Science.gov

Sample records for acute osmotic stress

  1. Role of spinal V1a receptors in regulation of arterial pressure during acute and chronic osmotic stress.

    PubMed

    Veitenheimer, Britta; Osborn, John W

    2011-02-01

    Vasopressinergic neurons in the paraventricular nucleus project to areas in the spinal cord from which sympathetic nerves originate. This pathway is hypothesized to be involved in the regulation of mean arterial pressure (MAP), particularly under various conditions of osmotic stress. Several studies measuring sympathetic nerve activity support this hypothesis. However, the evidence that spinal vasopressin influences MAP under physiological or pathophysiological conditions in conscious animals is limited. The purpose of this study was to investigate, in conscious rats, if the increases in MAP during acute or chronic osmotic stimuli are due to activation of spinal vasopressin (V1a) receptors. Three conditions of osmotic stress were examined: acute intravenous hypertonic saline, 24- and 48-h water deprivation, and 4 wk of DOCA-salt treatment. Rats were chronically instrumented with an indwelling catheter for intrathecal injections and a radiotelemeter to measure MAP. In normotensive rats, intrathecal vasopressin and V1a agonist increased MAP, heart rate, and motor activity; these responses were blocked by pretreatment with an intrathecal V1a receptor antagonist. However, when the intrathecal V1a antagonist was given during the three conditions of osmotic stress to investigate the role of "endogenous" vasopressin, the antagonist had no effect on MAP, heart rate, or motor activity. Contrary to the hypothesis suggested by previous studies, these findings indicate that spinal V1a receptors are not required for elevations of MAP under conditions of acute or chronic osmotic stress in conscious rats. PMID:21123759

  2. Auxin response under osmotic stress.

    PubMed

    Naser, Victoria; Shani, Eilon

    2016-08-01

    The phytohormone auxin (indole-3-acetic acid, IAA) is a small organic molecule that coordinates many of the key processes in plant development and adaptive growth. Plants regulate the auxin response pathways at multiple levels including biosynthesis, metabolism, transport and perception. One of the most striking aspects of plant plasticity is the modulation of development in response to changing growth environments. In this review, we explore recent findings correlating auxin response-dependent growth and development with osmotic stresses. Studies of water deficit, dehydration, salt, and other osmotic stresses point towards direct and indirect molecular perturbations in the auxin pathway. Osmotic stress stimuli modulate auxin responses by affecting auxin biosynthesis (YUC, TAA1), transport (PIN), perception (TIR/AFB, Aux/IAA), and inactivation/conjugation (GH3, miR167, IAR3) to coordinate growth and patterning. In turn, stress-modulated auxin gradients drive physiological and developmental mechanisms such as stomata aperture, aquaporin and lateral root positioning. We conclude by arguing that auxin-mediated growth inhibition under abiotic stress conditions is one of the developmental and physiological strategies to acclimate to the changing environment. PMID:27052306

  3. Osmotic stress signaling via protein kinases.

    PubMed

    Fujii, Hiroaki; Zhu, Jian-Kang

    2012-10-01

    Plants face various kinds of environmental stresses, including drought, salinity, and low temperature, which cause osmotic stress. An understanding of the plant signaling pathways that respond to osmotic stress is important for both basic biology and agriculture. In this review, we summarize recent investigations concerning the SNF1-related protein kinase (SnRK) 2 kinase family, which play central roles in osmotic stress responses. SnRK2s are activated by osmotic stress, and a mutant lacking SnRK2s is hypersensitive to osmotic stress. Many questions remain about the signaling pathway upstream and downstream of SnRK2s. Because some SnRK2s also functions in the abscisic acid (ABA) signaling pathway, which has recently been well clarified, study of SnRK2s in ABA signaling can provide clues regarding their roles in osmotic stress signaling. PMID:22828864

  4. Casein Micelle Dispersions under Osmotic Stress

    PubMed Central

    Bouchoux, Antoine; Cayemitte, Pierre-Emerson; Jardin, Julien; Gésan-Guiziou, Geneviève; Cabane, Bernard

    2009-01-01

    Abstract Casein micelles dispersions have been concentrated and equilibrated at different osmotic pressures using equilibrium dialysis. This technique measured an equation of state of the dispersions over a wide range of pressures and concentrations and at different ionic strengths. Three regimes were found. i), A dilute regime in which the osmotic pressure is proportional to the casein concentration. In this regime, the casein micelles are well separated and rarely interact, whereas the osmotic pressure is dominated by the contribution from small residual peptides that are dissolved in the aqueous phase. ii), A transition range that starts when the casein micelles begin to interact through their κ-casein brushes and ends when the micelles are forced to get into contact with each other. At the end of this regime, the dispersions behave as coherent solids that do not fully redisperse when osmotic stress is released. iii), A concentrated regime in which compression removes water from within the micelles, and increases the fraction of micelles that are irreversibly linked to each other. In this regime the osmotic pressure profile is a power law of the residual free volume. It is well described by a simple model that considers the micelle to be made of dense regions separated by a continuous phase. The amount of water in the dense regions matches the usual hydration of proteins. PMID:19167314

  5. Osmotic stress alters chromatin condensation and nucleocytoplasmic transport

    SciTech Connect

    Finan, John D.; Leddy, Holly A.; Guilak, Farshid

    2011-05-06

    Highlights: {yields} The rate of nucleocytoplasmic transport increases under hyper-osmotic stress. {yields} The mechanism is a change in nuclear geometry, not a change in permeability of the nuclear envelope. {yields} Intracytoplasmic but not intranuclear diffusion is sensitive to osmotic stress. {yields} Pores in the chromatin of the nucleus enlarge under hyper-osmotic stress. -- Abstract: Osmotic stress is a potent regulator of biological function in many cell types, but its mechanism of action is only partially understood. In this study, we examined whether changes in extracellular osmolality can alter chromatin condensation and the rate of nucleocytoplasmic transport, as potential mechanisms by which osmotic stress can act. Transport of 10 kDa dextran was measured both within and between the nucleus and the cytoplasm using two different photobleaching methods. A mathematical model was developed to describe fluorescence recovery via nucleocytoplasmic transport. As osmolality increased, the diffusion coefficient of dextran decreased in the cytoplasm, but not the nucleus. Hyper-osmotic stress decreased nuclear size and increased nuclear lacunarity, indicating that while the nucleus was getting smaller, the pores and channels interdigitating the chromatin had expanded. The rate of nucleocytoplasmic transport was increased under hyper-osmotic stress but was insensitive to hypo-osmotic stress, consistent with the nonlinear osmotic properties of the nucleus. The mechanism of this osmotic sensitivity appears to be a change in the size and geometry of the nucleus, resulting in a shorter effective diffusion distance for the nucleus. These results may explain physical mechanisms by which osmotic stress can influence intracellular signaling pathways that rely on nucleocytoplasmic transport.

  6. Self-assembly of silk fibroin under osmotic stress

    NASA Astrophysics Data System (ADS)

    Sohn, Sungkyun

    The supramolecular self-assembly behavior of silk fibroin was investigated using osmotic stress technique. In Chapter 2, a ternary phase diagram of water-silk-LiBr was constructed based on X-ray results on the osmotically stressed regenerated silk fibroin of Bombyx mori silkworm. Microscopic data indicated that silk I is a hydrated structure and a rough estimate of the number of water molecules lost by the structure upon converting from silk I to silk II has been made, and found to be about 2.2 per [GAGAGS] hexapeptide. In Chapter 3, wet-spinning of osmotically stressed, regenerated silk fibroin was performed, based on the prediction that the enhanced control over structure and phase behavior using osmotic stress method helps improve the physical properties of wet-spun regenerated silk fibroin fibers. The osmotic stress was applied in order to pre-structure the regenerated silk fibroin molecule from its original random coil state to more oriented state, manipulating the phase of the silk solution in the phase diagram before the start of spinning. Monofilament fiber with a diameter of 20 microm was produced. In Chapter 4, we investigated if there is a noticeable synergistic osmotic pressure increase between co-existing polymeric osmolyte and salt when extremely highly concentrated salt molecules are present both at sample subphase and stressing subphase, as is the case of silk fibroin self-assembly. The equilibration method that measures osmotic pressure relative to a reference with known osmotic pressure was introduced. Osmotic pressure of aqueous LiBr solution up to 2.75M was measured and it was found that the synergistic effect was insignificant up to this salt concentration. Solution parameters of stressing solutions and Arrhenius kinetics based on time-temperature relationship for the equilibration process were derived as well. In Chapter 5, self-assembly behavior of natural silk fibroin within the gland of Bombyx mori silkworm was investigated using osmotic

  7. Optical changes in unilamellar vesicles experiencing osmotic stress.

    PubMed Central

    White, G; Pencer, J; Nickel, B G; Wood, J M; Hallett, F R

    1996-01-01

    Membrane properties that vary as a result of isotropic and transmembrane osmolality variations (osmotic stress) are of considerable relevance to mechanisms such as osmoregulation, in which a biological system "senses" and responds to changes in the osmotic environment. In this paper the light-scattering behavior of a model system consisting of large unilamellar vesicles of dioleoyl phosphatidyl glycerol (DOPG) is examined as a function of their osmotic environment. Osmotic downshifts lead to marked reductions in the scattered intensity, whereas osmotic upshifts lead to strong intensity increases. It is shown that these changes in the scattering intensity involve changes in the refractive index of the membrane bilayer that result from an alteration in the extent of hydration and/or the phospholipid packing density. By considering the energetics of osmotically stressed vesicles, and from explicit analysis of the Rayleigh-Gans-Debye scattering factors for spherical and ellipsoidal shells, we quantitatively demonstrate that although changes in vesicle volume and shape can arise in response to the imposition of osmotic stress, these factors alone cannot account for the observed changes in scattered intensity. PMID:8913607

  8. Osmotic Stress Signaling and Osmoadaptation in Yeasts

    PubMed Central

    Hohmann, Stefan

    2002-01-01

    The ability to adapt to altered availability of free water is a fundamental property of living cells. The principles underlying osmoadaptation are well conserved. The yeast Saccharomyces cerevisiae is an excellent model system with which to study the molecular biology and physiology of osmoadaptation. Upon a shift to high osmolarity, yeast cells rapidly stimulate a mitogen-activated protein (MAP) kinase cascade, the high-osmolarity glycerol (HOG) pathway, which orchestrates part of the transcriptional response. The dynamic operation of the HOG pathway has been well studied, and similar osmosensing pathways exist in other eukaryotes. Protein kinase A, which seems to mediate a response to diverse stress conditions, is also involved in the transcriptional response program. Expression changes after a shift to high osmolarity aim at adjusting metabolism and the production of cellular protectants. Accumulation of the osmolyte glycerol, which is also controlled by altering transmembrane glycerol transport, is of central importance. Upon a shift from high to low osmolarity, yeast cells stimulate a different MAP kinase cascade, the cell integrity pathway. The transcriptional program upon hypo-osmotic shock seems to aim at adjusting cell surface properties. Rapid export of glycerol is an important event in adaptation to low osmolarity. Osmoadaptation, adjustment of cell surface properties, and the control of cell morphogenesis, growth, and proliferation are highly coordinated processes. The Skn7p response regulator may be involved in coordinating these events. An integrated understanding of osmoadaptation requires not only knowledge of the function of many uncharacterized genes but also further insight into the time line of events, their interdependence, their dynamics, and their spatial organization as well as the importance of subtle effects. PMID:12040128

  9. Effect of an osmotic stress on multicellular aggregates.

    PubMed

    Monnier, Sylvain; Delarue, Morgan; Brunel, Benjamin; Dolega, Monika E; Delon, Antoine; Cappello, Giovanni

    2016-02-01

    There is increasing evidence that multicellular structures respond to mechanical cues, such as the confinement and compression exerted by the surrounding environment. In order to understand the response of tissues to stress, we investigate the effect of an isotropic stress on different biological systems. The stress is generated using the osmotic pressure induced by a biocompatible polymer. We compare the response of multicellular spheroids, individual cells and matrigel to the same osmotic perturbation. Our findings indicate that the osmotic pressure occasioned by polymers acts on these systems like an isotropic mechanical stress. When submitted to this pressure, the volume of multicellular spheroids decreases much more than one could expect from the behavior of individual cells. PMID:26210402

  10. Phospholipid-cholesterol bilayers under osmotic stress.

    PubMed Central

    Sparr, Emma; Hallin, Linda; Markova, Natalia; Wennerström, Håkan

    2002-01-01

    Isothermal (27 degrees C) phase behavior of dimyristoyl phosphatidyl choline-cholesterol mixtures at various osmotic pressures and cholesterol contents was investigated by means of isothermal sorption microcalorimetry and (2)H-nuclear magnetic resonance. The calorimetric method allows for simultaneous measurement of the partial molar enthalpy and the chemical potential (the osmotic pressure) of water, thus providing an almost complete thermodynamic description of the sorption process. From the experimental results, the Pi(osm) - X(chol) and the ternary composition phase diagrams are constructed. We note that there are strong similarities between the Pi(osm) - X(chol) phase diagram and the previously reported T - X(chol) phase diagram at excess water. At high cholesterol contents a single liquid ordered (L(alpha)(o)) phase is present over the whole range of water contents, implying that this phase has a remarkable stability not only at decreasing temperature but also at increasing osmotic pressure. At low cholesterol contents, the microcalorimetric experiments confirm the extraordinary property of cholesterol not to cause any substantial melting point depression. One important conclusion in the present study is that the P(beta) phase can dissolve cholesterol more readily than the L(beta) phase and that the addition of cholesterol induces the P(beta) phase. Finally, the putative P(beta) - L(alpha)(o) periodic modulated structure is discussed. PMID:12324420

  11. Quorum sensing regulates the osmotic stress response in Vibrio harveyi.

    PubMed

    van Kessel, Julia C; Rutherford, Steven T; Cong, Jian-Ping; Quinodoz, Sofia; Healy, James; Bassler, Bonnie L

    2015-01-01

    Bacteria use a chemical communication process called quorum sensing to monitor cell density and to alter behavior in response to fluctuations in population numbers. Previous studies with Vibrio harveyi have shown that LuxR, the master quorum-sensing regulator, activates and represses >600 genes. These include six genes that encode homologs of the Escherichia coli Bet and ProU systems for synthesis and transport, respectively, of glycine betaine, an osmoprotectant used during osmotic stress. Here we show that LuxR activates expression of the glycine betaine operon betIBA-proXWV, which enhances growth recovery under osmotic stress conditions. BetI, an autorepressor of the V. harveyi betIBA-proXWV operon, activates the expression of genes encoding regulatory small RNAs that control quorum-sensing transitions. Connecting quorum-sensing and glycine betaine pathways presumably enables V. harveyi to tune its execution of collective behaviors to its tolerance to stress. PMID:25313392

  12. Quorum Sensing Regulates the Osmotic Stress Response in Vibrio harveyi

    PubMed Central

    Rutherford, Steven T.; Cong, Jian-Ping; Quinodoz, Sofia; Healy, James

    2014-01-01

    Bacteria use a chemical communication process called quorum sensing to monitor cell density and to alter behavior in response to fluctuations in population numbers. Previous studies with Vibrio harveyi have shown that LuxR, the master quorum-sensing regulator, activates and represses >600 genes. These include six genes that encode homologs of the Escherichia coli Bet and ProU systems for synthesis and transport, respectively, of glycine betaine, an osmoprotectant used during osmotic stress. Here we show that LuxR activates expression of the glycine betaine operon betIBA-proXWV, which enhances growth recovery under osmotic stress conditions. BetI, an autorepressor of the V. harveyi betIBA-proXWV operon, activates the expression of genes encoding regulatory small RNAs that control quorum-sensing transitions. Connecting quorum-sensing and glycine betaine pathways presumably enables V. harveyi to tune its execution of collective behaviors to its tolerance to stress. PMID:25313392

  13. Osmotic therapies added to antibiotics for acute bacterial meningitis

    PubMed Central

    Wall, Emma CB; Ajdukiewicz, Katherine MB; Heyderman, Robert S; Garner, Paul

    2014-01-01

    Background Every day children and adults throughout the world die from acute community-acquired bacterial meningitis, particularly in low-income countries. Survivors are at risk of deafness, epilepsy and neurological disabilities. Osmotic therapies have been proposed as an adjunct to improve mortality and morbidity from bacterial meningitis. The theory is that they will attract extra-vascular fluid by osmosis and thus reduce cerebral oedema by moving excess water from the brain into the blood. The intention is to thus reduce death and improve neurological outcomes. Objectives To evaluate the effects on mortality, deafness and neurological disability of osmotic therapies added to antibiotics for acute bacterial meningitis in children and adults. Search methods We searched CENTRAL 2012, Issue 11, MEDLINE (1950 to November week 3, 2012), EMBASE (1974 to November 2012), CINAHL (1981 to November 2012), LILACS (1982 to November 2012) and registers of ongoing clinical trials (April 2012). We also searched conference abstracts and contacted researchers in the field. Selection criteria Randomised controlled trials testing any osmotic therapy in adults or children with acute bacterial meningitis. Data collection and analysis Two review authors independently screened the search results and selected trials for inclusion. We collected data from each study for mortality, deafness, seizures and neurological disabilities. Results are presented using risk ratios (RR) and 95% confidence intervals (CI) and grouped according to whether the participants received steroids or not. Main results Four trials were included comprising 1091 participants. All compared glycerol (a water-soluble sugar alcohol) with a control; in three trials this was a placebo, and in one a small amount of 50% dextrose. Three trials included comparators of dexamethasone alone or in combination with glycerol. As dexamethasone appeared to have no modifying effect, we aggregated results across arms where both

  14. Plastid Osmotic Stress Activates Cellular Stress Responses in Arabidopsis1[C][W][OPEN

    PubMed Central

    Wilson, Margaret E.; Basu, Meera R.; Bhaskara, Govinal Badiger; Verslues, Paul E.; Haswell, Elizabeth S.

    2014-01-01

    Little is known about cytoplasmic osmoregulatory mechanisms in plants, and even less is understood about how the osmotic properties of the cytoplasm and organelles are coordinately regulated. We have previously shown that Arabidopsis (Arabidopsis thaliana) plants lacking functional versions of the plastid-localized mechanosensitive ion channels Mechanosensitive Channel of Small Conductance-Like2 (MSL2) and MSL3 contain leaf epidermal plastids under hypoosmotic stress, even during normal growth and development. Here, we use the msl2 msl3 mutant as a model to investigate the cellular response to constitutive plastid osmotic stress. Under unstressed conditions, msl2 msl3 seedlings exhibited several hallmarks of drought or environmental osmotic stress, including solute accumulation, elevated levels of the compatible osmolyte proline (Pro), and accumulation of the stress hormone abscisic acid (ABA). Furthermore, msl2 msl3 mutants expressed Pro and ABA metabolism genes in a pattern normally seen under drought or osmotic stress. Pro accumulation in the msl2 msl3 mutant was suppressed by conditions that reduce plastid osmotic stress or inhibition of ABA biosynthesis. Finally, treatment of unstressed msl2 msl3 plants with exogenous ABA elicited a much greater Pro accumulation response than in the wild type, similar to that observed in plants under drought or osmotic stress. These results suggest that osmotic imbalance across the plastid envelope can elicit a response similar to that elicited by osmotic imbalance across the plasma membrane and provide evidence for the integration of the osmotic state of an organelle into that of the cell in which it resides. PMID:24676856

  15. Polyamine metabolism and osmotic stress. I. Relation to protoplast viability

    NASA Technical Reports Server (NTRS)

    Tiburcio, A. F.; Masdeu, M. A.; Dumortier, F. M.; Galston, A. W.

    1986-01-01

    Cereal leaves subjected to the osmotica routinely used for protoplast isolation show a rapid increase in arginine decarboxylase activity, a massive accumulation of putrescine, and slow conversion of putrescine to the higher polyamines, spermidine and spermine (HE Flores, AW Galston 1984 Plant Physiol 75: 102). Mesophyll protoplasts from these leaves, which have a high putrescine:polyamine ratio, do not undergo sustained division. By contrast, in Nicotiana, Capsicum, Datura, Trigonella, and Vigna, dicot genera that readily regenerate plants from mesophyll protoplasts, the response of leaves to osmotic stress is opposite to that in cereals. Putrescine titer as well as arginine and ornithine decarboxylase activities decline in these osmotically stressed dicot leaves, while spermidine and spermine titers increase. Thus, the putrescine:polyamine ratio in Vigna protoplasts, which divide readily, is 4-fold lower than in oat protoplasts, which divide poorly. We suggest that this differing response of polyamine metabolism to osmotic stress may account in part for the failure of cereal mesophyll protoplasts to develop readily in vitro.

  16. Polyamine metabolism and osmotic stress. I. Relation to protoplast viability.

    PubMed

    Tiburcio, A F; Masdeu, M A; Dumortier, F M; Galston, A W

    1986-01-01

    Cereal leaves subjected to the osmotica routinely used for protoplast isolation show a rapid increase in arginine decarboxylase activity, a massive accumulation of putrescine, and slow conversion of putrescine to the higher polyamines, spermidine and spermine (HE Flores, AW Galston 1984 Plant Physiol 75: 102). Mesophyll protoplasts from these leaves, which have a high putrescine:polyamine ratio, do not undergo sustained division. By contrast, in Nicotiana, Capsicum, Datura, Trigonella, and Vigna, dicot genera that readily regenerate plants from mesophyll protoplasts, the response of leaves to osmotic stress is opposite to that in cereals. Putrescine titer as well as arginine and ornithine decarboxylase activities decline in these osmotically stressed dicot leaves, while spermidine and spermine titers increase. Thus, the putrescine:polyamine ratio in Vigna protoplasts, which divide readily, is 4-fold lower than in oat protoplasts, which divide poorly. We suggest that this differing response of polyamine metabolism to osmotic stress may account in part for the failure of cereal mesophyll protoplasts to develop readily in vitro. PMID:11539086

  17. Enteric bacteria and osmotic stress: intracellular potassium glutamate as a secondary signal of osmotic stress?

    PubMed

    Booth, I R; Higgins, C F

    1990-06-01

    Enteric bacteria have evolved an impressive array of mechanisms that allow the cell to grow at widely different external osmotic pressures. These serve two linked functions; firstly, they allow the cell to maintain a relatively constant turgor pressure which is essential for cell growth; and secondly they permit changes in cytoplasmic composition such that the accumulation of intracellular osmolytes required to restore turgor pressure does not impair enzyme function. The primary event in turgor regulation is the controlled accumulation of potassium and its counterion glutamate. At high external osmolarities the cytoplasmic levels of potassium glutamate can impair enzyme function. Rapid growth is therefore dependent upon secondary responses, principally the accumulation of compatible solutes, betaine (N-trimethylglycine), proline and trehalose. The accumulation of these solutes is achieved by the controlled activity of transport systems and enzymes in response to changes in external osmotic pressure. It has been proposed that the accumulation of potassium glutamate during turgor regulation acts as a signal for the activation of these systems [1,2]. This brief review will examine the evidence that control over the balance of cytoplasmic osmolytes is achieved by sensing of the intracellular potassium (and glutamate) concentration. PMID:1974769

  18. Proteomic analysis of rice leaves shows the different regulations to osmotic stress and stress signals.

    PubMed

    Shu, Lie-Bo; Ding, Wei; Wu, Jin-Hong; Feng, Fang-Jun; Luo, Li-Jun; Mei, Han-Wei

    2010-11-01

    Following the idea of partial root-zone drying (PRD) in crop cultivation, the morphological and physiological responses to partial root osmotic stress (PROS) and whole root osmotic stress (WROS) were investigated in rice. WROS caused stress symptoms like leaf rolling and membrane leakage. PROS stimulated stress signals, but did not cause severe leaf damage. By proteomic analysis, a total of 58 proteins showed differential expression after one or both treatments, and functional classification of these proteins suggests that stress signals regulate photosynthesis, carbohydrate and energy metabolism. Two other proteins (anthranilate synthase and submergence-induced nickel-binding protein) were upregulated only in the PROS plants, indicating their important roles in stress resistance. Additionally, more enzymes were involved in stress defense, redox homeostasis, lignin and ethylene synthesis in WROS leaves, suggesting a more comprehensive regulatory mechanism induced by osmotic stress. This study provides new insights into the complex molecular networks within plant leaves involved in the adaptation to osmotic stress and stress signals. PMID:20977656

  19. Novel Regulation of Aquaporins during Osmotic Stress1

    PubMed Central

    Vera-Estrella, Rosario; Barkla, Bronwyn J.; Bohnert, Hans J.; Pantoja, Omar

    2004-01-01

    Aquaporin protein regulation and redistribution in response to osmotic stress was investigated. Ice plant (Mesembryanthemum crystallinum) McTIP1;2 (McMIPF) mediated water flux when expressed in Xenopus leavis oocytes. Mannitol-induced water imbalance resulted in increased protein amounts in tonoplast fractions and a shift in protein distribution to other membrane fractions, suggesting aquaporin relocalization. Indirect immunofluorescence labeling also supports a change in membrane distribution for McTIP1;2 and the appearance of a unique compartment where McTIP1;2 is expressed. Mannitol-induced redistribution of McTIP1;2 was arrested by pretreatment with brefeldin A, wortmannin, and cytochalasin D, inhibitors of vesicle trafficking-related processes. Evidence suggests a role for glycosylation and involvement of a cAMP-dependent signaling pathway in McTIP1;2 redistribution. McTIP1;2 redistribution to endosomal compartments may be part of a homeostatic process to restore and maintain cellular osmolarity under osmotic-stress conditions. PMID:15299122

  20. A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis

    PubMed Central

    Zhu, Jianhua; Lee, Byeong-Ha; Dellinger, Mike; Cui, Xinping; Zhang, Changqing; Wu, Shang; Nothnagel, Eugene A.; Zhu, Jian-Kang

    2011-01-01

    SUMMARY Osmotic stress imposed by soil salinity and drought stress significantly affects plant growth and development, but osmotic stress sensing and tolerance mechanisms are not well understood. Forward genetic screens using a root-bending assay have previously identified salt overly sensitive (sos) mutants of Arabidopsis that fall into five loci, SOS1 to SOS5. These loci are required for the regulation of ion homeostasis or cell expansion under salt stress, but do not play a major role in plant tolerance to the osmotic stress component of soil salinity or drought. Here we report an additional sos mutant, sos6-1, which defines a locus essential for osmotic stress tolerance. sos6-1 plants are hypersensitive to salt stress and osmotic stress imposed by mannitol or polyethylene glycol in culture media or by water deficit in the soil. SOS6 encodes a cellulose synthase-like protein, AtCSLD5. Only modest differences in cell wall chemical composition could be detected, but we found that sos6-1 mutant plants accumulate high levels of reactive oxygen species (ROS) under osmotic stress and are hypersensitive to the oxidative stress reagent methyl viologen. The results suggest that SOS6/AtCSLD5 is not required for normal plant growth and development but has a critical role in osmotic stress tolerance and this function likely involves its regulation of ROS under stress. PMID:20409003

  1. Osmotic stress-induced remodeling of the cortical cytoskeleton.

    PubMed

    Di Ciano, Caterina; Nie, Zilin; Szászi, Katalin; Lewis, Alison; Uruno, Takehito; Zhan, Xi; Rotstein, Ori D; Mak, Alan; Kapus, András

    2002-09-01

    Osmotic stress is known to affect the cytoskeleton; however, this adaptive response has remained poorly characterized, and the underlying signaling pathways are unexplored. Here we show that hypertonicity induces submembranous de novo F-actin assembly concomitant with the peripheral translocation and colocalization of cortactin and the actin-related protein 2/3 (Arp2/3) complex, which are key components of the actin nucleation machinery. Additionally, hyperosmolarity promotes the association of cortactin with Arp2/3 as revealed by coimmunoprecipitation. Using various truncation or phosphorylation-incompetent mutants, we show that cortactin translocation requires the Arp2/3- or the F-actin binding domain, but the process is independent of the shrinkage-induced tyrosine phosphorylation of cortactin. Looking for an alternative signaling mechanism, we found that hypertonicity stimulates Rac and Cdc42. This appears to be a key event in the osmotically triggered cytoskeletal reorganization, because 1) constitutively active small GTPases translocate cortactin, 2) Rac and cortactin colocalize at the periphery of hypertonically challenged cells, and 3) dominant-negative Rac and Cdc42 inhibit the hypertonicity-provoked cortactin and Arp3 translocation. The Rho family-dependent cytoskeleton remodeling may be an important osmoprotective response that reinforces the cell cortex. PMID:12176742

  2. The effects of osmotic stress on human platelets.

    PubMed

    Armitage, W J; Parmar, N; Hunt, C J

    1985-05-01

    The effect of osmotic stress on human platelets was investigated at 0, 25, and 37 degrees C. The osmolality of the suspending plasma was decreased by adding water or increased by adding sodium chloride or sucrose. After 5 min, isotonicity was restored by dilution with an excess of isotonic phosphate-buffered saline. After centrifugation, the platelets were resuspended in autologous plasma and then incubated for 1 hr at 37 degrees C before assaying the active transport of 5-hydroxytryptamine (5-HT) and the hypotonic stress response. Anisosmotic conditions had a greater effect on the extent of volume reversal in the hypotonic stress test than on 5-HT uptake. At 25 degrees C, only moderate degrees of hypotonicity (0.25 osmol/kg) or hypertonicity (0.59 osmol/kg) were sufficient to depress the hypotonic stress response. In general, platelets tolerated departures from isotonic conditions better at 0 degree C than at the higher temperatures. Furthermore, at 0 and 25 degrees C approximately equiosmolal concentrations of sucrose and sodium chloride depressed the hypotonic stress response to similar extents, but at 37 degrees C high osmolalities (greater than 2 osmol/kg) were tolerated better when the additive was sucrose than when it was sodium chloride. Platelets shrank when subjected to hyperosmotic conditions, but their discoid shape and the peripheral band of microtubules were maintained. PMID:3980588

  3. Synergistic effect of osmotic and oxidative stress in slow-developing cataract formation.

    PubMed

    Chan, Alfred W H; Ho, Ye-shih; Chung, Sookja K; Chung, Stephen S M

    2008-11-01

    Diabetes is a major contributing factor in cataract development. In animal models where cataracts develop within days or weeks of diabetes it is well established that osmotic stress from the accumulation of sorbitol leads to cataract development. This mechanism might explain the rare cases of acute cataract sometimes found in patients with uncontrolled sustained hyperglycemia but cannot account for the vast majority of cataracts that developed after years of diabetes. Thus, a model that can simulate diabetic slow-developing cataract is needed. The contribution of osmotic and oxidative stress in cataract development in sorbitol dehydrogenase (SDH) deficient mice, a model for slow-developing cataract in diabetic patients was determined. Contribution of osmotic stress was assessed by HPLC measurement of sorbitol and by observing the effect of blocking sorbitol accumulation by aldose reductase (AR) null mutation in the SDH deficient mice. Contribution of oxidative stress was assessed by observing the effect of vitamin E treatment and the effect of null mutation of glutathione peroxidase-1 (Gpx-1) on cataract development in these mice. Lenticular sorbitol level was significantly increased in the SDH deficient mice, and blocking sorbitol accumulation by the AR null mutation prevented cataract development, demonstrating the contribution of osmotic stress in cataract development. SDH deficiency did not affect lens oxidative stress status. However, treatment with vitamin E significantly reduced the incidence of cataract, and Gpx-1 deficiency exacerbated cataract development in these mice. Our findings suggest that chronic oxidative stress impaired the osmoregulatory mechanism of the lens. This was not evident until modest increases in lens sorbitol increased the demand of its osmoregulatory function. This osmoregulatory dysfunction model is supported by the fact that the activity of Na+/K+-ATPase, the key regulator of cellular ions and water balance, was dramatically

  4. A balanced JA/ABA status may correlate with adaptation to osmotic stress in Vitis cells.

    PubMed

    Ismail, Ahmed; Seo, Mitsunori; Takebayashi, Yumiko; Kamiya, Yuji; Nick, Peter

    2015-08-01

    Water-related stress is considered a major type of plant stress. Osmotic stress, in particular, represents the common part of all water-related stresses. Therefore, plants have evolved different adaptive mechanisms to cope with osmotic-related disturbances. In the current work, two grapevine cell lines that differ in their osmotic adaptability, Vitis rupestris and Vitis riparia, were investigated under mannitol-induced osmotic stress. To dissect signals that lead to adaptability from those related to sensitivity, osmotic-triggered responses with respect to jasmonic acid (JA) and its active form JA-Ile, abscisic acid (ABA), and stilbene compounds, as well as the expression of their related genes were observed. In addition, the transcript levels of the cellular homeostasis gene NHX1 were examined. The data are discussed with a hypothesis suggesting that a balance of JA and ABA status might correlate with cellular responses, either guiding cells to sensitivity or to progress toward adaptation. PMID:26277753

  5. Downregulation of the taurine transporter TauT during hypo-osmotic stress in NIH3T3 mouse fibroblasts.

    PubMed

    Hansen, Daniel Bloch; Friis, Martin Barfred; Hoffmann, Else Kay; Lambert, Ian Henry

    2012-02-01

    The present work was initiated to investigate regulation of the taurine transporter TauT by reactive oxygen species (ROS) and the tonicity-responsive enhancer binding protein (TonEBP) in NIH3T3 mouse fibroblasts during acute and long-term (4 h) exposure to low-sodium/hypo-osmotic stress. Taurine influx is reduced following reduction in osmolarity, keeping the extracellular Na(+) concentration constant. TonEBP activity is unaltered, whereas TauT transcription as well as TauT activity are significantly reduced under hypo-osmotic conditions. In contrast, TonEBP activity and TauT transcription are significantly increased following hyperosmotic exposure. Swelling-induced ROS production in NIH3T3 fibroblasts is generated by NOX4 and by increasing total ROS, by either exogenous application of H(2)O(2) or overexpressing NOX4, we demonstrate that TonEBP activity and taurine influx are regulated negatively by ROS under hypo-osmotic, low-sodium conditions, whereas the TauT mRNA level is unaffected. Acute exposure to ROS reduces taurine uptake as a result of modulated TauT transport kinetics. Thus, swelling-induced ROS production could account for the reduced taurine uptake under low-sodium/hypo-osmotic conditions by direct modulation of TauT. PMID:22383044

  6. Osmotic stress at the barley root affects expression of circadian clock genes in the shoot.

    PubMed

    Habte, Ermias; Müller, Lukas M; Shtaya, Munqez; Davis, Seth J; von Korff, Maria

    2014-06-01

    The circadian clock is an important timing system that controls physiological responses to abiotic stresses in plants. However, there is little information on the effects of the clock on stress adaptation in important crops, like barley. In addition, we do not know how osmotic stress perceived at the roots affect the shoot circadian clock. Barley genotypes, carrying natural variation at the photoperiod response and clock genes Ppd-H1 and HvELF3, were grown under control and osmotic stress conditions to record changes in the diurnal expression of clock and stress-response genes and in physiological traits. Variation at HvELF3 affected the expression phase and shape of clock and stress-response genes, while variation at Ppd-H1 only affected the expression levels of stress genes. Osmotic stress up-regulated expression of clock and stress-response genes and advanced their expression peaks. Clock genes controlled the expression of stress-response genes, but had minor effects on gas exchange and leaf transpiration. This study demonstrated that osmotic stress at the barley root altered clock gene expression in the shoot and acted as a spatial input signal into the clock. Unlike in Arabidopsis, barley primary assimilation was less controlled by the clock and more responsive to environmental perturbations, such as osmotic stress. PMID:24895755

  7. Preferential Osmolyte Accumulation: a Mechanism of Osmotic Stress Adaptation in Diazotrophic Bacteria

    PubMed Central

    Madkour, Magdy A.; Smith, Linda Tombras; Smith, Gary M.

    1990-01-01

    A common cellular mechanism of osmotic-stress adaptation is the intracellular accumulation of organic solutes (osmolytes). We investigated the mechanism of osmotic adaptation in the diazotrophic bacteria Azotobacter chroococcum, Azospirillum brasilense, and Klebsiella pneumoniae, which are adversely affected by high osmotic strength (i.e., soil salinity and/or drought). We used natural-abundance 13C nuclear magnetic resonance spectroscopy to identify all the osmolytes accumulating in these strains during osmotic stress generated by 0.5 M NaCl. Evidence is presented for the accumulation of trehalose and glutamate in Azotobacter chroococcum ZSM4, proline and glutamate in Azospirillum brasilense SHS6, and trehalose and proline in K. pneumoniae. Glycine betaine was accumulated in all strains grown in culture media containing yeast extract as the sole nitrogen source. Alternative nitrogen sources (e.g., NH4Cl or casamino acids) in the culture medium did not result in measurable glycine betaine accumulation. We suggest that the mechanism of osmotic adaptation in these organisms entails the accumulation of osmolytes in hyperosmotically stressed cells resulting from either enhanced uptake from the medium (of glycine betaine, proline, and glutamate) or increased net biosynthesis (of trehalose, proline, and glutamate) or both. The preferred osmolyte in Azotobacter chroococcum ZSM4 shifted from glutamate to trehalose as a consequence of a prolonged osmotic stress. Also, the dominant osmolyte in Azospirillum brasilense SHS6 shifted from glutamate to proline accumulation as the osmotic strength of the medium increased. PMID:16348295

  8. Physiological and genetic responses of bacteria to osmotic stress.

    PubMed Central

    Csonka, L N

    1989-01-01

    The capacity of organisms to respond to fluctuations in their osmotic environments is an important physiological process that determines their abilities to thrive in a variety of habitats. The primary response of bacteria to exposure to a high osmotic environment is the accumulation of certain solutes, K+, glutamate, trehalose, proline, and glycinebetaine, at concentrations that are proportional to the osmolarity of the medium. The supposed function of these solutes is to maintain the osmolarity of the cytoplasm at a value greater than the osmolarity of the medium and thus provide turgor pressure within the cells. Accumulation of these metabolites is accomplished by de novo synthesis or by uptake from the medium. Production of proteins that mediate accumulation or uptake of these metabolites is under osmotic control. This review is an account of the processes that mediate adaptation of bacteria to changes in their osmotic environment. PMID:2651863

  9. Comparative analysis of induction of osmotic-stress-dependent genes in Vibrio vulnificus exposed to hyper- and hypo-osmotic stress.

    PubMed

    Rao, Namrata V; Shashidhar, Ravindranath; Bandekar, Jayant R

    2013-05-01

    Vibrio vulnificus, a halophilic pathogenic bacterium of marine environments, encounters changes in salinity in its natural habitat and in the food-processing environment. The comparative response of V. vulnificus to hyperosmotic and hypoosmotic stress in terms of gene expression was investigated. Genes belonging to the proU operon for transport of compatible solutes and compatible solute synthesis were significantly upregulated (3- to 4.7-fold) under hyperosmotic stress. Under hypoosmotic stress, upregulation of genes coding for mechanosensitive channels of small conductance (mscS) was not observed. In hyperosmotic conditions a 2.3-fold decrease in the expression of aqpZ was observed. A 2-fold induction in gyrA was observed in V. vulnificus cells on exposure to hyperosmotic stress. groEL genes, VVA1659 (1.6-fold), and VV3106 (1-fold) were induced in hypoosmotic condition. Results of this study indicate that to manage hyperosmotic stress, V. vulnificus accumulated osmoprotectants through uptake or through endogenous synthesis of compatible solutes. Expression of mscS may not be necessary for immediate protection in cells exposed to hyper- and hypo-osmotic stress. Comparative analysis of important osmotic-stress-related genes showed up- or down-regulation of 14 genes in hyperosmotic stress as compared with up- or down-regulation of only 7 genes in hypoosmotic stress, indicating that the cells respond asymmetrically to hyper- and hypo-osmotic stress. PMID:23647346

  10. Impact of oxidative and osmotic stresses on Candida albicans biofilm formation.

    PubMed

    Pemmaraju, Suma C; Padmapriya, Kumar; Pruthi, Parul A; Prasad, R; Pruthi, Vikas

    2016-09-01

    Candida albicans possesses an ability to grow under different host-driven stress conditions by developing robust protective mechanisms. In this investigation the focus was on the impact of osmotic (2M NaCl) and oxidative (5 mM H2O2) stress conditions during C. albicans biofilm formation. Oxidative stress enhanced extracellular DNA secretion into the biofilm matrix, increased the chitin level, and reduced virulence factors, namely phospholipase and proteinase activity, while osmotic stress mainly increased extracellular proteinase and decreased phospholipase activity. Fourier transform infrared and nuclear magnetic resonance spectroscopy analysis of mannan isolated from the C. albicans biofilm cell wall revealed a decrease in mannan content and reduced β-linked mannose moieties under stress conditions. The results demonstrate that C. albicans adapts to oxidative and osmotic stress conditions by inducing biofilm formation with a rich exopolymeric matrix, modulating virulence factors as well as the cell wall composition for its survival in different host niches. PMID:27472386

  11. Different forms of osmotic stress evoke qualitatively different responses in rice.

    PubMed

    Hazman, Mohamed; Hause, Bettina; Eiche, Elisabeth; Riemann, Michael; Nick, Peter

    2016-09-01

    Drought, salinity and alkalinity are distinct forms of osmotic stress with serious impacts on rice productivity. We investigated, for a salt-sensitive rice cultivar, the response to osmotically equivalent doses of these stresses. Drought, experimentally mimicked by mannitol (single factor: osmotic stress), salinity (two factors: osmotic stress and ion toxicity), and alkalinity (three factors: osmotic stress, ion toxicity, and depletion of nutrients and protons) produced different profiles of adaptive and damage responses, both locally (in the root) as well as systemically (in the shoot). The combination of several stress factors was not necessarily additive, and we even observed cases of mitigation, when two (salinity), or three stressors (alkalinity) were compared to the single stressor (drought). The response to combinations of individual stress factors is therefore not a mere addition of the partial stress responses, but rather represents a new quality of response. We interpret this finding in a model, where the output to signaling molecules is not determined by their abundance per se, but qualitatively depends on their adequate integration into an adaptive signaling network. This output generates a systemic signal that will determine the quality of the shoot response to local concentrations of ions. PMID:27450493

  12. Osmotic Stressing, Membrane Leakage, and Fluorescence: An Introductory Biochemistry Demonstration

    ERIC Educational Resources Information Center

    Seu, Kalani J.

    2015-01-01

    A fluorescence demonstration is described that incorporates several fundamental aspects of an introductory biochemistry course. A variation of a known leakage assay is utilized to prepare vesicles containing a quenched fluorophore. The vesicles are exposed to several osmotic environments ranging from isotonic to hypotonic. The degree of vesicle…

  13. Osmotic stress, endogenous abscisic acid and the control of leaf morphology in Hippuris vulgaris L

    NASA Technical Reports Server (NTRS)

    Goliber, T. E.; Feldman, L. J.

    1989-01-01

    Previous reports indicate that heterophyllous aquatic plants can be induced to form aerial-type leaves on submerged shoots when they are grown in exogenous abscisic acid (ABA). This study reports on the relationship between osmotic stress (e.g. the situation encountered by a shoot tip when it grows above the water surface), endogenous ABA (as measured by gas chromatography-electron capture detector) and leaf morphology in the heterophyllous aquatic plant, Hippuris vulgaris. Free ABA could not be detected in submerged shoots of H. vulgaris but in aerial shoots ABA occurred at ca. 40 ng (g fr wt)-1. When submerged shoots were osmotically stressed ABA appeared at levels of 26 to 40 ng (g fr wt)-1. These and other data support two main conclusions: (1) Osmotically stressing a submerged shoot causes the appearance of detectable levels of ABA. (2) The rise of ABA in osmotically stressed submerged shoots in turn induces a change in leaf morphology from the submerged to the aerial form. This corroborates the hypothesis that, in the natural environment, ABA levels rise in response to the osmotic stress encountered when a submerged shoot grows up through the water/air interface and that the increased ABA leads to the production of aerial-type leaves.

  14. Impact of osmotic stress on protein diffusion in Lactococcus lactis.

    PubMed

    Mika, Jacek T; Schavemaker, Paul E; Krasnikov, Victor; Poolman, Bert

    2014-11-01

    We measured translational diffusion of proteins in the cytoplasm and plasma membrane of the Gram-positive bacterium Lactococcus lactis and probed the effect of osmotic upshift. For cells in standard growth medium the diffusion coefficients for cytosolic proteins (27 and 582 kDa) and 12-transmembrane helix membrane proteins are similar to those in Escherichia coli. The translational diffusion of GFP in L. lactis drops by two orders of magnitude when the medium osmolality is increased by ∼ 1.9 Osm, and the decrease in mobility is partly reversed in the presence of osmoprotectants. We find a large spread in diffusion coefficients over the full population of cells but a smaller spread if only sister cells are compared. While in general the diffusion coefficients we measure under normal osmotic conditions in L. lactis are similar to those reported in E. coli, the decrease in translational diffusion upon osmotic challenge in L. lactis is smaller than in E. coli. An even more striking difference is that in L. lactis the GFP diffusion coefficient drops much more rapidly with volume than in E. coli. We discuss these findings in the light of differences in turgor, cell volume, crowding and cytoplasmic structure of Gram-positive and Gram-negative bacteria. PMID:25244659

  15. Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, iso-osmotic salinity (120 mM NaCl, 12mM CaCl2) and osmotic (PEG) stresses, along with chilling (5oC) stress, were applied to the cold-sensitive grapevine species V. vinifera cv. Cabernet Sauvignon. Microarray analysis of transcript abundance in shoot tips revealed that 43% of gene exp...

  16. Phenotypic characterization of Corynebacterium glutamicum under osmotic stress conditions using elementary mode analysis.

    PubMed

    Rajvanshi, Meghna; Venkatesh, K V

    2011-09-01

    Corynebacterium glutamicum, a soil bacterium, is used to produce amino acids such as lysine and glutamate. C. glutamicum is often exposed to osmolality changes in its medium, and the bacterium has therefore evolved several adaptive response mechanisms to overcome them. In this study we quantify the metabolic response of C. glutamicum under osmotic stress using elementary mode analysis (EMA). Further, we obtain the optimal phenotypic space for the synthesis of lysine and formation of biomass. The analysis demonstrated that with increasing osmotic stress, the flux towards trehalose formation and energy-generating pathways increased, while the flux of anabolic reactions diminished. Nodal analysis indicated that glucose-6-phosphate, phosphoenol pyruvate, and pyruvate nodes were capable of adapting to osmotic stress, whereas the oxaloacetic acid node was relatively unresponsive. Fewer elementary modes were active under stress indicating the rigid behavior of the metabolism in response to high osmolality. Optimal phenotypic space analysis revealed that under normal conditions the organism optimized growth during the initial log phase and lysine and trehalose formation during the stationary phase. However, under osmotic stress, the analysis demonstrated that the organism operates under suboptimal conditions for growth, and lysine and trehalose formation. PMID:21132515

  17. Osmotic stress adaptation of Paracoccidioides lutzii, Pb01, monitored by proteomics.

    PubMed

    Rodrigues, Leandro Nascimento da Silva; Brito, Wesley de Almeida; Parente, Ana Flávia Alves; Weber, Simone Schneider; Bailão, Alexandre Melo; Casaletti, Luciana; Borges, Clayton Luiz; Soares, Célia Maria de Almeida

    2016-10-01

    The ability to respond to stressful conditions is essential for most living organisms. In pathogenic organisms, this response is required for effective transition from a saprophytic lifestyle to the establishment of pathogenic interactions within a susceptible host. Hyperosmotic stress has been used as a model to study signal transduction and seems to cause many cellular adaptations, including the alteration of protein expression and cellular volume as well as size regulation. In this work, we evaluated the proteomic profile of Paracoccidioides lutzii Pb01 yeast cells during osmotic stress induced by potassium chloride. We performed a high accuracy proteomic technique (NanoUPLC-MS(E)) to identify differentially expressed proteins during osmotic shock. The data describe an osmoadaptative response of this fungus when subjected to this treatment. Proteins involved in the synthesis of cell wall components were modulated, which suggested cell wall remodeling. In addition, alterations in the energy metabolism were observed. Furthermore, proteins involved in amino acid metabolism and hydrogen peroxide detoxification were modulated during osmotic stress. Our study suggests that P. lutzii Pb01. presents a vast osmoadaptative response that is composed of different proteins that act together to minimize the effects caused by osmotic stress. PMID:27496542

  18. Apoplastic barrier development and water transport in Zea mays seedling roots under salt and osmotic stresses.

    PubMed

    Shen, Jie; Xu, Guoxin; Zheng, Hui Qiong

    2015-01-01

    The development of apoplastic barriers was studied in Zea mays seedling roots grown in hydroculture solution supplemented with 0-200 mM NaCl or 20% polyethylene glycol (PEG). Casparian bands in the endodermis of both NaCl- and PEG-treated roots were observed closer to the root tip in comparison with those of control roots, but the cell wall modifications in the endodermis and exodermis induced by salt and osmotic stresses differed. High salinity induced the formation of a multiseriate exodermis, which ranged from several cell layers to the entire cortex tissue but did not noticeably influence cell wall suberization in the endodermis. In contrast, osmotic stress accelerated suberization in both the endodermis and exodermis, but the exodermis induced by osmotic stress was limited to several cell layers in the outer cortex adjacent to the epidermis. The hydrostatic hydraulic conductivity (Lp) had decreased significantly after 1 day of PEG treatment, whereas in NaCl-treated roots, Lp decreased to a similar level after 5 days of treatment. Peroxidase activity in the roots increased significantly in response to NaCl and PEG treatments. These data indicate that salt stress and osmotic stress have different effects on the development of apoplastic barriers and water transport in Z. mays seedling roots. PMID:24965373

  19. Sorbitol treatment extends lifespan and induces the osmotic stress response in Caenorhabditis elegans

    PubMed Central

    Chandler-Brown, Devon; Choi, Haeri; Park, Shirley; Ocampo, Billie R.; Chen, Shiwen; Le, Anna; Sutphin, George L.; Shamieh, Lara S.; Smith, Erica D.; Kaeberlein, Matt

    2015-01-01

    The response to osmotic stress is a highly conserved process for adapting to changing environmental conditions. Prior studies have shown that hyperosmolarity by addition of sorbitol to the growth medium is sufficient to increase both chronological and replicative lifespan in the budding yeast, Saccharomyces cerevisiae. Here we report a similar phenomenon in the nematode Caenorhabditis elegans. Addition of sorbitol to the nematode growth medium induces an adaptive osmotic response and increases C. elegans lifespan by about 35%. Lifespan extension from 5% sorbitol behaves similarly to dietary restriction in a variety of genetic backgrounds, increasing lifespan additively with mutation of daf-2(e1370) and independently of daf-16(mu86), sir-2.1(ok434), aak-2(ok524), and hif-1(ia04). Dietary restriction by bacterial deprivation or mutation of eat-2(ad1113) fails to further extend lifespan in the presence of 5% sorbitol. Two mutants with constitutive activation of the osmotic response, osm-5(p813) and osm-7(n1515), were found to be long-lived, and lifespan extension from sorbitol required the glycerol biosynthetic enzymes GPDH-1 and GPDH-2. Taken together, these observations demonstrate that exposure to sorbitol at levels sufficient to induce an adaptive osmotic response extends lifespan in worms and define the osmotic stress response pathway as a longevity pathway conserved between yeast and nematodes. PMID:26579191

  20. Proteomic profiling analysis reveals that glutathione system plays important roles responding to osmotic stress in wheat (Triticum aestivum L.) roots.

