the alveolar wall was sixfold higher in CD18 cattle than in CD18+ cattle. This work shows that by 4 and 6 hours, CD18- neutrophils enter the alveolar lumen at a rate similar to that in CD18+ cattle. Higher numbers of CD18- neutrophils are present in the alveolar wall of control (PFS) and bacteria-inoculated lobes. Thus, the CD18- cells are increased in the walls of alveoli and numbers of neutrophils that enter the alveolar lumen are similar in CD18+ and CD18- cattle. PMID:8952022

  15. Anti-Inflammation Property of Syzygium cumini (L.) Skeels on Indomethacin-Induced Acute Gastric Ulceration

    PubMed Central

    Chanudom, Lanchakon; Tangpong, Jitbanjong

    2015-01-01

    Indomethacin, nonsteroidal anti-inflammatory drug (NSAIDs), induced gastric damage and perforation through the excess generation of reactive oxygen species (ROS). Syzygium cumini (L.) Skeels is commonly used as a medicinal plant and is claimed to have antioxidant activities. The effects of Syzygium cumini (L.) Skeels aqueous extract (SCC) on antifree radical, anti-inflammation, and antiulcer of SCC on indomethacin induced acute gastric ulceration were determined in our study. Scavenging activity at 50% of SCC is higher than ascorbic acid in in vitro study. Mice treated with indomethacin revealed mucosal hemorrhagic lesion and inhibited mucus content. Pretreatment with SCC caused discernible decrease in indomethacin induced gastric lesion and lipid peroxide content. In addition, oxidized glutathione (GSSG), glutathione peroxidase (GPx), nitric oxide (NO) levels, and gastric wall mucus were restored on acute treated mice model. Indomethacin induced inflammation by activated inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-α) proinflammatory cytokines to release large amount of ROS/RNS which were ameliorated in mice pretreatment with SCC. SCC showed restoration of the imbalance of oxidative damage leading to amelioration of cyclooxygenase enzyme (COX). In conclusion, SCC acts as an antioxidant, anti-inflammation, and antiulcer against indomethacin. PMID:26633969

  16. Pentoxifylline attenuates nitrogen mustard-induced acute lung injury, oxidative stress and inflammation.

    PubMed

    Sunil, Vasanthi R; Vayas, Kinal N; Cervelli, Jessica A; Malaviya, Rama; Hall, LeRoy; Massa, Christopher B; Gow, Andrew J; Laskin, Jeffrey D; Laskin, Debra L

    2014-08-01

    Nitrogen mustard (NM) is a toxic alkylating agent that causes damage to the respiratory tract. Evidence suggests that macrophages and inflammatory mediators including tumor necrosis factor (TNF)α contribute to pulmonary injury. Pentoxifylline is a TNFα inhibitor known to suppress inflammation. In these studies, we analyzed the ability of pentoxifylline to mitigate NM-induced lung injury and inflammation. Exposure of male Wistar rats (150-174 g; 8-10 weeks) to NM (0.125 mg/kg, i.t.) resulted in severe histopathological changes in the lung within 3d of exposure, along with increases in bronchoalveolar lavage (BAL) cell number and protein, indicating inflammation and alveolar-epithelial barrier dysfunction. This was associated with increases in oxidative stress proteins including lipocalin (Lcn)2 and heme oxygenase (HO)-1 in the lung, along with pro-inflammatory/cytotoxic (COX-2(+) and MMP-9(+)), and anti-inflammatory/wound repair (CD163+ and Gal-3(+)) macrophages. Treatment of rats with pentoxifylline (46.7 mg/kg, i.p.) daily for 3d beginning 15 min after NM significantly reduced NM-induced lung injury, inflammation, and oxidative stress, as measured histologically and by decreases in BAL cell and protein content, and levels of HO-1 and Lcn2. Macrophages expressing COX-2 and MMP-9 also decreased after pentoxifylline, while CD163+ and Gal-3(+) macrophages increased. This was correlated with persistent upregulation of markers of wound repair including pro-surfactant protein-C and proliferating nuclear cell antigen by Type II cells. NM-induced lung injury and inflammation were associated with alterations in the elastic properties of the lung, however these were largely unaltered by pentoxifylline. These data suggest that pentoxifylline may be useful in treating acute lung injury, inflammation and oxidative stress induced by vesicants. PMID:24886962

  17. Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment

    PubMed Central

    Beck, Kevin D.; Nguyen, Hal X.; Galvan, Manuel D.; Salazar, Desirée L.; Woodruff, Trent M.

    2010-01-01

    Traumatic injury to the central nervous system results in the disruption of the blood brain/spinal barrier, followed by the invasion of cells and other components of the immune system that can aggravate injury and affect subsequent repair and regeneration. Although studies of chronic neuroinflammation in the injured spinal cord of animals are clinically relevant to most patients living with traumatic injury to the brain or spinal cord, very little is known about chronic neuroinflammation, though several studies have tested the role of neuroinflammation in the acute period after injury. The present study characterizes a novel cell preparation method that assesses, quickly and effectively, the changes in the principal immune cell types by flow cytometry in the injured spinal cord, daily for the first 10 days and periodically up to 180 days after spinal cord injury. These data quantitatively demonstrate a novel time-dependent multiphasic response of cellular inflammation in the spinal cord after spinal cord injury and are verified by quantitative stereology of immunolabelled spinal cord sections at selected time points. The early phase of cellular inflammation is comprised principally of neutrophils (peaking 1 day post-injury), macrophages/microglia (peaking 7 days post-injury) and T cells (peaking 9 days post-injury). The late phase of cellular inflammation was detected after 14 days post-injury, peaked after 60 days post-injury and remained detectable throughout 180 days post-injury for all three cell types. Furthermore, the late phase of cellular inflammation (14–180 days post-injury) did not coincide with either further improvements, or new decrements, in open-field locomotor function after spinal cord injury. However, blockade of chemoattractant C5a-mediated inflammation after 14 days post-injury reduced locomotor recovery and myelination in the injured spinal cord, suggesting that the late inflammatory response serves a reparative function. Together, these

  18. Effects of acute hypercapnia with and without acidosis on lung inflammation and apoptosis in experimental acute lung injury.

    PubMed

    Nardelli, L M; Rzezinski, A; Silva, J D; Maron-Gutierrez, T; Ornellas, D S; Henriques, I; Capelozzi, V L; Teodoro, W; Morales, M M; Silva, P L; Pelosi, P; Garcia, C S N B; Rocco, P R M

    2015-01-01

    We investigated the effects of acute hypercapnic acidosis and buffered hypercapnia on lung inflammation and apoptosis in experimental acute lung injury (ALI). Twenty-four hours after paraquat injection, 28 Wistar rats were randomized into four groups (n=7/group): (1) normocapnia (NC, PaCO2=35-45 mmHg), ventilated with 0.03%CO2+21%O2+balancedN2; (2) hypercapnic acidosis (HC, PaCO2=60-70 mmHg), ventilated with 5%CO2+21%O2+balancedN2; and (3) buffered hypercapnic acidosis (BHC), ventilated with 5%CO2+21%O2+balancedN2 and treated with sodium bicarbonate (8.4%). The remaining seven animals were not mechanically ventilated (NV). The mRNA expression of interleukin (IL)-6 (p=0.003), IL-1β (p<0.001), and type III procollagen (PCIII) (p=0.001) in lung tissue was more reduced in the HC group in comparison with NC, with no significant differences between HC and BHC. Lung and kidney cell apoptosis was reduced in HC and BHC in comparison with NC and NV. In conclusion, in this experimental ALI model, hypercapnia, regardless of acidosis, reduced lung inflammation and lung and kidney cell apoptosis. PMID:25246186

  19. Acute Inflammation

    MedlinePlus

    ... Walking may cause further injury. Ice: Apply an ice pack to the injured area, placing a thin towel ... Walking may cause further injury.Ice: Apply an ice pack to the injured area, placing a thin towel ...

  20. Dioscin alleviates dimethylnitrosamine-induced acute liver injury through regulating apoptosis, oxidative stress and inflammation.

    PubMed

    Zhang, Weixin; Yin, Lianhong; Tao, Xufeng; Xu, Lina; Zheng, Lingli; Han, Xu; Xu, Youwei; Wang, Changyuan; Peng, Jinyong

    2016-07-01

    In our previous study, the effects of dioscin against alcohol-, carbon tetrachloride- and acetaminophen-induced liver damage have been found. However, the activity of it against dimethylnitrosamine (DMN)-induced acute liver injury remained unknown. In the present study, dioscin markedly decreased serum ALT and AST levels, significantly increased the levels of SOD, GSH-Px, GSH, and decreased the levels of MDA, iNOS and NO. Mechanism study showed that dioscin significantly decreased the expression levels of IL-1β, IL-6, TNF-α, IκBα, p50 and p65 through regulating TLR4/MyD88 pathway to rehabilitate inflammation. In addition, dioscin markedly up-regulated the expression levels of SIRT1, HO-1, NQO1, GST and GCLM through increasing nuclear translocation of Nrf2 against oxidative stress. Furthermore, dioscin significantly decreased the expression levels of FasL, Fas, p53, Bak, Caspase-3/9, and upregulated Bcl-2 level through decreasing IRF9 level against apoptosis. In conclusion, dioscin showed protective effect against DMN-induced acute liver injury via ameliorating apoptosis, oxidative stress and inflammation, which should be developed as a new candidate for the treatment of acute liver injury in the future. PMID:27317992

  1. Susceptibility to ozone-induced inflammation. II. Separate loci control responses to acute and subacute exposures

    SciTech Connect

    Kleeberger, S.R.; Levitt, R.C.; Zhang, L.Y. )

    1993-01-01

    We demonstrated previously that inbred strains of mice are differentially susceptible to acute (3 h) and subacute (48 h) exposures to 2 parts per million (ppm) ozone (O3) and 0.30 ppm O3, respectively. Genetic studies with O3-resistant C3H/HeJ and O3-susceptible C57BL/6J strains have indicated that susceptibility to each of these O3 exposures is under Mendelian (single gene) control. In the present study, we hypothesized that the same gene controls susceptibility to the airway inflammatory responses to 2 ppm and 0.30 ppm O3 exposures. To test this hypothesis, airway inflammation was induced in 10 BXH and 16 BXD recombinant inbred (RI) strains of mice by acute as well as subacute O3 exposures. Airway inflammation was assessed by counting the number of polymorphonuclear leukocytes (PMNs) in bronchoalveolar lavage (BAL) returns obtained immediately after 48-h subacute exposure to 0.30 ppm O3, or 6 h after 3 h acute exposure to 2 ppm O3. Each RI strain was classified as susceptible or resistant to each exposure, based on a comparison of mean numbers of PMNs with those of the respective progenitor strains. For each RI set, a phenotypic strain distribution pattern (SDP) was thus derived for each exposure regimen, and the SDPs were then compared for concordance. Among the BXH RI strains, 4 of 10 responded discordantly to the two exposures: 3 were susceptible to acute exposure and resistant to subacute exposure, whereas 1 was conversely susceptible. Among the BXD RI strains, 4 of 16 were discordant: 1 was susceptible to acute exposure, and resistant to subacute exposure, whereas 3 were conversely susceptible.

  2. Role of inflammation and infection in the pathogenesis of human acute liver failure: Clinical implications for monitoring and therapy

    PubMed Central

    Donnelly, Mhairi C; Hayes, Peter C; Simpson, Kenneth J

    2016-01-01

    Acute liver failure is a rare and devastating clinical condition. At present, emergency liver transplantation is the only life-saving therapy in advanced cases, yet the feasibility of transplantation is affected by the presence of systemic inflammation, infection and resultant multi-organ failure. The importance of immune dysregulation and acquisition of infection in the pathogenesis of acute liver failure and its associated complications is now recognised. In this review we discuss current thinking regarding the role of infection and inflammation in the pathogenesis of and outcome in human acute liver failure, the implications for the management of such patients and suggest directions for future research. PMID:27468190

  3. Role of inflammation and infection in the pathogenesis of human acute liver failure: Clinical implications for monitoring and therapy.

    PubMed

    Donnelly, Mhairi C; Hayes, Peter C; Simpson, Kenneth J

    2016-07-14

    Acute liver failure is a rare and devastating clinical condition. At present, emergency liver transplantation is the only life-saving therapy in advanced cases, yet the feasibility of transplantation is affected by the presence of systemic inflammation, infection and resultant multi-organ failure. The importance of immune dysregulation and acquisition of infection in the pathogenesis of acute liver failure and its associated complications is now recognised. In this review we discuss current thinking regarding the role of infection and inflammation in the pathogenesis of and outcome in human acute liver failure, the implications for the management of such patients and suggest directions for future research. PMID:27468190

  4. High neutrophil-lymphocyte ratio indicates poor prognosis for acute-on-chronic liver failure after liver transplantation

    PubMed Central

    Lin, Bing-Yi; Zhou, Lin; Geng, Lei; Zheng, Zhi-Yun; Jia, Jun-Jun; Zhang, Jing; Yao, Jia; Zheng, Shu-Sen

    2015-01-01

    AIM: To investigate the significance of pre-transplant neutrophil-lymphocyte ratio (NLR) in determining the prognosis of liver transplant (LT) recipients with acute-on-chronic liver failure (ACLF). METHODS: Data were collected from the liver transplantation data bank. The NLR values and other conventional inflammatory markers were evaluated for their ability to predict the prognosis of 153 patients with ACLF after LT. The NLR cut-off value was based on a receiver operating characteristic curve analysis. A Kaplan-Meier curve analysis and univariate and multivariate Cox regression models were used to define the independent risk factors for poor outcomes. RESULTS: The optimal NLR cut-off value was 4.6. Out of 153 patients, 83 (54.2%) had an NLR ≥ 4.6. The 1-, 3-, and 5-year overall survival rates were 94.3%, 92.5% and 92.5%, respectively, in the normal NLR group and 74.7%, 71.8% and 69.8%, respectively, in patients with high NLRs (P < 0.001). Furthermore, there was a significant difference in infectious complications after LT between the high and normal NLR groups. There were no significant differences for other complications. In the multivariate Cox regression model, a high NLR was defined as a significant predictor of poor outcomes for LT. CONCLUSION: A high NLR is a convenient and available predictor for prognosis of LT patients and can potentially optimize the current criteria for LT in ACLF. PMID:25805939

  5. The Resolution Code of Acute Inflammation: Novel Pro-Resolving Lipid Mediators in Resolution

    PubMed Central

    Serhan, Charles N.; Chiang, Nan; Dalli, Jesmond

    2015-01-01

    Studies into the mechanisms in resolution of self-limited inflammation and acute reperfusion injury have uncovered a new genus of pro-resolving lipid mediators coined specialized pro-resolving mediators (SPM) including lipoxins, resolvins, protectins and maresins that are each temporally produced by resolving-exudates with distinct actions for return to homeostasis. SPM evoke potent anti-inflammatory and novel pro-resolving mechanisms as well as enhance microbial clearance. While born in inflammation-resolution, SPM are conserved structures with functions discovered in microbial defense, pain, organ protection and tissue regeneration, wound healing, cancer, reproduction, and neurobiology-cognition. This review covers these SPM mechanisms and other new omega-3 PUFA pathways that open their path for functions in resolution physiology. PMID:25857211

  6. Intratendinous Injection of Hyaluronate Induces Acute Inflammation: A Possible Detrimental Effect

    PubMed Central

    Wu, Po-Ting; Jou, I-Ming; Kuo, Li-Chieh; Su, Fong-Chin

    2016-01-01

    Hyaluronate (HA) is therapeutic for tendinopathy, but an intratendinous HA injection is usually painful; thus, it is not suggested for clinical practice. However, there are no studies on the histopathological changes after an intratendinous HA injection. We hypothesized that an HA injection would induce more-acute inflammation than that induced by an injection of phosphate buffered saline (PBS). Thirty-two rats were randomly divided into 4 post-injection groups (n = 8): day 3, day 7, day 28, and day 42. HA (0.1 c.c.) was, using ultrasound guidance, intratendinously injected into each left Achilles tendon, and PBS (0.1 c.c.) into each right one. For each group, both Achilles tendons of 3 control-group rats (n = 6) were given only needle punctures. The histopathological score, ED1+ and ED2+ macrophage densities, interleukin (IL)-1β expression, and the extent of neovascularization were evaluated. In both experimental groups, each Achilles tendon showed significant histopathological changes and inflammation compatible with acute tendon injury until day 42. The HA group showed more-significant (p < 0.05) histopathological changes, higher ED1+ and ED2+ macrophage density, and higher IL-1β expression than did the PBS group. The neovascularization area was also significantly (p < 0.05) greater in the HA group, except on day 3. Both HA and PBS induced acute tendon injury and inflammation, sequential histopathological changes, ED1+ and ED2+ macrophage accumulation, IL-1β expression, and neovascularization until post-injection day 42.HA induced more-severe injury than did PBS. Therefore, an intratendinous HA injection should be avoided. PMID:27176485

  7. Exosomes from Human Dental Pulp Stem Cells Suppress Carrageenan-Induced Acute Inflammation in Mice.

    PubMed

    Pivoraitė, Ugnė; Jarmalavičiūtė, Akvilė; Tunaitis, Virginijus; Ramanauskaitė, Giedrė; Vaitkuvienė, Aida; Kašėta, Vytautas; Biziulevičienė, Genė; Venalis, Algirdas; Pivoriūnas, Augustas

    2015-10-01

    The primary goal of this study was to examine the effects of human dental pulp stem cell-derived exosomes on the carrageenan-induced acute inflammation in mice. Exosomes were purified by differential ultracentrifugation from the supernatants of stem cells derived from the dental pulp of human exfoliated deciduous teeth (SHEDs) cultivated in serum-free medium. At 1 h post-carrageenan injection, exosomes derived from supernatants of 2 × 10(6) SHEDs were administered by intraplantar injection to BALB/c mice; 30 mg/kg of prednisolone and phosphate-buffered saline (PBS) were used as positive and negative controls, respectively. Edema was measured at 6, 24, and 48 h after carrageenan injection. For the in vivo imaging experiments, AngioSPARK750, Cat B 750 FAST, and MMPSense 750 FAST were administered into the mouse tail vein 2 h post-carrageenan injection. Fluorescence images were acquired at 6, 24, and 48 h after edema induction by IVIS Spectrum in vivo imaging system. Exosomes significantly reduced the carrageenan-induced edema at all the time points studied (by 39.5, 41.6, and 25.6% at 6, 24, and 48 h after injection, respectively), to similar levels seen with the positive control (prednisolone). In vivo imaging experiments revealed that, both exosomes and prednisolone suppress activities of cathepsin B and matrix metalloproteinases (MMPs) at the site of carrageenan-induced acute inflammation, showing more prominent effects of prednisolone at the early stages, while exosomes exerted their suppressive effects gradually and at later time points. Our study demonstrates for the first time that exosomes derived from human dental pulp stem cells suppress carrageenan-induced acute inflammation in mice. PMID:25903966

  8. ACUTE PHASE PROTEINS AS A MARKER OF RESPIRATORY INFLAMMATION IN PRZEWALSKI'S HORSE (EQUUS FERUS PRZEWALSKII).

    PubMed

    Sander, Samantha J; Joyner, Priscilla H; Cray, Carolyn; Rotstein, David S; Aitken-Palmer, Copper

    2016-06-01

    Acute phase proteins are sensitive markers of inflammation, which are highly conserved across taxa. Although the utility of these proteins are becoming well defined in human and domestic animal medical fields, their role in nondomestic species remains unclear. In this communication, a 20-yr-old Przewalski's horse was presented for unresolving aspiration pneumonia, which cultured a unique Actinomyces-like bacteria. Despite waxing and waning clinical signs and minimal changes on baseline hematologic analysis, protein electrophoresis, serum amyloid A, and surfactant protein D serum concentrations showed changes that more accurately reflected the clinical severity of this case. PMID:27468045

  9. Acute Respiratory Distress Syndrome: Role of Oleic Acid-Triggered Lung Injury and Inflammation

    PubMed Central

    Gonçalves-de-Albuquerque, Cassiano Felippe; Silva, Adriana Ribeiro; Burth, Patrícia; Castro-Faria, Mauro Velho; Castro-Faria-Neto, Hugo Caire

    2015-01-01

    Lung injury especially acute respiratory distress syndrome (ARDS) can be triggered by diverse stimuli, including fatty acids and microbes. ARDS affects thousands of people worldwide each year, presenting high mortality rate and having an economic impact. One of the hallmarks of lung injury is edema formation with alveoli flooding. Animal models are used to study lung injury. Oleic acid-induced lung injury is a widely used model resembling the human disease. The oleic acid has been linked to metabolic and inflammatory diseases; here we focus on lung injury. Firstly, we briefly discuss ARDS and secondly we address the mechanisms by which oleic acid triggers lung injury and inflammation. PMID:26640323

  10. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    NASA Astrophysics Data System (ADS)

    Jannat, Risat A.; Robbins, Gregory P.; Ricart, Brendon G.; Dembo, Micah; Hammer, Daniel A.

    2010-05-01

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micromachined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the KD of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against β2-integrins leads to a significant reduction, but not an elimination, of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation.

  11. Protective effect of proteins derived from Calotropis procera latex against acute inflammation in rat.

    PubMed

    Kumar, V L; Guruprasad, B; Chaudhary, P; Fatmi, S M A; Oliveira, R S B; Ramos, M V

    2015-07-01

    The non-dialysable proteins present in the latex of plant Calotropis procera possess anti-inflammatory and analgesic properties. The aim of this study was to evaluate the effect of latex proteins (LP) on the level of inflammatory mediators, oxidative stress markers and tissue histology in the rat model of carrageenan-induced acute inflammation. This study also aimed at evaluating the anti-inflammatory efficacy of LP against different mediators and comparing it with their respective antagonists. Paw inflammation was induced by subplantar injection of carrageenan, and the effect of LP was evaluated on oedema volume, level of TNF-α, PGE(2), myeloperoxidase, nitric oxide, reduced glutathione, thiobarbituric acid-reactive substances and tissue histology at the time of peak inflammation. Paw inflammation was also induced by histamine, serotonin, bradykinin and PGE(2), and the inhibitory effect of LP against these mediators was compared with their respective antagonists at the time of peak effect. Treatment with LP produced a dose-dependent inhibition of oedema formation, and its anti-inflammatory effect against carrageenan-induced paw inflammation was accompanied by reduction in the levels of inflammatory mediators, oxidative stress markers and normalization of tissue architecture. LP also produced a dose-dependent inhibition of oedema formation induced by different inflammatory mediators, and its efficacy was comparable to their respective antagonists and more pronounced than that of diclofenac. Thus, our study shows that LP has a potential to be used for the treatment of various inflammatory conditions where the role of these mediators is well established. PMID:25882716

  12. Inflammation Activation Contributes to Adipokine Imbalance in Patients with Acute Coronary Syndrome

    PubMed Central

    Zhao, Shui-ping; Huang, Xian-sheng

    2016-01-01

    Inflammation can be activated as a defensive response by the attack of acute coronary syndrome (ACS) for ischemic tissue injury. The aim of the present study was to investigate the impact of ACS-activated inflammation on adipokine imbalance and the effects of statins on the crosstalk between inflammation and adipokine imbalance during ACS. In this study, 586 subjects were categorized into: (1) control group; (2) SA (stable angina) group; and (3) ACS group. Circulating levels of hs-CRP, adiponectin and resistin were measured by ELISA. Furthermore, forty C57BL/6 mice were randomized into: sham, AMI, low-statin (atorvastatin, 2 mg/kg/day) and high-statin (atorvastatin, 20 mg/kg/day) group. After 3 weeks, AMI models were established by surgical coronary artery ligation. Circulating levels and adipose expressions of adiponectin and resistin were assessed in animals. Besides, we investigate the effects of atorvastatin on ox-LDL-induced adipokine imbalance in vitro. As a result, we found that ACS patients had higher hs-CRP and resistin levels and lower adiponectin levels. Our correlation analysis demonstrated hs-CRP concentrations were positively correlated with resistin but negatively with adiponectin levels in humans. Our animal findings indicated higher circulating hs-CRP and resistin levels and lower adiponectin levels in AMI mice. Atorvastatin pre-treatment dose-dependently decreased hs-CRP and resistin levels but increased adiponectin levels in mice. The consistent findings were observed about the adipose expressions of resistin and adiponectin in mice. In study in vitro, ox-LDL increased cellular resistin expressions and otherwise for adiponectin expressions, which dose-dependently reversed by the addition of atorvastatin. Therefore, our study indicates that the ACS attack activates inflammation leading to adipokine imbalance that can be ameliorated by anti-inflammation of atorvastatin. PMID:26986475

  13. 11β-Hydroxysteroid Dehydrogenase Type 1 Is Expressed in Neutrophils and Restrains an Inflammatory Response in Male Mice

    PubMed Central

    Coutinho, Agnes E.; Kipari, Tiina M. J.; Zhang, Zhenguang; Esteves, Cristina L.; Lucas, Christopher D.; Gilmour, James S.; Webster, Scott P.; Walker, Brian R.; Hughes, Jeremy; Savill, John S.; Seckl, Jonathan R.; Rossi, Adriano G.

    2016-01-01

    Endogenous glucocorticoid action within cells is enhanced by prereceptor metabolism by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts intrinsically inert cortisone and 11-dehydrocorticosterone into active cortisol and corticosterone, respectively. 11β-HSD1 is highly expressed in immune cells elicited to the mouse peritoneum during thioglycollate-induced peritonitis and is down-regulated as the inflammation resolves. During inflammation, 11β-HSD1-deficient mice show enhanced recruitment of inflammatory cells and delayed acquisition of macrophage phagocytic capacity. However, the key cells in which 11β-HSD1 exerts these effects remain unknown. Here we have identified neutrophils (CD11b+,Ly6G+,7/4+ cells) as the thioglycollate-recruited cells that most highly express 11β-HSD1 and show dynamic regulation of 11β-HSD1 in these cells during an inflammatory response. Flow cytometry showed high expression of 11β-HSD1 in peritoneal neutrophils early during inflammation, declining at later states. In contrast, expression in blood neutrophils continued to increase during inflammation. Ablation of monocytes/macrophages by treatment of CD11b-diphtheria-toxin receptor transgenic mice with diphtheria toxin prior to thioglycollate injection had no significant effect on 11β-HSD1 activity in peritoneal cells, consistent with neutrophils being the predominant 11β-HSD1 expressing cell type at this time. Similar to genetic deficiency in 11β-HSD1, acute inhibition of 11β-HSD1 activity during thioglycollate-induced peritonitis augmented inflammatory cell recruitment to the peritoneum. These data suggest that neutrophil 11β-HSD1 increases during inflammation to contribute to the restraining effect of glucocorticoids upon neutrophil-mediated inflammation. In human neutrophils, lipopolysaccharide activation increased 11β-HSD1 expression, suggesting the antiinflammatory effects of 11β-HSD1 in neutrophils may be conserved in humans. PMID:27145012

  14. 11β-Hydroxysteroid Dehydrogenase Type 1 Is Expressed in Neutrophils and Restrains an Inflammatory Response in Male Mice.

