Science.gov

Sample records for acute osmotic stress

  1. Auxin response under osmotic stress.

    PubMed

    Naser, Victoria; Shani, Eilon

    2016-08-01

    The phytohormone auxin (indole-3-acetic acid, IAA) is a small organic molecule that coordinates many of the key processes in plant development and adaptive growth. Plants regulate the auxin response pathways at multiple levels including biosynthesis, metabolism, transport and perception. One of the most striking aspects of plant plasticity is the modulation of development in response to changing growth environments. In this review, we explore recent findings correlating auxin response-dependent growth and development with osmotic stresses. Studies of water deficit, dehydration, salt, and other osmotic stresses point towards direct and indirect molecular perturbations in the auxin pathway. Osmotic stress stimuli modulate auxin responses by affecting auxin biosynthesis (YUC, TAA1), transport (PIN), perception (TIR/AFB, Aux/IAA), and inactivation/conjugation (GH3, miR167, IAR3) to coordinate growth and patterning. In turn, stress-modulated auxin gradients drive physiological and developmental mechanisms such as stomata aperture, aquaporin and lateral root positioning. We conclude by arguing that auxin-mediated growth inhibition under abiotic stress conditions is one of the developmental and physiological strategies to acclimate to the changing environment. PMID:27052306

  2. Auxin response under osmotic stress.

    PubMed

    Naser, Victoria; Shani, Eilon

    2016-08-01

    The phytohormone auxin (indole-3-acetic acid, IAA) is a small organic molecule that coordinates many of the key processes in plant development and adaptive growth. Plants regulate the auxin response pathways at multiple levels including biosynthesis, metabolism, transport and perception. One of the most striking aspects of plant plasticity is the modulation of development in response to changing growth environments. In this review, we explore recent findings correlating auxin response-dependent growth and development with osmotic stresses. Studies of water deficit, dehydration, salt, and other osmotic stresses point towards direct and indirect molecular perturbations in the auxin pathway. Osmotic stress stimuli modulate auxin responses by affecting auxin biosynthesis (YUC, TAA1), transport (PIN), perception (TIR/AFB, Aux/IAA), and inactivation/conjugation (GH3, miR167, IAR3) to coordinate growth and patterning. In turn, stress-modulated auxin gradients drive physiological and developmental mechanisms such as stomata aperture, aquaporin and lateral root positioning. We conclude by arguing that auxin-mediated growth inhibition under abiotic stress conditions is one of the developmental and physiological strategies to acclimate to the changing environment.

  3. Silk Fibroin under Osmotic Stress

    NASA Astrophysics Data System (ADS)

    Sohn, Sungkyun; Strey, Helmut H.; Gido, Samuel P.

    2003-03-01

    The osmotic stress method was applied to study the thermodynamics of supramolecular self-assembly phenomena in crystallizable segments of Bombyx mori silkworm silk fibroin. Controlling compositions and phases of silk fibroin solution, the method provided a means for the direct investigation of microscopic and thermodynamic details of these intermolecular interactions in aqueous media. It is apparent that as osmotic pressure increases, silk fibroin molecules get pressurized to align together to form a water-soluble crystalline mesophase (Silk-I), and then gradually become anti-parallel b-sheet structure (Silk-II) at higher osmotic pressure. This behavior becomes more sensitive as the salt concentration decreases. A partial ternary phase diagram of Water-Silk fibroin-LiBr was constructed based on the results. This phase diagram can be utilized to help design a new route for wet spinning of re-generated silk fibroin. Precise control of compositions and corresponding crystalline structure of a silk fibroin solution may enable us to simulate the natural Bombyx mori silkworm spinning process.

  4. Polyamine Metabolism and Osmotic Stress 1

    PubMed Central

    Tiburcio, Antonio Fernández; Kaur-Sawhney, Ravindar; Galston, Arthur W.

    1986-01-01

    We have attempted to improve the viability of cereal mesophyll protoplasts by pretreatment of leaves with dl-α-difluoromethylarginine (DFMA), a specific `suicide' inhibitor of the enzyme (arginine decarboxylase) responsible for their osmotically induced putrescine accumulation. Leaf pretreatment with DFMA before a 6 hour osmotic shock caused a 45% decrease of putrescine and a 2-fold increase of spermine titer. After 136 hours of osmotic stress, putrescine titer in DFMA-pretreated leaves increased by only 50%, but spermidine and spermine titers increased dramatically by 3.2- and 6-fold, respectively. These increases in higher polyamines could account for the reduced chlorophyll loss and enhanced ability of pretreated leaves to incorporate tritiated thymidine, uridine, and leucine into macromolecules. Pretreatment with DFMA significantly improved the overall viability of the protoplasts isolated from these leaves. The results support the view that the osmotically induced rise in putrescine and blockage of its conversion to higher polyamines may contribute to the lack of sustained cell division in cereal mesophyll protoplasts, although other undefined factors must also play a major role. PMID:11539087

  5. Osmotic stress alters chromatin condensation and nucleocytoplasmic transport

    SciTech Connect

    Finan, John D.; Leddy, Holly A.; Guilak, Farshid

    2011-05-06

    Highlights: {yields} The rate of nucleocytoplasmic transport increases under hyper-osmotic stress. {yields} The mechanism is a change in nuclear geometry, not a change in permeability of the nuclear envelope. {yields} Intracytoplasmic but not intranuclear diffusion is sensitive to osmotic stress. {yields} Pores in the chromatin of the nucleus enlarge under hyper-osmotic stress. -- Abstract: Osmotic stress is a potent regulator of biological function in many cell types, but its mechanism of action is only partially understood. In this study, we examined whether changes in extracellular osmolality can alter chromatin condensation and the rate of nucleocytoplasmic transport, as potential mechanisms by which osmotic stress can act. Transport of 10 kDa dextran was measured both within and between the nucleus and the cytoplasm using two different photobleaching methods. A mathematical model was developed to describe fluorescence recovery via nucleocytoplasmic transport. As osmolality increased, the diffusion coefficient of dextran decreased in the cytoplasm, but not the nucleus. Hyper-osmotic stress decreased nuclear size and increased nuclear lacunarity, indicating that while the nucleus was getting smaller, the pores and channels interdigitating the chromatin had expanded. The rate of nucleocytoplasmic transport was increased under hyper-osmotic stress but was insensitive to hypo-osmotic stress, consistent with the nonlinear osmotic properties of the nucleus. The mechanism of this osmotic sensitivity appears to be a change in the size and geometry of the nucleus, resulting in a shorter effective diffusion distance for the nucleus. These results may explain physical mechanisms by which osmotic stress can influence intracellular signaling pathways that rely on nucleocytoplasmic transport.

  6. Self-assembly of silk fibroin under osmotic stress

    NASA Astrophysics Data System (ADS)

    Sohn, Sungkyun

    The supramolecular self-assembly behavior of silk fibroin was investigated using osmotic stress technique. In Chapter 2, a ternary phase diagram of water-silk-LiBr was constructed based on X-ray results on the osmotically stressed regenerated silk fibroin of Bombyx mori silkworm. Microscopic data indicated that silk I is a hydrated structure and a rough estimate of the number of water molecules lost by the structure upon converting from silk I to silk II has been made, and found to be about 2.2 per [GAGAGS] hexapeptide. In Chapter 3, wet-spinning of osmotically stressed, regenerated silk fibroin was performed, based on the prediction that the enhanced control over structure and phase behavior using osmotic stress method helps improve the physical properties of wet-spun regenerated silk fibroin fibers. The osmotic stress was applied in order to pre-structure the regenerated silk fibroin molecule from its original random coil state to more oriented state, manipulating the phase of the silk solution in the phase diagram before the start of spinning. Monofilament fiber with a diameter of 20 microm was produced. In Chapter 4, we investigated if there is a noticeable synergistic osmotic pressure increase between co-existing polymeric osmolyte and salt when extremely highly concentrated salt molecules are present both at sample subphase and stressing subphase, as is the case of silk fibroin self-assembly. The equilibration method that measures osmotic pressure relative to a reference with known osmotic pressure was introduced. Osmotic pressure of aqueous LiBr solution up to 2.75M was measured and it was found that the synergistic effect was insignificant up to this salt concentration. Solution parameters of stressing solutions and Arrhenius kinetics based on time-temperature relationship for the equilibration process were derived as well. In Chapter 5, self-assembly behavior of natural silk fibroin within the gland of Bombyx mori silkworm was investigated using osmotic

  7. Effect of osmotic stress on plant growth promoting Pseudomonas spp.

    PubMed

    Sandhya, V; Ali, Sk Z; Venkateswarlu, B; Reddy, Gopal; Grover, Minakshi

    2010-10-01

    In this study we isolated and screened drought tolerant Pseudomonas isolates from arid and semi arid crop production systems of India. Five isolates could tolerate osmotic stress up to -0.73 MPa and possessed multiple PGP properties such as P-solubilization, production of phytohormones (IAA, GA and cytokinin), siderophores, ammonia and HCN however under osmotic stress expression of PGP traits was low compared to non-stressed conditions. The strains were identified as Pseudomonas entomophila, Pseudomonas stutzeri, Pseudomonas putida, Pseudomonas syringae and Pseudomonas monteilli respectively on the basis of 16S rRNA gene sequence analysis. Osmotic stress affected growth pattern of all the isolates as indicated by increased mean generation time. An increase level of intracellular free amino acids, proline, total soluble sugars and exopolysaccharides was observed under osmotic stress suggesting bacterial response to applied stress. Further, strains GAP-P45 and GRFHYTP52 showing higher levels of EPS and osmolytes (amino acids and proline) accumulation under stress as compared to non-stress conditions, also exhibited higher expression of PGP traits under stress indicating a relationship between stress response and expression of PGP traits. We conclude that isolation and screening of indigenous, stress adaptable strains possessing PGP traits can be a method for selection of efficient stress tolerant PGPR strains.

  8. New Genes Involved in Osmotic Stress Tolerance in Saccharomyces cerevisiae

    PubMed Central

    Gonzalez, Ramon; Morales, Pilar; Tronchoni, Jordi; Cordero-Bueso, Gustavo; Vaudano, Enrico; Quirós, Manuel; Novo, Maite; Torres-Pérez, Rafael; Valero, Eva

    2016-01-01

    Adaptation to changes in osmolarity is fundamental for the survival of living cells, and has implications in food and industrial biotechnology. It has been extensively studied in the yeast Saccharomyces cerevisiae, where the Hog1 stress activated protein kinase was discovered about 20 years ago. Hog1 is the core of the intracellular signaling pathway that governs the adaptive response to osmotic stress in this species. The main endpoint of this program is synthesis and intracellular retention of glycerol, as a compatible osmolyte. Despite many details of the signaling pathways and yeast responses to osmotic challenges have already been described, genome-wide approaches are contributing to refine our knowledge of yeast adaptation to hypertonic media. In this work, we used a quantitative fitness analysis approach in order to deepen our understanding of the interplay between yeast cells and the osmotic environment. Genetic requirements for proper growth under osmotic stress showed both common and specific features when hypertonic conditions were induced by either glucose or sorbitol. Tolerance to high-glucose content requires mitochondrial function, while defective protein targeting to peroxisome, GID-complex function (involved in negative regulation of gluconeogenesis), or chromatin dynamics, result in poor survival to sorbitol-induced osmotic stress. On the other side, the competitive disadvantage of yeast strains defective in the endomembrane system is relieved by hypertonic conditions. This finding points to the Golgi-endosome system as one of the main cell components negatively affected by hyperosmolarity. Most of the biological processes highlighted in this analysis had not been previously related to osmotic stress but are probably relevant in an ecological and evolutionary context. PMID:27733850

  9. Osmotic Stress Reduces Ca2+ Signals through Deformation of Caveolae*

    PubMed Central

    Guo, Yuanjian; Yang, Lu; Haught, Katrina; Scarlata, Suzanne

    2015-01-01

    Caveolae are membrane invaginations that can sequester various signaling proteins. Caveolae have been shown to provide mechanical strength to cells by flattening to accommodate increased volume when cells are subjected to hypo-osmotic stress. We have previously found that caveolin, the main structural component of caveolae, specifically binds Gαq and stabilizes its activation state resulting in an enhanced Ca2+ signal upon activation. Here, we show that osmotic stress caused by decreasing the osmolarity in half reversibly changes the configuration of caveolae without releasing a significant portion of caveolin molecules. This change in configuration due to flattening leads to a loss in Cav1-Gαq association. This loss in Gαq/Cav1 association due to osmotic stress results in a significant reduction of Gαq/phospholipase Cβ-mediated Ca2+ signals. This reduced Ca2+ response is also seen when caveolae are reduced by treatment with siRNA(Cav1) or by dissolving them by methyl-β-cyclodextran. No change in Ca2+ release with osmotic swelling can be seen when growth factor pathways are activated. Taken together, these results connect the mechanical deformation of caveolae to Gαq-mediated Ca2+ signals. PMID:25957403

  10. Erythrocyte osmotic fragility and oxidative stress in experimental hypothyroidism.

    PubMed

    Dariyerli, Nuran; Toplan, Selmin; Akyolcu, Mehmet Can; Hatemi, Husrev; Yigit, Gunnur

    2004-10-01

    The present study was planned to explain the relation between erythrocyte osmotic fragility and oxidative stress and antioxidant statue in primary hypothyroid-induced experimental rats. Twenty-four Spraque Dawley type female rats were divided into two, as control (n = 12) and experimental (n = 12), groups weighing between 160 and 200 g. The experimental group animals have received tap water methimazole added standard fodder to block the iodine pumps for 30 d (75 mg/100 g). Control group animals were fed tap water and only standard fodder for the same period. At the end of 30 d blood samples were drawn from the abdominal aorta of the rats under ether anesthesia. T3, T4, and TSH levels were measured and the animals that had relatively lower T3, T4, and higher TSH levels were accepted as hypothyroid group. Hormone levels of the control group were at euthyroid conditions. Osmotic fragility, as a lipid peroxidation indicator malondialdehyde (MDA), antioxidant defense system indicators superoxide dismutase (SOD) and glutathione (GSH) levels were measured in the blood samples. Osmotic fragility test results: There was no statistically significant difference found between maximum osmotic hemolysis limit values of both group. Minimum osmotic hemolysis limit value of hypothyroid group was found to be higher than that of control group values (p < 0.02). The standard hemolysis and hemolytic increment curve of the hypothyroid group drawn according to osmotic fragility test results was found to be shifted to the right when compared to control group's curve. This situation and hemolytic increment value, which shows maximum hemolysis ratio, is the proof of increased osmotic fragility of the erythrocytes in hypothyroidism. There is no statistically significant difference found between hypothyroid and control groups in the lipid peroxidation indicator MDA and antioxidant indicators SOD and GSH levels. As a result of our study it may be concluded that hypothyroidism may lead to an

  11. Quorum sensing regulates the osmotic stress response in Vibrio harveyi.

    PubMed

    van Kessel, Julia C; Rutherford, Steven T; Cong, Jian-Ping; Quinodoz, Sofia; Healy, James; Bassler, Bonnie L

    2015-01-01

    Bacteria use a chemical communication process called quorum sensing to monitor cell density and to alter behavior in response to fluctuations in population numbers. Previous studies with Vibrio harveyi have shown that LuxR, the master quorum-sensing regulator, activates and represses >600 genes. These include six genes that encode homologs of the Escherichia coli Bet and ProU systems for synthesis and transport, respectively, of glycine betaine, an osmoprotectant used during osmotic stress. Here we show that LuxR activates expression of the glycine betaine operon betIBA-proXWV, which enhances growth recovery under osmotic stress conditions. BetI, an autorepressor of the V. harveyi betIBA-proXWV operon, activates the expression of genes encoding regulatory small RNAs that control quorum-sensing transitions. Connecting quorum-sensing and glycine betaine pathways presumably enables V. harveyi to tune its execution of collective behaviors to its tolerance to stress.

  12. Osmotic therapies added to antibiotics for acute bacterial meningitis

    PubMed Central

    Wall, Emma CB; Ajdukiewicz, Katherine MB; Heyderman, Robert S; Garner, Paul

    2014-01-01

    Background Every day children and adults throughout the world die from acute community-acquired bacterial meningitis, particularly in low-income countries. Survivors are at risk of deafness, epilepsy and neurological disabilities. Osmotic therapies have been proposed as an adjunct to improve mortality and morbidity from bacterial meningitis. The theory is that they will attract extra-vascular fluid by osmosis and thus reduce cerebral oedema by moving excess water from the brain into the blood. The intention is to thus reduce death and improve neurological outcomes. Objectives To evaluate the effects on mortality, deafness and neurological disability of osmotic therapies added to antibiotics for acute bacterial meningitis in children and adults. Search methods We searched CENTRAL 2012, Issue 11, MEDLINE (1950 to November week 3, 2012), EMBASE (1974 to November 2012), CINAHL (1981 to November 2012), LILACS (1982 to November 2012) and registers of ongoing clinical trials (April 2012). We also searched conference abstracts and contacted researchers in the field. Selection criteria Randomised controlled trials testing any osmotic therapy in adults or children with acute bacterial meningitis. Data collection and analysis Two review authors independently screened the search results and selected trials for inclusion. We collected data from each study for mortality, deafness, seizures and neurological disabilities. Results are presented using risk ratios (RR) and 95% confidence intervals (CI) and grouped according to whether the participants received steroids or not. Main results Four trials were included comprising 1091 participants. All compared glycerol (a water-soluble sugar alcohol) with a control; in three trials this was a placebo, and in one a small amount of 50% dextrose. Three trials included comparators of dexamethasone alone or in combination with glycerol. As dexamethasone appeared to have no modifying effect, we aggregated results across arms where both

  13. Osmotic stress response in the wine yeast Dekkera bruxellensis.

    PubMed

    Galafassi, Silvia; Toscano, Marco; Vigentini, Ileana; Piškur, Jure; Compagno, Concetta

    2013-12-01

    Dekkera bruxellensis is mainly associated with lambic beer fermentation and wine production and may contribute in a positive or negative manner to the flavor development. This yeast is able to produce phenolic compounds, such as 4-ethylguaiacol and 4-ethylphenol which could spoil the wine, depending on their concentration. In this work we have investigated how this yeast responds when exposed to conditions causing osmotic stress, as high sorbitol or salt concentrations. We observed that osmotic stress determined the production and accumulation of intracellular glycerol, and the expression of NADH-dependent glycerol-3-phosphate dehydrogenase (GPD) activity was elevated. The involvement of the HOG MAPK pathway in response to this stress condition was also investigated. We show that in D. bruxellensis Hog1 protein is activated by phosphorylation under hyperosmotic conditions, highlighting the conserved role of HOG MAP kinase signaling pathway in the osmotic stress response. Gene Accession numbers in GenBank: DbHOG1: JX65361, DbSTL1: JX965362.

  14. Polyamine metabolism and osmotic stress. I. Relation to protoplast viability.

    PubMed

    Tiburcio, A F; Masdeu, M A; Dumortier, F M; Galston, A W

    1986-01-01

    Cereal leaves subjected to the osmotica routinely used for protoplast isolation show a rapid increase in arginine decarboxylase activity, a massive accumulation of putrescine, and slow conversion of putrescine to the higher polyamines, spermidine and spermine (HE Flores, AW Galston 1984 Plant Physiol 75: 102). Mesophyll protoplasts from these leaves, which have a high putrescine:polyamine ratio, do not undergo sustained division. By contrast, in Nicotiana, Capsicum, Datura, Trigonella, and Vigna, dicot genera that readily regenerate plants from mesophyll protoplasts, the response of leaves to osmotic stress is opposite to that in cereals. Putrescine titer as well as arginine and ornithine decarboxylase activities decline in these osmotically stressed dicot leaves, while spermidine and spermine titers increase. Thus, the putrescine:polyamine ratio in Vigna protoplasts, which divide readily, is 4-fold lower than in oat protoplasts, which divide poorly. We suggest that this differing response of polyamine metabolism to osmotic stress may account in part for the failure of cereal mesophyll protoplasts to develop readily in vitro. PMID:11539086

  15. Polyamine metabolism and osmotic stress. I. Relation to protoplast viability

    NASA Technical Reports Server (NTRS)

    Tiburcio, A. F.; Masdeu, M. A.; Dumortier, F. M.; Galston, A. W.

    1986-01-01

    Cereal leaves subjected to the osmotica routinely used for protoplast isolation show a rapid increase in arginine decarboxylase activity, a massive accumulation of putrescine, and slow conversion of putrescine to the higher polyamines, spermidine and spermine (HE Flores, AW Galston 1984 Plant Physiol 75: 102). Mesophyll protoplasts from these leaves, which have a high putrescine:polyamine ratio, do not undergo sustained division. By contrast, in Nicotiana, Capsicum, Datura, Trigonella, and Vigna, dicot genera that readily regenerate plants from mesophyll protoplasts, the response of leaves to osmotic stress is opposite to that in cereals. Putrescine titer as well as arginine and ornithine decarboxylase activities decline in these osmotically stressed dicot leaves, while spermidine and spermine titers increase. Thus, the putrescine:polyamine ratio in Vigna protoplasts, which divide readily, is 4-fold lower than in oat protoplasts, which divide poorly. We suggest that this differing response of polyamine metabolism to osmotic stress may account in part for the failure of cereal mesophyll protoplasts to develop readily in vitro.

  16. Root water extraction under combined water and osmotic stress

    NASA Astrophysics Data System (ADS)

    van Dam, J. C.; de Jong van Lier, Q.; Metselaar, K.

    2009-04-01

    Many crop and water management issues pertain to the entire plant-root system and may include both water and osmotic stress. The challenge is to find a concise set of soil physical and plant physiological parameters which characterize this system and enable us to quantify root water uptake and stomatal conditions. Among the soil physical parameters, the matric potential function appears to be very useful to determine the onset of drought stress and the decline of root water uptake thereafter. We may use this concept at root level, but also at plant level. In the latter case the concept allows for soil physical and root density heterogeneity, soil water fluxes within the root zone, and compensation of root water uptake when certain parts of the root zone contain more water than other parts. The input parameters are often already used in vadose zone models: potential transpiration rate, root length density, minimum root surface pressure head and soil hydraulic functions. Recently the authors extended their water uptake concept at root level to include osmotic stress due to salinity. In literature various concepts for combined water and salt stress are used. All these concepts include calibration parameters to accommodate the different root water uptake response to soil water pressure head and osmotic head. When using the matric flux potential, we may get rid of these calibration parameters. We employ the fact that osmotic head in the soil water due to salts counteracts the osmotic head in the roots. We will show simulated results of this concept and compare them to other common approaches. The developed concept shows the large influence of root density and soil hydraulic functions, factors which are usually not explicitly accounted for. Also we hypothesize how the presented concept can be used in one- or multi-dimensional agrohydrological models with non-uniform root zones. No additional empirical input parameters are required. An important feature is automatic

  17. Osmotic Stress-Induced Polyamine Accumulation in Cereal Leaves 1

    PubMed Central

    Flores, Hector E.; Galston, Arthur W.

    1984-01-01

    Arginine decarboxylase activity increases 2- to 3-fold in osmotically stressed oat leaves in both light and dark, but putrescine accumulation in the dark is only one-third to one-half of that in light-stressed leaves. If arginine or ornithine are supplied to dark-stressed leaves, putrescine rises to levels comparable to those obtained by incubation under light. Thus, precursor amino acid availability is limiting to the stress response. Amino acid levels change rapidly upon osmotic treatment; notably, glutamic acid decreases with a corresponding rise in glutamine. Difluoromethylarginine (0.01-0.1 millimolar), the enzyme-activated irreversible inhibitor of arginine decarboxylase, prevents the stress-induced putrescine rise, as well as the incorporation of label from [14C]arginine, with the expected accumulation of free arginine, but has no effect on the rest of the amino acid pool. The use of specific inhibitors such as α-difluoromethylarginine is suggested as probes for the physiological significance of stress responses by plant cells. PMID:16663552

  18. Osmotic Stress Modulates the Balance between Exocytosis and Clathrin-Mediated Endocytosis in Arabidopsis thaliana.

    PubMed

    Zwiewka, Marta; Nodzyński, Tomasz; Robert, Stéphanie; Vanneste, Steffen; Friml, Jiří

    2015-08-01

    The sessile life style of plants creates the need to deal with an often adverse environment, in which water availability can change on a daily basis, challenging the cellular physiology and integrity. Changes in osmotic conditions disrupt the equilibrium of the plasma membrane: hypoosmotic conditions increase and hyperosmotic environment decrease the cell volume. Here, we show that short-term extracellular osmotic treatments are closely followed by a shift in the balance between endocytosis and exocytosis in root meristem cells. Acute hyperosmotic treatments (ionic and nonionic) enhance clathrin-mediated endocytosis simultaneously attenuating exocytosis, whereas hypoosmotic treatments have the opposite effects. In addition to clathrin recruitment to the plasma membrane, components of early endocytic trafficking are essential during hyperosmotic stress responses. Consequently, growth of seedlings defective in elements of clathrin or early endocytic machinery is more sensitive to hyperosmotic treatments. We also found that the endocytotic response to a change of osmotic status in the environment is dominant over the presumably evolutionary more recent regulatory effect of plant hormones, such as auxin. These results imply that osmotic perturbation influences the balance between endocytosis and exocytosis acting through clathrin-mediated endocytosis. We propose that tension on the plasma membrane determines the addition or removal of membranes at the cell surface, thus preserving cell integrity.

  19. Biophoton Emission Induced by Osmotic Stress in Adzuki Bean Root

    NASA Astrophysics Data System (ADS)

    Ohya, Tomoyuki; Oikawa, Noriko; Kawabata, Ryuzou; Okabe, Hirotaka; Kai, Shoichi

    2003-12-01

    In order to evaluate the physiological damage to plants caused by osmotic stress, we have investigated the relationship between the inhibition of root elongation and spontaneous photon emission from the root. Adzuki bean roots were soaked in polyethylene glycol (PEG) solutions for short periods in their early growth stage, and their root length and photon emission were measured afterwards. Consequently, it became clear that the root elongation decreased with the increase of PEG concentration. Moreover, there was a clear correlation between the emission intensity of the cell division area in the root and the inhibition of elongation, though the elongation of individual roots varied to some degree.

  20. Bacterial stimulus perception and signal transduction: response to osmotic stress.

    PubMed

    Krämer, Reinhard

    2010-08-01

    When exposed to osmotic stress from the environment, bacteria act to maintain cell turgor and hydration by responding both on the level of gene transcription and protein activity. Upon a sudden decrease in external osmolality, internal solutes are released by the action of membrane embedded mechanosensitive channels. In response to an osmotic upshift, the concentration of osmolytes in the cytoplasm is increased both by de novo synthesis and by active uptake. In order to coordinate these processes of osmoregulation, cells are equipped with systems and mechanisms of sensing physical stimuli correlated to changes in the external osmolality (osmosensing), with pathways to transduce these stimuli into useful signals which can be processed in the cell (signal transduction), and mechanisms of regulating proper responses in the cell to recover from the environmental stress and to maintain all necessary physiological functions (osmoregulation). These processes will be described by a number of representative examples, mainly of osmoreactive transport systems with a focus on available data of their molecular mechanism.

  1. Novel Regulation of Aquaporins during Osmotic Stress1

    PubMed Central

    Vera-Estrella, Rosario; Barkla, Bronwyn J.; Bohnert, Hans J.; Pantoja, Omar

    2004-01-01

    Aquaporin protein regulation and redistribution in response to osmotic stress was investigated. Ice plant (Mesembryanthemum crystallinum) McTIP1;2 (McMIPF) mediated water flux when expressed in Xenopus leavis oocytes. Mannitol-induced water imbalance resulted in increased protein amounts in tonoplast fractions and a shift in protein distribution to other membrane fractions, suggesting aquaporin relocalization. Indirect immunofluorescence labeling also supports a change in membrane distribution for McTIP1;2 and the appearance of a unique compartment where McTIP1;2 is expressed. Mannitol-induced redistribution of McTIP1;2 was arrested by pretreatment with brefeldin A, wortmannin, and cytochalasin D, inhibitors of vesicle trafficking-related processes. Evidence suggests a role for glycosylation and involvement of a cAMP-dependent signaling pathway in McTIP1;2 redistribution. McTIP1;2 redistribution to endosomal compartments may be part of a homeostatic process to restore and maintain cellular osmolarity under osmotic-stress conditions. PMID:15299122

  2. Hydration effects of heparin on antithrombin probed by osmotic stress.

    PubMed Central

    McGee, Maria P; Liang, Jie; Luba, James

    2002-01-01

    Antithrombin is a key inhibitor of blood coagulation proteases and a prototype metastable protein. Heparin binding to antithrombin induces conformational transitions distal to the binding site. We applied osmotic stress techniques and rate measurements in the stopped flow fluorometer to investigate the possibility that hydration changes are associated with these transitions. Water transfer was identified from changes in the free energy of activation, Delta G(++), with osmotic pressure pi. The Delta G(++) was determined from the rate of fluorescence enhancement/decrease associated with heparin binding/release. The volume of water transferred, Delta V, was determined from the relationship, Delta G/pi = Delta V. With an osmotic probe of 4 A radius, the volumes transferred correspond to 158 +/- 11 water molecules from reactants to bulk during association and 162 +/- 22 from bulk to reactants during dissociation. Analytical characterization of water-permeable volumes in x-ray-derived bound and free antithrombin structures were correlated with the volumes measured in solution. Volume changes in water permeable pockets were identified at the loop-insertion and heparin-binding regions. Analyses of the pockets' atomic composition indicate that residues Ser-79, Ala-86, Val-214, Leu-215, Asn-217, Ile-219, and Thr-218 contribute atoms to both the heparin-binding pockets and to the loop-insertion region. These results demonstrate that the increases and decreases in the intrinsic fluorescence of antithrombin during heparin binding and release are linked to dehydration and hydration reactions, respectively. Together with the structural analyses, results also suggest a direct mechanism linking heparin binding/release to loop expulsion/insertion. PMID:11806943

  3. A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis

    PubMed Central

    Zhu, Jianhua; Lee, Byeong-Ha; Dellinger, Mike; Cui, Xinping; Zhang, Changqing; Wu, Shang; Nothnagel, Eugene A.; Zhu, Jian-Kang

    2011-01-01

    SUMMARY Osmotic stress imposed by soil salinity and drought stress significantly affects plant growth and development, but osmotic stress sensing and tolerance mechanisms are not well understood. Forward genetic screens using a root-bending assay have previously identified salt overly sensitive (sos) mutants of Arabidopsis that fall into five loci, SOS1 to SOS5. These loci are required for the regulation of ion homeostasis or cell expansion under salt stress, but do not play a major role in plant tolerance to the osmotic stress component of soil salinity or drought. Here we report an additional sos mutant, sos6-1, which defines a locus essential for osmotic stress tolerance. sos6-1 plants are hypersensitive to salt stress and osmotic stress imposed by mannitol or polyethylene glycol in culture media or by water deficit in the soil. SOS6 encodes a cellulose synthase-like protein, AtCSLD5. Only modest differences in cell wall chemical composition could be detected, but we found that sos6-1 mutant plants accumulate high levels of reactive oxygen species (ROS) under osmotic stress and are hypersensitive to the oxidative stress reagent methyl viologen. The results suggest that SOS6/AtCSLD5 is not required for normal plant growth and development but has a critical role in osmotic stress tolerance and this function likely involves its regulation of ROS under stress. PMID:20409003

  4. A balanced JA/ABA status may correlate with adaptation to osmotic stress in Vitis cells.

    PubMed

    Ismail, Ahmed; Seo, Mitsunori; Takebayashi, Yumiko; Kamiya, Yuji; Nick, Peter

    2015-08-01

    Water-related stress is considered a major type of plant stress. Osmotic stress, in particular, represents the common part of all water-related stresses. Therefore, plants have evolved different adaptive mechanisms to cope with osmotic-related disturbances. In the current work, two grapevine cell lines that differ in their osmotic adaptability, Vitis rupestris and Vitis riparia, were investigated under mannitol-induced osmotic stress. To dissect signals that lead to adaptability from those related to sensitivity, osmotic-triggered responses with respect to jasmonic acid (JA) and its active form JA-Ile, abscisic acid (ABA), and stilbene compounds, as well as the expression of their related genes were observed. In addition, the transcript levels of the cellular homeostasis gene NHX1 were examined. The data are discussed with a hypothesis suggesting that a balance of JA and ABA status might correlate with cellular responses, either guiding cells to sensitivity or to progress toward adaptation. PMID:26277753

  5. Genetic analysis of proline concentration under osmotic stress in sunflower (Helianthus annuus L.)

    PubMed Central

    Khalil, Farghama; Rauf, Saeed; Monneveux, Philippe; Anwar, Shoaib; Iqbal, Zafar

    2016-01-01

    Proline concentration has been often suggested as an indicator of osmotic stress. A better understanding of the genetics of this trait is however needed. In the present study, proline concentration has been assessed, together with root and stem growth, potassium, calcium and total soluble sugars concentration and stress injury symptoms, in seedlings of sunflower hybrids and their parents grown under control and osmotic conditions. Proline strongly accumulated with osmotic stress. Its concentration exhibited a large variation among genotypes and was higher in hybrids than in parental lines. A positive association was noted between proline concentration and osmotic adjustment that was reflected in a reduction of osmotic stress induced injury, as showed by the reduced number of calli in the hybrids with higher proline concentration. Broad and narrow sense heritability was higher under osmotic stress suggesting applying the selection in osmotic stress condition. In the control treatment, dominance effects explained most of the genetic variation for proline concentration while under osmotic stress both dominance and additive variance were high. The importance of dominance and additive effects suggested that several genomic regions are controlling this trait. Good general combiners, presumably carrying positive additive alleles affecting proline concentration, were identified. PMID:27795671

  6. Osmotic Stress-Induced Polyamine Accumulation in Cereal Leaves 1

    PubMed Central

    Flores, Hector E.; Galston, Arthur W.

    1984-01-01

    Putrescine and spermidine accumulate in cereal cells and protoplasts exposed to various osmotica (sorbitol, mannitol, proline, betaine, or sucrose). The response is fast (1-2 hour lag), massive (50- to 60-fold increase in putrescine), and is not due to release of putrescine from a bound form or to conversion from spermidine. It rather involves the activation of the biosynthetic pathway mediated by arginine decarboxylase (ADC; EC 4.1.1.19) (Flores and Galston 1982 Science 217: 1259). Polyamine accumulation and the rise in ADC activity in osmotically stressed tissue are prevented by ADC inhibitors (α-difluoromethylarginine, d-arginine, and l-canavanine) but are not affected by α-difluoromethylornithine and methylornithine, inhibitors of the alternative putrescine biosynthetic enzyme ornithine decarboxylase (EC 4.1.1.17). Putrescine accumulation by oat and corn leaves is maximal in solutions only slightly hyperosmotic (0.4 molar). The stress response, which declines with leaf age, is completely prevented by cycloheximide (10 to 50 micrograms per milliliter) when added during the first hour of exposure to osmoticum, and partially by transcription inhibitors (cordycepin, Actinomycin D, 5 to 20 micrograms per milliliter). Oat seedlings allowed to wilt by withholding water also show a rise in polyamine titer and ADC activity. This response is not readily reversible upon rewatering. PMID:16663551

  7. Modulation of osmotic stress effects on photosynthesis and respiration by temperature in mesophyll protoplast of pea.

    PubMed

    Dwivedi, Padmanabh; Raghavendra, A S

    2004-12-01

    Exposure of mesophyll protoplast of pea to osmotic stress decreases the rate of photosynthesis while stimulating marginally the respiratory rate of mesophyll protoplasts. The interaction of osmotic and temperature stress during the modulation of photosynthetic and respiratory rates of pea (Pisum sativum var Azad P1) mesophyll protoplasts was investigated. The protoplasts were exposed to either iso-osmotic (0.4 M) or hyper-osmotic (1.0 M) concentration of sorbitol at 15 degrees and 25 degrees C. The rates of photosynthesis and respiration were studied. At optimum temperature of 25 degrees C, there was a decrease in photosynthesis (< 10%) at hyper-osmoticum (osmotic effect), whereas respiration increased marginally (by about 15%). Low temperature (15 degrees C) aggravated the sensitivity of both respiration and photosynthesis to osmotic stress. At 15 degrees C, the decrease in photosynthesis due to osmotic stress was > 35%, while the respiratory rate was stimulated by 30%. The relative proportion of cytochrome pathway decreased by about 50% at both 15 degrees C and 25 degrees C while that of alternative pathway increased, more so, at 15 degrees C, when the mesophyll protoplasts were subjected to hyper-osmoticum stress. The titration experiments showed that extent of engagement of alternative pathway was higher, the slope value was slightly higher for 15 degrees C compared to 25 degrees C. Low temperature modulates the effect of hyper-osmoticum stress on photosynthesis and respiration, and results in increased participation of alternative pathway.

  8. Downregulation of the taurine transporter TauT during hypo-osmotic stress in NIH3T3 mouse fibroblasts.

    PubMed

    Hansen, Daniel Bloch; Friis, Martin Barfred; Hoffmann, Else Kay; Lambert, Ian Henry

    2012-02-01

    The present work was initiated to investigate regulation of the taurine transporter TauT by reactive oxygen species (ROS) and the tonicity-responsive enhancer binding protein (TonEBP) in NIH3T3 mouse fibroblasts during acute and long-term (4 h) exposure to low-sodium/hypo-osmotic stress. Taurine influx is reduced following reduction in osmolarity, keeping the extracellular Na(+) concentration constant. TonEBP activity is unaltered, whereas TauT transcription as well as TauT activity are significantly reduced under hypo-osmotic conditions. In contrast, TonEBP activity and TauT transcription are significantly increased following hyperosmotic exposure. Swelling-induced ROS production in NIH3T3 fibroblasts is generated by NOX4 and by increasing total ROS, by either exogenous application of H(2)O(2) or overexpressing NOX4, we demonstrate that TonEBP activity and taurine influx are regulated negatively by ROS under hypo-osmotic, low-sodium conditions, whereas the TauT mRNA level is unaffected. Acute exposure to ROS reduces taurine uptake as a result of modulated TauT transport kinetics. Thus, swelling-induced ROS production could account for the reduced taurine uptake under low-sodium/hypo-osmotic conditions by direct modulation of TauT. PMID:22383044

  9. Osmotic stress at the barley root affects expression of circadian clock genes in the shoot.

    PubMed

    Habte, Ermias; Müller, Lukas M; Shtaya, Munqez; Davis, Seth J; von Korff, Maria

    2014-06-01

    The circadian clock is an important timing system that controls physiological responses to abiotic stresses in plants. However, there is little information on the effects of the clock on stress adaptation in important crops, like barley. In addition, we do not know how osmotic stress perceived at the roots affect the shoot circadian clock. Barley genotypes, carrying natural variation at the photoperiod response and clock genes Ppd-H1 and HvELF3, were grown under control and osmotic stress conditions to record changes in the diurnal expression of clock and stress-response genes and in physiological traits. Variation at HvELF3 affected the expression phase and shape of clock and stress-response genes, while variation at Ppd-H1 only affected the expression levels of stress genes. Osmotic stress up-regulated expression of clock and stress-response genes and advanced their expression peaks. Clock genes controlled the expression of stress-response genes, but had minor effects on gas exchange and leaf transpiration. This study demonstrated that osmotic stress at the barley root altered clock gene expression in the shoot and acted as a spatial input signal into the clock. Unlike in Arabidopsis, barley primary assimilation was less controlled by the clock and more responsive to environmental perturbations, such as osmotic stress. PMID:24895755

  10. Preferential Osmolyte Accumulation: a Mechanism of Osmotic Stress Adaptation in Diazotrophic Bacteria

    PubMed Central

    Madkour, Magdy A.; Smith, Linda Tombras; Smith, Gary M.

    1990-01-01

    A common cellular mechanism of osmotic-stress adaptation is the intracellular accumulation of organic solutes (osmolytes). We investigated the mechanism of osmotic adaptation in the diazotrophic bacteria Azotobacter chroococcum, Azospirillum brasilense, and Klebsiella pneumoniae, which are adversely affected by high osmotic strength (i.e., soil salinity and/or drought). We used natural-abundance 13C nuclear magnetic resonance spectroscopy to identify all the osmolytes accumulating in these strains during osmotic stress generated by 0.5 M NaCl. Evidence is presented for the accumulation of trehalose and glutamate in Azotobacter chroococcum ZSM4, proline and glutamate in Azospirillum brasilense SHS6, and trehalose and proline in K. pneumoniae. Glycine betaine was accumulated in all strains grown in culture media containing yeast extract as the sole nitrogen source. Alternative nitrogen sources (e.g., NH4Cl or casamino acids) in the culture medium did not result in measurable glycine betaine accumulation. We suggest that the mechanism of osmotic adaptation in these organisms entails the accumulation of osmolytes in hyperosmotically stressed cells resulting from either enhanced uptake from the medium (of glycine betaine, proline, and glutamate) or increased net biosynthesis (of trehalose, proline, and glutamate) or both. The preferred osmolyte in Azotobacter chroococcum ZSM4 shifted from glutamate to trehalose as a consequence of a prolonged osmotic stress. Also, the dominant osmolyte in Azospirillum brasilense SHS6 shifted from glutamate to proline accumulation as the osmotic strength of the medium increased. PMID:16348295

  11. Physiological and genetic responses of bacteria to osmotic stress.

    PubMed Central

    Csonka, L N

    1989-01-01

    The capacity of organisms to respond to fluctuations in their osmotic environments is an important physiological process that determines their abilities to thrive in a variety of habitats. The primary response of bacteria to exposure to a high osmotic environment is the accumulation of certain solutes, K+, glutamate, trehalose, proline, and glycinebetaine, at concentrations that are proportional to the osmolarity of the medium. The supposed function of these solutes is to maintain the osmolarity of the cytoplasm at a value greater than the osmolarity of the medium and thus provide turgor pressure within the cells. Accumulation of these metabolites is accomplished by de novo synthesis or by uptake from the medium. Production of proteins that mediate accumulation or uptake of these metabolites is under osmotic control. This review is an account of the processes that mediate adaptation of bacteria to changes in their osmotic environment. PMID:2651863

  12. Weak microwave can alleviate water deficit induced by osmotic stress in wheat seedlings.

    PubMed

    Chen, Yi-Ping; Jia, Jing-Fen; Han, Xiao-Ling

    2009-01-01

    The aim of the investigation is to determine the effect of microwave pretreatment of wheat seeds on the resistance of seedlings to osmotic stress. Changes in biophysical, physiological and biochemical characters were measured. The results showed: (1) The magnetic field intensity and seeds temperature increased progressively with microwave pretreatments of 5, 10, 15, 20 s and 25 s compared with controls. Although each microwave pretreatment resulted in an increase in alpha-amylase activity and photon emission intensity, the increase of alpha-amylase activity and photon emission intensity was maximal at a microwave pretreatment of 10 s. (2) Osmotic stress induced by PEG treatment enhanced the concentration of malondialdehyde, while decreasing the activities of nitricoxide synthase, catalase, peroxidase, superoxide dismutase and the concentration of nitric oxide, ascorbic acid, glutathione in the seedlings compared with controls. However, compared to osmotic stress alone, in the seedlings treated with microwave irradiation plus osmotic stress the concentration of malondialdehyde decreased, while the activities of nitricoxide synthase, catalase, peroxidase, superoxide dismutase and the concentration of nitric oxide, ascorbic acid and glutathione increased. These results suggest that a suitable dose of microwave radiation can enhance the capability to eliminate free radicals induced by osmotic stress in wheat seedlings resulting in an increase in resistance to osmotic stress.

  13. The "Le Chatelier's principle"-governed response of actin filaments to osmotic stress.

    PubMed

    Ito, Tadanao; Yamazaki, Masahito

    2006-07-13

    Actin filaments inhibit osmotic stress-driven water flow across a semipermeable membrane in proportion to the filament concentration (Ito, T.; Zaner, K. S.; Stossel, T. P. Biophys. J. 1987, 51, 745). When the filaments are cross-linked by F-actin binding protein, filamin A, this flow is stopped completely (Ito, T.; Suzuki, A.; Stossel, T. P. Biophys. J. 1992, 61, 1301). No conventional theory accurately accounts for these results. Here, this response is analyzed by formulating the entropy of the system under osmotic stress. Results demonstrate that the response of the actin filaments to osmotic stress is governed by the Le Chatelier's principle, which states that an external interaction that disturbs the equilibrium brings about processes in the body that tend to reduce the effects of this interaction. In the present case, disrupting equilibrium by osmotic stress brings about a reaction that decreases the chemical potential of water in the F-actin solution, reducing the effect of the applied osmotic disturbance. This decrease in the chemical potential of the water in the F-actin solution is caused by an increase in the chemical potential of F-actin, which is induced by isothermal absorption of heat by F-actin aided by work done by osmotic stress. As a result, F-actin has an inhibitory effect on the osmotic stress-driven water flow, and can even completely stop the flow when it is cross-linked. This is the first report demonstrating that the Le Chatelier's principle applies to the reaction of biopolymers against equilibrium disturbances such as osmotic stress. PMID:16821884

  14. Different forms of osmotic stress evoke qualitatively different responses in rice.

    PubMed

    Hazman, Mohamed; Hause, Bettina; Eiche, Elisabeth; Riemann, Michael; Nick, Peter

    2016-09-01

    Drought, salinity and alkalinity are distinct forms of osmotic stress with serious impacts on rice productivity. We investigated, for a salt-sensitive rice cultivar, the response to osmotically equivalent doses of these stresses. Drought, experimentally mimicked by mannitol (single factor: osmotic stress), salinity (two factors: osmotic stress and ion toxicity), and alkalinity (three factors: osmotic stress, ion toxicity, and depletion of nutrients and protons) produced different profiles of adaptive and damage responses, both locally (in the root) as well as systemically (in the shoot). The combination of several stress factors was not necessarily additive, and we even observed cases of mitigation, when two (salinity), or three stressors (alkalinity) were compared to the single stressor (drought). The response to combinations of individual stress factors is therefore not a mere addition of the partial stress responses, but rather represents a new quality of response. We interpret this finding in a model, where the output to signaling molecules is not determined by their abundance per se, but qualitatively depends on their adequate integration into an adaptive signaling network. This output generates a systemic signal that will determine the quality of the shoot response to local concentrations of ions. PMID:27450493

  15. Relationship between colloid osmotic pressure and pulmonary artery wedge pressure in patients with acute cardiorespiratory failure.

    PubMed

    Weil, M H; Henning, R J; Morissette, M; Michaels, S

    1978-04-01

    Close relationships between progressive respiratory failure, roentgenographic signs of pulmonary opacification and decreases in the difference between colloid osmotic pressure of plasma and the pulmonary artery wedge pressure (colloid-hydrosatic pressure gradient) were demonstrated in 49 critically ill patients with multisystem failure, in patients in shock. The potential importance of this relationship is underscored by the observation that fatal progression of pulmonary edema was related to a critical reduction in the colloid-hydrostatic pressure gradient to levels of less than 0 mm Hg. More often, reduction in colloid osmotic pressure rather than increases in left ventricular filling pressure (pulmonary artery wedge pressure) accounted for the decline in colloid-hydrostatic pressure gradient. Routine measurement of colloid osmotic pressure, preferably in conjunction with pulmonary artery wedge pressure, is likely to improve understanding of the mechanisms of acute pulmonary edema.

  16. The effects of La(III) on the peroxidation of membrane lipids in wheat seedling leaves under osmotic stress.

    PubMed

    Zeng, F; An, Y; Zhang, H; Zhang, M

    1999-08-01

    The physiological effects of the rare earth ion La3+ on the peroxidation of membrane lipids in wheat (Triticum aestivum L.) seedling leaves under osmotic stress were determined. With the passage of time under osmotic stress, the inhibition ability of lanthanum ions to the relative membrane permeability and concentration of malondialdehyde, superoxide radicals, and hydrogen peroxide caused by osmotic stress increased substantially, but no changes were noted in ferrous and relative water content. It indicated that lanthanum ions could not retain the water content because of osmotic stress. However, La3+ appears to decrease the production of *OH by reducing the content of O2*- and H2O2 of Haber-Weiss and Fenton reactions, which efficiently alleviated peroxidation of membrane lipids under osmotic stress and, to some degree, protected the membrane from injury of free radicals. Thus, La3+ increased the tolerance ability of plant to osmotic stress, which could assure the function of membrane normal temporally after stressed.

  17. A simple osmotic stress test to predict boar sperm cryosurvival.

    PubMed

    Garzon-Perez, Cesar; Flores, Hector F; Medrano, Alfredo

    2010-01-01

    This work was carried out to test whether viability of pig spermatozoa subjected to an osmotic test is correlated to sperm cryosurvival. Spermatozoa were cooled from 22 degrees C to -5 degrees C, aliquots were exposed to a series of hyperosmotic solutions (300-2100 mOsm/kg) for 15 min, immediately spermatozoa were re-warmed to 37 degrees C and isosmolarity was restored. Spermatozoa were cooled from 22 degrees C to -5 degrees C and one aliquot was exposed to the osmotic test while diluted spermatozoa were frozen-thawed. Plasma membrane-intact spermatozoa decreased as osmolarity increased (P < 0.0001), a further decreased (P < 0.0001) was observed when isotonicity was restored. Proportions of plasma membrane-intact and acrosome-intact cells from the osmotic test were no different from those after freeze-thawing: 36% vs. 35%, 80% vs. 80%, respectively. A significant correlation was found between the proportion of acrosome-intact cells after freeze-thawing and that from the osmotic test (r = 0.81, P <0.01). This test provides a useful and economical mean to predict in vitro boar sperm cryosurvival.

  18. Osmotic Stressing, Membrane Leakage, and Fluorescence: An Introductory Biochemistry Demonstration

    ERIC Educational Resources Information Center

    Seu, Kalani J.

    2015-01-01

    A fluorescence demonstration is described that incorporates several fundamental aspects of an introductory biochemistry course. A variation of a known leakage assay is utilized to prepare vesicles containing a quenched fluorophore. The vesicles are exposed to several osmotic environments ranging from isotonic to hypotonic. The degree of vesicle…

  19. Osmotic stress, endogenous abscisic acid and the control of leaf morphology in Hippuris vulgaris L

    NASA Technical Reports Server (NTRS)

    Goliber, T. E.; Feldman, L. J.

    1989-01-01

    Previous reports indicate that heterophyllous aquatic plants can be induced to form aerial-type leaves on submerged shoots when they are grown in exogenous abscisic acid (ABA). This study reports on the relationship between osmotic stress (e.g. the situation encountered by a shoot tip when it grows above the water surface), endogenous ABA (as measured by gas chromatography-electron capture detector) and leaf morphology in the heterophyllous aquatic plant, Hippuris vulgaris. Free ABA could not be detected in submerged shoots of H. vulgaris but in aerial shoots ABA occurred at ca. 40 ng (g fr wt)-1. When submerged shoots were osmotically stressed ABA appeared at levels of 26 to 40 ng (g fr wt)-1. These and other data support two main conclusions: (1) Osmotically stressing a submerged shoot causes the appearance of detectable levels of ABA. (2) The rise of ABA in osmotically stressed submerged shoots in turn induces a change in leaf morphology from the submerged to the aerial form. This corroborates the hypothesis that, in the natural environment, ABA levels rise in response to the osmotic stress encountered when a submerged shoot grows up through the water/air interface and that the increased ABA leads to the production of aerial-type leaves.

  20. Effects of intrathecal kynurenate on arterial pressure during chronic osmotic stress in conscious rats

    PubMed Central

    Veitenheimer, Britta

    2013-01-01

    Increased plasma osmolality elevates mean arterial pressure (MAP) through activation of the sympathetic nervous system, but the neurotransmitters released in the spinal cord to regulate MAP during osmotic stress remain unresolved. Glutamatergic neurons of the rostral ventrolateral medulla project to sympathetic preganglionic neurons in the spinal cord and are likely activated during conditions of osmotic stress; however, this has not been examined in conscious rats. This study investigated whether increased MAP during chronic osmotic stress depends on activation of spinal glutamate receptors. Rats were chronically instrumented with an indwelling intrathecal (i.t.) catheter for antagonist delivery to the spinal cord and a radiotelemetry transmitter for continuous monitoring of MAP and heart rate. Osmotic stress induced by 48 h of water deprivation (WD) increased MAP by ∼15 mmHg. Intrathecal kynurenic acid, a nonspecific antagonist of ionotropic glutamate receptors, decreased MAP significantly more after 48 h of WD compared with the water-replete state. Water-deprived rats also showed a greater fall in MAP in response to i.t. 2-amino-5-phosphonovalerate. Finally, i.t. kynurenic acid also decreased MAP more in an osmotically driven model of neurogenic hypertension, the DOCA-salt rat, compared with normotensive controls. Our results suggest that spinally released glutamate mediates increased MAP during 48-h WD and DOCA-salt hypertension. PMID:23161878

  1. Impact of osmotic stress on protein diffusion in Lactococcus lactis.

    PubMed

    Mika, Jacek T; Schavemaker, Paul E; Krasnikov, Victor; Poolman, Bert

    2014-11-01

    We measured translational diffusion of proteins in the cytoplasm and plasma membrane of the Gram-positive bacterium Lactococcus lactis and probed the effect of osmotic upshift. For cells in standard growth medium the diffusion coefficients for cytosolic proteins (27 and 582 kDa) and 12-transmembrane helix membrane proteins are similar to those in Escherichia coli. The translational diffusion of GFP in L. lactis drops by two orders of magnitude when the medium osmolality is increased by ∼ 1.9 Osm, and the decrease in mobility is partly reversed in the presence of osmoprotectants. We find a large spread in diffusion coefficients over the full population of cells but a smaller spread if only sister cells are compared. While in general the diffusion coefficients we measure under normal osmotic conditions in L. lactis are similar to those reported in E. coli, the decrease in translational diffusion upon osmotic challenge in L. lactis is smaller than in E. coli. An even more striking difference is that in L. lactis the GFP diffusion coefficient drops much more rapidly with volume than in E. coli. We discuss these findings in the light of differences in turgor, cell volume, crowding and cytoplasmic structure of Gram-positive and Gram-negative bacteria.

  2. Regulation of Leaf Starch Degradation by Abscisic Acid Is Important for Osmotic Stress Tolerance in Plants.

    PubMed

    Thalmann, Matthias; Pazmino, Diana; Seung, David; Horrer, Daniel; Nigro, Arianna; Meier, Tiago; Kölling, Katharina; Pfeifhofer, Hartwig W; Zeeman, Samuel C; Santelia, Diana

    2016-08-01

    Starch serves functions that range over a timescale of minutes to years, according to the cell type from which it is derived. In guard cells, starch is rapidly mobilized by the synergistic action of β-AMYLASE1 (BAM1) and α-AMYLASE3 (AMY3) to promote stomatal opening. In the leaves, starch typically accumulates gradually during the day and is degraded at night by BAM3 to support heterotrophic metabolism. During osmotic stress, starch is degraded in the light by stress-activated BAM1 to release sugar and sugar-derived osmolytes. Here, we report that AMY3 is also involved in stress-induced starch degradation. Recently isolated Arabidopsis thaliana amy3 bam1 double mutants are hypersensitive to osmotic stress, showing impaired root growth. amy3 bam1 plants close their stomata under osmotic stress at similar rates as the wild type but fail to mobilize starch in the leaves. (14)C labeling showed that amy3 bam1 plants have reduced carbon export to the root, affecting osmolyte accumulation and root growth during stress. Using genetic approaches, we further demonstrate that abscisic acid controls the activity of BAM1 and AMY3 in leaves under osmotic stress through the AREB/ABF-SnRK2 kinase-signaling pathway. We propose that differential regulation and isoform subfunctionalization define starch-adaptive plasticity, ensuring an optimal carbon supply for continued growth under an ever-changing environment. PMID:27436713

  3. Quercitol and osmotic adaptation of field-grown Eucalyptus under seasonal drought stress.

    PubMed

    Arndt, Stefan K; Livesley, Stephen J; Merchant, Andrew; Bleby, Timothy M; Grierson, Pauline F

    2008-07-01

    This study investigated the role of quercitol in osmotic adjustment in field-grown Eucalyptus astringens Maiden subject to seasonal drought stress over the course of 1 year. The trees grew in a native woodland and a farm plantation in the semi-arid wheatbelt region of south Western Australia. Plantation trees allocated relatively more biomass to leaves than woodland trees, but they suffered greater drought stress over summer, as indicated by lower water potentials, CO(2)assimilation rates and stomatal conductances. In contrast, woodland trees had relatively fewer leaves and suffered less drought stress. Plantation trees under drought stress engaged in osmotic adjustment, but woodland trees did not. Quercitol made a significant contribution to osmotic adjustment in drought-stressed trees (25% of total solutes), and substantially more quercitol was measured in the leaves of plantation trees (5% dry matter) than in the leaves of woodland trees (2% dry matter). We found no evidence that quercitol was used as a carbon storage compound while starch reserves were depleted under drought stress. Differences in stomatal conductance, biomass allocation and quercitol production clearly indicate that E. astringens is both morphologically and physiologically 'plastic' in response to growth environment, and that osmotic adjustment is only one part of a complex strategy employed by this species to tolerate drought.

  4. Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, iso-osmotic salinity (120 mM NaCl, 12mM CaCl2) and osmotic (PEG) stresses, along with chilling (5oC) stress, were applied to the cold-sensitive grapevine species V. vinifera cv. Cabernet Sauvignon. Microarray analysis of transcript abundance in shoot tips revealed that 43% of gene exp...

  5. Osmotic stress adaptation of Paracoccidioides lutzii, Pb01, monitored by proteomics.

    PubMed

    Rodrigues, Leandro Nascimento da Silva; Brito, Wesley de Almeida; Parente, Ana Flávia Alves; Weber, Simone Schneider; Bailão, Alexandre Melo; Casaletti, Luciana; Borges, Clayton Luiz; Soares, Célia Maria de Almeida

    2016-10-01

    The ability to respond to stressful conditions is essential for most living organisms. In pathogenic organisms, this response is required for effective transition from a saprophytic lifestyle to the establishment of pathogenic interactions within a susceptible host. Hyperosmotic stress has been used as a model to study signal transduction and seems to cause many cellular adaptations, including the alteration of protein expression and cellular volume as well as size regulation. In this work, we evaluated the proteomic profile of Paracoccidioides lutzii Pb01 yeast cells during osmotic stress induced by potassium chloride. We performed a high accuracy proteomic technique (NanoUPLC-MS(E)) to identify differentially expressed proteins during osmotic shock. The data describe an osmoadaptative response of this fungus when subjected to this treatment. Proteins involved in the synthesis of cell wall components were modulated, which suggested cell wall remodeling. In addition, alterations in the energy metabolism were observed. Furthermore, proteins involved in amino acid metabolism and hydrogen peroxide detoxification were modulated during osmotic stress. Our study suggests that P. lutzii Pb01. presents a vast osmoadaptative response that is composed of different proteins that act together to minimize the effects caused by osmotic stress. PMID:27496542

  6. Apoplastic barrier development and water transport in Zea mays seedling roots under salt and osmotic stresses.

    PubMed

    Shen, Jie; Xu, Guoxin; Zheng, Hui Qiong

    2015-01-01

    The development of apoplastic barriers was studied in Zea mays seedling roots grown in hydroculture solution supplemented with 0-200 mM NaCl or 20% polyethylene glycol (PEG). Casparian bands in the endodermis of both NaCl- and PEG-treated roots were observed closer to the root tip in comparison with those of control roots, but the cell wall modifications in the endodermis and exodermis induced by salt and osmotic stresses differed. High salinity induced the formation of a multiseriate exodermis, which ranged from several cell layers to the entire cortex tissue but did not noticeably influence cell wall suberization in the endodermis. In contrast, osmotic stress accelerated suberization in both the endodermis and exodermis, but the exodermis induced by osmotic stress was limited to several cell layers in the outer cortex adjacent to the epidermis. The hydrostatic hydraulic conductivity (Lp) had decreased significantly after 1 day of PEG treatment, whereas in NaCl-treated roots, Lp decreased to a similar level after 5 days of treatment. Peroxidase activity in the roots increased significantly in response to NaCl and PEG treatments. These data indicate that salt stress and osmotic stress have different effects on the development of apoplastic barriers and water transport in Z. mays seedling roots. PMID:24965373

  7. Chlorophyll accumulation is enhanced by osmotic stress in graminaceous chlorophyllic cells.

    PubMed

    García-Valenzuela, Xóchitl; Garcá-Moya, Edmundo; Rascón-Cruz, Quintín; Herrera-Estrella, Luis; Aguado-Santacruz, Gerardo Armando

    2005-06-01

    We have developed a new chlorophyllic cell line ('TADH-XO') from the highly water stress tolerant grass Bouteloua gracilis (blue grama). When grown under normal (non-stress) conditions, this new cell line accumulates higher levels of chlorophyll (up to 368.1 microg total chlorophyll g(-1) FW) than a previously obtained cell line ('TIANSJ98'). Both cell lines are capable of developing substantially higher amounts of chlorophyll when subjected to osmotic stress. In order to explain these changes in the chlorophyll kinetics of the chlorophyllic cells, we analyzed the following population variables in cells subjected to polyethylene glycol 8000-induced osmotic stress: growth, viability, chlorophyll (total, 'a' and 'b'), cell size, percentage of green cells and chloroplast (number and size). Although previous studies in some chlorophyllic cells of dicots have already reported that chlorophyll increases under saline stress, in this report we show that, at least in this graminaceous cell line, the increase in chlorophyll is an immediate and proportional response to the osmotic stress applied and not the result of a progressive adaptation process. Consistent with previous studies, the increase in chlorophyll accumulation could be the result of chloroplast development (increased thylakoid number per chloroplast). On the basis of our results, the increases in chlorophyll accumulation previously observed in salt-adapted dicot cells may be the result of the osmotic shock (water deficit), rather than the ionic effect of salt on the physiology of chlorophyllic cells of dicots. Under the cell population experimental approach we followed, our study provides important insights related to the physiological behavior of chlorophyllic cells subjected to osmotic stress.

  8. Sorbitol treatment extends lifespan and induces the osmotic stress response in Caenorhabditis elegans

    PubMed Central

    Chandler-Brown, Devon; Choi, Haeri; Park, Shirley; Ocampo, Billie R.; Chen, Shiwen; Le, Anna; Sutphin, George L.; Shamieh, Lara S.; Smith, Erica D.; Kaeberlein, Matt

    2015-01-01

    The response to osmotic stress is a highly conserved process for adapting to changing environmental conditions. Prior studies have shown that hyperosmolarity by addition of sorbitol to the growth medium is sufficient to increase both chronological and replicative lifespan in the budding yeast, Saccharomyces cerevisiae. Here we report a similar phenomenon in the nematode Caenorhabditis elegans. Addition of sorbitol to the nematode growth medium induces an adaptive osmotic response and increases C. elegans lifespan by about 35%. Lifespan extension from 5% sorbitol behaves similarly to dietary restriction in a variety of genetic backgrounds, increasing lifespan additively with mutation of daf-2(e1370) and independently of daf-16(mu86), sir-2.1(ok434), aak-2(ok524), and hif-1(ia04). Dietary restriction by bacterial deprivation or mutation of eat-2(ad1113) fails to further extend lifespan in the presence of 5% sorbitol. Two mutants with constitutive activation of the osmotic response, osm-5(p813) and osm-7(n1515), were found to be long-lived, and lifespan extension from sorbitol required the glycerol biosynthetic enzymes GPDH-1 and GPDH-2. Taken together, these observations demonstrate that exposure to sorbitol at levels sufficient to induce an adaptive osmotic response extends lifespan in worms and define the osmotic stress response pathway as a longevity pathway conserved between yeast and nematodes. PMID:26579191

  9. Sorbitol treatment extends lifespan and induces the osmotic stress response in Caenorhabditis elegans.

    PubMed

    Chandler-Brown, Devon; Choi, Haeri; Park, Shirley; Ocampo, Billie R; Chen, Shiwen; Le, Anna; Sutphin, George L; Shamieh, Lara S; Smith, Erica D; Kaeberlein, Matt

    2015-01-01

    The response to osmotic stress is a highly conserved process for adapting to changing environmental conditions. Prior studies have shown that hyperosmolarity by addition of sorbitol to the growth medium is sufficient to increase both chronological and replicative lifespan in the budding yeast, Saccharomyces cerevisiae. Here we report a similar phenomenon in the nematode Caenorhabditis elegans. Addition of sorbitol to the nematode growth medium induces an adaptive osmotic response and increases C. elegans lifespan by about 35%. Lifespan extension from 5% sorbitol behaves similarly to dietary restriction in a variety of genetic backgrounds, increasing lifespan additively with mutation of daf-2(e1370) and independently of daf-16(mu86), sir-2.1(ok434), aak-2(ok524), and hif-1(ia04). Dietary restriction by bacterial deprivation or mutation of eat-2(ad1113) fails to further extend lifespan in the presence of 5% sorbitol. Two mutants with constitutive activation of the osmotic response, osm-5(p813) and osm-7(n1515), were found to be long-lived, and lifespan extension from sorbitol required the glycerol biosynthetic enzymes GPDH-1 and GPDH-2. Taken together, these observations demonstrate that exposure to sorbitol at levels sufficient to induce an adaptive osmotic response extends lifespan in worms and define the osmotic stress response pathway as a longevity pathway conserved between yeast and nematodes.

  10. Proteomic profiling analysis reveals that glutathione system plays important roles responding to osmotic stress in wheat (Triticum aestivum L.) roots

    PubMed Central

    Dong, Wen; Zhang, Daijing; Gao, Xiaolong; Shao, Yun; Tong, Doudou

    2016-01-01

    Wheat is one of the most important crops in the world, and osmotic stress has become one of the main factors affecting wheat production. Understanding the mechanism of the response of wheat to osmotic stress would be greatly significant. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) was used to analyze the changes of protein expression in the wheat roots exposed to different osmotic stresses. A total of 2,228 expressed proteins, including 81 differentially expressed proteins, between osmotic stress and control, were found. The comprehensive analysis of these differentially expressed proteins revealed that osmotic stress increased the variety of expressed proteins and suppressed the quantity of expressed proteins in wheat roots. Furthermore, the proteins for detoxifying and reactive oxygen species scavenging, especially the glutathione system, played important roles in maintaining organism balance in response to osmotic stress in wheat roots. Thus, the present study comprehensively describes the protein expression changes in wheat roots in response to osmotic stress, providing firmer foundation to further study the mechanism of osmotic resistance in wheat. PMID:27602297

  11. Proteomic profiling analysis reveals that glutathione system plays important roles responding to osmotic stress in wheat (Triticum aestivum L.) roots

    PubMed Central

    Dong, Wen; Zhang, Daijing; Gao, Xiaolong; Shao, Yun; Tong, Doudou

    2016-01-01

    Wheat is one of the most important crops in the world, and osmotic stress has become one of the main factors affecting wheat production. Understanding the mechanism of the response of wheat to osmotic stress would be greatly significant. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) was used to analyze the changes of protein expression in the wheat roots exposed to different osmotic stresses. A total of 2,228 expressed proteins, including 81 differentially expressed proteins, between osmotic stress and control, were found. The comprehensive analysis of these differentially expressed proteins revealed that osmotic stress increased the variety of expressed proteins and suppressed the quantity of expressed proteins in wheat roots. Furthermore, the proteins for detoxifying and reactive oxygen species scavenging, especially the glutathione system, played important roles in maintaining organism balance in response to osmotic stress in wheat roots. Thus, the present study comprehensively describes the protein expression changes in wheat roots in response to osmotic stress, providing firmer foundation to further study the mechanism of osmotic resistance in wheat.

  12. Proteomic profiling analysis reveals that glutathione system plays important roles responding to osmotic stress in wheat (Triticum aestivum L.) roots.

    PubMed

    Ma, Jianhui; Dong, Wen; Zhang, Daijing; Gao, Xiaolong; Jiang, Lina; Shao, Yun; Tong, Doudou; Li, Chunxi

    2016-01-01

    Wheat is one of the most important crops in the world, and osmotic stress has become one of the main factors affecting wheat production. Understanding the mechanism of the response of wheat to osmotic stress would be greatly significant. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) was used to analyze the changes of protein expression in the wheat roots exposed to different osmotic stresses. A total of 2,228 expressed proteins, including 81 differentially expressed proteins, between osmotic stress and control, were found. The comprehensive analysis of these differentially expressed proteins revealed that osmotic stress increased the variety of expressed proteins and suppressed the quantity of expressed proteins in wheat roots. Furthermore, the proteins for detoxifying and reactive oxygen species scavenging, especially the glutathione system, played important roles in maintaining organism balance in response to osmotic stress in wheat roots. Thus, the present study comprehensively describes the protein expression changes in wheat roots in response to osmotic stress, providing firmer foundation to further study the mechanism of osmotic resistance in wheat. PMID:27602297

  13. PEG-induced osmotic stress in Mentha x piperita L.: Structural features and metabolic responses.

    PubMed

    Búfalo, Jennifer; Rodrigues, Tatiane Maria; de Almeida, Luiz Fernando Rolim; Tozin, Luiz Ricardo Dos Santos; Marques, Marcia Ortiz Mayo; Boaro, Carmen Silvia Fernandes

    2016-08-01

    The present study investigated whether osmotic stress induced by the exposure of peppermint (Mentha x piperita L.) to moderate and severe stress for short periods of time changes the plant's physiological parameters, leaf anatomy and ultrastructure and essential oil. Plants were exposed to two levels of polyethyleneglycol (50 g L(-1) and 100 g L(-1) of PEG) in a hydroponic experiment. The plants exposed to 50 g L(-1) maintained metabolic functions similar to those of the control group (0 g L(-1)) without changes in gas exchange or structural characteristics. The increase in antioxidant enzyme activity reduced the presence of free radicals and protected membranes, including chloroplasts and mitochondria. In contrast, the osmotic stress caused by 100 g L(-1) of PEG inhibited leaf gas exchange, reduced the essential oil content and changed the oil composition, including a decrease in menthone and an increase in menthofuran. These plants also showed an increase in peroxidase activity, but this increase was not sufficient to decrease the lipid peroxidation level responsible for damaging the membranes of organelles. Morphological changes were correlated with the evaluated physiological features: plants exposed to 100 g L(-1) of PEG showed areas with collapsed cells, increases in mesophyll thickness and the area of the intercellular space, cuticle shrinkage, morphological changes in plastids, and lysis of mitochondria. In summary, our results revealed that PEG-induced osmotic stress in M. x piperita depends on the intensity level of the osmotic stress applied; severe osmotic stress changed the structural characteristics, caused damage at the cellular level, and reduced the essential oil content and quality. PMID:27107175

  14. PEG-induced osmotic stress in Mentha x piperita L.: Structural features and metabolic responses.

    PubMed

    Búfalo, Jennifer; Rodrigues, Tatiane Maria; de Almeida, Luiz Fernando Rolim; Tozin, Luiz Ricardo Dos Santos; Marques, Marcia Ortiz Mayo; Boaro, Carmen Silvia Fernandes

    2016-08-01

    The present study investigated whether osmotic stress induced by the exposure of peppermint (Mentha x piperita L.) to moderate and severe stress for short periods of time changes the plant's physiological parameters, leaf anatomy and ultrastructure and essential oil. Plants were exposed to two levels of polyethyleneglycol (50 g L(-1) and 100 g L(-1) of PEG) in a hydroponic experiment. The plants exposed to 50 g L(-1) maintained metabolic functions similar to those of the control group (0 g L(-1)) without changes in gas exchange or structural characteristics. The increase in antioxidant enzyme activity reduced the presence of free radicals and protected membranes, including chloroplasts and mitochondria. In contrast, the osmotic stress caused by 100 g L(-1) of PEG inhibited leaf gas exchange, reduced the essential oil content and changed the oil composition, including a decrease in menthone and an increase in menthofuran. These plants also showed an increase in peroxidase activity, but this increase was not sufficient to decrease the lipid peroxidation level responsible for damaging the membranes of organelles. Morphological changes were correlated with the evaluated physiological features: plants exposed to 100 g L(-1) of PEG showed areas with collapsed cells, increases in mesophyll thickness and the area of the intercellular space, cuticle shrinkage, morphological changes in plastids, and lysis of mitochondria. In summary, our results revealed that PEG-induced osmotic stress in M. x piperita depends on the intensity level of the osmotic stress applied; severe osmotic stress changed the structural characteristics, caused damage at the cellular level, and reduced the essential oil content and quality.

  15. Effects of osmotic stress on the kinds, forms and levels of polyamines in wheat coleoptiles.

    PubMed

    Liu, Huai-Pan; Zhu, Zi-Xue; Liu, Tian-Xue; Li, Chao-Hai

    2006-06-01

    The changes in levels and forms of polyamine (Pa) in the coleoptiles of two wheat (triticum aestivum L.) cultivars differing in drought tolerance were investigated under osmotic stress. The drought-tolerant 'Yumai 18' showed marked increases in free spermidine (Spd) and spermine (Spm) levels in coleoptiles after being treated with polyethylene glycol (PEG)-6000 for 2 d in the dark, while drought-sensitive 'Yangmai 9' showed a significant increase in free putrescine (Put) content. Treatment of coleoptiles with methylglyoxal-bis (guanylhydrazone) (MGBG), an S-adenosylmethionine decarboxylase (S-AMDC) inhibitor, resulted in reduction of free Spd and free Spm levels in coleoptiles and aggravation of PEG-induced injury to 'Yumai 18' coleoptile, while exogenous Spd treatment resulted in an increase in free Spd + free Spm content of coleoptiles, and an alleviation of PEG-induced injury to 'Yangmai 9' coleoptile. Osmotic stress induced significant increases in perchloric acid-soluble conjugated PA (PS conjugated PA) and perchloric acid-insoluble conjugated PA (PIS conjugated PA) levels in coleoptiles of 'Yumai 18' whereas osmotic stress affected only slightly the PS-conjugated PA and PIS-conjugated PA levels in 'Yangmai 9' coleoptiles. Treatment of coleoptiles with phenanthroline (o-Phen), an inhibitor of transglutaminase (TGase), also aggravated the PEG-induced injury to 'Yumai 18' coleoptiles, accompanied by the decreases in the level of PIS-conjugated PA. These results suggest that free Spd, free Spm and conjugated PA enhance the osmotic stress tolerance of wheat coleoptiles.

  16. Role of the Osmotic Stress Regulatory Pathway in Morphogenesis and Secondary Metabolism in Filamentous Fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Environmental stimuli trigger an adaptative cellular response to optimize the probability of survival and proliferation. In eukaryotic organisms from mammals to fungi osmotic stress, mainly through the action of the high osmolarity glycerol (HOG) pathway, leads to a response necessary for adapting a...

  17. Osmotic stress mimics effects of vasopressin on learned behaviour.

    PubMed

    Koob, G F; Dantzer, R; Rodriguez, F; Bloom, F E; Le Moal, M

    It has been suggested that arginine vasopressin (AVP) is involved in the retention of learned responses, in addition to its classical physiological functions of water retention and modulation of blood pressure. AVP administered subcutaneously (s.c.), intraventricularly or intracerebrally can prolong extinction of active avoidance behaviour and can enhance retention in inhibitory (passive) avoidance. These effects have been interpreted as a direct action of AVP on the central nervous system to facilitate memory consolidation. AVP also has facilitatory effects on cognitive function in humans, and marked deficits in AVP function have been associated with certain types of psychopathology. Alternative hypotheses for the behavioural actions of AVP have involved motivational constructs such as arousal, and our recent work has focused on the role of arousal resulting from the activation of peripheral visceral signals in the behavioural effects of peripherally administered AVP. The development of a specific antagonist for AVP, 1-deaminopenicillamine-2-O-methyl tyrosine arginine vasopressin (dPTyr(Me)AVP), which can reverse the behavioural effects of exogenously administered AVP, has provided a powerful tool for examining the role of AVP in the behavioural responses produced by physiological challenges known to release vasopressin. However, the relationship between the behavioural effects of exogenously administered AVP and the behavioural function of endogenously released AVP has not been evaluated. We report here that a potent peripheral osmotic stimulus, the intraperitoneal (i.p.) injection of hypertonic saline, at doses known to release AVP both centrally and peripherally, will produce behavioural effects similar to those of exogenously administered AVP. Furthermore, the prolongation of active avoidance induced by this osmotic stimulus is reversed by pretreatment with dPTyr(Me)AVP, suggesting that endogenously released AVP may also produce behavioural effects.

  18. Physcomitrella patens DNA methyltransferase 2 is required for recovery from salt and osmotic stress.

    PubMed

    Arya, Deepshikha; Kapoor, Sanjay; Kapoor, Meenu

    2016-02-01

    DNA methyltransferase 2 (DNMT2) unlike other members of the cytosine DNA methyltransferase gene family has dual substrate specificity and it methylates cytosines in both the DNA and transfer RNA (tRNA). Its role in plants, however, has remained obscure to date. In this study, we demonstrate that DNMT2 from Physcomitrella patens accumulates in a temporal manner under salt and osmotic stress showing maximum accumulation during recovery, i.e. 24 h after plants are transferred to normal growth medium. Therefore, to study its role in stress tolerance, we generated PpDNMT2 targeted knockout plants (ppdnmt2ko). Mutant plants show increased sensitivity to salt and osmotic stress and are unable to recover even after 21 days of growth on optimal growth media. ppdnmt2ko, however, accumulate normal levels of dehydrin-like and small heat shock protein encoding transcripts under stress but show dramatic reduction in levels of tRNA(A) (sp-) (GUC) . The levels of tRNA(A) (sp-) (GUC) , in contrast, increase ~ 25-30-fold in ppdnmt2ko under non-stress conditions and > 1200-fold in wild-type plants under stress. The role of PpDNMT2 in modulating biogenesis/stability of tRNA(A) (sp-) (GUC) under salt and osmotic stress is discussed in the light of these observations. PMID:26639858

  19. Isolation and characterization of an osmotic stress and ABA induced histone deacetylase in Arachis hygogaea

    PubMed Central

    Su, Liang-Chen; Deng, Bin; Liu, Shuai; Li, Li-Mei; Hu, Bo; Zhong, Yu-Ting; Li, Ling

    2015-01-01

    Histone acetylation, which together with histone methylation regulates gene activity in response to stress, is an important epigenetic modification. There is an increasing research focus on histone acetylation in crops, but there is no information to date in peanut (Arachis hypogaea). We showed that osmotic stress and ABA affect the acetylation of histone H3 loci in peanut seedlings by immunoblotting experiments. Using RNA-seq data for peanut, we found a RPD3/HDA1-like superfamily histone deacetylase (HDAC), termed AhHDA1, whose gene is up-regulated by PEG-induced water limitation and ABA signaling. We isolated and characterized AhHDA1 from A. hypogaea, showing that AhHDA1 is very similar to an Arabidopsis HDAC (AtHDA6) and, in recombinant form, possesses HDAC activity. To understand whether and how osmotic stress and ABA mediate the peanut stress response by epigenetics, the expression of AhHDA1 and stress-responsive genes following treatment with PEG, ABA, and the specific HDAC inhibitor trichostatin A (TSA) were analyzed. AhHDA1 transcript levels were enhanced by all three treatments, as was expression of peanut transcription factor genes, indicating that AhHDA1 might be involved in the epigenetic regulation of stress resistance genes that comprise the responses to osmotic stress and ABA. PMID:26217363

  20. Role of cold shock proteins in growth of Listeria monocytogenes under cold and osmotic stress conditions.

    PubMed

    Schmid, Barbara; Klumpp, Jochen; Raimann, Eveline; Loessner, Martin J; Stephan, Roger; Tasara, Taurai

    2009-03-01

    The gram-positive bacterium Listeria monocytogenes is a food-borne pathogen of both public health and food safety significance. It possesses three small, highly homologous protein members of the cold shock protein (Csp) family. We used gene expression analysis and a set of mutants with single, double, and triple deletions of the csp genes to evaluate the roles of CspA, CspB, and CspD in the cold and osmotic (NaCl) stress adaptation responses of L. monocytogenes. All three Csps are dispensable for growth at optimal temperature (37 degrees C). These proteins are, however, required for efficient cold and osmotic stress tolerance of this bacterium. The hierarchies of their functional importance differ, depending on the environmental stress conditions: CspA>CspD>CspB in response to cold stress versus CspD>CspA/CspB in response to NaCl salt osmotic stress. The fact that Csps are promoting L. monocytogenes adaptation against both cold and NaCl stress has significant implications in view of practical food microbial control measures. The combined or sequential exposure of L. monocytogenes cells to these two stresses in food environments might inadvertently induce cross-protection responses.