    PubMed

    Ma, Jianhui; Dong, Wen; Zhang, Daijing; Gao, Xiaolong; Jiang, Lina; Shao, Yun; Tong, Doudou; Li, Chunxi

    2016-01-01

    Wheat is one of the most important crops in the world, and osmotic stress has become one of the main factors affecting wheat production. Understanding the mechanism of the response of wheat to osmotic stress would be greatly significant. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) was used to analyze the changes of protein expression in the wheat roots exposed to different osmotic stresses. A total of 2,228 expressed proteins, including 81 differentially expressed proteins, between osmotic stress and control, were found. The comprehensive analysis of these differentially expressed proteins revealed that osmotic stress increased the variety of expressed proteins and suppressed the quantity of expressed proteins in wheat roots. Furthermore, the proteins for detoxifying and reactive oxygen species scavenging, especially the glutathione system, played important roles in maintaining organism balance in response to osmotic stress in wheat roots. Thus, the present study comprehensively describes the protein expression changes in wheat roots in response to osmotic stress, providing firmer foundation to further study the mechanism of osmotic resistance in wheat. PMID:27602297

  1. Proteomic profiling analysis reveals that glutathione system plays important roles responding to osmotic stress in wheat (Triticum aestivum L.) roots

    PubMed Central

    Dong, Wen; Zhang, Daijing; Gao, Xiaolong; Shao, Yun; Tong, Doudou

    2016-01-01

    Wheat is one of the most important crops in the world, and osmotic stress has become one of the main factors affecting wheat production. Understanding the mechanism of the response of wheat to osmotic stress would be greatly significant. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) was used to analyze the changes of protein expression in the wheat roots exposed to different osmotic stresses. A total of 2,228 expressed proteins, including 81 differentially expressed proteins, between osmotic stress and control, were found. The comprehensive analysis of these differentially expressed proteins revealed that osmotic stress increased the variety of expressed proteins and suppressed the quantity of expressed proteins in wheat roots. Furthermore, the proteins for detoxifying and reactive oxygen species scavenging, especially the glutathione system, played important roles in maintaining organism balance in response to osmotic stress in wheat roots. Thus, the present study comprehensively describes the protein expression changes in wheat roots in response to osmotic stress, providing firmer foundation to further study the mechanism of osmotic resistance in wheat. PMID:27602297

  2. PEG-induced osmotic stress in Mentha x piperita L.: Structural features and metabolic responses.

    PubMed

    Búfalo, Jennifer; Rodrigues, Tatiane Maria; de Almeida, Luiz Fernando Rolim; Tozin, Luiz Ricardo Dos Santos; Marques, Marcia Ortiz Mayo; Boaro, Carmen Silvia Fernandes

    2016-08-01

    The present study investigated whether osmotic stress induced by the exposure of peppermint (Mentha x piperita L.) to moderate and severe stress for short periods of time changes the plant's physiological parameters, leaf anatomy and ultrastructure and essential oil. Plants were exposed to two levels of polyethyleneglycol (50 g L(-1) and 100 g L(-1) of PEG) in a hydroponic experiment. The plants exposed to 50 g L(-1) maintained metabolic functions similar to those of the control group (0 g L(-1)) without changes in gas exchange or structural characteristics. The increase in antioxidant enzyme activity reduced the presence of free radicals and protected membranes, including chloroplasts and mitochondria. In contrast, the osmotic stress caused by 100 g L(-1) of PEG inhibited leaf gas exchange, reduced the essential oil content and changed the oil composition, including a decrease in menthone and an increase in menthofuran. These plants also showed an increase in peroxidase activity, but this increase was not sufficient to decrease the lipid peroxidation level responsible for damaging the membranes of organelles. Morphological changes were correlated with the evaluated physiological features: plants exposed to 100 g L(-1) of PEG showed areas with collapsed cells, increases in mesophyll thickness and the area of the intercellular space, cuticle shrinkage, morphological changes in plastids, and lysis of mitochondria. In summary, our results revealed that PEG-induced osmotic stress in M. x piperita depends on the intensity level of the osmotic stress applied; severe osmotic stress changed the structural characteristics, caused damage at the cellular level, and reduced the essential oil content and quality. PMID:27107175

  3. Role of the Osmotic Stress Regulatory Pathway in Morphogenesis and Secondary Metabolism in Filamentous Fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Environmental stimuli trigger an adaptative cellular response to optimize the probability of survival and proliferation. In eukaryotic organisms from mammals to fungi osmotic stress, mainly through the action of the high osmolarity glycerol (HOG) pathway, leads to a response necessary for adapting a...

  4. Brx Mediates the Response of Lymphocytes to Osmotic Stress Through the Activation of NFAT5

    PubMed Central

    Kino, Tomoshige; Takatori, Hiroaki; Manoli, Irini; Wang, Yonghong; Tiulpakov, Anatoly; Blackman, Marc R.; Su, Yan A.; Chrousos, George P.; DeCherney, Alan H.; Segars, James H.

    2010-01-01

    Extracellular hyperosmolarity, or osmotic stress, generally caused by differences in salt and macromolecule concentrations across the plasma membrane, occurs in lymphoid organs and at inflammatory sites. The response of immune cells to osmotic stress is regulated by nuclear factor of activated T cells 5 (NFAT5), a transcription factor that induces the expression of hyperosmolarity-responsive genes and stimulates cytokine production. We report that the guanine nucleotide exchange factor (GEF) Brx [also known as protein kinase A–anchoring protein 13 (AKAP13)] is essential for the expression of nfat5 in response to osmotic stress, thus transmitting the extracellular hyperosmolarity signal and enabling differentiation of splenic B cells and production of immunoglobulin. This process required the activity of p38 mitogen-activated protein kinase (MAPK) and NFAT5 and involved a physical interaction between Brx and c-Jun N-terminal kinase (JNK)–interacting protein 4 (JIP4), a scaffold molecule specific to activation of the p38 MAPK cascade. Our results indicate that Brx integrates the responses of immune cells to osmotic stress and inflammation by elevating intracellular osmolarity and stimulating the production of cytokines. PMID:19211510

  5. Isolation and characterization of an osmotic stress and ABA induced histone deacetylase in Arachis hygogaea

    PubMed Central

    Su, Liang-Chen; Deng, Bin; Liu, Shuai; Li, Li-Mei; Hu, Bo; Zhong, Yu-Ting; Li, Ling

    2015-01-01

    Histone acetylation, which together with histone methylation regulates gene activity in response to stress, is an important epigenetic modification. There is an increasing research focus on histone acetylation in crops, but there is no information to date in peanut (Arachis hypogaea). We showed that osmotic stress and ABA affect the acetylation of histone H3 loci in peanut seedlings by immunoblotting experiments. Using RNA-seq data for peanut, we found a RPD3/HDA1-like superfamily histone deacetylase (HDAC), termed AhHDA1, whose gene is up-regulated by PEG-induced water limitation and ABA signaling. We isolated and characterized AhHDA1 from A. hypogaea, showing that AhHDA1 is very similar to an Arabidopsis HDAC (AtHDA6) and, in recombinant form, possesses HDAC activity. To understand whether and how osmotic stress and ABA mediate the peanut stress response by epigenetics, the expression of AhHDA1 and stress-responsive genes following treatment with PEG, ABA, and the specific HDAC inhibitor trichostatin A (TSA) were analyzed. AhHDA1 transcript levels were enhanced by all three treatments, as was expression of peanut transcription factor genes, indicating that AhHDA1 might be involved in the epigenetic regulation of stress resistance genes that comprise the responses to osmotic stress and ABA. PMID:26217363

  6. Physcomitrella patens DNA methyltransferase 2 is required for recovery from salt and osmotic stress.

    PubMed

    Arya, Deepshikha; Kapoor, Sanjay; Kapoor, Meenu

    2016-02-01

    DNA methyltransferase 2 (DNMT2) unlike other members of the cytosine DNA methyltransferase gene family has dual substrate specificity and it methylates cytosines in both the DNA and transfer RNA (tRNA). Its role in plants, however, has remained obscure to date. In this study, we demonstrate that DNMT2 from Physcomitrella patens accumulates in a temporal manner under salt and osmotic stress showing maximum accumulation during recovery, i.e. 24 h after plants are transferred to normal growth medium. Therefore, to study its role in stress tolerance, we generated PpDNMT2 targeted knockout plants (ppdnmt2ko). Mutant plants show increased sensitivity to salt and osmotic stress and are unable to recover even after 21 days of growth on optimal growth media. ppdnmt2ko, however, accumulate normal levels of dehydrin-like and small heat shock protein encoding transcripts under stress but show dramatic reduction in levels of tRNA(A) (sp-) (GUC) . The levels of tRNA(A) (sp-) (GUC) , in contrast, increase ~ 25-30-fold in ppdnmt2ko under non-stress conditions and > 1200-fold in wild-type plants under stress. The role of PpDNMT2 in modulating biogenesis/stability of tRNA(A) (sp-) (GUC) under salt and osmotic stress is discussed in the light of these observations. PMID:26639858

  7. The Pepper CaOSR1 Protein Regulates the Osmotic Stress Response via Abscisic Acid Signaling

    PubMed Central

    Park, Chanmi; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Plants are sessile organisms, and their growth and development is detrimentally affected by environmental stresses such as drought and high salinity. Defense mechanisms are tightly regulated and complex processes, which respond to changing environmental conditions; however, the precise mechanisms that function under adverse conditions remain unclear. Here, we report the identification and functional characterization of the CaOSR1 gene, which functions in the adaptive response to abiotic stress. We found that CaOSR1 gene expression in pepper leaves was up-regulated after exposure to abscisic acid (ABA), drought, and high salinity. In addition, we demonstrated that the fusion protein of CaOSR1 with green fluorescent protein (GFP) is localized in the nucleus. We used CaOSR1-silenced pepper plants and CaOSR1-OX-overexpressing (OX) transgenic Arabidopsis plants to show that the CaOSR1 protein regulates the osmotic stress response. CaOSR1-silenced pepper plants showed increased drought susceptibility, and this was accompanied by a high transpiration rate. CaOSR1-OX plants displayed phenotypes that were hypersensitive to ABA and hyposensitive to osmotic stress, during the seed germination and seedling growth stages; furthermore, these plants exhibited enhanced drought tolerance at the adult stage, and this was characterized by higher leaf temperatures and smaller stomatal apertures because of ABA hypersensitivity. Taken together, our data indicate that CaOSR1 positively regulates osmotic stress tolerance via ABA-mediated cell signaling. These findings suggest an involvement of a novel protein in ABA and osmotic stress signalings in plants. PMID:27446121

  8. The Pepper CaOSR1 Protein Regulates the Osmotic Stress Response via Abscisic Acid Signaling.

    PubMed

    Park, Chanmi; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Plants are sessile organisms, and their growth and development is detrimentally affected by environmental stresses such as drought and high salinity. Defense mechanisms are tightly regulated and complex processes, which respond to changing environmental conditions; however, the precise mechanisms that function under adverse conditions remain unclear. Here, we report the identification and functional characterization of the CaOSR1 gene, which functions in the adaptive response to abiotic stress. We found that CaOSR1 gene expression in pepper leaves was up-regulated after exposure to abscisic acid (ABA), drought, and high salinity. In addition, we demonstrated that the fusion protein of CaOSR1 with green fluorescent protein (GFP) is localized in the nucleus. We used CaOSR1-silenced pepper plants and CaOSR1-OX-overexpressing (OX) transgenic Arabidopsis plants to show that the CaOSR1 protein regulates the osmotic stress response. CaOSR1-silenced pepper plants showed increased drought susceptibility, and this was accompanied by a high transpiration rate. CaOSR1-OX plants displayed phenotypes that were hypersensitive to ABA and hyposensitive to osmotic stress, during the seed germination and seedling growth stages; furthermore, these plants exhibited enhanced drought tolerance at the adult stage, and this was characterized by higher leaf temperatures and smaller stomatal apertures because of ABA hypersensitivity. Taken together, our data indicate that CaOSR1 positively regulates osmotic stress tolerance via ABA-mediated cell signaling. These findings suggest an involvement of a novel protein in ABA and osmotic stress signalings in plants. PMID:27446121

  9. An osmotic stress protein of cyanobacteria is immunologically related to plant dehydrins.

    PubMed

    Close, T J; Lammers, P J

    1993-03-01

    Dehydrins are a family of desiccation proteins that were identified originally in plants (T.J. Close, A.A. Kortt, P.M. Chandler [1989] Plant Mol Biol 13: 95-108; G. Galau, T.J. Close [1992] Plant Physiol 98: 1523-1525). Dehydrins are characterized by the consensus amino acid sequence domain EKKGIMDKIKEKLPG found at or near the carboxy terminus; the core of this domain (KIKEKLPG) may be repeated from one to many times within the complete polypeptide. Dehydrins generally accumulate in plants in response to dehydration stress, regardless of whether the stimulus is evaporation, chilling, or a decrease in external osmotic potential. Polyclonal antibodies highly specific to the consensus carboxy terminus of plant dehydrins were used to search for dehydrins in cyanobacteria, many of which are known to survive desiccation. A 40-kD osmotic-stress-induced protein was identified in Anabaena sp. strain PCC 7120. The 40-kD protein was usually not detected in logarithmic cultures and was induced by shifting the growth medium to higher solute concentrations. Several solutes have inductive effects, including sucrose, sorbitol, and polyethylene glycol (PEG). Measurements of osmotic potential suggest that a shift of -0.5 MPa (sucrose and PEG) or -1.2 MPa (sorbitol) is sufficient to induce synthesis of the 40-kD protein. Glycerol, which is highly permeable, was not an inducer at -1.2 MPa (0.5 M), nor was the plant hormone abscisic acid. Induction appears to be evoked by a shift in osmotic potential approximately equal in absolute magnitude to the expected turgor pressure of bacterial cells in logarithmic phase growth. A dehydrin-like polypeptide was also identified among osmotically induced proteins from two other filamentous, heterocyst-forming cyano-bacteria. A 40-kD protein was observed in Calothrix sp. strain PCC 7601, and in Nostoc sp. strain Mac-R2, an osmotic-induced doublet at 39 and 40 kD was observed. From these data, it appears that cyanobacteria produce a dehydrin

  10. Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid

    PubMed Central

    2011-01-01

    Background Higher plants exhibit remarkable phenotypic plasticity allowing them to adapt to an extensive range of environmental conditions. Sorghum is a cereal crop that exhibits exceptional tolerance to adverse conditions, in particular, water-limiting environments. This study utilized next generation sequencing (NGS) technology to examine the transcriptome of sorghum plants challenged with osmotic stress and exogenous abscisic acid (ABA) in order to elucidate genes and gene networks that contribute to sorghum's tolerance to water-limiting environments with a long-term aim of developing strategies to improve plant productivity under drought. Results RNA-Seq results revealed transcriptional activity of 28,335 unique genes from sorghum root and shoot tissues subjected to polyethylene glycol (PEG)-induced osmotic stress or exogenous ABA. Differential gene expression analyses in response to osmotic stress and ABA revealed a strong interplay among various metabolic pathways including abscisic acid and 13-lipoxygenase, salicylic acid, jasmonic acid, and plant defense pathways. Transcription factor analysis indicated that groups of genes may be co-regulated by similar regulatory sequences to which the expressed transcription factors bind. We successfully exploited the data presented here in conjunction with published transcriptome analyses for rice, maize, and Arabidopsis to discover more than 50 differentially expressed, drought-responsive gene orthologs for which no function had been previously ascribed. Conclusions The present study provides an initial assemblage of sorghum genes and gene networks regulated by osmotic stress and hormonal treatment. We are providing an RNA-Seq data set and an initial collection of transcription factors, which offer a preliminary look into the cascade of global gene expression patterns that arise in a drought tolerant crop subjected to abiotic stress. These resources will allow scientists to query gene expression and functional

  11. Stress Responses of the Industrial Workhorse Bacillus licheniformis to Osmotic Challenges

    PubMed Central

    Schroeter, Rebecca; Hoffmann, Tamara; Voigt, Birgit; Meyer, Hanna; Bleisteiner, Monika; Muntel, Jan; Jürgen, Britta; Albrecht, Dirk; Becher, Dörte; Lalk, Michael; Evers, Stefan; Bongaerts, Johannes; Maurer, Karl-Heinz; Putzer, Harald; Hecker, Michael; Schweder, Thomas; Bremer, Erhard

    2013-01-01

    The Gram-positive endospore-forming bacterium Bacillus licheniformis can be found widely in nature and it is exploited in industrial processes for the manufacturing of antibiotics, specialty chemicals, and enzymes. Both in its varied natural habitats and in industrial settings, B. licheniformis cells will be exposed to increases in the external osmolarity, conditions that trigger water efflux, impair turgor, cause the cessation of growth, and negatively affect the productivity of cell factories in biotechnological processes. We have taken here both systems-wide and targeted physiological approaches to unravel the core of the osmostress responses of B. licheniformis. Cells were suddenly subjected to an osmotic upshift of considerable magnitude (with 1 M NaCl), and their transcriptional profile was then recorded in a time-resolved fashion on a genome-wide scale. A bioinformatics cluster analysis was used to group the osmotically up-regulated genes into categories that are functionally associated with the synthesis and import of osmostress-relieving compounds (compatible solutes), the SigB-controlled general stress response, and genes whose functional annotation suggests that salt stress triggers secondary oxidative stress responses in B. licheniformis. The data set focusing on the transcriptional profile of B. licheniformis was enriched by proteomics aimed at identifying those proteins that were accumulated by the cells through increased biosynthesis in response to osmotic stress. Furthermore, these global approaches were augmented by a set of experiments that addressed the synthesis of the compatible solutes proline and glycine betaine and assessed the growth-enhancing effects of various osmoprotectants. Combined, our data provide a blueprint of the cellular adjustment processes of B. licheniformis to both sudden and sustained osmotic stress. PMID:24348917

  12. Effects of osmotic stress on predation behaviour of Asterias rubens L.

    NASA Astrophysics Data System (ADS)

    Agüera, Antonio; Schellekens, Tim; Jansen, Jeroen M.; Smaal, Aad C.

    2015-05-01

    Environmental stress plays an important role in determining ecosystem functioning and structure. In estuarine areas both tidal and seasonal salinity changes may cause osmotic stress on predators, affecting their behaviour and survival. The interaction between these predators and their prey may affect performance, thus influencing predator impact on prey populations. The common starfish, Asterias rubens, inhabits estuarine areas, such as the Dutch Wadden Sea, that exhibit large seasonal variation in salinity (10-32 PSU). In those areas A. rubens exerts top down control on its prey, thus representing an important shellfish predator. This predation may impact on cultured and natural shellfish populations. However, the effects of osmotic stress on A. rubens performance may influence its effect on prey. Although the effect of salinity in A. rubens survival has been extensively studied, the impact on its predation behaviour and acclimation capacity remains unclear. In this study, we analyse the performance of A. rubens preying on mussels (Mytilus edulis) after a salinity decrease and monitor its acclimation capacity over a period of 22 days. Our experiments demonstrated that salinity affected performance by reducing feeding activity and altering size prey selection. Moreover, as acclimation occurred, A. rubens predation performance improved in all sub-lethal treatments. We conclude that osmotic stress caused by decreasing salinity potentially influences A. rubens distribution, abundance, and potential impact on prey populations. However the magnitude of the change in salinity (from 31 to a minimum of 10 PSU) and its timescale (3 weeks) mediate this effect.

  13. Physiological and biochemical responses of green microalgae from different habitats to osmotic and matric stress.

    PubMed

    Gustavs, Lydia; Eggert, Anja; Michalik, Dirk; Karsten, Ulf

    2010-07-01

    Growth of five aeroterrestrial green algal strains (Trebouxiophyceae) in response to changing water availabilities-caused by osmotic (ionic) and matric (desiccation) stresses-was investigated in comparison with a freshwater and a marine strain. All investigated algae displayed good growth under brackish conditions while four out of the five aeroterrestrial strains even grew well under full marine conditions (28-40 psu). The comparison between growth responses in liquid medium, on solid agarose, and on glass fiber filters at 100% air humidity indicated a broad growth tolerance of aeroterrestrial algae towards diminished water availability. While two aeroterrestrial strains even grew better on solid medium which mimics natural biofilm conditions, the aquatic strains showed significant growth inhibition under matric stress. Except Stichococcus sp., which contained the C6-polyol sorbitol, all other aeroterrestrial green algae investigated synthesized and accumulated the C5-polyol ribitol in response to osmotic stress. Using (13)C NMR spectroscopy and HPLC, it could be verified that ribitol functions as an osmotically regulated organic solute. This is the first proof of ribitol in free-living aeroterrestrial green algae. The biochemical capability to synthesize polyols under environmental stress conditions seems to support algal life outside aquatic habitats. PMID:19585217

  14. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin.

    PubMed

    Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith

    2016-07-01

    Understanding the mechanisms regulating root development under drought conditions is an important question for plant biology and world agriculture. We examine the effect of osmotic stress on abscisic acid (ABA), cytokinin and ethylene responses and how they mediate auxin transport, distribution and root growth through effects on PIN proteins. We integrate experimental data to construct hormonal crosstalk networks to formulate a systems view of root growth regulation by multiple hormones. Experimental analysis shows: that ABA-dependent and ABA-independent stress responses increase under osmotic stress, but cytokinin responses are only slightly reduced; inhibition of root growth under osmotic stress does not require ethylene signalling, but auxin can rescue root growth and meristem size; osmotic stress modulates auxin transporter levels and localization, reducing root auxin concentrations; PIN1 levels are reduced under stress in an ABA-dependent manner, overriding ethylene effects; and the interplay among ABA, ethylene, cytokinin and auxin is tissue-specific, as evidenced by differential responses of PIN1 and PIN2 to osmotic stress. Combining experimental analysis with network construction reveals that ABA regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. PMID:26889752

  15. Polyamine metabolism and osmotic stress. II. Improvement of oat protoplasts by an inhibitor of arginine decarboxylase

    NASA Technical Reports Server (NTRS)

    Tiburcio, A. F.; Kaur-Sawhney, R.; Galston, A. W.

    1986-01-01

    We have attempted to improve the viability of cereal mesophyll protoplasts by pretreatment of leaves with DL-alpha-difluoromethylarginine (DFMA), a specific 'suicide' inhibitor of the enzyme (arginine decarboxylase) responsible for their osmotically induced putrescine accumulation. Leaf pretreatment with DFMA before a 6 hour osmotic shock caused a 45% decrease of putrescine and a 2-fold increase of spermine titer. After 136 hours of osmotic stress, putrescine titer in DFMA-pretreated leaves increased by only 50%, but spermidine and spermine titers increased dramatically by 3.2- and 6-fold, respectively. These increases in higher polyamines could account for the reduced chlorophyll loss and enhanced ability of pretreated leaves to incorporate tritiated thymidine, uridine, and leucine into macromolecules. Pretreatment with DFMA significantly improved the overall viability of the protoplasts isolated from these leaves. The results support the view that the osmotically induced rise in putrescine and blockage of its conversion to higher polyamines may contribute to the lack of sustained cell division in cereal mesophyll protoplasts, although other undefined factors must also play a major role.

  16. Osmotic stress stimulates phosphorylation and cellular expression of heat shock proteins in rhesus macaque sperm.

    PubMed

    Cole, Julie A; Meyers, Stuart A

    2011-01-01

    The cryosurvival of sperm requires cell signaling mechanisms to adapt to anisotonic conditions during the freezing and thawing process. Chaperone proteins heat shock protein 70 (HSP 70) and heat shock protein 90 (HSP 90; recently renamed HSPA and HSPC, respectively) facilitate some of these cell signaling events in somatic cells. Sperm were evaluated for their cellular expression and levels of phosphorylation of both HSP 70 and HSP 90 under anisotonic conditions as a potential model for cell signaling during the cryopreservation of macaque spermatozoa. In order to monitor the level of stress, the motility and viability parameters were evaluated at various time points. Cells were then either prepared for phosphoprotein enrichment or indirect immunocytochemistry. As controls, the phosphoserine, phosphothreonine, and phosphotyrosine levels were measured under capacitation and cryopreservation conditions and were compared with the phosphoprotein levels expressed under osmotic conditions. As expected, there was an increase in the level of tyrosine phosphorylation under capacitation and cryopreservation conditions. There was also a significant increase in the level of all phosphoproteins under hyperosmotic conditions. There was no change in the level of expression of HSP 70 or 90 under osmotic stress conditions as measured by Western blot. The enrichment of phosphoproteins followed by Western immunoblotting revealed an increase in the phosphorylation of HSP 70 but not HSP 90 under osmotic stress conditions. Indirect immunofluorescence localized HSP 70 to the postacrosomal region of sperm, and the level of membrane expression of HSP 70 was significantly affected by anisotonic conditions, as measured by flow cytometry. Taken together, these results suggest a differential role for HSP 70 and HSP 90 during osmotic stress conditions in rhesus macaque sperm. PMID:21088232

  17. Osmotolerant yeast species differ in basic physiological parameters and in tolerance of non-osmotic stresses.

    PubMed

    Bubnová, Michala; Zemančíková, Jana; Sychrová, Hana

    2014-08-01

    Osmotolerance is the ability to grow in an environment with a high osmotic pressure. In this study we compared the physiological parameters and tolerance to osmotic and non-osmotic stresses of three osmotolerant yeast species, Debaryomyces hansenii, Pichia farinosa (sorbitophila) and Zygosaccharomyces rouxii, with those of wild-type Saccharomyces cerevisiae. Although the osmotolerant species did not differ significantly in their basic parameters, such as cell size or growth capacity, they had different abilities to survive anhydrobiosis, potassium limitation or the presence of toxic cationic drugs. When their osmotolerance was compared, the results revealed that some of the species isolated as sugar/polyol-tolerant (e.g.  P. farinosa) are also highly tolerant to salts and, vice versa, some strains isolated from an environment with high concentration of salt (e.g. Z. rouxii ATCC 42981) tolerate high concentrations of sugars. None of the tested strains and species was osmophilic. Taken together, our results showed that P. farinosa (sorbitophila) is the most robust species when coping with various stresses, while Z. rouxii CBS 732, although osmotolerant in general, is not specifically salt-tolerant and is quite sensitive to most of the tested stress conditions. PMID:24962688

  18. Proline transport and osmotic stress response in Escherichia coli K-12.

    PubMed Central

    Grothe, S; Krogsrud, R L; McClellan, D J; Milner, J L; Wood, J M

    1986-01-01

    Proline is accumulated in Escherichia coli via two active transport systems, proline porter I (PPI) and PPII. In our experiments, PPI was insensitive to catabolite repression and was reduced in activity twofold when bacteria were subjected to amino acid-limited growth. PPII, which has a lower affinity for proline than PPI, was induced by tryptophan-limited growth. PPII activity was elevated in bacteria that were subjected to osmotic stress during growth or the transport measurement. Neither PPI nor uptake of serine or glutamine was affected by osmotic stress. Mutation proU205, which was similar in genetic map location and phenotype to other proU mutations isolated in E. coli and Salmonella typhimurium, influenced the sensitivity of the bacteria to the toxic proline analogs azetidine-2-carboxylate and 3,4-dehydroproline, the proline requirements of auxotrophs, and the osmoprotective effect of proline. This mutation did not influence proline uptake via PPI or PPII. A very low uptake activity (6% of the PPII activity) observed in osmotically stressed bacteria lacking PPI and PPII was not observed when the proU205 lesion was introduced. PMID:3514577

  19. Cross-tolerance between osmotic and freeze-thaw stress in microbial assemblages from temperate lakes.

    PubMed

    Wilson, Sandra L; Frazer, Corey; Cumming, Brian F; Nuin, Paulo A S; Walker, Virginia K

    2012-11-01

    Osmotic stress can accompany increases in solute concentrations because of freezing or high-salt environments. Consequently, microorganisms from environments with a high-osmotic potential may exhibit cross-tolerance to freeze stress. To test this hypothesis, enrichments derived from the sediment and water of temperate lakes with a range of salt concentrations were subjected to multiple freeze-thaw cycles. Surviving isolates were identified and metagenomes were sampled prior to and following selection. Enrichments from alkali lakes were typically the most freeze-thaw resistant with only 100-fold losses in cell viability, and those from freshwater lakes were most susceptible, with cell numbers reduced at least 100,000-fold. Metagenomic analysis suggested that selection reduced assemblage diversity more in freshwater samples than in those from saline lakes. Survivors included known psychro-, halo- and alkali-tolerant bacteria. Characterization of freeze-thaw-resistant isolates from brine and alkali lakes showed that few isolates had ice-associating activities such as antifreeze or ice nucleation properties. However, all brine- and alkali-derived isolates had high intracellular levels of osmolytes and/or appeared more likely to form biofilms. Conversely, these phenotypes were infrequent amongst the freshwater-derived isolates. These observations are consistent with microbial cross-tolerance between osmotic and freeze-thaw stresses. PMID:22551442

  20. Effect of drought and osmotic stress on gene expression in Jack Pine. [Pinus banksiana

    SciTech Connect

    Subramanian, M.; Mayne, M.; Coleman, J.R.; Blumwald, E. )

    1991-05-01

    The effect of drought and osmotic stress was studied in Jack Pine (Pinus banksiana) seedlings and cultured cell suspensions, respectively. The pattern of protein syntheses during stress was studied. Seedlings and cells were in vivo labeled with ({sup 35}S)methionine and membrane-bound proteins were isolated. proteins were resolved by SDS-PAGE, and identified by staining and autoradiography. Several changes in protein profiles were induced by stress. Messenger RNAs were isolated, translated in vitro, and complementary DNA libraries from control and stressed plants and cells were constructed in E. coli strain JM109. Antibodies, raised against electroeluted membrane-bound proteins that were significantly induced and/or enhanced during stress, were used to isolate stress-related genes from cDNA libraries.

  1. The response of foodborne pathogens to osmotic and desiccation stresses in the food chain.

    PubMed

    Burgess, Catherine M; Gianotti, Andrea; Gruzdev, Nadia; Holah, John; Knøchel, Susanne; Lehner, Angelika; Margas, Edyta; Esser, Stephan Schmitz; Sela Saldinger, Shlomo; Tresse, Odile

    2016-03-16

    In combination with other strategies, hyperosmolarity and desiccation are frequently used by the food processing industry as a means to prevent bacterial proliferation, and particularly that of foodborne pathogens, in food products. However, it is increasingly observed that bacteria, including human pathogens, encode mechanisms to survive and withstand these stresses. This review provides an overview of the mechanisms employed by Salmonella spp., Shiga toxin producing E. coli, Cronobacter spp., Listeria monocytogenes and Campylobacter spp. to tolerate osmotic and desiccation stresses and identifies gaps in knowledge which need to be addressed to ensure the safety of low water activity and desiccated food products. PMID:26803272

  2. Polyamines and plant stress - Activation of putrescine biosynthesis by osmotic shock

    NASA Technical Reports Server (NTRS)

    Flores, H. E.; Galston, A. W.

    1982-01-01

    The putrescine content of oat leaf cells and protoplasts increases up to 60-fold within 6 hours of exposure to osmotic stress (0.4 to 0.6 molar sorbitol). Barley, corn, wheat, and wild oat leaves show a similar response. Increased arginine decarboxylase activity parallels the rise in putrescine, whereas ornithine decarboxylase remains unchanged. DL-alpha-Difluoromethylarginine, a specific irreversible inhibitor of arginine decarboxylase, prevents the stress-induced rise in increase in arginine decarboxylase activity and putrescine synthesis, indicating the preferential activation of this pathway.

  3. Concomitant osmotic and chaotropicity-induced stresses in Aspergillus wentii: compatible solutes determine the biotic window.

    PubMed

    de Lima Alves, Flávia; Stevenson, Andrew; Baxter, Esther; Gillion, Jenny L M; Hejazi, Fakhrossadat; Hayes, Sandra; Morrison, Ian E G; Prior, Bernard A; McGenity, Terry J; Rangel, Drauzio E N; Magan, Naresh; Timmis, Kenneth N; Hallsworth, John E

    2015-08-01

    Whereas osmotic stress response induced by solutes has been well-characterized in fungi, less is known about the other activities of environmentally ubiquitous substances. The latest methodologies to define, identify and quantify chaotropicity, i.e. substance-induced destabilization of macromolecular systems, now enable new insights into microbial stress biology (Cray et al. in Curr Opin Biotechnol 33:228-259, 2015a, doi: 10.1016/j.copbio.2015.02.010 ; Ball and Hallsworth in Phys Chem Chem Phys 17:8297-8305, 2015, doi: 10.1039/C4CP04564E ; Cray et al. in Environ Microbiol 15:287-296, 2013a, doi: 10.1111/1462-2920.12018 ). We used Aspergillus wentii, a paradigm for extreme solute-tolerant fungal xerophiles, alongside yeast cell and enzyme models (Saccharomyces cerevisiae and glucose-6-phosphate dehydrogenase) and an agar-gelation assay, to determine growth-rate inhibition, intracellular compatible solutes, cell turgor, inhibition of enzyme activity, substrate water activity, and stressor chaotropicity for 12 chemically diverse solutes. These stressors were found to be: (i) osmotically active (and typically macromolecule-stabilizing kosmotropes), including NaCl and sorbitol; (ii) weakly to moderately chaotropic and non-osmotic, these were ethanol, urea, ethylene glycol; (iii) highly chaotropic and osmotically active, i.e. NH4NO3, MgCl2, guanidine hydrochloride, and CaCl2; or (iv) inhibitory due primarily to low water activity, i.e. glycerol. At ≤0.974 water activity, Aspergillus cultured on osmotically active stressors accumulated low-M r polyols to ≥100 mg g dry weight(-1). Lower-M r polyols (i.e. glycerol, erythritol and arabitol) were shown to be more effective for osmotic adjustment; for higher-M r polyols such as mannitol, and the disaccharide trehalose, water-activity values for saturated solutions are too high to be effective; i.e. 0.978 and 0.970 (25 ºC). The highly chaotropic, osmotically active substances exhibited a stressful level of

  4. Osmotically driven tensile stress in collagen-based mineralized tissues.

    PubMed

    Bertinetti, Luca; Masic, Admir; Schuetz, Roman; Barbetta, Aurelio; Seidt, Britta; Wagermaier, Wolfgang; Fratzl, Peter

    2015-12-01

    Collagen is the most abundant protein in mammals and its primary role is to serve as mechanical support in many extracellular matrices such as those of bones, tendons, skin or blood vessels. Water is an integral part of the collagen structure, but its role is still poorly understood, though it is well-known that the mechanical properties of collagen depend on hydration. Recently, it was shown that the conformation of the collagen triple helix changes upon water removal, leading to a contraction of the molecule with considerable forces. Here we investigate the influence of mineralization on this effect by studying bone and turkey leg tendon (TLT) as model systems. Indeed, TLT partially mineralizes so that well-aligned collagen with various mineral contents can be found in the same tendon. We show that water removal leads to collagen contraction in all cases generating tensile stresses up to 80MPa. Moreover, this contraction of collagen puts mineral particles under compression leading to strains of around 1%, which implies localized compressive loads in mineral of up to 800MPa. This suggests that collagen dehydration upon mineralization is at the origin of the compressive pre-strains commonly observed in bone mineral. PMID:25862347

  5. How small polar molecules protect membrane systems against osmotic stress: the urea-water-phospholipid system.

    PubMed

    Costa-Balogh, Fátima O; Wennerström, Håkan; Wadsö, Lars; Sparr, Emma

    2006-11-30

    We investigate how a small polar molecule, urea, can act to protect a phospholipid bilayer system against osmotic stress. Osmotic stress can be caused by a dry environment, by freezing, or by exposure to aqueous systems with high osmotic pressure due to solutes like in saline water. A large number of organisms regularly experience osmotic stress, and it is a common response to produce small polar molecules intracellularly. We have selected a ternary system of urea-water-dimyristoyl phosphatidylcholine (DMPC) as a model to investigate the molecular mechanism behind this protective effect, in this case, of urea, and we put special emphasis on the applications of urea in skin care products. Using differential scanning calorimetry, X-ray diffraction, and sorption microbalance measurements, we studied the phase behavior of lipid systems exposed to an excess of solvent of varying compositions, as well as lipid systems exposed to water at reduced relative humidities. From this, we have arrived at a rather detailed thermodynamic characterization. The basic findings are as follows: (i) In excess solvent, the thermally induced lipid phase transitions are only marginally dependent on the urea content, with the exception being that the P(beta) phase is not observed in the presence of urea. (ii) For lipid systems with limited access to solvent, the phase behavior is basically determined by the amount (volume) of solvent irrespective of the urea content. (iii) The presence of urea has the effect of retaining the liquid crystalline phase at relative humidities down to 64% (at 27 degrees C), whereas, in the absence of urea, the transition to the gel phase occurs already at a relative humidity of 94%. This demonstrates the protective effect of urea against osmotic stress. (iv) In skin care products, urea is referred to as a moisturizer, which we find slightly misleading as it replaces the water while keeping the physical properties unaltered. (v) In other systems, urea is known to

  6. From microgravity to osmotic conditions: mechanical integration of plant cells in response to stress

    NASA Astrophysics Data System (ADS)

    Wojtaszek, Przemyslaw; Kasprowicz, Anna; Michalak, Michal; Janczara, Renata; Volkmann, Dieter; Baluska, Frantisek

    Chemical reactions and interactions between molecules are commonly thought of as being at the basis of Life. Research of recent years, however, is more and more evidently indicating that physical forces are profoundly affecting the functioning of life at all levels of its organiza-tion. To detect and to respond to such forces, plant cells need to be integrated mechanically. Cell walls are the outermost functional zone of plant cells. They surround the individual cells, and also form a part of the apoplast. In cell suspensions, cell walls are embedded in the cul-ture medium which can be considered as a superapoplast. Through physical and chemical interactions they provide a basis for the structural and functional cell wall-plasma membrane-cytoskeleton (WMC) continuum spanning the whole cell. Here, the working of WMC contin-uum, and the participation of signalling molecules, like NO, would be presented in the context of plant responses to stress. In addition, the effects of the changing composition of WMC continuum will be considered, with particular attention paid to the modifications of the WMC components. Plant cells are normally adapted to changing osmotic conditions, resulting from variable wa-ter availability. The appearance of the osmotic stress activates adaptory mechanisms. If the strength of osmotic stress grows relatively slowly over longer period of time, the cells are able to adapt to conditions that are lethal to non-adapted cells. During stepwise adaptation of tobacco BY-2 suspension cells to the presence of various osmotically active agents, cells diverged into independent, osmoticum type-specific lines. In response to ionic agents (NaCl, KCl), the adhe-sive properties were increased and randomly dividing cells formed clumps, while cells adapted to nonionic osmotica (mannitol, sorbitol, PEG) revealed ordered pattern of precisely positioned cell divisions, resulting in the formation of long cell files. Changes in the growth patterns were accompanied by

  7. Gene expression and function involved in polyol biosynthesis of Trichosporonoides megachiliensis under hyper-osmotic stress.

    PubMed

    Kobayashi, Yosuke; Yoshida, Junjiro; Iwata, Hisashi; Koyama, Yoshiyuki; Kato, Jun; Ogihara, Jun; Kasumi, Takafumi

    2013-06-01

    Among three erythritol reductase isogenes (er1, er2, and er3) in Trichosporonoides megachiliensis SN-124A, er1 and er2 each had one stress response element (STRE) approximately 2 kbp upstream of their respective initiator codon; in contrast, er3 had two STREs, 148 and 40 bp upstream from the initiator codon. Based on intracellular erythritol accumulation and gene expression profiles, er3 seemed to be highly responsive to stress than er1 or er2. Under hyper-osmotic conditions, intracellular glycerol production, increased significantly within 1.5 h together with glycerol-3-phosphate dehydrogenase gene (gpd1) expression; in contrast, neither er gene expression nor the corresponding production of intracellular erythritol increased significantly within the first 1.5 h of hyper-osmotic culture. However, within 24 h of hyper-osmotic culture, erythritol production and er3 gene expression increased significantly and in parallel. Thus, we concluded that, as an initial response to hyper-osmotic growth conditions, T. megachiliensis produces glycerol as an osmoregulatory compatible solute via GPD; however, within 24 h, it begins to produce erythritol, mainly via ER3, as the preferred compatible solute. Heterologous expression of ers in a Saccharomyces cerevisiae mutant indicated that any of three ers might not function in S. cerevisiae for erythritol biosynthesis in spite of ers and corresponding ERs expression. Hence, although er is annotated as a galactose-inducible crystalline-like yeast protein gene (gcy1) homolog, er may be functionally different from gcy1 in glycolytic metabolism. Otherwise, S. cerevisiae is not likely to produce erythrose, the substrate of erythrose reductase due to metabolic characteristics. PMID:23294575

  8. Proteomic analysis of cross protection provided between cold and osmotic stress in Listeria monocytogenes.

    PubMed

    Pittman, Joseph R; Buntyn, Joe O; Posadas, Gabriel; Nanduri, Bindu; Pendarvis, Ken; Donaldson, Janet R

    2014-04-01

    Listeria monocytogenes is a Gram-positive, foodborne pathogen responsible for approximately 28% of all food-related deaths each year in the United States. L. monocytogenes infections are linked to the consumption of minimally processed ready-to-eat (RTE) products such as cheese, deli meats, and cold-smoked finfish products. L. monocytogenes is resistant to stresses commonly encountered in the food-processing environment, including low pH, high salinity, oxygen content, and various temperatures. The purpose of this study was to determine if cells habituated at low temperatures would result in cross-protective effects against osmotic stress. We found that cells exposed to refrigerated temperatures prior to a mild salt stress treatment had increased survival in NaCl concentrations of 3%. Additionally, the longer the cells were pre-exposed to cold temperatures, the greater the increase in survival in 3% NaCl. A proteomics analysis was performed in triplicate in order to elucidate mechanisms involved in cold-stress induced cross protection against osmotic stress. Proteins involved in maintenance of the cell wall and cellular processes, such as penicillin binding proteins and osmolyte transporters, and processes involving amino acid metabolism, such as osmolyte synthesis, transport, and lipid biosynthesis, had the greatest increase in expression when cells were exposed to cold temperatures prior to salt. By gaining a better understanding of how this pathogen adapts physiologically to various environmental conditions, improvements can be made in detection and mitigation strategies. PMID:24564473

  9. Comparative Analysis on the Key Enzymes of the Glycerol Cycle Metabolic Pathway in Dunaliella salina under Osmotic Stresses

    PubMed Central

    Chen, Hui; Lu, Yan; Jiang, Jian-Guo

    2012-01-01

    The glycerol metabolic pathway is a special cycle way; glycerol-3-phosphate dehydrogenase (G3pdh), glycerol-3-phosphate phosphatase (G3pp), dihydroxyacetone reductase (Dhar), and dihydroxyacetone kinase (Dhak) are the key enzymes around the pathway. Glycerol is an important osmolyte for Dunaliella salina to resist osmotic stress. In this study, comparative activities of the four enzymes in D. salina and their activity changes under various salt stresses were investigated, from which glycerol metabolic flow direction in the glycerol metabolic pathway was estimated. Results showed that the salinity changes had different effects on the enzymes activities. NaCl could stimulate the activities of all the four enzymes in various degrees when D. salina was grown under continuous salt stress. When treated by hyperosmotic or hypoosmotic shock, only the activity of G3pdh in D. salina was significantly stimulated. It was speculated that, under osmotic stresses, the emergency response of the cycle pathway in D. salina was driven by G3pdh via its response to the osmotic stress. Subsequently, with the changes of salinity, other three enzymes started to respond to osmotic stress. Dhar played a role of balancing the cycle metabolic pathway by its forward and backward reactions. Through synergy, the four enzymes worked together for the effective flow of the cycle metabolic pathways to maintain the glycerol requirements of cells in order to adapt to osmotic stress environments. PMID:22675484

  10. Quantitative iTRAQ-based proteomic analysis of phosphoproteins and ABA-regulated phosphoproteins in maize leaves under osmotic stress

    PubMed Central

    Hu, Xiuli; Li, Nana; Wu, Liuji; Li, Chunqi; Li, Chaohai; Zhang, Li; Liu, Tianxue; Wang, Wei

    2015-01-01

    Abscisic acid (ABA) regulates various developmental processes and stress responses in plants. Protein phosphorylation/dephosphorylation is a central post-translational modification (PTM) in ABA signaling. However, the phosphoproteins regulated by ABA under osmotic stress remain unknown in maize. In this study, maize mutant vp5 (deficient in ABA biosynthesis) and wild-type Vp5 were used to identify leaf phosphoproteins regulated by ABA under osmotic stress. Up to 4052 phosphopeptides, corresponding to 3017 phosphoproteins, were identified by Multiplex run iTRAQ-based quantitative proteomic and LC-MS/MS methods. The 4052 phosphopeptides contained 5723 non-redundant phosphosites; 512 phosphopeptides (379 in Vp5, 133 in vp5) displayed at least a 1.5-fold change of phosphorylation level under osmotic stress, of which 40 shared common in both genotypes and were differentially regulated by ABA. Comparing the signaling pathways involved in vp5 response to osmotic stress and those that in Vp5, indicated that ABA played a vital role in regulating these pathways related to mRNA synthesis, protein synthesis and photosynthesis. Our results provide a comprehensive dataset of phosphopeptides and phosphorylation sites regulated by ABA in maize adaptation to osmotic stress. This will be helpful to elucidate the ABA-mediate mechanism of maize endurance to drought by triggering phosphorylation or dephosphorylation cascades. PMID:26503333

  11. Effects of Osmotic Stress on the Probability of Stretch-Induced Cardiac Arrhythmias

    NASA Astrophysics Data System (ADS)

    Parker, Kk; Taylor, Lk; Wray, Cj; Wikswo, Jp; Hansen, De

    1997-11-01

    Ion channels within the plasma membrane of ventricular myocardial cells may relieve cytoskeletal and membrane mechanical stresses. Volume control channels modulate intracellular volume. Stretch-activated channels have a critical role in the initiation of stretch-induced arrhythmias (SIA) and may provide an additional pathway for Ca++ influx that modulates contractility. We tested the hypothesis that the mechanisms by which these two types of channels sense mechanical stresses are similiar. We studied the arrhythmogenic effects of mechanical stretch in six Langendorff-perfused rabbit hearts in which we altered osmotic pressure across the cell membranes. In diastole, the volume was transiently increased in a left ventricular intracavitary fluid- filled ballon, which was connected to a computer-controlled piston pump. Epicardial monophasic action potential recordings showed a marked decrease in the probability of SIA during hypotonic conditions (cells swollen) (from P=0.51 to P=0.06,p=0.009), and contractility (max systolic pressure) decreased (from 51.1 to 19.6 mmHg, p=0.007). Upon return to the isotonic condition, the probability of SIA returned to baseline condition. One explanation for these findings is that stress relaxation of the viscoelastic cytoskeleton during sustained osmotic loading reduces arrhythmogenic effects of elastic loading produced by transient diastolic stretch.

  12. Floridoside production by the red microalga Galdieria sulphuraria under different conditions of growth and osmotic stress.

    PubMed

    Martinez-Garcia, Marta; van der Maarel, Marc J E C

    2016-12-01

    Floridoside is a compatible solute synthesized by red algae that has attracted considerable attention due to its promising antifouling and therapeutic properties. However, research on industrial applications of floridoside is hampered by limited compound availability and the development of a production process yielding high amounts of this glycoside has not been explored yet. In the present work, floridoside accumulation by the red microalgae Galdieria sulphuraria under different conditions was investigated in order to optimize the production of this glycoside in this microalgae. G. sulphuraria shows consider advantages over other red algae as potential industrial producer of floridoside due to its unicellular nature, its ability to grow heterotrophically in complete darkness and its acidophilic lifestyle. The main compatible solute accumulated by G. sulphuraria under salt stress was purified, identified as floridoside by (1)H-NMR and used as standard for quantification. Our results showed that applying the osmotic stress after the cells had grown first in medium with no salt resulted in higher floridoside yields compared to those obtained in cells growing under osmotic stress from the beginning. Among several parameters tested, the use of glycerol as carbon source for cell growth showed the most significant impact on floridoside accumulation, which reached a maximum of 56.8 mg/g dry biomass. PMID:27620735

  13. The Influence of Loud Sound Stress on Expression of Osmotic Stress Protein 94 in the Murine Inner Ear

    PubMed Central

    Yamamoto, Hiroshi; Shi, Xiaorui; Nuttall, Alfred L.

    2009-01-01

    Osmotic stress protein 94 (OSP94), a member of the HSP110/SSE subfamily, is expressed in certain organs such as the kidney, testis, and brain where it can act as a molecular chaperon. In general, its alteration in expression is in response to hyper-ionic and osmotic stress as well as heat shock stress. Since many cells in the inner ear are involved in active ion transportation and are constantly exposed to two ionic different environments, we hypothesize that OSP94 may be expressed in the inner ear and its expression may be influenced by loud sound stress (LSS). With immunohistochemistry combined with confocal microscopy, immunoblotting, and RT-PCR techniques, we found that OSP94 was widely expressed in various cells in the murine cochlea including the stria vascularis (SV), the organ of Corti (OC), the interdental cells, spiral ganglion cells, the spiral ligament, and Reissner’s membrane. Under the unstressed condition, the transcription and protein level of OSP94 expression in the inner ear was quantitatively similar to that of the kidney. Furthermore, its expression in the inner ear by LSS from broadband noise at 117dB/SPL was upregulated, but remained unchanged in the kidney. In particular, the upregulation of OSP94 in the cochlear lateral wall tissue (CLW) was slowly elicited in a LSS time-dependent manner compared with the response of two other heat shock proteins (HSPs); HSP25 and HSP70 are considered to play a cytoprotective role under stressful conditions. Our results show that OSP94 is expressed in the inner ear and indicate this may be necessary for cells in a special ionic and osmotic environment such as endo- perilymphatic ion compartments. The organ-specific upregulation of OSP94 by acoustic overstimulation reveals that OSP94 in the inner ear is potentially important for cellular functional adaptation to LSS. PMID:19059312

  14. Differential root transcriptomics in a polyploid non-model crop: the importance of respiration during osmotic stress

    PubMed Central

    Zorrilla-Fontanesi, Yasmín; Rouard, Mathieu; Cenci, Alberto; Kissel, Ewaut; Do, Hien; Dubois, Emeric; Nidelet, Sabine; Roux, Nicolas; Swennen, Rony; Carpentier, Sebastien Christian

    2016-01-01

    To explore the transcriptomic global response to osmotic stress in roots, 18 mRNA-seq libraries were generated from three triploid banana genotypes grown under mild osmotic stress (5% PEG) and control conditions. Illumina sequencing produced 568 million high quality reads, of which 70–84% were mapped to the banana diploid reference genome. Using different uni- and multivariate statistics, 92 genes were commonly identified as differentially expressed in the three genotypes. Using our in house workflow to analyze GO enriched and underlying biochemical pathways, we present the general processes affected by mild osmotic stress in the root and focus subsequently on the most significantly overrepresented classes associated with: respiration, glycolysis and fermentation. We hypothesize that in fast growing and oxygen demanding tissues, mild osmotic stress leads to a lower energy level, which induces a metabolic shift towards (i) a higher oxidative respiration, (ii) alternative respiration and (iii) fermentation. To confirm the mRNA-seq results, a subset of twenty up-regulated transcripts were further analysed by RT-qPCR in an independent experiment at three different time points. The identification and annotation of this set of genes provides a valuable resource to understand the importance of energy sensing during mild osmotic stress. PMID:26935041

  15. Differential root transcriptomics in a polyploid non-model crop: the importance of respiration during osmotic stress.

    PubMed

    Zorrilla-Fontanesi, Yasmín; Rouard, Mathieu; Cenci, Alberto; Kissel, Ewaut; Do, Hien; Dubois, Emeric; Nidelet, Sabine; Roux, Nicolas; Swennen, Rony; Carpentier, Sebastien Christian

    2016-01-01

    To explore the transcriptomic global response to osmotic stress in roots, 18 mRNA-seq libraries were generated from three triploid banana genotypes grown under mild osmotic stress (5% PEG) and control conditions. Illumina sequencing produced 568 million high quality reads, of which 70-84% were mapped to the banana diploid reference genome. Using different uni- and multivariate statistics, 92 genes were commonly identified as differentially expressed in the three genotypes. Using our in house workflow to analyze GO enriched and underlying biochemical pathways, we present the general processes affected by mild osmotic stress in the root and focus subsequently on the most significantly overrepresented classes associated with: respiration, glycolysis and fermentation. We hypothesize that in fast growing and oxygen demanding tissues, mild osmotic stress leads to a lower energy level, which induces a metabolic shift towards (i) a higher oxidative respiration, (ii) alternative respiration and (iii) fermentation. To confirm the mRNA-seq results, a subset of twenty up-regulated transcripts were further analysed by RT-qPCR in an independent experiment at three different time points. The identification and annotation of this set of genes provides a valuable resource to understand the importance of energy sensing during mild osmotic stress. PMID:26935041

  16. An experimental approach to assess Corbicula fluminea (Müller, 1774) resistance to osmotic stress in estuarine habitats

    NASA Astrophysics Data System (ADS)

    Ferreira-Rodríguez, Noé; Pardo, Isabel

    2016-07-01

    Corbicula fluminea arrived in the Miño Estuary in 1989 and, from there, colonized more than 150 km upstream. Our aim was to test the capacity of C. fluminea to cope with osmotic stress conditions previously to invade new freshwater habitats through estuaries. Based on previously collected information, the experiment aims to study the response of the species to marine osmotic stress, evaluated by survival and behaviour. Experiments determined the resistance by the species to various levels of osmotic stress, and recovery time after exposure to high salinity levels, representative of the temporal and spatial salinity variation existing in the estuary. Under osmotic stress the semi-maximum response was reached after 19 days exposure. The species tolerance range, measured by individual maintained activity, was at salinity ∼20 when exposed to winter temperatures, while when animals were exposed to summer ones its tolerance was reduced to salinity lower than 15. C. fluminea show a large physiological flexibility to cope with salinity variations in estuaries. In summer, the temperature increases the metabolic rate thus making the species more vulnerable to osmotic stress exposure. These findings are relevant to preventing new invasions through ship ballast waters ensuring complete mortality if individuals are retained for >26 days.