    PubMed

    Coutinho, Agnes E; Kipari, Tiina M J; Zhang, Zhenguang; Esteves, Cristina L; Lucas, Christopher D; Gilmour, James S; Webster, Scott P; Walker, Brian R; Hughes, Jeremy; Savill, John S; Seckl, Jonathan R; Rossi, Adriano G; Chapman, Karen E

    2016-07-01

    Endogenous glucocorticoid action within cells is enhanced by prereceptor metabolism by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts intrinsically inert cortisone and 11-dehydrocorticosterone into active cortisol and corticosterone, respectively. 11β-HSD1 is highly expressed in immune cells elicited to the mouse peritoneum during thioglycollate-induced peritonitis and is down-regulated as the inflammation resolves. During inflammation, 11β-HSD1-deficient mice show enhanced recruitment of inflammatory cells and delayed acquisition of macrophage phagocytic capacity. However, the key cells in which 11β-HSD1 exerts these effects remain unknown. Here we have identified neutrophils (CD11b(+),Ly6G(+),7/4(+) cells) as the thioglycollate-recruited cells that most highly express 11β-HSD1 and show dynamic regulation of 11β-HSD1 in these cells during an inflammatory response. Flow cytometry showed high expression of 11β-HSD1 in peritoneal neutrophils early during inflammation, declining at later states. In contrast, expression in blood neutrophils continued to increase during inflammation. Ablation of monocytes/macrophages by treatment of CD11b-diphtheria-toxin receptor transgenic mice with diphtheria toxin prior to thioglycollate injection had no significant effect on 11β-HSD1 activity in peritoneal cells, consistent with neutrophils being the predominant 11β-HSD1 expressing cell type at this time. Similar to genetic deficiency in 11β-HSD1, acute inhibition of 11β-HSD1 activity during thioglycollate-induced peritonitis augmented inflammatory cell recruitment to the peritoneum. These data suggest that neutrophil 11β-HSD1 increases during inflammation to contribute to the restraining effect of glucocorticoids upon neutrophil-mediated inflammation. In human neutrophils, lipopolysaccharide activation increased 11β-HSD1 expression, suggesting the antiinflammatory effects of 11β-HSD1 in neutrophils may be conserved in humans. PMID:27145012

  15. Assessment of Inflammation in an Acute on Chronic Model of Inflammatory Bowel Disease with Ultrasound Molecular Imaging

    PubMed Central

    Machtaler, Steven; Knieling, Ferdinand; Luong, Richard; Tian, Lu; Willmann, Jürgen K.

    2015-01-01

    Background: Ultrasound (US) molecular imaging has shown promise in assessing inflammation in preclinical, murine models of inflammatory bowel disease. These models, however, initiated acute inflammation on previously normal colons, in contrast to patients where acute exacerbations are often in chronically inflamed regions. In this study, we explored the potential of dual P- and E-selectin targeted US imaging for assessing acute inflammation on a murine quiescent chronic inflammatory background. Methods: Chronic colitis was induced using three cycles of 4% DSS in male FVB mice. Acute inflammation was initiated 2 weeks after the final DSS cycle through rectal administration of 1% TNBS. Mice at different stages of inflammation were imaged using a small animal ultrasound system following i.v. injection of microbubbles targeted to P- and E-selectin. In vivo imaging results were correlated with ex vivo immunofluorescence and histology. Results: Induction of acute inflammation resulted in an increase in the targeted US signal from 5.5 ± 5.1 arbitrary units (a.u.) at day 0 to 61.0 ± 45.2 a.u. (P < 0.0001) at day 1, 36.3 ± 33.1 a.u. at day 3, returning to levels similar to control at day 5. Immunofluorescence showed significant increase in the percentage of P- and E-selectin positive vessels at day 1 (P-selectin: 21.0 ± 7.1% of vessels; P < 0.05; E-selectin: 16.4 ±3.7%; P < 0.05) compared to day 0 (P-selectin: 10.3 ± 5.7%; E-selectin: 7.3 ± 7.0%). Conclusions: Acute inflammation can be accurately measured in a clinically relevant murine model of chronic IBD using ultrasound molecular imaging with a dual P- and E- selectin-targeted contrast agent. PMID:26379784

  16. Important Role of Platelets in Modulating Endotoxin-Induced Lung Inflammation in CFTR-Deficient Mice

    PubMed Central

    Zhao, Caiqi; Su, Emily M.; Yang, Xi; Gao, Zhaowei; Li, Ling; Wu, Haiya; Jiang, Yiyi; Su, Xiao

    2013-01-01

    Abstract Mutation of CFTR (cystic fibrosis transmembrane conductance regulator) leads to cystic fibrosis (CF). Patients with CF develop abnormalities of blood platelets and recurrent lung inflammation. However, whether CFTR-mutated platelets play a role in the development of lung inflammation is elusive. Therefore, we intratracheally challenged wildtype and F508del (a common type of CFTR mutation) mice with LPS to observe changes of F508del platelets in the peripheral blood and indexes of lung inflammation (BAL neutrophils and protein levels). Furthermore, we investigated whether or not and how F508del platelets modulate the LPS-induced acute lung inflammation by targeting anti-platelet aggregation, depletion of neutrophils, reconstitution of bone marrow or neutrophils, blockade of P-selectin glycoprotein ligand-1 (PSGL-1), platelet activating factor (PAF), and correction of mutated CFTR trafficking. We found that LPS-challenged F508del mice developed severe thrombocytopenia and had higher levels of plasma TXB2 coincided with neutrophilic lung inflammation relative to wildtype control. Inhibition of F508del platelet aggregation or depletion of F508del neutrophils diminished the LPS-induced lung inflammation in the F508del mice. Moreover, wildtype mice reconstituted with either F508del bone marrow or neutrophils developed worse thrombocytopenia. Blocking PSGL-1, platelet activating factor (PAF), or rectifying trafficking of mutated CFTR in F508del mice diminished and alveolar neutrophil transmigration in the LPS-challenged F508del mice. These findings suggest that F508del platelets and their interaction with neutrophils are requisite for the development of LPS-induced lung inflammation and injury. As such, targeting platelets might be an emerging strategy for dampening recurrent lung inflammation in cystic fibrosis patients. PMID:24367540

  17. Neutrophils in cystic fibrosis.

    PubMed

    Laval, Julie; Ralhan, Anjali; Hartl, Dominik

    2016-06-01

    Cystic fibrosis (CF) lung disease is characterized by chronic infection and inflammation. Among inflammatory cells, neutrophils represent the major cell population accumulating in the airways of CF patients. While neutrophils provide the first defensive cellular shield against bacterial and fungal pathogens, in chronic disease conditions such as CF these short-lived immune cells release their toxic granule contents that cause tissue remodeling and irreversible structural damage to the host. A variety of human and murine studies have analyzed neutrophils and their products in the context of CF, yet their precise functional role and therapeutic potential remain controversial and incompletely understood. Here, we summarize the current evidence in this field to shed light on the complex and multi-faceted role of neutrophils in CF lung disease. PMID:26854289

  18. CXCL5 Drives Neutrophil Recruitment in TH17-Mediated GN

    PubMed Central

    Disteldorf, Erik M.; Krebs, Christian F.; Paust, Hans-Joachim; Turner, Jan-Eric; Nouailles, Geraldine; Tittel, André; Meyer-Schwesinger, Catherine; Stege, Gesa; Brix, Silke; Velden, Joachim; Wiech, Thorsten; Helmchen, Udo; Steinmetz, Oliver M.; Peters, Anett; Bennstein, Sabrina B.; Kaffke, Anna; Llanto, Chrystel; Lira, Sergio A.; Mittrücker, Hans-Willi; Stahl, Rolf A.K.; Kurts, Christian; Kaufmann, Stefan H.E.

    2015-01-01

    Neutrophil trafficking to sites of inflammation is essential for the defense against bacterial and fungal infections, but also contributes to tissue damage in TH17-mediated autoimmunity. This process is regulated by chemokines, which often show an overlapping expression pattern and function in pathogen- and autoimmune-induced inflammatory reactions. Using a murine model of crescentic GN, we show that the pathogenic TH17/IL-17 immune response induces chemokine (C-X-C motif) ligand 5 (CXCL5) expression in kidney tubular cells, which recruits destructive neutrophils that contribute to renal tissue injury. By contrast, CXCL5 was dispensable for neutrophil recruitment and effective bacterial clearance in a murine model of acute bacterial pyelonephritis. In line with these findings, CXCL5 expression was highly upregulated in the kidneys of patients with ANCA-associated crescentic GN as opposed to patients with acute bacterial pyelonephritis. Our data therefore identify CXCL5 as a potential therapeutic target for the restriction of pathogenic neutrophil infiltration in TH17-mediated autoimmune diseases while leaving intact the neutrophil function in protective immunity against invading pathogens. PMID:24904089

  19. Systemic inflammation induces acute working memory deficits in the primed brain: relevance for delirium

    PubMed Central

    Murray, Carol; Sanderson, David J.; Barkus, Chris; Deacon, Robert M.J.; Rawlins, J. Nicholas P.; Bannerman, David M.; Cunningham, Colm

    2012-01-01

    Delirium is an acute, severe neuropsychiatric syndrome, characterized by cognitive deficits, that is highly prevalent in aging and dementia and is frequently precipitated by peripheral infections. Delirium is poorly understood and the lack of biologically relevant animal models has limited basic research. Here we hypothesized that synaptic loss and accompanying microglial priming during chronic neurodegeneration in the ME7 mouse model of prion disease predisposes these animals to acute dysfunction in the region of prior pathology upon systemic inflammatory activation. Lipopolysaccharide (LPS; 100 μg/kg) induced acute and transient working memory deficits in ME7 animals on a novel T-maze task, but did not do so in normal animals. LPS-treated ME7 animals showed heightened and prolonged transcription of inflammatory mediators in the central nervous system (CNS), compared with LPS-treated normal animals, despite having equivalent levels of circulating cytokines. The demonstration that prior synaptic loss and microglial priming are predisposing factors for acute cognitive impairments induced by systemic inflammation suggests an important animal model with which to study aspects of delirium during dementia. PMID:20471138

  20. Effects of acteoside on lipopolysaccharide-induced inflammation in acute lung injury via regulation of NF-κB pathway in vivo and in vitro

    SciTech Connect

    Jing, Wang; Chunhua, Ma Shumin, Wang

    2015-06-01

    The purpose of the present study was to investigate the protective role of acteoside (AC) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). BalB/c mice intraperitoneally received AC (30, and 60 mg/kg) or dexamethasone (2 mg/kg) 2 h prior to or after intratracheal instillation of LPS. Treatment with AC significantly decreased lung wet-to-dry weight (W/D) ratio and lung myeloperoxidase (MPO) activity and ameliorated LPS-induced lung histopathological changes. In addition, AC increased super oxide dismutase (SOD) level and inhibited malondialdehyde (MDA) content, total cell and neutrophil infiltrations, and levels of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) in LPS-stimulated mice. Furthermore, we demonstrated that AC inhibited the phosphorylation of IκBα, nuclear factor-κB (NF-κB) p65, inhibitor of nuclear factor kappa-B kinase-α (IKK-α) and inhibitor of nuclear factor kappa-B kinase-β (IKKβ) in LPS-induced inflammation in A549 cells. Our data suggested that LPS evoked the inflammatory response in lung epithelial cells A549. The experimental results indicated that the protective mechanism of AC might be attributed partly to the inhibition of proinflammatory cytokine production and NF-κB activation. - Highlights: • Acteoside inhibited inflammation in LPS-induced lung injury in mice. • Acteoside inhibited inflammation in lung epithelial cells A549. • Acteoside inhibited NF-kB activation in LPS-induced mice and lung epithelial cells A549.

  1. THE DETERMINATION OF CORRELATION LINKAGES BETWEEN LEVEL OF REACTIVE OXYGEN SPECIES, CONTENTS OF NEUTROPHILES AND BLOOD GAS COMPOSITION IN EXPERIMENTAL ACUTE LUNG INJURY.

    PubMed

    Marushchak, M; Krynytska, I; Petrenko, N; Klishch, I

    2016-04-01

    Acute lung injury (ALI) remains a major cause of acute respiratory failure and death of patients. Despite the achievements at the current stage in treatment, morbidity and mortality of ALI remain high. However, a deeper understanding of the pathogenetic links of ALI, identifying of the predictors that positively or negatively influence on the course of the syndrome, the correlation between some pathogenetic mechanisms will improve therapeutic strategies for patients with ALI, which makes the actuality of this study. The aim of the research was to detect additional pathogenetic mechanisms of the acute lung injury development in rats based on a comparative analysis of the correlations between the level of reactive oxygen species in blood and bronchoalveolar lavage, contents of neutrophils and blood gas composition. The experiments were performed on 54 white nonlinear mature male rats 200-220g in weight. The animals were divided into 5 groups: the 1st - control group (n=6), the 2nd - animals affected by hydrochloric acid for 2 hours (n=12), the 3rd - animals affected by hydrochloric acid for 6 hours (n=12), the 4th - animals affected by hydrochloric acid for 12 hours (n=12), the 5th - animals affected by hydrochloric acid for 24 hours (n=12). Correlation analysis was performed between all the studied indices. Coefficient of linear correlation (r) and its fidelity (p) was calculated that was accordingly denoted in the tables (correlation matrices). The correlation coefficient was significant at p<0.05. Conducted correlative analysis showed that the level of ROS in neutrophils of blood in rats with modeled ALI had a high negative correlative linkage with pH of arterial blood in 2nd and 3rd experimental groups. Conducted correlative analysis of data in BAL showed that the level of ROS in neutrophils in rats with modeled ALI had a strong positive correlative relationship with the number of white blood cells in 3-rd, 4-th and 5-th experimental groups and positive

  2. Acute systemic exposure to silver-based nanoparticles induces hepatotoxicity and NLRP3-dependent inflammation.

    PubMed

    Ramadi, Khalil B; Mohamed, Yassir A; Al-Sbiei, Ashraf; Almarzooqi, Saeeda; Bashir, Ghada; Al Dhanhani, Aisha; Sarawathiamma, Dhanya; Qadri, Shahnaz; Yasin, Javed; Nemmar, Abderrahim; Fernandez-Cabezudo, Maria J; Haik, Yousef; Al-Ramadi, Basel K

    2016-10-01

    Nanoparticles (NPs) are increasingly being commercialized for use in biomedicine. NP toxicity following acute or chronic exposure has been described, but mechanistic insight into this process remains incomplete. Recent evidence from in vitro studies suggested a role for NLRP3 in NP cytotoxicity. In this study, we investigated the effect of systemic administration of composite inorganic NP, consisting of Ag:Cu:B (dose range 1-20 mg/kg), on the early acute (4-24 h post-exposure) and late phase response (96 h post-exposure) in normal and NLRP3-deficient mice. Our findings indicate that systemic exposure (≥2 mg/kg) was associated with acute liver injury due to preferential accumulation of NP in this organ and resulted in elevated AST, ALT and LDH levels. Moreover, within 24 h of NP administration, there was a dose-dependent increase in intraperitoneal neutrophil recruitment and upregulation in gene expression of several proinflammatory mediators, including TNF-α, IL-1β and S100A9. Histological analysis of liver tissue revealed evidence of dose-dependent hepatocyte necrosis, increase in sinusoidal Kupffer cells, lobular granulomas and foci of abscess formation which were most pronounced at 24 h following NP administration. NP deposition in the liver led to a significant upregulation in gene expression of S100A9, an endogenous danger signal recognition molecule of phagocytes, IL-1β and IL-6. The extent of proinflammatory cytokine activation and hepatotoxicity was significantly attenuated in mice deficient in the NLRP3 inflammasome, demonstrating the critical role of this innate immune system recognition receptor in the response to NP. PMID:26956548

  3. The role of phosphoenolpyruvate carboxykinase in neuronal steroidogenesis under acute inflammation.

    PubMed

    Sadasivam, Mohanraj; Ramatchandirin, Balamurugan; Balakrishnan, Sivasangari; Selvaraj, Karthikeyan; Prahalathan, Chidambaram

    2014-12-01

    Phosphoenolpyruvate carboxykinase (PEPCK) is a key gluconeogenic enzyme found in many tissues throughout the body including brain. In the present study, we have investigated the effect of bacterial lipopolysaccharide (LPS) on PEPCK and its role in neuronal steroidogenesis. Adult female albino rats were administered LPS (5mg/kg body weight) to induce acute inflammation. LPS administration resulted in a significant increase of PEPCK mRNA expression with concomitant increase in mRNA levels of steroidogenic acute regulatory (StAR) protein and other steroidogenic enzymes including 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β-hydroxysteroid dehydrogenase (17β-HSD) and aromatase in brain tissue. Further, the inhibition of PEPCK expression by glipizide significantly decreased the mRNA expression of steroidogenic proteins and concurrently increased the mRNA levels of proinflammatory cytokines under LPS administration. The results of this study suggest a novel finding that PEPCK may have an important role in neuronal steroidogenesis; which serves as an adaptive response under inflammation. PMID:25256278

  4. Association between size-segregated particles in ambient air and acute respiratory inflammation.

    PubMed

    Han, Yiqun; Zhu, Tong; Guan, Tianjia; Zhu, Yi; Liu, Jun; Ji, Yunfang; Gao, Shuna; Wang, Fei; Lu, Huimin; Huang, Wei

    2016-09-15

    The health effects of particulate matter (PM) in ambient air are well documented. However, whether PM size plays a critical role in these effects is unclear in the population studies. This study investigated the association between the ambient concentrations of PM with varies sizes (5.6-560nm) and a biomarker of acute respiratory inflammation, the fraction of exhaled nitric oxide (FENO), in a panel of 55 elderly people in Shanghai, China. Linear mixed-effect model was fitted to estimate the association between FENO and moving average concentrations of PM, adjusting for temperature, relative humidity, day of the week, and age. Results showed that among the measured particles size range, Aitken-mode (20-100nm) particles had the strongest positive association with increased FENO when using moving average concentration of PM up to 24h prior to visits. The estimates were robust to the adjustment for gender, condition of chronic disease and use of medication, and to the sensitive analysis using different times of visits. The authors concluded that the association between acute respiratory inflammation and PM concentration of fine particulates depended on particle size, and suggested Aitken-mode particles may be the most responsible for this adverse health association. PMID:27179679

  5. Acute inflammation alters adult hippocampal neurogenesis in a multiple sclerosis mouse model.

    PubMed

    Giannakopoulou, A; Grigoriadis, N; Bekiari, C; Lourbopoulos, A; Dori, I; Tsingotjidou, A S; Michaloudi, H; Papadopoulos, G C

    2013-07-01

    Neural precursor cells (NPCs) located in the subgranular zone (SGZ) of the dentate gyrus (DG) give rise to thousands of new cells every day, mainly hippocampal neurons, which are integrated into existing neuronal circuits. Aging and chronic degenerative disorders have been shown to impair hippocampal neurogenesis, but the consequence of inflammation is somewhat controversial. The present study demonstrates that the inflammatory environment prevailing in the brain of experimental autoimmune encephalomyelitis (EAE) mice enhances the proliferation of NPCs in SGZ of the dorsal DG and alters the proportion between radial glial cells and newborn neuroblasts. The injection protocol of the cell cycle marker bromodeoxyuridine and the immunohistochemical techniques that were employed revealed that the proliferation of NPCs is increased approximately twofold in the SGZ of the dorsal DG of EAE mice, at the acute phase of the disease. However, although EAE animals exhibited significant higher percentage of newborn radial-glia-like NPCs, the mean percentage of newborn neuroblasts rather was decreased, indicating that the robust NPCs proliferation is not followed by a proportional production of newborn neurons. Significant positive correlations were detected between the number of proliferating cells in the SGZ and the clinical score or degree of brain inflammation of diseased animals. Finally, enhanced neuroproliferation in the acute phase of EAE was not found to trigger compensatory apoptotic mechanisms. The possible causes of altered neurogenesis observed in this study emphasize the need to understand more precisely the mechanisms regulating adult neurogenesis under both normal and pathological conditions. PMID:23606574

  6. Corosolic acid ameliorates acute inflammation through inhibition of IRAK-1 phosphorylation in macrophages.

    PubMed

    Kim, Seung-Jae; Cha, Ji-Young; Kang, Hye Suk; Lee, Jae-Ho; Lee, Ji Yoon; Park, Jae-Hyung; Bae, Jae-Hoon; Song, Dae-Kyu; Im, Seung-Soon

    2016-05-01

    Corosolic acid (CA), a triterpenoid compound isolated from Lagerstroemia speciosa L. (Banaba) leaves, exerts anti-inflammatory effects by regulating phosphorylation of interleukin receptor-associated kinase (IRAK)-2 via the NF-κB cascade. However, the protective effect of CA against endotoxic shock has not been reported. LPS (200 ng/mL, 30 min) induced phosphorylation of IRAK-1 and treatment with CA (10 μM) significantly attenuated this effect. In addition, CA also reduced protein levels of NLRP3 and ASC which are the main components of the inflammasome in BMDMs. LPS-induced inflammasome assembly through activation of IRAK-1 was down-regulated by CA challenge. Treatment with Bay11-7082, an inhibitor of IκB-α, had no effect on CA-mediated inhibition of IRAK-1 activation, indicating that CA-mediated attenuation of IRAK-1 phosphorylation was independent of NF-κB signaling. These results demonstrate that CA ameliorates acute inflammation in mouse BMDMs and CA may be useful as a pharmacological agent to prevent acute inflammation. [BMB Reports 2016; 49(5): 276-281]. PMID:26615974

  7. Administration of Reconstituted Polyphenol Oil Bodies Efficiently Suppresses Dendritic Cell Inflammatory Pathways and Acute Intestinal Inflammation

    PubMed Central

    Cavalcanti, Elisabetta; Vadrucci, Elisa; Delvecchio, Francesca Romana; Addabbo, Francesco; Bettini, Simona; Liou, Rachel; Monsurrò, Vladia; Huang, Alex Yee-Chen; Pizarro, Theresa Torres

    2014-01-01

    Polyphenols are natural compounds capable of interfering with the inflammatory pathways of several in vitro model systems. In this study, we developed a stable and effective strategy to administer polyphenols to treat in vivo models of acute intestinal inflammation. The in vitro suppressive properties of several polyphenols were first tested and compared for dendritic cells (DCs) production of inflammatory cytokines. A combination of the polyphenols, quercetin and piperine, were then encapsulated into reconstituted oil bodies (OBs) in order to increase their stability. Our results showed that administration of low dose reconstituted polyphenol OBs inhibited LPS-mediated inflammatory cytokine secretion, including IL-6, IL-23, and IL-12, while increasing IL-10 and IL-1Rα production. Mice treated with the polyphenol-containing reconstituted OBs (ROBs) were partially protected from dextran sodium sulfate (DSS)-induced colitis and associated weight loss, while mortality and inflammatory scores revealed an overall anti-inflammatory effect that was likely mediated by impaired DC immune responses. Our study indicates that the administration of reconstituted quercetin and piperine-containing OBs may represent an effective and potent anti-inflammatory strategy to treat acute intestinal inflammation. PMID:24558444

  8. Effect of iron supplementation on oxidative stress and intestinal inflammation in rats with acute colitis.

    PubMed

    Aghdassi, E; Carrier, J; Cullen, J; Tischler, M; Allard, J P

    2001-05-01

    In this study, we investigated the effect of intraperitoneal iron dextran (100 mg/100 g body weight) on oxidative stress and intestinal inflammation in rats with acute colitis induced by 5% dextran sulfate sodium. In both colitis and healthy animals, disease activity index, crypt and inflammatory scores, colon length, plasma and colonic lipid peroxides, and plasma vitamins E, C, and retinol were assessed. The results showed that iron-supplemented groups had moderate iron deposition in the colonic submucosa and lamina propria. In the colitis group supplemented with iron, colon length was significantly shorter; disease activity index, crypt, and inflammatory scores and colonic lipid peroxides were significantly higher; and plasma alpha-tocopherol was significantly lower compared to the colitis group without iron supplementation. There was no intestinal inflammation and no significant increase in colonic lipid peroxides in healthy rats supplemented with iron. In conclusion, iron injection resulted in an increased oxidative stress and intestinal inflammation in rats with colitis but not in healthy rats. PMID:11341654

  9. Pitavastatin is a potent anti-inflammatory agent in the rat paw model of acute inflammation.

    PubMed

    Qadir, Farida; Alam, Syed Mahboob; Siddiqi, Abeer Qamar; Kamran, Afshan

    2014-11-01

    Statins are used extensively as anti-hyperlipidemic agents. In addition to curtailing cholesterol synthesis they have been found to have multiple actions unrelated to cholesterol lowering "the pleiotropic effects," which includes inhibition of inflammation. We aimed at investigating the effect of pitavastatin a 3rd generation statin, in suppressing acute inflammation in rat paw edema model. Male Sprague-Dawley rats were randomly assigned to one of five groups (n=8): Control, indomethacin and pitavastatin (0.2mg/kg, 0.4mg/kg, 0.8mg/kg) treated. 1hour following treatment, inflammation was induced by sub-planter injection of egg albumin into the hind paw. Anti-inflammatory effect was evaluated by measurement of edema formation every half hour for three hours, assessment of polymorphonuclear leukocyte (PMNL) infiltration and measurement of tissue damage in skin biopsies. Ascending doses of pitavastatin were found to attenuate these parameters. The lowest dose of pitavastatin (0.2mg/kg) was found to significantly reduce edema volume, PMNL infiltration and tissue damage. The efficacy of the smallest dose was found comparable to indomethacin. PMID:26045381

  10. Oxymatrine Prevents NF-κB Nuclear Translocation And Ameliorates Acute Intestinal Inflammation

    PubMed Central

    Guzman, Javier Rivera; Koo, Ja Seol; Goldsmith, Jason R.; Mühlbauer, Marcus; Narula, Acharan; Jobin, Christian

    2013-01-01

    Oxymatrine is a traditional Chinese herbal product that exhibits anti-inflammatory effects in models of heart, brain and liver injury. We investigated the impact of oxymatrine in an acute model of intestinal injury and inflammation. Oxymatrine significantly decreased LPS-induced NF-κB-driven luciferase activity, correlating with diminished induction of Cxcl2, Tnfα and Il6 mRNA expression in rat IEC-6 and murine BMDC. Although oxymatrine decreased LPS-induced p65 nuclear translocation and binding to the Cxcl2 gene promoter, this effect was independent of IκBα degradation/phosphorylation. DSS-induced weight loss and histological damage were ameliorated in oxymatrine-treated C57BL/6-WT-mice. While this effect correlated with reduced colonic Il6 and Il1β mRNA accumulation, global NF-κB activity as measured in NF-κBEGFP mice was unaffected. Our data demonstrate that oxymatrine reduces LPS-induced NF-κB nuclear translocation and activity independently of IκBα status, prevents intestinal inflammation through blockade of inflammatory signaling and ameliorates overall intestinal inflammation in vivo. PMID:23568217

  11. Changes in IgG and total plasma protein glycomes in acute systemic inflammation

    PubMed Central

    Novokmet, Mislav; Lukić, Edita; Vučković, Frano; –Durić, Željko; Keser, Toma; Rajšl, Katarina; Remondini, Daniel; Castellani, Gastone; Gašparović, Hrvoje; Gornik, Olga; Lauc, Gordan

    2014-01-01

    Recovery after cardiac surgery is a complex process that has to compensate for both individual variability and extensive tissue damage in the context of systemic inflammation. Protein glycosylation is essential in many steps of the inflammatory cascade, but due to technological limitations the role of individual variation in glycosylation in systemic inflammation has not been addressed until now. We analysed composition of the total plasma and IgG N-glycomes in 107 patients undergoing cardiac surgery. In nearly all individuals plasma N-glycome underwent the same pattern of changes in the first 72 h, revealing a general mechanism of glycosylation changes. To the contrary, changes in the IgG glycome were very individualized. Bi-clustering analysis revealed the existence of four distinct patterns of changes. One of them, characterized by a rapid increase in galactosylated glycoforms, was associated with nearly double mortality risk measured by EuroSCORE II. Our results indicate that individual variation in IgG glycosylation changes during acute systemic inflammation associates with increased mortality risk and indicates new avenues for the development of personalized diagnostic and therapeutic approach. PMID:24614541

  12. Aging delays resolution of acute inflammation in mice: reprogramming the host response with novel nano-proresolving medicines.