  1. Physcomitrella patens DNA methyltransferase 2 is required for recovery from salt and osmotic stress.

    PubMed

    Arya, Deepshikha; Kapoor, Sanjay; Kapoor, Meenu

    2016-02-01

    DNA methyltransferase 2 (DNMT2) unlike other members of the cytosine DNA methyltransferase gene family has dual substrate specificity and it methylates cytosines in both the DNA and transfer RNA (tRNA). Its role in plants, however, has remained obscure to date. In this study, we demonstrate that DNMT2 from Physcomitrella patens accumulates in a temporal manner under salt and osmotic stress showing maximum accumulation during recovery, i.e. 24 h after plants are transferred to normal growth medium. Therefore, to study its role in stress tolerance, we generated PpDNMT2 targeted knockout plants (ppdnmt2ko). Mutant plants show increased sensitivity to salt and osmotic stress and are unable to recover even after 21 days of growth on optimal growth media. ppdnmt2ko, however, accumulate normal levels of dehydrin-like and small heat shock protein encoding transcripts under stress but show dramatic reduction in levels of tRNA(A) (sp-) (GUC) . The levels of tRNA(A) (sp-) (GUC) , in contrast, increase ~ 25-30-fold in ppdnmt2ko under non-stress conditions and > 1200-fold in wild-type plants under stress. The role of PpDNMT2 in modulating biogenesis/stability of tRNA(A) (sp-) (GUC) under salt and osmotic stress is discussed in the light of these observations.

  2. Wheat-Aegilops biuncialis amphiploids have efficient photosynthesis and biomass production during osmotic stress.

    PubMed

    Dulai, Sándor; Molnár, István; Szopkó, Dóra; Darkó, Éva; Vojtkó, András; Sass-Gyarmati, Andrea; Molnár-Láng, Márta

    2014-04-15

    Osmotic stress responses of water content, photosynthetic parameters and biomass production were investigated in wheat-Aegilops biuncialis amphiploids and in wheat genotypes to clarify whether they can use to improve the drought tolerance of bread wheat. A decrease in the osmotic pressure of the medium resulted in considerable water loss, stomatal closure and a decreased CO2 assimilation rate for the wheat genotypes, while the changes in these parameters were moderate for the amphiploids. Maximal assimilation rate was maintained at high level even under severe osmotic stress in the amphiploids, while it decreased substantially in the wheat genotypes. Nevertheless, the effective quantum yield of PS II was higher and the quantum yield of non-photochemical quenching of PS II and PS I was lower for the amphiploids than for the wheat cultivars. Parallel with this, higher cyclic electron flow was detected in wheat than in the amphiploids. The elevated photosynthetic activity of amphiploids under osmotic stress conditions was manifested in higher biomass production by roots and shoots as compared to wheat genotypes. These results indicate that the drought-tolerant traits of Ae. biuncialis can be manifested in the wheat genetic background and these amphiploids are suitable genetic materials for improving drought tolerance of wheat.

  3. Traumatic stress in acute leukemia

    PubMed Central

    Rodin, Gary; Yuen, Dora; Mischitelle, Ashley; Minden, Mark D; Brandwein, Joseph; Schimmer, Aaron; Marmar, Charles; Gagliese, Lucia; Lo, Christopher; Rydall, Anne; Zimmermann, Camilla

    2013-01-01

    Objective Acute leukemia is a condition with an acute onset that is associated with considerable morbidity and mortality. However, the psychological impact of this life-threatening condition and its intensive treatment has not been systematically examined. In the present study, we investigate the prevalence and correlates of post-traumatic stress symptoms in this population. Methods Patients with acute myeloid, lymphocytic, and promyelocytic leukemia who were newly diagnosed, recently relapsed, or treatment failures were recruited at a comprehensive cancer center in Toronto, Canada. Participants completed the Stanford Acute Stress Reaction Questionnaire, Memorial Symptom Assessment Scale, CARES Medical Interaction Subscale, and other psychosocial measures. A multivariate regression analysis was used to assess independent predictors of post-traumatic stress symptoms. Results Of the 205 participants, 58% were male, mean age was 50.1 ± 15.4 years, 86% were recently diagnosed, and 94% were receiving active treatment. The mean Stanford Acute Stress Reaction Questionnaire score was 30.2 ± 22.5, with 27 of 200 (14%) patients meeting criteria for acute stress disorder and 36 (18%) for subsyndromal acute stress disorder. Post-traumatic stress symptoms were associated with more physical symptoms, physical symptom distress, attachment anxiety, and perceived difficulty communicating with health-care providers, and poorer spiritual well-being (all p <0.05). Conclusions The present study demonstrates that clinically significant symptoms of traumatic stress are common in acute leukemia and are linked to the degree of physical suffering, to satisfaction with relationships with health-care providers, and with individual psychological characteristics. Longitudinal study is needed to determine the natural history, but these findings suggest that intervention may be indicated to alleviate or prevent traumatic stress in this population. PMID:22081505

  4. Differential contribution of individual dehydrin genes from Physcomitrella patens to salt and osmotic stress tolerance.

    PubMed

    Ruibal, Cecilia; Salamó, Imma Pérez; Carballo, Valentina; Castro, Alexandra; Bentancor, Marcel; Borsani, Omar; Szabados, László; Vidal, Sabina

    2012-07-01

    The moss Physcomitrella patens can withstand extreme environmental conditions including drought and salt stress. Tolerance to dehydration in mosses is thought to rely on efficient limitation of stress-induced cell damage and repair of cell injury upon stress relief. Dehydrin proteins (DHNs) are part of a conserved cell protecting mechanism in plants although their role in stress tolerance is not well understood. Four DHNs and two DHN-like proteins were identified in the predicted proteome of P. patens. Expression of PpDHNA and PpDHNB was induced by salt and osmotic stress and controlled by abscisic acid. Subcellular localization of the encoded proteins suggested that these dehydrins are localized in cytosol and accumulate near membranes during stress. Comparative analysis of dhnA and dhnB targeted knockout mutants of P. patens revealed that both genes play a role in cellular protection during salt and osmotic stress, although PpDHNA has a higher contribution to stress tolerance. Overexpression of PpDHNA and PpDHNB genes in transgenic Arabidopsis improved rosette and root growth in stress conditions, although PpDHNA was more efficient in this role. These results suggest that specific DHNs contribute considerably to the high stress tolerance of mosses and offer novel tools for genetic engineering stress tolerance of higher plants.

  5. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis1[OPEN

    PubMed Central

    Wang, Zhen-Yu; Gehring, Chris; Zhu, Jianhua; Li, Feng-Min; Zhu, Jian-Kang; Xiong, Liming

    2015-01-01

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1. PMID:25416474

  6. Influence of acute exercise on the osmotic stability of the human erythrocyte membrane.

    PubMed

    Paraiso, L F; de Freitas, M V; Gonçalves-E-Oliveira, A F M; de Almeida Neto, O P; Pereira, E A; Mascarenhas Netto, R C; Cunha, L M; Bernardino Neto, M; de Agostini, G G; Resende, E S; Penha-Silva, N

    2014-12-01

    This study evaluated the effects of 2 different types of acute aerobic exercise on the osmotic stability of human erythrocyte membrane and on different hematological and biochemical variables that are associated with this membrane property. The study population consisted of 20 healthy and active men. Participants performed single sessions of 2 types of exercise. The first session consisted of 60 min of moderate-intensity continuous exercise (MICE). The second session, executed a week later, consisted of high-intensity interval exercise (HIIE) until exhaustion. The osmotic stability of the erythrocyte membrane was represented by the inverse of the salt concentration (1/H50) at the midpoint of the sigmoidal curve of dependence between the absorbance of hemoglobin and the NaCl concentration. The values of 1/H50 changed from 2.29±0.1 to 2.33±0.09 after MICE and from 2.30±0.08 to 2.23±0.12 after HIIE. During MICE mean corpuscular volume increased, probably due to in vivo lysis of older erythrocytes, with preservation of cells that were larger and more resistant to in vitro lysis. The study showed that a single bout of acute exercise affected erythrocyte stability, which increased after MICE and decreased after HIIE.

  7. Osmotic stress alters the balance between organic and inorganic solutes in flax (Linum usitatissimum).

    PubMed

    Quéro, Anthony; Molinié, Roland; Elboutachfaiti, Redouan; Petit, Emmanuel; Pau-Roblot, Corinne; Guillot, Xavier; Mesnard, François; Courtois, Josiane

    2014-01-01

    Flax (Linum usitatissimum) is grown for its oil and its fiber. This crop, cultivated in temperate regions, has seen a renewed interest due to the presence of abundant molecules of interest for many applications. Little information is available about the behavior of flax during osmotic stress; yet this is considered a major stress that causes significant yield losses in most crops. To control the presence of this stress better, flax behavior was investigated following the application of osmotic stress and the response was examined by applying increasing concentrations of PEG 8000. This resulted in the reorganization of 32 metabolites and 6 mineral ions in the leaves. The analysis of these two types of solute highlighted the contrasting behavior between a higher metabolite content (particularly fructose, glucose and proline) and a decrease in mineral ions (especially nitrate and potassium) following PEG treatment. However, this reorganization did not lead to a greater accumulation of solutes, with the total amount remaining unchanged in leaves during osmotic stress.

  8. The Pepper CaOSR1 Protein Regulates the Osmotic Stress Response via Abscisic Acid Signaling

    PubMed Central

    Park, Chanmi; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Plants are sessile organisms, and their growth and development is detrimentally affected by environmental stresses such as drought and high salinity. Defense mechanisms are tightly regulated and complex processes, which respond to changing environmental conditions; however, the precise mechanisms that function under adverse conditions remain unclear. Here, we report the identification and functional characterization of the CaOSR1 gene, which functions in the adaptive response to abiotic stress. We found that CaOSR1 gene expression in pepper leaves was up-regulated after exposure to abscisic acid (ABA), drought, and high salinity. In addition, we demonstrated that the fusion protein of CaOSR1 with green fluorescent protein (GFP) is localized in the nucleus. We used CaOSR1-silenced pepper plants and CaOSR1-OX-overexpressing (OX) transgenic Arabidopsis plants to show that the CaOSR1 protein regulates the osmotic stress response. CaOSR1-silenced pepper plants showed increased drought susceptibility, and this was accompanied by a high transpiration rate. CaOSR1-OX plants displayed phenotypes that were hypersensitive to ABA and hyposensitive to osmotic stress, during the seed germination and seedling growth stages; furthermore, these plants exhibited enhanced drought tolerance at the adult stage, and this was characterized by higher leaf temperatures and smaller stomatal apertures because of ABA hypersensitivity. Taken together, our data indicate that CaOSR1 positively regulates osmotic stress tolerance via ABA-mediated cell signaling. These findings suggest an involvement of a novel protein in ABA and osmotic stress signalings in plants. PMID:27446121

  9. The Pepper CaOSR1 Protein Regulates the Osmotic Stress Response via Abscisic Acid Signaling.

    PubMed

    Park, Chanmi; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Plants are sessile organisms, and their growth and development is detrimentally affected by environmental stresses such as drought and high salinity. Defense mechanisms are tightly regulated and complex processes, which respond to changing environmental conditions; however, the precise mechanisms that function under adverse conditions remain unclear. Here, we report the identification and functional characterization of the CaOSR1 gene, which functions in the adaptive response to abiotic stress. We found that CaOSR1 gene expression in pepper leaves was up-regulated after exposure to abscisic acid (ABA), drought, and high salinity. In addition, we demonstrated that the fusion protein of CaOSR1 with green fluorescent protein (GFP) is localized in the nucleus. We used CaOSR1-silenced pepper plants and CaOSR1-OX-overexpressing (OX) transgenic Arabidopsis plants to show that the CaOSR1 protein regulates the osmotic stress response. CaOSR1-silenced pepper plants showed increased drought susceptibility, and this was accompanied by a high transpiration rate. CaOSR1-OX plants displayed phenotypes that were hypersensitive to ABA and hyposensitive to osmotic stress, during the seed germination and seedling growth stages; furthermore, these plants exhibited enhanced drought tolerance at the adult stage, and this was characterized by higher leaf temperatures and smaller stomatal apertures because of ABA hypersensitivity. Taken together, our data indicate that CaOSR1 positively regulates osmotic stress tolerance via ABA-mediated cell signaling. These findings suggest an involvement of a novel protein in ABA and osmotic stress signalings in plants. PMID:27446121

  10. Stress Responses of the Industrial Workhorse Bacillus licheniformis to Osmotic Challenges

    PubMed Central

    Schroeter, Rebecca; Hoffmann, Tamara; Voigt, Birgit; Meyer, Hanna; Bleisteiner, Monika; Muntel, Jan; Jürgen, Britta; Albrecht, Dirk; Becher, Dörte; Lalk, Michael; Evers, Stefan; Bongaerts, Johannes; Maurer, Karl-Heinz; Putzer, Harald; Hecker, Michael; Schweder, Thomas; Bremer, Erhard

    2013-01-01

    The Gram-positive endospore-forming bacterium Bacillus licheniformis can be found widely in nature and it is exploited in industrial processes for the manufacturing of antibiotics, specialty chemicals, and enzymes. Both in its varied natural habitats and in industrial settings, B. licheniformis cells will be exposed to increases in the external osmolarity, conditions that trigger water efflux, impair turgor, cause the cessation of growth, and negatively affect the productivity of cell factories in biotechnological processes. We have taken here both systems-wide and targeted physiological approaches to unravel the core of the osmostress responses of B. licheniformis. Cells were suddenly subjected to an osmotic upshift of considerable magnitude (with 1 M NaCl), and their transcriptional profile was then recorded in a time-resolved fashion on a genome-wide scale. A bioinformatics cluster analysis was used to group the osmotically up-regulated genes into categories that are functionally associated with the synthesis and import of osmostress-relieving compounds (compatible solutes), the SigB-controlled general stress response, and genes whose functional annotation suggests that salt stress triggers secondary oxidative stress responses in B. licheniformis. The data set focusing on the transcriptional profile of B. licheniformis was enriched by proteomics aimed at identifying those proteins that were accumulated by the cells through increased biosynthesis in response to osmotic stress. Furthermore, these global approaches were augmented by a set of experiments that addressed the synthesis of the compatible solutes proline and glycine betaine and assessed the growth-enhancing effects of various osmoprotectants. Combined, our data provide a blueprint of the cellular adjustment processes of B. licheniformis to both sudden and sustained osmotic stress. PMID:24348917

  11. Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges.

    PubMed

    Schroeter, Rebecca; Hoffmann, Tamara; Voigt, Birgit; Meyer, Hanna; Bleisteiner, Monika; Muntel, Jan; Jürgen, Britta; Albrecht, Dirk; Becher, Dörte; Lalk, Michael; Evers, Stefan; Bongaerts, Johannes; Maurer, Karl-Heinz; Putzer, Harald; Hecker, Michael; Schweder, Thomas; Bremer, Erhard

    2013-01-01

    The Gram-positive endospore-forming bacterium Bacillus licheniformis can be found widely in nature and it is exploited in industrial processes for the manufacturing of antibiotics, specialty chemicals, and enzymes. Both in its varied natural habitats and in industrial settings, B. licheniformis cells will be exposed to increases in the external osmolarity, conditions that trigger water efflux, impair turgor, cause the cessation of growth, and negatively affect the productivity of cell factories in biotechnological processes. We have taken here both systems-wide and targeted physiological approaches to unravel the core of the osmostress responses of B. licheniformis. Cells were suddenly subjected to an osmotic upshift of considerable magnitude (with 1 M NaCl), and their transcriptional profile was then recorded in a time-resolved fashion on a genome-wide scale. A bioinformatics cluster analysis was used to group the osmotically up-regulated genes into categories that are functionally associated with the synthesis and import of osmostress-relieving compounds (compatible solutes), the SigB-controlled general stress response, and genes whose functional annotation suggests that salt stress triggers secondary oxidative stress responses in B. licheniformis. The data set focusing on the transcriptional profile of B. licheniformis was enriched by proteomics aimed at identifying those proteins that were accumulated by the cells through increased biosynthesis in response to osmotic stress. Furthermore, these global approaches were augmented by a set of experiments that addressed the synthesis of the compatible solutes proline and glycine betaine and assessed the growth-enhancing effects of various osmoprotectants. Combined, our data provide a blueprint of the cellular adjustment processes of B. licheniformis to both sudden and sustained osmotic stress.

  12. Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid

    PubMed Central

    2011-01-01

    Background Higher plants exhibit remarkable phenotypic plasticity allowing them to adapt to an extensive range of environmental conditions. Sorghum is a cereal crop that exhibits exceptional tolerance to adverse conditions, in particular, water-limiting environments. This study utilized next generation sequencing (NGS) technology to examine the transcriptome of sorghum plants challenged with osmotic stress and exogenous abscisic acid (ABA) in order to elucidate genes and gene networks that contribute to sorghum's tolerance to water-limiting environments with a long-term aim of developing strategies to improve plant productivity under drought. Results RNA-Seq results revealed transcriptional activity of 28,335 unique genes from sorghum root and shoot tissues subjected to polyethylene glycol (PEG)-induced osmotic stress or exogenous ABA. Differential gene expression analyses in response to osmotic stress and ABA revealed a strong interplay among various metabolic pathways including abscisic acid and 13-lipoxygenase, salicylic acid, jasmonic acid, and plant defense pathways. Transcription factor analysis indicated that groups of genes may be co-regulated by similar regulatory sequences to which the expressed transcription factors bind. We successfully exploited the data presented here in conjunction with published transcriptome analyses for rice, maize, and Arabidopsis to discover more than 50 differentially expressed, drought-responsive gene orthologs for which no function had been previously ascribed. Conclusions The present study provides an initial assemblage of sorghum genes and gene networks regulated by osmotic stress and hormonal treatment. We are providing an RNA-Seq data set and an initial collection of transcription factors, which offer a preliminary look into the cascade of global gene expression patterns that arise in a drought tolerant crop subjected to abiotic stress. These resources will allow scientists to query gene expression and functional

  13. RNA interference-based suppression of phosphoenolpyruvate carboxylase results in susceptibility of rapeseed to osmotic stress.

    PubMed

    Chen, Mei; Tang, Yunlai; Zhang, Jingmei; Yang, Mingfeng; Xu, Yinong

    2010-06-01

    The diverse functions of phosphoenolpyruvate carboxylase (PEPCase; EC 4.1.1.31) in C(3) plants are not as well understood as in C(4) plants. To investigate the functions of PEPCase in C(3) plants, rapeseed (Brassica napus L.) PEPCase gene (referred to as BNPE15) was silenced by the RNA interference (RNAi) technique. Under normal growth conditions, no significant difference in lipid content and fatty acid composition were found between wild-type (WT) and transgenic rapeseed plants. However, when these plants were subjected to osmotic stress induced by osmoticum polyethylene glycol (PEG-6000), membrane permeability and membrane lipid peroxidization in roots and leaves of transgenic plants were higher than those of WT plants. It suggested that transgenic plants are more susceptible to osmotic stress than WT plants. Taken together, the results showed that the suppression of PEPCase by RNAi leads to susceptibility to osmotic stress in rapeseed, and PEPCase is involved in the response of C(3) plants to environmental stress.

  14. Membrane tension homeostasis of epithelial cells through surface area regulation in response to osmotic stress.

    PubMed

    Pietuch, Anna; Brückner, Bastian R; Janshoff, Andreas

    2013-03-01

    Osmotic stress poses one of the most fundamental challenges to living cells. Particularly, the largely inextensible plasma membrane of eukaryotic cells easily ruptures under in-plane tension calling for sophisticated strategies to readily respond to osmotic stress. We describe how epithelial cells react and adapt mechanically to the exposure to hypotonic and hypertonic solutions in the context of a confluent monolayer. Site-specific indentation experiments in conjunction with tether pulling on individual cells have been carried out with an atomic force microscope to reveal spatio-temporal changes in membrane tension and surface area. We found that cells compensate for an increase in lateral tension due to hypoosmotic stress by sacrificing excess of membrane area stored in protrusions and invaginations such as microvilli and caveolae. At mild hypotonic conditions lateral tension increases partly compensated by surface are regulation, i.e. the cell sacrifices some of its membrane reservoirs. A loss of membrane-actin contacts occurs upon exposure to stronger hypotonic solutions giving rise to a drop in lateral tension. Tension release recovers on longer time scales by an increasing endocytosis, which efficiently removes excess membrane from the apical side to restore the initial pre-stress. Hypertonic solutions lead to shrinkage of cells and collapse of the apical membrane onto the cortex. Exposure to distilled water leads to stiffening of cells due to removal of excess surface area and tension increase due to elevated osmotic pressure across the plasma membrane.

  15. Effects of osmotic stress on predation behaviour of Asterias rubens L.

    NASA Astrophysics Data System (ADS)

    Agüera, Antonio; Schellekens, Tim; Jansen, Jeroen M.; Smaal, Aad C.

    2015-05-01

    Environmental stress plays an important role in determining ecosystem functioning and structure. In estuarine areas both tidal and seasonal salinity changes may cause osmotic stress on predators, affecting their behaviour and survival. The interaction between these predators and their prey may affect performance, thus influencing predator impact on prey populations. The common starfish, Asterias rubens, inhabits estuarine areas, such as the Dutch Wadden Sea, that exhibit large seasonal variation in salinity (10-32 PSU). In those areas A. rubens exerts top down control on its prey, thus representing an important shellfish predator. This predation may impact on cultured and natural shellfish populations. However, the effects of osmotic stress on A. rubens performance may influence its effect on prey. Although the effect of salinity in A. rubens survival has been extensively studied, the impact on its predation behaviour and acclimation capacity remains unclear. In this study, we analyse the performance of A. rubens preying on mussels (Mytilus edulis) after a salinity decrease and monitor its acclimation capacity over a period of 22 days. Our experiments demonstrated that salinity affected performance by reducing feeding activity and altering size prey selection. Moreover, as acclimation occurred, A. rubens predation performance improved in all sub-lethal treatments. We conclude that osmotic stress caused by decreasing salinity potentially influences A. rubens distribution, abundance, and potential impact on prey populations. However the magnitude of the change in salinity (from 31 to a minimum of 10 PSU) and its timescale (3 weeks) mediate this effect.

  16. Polyamine metabolism and osmotic stress. II. Improvement of oat protoplasts by an inhibitor of arginine decarboxylase

    NASA Technical Reports Server (NTRS)

    Tiburcio, A. F.; Kaur-Sawhney, R.; Galston, A. W.

    1986-01-01

    We have attempted to improve the viability of cereal mesophyll protoplasts by pretreatment of leaves with DL-alpha-difluoromethylarginine (DFMA), a specific 'suicide' inhibitor of the enzyme (arginine decarboxylase) responsible for their osmotically induced putrescine accumulation. Leaf pretreatment with DFMA before a 6 hour osmotic shock caused a 45% decrease of putrescine and a 2-fold increase of spermine titer. After 136 hours of osmotic stress, putrescine titer in DFMA-pretreated leaves increased by only 50%, but spermidine and spermine titers increased dramatically by 3.2- and 6-fold, respectively. These increases in higher polyamines could account for the reduced chlorophyll loss and enhanced ability of pretreated leaves to incorporate tritiated thymidine, uridine, and leucine into macromolecules. Pretreatment with DFMA significantly improved the overall viability of the protoplasts isolated from these leaves. The results support the view that the osmotically induced rise in putrescine and blockage of its conversion to higher polyamines may contribute to the lack of sustained cell division in cereal mesophyll protoplasts, although other undefined factors must also play a major role.

  17. Polyamine metabolism and osmotic stress. II. Improvement of oat protoplasts by an inhibitor of arginine decarboxylase.

    PubMed

    Tiburcio, A F; Kaur-Sawhney, R; Galston, A W

    1986-01-01

    We have attempted to improve the viability of cereal mesophyll protoplasts by pretreatment of leaves with DL-alpha-difluoromethylarginine (DFMA), a specific 'suicide' inhibitor of the enzyme (arginine decarboxylase) responsible for their osmotically induced putrescine accumulation. Leaf pretreatment with DFMA before a 6 hour osmotic shock caused a 45% decrease of putrescine and a 2-fold increase of spermine titer. After 136 hours of osmotic stress, putrescine titer in DFMA-pretreated leaves increased by only 50%, but spermidine and spermine titers increased dramatically by 3.2- and 6-fold, respectively. These increases in higher polyamines could account for the reduced chlorophyll loss and enhanced ability of pretreated leaves to incorporate tritiated thymidine, uridine, and leucine into macromolecules. Pretreatment with DFMA significantly improved the overall viability of the protoplasts isolated from these leaves. The results support the view that the osmotically induced rise in putrescine and blockage of its conversion to higher polyamines may contribute to the lack of sustained cell division in cereal mesophyll protoplasts, although other undefined factors must also play a major role.

  18. Cross-tolerance between osmotic and freeze-thaw stress in microbial assemblages from temperate lakes.

    PubMed

    Wilson, Sandra L; Frazer, Corey; Cumming, Brian F; Nuin, Paulo A S; Walker, Virginia K

    2012-11-01

    Osmotic stress can accompany increases in solute concentrations because of freezing or high-salt environments. Consequently, microorganisms from environments with a high-osmotic potential may exhibit cross-tolerance to freeze stress. To test this hypothesis, enrichments derived from the sediment and water of temperate lakes with a range of salt concentrations were subjected to multiple freeze-thaw cycles. Surviving isolates were identified and metagenomes were sampled prior to and following selection. Enrichments from alkali lakes were typically the most freeze-thaw resistant with only 100-fold losses in cell viability, and those from freshwater lakes were most susceptible, with cell numbers reduced at least 100,000-fold. Metagenomic analysis suggested that selection reduced assemblage diversity more in freshwater samples than in those from saline lakes. Survivors included known psychro-, halo- and alkali-tolerant bacteria. Characterization of freeze-thaw-resistant isolates from brine and alkali lakes showed that few isolates had ice-associating activities such as antifreeze or ice nucleation properties. However, all brine- and alkali-derived isolates had high intracellular levels of osmolytes and/or appeared more likely to form biofilms. Conversely, these phenotypes were infrequent amongst the freshwater-derived isolates. These observations are consistent with microbial cross-tolerance between osmotic and freeze-thaw stresses. PMID:22551442

  19. Evaluation of the response of Lactobacillus rhamnosus VTT E-97800 to sucrose-induced osmotic stress.

    PubMed

    Sunny-Roberts, E O; Knorr, D

    2008-02-01

    Environmental osmotic changes are one of the stresses live probiotics may encounter either in their natural habitats or as a result of usage in food formulations and processing. Response to osmotic stress, induced by sucrose, of the probiotic strain Lactobacillus rhamnosus VTT E-97800 (E800) was investigated. The fluorescence-based approach used, by combined staining with caboxyfluorescein (cFDA) and propidium iodide (PI) could give insights on the osmotic-induced changes of microbial esterase activity and membrane integrity; also the extrusion of intracellular accumulated carboxyfluorescein (cF) upon energizing with glucose. Comparison of the flowcytometric viability assessment with the conventional culture techniques revealed that sucrose-stressed cells had a slight loss of culturability (logN/N(0) approximately -0.3) at 1.2 and 1.5M sucrose concentration though they could perform an enzymatic conversion of cFDA into cF. The presence of such metabolically active bacteria in food might be critical as they may excrete toxic or food spoilage metabolites. Moreover, the perturbation of cF extrusion activities became a limiting factor for reproductive capacities. There was no change in the cell morphology. These results proved the ability of the strain of study to tolerate sucrose, even at extreme concentrations and these must be taken into consideration for its usage in the formulation/processing of sugar-based foods, e.g. jams, candies, etc.

  20. Proline transport and osmotic stress response in Escherichia coli K-12.

    PubMed Central

    Grothe, S; Krogsrud, R L; McClellan, D J; Milner, J L; Wood, J M

    1986-01-01

    Proline is accumulated in Escherichia coli via two active transport systems, proline porter I (PPI) and PPII. In our experiments, PPI was insensitive to catabolite repression and was reduced in activity twofold when bacteria were subjected to amino acid-limited growth. PPII, which has a lower affinity for proline than PPI, was induced by tryptophan-limited growth. PPII activity was elevated in bacteria that were subjected to osmotic stress during growth or the transport measurement. Neither PPI nor uptake of serine or glutamine was affected by osmotic stress. Mutation proU205, which was similar in genetic map location and phenotype to other proU mutations isolated in E. coli and Salmonella typhimurium, influenced the sensitivity of the bacteria to the toxic proline analogs azetidine-2-carboxylate and 3,4-dehydroproline, the proline requirements of auxotrophs, and the osmoprotective effect of proline. This mutation did not influence proline uptake via PPI or PPII. A very low uptake activity (6% of the PPII activity) observed in osmotically stressed bacteria lacking PPI and PPII was not observed when the proU205 lesion was introduced. PMID:3514577

  1. [Indicators of osmotic homeostasis and blood rheology in the acute period of cerebrovascular disorders].

    PubMed

    Chukanova, E I; Iasamanova, A N

    1991-01-01

    Examination of 80 patients with ischemic and hemorrhagic brain strokes has revealed definite phasic alterations that occur in osmotic homeostasis and hemorheology. In the acute disease period, the intensity of the hyperosmolar syndrome is dependent on the levels of hyperglycemia, azotemia, hypernatremia and is provoked by the impairment of the central and peripheral mechanisms of regulation of water-electrolyte metabolism and osmotic homeostasis as a result of the direct effect of the pathological focus or secondary impairment of the brain stem due to brain edema associated with dislocation of the median and stem structures. That the disease exhibits in the presence of progressively increasing hyperosmia, the decreased parameters of hemolysis coupled with a gradual decline of the aggregation capacity of platelets and red blood cells, blood viscosity, with the high fibrinogen indicators being preserved, points to the failure of the functional potentialities of blood cell elements. The data obtained can serve as a prognostic criterion for the disease outcome and efficacy of infusion and dehydration therapy. PMID:1647107

  2. Osmotic Adjustment, Symplast Volume, and Nonstomatally Mediated Water Stress Inhibition of Photosynthesis in Wheat 1

    PubMed Central

    Gupta, Ashima Sen; Berkowitz, Gerald A.

    1987-01-01

    At low water potential (ψw), dehydration reduces the symplast volume of leaf tissue. The effect of this reduction on photosynthetic capacity was investigated. The influence of osmotic adjustment on this relationship was also examined. To examine these relationships, comparative studies were undertaken on two wheat cultivars, one that osmotically adjusts in response to water deficits (`Condor'), and one that lacks this capacity (`Capelle Desprez'). During a 9-day stress cycle, when water was withheld from plants grown in a growth chamber, the relative water content of leaves declined by 30% in both cultivars. Leaf osmotic potential (ψs) declined to a greater degree in Condor plants. Measuring ψs at full turgor indicated that osmotic adjustment occurred in stressed Condor, but not in Capelle plants. Two methods were used to examine the degree of symplast (i.e. protoplast) volume reduction in tissue rapidly equilibrated to increasingly low ψw. Both techniques gave similar results. With well-watered plants, symplast volume reduction from the maximum (found at high ψw for each cultivar) was the same for Condor and Capelle. After a stress cycle, volume was maintained to a greater degree at low ψw in Condor leaf tissue than in Capelle. Nonstomatally controlled photosynthesis was inhibited to the same degree at low ψw in leaf tissue prepared from well-watered Condor and Capelle plants. However, photosynthetic capacity was maintained to a greater degree at low ψw in tissue prepared from stressed Condor plants than in tissue from stressed Capelle plants. Net CO2 uptake in attached leaves was monitored using an infrared gas analyzer. These studies indicated that in water stressed plants, photosynthesis was 106.5% higher in Condor than Capelle at ambient [CO2] and 21.8% higher at elevated external [CO2]. The results presented in this report were interpreted as consistent with the hypothesis that there is a causal association between protoplast (and presumably

  3. Effect of drought and osmotic stress on gene expression in Jack Pine. [Pinus banksiana

    SciTech Connect

    Subramanian, M.; Mayne, M.; Coleman, J.R.; Blumwald, E. )

    1991-05-01

    The effect of drought and osmotic stress was studied in Jack Pine (Pinus banksiana) seedlings and cultured cell suspensions, respectively. The pattern of protein syntheses during stress was studied. Seedlings and cells were in vivo labeled with ({sup 35}S)methionine and membrane-bound proteins were isolated. proteins were resolved by SDS-PAGE, and identified by staining and autoradiography. Several changes in protein profiles were induced by stress. Messenger RNAs were isolated, translated in vitro, and complementary DNA libraries from control and stressed plants and cells were constructed in E. coli strain JM109. Antibodies, raised against electroeluted membrane-bound proteins that were significantly induced and/or enhanced during stress, were used to isolate stress-related genes from cDNA libraries.

  4. Polyamines and plant stress - Activation of putrescine biosynthesis by osmotic shock

    NASA Technical Reports Server (NTRS)

    Flores, H. E.; Galston, A. W.

    1982-01-01

    The putrescine content of oat leaf cells and protoplasts increases up to 60-fold within 6 hours of exposure to osmotic stress (0.4 to 0.6 molar sorbitol). Barley, corn, wheat, and wild oat leaves show a similar response. Increased arginine decarboxylase activity parallels the rise in putrescine, whereas ornithine decarboxylase remains unchanged. DL-alpha-Difluoromethylarginine, a specific irreversible inhibitor of arginine decarboxylase, prevents the stress-induced rise in increase in arginine decarboxylase activity and putrescine synthesis, indicating the preferential activation of this pathway.

  5. The response of foodborne pathogens to osmotic and desiccation stresses in the food chain.

    PubMed

    Burgess, Catherine M; Gianotti, Andrea; Gruzdev, Nadia; Holah, John; Knøchel, Susanne; Lehner, Angelika; Margas, Edyta; Esser, Stephan Schmitz; Sela Saldinger, Shlomo; Tresse, Odile

    2016-03-16

    In combination with other strategies, hyperosmolarity and desiccation are frequently used by the food processing industry as a means to prevent bacterial proliferation, and particularly that of foodborne pathogens, in food products. However, it is increasingly observed that bacteria, including human pathogens, encode mechanisms to survive and withstand these stresses. This review provides an overview of the mechanisms employed by Salmonella spp., Shiga toxin producing E. coli, Cronobacter spp., Listeria monocytogenes and Campylobacter spp. to tolerate osmotic and desiccation stresses and identifies gaps in knowledge which need to be addressed to ensure the safety of low water activity and desiccated food products.

  6. Osmotically driven tensile stress in collagen-based mineralized tissues.

    PubMed

    Bertinetti, Luca; Masic, Admir; Schuetz, Roman; Barbetta, Aurelio; Seidt, Britta; Wagermaier, Wolfgang; Fratzl, Peter

    2015-12-01

    Collagen is the most abundant protein in mammals and its primary role is to serve as mechanical support in many extracellular matrices such as those of bones, tendons, skin or blood vessels. Water is an integral part of the collagen structure, but its role is still poorly understood, though it is well-known that the mechanical properties of collagen depend on hydration. Recently, it was shown that the conformation of the collagen triple helix changes upon water removal, leading to a contraction of the molecule with considerable forces. Here we investigate the influence of mineralization on this effect by studying bone and turkey leg tendon (TLT) as model systems. Indeed, TLT partially mineralizes so that well-aligned collagen with various mineral contents can be found in the same tendon. We show that water removal leads to collagen contraction in all cases generating tensile stresses up to 80MPa. Moreover, this contraction of collagen puts mineral particles under compression leading to strains of around 1%, which implies localized compressive loads in mineral of up to 800MPa. This suggests that collagen dehydration upon mineralization is at the origin of the compressive pre-strains commonly observed in bone mineral.

  7. Sorbitol production in the lens: a means of counteracting glucose-derived osmotic stress.

    PubMed

    Chylack, L T; Tung, W; Harding, R

    1986-01-01

    Heretofore, the intracellular accumulation of sorbitol has been associated exclusively with deleterious (cataractogenic) changes in the lens. This study demonstrates a beneficial role for the sorbitol pathway in the rabbit lens, namely that of counteracting extracellular, glucose-derived, osmotic stress with the intracellular production of osmotically active sorbitol. Large and sudden increases in the extracellular glucose concentration lead to dehydration of the lens, a response that can be diminished by intracellular sorbitol and fructose production. These results are discussed in light of the impact (beneficial/detrimental) of aldose reductase inhibitors on the lens. Sugar cataract formation appears to result from continuous, rather than cyclical, activity of a pathway which normally may have a protective function in the lens.

  8. From microgravity to osmotic conditions: mechanical integration of plant cells in response to stress

    NASA Astrophysics Data System (ADS)

    Wojtaszek, Przemyslaw; Kasprowicz, Anna; Michalak, Michal; Janczara, Renata; Volkmann, Dieter; Baluska, Frantisek

    Chemical reactions and interactions between molecules are commonly thought of as being at the basis of Life. Research of recent years, however, is more and more evidently indicating that physical forces are profoundly affecting the functioning of life at all levels of its organiza-tion. To detect and to respond to such forces, plant cells need to be integrated mechanically. Cell walls are the outermost functional zone of plant cells. They surround the individual cells, and also form a part of the apoplast. In cell suspensions, cell walls are embedded in the cul-ture medium which can be considered as a superapoplast. Through physical and chemical interactions they provide a basis for the structural and functional cell wall-plasma membrane-cytoskeleton (WMC) continuum spanning the whole cell. Here, the working of WMC contin-uum, and the participation of signalling molecules, like NO, would be presented in the context of plant responses to stress. In addition, the effects of the changing composition of WMC continuum will be considered, with particular attention paid to the modifications of the WMC components. Plant cells are normally adapted to changing osmotic conditions, resulting from variable wa-ter availability. The appearance of the osmotic stress activates adaptory mechanisms. If the strength of osmotic stress grows relatively slowly over longer period of time, the cells are able to adapt to conditions that are lethal to non-adapted cells. During stepwise adaptation of tobacco BY-2 suspension cells to the presence of various osmotically active agents, cells diverged into independent, osmoticum type-specific lines. In response to ionic agents (NaCl, KCl), the adhe-sive properties were increased and randomly dividing cells formed clumps, while cells adapted to nonionic osmotica (mannitol, sorbitol, PEG) revealed ordered pattern of precisely positioned cell divisions, resulting in the formation of long cell files. Changes in the growth patterns were accompanied by

  9. Comparative analysis on the key enzymes of the glycerol cycle metabolic pathway in Dunaliella salina under osmotic stresses.

    PubMed

    Chen, Hui; Lu, Yan; Jiang, Jian-Guo

    2012-01-01

    The glycerol metabolic pathway is a special cycle way; glycerol-3-phosphate dehydrogenase (G3pdh), glycerol-3-phosphate phosphatase (G3pp), dihydroxyacetone reductase (Dhar), and dihydroxyacetone kinase (Dhak) are the key enzymes around the pathway. Glycerol is an important osmolyte for Dunaliella salina to resist osmotic stress. In this study, comparative activities of the four enzymes in D. salina and their activity changes under various salt stresses were investigated, from which glycerol metabolic flow direction in the glycerol metabolic pathway was estimated. Results showed that the salinity changes had different effects on the enzymes activities. NaCl could stimulate the activities of all the four enzymes in various degrees when D. salina was grown under continuous salt stress. When treated by hyperosmotic or hypoosmotic shock, only the activity of G3pdh in D. salina was significantly stimulated. It was speculated that, under osmotic stresses, the emergency response of the cycle pathway in D. salina was driven by G3pdh via its response to the osmotic stress. Subsequently, with the changes of salinity, other three enzymes started to respond to osmotic stress. Dhar played a role of balancing the cycle metabolic pathway by its forward and backward reactions. Through synergy, the four enzymes worked together for the effective flow of the cycle metabolic pathways to maintain the glycerol requirements of cells in order to adapt to osmotic stress environments.

  10. Isohydric and anisohydric strategies of wheat genotypes under osmotic stress: biosynthesis and function of ABA in stress responses.

    PubMed

    Gallé, Ágnes; Csiszár, Jolán; Benyó, Dániel; Laskay, Gábor; Leviczky, Tünde; Erdei, László; Tari, Irma

    2013-11-01

    Changes in water potential (ψw), stomatal conductance, abscisic acid (ABA) accumulation, expression of the major genes involved in ABA biosynthesis, activities of abscisic aldehyde oxidase (AO, EC 1.2.3.1) and antioxidant enzymes were studied in two wheat cultivars with contrasting acclimation strategies subjected to medium strength osmotic stress (-0.976MPa) induced by polyethylene glycol (PEG 6000). Because the biosynthetic pathway of ABA involves multiple gene products, the aim of this study was to unravel how these genes are regulated in isohydric and anisohydric wheat genotypes. In the root tissues of the isohydric cultivar, Triticum aestivum cv. Kobomugi, osmotic stress increased the transcript levels of 9-cis-epoxycarotenoid dioxygenase (NCED) gene, controlling the rate limiting step of ABA biosynthesis. Moreover, this cultivar exhibited a higher basal activity and a higher induction of aldehyde oxidase isoenzymes (AAO2-AAO3), responsible for converting ABAldehyde to ABA. It was found that the fast activation of the ABA biosynthesis in the roots generated an enhanced ABA pool in the shoot, which brought about a faster closure of the stomata upon increasing osmotic stress and, as a result, the plants could maintain ψw in the tissues close to the control level. In contrast, the anisohydric genotype, cv. GK Öthalom, exhibited a moderate induction of ABA biosynthesis in the roots, leading to the maintenance but no increase in the concentration of ABA on the basis of tissue water content in the leaves. Due to the slower response of their stomata to water deficit, the tissues of cv. GK Öthalom have to acclimate to much more negative water potentials during increasing osmotic stress. A decreased activity of superoxide dismutase (SOD) was found in the leaves and roots of both cultivars exposed to osmotic stress, but in the roots elevated activities of catalase (CAT), peroxidase (POX), glutathione reductase (GR) and glutathione transferase (GST) were detected in

  11. Up-regulation of P-glycoprotein expression by osmotic stress in rat sugar cataract.

    PubMed

    Miyazawa, T; Kubo, E; Takamura, Y; Akagi, Y

    2007-02-01

    P-glycoprotein (P-gp), a plasma membrane protein, is thought to function in the export of cytotoxic drugs and to act as a modulator of chloride channels that regulate cell volume in many cell types. P-gp has been shown to play a role in lens volume regulation and initiation of osmotic cataract. We investigated the lenticular expression levels of P-gp in galactose-fed rats, an experimental model of sugar cataract. P-gp was overexpressed in lenses from galactose-fed rats with cortical sugar cataract, and in rat lens epithelial cells cultured in high-glucose medium. However, application of aldose reductase (AR) inhibitor was able to reverse the changes in P-gp levels in the lenses of galactose-fed rats, confirming the role of AR and involvement of the polyol pathway in cataract formation. Our findings suggest that P-gp may be induced by AR over-expression and/or osmotic stress, thus playing a regulatory role in maintaining lenticular osmotic balance in sugar cataract. PMID:17141219

  12. Quantitative iTRAQ-based proteomic analysis of phosphoproteins and ABA-regulated phosphoproteins in maize leaves under osmotic stress

    PubMed Central

    Hu, Xiuli; Li, Nana; Wu, Liuji; Li, Chunqi; Li, Chaohai; Zhang, Li; Liu, Tianxue; Wang, Wei

    2015-01-01

    Abscisic acid (ABA) regulates various developmental processes and stress responses in plants. Protein phosphorylation/dephosphorylation is a central post-translational modification (PTM) in ABA signaling. However, the phosphoproteins regulated by ABA under osmotic stress remain unknown in maize. In this study, maize mutant vp5 (deficient in ABA biosynthesis) and wild-type Vp5 were used to identify leaf phosphoproteins regulated by ABA under osmotic stress. Up to 4052 phosphopeptides, corresponding to 3017 phosphoproteins, were identified by Multiplex run iTRAQ-based quantitative proteomic and LC-MS/MS methods. The 4052 phosphopeptides contained 5723 non-redundant phosphosites; 512 phosphopeptides (379 in Vp5, 133 in vp5) displayed at least a 1.5-fold change of phosphorylation level under osmotic stress, of which 40 shared common in both genotypes and were differentially regulated by ABA. Comparing the signaling pathways involved in vp5 response to osmotic stress and those that in Vp5, indicated that ABA played a vital role in regulating these pathways related to mRNA synthesis, protein synthesis and photosynthesis. Our results provide a comprehensive dataset of phosphopeptides and phosphorylation sites regulated by ABA in maize adaptation to osmotic stress. This will be helpful to elucidate the ABA-mediate mechanism of maize endurance to drought by triggering phosphorylation or dephosphorylation cascades. PMID:26503333

  13. Floridoside production by the red microalga Galdieria sulphuraria under different conditions of growth and osmotic stress.

    PubMed

    Martinez-Garcia, Marta; van der Maarel, Marc J E C

    2016-12-01

    Floridoside is a compatible solute synthesized by red algae that has attracted considerable attention due to its promising antifouling and therapeutic properties. However, research on industrial applications of floridoside is hampered by limited compound availability and the development of a production process yielding high amounts of this glycoside has not been explored yet. In the present work, floridoside accumulation by the red microalgae Galdieria sulphuraria under different conditions was investigated in order to optimize the production of this glycoside in this microalgae. G. sulphuraria shows consider advantages over other red algae as potential industrial producer of floridoside due to its unicellular nature, its ability to grow heterotrophically in complete darkness and its acidophilic lifestyle. The main compatible solute accumulated by G. sulphuraria under salt stress was purified, identified as floridoside by (1)H-NMR and used as standard for quantification. Our results showed that applying the osmotic stress after the cells had grown first in medium with no salt resulted in higher floridoside yields compared to those obtained in cells growing under osmotic stress from the beginning. Among several parameters tested, the use of glycerol as carbon source for cell growth showed the most significant impact on floridoside accumulation, which reached a maximum of 56.8 mg/g dry biomass. PMID:27620735

  14. Plastid osmotic stress influences cell differentiation at the plant shoot apex.

    PubMed

    Wilson, Margaret E; Mixdorf, Matthew; Berg, R Howard; Haswell, Elizabeth S

    2016-09-15

    The balance between proliferation and differentiation in the plant shoot apical meristem is controlled by regulatory loops involving the phytohormone cytokinin and stem cell identity genes. Concurrently, cellular differentiation in the developing shoot is coordinated with the environmental and developmental status of plastids within those cells. Here, we employ an Arabidopsis thaliana mutant exhibiting constitutive plastid osmotic stress to investigate the molecular and genetic pathways connecting plastid osmotic stress with cell differentiation at the shoot apex. msl2 msl3 mutants exhibit dramatically enlarged and deformed plastids in the shoot apical meristem, and develop a mass of callus tissue at the shoot apex. Callus production in this mutant requires the cytokinin receptor AHK2 and is characterized by increased cytokinin levels, downregulation of cytokinin signaling inhibitors ARR7 and ARR15, and induction of the stem cell identity gene WUSCHEL Furthermore, plastid stress-induced apical callus production requires elevated plastidic reactive oxygen species, ABA biosynthesis, the retrograde signaling protein GUN1, and ABI4. These results are consistent with a model wherein the cytokinin/WUS pathway and retrograde signaling control cell differentiation at the shoot apex. PMID:27510974

  15. An experimental approach to assess Corbicula fluminea (Müller, 1774) resistance to osmotic stress in estuarine habitats

    NASA Astrophysics Data System (ADS)

    Ferreira-Rodríguez, Noé; Pardo, Isabel

    2016-07-01

    Corbicula fluminea arrived in the Miño Estuary in 1989 and, from there, colonized more than 150 km upstream. Our aim was to test the capacity of C. fluminea to cope with osmotic stress conditions previously to invade new freshwater habitats through estuaries. Based on previously collected information, the experiment aims to study the response of the species to marine osmotic stress, evaluated by survival and behaviour. Experiments determined the resistance by the species to various levels of osmotic stress, and recovery time after exposure to high salinity levels, representative of the temporal and spatial salinity variation existing in the estuary. Under osmotic stress the semi-maximum response was reached after 19 days exposure. The species tolerance range, measured by individual maintained activity, was at salinity ∼20 when exposed to winter temperatures, while when animals were exposed to summer ones its tolerance was reduced to salinity lower than 15. C. fluminea show a large physiological flexibility to cope with salinity variations in estuaries. In summer, the temperature increases the metabolic rate thus making the species more vulnerable to osmotic stress exposure. These findings are relevant to preventing new invasions through ship ballast waters ensuring complete mortality if individuals are retained for >26 days.

  16. Differential root transcriptomics in a polyploid non-model crop: the importance of respiration during osmotic stress

    PubMed Central

    Zorrilla-Fontanesi, Yasmín; Rouard, Mathieu; Cenci, Alberto; Kissel, Ewaut; Do, Hien; Dubois, Emeric; Nidelet, Sabine; Roux, Nicolas; Swennen, Rony; Carpentier, Sebastien Christian

    2016-01-01

    To explore the transcriptomic global response to osmotic stress in roots, 18 mRNA-seq libraries were generated from three triploid banana genotypes grown under mild osmotic stress (5% PEG) and control conditions. Illumina sequencing produced 568 million high quality reads, of which 70–84% were mapped to the banana diploid reference genome. Using different uni- and multivariate statistics, 92 genes were commonly identified as differentially expressed in the three genotypes. Using our in house workflow to analyze GO enriched and underlying biochemical pathways, we present the general processes affected by mild osmotic stress in the root and focus subsequently on the most significantly overrepresented classes associated with: respiration, glycolysis and fermentation. We hypothesize that in fast growing and oxygen demanding tissues, mild osmotic stress leads to a lower energy level, which induces a metabolic shift towards (i) a higher oxidative respiration, (ii) alternative respiration and (iii) fermentation. To confirm the mRNA-seq results, a subset of twenty up-regulated transcripts were further analysed by RT-qPCR in an independent experiment at three different time points. The identification and annotation of this set of genes provides a valuable resource to understand the importance of energy sensing during mild osmotic stress. PMID:26935041

  17. Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin.

    PubMed

    Ortells, M Carmen; Morancho, Beatriz; Drews-Elger, Katherine; Viollet, Benoit; Laderoute, Keith R; López-Rodríguez, Cristina; Aramburu, Jose

    2012-05-01

    Although stress can suppress growth and proliferation, cells can induce adaptive responses that allow them to maintain these functions under stress. While numerous studies have focused on the inhibitory effects of stress on cell growth, less is known on how growth-promoting pathways influence stress responses. We have approached this question by analyzing the effect of mammalian target of rapamycin (mTOR), a central growth controller, on the osmotic stress response. Our results showed that mammalian cells exposed to moderate hypertonicity maintained active mTOR, which was required to sustain their cell size and proliferative capacity. Moreover, mTOR regulated the induction of diverse osmostress response genes, including targets of the tonicity-responsive transcription factor NFAT5 as well as NFAT5-independent genes. Genes sensitive to mTOR-included regulators of stress responses, growth and proliferation. Among them, we identified REDD1 and REDD2, which had been previously characterized as mTOR inhibitors in other stress contexts. We observed that mTOR facilitated transcription-permissive conditions for several osmoresponsive genes by enhancing histone H4 acetylation and the recruitment of RNA polymerase II. Altogether, these results reveal a previously unappreciated role of mTOR in regulating transcriptional mechanisms that control gene expression during cellular stress responses. PMID:22287635

  18. Bacterial Dispersal Promotes Biodegradation in Heterogeneous Systems Exposed to Osmotic Stress.

    PubMed

    Worrich, Anja; König, Sara; Banitz, Thomas; Centler, Florian; Frank, Karin; Thullner, Martin; Harms, Hauke; Miltner, Anja; Wick, Lukas Y; Kästner, Matthias

    2016-01-01

    Contaminant biodegradation in soils is hampered by the heterogeneous distribution of degrading communities colonizing isolated microenvironments as a result of the soil architecture. Over the last years, soil salinization was recognized as an additional problem especially in arid and semiarid ecosystems as it drastically reduces the activity and motility of bacteria. Here, we studied the importance of different spatial processes for benzoate biodegradation at an environmentally relevant range of osmotic potentials (ΔΨo) using model ecosystems exhibiting a heterogeneous distribution of the soil-borne bacterium Pseudomonas putida KT2440. Three systematically manipulated scenarios allowed us to cover the effects of (i) substrate diffusion, (ii) substrate diffusion and autonomous bacterial dispersal, and (iii) substrate diffusion and autonomous as well as mediated bacterial dispersal along glass fiber networks mimicking fungal hyphae. To quantify the relative importance of the different spatial processes, we compared these heterogeneous scenarios to a reference value obtained for each ΔΨo by means of a quasi-optimal scenario in which degraders were ab initio homogeneously distributed. Substrate diffusion as the sole spatial process was insufficient to counteract the disadvantage due to spatial degrader heterogeneity at ΔΨo ranging from 0 to -1 MPa. In this scenario, only 13.8-21.3% of the quasi-optimal biodegradation performance could be achieved. In the same range of ΔΨo values, substrate diffusion in combination with bacterial dispersal allowed between 68.6 and 36.2% of the performance showing a clear downwards trend with decreasing ΔΨo. At -1.5 MPa, however, this scenario performed worse than the diffusion scenario, possibly as a result of energetic disadvantages associated with flagellum synthesis and emerging requirements to exceed a critical population density to resist osmotic stress. Network-mediated bacterial dispersal kept biodegradation almost

  19. Bacterial Dispersal Promotes Biodegradation in Heterogeneous Systems Exposed to Osmotic Stress

    PubMed Central

    Worrich, Anja; König, Sara; Banitz, Thomas; Centler, Florian; Frank, Karin; Thullner, Martin; Harms, Hauke; Miltner, Anja; Wick, Lukas Y.; Kästner, Matthias

    2016-01-01

    Contaminant biodegradation in soils is hampered by the heterogeneous distribution of degrading communities colonizing isolated microenvironments as a result of the soil architecture. Over the last years, soil salinization was recognized as an additional problem especially in arid and semiarid ecosystems as it drastically reduces the activity and motility of bacteria. Here, we studied the importance of different spatial processes for benzoate biodegradation at an environmentally relevant range of osmotic potentials (ΔΨo) using model ecosystems exhibiting a heterogeneous distribution of the soil-borne bacterium Pseudomonas putida KT2440. Three systematically manipulated scenarios allowed us to cover the effects of (i) substrate diffusion, (ii) substrate diffusion and autonomous bacterial dispersal, and (iii) substrate diffusion and autonomous as well as mediated bacterial dispersal along glass fiber networks mimicking fungal hyphae. To quantify the relative importance of the different spatial processes, we compared these heterogeneous scenarios to a reference value obtained for each ΔΨo by means of a quasi-optimal scenario in which degraders were ab initio homogeneously distributed. Substrate diffusion as the sole spatial process was insufficient to counteract the disadvantage due to spatial degrader heterogeneity at ΔΨo ranging from 0 to −1 MPa. In this scenario, only 13.8−21.3% of the quasi-optimal biodegradation performance could be achieved. In the same range of ΔΨo values, substrate diffusion in combination with bacterial dispersal allowed between 68.6 and 36.2% of the performance showing a clear downwards trend with decreasing ΔΨo. At −1.5 MPa, however, this scenario performed worse than the diffusion scenario, possibly as a result of energetic disadvantages associated with flagellum synthesis and emerging requirements to exceed a critical population density to resist osmotic stress. Network-mediated bacterial dispersal kept biodegradation

  20. Overexpression of a Cytosolic Abiotic Stress Responsive Universal Stress Protein (SbUSP) Mitigates Salt and Osmotic Stress in Transgenic Tobacco Plants

    PubMed Central

    Udawat, Pushpika; Jha, Rajesh K.; Sinha, Dinkar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    The universal stress protein (USP) is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologs of intron less SbUSP gene which encodes for salt and osmotic responsive USP. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control [wild-type (WT) and vector control (VC)] plants under different abiotic stress condition. Transgenic lines (T1) exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability, and lower electrolyte leakage and lipid peroxidation (malondialdehyde content) under stress treatments than control (WT and VC) plants. Lower accumulation of H2O2 and O2− radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant. PMID:27148338

  1. Micronized fibres affect in vitro fermentation under normal buffered and osmotic stress conditions using porcine inocula.

    PubMed

    Aumiller, T; Mosenthin, R; Rink, F; Hartung, K; Weiss, E

    2015-12-01

    In this in vitro study, the modified Hohenheim gas test was used to determine fermentation activity and bacterial composition of pig's faecal microbial inoculum, when fermenting a standard pig diet with varying levels of crude protein (CP; 20, 24 and 28% CP), and supplemented with one of three fibre sources manufactured by micronization treatment. These were wheat envelopes (MWE), pea fibre (MPF) and lupine fibre (MLF). For comparison, inulin was used. As intestinal bacteria have to cope with varying osmotic conditions in their ecosystem, fermentation was performed under normal buffered and osmotic stress conditions. After 24 h of fermentation, total gas production and ammonia production were measured. In addition, the effect of MWE and inulin on short-chain fatty acid (SCFA) production and numbers of total eubacteria, Lactobacillus spp., Bifidobacterium spp., Enterobacteriaceae, Enterococcus spp., Clostridium cluster XIVa and Clostridium cluster IV, were determined using quantitative real-time PCR. Under normal buffered conditions, supplementation of MWE resulted in increased (p < 0.05) SCFA, acetic, propionic and valerianic acid production at CP levels of 20 and 28%. There was an increase (p < 0.05) in ammonia production for the micronized supplements, and for MWE an increased (p < 0.05) branched-chain proportion was observed, possibly due to higher availability of protein for fermentation which was released during the micronization process. Osmotic stress conditions reduced (p < 0.05) total gas as well as total SCFA, acetic and propionic acid production for all treatments, while cell counts were increased (p < 0.05) for Bifidobacterium spp., Enterococcus spp. and Lactobacillus spp. Under normal buffered conditions in combination with 24 and 28% CP levels, lactobacilli were increased for MWE, compared to inulin (p < 0.05). In conclusion, micronized supplements such as MWE may beneficially modulate pigs' intestinal microbiota by increasing SCFA production in

  2. PEG-mediated osmotic stress induces premature differentiation of the root apical meristem and outgrowth of lateral roots in wheat.

    PubMed

    Ji, Hongtao; Liu, Ling; Li, Kexue; Xie, Qingen; Wang, Zhijuan; Zhao, Xuhua; Li, Xia

    2014-09-01

    Water stress is one of the major environmental stresses causing growth retardation and yield loss of plants. In the past decades, osmotic adjustment, antioxidant protection, and stomatal movement have been extensively studied, but much less attention has been paid to the study of root system reprogramming to maximize water absorption and survival under water stress. Here, it is shown that polyethylene glycol (PEG)-simulated mild and moderate osmotic stress induced premature differentiation of the root apical meristem (RAM). It is demonstrated that RAM premature differentiation is a conserved adaptive mechanism that is widely adopted by various plants to cope with osmotic stress simulated by PEG 8000, and the occurrence of RAM premature differentiation is directly related to stress tolerance of plants. It is shown that the osmotic stress-induced premature differentiation caused growth cessation of primary roots allowing outgrowth of lateral roots. This work has uncovered a key mechanism for controlling the plastic development of the root system by which plants are capable of survival, growth, or reproduction under water stress.

  3. Stress and acute respiratory infection

    SciTech Connect

    Graham, N.M.; Douglas, R.M.; Ryan, P.

    1986-09-01

    To examine the relationship between stress and upper respiratory tract infection, 235 adults aged 14-57 years, from 94 families affiliated with three suburban family physicians in Adelaide, South Australia, participated in a six-month prospective study. High and low stress groups were identified by median splits of data collected from the Life Events Inventory, the Daily Hassles Scale, and the General Health Questionnaire, which were administered both before and during the six months of respiratory diary data collection. Using intra-study stress data, the high stress group experienced significantly more episodes (mean of 2.71 vs. 1.56, p less than 0.0005) and symptom days (mean of 29.43 vs. 15.42, p = 0.005) of respiratory illness. The two groups were almost identical with respect to age, sex, occupational status, smoking, passive smoking, exposure to air pollution, family size, and proneness to acute respiratory infection in childhood. In a multivariate model with total respiratory episodes as the dependent variable, 21% of the variance was explained, and two stress variables accounted for 9% of the explained variance. Significant, but less strong relationships were also identified between intra-study stress variables and clinically definite episodes and symptom days in both clinically definite and total respiratory episodes. Pre-study measures of stress emphasized chronic stresses and were less strongly related to measures of respiratory illness than those collected during the study. However, significantly more episodes (mean of 2.50 vs. 1.75, p less than 0.02) and symptom days (mean of 28.00 vs. 17.06, p less than 0.03) were experienced in the high stress group. In the multivariate analyses, pre-study stress remained significantly associated with total respiratory episodes nd symptom days in total and ''definite'' respiratory episodes.

  4. Deletion of aquaporin-4 renders retinal glial cells more susceptible to osmotic stress.

    PubMed

    Pannicke, Thomas; Wurm, Antje; Iandiev, Ianors; Hollborn, Margrit; Linnertz, Regina; Binder, Devin K; Kohen, Leon; Wiedemann, Peter; Steinhäuser, Christian; Reichenbach, Andreas; Bringmann, Andreas

    2010-10-01

    The glial water channel aquaporin-4 (AQP4) is implicated in the control of ion and osmohomeostasis in the sensory retina. Using retinal slices from AQP4-deficient and wild-type mice, we investigated whether AQP4 is involved in the regulation of glial cell volume under altered osmotic conditions. Superfusion of retinal slices with a hypoosmolar solution induced a rapid swelling of glial somata in tissues from AQP4 null mice but not from wild-type mice. The swelling was mediated by oxidative stress, inflammatory lipid mediators, and sodium influx into the cells and was prevented by activation of glutamatergic and purinergic receptors. Distinct inflammatory proteins, including interleukin-1 beta, interleukin-6, and inducible nitric oxide synthase, were up-regulated in the retina of AQP4 null mice compared with control, whereas cyclooxygenase-2 was down-regulated. The data suggest that water flux through AQP4 is involved in the rapid volume regulation of retinal glial (Müller) cells in response to osmotic stress and that deletion of AQP4 results in an inflammatory response of the retinal tissue. Possible implications of the data for understanding the pathophysiology of neuromyelitis optica, a human disease that has been suggested to involve serum antibodies to AQP4, are discussed. PMID:20544823

  5. Modelling osmotic stress by Flux Balance Analysis at the genomic scale.

    PubMed

    Metris, Aline; George, Susan; Baranyi, József

    2012-01-16

    Predictive microbiology for food safety is still primarily based on empirical models describing the effect of the environmental conditions of the food on the kinetics of the growth of foodborne pathogens. One way to make these models more mechanistic is to use systems biology methods such as Flux Balance Analysis (FBA). FBA consists of evaluating the possible fluxes through the metabolic reactions taking place in a cell. Using this method, the specific growth rate of Escherichia coli can be predicted by assuming, as an objective function, that the cells maximise their biomass production during balanced growth. Whilst this works under favourable environmental conditions, our simulations show that this objective function is not sufficient to explain the decrease of the growth rate due to osmotic stress. One feature of the FBA models is that the parameters and objective function in general refer to chemostat experiments where the carbon source is the main limiting factor. This may be relevant to some foods where the carbon to nitrogen balance is limiting but, in general, it is the physico-chemical conditions which are the most stringent. We therefore need to examine the effect of such constraints on the fluxes and/or modify the objective function, or to elaborate the metabolic model by taking into account other functional levels of the cell in order to develop mechanistic predictive models for osmotic stress conditions.

  6. Alterations in glial cell metabolism during recovery from chronic osmotic stress.

    PubMed

    Flögel, U; Leibfritz, D

    1998-12-01

    NMR spectroscopy of F98 glioma cell extracts showed that chronic hypertonic conditions largely increased the intracellular content of small, osmotically active molecules. Moreover, hypertonic stress decreased the incorporation of 13C-labeled amino acids into the cellular proteins albeit their cytosolic concentrations were increased, which reflects an inhibition of protein synthesis under these conditions. Reincubation with isotonic medium restored almost completely the control values for the cytosolic metabolites but not for amino acid incorporation into the protein. An increased amount of 13C label was found in the phospholipids, which indicates stimulation of membrane synthesis processes due to the recovery-induced cell swelling. On the other hand, chronic hypotonic conditions largely decreased the steady state concentration and synthesis of small, cytosolic molecules, whereas the effect on the incorporation of 13C-labeled amino acids into the cellular proteins was variable. Reincubation with isotonic medium partially restored the depressed cytosolic metabolite content and also the incorporation of labeled amino acids into cellular protein, but induced an inhibition of phospholipid synthesis. The results verify that 'readaptation' of glial cell metabolism during recovery from chronic osmotic stress is impaired or at least seriously retarded.

  7. Induction and measurement of UPR and osmotic stress in the yeast Pichia pastoris.

    PubMed

    Dragosits, Martin; Mattanovich, Diethard; Gasser, Brigitte

    2011-01-01

    Unfolded protein response (UPR) is a major reaction to intrinsic stress of eukaryotic organisms and is also related to environmental stress reactions. Among yeasts, stress regulation has mainly been investigated in Saccharomyces cerevisiae, while other species with biotechnological or medical interest are less well understood. Pichia pastoris as one example has emerged as a favorite production platform for recombinant proteins during the last two decades. UPR and environmental stress are well known to interfere with the production of recombinant proteins as well as other technologically relevant processes, so that the demand for well-documented protocols to measure such stress reactions has strongly increased. Here, we describe protocols for the induction of UPR and osmotic stress, as well as for the quantitative measurement of cellular stress reactions at the levels of transcripts, proteins, and metabolites. As such protocols need to be adapted for a new species of interest, the guidelines presented here should enable researchers to study P. pastoris directly without the hassle to modify standard protocols designed for the model organism S. cerevisiae first.

  8. Regulation of Leaf Starch Degradation by Abscisic Acid Is Important for Osmotic Stress Tolerance in Plants[OPEN

    PubMed Central

    Thalmann, Matthias; Pazmino, Diana; Seung, David; Horrer, Daniel; Nigro, Arianna; Meier, Tiago; Zeeman, Samuel C.; Santelia, Diana

    2016-01-01

    Starch serves functions that range over a timescale of minutes to years, according to the cell type from which it is derived. In guard cells, starch is rapidly mobilized by the synergistic action of β-AMYLASE1 (BAM1) and α-AMYLASE3 (AMY3) to promote stomatal opening. In the leaves, starch typically accumulates gradually during the day and is degraded at night by BAM3 to support heterotrophic metabolism. During osmotic stress, starch is degraded in the light by stress-activated BAM1 to release sugar and sugar-derived osmolytes. Here, we report that AMY3 is also involved in stress-induced starch degradation. Recently isolated Arabidopsis thaliana amy3 bam1 double mutants are hypersensitive to osmotic stress, showing impaired root growth. amy3 bam1 plants close their stomata under osmotic stress at similar rates as the wild type but fail to mobilize starch in the leaves. 14C labeling showed that amy3 bam1 plants have reduced carbon export to the root, affecting osmolyte accumulation and root growth during stress. Using genetic approaches, we further demonstrate that abscisic acid controls the activity of BAM1 and AMY3 in leaves under osmotic stress through the AREB/ABF-SnRK2 kinase-signaling pathway. We propose that differential regulation and isoform subfunctionalization define starch-adaptive plasticity, ensuring an optimal carbon supply for continued growth under an ever-changing environment. PMID:27436713

  9. Carrizo citrange plants do not require the presence of roots to modulate the response to osmotic stress.

    PubMed

    Pérez-Clemente, Rosa M; Montoliu, Almudena; Zandalinas, Sara I; de Ollas, Carlos; Gómez-Cadenas, Aurelio

    2012-01-01

    The study of the effects of a specific stress condition on the performance of plants grown under field conditions is difficult due to interactions among multiple abiotic and biotic factors affecting the system. In vitro tissue-culture-based techniques allow the study of each adverse condition independently and also make possible to investigate the performance of genotypes of interest under stress conditions avoiding the effect of the root. In this paper, the response of Carrizo citrange, a commercial citrus rootstock, to osmotic stress was evaluated by culturing in vitro intact plants and micropropagated shoots. The osmotic stress was generated by adding two different concentrations of polyethyleneglycol to the culture media. Different parameters such as plant performance, organ length, antioxidant activities, and endogenous contents of proline, malondialdehyde, and hormones were determined. Differently to that observed under high salinity, when subjected to osmotic stress conditions, Carrizo citrange showed increased endogenous levels of MDA, proline, and ABA. These results evidence that the mechanisms of response of Carrizo citrange to saline or osmotic stress are different. The presence of roots was not necessary to activate any of the plant responses which indicates that the organs involved in the stress perception and signaling depends on the type of adverse condition to which plants are subjected. PMID:22919353

  10. Parasite-mediated protection against osmotic stress for Paramecium caudatum infected by Holospora undulata is host genotype specific.

    PubMed

    Duncan, Alison B; Fellous, Simon; Accot, Robin; Alart, Marie; Chantung Sobandi, Kevin; Cosiaux, Ariane; Kaltz, Oliver

    2010-11-01

    Under certain conditions, otherwise parasitic organisms may become beneficial to their host. Parasite-mediated heat and osmotic stress resistance have been demonstrated for Paramecium caudatum, infected by several species of parasitic bacteria of the genus Holospora. Here, using the micronucleus-specific bacterium Holospora undulata, we investigate how infection mediates the response of two genotypes (clones 'K8' and 'VEN') of P. caudatum to heat (35 °C) and osmotic (0.24% NaCl) stress. In contrast to previous findings, we find no evidence for heat stress protection in infected individuals. We do, however, show an effect of symbiont-mediated osmotic stress resistance for the K8 clone, with infected individuals having higher survival than their uninfected counterparts up to 24 h after the onset of salt exposure. Despite this, both infected and uninfected individuals of the VEN clone showed higher survival rates than clone K8 individuals under osmotic stress. Thus, it would seem that parasite-mediated stress protection is restricted to certain combinations of host genotypes and types of stress and does not represent a general phenomenon in this system.

  11. Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification

    PubMed Central

    Lai, D.; Ding, J.; Smith, G.W.; Smith, G.D.; Takayama, S.

    2015-01-01

    STUDY QUESTION Does the use of a new cryoprotectant agent (CPA) exchange protocol designed to minimize osmotic stress improve oocyte or zygote vitrification by reducing sublethal cryodamage? SUMMARY ANSWER The use of a new CPA exchange protocol made possible by automated microfluidics improved oocyte and zygote vitrification with superior morphology as indicated by a smoother cell surface, higher sphericity, higher cytoplasmic lipid retention, less cytoplasmic leakage and higher developmental competence compared with conventional methods. WHAT IS KNOWN ALREADY The use of more ‘steps’ of CPA exposure during the vitrification protocol increases cryosurvival and development in the bovine model. However, such an attempt to eliminate osmotic stress is limited by the practicality of performing numerous precise pipetting steps in a short amount of time. STUDY DESIGN, SIZE, DURATION Murine meiotically competent germinal vesicle intact oocytes and zygotes were harvested from the antral follicles in ovaries and ampulla, respectively. Bovine ovaries were obtained from a local abattoir at random stages of the estrous cycle. A total of 110 murine oocytes, 802 murine zygotes and 52 bovine oocytes were used in this study. PARTICIPANTS/MATERIALS, SETTING, METHODS Microfluidic devices were fabricated using conventional photo- and soft-lithography. CPAs used were 7.5% ethylene glycol (EG) and 7.5% dimethyl sulfoxide (DMSO) for equilibration solution and 15% EG, 15% DMSO and 0.5 M sucrose for vitrification solution. End-point analyses include mathematical modeling using Kedem–Katchalsky equations, morphometrics assessed by conventional and confocal microscopy, cytoplasmic lipid quantification by nile red staining, cytoplasmic leakage quantification by fluorescent dextran intercalation and developmental competence analysis by 96 h embryo culture and blastomere quantification. MAIN RESULTS AND THE ROLE OF CHANCE The automated microfluidics protocol decreased the shrinkage rate of

  12. Improving macroscopic modeling of the effect of water and osmotic stresses on root water uptake.

    NASA Astrophysics Data System (ADS)

    Jorda Guerra, Helena; Vanderborght, Jan

    2015-04-01

    Accurate modeling of water and salt stresses on root water uptake is critical for predicting impacts of global change and climate variability on crop production and soil water balances. Soil-hydrological models use reduction functions to represent the effect of osmotic stress in transpiration. However, these functions, which were developed empirically, present limitations in relation to the time and spatial scale at which they need to be used, fail to include compensation processes and do not agree on how water and salt stresses interact. This research intends to develop a macroscopic reduction function for water and osmotic stresses based on biophysical knowledge. Simulation experiments are conducted for a range of atmospheric conditions, soil and plant properties, irrigation water quality and scheduling using a 3-D physically-based model that resolves flow and transport to individual root segments and that couples flow in the soil and root system (Schröder et al., 2013). The effect of salt concentrations on water flow in the soil-root system is accounted for by including osmotic water potential gradients between the solution at the soil root interface and the root xylem sap in the hydraulic gradient between the soil and root. In a first step, simulation experiments are carried out in a soil volume around a single root segment. We discuss how the simulation setup can be defined so as to represent: (i) certain characteristics of the root system such as rooting depth and root length density, (ii) plant transpiration rate, (iii) leaching fraction of the irrigation, and (iii) salinity of the irrigation water. The output of these simulation experiments gives a first insight in the effect of salinity on transpiration and on the relation between the bulk salinity in the soil voxel, which is used in macroscopic salt stress functions of models that do not resolve processes at the root segment scale, and the salinity at the soil-root interface, which determines the actual

  13. Genes Associated with Desiccation and Osmotic Stress in Listeria monocytogenes as Revealed by Insertional Mutagenesis

    PubMed Central

    Hingston, Patricia A.; Piercey, Marta J.

    2015-01-01

    Listeria monocytogenes is a foodborne pathogen whose survival in food processing environments may be associated with its tolerance to desiccation. To probe the molecular mechanisms used by this bacterium to adapt to desiccation stress, a transposon library of 11,700 L. monocytogenes mutants was screened, using a microplate assay, for strains displaying increased or decreased desiccation survival (43% relative humidity, 15°C) in tryptic soy broth (TSB). The desiccation phenotypes of selected mutants were subsequently assessed on food-grade stainless steel (SS) coupons in TSB plus 1% glucose (TSB-glu). Single transposon insertions in mutants exhibiting a change in desiccation survival of >0.5 log CFU/cm2 relative to that of the wild type were determined by sequencing arbitrary PCR products. Strain morphology, motility, and osmotic stress survival (in TSB-glu plus 20% NaCl) were also analyzed. The initial screen selected 129 desiccation-sensitive (DS) and 61 desiccation-tolerant (DT) mutants, out of which secondary screening on SS confirmed 15 DT and 15 DS mutants. Among the DT mutants, seven immotile and flagellum-less strains contained transposons in genes involved in flagellum biosynthesis (fliP, flhB, flgD, flgL) and motor control (motB, fliM, fliY), while others harbored transposons in genes involved in membrane lipid biosynthesis, energy production, potassium uptake, and virulence. The genes that were interrupted in the 15 DS mutants included those involved in energy production, membrane transport, protein metabolism, lipid biosynthesis, oxidative damage control, and putative virulence. Five DT and 14 DS mutants also demonstrated similar significantly (P < 0.05) different survival relative to that of the wild type when exposed to osmotic stress, demonstrating that some genes likely have similar roles in allowing the organism to survive the two water stresses. PMID:26025900

  14. Genes Associated with Desiccation and Osmotic Stress in Listeria monocytogenes as Revealed by Insertional Mutagenesis.

    PubMed

    Hingston, Patricia A; Piercey, Marta J; Truelstrup Hansen, Lisbeth

    2015-08-15

    Listeria monocytogenes is a foodborne pathogen whose survival in food processing environments may be associated with its tolerance to desiccation. To probe the molecular mechanisms used by this bacterium to adapt to desiccation stress, a transposon library of 11,700 L. monocytogenes mutants was screened, using a microplate assay, for strains displaying increased or decreased desiccation survival (43% relative humidity, 15°C) in tryptic soy broth (TSB). The desiccation phenotypes of selected mutants were subsequently assessed on food-grade stainless steel (SS) coupons in TSB plus 1% glucose (TSB-glu). Single transposon insertions in mutants exhibiting a change in desiccation survival of >0.5 log CFU/cm(2) relative to that of the wild type were determined by sequencing arbitrary PCR products. Strain morphology, motility, and osmotic stress survival (in TSB-glu plus 20% NaCl) were also analyzed. The initial screen selected 129 desiccation-sensitive (DS) and 61 desiccation-tolerant (DT) mutants, out of which secondary screening on SS confirmed 15 DT and 15 DS mutants. Among the DT mutants, seven immotile and flagellum-less strains contained transposons in genes involved in flagellum biosynthesis (fliP, flhB, flgD, flgL) and motor control (motB, fliM, fliY), while others harbored transposons in genes involved in membrane lipid biosynthesis, energy production, potassium uptake, and virulence. The genes that were interrupted in the 15 DS mutants included those involved in energy production, membrane transport, protein metabolism, lipid biosynthesis, oxidative damage control, and putative virulence. Five DT and 14 DS mutants also demonstrated similar significantly (P < 0.05) different survival relative to that of the wild type when exposed to osmotic stress, demonstrating that some genes likely have similar roles in allowing the organism to survive the two water stresses.

  15. Phosphate-induced-1 gene from Eucalyptus (EgPHI-1) enhances osmotic stress tolerance in transgenic tobacco.

    PubMed

    Sousa, A O; Assis, E T C M; Pirovani, C P; Alvim, F C; Costa, M G C

    2014-01-01

    Environmental stresses such as drought, freezing, and high salinity induce osmotic stress in plant cells. The plant response to osmotic stress involves a number of physiological and developmental changes, which are made possible, in part, by the modulation of the expression of specific genes. Phosphate-induced-1 gene (PHI-1) was first isolated from phosphate-treated phosphate-starved tobacco cell cultures as a stress-inducible gene, which is presumably related to intracellular pH maintenance; however, the role of the PHI-1 gene product has not yet been clarified. A gene encoding a predicted protein with high similarity to tobacco PHI-1, named EgPHI-1, was previously identified in Eucalyptus by comparative transcriptome analysis of xylem cells from species of contrasting phenotypes for wood quality and growth traits. Here, we show that the overexpression of EgPHI-1 in transgenic tobacco enhances tolerance to osmotic stress. In comparison with wild-type plants, EgPHI-1 transgenic plants showed a significant increase in root length and biomass dry weight under NaCl-, polyethylene glycol, and mannitol-induced osmotic stresses. The enhanced stress tolerance of transgenic plants was correlated with increased endogenous protein levels of the molecular chaperone binding protein BiP, which in turn was correlated with the EgPHI-1 expression level in the different transgenic lines. These results provide evidence about the involvement of EgPHI-1 in osmotic stress tolerance via modulation of BiP expression, and pave the way for its future use as a candidate gene for engineering tolerance to environmental stresses in crop plants. PMID:24668632

  16. Phosphate-induced-1 gene from Eucalyptus (EgPHI-1) enhances osmotic stress tolerance in transgenic tobacco.

    PubMed

    Sousa, A O; Assis, E T C M; Pirovani, C P; Alvim, F C; Costa, M G C

    2014-01-01

    Environmental stresses such as drought, freezing, and high salinity induce osmotic stress in plant cells. The plant response to osmotic stress involves a number of physiological and developmental changes, which are made possible, in part, by the modulation of the expression of specific genes. Phosphate-induced-1 gene (PHI-1) was first isolated from phosphate-treated phosphate-starved tobacco cell cultures as a stress-inducible gene, which is presumably related to intracellular pH maintenance; however, the role of the PHI-1 gene product has not yet been clarified. A gene encoding a predicted protein with high similarity to tobacco PHI-1, named EgPHI-1, was previously identified in Eucalyptus by comparative transcriptome analysis of xylem cells from species of contrasting phenotypes for wood quality and growth traits. Here, we show that the overexpression of EgPHI-1 in transgenic tobacco enhances tolerance to osmotic stress. In comparison with wild-type plants, EgPHI-1 transgenic plants showed a significant increase in root length and biomass dry weight under NaCl-, polyethylene glycol, and mannitol-induced osmotic stresses. The enhanced stress tolerance of transgenic plants was correlated with increased endogenous protein levels of the molecular chaperone binding protein BiP, which in turn was correlated with the EgPHI-1 expression level in the different transgenic lines. These results provide evidence about the involvement of EgPHI-1 in osmotic stress tolerance via modulation of BiP expression, and pave the way for its future use as a candidate gene for engineering tolerance to environmental stresses in crop plants.