  17. Inactivation of Photosystems I and II in Response to Osmotic Stress in Synechococcus. Contribution of Water Channels1

    PubMed Central

    Allakhverdiev, Suleyman I.; Sakamoto, Atsushi; Nishiyama, Yoshitaka; Murata, Norio

    2000-01-01

    The effects of osmotic stress due to sorbitol on the photosynthetic machinery were investigated in the cyanobacterium Synechococcus R-2. Incubation of cells in 1.0 m sorbitol inactivated photosystems I and II and decreased the intracellular solute space by 50%. These effects of sorbitol were reversible: Photosynthetic activity and cytoplasmic volume returned to the original values after removal of the osmotic stress. A blocker of water channels prevented the osmotic-stress-induced inactivation and shrinkage of the intracellular space. It also prevented the recovery of photosynthetic activity and cytoplasmic volume when applied just before release from osmotic stress. Inhibition of protein synthesis by lincomycin had no significant effects on the inactivation and recovery processes, an observation that suggests that protein synthesis was not involved in these processes. Our results suggest that osmotic stress decreased the amount of water in the cytoplasm via the efflux of water through water channels (aquaporins), with resultant increases in intracellular concentrations of ions and a decrease in photosynthetic activity. PMID:10759516

  18. Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin.

    PubMed

    Ortells, M Carmen; Morancho, Beatriz; Drews-Elger, Katherine; Viollet, Benoit; Laderoute, Keith R; López-Rodríguez, Cristina; Aramburu, Jose

    2012-05-01

    Although stress can suppress growth and proliferation, cells can induce adaptive responses that allow them to maintain these functions under stress. While numerous studies have focused on the inhibitory effects of stress on cell growth, less is known on how growth-promoting pathways influence stress responses. We have approached this question by analyzing the effect of mammalian target of rapamycin (mTOR), a central growth controller, on the osmotic stress response. Our results showed that mammalian cells exposed to moderate hypertonicity maintained active mTOR, which was required to sustain their cell size and proliferative capacity. Moreover, mTOR regulated the induction of diverse osmostress response genes, including targets of the tonicity-responsive transcription factor NFAT5 as well as NFAT5-independent genes. Genes sensitive to mTOR-included regulators of stress responses, growth and proliferation. Among them, we identified REDD1 and REDD2, which had been previously characterized as mTOR inhibitors in other stress contexts. We observed that mTOR facilitated transcription-permissive conditions for several osmoresponsive genes by enhancing histone H4 acetylation and the recruitment of RNA polymerase II. Altogether, these results reveal a previously unappreciated role of mTOR in regulating transcriptional mechanisms that control gene expression during cellular stress responses. PMID:22287635

  19. Overexpression of a Cytosolic Abiotic Stress Responsive Universal Stress Protein (SbUSP) Mitigates Salt and Osmotic Stress in Transgenic Tobacco Plants

    PubMed Central

    Udawat, Pushpika; Jha, Rajesh K.; Sinha, Dinkar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    The universal stress protein (USP) is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologs of intron less SbUSP gene which encodes for salt and osmotic responsive USP. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control [wild-type (WT) and vector control (VC)] plants under different abiotic stress condition. Transgenic lines (T1) exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability, and lower electrolyte leakage and lipid peroxidation (malondialdehyde content) under stress treatments than control (WT and VC) plants. Lower accumulation of H2O2 and O2− radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant. PMID:27148338

  20. Overexpression of a Cytosolic Abiotic Stress Responsive Universal Stress Protein (SbUSP) Mitigates Salt and Osmotic Stress in Transgenic Tobacco Plants.

    PubMed

    Udawat, Pushpika; Jha, Rajesh K; Sinha, Dinkar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    The universal stress protein (USP) is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologs of intron less SbUSP gene which encodes for salt and osmotic responsive USP. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control [wild-type (WT) and vector control (VC)] plants under different abiotic stress condition. Transgenic lines (T1) exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability, and lower electrolyte leakage and lipid peroxidation (malondialdehyde content) under stress treatments than control (WT and VC) plants. Lower accumulation of H2O2 and [Formula: see text] radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant. PMID:27148338

  1. Bacterial Dispersal Promotes Biodegradation in Heterogeneous Systems Exposed to Osmotic Stress

    PubMed Central

    Worrich, Anja; König, Sara; Banitz, Thomas; Centler, Florian; Frank, Karin; Thullner, Martin; Harms, Hauke; Miltner, Anja; Wick, Lukas Y.; Kästner, Matthias

    2016-01-01

    Contaminant biodegradation in soils is hampered by the heterogeneous distribution of degrading communities colonizing isolated microenvironments as a result of the soil architecture. Over the last years, soil salinization was recognized as an additional problem especially in arid and semiarid ecosystems as it drastically reduces the activity and motility of bacteria. Here, we studied the importance of different spatial processes for benzoate biodegradation at an environmentally relevant range of osmotic potentials (ΔΨo) using model ecosystems exhibiting a heterogeneous distribution of the soil-borne bacterium Pseudomonas putida KT2440. Three systematically manipulated scenarios allowed us to cover the effects of (i) substrate diffusion, (ii) substrate diffusion and autonomous bacterial dispersal, and (iii) substrate diffusion and autonomous as well as mediated bacterial dispersal along glass fiber networks mimicking fungal hyphae. To quantify the relative importance of the different spatial processes, we compared these heterogeneous scenarios to a reference value obtained for each ΔΨo by means of a quasi-optimal scenario in which degraders were ab initio homogeneously distributed. Substrate diffusion as the sole spatial process was insufficient to counteract the disadvantage due to spatial degrader heterogeneity at ΔΨo ranging from 0 to −1 MPa. In this scenario, only 13.8−21.3% of the quasi-optimal biodegradation performance could be achieved. In the same range of ΔΨo values, substrate diffusion in combination with bacterial dispersal allowed between 68.6 and 36.2% of the performance showing a clear downwards trend with decreasing ΔΨo. At −1.5 MPa, however, this scenario performed worse than the diffusion scenario, possibly as a result of energetic disadvantages associated with flagellum synthesis and emerging requirements to exceed a critical population density to resist osmotic stress. Network-mediated bacterial dispersal kept biodegradation

  2. Bacterial Dispersal Promotes Biodegradation in Heterogeneous Systems Exposed to Osmotic Stress.

    PubMed

    Worrich, Anja; König, Sara; Banitz, Thomas; Centler, Florian; Frank, Karin; Thullner, Martin; Harms, Hauke; Miltner, Anja; Wick, Lukas Y; Kästner, Matthias

    2016-01-01

    Contaminant biodegradation in soils is hampered by the heterogeneous distribution of degrading communities colonizing isolated microenvironments as a result of the soil architecture. Over the last years, soil salinization was recognized as an additional problem especially in arid and semiarid ecosystems as it drastically reduces the activity and motility of bacteria. Here, we studied the importance of different spatial processes for benzoate biodegradation at an environmentally relevant range of osmotic potentials (ΔΨo) using model ecosystems exhibiting a heterogeneous distribution of the soil-borne bacterium Pseudomonas putida KT2440. Three systematically manipulated scenarios allowed us to cover the effects of (i) substrate diffusion, (ii) substrate diffusion and autonomous bacterial dispersal, and (iii) substrate diffusion and autonomous as well as mediated bacterial dispersal along glass fiber networks mimicking fungal hyphae. To quantify the relative importance of the different spatial processes, we compared these heterogeneous scenarios to a reference value obtained for each ΔΨo by means of a quasi-optimal scenario in which degraders were ab initio homogeneously distributed. Substrate diffusion as the sole spatial process was insufficient to counteract the disadvantage due to spatial degrader heterogeneity at ΔΨo ranging from 0 to -1 MPa. In this scenario, only 13.8-21.3% of the quasi-optimal biodegradation performance could be achieved. In the same range of ΔΨo values, substrate diffusion in combination with bacterial dispersal allowed between 68.6 and 36.2% of the performance showing a clear downwards trend with decreasing ΔΨo. At -1.5 MPa, however, this scenario performed worse than the diffusion scenario, possibly as a result of energetic disadvantages associated with flagellum synthesis and emerging requirements to exceed a critical population density to resist osmotic stress. Network-mediated bacterial dispersal kept biodegradation almost

  3. PEG-mediated osmotic stress induces premature differentiation of the root apical meristem and outgrowth of lateral roots in wheat

    PubMed Central

    Ji, Hongtao; Liu, Ling; Li, Kexue; Xie, Qingen; Wang, Zhijuan; Zhao, Xuhua; Li, Xia

    2014-01-01

    Water stress is one of the major environmental stresses causing growth retardation and yield loss of plants. In the past decades, osmotic adjustment, antioxidant protection, and stomatal movement have been extensively studied, but much less attention has been paid to the study of root system reprogramming to maximize water absorption and survival under water stress. Here, it is shown that polyethylene glycol (PEG)-simulated mild and moderate osmotic stress induced premature differentiation of the root apical meristem (RAM). It is demonstrated that RAM premature differentiation is a conserved adaptive mechanism that is widely adopted by various plants to cope with osmotic stress simulated by PEG 8000, and the occurrence of RAM premature differentiation is directly related to stress tolerance of plants. It is shown that the osmotic stress-induced premature differentiation caused growth cessation of primary roots allowing outgrowth of lateral roots. This work has uncovered a key mechanism for controlling the plastic development of the root system by which plants are capable of survival, growth, or reproduction under water stress. PMID:24935621

  4. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance

    PubMed Central

    Ene, Iuliana V.; Walker, Louise A.; Schiavone, Marion; Lee, Keunsook K.; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A. R.; Munro, Carol A.

    2015-01-01

    ABSTRACT The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. PMID:26220968

  5. Modelling osmotic stress by Flux Balance Analysis at the genomic scale.

    PubMed

    Metris, Aline; George, Susan; Baranyi, József

    2012-01-16

    Predictive microbiology for food safety is still primarily based on empirical models describing the effect of the environmental conditions of the food on the kinetics of the growth of foodborne pathogens. One way to make these models more mechanistic is to use systems biology methods such as Flux Balance Analysis (FBA). FBA consists of evaluating the possible fluxes through the metabolic reactions taking place in a cell. Using this method, the specific growth rate of Escherichia coli can be predicted by assuming, as an objective function, that the cells maximise their biomass production during balanced growth. Whilst this works under favourable environmental conditions, our simulations show that this objective function is not sufficient to explain the decrease of the growth rate due to osmotic stress. One feature of the FBA models is that the parameters and objective function in general refer to chemostat experiments where the carbon source is the main limiting factor. This may be relevant to some foods where the carbon to nitrogen balance is limiting but, in general, it is the physico-chemical conditions which are the most stringent. We therefore need to examine the effect of such constraints on the fluxes and/or modify the objective function, or to elaborate the metabolic model by taking into account other functional levels of the cell in order to develop mechanistic predictive models for osmotic stress conditions. PMID:21807434

  6. Role of NFAT5 in Inflammatory Disorders Associated with Osmotic Stress

    PubMed Central

    Neuhofer, Wolfgang

    2010-01-01

    Nuclear factor of activated T cells 5 (NFAT5) is the most recently described member of the Rel family of transcription factors, including NF-κB and NFAT1-4, which play central roles in inducible gene expression during the immune response. NFAT5 was initially described to drive osmoprotective gene expression in renal medullary cells, which are routinely faced by high extracellular osmolalities. Recent data however indicate profound biological importance of the mammalian osmotic stress response in view of NFAT5 dependent gene regulation in non-renal tissues. In mononuclear cells and epithelial cells, NFAT5 stimulates the expression of various pro-inflammatory cytokines during elevated ambient tonicity. Accordingly, compared to plasma, the interstitial tonicity of lymphoid organs like spleen and thymus and that of liver is substantially hypertonic under physiological conditions. In addition, anisotonic disorders (hypernatremia, diabetes mellitus, dehydration) entail systemic hyperosmolality, and, in inflammatory disorders, the skin, intestine, and cornea are sites of local hyperosmolality. This article summarizes the current knowledge regarding systemic and local osmotic stress in anisotonic and inflammatory disorders in view of NFAT5 activation and regulation, and NFAT5 dependent cytokine production. PMID:21629436

  7. Regulation of Leaf Starch Degradation by Abscisic Acid Is Important for Osmotic Stress Tolerance in Plants[OPEN

    PubMed Central

    Thalmann, Matthias; Pazmino, Diana; Seung, David; Horrer, Daniel; Nigro, Arianna; Meier, Tiago; Zeeman, Samuel C.; Santelia, Diana

    2016-01-01

    Starch serves functions that range over a timescale of minutes to years, according to the cell type from which it is derived. In guard cells, starch is rapidly mobilized by the synergistic action of β-AMYLASE1 (BAM1) and α-AMYLASE3 (AMY3) to promote stomatal opening. In the leaves, starch typically accumulates gradually during the day and is degraded at night by BAM3 to support heterotrophic metabolism. During osmotic stress, starch is degraded in the light by stress-activated BAM1 to release sugar and sugar-derived osmolytes. Here, we report that AMY3 is also involved in stress-induced starch degradation. Recently isolated Arabidopsis thaliana amy3 bam1 double mutants are hypersensitive to osmotic stress, showing impaired root growth. amy3 bam1 plants close their stomata under osmotic stress at similar rates as the wild type but fail to mobilize starch in the leaves. 14C labeling showed that amy3 bam1 plants have reduced carbon export to the root, affecting osmolyte accumulation and root growth during stress. Using genetic approaches, we further demonstrate that abscisic acid controls the activity of BAM1 and AMY3 in leaves under osmotic stress through the AREB/ABF-SnRK2 kinase-signaling pathway. We propose that differential regulation and isoform subfunctionalization define starch-adaptive plasticity, ensuring an optimal carbon supply for continued growth under an ever-changing environment. PMID:27436713

  8. Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification

    PubMed Central

    Lai, D.; Ding, J.; Smith, G.W.; Smith, G.D.; Takayama, S.

    2015-01-01

    STUDY QUESTION Does the use of a new cryoprotectant agent (CPA) exchange protocol designed to minimize osmotic stress improve oocyte or zygote vitrification by reducing sublethal cryodamage? SUMMARY ANSWER The use of a new CPA exchange protocol made possible by automated microfluidics improved oocyte and zygote vitrification with superior morphology as indicated by a smoother cell surface, higher sphericity, higher cytoplasmic lipid retention, less cytoplasmic leakage and higher developmental competence compared with conventional methods. WHAT IS KNOWN ALREADY The use of more ‘steps’ of CPA exposure during the vitrification protocol increases cryosurvival and development in the bovine model. However, such an attempt to eliminate osmotic stress is limited by the practicality of performing numerous precise pipetting steps in a short amount of time. STUDY DESIGN, SIZE, DURATION Murine meiotically competent germinal vesicle intact oocytes and zygotes were harvested from the antral follicles in ovaries and ampulla, respectively. Bovine ovaries were obtained from a local abattoir at random stages of the estrous cycle. A total of 110 murine oocytes, 802 murine zygotes and 52 bovine oocytes were used in this study. PARTICIPANTS/MATERIALS, SETTING, METHODS Microfluidic devices were fabricated using conventional photo- and soft-lithography. CPAs used were 7.5% ethylene glycol (EG) and 7.5% dimethyl sulfoxide (DMSO) for equilibration solution and 15% EG, 15% DMSO and 0.5 M sucrose for vitrification solution. End-point analyses include mathematical modeling using Kedem–Katchalsky equations, morphometrics assessed by conventional and confocal microscopy, cytoplasmic lipid quantification by nile red staining, cytoplasmic leakage quantification by fluorescent dextran intercalation and developmental competence analysis by 96 h embryo culture and blastomere quantification. MAIN RESULTS AND THE ROLE OF CHANCE The automated microfluidics protocol decreased the shrinkage rate of

  9. Improving macroscopic modeling of the effect of water and osmotic stresses on root water uptake.

    NASA Astrophysics Data System (ADS)

    Jorda Guerra, Helena; Vanderborght, Jan

    2015-04-01

    Accurate modeling of water and salt stresses on root water uptake is critical for predicting impacts of global change and climate variability on crop production and soil water balances. Soil-hydrological models use reduction functions to represent the effect of osmotic stress in transpiration. However, these functions, which were developed empirically, present limitations in relation to the time and spatial scale at which they need to be used, fail to include compensation processes and do not agree on how water and salt stresses interact. This research intends to develop a macroscopic reduction function for water and osmotic stresses based on biophysical knowledge. Simulation experiments are conducted for a range of atmospheric conditions, soil and plant properties, irrigation water quality and scheduling using a 3-D physically-based model that resolves flow and transport to individual root segments and that couples flow in the soil and root system (Schröder et al., 2013). The effect of salt concentrations on water flow in the soil-root system is accounted for by including osmotic water potential gradients between the solution at the soil root interface and the root xylem sap in the hydraulic gradient between the soil and root. In a first step, simulation experiments are carried out in a soil volume around a single root segment. We discuss how the simulation setup can be defined so as to represent: (i) certain characteristics of the root system such as rooting depth and root length density, (ii) plant transpiration rate, (iii) leaching fraction of the irrigation, and (iii) salinity of the irrigation water. The output of these simulation experiments gives a first insight in the effect of salinity on transpiration and on the relation between the bulk salinity in the soil voxel, which is used in macroscopic salt stress functions of models that do not resolve processes at the root segment scale, and the salinity at the soil-root interface, which determines the actual

  10. Genes Associated with Desiccation and Osmotic Stress in Listeria monocytogenes as Revealed by Insertional Mutagenesis

    PubMed Central

    Hingston, Patricia A.; Piercey, Marta J.

    2015-01-01

    Listeria monocytogenes is a foodborne pathogen whose survival in food processing environments may be associated with its tolerance to desiccation. To probe the molecular mechanisms used by this bacterium to adapt to desiccation stress, a transposon library of 11,700 L. monocytogenes mutants was screened, using a microplate assay, for strains displaying increased or decreased desiccation survival (43% relative humidity, 15°C) in tryptic soy broth (TSB). The desiccation phenotypes of selected mutants were subsequently assessed on food-grade stainless steel (SS) coupons in TSB plus 1% glucose (TSB-glu). Single transposon insertions in mutants exhibiting a change in desiccation survival of >0.5 log CFU/cm2 relative to that of the wild type were determined by sequencing arbitrary PCR products. Strain morphology, motility, and osmotic stress survival (in TSB-glu plus 20% NaCl) were also analyzed. The initial screen selected 129 desiccation-sensitive (DS) and 61 desiccation-tolerant (DT) mutants, out of which secondary screening on SS confirmed 15 DT and 15 DS mutants. Among the DT mutants, seven immotile and flagellum-less strains contained transposons in genes involved in flagellum biosynthesis (fliP, flhB, flgD, flgL) and motor control (motB, fliM, fliY), while others harbored transposons in genes involved in membrane lipid biosynthesis, energy production, potassium uptake, and virulence. The genes that were interrupted in the 15 DS mutants included those involved in energy production, membrane transport, protein metabolism, lipid biosynthesis, oxidative damage control, and putative virulence. Five DT and 14 DS mutants also demonstrated similar significantly (P < 0.05) different survival relative to that of the wild type when exposed to osmotic stress, demonstrating that some genes likely have similar roles in allowing the organism to survive the two water stresses. PMID:26025900

  11. Genes Associated with Desiccation and Osmotic Stress in Listeria monocytogenes as Revealed by Insertional Mutagenesis.

    PubMed

    Hingston, Patricia A; Piercey, Marta J; Truelstrup Hansen, Lisbeth

    2015-08-15

    Listeria monocytogenes is a foodborne pathogen whose survival in food processing environments may be associated with its tolerance to desiccation. To probe the molecular mechanisms used by this bacterium to adapt to desiccation stress, a transposon library of 11,700 L. monocytogenes mutants was screened, using a microplate assay, for strains displaying increased or decreased desiccation survival (43% relative humidity, 15°C) in tryptic soy broth (TSB). The desiccation phenotypes of selected mutants were subsequently assessed on food-grade stainless steel (SS) coupons in TSB plus 1% glucose (TSB-glu). Single transposon insertions in mutants exhibiting a change in desiccation survival of >0.5 log CFU/cm(2) relative to that of the wild type were determined by sequencing arbitrary PCR products. Strain morphology, motility, and osmotic stress survival (in TSB-glu plus 20% NaCl) were also analyzed. The initial screen selected 129 desiccation-sensitive (DS) and 61 desiccation-tolerant (DT) mutants, out of which secondary screening on SS confirmed 15 DT and 15 DS mutants. Among the DT mutants, seven immotile and flagellum-less strains contained transposons in genes involved in flagellum biosynthesis (fliP, flhB, flgD, flgL) and motor control (motB, fliM, fliY), while others harbored transposons in genes involved in membrane lipid biosynthesis, energy production, potassium uptake, and virulence. The genes that were interrupted in the 15 DS mutants included those involved in energy production, membrane transport, protein metabolism, lipid biosynthesis, oxidative damage control, and putative virulence. Five DT and 14 DS mutants also demonstrated similar significantly (P < 0.05) different survival relative to that of the wild type when exposed to osmotic stress, demonstrating that some genes likely have similar roles in allowing the organism to survive the two water stresses. PMID:26025900

  12. Effects of osmotic pressure, acid, or cold stresses on antibiotic susceptibility of Listeria monocytogenes.

    PubMed

    Al-Nabulsi, Anas A; Osaili, Tareq M; Shaker, Reyad R; Olaimat, Amin N; Jaradat, Ziad W; Zain Elabedeen, Noor A; Holley, Richard A

    2015-04-01

    Prevalence of antibiotic resistance of Listeria monocytogenes isolated from a variety of foods has increased in many countries. L. monocytogenes has many physiological adaptations that enable survival under a wide range of environmental stresses. The objective of this study was to evaluate effects of osmotic (2, 4, 6, 12% NaC), pH (6, 5.5, 5.0) and cold (4 °C) stresses on susceptibility of three isolates of L. monocytogenes towards different antibiotics. The minimal inhibitory concentrations (MICs) of tested antibiotics against unstressed (control), stressed or post-stressed L. monocytogenes isolates (an ATCC strain and a meat and dairy isolate) were determined using the broth microdilution method. Unstressed cells of L. monocytogenes were sensitive to all tested antibiotics. In general, when L. monocytogenes cells were exposed to salt, cold and pH stresses, their antibiotic resistance increased as salt concentration increased to 6 or 12%, as pH was reduced to pH 5 or as temperature was decreased to 10 °C. Results showed that both meat and dairy isolates were more resistant than the ATCC reference strain. Use of sub-lethal stresses in food preservation systems may stimulate antibiotic resistance responses in L. monocytogenes strains. PMID:25475279

  13. Alternative Oxidase Pathway Optimizes Photosynthesis During Osmotic and Temperature Stress by Regulating Cellular ROS, Malate Valve and Antioxidative Systems.

    PubMed

    Dinakar, Challabathula; Vishwakarma, Abhaypratap; Raghavendra, Agepati S; Padmasree, Kollipara

    2016-01-01

    The present study reveals the importance of alternative oxidase (AOX) pathway in optimizing photosynthesis under osmotic and temperature stress conditions in the mesophyll protoplasts of Pisum sativum. The responses of photosynthesis and respiration were monitored at saturating light intensity of 1000 μmoles m(-2) s(-1) at 25°C under a range of sorbitol concentrations from 0.4 to 1.0 M to induce hyper-osmotic stress and by varying the temperature of the thermo-jacketed pre-incubation chamber from 25 to 10°C to impose sub-optimal temperature stress. Compared to controls (0.4 M sorbitol and 25°C), the mesophyll protoplasts showed remarkable decrease in NaHCO3-dependent O2 evolution (indicator of photosynthetic carbon assimilation), under both hyper-osmotic (1.0 M sorbitol) and sub-optimal temperature stress conditions (10°C), while the decrease in rates of respiratory O2 uptake were marginal. The capacity of AOX pathway increased significantly in parallel to increase in intracellular pyruvate and reactive oxygen species (ROS) levels under both hyper-osmotic stress and sub-optimal temperature stress under the background of saturating light. The ratio of redox couple (Malate/OAA) related to malate valve increased in contrast to the ratio of redox couple (GSH/GSSG) related to antioxidative system during hyper-osmotic stress. Further, the ratio of GSH/GSSG decreased in the presence of sub-optimal temperature, while the ratio of Malate/OAA showed no visible changes. Also, the redox ratios of pyridine nucleotides increased under hyper-osmotic (NADH/NAD) and sub-optimal temperature (NADPH/NADP) stresses, respectively. However, upon restriction of AOX pathway by using salicylhydroxamic acid (SHAM), the observed changes in NaHCO3-dependent O2 evolution, cellular ROS, redox ratios of Malate/OAA, NAD(P)H/NAD(P) and GSH/GSSG were further aggravated under stress conditions with concomitant modulations in NADP-MDH and antioxidant enzymes. Taken together, the results indicated

  14. Alternative Oxidase Pathway Optimizes Photosynthesis During Osmotic and Temperature Stress by Regulating Cellular ROS, Malate Valve and Antioxidative Systems

    PubMed Central

    Vishwakarma, Abhaypratap; Raghavendra, Agepati S.; Padmasree, Kollipara

    2016-01-01

    The present study reveals the importance of alternative oxidase (AOX) pathway in optimizing photosynthesis under osmotic and temperature stress conditions in the mesophyll protoplasts of Pisum sativum. The responses of photosynthesis and respiration were monitored at saturating light intensity of 1000 μmoles m–2 s–1 at 25°C under a range of sorbitol concentrations from 0.4 to 1.0 M to induce hyper-osmotic stress and by varying the temperature of the thermo-jacketed pre-incubation chamber from 25 to 10°C to impose sub-optimal temperature stress. Compared to controls (0.4 M sorbitol and 25°C), the mesophyll protoplasts showed remarkable decrease in NaHCO3-dependent O2 evolution (indicator of photosynthetic carbon assimilation), under both hyper-osmotic (1.0 M sorbitol) and sub-optimal temperature stress conditions (10°C), while the decrease in rates of respiratory O2 uptake were marginal. The capacity of AOX pathway increased significantly in parallel to increase in intracellular pyruvate and reactive oxygen species (ROS) levels under both hyper-osmotic stress and sub-optimal temperature stress under the background of saturating light. The ratio of redox couple (Malate/OAA) related to malate valve increased in contrast to the ratio of redox couple (GSH/GSSG) related to antioxidative system during hyper-osmotic stress. Further, the ratio of GSH/GSSG decreased in the presence of sub-optimal temperature, while the ratio of Malate/OAA showed no visible changes. Also, the redox ratios of pyridine nucleotides increased under hyper-osmotic (NADH/NAD) and sub-optimal temperature (NADPH/NADP) stresses, respectively. However, upon restriction of AOX pathway by using salicylhydroxamic acid (SHAM), the observed changes in NaHCO3-dependent O2 evolution, cellular ROS, redox ratios of Malate/OAA, NAD(P)H/NAD(P) and GSH/GSSG were further aggravated under stress conditions with concomitant modulations in NADP-MDH and antioxidant enzymes. Taken together, the results indicated

  15. An Adenylyl Cyclase, CyaA, of Myxococcus xanthus Functions in Signal Transduction during Osmotic Stress

    PubMed Central

    Kimura, Yoshio; Mishima, Yukako; Nakano, Hiromi; Takegawa, Kaoru

    2002-01-01

    An adenylyl cyclase gene (cyaA) present upstream of an osmosensor protein gene (mokA) was isolated from Myxococcus xanthus. cyaA encoded a polypeptide of 843 amino acids with a predicted molecular mass of 91,187 Da. The predicted cyaA gene product had structural similarity to the receptor-type adenylyl cyclases that are composed of an amino-terminal sensor domain and a carboxy-terminal catalytic domain of adenylyl cyclase. In reverse transcriptase PCR experiments, the transcript of the cyaA gene was detected mainly during development and spore germination. A cyaA mutant, generated by gene disruption, showed normal growth, development, and germination. However, a cyaA mutant placed under conditions of ionic (NaCl) or nonionic (sucrose) osmostress exhibited a marked reduction in spore formation and spore germination. When wild-type and cyaA mutant cells at developmental stages were stimulated with 0.2 M NaCl or sucrose, the mutant cells increased cyclic AMP accumulation at levels similar to those of the wild-type cells. In contrast, the mutant cells during spore germination had mainly lost the ability to respond to high-ionic osmolarity. In vegetative cells, the cyaA mutant responded normally to osmotic stress. These results suggested that M. xanthus CyaA functions mainly as an ionic osmosensor during spore germination and that CyaA is also required for osmotic tolerance in fruiting formation and sporulation. PMID:12057952

  16. Effects of acute fresh water exposure on water flux rates and osmotic responses in Kemp's ridley sea turtles (Lepidochelys kempi)

    NASA Technical Reports Server (NTRS)

    Ortiz, R. M.; Patterson, R. M.; Wade, C. E.; Byers, F. M.

    2000-01-01

    Water flux rates and osmotic responses of Kemp's Ridley sea turtles (Lepidochelys kempi) acutely exposed to fresh water were quantified. Salt-water adapted turtles were exposed to fresh water for 4 d before being returned to salt water. During the initial salt water phase, absolute and relative water flux rates were 1.2+/-0.1 l d(-1) and 123.0+/-6.8 ml kg(-1) d(-1), respectively. When turtles were exposed to fresh water, rates increased by approximately 30%. Upon return to salt water, rates decreased to original levels. Plasma osmolality, Na(+), K(+), and Cl(-) decreased during exposure to fresh water, and subsequently increased during the return to salt water. The Na(+):K(+) ratio was elevated during the fresh water phase and subsequently decreased upon return to salt water. Aldosterone and corticosterone were not altered during exposure to fresh water. Elevated water flux rates during fresh water exposure reflected an increase in water consumption, resulting in a decrease in ionic and osmotic concentrations. The lack of a change in adrenocorticoids to acute fresh water exposure suggests that adrenal responsiveness to an hypo-osmotic environment may be delayed in marine turtles when compared to marine mammals.

  17. Mutation of OsGIGANTEA Leads to Enhanced Tolerance to Polyethylene Glycol-Generated Osmotic Stress in Rice.

    PubMed

    Li, Shuai; Yue, Wenhao; Wang, Min; Qiu, Wenmin; Zhou, Lian; Shou, Huixia

    2016-01-01

    Water deficit is one of the most important environmental stresses limiting plant growth and crop yield. While the identification of many key factors involved in the plant water deficit response has greatly increased our knowledge about the regulation system, the mechanisms underlying dehydration tolerance in plants are still not well understood. In our current study, we investigated the roles of the key flowering time regulator, OsGIGANTEA (OsGI), in the osmotic stress tolerance in rice. Results showed that mutation of OsGI conferred tolerance to osmotic stress generated by polyethylene glycol (PEG), increased proline and sucrose contents, and accelerated stomata movement. In addition, qRT-PCR and microarray analysis revealed that the transcript abundance of some osmotic stress response genes, such as OsDREB1E, OsAP37, OsAP59, OsLIP9, OsLEA3, OsRAB16A, and OsSalT, was significantly higher in osgi than in WT plants, suggesting that OsGI might be a negative regulator in the osmotic stress response in rice. PMID:27148296

  18. Mutation of OsGIGANTEA Leads to Enhanced Tolerance to Polyethylene Glycol-Generated Osmotic Stress in Rice

    PubMed Central

    Li, Shuai; Yue, Wenhao; Wang, Min; Qiu, Wenmin; Zhou, Lian; Shou, Huixia

    2016-01-01

    Water deficit is one of the most important environmental stresses limiting plant growth and crop yield. While the identification of many key factors involved in the plant water deficit response has greatly increased our knowledge about the regulation system, the mechanisms underlying dehydration tolerance in plants are still not well understood. In our current study, we investigated the roles of the key flowering time regulator, OsGIGANTEA (OsGI), in the osmotic stress tolerance in rice. Results showed that mutation of OsGI conferred tolerance to osmotic stress generated by polyethylene glycol (PEG), increased proline and sucrose contents, and accelerated stomata movement. In addition, qRT-PCR and microarray analysis revealed that the transcript abundance of some osmotic stress response genes, such as OsDREB1E, OsAP37, OsAP59, OsLIP9, OsLEA3, OsRAB16A, and OsSalT, was significantly higher in osgi than in WT plants, suggesting that OsGI might be a negative regulator in the osmotic stress response in rice. PMID:27148296

  19. Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum.

    PubMed

    O'Donnell, Natalie H; Møller, Birger Lindberg; Neale, Alan D; Hamill, John D; Blomstedt, Cecilia K; Gleadow, Roslyn M

    2013-12-01

    Sorghum (Sorghum bicolor L. Moench) is a valuable forage crop in regions with low soil moisture. Sorghum may accumulate high concentrations of the cyanogenic glucoside dhurrin when drought stressed resulting in possible cyanide (HCN) intoxication of grazing animals. In addition, high concentrations of nitrate, also potentially toxic to ruminants, may accumulate during or shortly after periods of drought. Little is known about the degree and duration of drought-stress required to induce dhurrin accumulation, or how changes in dhurrin concentration are influenced by plant size or nitrate metabolism. Given that finely regulating soil moisture under controlled conditions is notoriously difficult, we exposed sorghum plants to varying degrees of osmotic stress by growing them for different lengths of time in hydroponic solutions containing polyethylene glycol (PEG). Plants grown in medium containing 20% PEG (-0.5 MPa) for an extended period had significantly higher concentrations of dhurrin in their shoots but lower dhurrin concentrations in their roots. The total amount of dhurrin in the shoots of plants from the various treatments was not significantly different on a per mass basis, although a greater proportion of shoot N was allocated to dhurrin. Following transfer from medium containing 20% PEG to medium lacking PEG, shoot dhurrin concentrations decreased but nitrate concentrations increased to levels potentially toxic to grazing ruminants. This response is likely due to the resumption of plant growth and root activity, increasing the rate of nitrate uptake. Data presented in this article support a role for cyanogenic glucosides in mitigating oxidative stress. PMID:24080394

  20. Osmotic stress and recovery in field populations of Zygnema sp. (Zygnematophyceae, Streptophyta) on Svalbard (High Arctic) subjected to natural desiccation.

    PubMed

    Pichrtová, Martina; Hájek, Tomáš; Elster, Josef

    2014-08-01

    Zygnema is a genus of filamentous green algae belonging to the class of Zygnematophyceae (Streptophyta). In the Arctic, it typically forms extensive mats in habitats that regularly dry out during summer, and therefore, mechanisms of stress resistance are expected. We investigated its natural populations with respect to production of specialized desiccation-resistant cells and osmotic acclimation. Six populations in various stages of natural desiccation were selected, from wet biomass floating in water to dried paper-like crusts. After rewetting, plasmolysis and osmotic stress effects were studied using hypertonic sorbitol solutions, and the physiological state was estimated using chlorophyll a fluorescence parameters. All populations of Zygnema sp. formed stationary-phase cells filled with storage products. In green algal research, such cells are traditionally called akinetes. However, the populations differed in their reaction to osmotic stress. Whereas the wet-collected samples were strongly impaired, the osmotic stress resistance of the naturally dried samples was comparable to that of true aeroterrestrial algae. We showed that arctic populations of Zygnema acclimate well to natural desiccation via hardening that is mediated by slow desiccation. As no other types of specialized cells were observed, we assume that the naturally hardened akinetes also play a key role in winter survival. PMID:24476153

  1. Synthesis, Release, and Recapture of Compatible Solute Proline by Osmotically Stressed Bacillus subtilis Cells

    PubMed Central

    Hoffmann, Tamara; von Blohn, Carsten; Stanek, Agnieszka; Moses, Susanne; Barzantny, Helena

    2012-01-01

    Bacillus subtilis synthesizes large amounts of the compatible solute proline as a cellular defense against high osmolarity to ensure a physiologically appropriate level of hydration of the cytoplasm and turgor. It also imports proline for this purpose via the osmotically inducible OpuE transport system. Unexpectedly, an opuE mutant was at a strong growth disadvantage in high-salinity minimal media lacking proline. Appreciable amounts of proline were detected in the culture supernatant of the opuE mutant strain, and they rose concomitantly with increases in the external salinity. We found that the intracellular proline pool of severely salinity-stressed cells of the opuE mutant was considerably lower than that of its opuE+ parent strain. This loss of proline into the medium and the resulting decrease in the intracellular proline content provide a rational explanation for the observed salt-sensitive growth phenotype of cells lacking OpuE. None of the known MscL- and MscS-type mechanosensitive channels of B. subtilis participated in the release of proline under permanently imposed high-salinity growth conditions. The data reported here show that the OpuE transporter not only possesses the previously reported role for the scavenging of exogenously provided proline as an osmoprotectant but also functions as a physiologically highly important recapturing device for proline that is synthesized de novo and subsequently released by salt-stressed B. subtilis cells. The wider implications of our findings for the retention of compatible solutes by osmotically challenged microorganisms and the roles of uptake systems for compatible solutes are considered. PMID:22685134

  2. Phosphoproteomic Analyses Reveal Early Signaling Events in the Osmotic Stress Response1[W][OPEN

    PubMed Central

    E. Stecker, Kelly; Minkoff, Benjamin B.; Sussman, Michael R.

    2014-01-01

    Elucidating how plants sense and respond to water loss is important for identifying genetic and chemical interventions that may help sustain crop yields in water-limiting environments. Currently, the molecular mechanisms involved in the initial perception and response to dehydration are not well understood. Modern mass spectrometric methods for quantifying changes in the phosphoproteome provide an opportunity to identify key phosphorylation events involved in this process. Here, we have used both untargeted and targeted isotope-assisted mass spectrometric methods of phosphopeptide quantitation to characterize proteins in Arabidopsis (Arabidopsis thaliana) whose degree of phosphorylation is rapidly altered by hyperosmotic treatment. Thus, protein phosphorylation events responsive to 5 min of 0.3 m mannitol treatment were first identified using 15N metabolic labeling and untargeted mass spectrometry with a high-resolution ion-trap instrument. The results from these discovery experiments were then validated using targeted Selected Reaction Monitoring mass spectrometry with a triple quadrupole. Targeted Selected Reaction Monitoring experiments were conducted with plants treated under nine different environmental perturbations to determine whether the phosphorylation changes were specific for osmosignaling or involved cross talk with other signaling pathways. The results indicate that regulatory proteins such as members of the mitogen-activated protein kinase family are specifically phosphorylated in response to osmotic stress. Proteins involved in 5′ messenger RNA decapping and phosphatidylinositol 3,5-bisphosphate synthesis were also identified as targets of dehydration-induced phosphoregulation. The results of these experiments demonstrate the utility of targeted phosphoproteomic analysis in understanding protein regulation networks and provide new insight into cellular processes involved in the osmotic stress response. PMID:24808101

  3. Different peroxidase activities and expression of abiotic stress-related peroxidases in apical root segments of wheat genotypes with different drought stress tolerance under osmotic stress.

    PubMed

    Csiszár, Jolán; Gallé, Agnes; Horváth, Edit; Dancsó, Piroska; Gombos, Magdolna; Váry, Zsolt; Erdei, László; Györgyey, János; Tari, Irma

    2012-03-01

    One-week-old seedlings of Triticum aestivum L. cv. Plainsman V, a drought tolerant; and Cappelle Desprez, a drought sensitive wheat cultivar were subjected gradually to osmotic stress using polyethylene glycol (PEG 6000) reaching 400 mOsm on the 11th day. Compared to controls cv. Plainsman V maintained the root growth and relative water content of root tissues, while these parameters were decreased in the drought sensitive cv. Cappelle Desprez under PEG-mediated osmotic stress. Simultaneously, H(2)O(2) content in 1-cm-long apical segment of roots comprising the proliferation and elongation zone, showed a transient increase in cv. Plainsman V and a permanent raise in cv. Cappelle Desprez. Measurements of the transcript levels of selected class III peroxidase (TaPrx) coding sequences revealed significant differences between the two cultivars on the 9th day, two days after applying 100 mOsm PEG. The abundance of TaPrx04 transcript was enhanced transitionally in the root apex of cv. Plainsman V but decreased in cv. Cappelle Desprez under osmotic stress while the expression of TaPrx01, TaPrx03, TaPrx19, TaPrx68, TaPrx107 and TaPrx109-C decreased to different extents in both cultivars. After a transient decrease, activities of soluble peroxidase fractions of crude protein extracts rose in both cultivars on day 11, but the activities of cell wall-bound fractions increased only in cv. Cappelle Desprez under osmotic stress. Parallel with high H(2)O(2) content of the tissues, certain isoenzymes of covalently bound fraction in cv. Cappelle Desprez showed increased activity suggesting that they may limit the extension of root cell walls in this cultivar. PMID:22305075

  4. Metabolic correlation between polyol and energy-storing carbohydrate under osmotic and oxidative stress condition in Moniliella megachiliensis.

    PubMed

    Kobayashi, Yosuke; Iwata, Hisashi; Yoshida, Junjiro; Ogihara, Jun; Kato, Jun; Kasumi, Takafumi

    2015-10-01

    Moniliella megachiliensis, the osmo-tolerant basidiomycetous yeast was found to accumulate intracellularly energy-storing carbohydrates (trehalose and glycogen) along with polyols (glycerol and erythritol) up to stationary growth phase. In trehalose-loaded cell, osmotic-stress resulted in the rapid generation of glycerol, and oxidative stress with menadione resulted in the rapid generation of erythritol. Under either of these conditions, the levels of the energy-storing carbohydrates were depleted, while little glucose uptake was observed. These results suggested that the intracellular pools of trehalose and glycogen were rapidly converted to glycerol in response to osmotic stress, and to erythritol in response to oxidative stress and altered redox balance. Expression of tps1 encoding trehalose synthetic enzymes paralleled trehalose accumulation in the cell during the culture in 2% glucose, in contrast, expression of tpp1 or tpp2 encoding trehalose-6-phosphate phosphatase was little increased under the same condition. Expression of tre (tre1/tre2) encoding trehalose hydrolase (trehalase) increased with time associated with depletion of trehalose during oxidative stress. From these results, we concluded that glycerol and erythritol, the compatible solutes in M. megachiliensis were metabolically interrelated to energy-storing carbohydrates such as trehalose or glycogen during conditions of osmotic or oxidative stress. PMID:25795573

  5. Impact of osmotic stress on volume regulation, cytoplasmic solute composition and lysine production in Corynebacterium glutamicum MH20-22B.

    PubMed

    Rönsch, Hendrik; Krämer, Reinhard; Morbach, Susanne

    2003-09-01

    The response of the L-lysine producing Corynebacterium glutamicum strain MH20-22B to osmotic stress was studied in batch cultures. To mimic the conditions during a fermentation process the long term adaptation of cells subjected to a constant osmotic stress between 1.0 and 2.5 osM was investigated. Cytoplasmic water content and volume of C. glutamicum cells were found to depend on growth phase, extent of osmotic stress and availability of betaine. The maximal cytoplasmic volumes, which were highest at maximal growth rate, were linearily related to osmotic stress, whereas in stationary cells no active volume regulation was observed. Under severe osmotic stress proline was the prominent compatible solute in growing cells. Uptake of betaine, if available in the medium, reduced the concentration of proline from 750 to 300 mM, indicating that uptake of compatible solutes is preferred to synthesis. Furthermore, betaine was shown to have a higher efficiency to counteract osmotic stress, since the overall concentration of compatible solutes was lower in the presence of betaine. Under severe osmotic stress, the addition of betaine shifted L-lysine production in MH20-22B to earlier fermentation times and increased both product concentration and yield in these phases, but did not improve the final L-lysine yield. PMID:12948632

  6. Sorbitol required for cell growth and ethanol production by Zymomonas mobilis under heat, ethanol, and osmotic stresses

    PubMed Central

    2013-01-01

    Background During ethanol fermentation, the ethanologenic bacterium, Zymomonas mobilis may encounter several environmental stresses such as heat, ethanol and osmotic stresses due to high sugar concentration. Although supplementation of the compatible solute sorbitol into culture medium enhances cell growth of Z. mobilis under osmotic stress, the protective function of this compound on cell growth and ethanol production by this organism under other stresses such as heat and ethanol has not been described yet. The formation of sorbitol in Z. mobilis was carried out by the action of the glucose-fructose oxidoreductase (GFOR) enzyme which is regulated by the gfo gene. Therefore, the gfo gene in Z. mobilis was disrupted by the fusion-PCR-based construction technique in the present study, and the protective function of sorbitol on cell growth, protein synthesis and ethanol production by Z. mobilis under heat, ethanol, and osmotic stresses was investigated. Results Based on the fusion-PCR-based construction technique, the gfo gene in Z. mobilis was disrupted. Disruption of the Z. mobilis gfo gene resulted in the reduction of cell growth and ethanol production not only under osmotic stress but also under heat and ethanol stresses. Under these stress conditions, the transcription level of pdc, adhA, and adhB genes involved in the pyruvate-to-ethanol (PE) pathway as well as the synthesis of proteins particularly in Z. mobilis disruptant strain were decreased compared to those of the parent. These findings suggest that sorbitol plays a crucial role not only on cell growth and ethanol production but also on the protection of cellular proteins from stress responses. Conclusion We showed for the first time that supplementation of the compatible solute sorbitol not only promoted cell growth but also increased the ethanol fermentation capability of Z. mobilis under heat, ethanol, and osmotic stresses. Although the molecular mechanism involved in tolerance to stress conditions

  7. Cloning and Expression Analysis of cDNAs Encoding ABA 8'-Hydroxylase in Peanut Plants in Response to Osmotic Stress

    PubMed Central

    Wan, Xiao-Rong; Li, Li-Mei; Hu, Bo; Li, Ling

    2014-01-01

    Abscisic acid (ABA) catabolism is one of the determinants of endogenous ABA levels affecting numerous aspects of plant growth and abiotic-stress responses. The major ABA catabolic pathway is triggered by ABA 8'-hydroxylation catalysed by ABA 8'-hydroxylase, the cytochrome P450 CYP707A family. In this study, the full-length cDNAs of AhCYP707A1 and AhCYP707A2 were cloned and characterized from peanut. Expression analyses showed that AhCYP707A1 and AhCYP707A2 were expressed ubiquitously in peanut roots, stems, and leaves with different transcript accumulation levels, including the higher expression of AhCYP707A1 in roots. The expression of AhCYP707A2 was significantly up-regulated by 20% PEG6000 or 250 mmol/L NaCl in peanut roots, stems, and leaves, whereas the up-regulation of AhCYP707A1 transcript level by PEG6000 or NaCl was observed only in roots instead of leaves and stems. Due to the osmotic and ionic stresses of high concentration of NaCl to plants simultaneously, low concentration of LiCl (30 mmol/L, at which concentration osmotic status of cells is not seriously affected, the toxicity of Li+ being higher than that of Na+) was used to examine whether the effect of NaCl might be related to osmotic or ionic stress. The results revealed visually the susceptibility to osmotic stress and the resistance to salt ions in peanut seedlings. The significant up-regulation of AhCYP707A1, AhCYP707A2 and AhNCED1 transcripts and endogenous ABA levels by PEG6000 or NaCl instead of LiCl, showed that the osmotic stress instead of ionic stress affected the expression of those genes and the biosynthesis of ABA in peanut. The functional expression of AhCYP707A1 cDNA in yeast showed that the microsomal fractions prepared from yeast cell expressing recombinant AhCYP707A1 protein exhibited the catalytic activity of ABA 8'-hydroxylase. These results demonstrate that the expressions of AhCYP707A1 and AhCYP707A2 play an important role in ABA catabolism in peanut, particularly in response

  8. Overexpression of the CaTIP1-1 Pepper Gene in Tobacco Enhances Resistance to Osmotic Stresses

    PubMed Central

    Yin, Yan-Xu; Wang, Shu-Bin; Xiao, Huai-Juan; Zhang, Huai-Xia; Zhang, Zhen; Jing, Hua; Zhang, Ying-Li; Chen, Ru-Gang; Gong, Zhen-Hui

    2014-01-01

    Both the gene expression and activity of water channel protein can control transmembrane water movement. We have reported the overexpression of CaTIP1-1, which caused a decrease in chilling tolerance in transgenic plants by increasing the size of the stomatal pore. CaTIP1-1 expression was strongly induced by salt and mannitol stresses in pepper (Capsicum annuum). However, its biochemical and physiological functions are still unknown in transgenic tobacco. In this study, transient expression of CaTIP1-1-GFP in tobacco suspension cells revealed that the protein was localized in the tonoplast. CaTIP1-1 overexpressed in radicle exhibited vigorous growth under high salt and mannitol treatments more than wild-type plants. The overexpression of CaTIP1-1 pepper gene in tobacco enhanced the antioxidant enzyme activities and increased transcription levels of reactive oxygen species-related gene expression under osmotic stresses. Moreover, the viability of transgenic tobacco cells was higher than the wild-type after exposure to stress. The pepper plants with silenced CaTIP1-1 in P70 decreased tolerance to salt and osmotic stresses using the detached leaf method. We concluded that the CaTIP1-1 gene plays an important role in response to osmotic stresses in tobacco. PMID:25375192

  9. Differential effects of salinity and osmotic stress on the plant growth-promoting bacterium Gluconacetobacter diazotrophicus PAL5.