    PubMed

    Arnardottir, Hildur H; Dalli, Jesmond; Colas, Romain A; Shinohara, Masakazu; Serhan, Charles N

    2014-10-15

    Aging is associated with an overt inflammatory phenotype and physiological decline. Specialized proresolving lipid mediators (SPMs) are endogenous autacoids that actively promote resolution of inflammation. In this study, we investigated resolution of acute inflammation in aging and the roles of SPMs. Using a self-resolving peritonitis and resolution indices coupled with lipid mediator metabololipidomics, we found that aged mice had both delayed resolution and reduced SPMs. The SPM precursor docosahexaenoic acid accelerated resolution via increased SPMs and promoted human monocyte reprogramming. In aged mice, novel nano-proresolving medicines carrying aspirin-triggered resolvins D1 and D3 reduced inflammation by promoting efferocytosis. These findings provide evidence for age-dependent resolution pathways in acute inflammation and novel means to activate resolution. PMID:25217168

  13. Aging delays resolution of acute inflammation in mice: reprogramming the host response with novel nanoproresolving medicines1

    PubMed Central

    Arnardottir, Hildur H.; Dalli, Jesmond; Colas, Romain A.; Shinohara, Masakazu; Serhan, Charles N.

    2014-01-01

    Aging is associated with an overt inflammatory phenotype and physiological decline. Specialized proresolving lipid mediators (SPM3) are endogenous autacoids that actively promote resolution of inflammation. Here, we investigated resolution of acute inflammation in aging and the roles of SPM. Using a self-resolving peritonitis and resolution indices coupled with lipid mediator (LM) metabololipidomics, we found that aged mice had both delayed resolution and reduced SPM. The SPM precursor docosahexaenoic acid (DHA) accelerated resolution via increased SPM and promoted human monocyte reprogramming. In aged mice, novel nanoproresolving medicines (NPRM) carrying aspirin-triggered (AT)-resolvin (Rv)D1 and AT-RvD3 (Resolvin-NPRM) reduced inflammation by promoting efferocytosis. These findings provide evidence for age-dependent resolution pathways in acute inflammation and novel means to activate resolution. PMID:25217168

  14. AUTOINFLAMMATORY PUSTULAR NEUTROPHILIC DISEASES

    PubMed Central

    Naik, Haley B.; Cowen, Edward W.

    2013-01-01

    SYNOPSIS The inflammatory pustular dermatoses constitute a spectrum of non-infectious conditions ranging from localized involvement to generalized disease with associated acute systemic inflammation and multi-organ involvement. Despite the variability in extent and severity of cutaneous presentation, each of these diseases is characterized by non-infectious neutrophilic intra-epidermal microabscesses. Many share systemic findings including fever, elevated inflammatory markers, inflammatory bowel disease and/or osteoarticular involvement, suggesting potential common pathogenic links (Figure 1). The recent discoveries of several genes responsible for heritable pustular diseases have revealed a distinct link between pustular skin disease and regulation of innate immunity. These genetic advances have led to a deeper exploration of common pathways in pustular skin disease and offer the potential for a new era of biologic therapy which targets these shared pathways. This chapter provides a new categorization of inflammatory pustular dermatoses in the context of recent genetic and biologic insights. We will discuss recently-described monogenic diseases with pustular phenotypes, including deficiency of IL-1 receptor antagonist (DIRA), deficiency of the IL-36 receptor antagonist (DITRA), CARD14-associated pustular psoriasis (CAMPS), and pyogenic arthritis, pyoderma gangrenosum, acne (PAPA). We will then discuss how these new genetic advancements may inform how we view previously described pustular diseases, including pustular psoriasis and its clinical variants, with a focus on historical classification by clinical phenotype. PMID:23827244

  15. Risk Factors for Acute Kidney Injury after Coronary Artery Bypass Surgery and Its Detection Using Neutrophil Gelatinase-Associated Lipocalin

    PubMed Central

    Onk, Oruç Alper; Onk, Didem; Ozcelik, Fatih; Gunay, Murat; Turkmen, Kultigin

    2016-01-01

    Introduction Acute kidney injury (AKI) is an important complication of cardiac surgery due to its high mortality. The aim of the present study was to detect the factors leading to AKI in patients who underwent coronary artery bypass surgery (CABS) and also to determine the optimal timing for detecting AKI using the biomarker neutrophil gelatinase-associated lipocalin (NGAL). Materials and Methods The records of 375 patients who underwent CABS were reviewed in this case-control study. Ejection fraction (EF), common carotid artery intima-media thickness (CCA-IMT) and cross-clamp (C-C) time of the patients were recorded. Blood samples were taken from all patients on preoperative day 1 as well as 6, 12, 24, 36, 48 h and 7 days after operation. Biochemical parameters were studied in patients with and without AKI. Results According to the Risk Injury Failure Loss End Stage criteria, 24 patients had renal risk, 17 had injury and 4 had failure. Postoperative 24-hour serum creatinine levels indicated the risk of renal dysfunction for only 4 patients in the AKI group. CCA-IMT, C-C time, haematocrit (HCT) and preoperative interleukin-6 levels were significantly higher in the AKI group than in the non-AKI group. Postoperative 6- and 12-hour NGAL levels in the AKI group correlated with postoperative 36-hour serum creatinine levels. The optimal cut-off values for postoperative 6- and 12-hour NGAL test were 310 and 283 ng/ml, respectively. The area under the curve was higher in the 12-hour NGAL test (p < 0.0086). Conclusion The number of stenotic coronary arteries, EF, CCA-IMT and HCT are all important risk factors. Early postoperative NGAL results were highly specific for the early recognition of AKI. PMID:27275158

  16. Effects of ghrelin on the apoptosis of human neutrophils in vitro

    PubMed Central

    Li, Bin; Zeng, Mian; Zheng, Haichong; Huang, Chunrong; He, Wanmei; Lu, Guifang; Li, Xia; Chen, Yanzhu; Xie, Ruijie

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is characterized by lung inflammation and the diffuse infiltration of neutrophils into the alveolar space. Neutrophils are abundant, short-lived leukocytes that play a key role in immune defense against microbial infections. These cells die via apoptosis following the activation and uptake of microbes, and will also enter apoptosis spontaneously at the end of their lifespan if they do not encounter pathogens. Apoptosis is essential for the removal of neutrophils from inflamed tissues and for the timely resolution of neutrophilic inflammation. Ghrelin is an endogenous ligand for the growth hormone (GH) secretagogue receptor, produced and secreted mainly from the stomach. Previous studies have reported that ghrelin exerts anti-inflammatory effects in lung injury through the regulation of the apoptosis of different cell types; however, the ability of ghrelin to regulate alveolar neutrophil apoptosis remains largely undefined. We hypothesized that ghrelin may have the ability to modulate neutrophil apoptosis. In this study, to examine this hypothesis, we investigated the effects of ghrelin on freshly isolated neutrophils in vitro. Our findings demonstrated a decrease in the apoptotic ratio (as shown by flow cytometry), as well as in the percentage of cells with decreased mitochondrial membrane potential (ΔΨm) and in the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick-end labeling-positive rate, accompanied by an increased B-cell lymphoma 2/Bax ratio and the downregulation of cleaved caspase-3 in neutrophils following exposure to lipopolysaccharide (100 ng/ml). However, pre-treatment with ghrelin at a physiological level (100 nM) did not have a notable influence on the neutrophils in all the aforementioned tests. Our findings suggest that ghrelin may not possess the ability to modulate the neutrophil lifespan in vitro. PMID:27431014

  17. Effects of ghrelin on the apoptosis of human neutrophils in vitro.

    PubMed

    Li, Bin; Zeng, Mian; Zheng, Haichong; Huang, Chunrong; He, Wanmei; Lu, Guifang; Li, Xia; Chen, Yanzhu; Xie, Ruijie

    2016-09-01

    Acute respiratory distress syndrome (ARDS) is characterized by lung inflammation and the diffuse infiltration of neutrophils into the alveolar space. Neutrophils are abundant, short-lived leukocytes that play a key role in immune defense against microbial infections. These cells die via apoptosis following the activation and uptake of microbes, and will also enter apoptosis spontaneously at the end of their lifespan if they do not encounter pathogens. Apoptosis is essential for the removal of neutrophils from inflamed tissues and for the timely resolution of neutrophilic inflammation. Ghrelin is an endogenous ligand for the growth hormone (GH) secretagogue receptor, produced and secreted mainly from the stomach. Previous studies have reported that ghrelin exerts anti-inflammatory effects in lung injury through the regulation of the apoptosis of different cell types; however, the ability of ghrelin to regulate alveolar neutrophil apoptosis remains largely undefined. We hypothesized that ghrelin may have the ability to modulate neutrophil apoptosis. In this study, to examine this hypothesis, we investigated the effects of ghrelin on freshly isolated neutrophils in vitro. Our findings demonstrated a decrease in the apoptotic ratio (as shown by flow cytometry), as well as in the percentage of cells with decreased mitochondrial membrane potential (ΔΨm) and in the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick‑end labeling-positive rate, accompanied by an increased B-cell lymphoma 2/Bax ratio and the downregulation of cleaved caspase-3 in neutrophils following exposure to lipopolysaccharide (100 ng/ml). However, pre-treatment with ghrelin at a physiological level (100 nM) did not have a notable influence on the neutrophils in all the aforementioned tests. Our findings suggest that ghrelin may not possess the ability to modulate the neutrophil lifespan in vitro. PMID:27431014

  18. Activation of Myenteric Glia during Acute Inflammation In Vitro and In Vivo

    PubMed Central

    Rosenbaum, Corinna; Schick, Martin Alexander; Wollborn, Jakob; Heider, Andreas; Scholz, Claus-Jürgen; Cecil, Alexander; Niesler, Beate; Hirrlinger, Johannes; Walles, Heike; Metzger, Marco

    2016-01-01

    -expressing glial subpopulation as particularly susceptible and responsive to acute systemic inflammation of the gut wall and complement knowledge on glial involvement in mucosal inflammation of the intestine. PMID:26964064

  19. Malnutrition and inflammation in acute kidney injury due to earthquake-related crush syndrome

    PubMed Central

    2010-01-01

    Background Malnutrition and inflammation are common and serious complications in patients with acute kidney injury (AKI). However, the profile of these complications in patients with AKI caused by crush syndrome (CS) remains unclear. This study describes the clinical characteristics of malnutrition and inflammation in patients with AKI and CS due to the Wenchuan earthquake. Methods One thousand and twelve victims and eighteen healthy adults were recruited to the study. They were divided into five groups: Group A was composed of victims without CS and AKI (904 cases); Group B was composed of patients with CS and AKI who haven't received renal replacement therapy (RRT) (57 cases); and Group C was composed of patients with CS and AKI receiving RRT (25 cases); Group D was composed of earthquake victims with AKI but without CS (26 cases); and Group E was composed of 18 healthy adult controls. The C-reactive protein (CRP), prealbumin, transferrin, interleukin-6 and TNF-α were measured and compared between Group E and 18 patients from Group C. Results The results indicate that participants in Group C had the highest level of serum creatinine, blood urea nitrogen and uric acid. Approximately 92% of patients with CS who had RRT were suffering from hypoalbuminemia. The interleukin-6 and CRP levels were significantly higher in patients with CS AKI receiving RRT than in the control group. Patients in Group C received the highest dosages of albumin, plasma or red blood cell transfusions. One patient in Group C died during treatment. Conclusions Malnutrition and inflammation was common in patients with earthquake-related CS and had a negative impact on the prognosis of these subjects. The results of this study indicate that the use of RRT, intensive nutritional supplementation and transfusion alleviated the degree of malnutrition and inflammation in hemodialysis patients with crush syndrome. PMID:20346168

  20. Neutrophil elastase mediates acute pathogenesis and is a determinant of long-term behavioral recovery after traumatic injury to the immature brain

    PubMed Central

    Semple, Bridgette D; Trivedi, Alpa; Gimlin, Kayleen; Noble-Haeusslein, Linda J

    2014-01-01

    , WT mice treated acutely with the NE inhibitor showed no long-term behavioral or structural improvements. Together, these findings validate the central role of NE in both acute pathogenesis and chronic functional recovery, and support future exploration of the therapeutic window, taking into account the prolonged period of neutrophil trafficking into the injured immature brain. PMID:25497734

  1. Neutrophil elastase mediates acute pathogenesis and is a determinant of long-term behavioral recovery after traumatic injury to the immature brain.

    PubMed

    Semple, Bridgette D; Trivedi, Alpa; Gimlin, Kayleen; Noble-Haeusslein, Linda J

    2015-02-01

    , WT mice treated acutely with the NE inhibitor showed no long-term behavioral or structural improvements. Together, these findings validate the central role of NE in both acute pathogenesis and chronic functional recovery, and support future exploration of the therapeutic window, taking into account the prolonged period of neutrophil trafficking into the injured immature brain. PMID:25497734

  2. Antibiotic and Antiinflammatory Therapy Transiently Reduces Inflammation and Hypercoagulation in Acutely SIV-Infected Pigtailed Macaques

    PubMed Central

    Pandrea, Ivona; Xu, Cuiling; Stock, Jennifer L.; Frank, Daniel N.; Ma, Dongzhu; Policicchio, Benjamin B.; He, Tianyu; Kristoff, Jan; Cornell, Elaine; Haret-Richter, George S.; Trichel, Anita; Ribeiro, Ruy M.; Tracy, Russell; Wilson, Cara; Landay, Alan L.; Apetrei, Cristian

    2016-01-01

    Increased chronic immune activation and inflammation are hallmarks of HIV/SIV infection and are highly correlated with progression to AIDS and development of non-AIDS comorbidities, such as hypercoagulability and cardiovascular disease. Intestinal dysfunction resulting in microbial translocation has been proposed as a lead cause of systemic immune activation and hypercoagulability in HIV/SIV infection. Our goal was to assess the biological and clinical impact of a therapeutic strategy designed to reduce microbial translocation through reduction of the microbial content of the intestine (Rifaximin-RFX) and of gut inflammation (Sulfasalazine-SFZ). RFX is an intraluminal antibiotic that was successfully used in patients with hepatic encephalopathy. SFZ is an antiinflammatory drug successfully used in patients with mild to moderate inflammatory bowel disease. Both these clinical conditions are associated with increased microbial translocation, similar to HIV-infected patients. Treatment was administered for 90 days to five acutely SIV-infected pigtailed macaques (PTMs) starting at the time of infection; seven untreated SIVsab-infected PTMs were used as controls. RFX+SFZ were also administered for 90 days to three chronically SIVsab-infected PTMs. RFX+SFZ administration during acute SIVsab infection of PTMs resulted in: significantly lower microbial translocation, lower systemic immune activation, lower viral replication, better preservation of mucosal CD4+ T cells and significantly lower levels of hypercoagulation biomarkers. This effect was clear during the first 40 days of treatment and was lost during the last stages of treatment. Administration of RFX+SFZ to chronically SIVsab–infected PTMs had no discernible effect on infection. Our data thus indicate that early RFX+SFZ administration transiently improves the natural history of acute and postacute SIV infection, but has no effect during chronic infection. PMID:26764484

  3. Antibiotic and Antiinflammatory Therapy Transiently Reduces Inflammation and Hypercoagulation in Acutely SIV-Infected Pigtailed Macaques.

    PubMed

    Pandrea, Ivona; Xu, Cuiling; Stock, Jennifer L; Frank, Daniel N; Ma, Dongzhu; Policicchio, Benjamin B; He, Tianyu; Kristoff, Jan; Cornell, Elaine; Haret-Richter, George S; Trichel, Anita; Ribeiro, Ruy M; Tracy, Russell; Wilson, Cara; Landay, Alan L; Apetrei, Cristian

    2016-01-01

    Increased chronic immune activation and inflammation are hallmarks of HIV/SIV infection and are highly correlated with progression to AIDS and development of non-AIDS comorbidities, such as hypercoagulability and cardiovascular disease. Intestinal dysfunction resulting in microbial translocation has been proposed as a lead cause of systemic immune activation and hypercoagulability in HIV/SIV infection. Our goal was to assess the biological and clinical impact of a therapeutic strategy designed to reduce microbial translocation through reduction of the microbial content of the intestine (Rifaximin-RFX) and of gut inflammation (Sulfasalazine-SFZ). RFX is an intraluminal antibiotic that was successfully used in patients with hepatic encephalopathy. SFZ is an antiinflammatory drug successfully used in patients with mild to moderate inflammatory bowel disease. Both these clinical conditions are associated with increased microbial translocation, similar to HIV-infected patients. Treatment was administered for 90 days to five acutely SIV-infected pigtailed macaques (PTMs) starting at the time of infection; seven untreated SIVsab-infected PTMs were used as controls. RFX+SFZ were also administered for 90 days to three chronically SIVsab-infected PTMs. RFX+SFZ administration during acute SIVsab infection of PTMs resulted in: significantly lower microbial translocation, lower systemic immune activation, lower viral replication, better preservation of mucosal CD4+ T cells and significantly lower levels of hypercoagulation biomarkers. This effect was clear during the first 40 days of treatment and was lost during the last stages of treatment. Administration of RFX+SFZ to chronically SIVsab-infected PTMs had no discernible effect on infection. Our data thus indicate that early RFX+SFZ administration transiently improves the natural history of acute and postacute SIV infection, but has no effect during chronic infection. PMID:26764484

  4. Central Nervous System Viral Invasion and Inflammation During Acute HIV Infection

    PubMed Central

    Valcour, Victor; Chalermchai, Thep; Sailasuta, Napapon; Marovich, Mary; Lerdlum, Sukalaya; Suttichom, Duanghathai; Suwanwela, Nijasri C.; Jagodzinski, Linda; Michael, Nelson; Spudich, Serena; van Griensven, Frits; de Souza, Mark; Kim, Jerome; Ananworanich, Jintanat

    2012-01-01

    Background. Understanding the earliest central nervous system (CNS) events during human immunodeficiency virus (HIV) infection is crucial to knowledge of neuropathogenesis, but these have not previously been described in humans. Methods. Twenty individuals who had acute HIV infection (Fiebig stages I-IV), with average 15 days after exposure, underwent clinical neurological, cerebrospinal fluid (CSF), magnetic resonance imaging, and magnetic resonance spectroscopy (MRS) characterization. Results. HIV RNA was detected in the CSF from 15 of 18 subjects as early as 8 days after estimated HIV transmission. Undetectable CSF levels of HIV (in 3 of 18) was noted during Fiebig stages I, II, and III, with plasma HIV RNA levels of 285 651, 2321, and 81 978 copies/mL, respectively. On average, the CSF HIV RNA level was 2.42 log10 copies/mL lower than that in plasma. There were no cases in which the CSF HIV RNA level exceeded that in plasma. Headache was common during the acute retroviral syndrome (in 11 of 20 subjects), but no other neurological signs or symptoms were seen. Intrathecal immune activation was identified in some subjects with elevated CSF neopterin, monocyte chemotactic protein/CCL2, and interferon γ–induced protein 10/CXCL-10 levels. Brain inflammation was suggested by MRS. Conclusions. CSF HIV RNA was detectable in humans as early as 8 days after exposure. CNS inflammation was apparent by CSF analysis and MRS in some individuals during acute HIV infection. PMID:22551810

  5. Stretching Impacts Inflammation Resolution in Connective Tissue.

    PubMed

    Berrueta, Lisbeth; Muskaj, Igla; Olenich, Sara; Butler, Taylor; Badger, Gary J; Colas, Romain A; Spite, Matthew; Serhan, Charles N; Langevin, Helene M

    2016-07-01

    Acute inflammation is accompanied from its outset by the release of specialized pro-resolving mediators (SPMs), including resolvins, that orchestrate the resolution of local inflammation. We showed earlier that, in rats with subcutaneous inflammation of the back induced by carrageenan, stretching for 10 min twice daily reduced inflammation and improved pain, 2 weeks after carrageenan injection. In this study, we hypothesized that stretching of connective tissue activates local pro-resolving mechanisms within the tissue in the acute phase of inflammation. In rats injected with carrageenan and randomized to stretch versus no stretch for 48 h, stretching reduced inflammatory lesion thickness and neutrophil count, and increased resolvin (RvD1) concentrations within lesions. Furthermore, subcutaneous resolvin injection mimicked the effect of stretching. In ex vivo experiments, stretching of connective tissue reduced the migration of neutrophils and increased tissue RvD1 concentration. These results demonstrate a direct mechanical impact of stretching on inflammation-regulation mechanisms within connective tissue. PMID:26588184

  6. Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure

    SciTech Connect

    Shannahan, Jonathan H.; Alzate, Oscar; Winnik, Witold M.; Andrews, Debora; Schladweiler, Mette C.; Ghio, Andrew J.; Gavett, Stephen H.; Kodavanti, Urmila P.

    2012-04-15

    Identification of biomarkers assists in the diagnosis of disease and the assessment of health risks from environmental exposures. We hypothesized that rats exposed to Libby amphibole (LA) would present with a unique serum proteomic profile which could help elucidate epidemiologically-relevant biomarkers. In four experiments spanning varied protocols and temporality, healthy (Wistar Kyoto, WKY; and F344) and cardiovascular compromised (CVD) rat models (spontaneously hypertensive, SH; and SH heart failure, SHHF) were intratracheally instilled with saline (control) or LA. Serum biomarkers of cancer, inflammation, metabolic syndrome (MetS), and the acute phase response (APR) were analyzed. All rat strains exhibited acute increases in α-2-macroglobulin, and α1-acid glycoprotein. Among markers of inflammation, lipocalin-2 was induced in WKY, SH and SHHF and osteopontin only in WKY after LA exposure. While rat strain- and age-related changes were apparent in MetS biomarkers, no LA effects were evident. The cancer marker mesothelin was increased only slightly at 1 month in WKY in one of the studies. Quantitative Intact Proteomic profiling of WKY serum at 1 day or 4 weeks after 4 weekly LA instillations indicated no oxidative protein modifications, however APR proteins were significantly increased. Those included serine protease inhibitor, apolipoprotein E, α-2-HS-glycoprotein, t-kininogen 1 and 2, ceruloplasmin, vitamin D binding protein, serum amyloid P, and more 1 day after last LA exposure. All changes were reversible after a short recovery regardless of the acute or long-term exposures. Thus, LA exposure induces an APR and systemic inflammatory biomarkers that could have implications in systemic and pulmonary disease in individuals exposed to LA. -- Highlights: ► Biomarkers of asbestos exposure are required for disease diagnosis. ► Libby amphibole exposure is associated with increased human mortality. ► Libby amphibole increases circulating proteins involved

  7. The acute respiratory distress syndrome: role of nutritional modulation of inflammation through dietary lipids.

    PubMed

    Mizock, Barry A; DeMichele, Stephen J

    2004-12-01

    The acute respiratory distress syndrome (ARDS) is the most serious form of acute hypoxic respiratory failure. ARDS represents the expression of an acute, diffuse, inflammatory process in the lungs consequent to a variety of infectious and noninfectious conditions. It is characterized pathologically by damage to pulmonary epithelial and endothelial cells, with subsequent alveolar-capillary leak and exudative pulmonary edema. The main clinical features of ARDS include rapid onset of dyspnea, severe defects in gas exchange, and imaging studies demonstrating diffuse pulmonary infiltrates. The role of nutrition in the management of ARDS has traditionally been supportive. Recent research has demonstrated the potential of certain dietary oils (eg, fish oil, borage oil) to modulate pulmonary inflammation, thereby improving lung compliance and oxygenation, and reducing time on mechanical ventilation. This article reviews the alterations in the immune response that underlie ARDS, discusses the physiology of dietary oils as immunonutrients, summarizes animal and human studies that explore the therapeutic effects of dietary oils, and provides clinical recommendations for their use. PMID:16215155

  8. Molecular Ultrasound Imaging of Tissue Inflammation Using an Animal Model of Acute Kidney Injury

    PubMed Central

    Hoyt, Kenneth; Warram, Jason M.; Wang, Dezhi; Ratnayaka, Sithira; Traylor, Amie; Agarwal, Anupam

    2016-01-01

    Purpose The objective of this study was to evaluate the use of molecular ultrasound (US) imaging for monitoring the early inflammatory effects following acute kidney injury. Procedures A population of rats underwent 30 min of renal ischemia (acute kidney injury, N=6) or sham injury (N=4) using established surgical methods. Animals were divided and molecular US imaging was performed during the bolus injection of a targeted microbubble (MB) contrast agent to either P-selectin or vascular cell adhesion molecule 1 (VCAM-1). Imaging was performed before surgery and 4 and 24 h thereafter. After manual segmentation of renal tissue space, the molecular US signal was calculated as the difference between time-intensity curve data before MB injection and after reaching steady-state US image enhancement. All animals were terminated after the 24 h imaging time point and kidneys excised for immunohistochemical (IHC) analysis. Results Renal inflammation was analyzed using molecular US imaging. While results using the P-selectin and VCAM-1 targeted MBs were comparable, it appears that the former was more sensitive to biomarker expression. All molecular US imaging measures had a positive correlation with IHC findings. Conclusions Acute kidney injury is a serious disease in need of improved noninvasive methods to help diagnose the extent of injury and monitor the tissue throughout disease progression. Molecular US imaging appears well suited to address this challenge and more research is warranted. PMID:25905474