  17. Alternative Oxidase Pathway Optimizes Photosynthesis During Osmotic and Temperature Stress by Regulating Cellular ROS, Malate Valve and Antioxidative Systems

    PubMed Central

    Vishwakarma, Abhaypratap; Raghavendra, Agepati S.; Padmasree, Kollipara

    2016-01-01

    The present study reveals the importance of alternative oxidase (AOX) pathway in optimizing photosynthesis under osmotic and temperature stress conditions in the mesophyll protoplasts of Pisum sativum. The responses of photosynthesis and respiration were monitored at saturating light intensity of 1000 μmoles m–2 s–1 at 25°C under a range of sorbitol concentrations from 0.4 to 1.0 M to induce hyper-osmotic stress and by varying the temperature of the thermo-jacketed pre-incubation chamber from 25 to 10°C to impose sub-optimal temperature stress. Compared to controls (0.4 M sorbitol and 25°C), the mesophyll protoplasts showed remarkable decrease in NaHCO3-dependent O2 evolution (indicator of photosynthetic carbon assimilation), under both hyper-osmotic (1.0 M sorbitol) and sub-optimal temperature stress conditions (10°C), while the decrease in rates of respiratory O2 uptake were marginal. The capacity of AOX pathway increased significantly in parallel to increase in intracellular pyruvate and reactive oxygen species (ROS) levels under both hyper-osmotic stress and sub-optimal temperature stress under the background of saturating light. The ratio of redox couple (Malate/OAA) related to malate valve increased in contrast to the ratio of redox couple (GSH/GSSG) related to antioxidative system during hyper-osmotic stress. Further, the ratio of GSH/GSSG decreased in the presence of sub-optimal temperature, while the ratio of Malate/OAA showed no visible changes. Also, the redox ratios of pyridine nucleotides increased under hyper-osmotic (NADH/NAD) and sub-optimal temperature (NADPH/NADP) stresses, respectively. However, upon restriction of AOX pathway by using salicylhydroxamic acid (SHAM), the observed changes in NaHCO3-dependent O2 evolution, cellular ROS, redox ratios of Malate/OAA, NAD(P)H/NAD(P) and GSH/GSSG were further aggravated under stress conditions with concomitant modulations in NADP-MDH and antioxidant enzymes. Taken together, the results indicated

  18. Effects of acute fresh water exposure on water flux rates and osmotic responses in Kemp's ridley sea turtles (Lepidochelys kempi)

    NASA Technical Reports Server (NTRS)

    Ortiz, R. M.; Patterson, R. M.; Wade, C. E.; Byers, F. M.

    2000-01-01

    Water flux rates and osmotic responses of Kemp's Ridley sea turtles (Lepidochelys kempi) acutely exposed to fresh water were quantified. Salt-water adapted turtles were exposed to fresh water for 4 d before being returned to salt water. During the initial salt water phase, absolute and relative water flux rates were 1.2+/-0.1 l d(-1) and 123.0+/-6.8 ml kg(-1) d(-1), respectively. When turtles were exposed to fresh water, rates increased by approximately 30%. Upon return to salt water, rates decreased to original levels. Plasma osmolality, Na(+), K(+), and Cl(-) decreased during exposure to fresh water, and subsequently increased during the return to salt water. The Na(+):K(+) ratio was elevated during the fresh water phase and subsequently decreased upon return to salt water. Aldosterone and corticosterone were not altered during exposure to fresh water. Elevated water flux rates during fresh water exposure reflected an increase in water consumption, resulting in a decrease in ionic and osmotic concentrations. The lack of a change in adrenocorticoids to acute fresh water exposure suggests that adrenal responsiveness to an hypo-osmotic environment may be delayed in marine turtles when compared to marine mammals.

  19. Effects of acute fresh water exposure on water flux rates and osmotic responses in Kemp's ridley sea turtles (Lepidochelys kempi).

    PubMed

    Ortiz, R M; Patterson, R M; Wade, C E; Byers, F M

    2000-09-01

    Water flux rates and osmotic responses of Kemp's Ridley sea turtles (Lepidochelys kempi) acutely exposed to fresh water were quantified. Salt-water adapted turtles were exposed to fresh water for 4 d before being returned to salt water. During the initial salt water phase, absolute and relative water flux rates were 1.2+/-0.1 l d(-1) and 123.0+/-6.8 ml kg(-1) d(-1), respectively. When turtles were exposed to fresh water, rates increased by approximately 30%. Upon return to salt water, rates decreased to original levels. Plasma osmolality, Na(+), K(+), and Cl(-) decreased during exposure to fresh water, and subsequently increased during the return to salt water. The Na(+):K(+) ratio was elevated during the fresh water phase and subsequently decreased upon return to salt water. Aldosterone and corticosterone were not altered during exposure to fresh water. Elevated water flux rates during fresh water exposure reflected an increase in water consumption, resulting in a decrease in ionic and osmotic concentrations. The lack of a change in adrenocorticoids to acute fresh water exposure suggests that adrenal responsiveness to an hypo-osmotic environment may be delayed in marine turtles when compared to marine mammals.

  20. Mutation of OsGIGANTEA Leads to Enhanced Tolerance to Polyethylene Glycol-Generated Osmotic Stress in Rice

    PubMed Central

    Li, Shuai; Yue, Wenhao; Wang, Min; Qiu, Wenmin; Zhou, Lian; Shou, Huixia

    2016-01-01

    Water deficit is one of the most important environmental stresses limiting plant growth and crop yield. While the identification of many key factors involved in the plant water deficit response has greatly increased our knowledge about the regulation system, the mechanisms underlying dehydration tolerance in plants are still not well understood. In our current study, we investigated the roles of the key flowering time regulator, OsGIGANTEA (OsGI), in the osmotic stress tolerance in rice. Results showed that mutation of OsGI conferred tolerance to osmotic stress generated by polyethylene glycol (PEG), increased proline and sucrose contents, and accelerated stomata movement. In addition, qRT-PCR and microarray analysis revealed that the transcript abundance of some osmotic stress response genes, such as OsDREB1E, OsAP37, OsAP59, OsLIP9, OsLEA3, OsRAB16A, and OsSalT, was significantly higher in osgi than in WT plants, suggesting that OsGI might be a negative regulator in the osmotic stress response in rice. PMID:27148296

  1. Mutation of OsGIGANTEA Leads to Enhanced Tolerance to Polyethylene Glycol-Generated Osmotic Stress in Rice.

    PubMed

    Li, Shuai; Yue, Wenhao; Wang, Min; Qiu, Wenmin; Zhou, Lian; Shou, Huixia

    2016-01-01

    Water deficit is one of the most important environmental stresses limiting plant growth and crop yield. While the identification of many key factors involved in the plant water deficit response has greatly increased our knowledge about the regulation system, the mechanisms underlying dehydration tolerance in plants are still not well understood. In our current study, we investigated the roles of the key flowering time regulator, OsGIGANTEA (OsGI), in the osmotic stress tolerance in rice. Results showed that mutation of OsGI conferred tolerance to osmotic stress generated by polyethylene glycol (PEG), increased proline and sucrose contents, and accelerated stomata movement. In addition, qRT-PCR and microarray analysis revealed that the transcript abundance of some osmotic stress response genes, such as OsDREB1E, OsAP37, OsAP59, OsLIP9, OsLEA3, OsRAB16A, and OsSalT, was significantly higher in osgi than in WT plants, suggesting that OsGI might be a negative regulator in the osmotic stress response in rice. PMID:27148296

  2. The use of ELISA to monitor amplified hemolysis by the combined action of osmotic stress and radiation: potential applications.

    PubMed

    Chatterjee, Saurabh; Premachandran, Sudha; Bagewadikar, R S; Poduval, T B

    2005-03-01

    A new assay has been developed to study the osmotic fragility of red blood cells (RBCs) and the involvement of oxygen-derived free radicals and other oxidant species in causing human red blood cell hemolysis. The amount of hemoglobin released into the supernatant, which is a measure of human red blood cell hemolysis, is monitored using an ELISA reader. This ELISA-based osmotic fragility test compared well with the established osmotic fragility test, with the added advantage of significantly reduced time and the requirement of only 60 mul of blood. This small amount of blood was collected fresh by finger puncture and was immediately diluted 50 times with PBS, thus eliminating the use of anticoagulants and the subsequent washings. Since exposure of RBCs to 400 Gy gamma radiation caused less than 5% hemolysis 24 h after irradiation, the RBC hemolysis induced by gamma radiation was amplified by irradiating the cell in hypotonic saline. The method was validated by examining the protective effect of Trolox, an analog of vitamin E and reduced glutathione (GSH), a well-known radioprotector, against human RBC hemolysis caused by the combined action of radiation and osmotic stress. Trolox, a known membrane stabilizer and an antioxidant, and GSH offered significant protection. This new method, which is simple and requires significantly less time and fewer RBCs, may offer the ability to study the effects of antioxidants and membrane stabilizers on human red blood cell hemolysis induced by radiation and oxidative stress and assess the osmotic fragility of erythrocytes. PMID:15733043

  3. Osmotic stress, crowding, preferential hydration, and binding: A comparison of perspectives

    PubMed Central

    Parsegian, V. A.; Rand, R. P.; Rau, D. C.

    2000-01-01

    There has been much confusion recently about the relative merits of different approaches, osmotic stress, preferential interaction, and crowding, to describe the indirect effect of solutes on macromolecular conformations and reactions. To strengthen all interpretations of measurements and to forestall further unnecessary conceptual or linguistic confusion, we show here how the different perspectives all can be reconciled. Our approach is through the Gibbs-Duhem relation, the universal constraint on the number of ways it is possible to change the temperature, pressure, and chemical potentials of the several components in any thermodynamically defined system. From this general Gibbs-Duhem equation, it is possible to see the equivalence of the different perspectives and even to show the precise identity of the more specialized equations that the different approaches use. PMID:10760270

  4. Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum.

    PubMed

    O'Donnell, Natalie H; Møller, Birger Lindberg; Neale, Alan D; Hamill, John D; Blomstedt, Cecilia K; Gleadow, Roslyn M

    2013-12-01

    Sorghum (Sorghum bicolor L. Moench) is a valuable forage crop in regions with low soil moisture. Sorghum may accumulate high concentrations of the cyanogenic glucoside dhurrin when drought stressed resulting in possible cyanide (HCN) intoxication of grazing animals. In addition, high concentrations of nitrate, also potentially toxic to ruminants, may accumulate during or shortly after periods of drought. Little is known about the degree and duration of drought-stress required to induce dhurrin accumulation, or how changes in dhurrin concentration are influenced by plant size or nitrate metabolism. Given that finely regulating soil moisture under controlled conditions is notoriously difficult, we exposed sorghum plants to varying degrees of osmotic stress by growing them for different lengths of time in hydroponic solutions containing polyethylene glycol (PEG). Plants grown in medium containing 20% PEG (-0.5 MPa) for an extended period had significantly higher concentrations of dhurrin in their shoots but lower dhurrin concentrations in their roots. The total amount of dhurrin in the shoots of plants from the various treatments was not significantly different on a per mass basis, although a greater proportion of shoot N was allocated to dhurrin. Following transfer from medium containing 20% PEG to medium lacking PEG, shoot dhurrin concentrations decreased but nitrate concentrations increased to levels potentially toxic to grazing ruminants. This response is likely due to the resumption of plant growth and root activity, increasing the rate of nitrate uptake. Data presented in this article support a role for cyanogenic glucosides in mitigating oxidative stress. PMID:24080394

  5. Osmotic stress and recovery in field populations of Zygnema sp. (Zygnematophyceae, Streptophyta) on Svalbard (High Arctic) subjected to natural desiccation.

    PubMed

    Pichrtová, Martina; Hájek, Tomáš; Elster, Josef

    2014-08-01

    Zygnema is a genus of filamentous green algae belonging to the class of Zygnematophyceae (Streptophyta). In the Arctic, it typically forms extensive mats in habitats that regularly dry out during summer, and therefore, mechanisms of stress resistance are expected. We investigated its natural populations with respect to production of specialized desiccation-resistant cells and osmotic acclimation. Six populations in various stages of natural desiccation were selected, from wet biomass floating in water to dried paper-like crusts. After rewetting, plasmolysis and osmotic stress effects were studied using hypertonic sorbitol solutions, and the physiological state was estimated using chlorophyll a fluorescence parameters. All populations of Zygnema sp. formed stationary-phase cells filled with storage products. In green algal research, such cells are traditionally called akinetes. However, the populations differed in their reaction to osmotic stress. Whereas the wet-collected samples were strongly impaired, the osmotic stress resistance of the naturally dried samples was comparable to that of true aeroterrestrial algae. We showed that arctic populations of Zygnema acclimate well to natural desiccation via hardening that is mediated by slow desiccation. As no other types of specialized cells were observed, we assume that the naturally hardened akinetes also play a key role in winter survival.

  6. Osmotic stress and recovery in field populations of Zygnema sp. (Zygnematophyceae, Streptophyta) on Svalbard (High Arctic) subjected to natural desiccation.

    PubMed

    Pichrtová, Martina; Hájek, Tomáš; Elster, Josef

    2014-08-01

    Zygnema is a genus of filamentous green algae belonging to the class of Zygnematophyceae (Streptophyta). In the Arctic, it typically forms extensive mats in habitats that regularly dry out during summer, and therefore, mechanisms of stress resistance are expected. We investigated its natural populations with respect to production of specialized desiccation-resistant cells and osmotic acclimation. Six populations in various stages of natural desiccation were selected, from wet biomass floating in water to dried paper-like crusts. After rewetting, plasmolysis and osmotic stress effects were studied using hypertonic sorbitol solutions, and the physiological state was estimated using chlorophyll a fluorescence parameters. All populations of Zygnema sp. formed stationary-phase cells filled with storage products. In green algal research, such cells are traditionally called akinetes. However, the populations differed in their reaction to osmotic stress. Whereas the wet-collected samples were strongly impaired, the osmotic stress resistance of the naturally dried samples was comparable to that of true aeroterrestrial algae. We showed that arctic populations of Zygnema acclimate well to natural desiccation via hardening that is mediated by slow desiccation. As no other types of specialized cells were observed, we assume that the naturally hardened akinetes also play a key role in winter survival. PMID:24476153

  7. Synthesis, Release, and Recapture of Compatible Solute Proline by Osmotically Stressed Bacillus subtilis Cells

    PubMed Central

    Hoffmann, Tamara; von Blohn, Carsten; Stanek, Agnieszka; Moses, Susanne; Barzantny, Helena

    2012-01-01

    Bacillus subtilis synthesizes large amounts of the compatible solute proline as a cellular defense against high osmolarity to ensure a physiologically appropriate level of hydration of the cytoplasm and turgor. It also imports proline for this purpose via the osmotically inducible OpuE transport system. Unexpectedly, an opuE mutant was at a strong growth disadvantage in high-salinity minimal media lacking proline. Appreciable amounts of proline were detected in the culture supernatant of the opuE mutant strain, and they rose concomitantly with increases in the external salinity. We found that the intracellular proline pool of severely salinity-stressed cells of the opuE mutant was considerably lower than that of its opuE+ parent strain. This loss of proline into the medium and the resulting decrease in the intracellular proline content provide a rational explanation for the observed salt-sensitive growth phenotype of cells lacking OpuE. None of the known MscL- and MscS-type mechanosensitive channels of B. subtilis participated in the release of proline under permanently imposed high-salinity growth conditions. The data reported here show that the OpuE transporter not only possesses the previously reported role for the scavenging of exogenously provided proline as an osmoprotectant but also functions as a physiologically highly important recapturing device for proline that is synthesized de novo and subsequently released by salt-stressed B. subtilis cells. The wider implications of our findings for the retention of compatible solutes by osmotically challenged microorganisms and the roles of uptake systems for compatible solutes are considered. PMID:22685134

  8. Functional Linkage between Genes That Regulate Osmotic Stress Responses and Multidrug Resistance Transporters: Challenges and Opportunities for Antibiotic Discovery

    PubMed Central

    2014-01-01

    All cells need to protect themselves against the osmotic challenges of their environment by maintaining low permeability to ions across their cell membranes. This is a basic principle of cellular function, which is reflected in the interactions among ion transport and drug efflux genes that have arisen during cellular evolution. Thus, upon exposure to pore-forming antibiotics such as amphotericin B (AmB) or daptomycin (Dap), sensitive cells overexpress common resistance genes to protect themselves from added osmotic challenges. These genes share pathway interactions with the various types of multidrug resistance (MDR) transporter genes, which both preserve the native lipid membrane composition and at the same time eliminate disruptive hydrophobic molecules that partition excessively within the lipid bilayer. An increased understanding of the relationships between the genes (and their products) that regulate osmotic stress responses and MDR transporters will help to identify novel strategies and targets to overcome the current stalemate in drug discovery. PMID:24295980

  9. Different peroxidase activities and expression of abiotic stress-related peroxidases in apical root segments of wheat genotypes with different drought stress tolerance under osmotic stress.

    PubMed

    Csiszár, Jolán; Gallé, Agnes; Horváth, Edit; Dancsó, Piroska; Gombos, Magdolna; Váry, Zsolt; Erdei, László; Györgyey, János; Tari, Irma

    2012-03-01

    One-week-old seedlings of Triticum aestivum L. cv. Plainsman V, a drought tolerant; and Cappelle Desprez, a drought sensitive wheat cultivar were subjected gradually to osmotic stress using polyethylene glycol (PEG 6000) reaching 400 mOsm on the 11th day. Compared to controls cv. Plainsman V maintained the root growth and relative water content of root tissues, while these parameters were decreased in the drought sensitive cv. Cappelle Desprez under PEG-mediated osmotic stress. Simultaneously, H(2)O(2) content in 1-cm-long apical segment of roots comprising the proliferation and elongation zone, showed a transient increase in cv. Plainsman V and a permanent raise in cv. Cappelle Desprez. Measurements of the transcript levels of selected class III peroxidase (TaPrx) coding sequences revealed significant differences between the two cultivars on the 9th day, two days after applying 100 mOsm PEG. The abundance of TaPrx04 transcript was enhanced transitionally in the root apex of cv. Plainsman V but decreased in cv. Cappelle Desprez under osmotic stress while the expression of TaPrx01, TaPrx03, TaPrx19, TaPrx68, TaPrx107 and TaPrx109-C decreased to different extents in both cultivars. After a transient decrease, activities of soluble peroxidase fractions of crude protein extracts rose in both cultivars on day 11, but the activities of cell wall-bound fractions increased only in cv. Cappelle Desprez under osmotic stress. Parallel with high H(2)O(2) content of the tissues, certain isoenzymes of covalently bound fraction in cv. Cappelle Desprez showed increased activity suggesting that they may limit the extension of root cell walls in this cultivar.

  10. AtDsPTP1 acts as a negative regulator in osmotic stress signalling during Arabidopsis seed germination and seedling establishment.

    PubMed

    Liu, Rui; Liu, Yinggao; Ye, Nenghui; Zhu, Guohui; Chen, Moxian; Jia, Liguo; Xia, Yiji; Shi, Lu; Jia, Wensuo; Zhang, Jianhua

    2015-03-01

    Dual-specificity protein phosphatases (DsPTPs) target both tyrosine and serine/threonine residues and play roles in plant growth and development. We have characterized an Arabidopsis mutant, dsptp1, which shows a higher seed germination rate and better root elongation under osmotic stress than the wild type. By contrast, its overexpression line, DsPTP1-OE, shows inhibited seed germination and root elongation; and its complemented line, DsPTP1-Com, resembles the wild type and rescues DsPTP1-OE under osmotic stress. Expression of AtDsPTP1 is enhanced by osmotic stress in seed coats, bases of rosette leaves, and roots. Compared with the wild type, the dsptp1 mutant shows increased proline accumulation, reduced malondialdehyde (MDA) content and ion leakage, and enhanced antioxidant enzyme activity in response to osmotic stress. AtDsPTP1 regulates the transcript levels of various dehydration-responsive genes under osmotic stress. Abscisic acid (ABA) accumulation in dsptp1 under osmotic stress is reduced with reduced expression of the ABA-biosynthesis gene NCED3 and increased expression of the ABA-catabolism gene CYP707A4. AtDsPTP1 also regulates the expression of key components in the ABA-signalling pathway. In conclusion, AtDsPTP1 regulates ABA accumulation, and acts as a negative regulator in osmotic stress signalling during Arabidospsis seed germination and seedling establishment.

  11. AtDsPTP1 acts as a negative regulator in osmotic stress signalling during Arabidopsis seed germination and seedling establishment

    PubMed Central

    Liu, Rui; Liu, Yinggao; Ye, Nenghui; Zhu, Guohui; Chen, Moxian; Jia, Liguo; Xia, Yiji; Shi, Lu; Jia, Wensuo; Zhang, Jianhua

    2015-01-01

    Dual-specificity protein phosphatases (DsPTPs) target both tyrosine and serine/threonine residues and play roles in plant growth and development. We have characterized an Arabidopsis mutant, dsptp1, which shows a higher seed germination rate and better root elongation under osmotic stress than the wild type. By contrast, its overexpression line, DsPTP1-OE, shows inhibited seed germination and root elongation; and its complemented line, DsPTP1-Com, resembles the wild type and rescues DsPTP1-OE under osmotic stress. Expression of AtDsPTP1 is enhanced by osmotic stress in seed coats, bases of rosette leaves, and roots. Compared with the wild type, the dsptp1 mutant shows increased proline accumulation, reduced malondialdehyde (MDA) content and ion leakage, and enhanced antioxidant enzyme activity in response to osmotic stress. AtDsPTP1 regulates the transcript levels of various dehydration-responsive genes under osmotic stress. Abscisic acid (ABA) accumulation in dsptp1 under osmotic stress is reduced with reduced expression of the ABA-biosynthesis gene NCED3 and increased expression of the ABA-catabolism gene CYP707A4. AtDsPTP1 also regulates the expression of key components in the ABA-signalling pathway. In conclusion, AtDsPTP1 regulates ABA accumulation, and acts as a negative regulator in osmotic stress signalling during Arabidospsis seed germination and seedling establishment. PMID:25540435

  12. Sorbitol required for cell growth and ethanol production by Zymomonas mobilis under heat, ethanol, and osmotic stresses

    PubMed Central

    2013-01-01

    Background During ethanol fermentation, the ethanologenic bacterium, Zymomonas mobilis may encounter several environmental stresses such as heat, ethanol and osmotic stresses due to high sugar concentration. Although supplementation of the compatible solute sorbitol into culture medium enhances cell growth of Z. mobilis under osmotic stress, the protective function of this compound on cell growth and ethanol production by this organism under other stresses such as heat and ethanol has not been described yet. The formation of sorbitol in Z. mobilis was carried out by the action of the glucose-fructose oxidoreductase (GFOR) enzyme which is regulated by the gfo gene. Therefore, the gfo gene in Z. mobilis was disrupted by the fusion-PCR-based construction technique in the present study, and the protective function of sorbitol on cell growth, protein synthesis and ethanol production by Z. mobilis under heat, ethanol, and osmotic stresses was investigated. Results Based on the fusion-PCR-based construction technique, the gfo gene in Z. mobilis was disrupted. Disruption of the Z. mobilis gfo gene resulted in the reduction of cell growth and ethanol production not only under osmotic stress but also under heat and ethanol stresses. Under these stress conditions, the transcription level of pdc, adhA, and adhB genes involved in the pyruvate-to-ethanol (PE) pathway as well as the synthesis of proteins particularly in Z. mobilis disruptant strain were decreased compared to those of the parent. These findings suggest that sorbitol plays a crucial role not only on cell growth and ethanol production but also on the protection of cellular proteins from stress responses. Conclusion We showed for the first time that supplementation of the compatible solute sorbitol not only promoted cell growth but also increased the ethanol fermentation capability of Z. mobilis under heat, ethanol, and osmotic stresses. Although the molecular mechanism involved in tolerance to stress conditions

  13. Characterization of the mechanism of prolonged adaptation to osmotic stress of Jeotgalibacillus malaysiensis via genome and transcriptome sequencing analyses

    PubMed Central

    Yaakop, Amira Suriaty; Chan, Kok-Gan; Ee, Robson; Lim, Yan Lue; Lee, Siew-Kim; Manan, Fazilah Abd; Goh, Kian Mau

    2016-01-01

    Jeotgalibacillus malaysiensis, a moderate halophilic bacterium isolated from a pelagic area, can endure higher concentrations of sodium chloride (NaCl) than other Jeotgalibacillus type strains. In this study, we therefore chose to sequence and assemble the entire J. malaysiensis genome. This is the first report to provide a detailed analysis of the genomic features of J. malaysiensis, and to perform genetic comparisons between this microorganism and other halophiles. J. malaysiensis encodes a native megaplasmid (pJeoMA), which is greater than 600 kilobases in size, that is absent from other sequenced species of Jeotgalibacillus. Subsequently, RNA-Seq-based transcriptome analysis was utilised to examine adaptations of J. malaysiensis to osmotic stress. Specifically, the eggNOG (evolutionary genealogy of genes: Non-supervised Orthologous Groups) and KEGG (Kyoto Encyclopaedia of Genes and Genomes) databases were used to elucidate the overall effects of osmotic stress on the organism. Generally, saline stress significantly affected carbohydrate, energy, and amino acid metabolism, as well as fatty acid biosynthesis. Our findings also indicate that J. malaysiensis adopted a combination of approaches, including the uptake or synthesis of osmoprotectants, for surviving salt stress. Among these, proline synthesis appeared to be the preferred method for withstanding prolonged osmotic stress in J. malaysiensis. PMID:27641516

  14. Differential effects of salinity and osmotic stress on the plant growth-promoting bacterium Gluconacetobacter diazotrophicus PAL5.

    PubMed

    De Oliveira, Marcos Vinicius V; Intorne, Aline C; Vespoli, Luciano de S; Madureira, Hérika C; Leandro, Mariana R; Pereira, Telma N S; Olivares, Fábio L; Berbert-Molina, Marília A; De Souza Filho, Gonçalo A

    2016-04-01

    Plant growth-promoting bacteria (PGPB) represent a promising alternative to the massive use of industrial fertilizers in agriculture. Gluconacetobacter diazotrophicus is a PGPB that colonizes several plant species. Although this bacterium is able to grow at high sucrose concentrations, its response to environmental stresses is poorly understood. The present study evaluated G. diazotrophicus PAL5 response to stresses caused by sucrose, PEG 400, NaCl, KCl, Na2SO4 and K2SO4. Morphological, ultrastructural and cell growth analysis revealed that G. diazotrophicus PAL5 is more sensitive to salt than osmotic stress. Growth inhibition and strong morphological changes were caused by salinity, in consequence of Cl ion-specific toxic effect. Interestingly, low osmotic stress levels were beneficial for bacterial multiplication, which was able to tolerate high sucrose concentrations, Na2SO4 and K2SO4. Our data show that G. diazotrophicus PAL5 has differential response to osmotic and salinity stress, which may influence its use as inoculant in saline environments. PMID:26809283

  15. Differential effects of salinity and osmotic stress on the plant growth-promoting bacterium Gluconacetobacter diazotrophicus PAL5.

    PubMed

    De Oliveira, Marcos Vinicius V; Intorne, Aline C; Vespoli, Luciano de S; Madureira, Hérika C; Leandro, Mariana R; Pereira, Telma N S; Olivares, Fábio L; Berbert-Molina, Marília A; De Souza Filho, Gonçalo A

    2016-04-01

    Plant growth-promoting bacteria (PGPB) represent a promising alternative to the massive use of industrial fertilizers in agriculture. Gluconacetobacter diazotrophicus is a PGPB that colonizes several plant species. Although this bacterium is able to grow at high sucrose concentrations, its response to environmental stresses is poorly understood. The present study evaluated G. diazotrophicus PAL5 response to stresses caused by sucrose, PEG 400, NaCl, KCl, Na2SO4 and K2SO4. Morphological, ultrastructural and cell growth analysis revealed that G. diazotrophicus PAL5 is more sensitive to salt than osmotic stress. Growth inhibition and strong morphological changes were caused by salinity, in consequence of Cl ion-specific toxic effect. Interestingly, low osmotic stress levels were beneficial for bacterial multiplication, which was able to tolerate high sucrose concentrations, Na2SO4 and K2SO4. Our data show that G. diazotrophicus PAL5 has differential response to osmotic and salinity stress, which may influence its use as inoculant in saline environments.

  16. Characterization of the mechanism of prolonged adaptation to osmotic stress of Jeotgalibacillus malaysiensis via genome and transcriptome sequencing analyses.

    PubMed

    Yaakop, Amira Suriaty; Chan, Kok-Gan; Ee, Robson; Lim, Yan Lue; Lee, Siew-Kim; Manan, Fazilah Abd; Goh, Kian Mau

    2016-01-01

    Jeotgalibacillus malaysiensis, a moderate halophilic bacterium isolated from a pelagic area, can endure higher concentrations of sodium chloride (NaCl) than other Jeotgalibacillus type strains. In this study, we therefore chose to sequence and assemble the entire J. malaysiensis genome. This is the first report to provide a detailed analysis of the genomic features of J. malaysiensis, and to perform genetic comparisons between this microorganism and other halophiles. J. malaysiensis encodes a native megaplasmid (pJeoMA), which is greater than 600 kilobases in size, that is absent from other sequenced species of Jeotgalibacillus. Subsequently, RNA-Seq-based transcriptome analysis was utilised to examine adaptations of J. malaysiensis to osmotic stress. Specifically, the eggNOG (evolutionary genealogy of genes: Non-supervised Orthologous Groups) and KEGG (Kyoto Encyclopaedia of Genes and Genomes) databases were used to elucidate the overall effects of osmotic stress on the organism. Generally, saline stress significantly affected carbohydrate, energy, and amino acid metabolism, as well as fatty acid biosynthesis. Our findings also indicate that J. malaysiensis adopted a combination of approaches, including the uptake or synthesis of osmoprotectants, for surviving salt stress. Among these, proline synthesis appeared to be the preferred method for withstanding prolonged osmotic stress in J. malaysiensis. PMID:27641516

  17. A Golgi-localized MATE transporter mediates iron homoeostasis under osmotic stress in Arabidopsis.

    PubMed

    Seo, Pil Joon; Park, Jungmin; Park, Mi-Jeong; Kim, Youn-Sung; Kim, Sang-Gyu; Jung, Jae-Hoon; Park, Chung-Mo

    2012-03-15

    Iron is an essential micronutrient that acts as a cofactor in a wide variety of pivotal metabolic processes, such as the electron transport chain of respiration, photosynthesis and redox reactions, in plants. However, its overload exceeding the cellular capacity of iron binding and storage is potentially toxic to plant cells by causing oxidative stress and cell death. Consequently, plants have developed versatile mechanisms to maintain iron homoeostasis. Organismal iron content is tightly regulated at the steps of uptake, translocation and compartmentalization. Whereas iron uptake is fairly well understood at the cellular and organismal levels, intracellular and intercellular transport is only poorly understood. In the present study, we show that a MATE (multidrug and toxic compound extrusion) transporter, designated BCD1 (BUSH-AND-CHLOROTIC-DWARF 1), contributes to iron homoeostasis during stress responses and senescence in Arabidopsis. The BCD1 gene is induced by excessive iron, but repressed by iron deficiency. It is also induced by cellular and tissue damage occurring under osmotic stress. The activation-tagged mutant bcd1-1D exhibits leaf chlorosis, a typical symptom of iron deficiency. The chlorotic lesion of the mutant was partially recovered by iron feeding. Whereas the bcd1-1D mutant accumulated a lower amount of iron, the iron level was elevated in the knockout mutant bcd1-1. The BCD1 protein is localized to the Golgi complex. We propose that the BCD1 transporter plays a role in sustaining iron homoeostasis by reallocating excess iron released from stress-induced cellular damage.

  18. Genome-Wide Analysis of the TORC1 and Osmotic Stress Signaling Network in Saccharomyces cerevisiae

    PubMed Central

    Worley, Jeremy; Sullivan, Arron; Luo, Xiangxia; Kaplan, Matthew E.; Capaldi, Andrew P.

    2015-01-01

    The Target of Rapamycin kinase Complex I (TORC1) is a master regulator of cell growth and metabolism in eukaryotes. Studies in yeast and human cells have shown that nitrogen/amino acid starvation signals act through Npr2/Npr3 and the small GTPases Gtr1/Gtr2 (Rags in humans) to inhibit TORC1. However, it is unclear how other stress and starvation stimuli inhibit TORC1, and/or act in parallel with the TORC1 pathway, to control cell growth. To help answer these questions, we developed a novel automated pipeline and used it to measure the expression of a TORC1-dependent ribosome biogenesis gene (NSR1) during osmotic stress in 4700 Saccharomyces cerevisiae strains from the yeast knock-out collection. This led to the identification of 440 strains with significant and reproducible defects in NSR1 repression. The cell growth control and stress response proteins deleted in these strains form a highly connected network, including 56 proteins involved in vesicle trafficking and vacuolar function; 53 proteins that act downstream of TORC1 according to a rapamycin assay—including components of the HDAC Rpd3L, Elongator, and the INO80, CAF-1 and SWI/SNF chromatin remodeling complexes; over 100 proteins involved in signaling and metabolism; and 17 proteins that directly interact with TORC1. These data provide an important resource for labs studying cell growth control and stress signaling, and demonstrate the utility of our new, and easily adaptable, method for mapping gene regulatory networks. PMID:26681516

  19. Microtubules Buckling and Bundling under Osmotic Stress: A Synchrotron X-ray Diffraction Study Probing Inter-Protofilament Bond Strength

    NASA Astrophysics Data System (ADS)

    Needleman, D. J.; Ojeda-Lopez, M.; Ewert, K.; Jones, J. B.; Miller, H. P.; Wilson, L.; Safinya, C. R.

    2004-03-01

    Microtubules (MTs) are hollow cylindrical polymers composed of ab tubulin protein heterodimers that align end-to-end in the MT wall, forming linear protofilaments that interact laterally. Placing MTs under osmotic pressure causes them to reversibly buckle to a noncircular shape and pack into rectangular bundles at a critical osmotic pressure; further increases in pressure continue to distort MTs elastically. At higher osmotic pressures stressing polymers may be forced into the MT lumen causing the MTs to revert to a circle cross-section and pack into hexagonal bundles. This SAXRD-osmotic stress study provides a probe of the inter-protofilament bond strength and gives insight into the mechanisms by which microtubule associated proteins and the cancer chemotherapeutic drug Taxol stabilize MTs. We present further measurements of the mechanical properties of MT walls, MT-MT interactions, and the entry of polymers into the microtubule lumen. Supported by NSF DMR- 0203755, NIH GM-59288 and NS-13560, and CTS-0103516. SSRL is supported by the U.S. DOE.

  20. Generation of Wheat Transcription Factor FOX Rice Lines and Systematic Screening for Salt and Osmotic Stress Tolerance

    PubMed Central

    Zhang, Qian; Liu, Yayun; Zhu, Butuo; Cao, Jian; Li, Zhanpeng; Han, Longzhi; Jia, Jizeng; Zhao, Guangyao; Sun, Xuehui

    2015-01-01

    Transcription factors (TFs) play important roles in plant growth, development, and responses to environmental stress. In this study, we collected 1,455 full-length (FL) cDNAs of TFs, representing 45 families, from wheat and its relatives Triticum urartu, Aegilops speltoides, Aegilops tauschii, Triticum carthlicum, and Triticum aestivum. More than 15,000 T0 TF FOX (Full-length cDNA Over-eXpressing) rice lines were generated; of these, 10,496 lines set seeds. About 14.88% of the T0 plants showed obvious phenotypic changes. T1 lines (5,232 lines) were screened for salt and osmotic stress tolerance using 150 mM NaCl and 20% (v/v) PEG-4000, respectively. Among them, five lines (591, 746, 1647, 1812, and J4065) showed enhanced salt stress tolerance, five lines (591, 746, 898, 1078, and 1647) showed enhanced osmotic stress tolerance, and three lines (591, 746, and 1647) showed both salt and osmotic stress tolerance. Further analysis of the T-DNA flanking sequences showed that line 746 over-expressed TaEREB1, line 898 over-expressed TabZIPD, and lines 1812 and J4065 over-expressed TaOBF1a and TaOBF1b, respectively. The enhanced salt and osmotic stress tolerance of lines 898 and 1812 was confirmed by retransformation of the respective genes. Our results demonstrate that a heterologous FOX system may be used as an alternative genetic resource for the systematic functional analysis of the wheat genome. PMID:26176782

  1. Expression of Hsp70 in the mud crab, Scylla paramamosain in response to bacterial, osmotic, and thermal stress.

    PubMed

    Yang, Ya'nan; Ye, Haihui; Huang, Huiyang; Li, Shaojing; Liu, Xueliang; Zeng, Xianglan; Gong, Jie

    2013-07-01

    Hsp70 is involved in immune responses against infectious pathogens, thermal, and osmotic stress. To understand the immune defense mechanisms of the mud crab Scylla paramamosain, genomic DNA, transcript level and antimicrobial activities of Hsp70 were analyzed. Genomic DNA sequence analysis revealed one intron in this gene. Furthermore, six SNPs were detected by direct sequencing from 30 samples in this study. Hsp70 mRNA was expressed in almost all tissues examined. By using the quantitative real-time PCR, the expression level of Hsp70 in hemocytes showed a clear time-dependent expression pattern during the 96 h after stimulated by Vibrio alginolyticus. Then, recombinant Hsp70 was obtained by using the bacterial expression system, but no obvious antimicrobial activity has been found for the protein in the antimicrobial tests. After osmotic stress, the expression of Hsp70 in hemocytes showed this gene was induced by the high salinity (30 ‰) for at least 96 h. Hsp70 mRNA expression in hemocytes was analyzed after thermal stress at 6 h, the highest and the lowest expression level of Hsp70 was observed at 36 and 15 °C, respectively. These results indicated that Hsp70 was inducible by bacterial, osmotic, and thermal stress, and therefore plays an important role, different from antibacterial peptide, in innate immune responses of S. paramamosain. PMID:23325574

  2. A Novel Transcription Factor, ERD15 (Early Responsive to Dehydration 15), Connects Endoplasmic Reticulum Stress with an Osmotic Stress-induced Cell Death Signal*

    PubMed Central

    Alves, Murilo S.; Reis, Pedro A. B.; Dadalto, Silvana P.; Faria, Jerusa A. Q. A.; Fontes, Elizabeth P. B.; Fietto, Luciano G.

    2011-01-01

    As in all other eukaryotic organisms, endoplasmic reticulum (ER) stress triggers the evolutionarily conserved unfolded protein response in soybean, but it also communicates with other adaptive signaling responses, such as osmotic stress-induced and ER stress-induced programmed cell death. These two signaling pathways converge at the level of gene transcription to activate an integrated cascade that is mediated by N-rich proteins (NRPs). Here, we describe a novel transcription factor, GmERD15 (Glycine max Early Responsive to Dehydration 15), which is induced by ER stress and osmotic stress to activate the expression of NRP genes. GmERD15 was isolated because of its capacity to stably associate with the NRP-B promoter in yeast. It specifically binds to a 187-bp fragment of the NRP-B promoter in vitro and activates the transcription of a reporter gene in yeast. Furthermore, GmERD15 was found in both the cytoplasm and the nucleus, and a ChIP assay revealed that it binds to the NRP-B promoter in vivo. Expression of GmERD15 in soybean protoplasts activated the NRP-B promoter and induced expression of the NRP-B gene. Collectively, these results support the interpretation that GmERD15 functions as an upstream component of stress-induced NRP-B-mediated signaling to connect stress in the ER to an osmotic stress-induced cell death signal. PMID:21482825

  3. Calcineurin B-Like Protein-Interacting Protein Kinase CIPK21 Regulates Osmotic and Salt Stress Responses in Arabidopsis.

    PubMed

    Pandey, Girdhar K; Kanwar, Poonam; Singh, Amarjeet; Steinhorst, Leonie; Pandey, Amita; Yadav, Akhlilesh K; Tokas, Indu; Sanyal, Sibaji K; Kim, Beom-Gi; Lee, Sung-Chul; Cheong, Yong-Hwa; Kudla, Jörg; Luan, Sheng

    2015-09-01

    The role of calcium-mediated signaling has been extensively studied in plant responses to abiotic stress signals. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) constitute a complex signaling network acting in diverse plant stress responses. Osmotic stress imposed by soil salinity and drought is a major abiotic stress that impedes plant growth and development and involves calcium-signaling processes. In this study, we report the functional analysis of CIPK21, an Arabidopsis (Arabidopsis thaliana) CBL-interacting protein kinase, ubiquitously expressed in plant tissues and up-regulated under multiple abiotic stress conditions. The growth of a loss-of-function mutant of CIPK21, cipk21, was hypersensitive to high salt and osmotic stress conditions. The calcium sensors CBL2 and CBL3 were found to physically interact with CIPK21 and target this kinase to the tonoplast. Moreover, preferential localization of CIPK21 to the tonoplast was detected under salt stress condition when coexpressed with CBL2 or CBL3. These findings suggest that CIPK21 mediates responses to salt stress condition in Arabidopsis, at least in part, by regulating ion and water homeostasis across the vacuolar membranes. PMID:26198257

  4. Calcineurin B-Like Protein-Interacting Protein Kinase CIPK21 Regulates Osmotic and Salt Stress Responses in Arabidopsis1

    PubMed Central

    Pandey, Girdhar K.; Kanwar, Poonam; Singh, Amarjeet; Steinhorst, Leonie; Pandey, Amita; Yadav, Akhlilesh K.; Tokas, Indu; Sanyal, Sibaji K.; Kim, Beom-Gi; Lee, Sung-Chul; Cheong, Yong-Hwa; Kudla, Jörg; Luan, Sheng

    2015-01-01

    The role of calcium-mediated signaling has been extensively studied in plant responses to abiotic stress signals. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) constitute a complex signaling network acting in diverse plant stress responses. Osmotic stress imposed by soil salinity and drought is a major abiotic stress that impedes plant growth and development and involves calcium-signaling processes. In this study, we report the functional analysis of CIPK21, an Arabidopsis (Arabidopsis thaliana) CBL-interacting protein kinase, ubiquitously expressed in plant tissues and up-regulated under multiple abiotic stress conditions. The growth of a loss-of-function mutant of CIPK21, cipk21, was hypersensitive to high salt and osmotic stress conditions. The calcium sensors CBL2 and CBL3 were found to physically interact with CIPK21 and target this kinase to the tonoplast. Moreover, preferential localization of CIPK21 to the tonoplast was detected under salt stress condition when coexpressed with CBL2 or CBL3. These findings suggest that CIPK21 mediates responses to salt stress condition in Arabidopsis, at least in part, by regulating ion and water homeostasis across the vacuolar membranes. PMID:26198257

  5. Plasmolysis and cell wall deposition in wheat root hairs under osmotic stress.

    PubMed

    Volgger, Michael; Lang, Ingeborg; Ovecka, Miroslav; Lichtscheidl, Irene

    2010-07-01

    We analysed cell wall formation in rapidly growing root hairs of Triticum aestivum under reduced turgor pressure by application of iso- and hypertonic mannitol solutions. Our experimental series revealed an osmotic value of wheat root hairs of 150 mOsm. In higher concentrations (200-650 mOsm), exocytosis of wall material and its deposition, as well as callose synthesis, still occurred, but the elongation of root hairs was stopped. Even after strong plasmolysis when the protoplast retreated from the cell wall, deposits of wall components were observed. Labelling with DiOC(6)(3) and FM1-43 revealed numerous Hechtian strands that spanned the plasmolytic space. Interestingly, the Hechtian strands also led towards the very tip of the root hair suggesting strong anchoring sites that are readily incorporated into the new cell wall. Long-term treatments of over 24 h in mannitol solutions (150-450 mOsm) resulted in reduced growth and concentration-dependent shortening of root hairs. However, the formation of new root hairs does occur in all concentrations used. This reflects the extraordinary potential of wheat root cells to adapt to environmental stress situations.

  6. Plasmolysis and cell wall deposition in wheat root hairs under osmotic stress.

    PubMed

    Volgger, Michael; Lang, Ingeborg; Ovecka, Miroslav; Lichtscheidl, Irene

    2010-07-01

    We analysed cell wall formation in rapidly growing root hairs of Triticum aestivum under reduced turgor pressure by application of iso- and hypertonic mannitol solutions. Our experimental series revealed an osmotic value of wheat root hairs of 150 mOsm. In higher concentrations (200-650 mOsm), exocytosis of wall material and its deposition, as well as callose synthesis, still occurred, but the elongation of root hairs was stopped. Even after strong plasmolysis when the protoplast retreated from the cell wall, deposits of wall components were observed. Labelling with DiOC(6)(3) and FM1-43 revealed numerous Hechtian strands that spanned the plasmolytic space. Interestingly, the Hechtian strands also led towards the very tip of the root hair suggesting strong anchoring sites that are readily incorporated into the new cell wall. Long-term treatments of over 24 h in mannitol solutions (150-450 mOsm) resulted in reduced growth and concentration-dependent shortening of root hairs. However, the formation of new root hairs does occur in all concentrations used. This reflects the extraordinary potential of wheat root cells to adapt to environmental stress situations. PMID:19533299

  7. Adaptation of Staphylococcus xylosus to Nutrients and Osmotic Stress in a Salted Meat Model.

    PubMed

    Vermassen, Aurore; Dordet-Frisoni, Emilie; de La Foye, Anne; Micheau, Pierre; Laroute, Valérie; Leroy, Sabine; Talon, Régine

    2016-01-01

    Staphylococcus xylosus is commonly used as starter culture for meat fermentation. Its technological properties are mainly characterized in vitro, but the molecular mechanisms for its adaptation to meat remain unknown. A global transcriptomic approach was used to determine these mechanisms. S. xylosus modulated the expression of about 40-50% of the total genes during its growth and survival in the meat model. The expression of many genes involved in DNA machinery and cell division, but also in cell lysis, was up-regulated. Considering that the S. xylosus population remained almost stable between 24 and 72 h of incubation, our results suggest a balance between cell division and cell lysis in the meat model. The expression of many genes encoding enzymes involved in glucose and lactate catabolism was up-regulated and revealed that glucose and lactate were used simultaneously. S. xylosus seemed to adapt to anaerobic conditions as revealed by the overexpression of two regulatory systems and several genes encoding cofactors required for respiration. In parallel, genes encoding transport of peptides and peptidases that could furnish amino acids were up-regulated and thus concomitantly a lot of genes involved in amino acid synthesis were down-regulated. Several genes involved in glutamate homeostasis were up-regulated. Finally, S. xylosus responded to the osmotic stress generated by salt added to the meat model by overexpressing genes involved in transport and synthesis of osmoprotectants, and Na(+) and H(+) extrusion.

  8. Growth and microtubule orientation of Zea mays roots subjected to osmotic stress

    NASA Technical Reports Server (NTRS)

    Blancaflor, E. B.; Hasenstein, K. H.

    1995-01-01

    Previous work has shown that microtubule (MT) reorientation follows the onset of growth inhibition on the lower side of graviresponding roots, indicating that growth reduction can occur independently of MT reorientation. To test this observation further, we examined whether the reduction in growth in response to osmotic stress is correlated with MT reorientation. The distribution and rate of growth in maize roots exposed to 350 mOsm sorbitol and KCl or 5 mM Mes/Tris buffer were measured with a digitizer. After various times roots were processed for indirect immunofluorescence microscopy. Application of sorbitol or KCl had no effect on the organization of MTs in the apical 2 mm of the root but resulted in striking and different effects in the basal region of the root. Sorbitol treatment caused rapid appearance of oval to circular holes in the microtubular array that persisted for at least 9 h. Between 30 min and 4 h of submersion in KCl, MTs in cortical cells 4 mm and farther from the quiescent center began to reorient oblique to the longitudinal axis. After 9 h, the alignment of MTs had shifted to parallel to the root axis but MTs of the epidermal cells remained transverse. In KCl-treated roots MT reorientation appeared to follow a pattern of development similar to that in controls but without elongation. Our data provide additional evidence that MT reorientation is not the cause but a consequence of growth inhibition.

  9. Adaptation of Staphylococcus xylosus to Nutrients and Osmotic Stress in a Salted Meat Model.

    PubMed

    Vermassen, Aurore; Dordet-Frisoni, Emilie; de La Foye, Anne; Micheau, Pierre; Laroute, Valérie; Leroy, Sabine; Talon, Régine

    2016-01-01

    Staphylococcus xylosus is commonly used as starter culture for meat fermentation. Its technological properties are mainly characterized in vitro, but the molecular mechanisms for its adaptation to meat remain unknown. A global transcriptomic approach was used to determine these mechanisms. S. xylosus modulated the expression of about 40-50% of the total genes during its growth and survival in the meat model. The expression of many genes involved in DNA machinery and cell division, but also in cell lysis, was up-regulated. Considering that the S. xylosus population remained almost stable between 24 and 72 h of incubation, our results suggest a balance between cell division and cell lysis in the meat model. The expression of many genes encoding enzymes involved in glucose and lactate catabolism was up-regulated and revealed that glucose and lactate were used simultaneously. S. xylosus seemed to adapt to anaerobic conditions as revealed by the overexpression of two regulatory systems and several genes encoding cofactors required for respiration. In parallel, genes encoding transport of peptides and peptidases that could furnish amino acids were up-regulated and thus concomitantly a lot of genes involved in amino acid synthesis were down-regulated. Several genes involved in glutamate homeostasis were up-regulated. Finally, S. xylosus responded to the osmotic stress generated by salt added to the meat model by overexpressing genes involved in transport and synthesis of osmoprotectants, and Na(+) and H(+) extrusion. PMID:26903967

  10. Adaptation of Staphylococcus xylosus to Nutrients and Osmotic Stress in a Salted Meat Model

    PubMed Central

    Vermassen, Aurore; Dordet-Frisoni, Emilie; de La Foye, Anne; Micheau, Pierre; Laroute, Valérie; Leroy, Sabine; Talon, Régine

    2016-01-01

    Staphylococcus xylosus is commonly used as starter culture for meat fermentation. Its technological properties are mainly characterized in vitro, but the molecular mechanisms for its adaptation to meat remain unknown. A global transcriptomic approach was used to determine these mechanisms. S. xylosus modulated the expression of about 40–50% of the total genes during its growth and survival in the meat model. The expression of many genes involved in DNA machinery and cell division, but also in cell lysis, was up-regulated. Considering that the S. xylosus population remained almost stable between 24 and 72 h of incubation, our results suggest a balance between cell division and cell lysis in the meat model. The expression of many genes encoding enzymes involved in glucose and lactate catabolism was up-regulated and revealed that glucose and lactate were used simultaneously. S. xylosus seemed to adapt to anaerobic conditions as revealed by the overexpression of two regulatory systems and several genes encoding cofactors required for respiration. In parallel, genes encoding transport of peptides and peptidases that could furnish amino acids were up-regulated and thus concomitantly a lot of genes involved in amino acid synthesis were down-regulated. Several genes involved in glutamate homeostasis were up-regulated. Finally, S. xylosus responded to the osmotic stress generated by salt added to the meat model by overexpressing genes involved in transport and synthesis of osmoprotectants, and Na+ and H+ extrusion. PMID:26903967

  11. Transformation of Oats and Its Application to Improving Osmotic Stress Tolerance

    NASA Astrophysics Data System (ADS)

    Maqbool, Shahina B.; Zhong, Heng; Oraby, Hesham F.; Sticklen, Mariam B.

    Oat (Avena sativa L.), a worldwide temperate cereal crop, is deficient in tolerance to osmotic stress due to drought and/or salinity. To genetically transform the available commercial oat cultivars, a genotype-independent and efficient regeneration system from shoot apical meristems was developed using four oat cultivars: Prairie, Porter, Ogle, and Pacer. All these oat cultivars generated a genotype-independent in vitro differentiated multiple shoots from shoot apical meristems at a high frequency. Using this system, three oat cultivars were genetically co-transformed with pBY520 (containing hva1 and bar) and pAct1-D (containing gus) using biolistic™ bombardment. Transgenic plants were selected and regenerated using herbicide resistance and GUS as a marker. Molecular and biochemical analyses of putative transgenic plants confirmed the co-integration of hva1 and bar genes with a frequency of 100%, and 61.6% of the transgenic plants carried all three genes (hva1, bar and gus). Further analyses of R0, R1, and R2 progenies confirmed stable integration, expression, and Mendalian inheritance for all transgenes. Histochemical analysis of GUS protein in transgenic plants showed a high level of GUS expression in vascular tissues and in the pollen grains of mature flowers. Immunochemical analysis of transgenic plants indicated a constitutive expression of hva1 at all developmental stages. However, the level of HVA1 was higher during the early seedling stages.

  12. Osmotic Stress Confers Enhanced Cell Integrity to Hydrostatic Pressure but Impairs Growth in Alcanivorax borkumensis SK2.

    PubMed

    Scoma, Alberto; Boon, Nico

    2016-01-01

    Alcanivorax is a hydrocarbonoclastic genus dominating oil spills worldwide. While its presence has been detected in oil-polluted seawaters, marine sediment and salt marshes under ambient pressure, its presence in deep-sea oil-contaminated environments is negligible. Recent laboratory studies highlighted the piezosensitive nature of some Alcanivorax species, whose growth yields are highly impacted by mild hydrostatic pressures (HPs). In the present study, osmotic stress was used as a tool to increase HP resistance in the type strain Alcanivorax borkumensis SK2. Control cultures grown under standard conditions of salinity and osmotic pressure with respect to seawater (35.6 ppt or 1136 mOsm kg(-1), respectively) were compared with cultures subjected to hypo- and hyperosmosis (330 and 1720 mOsm kg(-1), or 18 and 62 ppt in salinity, equivalent to brackish and brine waters, respectively), under atmospheric or increased HP (0.1 and 10 MPa). Osmotic stress had a remarkably positive impact on cell metabolic activity in terms of CO2 production (thus, oil bioremediation) and O2 respiration under hyperosmosis, as acclimation to high salinity enhanced cell activity under 10 MPa by a factor of 10. Both osmotic shocks significantly enhanced cell protection by reducing membrane damage under HP, with cell integrities close to 100% under hyposmosis. The latter was likely due to intracellular water-reclamation as no trace of the piezolyte ectoine was found, contrary to hyperosmosis. Notably, ectoine production was equivalent at 0.1 MPa in hyperosmosis-acclimated cells and at 10 MPa under isosmotic conditions. While stimulating cell metabolism and enhancing cell integrity, osmotic stress had always a negative impact on culture growth and performance. No net growth was observed during 4-days incubation tests, and CO2:O2 ratios and pH values indicated that culture performance in terms of hydrocarbon degradation was lowered by the effects of osmotic stress alone or combined with

  13. Osmotic Stress Confers Enhanced Cell Integrity to Hydrostatic Pressure but Impairs Growth in Alcanivorax borkumensis SK2

    PubMed Central

    Scoma, Alberto; Boon, Nico

    2016-01-01

    Alcanivorax is a hydrocarbonoclastic genus dominating oil spills worldwide. While its presence has been detected in oil-polluted seawaters, marine sediment and salt marshes under ambient pressure, its presence in deep-sea oil-contaminated environments is negligible. Recent laboratory studies highlighted the piezosensitive nature of some Alcanivorax species, whose growth yields are highly impacted by mild hydrostatic pressures (HPs). In the present study, osmotic stress was used as a tool to increase HP resistance in the type strain Alcanivorax borkumensis SK2. Control cultures grown under standard conditions of salinity and osmotic pressure with respect to seawater (35.6 ppt or 1136 mOsm kg-1, respectively) were compared with cultures subjected to hypo- and hyperosmosis (330 and 1720 mOsm kg-1, or 18 and 62 ppt in salinity, equivalent to brackish and brine waters, respectively), under atmospheric or increased HP (0.1 and 10 MPa). Osmotic stress had a remarkably positive impact on cell metabolic activity in terms of CO2 production (thus, oil bioremediation) and O2 respiration under hyperosmosis, as acclimation to high salinity enhanced cell activity under 10 MPa by a factor of 10. Both osmotic shocks significantly enhanced cell protection by reducing membrane damage under HP, with cell integrities close to 100% under hyposmosis. The latter was likely due to intracellular water-reclamation as no trace of the piezolyte ectoine was found, contrary to hyperosmosis. Notably, ectoine production was equivalent at 0.1 MPa in hyperosmosis-acclimated cells and at 10 MPa under isosmotic conditions. While stimulating cell metabolism and enhancing cell integrity, osmotic stress had always a negative impact on culture growth and performance. No net growth was observed during 4-days incubation tests, and CO2:O2 ratios and pH values indicated that culture performance in terms of hydrocarbon degradation was lowered by the effects of osmotic stress alone or combined with increased HP

  14. Osmotic Stress Confers Enhanced Cell Integrity to Hydrostatic Pressure but Impairs Growth in Alcanivorax borkumensis SK2.

    PubMed

    Scoma, Alberto; Boon, Nico

    2016-01-01

    Alcanivorax is a hydrocarbonoclastic genus dominating oil spills worldwide. While its presence has been detected in oil-polluted seawaters, marine sediment and salt marshes under ambient pressure, its presence in deep-sea oil-contaminated environments is negligible. Recent laboratory studies highlighted the piezosensitive nature of some Alcanivorax species, whose growth yields are highly impacted by mild hydrostatic pressures (HPs). In the present study, osmotic stress was used as a tool to increase HP resistance in the type strain Alcanivorax borkumensis SK2. Control cultures grown under standard conditions of salinity and osmotic pressure with respect to seawater (35.6 ppt or 1136 mOsm kg(-1), respectively) were compared with cultures subjected to hypo- and hyperosmosis (330 and 1720 mOsm kg(-1), or 18 and 62 ppt in salinity, equivalent to brackish and brine waters, respectively), under atmospheric or increased HP (0.1 and 10 MPa). Osmotic stress had a remarkably positive impact on cell metabolic activity in terms of CO2 production (thus, oil bioremediation) and O2 respiration under hyperosmosis, as acclimation to high salinity enhanced cell activity under 10 MPa by a factor of 10. Both osmotic shocks significantly enhanced cell protection by reducing membrane damage under HP, with cell integrities close to 100% under hyposmosis. The latter was likely due to intracellular water-reclamation as no trace of the piezolyte ectoine was found, contrary to hyperosmosis. Notably, ectoine production was equivalent at 0.1 MPa in hyperosmosis-acclimated cells and at 10 MPa under isosmotic conditions. While stimulating cell metabolism and enhancing cell integrity, osmotic stress had always a negative impact on culture growth and performance. No net growth was observed during 4-days incubation tests, and CO2:O2 ratios and pH values indicated that culture performance in terms of hydrocarbon degradation was lowered by the effects of osmotic stress alone or combined with

  15. Changes of cytosolic Ca(2+) fluorescence intensity and plasma membrane calcium channels of maize root tip cells under osmotic stress.

    PubMed

    Liu, Zihui; Ma, Zhenyu; Guo, Xiulin; Shao, Hongbo; Cui, Qiuhua; Song, Weiyi

    2010-01-01

    The changes of cytosolic Ca(2+) fluorescence intensity and the activities of calcium channel of primary maize root tip cells induced by PEG6000 or abscisic acid (ABA) were studied by both confocal techniques and the whole-cell patch clamping in this study. The Ca(2+) fluorescence intensity increased while treated with PEG or ABA within 10 min, illuminating that Ca(2+) participated in the process of ABA signal transduction. For further proving the mechanism and origin of cytosolic Ca(2+) increase induced by PEG treatments, N,N,N',N'-tetraacetic acid (EGTA), Verapamil (VP) and Trifluoperazine (TFP) were added to the PEG solution in the experiments separately. The results showed that Ca(2+) fluorescence intensity induced by PEG was suppressed by both EGTA and VP obviously in the root tip cells. The Ca(2+) fluorescence intensity of plants changed after the addition of CaM inhibitor TFP while subjected to osmotic stress, which seemed to show that CaM participated in the process of signal transduction of osmotic stress too. The mechanism about it is unknown today. Further, a hyperpolarization-activated calcium permeable channel was recorded in plasma membrane of maize root tip cells. The Ca(2+) current (I(Ca)) intensity increased remarkably after PEG treatment, and the open voltage of the calcium conductance increased. Similar changes could be observed after ABA treatment, but the channel opened earlier and the current intensity was stronger than that of PEG treatment. The activation of calcium channel initiated by PEG strongly was inhibited by EGTA, VP or TFP respectively. The results revealed that Ca(2+) participated in the signals transduction process of osmotic stress, and the cytosolic free Ca(2+) increase by osmotic stress mainly came from the extracellular, and some came from the release of cytoplasmic calcium pool.

  16. Synchrotron X-ray Diffraction Study of Microtubules Buckling and Bundling under Osmotic Stress: A Probe of Interprotofilament Interactions

    NASA Astrophysics Data System (ADS)

    Needleman, Daniel J.; Ojeda-Lopez, Miguel A.; Raviv, Uri; Ewert, Kai; Jones, Jayna B.; Miller, Herbert P.; Wilson, Leslie; Safinya, Cyrus R.

    2004-11-01

    Microtubules are hollow cylinders composed of tubulin heterodimers that stack into linear protofilaments that interact laterally to form the microtubule wall. Synchrotron x-ray diffraction of microtubules under increasing osmotic stress shows they transition to rectangular bundles with noncircular buckled cross sections, followed by hexagonally packed bundles. This new technique probes the strength of interprotofilamen bonds, yielding insight into the mechanism by which associated proteins and the chemotherapy drug taxol stabilize microtubules.

  17. Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast

    SciTech Connect

    Shen, B.; Hohmann, S.; Jensen, R.G.; Bohnert, H.J.

    1999-09-01

    For many organisms there is a correlation between increases of metabolites and osmotic stress tolerance, but the mechanisms that cause this protection are not clear. To understand the role of polyols, genes for bacterial mannitol-1-P dehydrogenase and apply sorbitol-6-P dehydrogenase were introduced into a Saccharomyces cerevisiae mutant deficient in glycerol synthesis. Sorbitol and mannitol provided some protection, but less than that generated by a similar concentration of glycerol generated by glycerol-3-P dehydrogenase (GPD1). Reduced protection by polyols suggested that glycerol had specific functions for which mannitol and sorbitol could not substitute, and that the absolute amount of the accumulating osmoticum might not be crucial. The retention of glycerol and mannitol-sorbitol, respectively, was a major difference. During salt stress, cells retained more of the six-carbon polyois than glycerol. The authors suggest that the loss of {gt} 98% of the glycerol synthesized could provide a safety value that dissipates reducing power, which a similar high intracellular concentration of retained polyois would be less protective. To understand the role of glycerol in salt tolerance, salt-tolerant suppressor mutants were isolated from the glycerol-deficient strain. One mutant, sr13, partially suppressed the salt-sensitive phenotype of the glycerol-deficient line, probably due to a doubling of [K{sup +}] accumulating during stress. The authors compare these results to the osmotic adjustment concept typically applied to accumulating metabolites in plants. The accumulation of polyois may have dual functions: facilitating osmotic adjustment and supporting redox control.

  18. Osmotic stress induces the phosphorylation of WNK4 Ser575 via the p38MAPK-MK pathway

    PubMed Central

    Maruyama, Junichi; Kobayashi, Yumie; Umeda, Tsuyoshi; Vandewalle, Alain; Takeda, Kohsuke; Ichijo, Hidenori; Naguro, Isao

    2016-01-01

    The With No lysine [K] (WNK)-Ste20-related proline/alanine-rich kinase (SPAK)/oxidative stress-responsive kinase 1 (OSR1) pathway has been reported to be a crucial signaling pathway for triggering pseudohypoaldosteronism type II (PHAII), an autosomal dominant hereditary disease that is characterized by hypertension. However, the molecular mechanism(s) by which the WNK-SPAK/OSR1 pathway is regulated remain unclear. In this report, we identified WNK4 as an interacting partner of a recently identified MAP3K, apoptosis signal-regulating kinase 3 (ASK3). We found that WNK4 is phosphorylated in an ASK3 kinase activity-dependent manner. By exploring the ASK3-dependent phosphorylation sites, we identified Ser575 as a novel phosphorylation site in WNK4 by LC-MS/MS analysis. ASK3-dependent WNK4 Ser575 phosphorylation was mediated by the p38MAPK-MAPK-activated protein kinase (MK) pathway. Osmotic stress, as well as hypotonic low-chloride stimulation, increased WNK4 Ser575 phosphorylation via the p38MAPK-MK pathway. ASK3 was required for the p38MAPK activation induced by hypotonic stimulation but was not required for that induced by hypertonic stimulation or hypotonic low-chloride stimulation. Our results suggest that the p38MAPK-MK pathway might regulate WNK4 in an osmotic stress-dependent manner but its upstream regulators might be divergent depending on the types of osmotic stimuli. PMID:26732173

  19. A Novel Soybean Intrinsic Protein Gene, GmTIP2;3, Involved in Responding to Osmotic Stress

    PubMed Central

    Zhang, Dayong; Tong, Jinfeng; He, Xiaolan; Xu, Zhaolong; Xu, Ling; Wei, Peipei; Huang, Yihong; Brestic, Marian; Ma, Hongxiang; Shao, Hongbo

    2016-01-01

    Water is essential for plant growth and development. Water deficiency leads to loss of yield and decreased crop quality. To understand water transport mechanisms in plants, we cloned and characterized a novel tonoplast intrinsic protein (TIP) gene from soybean with the highest similarity to TIP2-type from other plants, and thus designated GmTIP2;3. The protein sequence contains two conserved NPA motifs and six transmembrane domains. The expression analysis indicated that this gene was constitutively expressed in all detected tissues, with higher levels in the root, stem and pod, and the accumulation of GmTIP2;3 transcript showed a significant response to osmotic stresses, including 20% PEG6000 (polyethylene glycol) and 100 μM ABA (abscisic acid) treatments. The promoter-GUS (glucuronidase) activity analysis suggested that GmTIP2;3 was also expressed in the root, stem, and leaf, and preferentially expressed in the stele of root and stem, and the core promoter region was 1000 bp in length, located upstream of the ATG start codon. The GUS tissue and induced expression observations were consistent with the findings in soybean. In addition, subcellular localization showed that GmTIP2;3 was a plasma membrane-localized protein. Yeast heterologous expression revealed that GmTIP2;3 could improve tolerance to osmotic stress in yeast cells. Integrating these results, GmTIP2;3 might play an important role in response to osmotic stress in plants. PMID:26779248

  20. Dynamic regulation of the root hydraulic conductivity of barley plants in response to salinity/osmotic stress.

    PubMed

    Kaneko, Toshiyuki; Horie, Tomoaki; Nakahara, Yoshiki; Tsuji, Nobuya; Shibasaka, Mineo; Katsuhara, Maki

    2015-05-01

    Salinity stress significantly reduces the root hydraulic conductivity (Lpr) of several plant species including barley (Hordeum vulgare). Here we characterized changes in the Lpr of barley plants in response to salinity/osmotic stress in detail using a pressure chamber. Salt-tolerant and intermediate barley cultivars, K305 and Haruna-nijyo, but not a salt-sensitive cultivar, I743, exhibited characteristic time-dependent Lpr changes induced by 100 mM NaCl. An identical response was evoked by isotonic sorbitol, indicating that this phenomenon was triggered by osmotic imbalances. Further examination of this mechanism using barley cv. Haruna-nijyo plants in combination with the use of various inhibitors suggested that various cellular processes such as protein phosphorylation/dephosphorylation and membrane internalization appear to be involved. Interestingly, the three above-mentioned barley cultivars did not exhibit a remarkable difference in root cell sap osmolality under hypertonic conditions, in contrast to the case of Lpr. The possible biological significance of the regulation of Lpr in barley plants upon salinity/osmotic stress is discussed.

  1. A Novel Soybean Intrinsic Protein Gene, GmTIP2;3, Involved in Responding to Osmotic Stress.

    PubMed

    Zhang, Dayong; Tong, Jinfeng; He, Xiaolan; Xu, Zhaolong; Xu, Ling; Wei, Peipei; Huang, Yihong; Brestic, Marian; Ma, Hongxiang; Shao, Hongbo

    2015-01-01

    Water is essential for plant growth and development. Water deficiency leads to loss of yield and decreased crop quality. To understand water transport mechanisms in plants, we cloned and characterized a novel tonoplast intrinsic protein (TIP) gene from soybean with the highest similarity to TIP2-type from other plants, and thus designated GmTIP2;3. The protein sequence contains two conserved NPA motifs and six transmembrane domains. The expression analysis indicated that this gene was constitutively expressed in all detected tissues, with higher levels in the root, stem and pod, and the accumulation of GmTIP2;3 transcript showed a significant response to osmotic stresses, including 20% PEG6000 (polyethylene glycol) and 100 μM ABA (abscisic acid) treatments. The promoter-GUS (glucuronidase) activity analysis suggested that GmTIP2;3 was also expressed in the root, stem, and leaf, and preferentially expressed in the stele of root and stem, and the core promoter region was 1000 bp in length, located upstream of the ATG start codon. The GUS tissue and induced expression observations were consistent with the findings in soybean. In addition, subcellular localization showed that GmTIP2;3 was a plasma membrane-localized protein. Yeast heterologous expression revealed that GmTIP2;3 could improve tolerance to osmotic stress in yeast cells. Integrating these results, GmTIP2;3 might play an important role in response to osmotic stress in plants. PMID:26779248

  2. Volume regulation in response to hypo-osmotic stress in goldfish retinal ganglion cell axons regenerating in vitro.

    PubMed

    Edmonds, B T; Koenig, E

    1990-06-18

    Goldfish retinal ganglion cell (RGC) axons regenerating in vitro were used to investigate the volume regulatory response to hypo-osmotic stress. Reducing the tonicity of the bathing medium to half strength caused an immediate swelling of axons; however, within 1 min a progressive volume reduction ensued which stabilized at near control volume over a period of 10 min. This regulatory volume decrease (RVD) was attenuated by elevated [K+]o, Ca2(+)-activated K+ channel antagonists, and calmidazolium, a potent calmodulin inhibitor. Inclusion of ATP-gamma S in the hypotonic bathing medium led to a loading of stressed axons which resulted in an excessive volume reduction that reflected an overshooting of the RVD response. The latter suggested the importance of phosphorylation/dephosphorylation reactions in the RVD response pathway. Cytochalasin D and colchicine had no effect on the development of the typical RVD response, providing no evidence of involvement of actin or microtubule cytoskeletons in the volume reduction mechanism of the immature axons. The results are consistent with the hypothesis that hypo-osmotic stress activates a calcium/calmodulin dependent membrane pathway, which probably involves transient phosphorylation, leading to a loss of cellular K+ and osmotically obligated water which restorates normal axonal volume.

  3. Sensitization of Listeria monocytogenes to Low pH, Organic Acids, and Osmotic Stress by Ethanol

    PubMed Central

    Barker, Clive; Park, Simon F.

    2001-01-01

    The killing of Listeria monocytogenes following exposure to low pH, organic acids, and osmotic stress was enhanced by the addition of 5% (vol/vol) ethanol. At pH 3, for example, the presence of this agent stimulated killing by more than 3 log units in 40 min of exposure. The rate of cell death at pH 3.0 was dependent on the concentration of ethanol. Thus, while the presence 10% (vol/vol) ethanol at pH 3.0 stimulated killing by more than 3 log units in just 5 min, addition of 1.25% (vol/vol) ethanol resulted in less than 1 log unit of killing in 10 min. The ability of 5% (vol/vol) ethanol to stimulate killing at low pH and at elevated osmolarity was also dependent on the amplitude of the imposed stress, and an increase in the pH from 3.0 to 4.0 or a decrease in the sodium chloride concentration from 25 to 2.5% led to a marked reduction in the effectiveness of 5% (vol/vol) ethanol as an augmentative agent. Combinations of organic acids, low pH, and ethanol proved to be particularly effective bactericidal treatments; the most potent combination was pH 3.0, 50 mM formate, and 5 % (vol/vol) ethanol, which resulted in 5 log units of killing in just 4 min. Ethanol-enhanced killing correlated with damage to the bacterial cytoplasmic membrane. PMID:11282610

  4. Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria.

    PubMed

    Chakraborty, U; Chakraborty, B N; Chakraborty, A P; Dey, P L

    2013-05-01

    Soil microorganisms with potential for alleviation of abiotic stresses in combination with plant growth promotion would be extremely useful tools in sustainable agriculture. To this end, the present study was initiated where forty-five salt tolerant bacterial isolates with ability to grow in high salt medium were obtained from the rhizosphere of Triticum aestivum and Imperata cylindrica. These bacteria were tested for plant-growth-promoting rhizobacteria traits in vitro such as phosphate solubilization, siderophore, ACC deaminase and IAA production. Of the forty-five isolates, W10 from wheat rhizosphere and IP8 from blady grass rhizosphere, which tested positive in all the tests were identified by morpholological, biochemical and 16SrDNA sequencing as Bacillus safensis and Ochrobactrum pseudogregnonense respectively and selected for in vivo studies. Both the bacteria could promote growth in six varieties of wheat tested in terms of increase in root and shoot biomass, height of plants, yield, as well as increase in chlorophyll content. Besides, the wheat plants could withstand water stress more efficiently in presence of the bacteria as indicated by delay in appearance of wilting symptoms increases in relative water content of treated water stressed plants in comparison to untreated stressed ones, and elevated antioxidant responses. Enhanced antioxidant responses were evident as elevated activities of enzymes such as catalase, peroxidase, ascorbate peroxidase, superoxide dismutase and glutathione reductase as well as increased accumulation of antioxidants such as carotenoids and ascorbate. Results clearly indicate that the ability of wheat plants to withstand water stress is enhanced by application of these bacteria which also function as plant growth promoting rhizobacteria.

  5. The Opuntia streptacantha OpsHSP18 gene confers salt and osmotic stress tolerance in Arabidopsis thaliana.

    PubMed

    Salas-Muñoz, Silvia; Gómez-Anduro, Gracia; Delgado-Sánchez, Pablo; Rodríguez-Kessler, Margarita; Jiménez-Bremont, Juan Francisco

    2012-01-01

    Abiotic stress limits seed germination, plant growth, flowering and fruit quality, causing economic decrease. Small Heat Shock Proteins (sHSPs) are chaperons with roles in stress tolerance. Herein, we report the functional characterization of a cytosolic class CI sHSP (OpsHSP18) from Opuntia streptacantha during seed germination in Arabidopsis thaliana transgenic lines subjected to different stress and hormone treatments. The over-expression of the OpsHSP18 gene in A. thaliana increased the seed germination rate under salt (NaCl) and osmotic (glucose and mannitol) stress, and in ABA treatments, compared with WT. On the other hand, the over-expression of the OpsHSP18 gene enhanced tolerance to salt (150 mM NaCl) and osmotic (274 mM mannitol) stress in Arabidopsis seedlings treated during 14 and 21 days, respectively. These plants showed increased survival rates (52.00 and 73.33%, respectively) with respect to the WT (18.75 and 53.75%, respectively). Thus, our results show that OpsHSP18 gene might have an important role in abiotic stress tolerance, in particular in seed germination and survival rate of Arabidopsis plants under unfavorable conditions.

  6. Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L.

    PubMed

    Liu, Peng; Yin, Lina; Deng, Xiping; Wang, Shiwen; Tanaka, Kiyoshi; Zhang, Suiqi

    2014-09-01

    The fact that silicon application alleviates water deficit stress has been widely reported, but the underlying mechanism remains unclear. Here the effects of silicon on water uptake and transport of sorghum seedlings (Sorghum bicolor L.) growing under polyethylene glycol-simulated osmotic stress in hydroponic culture and water deficit stress in sand culture were investigated. Osmotic stress dramatically decreased dry weight, photosynthetic rate, transpiration rate, stomatal conductance, and leaf water content, but silicon application reduced these stress-induced decreases. Although silicon application had no effect on stem water transport capacity, whole-plant hydraulic conductance (Kplant) and root hydraulic conductance (Lp) were higher in silicon-treated seedlings than in those without silicon treatment under osmotic stress. Furthermore, the extent of changes in transpiration rate was similar to the changes in Kplant and Lp. The contribution of aquaporin to Lp was characterized using the aquaporin inhibitor mercury. Under osmotic stress, the exogenous application of HgCl2 decreased the transpiration rates of seedlings with and without silicon to the same level; after recovery induced by dithiothreitol (DTT), however, the transpiration rate was higher in silicon-treated seedlings than in untreated seedlings. In addition, transcription levels of several root aquaporin genes were increased by silicon application under osmotic stress. These results indicate that the silicon-induced up-regulation of aquaporin, which was thought to increase Lp, was involved in improving root water uptake under osmotic stress. This study also suggests that silicon plays a modulating role in improving plant resistance to osmotic stress in addition to its role as a mere physical barrier.

  7. The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction

    SciTech Connect

    Mahajabeen, Padamsee; Kumas, T. K. Arun; Riley, Robert; Binder, Manfred; Boyd, Alex; Calvo, Ann M.; Furukawa, Kentaro; Hesse, Cedar; Hohmann, Stefan; James, Tim Y.; LaButti, Kurt; Lapidus, Alla; Lindquist, Erika; Lucas, Susan; Miller, Kari; Shantappa, Sourabha; Grigoriev, Igor V.; Hibbett, David S.; McLaughlin, David J.; Spatafora, Joseph W.; Aime, Mary C.