    PubMed

    De Oliveira, Marcos Vinicius V; Intorne, Aline C; Vespoli, Luciano de S; Madureira, Hérika C; Leandro, Mariana R; Pereira, Telma N S; Olivares, Fábio L; Berbert-Molina, Marília A; De Souza Filho, Gonçalo A

    2016-04-01

    Plant growth-promoting bacteria (PGPB) represent a promising alternative to the massive use of industrial fertilizers in agriculture. Gluconacetobacter diazotrophicus is a PGPB that colonizes several plant species. Although this bacterium is able to grow at high sucrose concentrations, its response to environmental stresses is poorly understood. The present study evaluated G. diazotrophicus PAL5 response to stresses caused by sucrose, PEG 400, NaCl, KCl, Na2SO4 and K2SO4. Morphological, ultrastructural and cell growth analysis revealed that G. diazotrophicus PAL5 is more sensitive to salt than osmotic stress. Growth inhibition and strong morphological changes were caused by salinity, in consequence of Cl ion-specific toxic effect. Interestingly, low osmotic stress levels were beneficial for bacterial multiplication, which was able to tolerate high sucrose concentrations, Na2SO4 and K2SO4. Our data show that G. diazotrophicus PAL5 has differential response to osmotic and salinity stress, which may influence its use as inoculant in saline environments. PMID:26809283

  10. AtERF71/HRE2 transcription factor mediates osmotic stress response as well as hypoxia response in Arabidopsis.

    PubMed

    Park, Hee-Yeon; Seok, Hye-Yeon; Woo, Dong-Hyuk; Lee, Sun-Young; Tarte, Vaishali N; Lee, Eun-Hye; Lee, Choon-Hwan; Moon, Yong-Hwan

    2011-10-14

    Various transcription factors are involved in the response to environmental stresses in plants. In this study, we characterized AtERF71/HRE2, a member of the Arabidopsis AP2/ERF family, as an important regulator of the osmotic and hypoxic stress responses in plants. Transcript level of AtERF71/HRE2 was highly increased by anoxia, NaCl, mannitol, ABA, and MV treatments. aterf71/hre2 loss-of-function mutants displayed higher sensitivity to osmotic stress such as high salt and mannitol, accumulating higher levels of ROS under high salt treatment. In contrast, AtERF71/HRE2-overexpressing transgenic plants showed tolerance to salt and mannitol as well as flooding and MV stresses, exhibiting lower levels of ROS under high salt treatment. AtERF71/HRE2 protein was localized in the nucleus, and the C-terminal region of AtERF71/HRE2 was required for transcription activation activity. Taken together, our results suggest that AtERF71/HRE2 might function as a transcription factor involved in the response to osmotic stress as well as hypoxia. PMID:21946064

  11. Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley

    PubMed Central

    2014-01-01

    Background Salinity tolerance is a physiologically multi-faceted trait attributed to multiple mechanisms. Three barley (Hordeum vulgare) varieties contrasting in their salinity tolerance were used to assess the relative contribution of ionic, osmotic and oxidative stress components towards overall salinity stress tolerance in this species, both at the whole-plant and cellular levels. In addition, transcriptional changes in the gene expression profile were studied for key genes mediating plant ionic and oxidative homeostasis (NHX; RBOH; SOD; AHA and GORK), to compare a contribution of transcriptional and post-translational factors towards the specific components of salinity tolerance. Results Our major findings are two-fold. First, plant tissue tolerance was a dominating component that has determined the overall plant responses to salinity, with root K+ retention ability and reduced sensitivity to stress-induced hydroxyl radical production being the main contributing tolerance mechanisms. Second, it was not possible to infer which cultivars were salinity tolerant based solely on expression profiling of candidate genes at one specific time point. For the genes studied and the time point selected that transcriptional changes in the expression of these specific genes had a small role for barley’s adaptive responses to salinity. Conclusions For better tissue tolerance, sodium sequestration, K+ retention and resistance to oxidative stress all appeared to be crucial. Because these traits are highly interrelated, it is suggested that a major progress in crop breeding for salinity tolerance can be achieved only if these complementary traits are targeted at the same time. This study also highlights the essentiality of post translational modifications in plant adaptive responses to salinity. PMID:24774965

  12. Genome-Wide Analysis of the TORC1 and Osmotic Stress Signaling Network in Saccharomyces cerevisiae.

    PubMed

    Worley, Jeremy; Sullivan, Arron; Luo, Xiangxia; Kaplan, Matthew E; Capaldi, Andrew P

    2016-02-01

    The Target of Rapamycin kinase Complex I (TORC1) is a master regulator of cell growth and metabolism in eukaryotes. Studies in yeast and human cells have shown that nitrogen/amino acid starvation signals act through Npr2/Npr3 and the small GTPases Gtr1/Gtr2 (Rags in humans) to inhibit TORC1. However, it is unclear how other stress and starvation stimuli inhibit TORC1, and/or act in parallel with the TORC1 pathway, to control cell growth. To help answer these questions, we developed a novel automated pipeline and used it to measure the expression of a TORC1-dependent ribosome biogenesis gene (NSR1) during osmotic stress in 4700 Saccharomyces cerevisiae strains from the yeast knock-out collection. This led to the identification of 440 strains with significant and reproducible defects in NSR1 repression. The cell growth control and stress response proteins deleted in these strains form a highly connected network, including 56 proteins involved in vesicle trafficking and vacuolar function; 53 proteins that act downstream of TORC1 according to a rapamycin assay--including components of the HDAC Rpd3L, Elongator, and the INO80, CAF-1 and SWI/SNF chromatin remodeling complexes; over 100 proteins involved in signaling and metabolism; and 17 proteins that directly interact with TORC1. These data provide an important resource for labs studying cell growth control and stress signaling, and demonstrate the utility of our new, and easily adaptable, method for mapping gene regulatory networks. PMID:26681516

  13. Generation of Wheat Transcription Factor FOX Rice Lines and Systematic Screening for Salt and Osmotic Stress Tolerance

    PubMed Central

    Zhang, Qian; Liu, Yayun; Zhu, Butuo; Cao, Jian; Li, Zhanpeng; Han, Longzhi; Jia, Jizeng; Zhao, Guangyao; Sun, Xuehui

    2015-01-01

    Transcription factors (TFs) play important roles in plant growth, development, and responses to environmental stress. In this study, we collected 1,455 full-length (FL) cDNAs of TFs, representing 45 families, from wheat and its relatives Triticum urartu, Aegilops speltoides, Aegilops tauschii, Triticum carthlicum, and Triticum aestivum. More than 15,000 T0 TF FOX (Full-length cDNA Over-eXpressing) rice lines were generated; of these, 10,496 lines set seeds. About 14.88% of the T0 plants showed obvious phenotypic changes. T1 lines (5,232 lines) were screened for salt and osmotic stress tolerance using 150 mM NaCl and 20% (v/v) PEG-4000, respectively. Among them, five lines (591, 746, 1647, 1812, and J4065) showed enhanced salt stress tolerance, five lines (591, 746, 898, 1078, and 1647) showed enhanced osmotic stress tolerance, and three lines (591, 746, and 1647) showed both salt and osmotic stress tolerance. Further analysis of the T-DNA flanking sequences showed that line 746 over-expressed TaEREB1, line 898 over-expressed TabZIPD, and lines 1812 and J4065 over-expressed TaOBF1a and TaOBF1b, respectively. The enhanced salt and osmotic stress tolerance of lines 898 and 1812 was confirmed by retransformation of the respective genes. Our results demonstrate that a heterologous FOX system may be used as an alternative genetic resource for the systematic functional analysis of the wheat genome. PMID:26176782

  14. Integration of Wounding and Osmotic Stress Signals Determines the Expression of the AtMYB102 Transcription Factor Gene1

    PubMed Central

    Denekamp, Marten; Smeekens, Sjef C.

    2003-01-01

    Transcript levels of the Arabidopsis R2R3-AtMYB102 transcription factor gene, previously named AtM4, are rapidly induced by osmotic stress or abscisic acid (ABA) treatment. Reporter gene expression studies revealed that in addition, wounding is required for full induction of the gene. Histochemical analysis showed a local β-glucuronidase induction around the wounding site, especially in veins. In ABA-treated plants, wounding-induced β-glucuronidase activity could be mimicked by the wound signaling compound methyl jasmonate. In silico studies of the AtMYB102 promoter sequence and its close homolog AtMYB74 demonstrated several conserved putative stress regulatory elements such as an ABA-responsive element, its coupling element 1 (CE1), and a W box. Interestingly, further studies showed that the 5′-untranslated region is essential for the osmotic stress and wounding induced expression of the AtMYB102 gene. This 5′-untranslated region contains putative conserved regulatory elements such as a second W box and an overlapping MYB-binding element. These studies suggest that AtMYB102 expression depends on and integrates signals derived from both wounding and osmotic stress. PMID:12857823

  15. Osmotic stress regulates the stability of cyclin D1 in a p38SAPK2-dependent manner.

    PubMed

    Casanovas, O; Miró, F; Estanyol, J M; Itarte, E; Agell, N; Bachs, O

    2000-11-10

    We report here that different cell stresses regulate the stability of cyclin D1 protein. Exposition of Granta 519 cells to osmotic shock, oxidative stress, and arsenite induced the post-transcriptional down-regulation of cyclin D1. In the case of osmotic shock, this effect was completely reversed by the addition of p38(SAPK2)-specific inhibitors (SB203580 or SB220025), indicating that this effect is dependent on p38(SAPK2) activity. Moreover, the use of proteasome inhibitors prevented this down-regulation. Thus, osmotic shock induces proteasomal degradation of cyclin D1 protein by a p38(SAPK2)-dependent pathway. The effect of p38(SAPK2) on cyclin D1 stability might be mediated by direct phosphorylation at specific sites. We found that p38(SAPK2) phosphorylates cyclin D1 in vitro at Thr(286) and that this phosphorylation triggers the ubiquitination of cyclin D1. These results link for the first time a stress-induced MAP kinase pathway to cyclin D1 protein stability, and they will help to understand the molecular mechanisms by which stress transduction pathways regulate the cell cycle machinery and take control over cell proliferation. PMID:10952989

  16. Calcineurin B-Like Protein-Interacting Protein Kinase CIPK21 Regulates Osmotic and Salt Stress Responses in Arabidopsis1

    PubMed Central

    Pandey, Girdhar K.; Kanwar, Poonam; Singh, Amarjeet; Steinhorst, Leonie; Pandey, Amita; Yadav, Akhlilesh K.; Tokas, Indu; Sanyal, Sibaji K.; Kim, Beom-Gi; Lee, Sung-Chul; Cheong, Yong-Hwa; Kudla, Jörg; Luan, Sheng

    2015-01-01

    The role of calcium-mediated signaling has been extensively studied in plant responses to abiotic stress signals. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) constitute a complex signaling network acting in diverse plant stress responses. Osmotic stress imposed by soil salinity and drought is a major abiotic stress that impedes plant growth and development and involves calcium-signaling processes. In this study, we report the functional analysis of CIPK21, an Arabidopsis (Arabidopsis thaliana) CBL-interacting protein kinase, ubiquitously expressed in plant tissues and up-regulated under multiple abiotic stress conditions. The growth of a loss-of-function mutant of CIPK21, cipk21, was hypersensitive to high salt and osmotic stress conditions. The calcium sensors CBL2 and CBL3 were found to physically interact with CIPK21 and target this kinase to the tonoplast. Moreover, preferential localization of CIPK21 to the tonoplast was detected under salt stress condition when coexpressed with CBL2 or CBL3. These findings suggest that CIPK21 mediates responses to salt stress condition in Arabidopsis, at least in part, by regulating ion and water homeostasis across the vacuolar membranes. PMID:26198257

  17. Calcineurin B-Like Protein-Interacting Protein Kinase CIPK21 Regulates Osmotic and Salt Stress Responses in Arabidopsis.

    PubMed

    Pandey, Girdhar K; Kanwar, Poonam; Singh, Amarjeet; Steinhorst, Leonie; Pandey, Amita; Yadav, Akhlilesh K; Tokas, Indu; Sanyal, Sibaji K; Kim, Beom-Gi; Lee, Sung-Chul; Cheong, Yong-Hwa; Kudla, Jörg; Luan, Sheng

    2015-09-01

    The role of calcium-mediated signaling has been extensively studied in plant responses to abiotic stress signals. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) constitute a complex signaling network acting in diverse plant stress responses. Osmotic stress imposed by soil salinity and drought is a major abiotic stress that impedes plant growth and development and involves calcium-signaling processes. In this study, we report the functional analysis of CIPK21, an Arabidopsis (Arabidopsis thaliana) CBL-interacting protein kinase, ubiquitously expressed in plant tissues and up-regulated under multiple abiotic stress conditions. The growth of a loss-of-function mutant of CIPK21, cipk21, was hypersensitive to high salt and osmotic stress conditions. The calcium sensors CBL2 and CBL3 were found to physically interact with CIPK21 and target this kinase to the tonoplast. Moreover, preferential localization of CIPK21 to the tonoplast was detected under salt stress condition when coexpressed with CBL2 or CBL3. These findings suggest that CIPK21 mediates responses to salt stress condition in Arabidopsis, at least in part, by regulating ion and water homeostasis across the vacuolar membranes. PMID:26198257

  18. Osmotic stress up-regulates aquaporin-3 gene expression in cultured human keratinocytes.

    PubMed

    Sugiyama, Y; Ota, Y; Hara, M; Inoue, S

    2001-12-01

    Of ten members of the aquaporin family (AQP), the mRNA expression and regulation of AQP1, AQP3, AQP4 and AQP9 in cultured human keratinocytes were examined by an RNase protection assay. AQP3 mRNA was expressed in growing and differentiating cells, while AQP9 mRNA was only detected in differentiating cells. The epidermis in skin-equivalent cultures expressed both AQP3 and AQP9 mRNA. However, neither AQP1 nor AQP4 mRNA was detectable in either monolayer or skin-equivalent cultures. Incubation of keratinocytes in sorbitol-added hypertonic medium increased AQP3 mRNA expression. This was confirmed using other solutes such as NaCl, mannitol, glucose and sucrose. The effect of sorbitol was reversible, dose-dependent and maximal at 24 h after addition. However, AQP1, AQP4 and AQP9 mRNA expression were unchanged under any of the hypertonic conditions examined. These findings indicated that osmotic stress up-regulates AQP3 gene expression in cultured keratinocytes. PMID:11750058

  19. Transformation of Oats and Its Application to Improving Osmotic Stress Tolerance

    NASA Astrophysics Data System (ADS)

    Maqbool, Shahina B.; Zhong, Heng; Oraby, Hesham F.; Sticklen, Mariam B.

    Oat (Avena sativa L.), a worldwide temperate cereal crop, is deficient in tolerance to osmotic stress due to drought and/or salinity. To genetically transform the available commercial oat cultivars, a genotype-independent and efficient regeneration system from shoot apical meristems was developed using four oat cultivars: Prairie, Porter, Ogle, and Pacer. All these oat cultivars generated a genotype-independent in vitro differentiated multiple shoots from shoot apical meristems at a high frequency. Using this system, three oat cultivars were genetically co-transformed with pBY520 (containing hva1 and bar) and pAct1-D (containing gus) using biolistic™ bombardment. Transgenic plants were selected and regenerated using herbicide resistance and GUS as a marker. Molecular and biochemical analyses of putative transgenic plants confirmed the co-integration of hva1 and bar genes with a frequency of 100%, and 61.6% of the transgenic plants carried all three genes (hva1, bar and gus). Further analyses of R0, R1, and R2 progenies confirmed stable integration, expression, and Mendalian inheritance for all transgenes. Histochemical analysis of GUS protein in transgenic plants showed a high level of GUS expression in vascular tissues and in the pollen grains of mature flowers. Immunochemical analysis of transgenic plants indicated a constitutive expression of hva1 at all developmental stages. However, the level of HVA1 was higher during the early seedling stages.

  20. Growth and microtubule orientation of Zea mays roots subjected to osmotic stress

    NASA Technical Reports Server (NTRS)

    Blancaflor, E. B.; Hasenstein, K. H.

    1995-01-01

    Previous work has shown that microtubule (MT) reorientation follows the onset of growth inhibition on the lower side of graviresponding roots, indicating that growth reduction can occur independently of MT reorientation. To test this observation further, we examined whether the reduction in growth in response to osmotic stress is correlated with MT reorientation. The distribution and rate of growth in maize roots exposed to 350 mOsm sorbitol and KCl or 5 mM Mes/Tris buffer were measured with a digitizer. After various times roots were processed for indirect immunofluorescence microscopy. Application of sorbitol or KCl had no effect on the organization of MTs in the apical 2 mm of the root but resulted in striking and different effects in the basal region of the root. Sorbitol treatment caused rapid appearance of oval to circular holes in the microtubular array that persisted for at least 9 h. Between 30 min and 4 h of submersion in KCl, MTs in cortical cells 4 mm and farther from the quiescent center began to reorient oblique to the longitudinal axis. After 9 h, the alignment of MTs had shifted to parallel to the root axis but MTs of the epidermal cells remained transverse. In KCl-treated roots MT reorientation appeared to follow a pattern of development similar to that in controls but without elongation. Our data provide additional evidence that MT reorientation is not the cause but a consequence of growth inhibition.

  1. Adaptation of Staphylococcus xylosus to Nutrients and Osmotic Stress in a Salted Meat Model.

    PubMed

    Vermassen, Aurore; Dordet-Frisoni, Emilie; de La Foye, Anne; Micheau, Pierre; Laroute, Valérie; Leroy, Sabine; Talon, Régine

    2016-01-01

    Staphylococcus xylosus is commonly used as starter culture for meat fermentation. Its technological properties are mainly characterized in vitro, but the molecular mechanisms for its adaptation to meat remain unknown. A global transcriptomic approach was used to determine these mechanisms. S. xylosus modulated the expression of about 40-50% of the total genes during its growth and survival in the meat model. The expression of many genes involved in DNA machinery and cell division, but also in cell lysis, was up-regulated. Considering that the S. xylosus population remained almost stable between 24 and 72 h of incubation, our results suggest a balance between cell division and cell lysis in the meat model. The expression of many genes encoding enzymes involved in glucose and lactate catabolism was up-regulated and revealed that glucose and lactate were used simultaneously. S. xylosus seemed to adapt to anaerobic conditions as revealed by the overexpression of two regulatory systems and several genes encoding cofactors required for respiration. In parallel, genes encoding transport of peptides and peptidases that could furnish amino acids were up-regulated and thus concomitantly a lot of genes involved in amino acid synthesis were down-regulated. Several genes involved in glutamate homeostasis were up-regulated. Finally, S. xylosus responded to the osmotic stress generated by salt added to the meat model by overexpressing genes involved in transport and synthesis of osmoprotectants, and Na(+) and H(+) extrusion. PMID:26903967

  2. Hyperthermia, dehydration, and osmotic stress: unconventional sources of exercise-induced reactive oxygen species.

    PubMed

    King, Michelle A; Clanton, Thomas L; Laitano, Orlando

    2016-01-15

    Evidence of increased reactive oxygen species (ROS) production is observed in the circulation during exercise in humans. This is exacerbated at elevated body temperatures and attenuated when normal exercise-induced body temperature elevations are suppressed. Why ROS production during exercise is temperature dependent is entirely unknown. This review covers the human exercise studies to date that provide evidence that oxidant and antioxidant changes observed in the blood during exercise are dependent on temperature and fluid balance. We then address possible mechanisms linking exercise with these variables that include shear stress, effects of hemoconcentration, and signaling pathways involving muscle osmoregulation. Since pathways of muscle osmoregulation are rarely discussed in this context, we provide a brief review of what is currently known and unknown about muscle osmoregulation and how it may be linked to oxidant production in exercise and hyperthermia. Both the circulation and the exercising muscle fibers become concentrated with osmolytes during exercise in the heat, resulting in a competition for available water across the muscle sarcolemma and other tissues. We conclude that though multiple mechanisms may be responsible for the changes in oxidant/antioxidant balance in the blood during exercise, a strong case can be made that a significant component of ROS produced during some forms of exercise reflect requirements of adapting to osmotic challenges, hyperthermia challenges, and loss of circulating fluid volume. PMID:26561649

  3. Adaptation of Staphylococcus xylosus to Nutrients and Osmotic Stress in a Salted Meat Model

    PubMed Central

    Vermassen, Aurore; Dordet-Frisoni, Emilie; de La Foye, Anne; Micheau, Pierre; Laroute, Valérie; Leroy, Sabine; Talon, Régine

    2016-01-01

    Staphylococcus xylosus is commonly used as starter culture for meat fermentation. Its technological properties are mainly characterized in vitro, but the molecular mechanisms for its adaptation to meat remain unknown. A global transcriptomic approach was used to determine these mechanisms. S. xylosus modulated the expression of about 40–50% of the total genes during its growth and survival in the meat model. The expression of many genes involved in DNA machinery and cell division, but also in cell lysis, was up-regulated. Considering that the S. xylosus population remained almost stable between 24 and 72 h of incubation, our results suggest a balance between cell division and cell lysis in the meat model. The expression of many genes encoding enzymes involved in glucose and lactate catabolism was up-regulated and revealed that glucose and lactate were used simultaneously. S. xylosus seemed to adapt to anaerobic conditions as revealed by the overexpression of two regulatory systems and several genes encoding cofactors required for respiration. In parallel, genes encoding transport of peptides and peptidases that could furnish amino acids were up-regulated and thus concomitantly a lot of genes involved in amino acid synthesis were down-regulated. Several genes involved in glutamate homeostasis were up-regulated. Finally, S. xylosus responded to the osmotic stress generated by salt added to the meat model by overexpressing genes involved in transport and synthesis of osmoprotectants, and Na+ and H+ extrusion. PMID:26903967

  4. A prominent role for glucosylglycerol in the adaptation of Pseudomonas mendocina SKB70 to osmotic stress.

    PubMed Central

    Pocard, J A; Smith, L T; Smith, G M; Le Rudulier, D

    1994-01-01

    The mechanism of osmoadaptation in a salt-tolerant (1.2 M NaCl) bacterial isolate identified as Pseudomonas mendocina (N. J. Palleroni, M. Doudoroff, R. Y. Stanier, R. E. Solanes, and R. Mandel, J. Gen. Microbiol. 60:215-231, 1970) was investigated. In response to osmotic stress, this species accumulated a number of compatible solutes, the intracellular levels of which depended on both the osmolarity and the ionic composition of the growth medium. Glucosylglycerol [alpha-D-glucopyranosyl-alpha-(1-->2)-glycerol], N-acetylglutaminylglutamine amide, and L-alpha-glutamate were the major compatible solutes accumulated via de novo biosynthesis. Trehalose was also accumulated, but only in cells grown in the presence of high concentrations of sulfate or phosphate ions. Glycine betaine was accumulated only when supplied exogenously to cells grown at high osmolarity, and its accumulation caused a significant depletion of the intracellular pools of glucosylglycerol and glutamate. Glucosylglycerol was also found to accumulate in the type strains of P. mendocina and P. pseudoalcaligenes. This is the first report demonstrating the pivotal role of glucosylglycerol in osmoadaptation in a nonphotosynthetic microorganism. PMID:7961447

  5. Plasmolysis and cell wall deposition in wheat root hairs under osmotic stress.

    PubMed

    Volgger, Michael; Lang, Ingeborg; Ovecka, Miroslav; Lichtscheidl, Irene

    2010-07-01

    We analysed cell wall formation in rapidly growing root hairs of Triticum aestivum under reduced turgor pressure by application of iso- and hypertonic mannitol solutions. Our experimental series revealed an osmotic value of wheat root hairs of 150 mOsm. In higher concentrations (200-650 mOsm), exocytosis of wall material and its deposition, as well as callose synthesis, still occurred, but the elongation of root hairs was stopped. Even after strong plasmolysis when the protoplast retreated from the cell wall, deposits of wall components were observed. Labelling with DiOC(6)(3) and FM1-43 revealed numerous Hechtian strands that spanned the plasmolytic space. Interestingly, the Hechtian strands also led towards the very tip of the root hair suggesting strong anchoring sites that are readily incorporated into the new cell wall. Long-term treatments of over 24 h in mannitol solutions (150-450 mOsm) resulted in reduced growth and concentration-dependent shortening of root hairs. However, the formation of new root hairs does occur in all concentrations used. This reflects the extraordinary potential of wheat root cells to adapt to environmental stress situations. PMID:19533299

  6. Osmotic Stress Confers Enhanced Cell Integrity to Hydrostatic Pressure but Impairs Growth in Alcanivorax borkumensis SK2.

    PubMed

    Scoma, Alberto; Boon, Nico

    2016-01-01

    Alcanivorax is a hydrocarbonoclastic genus dominating oil spills worldwide. While its presence has been detected in oil-polluted seawaters, marine sediment and salt marshes under ambient pressure, its presence in deep-sea oil-contaminated environments is negligible. Recent laboratory studies highlighted the piezosensitive nature of some Alcanivorax species, whose growth yields are highly impacted by mild hydrostatic pressures (HPs). In the present study, osmotic stress was used as a tool to increase HP resistance in the type strain Alcanivorax borkumensis SK2. Control cultures grown under standard conditions of salinity and osmotic pressure with respect to seawater (35.6 ppt or 1136 mOsm kg(-1), respectively) were compared with cultures subjected to hypo- and hyperosmosis (330 and 1720 mOsm kg(-1), or 18 and 62 ppt in salinity, equivalent to brackish and brine waters, respectively), under atmospheric or increased HP (0.1 and 10 MPa). Osmotic stress had a remarkably positive impact on cell metabolic activity in terms of CO2 production (thus, oil bioremediation) and O2 respiration under hyperosmosis, as acclimation to high salinity enhanced cell activity under 10 MPa by a factor of 10. Both osmotic shocks significantly enhanced cell protection by reducing membrane damage under HP, with cell integrities close to 100% under hyposmosis. The latter was likely due to intracellular water-reclamation as no trace of the piezolyte ectoine was found, contrary to hyperosmosis. Notably, ectoine production was equivalent at 0.1 MPa in hyperosmosis-acclimated cells and at 10 MPa under isosmotic conditions. While stimulating cell metabolism and enhancing cell integrity, osmotic stress had always a negative impact on culture growth and performance. No net growth was observed during 4-days incubation tests, and CO2:O2 ratios and pH values indicated that culture performance in terms of hydrocarbon degradation was lowered by the effects of osmotic stress alone or combined with

  7. Osmotic Stress Confers Enhanced Cell Integrity to Hydrostatic Pressure but Impairs Growth in Alcanivorax borkumensis SK2

    PubMed Central

    Scoma, Alberto; Boon, Nico

    2016-01-01

    Alcanivorax is a hydrocarbonoclastic genus dominating oil spills worldwide. While its presence has been detected in oil-polluted seawaters, marine sediment and salt marshes under ambient pressure, its presence in deep-sea oil-contaminated environments is negligible. Recent laboratory studies highlighted the piezosensitive nature of some Alcanivorax species, whose growth yields are highly impacted by mild hydrostatic pressures (HPs). In the present study, osmotic stress was used as a tool to increase HP resistance in the type strain Alcanivorax borkumensis SK2. Control cultures grown under standard conditions of salinity and osmotic pressure with respect to seawater (35.6 ppt or 1136 mOsm kg-1, respectively) were compared with cultures subjected to hypo- and hyperosmosis (330 and 1720 mOsm kg-1, or 18 and 62 ppt in salinity, equivalent to brackish and brine waters, respectively), under atmospheric or increased HP (0.1 and 10 MPa). Osmotic stress had a remarkably positive impact on cell metabolic activity in terms of CO2 production (thus, oil bioremediation) and O2 respiration under hyperosmosis, as acclimation to high salinity enhanced cell activity under 10 MPa by a factor of 10. Both osmotic shocks significantly enhanced cell protection by reducing membrane damage under HP, with cell integrities close to 100% under hyposmosis. The latter was likely due to intracellular water-reclamation as no trace of the piezolyte ectoine was found, contrary to hyperosmosis. Notably, ectoine production was equivalent at 0.1 MPa in hyperosmosis-acclimated cells and at 10 MPa under isosmotic conditions. While stimulating cell metabolism and enhancing cell integrity, osmotic stress had always a negative impact on culture growth and performance. No net growth was observed during 4-days incubation tests, and CO2:O2 ratios and pH values indicated that culture performance in terms of hydrocarbon degradation was lowered by the effects of osmotic stress alone or combined with increased HP

  8. SIRT1 contributes to aldose reductase expression through modulating NFAT5 under osmotic stress: In vitro and in silico insights.

    PubMed

    Timucin, Ahmet Can; Bodur, Cagri; Basaga, Huveyda

    2015-11-01

    So far, a myriad of molecules were characterized to modulate NFAT5 and its downstream targets. Among these NFAT5 modifiers, SIRT1 was proposed to have a promising role in NFAT5 dependent events, yet the exact underlying mechanism still remains obscure. Hence, the link between SIRT1 and NFAT5-aldose reductase (AR) axis under osmotic stress, was aimed to be delineated in this study. A unique osmotic stress model was generated and its mechanistic components were deciphered in U937 monocytes. In this model, AR expression and nuclear NFAT5 stabilization were revealed to be positively regulated by SIRT1 through utilization of pharmacological modulators. Overexpression and co-transfection studies of NFAT5 and SIRT1 further validated the contribution of SIRT1 to AR and NFAT5. The involvement of SIRT1 activity in these events was mediated via modification of DNA binding of NFAT5 to AR ORE region. Besides, NFAT5 and SIRT1 were also shown to co-immunoprecipitate under isosmotic conditions and this interaction was disrupted by osmotic stress. Further in silico experiments were conducted to investigate if SIRT1 directly targets NFAT5. In this regard, certain lysine residues of NFAT5, when kept deacetylated, were found to contribute to its DNA binding and SIRT1 was shown to directly bind K282 of NFAT5. Based on these in vitro and in silico findings, SIRT1 was identified, for the first time, as a novel positive regulator of NFAT5 dependent AR expression under osmotic stress in U937 monocytes. PMID:26297866

  9. Osmotic stress induces the phosphorylation of WNK4 Ser575 via the p38MAPK-MK pathway

    PubMed Central

    Maruyama, Junichi; Kobayashi, Yumie; Umeda, Tsuyoshi; Vandewalle, Alain; Takeda, Kohsuke; Ichijo, Hidenori; Naguro, Isao

    2016-01-01

    The With No lysine [K] (WNK)-Ste20-related proline/alanine-rich kinase (SPAK)/oxidative stress-responsive kinase 1 (OSR1) pathway has been reported to be a crucial signaling pathway for triggering pseudohypoaldosteronism type II (PHAII), an autosomal dominant hereditary disease that is characterized by hypertension. However, the molecular mechanism(s) by which the WNK-SPAK/OSR1 pathway is regulated remain unclear. In this report, we identified WNK4 as an interacting partner of a recently identified MAP3K, apoptosis signal-regulating kinase 3 (ASK3). We found that WNK4 is phosphorylated in an ASK3 kinase activity-dependent manner. By exploring the ASK3-dependent phosphorylation sites, we identified Ser575 as a novel phosphorylation site in WNK4 by LC-MS/MS analysis. ASK3-dependent WNK4 Ser575 phosphorylation was mediated by the p38MAPK-MAPK-activated protein kinase (MK) pathway. Osmotic stress, as well as hypotonic low-chloride stimulation, increased WNK4 Ser575 phosphorylation via the p38MAPK-MK pathway. ASK3 was required for the p38MAPK activation induced by hypotonic stimulation but was not required for that induced by hypertonic stimulation or hypotonic low-chloride stimulation. Our results suggest that the p38MAPK-MK pathway might regulate WNK4 in an osmotic stress-dependent manner but its upstream regulators might be divergent depending on the types of osmotic stimuli. PMID:26732173

  10. A Novel Soybean Intrinsic Protein Gene, GmTIP2;3, Involved in Responding to Osmotic Stress

    PubMed Central

    Zhang, Dayong; Tong, Jinfeng; He, Xiaolan; Xu, Zhaolong; Xu, Ling; Wei, Peipei; Huang, Yihong; Brestic, Marian; Ma, Hongxiang; Shao, Hongbo

    2016-01-01

    Water is essential for plant growth and development. Water deficiency leads to loss of yield and decreased crop quality. To understand water transport mechanisms in plants, we cloned and characterized a novel tonoplast intrinsic protein (TIP) gene from soybean with the highest similarity to TIP2-type from other plants, and thus designated GmTIP2;3. The protein sequence contains two conserved NPA motifs and six transmembrane domains. The expression analysis indicated that this gene was constitutively expressed in all detected tissues, with higher levels in the root, stem and pod, and the accumulation of GmTIP2;3 transcript showed a significant response to osmotic stresses, including 20% PEG6000 (polyethylene glycol) and 100 μM ABA (abscisic acid) treatments. The promoter-GUS (glucuronidase) activity analysis suggested that GmTIP2;3 was also expressed in the root, stem, and leaf, and preferentially expressed in the stele of root and stem, and the core promoter region was 1000 bp in length, located upstream of the ATG start codon. The GUS tissue and induced expression observations were consistent with the findings in soybean. In addition, subcellular localization showed that GmTIP2;3 was a plasma membrane-localized protein. Yeast heterologous expression revealed that GmTIP2;3 could improve tolerance to osmotic stress in yeast cells. Integrating these results, GmTIP2;3 might play an important role in response to osmotic stress in plants. PMID:26779248

  11. Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast

    SciTech Connect

    Shen, B.; Hohmann, S.; Jensen, R.G.; Bohnert, H.J.

    1999-09-01

    For many organisms there is a correlation between increases of metabolites and osmotic stress tolerance, but the mechanisms that cause this protection are not clear. To understand the role of polyols, genes for bacterial mannitol-1-P dehydrogenase and apply sorbitol-6-P dehydrogenase were introduced into a Saccharomyces cerevisiae mutant deficient in glycerol synthesis. Sorbitol and mannitol provided some protection, but less than that generated by a similar concentration of glycerol generated by glycerol-3-P dehydrogenase (GPD1). Reduced protection by polyols suggested that glycerol had specific functions for which mannitol and sorbitol could not substitute, and that the absolute amount of the accumulating osmoticum might not be crucial. The retention of glycerol and mannitol-sorbitol, respectively, was a major difference. During salt stress, cells retained more of the six-carbon polyois than glycerol. The authors suggest that the loss of {gt} 98% of the glycerol synthesized could provide a safety value that dissipates reducing power, which a similar high intracellular concentration of retained polyois would be less protective. To understand the role of glycerol in salt tolerance, salt-tolerant suppressor mutants were isolated from the glycerol-deficient strain. One mutant, sr13, partially suppressed the salt-sensitive phenotype of the glycerol-deficient line, probably due to a doubling of [K{sup +}] accumulating during stress. The authors compare these results to the osmotic adjustment concept typically applied to accumulating metabolites in plants. The accumulation of polyois may have dual functions: facilitating osmotic adjustment and supporting redox control.

  12. Dynamic regulation of the root hydraulic conductivity of barley plants in response to salinity/osmotic stress.

    PubMed

    Kaneko, Toshiyuki; Horie, Tomoaki; Nakahara, Yoshiki; Tsuji, Nobuya; Shibasaka, Mineo; Katsuhara, Maki

    2015-05-01

    Salinity stress significantly reduces the root hydraulic conductivity (Lpr) of several plant species including barley (Hordeum vulgare). Here we characterized changes in the Lpr of barley plants in response to salinity/osmotic stress in detail using a pressure chamber. Salt-tolerant and intermediate barley cultivars, K305 and Haruna-nijyo, but not a salt-sensitive cultivar, I743, exhibited characteristic time-dependent Lpr changes induced by 100 mM NaCl. An identical response was evoked by isotonic sorbitol, indicating that this phenomenon was triggered by osmotic imbalances. Further examination of this mechanism using barley cv. Haruna-nijyo plants in combination with the use of various inhibitors suggested that various cellular processes such as protein phosphorylation/dephosphorylation and membrane internalization appear to be involved. Interestingly, the three above-mentioned barley cultivars did not exhibit a remarkable difference in root cell sap osmolality under hypertonic conditions, in contrast to the case of Lpr. The possible biological significance of the regulation of Lpr in barley plants upon salinity/osmotic stress is discussed. PMID:25634964

  13. Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria.

    PubMed

    Chakraborty, U; Chakraborty, B N; Chakraborty, A P; Dey, P L

    2013-05-01

    Soil microorganisms with potential for alleviation of abiotic stresses in combination with plant growth promotion would be extremely useful tools in sustainable agriculture. To this end, the present study was initiated where forty-five salt tolerant bacterial isolates with ability to grow in high salt medium were obtained from the rhizosphere of Triticum aestivum and Imperata cylindrica. These bacteria were tested for plant-growth-promoting rhizobacteria traits in vitro such as phosphate solubilization, siderophore, ACC deaminase and IAA production. Of the forty-five isolates, W10 from wheat rhizosphere and IP8 from blady grass rhizosphere, which tested positive in all the tests were identified by morpholological, biochemical and 16SrDNA sequencing as Bacillus safensis and Ochrobactrum pseudogregnonense respectively and selected for in vivo studies. Both the bacteria could promote growth in six varieties of wheat tested in terms of increase in root and shoot biomass, height of plants, yield, as well as increase in chlorophyll content. Besides, the wheat plants could withstand water stress more efficiently in presence of the bacteria as indicated by delay in appearance of wilting symptoms increases in relative water content of treated water stressed plants in comparison to untreated stressed ones, and elevated antioxidant responses. Enhanced antioxidant responses were evident as elevated activities of enzymes such as catalase, peroxidase, ascorbate peroxidase, superoxide dismutase and glutathione reductase as well as increased accumulation of antioxidants such as carotenoids and ascorbate. Results clearly indicate that the ability of wheat plants to withstand water stress is enhanced by application of these bacteria which also function as plant growth promoting rhizobacteria. PMID:23239372

  14. Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L.

    PubMed

    Liu, Peng; Yin, Lina; Deng, Xiping; Wang, Shiwen; Tanaka, Kiyoshi; Zhang, Suiqi

    2014-09-01

    The fact that silicon application alleviates water deficit stress has been widely reported, but the underlying mechanism remains unclear. Here the effects of silicon on water uptake and transport of sorghum seedlings (Sorghum bicolor L.) growing under polyethylene glycol-simulated osmotic stress in hydroponic culture and water deficit stress in sand culture were investigated. Osmotic stress dramatically decreased dry weight, photosynthetic rate, transpiration rate, stomatal conductance, and leaf water content, but silicon application reduced these stress-induced decreases. Although silicon application had no effect on stem water transport capacity, whole-plant hydraulic conductance (Kplant) and root hydraulic conductance (Lp) were higher in silicon-treated seedlings than in those without silicon treatment under osmotic stress. Furthermore, the extent of changes in transpiration rate was similar to the changes in Kplant and Lp. The contribution of aquaporin to Lp was characterized using the aquaporin inhibitor mercury. Under osmotic stress, the exogenous application of HgCl2 decreased the transpiration rates of seedlings with and without silicon to the same level; after recovery induced by dithiothreitol (DTT), however, the transpiration rate was higher in silicon-treated seedlings than in untreated seedlings. In addition, transcription levels of several root aquaporin genes were increased by silicon application under osmotic stress. These results indicate that the silicon-induced up-regulation of aquaporin, which was thought to increase Lp, was involved in improving root water uptake under osmotic stress. This study also suggests that silicon plays a modulating role in improving plant resistance to osmotic stress in addition to its role as a mere physical barrier. PMID:24879770

  15. Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L.

    PubMed Central

    Liu, Peng; Yin, Lina; Deng, Xiping; Wang, Shiwen; Tanaka, Kiyoshi; Zhang, Suiqi

    2014-01-01

    The fact that silicon application alleviates water deficit stress has been widely reported, but the underlying mechanism remains unclear. Here the effects of silicon on water uptake and transport of sorghum seedlings (Sorghum bicolor L.) growing under polyethylene glycol-simulated osmotic stress in hydroponic culture and water deficit stress in sand culture were investigated. Osmotic stress dramatically decreased dry weight, photosynthetic rate, transpiration rate, stomatal conductance, and leaf water content, but silicon application reduced these stress-induced decreases. Although silicon application had no effect on stem water transport capacity, whole-plant hydraulic conductance (Kplant) and root hydraulic conductance (Lp) were higher in silicon-treated seedlings than in those without silicon treatment under osmotic stress. Furthermore, the extent of changes in transpiration rate was similar to the changes in Kplant and Lp. The contribution of aquaporin to Lp was characterized using the aquaporin inhibitor mercury. Under osmotic stress, the exogenous application of HgCl2 decreased the transpiration rates of seedlings with and without silicon to the same level; after recovery induced by dithiothreitol (DTT), however, the transpiration rate was higher in silicon-treated seedlings than in untreated seedlings. In addition, transcription levels of several root aquaporin genes were increased by silicon application under osmotic stress. These results indicate that the silicon-induced up-regulation of aquaporin, which was thought to increase Lp, was involved in improving root water uptake under osmotic stress. This study also suggests that silicon plays a modulating role in improving plant resistance to osmotic stress in addition to its role as a mere physical barrier. PMID:24879770

  16. Nitric oxide is involved in light-specific responses of tomato during germination under normal and osmotic stress conditions

    PubMed Central

    Piterková, Jana; Luhová, Lenka; Hofman, Jakub; Turečková, Veronika; Novák, Ondřej; Petřivalský, Marek; Fellner, Martin

    2012-01-01

    Background and Aims Nitric oxide (NO) is involved in the signalling and regulation of plant growth and development and responses to biotic and abiotic stresses. The photoperiod-sensitive mutant 7B-1 in tomato (Solanum lycopersicum) showing abscisic acid (ABA) overproduction and blue light (BL)-specific tolerance to osmotic stress represents a valuable model to study the interaction between light, hormones and stress signalling. The role of NO as a regulator of seed germination and ABA-dependent responses to osmotic stress was explored in wild-type and 7B-1 tomato under white light (WL) and BL. Methods Germination data were obtained from the incubation of seeds on germinating media of different composition. Histochemical analysis of NO production in germinating seeds was performed by fluorescence microscopy using a cell-permeable NO probe, and endogenous ABA was analysed by mass spectrometry. Key Results The NO donor S-nitrosoglutathione stimulated seed germination, whereas the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) had an inhibitory effect. Under WL in both genotypes, PTIO strongly suppressed germination stimulated by fluridone, an ABA inhibitor. The stimulatory effect of the NO donor was also observed under osmotic stress for 7B-1 seeds under WL and BL. Seed germination inhibited by osmotic stress was restored by fluridone under WL, but less so under BL, in both genotypes. This effect of fluridone was further modulated by the NO donor and NO scavenger, but only to a minor extent. Fluorescence microscopy using the cell-permeable NO probe DAF-FM DA (4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate) revealed a higher level of NO in stressed 7B-1 compared with wild-type seeds. Conclusions As well as defective BL signalling, the differential NO-dependent responses of the 7B-1 mutant are probably associated with its high endogenous ABA concentration and related impact on hormonal cross-talk in germinating seeds. These

  17. The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction

    SciTech Connect

    Mahajabeen, Padamsee; Kumas, T. K. Arun; Riley, Robert; Binder, Manfred; Boyd, Alex; Calvo, Ann M.; Furukawa, Kentaro; Hesse, Cedar; Hohmann, Stefan; James, Tim Y.; LaButti, Kurt; Lapidus, Alla; Lindquist, Erika; Lucas, Susan; Miller, Kari; Shantappa, Sourabha; Grigoriev, Igor V.; Hibbett, David S.; McLaughlin, David J.; Spatafora, Joseph W.; Aime, Mary C.

    2011-09-03

    Wallemia (Wallemiales, Wallemiomycetes) is a genus of xerophilic Fungi of uncertain phylogenetic position within Basidiomycota. Most commonly found as food contaminants, species of Wallemia have also been isolated from hypersaline environments. The ability to tolerate environments with reduced water activity is rare in Basidiomycota. We sequenced the genome of W. sebi in order to understand its adaptations for surviving in osmotically challenging environments, and we performed phylogenomic and ultrastructural analyses to address its systematic placement and reproductive biology. W. sebi has a compact genome (9.8 Mb), with few repeats and the largest fraction of genes with functional domains compared with other Basidiomycota. We applied several approaches to searching for osmotic stress-related proteins. In silico analyses identied 93 putative osmotic stress proteins; homology searches showed the HOG (High Osmolarity Glycerol) pathway to be mostly conserved. Despite the seemingly reduced genome, several gene family expansions and a high number of transporters (549) were found that also provide clues to the ability of W. sebito colonize harsh environments. Phylogenetic analyses of a 71-protein dataset support the position of Wallemia as the earliest diverging lineage of Agaricomycotina, which is conrmed by septal pore ultrastructure that shows the septal pore apparatus as a variant of the Tremella-type. Mating type gene homologs were idented although we found no evidence of meiosis during conidiogenesis, suggesting there may be aspects of the life cycle of W. sebi that remain cryptic

  18. The transcriptional activator LdtR from 'Candidatus Liberibacter asiaticus' mediates osmotic stress tolerance.

    PubMed

    Pagliai, Fernando A; Gardner, Christopher L; Bojilova, Lora; Sarnegrim, Amanda; Tamayo, Cheila; Potts, Anastasia H; Teplitski, Max; Folimonova, Svetlana Y; Gonzalez, Claudio F; Lorca, Graciela L

    2014-04-01

    The causal agent of Huanglongbing disease, 'Candidatus Liberibacter asiaticus', is a non-culturable, gram negative, phloem-limited α-proteobacterium. Current methods to control the spread of this disease are still limited to the removal and destruction of infected trees. In this study, we identified and characterized a regulon from 'Ca. L. asiaticus' involved in cell wall remodeling, that contains a member of the MarR family of transcriptional regulators (ldtR), and a predicted L,D-transpeptidase (ldtP). In Sinorhizobium meliloti, mutation of ldtR resulted in morphological changes (shortened rod-type phenotype) and reduced tolerance to osmotic stress. A biochemical approach was taken to identify small molecules that modulate LdtR activity. The LdtR ligands identified by thermal shift assays were validated using DNA binding methods. The biological impact of LdtR inactivation by the small molecules was then examined in Sinorhizobium meliloti and Liberibacter crescens, where a shortened-rod phenotype was induced by growth in presence of the ligands. A new method was also developed to examine the effects of small molecules on the viability of 'Ca. Liberibacter asiaticus', using shoots from HLB-infected orange trees. Decreased expression of ldtRLas and ldtPLas was observed in samples taken from HLB-infected shoots after 6 h of incubation with the LdtR ligands. These results provide strong proof of concept for the use of small molecules that target LdtR, as a potential treatment option for Huanglongbing disease. PMID:24763829

  19. The Transcriptional Activator LdtR from ‘Candidatus Liberibacter asiaticus’ Mediates Osmotic Stress Tolerance

    PubMed Central

    Bojilova, Lora; Sarnegrim, Amanda; Tamayo, Cheila; Potts, Anastasia H.; Teplitski, Max; Folimonova, Svetlana Y.; Gonzalez, Claudio F.; Lorca, Graciela L.

    2014-01-01

    The causal agent of Huanglongbing disease, ‘Candidatus Liberibacter asiaticus’, is a non-culturable, gram negative, phloem-limited α-proteobacterium. Current methods to control the spread of this disease are still limited to the removal and destruction of infected trees. In this study, we identified and characterized a regulon from ‘Ca. L. asiaticus’ involved in cell wall remodeling, that contains a member of the MarR family of transcriptional regulators (ldtR), and a predicted L,D-transpeptidase (ldtP). In Sinorhizobium meliloti, mutation of ldtR resulted in morphological changes (shortened rod-type phenotype) and reduced tolerance to osmotic stress. A biochemical approach was taken to identify small molecules that modulate LdtR activity. The LdtR ligands identified by thermal shift assays were validated using DNA binding methods. The biological impact of LdtR inactivation by the small molecules was then examined in Sinorhizobium meliloti and Liberibacter crescens, where a shortened-rod phenotype was induced by growth in presence of the ligands. A new method was also developed to examine the effects of small molecules on the viability of ‘Ca. Liberibacter asiaticus’, using shoots from HLB-infected orange trees. Decreased expression of ldtRLas and ldtPLas was observed in samples taken from HLB-infected shoots after 6 h of incubation with the LdtR ligands. These results provide strong proof of concept for the use of small molecules that target LdtR, as a potential treatment option for Huanglongbing disease. PMID:24763829

  20. Gbu Glycine Betaine Porter and Carnitine Uptake in Osmotically Stressed Listeria monocytogenes Cells

    PubMed Central

    Mendum, Mary Lou; Smith, Linda Tombras

    2002-01-01

    The food-borne pathogen Listeria monocytogenes grows actively under high-salt conditions by accumulating compatible solutes such as glycine betaine and carnitine from the medium. We report here that the dominant transport system for glycine betaine uptake, the Gbu porter, may act as a secondary uptake system for carnitine, with a Km of 4 mM for carnitine uptake and measurable uptake at carnitine concentrations as low as 10 μM. This porter has a Km for glycine betaine uptake of about 6 μM. The dedicated carnitine porter, OpuC, has a Km for carnitine uptake of 1 to 3 μM and a Vmax of approximately 15 nmol/min/mg of protein. Mutants lacking either opuC or gbu were used to study the effects of four carnitine analogs on growth and uptake of osmolytes. In strain DP-L1044, which had OpuC and the two glycine betaine porters Gbu and BetL, triethylglycine was most effective in inhibiting growth in the presence of glycine betaine, but trigonelline was best at inhibiting growth in the presence of carnitine. Carnitine uptake through OpuC was inhibited by γ-butyrobetaine. Dimethylglycine inhibited both glycine betaine and carnitine uptake through the Gbu porter. Carnitine uptake through the Gbu porter was inhibited by triethylglycine. Glycine betaine uptake through the BetL porter was strongly inhibited by trigonelline and triethylglycine. These results suggest that it is possible to reduce the growth of L. monocytogenes under osmotically stressful conditions by inhibiting glycine betaine and carnitine uptake but that to do so, multiple uptake systems must be affected. PMID:12406761

  1. Adaptive responses to osmotic stress in kidney-derived cell lines from Scatophagus argus, a euryhaline fish.

    PubMed

    Gui, Lang; Zhang, Peipei; Liang, Xuemei; Su, Maoliang; Wu, Di; Zhang, Junbin

    2016-06-01

    The euryhaline fish, the spotted scat (Scatophagus argus), is exceptional for its ability to tolerate rapid fluctuations in salinity. To better understand fish osmoregulation and enable more precise analyses of specific features of adaptive responses to the osmotic stress in fish, a S. argus kidney-derived cell line (SK) was developed and subcultured for more than 70 passages. The cells were mostly fibroblast-like, with a normal diploid karyotype (2n=48). A low-osmolarity-adapted SK cell line (SK-la) was induced by growth in a hypotonic solution (150 mOsm). Effects of different osmotic stresses (150, 300 and 450 mOsm) on cell growth, cell morphology, cell volume changes and cell damage in SK, SK-la and CIK (a kidney-derived cell line from freshwater grass carp) cells were studied. These were compared by use of microscopic observation, flow cytometry and a Na-K-ATPase (NKA) assay. SK cells became smaller and grew rapidly in response to hypotonic stress (150 mOsm), and exhibited no visible morphological changes in response to hypertonic stress (450 mOsm). SK-la grew well by moderate hypertonicity (300 mOsm) but depressed in severe hypertonicity (450 mOsm), the number of unhealthy SK-la cells rose as osmolarity increased. In contrast, CIK cells became unhealthy with anisotonic challenge. The NKA activities of SK and CIK cells were assayed after exposure to anisotonic conditions, and rapid decreases were detected immediately except SK cells which were not affected in hypotonicity. Unlike in SK and CIK, an increase following a down-regulation of NKA activity was observed in SK-la cells upon moderate hypertonic stress. These results suggested that SK and SK-la cells had stronger osmoregulatory capacity than CIK cells, and provided new insights on the osmosensing and osmotic adaption in euryhaline fish kidney. PMID:26911257

  2. Acute osmotic tolerance of cultured cells of the oyster pathogen Perkinsus marinus (Apicomplexa:Perkinsida).

    PubMed

    Burreson, E M; Ragone Calvo, L M; La Peyre, J F; Counts, F; Paynter, K T

    1994-11-01

    Cultured Perkinsus marinus cells were exposed for 24 hr to salinities of 0, 3, 6, 9, 12 and 22 ppt at temperatures of 1, 5, 10, 15 and 28 degrees C in artificial seawater (ASW) and to the same salinities at 28 degrees C in ASW with the osmotic concentration adjusted with sucrose to the equivalent of 22 ppt. At 28 degrees C mortality increased as salinity decreased below 22 ppt. Mortality was greater than 99% at 0 ppt and greater than 90% at 3 ppt. Mortality was 70% at 6 ppt, 43% at 9 ppt and 20% at 12 ppt. Mortality was low (< 5%) and equal to that at 22 ppt in all treatments where osmotic concentration was maintained with sucrose. Mortality occurred rapidly, within 5 min of exposure to experimental conditions. In the region where mortality was most sensitive to salinity changes (6-12 ppt), lower temperature caused an increase in mortality, but the temperature effect was significant only at 9 ppt. PMID:8529003

  3. Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism.

    PubMed

    Tan, Ming-pu

    2010-01-01

    Water stress is known to alter cytosine methylation, which generally represses transcription. However, little is known about the role of methylation alteration in maize under osmotic stress. Here, methylation-sensitive amplified polymorphism (MSAP) was used to screen PEG- or NaCl-induced methylation alteration in maize seedlings. The sequences of 25 differentially amplified fragments relevant to stress were successfully obtained. Two stress-specific fragments from leaves, LP166 and LPS911, shown to be homologous to retrotransposon Gag-Pol protein genes, suggested that osmotic stress-induced methylation of retrotransposons. Three MSAP fragments, representing drought-induced or salt-induced methylation in leaves, were homologous to a maize aluminum-induced transporter. Besides these, heat shock protein HSP82, Poly [ADP-ribose] polymerase 2, Lipoxygenase, casein kinase (CK2), and dehydration-responsive element-binding (DREB) factor were also homologs of MSAP sequences from salt-treated roots. One MSAP fragment amplified from salt-treated roots, designated RS39, was homologous to the first intron of maize protein phosphatase 2C (zmPP2C), whereas - LS103, absent from salt-treated leaves, was homologous to maize glutathione S-transferases (zmGST). Expression analysis showed that salt-induced intron methylation of root zmPP2C significantly downregulated its expression, while salt-induced demethylation of leaf zmGST weakly upregulated its expression. The results suggested that salinity-induced methylation downregulated zmPP2C expression, a negative regulator of the stress response, while salinity-induced demethylation upregulated zmGST expression, a positive effecter of the stress response. Altered methylation, in response to stress, might also be involved in stress acclimation. PMID:19889550

  4. Effect of osmotic stress on the expression of TRPV4 and BKCa channels and possible interaction with ERK1/2 and p38 in cultured equine chondrocytes.