  9. Acute Inflammation Loci Are Involved in Wound Healing in the Mouse Ear Punch Model

    PubMed Central

    Canhamero, Tatiane; Garcia, Ludmila Valino; De Franco, Marcelo

    2014-01-01

    Significance: Molecular biology techniques are being used to aid in determining the mechanisms responsible for tissue repair without scar formation. Wound healing is genetically determined, but there have been few studies that examine the genes responsible for tissue regeneration in mammals. Research using genetic mapping is extremely important for understanding the molecular mechanisms involved in the different phases of tissue regeneration. This process is complex, but an early inflammatory phase appears to influence lesion closure, and the present study demonstrates that acute inflammation loci influence tissue regeneration in mice in a positive manner. Recent Advances: Mapping studies of quantitative trait loci (QTL) have been undertaken in recent years to examine candidate genes that participate in the regeneration phenotype. Our laboratory has identified inflammation modifier QTL for wound healing. Mouse lines selected for the maximum (AIRmax) or minimum (AIRmin) acute inflammatory reactivity (AIR) have been used to study not only the tissue repair but also the impact of the genetic control of inflammation on susceptibility to autoimmune, neoplasic, and infectious diseases. Murphy Roths Large and AIRmax mice are exclusive in their complete epimorphic regeneration, although middle-aged inbred mice may also be capable of healing. Critical Issues: Inflammatory reactions have traditionally been described in the literature as negative factors in the process of skin injury closure. Inflammation is exacerbated due to the early release of mediators or the intense release of factors that cause cell proliferation after injury. The initial release of these factors as well as the clean-up of the lesion microenvironment are both crucial for following events. In addition, the activation and repression of some genes related to the regeneration phenotype may modulate lesion closure, demonstrating the significance of genetic studies to better understand the mechanisms

  10. Melatonin attenuates inflammation of acute pulpitis subjected to dental pulp injury

    PubMed Central

    Li, Ji-Guo; Lin, Jia-Ji; Wang, Zhao-Ling; Cai, Wen-Ke; Wang, Pei-Na; Jia, Qian; Zhang, An-Sheng; Wu, Gao-Yi; Zhu, Guo-Xiong; Ni, Long-Xing

    2015-01-01

    Acute pulpitis (AP), one of the most common diseases in the endodontics, usually causes severe pain to the patients, which makes the search for therapeutic target of AP essential in clinic. Toll-like receptor 4 (TLR4) signaling is widely involved in the mechanism of pulp inflammation, while melatonin has been reported to have an inhibition for a various kinds of inflammation. We hereby studied whether melatonin can regulate the expression of TLR4/NF-ĸB signaling in the pulp tissue of AP and in human dental pulp cells (HDPCs). Two left dental pulps of the adult rat were drilled open to establish the AP model, and the serum levels of melatonin and pro-inflammatory cytokines, including interleukin 1β (IL-1β), interleukin 18 (IL-18) and tumor necrosis factor α (TNF-α), were assessed at 1, 3 and 5 d post injury. At the same time points, the expression of TLR4 signaling in the pulp was explored by quantitative real-time PCR and immunohistochemistry. The AP rats were administered an abdominal injection of melatonin to assess whether melatonin rescued AP and TLR4/NF-ĸB signaling. Dental pulp injury led to an approximately five-day period acute pulp inflammation and necrosis in the pulp and a significant up-regulation of IL-1β, IL-18 and TNF-α in the serum. ELISA results showed that the level of melatonin in the serum decreased due to AP, while an abdominal injection of melatonin suppressed the increase in serum cytokines and the percentage of necrosis at the 5 d of the injured pulp. Consistent with the inflammation in AP rats, TLR4, NF-ĸB, TNF-α and IL-1β in the pulp were increased post AP compared with the baseline expression. And melatonin showed an inhibition on TLR4/NF-ĸB signaling as well as IL-1β and TNF-α production in the pulp of AP rats. Furthermore, melatonin could also regulate the expression of TLR4/NF-ĸB signaling in LPS-stimulated HDPCs. These data suggested that dental pulp injury induced AP and reduced the serum level of melatonin and that

  11. Modified skin window technique for the extended characterisation of acute inflammation in humans

    PubMed Central

    Marks, D. J. B.; Radulovic, M.; McCartney, S.; Bloom, S.; Segal, A. W.

    2009-01-01

    Objective To modify the skin window technique for extended analysis of acute inflammatory responses in humans, and demonstrate its applicability for investigating disease. Subjects 15 healthy subjects and 5 Crohn’s patients. Treatment Skin windows, created by dermal abrasion, were overlaid for various durations with filter papers saturated in saline, 100 ng/ml muramyl dipeptide (MDP) or 10 μg/ml interleukin-8 (IL-8). Methods Exuded leukocytes were analyzed by microscopy, immunoblot, DNA-bound transcription factor arrays and RT-PCR. Inflammatory mediators were quantified by ELISA. Results Infiltrating leukocytes were predominantly neutrophils. Numerous secreted mediators were detectable. MDP and IL-8 enhanced responses. Many signalling proteins were phosphorylated with differential patterns in Crohn’s patients, notably PKC α/β hyperphosphorylation (11.3 ± 3.1 vs 1.2 ± 0.9 units, P < 0.02). Activities of 44 transcription factors were detectable, and sufficient RNA isolated for expression analysis of over 400 genes. Conclusions The modifications enable broad characterisation of inflammatory responses and administration of exogenous immunomodulators. PMID:17522815

  12. Effects of acute stress on cardiac endocannabinoids, lipogenesis, and inflammation in rats

    PubMed Central

    Lim, James; Piomelli, Daniele

    2014-01-01

    Objective Trauma exposure can precipitate acute/post-traumatic stress responses (AS/PTSD) and disabling cardiovascular disorders (CVD). Identifying acute stress-related physiologic changes that may increase CVD risk could inform development of early CVD-prevention strategies. The endocannabinoid system (ECS) regulates hypothalamic-pituitary-adrenal (HPA) axis response and stress-related cardiovascular function. We examine stress-related endocannabinoid system (ECS) activity and its association with cardiovascular biochemistry/function following acute stress. Methods Rodents (n=8-16/group) were exposed to predator odor or saline; elevated plus maze (EPM), blood pressure (BP), serum and cardiac tissue ECS markers, and lipid metabolism were assessed at 24h and 2wks post-exposure. Results At 24h the predator odor group demonstrated anxiety-like behavior and had (a) elevated serum markers of cardiac failure/damage (brain natriuretic peptide [BNP]: 275.1 vs. 234.6, p=0.007; troponin-I: 1.50 vs. 0.78, p=0.076), lipogenesis (triacylglycerols [TAG]: 123.5 vs. 85.93, p=0.018), and inflammation (stearoyl delta-9 desaturase activity [SCD-16]: 0.21 vs. 0.07, p<0.001); (b) significant decrease in cardiac endocannabinoid (2-arachidonoyl-sn-glycerol, 2-AG: 29.90 vs. 65.95, p<0.001) and fatty acid ethanolamides (FAE: oleoylethanolamide, OEA: 114.3 vs. 125.4, p=0.047; palmitoylethanolamide, PEA: 72.96 vs. 82.87, p=0.008); and (c) increased cardiac inflammation (IL-1β/IL-6 ratio: 19.79 vs.13.57, p=0.038; TNF-α/IL-6 ratio: 1.73 vs. 1.03, p=0.019) and oxidative stress (thiobarbituric acid reactive substances [TBARS]: 7.81 vs. 7.05, p=0.022), that were associated with cardiac steatosis (higher TAG: 1.09 vs. 0.72, p<0.001). Cardiac lipogenesis persisted, and elevated BP emerged two weeks after exposure. Conclusions Acute psychological stress elicits ECS-related cardiac responses associated with persistent, potentially-pathological changes in rat cardiovascular biochemistry

  13. Nanobodies as modulators of inflammation: potential applications for acute brain injury

    PubMed Central

    Rissiek, Björn; Koch-Nolte, Friedrich; Magnus, Tim

    2014-01-01

    Nanobodies are single domain antibodies derived from llama heavy-chain only antibodies (HCAbs). They represent a new generation of biologicals with unique properties: nanobodies show excellent tissue distribution, high temperature and pH stability, are easy to produce recombinantly and can readily be converted into different formats such as Fc-fusion proteins or hetero-dimers. Moreover, nanobodies have the unique ability to bind molecular clefts, such as the active site of enzymes, thereby interfering with the function of the target protein. Over the last decade, numerous nanobodies have been developed against proteins involved in inflammation with the aim to modulate their immune functions. Here, we give an overview about recently developed nanobodies that target immunological pathways linked to neuroinflammation. Furthermore, we highlight strategies to modify nanobodies so that they can overcome the blood brain barrier and serve as highly specific therapeutics for acute inflammatory brain injury. PMID:25374510

  14. Glucocorticoid signaling in myeloid cells worsens acute CNS injury and inflammation.

    PubMed

    Sorrells, Shawn F; Caso, Javier R; Munhoz, Carolina D; Hu, Caroline K; Tran, Kevin V; Miguel, Zurine D; Chien, Bonnie Y; Sapolsky, Robert M

    2013-05-01

    Glucocorticoid stress hormones (GCs) are well known for being anti-inflammatory, but some reports suggest that GCs can also augment aspects of inflammation during acute brain injury. Because the GC receptor (GR) is ubiquitously expressed throughout the brain, it is difficult to know which cell types might mediate these unusual "proinflammatory" GC actions. We examined this with cell type-specific deletion or overexpression of GR in mice experiencing seizure or ischemia. Counter to their classical anti-inflammatory actions, GR signaling in myeloid cells increased Iba-1 and CD68 staining as well as nuclear p65 levels in the injured tissue. GCs also reduced levels of occludin, claudin 5, and caveolin 1, proteins central to blood-brain-barrier integrity; these effects required GR in endothelial cells. Finally, GCs compromised neuron survival, an effect mediated by GR in myeloid and endothelial cells to a greater extent than by neuronal GR. PMID:23637179

  15. Protective Effect of Metformin against Acute Inflammation and Oxidative Stress in Rat.

    PubMed

    Pandey, Abhimanu; Kumar, Vijay L

    2016-09-01

    Preclinical Research The antidiabetic drug, metformin, can inhibit the release of inflammatory mediators in several disease conditions. The present study was carried out to evaluate the efficacy of metformin in ameliorating edema formation, oxidative stress, mediator release and vascular changes associated with acute inflammation in the rat carrageenan model. Metformin dose-dependently inhibited paw swelling induced by carrageenan and normalized the tissue levels of the inflammatory markers myeloperoxidase and nitrite. It also maintained oxidative homeostasis as indicated by near normal levels of the oxidative stress markers glutathione, thiobarbituric acid reactive substances, catalase and superoxide dismutase. The histopathology of the paw tissue in metformin-treated animals was similar to that in normal paw and had similar effects to diclofenac. In a rat peritonitis model, metformin reduced vascular permeability and cellular infiltration. In conclusion, this study shows that metformin has a potential for use in treating various inflammatory conditions. PMID:27510757

  16. Equivalent titanium dioxide nanoparticle deposition by intratracheal instillation and whole body inhalation: the effect of dose rate on acute respiratory tract inflammation

    PubMed Central

    2014-01-01

    Background The increased production of nanomaterials has caused a corresponding increase in concern about human exposures in consumer and occupational settings. Studies in rodents have evaluated dose–response relationships following respiratory tract (RT) delivery of nanoparticles (NPs) in order to identify potential hazards. However, these studies often use bolus methods that deliver NPs at high dose rates that do not reflect real world exposures and do not measure the actual deposited dose of NPs. We hypothesize that the delivered dose rate is a key determinant of the inflammatory response in the RT when the deposited dose is constant. Methods F-344 rats were exposed to the same deposited doses of titanium dioxide (TiO2) NPs by single or repeated high dose rate intratracheal instillation or low dose rate whole body aerosol inhalation. Controls were exposed to saline or filtered air. Bronchoalveolar lavage fluid (BALF) neutrophils, biochemical parameters and inflammatory mediator release were quantified 4, 8, and 24 hr and 7 days after exposure. Results Although the initial lung burdens of TiO2 were the same between the two methods, instillation resulted in greater short term retention than inhalation. There was a statistically significant increase in BALF neutrophils at 4, 8 and 24 hr after the single high dose TiO2 instillation compared to saline controls and to TiO2 inhalation, whereas TiO2 inhalation resulted in a modest, yet significant, increase in BALF neutrophils 24 hr after exposure. The acute inflammatory response following instillation was driven primarily by monocyte chemoattractant protein-1 and macrophage inflammatory protein-2, mainly within the lung. Increases in heme oxygenase-1 in the lung were also higher following instillation than inhalation. TiO2 inhalation resulted in few time dependent changes in the inflammatory mediator release. The single low dose and repeated exposure scenarios had similar BALF cellular and mediator response trends

  17. Exposure to traffic pollution, acute inflammation and autonomic response in a panel of car commuters

    PubMed Central

    Sarnat, Jeremy A.; Golan, Rachel; Greenwald, Roby; Raysoni, Amit U.; Kewada, Priya; Winquist, Andrea; Sarnat, Stefanie E.; Flanders, W. Dana; Mirabelli, Maria C.; Zora, Jennifer E.; Bergin, Michael H.; Yip, Fuyuen

    2015-01-01

    Background Exposure to traffic pollution has been linked to numerous adverse health endpoints. Despite this, limited data examining traffic exposures during realistic commutes and acute response exists. Objectives: We conducted the Atlanta Commuters Exposures (ACE-1) Study, an extensive panel-based exposure and health study, to measure chemically-resolved in-vehicle exposures and corresponding changes in acute oxidative stress, lipid peroxidation, pulmonary and systemic inflammation and autonomic response. Methods We recruited 42 adults (21 with and 21 without asthma) to conduct two 2-h scripted highway commutes during morning rush hour in the metropolitan Atlanta area. A suite of in-vehicle particulate components were measured in the subjects’ private vehicles. Biomarker measurements were conducted before, during, and immediately after the commutes and in 3 hourly intervals after commutes. Results At measurement time points within 3 h after the commute, we observed mild to pronounced elevations relative to baseline in exhaled nitric oxide, C-reactive-protein, and exhaled malondialdehyde, indicative of pulmonary and systemic inflammation and oxidative stress initiation, as well as decreases relative to baseline levels in the time-domain heart-rate variability parameters, SDNN and rMSSD, indicative of autonomic dysfunction. We did not observe any detectable changes in lung function measurements (FEV1, FVC), the frequency-domain heart-rate variability parameter or other systemic biomarkers of vascular injury. Water soluble organic carbon was associated with changes in eNO at all post-commute time-points (p < 0.0001). Conclusions Our results point to measureable changes in pulmonary and autonomic biomarkers following a scripted 2-h highway commute. PMID:24906070

  18. Dietary flaxseed intake exacerbates acute colonic mucosal injury and inflammation induced by dextran sodium sulfate.

    PubMed

    Zarepoor, Leila; Lu, Jenifer T; Zhang, Claire; Wu, Wenqing; Lepp, Dion; Robinson, Lindsay; Wanasundara, Janitha; Cui, Steve; Villeneuve, Sébastien; Fofana, Bourlaye; Tsao, Rong; Wood, Geoffrey A; Power, Krista A

    2014-06-15

    Flaxseed (FS), a dietary oilseed, contains a variety of anti-inflammatory bioactives, including fermentable fiber, phenolic compounds (lignans), and the n-3 polyunsaturated fatty acid (PUFA) α-linolenic acid. The objective of this study was to determine the effects of FS and its n-3 PUFA-rich kernel or lignan- and soluble fiber-rich hull on colitis severity in a mouse model of acute colonic inflammation. C57BL/6 male mice were fed a basal diet (negative control) or a basal diet supplemented with 10% FS, 6% kernel, or 4% hull for 3 wk prior to and during colitis induction via 5 days of 2% (wt/vol) dextran sodium sulfate (DSS) in their drinking water (n = 12/group). An increase in anti-inflammatory metabolites (hepatic n-3 PUFAs, serum mammalian lignans, and cecal short-chain fatty acids) was associated with consumption of all FS-based diets, but not with anti-inflammatory effects in DSS-exposed mice. Dietary FS exacerbated DSS-induced acute colitis, as indicated by a heightened disease activity index and an increase in colonic injury and inflammatory biomarkers [histological damage, apoptosis, myeloperoxidase, inflammatory cytokines (IL-6 and IL-1β), and NF-κB signaling-related genes (Nfkb1, Ccl5, Bcl2a1a, Egfr, Relb, Birc3, and Atf1)]. Additionally, the adverse effect of the FS diet was extended systemically, as serum cytokines (IL-6, IFNγ, and IL-1β) and hepatic cholesterol levels were increased. The adverse effects of FS were not associated with alterations in fecal microbial load or systemic bacterial translocation (endotoxemia). Collectively, this study demonstrates that although consumption of a 10% FS diet enhanced the levels of n-3 PUFAs, short-chain polyunsaturated fatty acids, and lignans in mice, it exacerbated DSS-induced colonic injury and inflammation. PMID:24763556

  19. Mast cells modulate acute ozone-induced inflammation of the murine lung

    SciTech Connect

    Kleeberger, S.R.; Seiden, J.E.; Levitt, R.C.; Zhang, L.Y. )

    1993-11-01

    We hypothesized that mast cells modulate lung inflammation that develops after acute ozone (O3) exposure. Two tests were done: (1) genetically mast-cell-deficient (WBB6F1-W/Wv, WCB6F1-SI/SId) and bone-marrow-transplanted W/Wv mice were exposed to O3 or filtered air, and the inflammatory responses were compared with those of mast-cell-sufficient congenic mice (WBB6F1-(+)/+, WCB6F1-(+)/+); (2) genetically O3-susceptible C57BL/6J mice were treated pharmacologically with putative mast-cell modulators or vehicle, and the O3-induced inflammatory responses were compared. Mice were exposed to 1.75 ppm O3 or air for 3 h, and lung inflammation was assessed by bronchoalveolar lavage (BAL) 6 and 24 h after exposure. Relative to O3-exposed W/Wv and SI/SId mice, the mean numbers of lavageable polymorphonuclear leukocytes (PMNs) and total BAL protein concentration (a marker of permeability) were significantly greater in the respective O3-exposed normal congenic +/+ mice (p < 0.05). Mast cells were reconstituted in W/Wv mice by transplantation of bone marrow cells from congenic +/+ mice, and O3-induced lung inflammation was assessed in the mast-cell-replete W/Wv mice. After O3 exposure, the changes in lavageable PMNs and total protein of mast-cell-replete W/Wv mice were not different from age-matched normal +/+ control mice, and they were significantly greater than those of sham-transplanted W/Wv mice (p < 0.05). Genetically susceptible C57BL/6J mice were pretreated with a mast-cell stabilizer (nedocromil sodium), secretagogue (compound 48/80), or vehicle, and the mice were exposed to O3.

  20. CO and CO-releasing molecules (CO-RMs) in acute gastrointestinal inflammation

    PubMed Central

    Babu, D; Motterlini, R; Lefebvre, R A

    2015-01-01

    Carbon monoxide (CO) is enzymatically generated in mammalian cells alongside the liberation of iron and the production of biliverdin and bilirubin. This occurs during the degradation of haem by haem oxygenase (HO) enzymes, a class of ubiquitous proteins consisting of constitutive and inducible isoforms. The constitutive HO2 is present in the gastrointestinal tract in neurons and interstitial cells of Cajal and CO released from these cells might contribute to intestinal inhibitory neurotransmission and/or to the control of intestinal smooth muscle cell membrane potential. On the other hand, increased expression of the inducible HO1 is now recognized as a beneficial response to oxidative stress and inflammation. Among the products of haem metabolism, CO appears to contribute primarily to the antioxidant and anti-inflammatory effects of the HO1 pathway explaining the studies conducted to exploit CO as a possible therapeutic agent. This article reviews the effects and, as far as known today, the mechanism(s) of action of CO administered either as CO gas or via CO-releasing molecules in acute gastrointestinal inflammation. We provide here a comprehensive overview on the effect of CO in experimental in vivo models of post-operative ileus, intestinal injury during sepsis and necrotizing enterocolitis. In addition, we will analyse the in vitro data obtained so far on the effect of CO on intestinal epithelial cell lines exposed to cytokines, considering the important role of the intestinal mucosa in the pathology of gastrointestinal inflammation. Linked Articles This article is part of a themed section on Pharmacology of the Gasotransmitters. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-6 PMID:24641722

  1. Pannexin 1 channels regulate leukocyte emigration through the venous endothelium during acute inflammation.

    PubMed

    Lohman, Alexander W; Leskov, Igor L; Butcher, Joshua T; Johnstone, Scott R; Stokes, Tara A; Begandt, Daniela; DeLalio, Leon J; Best, Angela K; Penuela, Silvia; Leitinger, Norbert; Ravichandran, Kodi S; Stokes, Karen Y; Isakson, Brant E

    2015-01-01

    Inflammatory cell recruitment to local sites of tissue injury and/or infection is controlled by a plethora of signalling processes influencing cell-to-cell interactions between the vascular endothelial cells (ECs) in post-capillary venules and circulating leukocytes. Recently, ATP-sensitive P2Y purinergic receptors have emerged as downstream regulators of EC activation in vascular inflammation. However, the mechanism(s) regulating cellular ATP release in this response remains elusive. Here we report that the ATP-release channel Pannexin1 (Panx1) opens downstream of EC activation by TNF-α. This process involves activation of type-1 TNF receptors, recruitment of Src family kinases (SFK) and SFK-dependent phosphorylation of Panx1. Using an inducible, EC-specific Panx1 knockout mouse line, we report a previously unidentified role for Panx1 channels in promoting leukocyte adhesion and emigration through the venous wall during acute systemic inflammation, placing Panx1 channels at the centre of cytokine crosstalk with purinergic signalling in the endothelium. PMID:26242575

  2. In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide.

    PubMed

    McAteer, Martina A; Sibson, Nicola R; von Zur Muhlen, Constantin; Schneider, Jurgen E; Lowe, Andrew S; Warrick, Nicholas; Channon, Keith M; Anthony, Daniel C; Choudhury, Robin P

    2007-10-01

    Multiple sclerosis is a disease of the central nervous system that is associated with leukocyte recruitment and subsequent inflammation, demyelination and axonal loss. Endothelial vascular cell adhesion molecule-1 (VCAM-1) and its ligand, alpha4beta1 integrin, are key mediators of leukocyte recruitment, and selective inhibitors that bind to the alpha4 subunit of alpha4beta1 substantially reduce clinical relapse in multiple sclerosis. Urgently needed is a molecular imaging technique to accelerate diagnosis, to quantify disease activity and to guide specific therapy. Here we report in vivo detection of VCAM-1 in acute brain inflammation, by magnetic resonance imaging in a mouse model, at a time when pathology is otherwise undetectable. Antibody-conjugated microparticles carrying a large amount of iron oxide provide potent, quantifiable contrast effects that delineate the architecture of activated cerebral blood vessels. Their rapid clearance from blood results in minimal background contrast. This technology is adaptable to monitor the expression of endovascular molecules in vivo in various pathologies. PMID:17891147

  3. Myeloid tissue factor does not modulate lung inflammation or permeability during experimental acute lung injury.

    PubMed

    Shaver, Ciara M; Grove, Brandon S; Clune, Jennifer K; Mackman, Nigel; Ware, Lorraine B; Bastarache, Julie A

    2016-01-01

    Tissue factor (TF) is a critical mediator of direct acute lung injury (ALI) with global TF deficiency resulting in increased airspace inflammation, alveolar-capillary permeability, and alveolar hemorrhage after intra-tracheal lipopolysaccharide (LPS). In the lung, TF is expressed diffusely on the lung epithelium and intensely on cells of the myeloid lineage. We recently reported that TF on the lung epithelium, but not on myeloid cells, was the major source of TF during intra-tracheal LPS-induced ALI. Because of a growing body of literature demonstrating important pathophysiologic differences between ALI caused by different etiologies, we hypothesized that TF on myeloid cells may have distinct contributions to airspace inflammation and permeability between direct and indirect causes of ALI. To test this, we compared mice lacking TF on myeloid cells (TF(∆mye), LysM.Cre(+/-)TF(flox/flox)) to littermate controls during direct (bacterial pneumonia, ventilator-induced ALI, bleomycin-induced ALI) and indirect ALI (systemic LPS, cecal ligation and puncture). ALI was quantified by weight loss, bronchoalveolar lavage (BAL) inflammatory cell number, cytokine concentration, protein concentration, and BAL procoagulant activity. There was no significant contribution of TF on myeloid cells in multiple models of experimental ALI, leading to the conclusion that TF in myeloid cells is not a major contributor to experimental ALI. PMID:26924425

  4. Myeloid tissue factor does not modulate lung inflammation or permeability during experimental acute lung injury

    PubMed Central

    Shaver, Ciara M.; Grove, Brandon S.; Clune, Jennifer K.; Mackman, Nigel; Ware, Lorraine B.; Bastarache, Julie A.