    2011-09-03

    Wallemia (Wallemiales, Wallemiomycetes) is a genus of xerophilic Fungi of uncertain phylogenetic position within Basidiomycota. Most commonly found as food contaminants, species of Wallemia have also been isolated from hypersaline environments. The ability to tolerate environments with reduced water activity is rare in Basidiomycota. We sequenced the genome of W. sebi in order to understand its adaptations for surviving in osmotically challenging environments, and we performed phylogenomic and ultrastructural analyses to address its systematic placement and reproductive biology. W. sebi has a compact genome (9.8 Mb), with few repeats and the largest fraction of genes with functional domains compared with other Basidiomycota. We applied several approaches to searching for osmotic stress-related proteins. In silico analyses identied 93 putative osmotic stress proteins; homology searches showed the HOG (High Osmolarity Glycerol) pathway to be mostly conserved. Despite the seemingly reduced genome, several gene family expansions and a high number of transporters (549) were found that also provide clues to the ability of W. sebito colonize harsh environments. Phylogenetic analyses of a 71-protein dataset support the position of Wallemia as the earliest diverging lineage of Agaricomycotina, which is conrmed by septal pore ultrastructure that shows the septal pore apparatus as a variant of the Tremella-type. Mating type gene homologs were idented although we found no evidence of meiosis during conidiogenesis, suggesting there may be aspects of the life cycle of W. sebi that remain cryptic

  8. Effects of osmotic stress on Methanococcus thermolithotrophicus: 13C-edited 1H-NMR studies of osmolyte turnover.

    PubMed

    Ciulla, R A; Roberts, M F

    1999-04-19

    In vivo NMR studies of the thermophilic archaeon Methanococcus thermolithotrophicus, with sodium formate as the substrate for methanogenesis, were used to monitor formate utilization, methane production, and osmolyte pool synthesis and turnover under different conditions. The rate of formate conversion to CO2 and H2 decreased for cells adapted to higher external NaCl, consistent with the slower doubling times for cells adapted to high external NaCl. However, when cells grown at one NaCl concentration were resuspended at a different NaCl, formate utilization rates increased. Production of methane from 13C pools varied little with external NaCl in nonstressed culture, but showed larger changes when cells were osmotically shocked. In the absence of osmotic stress, all three solutes used for osmotic balance in these cells, l-alpha-glutamate, beta-glutamate, and Nepsilon-acetyl-beta-lysine, had 13C turnover rates that increased with external NaCl concentration. Upon hyperosmotic stress, there was a net synthesis of alpha-glutamate (over a 30-min time-scale) with smaller amounts of beta-glutamate and little if any of the zwitterion Nepsilon-acetyl-beta-lysine. This is a marked contrast to adapted growth in high NaCl where Nepsilon-acetyl-beta-lysine is the dominant osmolyte. Hypoosmotic shock selectively enhanced beta-glutamate and Nepsilon-acetyl-beta-lysine turnover. These results are discussed in terms of the osmoadaptation strategies of M. thermolithotrophicus.

  9. The Transcriptional Activator LdtR from ‘Candidatus Liberibacter asiaticus’ Mediates Osmotic Stress Tolerance

    PubMed Central

    Bojilova, Lora; Sarnegrim, Amanda; Tamayo, Cheila; Potts, Anastasia H.; Teplitski, Max; Folimonova, Svetlana Y.; Gonzalez, Claudio F.; Lorca, Graciela L.

    2014-01-01

    The causal agent of Huanglongbing disease, ‘Candidatus Liberibacter asiaticus’, is a non-culturable, gram negative, phloem-limited α-proteobacterium. Current methods to control the spread of this disease are still limited to the removal and destruction of infected trees. In this study, we identified and characterized a regulon from ‘Ca. L. asiaticus’ involved in cell wall remodeling, that contains a member of the MarR family of transcriptional regulators (ldtR), and a predicted L,D-transpeptidase (ldtP). In Sinorhizobium meliloti, mutation of ldtR resulted in morphological changes (shortened rod-type phenotype) and reduced tolerance to osmotic stress. A biochemical approach was taken to identify small molecules that modulate LdtR activity. The LdtR ligands identified by thermal shift assays were validated using DNA binding methods. The biological impact of LdtR inactivation by the small molecules was then examined in Sinorhizobium meliloti and Liberibacter crescens, where a shortened-rod phenotype was induced by growth in presence of the ligands. A new method was also developed to examine the effects of small molecules on the viability of ‘Ca. Liberibacter asiaticus’, using shoots from HLB-infected orange trees. Decreased expression of ldtRLas and ldtPLas was observed in samples taken from HLB-infected shoots after 6 h of incubation with the LdtR ligands. These results provide strong proof of concept for the use of small molecules that target LdtR, as a potential treatment option for Huanglongbing disease. PMID:24763829

  10. Light scattering and cell volumes in osmotically stressed and frozen-thawed cells.

    PubMed

    McGann, L E; Walterson, M L; Hogg, L M

    1988-01-01

    Recent reports, indicating that under some conditions the intensity of light scattering from cells is a nonlinear function of cell volume, have led to the widespread generalization that intensity of low-angle light scattering indicates cell size. This study was performed to measure the relationships between light scattering and cell volumes in an-isotonic solutions and after a freeze-thaw stress. Cell volumes in isolated human lymphocytes, human granulocytes, and hamster fibroblasts were deliberately altered by exposure to anisotonic solutions. Boyle-vant Hoff plots of cell volume as a function of inverse osmotic pressure showed that the cells behaved as osmometers. Similar plots of right-angle and low-angle light scattering showed that the intensity of light scattering varied inversely with cell volume. In other experiments where cells were frozen without cryoprotectant at various sub zero temperatures to -25 degrees C and then thawed rapidly, cell viability decreased progressively with decreasing temperature, as did the intensity of both low-angle and right-angle light scattering, although cell volumes remained relatively constant. The intensity of both low- and high-angle light scattering varied inversely with cell volumes in hypertonic and hypotonic solutions, but cell damage induced by freezing and thawing resulted in significant reductions in the intensity of low-angle light scattering with little change in cell volume. These observations show that light scattering and cell volumes can vary independently, and they underline the need for a better understanding of the phenomenon of light scattering from living cells. PMID:3409784

  11. Adaptive responses to osmotic stress in kidney-derived cell lines from Scatophagus argus, a euryhaline fish.

    PubMed

    Gui, Lang; Zhang, Peipei; Liang, Xuemei; Su, Maoliang; Wu, Di; Zhang, Junbin

    2016-06-01

    The euryhaline fish, the spotted scat (Scatophagus argus), is exceptional for its ability to tolerate rapid fluctuations in salinity. To better understand fish osmoregulation and enable more precise analyses of specific features of adaptive responses to the osmotic stress in fish, a S. argus kidney-derived cell line (SK) was developed and subcultured for more than 70 passages. The cells were mostly fibroblast-like, with a normal diploid karyotype (2n=48). A low-osmolarity-adapted SK cell line (SK-la) was induced by growth in a hypotonic solution (150 mOsm). Effects of different osmotic stresses (150, 300 and 450 mOsm) on cell growth, cell morphology, cell volume changes and cell damage in SK, SK-la and CIK (a kidney-derived cell line from freshwater grass carp) cells were studied. These were compared by use of microscopic observation, flow cytometry and a Na-K-ATPase (NKA) assay. SK cells became smaller and grew rapidly in response to hypotonic stress (150 mOsm), and exhibited no visible morphological changes in response to hypertonic stress (450 mOsm). SK-la grew well by moderate hypertonicity (300 mOsm) but depressed in severe hypertonicity (450 mOsm), the number of unhealthy SK-la cells rose as osmolarity increased. In contrast, CIK cells became unhealthy with anisotonic challenge. The NKA activities of SK and CIK cells were assayed after exposure to anisotonic conditions, and rapid decreases were detected immediately except SK cells which were not affected in hypotonicity. Unlike in SK and CIK, an increase following a down-regulation of NKA activity was observed in SK-la cells upon moderate hypertonic stress. These results suggested that SK and SK-la cells had stronger osmoregulatory capacity than CIK cells, and provided new insights on the osmosensing and osmotic adaption in euryhaline fish kidney.

  12. Altered expression and activities of enzymes involved in thiamine diphosphate biosynthesis in Saccharomyces cerevisiae under oxidative and osmotic stress.

    PubMed

    Kowalska, Ewa; Kujda, Marta; Wolak, Natalia; Kozik, Andrzej

    2012-08-01

    Thiamine diphosphate (TDP) serves as a cofactor for enzymes engaged in pivotal carbohydrate metabolic pathways, which are known to be modulated under stress conditions to ensure the cell survival. Recent reports have proven a protective role of thiamine (vitamin B(1)) in the response of plants to abiotic stress. This work aimed at verifying a hypothesis that also baker's yeast, which can synthesize thiamine de novo similarly to plants and bacteria, adjust thiamine metabolism to adverse environmental conditions. Our analyses on the gene expression and enzymatic activity levels generally showed an increased production of thiamine biosynthesis enzymes (THI4 and THI6/THI6), a TDP synthesizing enzyme (THI80/THI80) and a TDP-requiring enzyme, transketolase (TKL1/TKL) by yeast subjected to oxidative (1 mM hydrogen peroxide) and osmotic (1 M sorbitol) stress. However, these effects differed in magnitude, depending on yeast growth phase and presence of thiamine in growth medium. A mutant thi4Δ with increased sensitivity to oxidative stress exhibited enhanced TDP biosynthesis as compared with the wild-type strain. Similar tendencies were observed in mutants yap1Δ and hog1Δ defective in the signaling pathways of the defense against oxidative and osmotic stress, respectively, suggesting that thiamine metabolism can partly compensate damages of yeast general defense systems.

  13. Isolation of an osmotic stress- and abscisic acid-induced gene encoding an acidic endochitinase from Lycopersicon chilense.

    PubMed

    Chen, R D; Yu, L X; Greer, A F; Cheriti, H; Tabaeizadeh, Z

    1994-10-28

    We have identified one osmotic stress- and abscisic acid-responsive member of the endochitinase (EC 3.2.1.14) gene family from leaves of drought-stressed Lycopersicon chilense plants, a natural inhabitant of extremely arid regions in South America. The 966-bp full-length cDNA (designated pcht28) encodes an acidic chitinase precursor with an amino-terminal signal peptide. The mature protein is predicted to have 229 amino acid residues with a relative molecular mass of 24,943 and pI value of 6.2. Sequence analysis revealed that pcht28 has a high degree of homology with class II chitinases (EC 3.2.1.14) from tomato and tobacco. Expression of the pcht28 protein in Escherichia coli verified that it is indeed a chitinase. Northern blot analysis indicated that this gene has evolved a different pattern of expression from that of other family members reported thus far. It is highly induced by both osmotic stress and the plant hormone abscisic acid. Southern blot analysis of genomic DNA suggested that the pcht28-related genes may form a small multigene family in this species. The efficiency of induction of the gene by drought stress, in leaves and stems, is significantly higher in L. chilense than in the cultivated tomato. It is speculated that, besides its general defensive function, the pcht28-encoded chitinase may play a particular role in plant development or in protecting plants from pathogen attack during water stress. PMID:7816027

  14. Acute emotional stress and cardiac arrhythmias.

    PubMed

    Ziegelstein, Roy C

    2007-07-18

    Episodes of acute emotional stress can have significant adverse effects on the heart. Acute emotional stress can produce left ventricular contractile dysfunction, myocardial ischemia, or disturbances of cardiac rhythm. Although these abnormalities are often only transient, their consequences can be gravely damaging and sometimes fatal. Despite the many descriptions of catastrophic cardiovascular events in the setting of acute emotional stress, the anatomical substrate and physiological pathways by which emotional stress triggers cardiovascular events are only now being characterized, aided by the advent of functional neuroimaging. Recent evidence indicates that asymmetric brain activity is particularly important in making the heart more susceptible to ventricular arrhythmias. Lateralization of cerebral activity during emotional stress may stimulate the heart asymmetrically and produce areas of inhomogeneous repolarization that create electrical instability and facilitate the development of cardiac arrhythmias. Patients with ischemic heart disease who survive an episode of sudden cardiac death in the setting of acute emotional stress should receive a beta-blocker. Nonpharmacological approaches to manage emotional stress in patients with and without coronary artery disease, including social support, relaxation therapy, yoga, meditation, controlled slow breathing, and biofeedback, are also appropriate to consider and merit additional investigation in randomized trials.

  15. Analysis of transcript and metabolite levels in Italian rice (Oryza sativa L.) cultivars subjected to osmotic stress or benzothiadiazole treatment.

    PubMed

    Baldoni, Elena; Mattana, Monica; Locatelli, Franca; Consonni, Roberto; Cagliani, Laura R; Picchi, Valentina; Abbruscato, Pamela; Genga, Annamaria

    2013-09-01

    One of the major objectives of rice (Oryza sativa L.) breeding programs is the development of new varieties with higher tolerance/resistance to both abiotic and biotic stresses. In this study, Italian rice cultivars were subjected to osmotic stress or benzothiadiazole (BTH) treatments. An analysis of the expression of selected genes known to be involved in the stress response and (1)H nuclear magnetic resonance ((1)H NMR) metabolic profiling were combined with multivariate statistical analyses to elucidate potential correlations between gene expression or metabolite content and observed tolerant/resistant phenotypes. We observed that the expression of three chosen genes (two WRKY genes and one peroxidase encoding gene) differed between susceptible and resistant cultivars in response to BTH treatments. Moreover, the analysis of metabolite content, in particular in the osmotic stress experiment, enabled discrimination between selected cultivars based on differences in the accumulation of some primary metabolites, primarily sugars. This research highlights the potential usefulness of this approach to characterise rice varieties based on transcriptional or metabolic changes due to adverse environmental conditions.

  16. Alterations in polyribosome and messenger ribonucleic acid metabolism and messenger ribonucleoprotein utilization in osmotically stressed plant seedlings

    SciTech Connect

    Mason, H.S.

    1986-01-01

    Polyribosome aggregation state in growing tissues of barley and wheat leaf of stems of pea and squash was studied in relation to seedling growth and water status of the growing tissue in plants at various levels of osmotic stress. It was found to be highly correlated with water potential and osmotic potential of the growing tissue and with leaf of stem elongation rate. Stress rapidly reduced polyribosome content and water status in growing tissues of barley leaves; changes were slow and slight in the non-growing leaf blade. Membrane-bound and free polyribosomes were equally sensitive to stress-induced disaggregation. Incorporation of /sup 32/PO/sub 4//sup 3 -/ into ribosomal RNA was rapidly inhibited by stress, but stability of poly(A)/sup +/RNA relative to ribosomal RNA was similar in stressed and unstressed tissues, with a half-life of about 12 hours. Stress also caused progressive loss of poly(A)/sup +/RNA from these tissues. Quantitation of poly(A) and in vitro messenger template activity in polysome gradient fractions showed a shift of activity from the polysomal region to the region of 20-60 S in stressed plants. Messenger RNA in the 20-60 S region coded for the same peptides as mRNA found in the polysomal fraction. Nonpolysomal and polysome-derived messenger ribonucleoprotein complexes (mRNP) were isolated, and characteristic proteins were found associated with either fraction. Polysomal mRNP from stressed or unstressed plants were translated with similar efficiency in a wheat germ cell-free system. It was concluded that no translational inhibitory activity was associated with nonpolysomal mRNP from barley prepared as described.

  17. Pea lectin receptor-like kinase functions in salinity adaptation without yield penalty, by alleviating osmotic and ionic stresses and upregulating stress-responsive genes.

    PubMed

    Vaid, Neha; Pandey, Prashant; Srivastava, Vineet Kumar; Tuteja, Narendra

    2015-05-01

    Lectin receptor-like kinases (LecRLKs) are members of RLK family composed of lectin-like extracellular recognition domain, transmembrane domain and cytoplasmic kinase domain. LecRLKs are plasma membrane proteins believed to be involved in signal transduction. However, most of the members of the protein family even in plants have not been functionally well characterized. Herein, we show that Pisum sativum LecRLK (PsLecRLK) localized in plasma membrane systems and/or other regions of the cell and its transcript upregulated under salinity stress. Overexpression of PsLecRLK in transgenic tobacco plants confers salinity stress tolerance by alleviating both the ionic as well the osmotic component of salinity stress. The transgenic plants show better tissue compartmentalization of Na(+) and higher ROS scavenging activity which probably results in lower membrane damage, improved growth and yield maintenance even under salinity stress. Also, expression of several genes involved in cellular homeostasis is perturbed by PsLecRLK overexpression. Alleviation of osmotic and ionic components of salinity stress along with reduced oxidative damage and upregulation of stress-responsive genes in transgenic plants under salinity stress conditions could be possible mechanism facilitating enhanced stress tolerance. This study presents PsLecRLK as a promising candidate for crop improvement and also opens up new avenue to investigate its signalling pathway.

  18. Overexpression of a Barley Aquaporin Gene, HvPIP2;5 Confers Salt and Osmotic Stress Tolerance in Yeast and Plants

    PubMed Central

    Alavilli, Hemasundar; Awasthi, Jay Prakash; Rout, Gyana R.; Sahoo, Lingaraj; Lee, Byeong-ha; Panda, Sanjib Kumar

    2016-01-01

    We characterized an aquaporin gene HvPIP2;5 from Hordeum vulgare and investigated its physiological roles in heterologous expression systems, yeast and Arabidopsis, under high salt and high osmotic stress conditions. In yeast, the expression of HvPIP2;5 enhanced abiotic stress tolerance under high salt and high osmotic conditions. Arabidopsis plants overexpressing HvPIP2;5 also showed better stress tolerance in germination and root growth under high salt and high osmotic stresses than the wild type (WT). HvPIP2;5 overexpressing plants were able to survive and recover after a 3-week drought period unlike the control plants which wilted and died during stress treatment. Indeed, overexpression of HvPIP2;5 caused higher retention of chlorophylls and water under salt and osmotic stresses than did control. We also observed lower accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), an end-product of lipid peroxidation in HvPIP2;5 overexpressing plants than in WT. These results suggest that HvPIP2;5 overexpression brought about stress tolerance, at least in part, by reducing the secondary oxidative stress caused by salt and osmotic stresses. Consistent with these stress tolerant phenotypes, HvPIP2;5 overexpressing Arabidopsis lines showed higher expression and activities of ROS scavenging enzymes such as catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), and ascorbate peroxidase (APX) under salt and osmotic stresses than did WT. In addition, the proline biosynthesis genes, Δ1-Pyrroline-5-Carboxylate Synthase 1 and 2 (P5CS1 and P5CS2) were up-regulated in HvPIP2;5 overexpressing plants under salt and osmotic stresses, which coincided with increased levels of the osmoprotectant proline. Together, these results suggested that HvPIP2;5 overexpression enhanced stress tolerance to high salt and high osmotic stresses by increasing activities and/or expression of ROS scavenging enzymes and osmoprotectant biosynthetic genes.

  19. An Arabidopsis Zinc Finger Protein Increases Abiotic Stress Tolerance by Regulating Sodium and Potassium Homeostasis, Reactive Oxygen Species Scavenging and Osmotic Potential.

    PubMed

    Zang, Dandan; Li, Hongyan; Xu, Hongyun; Zhang, Wenhui; Zhang, Yiming; Shi, Xinxin; Wang, Yucheng

    2016-01-01

    Plant zinc finger proteins (ZFPs) comprise a large protein family and they are mainly involved in abiotic stress tolerance. Although Arabidopsis RING/FYVE/PHD ZFP At5g62460 (AtRZFP) is found to bind to zinc, whether it is involved in abiotic stress tolerance is still unknown. In the present study, we characterized the roles of AtRZFP in response to abiotic stresses. The expression of AtRZFP was induced significantly by salt and osmotic stress. AtRZFP positively mediates tolerance to salt and osmotic stress. Additionally, compared with wild-type Arabidopsis plants, plants overexpressing AtRZFP showed reduced reactive oxygen species (ROSs) accumulation, enhanced superoxide dismutase and peroxidase activity, increased soluble sugars and proline contents, reduced K(+) loss, decreased Na(+) accumulation, stomatal aperture and the water loss rate. Conversely, AtRZFP knockout plants displayed the opposite physiological changes when exposed to salt or osmotic stress conditions. These data suggested that AtRZFP enhances salt and osmotic tolerance through a series of physiological processes, including enhanced ROSs scavenging, maintaining Na(+) and K(+) homeostasis, controlling the stomatal aperture to reduce the water loss rate, and accumulating soluble sugars and proline to adjust the osmotic potential. PMID:27605931

  20. An Arabidopsis Zinc Finger Protein Increases Abiotic Stress Tolerance by Regulating Sodium and Potassium Homeostasis, Reactive Oxygen Species Scavenging and Osmotic Potential

    PubMed Central

    Zang, Dandan; Li, Hongyan; Xu, Hongyun; Zhang, Wenhui; Zhang, Yiming; Shi, Xinxin; Wang, Yucheng

    2016-01-01

    Plant zinc finger proteins (ZFPs) comprise a large protein family and they are mainly involved in abiotic stress tolerance. Although Arabidopsis RING/FYVE/PHD ZFP At5g62460 (AtRZFP) is found to bind to zinc, whether it is involved in abiotic stress tolerance is still unknown. In the present study, we characterized the roles of AtRZFP in response to abiotic stresses. The expression of AtRZFP was induced significantly by salt and osmotic stress. AtRZFP positively mediates tolerance to salt and osmotic stress. Additionally, compared with wild-type Arabidopsis plants, plants overexpressing AtRZFP showed reduced reactive oxygen species (ROSs) accumulation, enhanced superoxide dismutase and peroxidase activity, increased soluble sugars and proline contents, reduced K+ loss, decreased Na+ accumulation, stomatal aperture and the water loss rate. Conversely, AtRZFP knockout plants displayed the opposite physiological changes when exposed to salt or osmotic stress conditions. These data suggested that AtRZFP enhances salt and osmotic tolerance through a series of physiological processes, including enhanced ROSs scavenging, maintaining Na+ and K+ homeostasis, controlling the stomatal aperture to reduce the water loss rate, and accumulating soluble sugars and proline to adjust the osmotic potential. PMID:27605931

  1. An Arabidopsis Zinc Finger Protein Increases Abiotic Stress Tolerance by Regulating Sodium and Potassium Homeostasis, Reactive Oxygen Species Scavenging and Osmotic Potential

    PubMed Central

    Zang, Dandan; Li, Hongyan; Xu, Hongyun; Zhang, Wenhui; Zhang, Yiming; Shi, Xinxin; Wang, Yucheng

    2016-01-01

    Plant zinc finger proteins (ZFPs) comprise a large protein family and they are mainly involved in abiotic stress tolerance. Although Arabidopsis RING/FYVE/PHD ZFP At5g62460 (AtRZFP) is found to bind to zinc, whether it is involved in abiotic stress tolerance is still unknown. In the present study, we characterized the roles of AtRZFP in response to abiotic stresses. The expression of AtRZFP was induced significantly by salt and osmotic stress. AtRZFP positively mediates tolerance to salt and osmotic stress. Additionally, compared with wild-type Arabidopsis plants, plants overexpressing AtRZFP showed reduced reactive oxygen species (ROSs) accumulation, enhanced superoxide dismutase and peroxidase activity, increased soluble sugars and proline contents, reduced K+ loss, decreased Na+ accumulation, stomatal aperture and the water loss rate. Conversely, AtRZFP knockout plants displayed the opposite physiological changes when exposed to salt or osmotic stress conditions. These data suggested that AtRZFP enhances salt and osmotic tolerance through a series of physiological processes, including enhanced ROSs scavenging, maintaining Na+ and K+ homeostasis, controlling the stomatal aperture to reduce the water loss rate, and accumulating soluble sugars and proline to adjust the osmotic potential.

  2. Diagonal two-dimensional electrophoresis (D-2DE): a new approach to study the effect of osmotic stress induced by polyethylene glycol in durum wheat (Triticum durum Desf.).

    PubMed

    Kacem, N S; Mauro, S; Muhovski, Y; Delporte, F; Renaut, J; Djekoun, A; Watillon, B

    2016-09-01

    Acclimatization to stress is associated with profound changes in proteome composition. The use of plant cell and tissue culture offers a means to investigate the physiological and biochemical processes involved in the adaptation to osmotic stress. We employed a new proteomic approach to further understand the response of calli to dehydration induced by polyethylene glycol (PEG6000). Calli of three durum wheat genotypes Djenah Khetifa, Oued Zenati and Waha were treated with two concentrations of polyethylene glycol to mimic osmotic stress. Changes in protein relative abundance were analyzed using a new electrophoretic approach named diagonal two-dimensional electrophoresis (D-2DE), combined with mass spectrometry. Total proteins were extracted from 30-day-old calli from three durum wheat genotypes that showed contrasting levels of drought stress tolerance in the field. The combination of one-dimensional electrophoresis and D-2DE gave a specific imprint of the protein extracts under osmotic stress, as well as characterizing and identifying individual target proteins. Of the variously expressed proteins, three were selected (globulin, GAPDH and peroxidase) and further analyzed using qRT-PCR at the transcriptome level in order to compare the results with the proteomic data. Western blot analysis was used to further validate the differences in relative abundance pattern. The proteins identified through this technique provide new insights as to how calli respond to osmotic stress. Our method of study provides an original and relevant approach of analyzing the osmotic-responsive mechanisms at the cellular level of durum wheat with agronomic perspectives.

  3. Osmotic stress and cryoinjury of koala sperm: an integrative study of the plasma membrane, chromatin stability and mitochondrial function.

    PubMed

    Johnston, S D; Satake, N; Zee, Y; López-Fernández, C; Holt, W V; Gosálvez, J

    2012-06-01

    This study investigated whether cryopreservation-induced injury to koala spermatozoa could be explained using an experimental model that mimics the structural and physiological effects of osmotic flux. DNA labelling after in situ nick translation of thawed cryopreserved spermatozoa revealed a positive correlation (r=0.573; P<0.001; n=50) between the area of relaxed chromatin in the nucleus and the degree of nucleotide labelling. While the chromatin of some spermatozoa increased more than eight times its normal size, not all sperm nuclei with relaxed chromatin showed evidence of nucleotide incorporation. Preferential staining associated with sperm DNA fragmentation (SDF) was typically located in the peri-acrosomal and peripheral regions of the sperm head and at the base of the spermatozoa where it appear to be 'hot spots' of DNA damage following cryopreservation. Results of the comparative effects of anisotonic media and cryopreservation on the integrity of koala spermatozoa revealed that injury induced by exposure to osmotic flux, essentially imitated the results found following cryopreservation. Plasma membrane integrity, chromatin relaxation and SDF appeared particularly susceptible to extreme hypotonic environments. Mitochondrial membrane potential (MMP), while susceptible to extreme hypo- and hypertonic environments, showed an ability to rebound from hypertonic stress when returned to isotonic conditions. Koala spermatozoa exposed to 64 mOsm/kg media showed an equivalent, or more severe, degree of structural and physiological injury to that of frozen-thawed spermatozoa, supporting the hypothesis that cryoinjury is principally associated with a hypo-osmotic effect. A direct comparison of SDF of thawed cryopreserved spermatozoa and those exposed to a 64 mOsm/kg excursion showed a significant correlation (r=0.878; P<0.05; n=5); however, no correlation was found when the percentage of sperm with relaxed chromatin was compared. While a cryo-induced osmotic

  4. Acute lymphopenia, stress, and plasma cortisol.

    PubMed Central

    Ramaekers, L H; Theunissen, P M; Went, K

    1975-01-01

    Plasma cortisol levels were determined in 51 children on admission to hospital for a variety of acute illnesses which were associated with a lymphopenia, and again when the lymphocyte count had returned to normal. The ratio cortisol level/lymphocyte count was much higher in the acute phase of the illness than later when the lymphocyte count had returned to normal. It is concluded that the lymphocyte count is a useful means of detecting an acute stress condition, and the time of return of normal plasma cortisol levels. PMID:1167069

  5. A New Role for Carbonic Anhydrase 2 in the Response of Fish to Copper and Osmotic Stress: Implications for Multi-Stressor Studies

    PubMed Central

    de Polo, Anna; Margiotta-Casaluci, Luigi; Lockyer, Anne E.; Scrimshaw, Mark D.

    2014-01-01

    The majority of ecotoxicological studies are performed under stable and optimal conditions, whereas in reality the complexity of the natural environment faces organisms with multiple stressors of different type and origin, which can activate pathways of response often difficult to interpret. In particular, aquatic organisms living in estuarine zones already impacted by metal contamination can be exposed to more severe salinity variations under a forecasted scenario of global change. In this context, the present study aimed to investigate the effect of copper exposure on the response of fish to osmotic stress by mimicking in laboratory conditions the salinity changes occurring in natural estuaries. We hypothesized that copper-exposed individuals are more sensitive to osmotic stresses, as copper affects their osmoregulatory system by acting on a number of osmotic effector proteins, among which the isoform two of the enzyme carbonic anhydrase (CA2) was identified as a novel factor linking the physiological responses to both copper and osmotic stress. To test this hypothesis, two in vivo studies were performed using the euryhaline fish sheepshead minnow (Cyprinodon variegatus) as test species and applying different rates of salinity transition as a controlled way of dosing osmotic stress. Measured endpoints included plasma ions concentrations and gene expression of CA2 and the α1a-subunit of the enzyme Na+/K+ ATPase. Results showed that plasma ions concentrations changed after the salinity transition, but notably the magnitude of change was greater in the copper-exposed groups, suggesting a sensitizing effect of copper on the responses to osmotic stress. Gene expression results demonstrated that CA2 is affected by copper at the transcriptional level and that this enzyme might play a role in the observed combined effects of copper and osmotic stress on ion homeostasis. PMID:25272015

  6. Halopriming mediated salt and iso-osmotic PEG stress tolerance and, gene expression profiling in sugarcane (Saccharum officinarum L.).

    PubMed

    Patade, Vikas Yadav; Bhargava, Sujata; Suprasanna, Penna

    2012-10-01

    Seed priming is a well known pre-germination strategy that improves seed performance. However, biochemical and molecular mechanisms underlying priming mediated stress tolerance are little understood. Here, we report results of the study on growth, physiological characteristics and expression of stress responsive genes in salt primed sugarcane cv. Co 86032 plants in response to salt (NaCl, 150 mM) or iso-osmotic (-0.7 MPa) polyethylene glycol-PEG 8000 (20 % w/v) stress exposure for 15 days. Variable growth, osmolyte accumulation and antioxidant capacity was revealed among the primed and non-primed plants. The primed plants showed better tolerance to the salt or PEG stress, as revealed by better growth and lower membrane damage, through better antioxidant capacity as compared to the respective non-primed controls. Further, steady state transcript expression analysis revealed up regulation of sodium proton antiporter (NHX) while, down regulation of sucrose transporter (SUT1), delta ( 1 )-pyrolline-5-carboxylate synthetase (P5CS) and proline dehydrogenase (PDH) in primed plants on exposure to the stress as compared to the non-primed plants. Transcript abundance of catalase (CAT2) decreased by about 25 % in leaves of non-primed stressed plants, however, the expression was maintained in leaves of the stressed primed plants to that of non-stressed controls. Thus, the results indicated priming mediated salt and PEG stress tolerance through altered gene expression leading to improved antioxidant capacity in sugarcane.

  7. High throughput sequencing of small RNAs transcriptomes in two Crassostrea oysters identifies microRNAs involved in osmotic stress response

    PubMed Central

    Zhao, Xuelin; Yu, Hong; Kong, Lingfeng; Liu, Shikai; Li, Qi

    2016-01-01

    Increasing evidence suggests that microRNAs post-transcriptionally regulate gene expression and are involved in responses to biotic and abiotic stress. However, the role of miRNAs involved in osmotic plasticity remains largely unknown in marine bivalves. In the present study, we performed low salinity challenge with two Crassostrea species (C. gigas and C. hongkongensis), and conducted high-throughput sequencing of four small RNA libraries constructed from the gill tissues. A total of 202 and 87 miRNAs were identified from C. gigas and C. hongkongensis, respectively. Six miRNAs in C. gigas and two in C. hongkongensis were differentially expressed in response to osmotic stress. The expression profiles of these eight miRNAs were validated by qRT-PCR. Based on GO enrichment and KEGG pathway analysis, genes associated with microtubule-based process and cellular component movement were enriched in both species. In addition, five miRNA-mRNA interaction pairs that showed opposite expression patterns were identified in the C. hongkongensis, Differential expression analysis identified the miRNAs that play important regulatory roles in response to low salinity stress, providing insights into molecular mechanisms that are essential for salinity tolerance in marine bivalves. PMID:26940974

  8. Overexpression of a wheat phospholipase D gene, TaPLDα, enhances tolerance to drought and osmotic stress in Arabidopsis thaliana.

    PubMed

    Wang, Junbin; Ding, Bo; Guo, Yaolin; Li, Ming; Chen, Shuaijun; Huang, Guozhong; Xie, Xiaodong

    2014-07-01

    Phospholipase D (PLD) is crucial for plant responses to stress and signal transduction, however, the regulatory mechanism of PLD in abiotic stress is not completely understood; especially, in crops. In this study, we isolated a gene, TaPLDα, from common wheat (Triticum aestivum L.). Analysis of the amino acid sequence of TaPLDα revealed a highly conserved C2 domain and two characteristic HKD motifs, which is similar to other known PLD family genes. Further characterization revealed that TaPLDα expressed differentially in various organs, such as roots, stems, leaves and spikelets of wheat. After treatment with abscisic acid (ABA), methyl jasmonate, dehydration, polyethylene glycol and NaCl, the expression of TaPLDα was up-regulated in shoots. Subsequently, we generated TaPLDα-overexpressing transgenic Arabidopsis lines under the control of the dexamethasone-inducible 35S promoter. The overexpression of TaPLDα in Arabidopsis resulted in significantly enhanced tolerance to drought, as shown by reduced chlorosis and leaf water loss, higher relative water content and lower relative electrolyte leakage than the wild type. Moreover, the TaPLDα-overexpressing plants exhibited longer roots in response to mannitol treatment. In addition, the seeds of TaPLDα-overexpressing plants showed hypersensitivity to ABA and osmotic stress. Under dehydration, the expression of several stress-related genes, RD29A, RD29B, KIN1 and RAB18, was up-regulated to a higher level in TaPLDα-overexpressing plants than in wild type. Taken together, our results indicated that TaPLDα can enhance tolerance to drought and osmotic stress in Arabidopsis and represents a potential candidate gene to enhance stress tolerance in crops.

  9. Osmotic stress in Arctic and Antarctic strains of the green alga Zygnema (Zygnematales, Streptophyta): effects on photosynthesis and ultrastructure.

    PubMed

    Kaplan, Franziska; Lewis, Louise A; Herburger, Klaus; Holzinger, Andreas

    2013-01-01

    The osmotic potential and effects of plasmolysis on photosynthetic oxygen evolution and chlorophyll fluorescence were studied in two Arctic Zygnema sp. (strain B, strain G) and two Antarctic Zygnema sp. (strain E, strain D). Antarctic strain D was newly characterized by rbcL sequence analysis in the present study. The two Antarctic strains, D and E, are most closely related and may represent different isolates of the same species, in contrast, strain B and G are separate lineages. Incipient plasmolysis in the cells was determined by light microscopy after incubating cells in sorbitol solutions ranging between 200 mM and 1000 mM sorbitol for 3, 6 and 24h. In Zygnema strain B and G incipient plasmolysis occurred at ~600 mM sorbitol solution (720 mOsmol kg(-1), ψ=-1.67 MPa) and in strains D and E at ~300 mM (318 mOsmol kg(-1), ψ=-0.8 MPa) sorbitol solution. Hechtian strands were visualized in all plasmolysed cells, which is particularly interesting, as these cells lack pores or plasmodesmata. Ultrastructural changes upon osmotic stress were a retraction of the condensed cytoplasm from the cell walls, damages to chloroplast and mitochondrial membranes, increasing numbers of plastoglobules in the chloroplasts and membrane enclosed particles in the extraplasmatic space. Maximum photosynthetic rates (P(max)) in light saturated range were between 145.5 μmol O(2) h(-1)mg(-1)Chl a in Zygnema G and 752.9 μmol O(2) h(-1)mg(-1)Chl a in Zygnema E. After incubation in 800 mM sorbitol for 3h P(max) decreased to the following percentage of the initial values: B: 16.3%, D: 16.8%, E: 26.1% and G: 35.0%. Osmotic stress (800 mM sorbitol) decreased maximum photochemical quantum yield of photosystem II (F(v)/F(m)) when compared to controls. Maximum values of relative electron transport rates of photosystem II (rETR(max)) decreased after incubation in 400 mM sorbitol in Zygnema D and E, while they decreased in Zygnema B and G only after incubation in 800 mM sorbitol. The kinetics of

  10. Osmotic stress in Arctic and Antarctic strains of the green alga Zygnema (Zygnematales, Streptophyta): effects on photosynthesis and ultrastructure.

    PubMed

    Kaplan, Franziska; Lewis, Louise A; Herburger, Klaus; Holzinger, Andreas

    2013-01-01

    The osmotic potential and effects of plasmolysis on photosynthetic oxygen evolution and chlorophyll fluorescence were studied in two Arctic Zygnema sp. (strain B, strain G) and two Antarctic Zygnema sp. (strain E, strain D). Antarctic strain D was newly characterized by rbcL sequence analysis in the present study. The two Antarctic strains, D and E, are most closely related and may represent different isolates of the same species, in contrast, strain B and G are separate lineages. Incipient plasmolysis in the cells was determined by light microscopy after incubating cells in sorbitol solutions ranging between 200 mM and 1000 mM sorbitol for 3, 6 and 24h. In Zygnema strain B and G incipient plasmolysis occurred at ~600 mM sorbitol solution (720 mOsmol kg(-1), ψ=-1.67 MPa) and in strains D and E at ~300 mM (318 mOsmol kg(-1), ψ=-0.8 MPa) sorbitol solution. Hechtian strands were visualized in all plasmolysed cells, which is particularly interesting, as these cells lack pores or plasmodesmata. Ultrastructural changes upon osmotic stress were a retraction of the condensed cytoplasm from the cell walls, damages to chloroplast and mitochondrial membranes, increasing numbers of plastoglobules in the chloroplasts and membrane enclosed particles in the extraplasmatic space. Maximum photosynthetic rates (P(max)) in light saturated range were between 145.5 μmol O(2) h(-1)mg(-1)Chl a in Zygnema G and 752.9 μmol O(2) h(-1)mg(-1)Chl a in Zygnema E. After incubation in 800 mM sorbitol for 3h P(max) decreased to the following percentage of the initial values: B: 16.3%, D: 16.8%, E: 26.1% and G: 35.0%. Osmotic stress (800 mM sorbitol) decreased maximum photochemical quantum yield of photosystem II (F(v)/F(m)) when compared to controls. Maximum values of relative electron transport rates of photosystem II (rETR(max)) decreased after incubation in 400 mM sorbitol in Zygnema D and E, while they decreased in Zygnema B and G only after incubation in 800 mM sorbitol. The kinetics of

  11. Contributions of soluble carbohydrates to the osmotic adjustment in the C4 grass Setaria sphacelata: a comparison between rapidly and slowly imposed water stress.

    PubMed

    da Silva, Jorge Marques; Arrabaça, Maria Celeste

    2004-05-01

    Photosynthetic carbohydrate content in Setaria sphacelata var. splendida under rapidly and slowly induced water deficit and its contribution to osmotic adjustment were studied. In short-term stress experiments, a decrease in the total content of sucrose (Su) and starch (St) was observed in leaf discs submitted to stress. An increase in the ratio between free hexoses and sucrose was found in stressed leaves, but no significant differences were found in the amount of free hexoses nor in the ratio between soluble and insoluble sugars. In long-term stress experiments, a higher amount of soluble sugars and a lower amount of starch were found in stressed leaves, when compared to the control. The ratios of free hexoses to sucrose and of soluble to insoluble sugars were also higher in stressed leaves. The contribution of the accumulation of soluble sugars to osmotic adjustment was absent in rapidly stressed leaves and was of minor importance in slowly stressed leaves.

  12. Osmotic Stress, not Aldose Reductase Activity, Directly induces Growth Factors and MAPK Signaling changes during Sugar Cataract Formation

    PubMed Central

    Zhang, Peng; Xing, Kuiyi; Randazzo, James; Blessing, Karen; Lou, Marjorie F.; Kador, Peter F.

    2012-01-01

    In sugar cataract formation in rats, aldose reductase (AR) actitvity is not only linked to lenticular sorbitol (diabetic) or galactitol (galactosemic) formation but also to signal transduction changes, cytotoxic signals and activation of apoptosis. Using both in vitro and in vivo techniques, the interrelationship between AR activity, polyol (sorbitol and galactitol) formation, osmotic stress, growth factor induction, and cell signaling changes have been investigated. For in vitro studies, lenses from Sprague Dawley rats were cultured for up to 48 hrs in TC-199-bicarbonate media containing either 30 mM fructose (control), or 30 mM glucose or galctose with/without the aldose reductase inhibitors AL1576 or tolrestat, the sorbitol dehydrogenase inhibitor (SDI) CP-470,711, or 15 mM mannitol (osmotic-compensated media). For in vivo studies, lenses were obtained from streptozotocin-induced diabetic Sprague Dawley rats fed diet with/without the ARIs AL1576 or tolrestat for 10 weeks. As expected, lenses cultured in high glucose / galactose media or from untreated diabetic rats all showed a decrease in the GSH pool that was lessened by ARI treatment. Lenses either from diabetic rats or from glucose/galactose culture conditions showed increased expression of basic-FGF, TGF-β, and increased signaling through P-Akt, P-ERK1/2 and P-SAPK/JNK which were also normalized by ARIs to the expression levels observed in non-diabetic controls. Culturing rat lenses in osomotically compensated media containing 30 mM glucose or galactose did not lead to increased growth factor expression or altered signaling. These studies indicate that it is the biophysical response of the lens to osmotic stress that results in an increased intralenticular production of basic-FGF and TGF-β and the altered cytotoxic signaling that is observed during sugar cataract formation. PMID:22710095

  13. Characterization of CIPK Family in Asian Pear (Pyrus bretschneideri Rehd) and Co-expression Analysis Related to Salt and Osmotic Stress Responses.

    PubMed

    Tang, Jun; Lin, Jing; Li, Hui; Li, Xiaogang; Yang, Qingsong; Cheng, Zong-Ming; Chang, Youhong

    2016-01-01

    Asian pear (Pyrus bretschneideri) is one of the most important fruit crops in the world, and its growth and productivity are frequently affected by abiotic stresses. Calcineurin B-like interacting protein kinases (CIPKs) as caladium-sensor protein kinases interact with Ca(2+)-binding CBLs to extensively mediate abiotic stress responses in plants. Although the pear genome sequence has been released, little information is available about the CIPK genes in pear, especially in response to salt and osmotic stresses. In this study, we systematically identified 28 CIPK family members from the sequenced pear genome and analyzed their organization, phylogeny, gene structure, protein motif, and synteny duplication divergences. Most duplicated PbCIPKs underwent purifying selection, and their evolutionary divergences accompanied with the pear whole genome duplication. We also investigated stress -responsive expression patterns and co-expression networks of CIPK family under salt and osmotic stresses, and the distribution of stress-related cis-regulatory elements in promoter regions. Our results suggest that most PbCIPKs could play important roles in the abiotic stress responses. Some PbCIPKs, such as PbCIPK22, -19, -18, -15, -8, and -6 can serve as core regulators in response to salt and osmotic stresses based on co-expression networks of PbCIPKs. Some sets of genes that were involved in response to salt did not overlap with those in response to osmotic responses, suggesting the sub-functionalization of CIPK genes in stress responses. This study revealed some candidate genes that play roles in early responses to salt and osmotic stress for further characterization of abiotic stress responses medicated by CIPKs in pear. PMID:27656193

  14. Characterization of CIPK Family in Asian Pear (Pyrus bretschneideri Rehd) and Co-expression Analysis Related to Salt and Osmotic Stress Responses

    PubMed Central

    Tang, Jun; Lin, Jing; Li, Hui; Li, Xiaogang; Yang, Qingsong; Cheng, Zong-Ming; Chang, Youhong

    2016-01-01

    Asian pear (Pyrus bretschneideri) is one of the most important fruit crops in the world, and its growth and productivity are frequently affected by abiotic stresses. Calcineurin B-like interacting protein kinases (CIPKs) as caladium-sensor protein kinases interact with Ca2+-binding CBLs to extensively mediate abiotic stress responses in plants. Although the pear genome sequence has been released, little information is available about the CIPK genes in pear, especially in response to salt and osmotic stresses. In this study, we systematically identified 28 CIPK family members from the sequenced pear genome and analyzed their organization, phylogeny, gene structure, protein motif, and synteny duplication divergences. Most duplicated PbCIPKs underwent purifying selection, and their evolutionary divergences accompanied with the pear whole genome duplication. We also investigated stress -responsive expression patterns and co-expression networks of CIPK family under salt and osmotic stresses, and the distribution of stress-related cis-regulatory elements in promoter regions. Our results suggest that most PbCIPKs could play important roles in the abiotic stress responses. Some PbCIPKs, such as PbCIPK22, -19, -18, -15, -8, and -6 can serve as core regulators in response to salt and osmotic stresses based on co-expression networks of PbCIPKs. Some sets of genes that were involved in response to salt did not overlap with those in response to osmotic responses, suggesting the sub-functionalization of CIPK genes in stress responses. This study revealed some candidate genes that play roles in early responses to salt and osmotic stress for further characterization of abiotic stress responses medicated by CIPKs in pear. PMID:27656193

  15. Characterization of CIPK Family in Asian Pear (Pyrus bretschneideri Rehd) and Co-expression Analysis Related to Salt and Osmotic Stress Responses.

    PubMed

    Tang, Jun; Lin, Jing; Li, Hui; Li, Xiaogang; Yang, Qingsong; Cheng, Zong-Ming; Chang, Youhong

    2016-01-01

    Asian pear (Pyrus bretschneideri) is one of the most important fruit crops in the world, and its growth and productivity are frequently affected by abiotic stresses. Calcineurin B-like interacting protein kinases (CIPKs) as caladium-sensor protein kinases interact with Ca(2+)-binding CBLs to extensively mediate abiotic stress responses in plants. Although the pear genome sequence has been released, little information is available about the CIPK genes in pear, especially in response to salt and osmotic stresses. In this study, we systematically identified 28 CIPK family members from the sequenced pear genome and analyzed their organization, phylogeny, gene structure, protein motif, and synteny duplication divergences. Most duplicated PbCIPKs underwent purifying selection, and their evolutionary divergences accompanied with the pear whole genome duplication. We also investigated stress -responsive expression patterns and co-expression networks of CIPK family under salt and osmotic stresses, and the distribution of stress-related cis-regulatory elements in promoter regions. Our results suggest that most PbCIPKs could play important roles in the abiotic stress responses. Some PbCIPKs, such as PbCIPK22, -19, -18, -15, -8, and -6 can serve as core regulators in response to salt and osmotic stresses based on co-expression networks of PbCIPKs. Some sets of genes that were involved in response to salt did not overlap with those in response to osmotic responses, suggesting the sub-functionalization of CIPK genes in stress responses. This study revealed some candidate genes that play roles in early responses to salt and osmotic stress for further characterization of abiotic stress responses medicated by CIPKs in pear.

  16. Characterization of CIPK Family in Asian Pear (Pyrus bretschneideri Rehd) and Co-expression Analysis Related to Salt and Osmotic Stress Responses

    PubMed Central

    Tang, Jun; Lin, Jing; Li, Hui; Li, Xiaogang; Yang, Qingsong; Cheng, Zong-Ming; Chang, Youhong

    2016-01-01

    Asian pear (Pyrus bretschneideri) is one of the most important fruit crops in the world, and its growth and productivity are frequently affected by abiotic stresses. Calcineurin B-like interacting protein kinases (CIPKs) as caladium-sensor protein kinases interact with Ca2+-binding CBLs to extensively mediate abiotic stress responses in plants. Although the pear genome sequence has been released, little information is available about the CIPK genes in pear, especially in response to salt and osmotic stresses. In this study, we systematically identified 28 CIPK family members from the sequenced pear genome and analyzed their organization, phylogeny, gene structure, protein motif, and synteny duplication divergences. Most duplicated PbCIPKs underwent purifying selection, and their evolutionary divergences accompanied with the pear whole genome duplication. We also investigated stress -responsive expression patterns and co-expression networks of CIPK family under salt and osmotic stresses, and the distribution of stress-related cis-regulatory elements in promoter regions. Our results suggest that most PbCIPKs could play important roles in the abiotic stress responses. Some PbCIPKs, such as PbCIPK22, -19, -18, -15, -8, and -6 can serve as core regulators in response to salt and osmotic stresses based on co-expression networks of PbCIPKs. Some sets of genes that were involved in response to salt did not overlap with those in response to osmotic responses, suggesting the sub-functionalization of CIPK genes in stress responses. This study revealed some candidate genes that play roles in early responses to salt and osmotic stress for further characterization of abiotic stress responses medicated by CIPKs in pear.

  17. Effects of 24-epibrassinolide on plant growth, osmotic regulation and ion homeostasis of salt-stressed canola.

    PubMed

    Liu, J; Gao, H; Wang, X; Zheng, Q; Wang, C; Wang, X; Wang, Q

    2014-03-01

    This study evaluated effects of foliar spraying 24-epibrassinoide (24-EBL) on the growth of salt-stressed canola. Seedlings at the four-leaf stage were treated with 150 mM NaCl and different concentrations of 24-EBL (10(-6), 10(-8), 10(-10), 10(-12) M) for 15 days. A concentration of 10(-10) M 24-EBL was chosen as optimal and used in a subsequent experiment on plant biomass and leaf water potential parameters. The results showed that 24-EBL mainly promoted shoot growth of salt-stressed plants and also ameliorated leaf water status. Foliar spraying of salt-stressed canola with 24-EBL increased osmotic adjustment ability in all organs, especially in younger leaves and roots. This was mainly due to an increase of free amino acid content in upper leaves, soluble sugars in middle leaves, organic acids and proline in lower leaves, all of these compounds in roots, as well as essential inorganic ions. Na(+) and Cl(-) sharply increased in different organs under salt stress, and 24-EBL reduced their accumulation. 24-EBL improved the uptake of K(+), Ca(2+), Mg(2+) and NO3(-) in roots, which were mainly transported to upper leaves, while NO3(-) was mainly transported to middle leaves. Thus, 24-EBL improvements in ion homeostasis of K(+)/Na(+), Ca(2+)/Na(+), Mg(2+)/Na(+) and NO3(-)/Cl(-), especially in younger leaves and roots, could be explained. As most important parts, younger leaves and roots were the main organs protected by 24-EBL via improvement in osmotic adjustment ability and ion homeostasis. Further, physiological status of growth of salt-stressed canola was ameliorated after 24-EBL treatment. PMID:24033882

  18. Effects of 24-epibrassinolide on plant growth, osmotic regulation and ion homeostasis of salt-stressed canola.

    PubMed

    Liu, J; Gao, H; Wang, X; Zheng, Q; Wang, C; Wang, X; Wang, Q

    2014-03-01

    This study evaluated effects of foliar spraying 24-epibrassinoide (24-EBL) on the growth of salt-stressed canola. Seedlings at the four-leaf stage were treated with 150 mM NaCl and different concentrations of 24-EBL (10(-6), 10(-8), 10(-10), 10(-12) M) for 15 days. A concentration of 10(-10) M 24-EBL was chosen as optimal and used in a subsequent experiment on plant biomass and leaf water potential parameters. The results showed that 24-EBL mainly promoted shoot growth of salt-stressed plants and also ameliorated leaf water status. Foliar spraying of salt-stressed canola with 24-EBL increased osmotic adjustment ability in all organs, especially in younger leaves and roots. This was mainly due to an increase of free amino acid content in upper leaves, soluble sugars in middle leaves, organic acids and proline in lower leaves, all of these compounds in roots, as well as essential inorganic ions. Na(+) and Cl(-) sharply increased in different organs under salt stress, and 24-EBL reduced their accumulation. 24-EBL improved the uptake of K(+), Ca(2+), Mg(2+) and NO3(-) in roots, which were mainly transported to upper leaves, while NO3(-) was mainly transported to middle leaves. Thus, 24-EBL improvements in ion homeostasis of K(+)/Na(+), Ca(2+)/Na(+), Mg(2+)/Na(+) and NO3(-)/Cl(-), especially in younger leaves and roots, could be explained. As most important parts, younger leaves and roots were the main organs protected by 24-EBL via improvement in osmotic adjustment ability and ion homeostasis. Further, physiological status of growth of salt-stressed canola was ameliorated after 24-EBL treatment.

  19. Water films at grain-grain contacts: Debye-Hueckel, osmotic model of stress, salinity, and mineralogy dependence

    SciTech Connect

    Renard, F.; Ortoleva, P.

    1997-05-01

    Water film diffusion is one of the mechanisms proposed to explain the deformation of rocks by pressure-solution during geological processes in the upper crust. This mechanism assumes that matter is dissolved inside the contact between two grains. The resulting solutes are transported in the pore fluid through diffusion in an adsorbed water film. The main problem of this theory is that it requires the presence of a water film that is believed to be stable under large deviatoric stresses inside the contact between two grains. In this paper, we show that the electrically charged surface of a mineral can attract counter-ions from the pore and, by the related change of osmotic pressure, keep water within the contact. This is due to the counter ions in the water film that increase the salinity in the film relative to that in the pore. This lowers the free energy of water in the contact zone to a degree that balances the increase in free energy of water due to the elevated pressure in the film. These notions are made more precise by combining the theory of the Debye-Hueckle double layer with equations of osmotic pressure. The resulting D-H/O theory predicts the dependence of the water film thickness on stress across the contact, composition of the pore fluid, and the identity of the minerals involved. 33 refs., 4 figs., 1 tab.

  20. MhNCED3 in Malus hupehensis Rehd. induces NO generation under osmotic stress by regulating ABA accumulation.

    PubMed

    Zhang, Wei-wei; Yang, Hong-qiang; You, Shu-zhen; Ran, Kun

    2015-11-01

    Abscisic acid (ABA) biosynthesis has been widely characterized in plants, whereas the effects of ABA biosynthesis on nitric oxide (NO) generation in osmotic stress are less well understood. In this study, Malus hupehensis Rehd. 9-cis-epoxycarotenoid dioxygenase gene (MhNCED3) which is the key gene in ABA biosynthesis was transformed into wild type (WT) and 129B08/nced3 mutant (AtNCED3 deficient), respectively, and two transgenic Arabidopsis lines were obtained. The transgenic Arabidopsis lines displayed higher endogenous ABA content, NO generation rate, AtNIA1 transcript level and nitrate reductase (NR) activity than WT and 129B08/nced3 mutant. Ectopic expression of MhNCED3 reduced the electrolyte leakage and relieved Arabidopsis damage caused by 20% PEG on the growth and development. The ABA content, NO generation rate, AtNIA1 expression and NR activity increased after 20% PEG treatment, importantly, their increases amplitude relative to that in control were higher in two transgenic lines. Additionally, during the treatment for the four genotype Arabidopsis, the time of ABA contents reaching the highest peak was earlier than the time of NO generation, AtNIA1 expression and NR activity reaching their highest peak. These results show that NCED gene indirectly induced endogenous NO generation in osmotic-stressed Arabidopsis partially contributing to the up-regulation of AtNIA1 expression and NR activity.

  1. Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying.

    PubMed

    Prasad, Jaya; McJarrow, Paul; Gopal, Pramod

    2003-02-01

    The viability of lactic acid bacteria in frozen, freeze-dried, and air-dried forms is of significant commercial interest to both the dairy and food industries. In this study we observed that when prestressed with either heat (50 degrees C) or salt (0.6 M NaCl), Lactobacillus rhamnosus HN001 (also known as DR20) showed significant (P < 0.05) improvement in viability compared with the nonstressed control culture after storage at 30 degrees C in the dried form. To investigate the mechanisms underlying this stress-related viability improvement in L. rhamnosus HN001, we analyzed protein synthesis in cultures subjected to different growth stages and stress conditions, using two-dimensional gel electrophoresis and N-terminal sequencing. Several proteins were up- or down-regulated after either heat or osmotic shock treatments. Eleven proteins were positively identified, including the classical heat shock proteins GroEL and DnaK and the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, enolase, phosphoglycerate kinase, and triose phosphate isomerase, as well as tagatose 1,6-diphosphate aldolase of the tagatose pathway. The phosphocarrier protein HPr (histidine-containing proteins) was up-regulated in cultures after the log phase irrespective of the stress treatments used. The relative synthesis of an ABC transport-related protein was also up-regulated after shock treatments. Carbohydrate analysis of cytoplasmic contents showed higher levels (20 +/- 3 microg/mg of protein) in cell extracts (CFEs) derived from osmotically stressed cells than in the unstressed control (15 +/- 3 microg/mg of protein). Liquid chromatography of these crude carbohydrate extracts showed significantly different profiles. Electrospray mass spectrometry analysis of CFEs revealed, in addition to normal mono-, di-, tri-, and tetrasaccharides, the presence of saccharides modified with glycerol.

  2. Zinc Excess Triggered Polyamines Accumulation in Lettuce Root Metabolome, As Compared to Osmotic Stress under High Salinity

    PubMed Central

    Rouphael, Youssef; Colla, Giuseppe; Bernardo, Letizia; Kane, David; Trevisan, Marco; Lucini, Luigi

    2016-01-01

    Abiotic stresses such as salinity and metal contaminations are the major environmental stresses that adversely affect crop productivity worldwide. Crop responses and tolerance to abiotic stress are complex processes for which “-omic” approaches such as metabolomics is giving us a newest view of biological systems. The aim of the current research was to assess metabolic changes in lettuce (Lactuca sativa L.), by specifically probing the root metabolome of plants exposed to elevated isomolar concentrations of NaCl and ZnSO4. Most of the metabolites that were differentially accumulated in roots were identified for stress conditions, however the response was more intense in plants exposed to NaCl. Compounds identified in either NaCl or ZnSO4 conditions were: carbohydrates, phenolics, hormones, glucosinolates, and lipids. Our findings suggest that osmotic stress and the consequent redox imbalance play a major role in determining lettuce root metabolic response. In addition, it was identified that polyamines and polyamine conjugates were triggered as a specific response to ZnSO4. These findings help improve understanding of how plants cope with abiotic stresses. This information can be used to assist decision-making in breeding programs for improving crop tolerance to salinity and heavy metal contaminations. PMID:27375675

  3. Zinc Excess Triggered Polyamines Accumulation in Lettuce Root Metabolome, As Compared to Osmotic Stress under High Salinity.

    PubMed

    Rouphael, Youssef; Colla, Giuseppe; Bernardo, Letizia; Kane, David; Trevisan, Marco; Lucini, Luigi

    2016-01-01

    Abiotic stresses such as salinity and metal contaminations are the major environmental stresses that adversely affect crop productivity worldwide. Crop responses and tolerance to abiotic stress are complex processes for which "-omic" approaches such as metabolomics is giving us a newest view of biological systems. The aim of the current research was to assess metabolic changes in lettuce (Lactuca sativa L.), by specifically probing the root metabolome of plants exposed to elevated isomolar concentrations of NaCl and ZnSO4. Most of the metabolites that were differentially accumulated in roots were identified for stress conditions, however the response was more intense in plants exposed to NaCl. Compounds identified in either NaCl or ZnSO4 conditions were: carbohydrates, phenolics, hormones, glucosinolates, and lipids. Our findings suggest that osmotic stress and the consequent redox imbalance play a major role in determining lettuce root metabolic response. In addition, it was identified that polyamines and polyamine conjugates were triggered as a specific response to ZnSO4. These findings help improve understanding of how plants cope with abiotic stresses. This information can be used to assist decision-making in breeding programs for improving crop tolerance to salinity and heavy metal contaminations. PMID:27375675

  4. C. elegans lifespan extension by osmotic stress requires FUdR, base excision repair, FOXO, and sirtuins.

    PubMed

    Anderson, Edward N; Corkins, Mark E; Li, Jia-Cheng; Singh, Komudi; Parsons, Sadé; Tucey, Tim M; Sorkaç, Altar; Huang, Huiyan; Dimitriadi, Maria; Sinclair, David A; Hart, Anne C

    2016-03-01

    Moderate stress can increase lifespan by hormesis, a beneficial low-level induction of stress response pathways. 5'-fluorodeoxyuridine (FUdR) is commonly used to sterilize Caenorhabditis elegans in aging experiments. However, FUdR alters lifespan in some genotypes and induces resistance to thermal and proteotoxic stress. We report that hypertonic stress in combination with FUdR treatment or inhibition of the FUdR target thymidylate synthase, TYMS-1, extends C. elegans lifespan by up to 30%. By contrast, in the absence of FUdR, hypertonic stress decreases lifespan. Adaptation to hypertonic stress requires diminished Notch signaling and loss of Notch co-ligands leads to lifespan extension only in combination with FUdR. Either FUdR treatment or TYMS-1 loss induced resistance to acute hypertonic stress, anoxia, and thermal stress. FUdR treatment increased expression of DAF-16 FOXO and the osmolyte biosynthesis enzyme GPDH-1. FUdR-induced hypertonic stress resistance was partially dependent on sirtuins and base excision repair (BER) pathways, while FUdR-induced lifespan extension under hypertonic stress conditions requires DAF-16, BER, and sirtuin function. Combined, these results demonstrate that FUdR, through inhibition of TYMS-1, activates stress response pathways in somatic tissues to confer hormetic resistance to acute and chronic stress. C. elegans lifespan studies using FUdR may need re-interpretation in light of this work.

  5. Effects of molybdenum on water utilization, antioxidative defense system and osmotic-adjustment ability in winter wheat (Triticum aestivum) under drought stress.

    PubMed

    Wu, Songwei; Hu, Chengxiao; Tan, Qiling; Nie, Zhaojun; Sun, Xuecheng

    2014-10-01

    Molybdenum (Mo), as an essential trace element in plants, plays an essential role in abiotic stress tolerance of plants. To obtain a better understanding of drought tolerance enhanced by Mo, a hydroponic trial was conducted to investigate the effects of Mo on water utilization, antioxidant enzymes, non-enzymatic antioxidants, and osmotic-adjustment products in the Mo-efficient '97003' and Mo-inefficient '97014' under PEG simulated drought stress. Our results indicate that Mo application significantly enhanced Pn, chlorophyll, dry matter, grain yield, biomass, RWC and WUE and decreased Tr, Gs and water loss of wheat under drought stress, suggesting that Mo application improved the water utilization capacity in wheat. The activities of antioxidant enzymes such as superoxide dismutase, peroxidase, catalase, ascorbate peroxidase and the contents of non-enzymatic antioxidants content such as ascorbic acid, reduced glutathione, carotenoid were significantly increased and malonaldehyde contents were decreased by Mo application under PEG simulated drought stress, suggesting that Mo application enhanced the ability of scavenging active oxygen species. The osmotic-adjustment products such as soluble protein, proline and soluble sugar were also increased by Mo application under PEG simulated drought stress, indicating that Mo improved the osmotic adjustment ability in wheat. It is hypothesized that Mo application might improve the drought tolerance of wheat by enhancing water utilization capability and the abilities of antioxidative defense and osmotic adjustment. Similarities and differences between the Mo-efficient and Mo-inefficient cultivars wheat in response to Mo under drought stress are discussed.

  6. Osmotic adjustment and the growth response of seven vegetable crops following water-deficit stress. [Phaseolus vulgaris L. ; Beta vulgaris L. ; Abelmoschus esculentus; Pisum sativum L. ; Capsicum annuum L. ; Spinacia oleracea L. ; Lycopersicon esculentum Mill

    SciTech Connect

    Wullschleger, S.D. ); Oosterhuis, D.M. )

    1991-09-01

    Growth-chamber studies were conducted to examine the ability of seven vegetable crops- Blue Lake beam (Phaseolus vulgaris L.) Detroit Dark Red beet (Beta vulgaris L.) Burgundy okra (Abelmoschus esculentus) (Moench), Little Marvel pea (Pisum sativum L), California Wonder bell pepper (Capsicum annuum L), New Zealand spinach (Spinacia oleracea L), and Beefsteak tomato (Lycopersicon esculentum Mill.) - to adjust osmotically in response to water-deficit stress. Water stress was imposed by withholding water for 3 days, and the adjustment of leaf and root osmotic potentials upon relief of the stress and rehydration were monitored with thermocouple psychrometers. Despite similar reductions in leaf water potential and stomatal conductance among the species studied reductions in lead water potential an stomatal conductance among the species, crop-specific differences were observed in leak and root osmotic adjustment. Leaf osmotic adjustment was observed for bean, pepper, and tomato following water-deficit stress. Root osmotic adjustment was significant in bean, okra, pea and tomato. Furthermore, differences in leaf and root osmotic adjustment were also observed among five tomato cultivars. Leaf osmotic adjustment was not associated with the maintenance of leaf growth following water-deficit stress, since leaf expansion of water-stressed bean and pepper, two species capable of osmotic adjustment, was similar to that of spinach, which exhibited no leaf osmotic adjustment.

  7. A generalized method for the minimization of cellular osmotic stresses and strains during the introduction and removal of permeable cryoprotectants.

    PubMed

    Levin, R L

    1982-05-01

    The successful freeze preservation of mammalian cells and tissues usually requires the presence of high concentrations of cryoprotective agents (CPAs) such as glycerol, ethylene glycol, or dimethylsulfoxide. Unfortunately, the addition of these permeable agents to cells and tissues prior to freezing and their removal after thawing has been documented to be as damaging as the freeze-thaw process itself. This damaging process has been hypothesized to result from the drastic alterations in cell size caused by the osmotic stresses usually imposed upon cells during the introduction and removal of the cryoprotectants. Consequently, on the basis of a nonequilibrium thermodynamic model for the transport of water and a permeable CPA across cell membranes, a method has been developed to minimize these potentially lethal transient changes in cell size. This method involves the simultaneous variation of both the extracellular CPA and electrolyte or osmotic extender osmolalities in a balance, prescribed manner so that both the cellular water content and the total intracellular ionic strength remain constant as the intracellular CPA osmolarity is either raised or lowered. The theoretical analysis indicates that many of the resulting protocols are practical from the clinical point of view.

  8. Assessment of Full-Eye Response to Osmotic Stress in Mouse Model In Vivo Using Optical Coherence Tomography

    PubMed Central

    Ni, Yang; Xu, Baisheng; Wu, Lan; Du, Chixin; Jiang, Bo; Ding, Zhihua; Li, Peng

    2015-01-01

    NaCl based solutions were applied as osmotic stress agents to alter the hydration state of the mouse eye. Full-eye responses to these osmotic challenges were monitored in vivo using a custom-built optical coherence tomography (OCT) with an extended imaging range of 12.38 mm. Dynamic changes in the mouse eye were quantified based on the OCT images using several parameters, including the central corneal thickness (CCT), the anterior chamber depth (ACD), the crystalline lens thickness (LT), the cornea-retina distance (CRD), the iris curvature (IC), and the lens scattering intensity (LSI). Apparent but reversible changes in the morphology of almost all the ocular components and the light transparency of the lens are exhibited. Particularly, the ocular dehydration induced by the hypertonic challenges resulted in a closing of the iridocorneal angle and an opacification of the lens. Our results indicated that the ocular hydration is an important physiological process which might be correlated with various ocular disorders, such as dry eye, cataract, and angle-closure glaucoma, and would affect the biometry and imaging of the eye. OCT uniquely enables the comprehensive study of the dynamic full-eye responses to the ocular hydration in vivo. PMID:26491552

  9. Quantifying the sensitivity of G. oxydans ATCC 621H and DSM 3504 to osmotic stress triggered by soluble buffers.

    PubMed

    Luchterhand, B; Fischöder, T; Grimm, A R; Wewetzer, S; Wunderlich, M; Schlepütz, T; Büchs, J

    2015-04-01

    In Gluconobacter oxydans cultivations on glucose, CaCO3 is typically used as pH-buffer. This buffer, however, has disadvantages: suspended CaCO3 particles make the medium turbid, thereby, obstructing analysis of microbial growth via optical density and scattered light. Upon searching for alternative soluble pH-buffers, bacterial growth and productivity was inhibited most probably due to osmotic stress. Thus, this study investigates in detail the osmotic sensitivity of G. oxydans ATCC 621H and DSM 3504 using the Respiratory Activity MOnitoring System. The tested soluble pH-buffers and other salts attained osmolalities of 0.32-1.19 osmol kg(-1). This study shows that G. oxydans ATCC 621H and DSM 3504 respond quite sensitively to increased osmolality in comparison to other microbial strains of industrial interest. Osmolality values of >0.5 osmol kg(-1) should not be exceeded to avoid inhibition of growth and product formation. This osmolality threshold needs to be considered when working with soluble pH-buffers.

  10. Process optimization of the integrated synthesis and secretion of ectoine and hydroxyectoine under hyper/hypo-osmotic stress.

    PubMed

    Fallet, C; Rohe, P; Franco-Lara, E

    2010-09-01

    The synthesis and secretion of the industrial relevant compatible solutes ectoine and hydroxyectoine using the halophile bacterium Chromohalobacter salexigens were studied and optimized. For this purpose, a cascade of two continuously operated bioreactors was used. In the first bioreactor, cells were grown under constant hyperosmotic conditions and thermal stress driving the cells to accumulate large amounts of ectoines. To enhance the overall productivity, high cell densities up to 61 g L(-1) were achieved using a cross-flow ultrafiltration connected to the first bioreactor. In the coupled second bioreactor the concentrated cell broth was subjected to an osmotic and thermal down-shock by addition of fresh distilled water. Under these conditions, the cells are forced to secrete the accumulated intracellular ectoines into the medium to avoid bursting. The cultivation conditions in the first bioreactor were optimized with respect to growth temperature and medium salinity to reach the highest synthesis (productivity); the second bioreactor was optimized using a multi-objective approach to attain maximal ectoine secretion with simultaneous minimization of cell death and product dilution caused by the osmotic and thermal down-shock. Depending on the cultivation conditions, intracellular ectoine and hydroxyectoine contents up to 540 and 400 mg per g cell dry weight, respectively, were attained. With a maximum specific growth rate of 0.3 h(-1) in defined medium, productivities of approximately 2.1 g L(-1) h(-1) secreted ectoines in continuous operation were reached.

  11. Osmotic stress induces phosphorylation of histone H3 at threonine 3 in pericentromeric regions of Arabidopsis thaliana

    PubMed Central

    Wang, Zhen; Casas-Mollano, Juan Armando; Xu, Jianping; Riethoven, Jean-Jack M.; Zhang, Chi; Cerutti, Heriberto

    2015-01-01

    Histone phosphorylation plays key roles in stress-induced transcriptional reprogramming in metazoans but its function(s) in land plants has remained relatively unexplored. Here we report that an Arabidopsis mutant defective in At3g03940 and At5g18190, encoding closely related Ser/Thr protein kinases, shows pleiotropic phenotypes including dwarfism and hypersensitivity to osmotic/salt stress. The double mutant has reduced global levels of phosphorylated histone H3 threonine 3 (H3T3ph), which are not enhanced, unlike the response in the wild type, by drought-like treatments. Genome-wide analyses revealed increased H3T3ph, slight enhancement in trimethylated histone H3 lysine 4 (H3K4me3), and a modest decrease in histone H3 occupancy in pericentromeric/knob regions of wild-type plants under osmotic stress. However, despite these changes in heterochromatin, transposons and repeats remained transcriptionally repressed. In contrast, this reorganization of heterochromatin was mostly absent in the double mutant, which exhibited lower H3T3ph levels in pericentromeric regions even under normal environmental conditions. Interestingly, within actively transcribed protein-coding genes, H3T3ph density was minimal in 5′ genic regions, coincidental with a peak of H3K4me3 accumulation. This pattern was not affected in the double mutant, implying the existence of additional H3T3 protein kinases in Arabidopsis. Our results suggest that At3g03940 and At5g18190 are involved in the phosphorylation of H3T3 in pericentromeric/knob regions and that this repressive epigenetic mark may be important for maintaining proper heterochromatic organization and, possibly, chromosome function(s). PMID:26100864

  12. Osmotic stress induces phosphorylation of histone H3 at threonine 3 in pericentromeric regions of Arabidopsis thaliana.

    PubMed

    Wang, Zhen; Casas-Mollano, Juan Armando; Xu, Jianping; Riethoven, Jean-Jack M; Zhang, Chi; Cerutti, Heriberto

    2015-07-01

    Histone phosphorylation plays key roles in stress-induced transcriptional reprogramming in metazoans but its function(s) in land plants has remained relatively unexplored. Here we report that an Arabidopsis mutant defective in At3g03940 and At5g18190, encoding closely related Ser/Thr protein kinases, shows pleiotropic phenotypes including dwarfism and hypersensitivity to osmotic/salt stress. The double mutant has reduced global levels of phosphorylated histone H3 threonine 3 (H3T3ph), which are not enhanced, unlike the response in the wild type, by drought-like treatments. Genome-wide analyses revealed increased H3T3ph, slight enhancement in trimethylated histone H3 lysine 4 (H3K4me3), and a modest decrease in histone H3 occupancy in pericentromeric/knob regions of wild-type plants under osmotic stress. However, despite these changes in heterochromatin, transposons and repeats remained transcriptionally repressed. In contrast, this reorganization of heterochromatin was mostly absent in the double mutant, which exhibited lower H3T3ph levels in pericentromeric regions even under normal environmental conditions. Interestingly, within actively transcribed protein-coding genes, H3T3ph density was minimal in 5' genic regions, coincidental with a peak of H3K4me3 accumulation. This pattern was not affected in the double mutant, implying the existence of additional H3T3 protein kinases in Arabidopsis. Our results suggest that At3g03940 and At5g18190 are involved in the phosphorylation of H3T3 in pericentromeric/knob regions and that this repressive epigenetic mark may be important for maintaining proper heterochromatic organization and, possibly, chromosome function(s). PMID:26100864

  13. Protein diffusion in the periplasm of E. coli under osmotic stress.

    PubMed

    Sochacki, Kem A; Shkel, Irina A; Record, M Thomas; Weisshaar, James C

    2011-01-01

    The physical and mechanical properties of the cell envelope of Escherichia coli are poorly understood. We use fluorescence recovery after photobleaching to measure diffusion of periplasmic green fluorescent protein and probe the fluidity of the periplasm as a function of external osmotic conditions. For cells adapted to growth in complete medium at 0.14-1.02 Osm, the mean diffusion coefficient increases from 3.4 μm² s⁻¹ to 6.6 μm² s⁻¹ and the distribution of D(peri) broadens as growth osmolality increases. This is consistent with a net gain of water by the periplasm, decreasing its biopolymer volume fraction. This supports a model in which the turgor pressure drops primarily across the thin peptidoglycan layer while the cell actively maintains osmotic balance between periplasm and cytoplasm, thus avoiding a substantial pressure differential across the cytoplasmic membrane. After sudden hyperosmotic shock (plasmolysis), the cytoplasm loses water as the periplasm gains water. Accordingly, increases threefold. The fluorescence recovery after photobleaching is complete and homogeneous in all cases, but in minimal medium, the periplasm is evidently thicker at the cell tips. For the relevant geometries, Brownian dynamics simulations in model cytoplasmic and periplasmic volumes provide analytical formulae for extraction of accurate diffusion coefficients from readily measurable quantities. PMID:21190653

  14. Differences between EcoRI nonspecific and "star" sequence complexes revealed by osmotic stress.

    PubMed

    Sidorova, Nina Y; Rau, Donald C

    2004-10-01

    The binding of the restriction endonuclease EcoRI to DNA is exceptionally specific. Even a single basepair change ("star" sequence) from the recognition sequence, GAATTC, decreases the binding free energy of EcoRI to values nearly indistinguishable from nonspecific binding. The difference in the number of waters sequestered by the protein-DNA complexes of the "star" sequences TAATTC and CAATTC and by the specific sequence complex determined from the dependence of binding free energy on water activity is also practically indistinguishable at low osmotic pressures from the 110 water molecules sequestered by nonspecific sequence complexes. Novel measurements of the dissociation rates of noncognate sequence complexes and competition equilibrium show that sequestered water can be removed from "star" sequence complexes by high osmotic pressure, but not from a nonspecific complex. By 5 Osm, the TAATTC "star" sequence complex has lost almost 90 of the approximately 110 waters initially present. It is more difficult to remove water from the CAATTC "star" sequence complex. The sequence dependence of water loss correlates with the known sequence dependence of "star" cleavage activity.

  15. Controlling the extent of viral genome release by a combination of osmotic stress and polyvalent cations.

    PubMed

    Jin, Yan; Knobler, Charles M; Gelbart, William M

    2015-08-01

    While several in vitro experiments on viral genome release have specifically studied the effects of external osmotic pressure and of the presence of polyvalent cations on the ejection of DNA from bacteriophages, few have systematically investigated how the extent of ejection is controlled by a combination of these effects. In this work we quantify the effect of osmotic pressure on the extent of DNA ejection from bacteriophage lambda as a function of polyvalent cation concentration (in particular, the tetravalent polyamine spermine). We find that the pressure required to completely inhibit ejection decreases from 38 to 17 atm as the spermine concentration is increased from 0 to 1.5 mM. Further, incubation of the phage particles in spermine concentrations as low as 0.15 mM--the threshold for DNA condensation in bulk solution-is sufficient to significantly limit the extent of ejection in the absence of osmolyte; for spermine concentrations below this threshold, the ejection is complete. In accord with recent investigations on the packaging of DNA in the presence of a condensing agent, we observe that the self-attraction induced by the polyvalent cation affects the ordering of the genome, causing it to get stuck in a broad range of nonequilibrated structures.

  16. Controlling the extent of viral genome release by a combination of osmotic stress and polyvalent cations

    NASA Astrophysics Data System (ADS)

    Jin, Yan; Knobler, Charles M.; Gelbart, William M.

    2015-08-01

    While several in vitro experiments on viral genome release have specifically studied the effects of external osmotic pressure and of the presence of polyvalent cations on the ejection of DNA from bacteriophages, few have systematically investigated how the extent of ejection is controlled by a combination of these effects. In this work we quantify the effect of osmotic pressure on the extent of DNA ejection from bacteriophage lambda as a function of polyvalent cation concentration (in particular, the tetravalent polyamine spermine). We find that the pressure required to completely inhibit ejection decreases from 38 to 17 atm as the spermine concentration is increased from 0 to 1.5 mM. Further, incubation of the phage particles in spermine concentrations as low as 0.15 mM—the threshold for DNA condensation in bulk solution—is sufficient to significantly limit the extent of ejection in the absence of osmolyte; for spermine concentrations below this threshold, the ejection is complete. In accord with recent investigations on the packaging of DNA in the presence of a condensing agent, we observe that the self-attraction induced by the polyvalent cation affects the ordering of the genome, causing it to get stuck in a broad range of nonequilibrated structures.

  17. Role of cellulose in protecting Shiga toxin-producing Escherichia coli against osmotic and chlorine stress.

    PubMed

    Yoo, Byong K; Chen, Jinru

    2010-11-01

    This study was undertaken to determine the role of cellulose in protecting Shiga toxin-producing Escherichia coli (STEC) against osmotic and chlorine treatments. STEC cells producing cellulose (19B and 49B) and their respective cellulose-deficient counterparts (19D or 49D) were subjected to osmotic (1, 2, and 3 M NaCl) or chlorine (25, 50, and 100 μg/ml sodium hypochlorite) treatments. The survival of STEC cells was determined at different treatment intervals. Populations of 19B cells were significantly higher (P < 0.05) than those of 19D cells at all sampling intervals for the chlorine treatments, at 24- to 48-h intervals for the 1 M NaCl treatment, and at 9- to 48-h intervals for the 2 M NaCl treatment. Significant differences in populations of 49B and 49D cells were observed after 9, 36, and 48 h of treatment with 2 M NaCl and after 3, 12, 36, and 48 h of treatment with 3 M NaCl (P < 0.05). Populations of 49B cells were higher than those of 49D cells (P < 0.05) also after 5 to 10 min of treatment with 50 μg/ml sodium hypochlorite and 3 to 10 min of treatment with 100 μg/ml sodium hypochlorite. The protective effects conferred by cellulose may explain the greater survival of cellulose-producing STEC under adverse environmental conditions. PMID:21219722

  18. RhNAC3, a stress-associated NAC transcription factor, has a role in dehydration tolerance through regulating osmotic stress-related genes in rose petals.