    PubMed

    Hdud, Ismail M; Mobasheri, Ali; Loughna, Paul T

    2014-06-01

    The metabolic activity of articular chondrocytes is influenced by osmotic alterations that occur in articular cartilage secondary to mechanical load. The mechanisms that sense and transduce mechanical signals from cell swelling and initiate volume regulation are poorly understood. The purpose of this study was to investigate how the expression of two putative osmolyte channels [transient receptor potential vanilloid 4 (TRPV4) and large-conductance Ca(2+)-activated K(+) (BKCa)] in chondrocytes is modulated in different osmotic conditions and to examine a potential role for MAPKs in this process. Isolated equine articular chondrocytes were subjected to anisosmotic conditions, and TRPV4 and BKCa channel expression and ERK1/2 and p38 MAPK protein phosphorylation were investigated using Western blotting. Results indicate that the TRPV4 channel contributes to the early stages of hypo-osmotic stress, while the BKCa channel is involved in responding to elevated intracellular Ca(2+) and mediating regulatory volume decrease. ERK1/2 is phosphorylated by hypo-osmotic stress (P < 0.001), and p38 MAPK is phosphorylated by hyperosmotic stress (P < 0.001). In addition, this study demonstrates the importance of endogenous ERK1/2 phosphorylation in TRPV4 channel expression, where blocking ERK1/2 by a specific inhibitor (PD98059) prevented increased levels of the TRPV4 channel in cells exposed to hypo-osmotic stress and decreased TRPV4 channel expression to below control levels in iso-osmotic conditions (P < 0.001). PMID:24671100

  5. Pleiotropic effects of TaMYB3R1 on plant development and response to osmotic stress in transgenic Arabidopsis.

    PubMed

    Cai, Hongsheng; Tian, Shan; Dong, Hansong; Guo, Changhong

    2015-03-10

    In a previous study, we isolated and characterized TaMYB3R1, a MYB3R gene, from wheat (Triticum aestivum L.). In vitro assays showed that the TaMYB3R1 protein is localized to the nucleus, and functions as an MSA-binding transcriptional activator. Expression of TaMYB3R1 is induced by exogenous abscisic acid (ABA) and abiotic stress, which encouraged us to further investigate its function in planta. In the present study, we generated transgenic Arabidopsis plants overexpressing TaMYB3R1. Compared with wild-type plants, the transgenic lines produced more rosette leaves, and thus more inflorescences, but the plants showed delayed development at the reproductive stage. The TaMYB3R1 protein also functions in the osmotic stress response. Transgenic Arabidopsis plants showed enhanced tolerance to drought and salt stresses, and the tolerance phenotype was conveyed by limiting transpiration through increasing stomatal closure as well as reducing water loss. In addition, TaMYB3R1 influenced the expression of both ABA-dependent and ABA-independent responsive genes, implicating TaMYB3R1 in diverse osmotic stress-response mechanisms in Arabidopsis. Our study sheds light on novel functions of a plant MYB3R protein. PMID:25560188

  6. An Arabidopsis Zinc Finger Protein Increases Abiotic Stress Tolerance by Regulating Sodium and Potassium Homeostasis, Reactive Oxygen Species Scavenging and Osmotic Potential.

    PubMed

    Zang, Dandan; Li, Hongyan; Xu, Hongyun; Zhang, Wenhui; Zhang, Yiming; Shi, Xinxin; Wang, Yucheng

    2016-01-01

    Plant zinc finger proteins (ZFPs) comprise a large protein family and they are mainly involved in abiotic stress tolerance. Although Arabidopsis RING/FYVE/PHD ZFP At5g62460 (AtRZFP) is found to bind to zinc, whether it is involved in abiotic stress tolerance is still unknown. In the present study, we characterized the roles of AtRZFP in response to abiotic stresses. The expression of AtRZFP was induced significantly by salt and osmotic stress. AtRZFP positively mediates tolerance to salt and osmotic stress. Additionally, compared with wild-type Arabidopsis plants, plants overexpressing AtRZFP showed reduced reactive oxygen species (ROSs) accumulation, enhanced superoxide dismutase and peroxidase activity, increased soluble sugars and proline contents, reduced K(+) loss, decreased Na(+) accumulation, stomatal aperture and the water loss rate. Conversely, AtRZFP knockout plants displayed the opposite physiological changes when exposed to salt or osmotic stress conditions. These data suggested that AtRZFP enhances salt and osmotic tolerance through a series of physiological processes, including enhanced ROSs scavenging, maintaining Na(+) and K(+) homeostasis, controlling the stomatal aperture to reduce the water loss rate, and accumulating soluble sugars and proline to adjust the osmotic potential. PMID:27605931

  7. An Arabidopsis Zinc Finger Protein Increases Abiotic Stress Tolerance by Regulating Sodium and Potassium Homeostasis, Reactive Oxygen Species Scavenging and Osmotic Potential

    PubMed Central

    Zang, Dandan; Li, Hongyan; Xu, Hongyun; Zhang, Wenhui; Zhang, Yiming; Shi, Xinxin; Wang, Yucheng

    2016-01-01

    Plant zinc finger proteins (ZFPs) comprise a large protein family and they are mainly involved in abiotic stress tolerance. Although Arabidopsis RING/FYVE/PHD ZFP At5g62460 (AtRZFP) is found to bind to zinc, whether it is involved in abiotic stress tolerance is still unknown. In the present study, we characterized the roles of AtRZFP in response to abiotic stresses. The expression of AtRZFP was induced significantly by salt and osmotic stress. AtRZFP positively mediates tolerance to salt and osmotic stress. Additionally, compared with wild-type Arabidopsis plants, plants overexpressing AtRZFP showed reduced reactive oxygen species (ROSs) accumulation, enhanced superoxide dismutase and peroxidase activity, increased soluble sugars and proline contents, reduced K+ loss, decreased Na+ accumulation, stomatal aperture and the water loss rate. Conversely, AtRZFP knockout plants displayed the opposite physiological changes when exposed to salt or osmotic stress conditions. These data suggested that AtRZFP enhances salt and osmotic tolerance through a series of physiological processes, including enhanced ROSs scavenging, maintaining Na+ and K+ homeostasis, controlling the stomatal aperture to reduce the water loss rate, and accumulating soluble sugars and proline to adjust the osmotic potential. PMID:27605931

  8. Osmotic stress and cryoinjury of koala sperm: an integrative study of the plasma membrane, chromatin stability and mitochondrial function.

    PubMed

    Johnston, S D; Satake, N; Zee, Y; López-Fernández, C; Holt, W V; Gosálvez, J

    2012-06-01

    This study investigated whether cryopreservation-induced injury to koala spermatozoa could be explained using an experimental model that mimics the structural and physiological effects of osmotic flux. DNA labelling after in situ nick translation of thawed cryopreserved spermatozoa revealed a positive correlation (r=0.573; P<0.001; n=50) between the area of relaxed chromatin in the nucleus and the degree of nucleotide labelling. While the chromatin of some spermatozoa increased more than eight times its normal size, not all sperm nuclei with relaxed chromatin showed evidence of nucleotide incorporation. Preferential staining associated with sperm DNA fragmentation (SDF) was typically located in the peri-acrosomal and peripheral regions of the sperm head and at the base of the spermatozoa where it appear to be 'hot spots' of DNA damage following cryopreservation. Results of the comparative effects of anisotonic media and cryopreservation on the integrity of koala spermatozoa revealed that injury induced by exposure to osmotic flux, essentially imitated the results found following cryopreservation. Plasma membrane integrity, chromatin relaxation and SDF appeared particularly susceptible to extreme hypotonic environments. Mitochondrial membrane potential (MMP), while susceptible to extreme hypo- and hypertonic environments, showed an ability to rebound from hypertonic stress when returned to isotonic conditions. Koala spermatozoa exposed to 64 mOsm/kg media showed an equivalent, or more severe, degree of structural and physiological injury to that of frozen-thawed spermatozoa, supporting the hypothesis that cryoinjury is principally associated with a hypo-osmotic effect. A direct comparison of SDF of thawed cryopreserved spermatozoa and those exposed to a 64 mOsm/kg excursion showed a significant correlation (r=0.878; P<0.05; n=5); however, no correlation was found when the percentage of sperm with relaxed chromatin was compared. While a cryo-induced osmotic

  9. Osmotic stress regulates mineralocorticoid receptor expression in a novel aldosterone-sensitive cortical collecting duct cell line

    PubMed Central

    Viengchareun, Say; Kamenicky, Peter; Teixeira, Marie; Butlen, Daniel; Meduri, Géri; Blanchard-Gutton, Nicolas; Kurschat, Christine; Lanel, Aurelie; Martinerie, Laetitia; Sztal-Mazer, Soshana; Blot-Chabaud, Marcel; Ferrary, Evelyne; Cherradi, Nadia; Lombès, Marc

    2009-01-01

    Aldosterone effects are mediated by the mineralocorticoid receptor (MR), a transcription factor highly expressed in the distal nephron. Given that MR expression level constitutes a key element controlling hormone responsiveness, there is much interest in elucidating the molecular mechanisms governing MR expression. To investigate whether hyper- or hypotonicity could affect MR abundance, we established by targeted oncogenesis a novel immortalized cortical collecting duct (CCD) cell line and examined the impact of osmotic stress on MR expression. KC3AC1 cells form domes, exhibit a high transepithelial resistance, express 11 β-hydroxysteroid dehydrogenase 2 and functional endogenous MR, which mediates aldosterone-stimulated Na+ reabsorption through the epithelial sodium channel activation. MR expression is tightly regulated by osmotic stress. Hypertonic conditions induce expression of TonEBP, an osmoregulatory transcription factor capable of binding TonE response elements located in MR regulatory sequences. Surprisingly, hypertonicity leads to a severe reduction in MR transcript and protein levels. This is accompanied by a concomitant tonicity-induced expression of Tis11b, a mRNA-destabilizing protein which, by binding to the AU-rich sequences of the 3′-UTR of MR mRNA, may favor hypertonicity-dependent degradation of labile MR transcripts. In sharp contrast, hypotonicity causes a strong increase in MR transcript and protein levels. Collectively, we demonstrate for the first time that optimal adaptation of CCD cells to changes in extracellular fluid composition is accompanied by drastic modification in MR abundance via transcriptional and post-transcriptional mechanisms. Osmotic stress-regulated MR expression may represent an important molecular determinant for cell-specific MR action, most notably in renal failure, hypertension, or mineralocorticoid resistance. PMID:19846540

  10. A New Role for Carbonic Anhydrase 2 in the Response of Fish to Copper and Osmotic Stress: Implications for Multi-Stressor Studies

    PubMed Central

    de Polo, Anna; Margiotta-Casaluci, Luigi; Lockyer, Anne E.; Scrimshaw, Mark D.

    2014-01-01

    The majority of ecotoxicological studies are performed under stable and optimal conditions, whereas in reality the complexity of the natural environment faces organisms with multiple stressors of different type and origin, which can activate pathways of response often difficult to interpret. In particular, aquatic organisms living in estuarine zones already impacted by metal contamination can be exposed to more severe salinity variations under a forecasted scenario of global change. In this context, the present study aimed to investigate the effect of copper exposure on the response of fish to osmotic stress by mimicking in laboratory conditions the salinity changes occurring in natural estuaries. We hypothesized that copper-exposed individuals are more sensitive to osmotic stresses, as copper affects their osmoregulatory system by acting on a number of osmotic effector proteins, among which the isoform two of the enzyme carbonic anhydrase (CA2) was identified as a novel factor linking the physiological responses to both copper and osmotic stress. To test this hypothesis, two in vivo studies were performed using the euryhaline fish sheepshead minnow (Cyprinodon variegatus) as test species and applying different rates of salinity transition as a controlled way of dosing osmotic stress. Measured endpoints included plasma ions concentrations and gene expression of CA2 and the α1a-subunit of the enzyme Na+/K+ ATPase. Results showed that plasma ions concentrations changed after the salinity transition, but notably the magnitude of change was greater in the copper-exposed groups, suggesting a sensitizing effect of copper on the responses to osmotic stress. Gene expression results demonstrated that CA2 is affected by copper at the transcriptional level and that this enzyme might play a role in the observed combined effects of copper and osmotic stress on ion homeostasis. PMID:25272015

  11. Halopriming mediated salt and iso-osmotic PEG stress tolerance and, gene expression profiling in sugarcane (Saccharum officinarum L.).

    PubMed

    Patade, Vikas Yadav; Bhargava, Sujata; Suprasanna, Penna

    2012-10-01

    Seed priming is a well known pre-germination strategy that improves seed performance. However, biochemical and molecular mechanisms underlying priming mediated stress tolerance are little understood. Here, we report results of the study on growth, physiological characteristics and expression of stress responsive genes in salt primed sugarcane cv. Co 86032 plants in response to salt (NaCl, 150 mM) or iso-osmotic (-0.7 MPa) polyethylene glycol-PEG 8000 (20 % w/v) stress exposure for 15 days. Variable growth, osmolyte accumulation and antioxidant capacity was revealed among the primed and non-primed plants. The primed plants showed better tolerance to the salt or PEG stress, as revealed by better growth and lower membrane damage, through better antioxidant capacity as compared to the respective non-primed controls. Further, steady state transcript expression analysis revealed up regulation of sodium proton antiporter (NHX) while, down regulation of sucrose transporter (SUT1), delta ( 1 )-pyrolline-5-carboxylate synthetase (P5CS) and proline dehydrogenase (PDH) in primed plants on exposure to the stress as compared to the non-primed plants. Transcript abundance of catalase (CAT2) decreased by about 25 % in leaves of non-primed stressed plants, however, the expression was maintained in leaves of the stressed primed plants to that of non-stressed controls. Thus, the results indicated priming mediated salt and PEG stress tolerance through altered gene expression leading to improved antioxidant capacity in sugarcane. PMID:22740137

  12. The STT3a Subunit Isoform of the Arabidopsis Oligosaccharyltransferase Controls Adaptive Responses to Salt/Osmotic Stress

    PubMed Central

    Koiwa, Hisashi; Li, Fang; McCully, Michael G.; Mendoza, Imelda; Koizumi, Nozomu; Manabe, Yuzuki; Nakagawa, Yuko; Zhu, Jianhua; Rus, Ana; Pardo, José M.; Bressan, Ray A.; Hasegawa, Paul M.

    2003-01-01

    Arabidopsis stt3a-1 and stt3a-2 mutations cause NaCl/osmotic sensitivity that is characterized by reduced cell division in the root meristem. Sequence comparison of the STT3a gene identified a yeast ortholog, STT3, which encodes an essential subunit of the oligosaccharyltransferase complex that is involved in protein N-glycosylation. NaCl induces the unfolded protein response in the endoplasmic reticulum (ER) and cell cycle arrest in root tip cells of stt3a seedlings, as determined by expression profiling of ER stress–responsive chaperone (BiP-GUS) and cell division (CycB1;1-GUS) genes, respectively. Together, these results indicate that plant salt stress adaptation involves ER stress signal regulation of cell cycle progression. Interestingly, a mutation (stt3b-1) in another Arabidopsis STT3 isogene (STT3b) does not cause NaCl sensitivity. However, the stt3a-1 stt3b-1 double mutation is gametophytic lethal. Apparently, STT3a and STT3b have overlapping and essential functions in plant growth and developmental processes, but the pivotal and specific protein glycosylation that is a necessary for recovery from the unfolded protein response and for cell cycle progression during salt/osmotic stress recovery is associated uniquely with the function of the STT3a isoform. PMID:12972670

  13. High throughput sequencing of small RNAs transcriptomes in two Crassostrea oysters identifies microRNAs involved in osmotic stress response

    PubMed Central

    Zhao, Xuelin; Yu, Hong; Kong, Lingfeng; Liu, Shikai; Li, Qi

    2016-01-01

    Increasing evidence suggests that microRNAs post-transcriptionally regulate gene expression and are involved in responses to biotic and abiotic stress. However, the role of miRNAs involved in osmotic plasticity remains largely unknown in marine bivalves. In the present study, we performed low salinity challenge with two Crassostrea species (C. gigas and C. hongkongensis), and conducted high-throughput sequencing of four small RNA libraries constructed from the gill tissues. A total of 202 and 87 miRNAs were identified from C. gigas and C. hongkongensis, respectively. Six miRNAs in C. gigas and two in C. hongkongensis were differentially expressed in response to osmotic stress. The expression profiles of these eight miRNAs were validated by qRT-PCR. Based on GO enrichment and KEGG pathway analysis, genes associated with microtubule-based process and cellular component movement were enriched in both species. In addition, five miRNA-mRNA interaction pairs that showed opposite expression patterns were identified in the C. hongkongensis, Differential expression analysis identified the miRNAs that play important regulatory roles in response to low salinity stress, providing insights into molecular mechanisms that are essential for salinity tolerance in marine bivalves. PMID:26940974

  14. High throughput sequencing of small RNAs transcriptomes in two Crassostrea oysters identifies microRNAs involved in osmotic stress response.

    PubMed

    Zhao, Xuelin; Yu, Hong; Kong, Lingfeng; Liu, Shikai; Li, Qi

    2016-01-01

    Increasing evidence suggests that microRNAs post-transcriptionally regulate gene expression and are involved in responses to biotic and abiotic stress. However, the role of miRNAs involved in osmotic plasticity remains largely unknown in marine bivalves. In the present study, we performed low salinity challenge with two Crassostrea species (C. gigas and C. hongkongensis), and conducted high-throughput sequencing of four small RNA libraries constructed from the gill tissues. A total of 202 and 87 miRNAs were identified from C. gigas and C. hongkongensis, respectively. Six miRNAs in C. gigas and two in C. hongkongensis were differentially expressed in response to osmotic stress. The expression profiles of these eight miRNAs were validated by qRT-PCR. Based on GO enrichment and KEGG pathway analysis, genes associated with microtubule-based process and cellular component movement were enriched in both species. In addition, five miRNA-mRNA interaction pairs that showed opposite expression patterns were identified in the C. hongkongensis, Differential expression analysis identified the miRNAs that play important regulatory roles in response to low salinity stress, providing insights into molecular mechanisms that are essential for salinity tolerance in marine bivalves. PMID:26940974

  15. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene.

    PubMed Central

    Schüller, C; Brewster, J L; Alexander, M R; Gustin, M C; Ruis, H

    1994-01-01

    The HOG signal pathway of the yeast Saccharomyces cerevisiae is defined by the PBS2 and HOG1 genes encoding members of the MAP kinase kinase and of the MAP kinase family, respectively. Mutations in this pathway (deletions of PBS2 or HOG1, or point mutations in HOG1) almost completely abolish the induction of transcription by osmotic stress that is mediated by stress response elements (STREs). We have demonstrated previously that STREs also mediate induction of transcription by heat shock, nitrogen starvation and oxidative stress. This study shows that they are also activated by low external pH, sorbate, benzoate or ethanol stress. Induction by these other stress signals appears to be HOG pathway independent. HOG1-dependent osmotic induction of transcription of the CTT1 gene encoding the cytosolic catalase T occurs in the presence of a protein synthesis inhibitor and can be detected rapidly after an increase of tyrosine phosphorylation of Hog1p triggered by high osmolarity. Consistent with a role of STREs in the induction of stress resistance, a number of other stress protein genes (e.g. HSP104) are regulated like CTT1. Furthermore, catalase T was shown to be important for viability under severe osmotic stress, and heat shock was demonstrated to provide cross-protection against osmotic stress. Images PMID:7523111

  16. Renal Cells Express Different Forms of Vimentin: The Independent Expression Alteration of these Forms is Important in Cell Resistance to Osmotic Stress and Apoptosis

    PubMed Central

    Müller, Gerhard A.; Dihazi, Gry H.; Eltoweissy, Marwa; Kruegel, Jenny; Dihazi, Hassan

    2013-01-01

    Osmotic stress has been shown to regulate cytoskeletal protein expression. It is generally known that vimentin is rapidly degraded during apoptosis by multiple caspases, resulting in diverse vimentin fragments. Despite the existence of the known apoptotic vimentin fragments, we demonstrated in our study the existence of different forms of vimentin VIM I, II, III, and IV with different molecular weights in various renal cell lines. Using a proteomics approach followed by western blot analyses and immunofluorescence staining, we proved the apoptosis-independent existence and differential regulation of different vimentin forms under varying conditions of osmolarity in renal cells. Similar impacts of osmotic stress were also observed on the expression of other cytoskeleton intermediate filament proteins; e.g., cytokeratin. Interestingly, 2D western blot analysis revealed that the forms of vimentin are regulated independently of each other under glucose and NaCl osmotic stress. Renal cells, adapted to high NaCl osmotic stress, express a high level of VIM IV (the form with the highest molecular weight), besides the three other forms, and exhibit higher resistance to apoptotic induction with TNF-α or staurosporin compared to the control. In contrast, renal cells that are adapted to high glucose concentration and express only the lower-molecular-weight forms VIM I and II, were more susceptible to apoptosis. Our data proved the existence of different vimentin forms, which play an important role in cell resistance to osmotic stress and are involved in cell protection against apoptosis. PMID:23874579

  17. Plant-derived compatible solutes proline betaine and betonicine confer enhanced osmotic and temperature stress tolerance to Bacillus subtilis.

    PubMed

    Bashir, Abdallah; Hoffmann, Tamara; Kempf, Bettina; Xie, Xiulan; Smits, Sander H J; Bremer, Erhard

    2014-10-01

    L-Proline is a widely used compatible solute and is employed by Bacillus subtilis, through both synthesis and uptake, as an osmostress protectant. Here, we assessed the stress-protective potential of the plant-derived L-proline derivatives N-methyl-L-proline, L-proline betaine (stachydrine), trans-4-L-hydroxproline and trans-4-hydroxy-L-proline betaine (betonicine) for cells challenged by high salinity or extremes in growth temperature. l-Proline betaine and betonicine conferred salt stress protection, but trans-4-L-hydroxyproline and N-methyl-L-proline was unable to do so. Except for L-proline, none of these compounds served as a nutrient for B. subtilis. L-Proline betaine was a considerably better osmostress protectant than betonicine, and its import strongly reduced the l-proline pool produced by B. subtilis under osmotic stress conditions, whereas a supply of betonicine affected the L-proline pool only modestly. Both compounds downregulated the transcription of the osmotically inducible opuA operon, albeit to different extents. Mutant studies revealed that L-proline betaine was taken up via the ATP-binding cassette transporters OpuA and OpuC, and the betaine-choline-carnitine-transporter-type carrier OpuD; betonicine was imported only through OpuA and OpuC. L-Proline betaine and betonicine also served as temperature stress protectants. A striking difference between these chemically closely related compounds was observed: L-proline betaine was an excellent cold stress protectant, but did not provide heat stress protection, whereas the reverse was true for betonicine. Both compounds were primarily imported in temperature-challenged cells via the high-capacity OpuA transporter. We developed an in silico model for the OpuAC-betonicine complex based on the crystal structure of the OpuAC solute receptor complexed with L-proline betaine. PMID:25012968

  18. Overexpression of a wheat phospholipase D gene, TaPLDα, enhances tolerance to drought and osmotic stress in Arabidopsis thaliana.

    PubMed

    Wang, Junbin; Ding, Bo; Guo, Yaolin; Li, Ming; Chen, Shuaijun; Huang, Guozhong; Xie, Xiaodong

    2014-07-01

    Phospholipase D (PLD) is crucial for plant responses to stress and signal transduction, however, the regulatory mechanism of PLD in abiotic stress is not completely understood; especially, in crops. In this study, we isolated a gene, TaPLDα, from common wheat (Triticum aestivum L.). Analysis of the amino acid sequence of TaPLDα revealed a highly conserved C2 domain and two characteristic HKD motifs, which is similar to other known PLD family genes. Further characterization revealed that TaPLDα expressed differentially in various organs, such as roots, stems, leaves and spikelets of wheat. After treatment with abscisic acid (ABA), methyl jasmonate, dehydration, polyethylene glycol and NaCl, the expression of TaPLDα was up-regulated in shoots. Subsequently, we generated TaPLDα-overexpressing transgenic Arabidopsis lines under the control of the dexamethasone-inducible 35S promoter. The overexpression of TaPLDα in Arabidopsis resulted in significantly enhanced tolerance to drought, as shown by reduced chlorosis and leaf water loss, higher relative water content and lower relative electrolyte leakage than the wild type. Moreover, the TaPLDα-overexpressing plants exhibited longer roots in response to mannitol treatment. In addition, the seeds of TaPLDα-overexpressing plants showed hypersensitivity to ABA and osmotic stress. Under dehydration, the expression of several stress-related genes, RD29A, RD29B, KIN1 and RAB18, was up-regulated to a higher level in TaPLDα-overexpressing plants than in wild type. Taken together, our results indicated that TaPLDα can enhance tolerance to drought and osmotic stress in Arabidopsis and represents a potential candidate gene to enhance stress tolerance in crops. PMID:24705986

  19. Osmotic stress in Arctic and Antarctic strains of the green alga Zygnema (Zygnematales, Streptophyta): effects on photosynthesis and ultrastructure.

    PubMed

    Kaplan, Franziska; Lewis, Louise A; Herburger, Klaus; Holzinger, Andreas

    2013-01-01

    The osmotic potential and effects of plasmolysis on photosynthetic oxygen evolution and chlorophyll fluorescence were studied in two Arctic Zygnema sp. (strain B, strain G) and two Antarctic Zygnema sp. (strain E, strain D). Antarctic strain D was newly characterized by rbcL sequence analysis in the present study. The two Antarctic strains, D and E, are most closely related and may represent different isolates of the same species, in contrast, strain B and G are separate lineages. Incipient plasmolysis in the cells was determined by light microscopy after incubating cells in sorbitol solutions ranging between 200 mM and 1000 mM sorbitol for 3, 6 and 24h. In Zygnema strain B and G incipient plasmolysis occurred at ~600 mM sorbitol solution (720 mOsmol kg(-1), ψ=-1.67 MPa) and in strains D and E at ~300 mM (318 mOsmol kg(-1), ψ=-0.8 MPa) sorbitol solution. Hechtian strands were visualized in all plasmolysed cells, which is particularly interesting, as these cells lack pores or plasmodesmata. Ultrastructural changes upon osmotic stress were a retraction of the condensed cytoplasm from the cell walls, damages to chloroplast and mitochondrial membranes, increasing numbers of plastoglobules in the chloroplasts and membrane enclosed particles in the extraplasmatic space. Maximum photosynthetic rates (P(max)) in light saturated range were between 145.5 μmol O(2) h(-1)mg(-1)Chl a in Zygnema G and 752.9 μmol O(2) h(-1)mg(-1)Chl a in Zygnema E. After incubation in 800 mM sorbitol for 3h P(max) decreased to the following percentage of the initial values: B: 16.3%, D: 16.8%, E: 26.1% and G: 35.0%. Osmotic stress (800 mM sorbitol) decreased maximum photochemical quantum yield of photosystem II (F(v)/F(m)) when compared to controls. Maximum values of relative electron transport rates of photosystem II (rETR(max)) decreased after incubation in 400 mM sorbitol in Zygnema D and E, while they decreased in Zygnema B and G only after incubation in 800 mM sorbitol. The kinetics of

  20. Osmotic Stress, not Aldose Reductase Activity, Directly induces Growth Factors and MAPK Signaling changes during Sugar Cataract Formation

    PubMed Central

    Zhang, Peng; Xing, Kuiyi; Randazzo, James; Blessing, Karen; Lou, Marjorie F.; Kador, Peter F.

    2012-01-01

    In sugar cataract formation in rats, aldose reductase (AR) actitvity is not only linked to lenticular sorbitol (diabetic) or galactitol (galactosemic) formation but also to signal transduction changes, cytotoxic signals and activation of apoptosis. Using both in vitro and in vivo techniques, the interrelationship between AR activity, polyol (sorbitol and galactitol) formation, osmotic stress, growth factor induction, and cell signaling changes have been investigated. For in vitro studies, lenses from Sprague Dawley rats were cultured for up to 48 hrs in TC-199-bicarbonate media containing either 30 mM fructose (control), or 30 mM glucose or galctose with/without the aldose reductase inhibitors AL1576 or tolrestat, the sorbitol dehydrogenase inhibitor (SDI) CP-470,711, or 15 mM mannitol (osmotic-compensated media). For in vivo studies, lenses were obtained from streptozotocin-induced diabetic Sprague Dawley rats fed diet with/without the ARIs AL1576 or tolrestat for 10 weeks. As expected, lenses cultured in high glucose / galactose media or from untreated diabetic rats all showed a decrease in the GSH pool that was lessened by ARI treatment. Lenses either from diabetic rats or from glucose/galactose culture conditions showed increased expression of basic-FGF, TGF-β, and increased signaling through P-Akt, P-ERK1/2 and P-SAPK/JNK which were also normalized by ARIs to the expression levels observed in non-diabetic controls. Culturing rat lenses in osomotically compensated media containing 30 mM glucose or galactose did not lead to increased growth factor expression or altered signaling. These studies indicate that it is the biophysical response of the lens to osmotic stress that results in an increased intralenticular production of basic-FGF and TGF-β and the altered cytotoxic signaling that is observed during sugar cataract formation. PMID:22710095

  1. Acute stress may induce ovulation in women

    PubMed Central

    2010-01-01

    Background This study aims to gather information either supporting or rejecting the hypothesis that acute stress may induce ovulation in women. The formulation of this hypothesis is based on 2 facts: 1) estrogen-primed postmenopausal or ovariectomized women display an adrenal-progesterone-induced ovulatory-like luteinizing hormone (LH) surge in response to exogenous adrenocorticotropic hormone (ACTH) administration; and 2) women display multiple follicular waves during an interovulatory interval, and likely during pregnancy and lactation. Thus, acute stress may induce ovulation in women displaying appropriate serum levels of estradiol and one or more follicles large enough to respond to a non-midcycle LH surge. Methods A literature search using the PubMed database was performed to identify articles up to January 2010 focusing mainly on women as well as on rats and rhesus monkeys as animal models of interaction between the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes. Results Whereas the HPA axis exhibits positive responses in practically all phases of the ovarian cycle, acute-stress-induced release of LH is found under relatively high plasma levels of estradiol. However, there are studies suggesting that several types of acute stress may exert different effects on pituitary LH release and the steroid environment may modulate in a different way (inhibiting or stimulating) the pattern of response of the HPG axis elicited by acute stressors. Conclusion Women may be induced to ovulate at any point of the menstrual cycle or even during periods of amenorrhea associated with pregnancy and lactation if exposed to an appropriate acute stressor under a right estradiol environment. PMID:20504303

  2. Characterization of γ-aminobutyric acid metabolism and oxidative damage in wheat (Triticum aestivum L.) seedlings under salt and osmotic stress.

    PubMed

    Al-Quraan, Nisreen A; Sartawe, Fatima Al-Batool; Qaryouti, Muien M

    2013-07-15

    The molecular response of plants to abiotic stresses has been considered a process mainly involved in the modulation of transcriptional activity of stress-related genes. Nevertheless, recent findings have suggested new layers of regulation and complexity. Upstream molecular mechanisms are involved in the plant response to abiotic stress. Plants gain resistance to abiotic stress by reprogramming metabolism and gene expression. GABA is proposed to be a signaling molecule involved in nitrogen metabolism, regulating the cytosolic pH, and protection against oxidative damage in response to various abiotic stresses. The aim of our study was to examine the role of the GABA shunt pathway-specific response in five wheat (Triticum aestivum L.) cultivars (Hurani 75, Sham I, Acsad 65, Um Qayes and Nodsieh) to salt and osmotic stress in terms of seed germination, seedling growth, oxidative damage (malondialdehyde (MDA) accumulation), and characterization of the glutamate decarboxylse gene (GAD) m-RNA level were determined using RT-PCR techniques. Our data showed a marked increase in GABA, MDA and GAD m-RNA levels under salt and osmotic stress in the five wheat cultivars. Um Qayes cultivar showed the highest germination percentage, GABA accumulation, and MDA level under salt and osmotic stresses. The marked increase in GAD gene expression explains the high accumulation of the GABA level under both stresses. Our results indicated that the GABA shunt is a key signaling and metabolic pathway that allows wheat to adapt to salt and osmotic stress. Based on our data, the Um Qayes wheat cultivar is the cultivar most recommended to be grown in soil with high salt and osmotic contents. PMID:23602379

  3. Acute psychological stress reduces plasma triglyceride clearance.

    PubMed

    Stoney, Catherine M; West, Sheila G; Hughes, Joel W; Lentino, Lisa M; Finney, Montenique L; Falko, James; Bausserman, Linda

    2002-01-01

    Acute stress elevates blood lipids, with the largest increases among men and postmenopausal women. The mechanisms for the effect are unknown, but may be due to altered lipid metabolism. This study investigated if acute stress induces transient reductions in triglyceride clearance in middle-aged men and women, and determined if gender and menopause affect triglyceride metabolism. Of the 35 women, half were premenopausal, and half were naturally postmenopausal; men (n = 35) were age matched. Clearance of an intravenously administered fat emulsion was assessed twice: once during a nonstress session, and again during a stress-testing session. During the stress session, a battery of behavioral stressors (serial subtraction, speech, mirror tracing, and Stroop) were performed for 40 min. The clearance rate of exogenous fat was significantly diminished during the stress, relative to the nonstress session. Women had more efficient clearance, relative to men, but there were no effects of menopausal status. The diminished ability to clear an intravenous fat emulsion during stress suggests one mechanism for stress-induced elevations in lipids. PMID:12206298

  4. Heat and Osmotic Stress Responses of Probiotic Lactobacillus rhamnosus HN001 (DR20) in Relation to Viability after Drying

    PubMed Central

    Prasad, Jaya; McJarrow, Paul; Gopal, Pramod

    2003-01-01

    The viability of lactic acid bacteria in frozen, freeze-dried, and air-dried forms is of significant commercial interest to both the dairy and food industries. In this study we observed that when prestressed with either heat (50°C) or salt (0.6 M NaCl), Lactobacillus rhamnosus HN001 (also known as DR20) showed significant (P < 0.05) improvement in viability compared with the nonstressed control culture after storage at 30°C in the dried form. To investigate the mechanisms underlying this stress-related viability improvement in L. rhamnosus HN001, we analyzed protein synthesis in cultures subjected to different growth stages and stress conditions, using two-dimensional gel electrophoresis and N-terminal sequencing. Several proteins were up- or down-regulated after either heat or osmotic shock treatments. Eleven proteins were positively identified, including the classical heat shock proteins GroEL and DnaK and the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, enolase, phosphoglycerate kinase, and triose phosphate isomerase, as well as tagatose 1,6-diphosphate aldolase of the tagatose pathway. The phosphocarrier protein HPr (histidine-containing proteins) was up-regulated in cultures after the log phase irrespective of the stress treatments used. The relative synthesis of an ABC transport-related protein was also up-regulated after shock treatments. Carbohydrate analysis of cytoplasmic contents showed higher levels (20 ± 3 μg/mg of protein) in cell extracts (CFEs) derived from osmotically stressed cells than in the unstressed control (15 ± 3 μg/mg of protein). Liquid chromatography of these crude carbohydrate extracts showed significantly different profiles. Electrospray mass spectrometry analysis of CFEs revealed, in addition to normal mono-, di-, tri-, and tetrasaccharides, the presence of saccharides modified with glycerol. PMID:12571012

  5. Zinc Excess Triggered Polyamines Accumulation in Lettuce Root Metabolome, As Compared to Osmotic Stress under High Salinity

    PubMed Central

    Rouphael, Youssef; Colla, Giuseppe; Bernardo, Letizia; Kane, David; Trevisan, Marco; Lucini, Luigi

    2016-01-01

    Abiotic stresses such as salinity and metal contaminations are the major environmental stresses that adversely affect crop productivity worldwide. Crop responses and tolerance to abiotic stress are complex processes for which “-omic” approaches such as metabolomics is giving us a newest view of biological systems. The aim of the current research was to assess metabolic changes in lettuce (Lactuca sativa L.), by specifically probing the root metabolome of plants exposed to elevated isomolar concentrations of NaCl and ZnSO4. Most of the metabolites that were differentially accumulated in roots were identified for stress conditions, however the response was more intense in plants exposed to NaCl. Compounds identified in either NaCl or ZnSO4 conditions were: carbohydrates, phenolics, hormones, glucosinolates, and lipids. Our findings suggest that osmotic stress and the consequent redox imbalance play a major role in determining lettuce root metabolic response. In addition, it was identified that polyamines and polyamine conjugates were triggered as a specific response to ZnSO4. These findings help improve understanding of how plants cope with abiotic stresses. This information can be used to assist decision-making in breeding programs for improving crop tolerance to salinity and heavy metal contaminations. PMID:27375675

  6. Zinc Excess Triggered Polyamines Accumulation in Lettuce Root Metabolome, As Compared to Osmotic Stress under High Salinity.

    PubMed

    Rouphael, Youssef; Colla, Giuseppe; Bernardo, Letizia; Kane, David; Trevisan, Marco; Lucini, Luigi

    2016-01-01

    Abiotic stresses such as salinity and metal contaminations are the major environmental stresses that adversely affect crop productivity worldwide. Crop responses and tolerance to abiotic stress are complex processes for which "-omic" approaches such as metabolomics is giving us a newest view of biological systems. The aim of the current research was to assess metabolic changes in lettuce (Lactuca sativa L.), by specifically probing the root metabolome of plants exposed to elevated isomolar concentrations of NaCl and ZnSO4. Most of the metabolites that were differentially accumulated in roots were identified for stress conditions, however the response was more intense in plants exposed to NaCl. Compounds identified in either NaCl or ZnSO4 conditions were: carbohydrates, phenolics, hormones, glucosinolates, and lipids. Our findings suggest that osmotic stress and the consequent redox imbalance play a major role in determining lettuce root metabolic response. In addition, it was identified that polyamines and polyamine conjugates were triggered as a specific response to ZnSO4. These findings help improve understanding of how plants cope with abiotic stresses. This information can be used to assist decision-making in breeding programs for improving crop tolerance to salinity and heavy metal contaminations. PMID:27375675

  7. Effects of molybdenum on water utilization, antioxidative defense system and osmotic-adjustment ability in winter wheat (Triticum aestivum) under drought stress.

    PubMed

    Wu, Songwei; Hu, Chengxiao; Tan, Qiling; Nie, Zhaojun; Sun, Xuecheng

    2014-10-01

    Molybdenum (Mo), as an essential trace element in plants, plays an essential role in abiotic stress tolerance of plants. To obtain a better understanding of drought tolerance enhanced by Mo, a hydroponic trial was conducted to investigate the effects of Mo on water utilization, antioxidant enzymes, non-enzymatic antioxidants, and osmotic-adjustment products in the Mo-efficient '97003' and Mo-inefficient '97014' under PEG simulated drought stress. Our results indicate that Mo application significantly enhanced Pn, chlorophyll, dry matter, grain yield, biomass, RWC and WUE and decreased Tr, Gs and water loss of wheat under drought stress, suggesting that Mo application improved the water utilization capacity in wheat. The activities of antioxidant enzymes such as superoxide dismutase, peroxidase, catalase, ascorbate peroxidase and the contents of non-enzymatic antioxidants content such as ascorbic acid, reduced glutathione, carotenoid were significantly increased and malonaldehyde contents were decreased by Mo application under PEG simulated drought stress, suggesting that Mo application enhanced the ability of scavenging active oxygen species. The osmotic-adjustment products such as soluble protein, proline and soluble sugar were also increased by Mo application under PEG simulated drought stress, indicating that Mo improved the osmotic adjustment ability in wheat. It is hypothesized that Mo application might improve the drought tolerance of wheat by enhancing water utilization capability and the abilities of antioxidative defense and osmotic adjustment. Similarities and differences between the Mo-efficient and Mo-inefficient cultivars wheat in response to Mo under drought stress are discussed. PMID:25221925

  8. Osmotic adjustment and the growth response of seven vegetable crops following water-deficit stress. [Phaseolus vulgaris L. ; Beta vulgaris L. ; Abelmoschus esculentus; Pisum sativum L. ; Capsicum annuum L. ; Spinacia oleracea L. ; Lycopersicon esculentum Mill

    SciTech Connect

    Wullschleger, S.D. ); Oosterhuis, D.M. )

    1991-09-01

    Growth-chamber studies were conducted to examine the ability of seven vegetable crops- Blue Lake beam (Phaseolus vulgaris L.) Detroit Dark Red beet (Beta vulgaris L.) Burgundy okra (Abelmoschus esculentus) (Moench), Little Marvel pea (Pisum sativum L), California Wonder bell pepper (Capsicum annuum L), New Zealand spinach (Spinacia oleracea L), and Beefsteak tomato (Lycopersicon esculentum Mill.) - to adjust osmotically in response to water-deficit stress. Water stress was imposed by withholding water for 3 days, and the adjustment of leaf and root osmotic potentials upon relief of the stress and rehydration were monitored with thermocouple psychrometers. Despite similar reductions in leaf water potential and stomatal conductance among the species studied reductions in lead water potential an stomatal conductance among the species, crop-specific differences were observed in leak and root osmotic adjustment. Leaf osmotic adjustment was observed for bean, pepper, and tomato following water-deficit stress. Root osmotic adjustment was significant in bean, okra, pea and tomato. Furthermore, differences in leaf and root osmotic adjustment were also observed among five tomato cultivars. Leaf osmotic adjustment was not associated with the maintenance of leaf growth following water-deficit stress, since leaf expansion of water-stressed bean and pepper, two species capable of osmotic adjustment, was similar to that of spinach, which exhibited no leaf osmotic adjustment.

  9. C. elegans lifespan extension by osmotic stress requires FUdR, base excision repair, FOXO, and sirtuins.

    PubMed

    Anderson, Edward N; Corkins, Mark E; Li, Jia-Cheng; Singh, Komudi; Parsons, Sadé; Tucey, Tim M; Sorkaç, Altar; Huang, Huiyan; Dimitriadi, Maria; Sinclair, David A; Hart, Anne C

    2016-03-01

    Moderate stress can increase lifespan by hormesis, a beneficial low-level induction of stress response pathways. 5'-fluorodeoxyuridine (FUdR) is commonly used to sterilize Caenorhabditis elegans in aging experiments. However, FUdR alters lifespan in some genotypes and induces resistance to thermal and proteotoxic stress. We report that hypertonic stress in combination with FUdR treatment or inhibition of the FUdR target thymidylate synthase, TYMS-1, extends C. elegans lifespan by up to 30%. By contrast, in the absence of FUdR, hypertonic stress decreases lifespan. Adaptation to hypertonic stress requires diminished Notch signaling and loss of Notch co-ligands leads to lifespan extension only in combination with FUdR. Either FUdR treatment or TYMS-1 loss induced resistance to acute hypertonic stress, anoxia, and thermal stress. FUdR treatment increased expression of DAF-16 FOXO and the osmolyte biosynthesis enzyme GPDH-1. FUdR-induced hypertonic stress resistance was partially dependent on sirtuins and base excision repair (BER) pathways, while FUdR-induced lifespan extension under hypertonic stress conditions requires DAF-16, BER, and sirtuin function. Combined, these results demonstrate that FUdR, through inhibition of TYMS-1, activates stress response pathways in somatic tissues to confer hormetic resistance to acute and chronic stress. C. elegans lifespan studies using FUdR may need re-interpretation in light of this work. PMID:26854551

  10. A generalized method for the minimization of cellular osmotic stresses and strains during the introduction and removal of permeable cryoprotectants.

    PubMed

    Levin, R L

    1982-05-01

    The successful freeze preservation of mammalian cells and tissues usually requires the presence of high concentrations of cryoprotective agents (CPAs) such as glycerol, ethylene glycol, or dimethylsulfoxide. Unfortunately, the addition of these permeable agents to cells and tissues prior to freezing and their removal after thawing has been documented to be as damaging as the freeze-thaw process itself. This damaging process has been hypothesized to result from the drastic alterations in cell size caused by the osmotic stresses usually imposed upon cells during the introduction and removal of the cryoprotectants. Consequently, on the basis of a nonequilibrium thermodynamic model for the transport of water and a permeable CPA across cell membranes, a method has been developed to minimize these potentially lethal transient changes in cell size. This method involves the simultaneous variation of both the extracellular CPA and electrolyte or osmotic extender osmolalities in a balance, prescribed manner so that both the cellular water content and the total intracellular ionic strength remain constant as the intracellular CPA osmolarity is either raised or lowered. The theoretical analysis indicates that many of the resulting protocols are practical from the clinical point of view. PMID:7043089

  11. Assessment of Full-Eye Response to Osmotic Stress in Mouse Model In Vivo Using Optical Coherence Tomography

    PubMed Central

    Ni, Yang; Xu, Baisheng; Wu, Lan; Du, Chixin; Jiang, Bo; Ding, Zhihua; Li, Peng

    2015-01-01

    NaCl based solutions were applied as osmotic stress agents to alter the hydration state of the mouse eye. Full-eye responses to these osmotic challenges were monitored in vivo using a custom-built optical coherence tomography (OCT) with an extended imaging range of 12.38 mm. Dynamic changes in the mouse eye were quantified based on the OCT images using several parameters, including the central corneal thickness (CCT), the anterior chamber depth (ACD), the crystalline lens thickness (LT), the cornea-retina distance (CRD), the iris curvature (IC), and the lens scattering intensity (LSI). Apparent but reversible changes in the morphology of almost all the ocular components and the light transparency of the lens are exhibited. Particularly, the ocular dehydration induced by the hypertonic challenges resulted in a closing of the iridocorneal angle and an opacification of the lens. Our results indicated that the ocular hydration is an important physiological process which might be correlated with various ocular disorders, such as dry eye, cataract, and angle-closure glaucoma, and would affect the biometry and imaging of the eye. OCT uniquely enables the comprehensive study of the dynamic full-eye responses to the ocular hydration in vivo. PMID:26491552

  12. A Laterally Acquired Galactose Oxidase-Like Gene Is Required for Aerial Development during Osmotic Stress in Streptomyces coelicolor

    PubMed Central

    Liman, Recep; Facey, Paul D.; van Keulen, Geertje; Dyson, Paul J.; Del Sol, Ricardo

    2013-01-01

    Phylogenetic reconstruction revealed that most Actinobacterial orthologs of S. coelicolor SCO2837, encoding a metal-dependent galactose oxidase-like protein, are found within Streptomyces and were probably acquired by horizontal gene transfer from fungi. Disruption of SCO2837 (glxA) caused a conditional bld phenotype that could not be reversed by extracellular complementation. Studies aimed at characterising the regulation of expression of glxA showed that it is not a target for other bld genes. We provide evidence that glxA is required for osmotic adaptation, although independently from the known osmotic stress response element SigB. glxA has been predicted to be part of an operon with the transcription unit comprising the upstream cslA gene and glxA. However, both phenotypic and expression studies indicate that it is also expressed from an independent promoter region internal to cslA. GlxA displays an in situ localisation pattern similar to that one observed for CslA at hyphal tips, but localisation of the former is independent of the latter. The functional role of GlxA in relation to CslA is discussed. PMID:23326581

  13. Osmotic stress induces phosphorylation of histone H3 at threonine 3 in pericentromeric regions of Arabidopsis thaliana

    PubMed Central

    Wang, Zhen; Casas-Mollano, Juan Armando; Xu, Jianping; Riethoven, Jean-Jack M.; Zhang, Chi; Cerutti, Heriberto

    2015-01-01

    Histone phosphorylation plays key roles in stress-induced transcriptional reprogramming in metazoans but its function(s) in land plants has remained relatively unexplored. Here we report that an Arabidopsis mutant defective in At3g03940 and At5g18190, encoding closely related Ser/Thr protein kinases, shows pleiotropic phenotypes including dwarfism and hypersensitivity to osmotic/salt stress. The double mutant has reduced global levels of phosphorylated histone H3 threonine 3 (H3T3ph), which are not enhanced, unlike the response in the wild type, by drought-like treatments. Genome-wide analyses revealed increased H3T3ph, slight enhancement in trimethylated histone H3 lysine 4 (H3K4me3), and a modest decrease in histone H3 occupancy in pericentromeric/knob regions of wild-type plants under osmotic stress. However, despite these changes in heterochromatin, transposons and repeats remained transcriptionally repressed. In contrast, this reorganization of heterochromatin was mostly absent in the double mutant, which exhibited lower H3T3ph levels in pericentromeric regions even under normal environmental conditions. Interestingly, within actively transcribed protein-coding genes, H3T3ph density was minimal in 5′ genic regions, coincidental with a peak of H3K4me3 accumulation. This pattern was not affected in the double mutant, implying the existence of additional H3T3 protein kinases in Arabidopsis. Our results suggest that At3g03940 and At5g18190 are involved in the phosphorylation of H3T3 in pericentromeric/knob regions and that this repressive epigenetic mark may be important for maintaining proper heterochromatic organization and, possibly, chromosome function(s). PMID:26100864

  14. Controlling the extent of viral genome release by a combination of osmotic stress and polyvalent cations

    NASA Astrophysics Data System (ADS)

    Jin, Yan; Knobler, Charles M.; Gelbart, William M.

    2015-08-01

    While several in vitro experiments on viral genome release have specifically studied the effects of external osmotic pressure and of the presence of polyvalent cations on the ejection of DNA from bacteriophages, few have systematically investigated how the extent of ejection is controlled by a combination of these effects. In this work we quantify the effect of osmotic pressure on the extent of DNA ejection from bacteriophage lambda as a function of polyvalent cation concentration (in particular, the tetravalent polyamine spermine). We find that the pressure required to completely inhibit ejection decreases from 38 to 17 atm as the spermine concentration is increased from 0 to 1.5 mM. Further, incubation of the phage particles in spermine concentrations as low as 0.15 mM—the threshold for DNA condensation in bulk solution—is sufficient to significantly limit the extent of ejection in the absence of osmolyte; for spermine concentrations below this threshold, the ejection is complete. In accord with recent investigations on the packaging of DNA in the presence of a condensing agent, we observe that the self-attraction induced by the polyvalent cation affects the ordering of the genome, causing it to get stuck in a broad range of nonequilibrated structures.

  15. Controlling the extent of viral genome release by a combination of osmotic stress and polyvalent cations.

    PubMed

    Jin, Yan; Knobler, Charles M; Gelbart, William M

    2015-08-01

    While several in vitro experiments on viral genome release have specifically studied the effects of external osmotic pressure and of the presence of polyvalent cations on the ejection of DNA from bacteriophages, few have systematically investigated how the extent of ejection is controlled by a combination of these effects. In this work we quantify the effect of osmotic pressure on the extent of DNA ejection from bacteriophage lambda as a function of polyvalent cation concentration (in particular, the tetravalent polyamine spermine). We find that the pressure required to completely inhibit ejection decreases from 38 to 17 atm as the spermine concentration is increased from 0 to 1.5 mM. Further, incubation of the phage particles in spermine concentrations as low as 0.15 mM--the threshold for DNA condensation in bulk solution-is sufficient to significantly limit the extent of ejection in the absence of osmolyte; for spermine concentrations below this threshold, the ejection is complete. In accord with recent investigations on the packaging of DNA in the presence of a condensing agent, we observe that the self-attraction induced by the polyvalent cation affects the ordering of the genome, causing it to get stuck in a broad range of nonequilibrated structures. PMID:26382433

  16. Protein diffusion in the periplasm of E. coli under osmotic stress.

    PubMed

    Sochacki, Kem A; Shkel, Irina A; Record, M Thomas; Weisshaar, James C

    2011-01-01

    The physical and mechanical properties of the cell envelope of Escherichia coli are poorly understood. We use fluorescence recovery after photobleaching to measure diffusion of periplasmic green fluorescent protein and probe the fluidity of the periplasm as a function of external osmotic conditions. For cells adapted to growth in complete medium at 0.14-1.02 Osm, the mean diffusion coefficient increases from 3.4 μm² s⁻¹ to 6.6 μm² s⁻¹ and the distribution of D(peri) broadens as growth osmolality increases. This is consistent with a net gain of water by the periplasm, decreasing its biopolymer volume fraction. This supports a model in which the turgor pressure drops primarily across the thin peptidoglycan layer while the cell actively maintains osmotic balance between periplasm and cytoplasm, thus avoiding a substantial pressure differential across the cytoplasmic membrane. After sudden hyperosmotic shock (plasmolysis), the cytoplasm loses water as the periplasm gains water. Accordingly, increases threefold. The fluorescence recovery after photobleaching is complete and homogeneous in all cases, but in minimal medium, the periplasm is evidently thicker at the cell tips. For the relevant geometries, Brownian dynamics simulations in model cytoplasmic and periplasmic volumes provide analytical formulae for extraction of accurate diffusion coefficients from readily measurable quantities. PMID:21190653

  17. Transcriptomic Profiling of Arabidopsis thaliana Mutant pad2.1 in Response to Combined Cold and Osmotic Stress

    PubMed Central

    Kumar, Deepak; Datta, Riddhi; Hazra, Saptarshi; Sultana, Asma; Mukhopadhyay, Ria; Chattopadhyay, Sharmila

    2015-01-01

    The contribution of glutathione (GSH) in stress tolerance, defense response and antioxidant signaling is an established fact. In this study transcriptome analysis of pad2.1, an Arabidopsis thaliana mutant, after combined osmotic and cold stress treatment has been performed to explore the intricate position of GSH in the stress and defense signaling network in planta. Microarray data revealed the differential regulation of about 1674 genes in pad2.1 amongst which 973 and 701 were significantly up- and down-regulated respectively. Gene enrichment, functional pathway analysis by DAVID and MapMan analysis identified various stress and defense related genes viz. members of heat shock protein family, peptidyl prolyl isomerase (PPIase), thioredoxin peroxidase (TPX2), glutathione-S-transferase (GST), NBS-LRR type resistance protein etc. as down-regulated. The expression pattern of the above mentioned stress and defense related genes and APETALA were also validated by comparative proteomic analysis of combined stress treated Col-0 and pad2.1. Functional annotation noted down-regulation of UDP-glycosyl transferase, 4-coumarate CoA ligase 8, cinnamyl alcohol dehydrogenase 4 (CAD4), ACC synthase and ACC oxidase which are the important enzymes of phenylpropanoid, lignin and ethylene (ET) biosynthetic pathway respectively. Since the only difference between Col-0 (Wild type) and pad2.1 is the content of GSH, so, this study suggested that in addition to its association with specific stress responsive genes and proteins, GSH provides tolerance to plants by its involvement with phenylpropanoid, lignin and ET biosynthesis under stress conditions. PMID:25822199

  18. [Molecular-genetic polymorphism of wheat cell lines resistant to metabolites of G. graminis var. tritici and osmotic stress].