    2016-01-01

    Tissue factor (TF) is a critical mediator of direct acute lung injury (ALI) with global TF deficiency resulting in increased airspace inflammation, alveolar-capillary permeability, and alveolar hemorrhage after intra-tracheal lipopolysaccharide (LPS). In the lung, TF is expressed diffusely on the lung epithelium and intensely on cells of the myeloid lineage. We recently reported that TF on the lung epithelium, but not on myeloid cells, was the major source of TF during intra-tracheal LPS-induced ALI. Because of a growing body of literature demonstrating important pathophysiologic differences between ALI caused by different etiologies, we hypothesized that TF on myeloid cells may have distinct contributions to airspace inflammation and permeability between direct and indirect causes of ALI. To test this, we compared mice lacking TF on myeloid cells (TF∆mye, LysM.Cre+/−TFflox/flox) to littermate controls during direct (bacterial pneumonia, ventilator-induced ALI, bleomycin-induced ALI) and indirect ALI (systemic LPS, cecal ligation and puncture). ALI was quantified by weight loss, bronchoalveolar lavage (BAL) inflammatory cell number, cytokine concentration, protein concentration, and BAL procoagulant activity. There was no significant contribution of TF on myeloid cells in multiple models of experimental ALI, leading to the conclusion that TF in myeloid cells is not a major contributor to experimental ALI. PMID:26924425

  5. Intracellular signalling during neutrophil recruitment.

    PubMed

    Mócsai, Attila; Walzog, Barbara; Lowell, Clifford A

    2015-08-01

    Recruitment of leucocytes such as neutrophils to the extravascular space is a critical step of the inflammation process and plays a major role in the development of various diseases including several cardiovascular diseases. Neutrophils themselves play a very active role in that process by sensing their environment and responding to the extracellular cues by adhesion and de-adhesion, cellular shape changes, chemotactic migration, and other effector functions of cell activation. Those responses are co-ordinated by a number of cell surface receptors and their complex intracellular signal transduction pathways. Here, we review neutrophil signal transduction processes critical for recruitment to the site of inflammation. The two key requirements for neutrophil recruitment are the establishment of appropriate chemoattractant gradients and the intrinsic ability of the cells to migrate along those gradients. We will first discuss signalling steps required for sensing extracellular chemoattractants such as chemokines and lipid mediators and the processes (e.g. PI3-kinase pathways) leading to the translation of extracellular chemoattractant gradients to polarized cellular responses. We will then discuss signal transduction by leucocyte adhesion receptors (e.g. tyrosine kinase pathways) which are critical for adhesion to, and migration through the vessel wall. Finally, additional neutrophil signalling pathways with an indirect effect on the neutrophil recruitment process, e.g. through modulation of the inflammatory environment, will be discussed. Mechanistic understanding of these pathways provide better understanding of the inflammation process and may point to novel therapeutic strategies for controlling excessive inflammation during infection or tissue damage. PMID:25998986

  6. DO ACUTE PHASE PROTEINS REFLECT SEVERITY OF INFLAMMATION IN RAT MODELS OF POLLUTANT-INDUCED LUNG INJURY?

    EPA Science Inventory

    Title: DO ACUTE PHASE PROTEINS REFLECT THE SEVERITY OF INFLAMMATION IN RAT MODELS OF POLLUTANT-INDUCED LUNG INJURY?

    M. C. Schladweiler, BS 1, P. S. Gilmour, PhD 2, D. L. Andrews, BS 1, D. L. Costa, ScD 1, A. D. Ledbetter, BS 1, K. E. Pinkerton, PhD 3 and U. P. Kodavanti, ...

  7. Metabonomic analysis of the anti-inflammatory effects of volatile oils of Angelica sinensis on rat model of acute inflammation.

    PubMed

    Zhang, Wen-Quan; Hua, Yong-Li; Zhang, Man; Ji, Peng; Li, Jin-Xia; Zhang, Ling; Li, Peng-Ling; Wei, Yan-Ming

    2015-06-01

    Metabonomics based on GC-MS was used to study the possible anti-inflammatory mechanisms of volatile oils of Angelica sinensis (VOAS) in rats with acute inflammation. Acute inflammation was induced by subcutaneous injection of carrageenan in rats. The levels of prostaglandin E2 (PGE2 ), histamine (HIS) and 5-hydroxytryptamine (5-HT) in the inflammatory fluid were detected. Principal component analysis and orthogonal partial least squares-discriminant analysis models were performed for pattern recognition analysis. After the administration of VOAS, the levels of PGE2 , HIS, and 5-HT returned to levels observed in normal group. According to GC-MS analysis, the intervention of VOAS in rats with acute inflammation induced substantial and characteristic changes in their metabolic profiles. Fourteen metabolite biomarkers, namely, lactic acid, malic acid, citric acid, trans-dehydroandrosterone, aldosterone, linoleic acid, hexadecanoic acid, pregnenolone, octadecenoic acid, myristic acid, l-histidine, octadecanoic acid, arachidonic acid (AA) and l-tryptophan, were detected in the inflammatory fluid. The levels of all biomarkers either increased or decreased significantly in model groups. VOAS possibly intervened in the metabolic process of inflammation by altering histidine metabolism, tryptophan metabolism, AA metabolism, steroid hormone biosynthesis, fatty acid metabolism and energy metabolism. Metabonomics was used to reflect an organism's physiological and metabolic state comprehensively, and it is a potentially powerful tool that reveals the anti-acute-inflammatory mechanism of VOAS. PMID:25515821

  8. Association Between the Neutrophil/Lymphocyte Ratio and Acute Kidney Injury After Cardiovascular Surgery: A Retrospective Observational Study.

    PubMed

    Kim, Won Ho; Park, Ji Young; Ok, Seong-Ho; Shin, Il-Woo; Sohn, Ju-Tae

    2015-10-01

    A high neutrophil-lymphocyte ratio (N/L ratio) was associated with the development of acute kidney injury (AKI) in patients with severe sepsis. We sought to investigate the association between the perioperative N/L ratios and postoperative AKI in patients undergoing high-risk cardiovascular surgery.A retrospective medical chart review was performed of 590 patients who underwent cardiovascular surgeries, including coronary artery bypass, valve replacement, patch closure for atrial or ventricular septal defect and surgery on the thoracic aorta with cardiopulmonary bypass (CPB). Baseline perioperative clinical parameters, including N/L ratios measured before surgery, immediately after surgery, and on postoperative day (POD) one were obtained. Multivariate logistic regression analysis was used to evaluate risk factors.A total of 166 patients (28.1%) developed AKI defined by the KDIGO (kidney disease improving global outcomes) criteria in the first 7 PODs. Independent risk factors for AKI included old age, decreased left ventricular systolic function, preoperative high serum creatinine, low serum albumin and high uric acid levels, intraoperative large transfusion amount, oliguria, hyperglycemia, and elevated N/L ratio measured immediately after surgery and on POD one. The quartiles of immediately postoperative N/L ratio were associated with graded increase in risk of AKI development (fourth quartile [N/L ratio≥10] multivariate odds ratio 5.90, 95% confidence interval [CI] 2.74-12.73; P < 0.001), a longer hospital stay, and a higher in-hospital and 1-year mortality rate (fourth quartile [N/L ratio≥10] adjusted hazard ratio for 1-year mortality [8.40, 95% CI 2.50-28.17]; P < 0.001).In patients undergoing cardiovascular surgery with CPB, elevated N/L ratios in the immediately postoperative period and on POD one were associated with an increased risk of postoperative AKI and 1-year mortality. The N/L ratio, which is easily calculable from routine work-up, can

  9. Maternal consumption of organic trace minerals alters calf systemic and neutrophil mRNA and microRNA indicators of inflammation and oxidative stress.

    PubMed

    Jacometo, Carolina B; Osorio, Johan S; Socha, Michael; Corrêa, Marcio N; Piccioli-Cappelli, Fiorenzo; Trevisi, Erminio; Loor, Juan J

    2015-11-01

    Organic trace mineral (ORG) supplementation to dairy cows in substitution of sulfate (INO) sources has been associated with improvement in immune function during stressful states such as the peripartal period. However, the effect of supplemental ORG during pregnancy on the neonatal calf is unknown. Therefore, our aim was to investigate the effects of ORG supplementation during late pregnancy on the immune system and growth of the neonatal calf. Of specific interest was the evaluation of inflammation-related microRNA (miRNA) and target gene expression in blood neutrophils as indicators of possible nutritional programming. Forty multiparous cows were supplemented for 30d prepartum with 40 mg/kg of Zn, 20 mg/kg of Mn, 5 mg/kg of Cu, and 1mg/kg of Co from either organic (ORG) or sulfate (INO) sources (total diet contained supplemental 75 mg/kg of Zn, 65 mg/kg of Mn, 11 mg/kg of Cu, and 1 mg/kg of Co, and additional Zn, Mn, and Co provided by sulfates), and a subset of calves (n=8/treatment) was used for blood immunometabolic marker and polymorphonuclear leukocyte (PMNL) gene and miRNA expression analyses. Samples were collected at birth (before colostrum feeding), 1d (24 h after colostrum intake), and 7 and 21d of age. Data were analyzed as a factorial design with the PROC MIXED procedure of SAS. No differences were detected in BW, but maternal ORG tended to increase calf withers height. Calves from INO-fed cows had greater concentrations of blood glucose, GOT, paraoxonase, myeloperoxidase, and reactive oxygen metabolites. Antioxidant capacity also was greater in INO calves. The PMNL expression of toll-like receptor pathway genes indicated a pro-inflammatory state in INO calves, with greater expression of the inflammatory mediators MYD88, IRAK1, TRAF6, NFKB, and NFKBIA. The lower expression of miR-155 and miR-125b in ORG calves indicated the potential for maternal organic trace minerals in regulating the PMNL inflammatory response at least via alterations in mRNA and

  10. [Leukemic neutrophilic dermatosis].

    PubMed

    Török, L; Kirschner, A; Gurzó, M; Krenács, L

    1999-03-28

    A case of a 67 year-old female patient with acute myeloid leukemia is presented. As the first manifestation of the disease, the patient had symptoms of Sweet's syndrome, later signs of gangrenous pyoderma have developed. This transient form is termed as a "leukemic neutrophilic dermatosis". The authors focus on the important diagnostic and prognostic value of this entity. PMID:10349319

  11. Nicotine is Chemotactic for Neutrophils and Enhances Neutrophil Responsiveness to Chemotactic Peptides

    NASA Astrophysics Data System (ADS)

    Totti, Noel; McCusker, Kevin T.; Campbell, Edward J.; Griffin, Gail L.; Senior, Robert M.

    1984-01-01

    Neutrophils contribute to chronic bronchitis and pulmonary emphysema associated with cigarette smoking. Nicotine was found to be chemotactic for human neutrophils but not monocytes, with a peak activity at ~ 31 micromolar. In lower concentrations (comparable to those in smokers' plasma), nicotine enhanced the response of neutrophils to two chemotactic peptides. In contrast to most other chemoattractants for neutrophils, however, nicotine did not affect degranulation or superoxide production. Nicotine thus may promote inflammation and consequent lung injury in smokers.

  12. Endoplasmic reticulum stress-regulated CXCR3 pathway mediates inflammation and neuronal injury in acute glaucoma

    PubMed Central

    Ha, Y; Liu, H; Xu, Z; Yokota, H; Narayanan, S P; Lemtalsi, T; Smith, S B; Caldwell, R W; Caldwell, R B; Zhang, W

    2015-01-01

    Acute glaucoma is a leading cause of irreversible blindness in East Asia. The mechanisms underlying retinal neuronal injury induced by a sudden rise in intraocular pressure (IOP) remain obscure. Here we demonstrate that the activation of CXCL10/CXCR3 axis, which mediates the recruitment and activation of inflammatory cells, has a critical role in a mouse model of acute glaucoma. The mRNA and protein expression levels of CXCL10 and CXCR3 were significantly increased after IOP-induced retinal ischemia. Blockade of the CXCR3 pathway by deleting CXCR3 gene significantly attenuated ischemic injury-induced upregulation of inflammatory molecules (interleukin-1β and E-selectin), inhibited the recruitment of microglia/monocyte to the superficial retina, reduced peroxynitrite formation, and prevented the loss of neurons within the ganglion cell layer. In contrast, intravitreal delivery of CXCL10 increased leukocyte recruitment and retinal cell apoptosis. Inhibition of endoplasmic reticulum (ER) stress with chemical chaperones partially blocked ischemic injury-induced CXCL10 upregulation, whereas induction of ER stress with tunicamycin enhanced CXCL10 expression in retina and primary retinal ganglion cells. Interestingly, deleting CXCR3 attenuated ER stress-induced retinal cell death. In conclusion, these results indicate that ER stress-medicated activation of CXCL10/CXCR3 pathway has an important role in retinal inflammation and neuronal injury after high IOP-induced ischemia. PMID:26448323

  13. Acute heart inflammation: ultrastructural and functional aspects of macrophages elicited by Trypanosoma cruzi infection

    PubMed Central

    Melo, Rossana C N

    2009-01-01

    Abstract The heart is the main target organ of the parasite Trypanosoma cruzi, the causal agent of Chagas' disease, a significant public health issue and still a major cause of morbidity and mortality in Latin America. During the acute disease, tissue damage in the heart is related to the intense myocardium parasitism. To control parasite multiplication, cells of the monocytic lineage are highly mobilized. In response to inflammatory and immune stimulation, an intense migration and extravasation of monocytes occurs from the bloodstream into heart. Monocyte differentiation leads to the formation of tissue phagocytosing macrophages, which are strongly activated and direct host defence. Newly elicited monocyte-derived macrophages both undergo profound physiological changes and display morphological heterogeneity that greatly differs from originally non-inflammatory macrophages, and underlie their functional activities as potent inflammatory cells. Thus, activated macrophages play a critical role in the outcome of parasite infection. This review covers functional and ultrastructural aspects of heart inflammatory macrophages triggered by the acute Chagas' disease, including recent discoveries on morphologically distinct, inflammation-related organelles, termed lipid bodies, which are actively formed in vivo within macrophages in response to T. cruzi infection. These findings are defining a broader role for lipid bodies as key markers of macrophage activation during innate immune responses to infectious diseases and attractive targets for novel anti-inflammatory therapies. Modulation of macrophage activation may be central in providing therapeutic benefits for Chagas' disease control. PMID:18624767

  14. Tail biting induces a strong acute phase response and tail-end inflammation in finishing pigs.

    PubMed

    Heinonen, Mari; Orro, Toomas; Kokkonen, Teija; Munsterhjelm, Camilla; Peltoniemi, Olli; Valros, Anna

    2010-06-01

    The extent of inflammation associated with tail biting in finishing pigs was evaluated. Tail histopathology, carcass condemnation and the concentration of three acute phase proteins (APPs), C-reactive protein (CRP), serum amyloid-A (SAA) and haptoglobin (Hp), were examined in 12 tail-bitten and 13 control pigs. The median concentrations of APPs were higher (P<0.01) in bitten (CRP 617.5mg/L, range 80.5-969.9; SAA 128.0mg/L, 6.2-774.4; Hp 2.8g/L, 1.6-3.5) than in control pigs (CRP 65.7mg/L, 28.4-180.4; SAA 6.2mg/L, 6.2-21.4; Hp 1.2g/L, 0.9-1.5). There was a tendency for APP concentrations to rise with the histopathological score but the differences were only statistically significant between some of the scores. Five (42%) bitten cases and one (8%) control pig had partial carcass condemnations owing to abscesses (P=0.07). The results show that tail biting induces an inflammatory response in the tail end leading to an acute phase response and formation of carcass abscesses. PMID:19398209

  15. Plasmacytoid Dendritic Cells Control Lung Inflammation and Monocyte Recruitment in Indirect Acute Lung Injury in Mice

    PubMed Central

    Venet, Fabienne; Huang, Xin; Chung, Chun-Shiang; Chen, Yaping; Ayala, Alfred

    2010-01-01

    Indirect acute lung injury (ALI, not caused by a direct insult to the lung) represents the first organ dysfunction in trauma patients, with nonpulmonary sepsis being the most common cause of indirect ALI. Dendritic cells (DCs) are thought to participate in a number of inflammatory lung diseases; however, their role in indirect ALI is currently not established. Using a clinically relevant model of indirect ALI induced in mice by hemorrhagic shock followed 24 hours later by polymicrobial septic challenge, we report that mature DC numbers were markedly increased in the lung during indirect ALI. DC depletion induced a significant increase in indirect ALI severity, which was associated with enhanced lung and plasma proinflammatory cytokine concentration and recruitment of proinflammatory CD115+ monocytes in response to increased lung monocyte chemotactic protein-1 production. Among the different DC subpopulations, plasmacytoid DCs, which were induced and activated in the lung during indirect ALI, were responsible for this effect because their specific depletion reproduced the observations made in DC-depleted mice. As the recruitment of monocytes to the lung plays a central deleterious role in the pathophysiology of indirect ALI, our data therefore position plasmacytoid DCs as important regulators of acute lung inflammation. PMID:20042672

  16. Atf3 negatively regulates Ptgs2/Cox2 expression during acute inflammation

    PubMed Central

    Hellmann, Jason; Tang, Yunan; Zhang, Michael J.; Hai, Tsonwin; Bhatnagar, Aruni; Srivastava, Sanjay; Spite, Matthew

    2015-01-01

    By generating prostaglandins, cyclooxygenase-2 (Cox-2/Ptgs2) plays a critical role in regulating inflammatory responses. While several inflammatory stimuli have been shown to increase Ptgs2 expression, less is known about how the transcription of this gene is terminated. Here we show that stimulation of macrophages with yeast zymosan, a TLR2/6 and dectin-1 agonist, causes a transient increase in the expression of Ptgs2 accompanied by a simultaneous increase in the expression of the transcriptional repressor, Activating transcription factor-3 (Atf3). The expression of Ptgs2 was significantly higher in resident peritoneal macrophages isolated from Atf3−/− mice than that from Atf3+/+ mice and was associated with higher prostaglandin production upon stimulation with zymosan. In activated macrophages, Atf3 accumulated in the nucleus and chromatin-immunoprecipitation analysis showed that Atf3 is recruited to the Ptgs2 promoter region. In acute peritonitis and in cutaneous wounds, there was increased leukocyte accumulation and higher levels of prostaglandins (PGE2/PGD2) in inflammatory exudates of Atf3−/− mice compared with WT mice. Collectively, these results demonstrate that during acute inflammation Atf3 negatively regulates Ptgs2 and therefore dysregulation of this axis could potentially contribute to aberrant Ptgs2 expression in chronic inflammatory diseases. Moreover, this axis could be a new therapeutic target for suppressing Ptgs2 expression and the resultant inflammatory responses. PMID:25619459

  17. BIOMARKERS OF INFLAMMATION IN OZONE-EXPOSED HUMANS: COMPARISON OF THE NASAL AND BRONCHOALVEOLAR LAVAGE

    EPA Science Inventory

    An influx of neutrophils (PMNs), a primary feature of acute inflammation, has been associated with the development of lower lung disorders, such as emphysema and idiopathic fibrosis, as well as airway hyperreactivity and increased mucus secretion. reviously, we established that a...

  18. Characterisation of cochlear inflammation in mice following acute and chronic noise exposure.

    PubMed

    Tan, Winston J T; Thorne, Peter R; Vlajkovic, Srdjan M

    2016-08-01

    Oxidative stress has been established as the key mechanism of the cochlear damage underlying noise-induced hearing loss, however, emerging evidence suggests that cochlear inflammation may also be a major contributor. This study aimed to improve our understanding of the cochlear inflammatory response associated with acute and chronic noise exposure. C57BL/6 mice were exposed to acute traumatic noise (100 dBSPL, 8-16 kHz for 24 h) and their cochleae collected at various intervals thereafter, up to 7 days. Using quantitative RT-PCR and immunohistochemistry, changes in expression levels of proinflammatory cytokines (TNF-α, IL-1β), chemokines (CCL2) and cell adhesion molecules (ICAM-1) were studied. All gene transcripts displayed similar dynamics of expression, with an early upregulation at 6 h post-exposure, followed by a second peak at 7 days. ICAM-1 immunoexpression increased significantly in the inferior region of the spiral ligament, peaking 24 h post-exposure. The early expression of proinflammatory mediators likely mediates the recruitment and extravasation of inflammatory cells into the noise-exposed cochlea. The occurrence of the latter expression peak is not clear, but it may be associated with reparative processes initiated in response to cochlear damage. Chronic exposure to moderate noise (90 dBSPL, 8-16 kHz, 2 h/day, up to 4 weeks) also elicited an inflammatory response, reaching a maximum after 2 weeks, suggesting that cochlear damage and hearing loss associated with chronic environmental noise exposure may be linked to inflammatory processes in the cochlea. This study thus provides further insight into the dynamics of the cochlear inflammatory response induced by exposure to acute and chronic noise. PMID:27109494

  19. The P2X1 receptor is required for neutrophil extravasation during lipopolysaccharide-induced lethal endotoxemia in mice.

    PubMed

    Maître, Blandine; Magnenat, Stéphanie; Heim, Véronique; Ravanat, Catherine; Evans, Richard J; de la Salle, Henri; Gachet, Christian; Hechler, Béatrice

    2015-01-15

    Extracellular ATP is becoming increasingly recognized as an important regulator of inflammation. However, the known repertoire of P2 receptor subtypes responsible for the proinflammatory effects of ATP is sparse. We looked at whether the P2X1 receptor, an ATP-gated cation channel present on platelets, neutrophils, and macrophages, participates in the acute systemic inflammation provoked by LPS. Compared with wild-type (WT) mice, P2X1(-/-) mice displayed strongly diminished pathological responses, with dampened neutrophil accumulation in the lungs, less tissue damage, reduced activation of coagulation, and resistance to LPS-induced death. P2X1 receptor deficiency also was associated with a marked reduction in plasma levels of the main proinflammatory cytokines and chemokines induced by LPS. Interestingly, macrophages and neutrophils isolated from WT and P2X1(-/-) mice produced similar levels of proinflammatory cytokines when stimulated with LPS in vitro. Intravital microscopy revealed a defect in LPS-induced neutrophil emigration from cremaster venules into the tissues of P2X1(-/-) mice. Using adoptive transfer of immunofluorescently labeled neutrophils from WT and P2X1(-/-) mice into WT mice, we demonstrate that the absence of the P2X1 receptor on neutrophils was responsible for this defect. This study reveals a major role for the P2X1 receptor in LPS-induced lethal endotoxemia through its critical involvement in neutrophil emigration from venules. PMID:25480563

  20. Neutrophilic and Pauci-immune Phenotypes in Severe Asthma.

    PubMed

    Panettieri, Reynold A

    2016-08-01

    Although 2 T-helper type 2 inflammation evokes airway hyperresponsiveness and narrowing, neutrophilic or pauci-immune asthma accounts for significant asthma morbidity. Viruses, toxicants, environmental tobacco smoke exposure, and bacterial infections induce asthma exacerbations mediated by neutrophilic inflammation or by structural cell (pauci-immune) mechanisms. Therapeutic challenges exist in the management of neutrophilic and pauci-immune phenotypes because both syndromes manifest steroid insensitivity. The recognition that neutrophil subsets exist and their functions are unique poses exciting opportunities to develop precise therapies. The conventional thought to target neutrophil activation or migration globally may explain why current drug development in neutrophilic asthma remains challenging. PMID:27401627

  1. BLUNTING AIRWAYS EOSINOPHILIC INFLAMMATION RESULTS IN A DECREASED AIRWAY NEUTROPHIL RESPONSE TO INHALED LPS IN ATOPIC ASTHMATICS A ROLE FOR CD-14

    EPA Science Inventory

    Recent data demonstrate that atopic inflammation might enhance airway responses to inhaled LPS in individuals with atopic asthma by increasing CD14 expression on airway macrophages. We sought to determine whether blunting airway eosinophilic inflammation decreases CD14 expressio...

  2. [Experimental ultrasound analysis of the appendix. Contribution to improving the diagnosis of acute inflammation in routine clinical practice].

    PubMed

    Meiser, G; Meissner, K; Sattlegger, P

    1989-03-01

    Sonographic investigations of fresh operative specimens - 50 non-infected, 50 chronic and 50 acute inflammatory appendices - and also of 335 pertinent operated patients with "typical" appendiceal disorders were performed. All other entities, mimicking acute or perforated appendicitis were excluded from this study. Under experimental conditions, negative, chronic and acute or phlegmonous appendices appeared as "cockade" or "pseudokidney sign" with reflecting wall and echoless lumen. The application of a 5 Mz linear transducer made the differentiation of three wall layers feasible, in negative appendices as well as in dilated acute appendicitis, whereas in chronic inflammation and in obliterating acute appendicitis a wall layer stratification was not possible. In clinical application of 335 operated patients we only could demonstrate cases of acute or perforated appendicitis (n = 182/220), but no cases of non-infected appendix. In 57% of pertinent cases the objectivation of lumen dilatation, in 35% a wall layer stratification was feasible. Acute, phlegmonous or perforated appendicitis was proven by demonstrating an immobile "pseudotumor mass" with dominating constant hypodense reflex property. The pertinent diameters as measured in clinical acute appendicitis exceeded significantly the diameters observed in experimental sonography of negative appendices with a differential intact mobility. Intraluminary coproliths and hyperdense reflecting attached omental segments facilitated a sonographic diagnosis. In 101/115 patients correct negative diagnosis was established. On the basis of these criteria, a sensitivity of 83%, a specificity of 88% and a diagnostic accuracy of 85% related to the diagnosis of acute or perforated appendicitis was obtained in this study. PMID:2656123

  3. The role of airway macrophages in apoptotic cell clearance following acute and chronic lung inflammation.

    PubMed

    Grabiec, Aleksander M; Hussell, Tracy

    2016-07-01

    Acute and chronic inflammatory responses in the lung are associated with the accumulation of large quantities of immune and structural cells undergoing apoptosis, which need to be engulfed by phagocytes in a process called 'efferocytosis'. Apoptotic cell recognition and removal from the lung is mediated predominantly by airway macrophages, though immature dendritic cells and non-professional phagocytes, such as epithelial cells and mesenchymal cells, can also display this function. Efficient clearance of apoptotic cells from the airways is essential for successful resolution of inflammation and the return to lung homeostasis. Disruption of this process leads to secondary necrosis of accumulating apoptotic cells, release of necrotic cell debris and subsequent uncontrolled inflammatory activation of the innate immune system by the released 'damage associated molecular patterns' (DAMPS). To control the duration of the immune response and prevent autoimmune reactions, anti-inflammatory signalling cascades are initiated in the phagocyte upon apoptotic cell uptake, mediated by a range of receptors that recognise specific phospholipids or proteins externalised on, or secreted by, the apoptotic cell. However, prolonged activation of apoptotic cell recognition receptors, such as the family of receptor tyrosine kinases Tyro3, Axl and MerTK (TAM), may delay or prevent inflammatory responses to subsequent infections. In this review, we will discuss recent advances in our understanding of the mechanism controlling apoptotic cell recognition and removal from the lung in homeostasis and during inflammation, the contribution of defective efferocytosis to chronic inflammatory lung diseases, such as chronic obstructive pulmonary disease, asthma and cystic fibrosis, and implications of the signals triggered by apoptotic cells in the susceptibility to pulmonary microbial infections. PMID:26957481

  4. Diminished acute phase response and increased hepatic inflammation of aged rats in response to intraperitoneal injection of lipopolysaccharide.