    PubMed

    Jiang, Xinqiang; Zhang, Changqing; Lü, Peitao; Jiang, Guimei; Liu, Xiaowei; Dai, Fanwei; Gao, Junping

    2014-01-01

    Petal cell expansion depends on cell wall metabolism, changes in cell turgor pressure and restructuring of the cytoskeleton, and recovery ability of petal cell expansion is defined as an indicator of dehydration tolerance in flowers. We previously reported that RhNAC2, a development-related NAC domain transcription factor, confers dehydration tolerance through regulating cell wall-related genes in rose petals. Here, we identify RhNAC3, a novel rose SNAC gene, and its expression in petals induced by dehydration, wounding, exogenous ethylene and abscisic acid (ABA). Expression studies in Arabidopsis protoplasts and yeast show that RhNAC3 has transactivation activity along its full length and in the carboxyl-terminal domain. Silencing RhNAC3 in rose petals by virus-induced gene silencing (VIGS) significantly decreased the cell expansion of rose petals under rehydration conditions. In total, 24 of 27 osmotic stress-related genes were down-regulated in RhNAC3-silenced rose petals, while only 4 of 22 cell expansion-related genes were down-regulated. Overexpression of RhNAC3 in Arabidopsis gave improved drought tolerance, with lower water loss of leaves in transgenic plants. Arabidopsis ATH1 microarray analysis showed that RhNAC3 regulated the expression of stress-responsive genes in overexpressing lines, and further analysis revealed that most of the RhNAC3-up-regulated genes were involved in the response to osmotic stress. Comparative analysis revealed that different transcription regulation existed between RhNAC3 and RhNAC2. Taken together, these data indicate that RhNAC3, as a positive regulator, confers dehydration tolerance of rose petals mainly through regulating osmotic adjustment-associated genes.

  19. Transcriptomic profiling of Arabidopsis thaliana mutant pad2.1 in response to combined cold and osmotic stress.

    PubMed

    Kumar, Deepak; Datta, Riddhi; Hazra, Saptarshi; Sultana, Asma; Mukhopadhyay, Ria; Chattopadhyay, Sharmila

    2015-01-01

    The contribution of glutathione (GSH) in stress tolerance, defense response and antioxidant signaling is an established fact. In this study transcriptome analysis of pad2.1, an Arabidopsis thaliana mutant, after combined osmotic and cold stress treatment has been performed to explore the intricate position of GSH in the stress and defense signaling network in planta. Microarray data revealed the differential regulation of about 1674 genes in pad2.1 amongst which 973 and 701 were significantly up- and down-regulated respectively. Gene enrichment, functional pathway analysis by DAVID and MapMan analysis identified various stress and defense related genes viz. members of heat shock protein family, peptidyl prolyl isomerase (PPIase), thioredoxin peroxidase (TPX2), glutathione-S-transferase (GST), NBS-LRR type resistance protein etc. as down-regulated. The expression pattern of the above mentioned stress and defense related genes and APETALA were also validated by comparative proteomic analysis of combined stress treated Col-0 and pad2.1. Functional annotation noted down-regulation of UDP-glycosyl transferase, 4-coumarate CoA ligase 8, cinnamyl alcohol dehydrogenase 4 (CAD4), ACC synthase and ACC oxidase which are the important enzymes of phenylpropanoid, lignin and ethylene (ET) biosynthetic pathway respectively. Since the only difference between Col-0 (Wild type) and pad2.1 is the content of GSH, so, this study suggested that in addition to its association with specific stress responsive genes and proteins, GSH provides tolerance to plants by its involvement with phenylpropanoid, lignin and ET biosynthesis under stress conditions. PMID:25822199

  20. Debaryomyces hansenii, a highly osmo-tolerant and halo-tolerant yeast, maintains activated Dhog1p in the cytoplasm during its growth under severe osmotic stress.

    PubMed

    Sharma, Pratima; Meena, Netrapal; Aggarwal, Monika; Mondal, Alok K

    2005-09-01

    The HOG pathway is an important mitogen-activated protein kinase (MAPK) signal transduction pathway in Saccharomyces cerevisiae that mediates adaptation of cells to hyper-osmotic stress. Activation of this pathway causes rapid but transient, phosphorylation of the MAPK Hog1p. Phosphorylated Hog1p is rapidly transported to the nucleus that results in the transcription of target genes. The HOG pathway appears to be ubiquitous in yeast. Components of HOG pathway have also been identified in Debaryomyces hansenii, a highly osmotolerant and halotolerant yeast. We have studied activation of HOG pathway in D. hansenii under different stress conditions. Our experiments demonstrated that the pathway is activated by high osmolarity, oxidative and UV stress but not by heat stress. We have provided evidence, for the first time, that D. hansenii maintains phosphorylated Dhog1p in the cytoplasm during its growth under severe osmotic stress. PMID:16091960

  1. [Molecular-genetic polymorphism of wheat cell lines resistant to metabolites of G. graminis var. tritici and osmotic stress].

    PubMed

    Bavol, A V; Zinchenko, M O; Dubrovna, O V

    2014-01-01

    It was analyzed polymorphism of DNA loci, flanked by inverted repeats of LTR retrotransposon Cassandra, in cell lines of bread wheat, resistant to the metabolites of ophiobolus root rot (G. graminis var. tritici), under osmotic stress and induced from them plant-regenerants. The differences in the polynucleotide sequences of DNA at the direct and step cell selection it was identified. Assessment of the level of genetic divergence showed that calluses obtained at the direct selection and calluses in the later stages of step selection were the most genetically distant from the original forms (D(NL) = 0.4855), this means that at the sublethal doses of selective factors occur the most significant changes at the genome of the investigated objects. In contrast to the original form at the spectra of products DNA amplification of calluses and regenerated plants showed the emergence of bands approximately 638 bp length, which may indicate the activation of retrotransposon Cassandra. PMID:24791474

  2. Abnormal Osmotic Avoidance Behavior in C. elegans Is Associated with Increased Hypertonic Stress Resistance and Improved Proteostasis

    PubMed Central

    Lee, Elaine C.; Kim, Heejung; Ditano, Jennifer; Manion, Dacie; King, Benjamin L.; Strange, Kevin

    2016-01-01

    Protein function is controlled by the cellular proteostasis network. Proteostasis is energetically costly and those costs must be balanced with the energy needs of other physiological functions. Hypertonic stress causes widespread protein damage in C. elegans. Suppression and management of protein damage is essential for optimal survival under hypertonic conditions. ASH chemosensory neurons allow C. elegans to detect and avoid strongly hypertonic environments. We demonstrate that mutations in osm-9 and osm-12 that disrupt ASH mediated hypertonic avoidance behavior or genetic ablation of ASH neurons are associated with enhanced survival during hypertonic stress. Improved survival is not due to altered systemic volume homeostasis or organic osmolyte accumulation. Instead, we find that osm-9(ok1677) mutant and osm-9(RNAi) worms exhibit reductions in hypertonicity induced protein damage in non-neuronal cells suggesting that enhanced proteostasis capacity may account for improved hypertonic stress resistance in worms with defects in osmotic avoidance behavior. RNA-seq analysis revealed that genes that play roles in managing protein damage are upregulated in osm-9(ok1677) worms. Our findings are consistent with a growing body of work demonstrating that intercellular communication between neuronal and non-neuronal cells plays a critical role in integrating cellular stress resistance with other organismal physiological demands and associated energy costs. PMID:27111894

  3. Abnormal Osmotic Avoidance Behavior in C. elegans Is Associated with Increased Hypertonic Stress Resistance and Improved Proteostasis.

    PubMed

    Lee, Elaine C; Kim, Heejung; Ditano, Jennifer; Manion, Dacie; King, Benjamin L; Strange, Kevin

    2016-01-01

    Protein function is controlled by the cellular proteostasis network. Proteostasis is energetically costly and those costs must be balanced with the energy needs of other physiological functions. Hypertonic stress causes widespread protein damage in C. elegans. Suppression and management of protein damage is essential for optimal survival under hypertonic conditions. ASH chemosensory neurons allow C. elegans to detect and avoid strongly hypertonic environments. We demonstrate that mutations in osm-9 and osm-12 that disrupt ASH mediated hypertonic avoidance behavior or genetic ablation of ASH neurons are associated with enhanced survival during hypertonic stress. Improved survival is not due to altered systemic volume homeostasis or organic osmolyte accumulation. Instead, we find that osm-9(ok1677) mutant and osm-9(RNAi) worms exhibit reductions in hypertonicity induced protein damage in non-neuronal cells suggesting that enhanced proteostasis capacity may account for improved hypertonic stress resistance in worms with defects in osmotic avoidance behavior. RNA-seq analysis revealed that genes that play roles in managing protein damage are upregulated in osm-9(ok1677) worms. Our findings are consistent with a growing body of work demonstrating that intercellular communication between neuronal and non-neuronal cells plays a critical role in integrating cellular stress resistance with other organismal physiological demands and associated energy costs.

  4. The Wheat E Subunit of V-Type H+-ATPase Is Involved in the Plant Response to Osmotic Stress

    PubMed Central

    Zhang, Xiao-Hong; Li, Bo; Hu, Yin-Gang; Chen, Liang; Min, Dong-Hong

    2014-01-01

    The vacuolar type H+-ATPase (V-type H+-ATPase) plays important roles in establishing an electrochemical H+-gradient across tonoplast, energizing Na+ sequestration into the central vacuole, and enhancing salt stress tolerance in plants. In this paper, a putative E subunit of the V-type H+-ATPase gene, W36 was isolated from stress-induced wheat de novo transcriptome sequencing combining with 5'-RACE and RT-PCR methods. The full-length of W36 gene was 1097 bp, which contained a 681 bp open reading frame (ORF) and encoded 227 amino acids. Southern blot analysis indicated that W36 was a single-copy gene. The quantitative real-time PCR (qRT-PCR) analysis revealed that the expression level of W36 could be upregulated by drought, cold, salt, and exogenous ABA treatment. A subcellular localization assay showed that the W36 protein accumulated in the cytoplasm. Isolation of the W36 promoter revealed some cis-acting elements responding to abiotic stresses. Transgenic Arabidopsis plants overexpressing W36 were enhanced salt and mannitol tolerance. These results indicate that W36 is involved in the plant response to osmotic stress. PMID:25222556

  5. Diagonal two-dimensional electrophoresis (D-2DE): a new approach to study the effect of osmotic stress induced by polyethylene glycol in durum wheat (Triticum durum Desf.).

    PubMed

    Kacem, N S; Mauro, S; Muhovski, Y; Delporte, F; Renaut, J; Djekoun, A; Watillon, B

    2016-09-01

    Acclimatization to stress is associated with profound changes in proteome composition. The use of plant cell and tissue culture offers a means to investigate the physiological and biochemical processes involved in the adaptation to osmotic stress. We employed a new proteomic approach to further understand the response of calli to dehydration induced by polyethylene glycol (PEG6000). Calli of three durum wheat genotypes Djenah Khetifa, Oued Zenati and Waha were treated with two concentrations of polyethylene glycol to mimic osmotic stress. Changes in protein relative abundance were analyzed using a new electrophoretic approach named diagonal two-dimensional electrophoresis (D-2DE), combined with mass spectrometry. Total proteins were extracted from 30-day-old calli from three durum wheat genotypes that showed contrasting levels of drought stress tolerance in the field. The combination of one-dimensional electrophoresis and D-2DE gave a specific imprint of the protein extracts under osmotic stress, as well as characterizing and identifying individual target proteins. Of the variously expressed proteins, three were selected (globulin, GAPDH and peroxidase) and further analyzed using qRT-PCR at the transcriptome level in order to compare the results with the proteomic data. Western blot analysis was used to further validate the differences in relative abundance pattern. The proteins identified through this technique provide new insights as to how calli respond to osmotic stress. Our method of study provides an original and relevant approach of analyzing the osmotic-responsive mechanisms at the cellular level of durum wheat with agronomic perspectives. PMID:27317377

  6. Oxidative stress in severe acute illness.

    PubMed

    Bar-Or, David; Bar-Or, Raphael; Rael, Leonard T; Brody, Edward N

    2015-01-01

    The overall redox potential of a cell is primarily determined by oxidizable/reducible chemical pairs, including glutathione-glutathione disulfide, reduced thioredoxin-oxidized thioredoxin, and NAD(+)-NADH (and NADP-NADPH). Current methods for evaluating oxidative stress rely on detecting levels of individual byproducts of oxidative damage or by determining the total levels or activity of individual antioxidant enzymes. Oxidation-reduction potential (ORP), on the other hand, is an integrated, comprehensive measure of the balance between total (known and unknown) pro-oxidant and antioxidant components in a biological system. Much emphasis has been placed on the role of oxidative stress in chronic diseases, such as Alzheimer's disease and atherosclerosis. The role of oxidative stress in acute diseases often seen in the emergency room and intensive care unit is considerable. New tools for the rapid, inexpensive measurement of both redox potential and total redox capacity should aid in introducing a new body of literature on the role of oxidative stress in acute illness and how to screen and monitor for potentially beneficial pharmacologic agents.

  7. bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism.

    PubMed

    Liu, Wenwen; Tai, Huanhuan; Li, Songsong; Gao, Wei; Zhao, Meng; Xie, Chuanxiao; Li, Wen-Xue

    2014-03-01

    • Although proteins in the basic helix-loop-helix (bHLH) family are universal transcription factors in eukaryotes, the biological roles of most bHLH family members are not well understood in plants. • The Arabidopsis thaliana bHLH122 transcripts were strongly induced by drought, NaCl and osmotic stresses, but not by ABA treatment. Promoter::GUS analysis showed that bHLH122 was highly expressed in vascular tissues and guard cells. Compared with wild-type (WT) plants, transgenic plants overexpressing bHLH122 displayed greater resistance to drought, NaCl and osmotic stresses. In contrast, the bhlh122 loss-of-function mutant was more sensitive to NaCl and osmotic stresses than were WT plants. • Microarray analysis indicated that bHLH122 was important for the expression of a number of abiotic stress-responsive genes. In electrophoretic mobility shift assay and chromatin immunoprecipitation assays, bHLH122 could bind directly to the G-box/E-box cis-elements in the CYP707A3 promoter, and repress its expression. Further, up-regulation of bHLH122 substantially increased cellular ABA levels. • These results suggest that bHLH122 functions as a positive regulator of drought, NaCl and osmotic signaling. PMID:24261563

  8. Citricoccus zhacaiensis B-4 (MTCC 12119) a novel osmotolerant plant growth promoting actinobacterium enhances onion (Allium cepa L.) seed germination under osmotic stress conditions.

    PubMed

    Selvakumar, Govindan; Bhatt, Ravindra M; Upreti, Kaushal K; Bindu, Gurupadam Hema; Shweta, Kademani

    2015-05-01

    The water potential of rhizospheric soil is a key parameter that determines the availability of water, oxygen, and nutrients to plants and microbes. Recent global warming trends and erratic precipitation patterns have resulted in the emergence of drought as a major constraint of agricultural productivity. Though several strategies are being evaluated to address this issue, a novel approach is the utilization of microbes for alleviation of drought stress effects in crops. Citricoccus zhacaiensis B-4 is an osmotolerant actinobacterium isolated from banana rhizosphere on mannitol supplemented medium (-2.92 MPa osmotic potential). This isolate expressed plant growth promotion traits viz, IAA, GA3 production, phosphate, zinc solubilization, ACC deaminase activity and ammonia production under PEG induced osmotic stress and non-stress conditions. Under in vitro osmotic conditions, biopriming with the actinobacterium improved the percent germination, seedling vigour and germination rate of onion seeds (cv. Arka Kalyan) at osmotic potentials up to -0.8 MPa. Considering its novelty, osmotolerance and plant growth promoting traits, biopriming with C. zhacaiensis is suggested as a viable option for the promotion of onion seed germination under drought stressed environments.

  9. Genetic variation of drought tolerance in Pinus pinaster at three hierarchical levels: a comparison of induced osmotic stress and field testing.

    PubMed

    Gaspar, Maria João; Velasco, Tania; Feito, Isabel; Alía, Ricardo; Majada, Juan

    2013-01-01

    Understanding the survival capacity of forest trees to periods of severe water stress could improve knowledge of the adaptive potential of different species under future climatic scenarios. In long lived organisms, like forest trees, the combination of induced osmotic stress treatments and field testing can elucidate the role of drought tolerance during the early stages of establishment, the most critical in the life of the species. We performed a Polyethylene glycol-osmotic induced stress experiment and evaluated two common garden experiments (xeric and mesic sites) to test for survival and growth of a wide range clonal collection of Maritime pine. This study demonstrates the importance of additive vs non additive effects for drought tolerance traits in Pinus pinaster, and shows differences in parameters determining the adaptive trajectories of populations and family and clones within populations. The results show that osmotic adjustment plays an important role in population variation, while biomass allocation and hydric content greatly influence survival at population level. Survival in the induced osmotic stress experiment presented significant correlations with survival in the xeric site, and height growth at the mesic site, at population level, indicating constraints of adaptation for those traits, while at the within population level no significant correlation existed. These results demonstrate that population differentiation and within population genetic variation for drought tolerance follow different patterns.

  10. K(+) channels of squid giant axons open by an osmotic stress in hypertonic solutions containing nonelectrolytes.

    PubMed

    Kukita, Fumio

    2011-08-01

    In hypertonic solutions made by adding nonelectrolytes, K(+) channels of squid giant axons opened at usual asymmetrical K(+) concentrations in two different time courses; an initial instantaneous activation (I (IN)) and a sigmoidal activation typical of a delayed rectifier K(+) channel (I (D)). The current-voltage relation curve for I (IN) was fitted well with Goldman equation described with a periaxonal K(+) concentration at the membrane potential above -10 mV. Using the activation-voltage curve obtained from tail currents, K(+) channels for I (IN) are confirmed to activate at the membrane potential that is lower by 50 mV than those for I (D). Both I (IN) and I (D) closed similarly at the holding potential below -100 mV. The logarithm of I (IN)/I (D) was linearly related with the osmolarity for various nonelectrolytes. Solute inaccessible volumes obtained from the slope increased with the nonelectrolyte size from 15 to 85 water molecules. K(+) channels representing I (D) were blocked by open channel blocker tetra-butyl ammonium (TBA) more efficiently than in the absence of I (IN), which was explained by the mechanism that K(+) channels for I (D) were first converted to those for I (IN) by the osmotic pressure and then blocked. So K(+) channels for I (IN) were suggested to be derived from the delayed rectifier K(+) channels. Therefore, the osmotic pressure is suggested to exert delayed-rectifier K(+) channels to open in shrinking rather hydrophilic flexible parts outside the pore than the pore itself, which is compatible with the recent structure of open K(+) channel pore.

  11. Effects of nitric oxide system and osmotic stress on Aquaporin-1 in the postnatal heart.

    PubMed

    Netti, Vanina A; Iovane, Agustina N; Vatrella, Mariana C; Zotta, Elsa; Fellet, Andrea L; Balaszczuk, Ana M

    2016-07-01

    Aquaporin-1 (AQP1) is expressed in the heart and its relationship with NO system has not been fully explored. The aims of this work were to study the effects of NO system inhibition on AQP1 abundance and localization and evaluate AQP1 S-nitrosylation in a model of water restriction during postnatal growth. Rats aged 25 and 50days (n=15) were divided in: R: water restriction; C: water ad libitum; RL: L-NAME (4mg/kgday)+water restriction; CL: L-NAME+water ad libitum. AQP1 protein levels, immunohistochemistry and S-nitrosylation (colocalization of AQP1 and S-nitrosylated cysteines by confocal microscopy) were determined in cardiac tissue. We also evaluated the effects of NO donor sodium nitroprusside (SNP) on osmotic water permeability of cardiac membrane vesicles by stopped-flow spectrometry. AQP1 was present in cardiac vascular endothelium and endocardium in C and CL animals of both ages. Cardiac AQP1 levels were increased in R50 and RL50 and appeared in cardiomyocyte plasma membrane. No changes in AQP1 abundance or localization were observed in R25, but RL25 group showed AQP1 presence on cardiomyocyte sarcolemma. AQP1 S-nitrosylation was increased in R25 group, without changes in the 50-day-old group. Cardiac membrane vesicles expressing AQP1 presented a high water permeability coefficient and pretreatment with SNP decreased water transport. Age-related influence of NO system on AQP1 abundance and localization in the heart may affect cardiac water homeostasis during hypovolemic state. Increased AQP1 S-nitrosylation in the youngest group may decrease osmotic water permeability of cardiac membranes, having a negative impact on cardiac water balance. PMID:27261598

  12. Osmotic stress in Arctic and Antarctic strains of the green alga Zygnema (Zygnematales, Streptophyta): Effects on photosynthesis and ultrastructure

    PubMed Central

    Kaplan, Franziska; Lewis, Louise A.; Herburger, Klaus; Holzinger, Andreas

    2013-01-01

    The osmotic potential and effects of plasmolysis on photosynthetic oxygen evolution and chlorophyll fluorescence were studied in two Arctic Zygnema sp. (strain B, strain G) and two Antarctic Zygnema sp. (strain E, strain D). Antarctic strain D was newly characterized by rbcL sequence analysis in the present study. The two Antarctic strains, D and E, are most closely related and may represent different isolates of the same species, in contrast, strain B and G are separate lineages. Incipient plasmolysis in the cells was determined by light microscopy after incubating cells in sorbitol solutions ranging between 200 mM and 1000 mM sorbitol for 3, 6 and 24 h. In Zygnema strain B and G incipient plasmolysis occurred at ∼600 mM sorbitol solution (720 mOsmol kg−1, ψ = −1.67 MPa) and in strains D and E at ∼300 mM (318 mOsmol kg−1, ψ = −0.8 MPa) sorbitol solution. Hechtian strands were visualized in all plasmolysed cells, which is particularly interesting, as these cells lack pores or plasmodesmata. Ultrastructural changes upon osmotic stress were a retraction of the condensed cytoplasm from the cell walls, damages to chloroplast and mitochondrial membranes, increasing numbers of plastoglobules in the chloroplasts and membrane enclosed particles in the extraplasmatic space. Maximum photosynthetic rates (Pmax) in light saturated range were between 145.5 μmol O2 h−1 mg−1 Chl a in Zygnema G and 752.9 μmol O2 h−1 mg−1 Chl a in Zygnema E. After incubation in 800 mM sorbitol for 3 h Pmax decreased to the following percentage of the initial values: B: 16.3%, D: 16.8%, E: 26.1% and G: 35.0%. Osmotic stress (800 mM sorbitol) decreased maximum photochemical quantum yield of photosystem II (Fv/Fm) when compared to controls. Maximum values of relative electron transport rates of photosystem II (rETRmax) decreased after incubation in 400 mM sorbitol in Zygnema D and E, while they decreased in Zygnema B and G only after incubation in 800

  13. Photosystem I shows a higher tolerance to sorbitol-induced osmotic stress than photosystem II in the intertidal macro-algae Ulva prolifera (Chlorophyta).

    PubMed

    Gao, Shan; Zheng, Zhenbing; Gu, Wenhui; Xie, Xiujun; Huan, Li; Pan, Guanghua; Wang, Guangce

    2014-10-01

    The photosynthetic performance of the desiccation-tolerant, intertidal macro-algae Ulva prolifera was significantly affected by sorbitol-induced osmotic stress. Our results showed that photosynthetic activity decreased significantly with increases in sorbitol concentration. Although the partial activity of both photosystem I (PS I) and photosystem II (PS II) was able to recover after 30 min of rehydration, the activity of PS II decreased more rapidly than PS I. At 4 M sorbitol concentration, the activity of PS II was almost 0 while that of PS I was still at about one third of normal levels. Following prolonged treatment with 1 and 2 M sorbitol, the activity of PS I and PS II decreased slowly, suggesting that the effects of moderate concentrations of sorbitol on PS I and PS II were gradual. Interestingly, an increase in non-photochemical quenching occurred under these conditions in response to moderate osmotic stress, whereas it declined significantly under severe osmotic stress. These results suggest that photoprotection in U. prolifera could also be induced by moderate osmotic stress. In addition, the oxidation of PS I was significantly affected by osmotic stress. P700(+) in the thalli treated with high concentrations of sorbitol could still be reduced, as PS II was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), but it could not be fully oxidized. This observation may be caused by the higher quantum yield of non-photochemical energy dissipation in PS I due to acceptor-side limitation (Y(NA)) during rehydration in seawater containing DCMU.

  14. Transcription factor WRKY46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis.

    PubMed

    Ding, Zhong Jie; Yan, Jing Ying; Li, Chun Xiao; Li, Gui Xin; Wu, Yun Rong; Zheng, Shao Jian

    2015-10-01

    The development of lateral roots (LR) is known to be severely inhibited by salt or osmotic stress. However, the molecular mechanisms underlying LR development in osmotic/salt stress conditions are poorly understood. Here we show that the gene encoding the WRKY transcription factor WRKY46 (WRKY46) is expressed throughout lateral root primordia (LRP) during early LR development and that expression is subsequently restricted to the stele of the mature LR. In osmotic/salt stress conditions, lack of WRKY46 (in loss-of-function wrky46 mutants) significantly reduces, while overexpression of WRKY46 enhances, LR development. We also show that exogenous auxin largely restores LR development in wrky46 mutants, and that the auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) inhibits LR development in both wild-type (WT; Col-0) and in a line overexpressing WRKY46 (OV46). Subsequent analysis of abscisic acid (ABA)-related mutants indicated that WRKY46 expression is down-regulated by ABA signaling, and up-regulated by an ABA-independent signal induced by osmotic/salt stress. Next, we show that expression of the DR5:GUS auxin response reporter is reduced in roots of wrky46 mutants, and that both wrky46 mutants and OV46 display altered root levels of free indole-3-acetic acid (IAA) and IAA conjugates. Subsequent RT-qPCR and ChIP-qPCR experiments indicated that WRKY46 directly regulates the expression of ABI4 and of genes regulating auxin conjugation. Finally, analysis of wrky46 abi4 double mutant plants confirms that ABI4 acts downstream of WRKY46. In summary, our results demonstrate that WRKY46 contributes to the feedforward inhibition of osmotic/salt stress-dependent LR inhibition via regulation of ABA signaling and auxin homeostasis.

  15. The Pepper Lipoxygenase CaLOX1 Plays a Role in Osmotic, Drought and High Salinity Stress Response.

    PubMed

    Lim, Chae Woo; Han, Sang-Wook; Hwang, In Sun; Kim, Dae Sung; Hwang, Byung Kook; Lee, Sung Chul

    2015-05-01

    In plants, lipoxygenases (LOXs) are involved in various physiological processes, including defense responses to biotic and abiotic stresses. Our previous study had shown that the pepper 9-LOX gene, CaLOX1, plays a crucial role in cell death due to pathogen infection. Here, the function of CaLOX1 in response to osmotic, drought and high salinity stress was examined using CaLOX1-overexpressing (CaLOX1-OX) Arabidopsis plants. Changes in the temporal expression pattern of the CaLOX1 gene were observed when pepper leaves were treated with drought and high salinity, but not when treated with ABA, the primary hormone in response to drought stress. During seed germination and seedling development, CaLOX1-OX plants were more tolerant to ABA, mannitol and high salinity than wild-type plants. In contrast, expression of the ABA-responsive marker genes RAB18 and RD29B was higher in CaLOX1-OX Arabidopsis plants than in wild-type plants. In response to high salinity, CaLOX1-OX plants exhibited enhanced tolerance, compared with the wild type, which was accompanied by decreased accumulation of H2O2 and high levels of RD20, RD29A, RD29B and P5CS gene expression. Similarly, CaLOX1-OX plants were also more tolerant than wild-type plants to severe drought stress. H2O2 production and the relative increase in lipid peroxidation were lower, and the expression of COR15A, DREB2A, RD20, RD29A and RD29B was higher in CaLOX1-OX plants, relative to wild-type plants. Taken together, our results indicate that CaLOX1 plays a crucial role in plant stress responses by modulating the expression of ABA- and stress-responsive marker genes, lipid peroxidation and H2O2 production.

  16. Contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment in Halostachys caspica response to salt stress.

    PubMed

    Zeng, Youling; Li, Ling; Yang, Ruirui; Yi, Xiaoya; Zhang, Baohong

    2015-01-01

    The mechanism by which plants cope with salt stress remains poorly understood. The goal of this study is to systematically investigate the contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment (OA) in the halophyte species Halostachys caspica. The results indicate that 100-200 mM NaCl is optimal for plant growth; the water content and degree of succulence of the assimilating branches are higher in this treatment range than that in other treatments; parenchyma cells are more numerous with 100 mM NaCl treatment than they are in control. Inorganic ions (mainly Na+ and Cl-) may play a more important role than organic compounds in NaCl-induced OA and are the primary contributors in OA in H. caspica. The inorganic ions and organic solutes display a tissue-dependent distribution. Na+ and Cl- are accumulated in the reproductive organs and within assimilating branches, which may represent a mechanism for protecting plant growth by way of salt ion dilution and organ abscission. Additionally, OA via increased accumulation of organic substances also protected plant growth and development. This finding provides additional evidence for plant tolerance to salinity stress which can be used for breeding new cultivars for stress tolerance. PMID:26350977

  17. Contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment in Halostachys caspica response to salt stress

    PubMed Central

    Zeng, Youling; Li, Ling; Yang, Ruirui; Yi, Xiaoya; Zhang, Baohong

    2015-01-01

    The mechanism by which plants cope with salt stress remains poorly understood. The goal of this study is to systematically investigate the contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment (OA) in the halophyte species Halostachys caspica. The results indicate that 100–200 mM NaCl is optimal for plant growth; the water content and degree of succulence of the assimilating branches are higher in this treatment range than that in other treatments; parenchyma cells are more numerous with 100 mM NaCl treatment than they are in control. Inorganic ions (mainly Na+ and Cl-) may play a more important role than organic compounds in NaCl-induced OA and are the primary contributors in OA in H. caspica. The inorganic ions and organic solutes display a tissue-dependent distribution. Na+ and Cl− are accumulated in the reproductive organs and within assimilating branches, which may represent a mechanism for protecting plant growth by way of salt ion dilution and organ abscission. Additionally, OA via increased accumulation of organic substances also protected plant growth and development. This finding provides additional evidence for plant tolerance to salinity stress which can be used for breeding new cultivars for stress tolerance. PMID:26350977

  18. Acute stress, memory, attention and cortisol.

    PubMed

    Vedhara, K; Hyde, J; Gilchrist, I D; Tytherleigh, M; Plummer, S

    2000-08-01

    An investigation was conducted to explore the relationship between acute changes in cortisol and memory and attention in the context of an acute naturalistic stressor, namely, examination stress. Sixty students (36 male, 24 female) participated in an assessment of self-reported levels of stress, salivary cortisol, short term memory, selective and divided attention and auditory verbal working memory. Assessments were conducted during a non-exam and exam period. The results revealed that the exam period was associated with an increase in perceived levels of stress, but also a significant reduction in levels of salivary cortisol, compared with the non-exam period. This reduction in cortisol was associated with enhanced short-term memory (as measured by the total number of words recalled in a free recall task), impaired attention and an impairment in the primacy effect (a hippocampal-specific index of short term memory), but no significant effects on auditory verbal working memory. It was concluded that the results support the view that cortisol can modulate cognitive processes and that the effects of corticosteroids on cognitive function are selective.

  19. The Arabidopsis NAC Transcription Factor ANAC096 Cooperates with bZIP-Type Transcription Factors in Dehydration and Osmotic Stress Responses[W

    PubMed Central

    Xu, Zheng-Yi; Kim, Soo Youn; Hyeon, Do Young; Kim, Dae Heon; Dong, Ting; Park, Youngmin; Jin, Jing Bo; Joo, Se-Hwan; Kim, Seong-Ki; Hong, Jong Chan; Hwang, Daehee; Hwang, Inhwan

    2013-01-01

    Multiple transcription factors (TFs) play essential roles in plants under abiotic stress, but how these multiple TFs cooperate in abiotic stress responses remains largely unknown. In this study, we provide evidence that the NAC (for NAM, ATAF1/2, and CUC2) TF ANAC096 cooperates with the bZIP-type TFs ABRE binding factor and ABRE binding protein (ABF/AREB) to help plants survive under dehydration and osmotic stress conditions. ANAC096 directly interacts with ABF2 and ABF4, but not with ABF3, both in vitro and in vivo. ANAC096 and ABF2 synergistically activate RD29A transcription. Our genome-wide gene expression analysis revealed that a major proportion of abscisic acid (ABA)–responsive genes are under the transcriptional regulation of ANAC096. We found that the Arabidopsis thaliana anac096 mutant is hyposensitive to exogenous ABA and shows impaired ABA-induced stomatal closure and increased water loss under dehydration stress conditions. Furthermore, we found the anac096 abf2 abf4 triple mutant is much more sensitive to dehydration and osmotic stresses than the anac096 single mutant or the abf2 abf4 double mutant. Based on these results, we propose that ANAC096 is involved in a synergistic relationship with a subset of ABFs for the transcriptional activation of ABA-inducible genes in response to dehydration and osmotic stresses. PMID:24285786

  20. Enhancement of non-photochemical quenching in the Bryophyte Physcomitrella patens during acclimation to salt and osmotic stress.

    PubMed

    Azzabi, Ghazi; Pinnola, Alberta; Betterle, Nico; Bassi, Roberto; Alboresi, Alessandro

    2012-10-01

    Drought and salt stress are major abiotic constraints affecting plant growth worldwide. Under these conditions, the production of reactive oxygen species (ROS) is a common phenomenon taking place mainly in chloroplasts, peroxisomes, mitochondria and apoplasts, especially when associated with high light stress. ROS are harmful because of their high reactivity to cell components, thereby leading to cytotoxicity and cell death. During the Ordovician and early Devonian period, photosynthetic organisms colonized terrestrial habitats, and the acquisition of desiccation tolerance has been a major component of their evolution. We have studied the capacity for acclimation to drought and salt stress of the moss Physcomitrella patens, a representative of the early land colonization stage. Exposure to high concentrations of NaCl and sorbitol strongly affects chloroplast development, the Chl content and the thylakoid protein composition in this moss. Under sublethal conditions (0.2 M NaCl and 0.4 M sorbitol), the photosynthetic apparatus of P. patens responds to oxidative stress by increasing non-photochemical quenching (NPQ). Surprisingly, the accumulation of PSBS and LHCSR, the two polypeptides essential for NPQ in P. patens, was not up-regulated in these conditions. Rather, an increased NPQ amplitude correlated with the overaccumulation of zeaxanthin and the presence of the enzyme violaxanthin de-epoxidase. These results suggest that the regulation of excess energy dissipation through control of PSBS and LHCSR is mainly driven by light conditions, while osmotic and salt stress act through acclimative regulation of the xanthophyll cycle. We conclude that regulation of the xanthophyll cycle is an important anticipatory strategy against photoinhibition by high light. PMID:22952250

  1. Enhancement of non-photochemical quenching in the Bryophyte Physcomitrella patens during acclimation to salt and osmotic stress.

    PubMed

    Azzabi, Ghazi; Pinnola, Alberta; Betterle, Nico; Bassi, Roberto; Alboresi, Alessandro

    2012-10-01

    Drought and salt stress are major abiotic constraints affecting plant growth worldwide. Under these conditions, the production of reactive oxygen species (ROS) is a common phenomenon taking place mainly in chloroplasts, peroxisomes, mitochondria and apoplasts, especially when associated with high light stress. ROS are harmful because of their high reactivity to cell components, thereby leading to cytotoxicity and cell death. During the Ordovician and early Devonian period, photosynthetic organisms colonized terrestrial habitats, and the acquisition of desiccation tolerance has been a major component of their evolution. We have studied the capacity for acclimation to drought and salt stress of the moss Physcomitrella patens, a representative of the early land colonization stage. Exposure to high concentrations of NaCl and sorbitol strongly affects chloroplast development, the Chl content and the thylakoid protein composition in this moss. Under sublethal conditions (0.2 M NaCl and 0.4 M sorbitol), the photosynthetic apparatus of P. patens responds to oxidative stress by increasing non-photochemical quenching (NPQ). Surprisingly, the accumulation of PSBS and LHCSR, the two polypeptides essential for NPQ in P. patens, was not up-regulated in these conditions. Rather, an increased NPQ amplitude correlated with the overaccumulation of zeaxanthin and the presence of the enzyme violaxanthin de-epoxidase. These results suggest that the regulation of excess energy dissipation through control of PSBS and LHCSR is mainly driven by light conditions, while osmotic and salt stress act through acclimative regulation of the xanthophyll cycle. We conclude that regulation of the xanthophyll cycle is an important anticipatory strategy against photoinhibition by high light.

  2. Parent-Child Agreement Regarding Children's Acute Stress: The Role of Parent Acute Stress Reactions

    ERIC Educational Resources Information Center

    Kassam-Adams, Nancy; Garcia-Espana, J. Felipe; Miller, Victoria A.; Winston, Flaura

    2006-01-01

    Objective: We examined parent--child agreement regarding child acute stress disorder (ASD) and the relationship between parent ASD symptoms and parent ratings of child ASD. Method: Parent-child dyads (N = 219; child age 8-17 years) were assessed within 1 month of child injury. Parent--child agreement was examined regarding child ASD presence,…

  3. [Physiological responses of different cucumber cultivars seedlings to iso-osmotic Mg (NO3) 2 and NaCl stress].

    PubMed

    Cao, Qi-wei; Li, Li-bin; Kong, Su-ping; Qiu, An; Chen, Wei; Zhang, Yun-nan; Sun, Xiao-lei

    2015-04-01

    In this study, the effects of iso-osmotic solution of Mg (NO3) 2 and NaCl on seedling growth, leaf lipid peroxidation, antioxidant enzyme activities, and osmotic adjustment substance accumulation were investigated using three cucumber cultivars with different ecotypes. Then salt tolerance was evaluated by membership function method. The results revealed that under the stress of 60 and 80 mmol x L(-1) Mg(NO3) 2 solution and its isotonic 90 and 120 mmol x L(-1) NaCl solution, the seedling traits such as height, stem diameter, leaf area, fresh and dry mass of aerial part and underground parts, and antioxidant enzymes activity were obviously decreased with the increasing concentration of Mg( NO3)2 and its isotonic NaCl in the three cucumber cultivars. Moreover, the inhibitory effects became more obvious with the increasing concentration of either Mg(NO3)2 or NaCl solution. MDA content and membrane lipid peroxidation were enhanced in cucumber seedlings. Among the three cultivars, SJ31-1 changed less than the other two cultivars regarding the reduced amplitudes of biomass, and activity of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and the increased amplitude of MDA. In addition, Mg (NO3)2 solution inhibited seedling growth more strongly than isotonic NaCl solution did, such difference was relatively significant with increasing the concentration of solution. The contents of proline, soluble amino acids, and soluble sugars varied depending on the cucumber genotype and salt type. The increased amplitude of proline content was the largest in SJ31-1, and that of soluble sugars was the largest in Lubai 19 when growing under salt treatment. The change of these parameters in Xintaimici was in between. Soluble sugars and soluble proteins were predominant osmolytes unde NaCl stress, whereas proline and soluble proteins were main osmolytes under Mg (NO3) 2 stress. Comprehensive evaluation showed that salt tolerance of the three cucumber cultivars was in order

  4. Response to osmotic stress and temperature of the fungus Ustilago maydis.

    PubMed

    Salmerón-Santiago, Karina Gabriela; Pardo, Juan Pablo; Flores-Herrera, Oscar; Mendoza-Hernández, Guillermo; Miranda-Arango, Manuel; Guerra-Sánchez, Guadalupe

    2011-10-01

    Ustilago maydis is a fungal pathogen which is exposed during its life cycle to both abiotic and biotic stresses before and after the infection of maize. To cope with extreme environmental changes, microorganisms usually accumulate the disaccharide trehalose. We have investigated both the accumulation of trehalose and the activity of trehalase during the adaptation of U. maydis haploid cells to thermal, sorbitol, and NaCl stresses. Sorbitol and sodium chloride induced sustained accumulation of trehalose, while a transient increase was observed under heat stress. Sorbitol stressed cells showed higher trehalase activity compared with control cells and to those stressed by NaCl and high temperature. Addition of cycloheximide, a protein synthesis inhibitor, did not affect the trehalose accumulation during the first 15 min, but basal levels of trehalose were reached after the second period of 15 min. The proteomic analysis of the response of U. maydis to temperature, sorbitol, and salt stresses indicated a complex pattern which highlights the change of 18 proteins involved in carbohydrate and amino acid metabolism, protein folding, redox regulation, ion homeostasis, and stress response. We hypothesize that trehalose accumulation during sorbitol stress in U. maydis might be related to the adaptation of this organism during plant infection.

  5. The Structure of Arabidopsis thaliana OST1 Provides Insights into the Kinase Regulation Mechanism in Response to Osmotic Stress

    PubMed Central

    Yunta, Cristina; Martínez-Ripoll, Martín; Zhu, Jian-Kang; Albert, Armando

    2013-01-01

    SnRK [SNF1 (sucrose non-fermenting-1)-related protein kinase] 2.6 [open stomata 1 (OST1)] is well characterized at molecular and physiological levels to control stomata closure in response to water-deficit stress. OST1 is a member of a family of 10 protein kinases from Arabidopsis thaliana (SnRK2) that integrates abscisic acid (ABA)-dependent and ABA-independent signals to coordinate the cell response to osmotic stress. A subgroup of protein phosphatases type 2C binds OST1 and keeps the kinase dephosphorylated and inactive. Activation of OST1 relies on the ABA-dependent inhibition of the protein phosphatases type 2C and the subsequent self-phosphorylation of the kinase. The OST1 ABA-independent activation depends on a short sequence motif that is conserved among all the members of the SnRK2 family. However, little is known about the molecular mechanism underlying this regulation. The crystallographic structure of OST1 shows that ABA-independent regulation motif stabilizes the conformation of the kinase catalytically essential α C helix, and it provides the basis of the ABA-independent regulation mechanism for the SnRK2 family of protein kinases. PMID:21983340

  6. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants.

    PubMed

    Davenport, K D; Williams, K E; Ullmann, B D; Gustin, M C

    1999-11-01

    Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype.

  7. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants

    NASA Technical Reports Server (NTRS)

    Davenport, K. D.; Williams, K. E.; Ullmann, B. D.; Gustin, M. C.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype.

  8. Knockout of AtDjB1, a J-domain protein from Arabidopsis thaliana, alters plant responses to osmotic stress and abscisic acid.

    PubMed

    Wang, Xingxing; Jia, Ning; Zhao, Chunlan; Fang, Yulu; Lv, Tingting; Zhou, Wei; Sun, Yongzhen; Li, Bing

    2014-10-01

    AtDjB1 is a member of the Arabidopsis thaliana J-protein family. AtDjB1 is targeted to the mitochondria and plays a crucial role in A. thaliana heat and oxidative stress resistance. Herein, the role of AtDjB1 in adapting to saline and drought stress was studied in A. thaliana. AtDjB1 expression was induced through salinity, dehydration and abscisic acid (ABA) in young seedlings. Reverse genetic analyses indicate that AtDjB1 is a negative regulator in plant osmotic stress tolerance. Further, AtDjB1 knockout mutant plants (atj1-1) exhibited greater ABA sensitivity compared with the wild-type (WT) plants and the mutant lines with a rescued AtDjB1 gene. AtDjB1 gene knockout also altered the expression of several ABA-responsive genes, which suggests that AtDjB1 is involved in osmotic stress tolerance through its effects on ABA signaling pathways. Moreover, atj1-1 plants exhibited higher glucose levels and greater glucose sensitivity in the post-germination development stage. Applying glucose promoted an ABA response in seedlings, and the promotion was more evident in atj1-1 than WT seedlings. Taken together, higher glucose levels in atj1-1 plants are likely responsible for the greater ABA sensitivity and increased osmotic stress tolerance. PMID:24521401

  9. Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.).

    PubMed

    Ahmad, Maqshoof; Zahir, Zahir A; Nazli, Farheen; Akram, Fareeha; Arshad, Muhammad; Khalid, Muhammad

    2013-12-01

    Halo-tolerant, auxin producing bacteria could be used to induce salt tolerance in plants. A number of Rhizobium and auxin producing rhizobacterial strains were assessed for their ability to tolerate salt stress by conducting osmoadaptation assay. The selected strains were further screened for their ability to induce osmotic stress tolerance in mung bean seedlings under salt-stressed axenic conditions in growth pouch/jar trials. Three most effective strains of Rhizobium and Pseudomonas containing ACC-deaminase were evaluated in combination, for their ability to induce osmotic stress tolerance in mung bean at original, 4, and 6 dS m(-1) under axenic conditions. Results showed that sole inoculation of Rhizobium and Pseudomonas strains improved the total dry matter up to 1.4, and 1.9 fold, respectively, while the increase in salt tolerance index was improved up to 1.3 and 2.0 fold by the Rhizobium and Pseudomonas strains, respectively. However, up to 2.2 fold increase in total dry matter and salt tolerance index was observed due to combined inoculation of Rhizobium and Pseudomonas strains. So, combined application of Rhizobium and Pseudomonas strains could be explored as an effective strategy to induce osmotic stress tolerance in mung bean. PMID:24688532

  10. Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.)

    PubMed Central

    Ahmad, Maqshoof; Zahir, Zahir A.; Nazli, Farheen; Akram, Fareeha; Arshad, Muhammad; Khalid, Muhammad

    2013-01-01

    Halo-tolerant, auxin producing bacteria could be used to induce salt tolerance in plants. A number of Rhizobium and auxin producing rhizobacterial strains were assessed for their ability to tolerate salt stress by conducting osmoadaptation assay. The selected strains were further screened for their ability to induce osmotic stress tolerance in mung bean seedlings under salt-stressed axenic conditions in growth pouch/jar trials. Three most effective strains of Rhizobium and Pseudomonas containing ACC-deaminase were evaluated in combination, for their ability to induce osmotic stress tolerance in mung bean at original, 4, and 6 dS m−1 under axenic conditions. Results showed that sole inoculation of Rhizobium and Pseudomonas strains improved the total dry matter up to 1.4, and 1.9 fold, respectively, while the increase in salt tolerance index was improved up to 1.3 and 2.0 fold by the Rhizobium and Pseudomonas strains, respectively. However, up to 2.2 fold increase in total dry matter and salt tolerance index was observed due to combined inoculation of Rhizobium and Pseudomonas strains. So, combined application of Rhizobium and Pseudomonas strains could be explored as an effective strategy to induce osmotic stress tolerance in mung bean. PMID:24688532

  11. Co-synergism of endophyte Penicillium resedanum LK6 with salicylic acid helped Capsicum annuum in biomass recovery and osmotic stress mitigation

    PubMed Central

    2013-01-01

    Background Water-deficiency adversely affects crop growth by generating reactive oxygen species (ROS) at cellular level. To mitigate such stressful events, it was aimed to investigate the co-synergism of exogenous salicylic acid (SA) and symbiosis of endophytic fungus with Capsicum annuum L. (pepper). Results The findings of the study showed that exogenous SA (10-6 M) application to endophyte (Penicillium resedanum LK6) infected plants not only increased the shoot length and chlorophyll content but also improved the biomass recovery of pepper plants under polyethylene glycol (15%) induced osmotic stress (2, 4 and 8 days). Endophyte-infected plants had low cellular injury and high photosynthesis rate. SA also enhanced the colonization rate of endophyte in the host-plant roots. Endophyte and SA, in combination, reduced the production of ROS by increasing the total polyphenol, reduce glutathione, catalase, peroxidase and polyphenol oxidase as compared to control plants. Osmotic stress pronounced the lipid peroxidation and superoxide anions formation in control plants as compared to endophyte and SA-treated plants. The endogenous SA contents were significantly higher in pepper plants treated with endophyte and SA under osmotic stress as compared to control. Conclusion Endophytic fungal symbiosis and exogenous SA application can help the plants to relieve the adverse effects of osmotic stress by decreasing losses in biomass as compared to non-inoculated plants. These findings suggest that SA application positively impact microbial colonization while in combination, it reprograms the plant growth under various intervals of drought stress. Such symbiotic strategy can be useful for expanding agriculture production in drought prone lands. PMID:23452409

  12. Acute psychosocial stress reduces pain modulation capabilities in healthy men.

    PubMed

    Geva, Nirit; Pruessner, Jens; Defrin, Ruth

    2014-11-01

    Anecdotes on the ability of individuals to continue to function under stressful conditions despite injuries causing excruciating pain suggest that acute stress may induce analgesia. However, studies exploring the effect of acute experimental stress on pain perception show inconsistent results, possibly due to methodological differences. Our aim was to systematically study the effect of acute stress on pain perception using static and dynamic, state-of-the-art pain measurements. Participants were 29 healthy men who underwent the measurement of heat-pain threshold, heat-pain intolerance, temporal summation of pain, and conditioned pain modulation (CPM). Testing was conducted before and during exposure to the Montreal Imaging Stress Task (MIST), inducing acute psychosocial stress. Stress levels were evaluated using perceived ratings of stress and anxiety, autonomic variables, and salivary cortisol. The MIST induced a significant stress reaction. Although pain threshold and pain intolerance were unaffected by stress, an increase in temporal summation of pain and a decrease in CPM were observed. These changes were significantly more robust among individuals with stronger reaction to stress ("high responders"), with a significant correlation between the perception of stress and the performance in the pain measurements. We conclude that acute psychosocial stress seems not to affect the sensitivity to pain, however, it significantly reduces the ability to modulate pain in a dose-response manner. Considering the diverse effects of stress in this and other studies, it appears that the type of stress and the magnitude of its appraisal determine its interactions with the pain system.

  13. The Arabidopsis TETRATRICOPEPTIDE THIOREDOXIN-LIKE Gene Family Is Required for Osmotic Stress Tolerance and Male Sporogenesis1[C][W][OA

    PubMed Central

    Lakhssassi, Naoufal; Doblas, Verónica G.; Rosado, Abel; del Valle, Alicia Esteban; Posé, David; Jimenez, Antonio J.; Castillo, Araceli G.; Valpuesta, Victoriano; Borsani, Omar; Botella, Miguel A.

    2012-01-01

    TETRATRICOPEPTIDE THIOREDOXIN-LIKE (TTL) proteins are characterized by the presence of six tetratricopeptide repeats in conserved positions and a carboxyl-terminal region known as the thioredoxin-like domain with homology to thioredoxins. In Arabidopsis (Arabidopsis thaliana), the TTL gene family is composed by four members, and the founder member, TTL1, is required for osmotic stress tolerance. Analysis of sequenced genomes indicates that TTL genes are specific to land plants. In this study, we report the expression profiles of Arabidopsis TTL genes using data mining and promoter-reporter β-glucuronidase fusions. Our results show that TTL1, TTL3, and TTL4 display ubiquitous expression in normal growing conditions but differential expression patterns in response to osmotic and NaCl stresses. TTL2 shows a very different expression pattern, being specific to pollen grains. Consistent with the expression data, ttl1, ttl3, and ttl4 mutants show reduced root growth under osmotic stress, and the analysis of double and triple mutants indicates that TTL1, TTL3, and TTL4 have partially overlapping yet specific functions in abiotic stress tolerance while TTL2 is involved in male gametophytic transmission. PMID:22232384

  14. Accumulation of brachycerine, an antioxidant glucosidic indole alkaloid, is induced by abscisic acid, heavy metal, and osmotic stress in leaves of Psychotria brachyceras.

    PubMed

    do Nascimento, Naíla Cannes; Menguer, Paloma Koprovski; Henriques, Amélia Teresinha; Fett-Neto, Arthur Germano

    2013-12-01

    Psychotria brachyceras Muell. Arg. produces the antioxidant monoterpene indole alkaloid (MIA) brachycerine, which, besides retaining a glucose residue, has its terpenoid moiety derived not from secologanin, but probably from epiloganin, representing a new subclass of MIAs. In this work we showed that osmotic stress agents, such as sodium chloride, sorbitol and polyethylene glycol (PEG), induced brachycerine accumulation in leaf disks of P. brachyceras. Other oxidative stress inducers, such as exposure to aluminum and silver, also increased brachycerine content. Abscisic acid (ABA) treatment was shown to increase brachycerine yield, suggesting its involvement in brachycerine induction during osmotic stress. Ascorbate peroxidase activity was induced in PEG-treated leaf disks, whereas superoxide dismutase (SOD) activity remained unaltered. Assays with specific inhibitors of the cytosolic mevalonate (MVA) and plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways showed that the terpenoid moiety of brachycerine derived predominantly from the MEP pathway. These results suggest a potential involvement of brachycerine in plant defense against osmotic/oxidative stress damage, possibly contributing to detoxification of hydroxyl radical and superoxide anion as a SOD-like molecule.

  15. Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta-analysis

    PubMed Central

    Augé, Robert M.; Toler, Heather D.; Saxton, Arnold M.

    2014-01-01

    Arbuscular mycorrhizal (AM) symbiosis can enhance plant resistance to NaCl stress in several ways. Two fundamental roles involve osmotic and ionic adjustment. By stimulating accumulation of solutes, the symbiosis can help plants sustain optimal water balance and diminish Na+ toxicity. The size of the AM effect on osmolytes has varied widely and is unpredictable. We conducted a meta-analysis to determine the size of the AM effect on 22 plant solute characteristics after exposure to NaCl and to examine how experimental conditions have influenced the AM effect. Viewed across studies, AM symbioses have had marked effects on plant K+, increasing root and shoot K+ concentrations by an average of 47 and 42%, respectively, and root and shoot K+/Na+ ratios by 47 and 58%, respectively. Among organic solutes, soluble carbohydrates have been most impacted, with AM-induced increases of 28 and 19% in shoots and roots. The symbiosis has had no consistent effect on several characteristics, including root glycine betaine concentration, root or shoot Cl− concentrations, leaf Ψπ, or shoot proline or polyamine concentrations. The AM effect has been very small for shoot Ca++ concentration and root concentrations of Na+, Mg++ and proline. Interpretations about AM-conferred benefits regarding these compounds may be best gauged within the context of the individual studies. Shoot and root K+/Na+ ratios and root proline concentration showed significant between-study heterogeneity, and we examined nine moderator variables to explore what might explain the differences in mycorrhizal effects on these parameters. Moderators with significant impacts included AM taxa, host type, presence or absence of AM growth promotion, stress severity, and whether NaCl constituted part or all of the experimental saline stress treatment. Meta-regression of shoot K+/Na+ ratio showed a positive response to root colonization, and root K+/Na+ ratio a negative response to time of exposure to NaCl. PMID:25368626

  16. eIF2alpha phosphorylation tips the balance to apoptosis during osmotic stress.

    PubMed

    Bevilacqua, Elena; Wang, Xinglong; Majumder, Mithu; Gaccioli, Francesca; Yuan, Celvie L; Wang, Chuanping; Zhu, Xiongwei; Jordan, Lindsay E; Scheuner, Donalyn; Kaufman, Randal J; Koromilas, Antonis E; Snider, Martin D; Holcik, Martin; Hatzoglou, Maria

    2010-05-28

    Regulation of cell volume is of great importance because persistent swelling or shrinkage leads to cell death. Tissues experience hypertonicity in both physiological (kidney medullar cells) and pathological states (hypernatremia). Hypertonicity induces an adaptive gene expression program that leads to cell volume recovery or apoptosis under persistent stress. We show that the commitment to apoptosis is controlled by phosphorylation of the translation initiation factor eIF2alpha, the master regulator of the stress response. Studies with cultured mouse fibroblasts and cortical neurons show that mutants deficient in eIF2alpha phosphorylation are protected from hypertonicity-induced apoptosis. A novel link is revealed between eIF2alpha phosphorylation and the subcellular distribution of the RNA-binding protein heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1). Stress-induced phosphorylation of eIF2alpha promotes apoptosis by inducing the cytoplasmic accumulation of hnRNP A1, which attenuates internal ribosome entry site-mediated translation of anti-apoptotic mRNAs, including Bcl-xL that was studied here. Hypertonic stress induced the eIF2alpha phosphorylation-independent formation of cytoplasmic stress granules (SGs, structures that harbor translationally arrested mRNAs) and the eIF2alpha phosphorylation-dependent accumulation of hnRNP A1 in SGs. The importance of hnRNP A1 was demonstrated by induction of apoptosis in eIF2alpha phosphorylation-deficient cells that express exogenous cytoplasmic hnRNP A1. We propose that eIF2alpha phosphorylation during hypertonic stress promotes apoptosis by sequestration of specific mRNAs in SGs in a process mediated by the cytoplasmic accumulation of hnRNP A1. PMID:20338999

  17. Acute stress does not affect the impairing effect of chronic stress on memory retrieval

    PubMed Central

    Ozbaki, Jamile; Goudarzi, Iran; Salmani, Mahmoud Elahdadi; Rashidy-Pour, Ali

    2016-01-01

    Objective(s): Due to the prevalence and pervasiveness of stress in modern life and exposure to both chronic and acute stresses, it is not clear whether prior exposure to chronic stress can influence the impairing effects of acute stress on memory retrieval. This issue was tested in this study. Materials and Methods: Adult male Wistar rats were randomly assigned to the following groups: control, acute, chronic, and chronic + acute stress groups. The rats were trained with six trials per day for 6 consecutive days in the water maze. Following training, the rats were either kept in control conditions or exposed to chronic stress in a restrainer 6 hr/day for 21 days. On day 22, a probe test was done to measure memory retention. Time spent in target and opposite areas, platform location latency, and proximity were used as indices of memory retention. To induce acute stress, 30 min before the probe test, animals received a mild footshock. Results: Stressed animals spent significantly less time in the target quadrant and more time in the opposite quadrant than control animals. Moreover, the stressed animals showed significantly increased platform location latency and proximity as compared with control animals. No significant differences were found in these measures among stress exposure groups. Finally, both chronic and acute stress significantly increased corticosterone levels. Conclusion: Our results indicate that both chronic and acute stress impair memory retrieval similarly. Additionally, the impairing effects of chronic stress on memory retrieval were not influenced by acute stress. PMID:27635201

  18. Acute stress does not affect the impairing effect of chronic stress on memory retrieval

    PubMed Central

    Ozbaki, Jamile; Goudarzi, Iran; Salmani, Mahmoud Elahdadi; Rashidy-Pour, Ali

    2016-01-01

    Objective(s): Due to the prevalence and pervasiveness of stress in modern life and exposure to both chronic and acute stresses, it is not clear whether prior exposure to chronic stress can influence the impairing effects of acute stress on memory retrieval. This issue was tested in this study. Materials and Methods: Adult male Wistar rats were randomly assigned to the following groups: control, acute, chronic, and chronic + acute stress groups. The rats were trained with six trials per day for 6 consecutive days in the water maze. Following training, the rats were either kept in control conditions or exposed to chronic stress in a restrainer 6 hr/day for 21 days. On day 22, a probe test was done to measure memory retention. Time spent in target and opposite areas, platform location latency, and proximity were used as indices of memory retention. To induce acute stress, 30 min before the probe test, animals received a mild footshock. Results: Stressed animals spent significantly less time in the target quadrant and more time in the opposite quadrant than control animals. Moreover, the stressed animals showed significantly increased platform location latency and proximity as compared with control animals. No significant differences were found in these measures among stress exposure groups. Finally, both chronic and acute stress significantly increased corticosterone levels. Conclusion: Our results indicate that both chronic and acute stress impair memory retrieval similarly. Additionally, the impairing effects of chronic stress on memory retrieval were not influenced by acute stress.

  19. A versatile proline/alanine transporter in the unicellular pathogen Leishmania donovani regulates amino acid homoeostasis and osmotic stress responses.

    PubMed

    Inbar, Ehud; Schlisselberg, Doreen; Suter Grotemeyer, Marianne; Rentsch, Doris; Zilberstein, Dan

    2013-01-15

    Unlike all other organisms, parasitic protozoa of the family Trypanosomatidae maintain a large cellular pool of proline that, together with the alanine pool, serve as alternative carbon sources as well as reservoirs of organic osmolytes. These reflect adaptation to their insect vectors whose haemolymphs are exceptionally rich in the two amino acids. In the present study we identify and characterize a new neutral amino acid transporter, LdAAP24, that translocates proline and alanine across the Leishmania donovani plasma membrane. This transporter fulfils multiple functions: it is the sole supplier for the intracellular pool of proline and contributes to the alanine pool; it is essential for cell volume regulation after osmotic stress; and it regulates the transport and homoeostasis of glutamate and arginine, none of which are its substrates. Notably, we provide evidence that proline and alanine exhibit different roles in the parasitic response to hypotonic shock; alanine affects swelling, whereas proline influences the rate of volume recovery. On the basis of our data we suggest that LdAAP24 plays a key role in parasite adaptation to its varying environments in host and vector, a phenomenon essential for successful parasitism.

  20. A Sweetpotato Geranylgeranyl Pyrophosphate Synthase Gene, IbGGPS, Increases Carotenoid Content and Enhances Osmotic Stress Tolerance in Arabidopsis thaliana

    PubMed Central

    Liu, Degao; Patil, Gunvant B.; Zhai, Hong; Wang, Feibing; Stephenson, Troy J.; Wang, Yannan; Wang, Bing; Valliyodan, Babu; Nguyen, Henry T.; Liu, Qingchang

    2015-01-01

    Sweetpotato highly produces carotenoids in storage roots. In this study, a cDNA encoding geranylgeranyl phyrophosphate synthase (GGPS), named IbGGPS, was isolated from sweetpotato storage roots. Green fluorescent protein (GFP) was fused to the C-terminus of IbGGPS to obtain an IbGGPS-GFP fusion protein that was transiently expressed in both epidermal cells of onion and leaves of tobacco. Confocal microscopic analysis determined that the IbGGPS-GFP protein was localized to specific areas of the plasma membrane of onion and chloroplasts in tobacco leaves. The coding region of IbGGPS was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana to obtain transgenic plants. High performance liquid chromatography (HPLC) analysis showed a significant increase of total carotenoids in transgenic plants. The seeds of transgenic and wild-type plants were germinated on an agar medium supplemented with polyethylene glycol (PEG). Transgenic seedlings grew significantly longer roots than wild-type ones did. Further enzymatic analysis showed an increased activity of superoxide dismutase (SOD) in transgenic seedlings. In addition, the level of malondialdehyde (MDA) was reduced in transgenics. qRT-PCR analysis showed altered expressions of several genes involved in the carotenoid biosynthesis in transgenic plants. These data results indicate that IbGGPS is involved in the biosynthesis of carotenoids in sweetpotato storage roots and likely associated with tolerance to osmotic stress. PMID:26376432

  1. A Sweetpotato Geranylgeranyl Pyrophosphate Synthase Gene, IbGGPS, Increases Carotenoid Content and Enhances Osmotic Stress Tolerance in Arabidopsis thaliana.

    PubMed

    Chen, Wei; He, Shaozhen; Liu, Degao; Patil, Gunvant B; Zhai, Hong; Wang, Feibing; Stephenson, Troy J; Wang, Yannan; Wang, Bing; Valliyodan, Babu; Nguyen, Henry T; Liu, Qingchang

    2015-01-01

    Sweetpotato highly produces carotenoids in storage roots. In this study, a cDNA encoding geranylgeranyl phyrophosphate synthase (GGPS), named IbGGPS, was isolated from sweetpotato storage roots. Green fluorescent protein (GFP) was fused to the C-terminus of IbGGPS to obtain an IbGGPS-GFP fusion protein that was transiently expressed in both epidermal cells of onion and leaves of tobacco. Confocal microscopic analysis determined that the IbGGPS-GFP protein was localized to specific areas of the plasma membrane of onion and chloroplasts in tobacco leaves. The coding region of IbGGPS was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana to obtain transgenic plants. High performance liquid chromatography (HPLC) analysis showed a significant increase of total carotenoids in transgenic plants. The seeds of transgenic and wild-type plants were germinated on an agar medium supplemented with polyethylene glycol (PEG). Transgenic seedlings grew significantly longer roots than wild-type ones did. Further enzymatic analysis showed an increased activity of superoxide dismutase (SOD) in transgenic seedlings. In addition, the level of malondialdehyde (MDA) was reduced in transgenics. qRT-PCR analysis showed altered expressions of several genes involved in the carotenoid biosynthesis in transgenic plants. These data results indicate that IbGGPS is involved in the biosynthesis of carotenoids in sweetpotato storage roots and likely associated with tolerance to osmotic stress. PMID:26376432

  2. Acute Stress Symptoms in Young Children with Burns

    ERIC Educational Resources Information Center

    Stoddard, Frederick J.; Saxe, Glenn; Ronfeldt, Heidi; Drake, Jennifer E.; Burns, Jennifer; Edgren, Christy; Sheridan, Robert

    2006-01-01

    Objective: Posttraumatic stress disorder symptoms are a focus of much research with older children, but little research has been conducted with young children, who account for about 50% of all pediatric burn injuries. This is a 3-year study of 12- to 48-month-old acutely burned children to assess acute traumatic stress outcomes. The aims were to…

  3. Bifactor Item Response Theory Model of Acute Stress Response

    PubMed Central

    Zhang, Ying; Jiang, Yuan; Tang, Jingjing; Zhu, Xia; Miao, Danmin

    2013-01-01

    Background Better understanding of acute stress responses is important for revision of DSM-5. However, the latent structure and relationship between different aspects of acute stress responses haven’t been clarified comprehensively. Bifactor item response model may help resolve this problem. Objective The purpose of this study is to develop a statistical model of acute stress responses, based on data from earthquake rescuers using Acute Stress Response Scale (ASRS). Through this model, we could better understand acute stress responses comprehensively, and provide preliminary information for computerized adaptive testing of stress responses. Methods Acute stress responses of earthquake rescuers were evaluated using ASRS, and state/trait anxiety were assessed using State-trait Anxiety Inventory (STAI). A hierarchical item response model (bifactor model) was used to analyze the data. Additionally, we tested this hierarchical model with model fit comparisons with one-dimensional and five-dimensional models. The correlations among acute stress responses and state/trait anxiety were compared, based on both the five-dimensional and bifactor models. Results Model fit comparisons showed bifactor model fit the data best. Item loadings on general and specific factors varied greatly between different aspects of stress responses. Many symptoms (40%) of physiological responses had positive loadings on general factor, and negative loadings on specific factor of physiological responses, while other stress responses had positive loadings on both general and specific factors. After extracting general factor of stress responses using bifactor analysis, significant positive correlations between physiological responses and state/trait anxiety (r = 0.185/0.112, p<0.01) changed into negative ones (r = −0.177/−0.38, p<0.01). Conclusion Our results demonstrated bifactor structure of acute stress responses, and positive and negative correlations between physiological responses

  4. Osmotic Regulation Is Required for Cancer Cell Survival under Solid Stress.

    PubMed

    McGrail, Daniel J; McAndrews, Kathleen M; Brandenburg, Chandler P; Ravikumar, Nithin; Kieu, Quang Minh N; Dawson, Michelle R

    2015-10-01

    For a solid tumor to grow, it must be able to support the compressive stress that is generated as it presses against the surrounding tissue. Although the literature suggests a role for the cytoskeleton in counteracting these stresses, there has been no systematic evaluation of which filaments are responsible or to what degree. Here, using a three-dimensional spheroid model, we show that cytoskeletal filaments do not actively support compressive loads in breast, ovarian, and prostate cancer. However, modulation of tonicity can induce alterations in spheroid size. We find that under compression, tumor cells actively efflux sodium to decrease their intracellular tonicity, and that this is reversible by blockade of sodium channel NHE1. Moreover, although polymerized actin does not actively support the compressive load, it is required for sodium efflux. Compression-induced cell death is increased by both sodium blockade and actin depolymerization, whereas increased actin polymerization offers protective effects and increases sodium efflux. Taken together, these results demonstrate that cancer cells modulate their tonicity to survive under compressive solid stress. PMID:26445434

  5. Osmotic Stress Induces Rapid Activation of a Salicylic Acid–Induced Protein Kinase and a Homolog of Protein Kinase ASK1 in Tobacco Cells

    PubMed Central

    Mikołajczyk, Monika; Awotunde, Olubunmi S.; Muszyńska, Grażyna; Klessig, Daniel F.; Dobrowolska, Grażyna

    2000-01-01

    In tobacco cells, osmotic stress induced the rapid activation of two protein kinases that phosphorylate myelin basic protein. Immunological studies demonstrated that the 48-kD kinase is the salicylic acid–induced protein kinase (SIPK), a member of the mitogen-activated protein kinase family. SIPK was activated 5 to 10 min after the cells were exposed to osmotic stresses, and its activity persisted for ∼30 min. In contrast, the 42-kD kinase was activated within 1 min after osmotic stress, and its activity was maintained for ∼2 hr. Moreover, in addition to myelin basic protein, the 42-kD kinase phosphorylated casein and two transcription factors, c-Jun and ATF-2. This latter enzyme was inactivated by a serine/threonine–specific phosphatase but, unlike SIPK, was not affected by a tyrosine-specific phosphatase. After the 42-kD kinase was purified to apparent homogeneity, tryptic peptide analysis indicated that it is a homolog of Arabidopsis serine/threonine kinase1 (ASK1). PMID:10634915

  6. Influence of osmotic stress on the profile and gene expression of surface layer proteins in Lactobacillus acidophilus ATCC 4356.

    PubMed

    Palomino, María Mercedes; Waehner, Pablo M; Fina Martin, Joaquina; Ojeda, Paula; Malone, Lucía; Sánchez Rivas, Carmen; Prado Acosta, Mariano; Allievi, Mariana C; Ruzal, Sandra M

    2016-10-01

    In this work, we studied the role of surface layer (S-layer) proteins in the adaptation of Lactobacillus acidophilus ATCC 4356 to the osmotic stress generated by high salt. The amounts of the predominant and the auxiliary S-layer proteins SlpA and SlpX were strongly influenced by the growth phase and high-salt conditions (0.6 M NaCl). Changes in gene expression were also observed as the mRNAs of the slpA and slpX genes increased related to the growth phase and presence of high salt. A growth stage-dependent modification on the S-layer protein profile in response to NaCl was observed: while in control conditions, the auxiliary SlpX protein represented less than 10 % of the total S-layer protein, in high-salt conditions, it increased to almost 40 % in the stationary phase. The increase in S-layer protein synthesis in the stress condition could be a consequence of or a way to counteract the fragility of the cell wall, since a decrease in the cell wall thickness and envelope components (peptidoglycan layer and lipoteichoic acid content) was observed in L. acidophilus when compared to a non-S-layer-producing species such as Lactobacillus casei. Also, the stationary phase and growth in high-salt medium resulted in increased release of S-layer proteins to the supernatant medium. Overall, these findings suggest that pre-growth in high-salt conditions would result in an advantage for the probiotic nature of L. acidophilus ATCC 4356 as the increased amount and release of the S-layer might be appropriate for its antimicrobial capacity.

  7. Influence of osmotic stress on the profile and gene expression of surface layer proteins in Lactobacillus acidophilus ATCC 4356.

    PubMed

    Palomino, María Mercedes; Waehner, Pablo M; Fina Martin, Joaquina; Ojeda, Paula; Malone, Lucía; Sánchez Rivas, Carmen; Prado Acosta, Mariano; Allievi, Mariana C; Ruzal, Sandra M

    2016-10-01

    In this work, we studied the role of surface layer (S-layer) proteins in the adaptation of Lactobacillus acidophilus ATCC 4356 to the osmotic stress generated by high salt. The amounts of the predominant and the auxiliary S-layer proteins SlpA and SlpX were strongly influenced by the growth phase and high-salt conditions (0.6 M NaCl). Changes in gene expression were also observed as the mRNAs of the slpA and slpX genes increased related to the growth phase and presence of high salt. A growth stage-dependent modification on the S-layer protein profile in response to NaCl was observed: while in control conditions, the auxiliary SlpX protein represented less than 10 % of the total S-layer protein, in high-salt conditions, it increased to almost 40 % in the stationary phase. The increase in S-layer protein synthesis in the stress condition could be a consequence of or a way to counteract the fragility of the cell wall, since a decrease in the cell wall thickness and envelope components (peptidoglycan layer and lipoteichoic acid content) was observed in L. acidophilus when compared to a non-S-layer-producing species such as Lactobacillus casei. Also, the stationary phase and growth in high-salt medium resulted in increased release of S-layer proteins to the supernatant medium. Overall, these findings suggest that pre-growth in high-salt conditions would result in an advantage for the probiotic nature of L. acidophilus ATCC 4356 as the increased amount and release of the S-layer might be appropriate for its antimicrobial capacity. PMID:27376794

  8. Role of Arabidopsis UV RESISTANCE LOCUS 8 in plant growth reduction under osmotic stress and low levels of UV-B.

    PubMed

    Fasano, Rossella; Gonzalez, Nathalie; Tosco, Alessandra; Dal Piaz, Fabrizio; Docimo, Teresa; Serrano, Ramon; Grillo, Stefania; Leone, Antonella; Inzé, Dirk

    2014-05-01

    In high-light environments, plants are exposed to different types of stresses, such as an excess of UV-B, but also drought stress which triggers a common morphogenic adaptive response resulting in a general reduction of plant growth. Here, we report that the Arabidopsis thaliana UV RESISTANCE LOCUS 8 (UVR8) gene, a known regulator of the UV-B morphogenic response, was able to complement a Saccharomyces cerevisiae osmo-sensitive mutant and its expression was induced after osmotic or salt stress in Arabidopsis plants. Under low levels of UV-B, plants overexpressing UVR8 are dwarfed with a reduced root development and accumulate more flavonoids compared to control plants. The growth defects are mainly due to the inhibition of cell expansion. The growth inhibition triggered by UVR8 overexpression in plants under low levels of UV-B was exacerbated by mannitol-induced osmotic stress, but it was not significantly affected by ionic stress. In contrast, uvr8-6 mutant plants do not differ from wild-type plants under standard conditions, but they show an increased shoot growth under high-salt stress. Our data suggest that UVR8-mediated accumulation of flavonoid and possibly changes in auxin homeostasis are the underlying mechanism of the observed growth phenotypes and that UVR8 might have an important role for integrating plant growth and stress signals.

  9. Over-expression of StAPX in tobacco improves seed germination and increases early seedling tolerance to salinity and osmotic stresses.

    PubMed

    Sun, Wei-Hong; Duan, Ming; Shu, De-Feng; Yang, Sha; Meng, Qing-Wei

    2010-08-01

    Ascorbate peroxidase plays a key role in scavenging reactive oxygen species under environmental stresses and in protecting plant cells against toxic effects. The Solanum lycopersicum thylakoid-bound ascorbate peroxidase gene (StAPX) was introduced into tobacco under the control of the cauliflower mosaic virus 35S promoter. Transformants were selected for their ability to grow on medium containing kanamycin. RNA gel blot analysis confirmed that StAPX was transferred into the tobacco genome and StAPX was induced by salt and osmotic stresses in tomato leaves. Over-expression of StAPX in tobacco improved seed germination rate and elevated stress tolerance during post-germination development. Two transgenic lines showed higher APX activity and accumulated less hydrogen peroxide than wild-type plants after stress treatments. The photosynthetic rates, the root lengths, the fresh and dry weights of the transgenic lines were distinctly higher than those of wild-type plants under stress conditions. Results indicated that the over-expression of StAPX had enhanced tolerance to salt stress and osmotic stress in transgenic tobacco plants.

  10. Overexpression of AtEDT1/HDG11 in Chinese Kale (Brassica oleracea var. alboglabra) Enhances Drought and Osmotic Stress Tolerance.

    PubMed

    Zhu, Zhangsheng; Sun, Binmei; Xu, Xiaoxia; Chen, Hao; Zou, Lifang; Chen, Guoju; Cao, Bihao; Chen, Changming; Lei, Jianjun

    2016-01-01

    Plants are constantly challenged by environmental stresses, including drought and high salinity. Improvement of drought and osmotic stress tolerance without yield decrease has been a great challenge in crop improvement. The Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a protein of the class IV HD-Zip family, has been demonstrated to significantly improve drought tolerance in Arabidopsis, rice, and pepper. Here, we report that AtEDT1/HDG11 confers drought and osmotic stress tolerance in the Chinese kale. AtEDT1/HDG11-overexpression lines exhibit auxin-overproduction phenotypes, such as long hypocotyls, tall stems, more root hairs, and a larger root system architecture. Compared with the untransformed control, transgenic lines have significantly reduced stomatal density. In the leaves of transgenic Chinese kale plants, proline (Pro) content and reactive oxygen species-scavenging enzyme activity was significantly increased after drought and osmotic stress, particularly compared to wild kale. More importantly, AtEDT1/HDG11-overexpression leads to abscisic acid (ABA) hypersensitivity, resulting in ABA inhibitor germination and induced stomatal closure. Consistent with observed phenotypes, the expression levels of auxin, ABA, and stress-related genes were also altered under both normal and/or stress conditions. Further analysis showed that AtEDT1/HDG11, as a transcription factor, can target the auxin biosynthesis gene YUCC6 and ABA response genes ABI3 and ABI5. Collectively, our results provide a new insight into the role of AtEDT1/HDG11 in enhancing abiotic stress resistance through auxin- and ABA-mediated signaling response in Chinese kale. PMID:27625663

  11. Overexpression of AtEDT1/HDG11 in Chinese Kale (Brassica oleracea var. alboglabra) Enhances Drought and Osmotic Stress Tolerance.

    PubMed

    Zhu, Zhangsheng; Sun, Binmei; Xu, Xiaoxia; Chen, Hao; Zou, Lifang; Chen, Guoju; Cao, Bihao; Chen, Changming; Lei, Jianjun

    2016-01-01

    Plants are constantly challenged by environmental stresses, including drought and high salinity. Improvement of drought and osmotic stress tolerance without yield decrease has been a great challenge in crop improvement. The Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a protein of the class IV HD-Zip family, has been demonstrated to significantly improve drought tolerance in Arabidopsis, rice, and pepper. Here, we report that AtEDT1/HDG11 confers drought and osmotic stress tolerance in the Chinese kale. AtEDT1/HDG11-overexpression lines exhibit auxin-overproduction phenotypes, such as long hypocotyls, tall stems, more root hairs, and a larger root system architecture. Compared with the untransformed control, transgenic lines have significantly reduced stomatal density. In the leaves of transgenic Chinese kale plants, proline (Pro) content and reactive oxygen species-scavenging enzyme activity was significantly increased after drought and osmotic stress, particularly compared to wild kale. More importantly, AtEDT1/HDG11-overexpression leads to abscisic acid (ABA) hypersensitivity, resulting in ABA inhibitor germination and induced stomatal closure. Consistent with observed phenotypes, the expression levels of auxin, ABA, and stress-related genes were also altered under both normal and/or stress conditions. Further analysis showed that AtEDT1/HDG11, as a transcription factor, can target the auxin biosynthesis gene YUCC6 and ABA response genes ABI3 and ABI5. Collectively, our results provide a new insight into the role of AtEDT1/HDG11 in enhancing abiotic stress resistance through auxin- and ABA-mediated signaling response in Chinese kale.