    PubMed

    Bavol, A V; Zinchenko, M O; Dubrovna, O V

    2014-01-01

    It was analyzed polymorphism of DNA loci, flanked by inverted repeats of LTR retrotransposon Cassandra, in cell lines of bread wheat, resistant to the metabolites of ophiobolus root rot (G. graminis var. tritici), under osmotic stress and induced from them plant-regenerants. The differences in the polynucleotide sequences of DNA at the direct and step cell selection it was identified. Assessment of the level of genetic divergence showed that calluses obtained at the direct selection and calluses in the later stages of step selection were the most genetically distant from the original forms (D(NL) = 0.4855), this means that at the sublethal doses of selective factors occur the most significant changes at the genome of the investigated objects. In contrast to the original form at the spectra of products DNA amplification of calluses and regenerated plants showed the emergence of bands approximately 638 bp length, which may indicate the activation of retrotransposon Cassandra. PMID:24791474

  19. Abnormal Osmotic Avoidance Behavior in C. elegans Is Associated with Increased Hypertonic Stress Resistance and Improved Proteostasis

    PubMed Central

    Lee, Elaine C.; Kim, Heejung; Ditano, Jennifer; Manion, Dacie; King, Benjamin L.; Strange, Kevin

    2016-01-01

    Protein function is controlled by the cellular proteostasis network. Proteostasis is energetically costly and those costs must be balanced with the energy needs of other physiological functions. Hypertonic stress causes widespread protein damage in C. elegans. Suppression and management of protein damage is essential for optimal survival under hypertonic conditions. ASH chemosensory neurons allow C. elegans to detect and avoid strongly hypertonic environments. We demonstrate that mutations in osm-9 and osm-12 that disrupt ASH mediated hypertonic avoidance behavior or genetic ablation of ASH neurons are associated with enhanced survival during hypertonic stress. Improved survival is not due to altered systemic volume homeostasis or organic osmolyte accumulation. Instead, we find that osm-9(ok1677) mutant and osm-9(RNAi) worms exhibit reductions in hypertonicity induced protein damage in non-neuronal cells suggesting that enhanced proteostasis capacity may account for improved hypertonic stress resistance in worms with defects in osmotic avoidance behavior. RNA-seq analysis revealed that genes that play roles in managing protein damage are upregulated in osm-9(ok1677) worms. Our findings are consistent with a growing body of work demonstrating that intercellular communication between neuronal and non-neuronal cells plays a critical role in integrating cellular stress resistance with other organismal physiological demands and associated energy costs. PMID:27111894

  20. Diagonal two-dimensional electrophoresis (D-2DE): a new approach to study the effect of osmotic stress induced by polyethylene glycol in durum wheat (Triticum durum Desf.).

    PubMed

    Kacem, N S; Mauro, S; Muhovski, Y; Delporte, F; Renaut, J; Djekoun, A; Watillon, B

    2016-09-01

    Acclimatization to stress is associated with profound changes in proteome composition. The use of plant cell and tissue culture offers a means to investigate the physiological and biochemical processes involved in the adaptation to osmotic stress. We employed a new proteomic approach to further understand the response of calli to dehydration induced by polyethylene glycol (PEG6000). Calli of three durum wheat genotypes Djenah Khetifa, Oued Zenati and Waha were treated with two concentrations of polyethylene glycol to mimic osmotic stress. Changes in protein relative abundance were analyzed using a new electrophoretic approach named diagonal two-dimensional electrophoresis (D-2DE), combined with mass spectrometry. Total proteins were extracted from 30-day-old calli from three durum wheat genotypes that showed contrasting levels of drought stress tolerance in the field. The combination of one-dimensional electrophoresis and D-2DE gave a specific imprint of the protein extracts under osmotic stress, as well as characterizing and identifying individual target proteins. Of the variously expressed proteins, three were selected (globulin, GAPDH and peroxidase) and further analyzed using qRT-PCR at the transcriptome level in order to compare the results with the proteomic data. Western blot analysis was used to further validate the differences in relative abundance pattern. The proteins identified through this technique provide new insights as to how calli respond to osmotic stress. Our method of study provides an original and relevant approach of analyzing the osmotic-responsive mechanisms at the cellular level of durum wheat with agronomic perspectives. PMID:27317377

  1. Citricoccus zhacaiensis B-4 (MTCC 12119) a novel osmotolerant plant growth promoting actinobacterium enhances onion (Allium cepa L.) seed germination under osmotic stress conditions.

    PubMed

    Selvakumar, Govindan; Bhatt, Ravindra M; Upreti, Kaushal K; Bindu, Gurupadam Hema; Shweta, Kademani

    2015-05-01

    The water potential of rhizospheric soil is a key parameter that determines the availability of water, oxygen, and nutrients to plants and microbes. Recent global warming trends and erratic precipitation patterns have resulted in the emergence of drought as a major constraint of agricultural productivity. Though several strategies are being evaluated to address this issue, a novel approach is the utilization of microbes for alleviation of drought stress effects in crops. Citricoccus zhacaiensis B-4 is an osmotolerant actinobacterium isolated from banana rhizosphere on mannitol supplemented medium (-2.92 MPa osmotic potential). This isolate expressed plant growth promotion traits viz, IAA, GA3 production, phosphate, zinc solubilization, ACC deaminase activity and ammonia production under PEG induced osmotic stress and non-stress conditions. Under in vitro osmotic conditions, biopriming with the actinobacterium improved the percent germination, seedling vigour and germination rate of onion seeds (cv. Arka Kalyan) at osmotic potentials up to -0.8 MPa. Considering its novelty, osmotolerance and plant growth promoting traits, biopriming with C. zhacaiensis is suggested as a viable option for the promotion of onion seed germination under drought stressed environments. PMID:25758141

  2. Genetic Variation of Drought Tolerance in Pinus pinaster at Three Hierarchical Levels: A Comparison of Induced Osmotic Stress and Field Testing

    PubMed Central

    Gaspar, Maria João; Velasco, Tania; Feito, Isabel; Alía, Ricardo; Majada, Juan

    2013-01-01

    Understanding the survival capacity of forest trees to periods of severe water stress could improve knowledge of the adaptive potential of different species under future climatic scenarios. In long lived organisms, like forest trees, the combination of induced osmotic stress treatments and field testing can elucidate the role of drought tolerance during the early stages of establishment, the most critical in the life of the species. We performed a Polyethylene glycol-osmotic induced stress experiment and evaluated two common garden experiments (xeric and mesic sites) to test for survival and growth of a wide range clonal collection of Maritime pine. This study demonstrates the importance of additive vs non additive effects for drought tolerance traits in Pinus pinaster, and shows differences in parameters determining the adaptive trajectories of populations and family and clones within populations. The results show that osmotic adjustment plays an important role in population variation, while biomass allocation and hydric content greatly influence survival at population level. Survival in the induced osmotic stress experiment presented significant correlations with survival in the xeric site, and height growth at the mesic site, at population level, indicating constraints of adaptation for those traits, while at the within population level no significant correlation existed. These results demonstrate that population differentiation and within population genetic variation for drought tolerance follow different patterns. PMID:24223885

  3. K(+) channels of squid giant axons open by an osmotic stress in hypertonic solutions containing nonelectrolytes.

    PubMed

    Kukita, Fumio

    2011-08-01

    In hypertonic solutions made by adding nonelectrolytes, K(+) channels of squid giant axons opened at usual asymmetrical K(+) concentrations in two different time courses; an initial instantaneous activation (I (IN)) and a sigmoidal activation typical of a delayed rectifier K(+) channel (I (D)). The current-voltage relation curve for I (IN) was fitted well with Goldman equation described with a periaxonal K(+) concentration at the membrane potential above -10 mV. Using the activation-voltage curve obtained from tail currents, K(+) channels for I (IN) are confirmed to activate at the membrane potential that is lower by 50 mV than those for I (D). Both I (IN) and I (D) closed similarly at the holding potential below -100 mV. The logarithm of I (IN)/I (D) was linearly related with the osmolarity for various nonelectrolytes. Solute inaccessible volumes obtained from the slope increased with the nonelectrolyte size from 15 to 85 water molecules. K(+) channels representing I (D) were blocked by open channel blocker tetra-butyl ammonium (TBA) more efficiently than in the absence of I (IN), which was explained by the mechanism that K(+) channels for I (D) were first converted to those for I (IN) by the osmotic pressure and then blocked. So K(+) channels for I (IN) were suggested to be derived from the delayed rectifier K(+) channels. Therefore, the osmotic pressure is suggested to exert delayed-rectifier K(+) channels to open in shrinking rather hydrophilic flexible parts outside the pore than the pore itself, which is compatible with the recent structure of open K(+) channel pore. PMID:21773888

  4. Effects of nitric oxide system and osmotic stress on Aquaporin-1 in the postnatal heart.

    PubMed

    Netti, Vanina A; Iovane, Agustina N; Vatrella, Mariana C; Zotta, Elsa; Fellet, Andrea L; Balaszczuk, Ana M

    2016-07-01

    Aquaporin-1 (AQP1) is expressed in the heart and its relationship with NO system has not been fully explored. The aims of this work were to study the effects of NO system inhibition on AQP1 abundance and localization and evaluate AQP1 S-nitrosylation in a model of water restriction during postnatal growth. Rats aged 25 and 50days (n=15) were divided in: R: water restriction; C: water ad libitum; RL: L-NAME (4mg/kgday)+water restriction; CL: L-NAME+water ad libitum. AQP1 protein levels, immunohistochemistry and S-nitrosylation (colocalization of AQP1 and S-nitrosylated cysteines by confocal microscopy) were determined in cardiac tissue. We also evaluated the effects of NO donor sodium nitroprusside (SNP) on osmotic water permeability of cardiac membrane vesicles by stopped-flow spectrometry. AQP1 was present in cardiac vascular endothelium and endocardium in C and CL animals of both ages. Cardiac AQP1 levels were increased in R50 and RL50 and appeared in cardiomyocyte plasma membrane. No changes in AQP1 abundance or localization were observed in R25, but RL25 group showed AQP1 presence on cardiomyocyte sarcolemma. AQP1 S-nitrosylation was increased in R25 group, without changes in the 50-day-old group. Cardiac membrane vesicles expressing AQP1 presented a high water permeability coefficient and pretreatment with SNP decreased water transport. Age-related influence of NO system on AQP1 abundance and localization in the heart may affect cardiac water homeostasis during hypovolemic state. Increased AQP1 S-nitrosylation in the youngest group may decrease osmotic water permeability of cardiac membranes, having a negative impact on cardiac water balance. PMID:27261598

  5. Osmotic stress in Arctic and Antarctic strains of the green alga Zygnema (Zygnematales, Streptophyta): Effects on photosynthesis and ultrastructure

    PubMed Central

    Kaplan, Franziska; Lewis, Louise A.; Herburger, Klaus; Holzinger, Andreas

    2013-01-01

    The osmotic potential and effects of plasmolysis on photosynthetic oxygen evolution and chlorophyll fluorescence were studied in two Arctic Zygnema sp. (strain B, strain G) and two Antarctic Zygnema sp. (strain E, strain D). Antarctic strain D was newly characterized by rbcL sequence analysis in the present study. The two Antarctic strains, D and E, are most closely related and may represent different isolates of the same species, in contrast, strain B and G are separate lineages. Incipient plasmolysis in the cells was determined by light microscopy after incubating cells in sorbitol solutions ranging between 200 mM and 1000 mM sorbitol for 3, 6 and 24 h. In Zygnema strain B and G incipient plasmolysis occurred at ∼600 mM sorbitol solution (720 mOsmol kg−1, ψ = −1.67 MPa) and in strains D and E at ∼300 mM (318 mOsmol kg−1, ψ = −0.8 MPa) sorbitol solution. Hechtian strands were visualized in all plasmolysed cells, which is particularly interesting, as these cells lack pores or plasmodesmata. Ultrastructural changes upon osmotic stress were a retraction of the condensed cytoplasm from the cell walls, damages to chloroplast and mitochondrial membranes, increasing numbers of plastoglobules in the chloroplasts and membrane enclosed particles in the extraplasmatic space. Maximum photosynthetic rates (Pmax) in light saturated range were between 145.5 μmol O2 h−1 mg−1 Chl a in Zygnema G and 752.9 μmol O2 h−1 mg−1 Chl a in Zygnema E. After incubation in 800 mM sorbitol for 3 h Pmax decreased to the following percentage of the initial values: B: 16.3%, D: 16.8%, E: 26.1% and G: 35.0%. Osmotic stress (800 mM sorbitol) decreased maximum photochemical quantum yield of photosystem II (Fv/Fm) when compared to controls. Maximum values of relative electron transport rates of photosystem II (rETRmax) decreased after incubation in 400 mM sorbitol in Zygnema D and E, while they decreased in Zygnema B and G only after incubation in 800

  6. Photosystem I shows a higher tolerance to sorbitol-induced osmotic stress than photosystem II in the intertidal macro-algae Ulva prolifera (Chlorophyta).

    PubMed

    Gao, Shan; Zheng, Zhenbing; Gu, Wenhui; Xie, Xiujun; Huan, Li; Pan, Guanghua; Wang, Guangce

    2014-10-01

    The photosynthetic performance of the desiccation-tolerant, intertidal macro-algae Ulva prolifera was significantly affected by sorbitol-induced osmotic stress. Our results showed that photosynthetic activity decreased significantly with increases in sorbitol concentration. Although the partial activity of both photosystem I (PS I) and photosystem II (PS II) was able to recover after 30 min of rehydration, the activity of PS II decreased more rapidly than PS I. At 4 M sorbitol concentration, the activity of PS II was almost 0 while that of PS I was still at about one third of normal levels. Following prolonged treatment with 1 and 2 M sorbitol, the activity of PS I and PS II decreased slowly, suggesting that the effects of moderate concentrations of sorbitol on PS I and PS II were gradual. Interestingly, an increase in non-photochemical quenching occurred under these conditions in response to moderate osmotic stress, whereas it declined significantly under severe osmotic stress. These results suggest that photoprotection in U. prolifera could also be induced by moderate osmotic stress. In addition, the oxidation of PS I was significantly affected by osmotic stress. P700(+) in the thalli treated with high concentrations of sorbitol could still be reduced, as PS II was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), but it could not be fully oxidized. This observation may be caused by the higher quantum yield of non-photochemical energy dissipation in PS I due to acceptor-side limitation (Y(NA)) during rehydration in seawater containing DCMU. PMID:24628656

  7. The Pepper Lipoxygenase CaLOX1 Plays a Role in Osmotic, Drought and High Salinity Stress Response.

    PubMed

    Lim, Chae Woo; Han, Sang-Wook; Hwang, In Sun; Kim, Dae Sung; Hwang, Byung Kook; Lee, Sung Chul

    2015-05-01

    In plants, lipoxygenases (LOXs) are involved in various physiological processes, including defense responses to biotic and abiotic stresses. Our previous study had shown that the pepper 9-LOX gene, CaLOX1, plays a crucial role in cell death due to pathogen infection. Here, the function of CaLOX1 in response to osmotic, drought and high salinity stress was examined using CaLOX1-overexpressing (CaLOX1-OX) Arabidopsis plants. Changes in the temporal expression pattern of the CaLOX1 gene were observed when pepper leaves were treated with drought and high salinity, but not when treated with ABA, the primary hormone in response to drought stress. During seed germination and seedling development, CaLOX1-OX plants were more tolerant to ABA, mannitol and high salinity than wild-type plants. In contrast, expression of the ABA-responsive marker genes RAB18 and RD29B was higher in CaLOX1-OX Arabidopsis plants than in wild-type plants. In response to high salinity, CaLOX1-OX plants exhibited enhanced tolerance, compared with the wild type, which was accompanied by decreased accumulation of H2O2 and high levels of RD20, RD29A, RD29B and P5CS gene expression. Similarly, CaLOX1-OX plants were also more tolerant than wild-type plants to severe drought stress. H2O2 production and the relative increase in lipid peroxidation were lower, and the expression of COR15A, DREB2A, RD20, RD29A and RD29B was higher in CaLOX1-OX plants, relative to wild-type plants. Taken together, our results indicate that CaLOX1 plays a crucial role in plant stress responses by modulating the expression of ABA- and stress-responsive marker genes, lipid peroxidation and H2O2 production. PMID:25657344

  8. Contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment in Halostachys caspica response to salt stress

    PubMed Central

    Zeng, Youling; Li, Ling; Yang, Ruirui; Yi, Xiaoya; Zhang, Baohong

    2015-01-01

    The mechanism by which plants cope with salt stress remains poorly understood. The goal of this study is to systematically investigate the contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment (OA) in the halophyte species Halostachys caspica. The results indicate that 100–200 mM NaCl is optimal for plant growth; the water content and degree of succulence of the assimilating branches are higher in this treatment range than that in other treatments; parenchyma cells are more numerous with 100 mM NaCl treatment than they are in control. Inorganic ions (mainly Na+ and Cl-) may play a more important role than organic compounds in NaCl-induced OA and are the primary contributors in OA in H. caspica. The inorganic ions and organic solutes display a tissue-dependent distribution. Na+ and Cl− are accumulated in the reproductive organs and within assimilating branches, which may represent a mechanism for protecting plant growth by way of salt ion dilution and organ abscission. Additionally, OA via increased accumulation of organic substances also protected plant growth and development. This finding provides additional evidence for plant tolerance to salinity stress which can be used for breeding new cultivars for stress tolerance. PMID:26350977

  9. Contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment in Halostachys caspica response to salt stress.

    PubMed

    Zeng, Youling; Li, Ling; Yang, Ruirui; Yi, Xiaoya; Zhang, Baohong

    2015-01-01

    The mechanism by which plants cope with salt stress remains poorly understood. The goal of this study is to systematically investigate the contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment (OA) in the halophyte species Halostachys caspica. The results indicate that 100-200 mM NaCl is optimal for plant growth; the water content and degree of succulence of the assimilating branches are higher in this treatment range than that in other treatments; parenchyma cells are more numerous with 100 mM NaCl treatment than they are in control. Inorganic ions (mainly Na+ and Cl-) may play a more important role than organic compounds in NaCl-induced OA and are the primary contributors in OA in H. caspica. The inorganic ions and organic solutes display a tissue-dependent distribution. Na+ and Cl- are accumulated in the reproductive organs and within assimilating branches, which may represent a mechanism for protecting plant growth by way of salt ion dilution and organ abscission. Additionally, OA via increased accumulation of organic substances also protected plant growth and development. This finding provides additional evidence for plant tolerance to salinity stress which can be used for breeding new cultivars for stress tolerance. PMID:26350977

  10. Molecular characterization and organ-specific expression of the gene that encodes betaine aldehyde dehydrogenase from the white shrimp Litopenaeus vannamei in response to osmotic stress.

    PubMed

    Delgado-Gaytán, María F; Hernández-Palomares, Magally L E; Soñanez-Organis, José G; Muhlia-Almazán, Adriana; Sánchez-Paz, Arturo; Stephens-Camacho, Norma A; Valenzuela-Soto, Elisa M; Rosas-Rodríguez, Jesús A

    2015-11-01

    Crustaceans overcome osmotic disturbances by regulating their intracellular concentration of ions and osmolytes. Glycine betaine (GB), an osmolyte accumulated in response to hyperosmotic stress, is synthesized by betaine aldehyde dehydrogenase (BADH EC 1.2.1.8) through the oxidation of betaine aldehyde. A partial BADH cDNA sequence from the white shrimp Litopenaeus vannamei was obtained and its organ-specific expression during osmotic stress (low and high salinity) was evaluated. The partial BADH cDNA sequence (LvBADH) is 1103bp long and encodes an open reading frame for 217 protein residues. The amino acid sequence of LvBADH is related to that of other BADHs, TMABA-DH and ALDH9 from invertebrate and vertebrate homologues, and includes the essential domains of their function and regulation. LvBADH activity and mRNA expression were detected in the gills, hepatopancreas and muscle with the highest levels in the hepatopancreas. LvBADH mRNA expression increased 2-3-fold in the hepatopancreas and gills after 7days of osmotic variation (25 and 40ppt). In contrast, LvBADH mRNA expression in muscle decreased 4-fold and 15-fold after 7days at low and high salinity, respectively. The results indicate that LvBADH is ubiquitously expressed, but its levels are organ-specific and regulated by osmotic stress, and that LvBADH is involved in the cellular response of crustaceans to variations in environmental salinity. PMID:26219579

  11. Acute posttraumatic stress: nonacceptance of early intervention.

    PubMed

    Weisaeth, L

    2001-01-01

    Psychological resistance may be of considerable importance in the posttraumatic stress disorder (PTSD) population, considering that researchers in the field of traumatic stress are frequently unsuccessful in achieving high response rates, that many subjects suffering from PTSD never seek help, and that dropouts from therapy are frequent. This article presents data on the main complaints reported in the acute aftermath of an industrial disaster by 246 employees who had been exposed to the disaster. The dominant concerns were symptomatic complaints related to posttraumatic stress reactions rather than external problems. Sleep disturbance, anxiety/fear responses, and physical symptoms were reported by individuals with complaints in the acute phase as most problematic, while irritability and depressive symptoms appeared very infrequently among the reported main complaints. A high specificity and sensitivity were achieved in predicting later PTSD (as defined by DSM-III criteria) by applying early response variables: thus, there were few false-positives and false-negatives. There was a considerable overlap between the PTSD predictors and the main symptom complaints. From a prevention point of view, this should be advantageous, since it would bring the right people to seek help. However, in a significant proportion of the acutely distressed, the reluctance to seek help was motivated by the very symptoms that predicted PTSD. Even a relatively high rate of subjects agreeing to be screened (82.8%) would have lost 42% of those who qualified for a diagnosis of PTSD, and more than half of the subjects with severe outcomes would not have been included. For primary and secondary prevention, the findings suggest that early screening and outreach should be very active. PMID:11495094

  12. TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor.

    PubMed

    Dewey, Colleen M; Cenik, Basar; Sephton, Chantelle F; Dries, Daniel R; Mayer, Paul; Good, Shannon K; Johnson, Brett A; Herz, Joachim; Yu, Gang

    2011-03-01

    TDP-43, or TAR DNA-binding protein 43, is a pathological marker of a spectrum of neurodegenerative disorders, including amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. TDP-43 is an RNA/DNA-binding protein implicated in transcriptional and posttranscriptional regulation. Recent work also suggests that TDP-43 associates with cytoplasmic stress granules, which are transient structures that form in response to stress. In this study, we establish sorbitol as a novel physiological stressor that directs TDP-43 to stress granules in Hek293T cells and primary cultured glia. We quantify the association of TDP-43 with stress granules over time and show that stress granule association and size are dependent on the glycine-rich region of TDP-43, which harbors the majority of pathogenic mutations. Moreover, we establish that cells harboring wild-type and mutant TDP-43 have distinct stress responses: mutant TDP-43 forms significantly larger stress granules, and is incorporated into stress granules earlier, than wild-type TDP-43; in striking contrast, wild-type TDP-43 forms more stress granules over time, but the granule size remains relatively unchanged. We propose that mutant TDP-43 alters stress granule dynamics, which may contribute to the progression of TDP-43 proteinopathies. PMID:21173160

  13. Physiological and Transcriptional Responses to Osmotic Stress of Two Pseudomonas syringae Strains That Differ in Epiphytic Fitness and Osmotolerance

    PubMed Central

    Freeman, Brian C.; Chen, Chiliang; Yu, Xilan; Nielsen, Lindsey; Peterson, Kelly

    2013-01-01

    The foliar pathogen Pseudomonas syringae is a useful model for understanding the role of stress adaptation in leaf colonization. We investigated the mechanistic basis of differences in the osmotolerance of two P. syringae strains, B728a and DC3000. Consistent with its higher survival rates following inoculation onto leaves, B728a exhibited superior osmotolerance over DC3000 and higher rates of uptake of plant-derived osmoprotective compounds. A global transcriptome analysis of B728a and DC3000 following an osmotic upshift demonstrated markedly distinct responses between the strains; B728a showed primarily upregulation of genes, including components of the type VI secretion system (T6SS) and alginate biosynthetic pathways, whereas DC3000 showed no change or repression of orthologous genes, including downregulation of the T3SS. DC3000 uniquely exhibited improved growth upon deletion of the biosynthetic genes for the compatible solute N-acetylglutaminylglutamine amide (NAGGN) in a minimal medium, due possibly to NAGGN synthesis depleting the cellular glutamine pool. Both strains showed osmoreduction of glnA1 expression, suggesting that decreased glutamine synthetase activity contributes to glutamate accumulation as a compatible solute, and both strains showed osmoinduction of 5 of 12 predicted hydrophilins. Collectively, our results demonstrate that the superior epiphytic competence of B728a is consistent with its strong osmotolerance, a proactive response to an osmotic upshift, osmoinduction of alginate synthesis and the T6SS, and resiliency of the T3SS to water limitation, suggesting sustained T3SS expression under the water-limited conditions encountered during leaf colonization. PMID:23955010

  14. Enhancement of non-photochemical quenching in the Bryophyte Physcomitrella patens during acclimation to salt and osmotic stress.

    PubMed

    Azzabi, Ghazi; Pinnola, Alberta; Betterle, Nico; Bassi, Roberto; Alboresi, Alessandro

    2012-10-01

    Drought and salt stress are major abiotic constraints affecting plant growth worldwide. Under these conditions, the production of reactive oxygen species (ROS) is a common phenomenon taking place mainly in chloroplasts, peroxisomes, mitochondria and apoplasts, especially when associated with high light stress. ROS are harmful because of their high reactivity to cell components, thereby leading to cytotoxicity and cell death. During the Ordovician and early Devonian period, photosynthetic organisms colonized terrestrial habitats, and the acquisition of desiccation tolerance has been a major component of their evolution. We have studied the capacity for acclimation to drought and salt stress of the moss Physcomitrella patens, a representative of the early land colonization stage. Exposure to high concentrations of NaCl and sorbitol strongly affects chloroplast development, the Chl content and the thylakoid protein composition in this moss. Under sublethal conditions (0.2 M NaCl and 0.4 M sorbitol), the photosynthetic apparatus of P. patens responds to oxidative stress by increasing non-photochemical quenching (NPQ). Surprisingly, the accumulation of PSBS and LHCSR, the two polypeptides essential for NPQ in P. patens, was not up-regulated in these conditions. Rather, an increased NPQ amplitude correlated with the overaccumulation of zeaxanthin and the presence of the enzyme violaxanthin de-epoxidase. These results suggest that the regulation of excess energy dissipation through control of PSBS and LHCSR is mainly driven by light conditions, while osmotic and salt stress act through acclimative regulation of the xanthophyll cycle. We conclude that regulation of the xanthophyll cycle is an important anticipatory strategy against photoinhibition by high light. PMID:22952250

  15. Effect of betaine on HSP70 expression and cell survival during adaptation to osmotic stress.

    PubMed

    Petronini, P G; De Angelis, E M; Borghetti, A F; Wheeler, K P

    1993-07-15

    Induced expression of the HSP70 gene in 3T3 and SV-3T3 cells was monitored by measurements of the synthesis of HSP70 and of the cellular contents of both HSP70 and its mRNA. The presence of betaine (N-trimethylglycine) at concentrations of 2.5-25 mM decreased the induction of HSP70 gene expression caused by incubation of 3T3 and SV-3T3 cells in hypertonic (0.5 osM) medium. This effect was accompanied by an enhancement of SV-3T3 cell adaptation, assayed by colony formation, to the hyperosmotic conditions. In contrast, the presence of betaine did not affect HSP70 gene expression induced in these cells by heat shock. After 6 h incubation with 25 mM betaine under hypertonic (0.5 osM) conditions the intracellular concentration of betaine in SV-3T3 cells was about 195 mM, compared with about 70 mM under isotonic (0.3 osM) conditions. Hence, with this concentration of extracellular betaine, the marked increase in the accumulation of betaine within the cells presumably counteracts the imposed osmotic pressure and eliminates the signal that otherwise initiates increased expression of the HSP70 gene. PMID:8343134

  16. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants

    NASA Technical Reports Server (NTRS)

    Davenport, K. D.; Williams, K. E.; Ullmann, B. D.; Gustin, M. C.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype.

  17. The Structure of Arabidopsis thaliana OST1 Provides Insights into the Kinase Regulation Mechanism in Response to Osmotic Stress

    PubMed Central

    Yunta, Cristina; Martínez-Ripoll, Martín; Zhu, Jian-Kang; Albert, Armando

    2013-01-01

    SnRK [SNF1 (sucrose non-fermenting-1)-related protein kinase] 2.6 [open stomata 1 (OST1)] is well characterized at molecular and physiological levels to control stomata closure in response to water-deficit stress. OST1 is a member of a family of 10 protein kinases from Arabidopsis thaliana (SnRK2) that integrates abscisic acid (ABA)-dependent and ABA-independent signals to coordinate the cell response to osmotic stress. A subgroup of protein phosphatases type 2C binds OST1 and keeps the kinase dephosphorylated and inactive. Activation of OST1 relies on the ABA-dependent inhibition of the protein phosphatases type 2C and the subsequent self-phosphorylation of the kinase. The OST1 ABA-independent activation depends on a short sequence motif that is conserved among all the members of the SnRK2 family. However, little is known about the molecular mechanism underlying this regulation. The crystallographic structure of OST1 shows that ABA-independent regulation motif stabilizes the conformation of the kinase catalytically essential α C helix, and it provides the basis of the ABA-independent regulation mechanism for the SnRK2 family of protein kinases. PMID:21983340

  18. Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.)

    PubMed Central

    Ahmad, Maqshoof; Zahir, Zahir A.; Nazli, Farheen; Akram, Fareeha; Arshad, Muhammad; Khalid, Muhammad

    2013-01-01

    Halo-tolerant, auxin producing bacteria could be used to induce salt tolerance in plants. A number of Rhizobium and auxin producing rhizobacterial strains were assessed for their ability to tolerate salt stress by conducting osmoadaptation assay. The selected strains were further screened for their ability to induce osmotic stress tolerance in mung bean seedlings under salt-stressed axenic conditions in growth pouch/jar trials. Three most effective strains of Rhizobium and Pseudomonas containing ACC-deaminase were evaluated in combination, for their ability to induce osmotic stress tolerance in mung bean at original, 4, and 6 dS m−1 under axenic conditions. Results showed that sole inoculation of Rhizobium and Pseudomonas strains improved the total dry matter up to 1.4, and 1.9 fold, respectively, while the increase in salt tolerance index was improved up to 1.3 and 2.0 fold by the Rhizobium and Pseudomonas strains, respectively. However, up to 2.2 fold increase in total dry matter and salt tolerance index was observed due to combined inoculation of Rhizobium and Pseudomonas strains. So, combined application of Rhizobium and Pseudomonas strains could be explored as an effective strategy to induce osmotic stress tolerance in mung bean. PMID:24688532

  19. Co-synergism of endophyte Penicillium resedanum LK6 with salicylic acid helped Capsicum annuum in biomass recovery and osmotic stress mitigation

    PubMed Central

    2013-01-01

    Background Water-deficiency adversely affects crop growth by generating reactive oxygen species (ROS) at cellular level. To mitigate such stressful events, it was aimed to investigate the co-synergism of exogenous salicylic acid (SA) and symbiosis of endophytic fungus with Capsicum annuum L. (pepper). Results The findings of the study showed that exogenous SA (10-6 M) application to endophyte (Penicillium resedanum LK6) infected plants not only increased the shoot length and chlorophyll content but also improved the biomass recovery of pepper plants under polyethylene glycol (15%) induced osmotic stress (2, 4 and 8 days). Endophyte-infected plants had low cellular injury and high photosynthesis rate. SA also enhanced the colonization rate of endophyte in the host-plant roots. Endophyte and SA, in combination, reduced the production of ROS by increasing the total polyphenol, reduce glutathione, catalase, peroxidase and polyphenol oxidase as compared to control plants. Osmotic stress pronounced the lipid peroxidation and superoxide anions formation in control plants as compared to endophyte and SA-treated plants. The endogenous SA contents were significantly higher in pepper plants treated with endophyte and SA under osmotic stress as compared to control. Conclusion Endophytic fungal symbiosis and exogenous SA application can help the plants to relieve the adverse effects of osmotic stress by decreasing losses in biomass as compared to non-inoculated plants. These findings suggest that SA application positively impact microbial colonization while in combination, it reprograms the plant growth under various intervals of drought stress. Such symbiotic strategy can be useful for expanding agriculture production in drought prone lands. PMID:23452409

  20. Impacts of Habitat Complexity on Physiology: Purple Shore Crabs Tolerate Osmotic Stress for Shelter

    NASA Astrophysics Data System (ADS)

    McGaw, I. J.

    2001-12-01

    Purple shore crabs, Hemigrapsus nudus (Crustacea: Decapoda), can survive indefinitely in salinities of 8 (25% SW), but also tolerate short-term exposure to salinities as low as 2. In the laboratory their salinity preference range, determined from choice chamber experiments, is 22-32 and they can discriminate between pairs of salinities separated by a difference of 2. These crabs show a strong positive thigmotaxis and a weak negative phototaxis and tend to choose environments with available shelter. The presence of shelter significantly alters the behaviour of this species. When shelter is available the salinity preference range is 10-32. Even in salinities below this preference range, the presence of shelter prolongs the time spent in the lower test salinities. This change in behaviour has implications on the crab's physiology: the haemolymph osmolality falls to lower levels when crabs remain in low salinity under shelters. In the field, H. nudus is found in creeks with salinities close to freshwater and they may remain in this salinity for up to 11 h, if there are rocks under which to shelter. An increase in habitat complexity increases the number of crabs that are found within the creek. These crabs in the low salinity environment have a lower haemolymph osmolality than crabs on the nearby open shore. In H. nudus the behavioural selection of a shelter appears to outweigh the physiological costs associated with osmotic regulation of the body fluids. Therefore, the distribution of H. nudus in estuaries may depend more on the availability of suitable habitats rather than the salinity tolerance of this species.

  1. Swelling and pressure-volume relationships in the dermis measured by osmotic-stress technique.

    PubMed

    McGee, Maria P; Morykwas, Michael; Levi-Polyachenko, Nicole; Argenta, Louis

    2009-06-01

    Water transfer across the extracellular matrix (ECM) involves interstitial osmotic forces in as yet unclear ways. In particular, the traditional values of Starling forces cannot adequately explain fluid transfer rates. Here, we reassess these forces by analyzing fluid transfer in live pig and human dermal explants. Pressure potentials were controlled with inert polymers adjusted by membrane osmometry (range = 3-219 mmHg), and fluid transfer in and out of the explants was followed by sequential precision weighing. Water motional freedom in the dermis was examined by NMR. In pigs, mean hydration pressure (HP; the pressure at which volume did not change) was 107 +/- 22 and 47 +/- 12 (SE) mmHg at 4 degrees C and 37 degrees C (P = 0.012, paired t-test, n = 7). Volume changes observed in response to pressure potential were reversible. The equation, Volume change = V(max)/[1+(time/T(1/2))(d)], where V(max) is maximal volume change; T(1/2), time at volume = 1/2 V(max); and d, a rate parameter, was fitted to experimental progression curves (r(2) > 0.9), yielding V(max) values linearly related to pressure, with mean slopes -3.5 +/- 0.28 and -2.6 +/- 0.21(SE) mul.g(-1).mmHg(-1) at 4 degrees C and 37 degrees C. NMR spin-spin relaxation times (T(2)) varied within 200- to 400-mum distances in directions perpendicular to the epidermis, with slopes reaching 0.03 ms/mum. Results support a mechanism in which fluid transport across the ECM is locally regulated at micrometer scales by cell- and fiber-gel-dependent osmomechanical forces. The large HP helps to explain the fast interstitial in/out flow rates observed clinically. PMID:19321700

  2. Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement independently in Arabidopsis.

    PubMed

    Ding, Zhong Jie; Yan, Jing Ying; Xu, Xiao Yan; Yu, Di Qiu; Li, Gui Xin; Zhang, Shu Qun; Zheng, Shao Jian

    2014-07-01

    Drought and salt stress severely inhibit plant growth and development; however, the regulatory mechanisms of plants in response to these stresses are not fully understood. Here we report that the expression of a WRKY transcription factor WRKY46 is rapidly induced by drought, salt and oxidative stresses. T-DNA insertion of WRKY46 leads to more sensitivity to drought and salt stress, whereas overexpression of WRKY46 (OV46) results in hypersensitivity in soil-grown plants, with a higher water loss rate, but with increased tolerance on the sealed agar plates. Stomatal closing in the OV46 line is insensitive to ABA because of a reduced accumulation of reactive oxygen species (ROS) in the guard cells. We further find that WRKY46 is expressed in guard cells, where its expression is not affected by dehydration, and is involved in light-dependent stomatal opening. Microarray analysis reveals that WRKY46 regulates a set of genes involved in cellular osmoprotection and redox homeostasis under dehydration stress, which is confirmed by ROS and malondialdehyde (MDA) levels in stressed seedlings. Moreover, WRKY46 modulates light-dependent starch metabolism in guard cells via regulating QUA-QUINE STARCH (QQS) gene expression. Taken together, we demonstrate that WRKY46 plays dual roles in regulating plant responses to drought and salt stress and light-dependent stomatal opening in guard cells. PMID:24773321

  3. Transcriptome Changes for Arabidopsis in Response to Salt, Osmotic, and Cold Stress1[w

    PubMed Central

    Kreps, Joel A.; Wu, Yajun; Chang, Hur-Song; Zhu, Tong; Wang, Xun; Harper, Jeff F.

    2002-01-01

    To identify genes of potential importance to cold, salt, and drought tolerance, global expression profiling was performed on Arabidopsis plants subjected to stress treatments of 4°C, 100 mm NaCl, or 200 mm mannitol, respectively. RNA samples were collected separately from leaves and roots after 3- and 27-h stress treatments. Profiling was conducted with a GeneChip microarray with probe sets for approximately 8,100 genes. Combined results from all three stresses identified 2,409 genes with a greater than 2-fold change over control. This suggests that about 30% of the transcriptome is sensitive to regulation by common stress conditions. The majority of changes were stimulus specific. At the 3-h time point, less than 5% (118 genes) of the changes were observed as shared by all three stress responses. By 27 h, the number of shared responses was reduced more than 10-fold (< 0.5%), consistent with a progression toward more stimulus-specific responses. Roots and leaves displayed very different changes. For example, less than 14% of the cold-specific changes were shared between root and leaves at both 3 and 27 h. The gene with the largest induction under all three stress treatments was At5g52310 (LTI/COR78), with induction levels in roots greater than 250-fold for cold, 40-fold for mannitol, and 57-fold for NaCl. A stress response was observed for 306 (68%) of the known circadian controlled genes, supporting the hypothesis that an important function of the circadian clock is to “anticipate” predictable stresses such as cold nights. Although these results identify hundreds of potentially important transcriptome changes, the biochemical functions of many stress-regulated genes remain unknown. PMID:12481097

  4. Acute psychosocial stress reduces pain modulation capabilities in healthy men.

    PubMed

    Geva, Nirit; Pruessner, Jens; Defrin, Ruth

    2014-11-01

    Anecdotes on the ability of individuals to continue to function under stressful conditions despite injuries causing excruciating pain suggest that acute stress may induce analgesia. However, studies exploring the effect of acute experimental stress on pain perception show inconsistent results, possibly due to methodological differences. Our aim was to systematically study the effect of acute stress on pain perception using static and dynamic, state-of-the-art pain measurements. Participants were 29 healthy men who underwent the measurement of heat-pain threshold, heat-pain intolerance, temporal summation of pain, and conditioned pain modulation (CPM). Testing was conducted before and during exposure to the Montreal Imaging Stress Task (MIST), inducing acute psychosocial stress. Stress levels were evaluated using perceived ratings of stress and anxiety, autonomic variables, and salivary cortisol. The MIST induced a significant stress reaction. Although pain threshold and pain intolerance were unaffected by stress, an increase in temporal summation of pain and a decrease in CPM were observed. These changes were significantly more robust among individuals with stronger reaction to stress ("high responders"), with a significant correlation between the perception of stress and the performance in the pain measurements. We conclude that acute psychosocial stress seems not to affect the sensitivity to pain, however, it significantly reduces the ability to modulate pain in a dose-response manner. Considering the diverse effects of stress in this and other studies, it appears that the type of stress and the magnitude of its appraisal determine its interactions with the pain system. PMID:25250721

  5. Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta-analysis

    PubMed Central

    Augé, Robert M.; Toler, Heather D.; Saxton, Arnold M.

    2014-01-01

    Arbuscular mycorrhizal (AM) symbiosis can enhance plant resistance to NaCl stress in several ways. Two fundamental roles involve osmotic and ionic adjustment. By stimulating accumulation of solutes, the symbiosis can help plants sustain optimal water balance and diminish Na+ toxicity. The size of the AM effect on osmolytes has varied widely and is unpredictable. We conducted a meta-analysis to determine the size of the AM effect on 22 plant solute characteristics after exposure to NaCl and to examine how experimental conditions have influenced the AM effect. Viewed across studies, AM symbioses have had marked effects on plant K+, increasing root and shoot K+ concentrations by an average of 47 and 42%, respectively, and root and shoot K+/Na+ ratios by 47 and 58%, respectively. Among organic solutes, soluble carbohydrates have been most impacted, with AM-induced increases of 28 and 19% in shoots and roots. The symbiosis has had no consistent effect on several characteristics, including root glycine betaine concentration, root or shoot Cl− concentrations, leaf Ψπ, or shoot proline or polyamine concentrations. The AM effect has been very small for shoot Ca++ concentration and root concentrations of Na+, Mg++ and proline. Interpretations about AM-conferred benefits regarding these compounds may be best gauged within the context of the individual studies. Shoot and root K+/Na+ ratios and root proline concentration showed significant between-study heterogeneity, and we examined nine moderator variables to explore what might explain the differences in mycorrhizal effects on these parameters. Moderators with significant impacts included AM taxa, host type, presence or absence of AM growth promotion, stress severity, and whether NaCl constituted part or all of the experimental saline stress treatment. Meta-regression of shoot K+/Na+ ratio showed a positive response to root colonization, and root K+/Na+ ratio a negative response to time of exposure to NaCl. PMID:25368626

  6. Developmental Stage Specificity and the Role of Mitochondrial Metabolism in the Response of Arabidopsis Leaves to Prolonged Mild Osmotic Stress1[C][W][OA

    PubMed Central

    Skirycz, Aleksandra; De Bodt, Stefanie; Obata, Toshihiro; De Clercq, Inge; Claeys, Hannes; De Rycke, Riet; Andriankaja, Megan; Van Aken, Olivier; Van Breusegem, Frank; Fernie, Alisdair R.; Inzé, Dirk

    2010-01-01

    When subjected to stress, plants reprogram their growth by largely unknown mechanisms. To provide insights into this process, the growth of Arabidopsis (Arabidopsis thaliana) leaves that develop under mild osmotic stress was studied. Early during leaf development, cell number and size were reduced by stress, but growth was remarkably adaptable, as division and expansion rates were identical to controls within a few days of leaf initiation. To investigate the molecular basis of the observed adaptability, leaves with only proliferating, exclusively expanding, and mature cells were analyzed by transcriptomics and targeted metabolomics. The stress response measured in growing and mature leaves was largely distinct; several hundred transcripts and multiple metabolites responded exclusively in the proliferating and/or expanding leaves. Only a few genes were differentially expressed across the three stages. Data analysis showed that proliferation and expansion were regulated by common regulatory circuits, involving ethylene and gibberellins but not abscisic acid. The role of ethylene was supported by the analysis of ethylene-insensitive mutants. Exclusively in proliferating cells, stress induced genes of the so-called “mitochondrial dysfunction regulon,” comprising alternative oxidase. Up-regulation for eight of these genes was confirmed with promoter:β-glucuronidase reporter lines. Furthermore, mitochondria of stress-treated dividing cells were morphologically distinct from control ones, and growth of plants overexpressing the alternative oxidase gene was more tolerant to osmotic and drought stresses. Taken together, our data underline the value of analyzing stress responses in development and demonstrate the importance of mitochondrial respiration for sustaining cell proliferation under osmotic stress conditions. PMID:19906889

  7. Acute Painful Stress and Inflammatory Mediator Production

    PubMed Central

    Griffis, Charles A.; Breen, Elizabeth Crabb; Compton, Peggy; Goldberg, Alyssa; Witarama, Tuff; Kotlerman, Jenny; Irwin, Michael R.

    2014-01-01

    Pro-inflammatory pathways may be activated under conditions of painful stress, which is hypothesized to worsen the pain experience and place medically-vulnerable populations at risk for increased morbidity. Objectives To evaluate the effects of pain and subjective pain-related stress on pro-inflammatory activity. Methods A total of 19 healthy control subjects underwent a single standard cold-pressor pain test (CPT) and a no-pain control condition. Indicators of pain and stress were measured and related to inflammatory immune responses (CD811a, IL-1RA, and IL-6) immediately following the painful stimulus, and compared to responses under non-pain conditions. Heart rate and mean arterial pressure were measured as indicators of sympathetic stimulation. Results CPT was clearly painful and generated an activation of the sympathetic nervous system. CD811a increased in both conditions, but with no statistically significant greater increase following CPT (p < .06). IL-1RA demonstrated a non-statistically significant increase following CPT (p < .07). The change in IL-6 following CPT differed significantly from the response seen in the control condition (p < .02). Conclusions These findings suggest that CP acute pain may affect proinflammatory pathways, possibly through mechanisms related to adrenergic activation. PMID:23407214

  8. Transcription Factor CREB3L1 Regulates Endoplasmic Reticulum Stress Response Genes in the Osmotically Challenged Rat Hypothalamus

    PubMed Central

    Greenwood, Mingkwan; Greenwood, Michael Paul; Paton, Julian F. R.; Murphy, David

    2015-01-01

    Arginine vasopressin (AVP) is synthesised in magnocellular neurons (MCNs) of supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus. In response to the hyperosmotic stressors of dehydration (complete fluid deprivation, DH) or salt loading (drinking 2% salt solution, SL), AVP synthesis increases in MCNs, which over-burdens the protein folding machinery in the endoplasmic reticulum (ER). ER stress and the unfolded protein response (UPR) are signaling pathways that improve ER function in response to the accumulation of misfold/unfold protein. We asked whether an ER stress response was activated in the SON and PVN of DH and SL rats. We observed increased mRNA expression for the immunoglobulin heavy chain binding protein (BiP), activating transcription factor 4 (Atf4), C/EBP-homologous protein (Chop), and cAMP responsive element binding protein 3 like 1 (Creb3l1) in both SON and PVN of DH and SL rats. Although we found no changes in the splicing pattern of X box-binding protein 1 (Xbp1), an increase in the level of the unspliced form of Xbp1 (Xbp1U) was observed in DH and SL rats. CREB3L1, a novel ER stress inducer, has been shown to be activated by ER stress to regulate the expression of target genes. We have previously shown that CREB3L1 is a transcriptional regulator of the AVP gene; however, a role for CREB3L1 in the response to ER stress has yet to be investigated in MCNs. Here, we used lentiviral vectors to introduce a dominant negative form of CREB3L1 (CREB3L1DN) in the rat SON. Expression of CREB3L1DN in the SON decreased Chop and Xbp1U mRNA levels, but not BiP and Atf4 transcript expression. CREB3L1 is thus implicated as a transcriptional mediator of the ER stress response in the osmotically stimulated SON. PMID:25915053

  9. Transcription Factor CREB3L1 Regulates Endoplasmic Reticulum Stress Response Genes in the Osmotically Challenged Rat Hypothalamus.

    PubMed

    Greenwood, Mingkwan; Greenwood, Michael Paul; Paton, Julian F R; Murphy, David

    2015-01-01

    Arginine vasopressin (AVP) is synthesised in magnocellular neurons (MCNs) of supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus. In response to the hyperosmotic stressors of dehydration (complete fluid deprivation, DH) or salt loading (drinking 2% salt solution, SL), AVP synthesis increases in MCNs, which over-burdens the protein folding machinery in the endoplasmic reticulum (ER). ER stress and the unfolded protein response (UPR) are signaling pathways that improve ER function in response to the accumulation of misfold/unfold protein. We asked whether an ER stress response was activated in the SON and PVN of DH and SL rats. We observed increased mRNA expression for the immunoglobulin heavy chain binding protein (BiP), activating transcription factor 4 (Atf4), C/EBP-homologous protein (Chop), and cAMP responsive element binding protein 3 like 1 (Creb3l1) in both SON and PVN of DH and SL rats. Although we found no changes in the splicing pattern of X box-binding protein 1 (Xbp1), an increase in the level of the unspliced form of Xbp1 (Xbp1U) was observed in DH and SL rats. CREB3L1, a novel ER stress inducer, has been shown to be activated by ER stress to regulate the expression of target genes. We have previously shown that CREB3L1 is a transcriptional regulator of the AVP gene; however, a role for CREB3L1 in the response to ER stress has yet to be investigated in MCNs. Here, we used lentiviral vectors to introduce a dominant negative form of CREB3L1 (CREB3L1DN) in the rat SON. Expression of CREB3L1DN in the SON decreased Chop and Xbp1U mRNA levels, but not BiP and Atf4 transcript expression. CREB3L1 is thus implicated as a transcriptional mediator of the ER stress response in the osmotically stimulated SON. PMID:25915053

  10. Osmotic stress response: quantification of cell maintenance and metabolic fluxes in a lysine-overproducing strain of Corynebacterium glutamicum.

    PubMed

    Varela, Cristian A; Baez, Mauricio E; Agosin, Eduardo

    2004-07-01

    Osmotic stress diminishes cell productivity and may cause cell inactivation in industrial fermentations. The quantification of metabolic changes under such conditions is fundamental for understanding and describing microbial behavior during bioprocesses. We quantified the gradual changes that take place when a lysine-overproducing strain of Corynebacterium glutamicum is grown in continuous culture with saline gradients at different dilution rates. The use of compatible solutes depended on environmental conditions; certain osmolites predominated at different dilution rates and extracellular osmolalities. A metabolic flux analysis showed that at high dilution rates C. glutamicum redistributed its metabolic fluxes, favoring energy formation over growth. At low dilution rates, cell metabolism accelerated as the osmolality was steadily increased. Flexibility in the oxaloacetate node proved to be key for the energetic redistribution that occurred when cells were grown at high dilution rates. Substrate and ATP maintenance coefficients increased 30- and 5-fold, respectively, when the osmolality increased, which demonstrates that energy pool management is fundamental for sustaining viability. PMID:15240305

  11. Proteomic and phosphoproteomic analysis of polyethylene glycol-induced osmotic stress in root tips of common bean (Phaseolus vulgaris L.)