    PubMed

    Gomez, Christian R; Acuña-Castillo, Claudio; Pérez, Claudio; Leiva-Salcedo, Elías; Riquelme, Denise M; Ordenes, Gamaliel; Oshima, Kiyoko; Aravena, Mauricio; Pérez, Viviana I; Nishimura, Sumiyo; Sabaj, Valeria; Walter, Robin; Sierra, Felipe

    2008-12-01

    Aging is associated with a deterioration of the acute phase response to inflammatory challenges. However, the nature of these defects remains poorly defined. We analyzed the hepatic inflammatory response after intraperitoneal administration of lipopolysaccharide (LPS) given to Fisher 344 rats aged 6, 15, and 22-23 months. Induction of the acute phase proteins (APPs), haptoglobin, alpha-1-acid glycoprotein, and T-kininogen was reduced and/or retarded with aging. Initial induction of interleukin-6 in aged rats was normal, but the later response was increased relative to younger counterparts. An exacerbated hepatic injury was observed in aged rats receiving LPS, as evidenced by the presence of multiple microabscesses in portal tracts, confluent necrosis, higher neutrophil accumulation, and elevated serum levels of alanine aminotransferase, relative to younger animals. Our results suggest that aged rats displayed a reduced expression of APPs and increased hepatic injury in response to the inflammatory insult. PMID:19126842

  5. Cxcl8 (Interleukin-8) mediates neutrophil recruitment and behavior in the zebrafish inflammatory response

    PubMed Central

    de Oliveira, Sofia; Reyes-Aldasoro, Constantino C.; Candel, Sergio; Renshaw, Stephen A.; Mulero, Victoriano; Calado, Ângelo

    2013-01-01

    Neutrophils play a pivotal role in the innate immune response. The small cytokine CXCL8 (also known as interleukin-8 or IL-8) is known to be one of the most potent chemoattractant molecules which, among several other functions, is responsible for guiding neutrophils through the tissue matrix until they reach sites of injury. Unlike mice and rats that lack a CXCL8 homologue, zebrafish has two distinct CXCL8 homologues: Cxcl8-l1 and Cxcl8-l2. Cxcl8-l1 is known to be up-regulated under inflammatory conditions caused by bacterial or chemical insult but until now, the role of Cxcl8s in neutrophil recruitment has not been studied. Here, we show that both Cxcl8 genes are up-regulated in response to an acute inflammatory stimulus, and that both are crucial for normal neutrophil recruitment to the wound and normal resolution of inflammation. Additionally, we have analyzed neutrophil migratory behavior through tissues to the site of injury in vivo, using open-access phagocyte tracking software, PhagoSight. Surprisingly, we observed that in the absence of these chemokines, the speed of the neutrophils migrating to the wound was significantly increased in comparison to control neutrophils, although the directionality was not affected. Our analysis suggests that zebrafish may possess a sub-population of neutrophils whose recruitment to inflamed areas occurs independently of Cxcl8 chemokines. Moreover, we report that Cxcl8-l2 signaled through Cxcr2 for inducing neutrophil recruitment. Our study, therefore, confirms the zebrafish as an excellent in vivo model to shed light on the roles of CXCL8 in neutrophil biology. PMID:23509368

  6. Neutrophil Functions in Periodontal Homeostasis.

    PubMed

    Cortés-Vieyra, Ricarda; Rosales, Carlos; Uribe-Querol, Eileen

    2016-01-01

    Oral tissues are constantly exposed to damage from the mechanical effort of eating and to microorganisms, mostly bacteria. In healthy gingiva tissue remodeling and a balance between bacteria and innate immune cells are maintained. However, excess of bacteria biofilm (plaque) creates an inflammation state that recruits more immune cells, mainly neutrophils to the gingiva. Neutrophils create a barrier for bacteria to reach inside tissues. When neutrophils are insufficient, bacteria thrive causing more inflammation that has been associated with systemic effects on other conditions such as atherosclerosis, diabetes, and cancer. But paradoxically when neutrophils persist, they can also promote a chronic inflammatory state that leads to periodontitis, a condition that leads to damage of the bone-supporting tissues. In periodontitis, bone loss is a serious complication. How a neutrophil balance is needed for maintaining healthy oral tissues is the focus of this review. We present recent evidence on how alterations in neutrophil number and function can lead to inflammatory bone loss, and how some oral bacteria signal neutrophils to block their antimicrobial functions and promote an inflammatory state. Also, based on this new information, novel therapeutic approaches are discussed. PMID:27019855

  7. Neutrophil Functions in Periodontal Homeostasis

    PubMed Central

    Cortés-Vieyra, Ricarda; Rosales, Carlos

    2016-01-01

    Oral tissues are constantly exposed to damage from the mechanical effort of eating and to microorganisms, mostly bacteria. In healthy gingiva tissue remodeling and a balance between bacteria and innate immune cells are maintained. However, excess of bacteria biofilm (plaque) creates an inflammation state that recruits more immune cells, mainly neutrophils to the gingiva. Neutrophils create a barrier for bacteria to reach inside tissues. When neutrophils are insufficient, bacteria thrive causing more inflammation that has been associated with systemic effects on other conditions such as atherosclerosis, diabetes, and cancer. But paradoxically when neutrophils persist, they can also promote a chronic inflammatory state that leads to periodontitis, a condition that leads to damage of the bone-supporting tissues. In periodontitis, bone loss is a serious complication. How a neutrophil balance is needed for maintaining healthy oral tissues is the focus of this review. We present recent evidence on how alterations in neutrophil number and function can lead to inflammatory bone loss, and how some oral bacteria signal neutrophils to block their antimicrobial functions and promote an inflammatory state. Also, based on this new information, novel therapeutic approaches are discussed. PMID:27019855

  8. Resolution of Inflammation: What Controls Its Onset?

    PubMed Central

    Sugimoto, Michelle A.; Sousa, Lirlândia P.; Pinho, Vanessa; Perretti, Mauro; Teixeira, Mauro M.

    2016-01-01

    An effective resolution program may be able to prevent the progression from non-resolving acute inflammation to persistent chronic inflammation. It has now become evident that coordinated resolution programs initiate shortly after inflammatory responses begin. In this context, several mechanisms provide the fine-tuning of inflammation and create a favorable environment for the resolution phase to take place and for homeostasis to return. In this review, we focus on the events required for an effective transition from the proinflammatory phase to the onset and establishment of resolution. We suggest that several mediators that promote the inflammatory phase of inflammation can simultaneously initiate a program for active resolution. Indeed, several events enact a decrease in the local chemokine concentration, a reduction which is essential to inhibit further infiltration of neutrophils into the tissue. Interestingly, although neutrophils are cells that characteristically participate in the active phase of inflammation, they also contribute to the onset of resolution. Further understanding of the molecular mechanisms that initiate resolution may be instrumental to develop pro-resolution strategies to treat complex chronic inflammatory diseases, in humans. The efforts to develop strategies based on resolution of inflammation have shaped a new area of pharmacology referred to as “resolution pharmacology.” PMID:27199985

  9. Resolution of Inflammation: What Controls Its Onset?

    PubMed

    Sugimoto, Michelle A; Sousa, Lirlândia P; Pinho, Vanessa; Perretti, Mauro; Teixeira, Mauro M

    2016-01-01

    An effective resolution program may be able to prevent the progression from non-resolving acute inflammation to persistent chronic inflammation. It has now become evident that coordinated resolution programs initiate shortly after inflammatory responses begin. In this context, several mechanisms provide the fine-tuning of inflammation and create a favorable environment for the resolution phase to take place and for homeostasis to return. In this review, we focus on the events required for an effective transition from the proinflammatory phase to the onset and establishment of resolution. We suggest that several mediators that promote the inflammatory phase of inflammation can simultaneously initiate a program for active resolution. Indeed, several events enact a decrease in the local chemokine concentration, a reduction which is essential to inhibit further infiltration of neutrophils into the tissue. Interestingly, although neutrophils are cells that characteristically participate in the active phase of inflammation, they also contribute to the onset of resolution. Further understanding of the molecular mechanisms that initiate resolution may be instrumental to develop pro-resolution strategies to treat complex chronic inflammatory diseases, in humans. The efforts to develop strategies based on resolution of inflammation have shaped a new area of pharmacology referred to as "resolution pharmacology." PMID:27199985

  10. Neutrophil ageing is regulated by the microbiome.

    PubMed

    Zhang, Dachuan; Chen, Grace; Manwani, Deepa; Mortha, Arthur; Xu, Chunliang; Faith, Jeremiah J; Burk, Robert D; Kunisaki, Yuya; Jang, Jung-Eun; Scheiermann, Christoph; Merad, Miriam; Frenette, Paul S

    2015-09-24

    Blood polymorphonuclear neutrophils provide immune protection against pathogens, but may also promote tissue injury in inflammatory diseases. Although neutrophils are generally considered to be a relatively homogeneous population, evidence for heterogeneity is emerging. Under steady-state conditions, neutrophil heterogeneity may arise from ageing and replenishment by newly released neutrophils from the bone marrow. Aged neutrophils upregulate CXCR4, a receptor allowing their clearance in the bone marrow, with feedback inhibition of neutrophil production via the IL-17/G-CSF axis, and rhythmic modulation of the haematopoietic stem-cell niche. The aged subset also expresses low levels of L-selectin. Previous studies have suggested that in vitro-aged neutrophils exhibit impaired migration and reduced pro-inflammatory properties. Here, using in vivo ageing analyses in mice, we show that neutrophil pro-inflammatory activity correlates positively with their ageing whilst in circulation. Aged neutrophils represent an overly active subset exhibiting enhanced αMβ2 integrin activation and neutrophil extracellular trap formation under inflammatory conditions. Neutrophil ageing is driven by the microbiota via Toll-like receptor and myeloid differentiation factor 88-mediated signalling pathways. Depletion of the microbiota significantly reduces the number of circulating aged neutrophils and dramatically improves the pathogenesis and inflammation-related organ damage in models of sickle-cell disease or endotoxin-induced septic shock. These results identify a role for the microbiota in regulating a disease-promoting neutrophil subset. PMID:26374999

  11. Liver Necrosis and Lethal Systemic Inflammation in a Murine Model of Rickettsia typhi Infection: Role of Neutrophils, Macrophages and NK Cells

    PubMed Central

    Papp, Stefanie; Moderzynski, Kristin; Rauch, Jessica; Heine, Liza; Kuehl, Svenja; Richardt, Ulricke; Mueller, Heidelinde; Fleischer, Bernhard; Osterloh, Anke

    2016-01-01

    Rickettsia (R.) typhi is the causative agent of endemic typhus, an emerging febrile disease that is associated with complications such as pneumonia, encephalitis and liver dysfunction. To elucidate how innate immune mechanisms contribute to defense and pathology we here analyzed R. typhi infection of CB17 SCID mice that are congenic to BALB/c mice but lack adaptive immunity. CB17 SCID mice succumbed to R. typhi infection within 21 days and showed high bacterial load in spleen, brain, lung, and liver. Most evident pathological changes in R. typhi-infected CB17 SCID mice were massive liver necrosis and splenomegaly due to the disproportionate accumulation of neutrophils and macrophages (MΦ). Both neutrophils and MΦ infiltrated the liver and harbored R. typhi. Both cell populations expressed iNOS and produced reactive oxygen species (ROS) and, thus, exhibited an inflammatory and bactericidal phenotype. Surprisingly, depletion of neutrophils completely prevented liver necrosis but neither altered bacterial load nor protected CB17 SCID mice from death. Furthermore, the absence of neutrophils had no impact on the overwhelming systemic inflammatory response in these mice. This response was predominantly driven by activated MΦ and NK cells both of which expressed IFNγ and is considered as the reason of death. Finally, we observed that iNOS expression by MΦ and neutrophils did not correlate with R. typhi uptake in vivo. Moreover, we demonstrate that MΦ hardly respond to R. typhi in vitro. These findings indicate that R. typhi enters MΦ and also neutrophils unrecognized and that activation of these cells is mediated by other mechanisms in the context of tissue damage in vivo. PMID:27548618

  12. Microbiota alterations in acute and chronic gastrointestinal inflammation of cats and dogs

    PubMed Central

    Honneffer, Julia B; Minamoto, Yasushi; Suchodolski, Jan S

    2014-01-01

    The intestinal microbiota is the collection of the living microorganisms (bacteria, fungi, protozoa, and viruses) inhabiting the gastrointestinal tract. Novel bacterial identification approaches have revealed that the gastrointestinal microbiota of dogs and cats is, similarly to humans, a highly complex ecosystem. Studies in dogs and cats have demonstrated that acute and chronic gastrointestinal diseases, including inflammatory bowel disease (IBD), are associated with alterations in the small intestinal and fecal microbial communities. Of interest is that these alterations are generally similar to the dysbiosis observed in humans with IBD or animal models of intestinal inflammation, suggesting that microbial responses to inflammatory conditions of the gut are conserved across mammalian host types. Studies have also revealed possible underlying susceptibilities in the innate immune system of dogs and cats with IBD, which further demonstrate the intricate relationship between gut microbiota and host health. Commonly identified microbiome changes in IBD are decreases in bacterial groups within the phyla Firmicutes and Bacteroidetes, and increases within Proteobacteia. Furthermore, a reduction in the diversity of Clostridium clusters XIVa and IV (i.e., Lachnospiraceae and Clostridium coccoides subgroups) are associated with IBD, suggesting that these bacterial groups may play an important role in maintenance of gastrointestinal health. Future studies are warranted to evaluate the functional changes associated with intestinal dysbiosis in dogs and cats. PMID:25469017

  13. Microbiota alterations in acute and chronic gastrointestinal inflammation of cats and dogs.

    PubMed

    Honneffer, Julia B; Minamoto, Yasushi; Suchodolski, Jan S

    2014-11-28

    The intestinal microbiota is the collection of the living microorganisms (bacteria, fungi, protozoa, and viruses) inhabiting the gastrointestinal tract. Novel bacterial identification approaches have revealed that the gastrointestinal microbiota of dogs and cats is, similarly to humans, a highly complex ecosystem. Studies in dogs and cats have demonstrated that acute and chronic gastrointestinal diseases, including inflammatory bowel disease (IBD), are associated with alterations in the small intestinal and fecal microbial communities. Of interest is that these alterations are generally similar to the dysbiosis observed in humans with IBD or animal models of intestinal inflammation, suggesting that microbial responses to inflammatory conditions of the gut are conserved across mammalian host types. Studies have also revealed possible underlying susceptibilities in the innate immune system of dogs and cats with IBD, which further demonstrate the intricate relationship between gut microbiota and host health. Commonly identified microbiome changes in IBD are decreases in bacterial groups within the phyla Firmicutes and Bacteroidetes, and increases within Proteobacteia. Furthermore, a reduction in the diversity of Clostridium clusters XIVa and IV (i.e., Lachnospiraceae and Clostridium coccoides subgroups) are associated with IBD, suggesting that these bacterial groups may play an important role in maintenance of gastrointestinal health. Future studies are warranted to evaluate the functional changes associated with intestinal dysbiosis in dogs and cats. PMID:25469017

  14. Endothelial targeting of liposomes encapsulating SOD/catalase mimetic EUK-134 alleviates acute pulmonary inflammation.

    PubMed

    Howard, Melissa D; Greineder, Colin F; Hood, Elizabeth D; Muzykantov, Vladimir R

    2014-03-10

    Production of excessive levels of reactive oxygen species (ROS) in the vascular endothelium is a common pathogenic pathway in many dangerous conditions, including acute lung injury, ischemia-reperfusion, and inflammation. Ineffective delivery of antioxidants to the endothelium limits their utility for management of these conditions. In this study, we devised a novel translational antioxidant intervention targeted to the vascular endothelium using PEG-liposomes loaded with EUK-134 (EUK), a potent superoxide dismutase/catalase mimetic. EUK loaded into antibody-coated liposomes (size 197.8±4.5 nm diameter, PDI 0.179±0.066) exerted partial activity in the intact carrier, while full activity was recovered upon liposome disruption. For targeting we used antibodies (Abs) to platelet-endothelial cell adhesion molecule (PECAM-1). Both streptavidin-biotin and SATA/SMCC conjugation chemistries provided binding of 125-150 Ab molecules per liposome. Ab/EUK/liposomes, but not IgG/EUK/liposomes: i) bound to endothelial cells and inhibited cytokine-induced inflammatory activation in vitro; and, ii) accumulated in lungs after intravascular injection, providing >60% protection against pulmonary edema in endotoxin-challenged mice (vs <6% protection afforded by IgG/liposome/EUK counterpart). Since the design elements of this drug delivery system are already in clinical use (PEG-liposomes, antibodies, SATA/SMCC conjugation), it is an attractive candidate for translational interventions using antioxidant molecules such as EUK and other clinically acceptable drugs. PMID:24412573

  15. Baicalin ameliorates isoproterenol-induced acute myocardial infarction through iNOS, inflammation and oxidative stress in rat

    PubMed Central

    Chen, Huaguo; Xu, Yongfu; Wang, Jianzhong; Zhao, Wei; Ruan, Huihui

    2015-01-01

    Baicalin belongs to glucuronic acid glycosides and after hydrolysisbaicalein and glucuronic acid come into being. It has such effects as clearing heat and removing toxicity, anti-inflammation, choleresis, bringing high blood pressure down, diuresis, anti-allergic reaction and so on. In this study, we investigated whether baicalin ameliorates isoproterenol-induced acute myocardial infarction and its mechanism. Rat model of acute myocardial infarction was induced by isoproterenol. Casein kinase (CK), the MB isoenzyme of creatine kinase (CK-MB), lactate dehydrogenase (LDH), cardiac troponin T (cTnT) and infarct size measurement were used to measure the protective effect of baicalin on isoproterenol-induced acute myocardial infarction. iNOS protein expression in rat was analyzed using western blot analysis. Tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), malondialdehyde (MDA) and superoxide dismutase (SOD) and caspase-3 activation levels were explored using commercial ELISA kits. In the acute myocardial infarction experiment, baicalin effectively ameliorates the level of CK, CK-MB, LDH and cTnT, reduced infarct size in acute myocardial infarction rat model. Meanwhile, treatment with baicalin effectively decreased the iNOS protein expression, inflammatory factors and oxidative stresses in a rat model of acute myocardial infarction. However, baicalin emerged that anti-apoptosis activity and suppressed the activation of caspase-3 in a rat model of acute myocardial infarction. The data suggest that the protective effect of baicalin ameliorates isoproterenol-induced acute myocardial infarction through iNOS, inflammation and oxidative stress in rat. PMID:26617721

  16. IL-17 Promotes Neutrophil-Mediated Immunity by Activating Microvascular Pericytes and Not Endothelium.

    PubMed

    Liu, Rebecca; Lauridsen, Holly M; Amezquita, Robert A; Pierce, Richard W; Jane-Wit, Dan; Fang, Caodi; Pellowe, Amanda S; Kirkiles-Smith, Nancy C; Gonzalez, Anjelica L; Pober, Jordan S

    2016-09-15

    A classical hallmark of acute inflammation is neutrophil infiltration of tissues, a multistep process that involves sequential cell-cell interactions of circulating leukocytes with IL-1- or TNF-activated microvascular endothelial cells (ECs) and pericytes (PCs) that form the wall of the postcapillary venules. The initial infiltrating cells accumulate perivascularly in close proximity to PCs. IL-17, a proinflammatory cytokine that acts on target cells via a heterodimeric receptor formed by IL-17RA and IL-17RC subunits, also promotes neutrophilic inflammation but its effects on vascular cells are less clear. We report that both cultured human ECs and PCs strongly express IL-17RC and, although neither cell type expresses much IL-17RA, PCs express significantly more than ECs. IL-17, alone or synergistically with TNF, significantly alters inflammatory gene expression in cultured human PCs but not ECs. RNA sequencing analysis identifies many IL-17-induced transcripts in PCs encoding proteins known to stimulate neutrophil-mediated immunity. Conditioned media from IL-17-activated PCs, but not ECs, induce pertussis toxin-sensitive neutrophil polarization, likely mediated by PC-secreted chemokines, and they also stimulate neutrophil production of proinflammatory molecules, including TNF, IL-1α, IL-1β, and IL-8. Furthermore, IL-17-activated PCs, but not ECs, can prolong neutrophil survival by producing G-CSF and GM-CSF, delaying the mitochondrial outer membrane permeabilization and caspase-9 activation. Importantly, neutrophils exhibit enhanced phagocytic capacity after activation by conditioned media from IL-17-treated PCs. We conclude that PCs, not ECs, are the major target of IL-17 within the microvessel wall and that IL-17-activated PCs can modulate neutrophil functions within the perivascular tissue space. PMID:27534549

  17. The effect of PGG-beta-glucan on neutrophil chemotaxis in vivo.

    PubMed

    LeBlanc, Brian W; Albina, Jorge E; Reichner, Jonathan S

    2006-04-01

    The beta-glucans are long-chain polymers of glucose in beta-(1,3)(1,6) linkages, which comprise the fungal cell wall and stimulate cells of the innate immune system. Previous in vitro studies have shown the ability of beta-glucan to increase the chemotactic capacity of human neutrophils. The current study examined an in vivo correlate of that observation by testing the hypothesis that systemic beta-glucan treatment would result in enhanced migration of neutrophils into a site of inflammation and improve antimicrobial function. A model of acute inflammation was used in which polyvinyl alcohol sponges were implanted subcutaneously into the dorsum of rats. Animals treated with beta-glucan showed a 66 +/- 6% and 186 +/- 42% increase in wound cell number recovered 6 and 18 h postwounding, respectively. Increased migration did not correlate with increased chemoattractant content of wound fluid, alterations in neutrophil-induced loss of endothelial barrier function, or changes in neutrophil adhesion to endothelial cells. Systemic administration of SB203580 abrogated the enhanced migration by beta-glucan without altering normal cellular entry into the wound. Studies also showed a priming effect for chemotaxis and respiratory burst in circulating neutrophils isolated from beta-glucan-treated animals. Heightened neutrophil function took place without cytokine elicitation. Furthermore, beta-glucan treatment resulted in a 169 +/- 28% increase in neutrophil number and a 60 +/- 9% decrease in bacterial load in the bronchoalveolar lavage fluid of Escherichia coli pneumonic animals. Taken together, these findings demonstrate that beta-glucan directly affects the chemotactic capacity of circulating neutrophils through a p38 mitogen-activated protein kinase-dependent mechanism and potentiates antimicrobial host defense. PMID:16415173

  18. Imaging Inflammation in Asthma: Real Time, Differential Tracking of Human Neutrophil and Eosinophil Migration in Allergen Challenged, Atopic Asthmatics in Vivo

    PubMed Central

    Lukawska, Joanna J.; Livieratos, Lefteris; Sawyer, Barbara M.; Lee, Tak; O'Doherty, Michael; Blower, Philip J.; Kofi, Martin; Ballinger, James R.; Corrigan, Christopher J.; Gnanasegaran, Gopinath; Sharif-Paghaleh, Ehsan; Mullen, Gregory E.D.

    2014-01-01

    Background It is important to study differential inflammatory cellular migration, particularly of eosinophils and neutrophils, in asthma and how this is influenced by environmental stimuli such as allergen exposure and the effects of anti asthma therapy. Methods We isolated blood neutrophils and eosinophils from 12 atopic asthmatic human volunteers (Group 1 — four Early Allergic Responders unchallenged (EAR); Group 2 — four Early and Late Allergic Responders (LAR) challenged; Group 3 — four EAR and LAR challenged and treated with systemic corticosteroids) using cGMP CD16 CliniMACS. Cells were isolated prior to allergen challenge where applicable, labelled with 99mTc-HMPAO and then re-infused intravenously. The kinetics of cellular influx/efflux into the lungs and other organs were imaged via scintigraphy over 4 h, starting at 5 to 6 h following allergen challenge where applicable. Results Neutrophils and eosinophils were isolated to a mean (SD) purity of 98.36% (1.09) and 96.31% (3.0), respectively. Asthmatic neutrophils were activated at baseline, mean (SD) CD11bHigh cells 46 (10.50) %. Isolation and radiolabelling significantly increased their activation to > 98%. Eosinophils were not activated at baseline, CD69+ cells 1.9 (0.6) %, increasing to 38 (3.46) % following isolation and labelling. Analysis of the kinetics of net eosinophil and neutrophil lung influx/efflux conformed to a net exponential clearance with respective mean half times of clearance 6.98 (2.18) and 14.01 (2.63) minutes for Group 1, 6.03 (0.72) and 16.04 (2.0) minutes for Group 2 and 5.63 (1.20) and 14.56 (3.36) minutes for Group 3. These did not significantly differ between the three asthma groups (p > 0.05). Conclusions Isolation and radiolabelling significantly increased activation of eosinophils (CD69) and completely activated neutrophils (CD11bHigh) in all asthma groups. Net lung neutrophil efflux was significantly slower than that of eosinophils in all asthma study groups. There

  19. Short-term effect of acute and repeated urinary bladder inflammation on thigmotactic behaviour in the laboratory rat

    PubMed Central

    Morland, Rosemary H; Novejarque, Amparo; Huang, Wenlong; Wodarski, Rachel; Denk, Franziska; Dawes, John D; Pheby, Tim; McMahon, Stephen B; Rice, Andrew SC

    2015-01-01

    Understanding the non-sensory components of the pain experience is crucial to developing effective treatments for pain conditions. Chronic pain is associated with increased incidence of anxio-depressive disorders, and patients often report feelings of vulnerability which can decrease quality of life. In animal models of pain, observation of behaviours such as thigmotaxis can be used to detect such affective disturbances by exploiting the influence of nociceptive stimuli on the innate behavioural conflict between exploration of a novel space and predator avoidance behaviour. This study investigates whether acute and repeated bladder inflammation in adult female Wistar rats increases thigmotactic behaviour in the open field paradigm, and aims to determine whether this correlates with activation in the central amygdala, as measured by c-Fos immunoreactivity. Additionally, up-regulation of inflammatory mediators in the urinary bladder was measured using RT-qPCR array featuring 92 transcripts to examine how local mediators change under experimental conditions. We found acute but not repeated turpentine inflammation of the bladder increased thigmotactic behaviour (decreased frequency of entry to the inner zone) in the open field paradigm, a result that was also observed in the catheter-only instrumentation group. Decreases in locomotor activity were also observed in both models in turpentine and instrumentation groups. No differences were observed in c-Fos activation, although a general increased in activation along the rostro-caudal axis was seen. Inflammatory mediator up-regulation was greatest following acute inflammation, with CCL12, CCL7, and IL-1β significantly up-regulated in both conditions when compared to naïve tissue. These results suggest that acute catheterisation, with or without turpentine inflammation, induces affective alterations detectable in the open field paradigm accompanied by up-regulation of multiple inflammatory mediators. PMID:27158443

  20. Intra-Peritoneal Administration of Mitochondrial DNA Provokes Acute Lung Injury and Systemic Inflammation via Toll-Like Receptor 9.