  12. Overexpression of AtEDT1/HDG11 in Chinese Kale (Brassica oleracea var. alboglabra) Enhances Drought and Osmotic Stress Tolerance

    PubMed Central

    Zhu, Zhangsheng; Sun, Binmei; Xu, Xiaoxia; Chen, Hao; Zou, Lifang; Chen, Guoju; Cao, Bihao; Chen, Changming; Lei, Jianjun

    2016-01-01

    Plants are constantly challenged by environmental stresses, including drought and high salinity. Improvement of drought and osmotic stress tolerance without yield decrease has been a great challenge in crop improvement. The Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a protein of the class IV HD-Zip family, has been demonstrated to significantly improve drought tolerance in Arabidopsis, rice, and pepper. Here, we report that AtEDT1/HDG11 confers drought and osmotic stress tolerance in the Chinese kale. AtEDT1/HDG11-overexpression lines exhibit auxin-overproduction phenotypes, such as long hypocotyls, tall stems, more root hairs, and a larger root system architecture. Compared with the untransformed control, transgenic lines have significantly reduced stomatal density. In the leaves of transgenic Chinese kale plants, proline (Pro) content and reactive oxygen species-scavenging enzyme activity was significantly increased after drought and osmotic stress, particularly compared to wild kale. More importantly, AtEDT1/HDG11-overexpression leads to abscisic acid (ABA) hypersensitivity, resulting in ABA inhibitor germination and induced stomatal closure. Consistent with observed phenotypes, the expression levels of auxin, ABA, and stress-related genes were also altered under both normal and/or stress conditions. Further analysis showed that AtEDT1/HDG11, as a transcription factor, can target the auxin biosynthesis gene YUCC6 and ABA response genes ABI3 and ABI5. Collectively, our results provide a new insight into the role of AtEDT1/HDG11 in enhancing abiotic stress resistance through auxin- and ABA-mediated signaling response in Chinese kale. PMID:27625663

  13. Overexpression of AtEDT1/HDG11 in Chinese Kale (Brassica oleracea var. alboglabra) Enhances Drought and Osmotic Stress Tolerance

    PubMed Central

    Zhu, Zhangsheng; Sun, Binmei; Xu, Xiaoxia; Chen, Hao; Zou, Lifang; Chen, Guoju; Cao, Bihao; Chen, Changming; Lei, Jianjun

    2016-01-01

    Plants are constantly challenged by environmental stresses, including drought and high salinity. Improvement of drought and osmotic stress tolerance without yield decrease has been a great challenge in crop improvement. The Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a protein of the class IV HD-Zip family, has been demonstrated to significantly improve drought tolerance in Arabidopsis, rice, and pepper. Here, we report that AtEDT1/HDG11 confers drought and osmotic stress tolerance in the Chinese kale. AtEDT1/HDG11-overexpression lines exhibit auxin-overproduction phenotypes, such as long hypocotyls, tall stems, more root hairs, and a larger root system architecture. Compared with the untransformed control, transgenic lines have significantly reduced stomatal density. In the leaves of transgenic Chinese kale plants, proline (Pro) content and reactive oxygen species-scavenging enzyme activity was significantly increased after drought and osmotic stress, particularly compared to wild kale. More importantly, AtEDT1/HDG11-overexpression leads to abscisic acid (ABA) hypersensitivity, resulting in ABA inhibitor germination and induced stomatal closure. Consistent with observed phenotypes, the expression levels of auxin, ABA, and stress-related genes were also altered under both normal and/or stress conditions. Further analysis showed that AtEDT1/HDG11, as a transcription factor, can target the auxin biosynthesis gene YUCC6 and ABA response genes ABI3 and ABI5. Collectively, our results provide a new insight into the role of AtEDT1/HDG11 in enhancing abiotic stress resistance through auxin- and ABA-mediated signaling response in Chinese kale.

  14. The mitochondria of stallion spermatozoa are more sensitive than the plasmalemma to osmotic-induced stress: role of c-Jun N-terminal kinase (JNK) pathway.

    PubMed

    García, Beatriz Macías; Moran, Alvaro Miró; Fernández, Lauro González; Ferrusola, Cristina Ortega; Rodriguez, Antolin Morillo; Bolaños, Juan Maria Gallardo; da Silva, Carolina Maria Balao; Martínez, Heriberto Rodríguez; Tapia, Jose A; Peña, Fernando J

    2012-01-01

    Cryopreservation introduces extreme temperature and osmolality changes that impart lethal and sublethal effects on spermatozoa. Additionally, there is evidence that the osmotic stress induced by cryopreservation causes oxidative stress to spermatozoa. The main sources of reactive oxygen species in mammalian sperm are the mitochondria. In view of this, the aim of our study was to test whether or not osmotic stress was able to induce mitochondrial damage and to explore the osmotic tolerance of the mitochondria of stallion spermatozoa. Ejaculates from 7 stallions were subjected to osmolalities ranging from 75 to 1500 mOsm/kg, and the effect on sperm membrane integrity and mitochondrial membrane potential was studied. Additionally, the effects of changes in osmolality from hyposmotic to isosmotic and from hyperosmotic to isosmotic solutions were studied (osmotic excursions). The cellular volume of stallion spermatozoa under isosmotic conditions was 20.4 ± 0.33 μm(3). When exposed to low osmolality, the stallion spermatozoa behaved like a linear osmometer, whereas exposure to high osmolalities up to 900 mOsm/kg resulted in decreased sperm volume. Although sperm membranes were relatively resistant to changes in osmolality, mitochondrial membrane potential decreased when osmolalities were low or very high (10.7 ± 1.74 and 16.5 ± 1.70 at 75 and 150 mOsm/kg, respectively, and 13.1 ± 1.83 at 1500 mOsm/kg), whereas in isosmolar controls the percentage of stallion sperm mitochondria with a high membrane potential was 41.1 ± 1.69 (P < .01). Osmotic excursions induced greater damage than exposure of spermatozoa to a given nonphysiologic osmolality, and again the mitochondria were more prone to damage induced by osmotic excursions than was the sperm plasma membrane. In search of intracellular components that could mediate these changes, we have detected for the first time the c-Jun N-terminal kinase 1/2 in stallion spermatozoa, which are apparently involved in the

  15. Osmotic adjustment in five tree species under elevated CO sub 2 and water stress. [Platanus occidentalis L. ; Liquidambar styraciflua L. ; Quercus rubra L. ; Acer saccharum Marsh; Liriodendron tulipifera L

    SciTech Connect

    Tschaplinski, T.J.; Hanson, P.J.; Norby, R.J. ); Stewart, D.B. )

    1991-05-01

    Since osmotic adjustment to water stress requires carbon assimilation during stress, the stimulation of photosynthesis by elevated CO{sub 2} may enhance osmotic adjustment. Osmotic adjustment of American sycamore (Platanus occidentalis L.), sweetgum (Liquidambar styraciflua L.), sugar maple (Acer saccharum Marsh.), yellow-poplar (Liriodendron tulipifera L.), and northern red oak (Quercus rubra L.) to water stress was assessed under ambient and elevated CO{sub 2} (ambient +300 {mu}L L{sup {minus}1}), with seedlings grown in 8-L pots in four open-top chambers, fitted with rain exclusion canopies. Trees were subjected to repeated water stress cycles over a six-week period. Well-watered trees were watered daily to maintain a soil matric potential > {minus}0.3 MPa, whereas stressed trees were watered when soil matric potential declined to < {minus}0.9 MPa. Gas exchange and water relations were monitored at the depth of stress and after rewatering. All species displayed an increase in leaf-level water-use efficiency (net photosynthesis/transpiration). Leaves of sycamore and sweetgum displayed an adjustment in osmotic potential at saturation (pressure-volume analysis) of 0.3 MPa and 0.6 MPa, respectively. Elevated CO{sub 2} did not enhance osmotic adjustment in leaves of any of the species studied. Studies to characterize organic solute concentrations in roots are ongoing to determine if osmotic adjustment occurred in the roots.

  16. Nuclear versus cytosolic activity of the yeast Hog1 MAP kinase in response to osmotic and tunicamycin-induced ER stress.

    PubMed

    García-Marqués, Sara; Randez-Gil, Francisca; Prieto, Jose A

    2015-07-22

    We examined the physiological significance of the nuclear versus cytosolic localization of the MAPK Hog1p in the ability of yeast cells to cope with osmotic and ER (endoplasmic reticulum) stress. Our results indicate that nuclear import of Hog1p is not critical for osmoadaptation. Plasma membrane-anchored Hog1p is still able to induce increased expression of GPD1 and glycerol accumulation. This is a key osmoregulatory event, although a small production of the osmolyte coupled with the nuclear import of Hog1p is sufficient to provide osmoresistance. On the contrary, the nuclear activity of Hog1p is dispensable for ER stress adaptation.

  17. Effect of NaCl-induced osmotic stress on intracellular concentrations of glycine betaine and potassium in Escherichia coli, Enterococcus faecalis, and staphylococci.

    PubMed

    Kunin, C M; Rudy, J

    1991-09-01

    Staphylococci are more salt tolerant than are enterococci or Escherichia coli. They have a more rigid cell wall and higher internal turgor pressure. The mechanisms of NaCl-induced osmotic tolerance among these bacteria were examined by determining the generation of osmoprotective activity of cellular extracts and intracellular concentrations of glycine betaine and potassium (K+) in response to graded amounts of NaCl. Staphylococci as well as E. coli were shown to require choline or glycine betaine to achieve maximal salt tolerance. In response to 0.9 mol/L NaCl, E. coli exhibited a marked increase in osmoprotective activity, a 168-fold rise in glycine betaine, and a 2.3-fold rise in K+. Enterococcus faealis exhibited a small increase in osmoprotective activity, a 9.3-fold increase in glycine betaine, and a twofold increase in K+. In contrast, strains of Staphylococcus aureus, S. epidermidis, and S. saprophyticus were found to have considerably greater osmoprotective activity, glycine betaine, and K+ than other organisms, even in the absence of external osmotic stress. Glycine betaine rose in some strains, but K+ remained virtually unchanged as the concentration of NaCl was increased. The high concentrations of glycine betaine and K+ in staphylococci, even in the absence of osmotic stress, may explain in part their remarkable salt tolerance and high turgor pressure.

  18. Effect of NaCl-induced osmotic stress on intracellular concentrations of glycine betaine and potassium in Escherichia coli, Enterococcus faecalis, and staphylococci.

    PubMed

    Kunin, C M; Rudy, J

    1991-09-01

    Staphylococci are more salt tolerant than are enterococci or Escherichia coli. They have a more rigid cell wall and higher internal turgor pressure. The mechanisms of NaCl-induced osmotic tolerance among these bacteria were examined by determining the generation of osmoprotective activity of cellular extracts and intracellular concentrations of glycine betaine and potassium (K+) in response to graded amounts of NaCl. Staphylococci as well as E. coli were shown to require choline or glycine betaine to achieve maximal salt tolerance. In response to 0.9 mol/L NaCl, E. coli exhibited a marked increase in osmoprotective activity, a 168-fold rise in glycine betaine, and a 2.3-fold rise in K+. Enterococcus faealis exhibited a small increase in osmoprotective activity, a 9.3-fold increase in glycine betaine, and a twofold increase in K+. In contrast, strains of Staphylococcus aureus, S. epidermidis, and S. saprophyticus were found to have considerably greater osmoprotective activity, glycine betaine, and K+ than other organisms, even in the absence of external osmotic stress. Glycine betaine rose in some strains, but K+ remained virtually unchanged as the concentration of NaCl was increased. The high concentrations of glycine betaine and K+ in staphylococci, even in the absence of osmotic stress, may explain in part their remarkable salt tolerance and high turgor pressure. PMID:1919294

  19. Chromatin insulator bodies are nuclear structures that form in response to osmotic stress and cell death

    PubMed Central

    Schoborg, Todd; Rickels, Ryan; Barrios, Josh

    2013-01-01

    Chromatin insulators assist in the formation of higher-order chromatin structures by mediating long-range contacts between distant genomic sites. It has been suggested that insulators accomplish this task by forming dense nuclear foci termed insulator bodies that result from the coalescence of multiple protein-bound insulators. However, these structures remain poorly understood, particularly the mechanisms triggering body formation and their role in nuclear function. In this paper, we show that insulator proteins undergo a dramatic and dynamic spatial reorganization into insulator bodies during osmostress and cell death in a high osmolarity glycerol–p38 mitogen-activated protein kinase–independent manner, leading to a large reduction in DNA-bound insulator proteins that rapidly repopulate chromatin as the bodies disassemble upon return to isotonicity. These bodies occupy distinct nuclear territories and contain a defined structural arrangement of insulator proteins. Our findings suggest insulator bodies are novel nuclear stress foci that can be used as a proxy to monitor the chromatin-bound state of insulator proteins and provide new insights into the effects of osmostress on nuclear and genome organization. PMID:23878275

  20. Osmotic stress does not trigger brevetoxin production in the dinoflagellate Karenia brevis.

    PubMed

    Sunda, William G; Burleson, Cheska; Hardison, D Ransom; Morey, Jeanine S; Wang, Zhihong; Wolny, Jennifer; Corcoran, Alina A; Flewelling, Leanne J; Van Dolah, Frances M

    2013-06-18

    With the global proliferation of toxic harmful algal bloom species, there is a need to identify the environmental and biological factors that regulate toxin production. One such species, Karenia brevis, forms nearly annual blooms that threaten coastal regions throughout the Gulf of Mexico. This dinoflagellate produces brevetoxins, which are potent neurotoxins that cause neurotoxic shellfish poisoning and respiratory illness in humans, as well as massive fish kills. A recent publication reported that a rapid decrease in salinity increased cellular toxin quotas in K. brevis and hypothesized that brevetoxins serve a role in osmoregulation. This finding implied that salinity shifts could significantly alter the toxic effects of blooms. We repeated the original experiments separately in three different laboratories and found no evidence for increased brevetoxin production in response to low-salinity stress in any of the eight K. brevis strains we tested, including three used in the original study. Thus, we find no support for an osmoregulatory function of brevetoxins. The original publication also stated that there was no known cellular function for brevetoxins. However, there is increasing evidence that brevetoxins promote survival of the dinoflagellates by deterring grazing by zooplankton. Whether they have other as-yet-unidentified cellular functions is currently unknown.

  1. Osmotic stress does not trigger brevetoxin production in the dinoflagellate Karenia brevis.

    PubMed

    Sunda, William G; Burleson, Cheska; Hardison, D Ransom; Morey, Jeanine S; Wang, Zhihong; Wolny, Jennifer; Corcoran, Alina A; Flewelling, Leanne J; Van Dolah, Frances M

    2013-06-18

    With the global proliferation of toxic harmful algal bloom species, there is a need to identify the environmental and biological factors that regulate toxin production. One such species, Karenia brevis, forms nearly annual blooms that threaten coastal regions throughout the Gulf of Mexico. This dinoflagellate produces brevetoxins, which are potent neurotoxins that cause neurotoxic shellfish poisoning and respiratory illness in humans, as well as massive fish kills. A recent publication reported that a rapid decrease in salinity increased cellular toxin quotas in K. brevis and hypothesized that brevetoxins serve a role in osmoregulation. This finding implied that salinity shifts could significantly alter the toxic effects of blooms. We repeated the original experiments separately in three different laboratories and found no evidence for increased brevetoxin production in response to low-salinity stress in any of the eight K. brevis strains we tested, including three used in the original study. Thus, we find no support for an osmoregulatory function of brevetoxins. The original publication also stated that there was no known cellular function for brevetoxins. However, there is increasing evidence that brevetoxins promote survival of the dinoflagellates by deterring grazing by zooplankton. Whether they have other as-yet-unidentified cellular functions is currently unknown. PMID:23754363

  2. The C Isoform of Dictyostelium Tetraspanins Localizes to the Contractile Vacuole and Contributes to Resistance against Osmotic Stress.

    PubMed

    Albers, Tineke; Maniak, Markus; Beitz, Eric; von Bülow, Julia

    2016-01-01

    Tetraspanins (Tsps) are membrane proteins that are widely expressed in eukaryotic organisms. Only recently, Tsps have started to acquire relevance as potential new drug targets as they contribute, via protein-protein interactions, to numerous pathophysiological processes including infectious diseases and cancer. However, due to a high number of isoforms and functional redundancy, knowledge on specific functions of most Tsps is still scarce. We set out to characterize five previously annotated Tsps, TspA-E, from Dictyostelium discoideum, a model for studying proteins that have human orthologues. Using reverse transcriptase PCRs, we found mRNAs for TspA-E in the multicellular slug stage, whereas vegetative cells expressed only TspA, TspC and, to a lesser extent, TspD. We raised antibodies against TspA, TspC and TspD and detected endogenous TspA, as well as heterologously expressed TspA and TspC by Western blot. N-deglycosylation assays and mutational analyses showed glycosylation of TspA and TspC in vivo. GFP-tagged Tsps co-localized with the proton pump on the contractile vacuole network. Deletion strains of TspC and TspD exibited unaltered growth, adhesion, random motility and development. Yet, tspC- cells showed a defect in coping with hypo-osmotic stress, due to accumulation of contractile vacuoles, but heterologous expression of TspC rescued their phenotype. In conclusion, our data fill a gap in Dictyostelium research and open up the possibility that Tsps in contractile vacuoles of e.g. Trypanosoma may one day constitute a valuable drug target for treating sleeping sickness, one of the most threatening tropical diseases. PMID:27597994

  3. The C Isoform of Dictyostelium Tetraspanins Localizes to the Contractile Vacuole and Contributes to Resistance against Osmotic Stress

    PubMed Central

    Albers, Tineke; Maniak, Markus; Beitz, Eric; von Bülow, Julia

    2016-01-01

    Tetraspanins (Tsps) are membrane proteins that are widely expressed in eukaryotic organisms. Only recently, Tsps have started to acquire relevance as potential new drug targets as they contribute, via protein-protein interactions, to numerous pathophysiological processes including infectious diseases and cancer. However, due to a high number of isoforms and functional redundancy, knowledge on specific functions of most Tsps is still scarce. We set out to characterize five previously annotated Tsps, TspA-E, from Dictyostelium discoideum, a model for studying proteins that have human orthologues. Using reverse transcriptase PCRs, we found mRNAs for TspA-E in the multicellular slug stage, whereas vegetative cells expressed only TspA, TspC and, to a lesser extent, TspD. We raised antibodies against TspA, TspC and TspD and detected endogenous TspA, as well as heterologously expressed TspA and TspC by Western blot. N-deglycosylation assays and mutational analyses showed glycosylation of TspA and TspC in vivo. GFP-tagged Tsps co-localized with the proton pump on the contractile vacuole network. Deletion strains of TspC and TspD exibited unaltered growth, adhesion, random motility and development. Yet, tspC− cells showed a defect in coping with hypo-osmotic stress, due to accumulation of contractile vacuoles, but heterologous expression of TspC rescued their phenotype. In conclusion, our data fill a gap in Dictyostelium research and open up the possibility that Tsps in contractile vacuoles of e.g. Trypanosoma may one day constitute a valuable drug target for treating sleeping sickness, one of the most threatening tropical diseases. PMID:27597994

  4. Constitutive over-expression of rice chymotrypsin protease inhibitor gene OCPI2 results in enhanced growth, salinity and osmotic stress tolerance of the transgenic Arabidopsis plants.

    PubMed

    Tiwari, Lalit Dev; Mittal, Dheeraj; Chandra Mishra, Ratnesh; Grover, Anil

    2015-07-01

    Protease inhibitors are involved primarily in defense against pathogens. In recent years, these proteins have also been widely implicated in response of plants to diverse abiotic stresses. Rice chymotrypsin protease inhibitor gene OCPI2 is highly induced under salt and osmotic stresses. The construct containing the complete coding sequence of OCPI2 cloned downstream to CaMV35S promoter was transformed in Arabidopsis and single copy, homozygous transgenic lines were produced. The transgenic plants exhibited significantly enhanced tolerance to NaCl, PEG and mannitol stress as compared to wild type plants. Importantly, the vegetative and reproductive growth of transgenic plants under unstressed, control conditions was also enhanced: transgenic plants were more vigorous than wild type, resulting into higher yield in terms of silique number. The RWC values and membrane stability index of transgenic in comparison to wild type plants was higher. Higher proline content was observed in the AtOCPI2 lines, which was associated with higher transcript expression of pyrroline-5-carboxylate synthase and lowered levels of proline dehydrogenase genes. The chymotrypsin protease activities were lower in the transgenic as against wild type plants, under both unstressed, control as well as stressed conditions. It thus appears that rice chymotrypsin protease inhibitor gene OCPI2 is a useful candidate gene for genetic improvement of plants against salt and osmotic stress. PMID:25910649

  5. Effect of sulfide, osmotic, and thermal stresses on taurine transporter mRNA levels in the gills of the hydrothermal vent-specific mussel Bathymodiolus septemdierum.

    PubMed

    Nakamura-Kusakabe, Ikumi; Nagasaki, Toshihiro; Kinjo, Azusa; Sassa, Mieko; Koito, Tomoko; Okamura, Kei; Yamagami, Shosei; Yamanaka, Toshiro; Tsuchida, Shinji; Inoue, Koji

    2016-01-01

    Hydrothermal vent environmental conditions are characterized by high sulfide concentrations, fluctuating osmolality, and irregular temperature elevations caused by vent effluents. These parameters represent potential stressors for organisms that inhabit the area around hydrothermal vents. Here, we aimed to obtain a better understanding of the adaptation mechanisms of marine species to hydrothermal vent environments. Specifically, we examined the effect of sulfide, osmolality, and thermal stress on the expression of taurine transporter (TAUT) mRNA in the gill of the deep-sea mussel Bathymodiolus septemdierum, which is a dominant species around hydrothermal vent sites. We analyzed TAUT mRNA levels by quantitative real-time polymerase chain reaction (PCR) in the gill of mussels exposed to sulfide (0.1 or 1mg/L Na2S·9H2O), hyper- (115% seawater) and hypo- (97.5%, 95.5%, and 85% seawater) osmotic conditions, and thermal stresses (12°C and 20°C) for 24 and 48h. The results showed that mussels exposed to relatively low levels of sulfide (0.1mg/L) and moderate heat stress (12°C) exhibited higher TAUT mRNA levels than the control. Although hyper- and hypo-osmotic stress did not significantly change TAUT mRNA levels, slight induction was observed in mussels exposed to low osmolality. Our results indicate that TAUT is involved in the coping mechanism of mussels to various hydrothermal vent stresses.

  6. Constitutive over-expression of rice chymotrypsin protease inhibitor gene OCPI2 results in enhanced growth, salinity and osmotic stress tolerance of the transgenic Arabidopsis plants.

    PubMed

    Tiwari, Lalit Dev; Mittal, Dheeraj; Chandra Mishra, Ratnesh; Grover, Anil

    2015-07-01

    Protease inhibitors are involved primarily in defense against pathogens. In recent years, these proteins have also been widely implicated in response of plants to diverse abiotic stresses. Rice chymotrypsin protease inhibitor gene OCPI2 is highly induced under salt and osmotic stresses. The construct containing the complete coding sequence of OCPI2 cloned downstream to CaMV35S promoter was transformed in Arabidopsis and single copy, homozygous transgenic lines were produced. The transgenic plants exhibited significantly enhanced tolerance to NaCl, PEG and mannitol stress as compared to wild type plants. Importantly, the vegetative and reproductive growth of transgenic plants under unstressed, control conditions was also enhanced: transgenic plants were more vigorous than wild type, resulting into higher yield in terms of silique number. The RWC values and membrane stability index of transgenic in comparison to wild type plants was higher. Higher proline content was observed in the AtOCPI2 lines, which was associated with higher transcript expression of pyrroline-5-carboxylate synthase and lowered levels of proline dehydrogenase genes. The chymotrypsin protease activities were lower in the transgenic as against wild type plants, under both unstressed, control as well as stressed conditions. It thus appears that rice chymotrypsin protease inhibitor gene OCPI2 is a useful candidate gene for genetic improvement of plants against salt and osmotic stress.

  7. Effect of sulfide, osmotic, and thermal stresses on taurine transporter mRNA levels in the gills of the hydrothermal vent-specific mussel Bathymodiolus septemdierum.

    PubMed

    Nakamura-Kusakabe, Ikumi; Nagasaki, Toshihiro; Kinjo, Azusa; Sassa, Mieko; Koito, Tomoko; Okamura, Kei; Yamagami, Shosei; Yamanaka, Toshiro; Tsuchida, Shinji; Inoue, Koji

    2016-01-01

    Hydrothermal vent environmental conditions are characterized by high sulfide concentrations, fluctuating osmolality, and irregular temperature elevations caused by vent effluents. These parameters represent potential stressors for organisms that inhabit the area around hydrothermal vents. Here, we aimed to obtain a better understanding of the adaptation mechanisms of marine species to hydrothermal vent environments. Specifically, we examined the effect of sulfide, osmolality, and thermal stress on the expression of taurine transporter (TAUT) mRNA in the gill of the deep-sea mussel Bathymodiolus septemdierum, which is a dominant species around hydrothermal vent sites. We analyzed TAUT mRNA levels by quantitative real-time polymerase chain reaction (PCR) in the gill of mussels exposed to sulfide (0.1 or 1mg/L Na2S·9H2O), hyper- (115% seawater) and hypo- (97.5%, 95.5%, and 85% seawater) osmotic conditions, and thermal stresses (12°C and 20°C) for 24 and 48h. The results showed that mussels exposed to relatively low levels of sulfide (0.1mg/L) and moderate heat stress (12°C) exhibited higher TAUT mRNA levels than the control. Although hyper- and hypo-osmotic stress did not significantly change TAUT mRNA levels, slight induction was observed in mussels exposed to low osmolality. Our results indicate that TAUT is involved in the coping mechanism of mussels to various hydrothermal vent stresses. PMID:26431911

  8. Overexpression of VrUBC1, a Mung Bean E2 Ubiquitin-Conjugating Enzyme, Enhances Osmotic Stress Tolerance in Arabidopsis.

    PubMed

    Chung, Eunsook; Cho, Chang-Woo; So, Hyun-Ah; Kang, Jee-Sook; Chung, Young Soo; Lee, Jai-Heon

    2013-01-01

    The ubiquitin conjugating enzyme E2 (UBC E2) mediates selective ubiquitination, acting with E1 and E3 enzymes to designate specific proteins for subsequent degradation. In the present study, we characterized the function of the mung bean VrUBC1 gene (Vigna radiata UBC 1). RNA gel-blot analysis showed that VrUBC1 mRNA expression was induced by either dehydration, high salinity or by the exogenous abscisic acid (ABA), but not by low temperature or wounding. Biochemical studies of VrUBC1 recombinant protein and complementation of yeast ubc4/5 by VrUBC1 revealed that VrUBC1 encodes a functional UBC E2. To understand the function of this gene in development and plant responses to osmotic stresses, we overexpressed VrUBC1 in Arabidopsis (Arabidopsis thaliana). The VrUBC1-overexpressing plants displayed highly sensitive responses to ABA and osmotic stress during germination, enhanced ABA- or salt-induced stomatal closing, and increased drought stress tolerance. The expression levels of a number of key ABA signaling genes were increased in VrUBC1-overexpressing plants compared to the wild-type plants. Yeast two-hybrid and bimolecular fluorescence complementation demonstrated that VrUBC1 interacts with AtVBP1 (A. thalianaVrUBC1 Binding Partner 1), a C3HC4-type RING E3 ligase. Overall, these results demonstrate that VrUBC1 plays a positive role in osmotic stress tolerance through transcriptional regulation of ABA-related genes and possibly through interaction with a novel RING E3 ligase.

  9. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress.

    PubMed

    Yoshida, Takuya; Fujita, Yasunari; Maruyama, Kyonoshin; Mogami, Junro; Todaka, Daisuke; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2015-01-01

    Under osmotic stress conditions such as drought and high salinity, the plant hormone abscisic acid (ABA) plays important roles in stress-responsive gene expression mainly through three bZIP transcription factors, AREB1/ABF2, AREB2/ABF4 and ABF3, which are activated by SNF1-related kinase 2s (SnRK2s) such as SRK2D/SnRK2.2, SRK2E/SnRK2.6 and SRK2I/SnRK2.3 (SRK2D/E/I). However, since the three AREB/ABFs are crucial, but not exclusive, for the SnRK2-mediated gene expression, transcriptional pathways governed by SRK2D/E/I are not fully understood. Here, we show that a bZIP transcription factor, ABF1, is a functional homolog of AREB1, AREB2 and ABF3 in ABA-dependent gene expression in Arabidopsis. Despite lower expression levels of ABF1 than those of the three AREB/ABFs, the areb1 areb2 abf3 abf1 mutant plants displayed increased sensitivity to drought and decreased sensitivity to ABA in primary root growth compared with the areb1 areb2 abf3 mutant. Genome-wide transcriptome analyses revealed that expression of downstream genes of SRK2D/E/I, which include many genes functioning in osmotic stress responses and tolerance such as transcription factors and LEA proteins, was mostly impaired in the quadruple mutant. Thus, these results indicate that the four AREB/ABFs are the predominant transcription factors downstream of SRK2D/E/I in ABA signalling in response to osmotic stress during vegetative growth.

  10. The pepper oxidoreductase CaOXR1 interacts with the transcription factor CaRAV1 and is required for salt and osmotic stress tolerance.

    PubMed

    Lee, Sung Chul; Choi, Du Seok; Hwang, In Sun; Hwang, Byung Kook

    2010-07-01

    RAV1 (Related to ABI3/VP1) proteins function as a transcription factor in signal transduction pathways in plants. The yeast-two-hybrid and in vivo coimmunoprecipitation assays identified the pepper (Capsicum annuum) oxidoreductase protein CaOXR1 that physically interacts with the pepper CaRAV1 transcription factor. The AP2 domain of CaRAV1 protein is essential for its direct interaction with CaOXR1. Both CaRAV1 and CaOXR1 proteins co-localize to the nuclei of plant cells. Virus-induced gene silencing of CaRAV1 and CaRAV1/CAOXR1 confers enhanced susceptibility to high salinity and osmotic stresses, which is accompanied by altered expression of the stress marker genes in pepper. Expression of CaAMP1 (pepper antimicrobial protein) and CaOSM1 (pepper osmotin) is suppressed by 1.2-6.6-fold in silenced leaves upon treatment with NaCl or mannitol. Overexpression of CaRAV1, CaOXR1 and CaOXR1/CaRAV1 in Arabidopsis also confers enhanced resistance to the biotrophic oomycete Hyaloperonospora arabidopsidis infection. In addition, CaRAV1- and CaOXR1/CaRAV1-overexpression (OX) Arabidopsis plants are highly tolerant to high salinity and osmotic stress. Together, these results suggest that CaOXR1 protein positively controls CaRAV1-mediated plant defense during biotic and abiotic stresses.

  11. Characterization of the proteostasis roles of glycerol accumulation, protein degradation and protein synthesis during osmotic stress in C. elegans.

    PubMed

    Burkewitz, Kristopher; Choe, Keith P; Lee, Elaine Choung-Hee; Deonarine, Andrew; Strange, Kevin

    2012-01-01

    Exposure of C. elegans to hypertonic stress-induced water loss causes rapid and widespread cellular protein damage. Survival in hypertonic environments depends critically on the ability of worm cells to detect and degrade misfolded and aggregated proteins. Acclimation of C. elegans to mild hypertonic stress suppresses protein damage and increases survival under more extreme hypertonic conditions. Suppression of protein damage in acclimated worms could be due to 1) accumulation of the chemical chaperone glycerol, 2) upregulation of protein degradation activity, and/or 3) increases in molecular chaperoning capacity of the cell. Glycerol and other chemical chaperones are widely thought to protect proteins from hypertonicity-induced damage. However, protein damage is unaffected by gene mutations that inhibit glycerol accumulation or that cause dramatic constitutive elevation of glycerol levels. Pharmacological or RNAi inhibition of proteasome and lyosome function and measurements of cellular protein degradation activity demonstrated that upregulation of protein degradation mechanisms plays no role in acclimation. Thus, changes in molecular chaperone capacity must be responsible for suppressing protein damage in acclimated worms. Transcriptional changes in chaperone expression have not been detected in C. elegans exposed to hypertonic stress. However, acclimation to mild hypertonicity inhibits protein synthesis 50-70%, which is expected to increase chaperone availability for coping with damage to existing proteins. Consistent with this idea, we found that RNAi silencing of essential translational components or acute exposure to cycloheximide results in a 50-80% suppression of hypertonicity-induced aggregation of polyglutamine-YFP (Q35::YFP). Dietary changes that increase protein production also increase Q35::YFP aggregation 70-180%. Our results demonstrate directly for the first time that inhibition of protein translation protects extant proteins from damage brought

  12. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents

    PubMed Central

    Eisenmann, Eric D.; Rorabaugh, Boyd R.; Zoladz, Phillip R.

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia–reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions. PMID:27199778

  13. Role of Osmotic Adjustment in Plant Productivity

    SciTech Connect

    Gebre, G.M.

    2001-01-11

    clones (P. trichocurpa Torr. & Gray x P: deltoides Bartr., TD and P. deltoides x P. nigra L., DN), we determined the TD clone, which was more productive during the first three years, had slightly lower osmotic potential than the DN clone, and also indicated a small osmotic adjustment compared with the DN hybrid. However, the productivity differences were negligible by the fifth growing season. In a separate study with several P. deltoides clones, we did not observe a consistent relationship between growth and osmotic adjustment. Some clones that had low osmotic potential and osmotic adjustment were as productive as another clone that had high osmotic potential. The least productive clone also had low osmotic potential and osmotic adjustment. The absence of a correlation may have been partly due to the fact that all clones were capable of osmotic adjustment and had low osmotic potential. In a study involving an inbred three-generation TD F{sub 2} pedigree (family 331), we did not observe a correlation between relative growth rate and osmotic potential or osmotic adjustment. However, when clones that exhibited osmotic adjustment were analyzed, there was a negative correlation between growth and osmotic potential, indicating clones with lower osmotic potential were more productive. This was observed only in clones that were exposed to drought. Although the absolute osmotic potential varied by growing environment, the relative ranking among progenies remains generally the same, suggesting that osmotic potential is genetically controlled. We have identified a quantitative trait locus for osmotic potential in another three-generation TD F{sub 2} pedigree (family 822). Unlike the many studies in agricultural crops, most of the forest tree studies were not based on plants exposed to severe stress to determine the role of osmotic adjustment. Future studies should consider using clones that are known to be productive but have contrasting osmotic adjustment capability as well as

  14. GsCML27, a Gene Encoding a Calcium-Binding Ef-Hand Protein from Glycine soja, Plays Differential Roles in Plant Responses to Bicarbonate, Salt and Osmotic Stresses.

    PubMed

    Chen, Chao; Sun, Xiaoli; Duanmu, Huizi; Zhu, Dan; Yu, Yang; Cao, Lei; Liu, Ailin; Jia, Bowei; Xiao, Jialei; Zhu, Yanming

    2015-01-01

    Calcium, as the most widely accepted messenger, plays an important role in plant stress responses through calcium-dependent signaling pathways. The calmodulin-like family genes (CMLs) encode Ca2+ sensors and function in signaling transduction in response to environmental stimuli. However, until now, the function of plant CML proteins, especially soybean CMLs, is largely unknown. Here, we isolated a Glycine soja CML protein GsCML27, with four conserved EF-hands domains, and identified it as a calcium-binding protein through far-UV CD spectroscopy. We further found that expression of GsCML27 was induced by bicarbonate, salt and osmotic stresses. Interestingly, ectopic expression of GsCML27 in Arabidopsis enhanced plant tolerance to bicarbonate stress, but decreased the salt and osmotic tolerance during the seed germination and early growth stages. Furthermore, we found that ectopic expression of GsCML27 decreases salt tolerance through modifying both the cellular ionic (Na+, K+) content and the osmotic stress regulation. GsCML27 ectopic expression also decreased the expression levels of osmotic stress-responsive genes. Moreover, we also showed that GsCML27 localized in the whole cell, including cytoplasm, plasma membrane and nucleus in Arabidopsis protoplasts and onion epidermal cells, and displayed high expression in roots and embryos. Together, these data present evidence that GsCML27 as a Ca2+-binding EF-hand protein plays a role in plant responses to bicarbonate, salt and osmotic stresses.

  15. GsCML27, a Gene Encoding a Calcium-Binding Ef-Hand Protein from Glycine soja, Plays Differential Roles in Plant Responses to Bicarbonate, Salt and Osmotic Stresses

    PubMed Central

    Chen, Chao; Sun, Xiaoli; Duanmu, Huizi; Zhu, Dan; Yu, Yang; Cao, Lei; Liu, Ailin; Jia, Bowei; Xiao, Jialei; Zhu, Yanming

    2015-01-01

    Calcium, as the most widely accepted messenger, plays an important role in plant stress responses through calcium-dependent signaling pathways. The calmodulin-like family genes (CMLs) encode Ca2+ sensors and function in signaling transduction in response to environmental stimuli. However, until now, the function of plant CML proteins, especially soybean CMLs, is largely unknown. Here, we isolated a Glycine soja CML protein GsCML27, with four conserved EF-hands domains, and identified it as a calcium-binding protein through far-UV CD spectroscopy. We further found that expression of GsCML27 was induced by bicarbonate, salt and osmotic stresses. Interestingly, ectopic expression of GsCML27 in Arabidopsis enhanced plant tolerance to bicarbonate stress, but decreased the salt and osmotic tolerance during the seed germination and early growth stages. Furthermore, we found that ectopic expression of GsCML27 decreases salt tolerance through modifying both the cellular ionic (Na+, K+) content and the osmotic stress regulation. GsCML27 ectopic expression also decreased the expression levels of osmotic stress-responsive genes. Moreover, we also showed that GsCML27 localized in the whole cell, including cytoplasm, plasma membrane and nucleus in Arabidopsis protoplasts and onion epidermal cells, and displayed high expression in roots and embryos. Together, these data present evidence that GsCML27 as a Ca2+-binding EF-hand protein plays a role in plant responses to bicarbonate, salt and osmotic stresses. PMID:26550992

  16. Benthic cyanobacterial mats in the high arctic: multi-layer structure and fluorescence responses to osmotic stress.

    PubMed

    Lionard, Marie; Péquin, Bérangère; Lovejoy, Connie; Vincent, Warwick F

    2012-01-01

    Cyanobacterial mats are often a major biological component of extreme aquatic ecosystems, and in polar lakes and streams they may account for the dominant fraction of total ecosystem biomass and productivity. In this study we examined the vertical structure and physiology of Arctic microbial mats relative to the question of how these communities may respond to ongoing environmental change. The mats were sampled from Ward Hunt Lake (83°5.297'N, 74°9.985'W) at the northern coast of Arctic Canada, and were composed of three visibly distinct layers. Microsensor profiling showed that there were strong gradients in oxygen within each layer, with an overall decrease from 100% saturation at the mat surface to 0%, at the bottom, accompanied by an increase of 0.6 pH units down the profile. Gene clone libraries (16S rRNA) revealed the presence of Oscillatorian sequences throughout the mat, while Nostoc related species dominated the two upper layers, and Nostocales and Synechococcales sequences were common in the bottom layer. High performance liquid chromatography analyses showed a parallel gradient in pigments, from high concentrations of UV-screening scytonemin in the upper layer to increasing zeaxanthin and myxoxanthin in the bottom layer, and an overall shift from photoprotective to photosynthetic carotenoids down the profile. Climate change is likely to be accompanied by lake level fluctuations and evaporative concentration of salts, and thus increased osmotic stress of the littoral mat communities. To assess the cellular capacity to tolerate increasing osmolarity on physiology and cell membrane integrity, mat sections were exposed to a gradient of increasing salinities, and PAM measurements of in vivo chlorophyll fluorescence were made to assess changes in maximum quantum yield. The results showed that the mats were tolerant of up to a 46-fold increase in salinity. These features imply that cyanobacterial mats are resilient to ongoing climate change, and that in the

  17. The effects of acute and chronic stress on diabetes control.

    PubMed

    Marcovecchio, M Loredana; Chiarelli, Francesco

    2012-10-23

    Stress is an important contributor to pathological conditions in humans. Hormonal changes that occur during acute and chronic stress situations can affect glucose homeostasis in both healthy people and in those with diabetes. Several studies have reported a negative effect of acute stress on maintenance of blood glucose concentrations in patients with type 1 and type 2 diabetes. The effect of stress on glycemic control in people with diabetes may be related to a direct effect of stress hormones on blood glucose levels and an indirect effect of stress on patient behaviors related to diabetes treatment and monitoring and meal and exercise plans. In contrast, there is no clear evidence that stressful life events promote the development of diabetes in children or in adults. Stress hyperglycemia, the development of hyperglycemia during acute illness, represents another interesting connection between the stress system and glucose homeostasis. A large body of evidence supports an association between stress hyperglycemia and increased morbidity and mortality in critically ill patients. Interestingly, there is some evidence supporting a beneficial effect of insulin in reducing morbidity and mortality in patients admitted to intensive care units. Finally, stress can influence the development of type 2 diabetes indirectly by promoting obesity and metabolic syndrome. PMID:23092890

  18. Validation of reference genes for accurate normalization of gene expression for real time-quantitative PCR in strawberry fruits using different cultivars and osmotic stresses.

    PubMed

    Galli, Vanessa; Borowski, Joyce Moura; Perin, Ellen Cristina; Messias, Rafael da Silva; Labonde, Julia; Pereira, Ivan dos Santos; Silva, Sérgio Delmar Dos Anjos; Rombaldi, Cesar Valmor

    2015-01-10

    The increasing demand of strawberry (Fragaria×ananassa Duch) fruits is associated mainly with their sensorial characteristics and the content of antioxidant compounds. Nevertheless, the strawberry production has been hampered due to its sensitivity to abiotic stresses. Therefore, to understand the molecular mechanisms highlighting stress response is of great importance to enable genetic engineering approaches aiming to improve strawberry tolerance. However, the study of expression of genes in strawberry requires the use of suitable reference genes. In the present study, seven traditional and novel candidate reference genes were evaluated for transcript normalization in fruits of ten strawberry cultivars and two abiotic stresses, using RefFinder, which integrates the four major currently available software programs: geNorm, NormFinder, BestKeeper and the comparative delta-Ct method. The results indicate that the expression stability is dependent on the experimental conditions. The candidate reference gene DBP (DNA binding protein) was considered the most suitable to normalize expression data in samples of strawberry cultivars and under drought stress condition, and the candidate reference gene HISTH4 (histone H4) was the most stable under osmotic stresses and salt stress. The traditional genes GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and 18S (18S ribosomal RNA) were considered the most unstable genes in all conditions. The expression of phenylalanine ammonia lyase (PAL) and 9-cis epoxycarotenoid dioxygenase (NCED1) genes were used to further confirm the validated candidate reference genes, showing that the use of an inappropriate reference gene may induce erroneous results. This study is the first survey on the stability of reference genes in strawberry cultivars and osmotic stresses and provides guidelines to obtain more accurate RT-qPCR results for future breeding efforts.

  19. Group 5 LEA protein, ZmLEA5C, enhance tolerance to osmotic and low temperature stresses in transgenic tobacco and yeast.

    PubMed

    Liu, Yang; Wang, Li; Jiang, Shanshan; Pan, Jiaowen; Cai, Guohua; Li, Dequan

    2014-11-01

    Group 5 LEA (Late Embryogenesis Abundant) proteins contain a significantly higher proportion of hydrophobic residues but lack significant signature motifs or consensus sequences. This group is considered as an atypical group of LEA proteins. Up to now, there is little known about group 5C LEA proteins in maize. Here, we identified a novel group 5C LEA protein from maize. The accumulation of transcripts demonstrated that ZmLEA5C displayed similar induced characteristics in leaves and roots. Transcription of ZmLEA5C could be induced by low temperature, osmotic and oxidative stress and some signaling molecules, such as abscisic acid (ABA), salicylic acid (SA) and methyl jasmonate (MeJA). However, transcription of ZmLEA5C was significantly inhibited by high salinity. Further study indicated that the ZmLEA5C protein could be phosphorylated by the protein kinase CKII. ZmLEA5C could protect the activity of LDH under water deficit and low temperature stresses. Overexpression of ZmLEA5C conferred to transgenic tobacco (Nicotiana benthamiana) and yeast (GS115) tolerance to osmotic and low temperature stresses. PMID:25240107

  20. Involvement of a putative response regulator Brrg-1 in the regulation of sporulation, sensitivity to fungicides, and osmotic stress in Botrytis cinerea.

    PubMed

    Yan, Leiyan; Yang, Qianqian; Jiang, Jinhua; Michailides, Themis J; Ma, Zhonghua

    2011-04-01

    The response regulator protein is a core element of two-component signaling pathway. In this study, we investigated functions of BRRG-1 of Botrytis cinerea, a gene that encodes a putative response regulator protein, which is homologous to Rrg-1 in Neurospora crassa. The BRRG-1 gene deletion mutant ΔBrrg1-62 was unable to produce conidia. The mutant showed increased sensitivity to osmotic stress mediated by NaCl and KCl, and to oxidative stress generated by H(2)O(2). Additionally, the mutant was more sensitive to the fungicides iprodione, fludioxonil, and triadimefon than the parental strain. Western-blot analysis showed that the Bos-2 protein, the putative downstream component of Brrg-1, was not phosphorylated in the ΔBrrg1-62. Real-time polymerase chain reaction assays showed that expression of BOS-2 also decreased significantly in the mutant. All of the defects were restored by genetic complementation of the ΔBrrg1-62 with the wild-type BRRG-1 gene. Plant inoculation tests showed that the mutant did not show changes in pathogenicity on rapeseed leaves. These results indicated that Brrg-1 is involved in the regulation of asexual development, sensitivity to iprodione, fludioxonil, and triadimefon fungicides, and adaptation to osmotic and oxidative stresses in B. cinerea.

  1. Group 5 LEA protein, ZmLEA5C, enhance tolerance to osmotic and low temperature stresses in transgenic tobacco and yeast.

    PubMed

    Liu, Yang; Wang, Li; Jiang, Shanshan; Pan, Jiaowen; Cai, Guohua; Li, Dequan

    2014-11-01

    Group 5 LEA (Late Embryogenesis Abundant) proteins contain a significantly higher proportion of hydrophobic residues but lack significant signature motifs or consensus sequences. This group is considered as an atypical group of LEA proteins. Up to now, there is little known about group 5C LEA proteins in maize. Here, we identified a novel group 5C LEA protein from maize. The accumulation of transcripts demonstrated that ZmLEA5C displayed similar induced characteristics in leaves and roots. Transcription of ZmLEA5C could be induced by low temperature, osmotic and oxidative stress and some signaling molecules, such as abscisic acid (ABA), salicylic acid (SA) and methyl jasmonate (MeJA). However, transcription of ZmLEA5C was significantly inhibited by high salinity. Further study indicated that the ZmLEA5C protein could be phosphorylated by the protein kinase CKII. ZmLEA5C could protect the activity of LDH under water deficit and low temperature stresses. Overexpression of ZmLEA5C conferred to transgenic tobacco (Nicotiana benthamiana) and yeast (GS115) tolerance to osmotic and low temperature stresses.

  2. The expression of thioredoxin-1 in acute epinephrine stressed mice.

    PubMed

    Jia, Jin-Jing; Zeng, Xian-Si; Li, Kun; Ma, Li-Fang; Chen, Lei; Song, Xin-Qiang

    2016-09-01

    Stress, a state of perceived threat to homeostasis, regulates a panel of important physiological functions. The human mind and body respond to stress by activating the sympathetic nervous system and secreting the catecholamines epinephrine and norepinephrine in the "fight-or-flight" response. However, the protective mechanism of acute stress is still unknown. In the present study, an acute stress mouse model was constructed by intraperitoneal injection of epinephrine (0.2 mg kg(-1)) for 4 h. Epinephrine treatment induced heat shock 70(Hsp70) expression in the stress responsive tissues, such as the cortex, hippocampus, thymus, and kidney. Further, the expression of thioredoxin-1(Trx-1), a cytoprotective protein, was also upregulated in these stress responsive tissues. In addition, the phosphorylation of cAMP-response element binding protein (CREB), a transcription factor of Trx-1, was increased after treatment with epinephrine. The block of CREB activation by H89 inhibited the acute epinephrine stress-induced Trx-1 and Hsp70 expression. Taken together, our data suggest that acute stimuli of epinephrine induced Trx-1 expression through activating CREB and may represent a protective role against stress. PMID:27511023

  3. Claudin 28b and F-actin are involved in rainbow trout gill pavement cell tight junction remodeling under osmotic stress.

    PubMed

    Sandbichler, Adolf Michael; Egg, Margit; Schwerte, Thorsten; Pelster, Bernd

    2011-05-01

    Permeability of rainbow trout gill pavement cells cultured on permeable supports (single seeded inserts) changes upon exposure to freshwater or treatment with cortisol. The molecular components of this change are largely unknown, but tight junctions that regulate the paracellular pathway are prime candidates in this adaptational process. Using differential display polymerase chain reaction we found a set of 17 differentially regulated genes in trout pavement cells that had been exposed to freshwater apically for 24 h. Five genes were related to the cell-cell contact. One of these genes was isolated and identified as encoding claudin 28b, an integral component of the tight junction. Immunohistochemical reactivity to claudin 28b protein was concentrated in a circumferential ring colocalized to the cortical F-actin ring. To study the contribution of this isoform to changes in transepithelial resistance and Phenol Red diffusion under apical hypo-or hyperosmotic exposure we quantified the fluorescence signal of this claudin isoform in immunohistochemical stainings together with the fluorescence of phalloidin-probed F-actin. Upon hypo-osmotic stress claudin 28b fluorescence and epithelial tightness remained stable. Under hyperosmotic stress, the presence of claudin 28b at the junction significantly decreased, and epithelial tightness was severely reduced. Cortical F-actin fluorescence increased upon hypo-osmotic stress, whereas hyperosmotic stress led to a separation of cortical F-actin rings and the number of apical crypt-like pores increased. Addition of cortisol to the basolateral medium attenuated cortical F-actin separation and pore formation during hyperosmotic stress and reduced claudin 28b in junctions except after recovery of cells from exposure to freshwater. Our results showed that short-term salinity stress response in cultured trout gill cells was dependent on a dynamic remodeling of tight junctions, which involves claudin 28b and the supporting F-actin ring.

  4. Biogenic amines and acute thermal stress in the rat

    NASA Technical Reports Server (NTRS)

    Williams, B. A.; Moberg, G. P.

    1975-01-01

    A study is summarized which demonstrates that depletion of the biogenic amines 5-hydroxytryptamine (5-HT) or norepinephrine (NE) alters the normal thermoregulatory responses to acute temperature stress. Specifically, NE depletion caused a significant depression in equilibrium rectal temperature at 22 C and a greater depression in rectal temperature than controls in response to cold (6 C) stress; NE depletion also resulted in a significantly higher rectal temperature response to acute heat (38 C) stress. Depletion of 5-HT had less severe effects. It remains unclear whether the primary site of action of these agents is central or peripheral.

  5. Thiamine increases the resistance of baker's yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes.

    PubMed

    Wolak, Natalia; Kowalska, Ewa; Kozik, Andrzej; Rapala-Kozik, Maria

    2014-12-01

    Numerous recent studies have established a hypothesis that thiamine (vitamin B1 ) is involved in the responses of different organisms against stress, also suggesting that underlying mechanisms are not limited to the universal role of thiamine diphosphate (TDP) in the central cellular metabolism. The current work aimed at characterising the effect of exogenously added thiamine on the response of baker's yeast Saccharomyces cerevisiae to the oxidative (1 mM H2 O2 ), osmotic (1 M sorbitol) and thermal (42 °C) stress. As compared to the yeast culture in thiamine-free medium, in the presence of 1.4 μM external thiamine, (1) the relative mRNA levels of major TDP-dependent enzymes under stress conditions vs. unstressed control (the 'stress/control ratio') were moderately lower, (2) the stress/control ratio was strongly decreased for the transcript levels of several stress markers localised to the cytoplasm, peroxisomes, the cell wall and (with the strongest effect observed) the mitochondria (e.g. Mn-superoxide dismutase), (3) the production of reactive oxygen and nitrogen species under stress conditions was markedly decreased, with the significant alleviation of concomitant protein oxidation. The results obtained suggest the involvement of thiamine in the maintenance of redox balance in yeast cells under oxidative stress conditions, partly independent of the functions of TDP-dependent enzymes.

  6. GlnR-Mediated Regulation of ectABCD Transcription Expands the Role of the GlnR Regulon to Osmotic Stress Management

    PubMed Central

    Shao, ZhiHui; Deng, WanXin; Li, ShiYuan; He, JuanMei; Ren, ShuangXi; Huang, WeiRen; Lu, YinHua; Zhao, GuoPing

    2015-01-01

    ABSTRACT Ectoine and hydroxyectoine are excellent compatible solutes for bacteria to deal with environmental osmotic stress and temperature damages. The biosynthesis cluster of ectoine and hydroxyectoine is widespread among microorganisms, and its expression is activated by high salinity and temperature changes. So far, little is known about the mechanism of the regulation of the transcription of ect genes and only two MarR family regulators (EctR1 in methylobacteria and the EctR1-related regulator CosR in Vibrio cholerae) have been found to negatively regulate the expression of ect genes. Here, we characterize GlnR, the global regulator for nitrogen metabolism in actinomycetes, as a negative regulator for the transcription of ectoine/hydroxyectoine biosynthetic genes (ect operon) in Streptomyces coelicolor. The physiological role of this transcriptional repression by GlnR is proposed to protect the intracellular glutamate pool, which acts as a key nitrogen donor for both the nitrogen metabolism and the ectoine/hydroxyectoine biosynthesis. IMPORTANCE High salinity is deleterious, and cells must evolve sophisticated mechanisms to cope with this osmotic stress. Although production of ectoine and hydroxyectoine is one of the most frequently adopted strategies, the in-depth mechanism of regulation of their biosynthesis is less understood. So far, only two MarR family negative regulators, EctR1 and CosR, have been identified in methylobacteria and Vibrio, respectively. Here, our work demonstrates that GlnR, the global regulator for nitrogen metabolism, is a negative transcriptional regulator for ect genes in Streptomyces coelicolor. Moreover, a close relationship is found between nitrogen metabolism and osmotic resistance, and GlnR-mediated regulation of ect transcription is proposed to protect the intracellular glutamate pool. Meanwhile, the work reveals the multiple roles of GlnR in bacterial physiology. PMID:26170409

  7. Different effects of tianeptine pretreatment in rats exposed to acute stress and repeated severe stress.

    PubMed

    Kasar, M; Mengi, M; Yildirim, E A; Yurdakos, E

    2009-04-01

    In this study we aim to discuss the relationship between stress and learning and emotionality in an experimental model using two different stress conditions: acute stress (single restraint stress for 20 min) and repeated severe stress (6-h daily restraint for 21 days). We studied the effects of tianeptine, which has been suggested to have anxiolytic and cognition-enhancing effects under stressful conditions. After acute stress, the increase in the duration of immobility (F = 5.753 and 3.664) in the open field and holeboard tests and the decrease in rearing (F = 3.891) in the holeboard test were significant when compared to controls (P < 0.05). Results for repeated severe stress showed that in both the open field and holeboard tests the decrease in rearing (F = 4.494 and 4.530, respectively), increase in the duration of immobility (F = 6.069 and 4.742, respectively) and decrease in head dips (F = 4.938) in the holeboard test were statistically significant (P < 0.05). The group pretreated with tianeptine showed no significant difference from controls for either acute or repeated severe stress conditions. In the Morris water maze test, acute stress led to a prolongation of average escape latency, which indicated a spatial learning deficit. Treatment with tianeptine prior to acute stress prevented this spatial deficit. Repeated severe stress also led to spatial learning deficits in rats, but this deficit was not prevented by treatment with tianeptine. Our study demonstrates that pretreatment with tianeptine had different effects on stress-induced spatial learning deficits under acute and repeated stress conditions, while the effects on emotionality and anxiety-like behavior were similar. The mechanisms implicated in stress-induced emotional and memory deficits will be discussed.

  8. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress

    PubMed Central

    YOSHIDA, TAKUYA; FUJITA, YASUNARI; MARUYAMA, KYONOSHIN; MOGAMI, JUNRO; TODAKA, DAISUKE; SHINOZAKI, KAZUO; YAMAGUCHI-SHINOZAKI, KAZUKO

    2015-01-01

    Under osmotic stress conditions such as drought and high salinity, the plant hormone abscisic acid (ABA) plays important roles in stress-responsive gene expression mainly through three bZIP transcription factors, AREB1/ABF2, AREB2/ABF4 and ABF3, which are activated by SNF1-related kinase 2s (SnRK2s) such as SRK2D/SnRK2.2, SRK2E/SnRK2.6 and SRK2I/SnRK2.3 (SRK2D/E/I). However, since the three AREB/ABFs are crucial, but not exclusive, for the SnRK2-mediated gene expression, transcriptional pathways governed by SRK2D/E/I are not fully understood. Here, we show that a bZIP transcription factor, ABF1, is a functional homolog of AREB1, AREB2 and ABF3 in ABA-dependent gene expression in Arabidopsis. Despite lower expression levels of ABF1 than those of the three AREB/ABFs, the areb1 areb2 abf3 abf1 mutant plants displayed increased sensitivity to drought and decreased sensitivity to ABA in primary root growth compared with the areb1 areb2 abf3 mutant. Genome-wide transcriptome analyses revealed that expression of downstream genes of SRK2D/E/I, which include many genes functioning in osmotic stress responses and tolerance such as transcription factors and LEA proteins, was mostly impaired in the quadruple mutant. Thus, these results indicate that the four AREB/ABFs are the predominant transcription factors downstream of SRK2D/E/I in ABA signalling in response to osmotic stress during vegetative growth. Abscisic acid (ABA) plays important roles in osmotic stress-responsive gene expression mainly through three bZIP transcription factors, AREB1, AREB2, and ABF3, which are activated by SnRK2s such as SRK2D, SRK2E, and SRK2I (SRK2D/E/I). However, transcription factors other than the three AREB/ABFs that function downstream of SRK2D/E/I remain obscure. Here, we report that ABF1 is a functional homolog of AREB1, AREB2, and ABF3 in ABA-dependent gene expression from a comparative analysis between the areb1 areb2 abf3 abf1 and areb1 areb2 abf3 mutants. Moreover, genome

  9. Effect of acid stress on sodium transport by isolated skins and on osmotic permeability of intact frogs

    SciTech Connect

    Fromm, P.O.

    1981-08-01

    The experiments reported here were designed to determine the effects of increased external hydrogen ion concentrations on the ion transport capability of isolated frog skins measured as short-circuit current and to determine the nature of the interaction of hydrogen ions to sodium transport. Results from a study of the effects of acid exposure on the osmotic permeability of intact frogs are also reported.

  10. Isolation and Functional Validation of Salinity and Osmotic Stress Inducible Promoter from the Maize Type-II H+-Pyrophosphatase Gene by Deletion Analysis in Transgenic Tobacco Plants

    PubMed Central

    Zhang, Ke; He, Qiuxia; Xu, Changzheng; Ding, Zhaohua; Zhang, Kewei; Li, Kunpeng

    2016-01-01

    Salinity and drought severely affect both plant growth and productivity, making the isolation and characterization of salinity- or drought-inducible promoters suitable for genetic improvement of crop resistance highly desirable. In this study, a 1468-bp sequence upstream of the translation initiation codon ATG of the promoter for ZmGAPP (maize Type-II H+-pyrophosphatase gene) was cloned. Nine 5´ deletion fragments (D1–D9) of different lengths of the ZmGAPP promoter were fused with the GUS reporter and translocated into tobacco. The deletion analysis showed that fragments D1–D8 responded well to NaCl and PEG stresses, whereas fragment D9 and CaMV 35S did not. The D8 segment (219 bp; -219 to -1 bp) exhibited the highest promoter activity of all tissues, with the exception of petals among the D1–D9 transgenic tobacco, which corresponds to about 10% and 25% of CaMV 35S under normal and NaCl or PEG stress conditions, respectively. As such, the D8 segment may confer strong gene expression in a salinity and osmotic stress inducible manner. A 71-bp segment (-219 to -148 bp) was considered as the key region regulating ZmGAPP response to NaCl or PEG stress, as transient transformation assays demonstrated that the 71-bp sequence was sufficient for the salinity or osmotic stress response. These results enhance our understanding of the molecular mechanisms regulating ZmGAPP expression, and that the D8 promoter would be an ideal candidate for moderating expression of drought and salinity response genes in transgenic plants. PMID:27101137

  11. Inhibitory effects of hypo-osmotic stress on extracellular carbonic anhydrase and photosynthetic efficiency of green alga Dunaliella salina possibly through reactive oxygen species formation.

    PubMed

    Liu, Wenhua; Ming, Yao; Li, Ping; Huang, Zhongwen

    2012-05-01

    In this study, Dunaliella salina (D. salina) maintained in 30‰ salinity for more than two years was exposed to the salinities of 5‰, 10‰, 20‰, 30‰ (control) in order to investigate oxidative burst and it's possible connection with extracellular carbonic anhydrase (CA) under hypo-osmotic stress (low salinity). The results indicated that intracellular ROS contents increased significantly when cells were exposed to salinity of 5 and 10‰, and the increase also occurred at 20‰ salinity. The activity of extracellular CA and its gene (P60) expression decreased significantly when cells were exposed to salinity of 5-20‰. Data from H₂O₂ treatments hinted that ROS production was possibly one of the factors affecting CA, including enzyme activity and gene expression levels. Significant inhibition of effective quantum efficiency of PSII and photosynthetic oxygen evolution rate were observed with the increase of ROS production and decline of CA activities. Taken together, hypo-osmotic stresses could induce ROS production in D. salina, and CA enzyme activities and expression levels were consequently inhibited. As a result, algal photosynthesis and oxygen evolution were inhibited.

  12. Expression of a putative alfalfa helicase increases tolerance to abiotic stress in Arabidopsis by enhancing the capacities for ROS scavenging and osmotic adjustment.

    PubMed

    Luo, Yan; Liu, Yu Bo; Dong, Yu Xiu; Gao, Xin-Qi; Zhang, Xian Sheng

    2009-03-01

    Plant helicases are known to be involved in salinity and low-temperature tolerance. However, a functional involvement of helicases in the antioxidative response of plants has not been described. We have isolated a DEAD-box-containing cDNA sequence from Medicago sativa (alfalfa) that is a homolog of the pea DNA helicase 45 (PDH45) and named it M. sativa helicase 1 (MH1). Transient transfection of 35S::MH1-GFP to onion epidermis revealed that MH1 was localized in the nucleus. Expression of MH1 was detected in roots, stems and leaves of alfalfa. Furthermore, real-time PCR analysis revealed that mannitol, NaCl, methyl viologen and abscisic acid induced the expression of MH1. The ectopic expression of MH1 in Arabidopsis improved seed germination and plant growth under drought, salt and oxidative stress. The capacity for osmotic adjustment, superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities and proline content were also elevated in the transgenic Arabidopsis plants. Our results suggest that MH1 responds to reactive oxygen species (ROS) and functions in drought and salt stress tolerance by enhancing the capacities for ROS scavenging and osmotic adjustment.

  13. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation.

    PubMed

    Ji, Xiaoyu; Nie, Xianguang; Liu, Yujia; Zheng, Lei; Zhao, Huimin; Zhang, Bing; Huo, Lin; Wang, Yucheng

    2016-02-01

    Basic helix-loop-helix (bHLH) leucine-zipper transcription factors play important roles in abiotic stress responses. However, their specific roles in abiotic stress tolerance are not fully known. Here, we functionally characterized a bHLH gene, ThbHLH1, from Tamarix hispida in abiotic stress tolerance. ThbHLH1 specifically binds to G-box motif with the sequence of 'CACGTG'. Transiently transfected T. hispida plantlets with transiently overexpressed ThbHLH1 and RNAi-silenced ThbHLH1 were generated for gain- and loss-of-function analysis. Transgenic Arabidopsis thaliana lines overexpressing ThbHLH1 were generated to confirm the gain- and loss-of-function analysis. Overexpression of ThbHLH1 significantly elevates glycine betaine and proline levels, increases Ca(2+) concentration and enhances peroxidase (POD) and superoxide dismutase (SOD) activities to decrease reactive oxygen species (ROS) accumulation. Additionally, ThbHLH1 regulates the expression of the genes including P5CS, BADH, CaM, POD and SOD, to activate the above physiological changes, and also induces the expression of stress tolerance-related genes LEAs and HSPs. These data suggest that ThbHLH1 induces the expression of stress tolerance-related genes to improve abiotic stress tolerance by increasing osmotic potential, improving ROS scavenging capability and enhancing second messenger in stress signaling cascades. PMID:26786541

  14. Parallel effects of freezing and osmotic stress on the ATPase activity and protein composition of the plasma membrane of winter rye seedlings

    SciTech Connect

    Uemura, Matsuo; Steponkus, P.L. )

    1989-11-01

    The objective of this study was to determine the influence of freezing versus hypertonic stress on the ATPase activity and polypeptide profile of the plasma membrane of nonacclimated winter rye leaves (Secale cereale L. cv Puma). Exposure of leaves to hypertonic sorbitol solutions resulted in a similar extent of injury as did freezing to subzero temperatures that resulted in equivalent osmotic stresses. When isolated with a two-phase partition system of aqueous polymers, the plasma membrane fractions of control, frozen, or hypertonically stressed leaves were of similar purity as judged by the distribution of marker enzyme activities. When assayed in the presence of Triton X-100 (0.05% w/w), ATPase activity was decreased only slightly in plasma membrane fractions isolated from either frozen or hypertonically stressed leaves. In contrast, the specific ATPase activity of the plasma membrane fractions assayed in the absence of Triton X-100 increased following freezing or hypertonic stress. As a result, the Triton X-100 stimulation of the ATPase activity decreased significantly from sixfold in control leaves to threefold in lethally stressed leaves and reflects an increase in the permeability of the plasma membrane vesicles. The increased permeability was also manifested as a decrease in H{sup +}-transport following exposure to freezing or hypertonic stress. Both freezing and hypertonic exposure at subzero temperatures altered the polypeptide profile of the plasma membrane, but with the exception of one polypeptide, there was no difference between the two treatments.

  15. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation.

    PubMed

    Ji, Xiaoyu; Nie, Xianguang; Liu, Yujia; Zheng, Lei; Zhao, Huimin; Zhang, Bing; Huo, Lin; Wang, Yucheng

    2016-02-01

    Basic helix-loop-helix (bHLH) leucine-zipper transcription factors play important roles in abiotic stress responses. However, their specific roles in abiotic stress tolerance are not fully known. Here, we functionally characterized a bHLH gene, ThbHLH1, from Tamarix hispida in abiotic stress tolerance. ThbHLH1 specifically binds to G-box motif with the sequence of 'CACGTG'. Transiently transfected T. hispida plantlets with transiently overexpressed ThbHLH1 and RNAi-silenced ThbHLH1 were generated for gain- and loss-of-function analysis. Transgenic Arabidopsis thaliana lines overexpressing ThbHLH1 were generated to confirm the gain- and loss-of-function analysis. Overexpression of ThbHLH1 significantly elevates glycine betaine and proline levels, increases Ca(2+) concentration and enhances peroxidase (POD) and superoxide dismutase (SOD) activities to decrease reactive oxygen species (ROS) accumulation. Additionally, ThbHLH1 regulates the expression of the genes including P5CS, BADH, CaM, POD and SOD, to activate the above physiological changes, and also induces the expression of stress tolerance-related genes LEAs and HSPs. These data suggest that ThbHLH1 induces the expression of stress tolerance-related genes to improve abiotic stress tolerance by increasing osmotic potential, improving ROS scavenging capability and enhancing second messenger in stress signaling cascades.

  16. Acute stress impairs set-shifting but not reversal learning.

    PubMed

    Butts, K A; Floresco, S B; Phillips, A G

    2013-09-01

    The ability to update and modify previously learned behavioral responses in a changing environment is essential for successful utilization of promising opportunities and for coping with adverse events. Valid models of cognitive flexibility that contribute to behavioral flexibility include set-shifting and reversal learning. One immediate effect of acute stress is the selective impairment of performance on higher-order cognitive control tasks mediated by the medial prefrontal cortex (mPFC) but not the hippocampus. Previous studies show that the mPFC is required for set-shifting but not for reversal learning, therefore the aim of the present experiment is to assess whether exposure to acute stress (15 min of mild tail-pinch stress) given immediately before testing on either a set-shifting or reversal learning tasks would impair performance selectively on the set-shifting task. An automated operant chamber-based task, confirmed that exposure to acute stress significantly disrupts set-shifting but has no effect on reversal learning. Rats exposed to an acute stressor require significantly more trials to reach criterion and make significantly more perseverative errors. Thus, these data reveal that an immediate effect of acute stress is to impair mPFC-dependent cognition selectively by disrupting the ability to inhibit the use of a previously relevant cognitive strategy.

  17. Acute stress selectively impairs learning to act.

    PubMed

    de Berker, Archy O; Tirole, Margot; Rutledge, Robb B; Cross, Gemma F; Dolan, Raymond J; Bestmann, Sven

    2016-07-20

    Stress interferes with instrumental learning. However, choice is also influenced by non-instrumental factors, most strikingly by biases arising from Pavlovian associations that facilitate action in pursuit of rewards and inaction in the face of punishment. Whether stress impacts on instrumental learning via these Pavlovian associations is unknown. Here, in a task where valence (reward or punishment) and action (go or no-go) were orthogonalised, we asked whether the impact of stress on learning was action or valence specific. We exposed 60 human participants either to stress (socially-evaluated cold pressor test) or a control condition (room temperature water). We contrasted two hypotheses: that stress would lead to a non-selective increase in the expression of Pavlovian biases; or that stress, as an aversive state, might specifically impact action production due to the Pavlovian linkage between inaction and aversive states. We found support for the second of these hypotheses. Stress specifically impaired learning to produce an action, irrespective of the valence of the outcome, an effect consistent with a Pavlovian linkage between punishment and inaction. This deficit in action-learning was also reflected in pupillary responses; stressed individuals showed attenuated pupillary responses to action, hinting at a noradrenergic contribution to impaired action-learning under stress.

  18. Acute stress selectively impairs learning to act.

    PubMed

    de Berker, Archy O; Tirole, Margot; Rutledge, Robb B; Cross, Gemma F; Dolan, Raymond J; Bestmann, Sven

    2016-01-01

    Stress interferes with instrumental learning. However, choice is also influenced by non-instrumental factors, most strikingly by biases arising from Pavlovian associations that facilitate action in pursuit of rewards and inaction in the face of punishment. Whether stress impacts on instrumental learning via these Pavlovian associations is unknown. Here, in a task where valence (reward or punishment) and action (go or no-go) were orthogonalised, we asked whether the impact of stress on learning was action or valence specific. We exposed 60 human participants either to stress (socially-evaluated cold pressor test) or a control condition (room temperature water). We contrasted two hypotheses: that stress would lead to a non-selective increase in the expression of Pavlovian biases; or that stress, as an aversive state, might specifically impact action production due to the Pavlovian linkage between inaction and aversive states. We found support for the second of these hypotheses. Stress specifically impaired learning to produce an action, irrespective of the valence of the outcome, an effect consistent with a Pavlovian linkage between punishment and inaction. This deficit in action-learning was also reflected in pupillary responses; stressed individuals showed attenuated pupillary responses to action, hinting at a noradrenergic contribution to impaired action-learning under stress. PMID:27436299

  19. Acute stress selectively impairs learning to act

    PubMed Central

    de Berker, Archy O.; Tirole, Margot; Rutledge, Robb B.; Cross, Gemma F.; Dolan, Raymond J.; Bestmann, Sven

    2016-01-01

    Stress interferes with instrumental learning. However, choice is also influenced by non-instrumental factors, most strikingly by biases arising from Pavlovian associations that facilitate action in pursuit of rewards and inaction in the face of punishment. Whether stress impacts on instrumental learning via these Pavlovian associations is unknown. Here, in a task where valence (reward or punishment) and action (go or no-go) were orthogonalised, we asked whether the impact of stress on learning was action or valence specific. We exposed 60 human participants either to stress (socially-evaluated cold pressor test) or a control condition (room temperature water). We contrasted two hypotheses: that stress would lead to a non-selective increase in the expression of Pavlovian biases; or that stress, as an aversive state, might specifically impact action production due to the Pavlovian linkage between inaction and aversive states. We found support for the second of these hypotheses. Stress specifically impaired learning to produce an action, irrespective of the valence of the outcome, an effect consistent with a Pavlovian linkage between punishment and inaction. This deficit in action-learning was also reflected in pupillary responses; stressed individuals showed attenuated pupillary responses to action, hinting at a noradrenergic contribution to impaired action-learning under stress. PMID:27436299

  20. Cannabinoids & Stress: impact of HU-210 on behavioral tests of anxiety in acutely stressed mice.

    PubMed

    Kinden, Renee; Zhang, Xia

    2015-05-01

    Anxiety disorders are one of the most prevalent classes of mental disorders affecting the general population, but current treatment strategies are restricted by their limited efficacy and side effect profiles. Although the cannabinoid system is speculated to be a key player in the modulation of stress responses and emotionality, the vast majority of current research initiatives had not incorporated stress exposure into their experimental designs. This study was the first to investigate the impact of exogenous cannabinoid administration in an acutely stressed mouse model, where CD1 mice were pre-treated with HU-210, a potent CB1R agonist, prior to acute stress exposure and subsequent behavioral testing. Exogenous cannabinoid administration induced distinct behavioral phenotypes in stressed and unstressed mice. While low doses of HU-210 were anxiolytic in unstressed subjects, this effect was abolished when mice were exposed to an acute stressor. The administration of higher HU-210 doses in combination with acute stress exposure led to severe locomotor deficits that were not previously observed at the same dose in unstressed subjects. These findings suggest that exogenous cannabinoids and acute stress act synergistically in an anxiogenic manner. This study underlies the importance of including stress exposure into future anxiety-cannabinoid research due to the differential impact of cannabinoid administration on stressed and unstressed subjects.

  1. A Vacuolar β-Glucosidase Homolog That Possesses Glucose-Conjugated Abscisic Acid Hydrolyzing Activity Plays an Important Role in Osmotic Stress Responses in Arabidopsis[W

    PubMed Central

    Xu, Zheng-Yi; Lee, Kwang Hee; Dong, Ting; Jeong, Jae Cheol; Jin, Jing Bo; Kanno, Yuri; Kim, Dae Heon; Kim, Soo Youn; Seo, Mitsunori; Bressan, Ray A.; Yun, Dae-Jin; Hwang, Inhwan

    2012-01-01

    The phytohormone abscisic acid (ABA) plays a critical role in various physiological processes, including adaptation to abiotic stresses. In Arabidopsis thaliana, ABA levels are increased both through de novo biosynthesis and via β-glucosidase homolog1 (BG1)-mediated hydrolysis of Glc-conjugated ABA (ABA-GE). However, it is not known how many different β-glucosidase proteins produce ABA from ABA-GE and how the multiple ABA production pathways are coordinated to increase ABA levels. Here, we report that a previously undiscovered β-glucosidase homolog, BG2, produced ABA by hydrolyzing ABA-GE and plays a role in osmotic stress response. BG2 localized to the vacuole as a high molecular weight complex and accumulated to high levels under dehydration stress. BG2 hydrolyzed ABA-GE to ABA in vitro. In addition, BG2 increased ABA levels in protoplasts upon application of exogenous ABA-GE. Overexpression of BG2 rescued the bg1 mutant phenotype, as observed for the overexpression of NCED3 in bg1 mutants. Multiple Arabidopsis bg2 alleles with a T-DNA insertion in BG2 were more sensitive to dehydration and NaCl stress, whereas BG2 overexpression resulted in enhanced resistance to dehydration and NaCl stress. Based on these observations, we propose that, in addition to the de novo biosynthesis, ABA is produced in multiple organelles by organelle-specific β-glucosidases in response to abiotic stresses. PMID:22582100

  2. Acute Stress Reduces Reward Responsiveness: Implications for Depression

    PubMed Central

    Bogdan, Ryan; Pizzagalli, Diego A.

    2008-01-01

    Background Stress, one of the strongest risk factors for depression, has been linked to “anhedonic” behavior and dysfunctional reward-related neural circuitry in preclinical models. Methods To test if acute stress reduces reward responsiveness (i.e., the ability to modulate behavior as a function of past reward), a signal-detection task coupled with a differential reinforcement schedule was utilized. Eighty female participants completed the task under both a stress condition, either threat-of-shock (n = 38) or negative performance feedback (n = 42), and a no-stress condition. Results Stress increased negative affect and anxiety. As hypothesized based on preclinical findings, stress, particularly the threat-of-shock condition, impaired reward responsiveness. Regression analyses indicate that self-report measures of anhedonia predicted stress-induced hedonic deficits even after controlling for anxiety symptoms. Conclusions These findings indicate that acute stress reduces reward responsiveness, particularly in individuals with anhedonic symptoms. Stress-induced hedonic deficit is a promising candidate mechanism linking stressful experiences to depression. PMID:16806107

  3. Alteration of the Physical and Chemical Structure of the Primary Cell Wall of Growth-Limited Plant Cells Adapted to Osmotic Stress 1

    PubMed Central

    Iraki, Naim M.; Bressan, Ray A.; Hasegawa, P. M.; Carpita, Nicholas C.

    1989-01-01

    Cells of tobacco (Nicotiana tabacum L.) adapted to grow in severe osmotic stress of 428 millimolar NaCl (−23 bar) or 30% polyethylene glycol 8000 (−28 bar) exhibit a drastically altered growth physiology that results in slower cell expansion and fully expanded cells with volumes only one-fifth to one-eighth those of unadapted cells. This reduced cell volume occurs despite maintenance of turgor pressures sometimes severalfold higher than those of unadapted cells. This report and others (NM Iraki et al [1989] Plant Physiol 90: 000-000 and 000-000) document physical and biochemical alterations of the cell walls which might explain how adapted cells decrease the ability of the wall to expand despite diversion of carbon used for osmotic adjustment away from synthesis of cell wall polysaccharides. Tensile strength measured by a gas decompression technique showed empirically that walls of NaCl-adapted cells are much weaker than those of unadapted cells. Correlated with this weakening was a substantial decrease in the proportion of crystalline cellulose in the primary cell wall. Even though the amount of insoluble protein associated with the wall was increased relative to other wall components, the amount of hydroxyproline in the insoluble protein of the wall was only about 10% that of unadapted cells. These results indicate that a cellulosic-extensin framework is a primary determinant of absolute wall tensile strength, but complete formation of this framework apparently is sacrificed to divert carbon to substances needed for osmotic adjustment. We propose that the absolute mass of this framework is not a principal determinant of the ability of the cell wall to extend. PMID:16667031

  4. Characterization of New Maize Genes Putatively Involved in Cytokinin Metabolism and Their Expression during Osmotic Stress in Relation to Cytokinin Levels1[W

    PubMed Central

    Vyroubalová, Šárka; Václavíková, Kateřina; Turečková, Veronika; Novák, Ondřej; Šmehilová, Mária; Hluska, Tomáš; Ohnoutková, Ludmila; Frébort, Ivo; Galuszka, Petr

    2009-01-01

    Plant hormones, cytokinins (CKs), have been for a long time considered to be involved in plant responses to stress. However, their exact roles in processes linked to stress signalization and acclimatization to adverse environmental conditions are unknown. In this study, expression profiles of the entire gene families of CK biosynthetic and degradation genes in maize (Zea mays) during development and stress responses are described. Transcript abundance of particular genes is discussed in relation to the levels of different CK metabolites. Salt and osmotic stresses induce expression of some CK biosynthetic genes in seedlings of maize, leading to a moderate increase of active forms of CKs lasting several days during acclimatization to stress. A direct effect of CKs to mediate activation of stress responses does not seem to be possible due to the slow changes in metabolite levels. However, expression of genes involved in cytokinin signal transduction is uniformly down-regulated within 0.5 h of stress induction by an unknown mechanism. cis-Zeatin and its derivatives were found to be the most abundant CKs in young maize seedlings. We demonstrate that levels of this zeatin isomer are significantly enhanced during early stress response and that it originates independently from de novo biosynthesis in stressed tissues, possibly by elevated specific RNA degradation. By enhancing their CK levels, plants could perhaps undergo a reduction of growth rates maintained by abscisic acid accumulation in stressed tissues. A second role for cytokinin receptors in sensing turgor response is hypothesized besides their documented function in CK signaling. PMID:19641027

  5. Computations of uncertainty mediate acute stress responses in humans.

    PubMed

    de Berker, Archy O; Rutledge, Robb B; Mathys, Christoph; Marshall, Louise; Cross, Gemma F; Dolan, Raymond J; Bestmann, Sven

    2016-03-29

    The effects of stress are frequently studied, yet its proximal causes remain unclear. Here we demonstrate that subjective estimates of uncertainty predict the dynamics of subjective and physiological stress responses. Subjects learned a probabilistic mapping between visual stimuli and electric shocks. Salivary cortisol confirmed that our stressor elicited changes in endocrine activity. Using a hierarchical Bayesian learning model, we quantified the relationship between the different forms of subjective task uncertainty and acute stress responses. Subjective stress, pupil diameter and skin conductance all tracked the evolution of irreducible uncertainty. We observed a coupling between emotional and somatic state, with subjective and physiological tuning to uncertainty tightly correlated. Furthermore, the uncertainty tuning of subjective and physiological stress predicted individual task performance, consistent with an adaptive role for stress in learning under uncertain threat. Our finding that stress responses are tuned to environmental uncertainty provides new insight into their generation and likely adaptive function.