    PubMed Central

    Horst, Walter Johannes

    2013-01-01

    Previous studies have shown that polyethylene glycol (PEG)-induced osmotic stress (OS) reduces cell-wall (CW) porosity and limits aluminium (Al) uptake by root tips of common bean (Phaseolus vulgaris L.). A subsequent transcriptomic study suggested that genes related to CW processes are involved in adjustment to OS. In this study, a proteomic and phosphoproteomic approach was applied to identify OS-induced protein regulation to further improve our understanding of how OS affects Al accumulation. Analysis of total soluble proteins in root tips indicated that, in total, 22 proteins were differentially regulated by OS; these proteins were functionally categorized. Seventy-seven per- cent of the total expressed proteins were involved in metabolic pathways, particularly of carbohydrate and amino acid metabolism. An analysis of the apoplastic proteome revealed that OS reduced the level of five proteins and increased that of seven proteins. Investigation of the total soluble phosphoproteome suggested that dehydrin responded to OS with an enhanced phosphorylation state without a change in abundance. A cellular immunolocalization analysis indicated that dehydrin was localized mainly in the CW. This suggests that dehydrin may play a major protective role in the OS-induced physical breakdown of the CW structure and thus maintenance of the reversibility of CW extensibility during recovery from OS. The proteomic and phosphoproteomic analyses provided novel insights into the complex mechanisms of OS-induced reduction of Al accumulation in the root tips of common bean and highlight a key role for modification of CW structure. PMID:24123251

  12. A Sweetpotato Geranylgeranyl Pyrophosphate Synthase Gene, IbGGPS, Increases Carotenoid Content and Enhances Osmotic Stress Tolerance in Arabidopsis thaliana.

    PubMed

    Chen, Wei; He, Shaozhen; Liu, Degao; Patil, Gunvant B; Zhai, Hong; Wang, Feibing; Stephenson, Troy J; Wang, Yannan; Wang, Bing; Valliyodan, Babu; Nguyen, Henry T; Liu, Qingchang

    2015-01-01

    Sweetpotato highly produces carotenoids in storage roots. In this study, a cDNA encoding geranylgeranyl phyrophosphate synthase (GGPS), named IbGGPS, was isolated from sweetpotato storage roots. Green fluorescent protein (GFP) was fused to the C-terminus of IbGGPS to obtain an IbGGPS-GFP fusion protein that was transiently expressed in both epidermal cells of onion and leaves of tobacco. Confocal microscopic analysis determined that the IbGGPS-GFP protein was localized to specific areas of the plasma membrane of onion and chloroplasts in tobacco leaves. The coding region of IbGGPS was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana to obtain transgenic plants. High performance liquid chromatography (HPLC) analysis showed a significant increase of total carotenoids in transgenic plants. The seeds of transgenic and wild-type plants were germinated on an agar medium supplemented with polyethylene glycol (PEG). Transgenic seedlings grew significantly longer roots than wild-type ones did. Further enzymatic analysis showed an increased activity of superoxide dismutase (SOD) in transgenic seedlings. In addition, the level of malondialdehyde (MDA) was reduced in transgenics. qRT-PCR analysis showed altered expressions of several genes involved in the carotenoid biosynthesis in transgenic plants. These data results indicate that IbGGPS is involved in the biosynthesis of carotenoids in sweetpotato storage roots and likely associated with tolerance to osmotic stress. PMID:26376432

  13. A Sweetpotato Geranylgeranyl Pyrophosphate Synthase Gene, IbGGPS, Increases Carotenoid Content and Enhances Osmotic Stress Tolerance in Arabidopsis thaliana

    PubMed Central

    Liu, Degao; Patil, Gunvant B.; Zhai, Hong; Wang, Feibing; Stephenson, Troy J.; Wang, Yannan; Wang, Bing; Valliyodan, Babu; Nguyen, Henry T.; Liu, Qingchang

    2015-01-01

    Sweetpotato highly produces carotenoids in storage roots. In this study, a cDNA encoding geranylgeranyl phyrophosphate synthase (GGPS), named IbGGPS, was isolated from sweetpotato storage roots. Green fluorescent protein (GFP) was fused to the C-terminus of IbGGPS to obtain an IbGGPS-GFP fusion protein that was transiently expressed in both epidermal cells of onion and leaves of tobacco. Confocal microscopic analysis determined that the IbGGPS-GFP protein was localized to specific areas of the plasma membrane of onion and chloroplasts in tobacco leaves. The coding region of IbGGPS was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana to obtain transgenic plants. High performance liquid chromatography (HPLC) analysis showed a significant increase of total carotenoids in transgenic plants. The seeds of transgenic and wild-type plants were germinated on an agar medium supplemented with polyethylene glycol (PEG). Transgenic seedlings grew significantly longer roots than wild-type ones did. Further enzymatic analysis showed an increased activity of superoxide dismutase (SOD) in transgenic seedlings. In addition, the level of malondialdehyde (MDA) was reduced in transgenics. qRT-PCR analysis showed altered expressions of several genes involved in the carotenoid biosynthesis in transgenic plants. These data results indicate that IbGGPS is involved in the biosynthesis of carotenoids in sweetpotato storage roots and likely associated with tolerance to osmotic stress. PMID:26376432

  14. Acute stress does not affect the impairing effect of chronic stress on memory retrieval

    PubMed Central

    Ozbaki, Jamile; Goudarzi, Iran; Salmani, Mahmoud Elahdadi; Rashidy-Pour, Ali

    2016-01-01

    Objective(s): Due to the prevalence and pervasiveness of stress in modern life and exposure to both chronic and acute stresses, it is not clear whether prior exposure to chronic stress can influence the impairing effects of acute stress on memory retrieval. This issue was tested in this study. Materials and Methods: Adult male Wistar rats were randomly assigned to the following groups: control, acute, chronic, and chronic + acute stress groups. The rats were trained with six trials per day for 6 consecutive days in the water maze. Following training, the rats were either kept in control conditions or exposed to chronic stress in a restrainer 6 hr/day for 21 days. On day 22, a probe test was done to measure memory retention. Time spent in target and opposite areas, platform location latency, and proximity were used as indices of memory retention. To induce acute stress, 30 min before the probe test, animals received a mild footshock. Results: Stressed animals spent significantly less time in the target quadrant and more time in the opposite quadrant than control animals. Moreover, the stressed animals showed significantly increased platform location latency and proximity as compared with control animals. No significant differences were found in these measures among stress exposure groups. Finally, both chronic and acute stress significantly increased corticosterone levels. Conclusion: Our results indicate that both chronic and acute stress impair memory retrieval similarly. Additionally, the impairing effects of chronic stress on memory retrieval were not influenced by acute stress.

  15. Acute Stress Symptoms in Young Children with Burns

    ERIC Educational Resources Information Center

    Stoddard, Frederick J.; Saxe, Glenn; Ronfeldt, Heidi; Drake, Jennifer E.; Burns, Jennifer; Edgren, Christy; Sheridan, Robert

    2006-01-01

    Objective: Posttraumatic stress disorder symptoms are a focus of much research with older children, but little research has been conducted with young children, who account for about 50% of all pediatric burn injuries. This is a 3-year study of 12- to 48-month-old acutely burned children to assess acute traumatic stress outcomes. The aims were to…

  16. The Sigma Factor AlgU (AlgT) Controls Exopolysaccharide Production and Tolerance towards Desiccation and Osmotic Stress in the Biocontrol Agent Pseudomonas fluorescens CHA0

    PubMed Central

    Schnider-Keel, Ursula; Lejbølle, Kirsten Bang; Baehler, Eric; Haas, Dieter; Keel, Christoph

    2001-01-01

    A variety of stress situations may affect the activity and survival of plant-beneficial pseudomonads added to soil to control root diseases. This study focused on the roles of the sigma factor AlgU (synonyms, AlgT, RpoE, and ς22) and the anti-sigma factor MucA in stress adaptation of the biocontrol agent Pseudomonas fluorescens CHA0. The algU-mucA-mucB gene cluster of strain CHA0 was similar to that of the pathogens Pseudomonas aeruginosa and Pseudomonas syringae. Strain CHA0 is naturally nonmucoid, whereas a mucA deletion mutant or algU-overexpressing strains were highly mucoid due to exopolysaccharide overproduction. Mucoidy strictly depended on the global regulator GacA. An algU deletion mutant was significantly more sensitive to osmotic stress than the wild-type CHA0 strain and the mucA mutant were. Expression of an algU′-′lacZ reporter fusion was induced severalfold in the wild type and in the mucA mutant upon exposure to osmotic stress, whereas a lower, noninducible level of expression was observed in the algU mutant. Overexpression of algU did not enhance tolerance towards osmotic stress. AlgU was found to be essential for tolerance of P. fluorescens towards desiccation stress in a sterile vermiculite-sand mixture and in a natural sandy loam soil. The size of the population of the algU mutant declined much more rapidly than the size of the wild-type population at soil water contents below 5%. In contrast to its role in pathogenic pseudomonads, AlgU did not contribute to tolerance of P. fluorescens towards oxidative and heat stress. In conclusion, AlgU is a crucial determinant in the adaptation of P. fluorescens to dry conditions and hyperosmolarity, two major stress factors that limit bacterial survival in the environment. PMID:11722923

  17. Identification of Chimeric Repressors that Confer Salt and Osmotic Stress Tolerance in Arabidopsis

    PubMed Central

    Kazama, Daisuke; Itakura, Masateru; Kurusu, Takamitsu; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Tada, Yuichi

    2013-01-01

    We produced transgenic Arabidopsis plants that express chimeric genes for transcription factors converted to dominant repressors, using Chimeric REpressor gene-Silencing Technology (CRES-T), and evaluated the salt tolerance of each line. The seeds of the CRES-T lines for ADA2b, Msantd, DDF1, DREB26, AtGeBP, and ATHB23 exhibited higher germination rates than Wild type (WT) and developed rosette plants under up to 200 mM NaCl or 400 mM mannitol. WT plants did not grow under these conditions. In these CRES-T lines, the expression patterns of stress-related genes such as RD29A, RD22, DREB1A, and P5CS differed from those in WT plants, suggesting the involvement of the six transcription factors identified here in the stress response pathways regulated by the products of these stress-related genes. Our results demonstrate additional proof that CRES-T is a superior tool for revealing the function of transcription factors. PMID:27137403

  18. Osmotic Regulation Is Required for Cancer Cell Survival under Solid Stress.

    PubMed

    McGrail, Daniel J; McAndrews, Kathleen M; Brandenburg, Chandler P; Ravikumar, Nithin; Kieu, Quang Minh N; Dawson, Michelle R

    2015-10-01

    For a solid tumor to grow, it must be able to support the compressive stress that is generated as it presses against the surrounding tissue. Although the literature suggests a role for the cytoskeleton in counteracting these stresses, there has been no systematic evaluation of which filaments are responsible or to what degree. Here, using a three-dimensional spheroid model, we show that cytoskeletal filaments do not actively support compressive loads in breast, ovarian, and prostate cancer. However, modulation of tonicity can induce alterations in spheroid size. We find that under compression, tumor cells actively efflux sodium to decrease their intracellular tonicity, and that this is reversible by blockade of sodium channel NHE1. Moreover, although polymerized actin does not actively support the compressive load, it is required for sodium efflux. Compression-induced cell death is increased by both sodium blockade and actin depolymerization, whereas increased actin polymerization offers protective effects and increases sodium efflux. Taken together, these results demonstrate that cancer cells modulate their tonicity to survive under compressive solid stress. PMID:26445434

  19. Over-expression of StAPX in tobacco improves seed germination and increases early seedling tolerance to salinity and osmotic stresses.

    PubMed

    Sun, Wei-Hong; Duan, Ming; Shu, De-Feng; Yang, Sha; Meng, Qing-Wei

    2010-08-01

    Ascorbate peroxidase plays a key role in scavenging reactive oxygen species under environmental stresses and in protecting plant cells against toxic effects. The Solanum lycopersicum thylakoid-bound ascorbate peroxidase gene (StAPX) was introduced into tobacco under the control of the cauliflower mosaic virus 35S promoter. Transformants were selected for their ability to grow on medium containing kanamycin. RNA gel blot analysis confirmed that StAPX was transferred into the tobacco genome and StAPX was induced by salt and osmotic stresses in tomato leaves. Over-expression of StAPX in tobacco improved seed germination rate and elevated stress tolerance during post-germination development. Two transgenic lines showed higher APX activity and accumulated less hydrogen peroxide than wild-type plants after stress treatments. The photosynthetic rates, the root lengths, the fresh and dry weights of the transgenic lines were distinctly higher than those of wild-type plants under stress conditions. Results indicated that the over-expression of StAPX had enhanced tolerance to salt stress and osmotic stress in transgenic tobacco plants. PMID:20524119

  20. Role of Arabidopsis UV RESISTANCE LOCUS 8 in plant growth reduction under osmotic stress and low levels of UV-B.

    PubMed

    Fasano, Rossella; Gonzalez, Nathalie; Tosco, Alessandra; Dal Piaz, Fabrizio; Docimo, Teresa; Serrano, Ramon; Grillo, Stefania; Leone, Antonella; Inzé, Dirk

    2014-05-01

    In high-light environments, plants are exposed to different types of stresses, such as an excess of UV-B, but also drought stress which triggers a common morphogenic adaptive response resulting in a general reduction of plant growth. Here, we report that the Arabidopsis thaliana UV RESISTANCE LOCUS 8 (UVR8) gene, a known regulator of the UV-B morphogenic response, was able to complement a Saccharomyces cerevisiae osmo-sensitive mutant and its expression was induced after osmotic or salt stress in Arabidopsis plants. Under low levels of UV-B, plants overexpressing UVR8 are dwarfed with a reduced root development and accumulate more flavonoids compared to control plants. The growth defects are mainly due to the inhibition of cell expansion. The growth inhibition triggered by UVR8 overexpression in plants under low levels of UV-B was exacerbated by mannitol-induced osmotic stress, but it was not significantly affected by ionic stress. In contrast, uvr8-6 mutant plants do not differ from wild-type plants under standard conditions, but they show an increased shoot growth under high-salt stress. Our data suggest that UVR8-mediated accumulation of flavonoid and possibly changes in auxin homeostasis are the underlying mechanism of the observed growth phenotypes and that UVR8 might have an important role for integrating plant growth and stress signals. PMID:24413416

  1. Evidence for a Role of Salicylic Acid in the Oxidative Damage Generated by NaCl and Osmotic Stress in Arabidopsis Seedlings1

    PubMed Central

    Borsani, Omar; Valpuesta, Victoriano; Botella, Miguel A.

    2001-01-01

    Previous studies have shown that salicylic acid (SA) is an essential component of the plant resistance to pathogens. We now show that SA plays a role in the plant response to adverse environmental conditions, such as salt and osmotic stresses. We have studied the responses of wild-type Arabidopsis and an SA-deficient transgenic line expressing a salicylate hydroxylase (NahG) gene to different abiotic stress conditions. Wild-type plants germinated under moderate light conditions in media supplemented with 100 mm NaCl or 270 mm mannitol showed extensive necrosis in the shoot. In contrast, NahG plants germinated under the same conditions remained green and developed true leaves. The lack of necrosis observed in NahG seedlings under the same conditions suggests that SA potentiates the generation of reactive oxygen species in photosynthetic tissues during salt and osmotic stresses. This hypothesis is supported by the following observations. First, the herbicide methyl viologen, a generator of superoxide radical during photosynthesis, produced a necrotic phenotype only in wild-type plants. Second, the presence of reactive oxygen-scavenging compounds in the germination media reversed the wild-type necrotic phenotype seen under salt and osmotic stress. Third, a greater increase in the oxidized state of the glutathione pool under NaCl stress was observed in wild-type seedlings compared with NahG seedlings. Fourth, greater oxidative damage occurred in wild-type seedlings compared with NahG seedlings under NaCl stress as measured by lipid peroxidation. Our data support a model for SA potentiating the stress response of the germinating Arabidopsis seedling. PMID:11457953

  2. Overexpression of AtEDT1/HDG11 in Chinese Kale (Brassica oleracea var. alboglabra) Enhances Drought and Osmotic Stress Tolerance.

    PubMed

    Zhu, Zhangsheng; Sun, Binmei; Xu, Xiaoxia; Chen, Hao; Zou, Lifang; Chen, Guoju; Cao, Bihao; Chen, Changming; Lei, Jianjun

    2016-01-01

    Plants are constantly challenged by environmental stresses, including drought and high salinity. Improvement of drought and osmotic stress tolerance without yield decrease has been a great challenge in crop improvement. The Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a protein of the class IV HD-Zip family, has been demonstrated to significantly improve drought tolerance in Arabidopsis, rice, and pepper. Here, we report that AtEDT1/HDG11 confers drought and osmotic stress tolerance in the Chinese kale. AtEDT1/HDG11-overexpression lines exhibit auxin-overproduction phenotypes, such as long hypocotyls, tall stems, more root hairs, and a larger root system architecture. Compared with the untransformed control, transgenic lines have significantly reduced stomatal density. In the leaves of transgenic Chinese kale plants, proline (Pro) content and reactive oxygen species-scavenging enzyme activity was significantly increased after drought and osmotic stress, particularly compared to wild kale. More importantly, AtEDT1/HDG11-overexpression leads to abscisic acid (ABA) hypersensitivity, resulting in ABA inhibitor germination and induced stomatal closure. Consistent with observed phenotypes, the expression levels of auxin, ABA, and stress-related genes were also altered under both normal and/or stress conditions. Further analysis showed that AtEDT1/HDG11, as a transcription factor, can target the auxin biosynthesis gene YUCC6 and ABA response genes ABI3 and ABI5. Collectively, our results provide a new insight into the role of AtEDT1/HDG11 in enhancing abiotic stress resistance through auxin- and ABA-mediated signaling response in Chinese kale. PMID:27625663

  3. Overexpression of AtEDT1/HDG11 in Chinese Kale (Brassica oleracea var. alboglabra) Enhances Drought and Osmotic Stress Tolerance

    PubMed Central

    Zhu, Zhangsheng; Sun, Binmei; Xu, Xiaoxia; Chen, Hao; Zou, Lifang; Chen, Guoju; Cao, Bihao; Chen, Changming; Lei, Jianjun

    2016-01-01

    Plants are constantly challenged by environmental stresses, including drought and high salinity. Improvement of drought and osmotic stress tolerance without yield decrease has been a great challenge in crop improvement. The Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a protein of the class IV HD-Zip family, has been demonstrated to significantly improve drought tolerance in Arabidopsis, rice, and pepper. Here, we report that AtEDT1/HDG11 confers drought and osmotic stress tolerance in the Chinese kale. AtEDT1/HDG11-overexpression lines exhibit auxin-overproduction phenotypes, such as long hypocotyls, tall stems, more root hairs, and a larger root system architecture. Compared with the untransformed control, transgenic lines have significantly reduced stomatal density. In the leaves of transgenic Chinese kale plants, proline (Pro) content and reactive oxygen species-scavenging enzyme activity was significantly increased after drought and osmotic stress, particularly compared to wild kale. More importantly, AtEDT1/HDG11-overexpression leads to abscisic acid (ABA) hypersensitivity, resulting in ABA inhibitor germination and induced stomatal closure. Consistent with observed phenotypes, the expression levels of auxin, ABA, and stress-related genes were also altered under both normal and/or stress conditions. Further analysis showed that AtEDT1/HDG11, as a transcription factor, can target the auxin biosynthesis gene YUCC6 and ABA response genes ABI3 and ABI5. Collectively, our results provide a new insight into the role of AtEDT1/HDG11 in enhancing abiotic stress resistance through auxin- and ABA-mediated signaling response in Chinese kale. PMID:27625663

  4. The mitochondria of stallion spermatozoa are more sensitive than the plasmalemma to osmotic-induced stress: role of c-Jun N-terminal kinase (JNK) pathway.

    PubMed

    García, Beatriz Macías; Moran, Alvaro Miró; Fernández, Lauro González; Ferrusola, Cristina Ortega; Rodriguez, Antolin Morillo; Bolaños, Juan Maria Gallardo; da Silva, Carolina Maria Balao; Martínez, Heriberto Rodríguez; Tapia, Jose A; Peña, Fernando J

    2012-01-01

    Cryopreservation introduces extreme temperature and osmolality changes that impart lethal and sublethal effects on spermatozoa. Additionally, there is evidence that the osmotic stress induced by cryopreservation causes oxidative stress to spermatozoa. The main sources of reactive oxygen species in mammalian sperm are the mitochondria. In view of this, the aim of our study was to test whether or not osmotic stress was able to induce mitochondrial damage and to explore the osmotic tolerance of the mitochondria of stallion spermatozoa. Ejaculates from 7 stallions were subjected to osmolalities ranging from 75 to 1500 mOsm/kg, and the effect on sperm membrane integrity and mitochondrial membrane potential was studied. Additionally, the effects of changes in osmolality from hyposmotic to isosmotic and from hyperosmotic to isosmotic solutions were studied (osmotic excursions). The cellular volume of stallion spermatozoa under isosmotic conditions was 20.4 ± 0.33 μm(3). When exposed to low osmolality, the stallion spermatozoa behaved like a linear osmometer, whereas exposure to high osmolalities up to 900 mOsm/kg resulted in decreased sperm volume. Although sperm membranes were relatively resistant to changes in osmolality, mitochondrial membrane potential decreased when osmolalities were low or very high (10.7 ± 1.74 and 16.5 ± 1.70 at 75 and 150 mOsm/kg, respectively, and 13.1 ± 1.83 at 1500 mOsm/kg), whereas in isosmolar controls the percentage of stallion sperm mitochondria with a high membrane potential was 41.1 ± 1.69 (P < .01). Osmotic excursions induced greater damage than exposure of spermatozoa to a given nonphysiologic osmolality, and again the mitochondria were more prone to damage induced by osmotic excursions than was the sperm plasma membrane. In search of intracellular components that could mediate these changes, we have detected for the first time the c-Jun N-terminal kinase 1/2 in stallion spermatozoa, which are apparently involved in the

  5. Putative Stress Sensors WscA and WscB Are Involved in Hypo-Osmotic and Acidic pH Stress Tolerance in Aspergillus nidulans ▿ †

    PubMed Central

    Futagami, Taiki; Nakao, Seiki; Kido, Yayoi; Oka, Takuji; Kajiwara, Yasuhiro; Takashita, Hideharu; Omori, Toshiro; Furukawa, Kensuke; Goto, Masatoshi

    2011-01-01

    Wsc proteins have been identified in fungi and are believed to be stress sensors in the cell wall integrity (CWI) signaling pathway. In this study, we characterized the sensor orthologs WscA and WscB in Aspergillus nidulans. Using hemagglutinin-tagged WscA and WscB, we showed both Wsc proteins to be N- and O-glycosylated and localized in the cell wall and membrane, implying that they are potential cell surface sensors. The wscA disruptant (ΔwscA) strain was characterized by reduced colony and conidia formation and a high frequency of swollen hyphae under hypo-osmotic conditions. The deficient phenotype of the ΔwscA strain was facilitated by acidification, but not by alkalization or antifungal agents. In contrast, osmotic stabilization restored the normal phenotype in the ΔwscA strain. A similar inhibition was observed in the wscB disruptant strain, but to a lesser extent. In addition, a double wscA and wscB disruptant (ΔwscA ΔwscB) strain was viable, but its growth was inhibited to a greater degree, indicating that the functions of the products of these genes are redundant. Transcription of α-1,3-glucan synthase genes (agsA and agsB) was significantly altered in the wscA disruptant strain, resulting in an increase in the amount of alkali-soluble cell wall glucan compared to that in the wild-type (wt) strain. An increase in mitogen-activated protein kinase (MpkA) phosphorylation was observed as a result of wsc disruption. Moreover, the transient transcriptional upregulation of the agsB gene via MpkA signaling was observed in the ΔwscA ΔwscB strain to the same degree as in the wt strain. These results indicate that A. nidulans Wsc proteins have a different sensing spectrum and downstream signaling pathway than those in the yeast Saccharomyces cerevisiae and that they play an important role in CWI under hypo-osmotic and acidic pH conditions. PMID:21926329

  6. Role of osmolytes in adaptation of osmotically stressed and chill-stressed Listeria monocytogenes grown in liquid media and on processed meat surfaces.

    PubMed Central

    Smith, L T

    1996-01-01

    Listeria monocytogenes is a food-borne pathogen that is widely distributed in nature and is found in many kinds of fresh and processed foods. The pervasiveness of this organism is due, in part, to its ability to tolerate environments with elevated osmolarity and reduced temperatures. Previously, we showed that L. monocytogenes adapts to osmotic and chill stress by transporting the osmolyte glycine betaine from the environment and accumulating it intracellularly (R. Ko, L. T. Smith, and G. M. Smith, J. Bacteriol. 176:426-431, 1994). In the present study, the influence of various environmental conditions on the accumulation of glycine betaine and another osmolyte, carnitine, was investigated. Carnitine was shown to confer both chill and osmotic tolerance to the pathogen but was less effective than glycine betaine. The absolute amount of each osmolyte accumulated by the cell was dependent on the temperature, the osmolarity of the medium, and the phase of growth of the culture. L. monocytogenes also accumulated high levels of osmolytes when grown on a variety of processed meats at reduced temperatures. However, the contribution of carnitine to the total intracellular osmolyte concentration was much greater in samples grown on meat than in those grown in liquid media. While the amount of each osmolyte in meat was less than 1 nmol/mg (fresh weight), the overall levels of osmolytes in L. monocytogenes grown on meat were about the same as those in liquid samples, from about 200 to 1,000 nmol/mg of cell protein for each osmolyte. This finding suggests that the accumulation of osmolytes is as important in the survival of L. monocytogenes in meat as it is in liquid media. PMID:8795194

  7. Alteration of cell-wall porosity is involved in osmotic stress-induced enhancement of aluminium resistance in common bean (Phaseolus vulgaris L.).

    PubMed

    Yang, Zhong-Bao; Eticha, Dejene; Rao, Idupulapati Madhusudana; Horst, Walter Johannes

    2010-07-01

    Aluminium (Al) toxicity and drought are the two major abiotic stress factors limiting common bean production in the tropics. Using hydroponics, the short-term effects of combined Al toxicity and drought stress on root growth and Al uptake into the root apex were investigated. In the presence of Al stress, PEG 6000 (polyethylene glycol)-induced osmotic (drought) stress led to the amelioration of Al-induced inhibition of root elongation in the Al-sensitive genotype VAX 1. PEG 6000 (> PEG 1000) treatment greatly decreased Al accumulation in the 1 cm root apices even when the roots were physically separated from the PEG solution using dialysis membrane tubes. Upon removal of PEG from the treatment solution, the root tips recovered from osmotic stress and the Al accumulation capacity was quickly restored. The PEG-induced reduction of Al accumulation was not due to a lower phytotoxic Al concentration in the treatment solution, reduced negativity of the root apoplast, or to enhanced citrate exudation. Also cell-wall (CW) material isolated from PEG-treated roots showed a low Al-binding capacity which, however, was restored after destroying the physical structure of the CW. The comparison of the Al(3+), La(3+), Sr(2+), and Rb(+) binding capacity of the intact root tips and the isolated CW revealed the specificity of the PEG 6000 effect for Al. This could be due to the higher hydrated ionic radius of Al(3+) compared with other cations (Al(3+) > La(3+) > Sr(2+) > Rb(+)). In conclusion, the results provide circumstantial evidence that the osmotic stress-inhibited Al accumulation in root apices and thus reduced Al-induced inhibition of root elongation in the Al-sensitive genotype VAX 1 is related to the alteration of CW porosity resulting from PEG 6000-induced dehydration of the root apoplast. PMID:20511277

  8. Osmotic stress does not trigger brevetoxin production in the dinoflagellate Karenia brevis

    PubMed Central

    Sunda, William G.; Burleson, Cheska; Hardison, D. Ransom; Morey, Jeanine S.; Wang, Zhihong; Wolny, Jennifer; Corcoran, Alina A.; Flewelling, Leanne J.; Van Dolah, Frances M.

    2013-01-01

    With the global proliferation of toxic harmful algal bloom species, there is a need to identify the environmental and biological factors that regulate toxin production. One such species, Karenia brevis, forms nearly annual blooms that threaten coastal regions throughout the Gulf of Mexico. This dinoflagellate produces brevetoxins, which are potent neurotoxins that cause neurotoxic shellfish poisoning and respiratory illness in humans, as well as massive fish kills. A recent publication reported that a rapid decrease in salinity increased cellular toxin quotas in K. brevis and hypothesized that brevetoxins serve a role in osmoregulation. This finding implied that salinity shifts could significantly alter the toxic effects of blooms. We repeated the original experiments separately in three different laboratories and found no evidence for increased brevetoxin production in response to low-salinity stress in any of the eight K. brevis strains we tested, including three used in the original study. Thus, we find no support for an osmoregulatory function of brevetoxins. The original publication also stated that there was no known cellular function for brevetoxins. However, there is increasing evidence that brevetoxins promote survival of the dinoflagellates by deterring grazing by zooplankton. Whether they have other as-yet-unidentified cellular functions is currently unknown. PMID:23754363

  9. Functional genomics and proteomics of the cellular osmotic stress response in 'non-model' organisms.

    PubMed

    Kültz, Dietmar; Fiol, Diego; Valkova, Nelly; Gomez-Jimenez, Silvia; Chan, Stephanie Y; Lee, Jinoo

    2007-05-01

    All organisms are adapted to well-defined extracellular salinity ranges. Osmoregulatory mechanisms spanning all levels of biological organization, from molecules to behavior, are central to salinity adaptation. Functional genomics and proteomics approaches represent powerful tools for gaining insight into the molecular basis of salinity adaptation and euryhalinity in animals. In this review, we discuss our experience in applying such tools to so-called 'non-model' species, including euryhaline animals that are well-suited for studies of salinity adaptation. Suppression subtractive hybridization, RACE-PCR and mass spectrometry-driven proteomics can be used to identify genes and proteins involved in salinity adaptation or other environmental stress responses in tilapia, sharks and sponges. For protein identification in non-model species, algorithms based on sequence homology searches such as MSBLASTP2 are most powerful. Subsequent gene ontology and pathway analysis can then utilize sets of identified genes and proteins for modeling molecular mechanisms of environmental adaptation. Current limitations for proteomics in non-model species can be overcome by improving sequence coverage, N- and C-terminal sequencing and analysis of intact proteins. Dependence on information about biochemical pathways and gene ontology databases for model species represents a more severe barrier for work with non-model species. To minimize such dependence, focusing on a single biological process (rather than attempting to describe the system as a whole) is key when applying 'omics' approaches to non-model organisms. PMID:17449824

  10. Choline oxidase, a catabolic enzyme in Arthrobacter pascens, facilitates adaptation to osmotic stress in Escherichia coli.

    PubMed Central

    Rozwadowski, K L; Khachatourians, G G; Selvaraj, G

    1991-01-01

    Choline oxidase (EC 1.1.3.17) is a bifunctional enzyme that is capable of catalyzing glycine betaine biosynthesis from choline via betaine aldehyde. A gene (cox) encoding this enzyme in the gram-positive soil bacterium Arthrobacter pascens was isolated and characterized. This gene is contained within a 1.9-kb fragment that encodes a polypeptide of approximately 66 kDa. Transfer of this gene to an Escherichia coli mutant that is defective in betaine biosynthesis resulted in an osmotolerant phenotype. This phenotype was associated with the ability of the host to synthesize and assemble an enzymatically active choline oxidase that could catalyze biosynthesis of glycine betaine from an exogenous supply of choline. Although glycine betaine functions as an osmolyte in several different organisms, it was not found to have this role in A. pascens. Instead, both choline and glycine betaine were utilized as carbon sources. In A. pascens synthesis and activity of choline oxidase were modulated by carbon sources and were susceptible to catabolite repression. Thus, cox, a gene concerned with carbon utilization in A. pascens, was found to play a role in adaptation to an environmental stress in a heterologous organism. In addition to providing a possible means of manipulating osmotolerance in other organisms, the cox gene offers a model system for the study of choline oxidation, an important metabolic process in both procaryotes and eucaryotes. Images PMID:1987142

  11. Chromatin insulator bodies are nuclear structures that form in response to osmotic stress and cell death.

    PubMed

    Schoborg, Todd; Rickels, Ryan; Barrios, Josh; Labrador, Mariano

    2013-07-22

    Chromatin insulators assist in the formation of higher-order chromatin structures by mediating long-range contacts between distant genomic sites. It has been suggested that insulators accomplish this task by forming dense nuclear foci termed insulator bodies that result from the coalescence of multiple protein-bound insulators. However, these structures remain poorly understood, particularly the mechanisms triggering body formation and their role in nuclear function. In this paper, we show that insulator proteins undergo a dramatic and dynamic spatial reorganization into insulator bodies during osmostress and cell death in a high osmolarity glycerol-p38 mitogen-activated protein kinase-independent manner, leading to a large reduction in DNA-bound insulator proteins that rapidly repopulate chromatin as the bodies disassemble upon return to isotonicity. These bodies occupy distinct nuclear territories and contain a defined structural arrangement of insulator proteins. Our findings suggest insulator bodies are novel nuclear stress foci that can be used as a proxy to monitor the chromatin-bound state of insulator proteins and provide new insights into the effects of osmostress on nuclear and genome organization. PMID:23878275

  12. The C Isoform of Dictyostelium Tetraspanins Localizes to the Contractile Vacuole and Contributes to Resistance against Osmotic Stress.

    PubMed

    Albers, Tineke; Maniak, Markus; Beitz, Eric; von Bülow, Julia

    2016-01-01

    Tetraspanins (Tsps) are membrane proteins that are widely expressed in eukaryotic organisms. Only recently, Tsps have started to acquire relevance as potential new drug targets as they contribute, via protein-protein interactions, to numerous pathophysiological processes including infectious diseases and cancer. However, due to a high number of isoforms and functional redundancy, knowledge on specific functions of most Tsps is still scarce. We set out to characterize five previously annotated Tsps, TspA-E, from Dictyostelium discoideum, a model for studying proteins that have human orthologues. Using reverse transcriptase PCRs, we found mRNAs for TspA-E in the multicellular slug stage, whereas vegetative cells expressed only TspA, TspC and, to a lesser extent, TspD. We raised antibodies against TspA, TspC and TspD and detected endogenous TspA, as well as heterologously expressed TspA and TspC by Western blot. N-deglycosylation assays and mutational analyses showed glycosylation of TspA and TspC in vivo. GFP-tagged Tsps co-localized with the proton pump on the contractile vacuole network. Deletion strains of TspC and TspD exibited unaltered growth, adhesion, random motility and development. Yet, tspC- cells showed a defect in coping with hypo-osmotic stress, due to accumulation of contractile vacuoles, but heterologous expression of TspC rescued their phenotype. In conclusion, our data fill a gap in Dictyostelium research and open up the possibility that Tsps in contractile vacuoles of e.g. Trypanosoma may one day constitute a valuable drug target for treating sleeping sickness, one of the most threatening tropical diseases. PMID:27597994

  13. GhMPK17, a Cotton Mitogen-Activated Protein Kinase, Is Involved in Plant Response to High Salinity and Osmotic Stresses and ABA Signaling

    PubMed Central

    Li, Yang; Sun, Xiang; Wang, Na-Na; Gong, Si-Ying; Zheng, Yong; Li, Xue-Bao

    2014-01-01

    Mitogen-activated protein kinase (MAPK) cascades play pivotal roles in mediating biotic and abiotic stress responses. Cotton (Gossypium hirsutum) is the most important textile crop in the world, and often encounters abiotic stress during its growth seasons. In this study, a gene encoding a mitogen-activated protein kinase (MAPK) was isolated from cotton, and designated as GhMPK17. The open reading frame (ORF) of GhMPK17 gene is 1494 bp in length and encodes a protein with 497 amino acids. Quantitative RT-PCR analysis indicated that GhMPK17 expression was up-regulated in cotton under NaCl, mannitol and ABA treatments. The transgenic Arabidopsis plants expressing GhMPK17 gene showed higher seed germination, root elongation and cotyledon greening/expansion rates than those of the wild type on MS medium containing NaCl, mannitol and exogenous ABA, suggesting that overexpression of GhMPK17 in Arabidopsis increased plant ABA-insensitivity, and enhanced plant tolerance to salt and osmotic stresses. Furthermore, overexpression of GhMPK17 in Arabidopsis reduced H2O2 level and altered expression of ABA- and abiotic stress-related genes in the transgenic plants. Collectively, these data suggested that GhMPK17 gene may be involved in plant response to high salinity and osmotic stresses and ABA signaling. PMID:24743296

  14. Effect of sulfide, osmotic, and thermal stresses on taurine transporter mRNA levels in the gills of the hydrothermal vent-specific mussel Bathymodiolus septemdierum.

    PubMed

    Nakamura-Kusakabe, Ikumi; Nagasaki, Toshihiro; Kinjo, Azusa; Sassa, Mieko; Koito, Tomoko; Okamura, Kei; Yamagami, Shosei; Yamanaka, Toshiro; Tsuchida, Shinji; Inoue, Koji

    2016-01-01

    Hydrothermal vent environmental conditions are characterized by high sulfide concentrations, fluctuating osmolality, and irregular temperature elevations caused by vent effluents. These parameters represent potential stressors for organisms that inhabit the area around hydrothermal vents. Here, we aimed to obtain a better understanding of the adaptation mechanisms of marine species to hydrothermal vent environments. Specifically, we examined the effect of sulfide, osmolality, and thermal stress on the expression of taurine transporter (TAUT) mRNA in the gill of the deep-sea mussel Bathymodiolus septemdierum, which is a dominant species around hydrothermal vent sites. We analyzed TAUT mRNA levels by quantitative real-time polymerase chain reaction (PCR) in the gill of mussels exposed to sulfide (0.1 or 1mg/L Na2S·9H2O), hyper- (115% seawater) and hypo- (97.5%, 95.5%, and 85% seawater) osmotic conditions, and thermal stresses (12°C and 20°C) for 24 and 48h. The results showed that mussels exposed to relatively low levels of sulfide (0.1mg/L) and moderate heat stress (12°C) exhibited higher TAUT mRNA levels than the control. Although hyper- and hypo-osmotic stress did not significantly change TAUT mRNA levels, slight induction was observed in mussels exposed to low osmolality. Our results indicate that TAUT is involved in the coping mechanism of mussels to various hydrothermal vent stresses. PMID:26431911

  15. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress.

    PubMed

    Yoshida, Takuya; Fujita, Yasunari; Maruyama, Kyonoshin; Mogami, Junro; Todaka, Daisuke; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2015-01-01

    Under osmotic stress conditions such as drought and high salinity, the plant hormone abscisic acid (ABA) plays important roles in stress-responsive gene expression mainly through three bZIP transcription factors, AREB1/ABF2, AREB2/ABF4 and ABF3, which are activated by SNF1-related kinase 2s (SnRK2s) such as SRK2D/SnRK2.2, SRK2E/SnRK2.6 and SRK2I/SnRK2.3 (SRK2D/E/I). However, since the three AREB/ABFs are crucial, but not exclusive, for the SnRK2-mediated gene expression, transcriptional pathways governed by SRK2D/E/I are not fully understood. Here, we show that a bZIP transcription factor, ABF1, is a functional homolog of AREB1, AREB2 and ABF3 in ABA-dependent gene expression in Arabidopsis. Despite lower expression levels of ABF1 than those of the three AREB/ABFs, the areb1 areb2 abf3 abf1 mutant plants displayed increased sensitivity to drought and decreased sensitivity to ABA in primary root growth compared with the areb1 areb2 abf3 mutant. Genome-wide transcriptome analyses revealed that expression of downstream genes of SRK2D/E/I, which include many genes functioning in osmotic stress responses and tolerance such as transcription factors and LEA proteins, was mostly impaired in the quadruple mutant. Thus, these results indicate that the four AREB/ABFs are the predominant transcription factors downstream of SRK2D/E/I in ABA signalling in response to osmotic stress during vegetative growth. PMID:24738645

  16. The Wheat Abscisic Acid-Responsive Protein Kinase mRNA, PKABA1, Is Up-Regulated by Dehydration, Cold Temperature, and Osmotic Stress.

    PubMed Central

    Holappa, L. D.; Walker-Simmons, M. K.

    1995-01-01

    The effects of dehydration, cold-temperature treatment, and osmotic and salt stress on the expression of an abscisic acid-responsive protein kinase mRNA (PKABA1) were determined in wheat (Triticum aestivum L.) seedlings. The PKABA1 transcript was detectable at basal levels in tissues of nonstressed plants and accumulated to higher levels in shoot, scutellar, and root tissues of stressed plants. PKABA1 transcript accumulated rapidly within 2 h following dehydration and within 24 h following other treatments (cold, osmotic stress, and high salt). The accumulation of PKABA1 mRNA could not be separated temporally from that of a wheat group 3 late embryogenesis abundant mRNA during dehydration and cold treatment. High PKABA1 mRNA levels were observed in field-grown plants growing under cold winter conditions but not under warmer summer conditions. A recent GenBank data base search indicated that other plant protein kinases with similar acidic amino acid stretches as in PKABA1 have been identified, and some of these kinases are responsive to environmental signals. These results suggest that PKABA1 may be part of general environmental stress responses in wheat. PMID:12228537

  17. Hormonal, cardiovascular, and subjective responses to acute stress in smokers

    PubMed Central

    de Wit, Harriet

    2009-01-01

    Rationale There are complex relationships between stress and smoking; smoking may reduce the emotional discomfort of stress, yet nicotine activates stress systems and may alter responses to acute stress. It is important to understand how smoking affects physiological and psychological outcomes after stress and how these may interact to motivate smoking. Objectives This study aimed to examine the magnitude and time course of hormonal, cardiovascular, and psychological responses to acute psychosocial stress in smokers and non-smokers to investigate whether responses to acute stress are altered in smokers. Materials and methods Healthy male non-smokers (n=20) and smokers (n=15) participated in two experimental sessions involving a standardized public speaking stress procedure and a control non-stressful task. The outcome measures included self-reported mood, cardiovascular measures (heart rate and blood pressure), and plasma hormone levels (noradrenaline, cortisol, progesterone, and allopregnanolone). Results Smokers exhibited blunted increases in cortisol after the Trier Social Stress Test, and they reported greater and more prolonged subjective agitation than non-smokers. Stress-induced changes in progesterone were similar between smokers and non-smokers, although responses overall were smaller among smokers. Stress did not significantly alter levels of allopregnanolone, but smokers exhibited lower plasma concentrations of this neurosteroid. Conclusions These findings suggest that smoking dampens hormonal responses to stress and prolongs subjective discomfort. Dysregulated stress responses may represent a breakdown in the body’s ability to cope efficiently and effectively with stress and may contribute to smokers’ susceptibility to acute stress, especially during abstinence. PMID:18936915

  18. Role of Osmotic Adjustment in Plant Productivity

    SciTech Connect

    Gebre, G.M.

    2001-01-11

    clones (P. trichocurpa Torr. & Gray x P: deltoides Bartr., TD and P. deltoides x P. nigra L., DN), we determined the TD clone, which was more productive during the first three years, had slightly lower osmotic potential than the DN clone, and also indicated a small osmotic adjustment compared with the DN hybrid. However, the productivity differences were negligible by the fifth growing season. In a separate study with several P. deltoides clones, we did not observe a consistent relationship between growth and osmotic adjustment. Some clones that had low osmotic potential and osmotic adjustment were as productive as another clone that had high osmotic potential. The least productive clone also had low osmotic potential and osmotic adjustment. The absence of a correlation may have been partly due to the fact that all clones were capable of osmotic adjustment and had low osmotic potential. In a study involving an inbred three-generation TD F{sub 2} pedigree (family 331), we did not observe a correlation between relative growth rate and osmotic potential or osmotic adjustment. However, when clones that exhibited osmotic adjustment were analyzed, there was a negative correlation between growth and osmotic potential, indicating clones with lower osmotic potential were more productive. This was observed only in clones that were exposed to drought. Although the absolute osmotic potential varied by growing environment, the relative ranking among progenies remains generally the same, suggesting that osmotic potential is genetically controlled. We have identified a quantitative trait locus for osmotic potential in another three-generation TD F{sub 2} pedigree (family 822). Unlike the many studies in agricultural crops, most of the forest tree studies were not based on plants exposed to severe stress to determine the role of osmotic adjustment. Future studies should consider using clones that are known to be productive but have contrasting osmotic adjustment capability as well as

  19. Characterization of the proteostasis roles of glycerol accumulation, protein degradation and protein synthesis during osmotic stress in C. elegans.

    PubMed

    Burkewitz, Kristopher; Choe, Keith P; Lee, Elaine Choung-Hee; Deonarine, Andrew; Strange, Kevin

    2012-01-01

    Exposure of C. elegans to hypertonic stress-induced water loss causes rapid and widespread cellular protein damage. Survival in hypertonic environments depends critically on the ability of worm cells to detect and degrade misfolded and aggregated proteins. Acclimation of C. elegans to mild hypertonic stress suppresses protein damage and increases survival under more extreme hypertonic conditions. Suppression of protein damage in acclimated worms could be due to 1) accumulation of the chemical chaperone glycerol, 2) upregulation of protein degradation activity, and/or 3) increases in molecular chaperoning capacity of the cell. Glycerol and other chemical chaperones are widely thought to protect proteins from hypertonicity-induced damage. However, protein damage is unaffected by gene mutations that inhibit glycerol accumulation or that cause dramatic constitutive elevation of glycerol levels. Pharmacological or RNAi inhibition of proteasome and lyosome function and measurements of cellular protein degradation activity demonstrated that upregulation of protein degradation mechanisms plays no role in acclimation. Thus, changes in molecular chaperone capacity must be responsible for suppressing protein damage in acclimated worms. Transcriptional changes in chaperone expression have not been detected in C. elegans exposed to hypertonic stress. However, acclimation to mild hypertonicity inhibits protein synthesis 50-70%, which is expected to increase chaperone availability for coping with damage to existing proteins. Consistent with this idea, we found that RNAi silencing of essential translational components or acute exposure to cycloheximide results in a 50-80% suppression of hypertonicity-induced aggregation of polyglutamine-YFP (Q35::YFP). Dietary changes that increase protein production also increase Q35::YFP aggregation 70-180%. Our results demonstrate directly for the first time that inhibition of protein translation protects extant proteins from damage brought

  20. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents

    PubMed Central

    Eisenmann, Eric D.; Rorabaugh, Boyd R.; Zoladz, Phillip R.

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia–reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions. PMID:27199778

  1. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents.

    PubMed

    Eisenmann, Eric D; Rorabaugh, Boyd R; Zoladz, Phillip R

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia-reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions. PMID:27199778

  2. GsCML27, a Gene Encoding a Calcium-Binding Ef-Hand Protein from Glycine soja, Plays Differential Roles in Plant Responses to Bicarbonate, Salt and Osmotic Stresses

    PubMed Central

    Chen, Chao; Sun, Xiaoli; Duanmu, Huizi; Zhu, Dan; Yu, Yang; Cao, Lei; Liu, Ailin; Jia, Bowei; Xiao, Jialei; Zhu, Yanming

    2015-01-01

    Calcium, as the most widely accepted messenger, plays an important role in plant stress responses through calcium-dependent signaling pathways. The calmodulin-like family genes (CMLs) encode Ca2+ sensors and function in signaling transduction in response to environmental stimuli. However, until now, the function of plant CML proteins, especially soybean CMLs, is largely unknown. Here, we isolated a Glycine soja CML protein GsCML27, with four conserved EF-hands domains, and identified it as a calcium-binding protein through far-UV CD spectroscopy. We further found that expression of GsCML27 was induced by bicarbonate, salt and osmotic stresses. Interestingly, ectopic expression of GsCML27 in Arabidopsis enhanced plant tolerance to bicarbonate stress, but decreased the salt and osmotic tolerance during the seed germination and early growth stages. Furthermore, we found that ectopic expression of GsCML27 decreases salt tolerance through modifying both the cellular ionic (Na+, K+) content and the osmotic stress regulation. GsCML27 ectopic expression also decreased the expression levels of osmotic stress-responsive genes. Moreover, we also showed that GsCML27 localized in the whole cell, including cytoplasm, plasma membrane and nucleus in Arabidopsis protoplasts and onion epidermal cells, and displayed high expression in roots and embryos. Together, these data present evidence that GsCML27 as a Ca2+-binding EF-hand protein plays a role in plant responses to bicarbonate, salt and osmotic stresses. PMID:26550992

  3. Novel Insights into E. coli’s Hexuronate Metabolism: KduI Facilitates the Conversion of Galacturonate and Glucuronate under Osmotic Stress Conditions

    PubMed Central

    Rothe, Monique; Alpert, Carl; Loh, Gunnar; Blaut, Michael

    2013-01-01

    Using a gnotobiotic mouse model, we previously observed the upregulation of 2-deoxy-D-gluconate 3-dehydrogenase (KduD) in intestinal E. coli of mice fed a lactose-rich diet and the downregulation of this enzyme and of 5-keto 4-deoxyuronate isomerase (KduI) on a casein-rich diet. The present study aimed to define the role of the so far poorly characterized E. coli proteins KduD and KduI in vitro. Galacturonate and glucuronate induced kduD and kduI gene expression 3-fold and 7 to 11-fold, respectively, under aerobic conditions as well as 9 to 20-fold and 19 to 54-fold, respectively, under anaerobic conditions. KduI facilitated the breakdown of these hexuronates. In E. coli, galacturonate and glucuronate are normally degraded by UxaABC and UxuAB. However, osmotic stress represses the expression of the corresponding genes in an OxyR-dependent manner. When grown in the presence of galacturonate or glucuronate, kduID-deficient E. coli had a 30% to 80% lower maximal cell density and 1.5 to 2-fold longer doubling times under osmotic stress conditions than wild type E. coli. Growth on lactose promoted the intracellular formation of hexuronates, which possibly explain the induction of KduD on a lactose-rich diet. These results indicate a novel function of KduI and KduD in E. coli and demonstrate the crucial influence of osmotic stress on the gene expression of hexuronate degrading enzymes. PMID:23437267

  4. Benthic Cyanobacterial Mats in the High Arctic: Multi-Layer Structure and Fluorescence Responses to Osmotic Stress

    PubMed Central

    Lionard, Marie; Péquin, Bérangère; Lovejoy, Connie; Vincent, Warwick F.

    2012-01-01

    Cyanobacterial mats are often a major biological component of extreme aquatic ecosystems, and in polar lakes and streams they may account for the dominant fraction of total ecosystem biomass and productivity. In this study we examined the vertical structure and physiology of Arctic microbial mats relative to the question of how these communities may respond to ongoing environmental change. The mats were sampled from Ward Hunt Lake (83°5.297′N, 74°9.985′W) at the northern coast of Arctic Canada, and were composed of three visibly distinct layers. Microsensor profiling showed that there were strong gradients in oxygen within each layer, with an overall decrease from 100% saturation at the mat surface to 0%, at the bottom, accompanied by an increase of 0.6 pH units down the profile. Gene clone libraries (16S rRNA) revealed the presence of Oscillatorian sequences throughout the mat, while Nostoc related species dominated the two upper layers, and Nostocales and Synechococcales sequences were common in the bottom layer. High performance liquid chromatography analyses showed a parallel gradient in pigments, from high concentrations of UV-screening scytonemin in the upper layer to increasing zeaxanthin and myxoxanthin in the bottom layer, and an overall shift from photoprotective to photosynthetic carotenoids down the profile. Climate change is likely to be accompanied by lake level fluctuations and evaporative concentration of salts, and thus increased osmotic stress of the littoral mat communities. To assess the cellular capacity to tolerate increasing osmolarity on physiology and cell membrane integrity, mat sections were exposed to a gradient of increasing salinities, and PAM measurements of in vivo chlorophyll fluorescence were made to assess changes in maximum quantum yield. The results showed that the mats were tolerant of up to a 46-fold increase in salinity. These features imply that cyanobacterial mats are resilient to ongoing climate change, and that in

  5. Validation of reference genes for accurate normalization of gene expression for real time-quantitative PCR in strawberry fruits using different cultivars and osmotic stresses.