    PubMed

    Zhang, Lemeng; Deng, Songyun; Zhao, Shuangping; Ai, Yuhang; Zhang, Lina; Pan, Pinhua; Su, Xiaoli; Tan, Hongyi; Wu, Dongdong

    2016-01-01

    The pathogenesis of sepsis is complex. Mitochondrial dysfunction, which is responsible for energy metabolism, intrinsic apoptotic pathway, oxidative stress, and systemic inflammatory responses, is closely related with severe sepsis induced death. Mitochondria DNA (mtDNA) contain un-methylated cytosine phosphate guanine (CpG) motifs, which exhibit immune stimulatory capacities. The aim of this study was to investigate the role and mechanism of mtDNA release on lipopolysaccharide (LPS) induced acute lung injury (ALI) and systemic inflammation. Following LPS injection, plasma mtDNA copies peak at 8 h. Compared with wild-type (WT) mice, mtDNA in toll like receptor 4 knockout (TLR4 KO) mice were significantly decreased. MtDNA intra-peritoneal administration causes apparent ALI as demonstrated by increased lung injury score, bronchoalveolar lavage fluid (BALF) total protein and wet/dry (W/D) ratio; mtDNA injection also directly provokes systemic inflammation, as demonstrated by increased IL-1β, IL-6, high-mobility group protein B1 (HMGB1) level; while nuclear DNA (nDNA) could not induce apparent ALI and systemic inflammation. However, compared with WT mice, TLR4 KO could not protect from mtDNA induced ALI and systemic inflammation. Specific TLR9 inhibitor, ODN 2088 pretreatment can significantly attenuate mtDNA induced ALI and systemic inflammation, as demonstrated by improved lung injury score, decreased lung wet/dry ratio, BALF total protein concentration, and decreased systemic level of IL-1β, IL-6 and HMGB1. MtDNA administration activates the expression of p-P38 mitogen-activated protein kinases (MAPK) in lung tissue and specific TLR9 inhibitor pretreatment can attenuate this activation. Thus, LPS-induced mtDNA release occurs in a TLR4-dependent manner, and mtDNA causes acute lung injury and systemic inflammation in a TLR9-dependent and TLR4-independent manner. PMID:27589725

  1. A Radical Break: Restraining Neutrophil Migration.

    PubMed

    Renkawitz, Jörg; Sixt, Michael

    2016-09-12

    When neutrophils infiltrate a site of inflammation, they have to stop at the right place to exert their effector function. In this issue of Developmental Cell, Wang et al. (2016) show that neutrophils sense reactive oxygen species via the TRPM2 channel to arrest migration at their target site. PMID:27623379

  2. Butyrylcholinesterase as a marker of inflammation and liver injury in the acute and subclinical phases of canine ehrlichiosis.

    PubMed

    do Carmo, Guilherme M; Crivellenti, Leandro Z; Bottari, Nathieli B; Machado, Gustavo; Borin-Crivellenti, Sofia; Moresco, Rafael N; Duarte, Thiago; Duarte, Marta; Tinucci-Costa, Mirela; Morsch, Vera M; Schetinger, Maria Rosa C; Stefani, Lenita M; Da Silva, Aleksandro S

    2015-12-01

    The aim of this study was to evaluate the role of butyrylcholinesterase (BChE) as a marker of inflammation and liver injury in the acute and subclinical phases of canine ehrlichiosis. Forty-two serum samples of dogs naturally infected with Ehrlichia canis were used, of which 24 were from animals with the acute phase of the disease and 18 with subclinical disease. In addition, sera from 17 healthy dogs were used as negative controls. The hematocrit, BChE activity, hepatic injury (alanine aminotransferase (ALT) and aspartate aminotransferase (AST)), nitric oxide, and cytokines levels were evaluated. The BChE activity was significantly elevated (P<0.05) in dogs with the acute phase of the disease when compared to healthy animals. However, there was a reduction on BChE activity on dogs with subclinical disease compared to the other two groups. AST and ALT levels were significantly higher (P<0.05) in the acute phase, as well as the inflammatory mediators (NOx, TNF-α, INF-γ, IL-4, IL-6) when compared to the control group. On the other hand, IL-10 levels were lower in the acute phase. Based on these results, we are able to conclude that the acute infection caused by E. canis in dogs leads to an increase on seric BChE activity and some inflammatory mediators. Therefore, this enzyme might be used as a marker of acute inflammatory response in dogs naturally infected by this bacterium. PMID:26616656

  3. The cardiac surgery-associated neutrophil gelatinase-associated lipocalin (CSA-NGAL) score: A potential tool to monitor acute tubular damage.

    PubMed

    de Geus, Hilde R H; Ronco, Claudio; Haase, Michael; Jacob, Laurent; Lewington, Andrew; Vincent, Jean-Louis

    2016-06-01

    Acute kidney injury (AKI), defined as a rise in serum creatinine (functional AKI), is a frequent complication after cardiac surgery. The expression pattern of acute tubular damage biomarkers such as neutrophil gelatinase-associated lipocalin (NGAL) has been shown to precede functional AKI and, therefore, may be useful to identify very early tubular damage. The term subclinical AKI represents acute tubular damage in the absence of functional AKI (biomarker positivity without a rise in serum creatinine) and affects hard outcome measures. This potentiates an tubular-damage-based identification of renal injury, which may guide clinical management, allowing for very early preventive-protective strategies. The aim of this paper was to review the current available evidence on NGAL applicability in adult cardiac surgery patients and combine this knowledge with the expert consensus of the authors to generate an NGAL based tubular damage score: The cardiac surgery-associated NGAL Score (CSA-NGAL score). The CSA-NGAL score might be the tool needed to improve awareness and enable interventions to possibly modify these detrimental outcomes. In boldly doing so, it is intended to introduce a different approach in study designs, which will undoubtedly expand our knowledge and will hopefully move the AKI biomarker field forward. PMID:26952930

  4. The Response of Macrophages and Neutrophils to Hypoxia in the Context of Cancer and Other Inflammatory Diseases.

    PubMed

    Egners, Antje; Erdem, Merve; Cramer, Thorsten

    2016-01-01

    Lack of oxygen (hypoxia) is a hallmark of a multitude of acute and chronic diseases and can be either beneficial or detrimental for organ restitution and recovery. In the context of inflammation, hypoxia is particularly important and can significantly influence the course of inflammatory diseases. Macrophages and neutrophils, the chief cellular components of innate immunity, display distinct properties when exposed to hypoxic conditions. Virtually every aspect of macrophage and neutrophil function is affected by hypoxia, amongst others, morphology, migration, chemotaxis, adherence to endothelial cells, bacterial killing, differentiation/polarization, and protumorigenic activity. Prominent arenas of macrophage and neutrophil function, for example, acute/chronic inflammation and the microenvironment of solid tumors, are characterized by low oxygen levels, demonstrating the paramount importance of the hypoxic response for proper function of these cells. Members of the hypoxia-inducible transcription factor (HIF) family emerged as pivotal molecular regulators of macrophages and neutrophils. In this review, we will summarize the molecular responses of macrophages and neutrophils to hypoxia in the context of cancer and other chronic inflammatory diseases and discuss the potential avenues for therapeutic intervention that arise from this knowledge. PMID:27034586

  5. The Response of Macrophages and Neutrophils to Hypoxia in the Context of Cancer and Other Inflammatory Diseases

    PubMed Central

    Egners, Antje; Erdem, Merve; Cramer, Thorsten

    2016-01-01

    Lack of oxygen (hypoxia) is a hallmark of a multitude of acute and chronic diseases and can be either beneficial or detrimental for organ restitution and recovery. In the context of inflammation, hypoxia is particularly important and can significantly influence the course of inflammatory diseases. Macrophages and neutrophils, the chief cellular components of innate immunity, display distinct properties when exposed to hypoxic conditions. Virtually every aspect of macrophage and neutrophil function is affected by hypoxia, amongst others, morphology, migration, chemotaxis, adherence to endothelial cells, bacterial killing, differentiation/polarization, and protumorigenic activity. Prominent arenas of macrophage and neutrophil function, for example, acute/chronic inflammation and the microenvironment of solid tumors, are characterized by low oxygen levels, demonstrating the paramount importance of the hypoxic response for proper function of these cells. Members of the hypoxia-inducible transcription factor (HIF) family emerged as pivotal molecular regulators of macrophages and neutrophils. In this review, we will summarize the molecular responses of macrophages and neutrophils to hypoxia in the context of cancer and other chronic inflammatory diseases and discuss the potential avenues for therapeutic intervention that arise from this knowledge. PMID:27034586

  6. Similarities and differences between alpha-tocopherol and gamma-tocopherol in amelioration of inflammation, oxidative stress and pre-fibrosis in hyperglycemia induced acute kidney inflammation

    PubMed Central

    Shin, Hanna; Eo, Hyeyoon

    2016-01-01

    BACKGROUND/OBJECTIVES Diabetes mellitus (DM) is a major chronic disease which increases global health problems. Diabetes-induced renal damage is associated with inflammation and fibrosis. Alpha (AT) and gamma-tocopherols (GT) have shown antioxidant and anti-inflammatory effects in inflammation-mediated injuries. The primary aim of this study was to investigate effects of AT and GT supplementations on hyperglycemia induced acute kidney inflammation in alloxan induced diabetic mice with different levels of fasting blood glucose (FBG). MATERIALS/METHODS Diabetes was induced by injection of alloxan monohydrate (150 mg/kg, i.p) in ICR mice (5.5-week-old, male) and mice were subdivided according to their FBG levels and treated with different diets for 2 weeks; CON: non-diabetic mice, m-DMC: diabetic control mice with mild FBG levels (250 mg/dl ≤ FBG ≤ 450 mg/dl), m-AT: m-DM mice fed AT supplementation (35 mg/kg diet), m-GT: m-DM mice with GT supplementation (35 mg/kg diet), s-DMC: diabetic control mice with severe FBG levels (450 mg/dl < FBG), s-AT: s-DM mice with AT supplementation, s-GT: s-DM mice with GT supplementation. RESULTS Both AT and GT supplementations showed similar beneficial effects on NFκB associated inflammatory response (phosphorylated inhibitory kappa B-α, interleukin-1β, C-reactive protein, monocyte chemotactic protein-1) and pre-fibrosis (tumor growth factor β-1 and protein kinase C-II) as well as an antioxidant emzyme, heme oxygenase-1 (HO-1) in diabetic mice. On the other hands, AT and GT showed different beneficial effects on kidney weight, FBG, and oxidative stress associated makers (malondialdehyde, glutathione peroxidase, and catalase) except HO-1. In particular, GT significantly preserved kidney weight in m-DM and improved FBG levels in s-DM and malondialdehyde and catalase in m- and s-DM, while AT significantly attenuated FBG levels in m-DM and improved glutathione peroxidase in m- and s-DM. CONCLUSIONS The results suggest that AT and

  7. Acute Effects of Hemodiafiltration Versus Conventional Hemodialysis on Endothelial Function and Inflammation

    PubMed Central

    Jia, Ping; Jin, Wei; Teng, Jie; Zhang, Hao; Zou, Jianzhou; Liu, Zhonghua; Shen, Bo; Cao, Xuesen; Ding, Xiaoqiang

    2016-01-01

    Abstract Endothelial dysfunction and chronic inflammatory process are prevalent in patients with end-stage renal disease (ESRD) on maintenance hemodialysis (HD). The aim of this study was to evaluate the acute and short-term effects of online hemodiafiltration (OL-HDF) versus conventional HD on endothelial function and inflammation. A prospective, randomized, crossover trial. Twenty stable ESRD patients undergoing chronic HD treatments were randomly assigned with a 1:1 ratio to conventional HD and to OL-HDF both for 2 weeks (either HD followed by OL-HDF or OL-HDF followed by HD). Markers of endothelial dysfunction such as flow-mediated dilatation (FMD) of the brachial artery, soluble endothelial protein C receptor (sEPCR), and soluble thrombomodulin (sTM) were measured at baseline, after the first dialysis session and after 2 weeks. Meanwhile, serum interleukin 6 (IL-6) and high-sensitivity C-reactive protein (hs-CRP) levels were measured as well. Both a single OL-HDF session and 2-week OL-HDF significantly improved brachial FMD% (18.7 ± 6.9% at baseline; 21.5 ± 5.4% after the first dialysis; 21.5 ± 5.7% after 2 weeks; P < 0.05 vs baseline), decreased the levels of sEPCR (from 394.4 [297.9–457.0] ng/ml at baseline to 234.7 [174.1–345.5] ng/ml after the first dialysis, and to 191.5 [138.2–255.0] ng/ml after 2 weeks; P < 0.01 vs baseline) and sTM. In contrast, HD did not change FMD%, even increased the levels of sEPCR and sTM. A reduction in IL-6 level was observed in OL-HDF patients after 2-week dialysis, while IL-6 did not change in HD patients. There was no significant difference in change of hs-CRP level between the OL-HDF and HD treatments. OL-HDF has both acute and short-term beneficial effects on endothelial dysfunction compared to conventional HD. PMID:27100440

  8. Acute Effects of Hemodiafiltration Versus Conventional Hemodialysis on Endothelial Function and Inflammation: A Randomized Crossover Study.

    PubMed

    Jia, Ping; Jin, Wei; Teng, Jie; Zhang, Hao; Zou, Jianzhou; Liu, Zhonghua; Shen, Bo; Cao, Xuesen; Ding, Xiaoqiang

    2016-04-01

    Endothelial dysfunction and chronic inflammatory process are prevalent in patients with end-stage renal disease (ESRD) on maintenance hemodialysis (HD). The aim of this study was to evaluate the acute and short-term effects of online hemodiafiltration (OL-HDF) versus conventional HD on endothelial function and inflammation.A prospective, randomized, crossover trial.Twenty stable ESRD patients undergoing chronic HD treatments were randomly assigned with a 1:1 ratio to conventional HD and to OL-HDF both for 2 weeks (either HD followed by OL-HDF or OL-HDF followed by HD). Markers of endothelial dysfunction such as flow-mediated dilatation (FMD) of the brachial artery, soluble endothelial protein C receptor (sEPCR), and soluble thrombomodulin (sTM) were measured at baseline, after the first dialysis session and after 2 weeks. Meanwhile, serum interleukin 6 (IL-6) and high-sensitivity C-reactive protein (hs-CRP) levels were measured as well.Both a single OL-HDF session and 2-week OL-HDF significantly improved brachial FMD% (18.7 ± 6.9% at baseline; 21.5 ± 5.4% after the first dialysis; 21.5 ± 5.7% after 2 weeks; P < 0.05 vs baseline), decreased the levels of sEPCR (from 394.4 [297.9-457.0] ng/ml at baseline to 234.7 [174.1-345.5] ng/ml after the first dialysis, and to 191.5 [138.2-255.0] ng/ml after 2 weeks; P < 0.01 vs baseline) and sTM. In contrast, HD did not change FMD%, even increased the levels of sEPCR and sTM. A reduction in IL-6 level was observed in OL-HDF patients after 2-week dialysis, while IL-6 did not change in HD patients. There was no significant difference in change of hs-CRP level between the OL-HDF and HD treatments.OL-HDF has both acute and short-term beneficial effects on endothelial dysfunction compared to conventional HD. PMID:27100440

  9. Promoting effect of neutrophils on lung tumorigenesis is mediated by CXCR2 and neutrophil elastase

    PubMed Central

    2013-01-01

    Background Tumor cells produce various cytokines and chemokines that attract leukocytes. Leukocytes can amplify parenchymal innate immune responses, and have been shown to contribute to tumor promotion. Neutrophils are among the first cells to arrive at sites of inflammation, and the increased number of tumor-associated neutrophils is linked to poorer outcome in patients with lung cancer. Results We have previously shown that COPD-like airway inflammation promotes lung cancer in a K-ras mutant mouse model of lung cancer (CC-LR). This was associated with severe lung neutrophilic influx due to the increased level of neutrophil chemoattractant, KC. To further study the role of neutrophils in lung tumorigenesis, we depleted neutrophils in CC-LR mice using an anti-neutrophil antibody. This resulted in a significant reduction in lung tumor number. We further selectively inhibited the main receptor for neutrophil chemo-attractant KC, CXCR2. Similarly, this resulted in suppression of neutrophil recruitment into the lung of CC-LR mice followed by significant tumor reduction. Neutrophil elastase (NE) is a potent elastolytic enzyme produced by neutrophils at the site of inflammation. We crossed the CC-LR mice with NE knock-out mice, and found that lack of NE significantly inhibits lung cancer development. These were associated with significant reduction in tumor cell proliferation and angiogenesis. Conclusion We conclude that lung cancer promotion by inflammation is partly mediated by activation of the IL-8/CXCR2 pathway and subsequent recruitment of neutrophils and release of neutrophil elastase. This provides a baseline for future clinical trials using the IL-8/CXCR2 pathway or NE inhibitors in patients with lung cancer. PMID:24321240

  10. Silencing of fas, fas-associated via death domain, or caspase 3 differentially affects lung inflammation, apoptosis, and development of trauma-induced septic acute lung injury.

    PubMed

    Messer, Mirko Philipp; Kellermann, Philipp; Weber, Sascha Jörn; Hohmann, Christoph; Denk, Stephanie; Klohs, Bettina; Schultze, Anke; Braumüller, Sonja; Huber-Lang, Markus Stefan; Perl, Mario

    2013-01-01

    Activation of Fas signaling is a potentially important pathophysiological mechanism in the development of septic acute lung injury (ALI). However, so far the optimal targets within this signaling cascade remain elusive. Thus, we tested the hypothesis that in vivo gene silencing of Fas, Fas-associated via death domain (FADD), or caspase 3 by intratracheal administration of small interfering RNA would ameliorate ALI in a clinically relevant double-hit mouse model of trauma induced septic lung injury. Male C57Bl/6 mice received small interfering (Fas, FADD, caspase 3) or control RNA 24 h before and 12 h after blunt chest trauma or sham procedures. Polymicrobial sepsis was induced by cecal ligation and puncture 24 h after chest trauma. Twelve or 24 h later, lung tissue, plasma, and bronchoalveolar lavage fluid were harvested. During ALI, lung apoptosis (active caspase 3 Western blotting, TUNEL staining) was substantially increased when compared with sham. Silencing of caspase 3 or FADD both markedly reduced pulmonary apoptosis. Fas- and FADD-small interfering RNA administration substantially decreased lung cytokine concentration, whereas caspase 3 silencing did not reduce lung inflammation. In addition, Fas silencing markedly decreased lung neutrophil infiltration. Interestingly, only in response to caspase 3 silencing, ALI-induced lung epithelial barrier dysfunction was substantially improved, and histological appearance was beneficially affected. Taken together, downstream inhibition of lung apoptosis via caspase 3 silencing proved to be superior in mitigating ALI when compared with upstream inhibition of apoptosis via Fas or FADD silencing, even in the presence of additional anti-inflammatory effects. This indicates a major pathophysiological role of lung apoptosis and suggests the importance of other than Fas-driven apoptotic pathways in trauma-induced septic ALI. PMID:23247118

  11. Neutrophil IL-1β processing induced by pneumolysin is mediated by the NLRP3/ASC inflammasome and caspase-1 activation, and is dependent on K+ efflux

    PubMed Central

    Karmakar, Mausita; Katsnelson, Michael; Malak, Hesham A.; Greene, Neil G.; Howell, Scott J.; Hise, Amy G.; Camilli, Andrew; Kadioglu, Aras; Dubyak, George R.; Pearlman, Eric

    2014-01-01

    Although neutrophils are the most abundant cells in acute infection and inflammation, relatively little attention has been paid to their role in inflammasome formation and IL-1β processing. In the current study, we investigated the mechanism by which neutrophils process IL-1β in response to Streptococcus pneumoniae. Using a murine model of S. pneumoniae corneal infection, we demonstrated a requirement for IL-1β in bacterial clearance, and showed that NLRP3, ASC and caspase-1 are essential for IL-1β production and bacterial killing in the cornea. Neutrophils in infected corneas had multiple specks with enzymatically active caspase-1 (FLICA-660+), and bone marrow neutrophils stimulated with heat killed S. pneumoniae (signal 1) and pneumolysin (signal 2) exhibited multiple specks after staining with FLICA-660, NLRP3 or ASC. High molecular weight ASC complexes were also detected, consistent with oligomer formation. Pneumolysin induced K+ efflux in neutrophils, and blocking K+ efflux inhibited caspase-1 activation and IL-1β processing; however, neutrophils did not undergo pyroptosis, indicating that K+ efflux and IL-1β processing is not a consequence of cell death. There was also no role for lysosomal destabilization or neutrophil elastase in pneumolysin mediated IL-1β processing in neutrophils. Together, these findings demonstrate an essential role for neutrophil derived IL-1β in S. pneumoniae infection, and elucidate the role of the NLRP3 inflammasome in neutrophil cleavage and secretion of mature IL-1β. Given the ubiquitous presence of neutrophils in acute bacterial and fungal infections, these findings will have implications for other microbial diseases. PMID:25609842

  12. Synthesis of acute-phase alpha 2-macroglobulin during inflammation and pregnancy.

    PubMed

    Panrucker, D E; Lorscheider, F L

    1983-01-01

    A recent investigation of acute-phase alpha 2-macroglobulin (AP alpha 2M) concentration in the rat during pregnancy demonstrated a bimodal distribution, for which we suggested a maternal source of AP alpha 2M in early gestation and a fetal source in late gestation. This interpretation was supported by the findings of the present study, which employed organ culture techniques, incorporation of [35S]methionine, immunoprecipitation of radioactivity, and fluorography to measure synthesis of AP alpha 2M in specific fetal, adult, and maternal tissues. Preliminary results indicated that in adult male rats treated with croton oil (compared with nontreated males), AP alpha 2M was synthesized in kidney, spleen, thymus, and lymphocytes by 48 hr post induction, but synthesis in the liver was not evident. In the pregnant rat from 12 to 16 days (compared with nonpregnant females), synthesis of AP alpha 2M was high in metrial gland, moderate in spleen, thymus and lymphocytes, and absent in liver; at 21 days, synthesis of AP alpha 2M in these four maternal tissues had declined. Fetal synthesis of AP alpha 2M in yolk sac (12 to 16 days) and in liver (15 to 16 days) was significantly elevated, and at 21 days fetal liver still displayed marked synthesis. These data are consistent with the interpretation that an early maternal source of AP alpha 2M synthesis is the metrial gland and that in the fetus both yolk sac and liver are major sources of AP alpha 2M, the latter tissue continuing synthesis into late gestation. Lymphopoietic and lymph-containing tissues appear to be major sites of AP alpha 2M synthesis during inflammation and pregnancy. PMID:6200027

  13. Ginsenoside Rd Is Efficacious Against Acute Ischemic Stroke by Suppressing Microglial Proteasome-Mediated Inflammation.

    PubMed

    Zhang, Guangyun; Xia, Feng; Zhang, Yunxia; Zhang, Xiao; Cao, Yuhong; Wang, Ling; Liu, Xuedong; Zhao, Gang; Shi, Ming

    2016-05-01

    A great deal of attention has been paid to neuroprotective therapies for cerebral ischemic stroke. Our two recent clinical trials showed that ginsenoside Rd (Rd), a kind of monomeric compound extracted from Chinese herbs, Panax ginseng and Panax notoginseng, was safe and efficacious for the treatment of ischemic stroke. In this study, we conducted a pooled analysis of the data from 199 patients with acute ischemic stroke in the first trial and 390 in the second to reanalyze the efficacy and safety of Rd. Moreover, animal stroke models were carried out to explore the possible molecular mechanisms underlying Rd neuroprotection. The pooled analysis showed that compared with placebo group, Rd could improve patients' disability as assessed by modified Rankin Scale (mRS) score on day 90 post-stroke and reduce neurologic deficits on day 15 or day 90 post-stroke as assessed by NIH Stroke Scale (NIHSS) and Barthel Index (BI) scores. For neuroprotective mechanisms, administration of Rd 4 h after stroke could inhibit ischemia-induced microglial activation, decrease the expression levels of various proinflammatory cytokines, and suppress nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor, alpha (IκBα) phosphorylation and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) nuclear translocation. An in vitro proteasome activity assay revealed a significant inhibitory effect of Rd on proteasome activity in microglia. Interestingly, Rd was showed to have less side effects than glucocorticoid. Therefore, our study demonstrated that Rd could safely improve the outcome of patients with ischemic stroke, and this therapeutic effect may result from its capability of suppressing microglial proteasome activity and sequential inflammation. PMID:26081140

  14. Novel markers of endothelial dysfunction and inflammation in Behçet's disease patients with ocular involvement: epicardial fat thickness, carotid intima media thickness, serum ADMA level, and neutrophil-to-lymphocyte ratio.

    PubMed

    Yuksel, Murat; Yildiz, Abdulkadir; Oylumlu, Mustafa; Turkcu, Fatih Mehmet; Bilik, Mehmet Zihni; Ekinci, Aysun; Elbey, Bilal; Tekbas, Ebru; Alan, Sait

    2016-03-01

    The etiology of Behçet's disease (BD) has not been fully elucidated. However, immunological and environmental factors, endothelial dysfunction (ED), and genetic susceptibility have been proposed to play a role. In this study, we aimed to evaluate epicardial fat thickness (EFT) together with serum asymmetric dimethylarginine (ADMA), carotid intima media thickness (CIMT), and neutrophil-to-lymphocyte ratio (NLR) in BD patients with ocular involvement. Thirty-six ocular BD patients (17 active and 19 inactive ocular involvement), and 35 age and sex-matched healthy controls were enrolled to this cross-sectional study. All patients underwent examinations with transthoracic echocardiography and carotid Doppler ultrasound. Serum ADMA levels, CIMT, EFT, and NLR were compared between groups, and their association with disease activity was evaluated. Behçet's disease patients had higher WBC counts, neutrophil counts, NLR, CIMT, EFT values, and serum ADMA levels than do healthy controls. The other biochemical, hematological, and echocardiographic parameters were comparable between the two groups. Behçet's disease duration was positively correlated with EFT and CIMT. Multivariate logistic regression analysis revealed that increased serum ADMA concentration and CIMT are independently associated with BD. Neutrophil counts, NLR, and serum ADMA level were higher, and lymphocyte count was lower in patients with active ocular BD compared to those of inactive ocular BD group. Carotid intima media thickness, serum ADMA level, EFT, and NLR were increased in ocular BD patients compared to healthy subjects. In addition, both serum ADMA level and NLR were associated with disease activity of ocular involvement. Increase in disease duration was associated with increase in CIMT and EFT which suggests that anatomical changes occur in time during the disease course. Increased CIMT, serum ADMA level, EFT, and NLR may provide new clues about the role of ED and inflammation in the

  15. Neutrophil Development, Migration, and Function in Teleost Fish

    PubMed Central

    Havixbeck, Jeffrey J.; Barreda, Daniel R.