  6. Computations of uncertainty mediate acute stress responses in humans.

    PubMed

    de Berker, Archy O; Rutledge, Robb B; Mathys, Christoph; Marshall, Louise; Cross, Gemma F; Dolan, Raymond J; Bestmann, Sven

    2016-01-01

    The effects of stress are frequently studied, yet its proximal causes remain unclear. Here we demonstrate that subjective estimates of uncertainty predict the dynamics of subjective and physiological stress responses. Subjects learned a probabilistic mapping between visual stimuli and electric shocks. Salivary cortisol confirmed that our stressor elicited changes in endocrine activity. Using a hierarchical Bayesian learning model, we quantified the relationship between the different forms of subjective task uncertainty and acute stress responses. Subjective stress, pupil diameter and skin conductance all tracked the evolution of irreducible uncertainty. We observed a coupling between emotional and somatic state, with subjective and physiological tuning to uncertainty tightly correlated. Furthermore, the uncertainty tuning of subjective and physiological stress predicted individual task performance, consistent with an adaptive role for stress in learning under uncertain threat. Our finding that stress responses are tuned to environmental uncertainty provides new insight into their generation and likely adaptive function. PMID:27020312

  7. Computations of uncertainty mediate acute stress responses in humans

    PubMed Central

    de Berker, Archy O.; Rutledge, Robb B.; Mathys, Christoph; Marshall, Louise; Cross, Gemma F.; Dolan, Raymond J.; Bestmann, Sven

    2016-01-01

    The effects of stress are frequently studied, yet its proximal causes remain unclear. Here we demonstrate that subjective estimates of uncertainty predict the dynamics of subjective and physiological stress responses. Subjects learned a probabilistic mapping between visual stimuli and electric shocks. Salivary cortisol confirmed that our stressor elicited changes in endocrine activity. Using a hierarchical Bayesian learning model, we quantified the relationship between the different forms of subjective task uncertainty and acute stress responses. Subjective stress, pupil diameter and skin conductance all tracked the evolution of irreducible uncertainty. We observed a coupling between emotional and somatic state, with subjective and physiological tuning to uncertainty tightly correlated. Furthermore, the uncertainty tuning of subjective and physiological stress predicted individual task performance, consistent with an adaptive role for stress in learning under uncertain threat. Our finding that stress responses are tuned to environmental uncertainty provides new insight into their generation and likely adaptive function. PMID:27020312

  8. Acute stress impairs cognitive flexibility in men, not women.

    PubMed

    Shields, Grant S; Trainor, Brian C; Lam, Jovian C W; Yonelinas, Andrew P

    2016-09-01

    Psychosocial stress influences cognitive abilities, such as long-term memory retrieval. However, less is known about the effects of stress on cognitive flexibility, which is mediated by different neurobiological circuits and could thus be regulated by different neuroendocrine pathways. In this study, we randomly assigned healthy adults to an acute stress induction or control condition and subsequently assessed participants' cognitive flexibility using an open-source version of the Wisconsin Card Sort task. Drawing on work in rodents, we hypothesized that stress would have stronger impairing effects on cognitive flexibility in men than women. As predicted, we found that stress impaired cognitive flexibility in men but did not significantly affect women. Our results thus indicate that stress exerts sex-specific effects on cognitive flexibility in humans and add to the growing body of research highlighting the need to consider sex differences in effects of stress.

  9. ACUTE MENTAL STRESS AND HEMOSTASIS: WHEN PHYSIOLOGY BECOMES VASCULAR HARM

    PubMed Central

    von Känel, Roland

    2015-01-01

    Stress-induced activation of the sympathoadrenal medullary system activates both the coagulation and fibrinolysis system resulting in net hypercoagulability. The evolutionary interpretation of this physiology is that stress-hypercoagulability protects a healthy organism from excess bleeding should injury occur in fight-or-flight situations. In turn, acute mental stress, negative emotions and psychological trauma also are triggering factors of atherothrombotic events and possibly of venous thromboembolism. Individuals with pre-existent atherosclerosis and impaired endothelial anticoagulant function are the most vulnerable to experience onset of acute coronary events within two hours of intense emotions. A range of sociodemographic and psychosocial factors (e.g., chronic stress and negative affect) might critically intensify and prolong stress-induced hypercoagulability. In contrast, several pharmacological compounds, dietary flavanoids, and positive affect mitigate the acute prothrombotic stress response. Studies are needed to investigate whether attenuation of stress-hypercoagulability through medications and biobehavioral interventions reduce the risk of thrombotic incidents in at-risk populations. PMID:25861135

  10. Acute stress and working memory in older people.

    PubMed

    Pulopulos, Matias M; Hidalgo, Vanesa; Almela, Mercedes; Puig-Perez, Sara; Villada, Carolina; Salvador, Alicia

    2015-01-01

    Several studies have shown that acute stress affects working memory (WM) in young adults, but the effect in older people is understudied. As observed in other types of memory, older people may be less sensitive to acute effects of stress on WM. We performed two independent studies with healthy older men and women (from 55 to 77 years old) to investigate the effects of acute stress (Trier Social Stress Test; TSST) and cortisol on WM. In study 1 (n = 63), after the TSST women (but not men) improved their performance on Digit Span Forward (a measure of the memory span component of WM) but not on Digit Span Backward (a measure of both memory span and the executive component of WM). Furthermore, in women, cortisol levels at the moment of memory testing showed a positive association with the memory span component of WM before and after the TSST, and with the executive component of WM only before the stress task. In study 2 (n = 76), although participants showed a cortisol and salivary alpha-amylase (sAA) response to the TSST, stress did not affect performance on Letter-Number Sequencing (LNS; a task that places a high demand on the executive component of WM). Cortisol and sAA were not associated with WM. The results indicate that circulating cortisol levels at the moment of memory testing, and not the stress response, affect memory span in older women, and that stress and the increase in cortisol levels after stress do not affect the executive component of WM in older men and women. This study provides further evidence that older people may be less sensitive to stress and stress-induced cortisol response effects on memory processes.

  11. EATING BEHAVIOR IN RESPONSE TO ACUTE STRESS.

    PubMed

    Mocanu, Veronica; Bontea, Amalia; Anton-Păduraru, Dana-teodora

    2016-01-01

    Obesity is a medical and social problem with a dramatically increasing prevalence. It is important to take action since childhood to prevent and treat obesity and metabolic syndrome. Infantile obesity affects all body systems starting in childhood and continuing to adulthood. Understanding the impact of stressors on weight status may be especially important for preventing obesity. The relationship between stress, eating behavior and obesity is not fully understood. However, there is evidence that stress causes disorders in hypothalamic-pituitary-adrenal (HPA) axis, system that regulates both stress and feeding responses. Also, the response is different depending on the type of stressors. Chronic stress, especially when people live in a palatable food environment, induces HPA stimulation, excess glucocorticoids, insulin resistance, which lead to inhibition of lipid mobilization, accumulation of triglyceride and retention of abdominal fat. PMID:27483696

  12. Acute psychosocial stress and children's memory.

    PubMed

    de Veld, Danielle M J; Riksen-Walraven, J Marianne; de Weerth, Carolina

    2014-07-01

    We investigated whether children's performance on working memory (WM) and delayed retrieval (DR) tasks decreased after stress exposure, and how physiological stress responses related to performance under stress. About 158 children (83 girls; Mage = 10.61 years, SD = 0.52) performed two WM tasks (WM forward and WM backward) and a DR memory task first during a control condition, and 1 week later during a stress challenge. Salivary alpha-amylase (sAA) and cortisol were assessed during the challenge. Only WM backward performance declined over conditions. Correlations between physiological stress responses and performance within the stress challenge were present only for WM forward and DR. For WM forward, higher cortisol responses were related to better performance. For DR, there was an inverted U-shape relation between cortisol responses and performance, as well as a cortisol × sAA interaction, with concurrent high or low responses related to optimal performance. This emphasizes the importance of including curvilinear and interaction effects when relating physiology to memory.

  13. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants.

    PubMed

    Fujita, Yasunari; Yoshida, Takuya; Yamaguchi-Shinozaki, Kazuko

    2013-01-01

    Water availability is one of the main limiting factors for plant growth and development. The phytohormone abscisic acid (ABA) fulfills a critical role in coordinating the responses to reduced water availability as well as in multiple developmental processes. Endogenous ABA levels increase in response to osmotic stresses such as drought and high salinity, and ABA activates the expression of many genes via ABA-responsive elements (ABREs) in their promoter regions. ABRE-binding protein/ABRE-binding factor (AREB/ABF) transcription factors (TFs) regulate the ABRE-mediated transcription of downstream target genes. Three subclass III sucrose non-fermenting-1 related protein kinase 2 (SnRK2) protein kinases (SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3) phosphorylate and positively control the AREB/ABF TFs. Substantial progress has been made in our understanding of the ABA-sensing system mediated by Pyrabactin resistance1/PYR1-like/regulatory components of ABA receptor (PYR/PYL/RCAR)-protein phosphatase 2C complexes. In addition to PP2C-PYR/PYL/RCAR ABAreceptor complex, the AREB/ABF-SnRK2 pathway, which is well conserved in land plants, was recently shown to play a major role as a positive regulator of ABA/stress signaling through ABRE-mediated transcription of target genes implicated in the osmotic stress response. This review focuses on current progress in the study of the AREB/ABF-SnRK2 positive regulatory pathway in plants and describes additional signaling factors implicated in the AREB/ABF-SnRK2 pathway. Moreover, to help promote the link between basic and applied studies, the nomenclature and phylogenetic relationships between the AREB/ABFs and SnRK2s are summarized and discussed.

  14. IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress.

    PubMed

    Kinoshita, Natsuko; Wang, Huan; Kasahara, Hiroyuki; Liu, Jun; Macpherson, Cameron; Machida, Yasunori; Kamiya, Yuji; Hannah, Matthew A; Chua, Nam-Hai

    2012-09-01

    The functions of microRNAs and their target mRNAs in Arabidopsis thaliana development have been widely documented; however, roles of stress-responsive microRNAs and their targets are not as well understood. Using small RNA deep sequencing and ATH1 microarrays to profile mRNAs, we identified IAA-Ala Resistant3 (IAR3) as a new target of miR167a. As expected, IAR3 mRNA was cleaved at the miR167a complementary site and under high osmotic stress miR167a levels decreased, whereas IAR3 mRNA levels increased. IAR3 hydrolyzes an inactive form of auxin (indole-3-acetic acid [IAA]-alanine) and releases bioactive auxin (IAA), a central phytohormone for root development. In contrast with the wild type, iar3 mutants accumulated reduced IAA levels and did not display high osmotic stress-induced root architecture changes. Transgenic plants expressing a cleavage-resistant form of IAR3 mRNA accumulated high levels of IAR3 mRNAs and showed increased lateral root development compared with transgenic plants expressing wild-type IAR3. Expression of an inducible noncoding RNA to sequester miR167a by target mimicry led to an increase in IAR3 mRNA levels, further confirming the inverse relationship between the two partners. Sequence comparison revealed the miR167 target site on IAR3 mRNA is conserved in evolutionarily distant plant species. Finally, we showed that IAR3 is required for drought tolerance.

  15. Validation of reference genes for normalization of qPCR mRNA expression levels in Staphylococcus aureus exposed to osmotic and lactic acid stress conditions encountered during food production and preservation.

    PubMed

    Sihto, Henna-Maria; Tasara, Taurai; Stephan, Roger; Johler, Sophia

    2014-07-01

    Staphylococcus aureus represents the most prevalent cause of food-borne intoxications worldwide. While being repressed by competing bacteria in most matrices, this pathogen exhibits crucial competitive advantages during growth at high salt concentrations or low pH, conditions frequently encountered in food production and preservation. We aimed to identify reference genes that could be used to normalize qPCR mRNA expression levels during growth of S. aureus in food-related osmotic (NaCl) and acidic (lactic acid) stress adaptation models. Expression stability of nine housekeeping genes was evaluated in full (LB) and nutrient-deficient (CYGP w/o glucose) medium under conditions of osmotic (4.5% NaCl) and acidic stress (lactic acid, pH 6.0) after 2-h exposure. Among the set of candidate reference genes investigated, rplD, rpoB,gyrB, and rho were most stably expressed in LB and thus represent the most suitable reference genes for normalization of qPCR data in osmotic or lactic acid stress models in a rich medium. Under nutrient-deficient conditions, expression of rho and rpoB was highly stable across all tested conditions. The presented comprehensive data on changes in expression of various S. aureus housekeeping genes under conditions of osmotic and lactic acid stress facilitate selection of reference genes for qPCR-based stress response models.

  16. Acute stress cardiomyopathy and deaths associated with electronic weapons.

    PubMed

    Cevik, Cihan; Otahbachi, Mohammad; Miller, Elizabeth; Bagdure, Satish; Nugent, Kenneth M

    2009-03-01

    Deaths associated with the use of electronic weapons almost always occur in young men involved in either civil disturbances or criminal activity. These situations are associated with high levels of circulating catecholamines and frequently associated with drug intoxication. The mechanism for these deaths is unclear. Clinical studies indicate that these high voltage electrical pulses do not cause cardiac arrhythmia. Acute stress cardiomyopathy provides an alternative explanation for deaths associated with electronic weapons and may provide a better explanation for the usual time course associated with taser deaths. Patients with acute stress cardiomyopathy usually have had an emotional or physical stress, have high circulating levels of catecholamines, present with an acute coronary syndrome but have normal coronary vessels without significant thrombus formation. They have unusual left ventricular dysfunction with so-called apical ballooning. This presentation has been attributed to the direct effects of catecholamines on myocardial cell function. Alternative explanations include vasospasm in the coronary microcirculation and/or acute thrombosis followed by rapid thrombolysis. Similar events could occur during the high stress situations associated with the use of electronic weapons. These events also likely explain restraint-related deaths which occur in independent of any use of electronic weapons. Forensic pathologists have the opportunity to provide important details about the pathogenesis of these deaths through histological studies and careful evaluation of coronary vessels.

  17. The Conspiracy of Autophagy, Stress and Inflammation in Acute Pancreatitis

    PubMed Central

    Hall, Jason C.; Crawford, Howard C.

    2015-01-01

    Purpose of review Acute pancreatitis (AP) is associated with alcohol abuse, gallstones and bacterial infection. Its basic etiology is tissue destruction accompanied by an innate inflammatory response, which induces epithelial stress pathways. Recent studies have focused on some of the integral cellular pathways shared between multiple pancreatitis models that also suggest new approaches to detection and treatment. Recent findings Several models of pancreatitis have been associated with stress responses, such as endoplasmic reticulum (ER) and oxidative stress together with the induction of a defective autophagic pathway. Recent evidence reinforces the critical role of these cellular processes in pancreatitis. A member of the the Toll-Like Receptor family, TLR4, which is known to contribute to disease pathology in many models of experimental pancreatitis, has been found to be a promising target for treatment of pancreatitis. Interestingly, a direct activator of TLR4,, the bacterial cell wall component in Gram negative bacteria lipopolysaccharide (LPS), contributes to the onset and severity of disease when combined with additional stressors, such as chronic alcohol feeding, however recent studies have shown that acute infection of mice with live bacteria is alone sufficient to induce acute pancreatitis. Summary In the last several months, the convergent roles of acinar cell stress, autophagy and proinflammatory signaling initiated by the toll-like receptors have been emphatically reinforced in the onset of acute pancreatitis. PMID:25003605

  18. Does Acute Stress Disorder Predict Posttraumatic Stress Disorder Following Bank Robbery?

    ERIC Educational Resources Information Center

    Hansen, Maj; Elklit, Ask

    2013-01-01

    Unfortunately, the number of bank robberies is increasing and little is known about the subsequent risk of posttraumatic stress disorder (PTSD). Several studies have investigated the prediction of PTSD through the presence of acute stress disorder (ASD). However, there have only been a few studies following nonsexual assault. The present study…

  19. Acute Stress Disorder as a Predictor of Post-Traumatic Stress Disorder in Physical Assault Victims

    ERIC Educational Resources Information Center

    Elklit, Ask; Brink, Ole

    2004-01-01

    The authors' objective was to examine the ability of acute stress disorder (ASD) and other trauma-related factors in a group of physical assault victims in predicting post-traumatic stress disorder (PTSD) 6 months later. Subjects included 214 victims of violence who completed a questionnaire 1 to 2 weeks after the assault, with 128 participating…

  20. The Relationship between Acute Stress Disorder and Posttraumatic Stress Disorder Following Cancer

    ERIC Educational Resources Information Center

    Kangas, Maria; Henry, Jane L.; Bryant, Richard A.

    2005-01-01

    In this study, the authors investigated the relationship between acute stress disorder (ASD) and posttraumatic stress disorder (PTSD) following cancer diagnosis. Patients who were recently diagnosed with 1st onset head and neck or lung malignancy (N = 82) were assessed for ASD within the initial month following their diagnosis and reassessed (n =…

  1. SIRT6 Is a Positive Regulator of Aldose Reductase Expression in U937 and HeLa cells under Osmotic Stress: In Vitro and In Silico Insights

    PubMed Central

    Timucin, Ahmet Can; Basaga, Huveyda

    2016-01-01

    SIRT6 is a protein deacetylase, involved in various intracellular processes including suppression of glycolysis and DNA repair. Aldose Reductase (AR), first enzyme of polyol pathway, was proposed to be indirectly associated to these SIRT6 linked processes. Despite these associations, presence of SIRT6 based regulation of AR still remains ambiguous. Thus, regulation of AR expression by SIRT6 was investigated under hyperosmotic stress. A unique model of osmotic stress in U937 cells was used to demonstrate the presence of a potential link between SIRT6 and AR expression. By overexpressing SIRT6 in HeLa cells under hyperosmotic stress, its role on upregulation of AR was revealed. In parallel, increased SIRT6 activity was shown to upregulate AR in U937 cells under hyperosmotic milieu by using pharmacological modulators. Since these modulators also target SIRT1, binding of the inhibitor, Ex-527, specifically to SIRT6 was analyzed in silico. Computational observations indicated that Ex-527 may also target SIRT6 active site residues under high salt concentration, thus, validating in vitro findings. Based on these evidences, a novel regulatory step by SIRT6, modifying AR expression under hyperosmotic stress was presented and its possible interactions with intracellular machinery was discussed. PMID:27536992

  2. Interplay between circadian rhythm, time of the day and osmotic stress constraints in the regulation of the expression of a Solanum Double B-box gene

    PubMed Central

    Kiełbowicz-Matuk, Agnieszka; Rey, Pascal; Rorat, Tadeusz

    2014-01-01

    Background and Aims Double B-box zinc finger (DBB) proteins are recently identified plant transcription regulators that participate in the response to sodium chloride-induced stress in arabidopsis plants. Little is known regarding their subcellular localization and expression patterns, particularly in relation to other osmotic constraints and the day/night cycle. This study investigated natural variations in the amount of a Solanum DBB protein, SsBBX24, during plant development, and also under various environmental constraints leading to cell dehydration in relation to the circadian clock and the time of day. Methods SsBBX24 transcript and protein abundance in various organs of phytotron-grown Solanum tuberosum and S. sogarandinum plants were investigated at different time points of the day and under various osmotic constraints. The intracellular location of SsBBX24 was determined by western blot analysis of subcellular fractions. Key Results Western blot analysis of SsBBX24 protein revealed that it was located in the nucleus at the beginning of the light period and in the cytosol at the end, suggesting movement (‘trafficking’) during the light phase. SsBBX24 gene expression exhibited circadian cycling under control conditions, with the highest and lowest abundances of both transcript and protein occurring 8 and 18 h after dawn, respectively. Exposing Solanum plants to low temperature, salinity and polyethylene glycol (PEG), but not to drought, disturbed the circadian regulation of SsBBX24 gene expression at the protein level. SsBBX24 transcript and protein accumulated in Solanum plants in response to salt and PEG treatments, but not in response to low temperature or water deficit. Most interestingly, the time of the day modulated the magnitude of SsBBX24 expression in response to high salt concentration. Conclusions The interplay between circadian rhythm and osmotic constraints in the regulation of the expression of a Solanum DBB transcriptional regulator is

  3. Cloning and expression of a heat shock protein (HSP) 90 gene in the haemocytes of Crassostrea hongkongensis under osmotic stress and bacterial challenge.

    PubMed

    Fu, Dingkun; Chen, Jinhui; Zhang, Yang; Yu, Ziniu

    2011-07-01

    Heat shock protein 90 (HSP90) is a highly conserved and multi-functional molecular chaperone that plays an essential role in both cellular metabolism and stress response. Here, we report the cloning of the HSP90 homologue in Crassostrea hongkongensis (ChHSP90) through SSH in combination with RACE from cDNA of haemocytes. The full-length cDNA of ChHSP90 is 2459 bp in length, consisting of a 3', 5'-untranslated region (UTR) and an open reading frame of 2169 bp encoding 722 amino acids. The identity analysis of the amino acid sequence of HSP90 revealed that ChHSP90 is highly conserved. Distribution of ChHSP90 mRNA in gonad, heart, adductor muscle, mantle, gill, digestive gland, and haemocytes suggested that ChHSP90 is ubiquitously expressed. The mRNA levels of ChHSP90 under salinity and bacterial challenges were analyzed by real-time PCR. Under hypo-osmotic treatment, ChHSP90 mRNA in gonad, heart and haemocytes were significantly up-regulated on day 2 and onwards; while in gill, digestive gland and adductor muscle it was significantly down-regulated; the expression in mantle was decreased significantly on day 2 and 3 (P < 0.01), and then up-regulated on day 4 (P < 0.05). Under hyper-osmotic treatment, the mRNA level in gonad, heart, adductor muscle was increased on day 2 and onwards; in gill, it was firstly increased, and then gradually decreased, reaching a minimum on day 3. On day 4, the expression level in gill recovered to pre-treatment level; in mantle and digestive gland, the expression levels were decreased, reaching to the minimum on day 3. During Vibrio alginolyticus challenge, the mRNA level of ChHSP90 increased 3-fold at 4 h post-infection, returned to its pre-challenge level at 6 h post-infection, then was further up-regulated from 8 to 36 h post-infection. These experiments demonstrate that ChHSP90 mRNA is constitutively expressed in various tissues and apparently inducible in haemocytes under salinity and bacterial challenges, suggesting its important

  4. Skin temperature reveals the intensity of acute stress

    PubMed Central

    Herborn, Katherine A.; Graves, James L.; Jerem, Paul; Evans, Neil P.; Nager, Ruedi; McCafferty, Dominic J.; McKeegan, Dorothy E.F.

    2015-01-01

    Acute stress triggers peripheral vasoconstriction, causing a rapid, short-term drop in skin temperature in homeotherms. We tested, for the first time, whether this response has the potential to quantify stress, by exhibiting proportionality with stressor intensity. We used established behavioural and hormonal markers: activity level and corticosterone level, to validate a mild and more severe form of an acute restraint stressor in hens (Gallus gallus domesticus). We then used infrared thermography (IRT) to non-invasively collect continuous temperature measurements following exposure to these two intensities of acute handling stress. In the comb and wattle, two skin regions with a known thermoregulatory role, stressor intensity predicted the extent of initial skin cooling, and also the occurrence of a more delayed skin warming, providing two opportunities to quantify stress. With the present, cost-effective availability of IRT technology, this non-invasive and continuous method of stress assessment in unrestrained animals has the potential to become common practice in pure and applied research. PMID:26434785

  5. IAA-Ala Resistant3, an Evolutionarily Conserved Target of miR167, Mediates Arabidopsis Root Architecture Changes during High Osmotic Stress[W

    PubMed Central

    Kinoshita, Natsuko; Wang, Huan; Kasahara, Hiroyuki; Liu, Jun; MacPherson, Cameron; Machida, Yasunori; Kamiya, Yuji; Hannah, Matthew A.; Chua, Nam-Hai

    2012-01-01

    The functions of microRNAs and their target mRNAs in Arabidopsis thaliana development have been widely documented; however, roles of stress-responsive microRNAs and their targets are not as well understood. Using small RNA deep sequencing and ATH1 microarrays to profile mRNAs, we identified IAA-Ala Resistant3 (IAR3) as a new target of miR167a. As expected, IAR3 mRNA was cleaved at the miR167a complementary site and under high osmotic stress miR167a levels decreased, whereas IAR3 mRNA levels increased. IAR3 hydrolyzes an inactive form of auxin (indole-3-acetic acid [IAA]-alanine) and releases bioactive auxin (IAA), a central phytohormone for root development. In contrast with the wild type, iar3 mutants accumulated reduced IAA levels and did not display high osmotic stress–induced root architecture changes. Transgenic plants expressing a cleavage-resistant form of IAR3 mRNA accumulated high levels of IAR3 mRNAs and showed increased lateral root development compared with transgenic plants expressing wild-type IAR3. Expression of an inducible noncoding RNA to sequester miR167a by target mimicry led to an increase in IAR3 mRNA levels, further confirming the inverse relationship between the two partners. Sequence comparison revealed the miR167 target site on IAR3 mRNA is conserved in evolutionarily distant plant species. Finally, we showed that IAR3 is required for drought tolerance. PMID:22960911

  6. Dynamics of telomerase activity in response to acute psychological stress

    PubMed Central

    Epel, Elissa S.; Lin, Jue; Dhabhar, Firdaus S.; Wolkowitz, Owen M.; Puterman, E; Karan, Lori; Blackburn, Elizabeth H.

    2010-01-01

    Telomerase activity plays an essential role in cel0l survival, by lengthening telomeres and promoting cell growth and longevity. It is now possible to quantify the low levels of telomerase activity in human leukocytes. Low basal telomerase activity has been related to chronic stress in people and to chronic glucocorticoid exposure in vitro. Here we test whether leukocyte telomerase activity changes under acute psychological stress. We exposed 44 elderly women, including 22 high stress dementia caregivers and 22 matched low stress controls, to a brief laboratory psychological stressor, while examining changes in telomerase activity of peripheral blood mononuclear cells (PBMC). At baseline, caregivers had lower telomerase activity levels than controls, but during stress telomerase activity increased similarly in both groups. Across the entire sample, subsequent telomerase activity increased by 18% one hour after the end of the stressor (p<0.01). The increase in telomerase activity was independent of changes in numbers or percentages of monocytes, lymphocytes, and specific T cell types, although we cannot fully rule out some potential contribution from immune cell redistribution in the change in telomerase activity. Telomerase activity increases were associated with greater cortisol increases in response to the stressor. Lastly, psychological response to the tasks (greater threat perception) was also related to greater telomerase activity increases in controls. These findings uncover novel relationships of dynamic telomerase activity with exposure to an acute stressor, and with two classic aspects of the stress response -- perceived psychological stress and neuroendocrine (cortisol) responses to the stressor. PMID:20018236

  7. Acute stress responses: A review and synthesis of ASD, ASR, and CSR.

    PubMed

    Isserlin, Leanna; Zerach, Gadi; Solomon, Zahava

    2008-10-01

    Toward the development of a unifying diagnosis for acute stress responses this article attempts to find a place for combat stress reaction (CSR) within the spectrum of other defined acute stress responses. This article critically compares the diagnostic criteria of acute stress disorder (ASD), acute stress reaction (ASR), and CSR. Prospective studies concerning the predictive value of ASD, ASR, and CSR are reviewed. Questions, recommendations, and implications for clinical practice are raised concerning the completeness of the current acute stress response diagnoses, the heterogeneity of different stressors, the scope of expected outcomes, and the importance of decline in function as an indicator of future psychological, psychiatric, and somatic distress.

  8. Acute stress responses: A review and synthesis of ASD, ASR, and CSR.

    PubMed

    Isserlin, Leanna; Zerach, Gadi; Solomon, Zahava

    2008-10-01

    Toward the development of a unifying diagnosis for acute stress responses this article attempts to find a place for combat stress reaction (CSR) within the spectrum of other defined acute stress responses. This article critically compares the diagnostic criteria of acute stress disorder (ASD), acute stress reaction (ASR), and CSR. Prospective studies concerning the predictive value of ASD, ASR, and CSR are reviewed. Questions, recommendations, and implications for clinical practice are raised concerning the completeness of the current acute stress response diagnoses, the heterogeneity of different stressors, the scope of expected outcomes, and the importance of decline in function as an indicator of future psychological, psychiatric, and somatic distress. PMID:19123763

  9. Cortisol modulates men's affiliative responses to acute social stress.

    PubMed

    Berger, Justus; Heinrichs, Markus; von Dawans, Bernadette; Way, Baldwin M; Chen, Frances S

    2016-01-01

    The dominant characterization of the physiological and behavioral human stress reaction is the fight-or-flight response. On the other hand, it has been suggested that social affiliation during stressful times ("tend-and-befriend") also represents a common adaptive response to stress, particularly for women. In the current study, we investigate the extent to which men may also show affiliative responses following acute stress. In addition, we examine a potential neuroendocrine modulator of the hypothesized affiliative response. Eighty male students (forty dyads) were recruited to undergo either the Trier Social Stress Test for Groups (TSST-G) or a non-stressful control situation. Subsequently, participants completed a dyadic interaction task and were then asked to report their feelings of psychological closeness to their interaction partner. Although participants assigned to the stress condition did not differ overall on psychological closeness from participants assigned to the control condition, participants with high cortisol responses to the stressor showed significantly higher ratings of psychological closeness to their interaction partner than participants with low cortisol responses. Our findings suggest that men may form closer temporary bonds following stressful situations that are accompanied by a significant cortisol response. We suggest that the traditional characterization of the male stress response in terms of "fight-or-flight" may be incomplete, and that social affiliation may in fact represent a common, adaptive response to stress in men.

  10. Interspecies and Intraspecies Analysis of Trehalose Contents and the Biosynthesis Pathway Gene Family Reveals Crucial Roles of Trehalose in Osmotic-Stress Tolerance in Cassava.

    PubMed

    Han, Bingying; Fu, Lili; Zhang, Dan; He, Xiuquan; Chen, Qiang; Peng, Ming; Zhang, Jiaming

    2016-01-01

    Trehalose is a nonreducing α,α-1,1-disaccharide in a wide range of organisms, and has diverse biological functions that range from serving as an energy source to acting as a protective/signal sugar. However, significant amounts of trehalose have rarely been detected in higher plants, and the function of trehalose in the drought-tolerant crop cassava (Manihot esculenta Crantz) is unclear. We measured soluble sugar concentrations of nine plant species with differing levels of drought tolerance and 41 cassava varieties using high-performance liquid chromatography with evaporative light-scattering detector (HPLC-ELSD). Significantly high amounts of trehalose were identified in drought-tolerant crops cassava, Jatropha curcas, and castor bean (Ricinus communis). All cassava varieties tested contained high amounts of trehalose, although their concentrations varied from 0.23 to 1.29 mg·g(-1) fresh weight (FW), and the trehalose level was highly correlated with dehydration stress tolerance of detached leaves of the varieties. Moreover, the trehalose concentrations in cassava leaves increased 2.3-5.5 folds in response to osmotic stress simulated by 20% PEG 6000. Through database mining, 24 trehalose pathway genes, including 12 trehalose-6-phosphate synthases (TPS), 10 trehalose-6-phosphate phosphatases (TPP), and two trehalases were identified in cassava. Phylogenetic analysis indicated that there were four cassava TPS genes (MeTPS1-4) that were orthologous to the solely active TPS gene (AtTPS1 and OsTPS1) in Arabidopsis and rice, and a new TPP subfamily was identified in cassava, suggesting that the trehalose biosynthesis activities in cassava had potentially been enhanced in evolutionary history. RNA-seq analysis indicated that MeTPS1 was expressed at constitutionally high level before and after osmotic stress, while other trehalose pathway genes were either up-regulated or down-regulated, which may explain why cassava accumulated high level of trehalose under normal

  11. Ineffective Phosphorylation of Mitogen-Activated Protein Kinase Hog1p in Response to High Osmotic Stress in the Yeast Kluyveromyces lactis.

    PubMed

    Velázquez-Zavala, Nancy; Rodríguez-González, Miriam; Navarro-Olmos, Rocío; Ongay-Larios, Laura; Kawasaki, Laura; Torres-Quiroz, Francisco; Coria, Roberto

    2015-09-01

    When treated with a hyperosmotic stimulus, Kluyveromyces lactis cells respond by activating the mitogen-activated protein kinase (MAPK) K. lactis Hog1 (KlHog1) protein via two conserved branches, SLN1 and SHO1. Mutants affected in only one branch can cope with external hyperosmolarity by activating KlHog1p by phosphorylation, except for single ΔKlste11 and ΔKlste50 mutants, which showed high sensitivity to osmotic stress, even though the other branch (SLN1) was intact. Inactivation of both branches by deletion of KlSHO1 and KlSSK2 also produced sensitivity to high salt. Interestingly, we have observed that in ΔKlste11 and ΔKlsho1 ΔKlssk2 mutants, which exhibit sensitivity to hyperosmotic stress, and contrary to what would be expected, KlHog1p becomes phosphorylated. Additionally, in mutants lacking both MAPK kinase kinases (MAPKKKs) present in K. lactis (KlSte11p and KlSsk2p), the hyperosmotic stress induced the phosphorylation and nuclear internalization of KlHog1p, but it failed to induce the transcriptional expression of KlSTL1 and the cell was unable to grow in high-osmolarity medium. KlHog1p phosphorylation via the canonical HOG pathway or in mutants where the SHO1 and SLN1 branches have been inactivated requires not only the presence of KlPbs2p but also its kinase activity. This indicates that when the SHO1 and SLN1 branches are inactivated, high-osmotic-stress conditions activate an independent input that yields active KlPbs2p, which, in turn, renders KlHog1p phosphorylation ineffective. Finally, we found that KlSte11p can alleviate the sensitivity to hyperosmotic stress displayed by a ΔKlsho1 ΔKlssk2 mutant when it is anchored to the plasma membrane by adding the KlSho1p transmembrane segments, indicating that this chimeric protein can substitute for KlSho1p and KlSsk2p. PMID:26150414

  12. Ineffective Phosphorylation of Mitogen-Activated Protein Kinase Hog1p in Response to High Osmotic Stress in the Yeast Kluyveromyces lactis

    PubMed Central

    Velázquez-Zavala, Nancy; Rodríguez-González, Miriam; Navarro-Olmos, Rocío; Ongay-Larios, Laura; Kawasaki, Laura; Torres-Quiroz, Francisco

    2015-01-01

    When treated with a hyperosmotic stimulus, Kluyveromyces lactis cells respond by activating the mitogen-activated protein kinase (MAPK) K. lactis Hog1 (KlHog1) protein via two conserved branches, SLN1 and SHO1. Mutants affected in only one branch can cope with external hyperosmolarity by activating KlHog1p by phosphorylation, except for single ΔKlste11 and ΔKlste50 mutants, which showed high sensitivity to osmotic stress, even though the other branch (SLN1) was intact. Inactivation of both branches by deletion of KlSHO1 and KlSSK2 also produced sensitivity to high salt. Interestingly, we have observed that in ΔKlste11 and ΔKlsho1 ΔKlssk2 mutants, which exhibit sensitivity to hyperosmotic stress, and contrary to what would be expected, KlHog1p becomes phosphorylated. Additionally, in mutants lacking both MAPK kinase kinases (MAPKKKs) present in K. lactis (KlSte11p and KlSsk2p), the hyperosmotic stress induced the phosphorylation and nuclear internalization of KlHog1p, but it failed to induce the transcriptional expression of KlSTL1 and the cell was unable to grow in high-osmolarity medium. KlHog1p phosphorylation via the canonical HOG pathway or in mutants where the SHO1 and SLN1 branches have been inactivated requires not only the presence of KlPbs2p but also its kinase activity. This indicates that when the SHO1 and SLN1 branches are inactivated, high-osmotic-stress conditions activate an independent input that yields active KlPbs2p, which, in turn, renders KlHog1p phosphorylation ineffective. Finally, we found that KlSte11p can alleviate the sensitivity to hyperosmotic stress displayed by a ΔKlsho1 ΔKlssk2 mutant when it is anchored to the plasma membrane by adding the KlSho1p transmembrane segments, indicating that this chimeric protein can substitute for KlSho1p and KlSsk2p. PMID:26150414

  13. Interspecies and Intraspecies Analysis of Trehalose Contents and the Biosynthesis Pathway Gene Family Reveals Crucial Roles of Trehalose in Osmotic-Stress Tolerance in Cassava

    PubMed Central

    Han, Bingying; Fu, Lili; Zhang, Dan; He, Xiuquan; Chen, Qiang; Peng, Ming; Zhang, Jiaming

    2016-01-01

    Trehalose is a nonreducing α,α-1,1-disaccharide in a wide range of organisms, and has diverse biological functions that range from serving as an energy source to acting as a protective/signal sugar. However, significant amounts of trehalose have rarely been detected in higher plants, and the function of trehalose in the drought-tolerant crop cassava (Manihot esculenta Crantz) is unclear. We measured soluble sugar concentrations of nine plant species with differing levels of drought tolerance and 41 cassava varieties using high-performance liquid chromatography with evaporative light-scattering detector (HPLC-ELSD). Significantly high amounts of trehalose were identified in drought-tolerant crops cassava, Jatropha curcas, and castor bean (Ricinus communis). All cassava varieties tested contained high amounts of trehalose, although their concentrations varied from 0.23 to 1.29 mg·g−1 fresh weight (FW), and the trehalose level was highly correlated with dehydration stress tolerance of detached leaves of the varieties. Moreover, the trehalose concentrations in cassava leaves increased 2.3–5.5 folds in response to osmotic stress simulated by 20% PEG 6000. Through database mining, 24 trehalose pathway genes, including 12 trehalose-6-phosphate synthases (TPS), 10 trehalose-6-phosphate phosphatases (TPP), and two trehalases were identified in cassava. Phylogenetic analysis indicated that there were four cassava TPS genes (MeTPS1–4) that were orthologous to the solely active TPS gene (AtTPS1 and OsTPS1) in Arabidopsis and rice, and a new TPP subfamily was identified in cassava, suggesting that the trehalose biosynthesis activities in cassava had potentially been enhanced in evolutionary history. RNA-seq analysis indicated that MeTPS1 was expressed at constitutionally high level before and after osmotic stress, while other trehalose pathway genes were either up-regulated or down-regulated, which may explain why cassava accumulated high level of trehalose under

  14. Interspecies and Intraspecies Analysis of Trehalose Contents and the Biosynthesis Pathway Gene Family Reveals Crucial Roles of Trehalose in Osmotic-Stress Tolerance in Cassava.

    PubMed

    Han, Bingying; Fu, Lili; Zhang, Dan; He, Xiuquan; Chen, Qiang; Peng, Ming; Zhang, Jiaming

    2016-07-13

    Trehalose is a nonreducing α,α-1,1-disaccharide in a wide range of organisms, and has diverse biological functions that range from serving as an energy source to acting as a protective/signal sugar. However, significant amounts of trehalose have rarely been detected in higher plants, and the function of trehalose in the drought-tolerant crop cassava (Manihot esculenta Crantz) is unclear. We measured soluble sugar concentrations of nine plant species with differing levels of drought tolerance and 41 cassava varieties using high-performance liquid chromatography with evaporative light-scattering detector (HPLC-ELSD). Significantly high amounts of trehalose were identified in drought-tolerant crops cassava, Jatropha curcas, and castor bean (Ricinus communis). All cassava varieties tested contained high amounts of trehalose, although their concentrations varied from 0.23 to 1.29 mg·g(-1) fresh weight (FW), and the trehalose level was highly correlated with dehydration stress tolerance of detached leaves of the varieties. Moreover, the trehalose concentrations in cassava leaves increased 2.3-5.5 folds in response to osmotic stress simulated by 20% PEG 6000. Through database mining, 24 trehalose pathway genes, including 12 trehalose-6-phosphate synthases (TPS), 10 trehalose-6-phosphate phosphatases (TPP), and two trehalases were identified in cassava. Phylogenetic analysis indicated that there were four cassava TPS genes (MeTPS1-4) that were orthologous to the solely active TPS gene (AtTPS1 and OsTPS1) in Arabidopsis and rice, and a new TPP subfamily was identified in cassava, suggesting that the trehalose biosynthesis activities in cassava had potentially been enhanced in evolutionary history. RNA-seq analysis indicated that MeTPS1 was expressed at constitutionally high level before and after osmotic stress, while other trehalose pathway genes were either up-regulated or down-regulated, which may explain why cassava accumulated high level of trehalose under normal

  15. Engineered strains of Streptococcus macedonicus towards an osmotic stress resistant phenotype retain their ability to produce the bacteriocin macedocin under hyperosmotic conditions.

    PubMed

    Anastasiou, Rania; Driessche, Gonzalez Van; Boutou, Effrossyni; Kazou, Maria; Alexandraki, Voula; Vorgias, Constantinos E; Devreese, Bart; Tsakalidou, Effie; Papadimitriou, Konstantinos

    2015-10-20

    Streptococcus macedonicus ACA-DC 198 produces the bacteriocin macedocin in milk only under low NaCl concentrations (<1.0%w/v). The thermosensitive plasmid pGh9:ISS1 was employed to generate osmotic stress resistant (osmr) mutants of S. macedonicus. Three osmr mutants showing integration of the vector in unique chromosomal sites were identified and the disrupted loci were characterized. Interestingly, the mutants were able to grow and to produce macedocin at considerably higher concentrations of NaCl compared to the wild-type (up to 4.0%w/v). The production of macedocin under hyperosmotic conditions solely by the osmr mutants was validated by the well diffusion assay and by mass spectrometry analysis. RT-PCR experiments demonstrated that the macedocin biosynthetic regulon was transcribed at high salt concentrations only in the mutants. Mutant osmr3, the most robust mutant, was converted in its markerless derivative (osmr3f). Co-culture of S. macedonicus with spores of Clostridium tyrobutyricum in milk demonstrated that only the osmr3f mutant and not the wild-type inhibited the growth of the spores under hyperosmotic conditions (i.e., 2.5%w/v NaCl) due to the production of macedocin. Our study shows how genetic manipulation of a strain towards a stress resistant phenotype could improve bacteriocin production under conditions of the same stress.

  16. Burkholderia cenocepacia Requires a Periplasmic HtrA Protease for Growth under Thermal and Osmotic Stress and for Survival In Vivo▿ †

    PubMed Central

    Flannagan, Ronald S.; Aubert, Daniel; Kooi, Cora; Sokol, Pamela A.; Valvano, Miguel A.

    2007-01-01

    Burkholderia cenocepacia, a member of the B. cepacia complex, is an opportunistic pathogen that causes serious infections in patients with cystic fibrosis. We identified a six-gene cluster in chromosome 1 encoding a two-component regulatory system (BCAL2831 and BCAL2830) and an HtrA protease (BCAL2829) hypothesized to play a role in the B. cenocepacia stress response. Reverse transcriptase PCR analysis of these six genes confirmed they are cotranscribed and comprise an operon. Genes in this operon, including htrA, were insertionally inactivated by recombination with a newly created suicide plasmid, pGPΩTp. Genetic analyses and complementation studies revealed that HtrABCAL2829 was required for growth of B. cenocepacia upon exposure to osmotic stress (NaCl or KCl) and thermal stress (44°C). In addition, replacement of the serine residue in the active site with alanine (S245A) and deletion of the HtrABCAL2829 PDZ domains demonstrated that these areas are required for protein function. HtrABCAL2829 also localizes to the periplasmic compartment, as shown by Western blot analysis and a colicin V reporter assay. Using the rat agar bead model of chronic lung infection, we also demonstrated that inactivation of the htrA gene is associated with a bacterial survival defect in vivo. Together, our data demonstrate that HtrABCAL2829 is a virulence factor in B. cenocepacia. PMID:17220310

  17. Salivary Markers of Inflammation in Response to Acute Stress

    PubMed Central

    Slavish, Danica C.; Graham-Engeland, Jennifer E.; Smyth, Joshua M.; Engeland, Christopher G.

    2014-01-01

    There is burgeoning interest in the ability to detect inflammatory markers in response to stress within naturally occurring social contexts and/or across multiple time points per day within individuals. Salivary collection is a less invasive process than current methods of blood collection and enables intensive naturalistic methodologies, such as those involving extensive repeated measures per day over time. Yet the reliability and validity of saliva-based to blood-based inflammatory biomarkers in response to stress remains unclear. We review and synthesize the published studies that have examined salivary markers of inflammation following exposure to an acute laboratory stressor. Results from each study are reviewed by analyte (IL-1β, TNF-α, IL-6, IL-2, IL-4, IL-10, IL-12, CRP) and stress type (social-cognitive and exercise-physical), after which methodological issues and limitations are addressed. Although the literature is limited, several inflammatory markers (including IL-1β, TNF-α, and IL-6) have been reliably determined from saliva and have increased significantly in response to stress across multiple studies, with effect sizes ranging from very small to very large. Although CRP from saliva has been associated with CRP in circulating blood more consistently than other biomarkers have been associated with their counterparts in blood, evidence demonstrating it reliably responds to acute stress is absent. Although the current literature is presently too limited to allow broad assertion that inflammatory biomarkers determined from saliva are valuable for examining acute stress responses, this review suggests that specific targets may be valid and highlights specific areas of need for future research. PMID:25205395

  18. Fluoxetine and diazepam acutely modulate stress induced-behavior.

    PubMed

    Giacomini, Ana Cristina V V; Abreu, Murilo S; Giacomini, Luidia V; Siebel, Anna M; Zimerman, Fernanda F; Rambo, Cassiano L; Mocelin, Ricieri; Bonan, Carla D; Piato, Angelo L; Barcellos, Leonardo J G

    2016-01-01

    Drug residue contamination in aquatic ecosystems has been studied extensively, but the behavioral effects exerted by the presence of these drugs are not well known. Here, we investigated the effects of acute stress on anxiety, memory, social interaction, and aggressiveness in zebrafish exposed to fluoxetine and diazepam at concentrations that disrupt the hypothalamic-pituitary-interrenal (HPI) axis. Stress increased the locomotor activity and time spent in the bottom area of the tank (novel tank). Fluoxetine and diazepam prevented these behaviors. We also observed that stress and fluoxetine and diazepam exposures decreased social interaction. Stress also increased aggressive behavior, which was not reversed by fluoxetine or diazepam. These data suggest that the presence of these drugs in aquatic ecosystems causes significant behavioral alterations in fish. PMID:26403161

  19. Fluoxetine and diazepam acutely modulate stress induced-behavior.

    PubMed

    Giacomini, Ana Cristina V V; Abreu, Murilo S; Giacomini, Luidia V; Siebel, Anna M; Zimerman, Fernanda F; Rambo, Cassiano L; Mocelin, Ricieri; Bonan, Carla D; Piato, Angelo L; Barcellos, Leonardo J G

    2016-01-01

    Drug residue contamination in aquatic ecosystems has been studied extensively, but the behavioral effects exerted by the presence of these drugs are not well known. Here, we investigated the effects of acute stress on anxiety, memory, social interaction, and aggressiveness in zebrafish exposed to fluoxetine and diazepam at concentrations that disrupt the hypothalamic-pituitary-interrenal (HPI) axis. Stress increased the locomotor activity and time spent in the bottom area of the tank (novel tank). Fluoxetine and diazepam prevented these behaviors. We also observed that stress and fluoxetine and diazepam exposures decreased social interaction. Stress also increased aggressive behavior, which was not reversed by fluoxetine or diazepam. These data suggest that the presence of these drugs in aquatic ecosystems causes significant behavioral alterations in fish.

  20. Acute stress is detrimental to heart regeneration in zebrafish

    PubMed Central

    Sallin, Pauline; Jaźwińska, Anna

    2016-01-01

    Psychological stress is one of the factors associated with human cardiovascular disease. Here, we demonstrate that acute perceived stress impairs the natural capacity of heart regeneration in zebrafish. Beside physical and chemical disturbances, intermittent crowding triggered an increase in cortisol secretion and blocked the replacement of fibrotic tissue with new myocardium. Pharmacological simulation of stress by pulse treatment with dexamethasone/adrenaline reproduced the regeneration failure, while inhibition of the stress response with anxiolytic drugs partially rescued the regenerative process. Impaired heart regeneration in stressed animals was associated with a reduced cardiomyocyte proliferation and with the downregulation of several genes, including igfbp1b, a modulator of IGF signalling. Notably, daily stress induced a decrease in Igf1r phosphorylation. As cardiomyocyte proliferation was decreased in response to IGF-1 receptor inhibition, we propose that the stress-induced cardiac regenerative failure is partially caused by the attenuation of IGF signalling. These findings indicate that the natural regenerative ability of the zebrafish heart is vulnerable to the systemic paracrine stress response. PMID:27030176

  1. Influence of Acute Coffee Consumption on Postprandial Oxidative Stress

    PubMed Central

    Bloomer, Richard J.; Trepanowski, John F.; Farney, Tyler M.

    2013-01-01

    Background: Coffee has been reported to be rich in antioxidants, with both acute and chronic consumption leading to enhanced blood antioxidant capacity. High-fat feeding is known to result in excess production of reactive oxygen and nitrogen species, promoting a condition of postprandial oxidative stress. Methods: We tested the hypothesis that coffee intake following a high-fat meal would attenuate the typical increase in blood oxidative stress during the acute postprandial period. On 3 different occasions, 16 men and women consumed a high-fat milk shake followed by either 16 ounces of caffeinated or decaffeinated coffee or bottled water. Blood samples were collected before and at 2 and 4 hours following intake of the milk shake and analyzed for triglycerides (TAG), malondialdehyde (MDA), hydrogen peroxide (H2O2), and Trolox equivalent antioxidant capacity (TEAC). Results: Values for TAG and MDA (P < 0.001), as well as for H2O2 (P < 0.001), increased significantly following milk shake consumption, with values higher at 4 hours compared with 2 hours post consumption for TAG and H2O2 (P < 0.05). TEAC was unaffected by the milk shake consumption. Coffee had no impact on TAG, MDA, H2O2, or TEAC, with no condition or interaction effects noted for any variable (P > 0.05). Conclusions: Acute coffee consumption following a high-fat milk shake has no impact on postprandial oxidative stress. PMID:23935371

  2. Distinct regions of ATF/CREB proteins Atf1 and Pcr1 control recombination hotspot ade6–M26 and the osmotic stress response

    PubMed Central

    Gao, Jun; Davidson, Mari K.; Wahls, Wayne P.

    2008-01-01

    The Atf1 protein of Schizosaccharomyces pombe contains a bZIP (DNA-binding/protein dimerization) domain characteristic of ATF/CREB proteins, but no other functional domains or clear homologs have been reported. Atf1-containing, bZIP protein dimers bind to CRE-like DNA sites, regulate numerous stress responses, and activate meiotic recombination at hotspots like ade6–M26. We defined systematically the organization of Atf1 and its heterodimer partner Pcr1, which is required for a subset of Atf1-dependent functions. Surprisingly, only the bZIP domain of Pcr1 is required for hotspot activity and tethering of Atf1 to ade6 promotes recombination in the absence of its bZIP domain and the Pcr1 protein. Therefore the recombination–activation domain of Atf1-Pcr1 heterodimer resides exclusively in Atf1, and Pcr1 confers DNA-binding site specificity in vivo. Atf1 has a modular organization in which distinct regions affect differentially the osmotic stress response (OSA) and meiotic recombination (HRA, HRR). The HRA and HRR regions are necessary and sufficient to activate and repress recombination, respectively. Moreover, Atf1 defines a family of conserved proteins with discrete sequence motifs in the functional domains (OSA, HRA, HRR, bZIP). These findings reveal the functional organization of Atf1 and Pcr1, and illustrate several mechanisms by which bZIP proteins can regulate multiple, seemingly disparate activities. PMID:18375981

  3. Distinct regions of ATF/CREB proteins Atf1 and Pcr1 control recombination hotspot ade6-M26 and the osmotic stress response.

    PubMed

    Gao, Jun; Davidson, Mari K; Wahls, Wayne P

    2008-05-01

    The Atf1 protein of Schizosaccharomyces pombe contains a bZIP (DNA-binding/protein dimerization) domain characteristic of ATF/CREB proteins, but no other functional domains or clear homologs have been reported. Atf1-containing, bZIP protein dimers bind to CRE-like DNA sites, regulate numerous stress responses, and activate meiotic recombination at hotspots like ade6-M26. We defined systematically the organization of Atf1 and its heterodimer partner Pcr1, which is required for a subset of Atf1-dependent functions. Surprisingly, only the bZIP domain of Pcr1 is required for hotspot activity and tethering of Atf1 to ade6 promotes recombination in the absence of its bZIP domain and the Pcr1 protein. Therefore the recombination-activation domain of Atf1-Pcr1 heterodimer resides exclusively in Atf1, and Pcr1 confers DNA-binding site specificity in vivo. Atf1 has a modular organization in which distinct regions affect differentially the osmotic stress response (OSA) and meiotic recombination (HRA, HRR). The HRA and HRR regions are necessary and sufficient to activate and repress recombination, respectively. Moreover, Atf1 defines a family of conserved proteins with discrete sequence motifs in the functional domains (OSA, HRA, HRR, bZIP). These findings reveal the functional organization of Atf1 and Pcr1, and illustrate several mechanisms by which bZIP proteins can regulate multiple, seemingly disparate activities. PMID:18375981

  4. Two glycerol 3-phosphate dehydrogenase isogenes from Candida versatilis SN-18 play an important role in glycerol biosynthesis under osmotic stress.

    PubMed

    Mizushima, Daiki; Iwata, Hisashi; Ishimaki, Yuki; Ogihara, Jun; Kato, Jun; Kasumi, Takafumi

    2016-05-01

    Two isogenes of glycerol 3-phosphate dehydrogenase (GPD) from Candida versatilis SN-18 were cloned and sequenced. These intronless genes (Cagpd1 and Cagpd2) were both predicted to encode a 378 amino acid polypeptide, and the deduced amino acid sequences mutually showed 76% identity. Interestingly, Cagpd1 and Cagpd2 were located tandemly in a locus of genomic DNA within a 262 bp interval. To our knowledge, this represents a novel instance of isogenic genes relating to glucose metabolism. The stress response element (STRE) was found respectively at -93 to -89 bp upstream of the 5'end of Cagpd1 and -707 to -703 bp upstream of Cagpd2, indicating that these genes are involved in osmotic stress response. In heterologous expression using a gpd1Δgpd2Δ double deletion mutant of Saccharomyces cerevisiae, Cagpd1 and Cagpd2 transformants complemented the function of GPD, with Cagpd2 being much more effective than Cagpd1 in promoting growth and glycerol synthesis. Phylogenetic analysis of the amino acid sequences suggested that Cagpd1p and Cagpd2p are NADP(+)-dependent GPDs (EC 1.1.1.94). However, crude enzyme extract from Cagpd1 and Cagpd2 transformants showed GPD activity with only NAD(+) as cofactor. Hence, both Cagpd1p and Cagpd2p are likely NAD(+)-dependent GPDs (EC 1.1.1.8), similar to GPDs from S. cerevisiae and Candida magnoliae. PMID:26906228

  5. Populus euphratica Displays Apoplastic Sodium Accumulation, Osmotic Adjustment by Decreases in Calcium and Soluble Carbohydrates, and Develops Leaf Succulence under Salt Stress1[W

    PubMed Central

    Ottow, Eric A.; Brinker, Monika; Teichmann, Thomas; Fritz, Eberhard; Kaiser, Werner; Brosché, Mikael; Kangasjärvi, Jaakko; Jiang, Xiangning; Polle, Andrea

    2005-01-01

    Populus euphratica Olivier is known to exist in saline and arid environments. In this study we investigated the physiological mechanisms enabling this species to cope with stress caused by salinity. Acclimation to increasing Na+ concentrations required adjustments of the osmotic pressure of leaves, which were achieved by accumulation of Na+ and compensatory decreases in calcium and soluble carbohydrates. The counterbalance of Na+/Ca2+ was also observed in mature leaves from field-grown P. euphratica trees exposed to an environmental gradient of increasing salinity. X-ray microanalysis showed that a primary strategy to protect the cytosol against sodium toxicity was apoplastic but not vacuolar salt accumulation. The ability to cope with salinity also included maintenance of cytosolic potassium concentrations and development of leaf succulence due to an increase in cell number and cell volume leading to sodium dilution. Decreases in apoplastic and vacuolar Ca2+ combined with suppression of calcineurin B-like protein transcripts suggest that Na+ adaptation required suppression of calcium-related signaling pathways. Significant increases in galactinol synthase and alternative oxidase after salt shock and salt adaptation point to shifts in carbohydrate metabolism and suppression of reactive oxygen species in mitochondria under salt stress. PMID:16299175

  6. Resilience as a correlate of acute stress disorder symptoms in patients with acute myocardial infarction

    PubMed Central

    Meister, Rebecca E; Weber, Tania; Princip, Mary; Schnyder, Ulrich; Barth, Jürgen; Znoj, Hansjörg; Schmid, Jean-Paul; von Känel, Roland

    2015-01-01

    Objectives Myocardial infarction (MI) may be experienced as a traumatic event causing acute stress disorder (ASD). This mental disorder has an impact on the daily life of patients and is associated with the development of post-traumatic stress disorder. Trait resilience has been shown to be a protective factor for post-traumatic stress disorder, but its association with ASD in patients with MI is elusive and was examined in this study. Methods We investigated 71 consecutive patients with acute MI within 48 h of having stable haemodynamic conditions established and for 3 months thereafter. All patients completed the Acute Stress Disorder Scale and the Resilience Scale to self-rate the severity of ASD symptoms and trait resilience, respectively. Results Hierarchical regression analysis showed that greater resilience was associated with lower symptoms of ASD independent of covariates (b=−0.22, p<0.05). Post hoc analysis revealed resilience level to be inversely associated with the ASD symptom clusters of re-experiencing (b=−0.05, p<0.05) and arousal (b=−0.09, p<0.05), but not with dissociation and avoidance. Conclusions The findings suggest that patients with acute MI with higher trait resilience experience relatively fewer symptoms of ASD during MI. Resilience was particularly associated with re-experiencing and arousal symptoms. Our findings contribute to a better understanding of resilience as a potentially important correlate of ASD in the context of traumatic situations such as acute MI. These results emphasise the importance of identifying patients with low resilience in medical settings and to offer them adequate support. PMID:26568834

  7. Functional Characterization of the Tau Class Glutathione-S-Transferases Gene (SbGSTU) Promoter of Salicornia brachiata under Salinity and Osmotic Stress

    PubMed Central

    Tiwari, Vivekanand; Patel, Manish Kumar; Chaturvedi, Amit Kumar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    Reactive oxygen or nitrogen species are generated in the plant cell during the extreme stress condition, which produces toxic compounds after reacting with the organic molecules. The glutathione-S-transferase (GST) enzymes play a significant role to detoxify these toxins and help in excretion or sequestration of them. In the present study, we have cloned 1023 bp long promoter region of tau class GST from an extreme halophyte Salicornia brachiata and functionally characterized using the transgenic approach in tobacco. Computational analysis revealed the presence of abiotic stress responsive cis-elements like ABRE, MYB, MYC, GATA, GT1 etc., phytohormones, pathogen and wound responsive motifs. Three 5’-deletion constructs of 730 (GP2), 509 (GP3) and 348 bp (GP4) were made from 1023 (GP1) promoter fragment and used for tobacco transformation. The single event transgenic plants showed notable GUS reporter protein expression in the leaf tissues of control as well as treated plants. The expression level of the GUS gradually decreases from GP1 to GP4 in leaf tissues, whereas the highest level of expression was detected with the GP2 construct in root and stem under control condition. The GUS expression was found higher in leaves and stems of salinity or osmotic stress treated transgenic plants than that of the control plants, but, lower in roots. An efficient expression level of GUS in transgenic plants suggests that this promoter can be used for both constitutive as well as stress inducible expression of gene(s). And this property, make it as a potential candidate to be used as an alternative promoter for crop genetic engineering. PMID:26885663

  8. Functional Characterization of the Tau Class Glutathione-S-Transferases Gene (SbGSTU) Promoter of Salicornia brachiata under Salinity and Osmotic Stress.

    PubMed

    Tiwari, Vivekanand; Patel, Manish Kumar; Chaturvedi, Amit Kumar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    Reactive oxygen or nitrogen species are generated in the plant cell during the extreme stress condition, which produces toxic compounds after reacting with the organic molecules. The glutathione-S-transferase (GST) enzymes play a significant role to detoxify these toxins and help in excretion or sequestration of them. In the present study, we have cloned 1023 bp long promoter region of tau class GST from an extreme halophyte Salicornia brachiata and functionally characterized using the transgenic approach in tobacco. Computational analysis revealed the presence of abiotic stress responsive cis-elements like ABRE, MYB, MYC, GATA, GT1 etc., phytohormones, pathogen and wound responsive motifs. Three 5'-deletion constructs of 730 (GP2), 509 (GP3) and 348 bp (GP4) were made from 1023 (GP1) promoter fragment and used for tobacco transformation. The single event transgenic plants showed notable GUS reporter protein expression in the leaf tissues of control as well as treated plants. The expression level of the GUS gradually decreases from GP1 to GP4 in leaf tissues, whereas the highest level of expression was detected with the GP2 construct in root and stem under control condition. The GUS expression was found higher in leaves and stems of salinity or osmotic stress treated transgenic plants than that of the control plants, but, lower in roots. An efficient expression level of GUS in transgenic plants suggests that this promoter can be used for both constitutive as well as stress inducible expression of gene(s). And this property, make it as a potential candidate to be used as an alternative promoter for crop genetic engineering. PMID:26885663

  9. Expression of the Grape VqSTS21 Gene in Arabidopsis Confers Resistance to Osmotic Stress and Biotrophic Pathogens but Not Botrytis cinerea

    PubMed Central

    Huang, Li; Zhang, Songlin; Singer, Stacy D.; Yin, Xiangjing; Yang, Jinhua; Wang, Yuejin; Wang, Xiping

    2016-01-01

    Stilbene synthase (STS) is a key gene in the biosynthesis of various stilbenoids, including resveratrol and its derivative glucosides (such as piceid), that has been shown to contribute to disease resistance in plants. However, the mechanism behind such a role has yet to be elucidated. Furthermore, the function of STS genes in osmotic stress tolerance remains unclear. As such, we sought to elucidate the role of STS genes in the defense against biotic and abiotic stress in the model plant Arabidopsis thaliana. Expression profiling of 31 VqSTS genes from Vitis quinquangularis revealed that VqSTS21 was up-regulated in response to powdery mildew (PM) infection. To provide a deeper understanding of the function of this gene, we cloned the full-length coding sequence of VqSTS21 and overexpressed it in Arabidopsis thaliana via Agrobacterium-mediated transformation. The resulting VqSTS21 Arabidopsis lines produced trans-piceid rather than resveratrol as their main stilbenoid product and exhibited improved disease resistance to PM and Pseudomonas syringae pv. tomato DC3000, but displayed increased susceptibility to Botrytis cinerea. In addition, transgenic Arabidopsis lines were found to confer tolerance to salt and drought stress from seed germination through plant maturity. Intriguingly, qPCR assays of defense-related genes involved in salicylic acid, jasmonic acid, and abscisic acid-induced signaling pathways in these transgenic lines suggested that VqSTS21 plays a role in various phytohormone-related pathways, providing insight into the mechanism behind VqSTS21-mediated resistance to biotic and abiotic stress.

  10. Expression of the Grape VqSTS21 Gene in Arabidopsis Confers Resistance to Osmotic Stress and Biotrophic Pathogens but Not Botrytis cinerea

    PubMed Central

    Huang, Li; Zhang, Songlin; Singer, Stacy D.; Yin, Xiangjing; Yang, Jinhua; Wang, Yuejin; Wang, Xiping

    2016-01-01

    Stilbene synthase (STS) is a key gene in the biosynthesis of various stilbenoids, including resveratrol and its derivative glucosides (such as piceid), that has been shown to contribute to disease resistance in plants. However, the mechanism behind such a role has yet to be elucidated. Furthermore, the function of STS genes in osmotic stress tolerance remains unclear. As such, we sought to elucidate the role of STS genes in the defense against biotic and abiotic stress in the model plant Arabidopsis thaliana. Expression profiling of 31 VqSTS genes from Vitis quinquangularis revealed that VqSTS21 was up-regulated in response to powdery mildew (PM) infection. To provide a deeper understanding of the function of this gene, we cloned the full-length coding sequence of VqSTS21 and overexpressed it in Arabidopsis thaliana via Agrobacterium-mediated transformation. The resulting VqSTS21 Arabidopsis lines produced trans-piceid rather than resveratrol as their main stilbenoid product and exhibited improved disease resistance to PM and Pseudomonas syringae pv. tomato DC3000, but displayed increased susceptibility to Botrytis cinerea. In addition, transgenic Arabidopsis lines were found to confer tolerance to salt and drought stress from seed germination through plant maturity. Intriguingly, qPCR assays of defense-related genes involved in salicylic acid, jasmonic acid, and abscisic acid-induced signaling pathways in these transgenic lines suggested that VqSTS21 plays a role in various phytohormone-related pathways, providing insight into the mechanism behind VqSTS21-mediated resistance to biotic and abiotic stress. PMID:27695466

  11. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    PubMed

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  12. Acute exercise and oxidative stress: a 30 year history

    PubMed Central

    Fisher-Wellman, Kelsey; Bloomer, Richard J

    2009-01-01

    The topic of exercise-induced oxidative stress has received considerable attention in recent years, with close to 300 original investigations published since the early work of Dillard and colleagues in 1978. Single bouts of aerobic and anaerobic exercise can induce an acute state of oxidative stress. This is indicated by an increased presence of oxidized molecules in a variety of tissues. Exercise mode, intensity, and duration, as well as the subject population tested, all can impact the extent of oxidation. Moreover, the use of antioxidant supplements can impact the findings. Although a single bout of exercise often leads to an acute oxidative stress, in accordance with the principle of hormesis, such an increase appears necessary to allow for an up-regulation in endogenous antioxidant defenses. This review presents a comprehensive summary of original investigations focused on exercise-induced oxidative stress. This should provide the reader with a well-documented account of the research done within this area of science over the past 30 years. PMID:19144121

  13. Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress.

    PubMed

    Saikia, Mridusmita; Jobava, Raul; Parisien, Marc; Putnam, Andrea; Krokowski, Dawid; Gao, Xing-Huang; Guan, Bo-Jhih; Yuan, Yiyuan; Jankowsky, Eckhard; Feng, Zhaoyang; Hu, Guo-fu; Pusztai-Carey, Marianne; Gorla, Madhavi; Sepuri, Naresh Babu V; Pan, Tao; Hatzoglou, Maria

    2014-07-01

    Adaptation to changes in extracellular tonicity is essential for cell survival. However, severe or chronic hyperosmotic stress induces apoptosis, which involves cytochrome c (Cyt c) release from mitochondria and subsequent apoptosome formation. Here, we show that angiogenin-induced accumulation of tRNA halves (or tiRNAs) is accompanied by increased survival in hyperosmotically stressed mouse embryonic fibroblasts. Treatment of cells with angiogenin inhibits stress-induced formation of the apoptosome and increases the interaction of small RNAs with released Cyt c in a ribonucleoprotein (Cyt c-RNP) complex. Next-generation sequencing of RNA isolated from the Cyt c-RNP complex reveals that 20 tiRNAs are highly enriched in the Cyt c-RNP complex. Preferred components of this complex are 5' and 3' tiRNAs of specific isodecoders within a family of isoacceptors. We also demonstrate that Cyt c binds tiRNAs in vitro, and the pool of Cyt c-interacting RNAs binds tighter than individual tiRNAs. Finally, we show that angiogenin treatment of primary cortical neurons exposed to hyperosmotic stress also decreases apoptosis. Our findings reveal a connection between angiogenin-generated tiRNAs and cell survival in response to hyperosmotic stress and suggest a novel cellular complex involving Cyt c and tiRNAs that inhibits apoptosome formation and activity. PMID:24752898

  14. Acute stress impairs the retrieval of extinction memory in humans.

    PubMed

    Raio, Candace M; Brignoni-Perez, Edith; Goldman, Rachel; Phelps, Elizabeth A

    2014-07-01

    Extinction training is a form of inhibitory learning that allows an organism to associate a previously aversive cue with a new, safe outcome. Extinction does not erase a fear association, but instead creates a competing association that may or may not be retrieved when a cue is subsequently encountered. Characterizing the conditions under which extinction learning is expressed is important to enhancing the treatment of anxiety disorders that rely on extinction-based exposure therapy as a primary treatment technique. The ventromedial prefrontal cortex, which plays a critical role in the expression of extinction memory, has been shown to be functionally impaired after stress exposure. Further, recent work in rodents has demonstrated that exposure to stress leads to deficits in extinction retrieval, although this has yet to be tested in humans. To explore how stress might influence extinction retrieval in humans, participants underwent a differential aversive learning paradigm, in which one image was probabilistically paired with an aversive shock while the other image denoted safety. Extinction training directly followed, at which point reinforcement was omitted. A day later, participants returned to the lab and either completed an acute stress manipulation (i.e., cold pressor), or a control task, before undergoing an extinction retrieval test. Skin conductance responses and salivary cortisol concentrations were measured throughout each session as indices of fear arousal and neuroendocrine stress response, respectively. The efficacy of our stress induction was established by observing significant increases in cortisol for the stress condition only. We examined extinction retrieval by comparing conditioned responses during the last trial of extinction (day 1) with that of the first trial of re-extinction (day 2). Groups did not differ on initial fear acquisition or extinction, however, a day later participants in the stress group (n=27) demonstrated significantly

  15. The Arabidopsis thaliana Immunophilin ROF1 Directly Interacts with PI(3)P and PI(3,5)P2 and Affects Germination under Osmotic Stress

    PubMed Central

    Karali, Debora; Oxley, David; Runions, John; Ktistakis, Nicholas; Farmaki, Theodora

    2012-01-01

    A direct interaction of the Arabidopsis thaliana immunophilin ROF1 with phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-bisphosphate was identified using a phosphatidylinositol-phosphate affinity chromatography of cell suspension extracts, combined with a mass spectrometry (nano LC ESI-MS/MS) analysis. The first FK506 binding domain was shown sufficient to bind to both phosphatidylinositol-phosphate stereoisomers. GFP-tagged ROF1 under the control of a 35S promoter was localised in the cytoplasm and the cell periphery of Nicotiana tabacum leaf explants. Immunofluorescence microscopy of Arabidopsis thaliana root tips verified its cytoplasmic localization and membrane association and showed ROF1 localization in the elongation zone which was expanded to the meristematic zone in plants grown on high salt media. Endogenous ROF1 was shown to accumulate in response to high salt treatment in Arabidopsis thaliana young leaves as well as in seedlings germinated on high salt media (0.15 and 0.2 M NaCl) at both an mRNA and protein level. Plants over-expressing ROF1, (WSROF1OE), exhibited enhanced germination under salinity stress which was significantly reduced in the rof1− knock out mutants and abolished in the double mutants of ROF1 and of its interacting homologue ROF2 (WSrof1−/2−). Our results show that ROF1 plays an important role in the osmotic/salt stress responses of germinating Arabidopsis thaliana seedlings and suggest its involvement in salinity stress responses through a phosphatidylinositol-phosphate related protein quality control pathway. PMID:23133621

  16. Phylogenetic study of plant Q-type C2H2 zinc finger proteins and expression analysis of poplar genes in response to osmotic, cold and mechanical stresses.

    PubMed

    Gourcilleau, Delphine; Lenne, Catherine; Armenise, Claudia; Moulia, Bruno; Julien, Jean-Louis; Bronner, Gisèle; Leblanc-Fournier, Nathalie

    2011-04-01

    Plant Q-type C2H2 zinc finger transcription factors play an important role in plant tolerance to various environmental stresses such as drought, cold, osmotic stress, wounding and mechanical loading. To carry out an improved analysis of the specific role of each member of this subfamily in response to mechanical loading in poplar, we identified 16 two-fingered Q-type C2H2-predicted proteins from the poplar Phytozome database and compared their phylogenetic relationships with 152 two-fingered Q-type C2H2 protein sequences belonging to more than 50 species isolated from the NR protein database of NCBI. Phylogenetic analyses of these Q-type C2H2 proteins sequences classified them into two groups G1 and G2, and conserved motif distributions of interest were established. These two groups differed essentially in their signatures at the C-terminus of their two QALGGH DNA-binding domains. Two additional conserved motifs, MALEAL and LVDCHY, were found only in sequences from Group G1 or from Group G2, respectively. Functional significance of these phylogenetic divergences was assessed by studying transcript accumulation of six poplar C2H2 Q-type genes in responses to abiotic stresses; but no group specificity was found in any organ. Further expression analyses focused on PtaZFP1 and PtaZFP2, the two genes strongly induced by mechanical loading in poplars. The results revealed that these two genes were regulated by several signalling molecules including hydrogen peroxide and the phytohormone jasmonate. PMID:21367962

  17. The impact of unintentional pediatric trauma: a review of pain, acute stress, and posttraumatic stress.

    PubMed

    Gold, Jeffrey I; Kant, Alexis J; Kim, Seok Hyeon

    2008-04-01

    This article reviews current research on acute stress disorder (ASD) and posttraumatic stress disorder (PTSD) resulting from pediatric simple (i.e., single, unpredictable, and unintentional) physical injury and how pain may act as both a trigger and a coexisting symptom. Although several studies have explored predictors of ASD and PTSD, as well as the relationship between these conditions in adults, there is less research on ASD and PTSD in children and adolescents. This review highlights the importance of early detection of pain and acute stress symptoms resulting from pediatric unintentional physical injury in the hopes of preventing long-term negative outcomes, such as the potential development of PTSD and associated academic, social, and psychological problems.

  18. Effect of interfacial Maxwell stress on time periodic electro-osmotic flow in a thin liquid film with a flat interface.

    PubMed

    Mayur, Manik; Amiroudine, Sakir; Lasseux, Didier; Chakraborty, Suman

    2014-03-01

    Electro-osmotic flows (EOF) have seen remarkable applications in lab-on-a-chip based microdevices owing to their lack of moving components, durability, and nondispersive nature of the flow profiles under specifically designed conditions. However, such flows may typically suffer from classical Faradaic artifacts like electrolysis of the solvent, which affects the flow rate control. Such a problem has been seen to be overcome by employing time periodic EOFs. Electric field induced transport of a conductive liquid is another nontrivial problem that requires careful study of interfacial dynamics in response to such an oscillatory flow actuation. The present study highlights the role of electric field generated Maxwell stress and free surface potential along with the electric double layer thickness and forcing frequency, toward influencing the interfacial transport and fluid flow in free-surface electro-osmosis under a periodically varying external electric field, in a semi-analytical formalism. Our results reveal interesting regimes over which the pertinent interfacial phenomena as well as bulk transport characteristics may be favorably tuned by employing time varying electrical fields. PMID:24123086

  19. A Native Threonine Coordinates Ordered Water to Tune Light-Oxygen-Voltage (LOV) Domain Photocycle Kinetics and Osmotic Stress Signaling in Trichoderma reesei ENVOY.

    PubMed

    Lokhandwala, Jameela; Silverman Y de la Vega, Rafael I; Hopkins, Hilary C; Britton, Collin W; Rodriguez-Iglesias, Aroa; Bogomolni, Roberto; Schmoll, Monika; Zoltowski, Brian D

    2016-07-01

    Light-oxygen-voltage (LOV) domain-containing proteins function as small light-activated modules capable of imparting blue light control of biological processes. Their small modular nature has made them model proteins for allosteric signal transduction and optogenetic devices. Despite intense research, key aspects of their signal transduction mechanisms and photochemistry remain poorly understood. In particular, ordered water has been identified as a possible key mediator of photocycle kinetics, despite the lack of ordered water in the LOV active site. Herein, we use recent crystal structures of a fungal LOV protein ENVOY to interrogate the role of Thr(101) in recruiting water to the flavin active site where it can function as an intrinsic base to accelerate photocycle kinetics. Kinetic and molecular dynamic simulations confirm a role in solvent recruitment to the active site and identify structural changes that correlate with solvent recruitment. In vivo analysis of T101I indicates a direct role of the Thr(101) position in mediating adaptation to osmotic stress, thereby verifying biological relevance of ordered water in LOV signaling. The combined studies identify position 101 as a mediator of both allostery and photocycle catalysis that can impact organism physiology.

  20. Effects of osmotic stress on crustacean larval growth and protein and lipid levels are related to life-histories: the genus Armases as a model.

    PubMed

    Torres, Gabriela; Giménez, Luis; Anger, Klaus

    2007-10-01

    In the larval stages of three euryhaline species of the genus Armases, we tested if changes in biomass (dry mass, W; protein; lipid) under hyposmotic stress were related to their salinity tolerance, capabilities of osmoregulation, and migration patterns. As model species, we compared Armases miersii, which breeds in supratidal rock pools, the riverine crab Armases roberti (showing a larval export strategy), and Armases ricordi, whose larvae probably develop in coastal marine waters. At each stage, larvae were exposed to different salinities (selected according to previous information on larval survival; range: 5 per thousand-32 per thousand for A. miersii, 10 per thousand-32 per thousand for A. roberti, and 15 per thousand-32 per thousand for A. ricordi). Biomass was measured in early postmoult and intermoult. The larvae of the strongly osmoregulating species A. miersii, which develop in habitats with highly variable salinity conditions, showed the smallest variations in biomass. The effect on A. roberti varied during its ontogeny: the Zoea I and the Megalopa, which carry out downstream and upstream migrations, respectively, showed lower biomass variations than the intermediate zoeal instars, which develop in coastal waters. The larvae of A. ricordi showed generally the highest variations in biomass, reflecting poor adaptation to salinity variations. In addition, a common pattern was found for these estuarine species: the maximum of biomass shifted during ontogeny from 32 per thousand to 25 per thousand, reflecting changes of the iso-osmotic point. The ontogeny of osmoregulation reflected ontogenetic migration patterns, which allow for avoiding detrimental effects of salinity variations.

  1. A Native Threonine Coordinates Ordered Water to Tune Light-Oxygen-Voltage (LOV) Domain Photocycle Kinetics and Osmotic Stress Signaling in Trichoderma reesei ENVOY.

    PubMed

    Lokhandwala, Jameela; Silverman Y de la Vega, Rafael I; Hopkins, Hilary C; Britton, Collin W; Rodriguez-Iglesias, Aroa; Bogomolni, Roberto; Schmoll, Monika; Zoltowski, Brian D

    2016-07-01

    Light-oxygen-voltage (LOV) domain-containing proteins function as small light-activated modules capable of imparting blue light control of biological processes. Their small modular nature has made them model proteins for allosteric signal transduction and optogenetic devices. Despite intense research, key aspects of their signal transduction mechanisms and photochemistry remain poorly understood. In particular, ordered water has been identified as a possible key mediator of photocycle kinetics, despite the lack of ordered water in the LOV active site. Herein, we use recent crystal structures of a fungal LOV protein ENVOY to interrogate the role of Thr(101) in recruiting water to the flavin active site where it can function as an intrinsic base to accelerate photocycle kinetics. Kinetic and molecular dynamic simulations confirm a role in solvent recruitment to the active site and identify structural changes that correlate with solvent recruitment. In vivo analysis of T101I indicates a direct role of the Thr(101) position in mediating adaptation to osmotic stress, thereby verifying biological relevance of ordered water in LOV signaling. The combined studies identify position 101 as a mediator of both allostery and photocycle catalysis that can impact organism physiology. PMID:27226624

  2. Acute psychological stress induces short-term variable immune response.

    PubMed

    Breen, Michael S; Beliakova-Bethell, Nadejda; Mujica-Parodi, Lilianne R; Carlson, Joshua M; Ensign, Wayne Y; Woelk, Christopher H; Rana, Brinda K

    2016-03-01

    In spite of advances in understanding the cross-talk between the peripheral immune system and the brain, the molecular mechanisms underlying the rapid adaptation of the immune system to an acute psychological stressor remain largely unknown. Conventional approaches to classify molecular factors mediating these responses have targeted relatively few biological measurements or explored cross-sectional study designs, and therefore have restricted characterization of stress-immune interactions. This exploratory study analyzed transcriptional profiles and flow cytometric data of peripheral blood leukocytes with physiological (endocrine, autonomic) measurements collected throughout the sequence of events leading up to, during, and after short-term exposure to physical danger in humans. Immediate immunomodulation to acute psychological stress was defined as a short-term selective up-regulation of natural killer (NK) cell-associated cytotoxic and IL-12 mediated signaling genes that correlated with increased cortisol, catecholamines and NK cells into the periphery. In parallel, we observed down-regulation of innate immune toll-like receptor genes and genes of the MyD88-dependent signaling pathway. Correcting gene expression for an influx of NK cells revealed a molecular signature specific to the adrenal cortex. Subsequently, focusing analyses on discrete groups of coordinately expressed genes (modules) throughout the time-series revealed immune stress responses in modules associated to immune/defense response, response to wounding, cytokine production, TCR signaling and NK cell cytotoxicity which differed between males and females. These results offer a spring-board for future research towards improved treatment of stress-related disease including the impact of stress on cardiovascular and autoimmune disorders, and identifies an immune mechanism by which vulnerabilities to these diseases may be gender-specific.

  3. Acute psychological stress induces short-term variable immune response.

    PubMed

    Breen, Michael S; Beliakova-Bethell, Nadejda; Mujica-Parodi, Lilianne R; Carlson, Joshua M; Ensign, Wayne Y; Woelk, Christopher H; Rana, Brinda K

    2016-03-01

    In spite of advances in understanding the cross-talk between the peripheral immune system and the brain, the molecular mechanisms underlying the rapid adaptation of the immune system to an acute psychological stressor remain largely unknown. Conventional approaches to classify molecular factors mediating these responses have targeted relatively few biological measurements or explored cross-sectional study designs, and therefore have restricted characterization of stress-immune interactions. This exploratory study analyzed transcriptional profiles and flow cytometric data of peripheral blood leukocytes with physiological (endocrine, autonomic) measurements collected throughout the sequence of events leading up to, during, and after short-term exposure to physical danger in humans. Immediate immunomodulation to acute psychological stress was defined as a short-term selective up-regulation of natural killer (NK) cell-associated cytotoxic and IL-12 mediated signaling genes that correlated with increased cortisol, catecholamines and NK cells into the periphery. In parallel, we observed down-regulation of innate immune toll-like receptor genes and genes of the MyD88-dependent signaling pathway. Correcting gene expression for an influx of NK cells revealed a molecular signature specific to the adrenal cortex. Subsequently, focusing analyses on discrete groups of coordinately expressed genes (modules) throughout the time-series revealed immune stress responses in modules associated to immune/defense response, response to wounding, cytokine production, TCR signaling and NK cell cytotoxicity which differed between males and females. These results offer a spring-board for future research towards improved treatment of stress-related disease including the impact of stress on cardiovascular and autoimmune disorders, and identifies an immune mechanism by which vulnerabilities to these diseases may be gender-specific. PMID:26476140

  4. Two-Component Signaling Regulates Osmotic Stress Adaptation via SskA and the High-Osmolarity Glycerol MAPK Pathway in the Human Pathogen Talaromyces marneffei.

    PubMed

    Boyce, Kylie J; Cao, Cunwei; Andrianopoulos, Alex

    2016-01-01

    For successful infection to occur, a pathogen must be able to evade or tolerate the host's defense systems. This requires the pathogen to first recognize the host environment and then signal this response to elicit a complex adaptive program in order to activate its own defense strategies. In both prokaryotes and eukaryotes, two-component signaling systems are utilized to sense and respond to changes in the external environment. The hybrid histidine kinases (HHKs) at the start of the two-component signaling pathway have been well characterized in human pathogens. However, how these HHKs regulate processes downstream currently remains unclear. This study describes the role of a response regulator downstream of these HHKs, sskA, in Talaromyces marneffei, a dimorphic human pathogen. sskA is required for asexual reproduction, hyphal morphogenesis, cell wall integrity, osmotic adaptation, and the morphogenesis of yeast cells both in vitro at 37°C and during macrophage infection, but not during dimorphic switching. Comparison of the ΔsskA mutant with a strain in which the mitogen-activated protein kinase (MAPK) of the high-osmolarity glycerol pathway (SakA) has been deleted suggests that SskA acts upstream of this pathway in T. marneffei to regulate these morphogenetic processes. This was confirmed by assessing the amount of phosphorylated SakA in the ΔsskA mutant, antifungal resistance due to a lack of SakA activation, and the ability of a constitutively active sakA allele (sakA(F316L) ) to suppress the ΔsskA mutant phenotypes. We conclude that SskA regulates morphogenesis and osmotic stress adaptation in T. marneffei via phosphorylation of the SakA MAPK of the high-osmolarity glycerol pathway. IMPORTANCE This is the first study in a dimorphic fungal pathogen to investigate the role of a response regulator downstream of two-component signaling systems and its connection to the high-osmolarity glycerol pathway. This study will inspire further research into the

  5. Two-Component Signaling Regulates Osmotic Stress Adaptation via SskA and the High-Osmolarity Glycerol MAPK Pathway in the Human Pathogen Talaromyces marneffei

    PubMed Central

    Cao, Cunwei; Andrianopoulos, Alex

    2016-01-01

    ABSTRACT For successful infection to occur, a pathogen must be able to evade or tolerate the host’s defense systems. This requires the pathogen to first recognize the host environment and then signal this response to elicit a complex adaptive program in order to activate its own defense strategies. In both prokaryotes and eukaryotes, two-component signaling systems are utilized to sense and respond to changes in the external environment. The hybrid histidine kinases (HHKs) at the start of the two-component signaling pathway have been well characterized in human pathogens. However, how these HHKs regulate processes downstream currently remains unclear. This study describes the role of a response regulator downstream of these HHKs, sskA, in Talaromyces marneffei, a dimorphic human pathogen. sskA is required for asexual reproduction, hyphal morphogenesis, cell wall integrity, osmotic adaptation, and the morphogenesis of yeast cells both in vitro at 37°C and during macrophage infection, but not during dimorphic switching. Comparison of the ΔsskA mutant with a strain in which the mitogen-activated protein kinase (MAPK) of the high-osmolarity glycerol pathway (SakA) has been deleted suggests that SskA acts upstream of this pathway in T. marneffei to regulate these morphogenetic processes. This was confirmed by assessing the amount of phosphorylated SakA in the ΔsskA mutant, antifungal resistance due to a lack of SakA activation, and the ability of a constitutively active sakA allele (sakAF316L) to suppress the ΔsskA mutant phenotypes. We conclude that SskA regulates morphogenesis and osmotic stress adaptation in T. marneffei via phosphorylation of the SakA MAPK of the high-osmolarity glycerol pathway. IMPORTANCE This is the first study in a dimorphic fungal pathogen to investigate the role of a response regulator downstream of two-component signaling systems and its connection to the high-osmolarity glycerol pathway. This study will inspire further research into

  6. Hyperosmotic stress induces Rho/Rho kinase/LIM kinase-mediated cofilin phosphorylation in tubular cells: key role in the osmotically triggered F-actin response

    PubMed Central

    Thirone, Ana C. P.; Speight, Pam; Zulys, Matthew; Rotstein, Ori D.; Szászi, Katalin; Pedersen, Stine F.; Kapus, András

    2016-01-01

    Hyperosmotic stress induces cytoskeleton reorganization and a net increase in cellular F-actin, but the underlying mechanisms are incompletely understood. Whereas de novo F-actin polymerization likely contributes to the actin response, the role of F-actin severing is unknown. To address this problem, we investigated whether hyperosmolarity regulates cofilin, a key actin-severing protein, the activity of which is inhibited by phosphorylation. Since the small GTPases Rho and Rac are sensitive to cell volume changes and can regulate cofilin phosphorylation, we also asked whether they might link osmostress to cofilin. Here we show that hyperosmolarity induced rapid, sustained, and reversible phosphorylation of cofilin in kidney tubular (LLC-PK1 and Madin-Darby canine kidney) cells. Hyperosmolarity-provoked cofilin phosphorylation was mediated by the Rho/Rho kinase (ROCK)/LIM kinase (LIMK) but not the Rac/PAK/LIMK pathway, because 1) dominant negative (DN) Rho and DN-ROCK but not DN-Rac and DN-PAK inhibited cofilin phosphorylation; 2) constitutively active (CA) Rho and CA-ROCK but not CA-Rac and CA-PAK induced cofilin phosphorylation; 3) hyperosmolarity induced LIMK-2 phosphorylation, and 4) inhibition of ROCK by Y-27632 suppressed the hypertonicity-triggered LIMK-2 and cofilin phosphorylation. We then examined whether cofilin and its phosphorylation play a role in the hypertonicity-triggered F-actin changes. Downregulation of cofilin by small interfering RNA increased the resting F-actin level and eliminated any further rise upon hypertonic treatment. Inhibition of cofilin phosphorylation by Y-27632 prevented the hyperosmolarity-provoked F-actin increase. Taken together, cofilin is necessary for maintaining the osmotic responsiveness of the cytoskeleton in tubular cells, and the Rho/ROCK/LIMK-mediated cofilin phosphorylation is a key mechanism in the hyperosmotic stress-induced F-actin increase. PMID:19109524

  7. Acute Anteroseptal Myocardial Infarction after a Negative Exercise Stress Test.

    PubMed

    Al-Alawi, Abdullah M; Janardan, Jyotsna; Peck, Kah Y; Soward, Alan

    2016-05-01

    A myocardial infarction is a rare complication which can occur after an exercise stress test. We report a 48-year-old male who was referred to the Mildura Cardiology Practice, Victoria, Australia, in August 2014 with left-sided chest pain. He underwent an exercise stress test which was negative for myocardial ischaemia. However, the patient presented to the Emergency Department of the Mildura Base Hospital 30 minutes after the test with severe retrosternal chest pain. An acute anteroseptal ST segment elevation myocardial infarction was observed on electrocardiography. After thrombolysis, he was transferred to a tertiary hospital where coronary angiography subsequently revealed significant left anterior descending coronary artery stenosis. Thrombus aspiration and a balloon angioplasty were performed. The patient was discharged three days after the surgical procedure in good health.

  8. Increased oxidative stress following acute and chronic high altitude exposure.

    PubMed

    Jefferson, J Ashley; Simoni, Jan; Escudero, Elizabeth; Hurtado, Maria-Elena; Swenson, Erik R; Wesson, Donald E; Schreiner, George F; Schoene, Robert B; Johnson, Richard J; Hurtado, Abdias

    2004-01-01

    The generation of reactive oxygen species is typically associated with hyperoxia and ischemia reperfusion. Recent evidence has suggested that increased oxidative stress may occur with hypoxia. We hypothesized that oxidative stress would be increased in subjects exposed to high altitude hypoxia. We studied 28 control subjects living in Lima, Peru (sea level), at baseline and following 48 h exposure to high altitude (4300 m). To assess the effects of chronic altitude exposure, we studied 25 adult males resident in Cerro de Pasco, Peru (altitude 4300 m). We also studied 27 subjects living in Cerro de Pasco who develop excessive erythrocytosis (hematocrit > 65%) and chronic mountain sickness. Acute high altitude exposure led to increased urinary F(2)-isoprostane, 8-iso PGF(2 alpha) (1.31 +/- 0.8 microg/g creatinine versus 2.15 +/- 1.1, p = 0.001) and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.37 +/- 0.09, p = 0.002), with a trend to increased plasma thiobarbituric acid reactive substance (TBARS) (59.7 +/- 36 pmol/mg protein versus 63.8 +/- 27, p = NS). High altitude residents had significantly elevated levels of urinary 8-iso PGF(2 alpha) (1.3 +/- 0.8 microg/g creatinine versus 4.1 +/- 3.4, p = 0.007), plasma TBARS (59.7 +/- 36 pmol/mg protein versus 85 +/- 28, p = 0.008), and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.55 +/- 0.19, p < 0.0001) compared to sea level. High altitude residents with excessive erythrocytosis had higher levels of oxidative stress compared to high altitude residents with normal hematological adaptation. In conclusion, oxidative stress is increased following both acute exposure to high altitude without exercise and with chronic residence at high altitude.

  9. Saltstone Osmotic Pressure

    SciTech Connect

    Nichols, Ralph L.; Dixon, Kenneth L.

    2013-09-23

    Recent research into the moisture retention properties of saltstone suggest that osmotic pressure may play a potentially significant role in contaminant transport (Dixon et al., 2009 and Dixon, 2011). The Savannah River Remediation Closure and Disposal Assessments Group requested the Savannah River National Laboratory (SRNL) to conduct a literature search on osmotic potential as it relates to contaminant transport and to develop a conceptual model of saltstone that incorporates osmotic potential. This report presents the findings of the literature review and presents a conceptual model for saltstone that incorporates osmotic potential. The task was requested through Task Technical Request HLW-SSF-TTR- 2013-0004.

  10. A homologue of vitamin K epoxide reductase in Solanum lycopersicum is involved in resistance to osmotic stress.

    PubMed

    Yu, Zhi-Bo; Yang, Xiao-Jian; Du, Jia-Jia; Wan, Chun-Mei; Xu, Jia-Ning; Wang, Wen-Jun; Feng, Yue-Guang; Wang, Xiao-Yun

    2016-03-01

    Vitamin K epoxide reductase (VKOR) exists widely in the chloroplasts of higher plants and plays important roles in redox regulation. However, investigations of plant VKOR function have primarily focused on VKOR from Arabidopsis, and knowledge concerning this function is therefore quite limited. In this study, Solanum lycopersicum was used to study the function of VKOR. Transcription level analysis revealed that SlVKOR (S. lycopersicum VKOR) expression was upregulated by salt or drought stress. To further investigate the function of SlVKOR in plants, we generated sense and antisense transgenic S. lycopersicum homozygotes at T2 generation plants. Compared with wild-type (WT) plants, the leaf disks of the SlVKOR overexpression plants retained a much higher percentage of chlorophyll after salt or drought treatment, whereas the antisense transgenic plants displayed an opposite response. The overexpressed plants displayed lower levels of H2O2 and superoxide anion radical (O2(·-)) than WT plants, whereas antisense plants accumulated considerably more H2O2 and O2(·-). The activities of reactive oxygen scavenger enzymes, including superoxide dismutase, peroxidase, ascorbate peroxidase and catalase, were consistent with the accumulation of reactive oxygen species. Based on these results, we suggest that SlVKOR is involved in resistance to salt or drought stress. PMID:26294083

  11. Effects of acute restraint stress on set-shifting and reversal learning in male rats.

    PubMed

    Thai, Chester A; Zhang, Ying; Howland, John G

    2013-03-01

    Exposure to acute stress alters cognition; however, few studies have examined the effects of acute stress on executive functions such as behavioral flexibility. The goal of the present experiments was to determine the effects of acute periods of stress on two distinct forms of behavioral flexibility: set-shifting and reversal learning. Male Sprague-Dawley rats were trained and tested in an operant-chamber-based task. Some of the rats were exposed to acute restraint stress (30 min) immediately before either the set-shifting test day or the reversal learning test day. Acute stress had no effect on set-shifting, but it significantly facilitated reversal learning, as assessed by both trials to criterion and total errors. In a second experiment, the roles of glucocorticoid (GR) and mineralocorticoid receptors (MR) in the acute-stress-induced facilitation of reversal learning were examined. Systemic administration of the GR-selective antagonist RU38486 (10 mg/kg) or the MR-selective antagonist spironolactone (50 mg/kg) 30 min prior to acute stress failed to block the facilitation on reversal learning. The present results demonstrate a dissociable effect of acute stress on set-shifting and reversal learning and suggest that the facilitation of reversal learning by acute stress may be mediated by factors other than corticosterone.

  12. Osmotic stress adaptation in Lactobacillus casei BL23 leads to structural changes in the cell wall polymer lipoteichoic acid.

    PubMed

    Palomino, Maria Mercedes; Allievi, Mariana C; Gründling, Angelika; Sanchez-Rivas, Carmen; Ruzal, Sandra M

    2013-11-01

    The probiotic Gram-positive bacterium Lactobacillus casei BL23 is naturally confronted with salt-stress habitats. It has been previously reported that growth in high-salt medium, containing 0.8 M NaCl, leads to modifications in the cell envelope of this bacterium. In this study, we report that L. casei BL23 has an increased ability to form biofilms and to bind cations in high-salt conditions. This behaviour correlated with modifications of surface properties involving teichoic acids, which are important cell wall components. We also showed that, in these high-salt conditions, L. casei BL23 produces less of the cell wall polymer lipoteichoic acid (LTA), and that this anionic polymer has a shorter mean chain length and a lower level of d-alanyl-substitution. Analysis of the transcript levels of the dltABCD operon, encoding the enzymes required for the incorporation of d-alanine into anionic polymers, showed a 16-fold reduction in mRNA levels, which is consistent with a decrease in d-alanine substitutions on LTA. Furthermore, a 13-fold reduction in the transcript levels was observed for the gene LCABL_09330 coding for a putative LTA synthase. To provide further experimental evidence that LCABL_09330 is a true LTA synthase (LtaS) in L. casei BL23, the enzymic domain was cloned and expressed in E. coli. The purified protein was able to hydrolyse the membrane lipid phosphatidylglycerol as expected for an LTA synthase enzyme, and hence LCABL_09330 was renamed LtaS. The purified enzyme showed Mn(2+)-ion dependent activity, and its activity was modulated by differences in NaCl concentration. The decrease in both ltaS transcript levels and enzyme activity observed in high-salt conditions might influence the length of the LTA backbone chain. A putative function of the modified LTA structure is discussed that is compatible with the growth under salt-stress conditions and with the overall envelope modifications taking place during this stress condition. PMID:24014660

  13. Effects of osmotic stress on crustacean larval growth and protein and lipid levels are related to life-histories: the genus Armases as a model.

    PubMed

    Torres, Gabriela; Giménez, Luis; Anger, Klaus

    2007-10-01

    In the larval stages of three euryhaline species of the genus Armases, we tested if changes in biomass (dry mass, W; protein; lipid) under hyposmotic stress were related to their salinity tolerance, capabilities of osmoregulation, and migration patterns. As model species, we compared Armases miersii, which breeds in supratidal rock pools, the riverine crab Armases roberti (showing a larval export strategy), and Armases ricordi, whose larvae probably develop in coastal marine waters. At each stage, larvae were exposed to different salinities (selected according to previous information on larval survival; range: 5 per thousand-32 per thousand for A. miersii, 10 per thousand-32 per thousand for A. roberti, and 15 per thousand-32 per thousand for A. ricordi). Biomass was measured in early postmoult and intermoult. The larvae of the strongly osmoregulating species A. miersii, which develop in habitats with highly variable salinity conditions, showed the smallest variations in biomass. The effect on A. roberti varied during its ontogeny: the Zoea I and the Megalopa, which carry out downstream and upstream migrations, respectively, showed lower biomass variations than the intermediate zoeal instars, which develop in coastal waters. The larvae of A. ricordi showed generally the highest variations in biomass, reflecting poor adaptation to salinity variations. In addition, a common pattern was found for these estuarine species: the maximum of biomass shifted during ontogeny from 32 per thousand to 25 per thousand, reflecting changes of the iso-osmotic point. The ontogeny of osmoregulation reflected ontogenetic migration patterns, which allow for avoiding detrimental effects of salinity variations. PMID:17611134

  14. Effects of acute and chronic psychological stress on platelet aggregation in mice.

    PubMed

    Matsuhisa, Fumikazu; Kitamura, Nobuo; Satoh, Eiki

    2014-03-01

    Although psychological stress has long been known to alter cardiovascular function, there have been few studies on the effect of psychological stress on platelets, which play a pivotal role in cardiovascular disease. In the present study, we investigated the effects of acute and chronic psychological stress on the aggregation of platelets and platelet cytosolic free calcium concentration ([Ca(2+)]i). Mice were subjected to both transportation stress (exposure to novel environment, psychological stress) and restraint stress (psychological stress) for 2 h (acute stress) or 3 weeks (2 h/day) (chronic stress). In addition, adrenalectomized mice were subjected to similar chronic stress (both transportation and restraint stress for 3 weeks). The aggregation of platelets from mice and [Ca(2+)]i was determined by light transmission assay and fura-2 fluorescence assay, respectively. Although acute stress had no effect on agonist-induced platelet aggregation, chronic stress enhanced the ability of the platelet agonists thrombin and ADP to stimulate platelet aggregation. However, chronic stress failed to enhance agonist-induced increase in [Ca(2+)]i. Adrenalectomy blocked chronic stress-induced enhancement of platelet aggregation. These results suggest that chronic, but not acute, psychological stress enhances agonist-stimulated platelet aggregation independently of [Ca(2+)]i increase, and the enhancement may be mediated by stress hormones secreted from the adrenal glands.

  15. Impairments of spatial working memory and attention following acute psychosocial stress.

    PubMed

    Olver, James S; Pinney, Myra; Maruff, Paul; Norman, Trevor R

    2015-04-01

    Few studies have investigated the effect of an acute psychosocial stress paradigm on impaired attention and working memory in humans. Further, the duration of any stress-related cognitive impairment remains unclear. The aim of this study was to examine the effect of an acute psychosocial stress paradigm, the Trier Social Stress, on cognitive function in healthy volunteers. Twenty-three healthy male and female subjects were exposed to an acute psychosocial stress task. Physiological measures (salivary cortisol, heart rate and blood pressure) and subjective stress ratings were measured at baseline, in anticipation of stress, immediately post-stress and after a period of rest. A neuropsychological test battery including spatial working memory and verbal memory was administered at each time point. Acute psychosocial stress produced significant increases in cardiovascular and subjective measures in the anticipatory and post-stress period, which recovered to baseline after rest. Salivary cortisol steadily declined over the testing period. Acute psychosocial stress impaired delayed verbal recall, attention and spatial working memory. Attention remained impaired, and delayed verbal recall continued to decline after rest. Acute psychosocial stress is associated with an impairment of a broad range of cognitive functions in humans and with prolonged abnormalities in attention and memory.

  16. Acute Stress Symptoms in Children: Results From an International Data Archive

    ERIC Educational Resources Information Center

    Kassam-Adams, Nancy; Palmieri, Patrick A.; Rork, Kristine; Delahanty, Douglas L.; Kenardy, Justin; Kohser, Kristen L.; Landolt, Markus A.; Le Brocque, Robyne; Marsac, Meghan L.; Meiser-Stedman, Richard; Nixon, Reginald D.V.; Bui, Eric; McGrath, Caitlin

    2012-01-01

    Objective: To describe the prevalence of acute stress disorder (ASD) symptoms and to examine proposed "DSM-5" symptom criteria in relation to concurrent functional impairment in children and adolescents. Method: From an international archive, datasets were identified that included assessment of acute traumatic stress reactions and concurrent…

  17. Factor Structure of the Acute Stress Disorder Scale in a Sample of Hurricane Katrina Evacuees

    ERIC Educational Resources Information Center

    Edmondson, Donald; Mills, Mary Alice; Park, Crystal L.

    2010-01-01

    Acute stress disorder (ASD) is a poorly understood and controversial diagnosis (A. G. Harvey & R. A. Bryant, 2002). The present study used confirmatory factor analysis (CFA) to test the factor structure of the most widely used self-report measure of ASD, the Acute Stress Disorder Scale (R. A. Bryant, M. L. Moulds, & R. M. Guthrie, 2000), in a…

  18. Dysfunctional cognitive appraisal and psychophysiological reactivity in acute stress disorder.

    PubMed

    Elsesser, Karin; Freyth, Claudia; Lohrmann, Thomas; Sartory, Gudrun

    2009-10-01

    The present study investigated the extent of dysfunctional appraisal as measured with the Posttraumatic Cognitions Inventory (PTCI) and physiological responses to trauma-related material in patients with acute stress disorder (ASD; N=44) in comparison to participants without trauma exposure (N=27). Heart-rate (HR), skin conductance responses (SCR), and viewing time were recorded in response to - for trauma victims - idiosyncratically trauma-relevant and control pictures. ASD patients evidenced greater dysfunctional appraisal than control participants with regard to the PTCI scales Self and World and also an accelerative HR reaction and greater SCRs to trauma-relevant pictures. Among patients, PTCI was highly correlated with ASD severity while PTCI World was positively correlated with resting HR and depression. Amplitude of the HR reaction to trauma-related pictures was negatively correlated with viewing time. Results suggest that dysfunctional appraisal and autonomic reactivity are only loosely related in ASD.

  19. Effect of Acute Surgical Stress on Serum Ghrelin Levels

    PubMed Central

    Kontoravdis, Nikolaos; Vassilikostas, George; Lagoudianakis, Emmanuel; Pappas, Apostolos; Seretis, Charalampos; Panagiotopoulos, Nikolaos; Koronakis, Nikolaos; Chrysikos, John; Karanikas, George; Manouras, Ioannis; Legakis, Ioanis; Voros, Dionysios

    2012-01-01

    Background Ghrelin is an appetite hormone that influences the gastrointestinal function and regulates energy metabolism. Growing evidence also suggests that this hormone plays a central role in immune modulation. Each surgical operation is followed by a series of inflammatory and metabolic changes that constitute the stress response. The aim of our study is to evaluate the effect of stress during different types of abdominal surgery in ghrelin serum levels. Methods An overall of 25 patients were prospectively allocated in two groups based on the type of surgical operation. Group A (n = 10) patients were scheduled to undergo cholecystectomy, whereas Group B (n = 15) patients underwent colectomy. Serum ghrelin concentrations were evaluated in each patient preoperatively, after the induction of general anesthesia and tracheal intubation, one and five hours after the beginning of surgery and the morning of the first and second postoperative day. Results In both groups serum ghrelin concentrations reached their peak level at 24 hr (Group A: 8.4 ± 3.4 ng/mL; Group B: 7.4 ± 1.8 ng/mL) and these values were significantly higher than those in the preoperative period (Group A: 5.0 ±1.5 ng/mL; Group B: 4.8 ± 0.6 ng/mL) (P < 0.05). Forty eight hours after surgery the levels of ghrelin returned to their preoperative status. Patients’ gender, age, ASA score and type of surgical procedure did not influence the serum ghrelin levels. Conclusions Serum ghrelin concentration appears to elevate in response to surgical stress. Future studies are needed to improve comprehension of the mechanisms underlying responses of this hormone to acute surgical stress and to evaluate their possible clinical implications.

  20. Acute stress disorder in hospitalised victims of 26/11-terror attack on Mumbai, India.

    PubMed

    Balasinorwala, Vanshree Patil; Shah, Nilesh

    2010-11-01

    The 26/11 terror attacks on Mumbai have been internationally denounced. Acute stress disorder is common in victims of terror. To find out the prevalence and to correlate acute stress disorder, 70 hospitalised victims of terror were assessed for presence of the same using DSM-IV TR criteria. Demographic data and clinical variables were also collected. Acute stress disorder was found in 30% patients. On demographic profile and severity of injury, there were some interesting observations and differences between the victims who developed acute stress disorder and those who did not; though none of the differences reached the level of statistical significance. This study documents the occurrence of acute stress disorder in the victims of 26/11 terror attack.

  1. How acute is the acute stress response? Baseline corticosterone and corticosteroid-binding globulin levels change 24h after an acute stressor in Japanese quail.

    PubMed

    Malisch, Jessica L; Satterlee, Daniel G; Cockrem, John F; Wada, Haruka; Breuner, Creagh W

    2010-01-15

    Changes in plasma corticosteroid-binding globulin (CBG) capacity can alter free plasma concentration and tissue availability of glucocorticoids (GC) and hence alter the organismal response to stress. However, CBG change in response to stress has not been extensively studied. While it is clear that chronic stress can causes CBG decline and in some species acute stressors can reduce CBG during the 30-60 min of the stressor, more long-term changes in CBG following an acute stressor has received less attention. Here we investigated corticosterone (CORT: the primary GC in birds) and CBG levels 24h after an acute stressor in a unique study system: Japanese quail divergently selected for CORT reactivity to acute stress. Using this model, we examined the interaction of selected CORT reactivity with CBG response to determine if CBG shows a delayed decline in response to an acute stressor and if that decline varies by selected genetic background. We found lowered CBG capacity, elevated total CORT and free CORT 24h after acute stress in all three quail groups. These results demonstrate for the first time in an avian species that exposure to an acute stressor can affect CBG and CORT 24h later.

  2. Computer Models of Stress, Allostasis, and Acute and Chronic Diseases

    PubMed Central

    Goldstein, David S.

    2009-01-01

    The past century has seen a profound shift in diseases of humankind. Acute, unifactorial diseases are being replaced increasingly by multifactorial disorders that arise from complex interactions among genes, environment, concurrent morbidities and treatments, and time. According to the concept of allostasis, there is no single, ideal set of steady-state conditions in life. Allostasis reflects active, adaptive processes that maintain apparent steady states, via multiple, interacting effectors regulated by homeostatic comparators “homeostats.” Stress can be defined as a condition or state in which a sensed discrepancy between afferent information and a setpoint for response leads to activation of effectors, reducing the discrepancy. “Allostatic load” refers to the consequences of sustained or repeated activation of mediators of allostasis. From the analogy of a home temperature control system, the temperature can be maintained at any of a variety of levels (allostatic states) by multiple means (effectors), regulated by a comparator thermostat (homeostat). Stress might exert adverse health consequences via allostatic load. This presentation describes models of homeostatic systems that incorporate negative feedback regulation, multiple effectors, effector sharing, environmental influences, intrinsic obsolescence, and destabilizing positive feedback loops. These models can be used to predict effects of environmental and genetic alterations on allostatic load and therefore on the development of multi-system disorders and failures. PMID:19120114

  3. Effects of Acute Stress on Decision Making under Ambiguous and Risky Conditions in Healthy Young Men.

    PubMed

    Cano-López, Irene; Cano-López, Beatriz; Hidalgo, Vanesa; González-Bono, Esperanza

    2016-01-01

    Acute stress and decision making (DM) interact in life - although little is known about the role of ambiguity and risk in this interaction. The aim of this study is to clarify the effect of acute stress on DM under various conditions. Thirty-one young healthy men were randomly distributed into two groups: experimental and control. DM processes were evaluated before and after an experimental session. For the experimental group, the session consisted of an acute stress battery; and the protocol was similar for the control group but the instructions were designed to minimize acute stress. Cardiovascular variables were continuously recorded 30 minutes before the DM tasks and during the experimental session. Cortisol, glucose, mood responses, and personality factors were also assessed. Acute stress was found to enhance disadvantageous decisions under ambiguous conditions (F(1, 29) = 4.16, p = .05, η2 p = .13), and this was mainly explained by the stress induced cortisol response (26.1% of variance, F(1, 30) = 11.59, p = .002). While there were no significant effects under risky conditions, inhibition responses differed between groups (F(1, 29) = 4.21, p = .05, η2 p = .13) and these differences were explained by cardiovascular and psychological responses (39.1% of variance, F(3, 30) = 7.42, p < .001). Results suggest that DM tasks could compete with cognitive resources after acute stress and could have implications for intervention in acute stress effects on DM in contexts such as addiction or eating disorders. PMID:27644414

  4. Secondhand smoke exposure induces acutely airway acidification and oxidative stress.

    PubMed

    Kostikas, Konstantinos; Minas, Markos; Nikolaou, Eftychia; Papaioannou, Andriana I; Liakos, Panagiotis; Gougoura, Sofia; Gourgoulianis, Konstantinos I; Dinas, Petros C; Metsios, Giorgos S; Jamurtas, Athanasios Z; Flouris, Andreas D; Koutedakis, Yiannis

    2013-02-01

    Previous studies have shown that secondhand smoke induces lung function impairment and increases proinflammatory cytokines. The aim of the present study was to evaluate the acute effects of secondhand smoke on airway acidification and airway oxidative stress in never-smokers. In a randomized controlled cross-over trial, 18 young healthy never-smokers were assessed at baseline and 0, 30, 60, 120, 180 and 240 min after one-hour secondhand smoke exposure at bar/restaurant levels. Exhaled NO and CO measurements, exhaled breath condensate collection (for pH, H(2)O(2) and NO(2)(-)/NO(3)(-) measurements) and spirometry were performed at all time-points. Secondhand smoke exposure induced increases in serum cotinine and exhaled CO that persisted until 240 min. Exhaled breath condensate pH decreased immediately after exposure (p < 0.001) and returned to baseline by 180 min, whereas H(2)O(2) increased at 120 min and remained increased at 240 min (p = 0.001). No changes in exhaled NO and NO(2)/NO(3) were observed, while decreases in FEV(1) (p < 0.001) and FEV(1)/FVC (p < 0.001) were observed after exposure and returned to baseline by 180 min. A 1-h exposure to secondhand smoke induced airway acidification and increased airway oxidative stress, accompanied by significant impairment of lung function. Despite the reversal in EBC pH and lung function, airway oxidative stress remained increased 4 h after the exposure. Clinical trial registration number (EudraCT): 2009-013545-28.

  5. Acute stress disorder as a predictor of posttraumatic stress: A longitudinal study of Chinese children exposed to the Lushan earthquake.

    PubMed

    Zhou, Peiling; Zhang, Yuqing; Wei, Chuguang; Liu, Zhengkui; Hannak, Walter

    2016-09-01

    This study examined the prevalence of acute stress disorder (ASD) and posttraumatic stress disorder (PTSD) in children who experienced the Lushan earthquake in Sichuan, China, and assessed the ability of ASD to predict PTSD. The Acute Stress Disorder Scale (ASDS) was used to assess acute stress reaction within weeks of the trauma. The University of California at Los Angeles Post-Traumatic Stress Disorder Reaction Index (UCLA-PTSD) for children was administered at intervals of 2, 6, and 12 months after the earthquake to 197 students who experienced the Lushan earthquake at the Longxing Middle School. The results demonstrated that 28.4% of the children suffered from ASD, but only a small percentage of the population went on to develop PTSD. Among all of the students, 35.0% of those who met the criteria for ASD were diagnosed with PTSD at the 12-month interval. The severity of ASD symptoms correlated with later PTSD symptoms.

  6. Acute stress differentially affects aromatase activity in specific brain nuclei of adult male and female quail.

    PubMed

    Dickens, Molly J; Cornil, Charlotte A; Balthazart, Jacques

    2011-11-01

    The rapid and temporary suppression of reproductive behavior is often assumed to be an important feature of the adaptive acute stress response. However, how this suppression operates at the mechanistic level is poorly understood. The enzyme aromatase converts testosterone to estradiol in the brain to activate reproductive behavior in male Japanese quail (Coturnix japonica). The discovery of rapid and reversible modification of aromatase activity (AA) provides a potential mechanism for fast, stress-induced changes in behavior. We investigated the effects of acute stress on AA in both sexes by measuring enzyme activity in all aromatase-expressing brain nuclei before, during, and after 30 min of acute restraint stress. We show here that acute stress rapidly alters AA in the male and female brain and that these changes are specific to the brain nuclei and sex of the individual. Specifically, acute stress rapidly (5 min) increased AA in the male medial preoptic nucleus, a region controlling male reproductive behavior; in females, a similar increase was also observed, but it appeared delayed (15 min) and had smaller amplitude. In the ventromedial and tuberal hypothalamus, regions associated with female reproductive behavior, stress induced a quick and sustained decrease in AA in females, but in males, only a slight increase (ventromedial) or no change (tuberal) in AA was observed. Effects of acute stress on brain estrogen production, therefore, represent one potential way through which stress affects reproduction.

  7. Review of VA/DOD Clinical Practice Guideline on management of acute stress and interventions to prevent posttraumatic stress disorder.

    PubMed

    Nash, William P; Watson, Patricia J

    2012-01-01

    This article summarizes the recommendations of the Department of Veterans Affairs (VA)/Department of Defense (DOD) VA/DOD Clinical Practice Guideline for Management of Post-Traumatic Stress that pertain to acute stress and the prevention of posttraumatic stress disorder, including screening and early interventions for acute stress states in various settings. Recommended interventions during the first 4 days after a potentially traumatic event include attending to safety and basic needs and providing access to physical, emotional, and social resources. Psychological first aid is recommended for management of acute stress, while psychological debriefing is discouraged. Further medical and psychiatric assessment and provision of brief, trauma-focused cognitive-behavioral therapy are warranted if clinically significant distress or functional impairment persists or worsens after 2 days or if the criteria for a diagnosis of acute stress disorder are met. Follow-up monitoring and rescreening are endorsed for at least 6 months for everyone who experiences significant acute posttraumatic stress. Four interventions that illustrate early intervention principles contained in the VA/DOD Clinical Practice Guideline are described.

  8. Entrainment of the mouse circadian clock by sub-acute physical and psychological stress.

    PubMed

    Tahara, Yu; Shiraishi, Takuya; Kikuchi, Yosuke; Haraguchi, Atsushi; Kuriki, Daisuke; Sasaki, Hiroyuki; Motohashi, Hiroaki; Sakai, Tomoko; Shibata, Shigenobu

    2015-01-01

    The effects of acute stress on the peripheral circadian system are not well understood in vivo. Here, we show that sub-acute stress caused by restraint or social defeat potently altered clock gene expression in the peripheral tissues of mice. In these peripheral tissues, as well as the hippocampus and cortex, stressful stimuli induced time-of-day-dependent phase-advances or -delays in rhythmic clock gene expression patterns; however, such changes were not observed in the suprachiasmatic nucleus, i.e. the central circadian clock. Moreover, several days of stress exposure at the beginning of the light period abolished circadian oscillations and caused internal desynchronisation of peripheral clocks. Stress-induced changes in circadian rhythmicity showed habituation and disappeared with long-term exposure to repeated stress. These findings suggest that sub-acute physical/psychological stress potently entrains peripheral clocks and causes transient dysregulation of circadian clocks in vivo.

  9. Prolonged Effects of Acute Stress on Decision-Making under Risk: A Human Psychophysiological Study.

    PubMed

    Yamakawa, Kaori; Ohira, Hideki; Matsunaga, Masahiro; Isowa, Tokiko

    2016-01-01

    This study investigates the prolonged effects of physiological responses induced by acute stress on risk-taking in decision-making. Participants were divided into a Stress group (N = 14) and a Control group (N = 12). The Trier Social Stress Test was administered as an acute stressor, and reading was administered as a control task; thereafter, participants performed a decision-making task in which they needed to choose a sure option or a gamble option in Gain and Loss frame trials 2 h after (non-) exposure to the stressor. Increased cortisol, adrenaline, heart rate (HR), and subjective stress levels validated acute stress manipulation. Stressed participants made fewer risky choices only in the Gain domain, whereas no effect of stress was shown in the Loss domain. Deceleration of HR reflecting attention was greater for Gains compared with Losses only in the Stress group. Risk avoidance was determined by increased levels of cortisol caused by acute stress. These results suggest that processes regarding glucocorticoid might be involved in the prolonged effects of acute stress on the evaluation of risks and the monitoring of outcomes in decision-making. PMID:27679566

  10. Prolonged Effects of Acute Stress on Decision-Making under Risk: A Human Psychophysiological Study

    PubMed Central

    Yamakawa, Kaori; Ohira, Hideki; Matsunaga, Masahiro; Isowa, Tokiko

    2016-01-01

    This study investigates the prolonged effects of physiological responses induced by acute stress on risk-taking in decision-making. Participants were divided into a Stress group (N = 14) and a Control group (N = 12). The Trier Social Stress Test was administered as an acute stressor, and reading was administered as a control task; thereafter, participants performed a decision-making task in which they needed to choose a sure option or a gamble option in Gain and Loss frame trials 2 h after (non-) exposure to the stressor. Increased cortisol, adrenaline, heart rate (HR), and subjective stress levels validated acute stress manipulation. Stressed participants made fewer risky choices only in the Gain domain, whereas no effect of stress was shown in the Loss domain. Deceleration of HR reflecting attention was greater for Gains compared with Losses only in the Stress group. Risk avoidance was determined by increased levels of cortisol caused by acute stress. These results suggest that processes regarding glucocorticoid might be involved in the prolonged effects of acute stress on the evaluation of risks and the monitoring of outcomes in decision-making. PMID:27679566

  11. Prolonged Effects of Acute Stress on Decision-Making under Risk: A Human Psychophysiological Study

    PubMed Central

    Yamakawa, Kaori; Ohira, Hideki; Matsunaga, Masahiro; Isowa, Tokiko

    2016-01-01

    This study investigates the prolonged effects of physiological responses induced by acute stress on risk-taking in decision-making. Participants were divided into a Stress group (N = 14) and a Control group (N = 12). The Trier Social Stress Test was administered as an acute stressor, and reading was administered as a control task; thereafter, participants performed a decision-making task in which they needed to choose a sure option or a gamble option in Gain and Loss frame trials 2 h after (non-) exposure to the stressor. Increased cortisol, adrenaline, heart rate (HR), and subjective stress levels validated acute stress manipulation. Stressed participants made fewer risky choices only in the Gain domain, whereas no effect of stress was shown in the Loss domain. Deceleration of HR reflecting attention was greater for Gains compared with Losses only in the Stress group. Risk avoidance was determined by increased levels of cortisol caused by acute stress. These results suggest that processes regarding glucocorticoid might be involved in the prolonged effects of acute stress on the evaluation of risks and the monitoring of outcomes in decision-making.

  12. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways

    PubMed Central

    Christou, Anastasis; Manganaris, George A.; Papadopoulos, Ioannis; Fotopoulos, Vasileios

    2013-01-01

    Hydrogen sulfide (H2S) has been recently found to act as a potent priming agent. This study explored the hypothesis that hydroponic pretreatment of strawberry (Fragaria × ananassa cv. Camarosa) roots with a H2S donor, sodium hydrosulfide (NaHS; 100 μM for 48h), could induce long-lasting priming effects and tolerance to subsequent exposure to 100mM NaCI or 10% (w/v) PEG-6000 for 7 d. Hydrogen sulfide pretreatment of roots resulted in increased leaf chlorophyll fluorescence, stomatal conductance and leaf relative water content as well as lower lipid peroxidation levels in comparison with plants directly subjected to salt and non-ionic osmotic stress, thus suggesting a systemic mitigating effect of H2S pretreatment to cellular damage derived from abiotic stress factors. In addition, root pretreatment with NaHS resulted in the minimization of oxidative and nitrosative stress in strawberry plants, manifested via lower levels of synthesis of NO and H2O2 in leaves and the maintenance of high ascorbate and glutathione redox states, following subsequent salt and non-ionic osmotic stresses. Quantitative real-time RT-PCR gene expression analysis of key antioxidant (cAPX, CAT, MnSOD, GR), ascorbate and glutathione biosynthesis (GCS, GDH, GS), transcription factor (DREB), and salt overly sensitive (SOS) pathway (SOS2-like, SOS3-like, SOS4) genes suggests that H2S plays a pivotal role in the coordinated regulation of multiple transcriptional pathways. The ameliorative effects of H2S were more pronounced in strawberry plants subjected to both stress conditions immediately after NaHS root pretreatment, rather than in plants subjected to stress conditions 3 d after root pretreatment. Overall, H2S-pretreated plants managed to overcome the deleterious effects of salt and non-ionic osmotic stress by controlling oxidative and nitrosative cellular damage through increased performance of antioxidant mechanisms and the coordinated regulation of the SOS pathway, thus proposing a novel

  13. Lower Electrodermal Activity to Acute Stress in Caregivers of People with Autism Spectrum Disorder: An Adaptive Habituation to Stress

    ERIC Educational Resources Information Center

    Ruiz-Robledillo, Nicolás; Moya-Albiol, Luis

    2015-01-01

    Caring for a relative with autism spectrum disorder (ASD) entails being under chronic stress that could alter body homeostasis. Electrodermal activity (EDA) is an index of the sympathetic activity of the autonomic nervous system related to emotionality and homeostasis. This study compares EDA in response to acute stress in the laboratory between…

  14. Cognitive Load Undermines Thought Suppression in Acute Stress Disorder.

    PubMed

    Nixon, Reginald D V; Rackebrandt, Julie

    2016-05-01

    Thought suppression studies demonstrate that attempts to suppress can be undermined by cognitive load. We report the first instance in which this has been tested experimentally in a sample of recently traumatized individuals. Individuals with and without acute stress disorder (ASD) were recruited following recent trauma and randomized to load or no load conditions (N=56). They monitored intrusive memories during baseline, suppression, and think anything phases. The impact of suppression and load on self-reported intrusions, attention bias (dot-probe), and memory priming (word-stem task) was assessed. The ASD load group were less able to suppress memories (d=0.32, CI95 [-0.15, 0.83], p=.088) than the ASD no load group (d=0.63, CI95 [0.08, 1.24], p<.001). In the think anything phase, the ASD load group reported more intrusions than the ASD no load or non-ASD groups (with and without load). No consistent findings were observed in relation to attentional bias. ASD load individuals exhibited stronger priming responses for motor vehicle accident and assault words than all other groups (ds between 0.35-0.73). Working memory did not moderate any outcomes of interest. The findings indicate that cognitive load interferes with suppression and may enhance access to trauma memories and associated material. The study extends previous research by demonstrating these effects for the first time in a clinical sample of recent survivors of trauma. PMID:27157032

  15. Acute stress switches spatial navigation strategy from egocentric to allocentric in a virtual Morris water maze.

    PubMed

    van Gerven, Dustin J H; Ferguson, Thomas; Skelton, Ronald W

    2016-07-01

    Stress and stress hormones are known to influence the function of the hippocampus, a brain structure critical for cognitive-map-based, allocentric spatial navigation. The caudate nucleus, a brain structure critical for stimulus-response-based, egocentric navigation, is not as sensitive to stress. Evidence for this comes from rodent studies, which show that acute stress or stress hormones impair allocentric, but not egocentric navigation. However, there have been few studies investigating the effect of acute stress on human spatial navigation, and the results of these have been equivocal. To date, no study has investigated whether acute stress can shift human navigational strategy selection between allocentric and egocentric navigation. The present study investigated this question by exposing participants to an acute psychological stressor (the Paced Auditory Serial Addition Task, PASAT), before testing navigational strategy selection in the Dual-Strategy Maze, a modified virtual Morris water maze. In the Dual-Strategy maze, participants can chose to navigate using a constellation of extra-maze cues (allocentrically) or using a single cue proximal to the goal platform (egocentrically). Surprisingly, PASAT stress biased participants to solve the maze allocentrically significantly more, rather than less, often. These findings have implications for understanding the effects of acute stress on cognitive function in general, and the function of the hippocampus in particular.

  16. Acute stress switches spatial navigation strategy from egocentric to allocentric in a virtual Morris water maze.

    PubMed

    van Gerven, Dustin J H; Ferguson, Thomas; Skelton, Ronald W

    2016-07-01

    Stress and stress hormones are known to influence the function of the hippocampus, a brain structure critical for cognitive-map-based, allocentric spatial navigation. The caudate nucleus, a brain structure critical for stimulus-response-based, egocentric navigation, is not as sensitive to stress. Evidence for this comes from rodent studies, which show that acute stress or stress hormones impair allocentric, but not egocentric navigation. However, there have been few studies investigating the effect of acute stress on human spatial navigation, and the results of these have been equivocal. To date, no study has investigated whether acute stress can shift human navigational strategy selection between allocentric and egocentric navigation. The present study investigated this question by exposing participants to an acute psychological stressor (the Paced Auditory Serial Addition Task, PASAT), before testing navigational strategy selection in the Dual-Strategy Maze, a modified virtual Morris water maze. In the Dual-Strategy maze, participants can chose to navigate using a constellation of extra-maze cues (allocentrically) or using a single cue proximal to the goal platform (egocentrically). Surprisingly, PASAT stress biased participants to solve the maze allocentrically significantly more, rather than less, often. These findings have implications for understanding the effects of acute stress on cognitive function in general, and the function of the hippocampus in particular. PMID:27174311

  17. Variations of physiological and innate immunological responses in goldfish (Carassius auratus) subjected to recurrent acute stress.

    PubMed

    Eslamloo, Khalil; Akhavan, Sobhan R; Fallah, Farzin Jamalzad; Henry, Morgane A

    2014-03-01

    This study was undertaken to investigate the influence of repeated acute stress on the physiological status and non-specific immune response of goldfish, Carassius auratus. The acute stress was a succession of a 3 min-chasing period followed by a 2 min-air exposure. The goldfish in triplicate tanks were subjected 3 times daily to this stress for one (S3) or three (S9) days. A separate group of unstressed fish was used as control for each sampling time. Blood samples were collected 12, 48 and 120 h after the last stress procedure. Variations of globulin levels, plasma anti-protease and bactericidal activities were not significant in the present study. The haematological parameters and plasma total protein and albumin strongly declined in S9 fish 12 h post-stress compared to control fish. However, plasma cortisol, glucose and lactate levels in both S3 and S9 transiently increased compared to the control fish. Similarly, plasma peroxidase activity transiently increased in both stressed groups 12 h after stress. An increase in plasma lysozyme and complement activities suggested a hormesis-like effect with one-day acute stress improving the immunological response of goldfish while an extension of the stress period to three days impaired physiology and immunity for up to 5 days. This study revealed that recurrent acute stress could immunosuppress goldfish as usually expected of chronic stress.

  18. Perceived Chronic Stress Exposure Modulates Reward-Related Medial Prefrontal Cortex Responses to Acute Stress in Depression

    PubMed Central

    Kumar, Poornima; Slavich, George M.; Berghorst, Lisa H.; Treadway, Michael T.; Brooks, Nancy H.; Dutra, Sunny J.; Greve, Douglas N.; O'Donovan, Aoife; Bleil, Maria E.; Maninger, Nicole; Pizzagalli, Diego A.

    2015-01-01

    Introduction Major depressive disorder (MDD) is often precipitated by life stress and growing evidence suggests that stress-induced alterations in reward processing may contribute to such risk. However, no human imaging studies have examined how recent life stress exposure modulates the neural systems that underlie reward processing in depressed and healthy individuals. Methods In this proof-of-concept study, 12 MDD and 10 psychiatrically healthy individuals were interviewed using the Life Events and Difficulties Schedule (LEDS) to assess their perceived levels of recent acute and chronic life stress exposure. Additionally, each participant performed a monetary incentive delay task under baseline (no-stress) and stress (social-evaluative) conditions during functional MRI. Results Across groups, medial prefrontal cortex (mPFC) activation to reward feedback was greater during acute stress versus no-stress conditions in individuals with greater perceived stressor severity. Under acute stress, depressed individuals showed a positive correlation between perceived stressor severity levels and reward-related mPFC activation (r = 0.79, p = 0.004), whereas no effect was found in healthy controls. Moreover, for depressed (but not healthy) individuals, the correlations between the stress (r = 0.79) and no-stress (r = −0.48) conditions were significantly different. Finally, relative to controls, depressed participants showed significantly reduced mPFC grey matter, but functional findings remained when accounting for structural differences. Limitation Small sample size, which warrants replication. Conclusion Depressed individuals experiencing greater recent life stress recruited the mPFC more under stress when processing rewards. Our results represent an initial step toward elucidating mechanisms underlying stress sensitization and recurrence in depression. PMID:25898329

  19. Acute stress differentially affects spatial configuration learning in high and low cortisol-responding healthy adults

    PubMed Central

    Meyer, Thomas; Smeets, Tom; Giesbrecht, Timo; Quaedflieg, Conny W. E. M.; Merckelbach, Harald

    2013-01-01

    Background Stress and stress hormones modulate memory formation in various ways that are relevant to our understanding of stress-related psychopathology, such as posttraumatic stress disorder (PTSD). Particular relevance is attributed to efficient memory formation sustained by the hippocampus and parahippocampus. This process is thought to reduce the occurrence of intrusions and flashbacks following trauma, but may be negatively affected by acute stress. Moreover, recent evidence suggests that the efficiency of visuo-spatial processing and learning based on the hippocampal area is related to PTSD symptoms. Objective The current study investigated the effect of acute stress on spatial configuration learning using a spatial contextual cueing task (SCCT) known to heavily rely on structures in the parahippocampus. Method Acute stress was induced by subjecting participants (N = 34) to the Maastricht Acute Stress Test (MAST). Following a counterbalanced within-subject approach, the effects of stress and the ensuing hormonal (i.e., cortisol) activity on subsequent SCCT performance were compared to SCCT performance following a no-stress control condition. Results Acute stress did not impact SCCT learning overall, but opposing effects emerged for high versus low cortisol responders to the MAST. Learning scores following stress were reduced in low cortisol responders, while high cortisol-responding participants showed improved learning. Conclusions The effects of stress on spatial configuration learning were moderated by the magnitude of endogenous cortisol secretion. These findings suggest a possible mechanism by which cortisol responses serve an adaptive function during stress and trauma, and this may prove to be a promising route for future research in this area. PMID:23671762

  20. Nanofluidic osmotic diodes

    NASA Astrophysics Data System (ADS)

    Bocquet, Lyderic; Picallo, Clara; Gravelle, Simon; Joly, Laurent; Charlaix, Elisabeth

    2013-11-01

    Osmosis describes the flow of water across semipermeable membranes powered by the chemical free energy extracted from salinity gradients. While osmosis can be expressed in simple terms via the van't Hoff ideal gas formula for the osmotic pressure, it is a complex phenomenon taking its roots in the subtle interactions occurring at the scale of the membrane nanopores. Here we use new opportunities offered by nanofluidic systems to create an osmotic diode exhibiting asymmetric water flow under reversal of osmotic driving. We show that a surface charge asymmetry built on a nanochannel surface leads to non-linear couplings between water flow and the ion dynamics, which are capable of water flow rectification. This phenomenon opens new opportunities for water purification and complex flow control in nanochannels.

  1. Behavioral, endocrine, immune, and performance measures for pigs exposed to acute stress.

    PubMed

    Hicks, T A; McGlone, J J; Whisnant, C S; Kattesh, H G; Norman, R L

    1998-02-01

    Weanling pigs (n = 132) were used to investigate the effects of three common stressors (and a control) and differing social status on behavior, immunity, plasma cortisol, blood chemical, and performance measures. Eleven blocks of 12 pigs each were evaluated. Each pen contained three pigs of dominant (DOM), intermediate (INT), or submissive (SUB) social status. Two weeks later, random pens of pigs experienced either a control treatment (CON) or they were stressed for 4 h by shipping (SHIP), heat-stressed (HEAT) with overhead heat lamps in their home pens, or cold-stressed (COLD) by direct application of water and an air current. Treatments did not influence body weights; however, percentage weight loss during SHIP was greater than for other treatments. Body weights were heavier for DOM pigs than for INT and SUB pigs. Social status had large effects on plasma cortisol, globulin, acute-phase proteins, body weight, and weight changes. Only acute shipping stress resulted in weight loss. Many immune and blood measures were not changed among acutely stressed pigs; however, the relationship between social status and mitogen-induced lymphocyte proliferation and natural killer cell cytotoxicity was disrupted during acute stress. Pig behavior was significantly changed by each stress treatment in a unique manner. During acute stress, behavioral changes seem to be the most consistent and reliable indicators.

  2. Alterations in neuronal morphology in infralimbic cortex predict resistance to fear extinction following acute stress

    PubMed Central

    Moench, Kelly M.; Maroun, Mouna; Kavushansky, Alexandra; Wellman, Cara

    2015-01-01

    Dysfunction in corticolimbic circuits that mediate the extinction of learned fear responses is thought to underlie the perseveration of fear in stress-related psychopathologies, including post-traumatic stress disorder. Chronic stress produces dendritic hypertrophy in basolateral amygdala (BLA) and dendritic hypotrophy in medial prefrontal cortex, whereas acute stress leads to hypotrophy in both BLA and prelimbic cortex. Additionally, both chronic and acute stress impair extinction retrieval. Here, we examined the effects of a single elevated platform stress on extinction learning and dendritic morphology in infralimbic cortex, a region considered to be critical for extinction. Acute stress produced resistance to extinction, as well as dendritic retraction in infralimbic cortex. Spine density on apical and basilar terminal branches was unaffected by stress. However, animals that underwent conditioning and extinction had decreased spine density on apical terminal branches. Thus, whereas dendritic morphology in infralimbic cortex appears to be particularly sensitive to stress, changes in spines may more sensitively reflect learning. Further, in stressed rats that underwent conditioning and extinction, the level of extinction learning was correlated with spine densities, in that rats with poorer extinction retrieval had more immature spines and fewer thin spines than rats with better extinction retrieval, suggesting that stress may have impaired learning-related spine plasticity. These results may have implications for understanding the role of medial prefrontal cortex in learning deficits associated with stress-related pathologies. PMID:26844245

  3. Child Anxiety Symptoms Related to Longitudinal Cortisol Trajectories and Acute Stress Responses: Evidence of Developmental Stress Sensitization

    PubMed Central

    Laurent, Heidemarie K.; Gilliam, Kathryn S.; Wright, Dorianne B.; Fisher, Philip A.

    2015-01-01

    Cross-sectional research suggests that individuals at risk for internalizing disorders show differential activation levels and/or dynamics of stress-sensitive physiological systems, possibly reflecting a process of stress sensitization. However, there is little longitudinal research to clarify how the development of these systems over time relates to activation during acute stress, and how aspects of such activation map onto internalizing symptoms. We investigated children’s (n=107) diurnal hypothalamic-pituitary-adrenal activity via salivary cortisol (morning and evening levels) across 29 assessments spanning 6+ years, and related longitudinal patterns to acute stress responses at the end of this period (age 9–10). Associations with child psychiatric symptoms at age 10 were also examined to determine internalizing risk profiles. Increasing morning cortisol levels across assessments predicted less of a cortisol decline following interpersonal stress at age 9, and higher cortisol levels during performance stress at age 10. These same profiles of high and/or sustained cortisol elevation during psychosocial stress were associated with child anxiety symptoms. Results suggest developmental sensitization to stress—reflected in rising morning cortisol and eventual hyperactivation during acute stress exposure—may distinguish children at risk for internalizing disorders. PMID:25688433

  4. Acute stress regulates nociception and inflammatory response induced by bee venom in rats: possible mechanisms.

    PubMed

    Chen, Hui-Sheng; Li, Feng-Peng; Li, Xiao-Qiu; Liu, Bao-Jun; Qu, Fang; Wen, Wei-Wei; Wang, Yang; Lin, Qing

    2013-09-01

    Restraint stress modulates pain and inflammation. The present study was designed to evaluate the effect of acute restraint stress on inflammatory pain induced by subcutaneous injection of bee venom (BV). First, we investigated the effect of 1 h restraint on the spontaneous paw-flinching reflex (SPFR), decrease in paw withdrawal mechanical threshold (PWMT) and increase in paw volume (PV) of the injected paw induced by BV. SPFR was measured immediately after BV injection, and PWMT and PV were measured 2 h before BV and 2-8 h after BV. The results showed that acute restraint inhibited significantly the SPFR but failed to affect mechanical hyperalgesia. In contrast, stress enhanced significantly inflammatory swelling of the injected paw. In a second series of experiments, the effects of pretreatment with capsaicin locally applied to the sciatic nerve, systemic 6-hydroxydopamine (6-OHDA), and systemic naloxone were examined on the antinociception and proinflammation produced by acute restraint stress. Local capsaicin pretreatment inhibited BV-induced nociception and inflammatory edema, and had additive effects with stress on nociception but reduced stress enhancement of edema. Systemic 6-OHDA treatment attenuated the proinflammatory effect of stress, but did not affect the antinociceptive effect. Systemic naloxone pretreatment eliminated the antinociceptive effect of stress, but did not affect proinflammation. Taken together, our data indicate that acute restraint stress contributes to antinociception via activating an endogenous opioid system, while sympathetic postganglionic fibers may contribute to enhanced inflammation in the BV pain model.

  5. Chronic and acute effects of stress on energy balance: are there appropriate animal models?

    PubMed Central

    2014-01-01

    Stress activates multiple neural and endocrine systems to allow an animal to respond to and survive in a threatening environment. The corticotropin-releasing factor system is a primary initiator of this integrated response, which includes activation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis. The energetic response to acute stress is determined by the nature and severity of the stressor, but a typical response to an acute stressor is inhibition of food intake, increased heat production, and increased activity with sustained changes in body weight, behavior, and HPA reactivity. The effect of chronic psychological stress is more variable. In humans, chronic stress may cause weight gain in restrained eaters who show increased HPA reactivity to acute stress. This phenotype is difficult to replicate in rodent models where chronic psychological stress is more likely to cause weight loss than weight gain. An exception may be hamsters subjected to repeated bouts of social defeat or foot shock, but the data are limited. Recent reports on the food intake and body composition of subordinate members of group-housed female monkeys indicate that these animals have a similar phenotype to human stress-induced eaters, but there are a limited number of investigators with access to the model. Few stress experiments focus on energy balance, but more information on the phenotype of both humans and animal models during and after exposure to acute or chronic stress may provide novel insight into mechanisms that normally control body weight. PMID:25519732

  6. Amygdala-Hippocampal Connectivity Changes During Acute Psychosocial Stress: Joint Effect of Early Life Stress and Oxytocin.

    PubMed

    Fan, Yan; Pestke, Karin; Feeser, Melanie; Aust, Sabine; Pruessner, Jens C; Böker, Heinz; Bajbouj, Malek; Grimm, Simone

    2015-11-01

    Previous evidence shows that acute stress changes both amygdala activity and its connectivity with a distributed brain network. Early life stress (ELS), especially emotional abuse (EA), is associated with altered reactivity to psychosocial stress in adulthood and moderates or even reverses the stress-attenuating effect of oxytocin (OXT). The neural underpinnings of the interaction between ELS and OXT remain unclear, though. Therefore, we here investigate the joint effect of ELS and OXT on transient changes in amygdala-centered functional connectivity induced by acute psychosocial stress, using a double-blind, randomized, placebo-controlled, within-subject crossover design. Psychophysiological interaction analysis in the placebo session revealed stress-induced increases in functional connectivity between amygdala and medial prefrontal cortex, posterior cingulate cortex, putamen, caudate and thalamus. Regression analysis showed that EA was positively associated with stress-induced changes in connectivity between amygdala and hippocampus. Moreover, hierarchical linear regression showed that this positive association between EA and stress-induced amygdala-hippocampal connectivity was moderated after the administration of intranasal OXT. Amygdala-hippocampal connectivity in the OXT session correlated negatively with cortisol stress responses. Our findings suggest that altered amygdala-hippocampal functional connectivity during psychosocial stress may have a crucial role in the altered sensitivity to OXT effects in individuals who have experienced EA in their childhood.

  7. Amygdala-Hippocampal Connectivity Changes During Acute Psychosocial Stress: Joint Effect of Early Life Stress and Oxytocin.

    PubMed

    Fan, Yan; Pestke, Karin; Feeser, Melanie; Aust, Sabine; Pruessner, Jens C; Böker, Heinz; Bajbouj, Malek; Grimm, Simone

    2015-11-01

    Previous evidence shows that acute stress changes both amygdala activity and its connectivity with a distributed brain network. Early life stress (ELS), especially emotional abuse (EA), is associated with altered reactivity to psychosocial stress in adulthood and moderates or even reverses the stress-attenuating effect of oxytocin (OXT). The neural underpinnings of the interaction between ELS and OXT remain unclear, though. Therefore, we here investigate the joint effect of ELS and OXT on transient changes in amygdala-centered functional connectivity induced by acute psychosocial stress, using a double-blind, randomized, placebo-controlled, within-subject crossover design. Psychophysiological interaction analysis in the placebo session revealed stress-induced increases in functional connectivity between amygdala and medial prefrontal cortex, posterior cingulate cortex, putamen, caudate and thalamus. Regression analysis showed that EA was positively associated with stress-induced changes in connectivity between amygdala and hippocampus. Moreover, hierarchical linear regression showed that this positive association between EA and stress-induced amygdala-hippocampal connectivity was moderated after the administration of intranasal OXT. Amygdala-hippocampal connectivity in the OXT session correlated negatively with cortisol stress responses. Our findings suggest that altered amygdala-hippocampal functional connectivity during psychosocial stress may have a crucial role in the altered sensitivity to OXT effects in individuals who have experienced EA in their childhood. PMID:25924202

  8. Evolution of osmotic pressure in solid tumors.

    PubMed

    Voutouri, Chysovalantis; Stylianopoulos, Triantafyllos

    2014-11-01

    The mechanical microenvironment of solid tumors includes both fluid and solid stresses. These stresses play a crucial role in cancer progression and treatment and have been analyzed rigorously both mathematically and experimentally. The magnitude and spatial distribution of osmotic pressures in tumors, however, cannot be measured experimentally and to our knowledge there is no mathematical model to calculate osmotic pressures in the tumor interstitial space. In this study, we developed a triphasic biomechanical model of tumor growth taking into account not only the solid and fluid phase of a tumor, but also the transport of cations and anions, as well as the fixed charges at the surface of the glycosaminoglycan chains. Our model predicts that the osmotic pressure is negligible compared to the interstitial fluid pressure for values of glycosaminoglycans (GAGs) taken from the literature for sarcomas, melanomas and adenocarcinomas. Furthermore, our results suggest that an increase in the hydraulic conductivity of the tumor, increases considerably the intratumoral concentration of free ions and thus, the osmotic pressure but it does not reach the levels of the interstitial fluid pressure.

  9. Acute stress, depression, and anxiety symptoms among English and Spanish speaking children with recent trauma exposure

    PubMed Central

    Barber, Beth A.; Kohl, Krista L.; Kassam-Adams, Nancy; Gold, Jeffrey I.

    2015-01-01

    A growing literature suggests the clinical importance of acute stress disorder (ASD) symptoms in youth following potentially traumatic events. A multisite sample of English and Spanish speaking children and adolescents (N=479) between the ages of 8 to 17, along with their caregivers completed interviews and self-report questionnaires between 2 days and one month following the event. The results indicate that children with greater total acute stress symptoms reported greater depressive (r = .41, p < .01), and anxiety symptoms (r = .53, p < .01). Examining specific acute stress subscales, re-experiencing was correlated with anxiety (r = .47, p < .01) and arousal was correlated with depression (r = .50, p < .01) and anxiety (r = .55, p < .01). Age was inversely associated with total acute stress symptoms (r = -.24, p < .01), re-experiencing (r = -.17, p < .01), avoidance (r = -.27, p < .01), and arousal (r = -.19, p < .01) and gender was related to total anxiety symptoms (Spearman's rho = .17, p < .01). The current study supports the importance of screening acute stress symptoms and other mental health outcomes following a potentially traumatic event in children and adolescents. Early screening may enable clinicians to identify and acutely intervene to support children's psychological and physical recovery. PMID:24337685

  10. EPR spectroscopy as a tool for investigation of differences in radical status in wheat plants of various tolerances to osmotic stress induced by NaCl and PEG-treatment.

    PubMed

    Labanowska, Maria; Filek, Maria; Kurdziel, Magdalena; Bidzińska, Ewa; Miszalski, Zbigniew; Hartikainen, Hélina

    2013-01-15

    Two kinds of wheat genotypes with different tolerance to osmotic stress (NaCl and PEG-treatment) were investigated with biochemical analyses, including the measurements of total antioxidant capacity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity, reducing power and starch content. The results were compared with electron paramagnetic resonance (EPR) data concerning the nature and amounts of stable long lived radicals present in the control and stressed plants. In addition, the changes in manganese content upon stress conditions were monitored. Different mechanisms of protection against PEG stress in sensitive and tolerant wheat genotypes were postulated. In sensitive genotypes, electrons were created in excess in stress conditions, and were stabilized by polysaccharide molecules, whereas in tolerant genotypes, protection by antioxidants dominated. Moreover, the quinone-semiquinone balance shifted towards semiquinone, which became the place of electron trapping. NaCl-treatment yielded significant effects mainly in sensitive genotypes and was connected with the changes of water structure, leading to inactivation of reactive oxygen species by water molecules.

  11. Cognitive Processing Therapy for Acute Stress Disorder Resulting from an Anti-Gay Assault

    ERIC Educational Resources Information Center

    Kaysen, Debra; Lostutter, Ty W.; Goines, Marie A.

    2005-01-01

    This case study describes Cognitive Processing Therapy (CPT) with a 30-year-old gay man with symptoms of acute stress disorder (ASD) following a recent homophobic assault. Treatment addressed assault-related posttraumatic stress disorder symptoms and depressive symptoms. Also addressed were low self-esteem, helplessness, and high degrees of…

  12. Sex steroid levels temporarily increase in response to acute psychosocial stress in healthy men and women.

    PubMed

    Lennartsson, Anna-Karin; Kushnir, Mark M; Bergquist, Jonas; Billig, Håkan; Jonsdottir, Ingibjörg H

    2012-06-01

    It is well known that acute psychosocial stress activates the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). However, the effect of acute psychosocial stress on the hypothalamic-pituitary-gonadal (HPG) axis and levels of sex steroids are less known. The aim of this study was to investigate the effect of acute psychosocial stress on serum concentrations of sex steroids in healthy men and women. Twenty men and 19 women (age 30-50 years) underwent Trier Social Stress Test (TSST), a tool for investigating psychobiological stress responses in a laboratory setting. Blood samples were collected before, directly after the stress test, and after 30 min of recovery. Concentrations of androgens were measured with high specificity LC-MS/MS method; concentrations of cortisol, estradiol and sex hormone-binding globulin were determined using immunoassays. In both men and women we observed significantly elevated levels of testosterone, estradiol, androstenedione and sex hormone binding globulin along with significantly increased adrenocorticotropic hormone (ACTH), serum cortisol, heart rate, systolic blood pressure (SBP), and diastolic blood pressure (DBP) as a response to the stressor. Thus, even though the HPG axis and the production of sex steroids may be inhibited during prolonged periods of stress, the sex steroid levels may increase in the initial phase of acute psychosocial stress.

  13. Acute Restraint Stress Enhances Hippocampal Endocannabinoid Function via Glucocorticoid Receptor Activation

    PubMed Central

    Wang, Meina; Hill, Matthew N.; Zhang, Longhua; Gorzalka, Boris B.; Hillard, Cecilia J.; Alger, Bradley E.

    2012-01-01

    Exposure to behavioral stress normally triggers a complex, multi-level response of the hypothalamic-pituitary-adrenal (HPA) axis that helps maintain homeostatic balance. Although the endocannabinoid (eCB) system (ECS) is sensitive to chronic stress, few studies have directly addressed its response to acute stress. Here we show that acute restraint stress enhances eCB-dependent modulation of GABA release measured by whole-cell voltage clamp of inhibitory post-synaptic currents (IPSCs) in rat hippocampal CA1 pyramidal cells in vitro. Both Ca2+-dependent, eCB-mediated depolarization-induced suppression of inhibition (DSI), and muscarinic cholinergic receptor (mAChR) mediated eCB mobilization are enhanced following acute stress exposure. DSI enhancement is dependent on the activation of glucocorticoid receptors (GRs) and is mimicked by both in vivo and in vitro corticosterone treatment. This effect does not appear to involve cyclooxygenase-2 (COX-2), an enzyme that can degrade eCBs; however, treatment of hippocampal slices with the L-type calcium (Ca2+) channel inhibitor, nifedipine, reverses while an agonist of these channels mimics the effect of in vivo stress. Finally, we find that acute stress produces a delayed (by 30 min) increase in the hippocampal content of 2-arachidonoylglycerol, the eCB responsible for DSI. These results support the hypothesis that the ECS is a biochemical effector of glucocorticoids in the brain, linking stress with changes in synaptic strength. PMID:21890595

  14. Phase-Dependent Shifting of the Adrenal Clock by Acute Stress-Induced ACTH.

    PubMed

    Engeland, William C; Yoder, J Marina; Karsten, Carley A; Kofuji, Paulo

    2016-01-01

    The adrenal cortex has a molecular clock that generates circadian rhythms in glucocorticoid production, yet it is unclear how the clock responds to acute stress. We hypothesized that stress-induced ACTH provides a signal that phase shifts the adrenal clock. To assess whether acute stress phase shifts the adrenal clock in vivo in a phase-dependent manner, mPER2:LUC mice on a 12:12-h light:dark cycle underwent restraint stress for 15 min or no stress at zeitgeber time (ZT) 2 (early subjective day) or at ZT16 (early subjective night). Adrenal explants from mice stressed at ZT2 showed mPER2:LUC rhythms that were phase-advanced by ~2 h, whereas adrenals from mice stressed at ZT16 showed rhythms that were phase-delayed by ~2 h. The biphasic response was also observed in mice injected subcutaneously either with saline or with ACTH at ZT2 or ZT16. Blockade of the ACTH response with the glucocorticoid, dexamethasone, prevented restraint stress-induced phase shifts in the mPER2:LUC rhythm both at ZT2 and at ZT16. The finding that acute stress results in a phase-dependent shift in the adrenal mPER2:LUC rhythm that can be blocked by dexamethasone indicates that stress-induced effectors, including ACTH, act to phase shift the adrenal clock rhythm. PMID:27445984

  15. Phase-Dependent Shifting of the Adrenal Clock by Acute Stress-Induced ACTH

    PubMed Central

    Engeland, William C.; Yoder, J. Marina; Karsten, Carley A.; Kofuji, Paulo

    2016-01-01

    The adrenal cortex has a molecular clock that generates circadian rhythms in glucocorticoid production, yet it is unclear how the clock responds to acute stress. We hypothesized that stress-induced ACTH provides a signal that phase shifts the adrenal clock. To assess whether acute stress phase shifts the adrenal clock in vivo in a phase-dependent manner, mPER2:LUC mice on a 12:12-h light:dark cycle underwent restraint stress for 15 min or no stress at zeitgeber time (ZT) 2 (early subjective day) or at ZT16 (early subjective night). Adrenal explants from mice stressed at ZT2 showed mPER2:LUC rhythms that were phase-advanced by ~2 h, whereas adrenals from mice stressed at ZT16 showed rhythms that were phase-delayed by ~2 h. The biphasic response was also observed in mice injected subcutaneously either with saline or with ACTH at ZT2 or ZT16. Blockade of the ACTH response with the glucocorticoid, dexamethasone, prevented restraint stress-induced phase shifts in the mPER2:LUC rhythm both at ZT2 and at ZT16. The finding that acute stress results in a phase-dependent shift in the adrenal mPER2:LUC rhythm that can be blocked by dexamethasone indicates that stress-induced effectors, including ACTH, act to phase shift the adrenal clock rhythm. PMID:27445984

  16. Infusion of glucose and lipids at physiological rates causes acute endoplasmic reticulum stress in rat liver.

    PubMed

    Boden, Guenther; Song, Weiwei; Duan, Xunbao; Cheung, Peter; Kresge, Karen; Barrero, Carlos; Merali, Salim

    2011-07-01

    Endoplasmic reticulum (ER) stress has recently been implicated as a cause for obesity-related insulin resistance; however, what causes ER stress in obesity has remained uncertain. Here, we have tested the hypothesis that macronutrients can cause acute (ER) stress in rat liver. Examined were the effects of intravenously infused glucose and/or lipids on proximal ER stress sensor activation (PERK, eIF2-α, ATF4, Xbox protein 1 (XBP1s)), unfolded protein response (UPR) proteins (GRP78, calnexin, calreticulin, protein disulphide isomerase (PDI), stress kinases (JNK, p38 MAPK) and insulin signaling (insulin/receptor substrate (IRS) 1/2 associated phosphoinositol-3-kinase (PI3K)) in rat liver. Glucose and/or lipid infusions, ranging from 23.8 to 69.5 kJ/4 h (equivalent to between ~17% and ~50% of normal daily energy intake), activated the proximal ER stress sensor PERK and ATF6 increased the protein abundance of calnexin, calreticulin and PDI and increased two GRP78 isoforms. Glucose and glucose plus lipid infusions induced comparable degrees of ER stress, but only infusions containing lipid activated stress kinases (JNK and p38 MAPK) and inhibited insulin signaling (PI3K). In summary, physiologic amounts of both glucose and lipids acutely increased ER stress in livers 12-h fasted rats and dependent on the presence of fat, caused insulin resistance. We conclude that this type of acute ER stress is likely to occur during normal daily nutrient intake.

  17. A Simple Student Laboratory on Osmotic Flow, Osmotic Pressure, and the Reflection Coefficient.

    ERIC Educational Resources Information Center

    Feher, Joseph J.; Ford, George D.

    1995-01-01

    Describes a laboratory exercise containing a practical series of experiments that novice students can perform within two hours. The exercise provides a confirmation of van't Hoff's law while placing more emphasis on osmotic flow than pressure. Students can determine parameters such as the reflection coefficient which stress the interaction of both…

  18. Acute Immobilization Stress Modulate GABA Release from Rat Olfactory Bulb: Involvement of Endocannabinoids—Cannabinoids and Acute Stress Modulate GABA Release

    PubMed Central

    Delgado, Alejandra; Jaffé, Erica H.

    2011-01-01

    We studied the effects of cannabinoids and acute immobilization stress on the regulation of GABA release in the olfactory bulb. Glutamate-stimulated 3H-GABA release was measured in superfused slices. We report that cannabinoids as WIN55, 212-2, methanandamide, and 2-arachidonoylglycerol were able to inhibit glutamate- and KCl-stimulated 3H-GABA release. This effect was blocked by the CB1 antagonist AM281. On the other hand, acute stress was able per se to increase endocannabinoid activity. This effect was evident since the inhibition of stimulated GABA release by acute stress was reversed with AM281 and tetrahydrolipstatin. Inhibition of the endocannabinoid transport or its catabolism showed reduction of GABA release, antagonized by AM281 in control and stressed animals. These results point to endocannabinoids as inhibitory modulators of GABA release in the olfactory bulb acting through an autocrine mechanism. Apparently, stress increases the endocannabinoid system, modulating GABAergic synaptic function in a primary sensory organ. PMID:21785597

  19. The effect of obesity on inflammatory cytokine and leptin production following acute mental stress.

    PubMed

    Caslin, H L; Franco, R L; Crabb, E B; Huang, C J; Bowen, M K; Acevedo, E O

    2016-02-01

    Obesity may contribute to cardiovascular disease (CVD) risk by eliciting chronic systemic inflammation and impairing the immune response to additional stressors. There has been little assessment of the effect of obesity on psychological stress, an independent risk factor for CVD. Therefore, it was of interest to examine interleukin-6, tumor necrosis factor-α, interleukin-1β (IL-1β), interleukin-1 receptor antagonist (IL-1Ra), and leptin following an acute mental stress task in nonobese and obese males. Twenty college-aged males (21.3 ± 0.56 years) volunteered to participate in a 20-min Stroop color-word and mirror-tracing task. Subjects were recruited for obese (body mass index: BMI > 30) and nonobese (BMI < 25) groups, and blood samples were collected for enzyme-linked immunosorbent assay analysis. The acute mental stress task elicited an increase in heart rate, catecholamines, and IL-1β in all subjects. Additionally, acute mental stress increased cortisol concentrations in the nonobese group. There was a significant reduction in leptin in obese subjects 30 min posttask compared with a decrease in nonobese subjects 120 min posttask. Interestingly, the relationship between the percent change in leptin and IL-1Ra at 120 min posttask in response to an