    2015-01-01

    It is now widely recognized that neutrophils are sophisticated cells that are critical to host defense and the maintenance of homeostasis. In addition, concepts such as neutrophil plasticity are helping to define the range of phenotypic profiles available to cells in this group and the physiological conditions that contribute to their differentiation. Herein, we discuss key features of the life of a teleost neutrophil including their development, migration to an inflammatory site, and contributions to pathogen killing and the control of acute inflammation. The potent anti-microbial mechanisms elicited by these cells in bony fish are a testament to their long-standing evolutionary contributions in host defense. In addition, recent insights into their active roles in the control of inflammation prior to induction of apoptosis highlight their importance to the maintenance of host integrity in these early vertebrates. Overall, our goal is to summarize recent progress in our understanding of this cell type in teleost fish, and to provide evolutionary context for the contributions of this hematopoietic lineage in host defense and an efficient return to homeostasis following injury or infection. PMID:26561837

  16. Evaluating a novel treatment for coronary artery inflammation in acute Kawasaki disease: A Phase I/IIa trial of atorvastatin

    PubMed Central

    Tremoulet, Adriana H; Jain, Sonia; Burns, Jane C

    2016-01-01

    Introduction Since the 1980s, the primary treatment of acute Kawasaki disease (KD) has been intravenous immunoglobulin and aspirin. However, 5-10% of children with acute KD will develop coronary artery abnormalities despite treatment within the first ten days after fever onset. There is no approved adjunctive therapy to prevent progression of coronary artery damage in these patients Areas covered The rationale and study design of a Phase I/IIa trial of atorvastatin in children with acute KD and coronary artery inflammation is presented. The studies of host genetics and KD pathogenesis leading up to this trial are reviewed. Expert opinion The repurposing of well-studied drugs used in the adult population is a cost-effective and efficient strategy to identify new therapies for pediatric diseases. Exploiting the anti-inflammatory, non-lipid-lowering effects of statins may open up new applications for this class of drugs for the pediatric age group.

  17. Platelet response to corneal abrasion is necessary for acute inflammation and efficient re-epithelialization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: Adhesion molecules play a critical role in leukocyte emigration to wound sites, but differences are evident in different vascular beds. This study investigates the contributions of P-selectin to neutrophil emigration into the cornea following central epithelial abrasion. Methods: Re-epithel...

  18. Feedback Amplification of Neutrophil Function.

    PubMed

    Németh, Tamás; Mócsai, Attila

    2016-06-01

    As the first line of innate immune defense, neutrophils need to mount a rapid and robust antimicrobial response. Recent studies implicate various positive feedback amplification processes in achieving that goal. Feedback amplification ensures effective migration of neutrophils in shallow chemotactic gradients, multiple waves of neutrophil recruitment to the site of inflammation, and the augmentation of various effector functions of the cells. We review here such positive feedback loops including intracellular and autocrine processes, paracrine effects mediated by lipid (LTB4), chemokine, and cytokine mediators, and bidirectional interactions with the complement system and with other immune and non-immune cells. These amplification mechanisms are not only involved in antimicrobial immunity but also contribute to neutrophil-mediated tissue damage under pathological conditions. PMID:27157638

  19. Protection from septic peritonitis by rapid neutrophil recruitment through omental high endothelial venules.

    PubMed

    Buscher, Konrad; Wang, Huiyu; Zhang, Xueli; Striewski, Paul; Wirth, Benedikt; Saggu, Gurpanna; Lütke-Enking, Stefan; Mayadas, Tanya N; Ley, Klaus; Sorokin, Lydia; Song, Jian

    2016-01-01

    Acute peritonitis is a frequent medical condition that can trigger severe sepsis as a life-threatening complication. Neutrophils are first-responders in infection but recruitment mechanisms to the abdominal cavity remain poorly defined. Here, we demonstrate that high endothelial venules (HEVs) of the greater omentum constitute a main entry pathway in TNFα-, Escherichia coli (E. coli)- and caecal ligation and puncture-induced models of inflammation. Neutrophil transmigration across HEVs is faster than across conventional postcapillary venules and requires a unique set of adhesion receptors including peripheral node addressin, E-, L-selectin and Mac-1 but not P-selectin or LFA-1. Omental milky spots readily concentrate intra-abdominal E. coli where macrophages and recruited neutrophils collaborate in phagocytosis and killing. Inhibition of the omental neutrophil response exacerbates septic progression of peritonitis. This data identifies HEVs as a clinically relevant vascular recruitment site for neutrophils in acute peritonitis that is indispensable for host defence against early systemic bacterial spread and sepsis. PMID:26940548

  20. Protection from septic peritonitis by rapid neutrophil recruitment through omental high endothelial venules

    PubMed Central

    Buscher, Konrad; Wang, Huiyu; Zhang, Xueli; Striewski, Paul; Wirth, Benedikt; Saggu, Gurpanna; Lütke-Enking, Stefan; Mayadas, Tanya N.; Ley, Klaus; Sorokin, Lydia; Song, Jian

    2016-01-01

    Acute peritonitis is a frequent medical condition that can trigger severe sepsis as a life-threatening complication. Neutrophils are first-responders in infection but recruitment mechanisms to the abdominal cavity remain poorly defined. Here, we demonstrate that high endothelial venules (HEVs) of the greater omentum constitute a main entry pathway in TNFα-, Escherichia coli (E. coli)- and caecal ligation and puncture-induced models of inflammation. Neutrophil transmigration across HEVs is faster than across conventional postcapillary venules and requires a unique set of adhesion receptors including peripheral node addressin, E-, L-selectin and Mac-1 but not P-selectin or LFA-1. Omental milky spots readily concentrate intra-abdominal E. coli where macrophages and recruited neutrophils collaborate in phagocytosis and killing. Inhibition of the omental neutrophil response exacerbates septic progression of peritonitis. This data identifies HEVs as a clinically relevant vascular recruitment site for neutrophils in acute peritonitis that is indispensable for host defence against early systemic bacterial spread and sepsis. PMID:26940548

  1. The small GTPase Rap1b negatively regulates neutrophil chemotaxis and transcellular diapedesis by inhibiting Akt activation

    PubMed Central

    Kumar, Sachin; Xu, Juying; Kumar, Rupali Sani; Lakshmikanthan, Sribalaji; Kapur, Reuben; Kofron, Matthew; Chrzanowska-Wodnicka, Magdalena

    2014-01-01

    Neutrophils are the first line of cellular defense in response to infections and inflammatory injuries. However, neutrophil activation and accumulation into tissues trigger tissue damage due to release of a plethora of toxic oxidants and proteases, a cause of acute lung injury (ALI). Despite its clinical importance, the molecular regulation of neutrophil migration is poorly understood. The small GTPase Rap1b is generally viewed as a positive regulator of immune cell functions by controlling bidirectional integrin signaling. However, we found that Rap1b-deficient mice exhibited enhanced neutrophil recruitment to inflamed lungs and enhanced susceptibility to endotoxin shock. Unexpectedly, Rap1b deficiency promoted the transcellular route of diapedesis through endothelial cell. Increased transcellular migration of Rap1b-deficient neutrophils in vitro was selectively mediated by enhanced PI3K-Akt activation and invadopodia-like protrusions. Akt inhibition in vivo suppressed excessive Rap1b-deficient neutrophil migration and associated endotoxin shock. The inhibitory action of Rap1b on PI3K signaling may be mediated by activation of phosphatase SHP-1. Thus, this study reveals an unexpected role for Rap1b as a key suppressor of neutrophil migration and lung inflammation. PMID:25092872

  2. Plasma neutrophil gelatinase-associated lipocalin as a marker for the prediction of worsening renal function in children hospitalized for acute heart failure.

    PubMed

    Elsharawy, Sahar; Raslan, Lila; Morsy, Saed; Hassan, Basheir; Khalifa, Naglaa

    2016-01-01

    Acute heart failure (AHF) is frequently associated with worsening renal function in adult patients. Neutrophil gelatinase-associated lipocalin (NGAL) serves as an early marker for acute renal tubular injury. To assess the role of plasma NGAL in predicting worsening renal function (WRF) in children with AHF, we studied 30 children hospitalized for AHF; children with history of chronic renal disease or on nephrotoxic drugs were excluded. Twenty age- and sex-matched healthy children were included in the study as a control group. Echocardiographic examination was performed on admission. Blood urea nitrogen (BUN), serum creatinine, estimated glomerular filtration rate (eGFR) and plasma NGAL levels were measured on admission and 72 h later. Seventeen (56.6%) patients developed WRF within the three-day follow-up period. At presentation, plasma NGAL level was significantly elevated in children who developed WRF. Admission plasma NGAL level correlated with renal parameters (BUN, creatinine and eGFR) as well as with left ventricular systolic parameters (ejection fraction and fractional shortening). For prediction of WRF, admission plasma, NGAL level>27.5 μg/L had sensitivity and specificity of 90% and 68%, respectively. The area under the receiver-operator curve was higher for NGAL (0.869) than for BUN (0.569) or eGFR (0.684). We conclude that admission plasma NGAL level can predict WRF in children hospitalized for AHF. PMID:26787566

  3. How Neutrophils Shape Adaptive Immune Responses

    PubMed Central

    Leliefeld, Pieter H. C.; Koenderman, Leo; Pillay, Janesh

    2015-01-01

    Neutrophils are classically considered as cells pivotal for the first line of defense against invading pathogens. In recent years, evidence has accumulated that they are also important in the orchestration of adaptive immunity. Neutrophils rapidly migrate in high numbers to sites of inflammation (e.g., infection, tissue damage, and cancer) and are subsequently able to migrate to draining lymph nodes (LNs). Both at the site of inflammation as well as in the LNs, neutrophils can engage with lymphocytes and antigen-presenting cells. This crosstalk occurs either directly via cell–cell contact or via mediators, such as proteases, cytokines, and radical oxygen species. In this review, we will discuss the current knowledge regarding locations and mechanisms of interaction between neutrophils and lymphocytes in the context of homeostasis and various pathological conditions. In addition, we will highlight the complexity of the microenvironment that is involved in the generation of suppressive or stimulatory neutrophil phenotypes. PMID:26441976

  4. Resistance to P. brasiliensis Experimental Infection of Inbred Mice Is Associated with an Efficient Neutrophil Mobilization and Activation by Mediators of Inflammation.

    PubMed

    Sperandio, Felipe Fornias; Fernandes, Gisele Pesquero; Mendes, Ana Carolina Silvério Cerqueira; Bani, Giulia Maria de Alencar Castro; Calich, Vera Lucia Garcia; Burger, Eva

    2015-01-01

    Paracoccidioidomycosis (PCM) is a systemic fungal infection, endemic in Brazil, that leads to severe morbidity and even mortality if not correctly treated. Patients may respond differently to PCM depending on the pattern of the acquired immune response developed. The onset of protective immune response is notably mediated by neutrophils (PMN) that play an important role through directly killing the fungi and also by interacting with other cell types to modulate the acquired protective immune response that may follow. In that way, this study aimed to present and compare different experimental models of PCM (intraperitoneal and subcutaneous) regarding PMN production and maturation inside femoral bone marrow and also PMN infiltration in peritoneal and subcutaneous exudates of resistant and susceptible mice. We also assessed the fungal colony forming units and the levels of soluble inflammatory mediators (LTB4, KC, IFN-γ, GM-CSF, and IL-10) inside subcutaneous air-pouches to compare the efficiency of the PMN present at this site in relation to the two main neutrophil functions: initial lysis of the invading pathogen and modulation of the acquired immune response. P. brasiliensis inoculated intraperitoneally was able to disseminate to the bone marrow of susceptible mice, causing a more marked alteration of PMN production and maturation than that observed after resistant mice infection by the same route. Subcutaneous air-pouch inoculation of P. brasiliensis elicited a controlled and limited infection that produced a PMN-rich exudate, thus favoring the study of the interaction between the fungus and the neutrophils. Susceptible mice produced higher numbers of PMN; however, these cells were less effective in killing the fungi. Inflammatory cytokines were more pronounced in resistant mice, which supports their PCM raised resistance. PMID:26819497

  5. Resistance to P. brasiliensis Experimental Infection of Inbred Mice Is Associated with an Efficient Neutrophil Mobilization and Activation by Mediators of Inflammation

    PubMed Central

    Sperandio, Felipe Fornias; Fernandes, Gisele Pesquero; Mendes, Ana Carolina Silvério Cerqueira; Bani, Giulia Maria de Alencar Castro; Calich, Vera Lucia Garcia; Burger, Eva

    2015-01-01

    Paracoccidioidomycosis (PCM) is a systemic fungal infection, endemic in Brazil, that leads to severe morbidity and even mortality if not correctly treated. Patients may respond differently to PCM depending on the pattern of the acquired immune response developed. The onset of protective immune response is notably mediated by neutrophils (PMN) that play an important role through directly killing the fungi and also by interacting with other cell types to modulate the acquired protective immune response that may follow. In that way, this study aimed to present and compare different experimental models of PCM (intraperitoneal and subcutaneous) regarding PMN production and maturation inside femoral bone marrow and also PMN infiltration in peritoneal and subcutaneous exudates of resistant and susceptible mice. We also assessed the fungal colony forming units and the levels of soluble inflammatory mediators (LTB4, KC, IFN-γ, GM-CSF, and IL-10) inside subcutaneous air-pouches to compare the efficiency of the PMN present at this site in relation to the two main neutrophil functions: initial lysis of the invading pathogen and modulation of the acquired immune response. P. brasiliensis inoculated intraperitoneally was able to disseminate to the bone marrow of susceptible mice, causing a more marked alteration of PMN production and maturation than that observed after resistant mice infection by the same route. Subcutaneous air-pouch inoculation of P. brasiliensis elicited a controlled and limited infection that produced a PMN-rich exudate, thus favoring the study of the interaction between the fungus and the neutrophils. Susceptible mice produced higher numbers of PMN; however, these cells were less effective in killing the fungi. Inflammatory cytokines were more pronounced in resistant mice, which supports their PCM raised resistance. PMID:26819497

  6. Neutrophil function and dysfunction in periodontal disease.

    PubMed

    Van Dyke, T E; Vaikuntam, J

    1994-01-01

    The polymorphonuclear leukocyte or neutrophil is an integral part of the acute inflammatory response. Its function as a protective cell in the pathogenesis of periodontal disease has been studied extensively. Abnormal neutrophil function has been associated (directly or indirectly) with the pathogenesis of early onset periodontal disease. This paper reviews the recent developments in neutrophil function and dysfunction as they relate to periodontal disease progression. PMID:8032460

  7. The role of neutrophils in injury and repair following muscle stretch.

    PubMed

    Toumi, Hechmi; F'guyer, Sleem; Best, Thomas M

    2006-04-01

    Stretch injury to the myotendinous junction is a common problem in competitive athletes and those involved in regular physical activity. The major risk factor for recurrent injury appears to be the primary injury itself. Physicians, physical therapists, athletic trainers and athletes alike continue to search for optimal treatment and prevention strategies. Acute inflammation is regarded as the body's generalized protective response to tissue injury. An especially important and unexplored aspect of inflammation following injury is the role of inflammatory cells in extending injury and possibly directing muscle repair. It has been suggested that the inflammatory reaction, although it typically represents a reaction to damage and necrosis, may even bring about some local damage of its own and therefore increase the possibility for scarring and fibrosis. Limiting certain aspects of inflammation may theoretically reduce muscle damage as well as signals for muscle scarring. Here we focus on the role of neutrophils in injury and repair of stretch-injured skeletal muscle. A minimally invasive model that generates a reproducible injury to rabbit skeletal muscle is presented. We present a plausible theory that neutrophil-derived oxidants resulting from the initial stretch injury are responsible for extending the damage. An anti-CD11b antibody that blocks the neutrophil's respiratory burst is employed to reduce myofibre damage. An intriguing area that is currently being explored in our laboratory and others is the potential role for neutrophils to contribute to muscle growth and repair. It may be possible that neutrophils facilitate muscle repair through removal of tissue debris as well as by activation of satellite cells. Recent and ongoing investigations point to interleukin-6 as a possible key cytokine in muscle inflammation and repair. Studies to elucidate a clearer understanding of this possibility will be reviewed. PMID:16637872

  8. The role of neutrophils in injury and repair following muscle stretch

    PubMed Central

    Toumi, Hechmi; F'guyer, Sleem; Best, Thomas M

    2006-01-01

    Stretch injury to the myotendinous junction is a common problem in competitive athletes and those involved in regular physical activity. The major risk factor for recurrent injury appears to be the primary injury itself. Physicians, physical therapists, athletic trainers and athletes alike continue to search for optimal treatment and prevention strategies. Acute inflammation is regarded as the body's generalized protective response to tissue injury. An especially important and unexplored aspect of inflammation following injury is the role of inflammatory cells in extending injury and possibly directing muscle repair. It has been suggested that the inflammatory reaction, although it typically represents a reaction to damage and necrosis, may even bring about some local damage of its own and therefore increase the possibility for scarring and fibrosis. Limiting certain aspects of inflammation may theoretically reduce muscle damage as well as signals for muscle scarring. Here we focus on the role of neutrophils in injury and repair of stretch-injured skeletal muscle. A minimally invasive model that generates a reproducible injury to rabbit skeletal muscle is presented. We present a plausible theory that neutrophil-derived oxidants resulting from the initial stretch injury are responsible for extending the damage. An anti-CD11b antibody that blocks the neutrophil's respiratory burst is employed to reduce myofibre damage. An intriguing area that is currently being explored in our laboratory and others is the potential role for neutrophils to contribute to muscle growth and repair. It may be possible that neutrophils facilitate muscle repair through removal of tissue debris as well as by activation of satellite cells. Recent and ongoing investigations point to interleukin-6 as a possible key cytokine in muscle inflammation and repair. Studies to elucidate a clearer understanding of this possibility will be reviewed. PMID:16637872

  9. Importance of airway inflammation for hyperresponsiveness induced by ozone. [Dogs

    SciTech Connect

    Holtzman, M.J.; Fabbri, L.M.; O'Byrne, P.M.; Gold, B.D.; Aizawa, H.; Walters, E.H.; Alpert, S.E.; Nadel, J.A.

    1983-06-01

    We studied whether ozone-induced airway hyperresponsiveness correlates with the development of airway inflammation in dogs. To assess airway responsiveness, we determined increases in pulmonary resistance produced by delivering acetylcholine aerosol to the airways. To assess airway inflammation, we biopsied the airway mucosa and counted the number of neutrophils present in the epithelium. Airway responsiveness and inflammation were assessed in anesthetized dogs before ozone exposure and then 1 h and 1 wk after ozone (2.1 ppm, 2 h). Airway responsiveness increased markedly at 1 h after ozone and returned to control levels 1 wk later in each of 6 dogs, but it did not change after ozone in another 4 dogs. Furthermore, dogs that became hyperresponsive also developed a marked and reversible increase in the number of neutrophils in the epithelium, whereas dogs that did not become hyperresponsive had no change in the number of neutrophils. For the group of dogs, the level of airway responsiveness before and after ozone exposure correlated closely with the number of epithelial neutrophils. The results suggest that ozone-induced airway hyperresponsiveness may depend on the development of an acute inflammatory response in the airways.

  10. Rat models of acute inflammation: a randomized controlled study on the effects of homeopathic remedies

    PubMed Central

    Conforti, Anita; Bellavite, Paolo; Bertani, Simone; Chiarotti, Flavia; Menniti-Ippolito, Francesca; Raschetti, Roberto

    2007-01-01

    Background One of the cardinal principles of homeopathy is the "law of similarities", according to which patients can be treated by administering substances which, when tested in healthy subjects, cause symptoms that are similar to those presented by the patients themselves. Over the last few years, there has been an increase in the number of pre-clinical (in vitro and animal) studies aimed at evaluating the pharmacological activity or efficacy of some homeopathic remedies under potentially reproducible conditions. However, in addition to some contradictory results, these studies have also highlighted a series of methodological difficulties. The present study was designed to explore the possibility to test in a controlled way the effects of homeopathic remedies on two known experimental models of acute inflammation in the rat. To this aim, the study considered six different remedies indicated by homeopathic practice for this type of symptom in two experimental edema models (carrageenan- and autologous blood-induced edema), using two treatment administration routes (sub-plantar injection and oral administration). Methods In a first phase, the different remedies were tested in the four experimental conditions, following a single-blind (measurement) procedure. In a second phase, some of the remedies (in the same and in different dilutions) were tested by oral administration in the carrageenan-induced edema, under double-blind (treatment administration and measurement) and fully randomized conditions. Seven-hundred-twenty male Sprague Dawley rats weighing 170–180 g were used. Six homeopathic remedies (Arnica montana D4, Apis mellifica D4, D30, Atropa belladonna D4, Hamamelis virginiana D4, Lachesis D6, D30, Phosphorus D6, D30), saline and indomethacin were tested. Edema was measured using a water-based plethysmometer, before and at different times after edema induction. Data were analyzed by ANOVA and Student t test. Results In the first phase of experiments, some

  11. The role of inflammation in cardiovascular diseases: the predictive value of neutrophil-lymphocyte ratio as a marker in peripheral arterial disease.

    PubMed

    Paquissi, Feliciano Chanana

    2016-01-01

    Peripheral arterial disease (PAD) is an important manifestation of atherosclerosis, with increasing prevalence worldwide. A growing body of evidence shows that the systemic inflammatory response is closely related to the development, progression, and prognosis of atherosclerosis. In the last decade, several studies have suggested the role of measured inflammatory biomarkers as predictors of severity and prognosis in PAD in an effort to stratify the risk of these patients, to improve treatment selection, and to predict the results after interventions. A simple inflammatory marker, more available than any other, is the neutrophil-lymphocyte ratio (NLR), which can be easily obtained in clinical practice, based on the absolute count of neutrophils and lymphocytes from the differential leukocytes count. Many researchers evaluated vigorously the NLR as a potential prognostic biomarker predicting pathological and survival outcomes in patients with atherosclerosis. In this work, we aim to present the role of NLR as a prognostic marker in patients with PAD through a thorough review of the literature. PMID:27313459

  12. Synergistic protection against hyperoxia-induced lung injury by neutrophils blockade and EC-SOD overexpression

    PubMed Central

    2012-01-01

    Background Oxygen may damage the lung directly via generation of reactive oxygen species (ROS) or indirectly via the recruitment of inflammatory cells, especially neutrophils. Overexpression of extracellular superoxide dismutase (EC-SOD) has been shown to protect the lung against hyperoxia in the newborn mouse model. The CXC-chemokine receptor antagonist (Antileukinate) successfully inhibits neutrophil influx into the lung following a variety of pulmonary insults. In this study, we tested the hypothesis that the combined strategy of overexpression of EC-SOD and inhibiting neutrophil influx would reduce the inflammatory response and oxidative stress in the lung after acute hyperoxic exposure more efficiently than either single intervention. Methods Neonate transgenic (Tg) (with an extra copy of hEC-SOD) and wild type (WT) were exposed to acute hyperoxia (95% FiO2 for 7 days) and compared to matched room air groups. Inflammatory markers (myeloperoxidase, albumin, number of inflammatory cells), oxidative markers (8-isoprostane, ratio of reduced/oxidized glutathione), and histopathology were examined in groups exposed to room air or hyperoxia. During the exposure, some mice received a daily intraperitoneal injection of Antileukinate. Results Antileukinate-treated Tg mice had significantly decreased pulmonary inflammation and oxidative stress compared to Antileukinate-treated WT mice (p < 0.05) or Antileukinate-non-treated Tg mice (p < 0.05). Conclusion Combined strategy of EC-SOD and neutrophil influx blockade may have a therapeutic benefit in protecting the lung against acute hyperoxic injury. PMID:22816678

  13. Circuit Resistance Training Attenuates Acute Exertion-Induced Reductions in Arterial Function but Not Inflammation in Obese Women

    PubMed Central

    Franklin, Nina C.; Robinson, Austin T.; Bian, Jing-Tan; Ali, Mohamed M.; Norkeviciute, Edita; McGinty, Patrick

    2015-01-01

    Abstract Background: Cardiovascular disease (CVD) is a leading cause of preventable death among young women in the United States. Habitual resistance exercise training is known to have beneficial effects on endothelial function and CVD risk factors, including obesity; however, previous studies show that acute resistance exercise impairs endothelial function in obese adults who are sedentary, a response that may be linked to inflammation. We sought to determine if circuit-based resistance training (CRT) attenuates acute resistance exercise-induced reductions in endothelial function in a population of young, obese, sedentary women and whether or not inflammation plays a role in this response. Methods: Eighteen obese [body mass index (BMI) 30.0–40.0 kg·m−2] young premenopausal women were randomly assigned to either a CRT group or a no-exercise control group (CON). Conduit artery endothelial function was assessed using brachial artery flow-mediated dilation (FMD) determined by ultrasound before and after a single bout of strenuous weightlifting (SWL). In addition, circulating inflammatory mediators (tumor necrosis factor-α and C-reactive protein), blood pressure, fasting blood lipids, glucose, waist circumference, body composition, and aerobic capacity were assessed. Results: Among participants randomized to the CRT group, 8 weeks of training led to considerable increases in FMD after SWL (P=0.001) compared to the CON group. However, no significant differences between the groups were observed in circulating inflammatory mediators, blood pressure, fasting blood lipids, or other physical and physiological characteristics. Conclusions: This study shows that CRT alleviates acute exertion-induced reductions in endothelial function among obese sedentary women in the absence of changes in inflammation. PMID:25844686

  14. Influence of Pneumococcal Conjugate Vaccine on Acute Otitis Media with Severe Middle Ear Inflammation: A Retrospective Multicenter Study

    PubMed Central

    Sugino, Hirotoshi; Tsumura, Shigeru; Kunimoto, Masaru; Noda, Masuhiro; Chikuie, Daisuke; Noda, Chieko; Yamashita, Mariko; Watanabe, Hiroshi; Ishii, Hidemasa; Tashiro, Toru; Iwata, Kazuhiro; Kono, Takashi; Tsumura, Kaoru; Sumiya, Takahiro; Takeno, Sachio; Hirakawa, Katsuhiro

    2015-01-01

    The Japanese guidelines for acute otitis media in children recommend classifying acute otitis media by age, manifestations and local findings, and also recommend myringotomy for moderate-grade cases with severe local findings, severe-grade cases, and treatment-resistant cases. The heptavalent pneumococcal conjugate vaccine was released in Japan in February 2010. In Hiroshima City, public funding allowing free inoculation with this vaccine was initiated from January 2011, and the number of vaccinated individuals has since increased dramatically. This study investigated changes in the number of myringotomies performed to treat acute otitis media during the 5-year period from January 2008 to December 2012 at two hospitals and five clinics in the Asa Area of Hiroshima City, Japan. A total of 3,165 myringotomies for acute otitis media were performed. The rate of procedures per child-year performed in <5-year-old children decreased by 29.1% in 2011 and by 25.2% in 2012 compared to the mean rate performed in the 3 years prior to the introduction of public funding. A total of 895 myringotomies were performed for 1-year-old infants. The rate of myringotomies per child-year performed for acute otitis media in 1-year-old infants decreased significantly in the 2 years after the introduction of public funding for heptavalent pneumococcal conjugate vaccine compared to all years before introduction (p<0.000001). Our results suggest a benefit of heptavalent pneumococcal conjugate vaccine for acute otitis media in reducing the financial burden of myringotomy. In addition, this vaccine may help prevent acute otitis media with severe middle ear inflammation in 1-year-old infants. PMID:26348230