    PubMed

    Galli, Vanessa; Borowski, Joyce Moura; Perin, Ellen Cristina; Messias, Rafael da Silva; Labonde, Julia; Pereira, Ivan dos Santos; Silva, Sérgio Delmar Dos Anjos; Rombaldi, Cesar Valmor

    2015-01-10

    The increasing demand of strawberry (Fragaria×ananassa Duch) fruits is associated mainly with their sensorial characteristics and the content of antioxidant compounds. Nevertheless, the strawberry production has been hampered due to its sensitivity to abiotic stresses. Therefore, to understand the molecular mechanisms highlighting stress response is of great importance to enable genetic engineering approaches aiming to improve strawberry tolerance. However, the study of expression of genes in strawberry requires the use of suitable reference genes. In the present study, seven traditional and novel candidate reference genes were evaluated for transcript normalization in fruits of ten strawberry cultivars and two abiotic stresses, using RefFinder, which integrates the four major currently available software programs: geNorm, NormFinder, BestKeeper and the comparative delta-Ct method. The results indicate that the expression stability is dependent on the experimental conditions. The candidate reference gene DBP (DNA binding protein) was considered the most suitable to normalize expression data in samples of strawberry cultivars and under drought stress condition, and the candidate reference gene HISTH4 (histone H4) was the most stable under osmotic stresses and salt stress. The traditional genes GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and 18S (18S ribosomal RNA) were considered the most unstable genes in all conditions. The expression of phenylalanine ammonia lyase (PAL) and 9-cis epoxycarotenoid dioxygenase (NCED1) genes were used to further confirm the validated candidate reference genes, showing that the use of an inappropriate reference gene may induce erroneous results. This study is the first survey on the stability of reference genes in strawberry cultivars and osmotic stresses and provides guidelines to obtain more accurate RT-qPCR results for future breeding efforts. PMID:25445290

  6. The effects of acute and chronic stress on diabetes control.

    PubMed

    Marcovecchio, M Loredana; Chiarelli, Francesco

    2012-10-23

    Stress is an important contributor to pathological conditions in humans. Hormonal changes that occur during acute and chronic stress situations can affect glucose homeostasis in both healthy people and in those with diabetes. Several studies have reported a negative effect of acute stress on maintenance of blood glucose concentrations in patients with type 1 and type 2 diabetes. The effect of stress on glycemic control in people with diabetes may be related to a direct effect of stress hormones on blood glucose levels and an indirect effect of stress on patient behaviors related to diabetes treatment and monitoring and meal and exercise plans. In contrast, there is no clear evidence that stressful life events promote the development of diabetes in children or in adults. Stress hyperglycemia, the development of hyperglycemia during acute illness, represents another interesting connection between the stress system and glucose homeostasis. A large body of evidence supports an association between stress hyperglycemia and increased morbidity and mortality in critically ill patients. Interestingly, there is some evidence supporting a beneficial effect of insulin in reducing morbidity and mortality in patients admitted to intensive care units. Finally, stress can influence the development of type 2 diabetes indirectly by promoting obesity and metabolic syndrome. PMID:23092890

  7. Group 5 LEA protein, ZmLEA5C, enhance tolerance to osmotic and low temperature stresses in transgenic tobacco and yeast.

    PubMed

    Liu, Yang; Wang, Li; Jiang, Shanshan; Pan, Jiaowen; Cai, Guohua; Li, Dequan

    2014-11-01

    Group 5 LEA (Late Embryogenesis Abundant) proteins contain a significantly higher proportion of hydrophobic residues but lack significant signature motifs or consensus sequences. This group is considered as an atypical group of LEA proteins. Up to now, there is little known about group 5C LEA proteins in maize. Here, we identified a novel group 5C LEA protein from maize. The accumulation of transcripts demonstrated that ZmLEA5C displayed similar induced characteristics in leaves and roots. Transcription of ZmLEA5C could be induced by low temperature, osmotic and oxidative stress and some signaling molecules, such as abscisic acid (ABA), salicylic acid (SA) and methyl jasmonate (MeJA). However, transcription of ZmLEA5C was significantly inhibited by high salinity. Further study indicated that the ZmLEA5C protein could be phosphorylated by the protein kinase CKII. ZmLEA5C could protect the activity of LDH under water deficit and low temperature stresses. Overexpression of ZmLEA5C conferred to transgenic tobacco (Nicotiana benthamiana) and yeast (GS115) tolerance to osmotic and low temperature stresses. PMID:25240107

  8. The expression of thioredoxin-1 in acute epinephrine stressed mice.

    PubMed

    Jia, Jin-Jing; Zeng, Xian-Si; Li, Kun; Ma, Li-Fang; Chen, Lei; Song, Xin-Qiang

    2016-09-01

    Stress, a state of perceived threat to homeostasis, regulates a panel of important physiological functions. The human mind and body respond to stress by activating the sympathetic nervous system and secreting the catecholamines epinephrine and norepinephrine in the "fight-or-flight" response. However, the protective mechanism of acute stress is still unknown. In the present study, an acute stress mouse model was constructed by intraperitoneal injection of epinephrine (0.2 mg kg(-1)) for 4 h. Epinephrine treatment induced heat shock 70(Hsp70) expression in the stress responsive tissues, such as the cortex, hippocampus, thymus, and kidney. Further, the expression of thioredoxin-1(Trx-1), a cytoprotective protein, was also upregulated in these stress responsive tissues. In addition, the phosphorylation of cAMP-response element binding protein (CREB), a transcription factor of Trx-1, was increased after treatment with epinephrine. The block of CREB activation by H89 inhibited the acute epinephrine stress-induced Trx-1 and Hsp70 expression. Taken together, our data suggest that acute stimuli of epinephrine induced Trx-1 expression through activating CREB and may represent a protective role against stress. PMID:27511023

  9. Claudin 28b and F-actin are involved in rainbow trout gill pavement cell tight junction remodeling under osmotic stress.

    PubMed

    Sandbichler, Adolf Michael; Egg, Margit; Schwerte, Thorsten; Pelster, Bernd

    2011-05-01

    Permeability of rainbow trout gill pavement cells cultured on permeable supports (single seeded inserts) changes upon exposure to freshwater or treatment with cortisol. The molecular components of this change are largely unknown, but tight junctions that regulate the paracellular pathway are prime candidates in this adaptational process. Using differential display polymerase chain reaction we found a set of 17 differentially regulated genes in trout pavement cells that had been exposed to freshwater apically for 24 h. Five genes were related to the cell-cell contact. One of these genes was isolated and identified as encoding claudin 28b, an integral component of the tight junction. Immunohistochemical reactivity to claudin 28b protein was concentrated in a circumferential ring colocalized to the cortical F-actin ring. To study the contribution of this isoform to changes in transepithelial resistance and Phenol Red diffusion under apical hypo-or hyperosmotic exposure we quantified the fluorescence signal of this claudin isoform in immunohistochemical stainings together with the fluorescence of phalloidin-probed F-actin. Upon hypo-osmotic stress claudin 28b fluorescence and epithelial tightness remained stable. Under hyperosmotic stress, the presence of claudin 28b at the junction significantly decreased, and epithelial tightness was severely reduced. Cortical F-actin fluorescence increased upon hypo-osmotic stress, whereas hyperosmotic stress led to a separation of cortical F-actin rings and the number of apical crypt-like pores increased. Addition of cortisol to the basolateral medium attenuated cortical F-actin separation and pore formation during hyperosmotic stress and reduced claudin 28b in junctions except after recovery of cells from exposure to freshwater. Our results showed that short-term salinity stress response in cultured trout gill cells was dependent on a dynamic remodeling of tight junctions, which involves claudin 28b and the supporting F-actin ring

  10. Biogenic amines and acute thermal stress in the rat

    NASA Technical Reports Server (NTRS)

    Williams, B. A.; Moberg, G. P.

    1975-01-01

    A study is summarized which demonstrates that depletion of the biogenic amines 5-hydroxytryptamine (5-HT) or norepinephrine (NE) alters the normal thermoregulatory responses to acute temperature stress. Specifically, NE depletion caused a significant depression in equilibrium rectal temperature at 22 C and a greater depression in rectal temperature than controls in response to cold (6 C) stress; NE depletion also resulted in a significantly higher rectal temperature response to acute heat (38 C) stress. Depletion of 5-HT had less severe effects. It remains unclear whether the primary site of action of these agents is central or peripheral.

  11. Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt- and osmotic stress in Arabidopsis.

    PubMed

    Zhou, Jing; Li, Fei; Wang, Jin-Lan; Ma, Yun; Chong, Kang; Xu, Yun-yuan

    2009-08-15

    Salt stress adversely affects plant growth and development. Some plants reduce the damage of high-salt stress by expressing a series of salt-responsive genes. Studies of the molecular mechanism of the salt-stress response have focused on the characterization of components involved in signal perception and transduction. In the present work, we cloned and characterized a basic helix-loop-helix (bHLH) encoding gene, OrbHLH2, from wild rice (Oryza rufipogon), which encodes a homologue protein of ICE1 in Arabidopsis. OrbHLH2 protein localized in the nucleus. Overexpression of OrbHLH2 in Arabidopsis conferred increased tolerance to salt and osmotic stress, and the stress-responsive genes DREB1A/CBF3, RD29A, COR15A and KIN1 were upregulated in transgenic plants. Abscisic acid (ABA) treatment showed a similar effect on the seed germination or transcriptional expression of stress-responsive genes in both wild type and OrbHLH2-overexpressed plants, which implies that OrbHLH2 does not depend on ABA in responding to salt stress. OrbHLH2 may function as a transcription factor and positively regulate salt-stress signals independent of ABA in Arabidopsis, which provides some useful data for improving salt tolerance in crops. PMID:19324458

  12. GlnR-Mediated Regulation of ectABCD Transcription Expands the Role of the GlnR Regulon to Osmotic Stress Management

    PubMed Central

    Shao, ZhiHui; Deng, WanXin; Li, ShiYuan; He, JuanMei; Ren, ShuangXi; Huang, WeiRen; Lu, YinHua; Zhao, GuoPing

    2015-01-01

    ABSTRACT Ectoine and hydroxyectoine are excellent compatible solutes for bacteria to deal with environmental osmotic stress and temperature damages. The biosynthesis cluster of ectoine and hydroxyectoine is widespread among microorganisms, and its expression is activated by high salinity and temperature changes. So far, little is known about the mechanism of the regulation of the transcription of ect genes and only two MarR family regulators (EctR1 in methylobacteria and the EctR1-related regulator CosR in Vibrio cholerae) have been found to negatively regulate the expression of ect genes. Here, we characterize GlnR, the global regulator for nitrogen metabolism in actinomycetes, as a negative regulator for the transcription of ectoine/hydroxyectoine biosynthetic genes (ect operon) in Streptomyces coelicolor. The physiological role of this transcriptional repression by GlnR is proposed to protect the intracellular glutamate pool, which acts as a key nitrogen donor for both the nitrogen metabolism and the ectoine/hydroxyectoine biosynthesis. IMPORTANCE High salinity is deleterious, and cells must evolve sophisticated mechanisms to cope with this osmotic stress. Although production of ectoine and hydroxyectoine is one of the most frequently adopted strategies, the in-depth mechanism of regulation of their biosynthesis is less understood. So far, only two MarR family negative regulators, EctR1 and CosR, have been identified in methylobacteria and Vibrio, respectively. Here, our work demonstrates that GlnR, the global regulator for nitrogen metabolism, is a negative transcriptional regulator for ect genes in Streptomyces coelicolor. Moreover, a close relationship is found between nitrogen metabolism and osmotic resistance, and GlnR-mediated regulation of ect transcription is proposed to protect the intracellular glutamate pool. Meanwhile, the work reveals the multiple roles of GlnR in bacterial physiology. PMID:26170409

  13. Acute Stress Modulates Risk Taking in Financial Decision Making

    PubMed Central

    Porcelli, Anthony J.; Delgado, Mauricio R.

    2016-01-01

    People’s decisions are often susceptible to various demands exerted by the environment, leading to stressful conditions. Although a goal for researchers is to elucidate stress-coping mechanisms to facilitate decision-making processes, it is important to first understand the interaction between the state created by a stressful environment and how decisions are performed in such environments. The objective of this experiment was to probe the impact of exposure to acute stress on financial decision-making and examine the particular influence of stress on decisions with a positive or negative valence. Participants’ choices exhibited a stronger reflection effect when participants were under stress than when they were in the no-stress control phase. This suggests that stress modulates risk taking, potentially exacerbating behavioral bias in subsequent decision making. Consistent with dual-process approaches, decision makers fall back on automatized reactions to risk under the influence of disruptive stress. PMID:19207694

  14. Isolation and Functional Validation of Salinity and Osmotic Stress Inducible Promoter from the Maize Type-II H+-Pyrophosphatase Gene by Deletion Analysis in Transgenic Tobacco Plants.

    PubMed

    Hou, Jiajia; Jiang, Pingping; Qi, Shoumei; Zhang, Ke; He, Qiuxia; Xu, Changzheng; Ding, Zhaohua; Zhang, Kewei; Li, Kunpeng

    2016-01-01

    Salinity and drought severely affect both plant growth and productivity, making the isolation and characterization of salinity- or drought-inducible promoters suitable for genetic improvement of crop resistance highly desirable. In this study, a 1468-bp sequence upstream of the translation initiation codon ATG of the promoter for ZmGAPP (maize Type-II H+-pyrophosphatase gene) was cloned. Nine 5´ deletion fragments (D1-D9) of different lengths of the ZmGAPP promoter were fused with the GUS reporter and translocated into tobacco. The deletion analysis showed that fragments D1-D8 responded well to NaCl and PEG stresses, whereas fragment D9 and CaMV 35S did not. The D8 segment (219 bp; -219 to -1 bp) exhibited the highest promoter activity of all tissues, with the exception of petals among the D1-D9 transgenic tobacco, which corresponds to about 10% and 25% of CaMV 35S under normal and NaCl or PEG stress conditions, respectively. As such, the D8 segment may confer strong gene expression in a salinity and osmotic stress inducible manner. A 71-bp segment (-219 to -148 bp) was considered as the key region regulating ZmGAPP response to NaCl or PEG stress, as transient transformation assays demonstrated that the 71-bp sequence was sufficient for the salinity or osmotic stress response. These results enhance our understanding of the molecular mechanisms regulating ZmGAPP expression, and that the D8 promoter would be an ideal candidate for moderating expression of drought and salinity response genes in transgenic plants. PMID:27101137

  15. Isolation and Functional Validation of Salinity and Osmotic Stress Inducible Promoter from the Maize Type-II H+-Pyrophosphatase Gene by Deletion Analysis in Transgenic Tobacco Plants

    PubMed Central

    Zhang, Ke; He, Qiuxia; Xu, Changzheng; Ding, Zhaohua; Zhang, Kewei; Li, Kunpeng

    2016-01-01

    Salinity and drought severely affect both plant growth and productivity, making the isolation and characterization of salinity- or drought-inducible promoters suitable for genetic improvement of crop resistance highly desirable. In this study, a 1468-bp sequence upstream of the translation initiation codon ATG of the promoter for ZmGAPP (maize Type-II H+-pyrophosphatase gene) was cloned. Nine 5´ deletion fragments (D1–D9) of different lengths of the ZmGAPP promoter were fused with the GUS reporter and translocated into tobacco. The deletion analysis showed that fragments D1–D8 responded well to NaCl and PEG stresses, whereas fragment D9 and CaMV 35S did not. The D8 segment (219 bp; -219 to -1 bp) exhibited the highest promoter activity of all tissues, with the exception of petals among the D1–D9 transgenic tobacco, which corresponds to about 10% and 25% of CaMV 35S under normal and NaCl or PEG stress conditions, respectively. As such, the D8 segment may confer strong gene expression in a salinity and osmotic stress inducible manner. A 71-bp segment (-219 to -148 bp) was considered as the key region regulating ZmGAPP response to NaCl or PEG stress, as transient transformation assays demonstrated that the 71-bp sequence was sufficient for the salinity or osmotic stress response. These results enhance our understanding of the molecular mechanisms regulating ZmGAPP expression, and that the D8 promoter would be an ideal candidate for moderating expression of drought and salinity response genes in transgenic plants. PMID:27101137

  16. The lack of upstream elements of the Cek1 and Hog1 mediated pathways leads to a synthetic lethal phenotype upon osmotic stress in Candida albicans.

    PubMed

    Herrero-de-Dios, Carmen; Alonso-Monge, Rebeca; Pla, Jesús

    2014-08-01

    Different signal transduction pathways mediated by MAP kinases have been described in Candida albicans. These pathways sense different stimuli and, therefore, elaborate specific responses. Hog1 was identified as the MAPK that is primarily involved in stress response and virulence, while Cek1 was more specific to cell wall biogenesis, mating and biofilm formation. In the present work, mutants defective in both pathways have been characterized under osmotic stress. Both routes are required for a full response against high osmotic challenge, since mutants defective in both pathways displayed aberrant morphology, cell polarity defects and abnormal chitin deposition, which correlate with loss of viability and appearance of apoptotic markers. These alterations occurred in spite of proper Hog1 and Cek1 phosphorylation and increased intra-cellular glycerol accumulation. The relevance of both routes in virulence is shown as ssk1 msb2 sho1 opy2 mutants are avirulent in a mouse systemic model of infection and display reduced virulence in the Galleria mellonella model. PMID:24905535

  17. Inhibitory effects of hypo-osmotic stress on extracellular carbonic anhydrase and photosynthetic efficiency of green alga Dunaliella salina possibly through reactive oxygen species formation.

    PubMed

    Liu, Wenhua; Ming, Yao; Li, Ping; Huang, Zhongwen

    2012-05-01

    In this study, Dunaliella salina (D. salina) maintained in 30‰ salinity for more than two years was exposed to the salinities of 5‰, 10‰, 20‰, 30‰ (control) in order to investigate oxidative burst and it's possible connection with extracellular carbonic anhydrase (CA) under hypo-osmotic stress (low salinity). The results indicated that intracellular ROS contents increased significantly when cells were exposed to salinity of 5 and 10‰, and the increase also occurred at 20‰ salinity. The activity of extracellular CA and its gene (P60) expression decreased significantly when cells were exposed to salinity of 5-20‰. Data from H₂O₂ treatments hinted that ROS production was possibly one of the factors affecting CA, including enzyme activity and gene expression levels. Significant inhibition of effective quantum efficiency of PSII and photosynthetic oxygen evolution rate were observed with the increase of ROS production and decline of CA activities. Taken together, hypo-osmotic stresses could induce ROS production in D. salina, and CA enzyme activities and expression levels were consequently inhibited. As a result, algal photosynthesis and oxygen evolution were inhibited. PMID:22377429

  18. Parallel effects of freezing and osmotic stress on the ATPase activity and protein composition of the plasma membrane of winter rye seedlings

    SciTech Connect

    Uemura, Matsuo; Steponkus, P.L. )

    1989-11-01

    The objective of this study was to determine the influence of freezing versus hypertonic stress on the ATPase activity and polypeptide profile of the plasma membrane of nonacclimated winter rye leaves (Secale cereale L. cv Puma). Exposure of leaves to hypertonic sorbitol solutions resulted in a similar extent of injury as did freezing to subzero temperatures that resulted in equivalent osmotic stresses. When isolated with a two-phase partition system of aqueous polymers, the plasma membrane fractions of control, frozen, or hypertonically stressed leaves were of similar purity as judged by the distribution of marker enzyme activities. When assayed in the presence of Triton X-100 (0.05% w/w), ATPase activity was decreased only slightly in plasma membrane fractions isolated from either frozen or hypertonically stressed leaves. In contrast, the specific ATPase activity of the plasma membrane fractions assayed in the absence of Triton X-100 increased following freezing or hypertonic stress. As a result, the Triton X-100 stimulation of the ATPase activity decreased significantly from sixfold in control leaves to threefold in lethally stressed leaves and reflects an increase in the permeability of the plasma membrane vesicles. The increased permeability was also manifested as a decrease in H{sup +}-transport following exposure to freezing or hypertonic stress. Both freezing and hypertonic exposure at subzero temperatures altered the polypeptide profile of the plasma membrane, but with the exception of one polypeptide, there was no difference between the two treatments.

  19. Parallel Effects of Freezing and Osmotic Stress on the ATPase Activity and Protein Composition of the Plasma Membrane of Winter Rye Seedlings 1

    PubMed Central

    Uemura, Matsuo; Steponkus, Peter L.

    1989-01-01

    The objective of this study was to determine the influence of freezing versus hypertonic stress on the ATPase activity and polypeptide profile of the plasma membrane of nonacclimated winter rye leaves (Secale cereale L. cv Puma). Exposure of leaves to hypertonic sorbitol solutions resulted in a similar extent of injury as did freezing to subzero temperatures that resulted in equivalent osmotic stresses. When isolated with a two-phase partition system of aqueous polymers, the plasma membrane fractions of control, frozen, or hypertonically stressed leaves were of similar purity as judged by the distribution of marker enzyme activities. When assayed in the presence of Triton X-100 (0.05% w/w), ATPase activity was decreased only slightly in plasma membrane fractions isolated from either frozen or hypertonically stressed leaves. In contrast, the specific ATPase activity of the plasma membrane fractions assayed in the absence of Triton X-100 increased following freezing or hypertonic stress. As a result, the Triton X-100 stimulation of the ATPase activity decreased significantly from sixfold in control leaves to threefold in lethally stressed leaves and reflects an increase in the permeability of the plasma membrane vesicles. The increased permeability was also manifested as a decrease in H+-transport following exposure to freezing or hypertonic stress. Both freezing and hypertonic exposure at subzero temperatures altered the polypeptide profile of the plasma membrane, but with the exception of one polypeptide, there was no difference between the two treatments. PMID:16667162

  20. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation.

    PubMed

    Ji, Xiaoyu; Nie, Xianguang; Liu, Yujia; Zheng, Lei; Zhao, Huimin; Zhang, Bing; Huo, Lin; Wang, Yucheng

    2016-02-01

    Basic helix-loop-helix (bHLH) leucine-zipper transcription factors play important roles in abiotic stress responses. However, their specific roles in abiotic stress tolerance are not fully known. Here, we functionally characterized a bHLH gene, ThbHLH1, from Tamarix hispida in abiotic stress tolerance. ThbHLH1 specifically binds to G-box motif with the sequence of 'CACGTG'. Transiently transfected T. hispida plantlets with transiently overexpressed ThbHLH1 and RNAi-silenced ThbHLH1 were generated for gain- and loss-of-function analysis. Transgenic Arabidopsis thaliana lines overexpressing ThbHLH1 were generated to confirm the gain- and loss-of-function analysis. Overexpression of ThbHLH1 significantly elevates glycine betaine and proline levels, increases Ca(2+) concentration and enhances peroxidase (POD) and superoxide dismutase (SOD) activities to decrease reactive oxygen species (ROS) accumulation. Additionally, ThbHLH1 regulates the expression of the genes including P5CS, BADH, CaM, POD and SOD, to activate the above physiological changes, and also induces the expression of stress tolerance-related genes LEAs and HSPs. These data suggest that ThbHLH1 induces the expression of stress tolerance-related genes to improve abiotic stress tolerance by increasing osmotic potential, improving ROS scavenging capability and enhancing second messenger in stress signaling cascades. PMID:26786541

  1. Acute stress selectively impairs learning to act.

    PubMed

    de Berker, Archy O; Tirole, Margot; Rutledge, Robb B; Cross, Gemma F; Dolan, Raymond J; Bestmann, Sven

    2016-01-01

    Stress interferes with instrumental learning. However, choice is also influenced by non-instrumental factors, most strikingly by biases arising from Pavlovian associations that facilitate action in pursuit of rewards and inaction in the face of punishment. Whether stress impacts on instrumental learning via these Pavlovian associations is unknown. Here, in a task where valence (reward or punishment) and action (go or no-go) were orthogonalised, we asked whether the impact of stress on learning was action or valence specific. We exposed 60 human participants either to stress (socially-evaluated cold pressor test) or a control condition (room temperature water). We contrasted two hypotheses: that stress would lead to a non-selective increase in the expression of Pavlovian biases; or that stress, as an aversive state, might specifically impact action production due to the Pavlovian linkage between inaction and aversive states. We found support for the second of these hypotheses. Stress specifically impaired learning to produce an action, irrespective of the valence of the outcome, an effect consistent with a Pavlovian linkage between punishment and inaction. This deficit in action-learning was also reflected in pupillary responses; stressed individuals showed attenuated pupillary responses to action, hinting at a noradrenergic contribution to impaired action-learning under stress. PMID:27436299

  2. Acute stress selectively impairs learning to act

    PubMed Central

    de Berker, Archy O.; Tirole, Margot; Rutledge, Robb B.; Cross, Gemma F.; Dolan, Raymond J.; Bestmann, Sven

    2016-01-01

    Stress interferes with instrumental learning. However, choice is also influenced by non-instrumental factors, most strikingly by biases arising from Pavlovian associations that facilitate action in pursuit of rewards and inaction in the face of punishment. Whether stress impacts on instrumental learning via these Pavlovian associations is unknown. Here, in a task where valence (reward or punishment) and action (go or no-go) were orthogonalised, we asked whether the impact of stress on learning was action or valence specific. We exposed 60 human participants either to stress (socially-evaluated cold pressor test) or a control condition (room temperature water). We contrasted two hypotheses: that stress would lead to a non-selective increase in the expression of Pavlovian biases; or that stress, as an aversive state, might specifically impact action production due to the Pavlovian linkage between inaction and aversive states. We found support for the second of these hypotheses. Stress specifically impaired learning to produce an action, irrespective of the valence of the outcome, an effect consistent with a Pavlovian linkage between punishment and inaction. This deficit in action-learning was also reflected in pupillary responses; stressed individuals showed attenuated pupillary responses to action, hinting at a noradrenergic contribution to impaired action-learning under stress. PMID:27436299

  3. Individual Differences in Delay Discounting Under Acute Stress: The Role of Trait Perceived Stress

    PubMed Central

    Lempert, Karolina M.; Porcelli, Anthony J.; Delgado, Mauricio R.; Tricomi, Elizabeth

    2012-01-01

    Delay discounting refers to the reduction of the value of a future reward as the delay to that reward increases. The rate at which individuals discount future rewards varies as a function of both individual and contextual differences, and high delay discounting rates have been linked with problematic behaviors, including drug abuse and gambling. The current study investigated the effects of acute anticipatory stress on delay discounting, while considering two important factors: individual perceptions of stress and whether the stressful situation is future-focused or present-focused. Half of the participants experienced acute stress by anticipating giving a videotaped speech. This stress was either future-oriented (speech about future job) or present-oriented (speech about physical appearance). They then performed a delay discounting task, in which they chose between smaller, immediate rewards, and larger, delayed rewards. Their scores on the Perceived Stress Scale were also collected. The way in which one appraises stressful situations interacts with acute stress to influence choices; under stressful conditions, delay discounting rate was highest in individuals with low trait perceived stress and lowest for individuals with high trait perceived stress. This result might be related to individual variation in reward responsiveness under stress. Furthermore, the time orientation of the task interacted with its stressfulness to affect the individual’s propensity to choose immediate rewards. These findings add to our understanding of the intermediary factors between stress and decision-making. PMID:22833731

  4. Acute stress affects risk taking but not ambiguity aversion

    PubMed Central

    Buckert, Magdalena; Schwieren, Christiane; Kudielka, Brigitte M.; Fiebach, Christian J.

    2014-01-01

    Economic decisions are often made in stressful situations (e.g., at the trading floor), but the effects of stress on economic decision making have not been systematically investigated so far. The present study examines how acute stress influences economic decision making under uncertainty (risk and ambiguity) using financially incentivized lotteries. We varied the domain of decision making as well as the expected value of the risky prospect. Importantly, no feedback was provided to investigate risk taking and ambiguity aversion independent from learning processes. In a sample of 75 healthy young participants, 55 of whom underwent a stress induction protocol (Trier Social Stress Test for Groups), we observed more risk seeking for gains. This effect was restricted to a subgroup of participants that showed a robust cortisol response to acute stress (n = 26). Gambling under ambiguity, in contrast to gambling under risk, was not influenced by the cortisol response to stress. These results show that acute psychosocial stress affects economic decision making under risk, independent of learning processes. Our results further point to the importance of cortisol as a mediator of this effect. PMID:24834024

  5. Alteration of the Physical and Chemical Structure of the Primary Cell Wall of Growth-Limited Plant Cells Adapted to Osmotic Stress 1

    PubMed Central

    Iraki, Naim M.; Bressan, Ray A.; Hasegawa, P. M.; Carpita, Nicholas C.

    1989-01-01

    Cells of tobacco (Nicotiana tabacum L.) adapted to grow in severe osmotic stress of 428 millimolar NaCl (−23 bar) or 30% polyethylene glycol 8000 (−28 bar) exhibit a drastically altered growth physiology that results in slower cell expansion and fully expanded cells with volumes only one-fifth to one-eighth those of unadapted cells. This reduced cell volume occurs despite maintenance of turgor pressures sometimes severalfold higher than those of unadapted cells. This report and others (NM Iraki et al [1989] Plant Physiol 90: 000-000 and 000-000) document physical and biochemical alterations of the cell walls which might explain how adapted cells decrease the ability of the wall to expand despite diversion of carbon used for osmotic adjustment away from synthesis of cell wall polysaccharides. Tensile strength measured by a gas decompression technique showed empirically that walls of NaCl-adapted cells are much weaker than those of unadapted cells. Correlated with this weakening was a substantial decrease in the proportion of crystalline cellulose in the primary cell wall. Even though the amount of insoluble protein associated with the wall was increased relative to other wall components, the amount of hydroxyproline in the insoluble protein of the wall was only about 10% that of unadapted cells. These results indicate that a cellulosic-extensin framework is a primary determinant of absolute wall tensile strength, but complete formation of this framework apparently is sacrificed to divert carbon to substances needed for osmotic adjustment. We propose that the absolute mass of this framework is not a principal determinant of the ability of the cell wall to extend. PMID:16667031

  6. Hypo-osmotic stress-induced physiological and ion-osmoregulatory responses in European sea bass (Dicentrarchus labrax) are modulated differentially by nutritional status.

    PubMed

    Sinha, Amit Kumar; Dasan, Antony Franklin; Rasoloniriana, Rindra; Pipralia, Nitin; Blust, Ronny; De Boeck, Gudrun

    2015-03-01

    We investigated the impact of nutritional status on the physiological, metabolic and ion-osmoregulatory performance of European sea bass (Dicentrarchus labrax) when acclimated to seawater (32 ppt), brackish water (20 and 10 ppt) and hyposaline water (2.5 ppt) for 2 weeks. Following acclimation to different salinities, fish were either fed or fasted (unfed for 14 days). Plasma osmolality, [Na(+)], [Cl(-)] and muscle water content were severely altered in fasted fish acclimated to 10 and 2.5 ppt in comparison to normal seawater-acclimated fish, suggesting ion regulation and acid-base balance disturbances. In contrast to feed-deprived fish, fed fish were able to avoid osmotic perturbation more effectively. This was accompanied by an increase in Na(+)/K(+)-ATPase expression and activity, transitory activation of H(+)-ATPase (only at 2.5 ppt) and down-regulation of Na(+)/K(+)/2Cl(-) gene expression. Ammonia excretion rate was inhibited to a larger extent in fasted fish acclimated to low salinities while fed fish were able to excrete efficiently. Consequently, the build-up of ammonia in the plasma of fed fish was relatively lower. Energy stores, especially glycogen and lipid, dropped in the fasted fish at low salinities and progression towards the anaerobic metabolic pathway became evident by an increase in plasma lactate level. Overall, the results indicate no osmotic stress in both feeding treatments within the salinity range of 32 to 20 ppt. However, at lower salinities (10-2.5 ppt) feed deprivation tends to reduce physiological, metabolic, ion-osmo-regulatory and molecular compensatory mechanisms and thus limits the fish's abilities to adapt to a hypo-osmotic environment. PMID:25483239

  7. cAMP-dependent Protein Kinase and c-Jun N-terminal Kinase Mediate Stathmin Phosphorylation for the Maintenance of Interphase Microtubules during Osmotic Stress*

    PubMed Central

    Yip, Yan Y.; Yeap, Yvonne Y. C.; Bogoyevitch, Marie A.; Ng, Dominic C. H.

    2014-01-01

    Dynamic microtubule changes after a cell stress challenge are required for cell survival and adaptation. Stathmin (STMN), a cytoplasmic microtubule-destabilizing phosphoprotein, regulates interphase microtubules during cell stress, but the signaling mechanisms involved are poorly defined. In this study ectopic expression of single alanine-substituted phospho-resistant mutants demonstrated that STMN Ser-38 and Ser-63 phosphorylation were specifically required to maintain interphase microtubules during hyperosmotic stress. STMN was phosphorylated on Ser-38 and Ser-63 in response to hyperosmolarity, heat shock, and arsenite treatment but rapidly dephosphorylated after oxidative stress treatment. Two-dimensional PAGE and Phos-tag gel analysis of stress-stimulated STMN phospho-isoforms revealed rapid STMN Ser-38 phosphorylation followed by subsequent Ser-25 and Ser-63 phosphorylation. Previously, we delineated stress-stimulated JNK targeting of STMN. Here, we identified cAMP-dependent protein kinase (PKA) signaling as responsible for stress-induced STMN Ser-63 phosphorylation. Increased cAMP levels induced by cholera toxin triggered potent STMN Ser-63 phosphorylation. Osmotic stress stimulated an increase in PKA activity and elevated STMN Ser-63 and CREB (cAMP-response element-binding protein) Ser-133 phosphorylation that was substantially attenuated by pretreatment with H-89, a PKA inhibitor. Interestingly, PKA activity and subsequent phosphorylation of STMN were augmented in the absence of JNK activation, indicating JNK and PKA pathway cross-talk during stress regulation of STMN. Taken together our study indicates that JNK- and PKA-mediated STMN Ser-38 and Ser-63 phosphorylation are required to preserve interphase microtubules in response to hyperosmotic stress. PMID:24302736

  8. Characterization of New Maize Genes Putatively Involved in Cytokinin Metabolism and Their Expression during Osmotic Stress in Relation to Cytokinin Levels1[W

    PubMed Central

    Vyroubalová, Šárka; Václavíková, Kateřina; Turečková, Veronika; Novák, Ondřej; Šmehilová, Mária; Hluska, Tomáš; Ohnoutková, Ludmila; Frébort, Ivo; Galuszka, Petr

    2009-01-01

    Plant hormones, cytokinins (CKs), have been for a long time considered to be involved in plant responses to stress. However, their exact roles in processes linked to stress signalization and acclimatization to adverse environmental conditions are unknown. In this study, expression profiles of the entire gene families of CK biosynthetic and degradation genes in maize (Zea mays) during development and stress responses are described. Transcript abundance of particular genes is discussed in relation to the levels of different CK metabolites. Salt and osmotic stresses induce expression of some CK biosynthetic genes in seedlings of maize, leading to a moderate increase of active forms of CKs lasting several days during acclimatization to stress. A direct effect of CKs to mediate activation of stress responses does not seem to be possible due to the slow changes in metabolite levels. However, expression of genes involved in cytokinin signal transduction is uniformly down-regulated within 0.5 h of stress induction by an unknown mechanism. cis-Zeatin and its derivatives were found to be the most abundant CKs in young maize seedlings. We demonstrate that levels of this zeatin isomer are significantly enhanced during early stress response and that it originates independently from de novo biosynthesis in stressed tissues, possibly by elevated specific RNA degradation. By enhancing their CK levels, plants could perhaps undergo a reduction of growth rates maintained by abscisic acid accumulation in stressed tissues. A second role for cytokinin receptors in sensing turgor response is hypothesized besides their documented function in CK signaling. PMID:19641027

  9. ACUTE MENTAL STRESS AND HEMOSTASIS: WHEN PHYSIOLOGY BECOMES VASCULAR HARM

    PubMed Central

    von Känel, Roland

    2015-01-01

    Stress-induced activation of the sympathoadrenal medullary system activates both the coagulation and fibrinolysis system resulting in net hypercoagulability. The evolutionary interpretation of this physiology is that stress-hypercoagulability protects a healthy organism from excess bleeding should injury occur in fight-or-flight situations. In turn, acute mental stress, negative emotions and psychological trauma also are triggering factors of atherothrombotic events and possibly of venous thromboembolism. Individuals with pre-existent atherosclerosis and impaired endothelial anticoagulant function are the most vulnerable to experience onset of acute coronary events within two hours of intense emotions. A range of sociodemographic and psychosocial factors (e.g., chronic stress and negative affect) might critically intensify and prolong stress-induced hypercoagulability. In contrast, several pharmacological compounds, dietary flavanoids, and positive affect mitigate the acute prothrombotic stress response. Studies are needed to investigate whether attenuation of stress-hypercoagulability through medications and biobehavioral interventions reduce the risk of thrombotic incidents in at-risk populations. PMID:25861135

  10. Computations of uncertainty mediate acute stress responses in humans

    PubMed Central

    de Berker, Archy O.; Rutledge, Robb B.; Mathys, Christoph; Marshall, Louise; Cross, Gemma F.; Dolan, Raymond J.; Bestmann, Sven

    2016-01-01

    The effects of stress are frequently studied, yet its proximal causes remain unclear. Here we demonstrate that subjective estimates of uncertainty predict the dynamics of subjective and physiological stress responses. Subjects learned a probabilistic mapping between visual stimuli and electric shocks. Salivary cortisol confirmed that our stressor elicited changes in endocrine activity. Using a hierarchical Bayesian learning model, we quantified the relationship between the different forms of subjective task uncertainty and acute stress responses. Subjective stress, pupil diameter and skin conductance all tracked the evolution of irreducible uncertainty. We observed a coupling between emotional and somatic state, with subjective and physiological tuning to uncertainty tightly correlated. Furthermore, the uncertainty tuning of subjective and physiological stress predicted individual task performance, consistent with an adaptive role for stress in learning under uncertain threat. Our finding that stress responses are tuned to environmental uncertainty provides new insight into their generation and likely adaptive function. PMID:27020312

  11. [Effect of osmotic pressure on nitrification].

    PubMed

    Zheng, Ping; Wu, Ming-Sheng

    2006-01-01

    The effect of osmotic pressure on nitrification was investigated in the internal-loop air-lift nitrifying reactor. When influent ammonia concentration is kept at 420mg x L(-1) and influent osmotic pressure is increased from 4.3 to 18.8 x 10(5) Pa, the ammonia conversion of the nitrifying bioreactor is maintained between 93% and 100%. After influent osmotic pressure is further increased to 19.2 x 10(5)Pa, the ammonia conversion goes down to 69.2%. The influence of osmotic pressure on nitrification takes place without any alarm and the critical osmotic pressure is between 18.8 x 10(5) and 19.2 x 10(5) Pa. During osmotic stress, the nitrifying bacterial populations in the activated sludge become simplified, the cell size becomes smaller, the inner membrane becomes less and some unknown inclusion particles are formed. The cell structure is restored as soon as the osmotic pressure is removed. Addition of potassium is able to relieve the effect of osmotic pressure on nitrification. The nitrifying activity of the activated sludge is stimulated by the osmotic stress, and the specific ammonia conversion is increased from 0.083 kg x kg(-1) x d(-1) to 0.509 kg x kg(-1) x d(-1) and 2.569 kg x kg(-1) x d(-1), respectively. PMID:16572857

  12. EATING BEHAVIOR IN RESPONSE TO ACUTE STRESS.

    PubMed

    Mocanu, Veronica; Bontea, Amalia; Anton-Păduraru, Dana-teodora

    2016-01-01

    Obesity is a medical and social problem with a dramatically increasing prevalence. It is important to take action since childhood to prevent and treat obesity and metabolic syndrome. Infantile obesity affects all body systems starting in childhood and continuing to adulthood. Understanding the impact of stressors on weight status may be especially important for preventing obesity. The relationship between stress, eating behavior and obesity is not fully understood. However, there is evidence that stress causes disorders in hypothalamic-pituitary-adrenal (HPA) axis, system that regulates both stress and feeding responses. Also, the response is different depending on the type of stressors. Chronic stress, especially when people live in a palatable food environment, induces HPA stimulation, excess glucocorticoids, insulin resistance, which lead to inhibition of lipid mobilization, accumulation of triglyceride and retention of abdominal fat. PMID:27483696

  13. Absence of Yps7p, a putative glycosylphosphatidylinositol-linked aspartyl protease in Pichia pastoris, results in aberrant cell wall composition and increased osmotic stress resistance.

    PubMed

    Guan, Bo; Lei, Jianyong; Su, Shuai; Chen, Fengxiang; Duan, Zuoying; Chen, Yun; Gong, Xiaohai; Li, Huazhong; Jin, Jian

    2012-12-01

    Recently, studies performed on Saccharomyces cerevisiae and Candida albicans have confirmed the importance of fungal glycosylphosphatidylinositol (GPI)-anchored aspartyl proteases (yapsins) for cell-wall integrity. Genome sequence annotation of Pichia pastoris also revealed seven putative GPI-anchored aspartyl protease genes. The five yapsin genes assigned as YPS1, YPS2, YPS3, YPS7 and MKC7 in P. pastoris were disrupted. Among these putative GPI-linked aspartyl proteases, disruption of PpYPS7 gene confers the Ppyps7Δ mutant cell increased resistance to cell wall perturbing reagents congo red, calcofluor white (CW) and sodium dodecyl sulfate. Quantitative analysis of cell wall components shows lower content of chitin and increased amounts of β-1,3-glucan. Further staining of the cell with CW demonstrates that disruption of PpYPS7 gene causes a reduction of the chitin content in lateral cell wall. Consistently, transmission electron micrographs show that the inner layer of mutant cell wall, mainly composed of chitin and β-1, 3-glucan, is much thicker than that in parental strain GS115. Additionally, Ppyps7Δ mutant also exhibits increased osmotic resistance compared with parental strain GS115. This could be due to the dramatically elevated intracellular glycerol level in Ppyps7Δ mutant. These results suggest that PpYPS7 is involved in cell wall integrity and response to osmotic stress. PMID:22943416

  14. IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress.

    PubMed

    Kinoshita, Natsuko; Wang, Huan; Kasahara, Hiroyuki; Liu, Jun; Macpherson, Cameron; Machida, Yasunori; Kamiya, Yuji; Hannah, Matthew A; Chua, Nam-Hai

    2012-09-01

    The functions of microRNAs and their target mRNAs in Arabidopsis thaliana development have been widely documented; however, roles of stress-responsive microRNAs and their targets are not as well understood. Using small RNA deep sequencing and ATH1 microarrays to profile mRNAs, we identified IAA-Ala Resistant3 (IAR3) as a new target of miR167a. As expected, IAR3 mRNA was cleaved at the miR167a complementary site and under high osmotic stress miR167a levels decreased, whereas IAR3 mRNA levels increased. IAR3 hydrolyzes an inactive form of auxin (indole-3-acetic acid [IAA]-alanine) and releases bioactive auxin (IAA), a central phytohormone for root development. In contrast with the wild type, iar3 mutants accumulated reduced IAA levels and did not display high osmotic stress-induced root architecture changes. Transgenic plants expressing a cleavage-resistant form of IAR3 mRNA accumulated high levels of IAR3 mRNAs and showed increased lateral root development compared with transgenic plants expressing wild-type IAR3. Expression of an inducible noncoding RNA to sequester miR167a by target mimicry led to an increase in IAR3 mRNA levels, further confirming the inverse relationship between the two partners. Sequence comparison revealed the miR167 target site on IAR3 mRNA is conserved in evolutionarily distant plant species. Finally, we showed that IAR3 is required for drought tolerance. PMID:22960911

  15. Acute Stress Disorder: Conceptual Issues and Treatment Outcomes

    ERIC Educational Resources Information Center

    Koucky, Ellen M.; Galovski, Tara E.; Nixon, Reginald D. V.

    2012-01-01

    Acute stress disorder (ASD) was included as a diagnosis to the 4th edition of the "Diagnostic and Statistical Manual" (American Psychiatric Association, 1994) as a way of describing pathological reactions in the first month following a trauma. Since that time, ASD has been the focus of some controversy, particularly regarding the theoretical basis…

  16. Repeated, but Not Acute, Stress Suppresses Inflammatory Plasma Extravasation

    NASA Astrophysics Data System (ADS)

    Strausbaugh, Holly J.; Dallman, Mary F.; Levine, Jon D.

    1999-12-01

    Clinical findings suggest that inflammatory disease symptoms are aggravated by ongoing, repeated stress, but not by acute stress. We hypothesized that, compared with single acute stressors, chronic repeated stress may engage different physiological mechanisms that exert qualitatively different effects on the inflammatory response. Because inhibition of plasma extravasation, a critical component of the inflammatory response, has been associated with increased disease severity in experimental arthritis, we tested for a potential repeated stress-induced inhibition of plasma extravasation. Repeated, but not single, exposures to restraint stress produced a profound inhibition of bradykinin-induced synovial plasma extravasation in the rat. Experiments examining the mechanism of inhibition showed that the effect of repeated stress was blocked by adrenalectomy, but not by adrenal medullae denervation, suggesting that the adrenal cortex mediates this effect. Consistent with known effects of stress and with mediation by the adrenal cortex, restraint stress evoked repeated transient elevations of plasma corticosterone levels. This elevated corticosterone was necessary and sufficient to produce inhibition of plasma extravasation because the stress-induced inhibition was blocked by preventing corticosterone synthesis and, conversely, induction of repeated transient elevations in plasma corticosterone levels mimicked the effects of repeated stress. These data suggest that repetition of a mild stressor can induce changes in the physiological state of the animal that enable a previously innocuous stressor to inhibit the inflammatory response. These findings provide a potential explanation for the clinical association between repeated stress and aggravation of inflammatory disease symptoms and provide a model for study of the biological mechanisms underlying the stress-induced aggravation of chronic inflammatory diseases.

  17. Acute stress affects the physiology and behavior of allergic mice.

    PubMed

    Sutherland, M A; Shome, G P; Hulbert, L E; Krebs, N; Wachtel, M; McGlone, J J

    2009-09-01

    Physical and psychological stressors have been implicated in acute asthma exacerbation. The objective of the current study was to determine the effects of forced swimming stress (FST) on allergic pulmonary inflammation in BALB/c mice. Eighty female mice were allocated to one of four treatments arranged in a 2 x 2 factorial consisting of two levels of allergy and two levels of stress. The effects of stress and allergy were assessed by examination of cytokines and leukocyte differentials in the bronchoalveolar lavage fluid, corticosterone and immunoglobulin (Ig) E in the plasma, leukocyte differentials in the peripheral blood, natural killer cytotoxicity, and histopathology of the lungs. Behavior was recorded during the FST. Stress and allergy increased plasma corticosterone in mice. Allergy increased IgE concentrations and pulmonary inflammation. Interleukin-4 was greater among allergic stressed and non-stressed mice and stressed, non-allergic mice compared with non-stressed, non-allergic mice. Interleukin-5 (IL-5) and 6 (IL-6) were greater among allergic stressed and non-stressed mice compared with non-allergic mice. Interleukin-5 and 6 were reduced among stressed-allergic mice compared with non-stressed, allergic mice. Stress and allergy shifted mice towards a T-helper 2 response as shown by increased interleukin-4. Stress reduced IL-5 and IL-6 in allergic mice but not non-allergic mice. Pulmonary inflammation was not reduced among allergic stressed mice in spite of elevated glucocorticoids. Mice induced to be allergic responded to FST differently than non-allergic mice. Our findings suggest that stress induces a differential response among allergic and non-allergic mice. PMID:19527741

  18. Acute Stress Disorder as a Predictor of Post-Traumatic Stress Disorder in Physical Assault Victims

    ERIC Educational Resources Information Center

    Elklit, Ask; Brink, Ole

    2004-01-01

    The authors' objective was to examine the ability of acute stress disorder (ASD) and other trauma-related factors in a group of physical assault victims in predicting post-traumatic stress disorder (PTSD) 6 months later. Subjects included 214 victims of violence who completed a questionnaire 1 to 2 weeks after the assault, with 128 participating…

  19. Does Acute Stress Disorder Predict Posttraumatic Stress Disorder Following Bank Robbery?

    ERIC Educational Resources Information Center

    Hansen, Maj; Elklit, Ask

    2013-01-01

    Unfortunately, the number of bank robberies is increasing and little is known about the subsequent risk of posttraumatic stress disorder (PTSD). Several studies have investigated the prediction of PTSD through the presence of acute stress disorder (ASD). However, there have only been a few studies following nonsexual assault. The present study…

  20. The Relationship between Acute Stress Disorder and Posttraumatic Stress Disorder Following Cancer

    ERIC Educational Resources Information Center

    Kangas, Maria; Henry, Jane L.; Bryant, Richard A.

    2005-01-01

    In this study, the authors investigated the relationship between acute stress disorder (ASD) and posttraumatic stress disorder (PTSD) following cancer diagnosis. Patients who were recently diagnosed with 1st onset head and neck or lung malignancy (N = 82) were assessed for ASD within the initial month following their diagnosis and reassessed (n =…

  1. Turgor Regulation in Osmotically Stressed Arabidopsis Epidermal Root Cells. Direct Support for the Role of Inorganic Ion Uptake as Revealed by Concurrent Flux and Cell Turgor Measurements1

    PubMed Central

    Shabala, Sergey N.; Lew, Roger R.

    2002-01-01

    Hyperosmotic stress is known to significantly enhance net uptake of inorganic ions into plant cells. Direct evidence for cell turgor recovery via such a mechanism, however, is still lacking. In the present study, we performed concurrent measurements of net ion fluxes (with the noninvasive microelectrode ion flux estimation technique) and cell turgor changes (with the pressure-probe technique) to provide direct evidence that inorganic ion uptake regulates turgor in osmotically stressed Arabidopsis epidermal root cells. Immediately after onset of hyperosmotic stress (100/100 mm mannitol/sorbitol treatment), the cell turgor dropped from 0.65 to about 0.25 MPa. Turgor recovery started within 2 to 10 min after the treatment and was accompanied by a significant (30–80 nmol m−2 s−1) increase in uptake of K+, Cl−, and Na+ by root cells. In most cells, almost complete (>90% of initial values) recovery of the cell turgor was observed within 40 to 50 min after stress onset. In another set of experiments, we combined the voltage-clamp and the microelectrode ion flux estimation techniques to show that this process is, in part, mediated by voltage-gated K+ transporters at the cell plasma membrane. The possible physiological significance of these findings is discussed. PMID:12011359

  2. SIRT6 Is a Positive Regulator of Aldose Reductase Expression in U937 and HeLa cells under Osmotic Stress: In Vitro and In Silico Insights.

    PubMed

    Timucin, Ahmet Can; Basaga, Huveyda

    2016-01-01

    SIRT6 is a protein deacetylase, involved in various intracellular processes including suppression of glycolysis and DNA repair. Aldose Reductase (AR), first enzyme of polyol pathway, was proposed to be indirectly associated to these SIRT6 linked processes. Despite these associations, presence of SIRT6 based regulation of AR still remains ambiguous. Thus, regulation of AR expression by SIRT6 was investigated under hyperosmotic stress. A unique model of osmotic stress in U937 cells was used to demonstrate the presence of a potential link between SIRT6 and AR expression. By overexpressing SIRT6 in HeLa cells under hyperosmotic stress, its role on upregulation of AR was revealed. In parallel, increased SIRT6 activity was shown to upregulate AR in U937 cells under hyperosmotic milieu by using pharmacological modulators. Since these modulators also target SIRT1, binding of the inhibitor, Ex-527, specifically to SIRT6 was analyzed in silico. Computational observations indicated that Ex-527 may also target SIRT6 active site residues under high salt concentration, thus, validating in vitro findings. Based on these evidences, a novel regulatory step by SIRT6, modifying AR expression under hyperosmotic stress was presented and its possible interactions with intracellular machinery was discussed. PMID:27536992

  3. SIRT6 Is a Positive Regulator of Aldose Reductase Expression in U937 and HeLa cells under Osmotic Stress: In Vitro and In Silico Insights

    PubMed Central

    Timucin, Ahmet Can; Basaga, Huveyda

    2016-01-01

    SIRT6 is a protein deacetylase, involved in various intracellular processes including suppression of glycolysis and DNA repair. Aldose Reductase (AR), first enzyme of polyol pathway, was proposed to be indirectly associated to these SIRT6 linked processes. Despite these associations, presence of SIRT6 based regulation of AR still remains ambiguous. Thus, regulation of AR expression by SIRT6 was investigated under hyperosmotic stress. A unique model of osmotic stress in U937 cells was used to demonstrate the presence of a potential link between SIRT6 and AR expression. By overexpressing SIRT6 in HeLa cells under hyperosmotic stress, its role on upregulation of AR was revealed. In parallel, increased SIRT6 activity was shown to upregulate AR in U937 cells under hyperosmotic milieu by using pharmacological modulators. Since these modulators also target SIRT1, binding of the inhibitor, Ex-527, specifically to SIRT6 was analyzed in silico. Computational observations indicated that Ex-527 may also target SIRT6 active site residues under high salt concentration, thus, validating in vitro findings. Based on these evidences, a novel regulatory step by SIRT6, modifying AR expression under hyperosmotic stress was presented and its possible interactions with intracellular machinery was discussed. PMID:27536992

  4. Sum1, a highly conserved WD-repeat protein, suppresses S-M checkpoint mutants and inhibits the osmotic stress cell cycle response in fission yeast.

    PubMed Central

    Humphrey, T; Enoch, T

    1998-01-01

    The S-M checkpoint ensures that entry into mitosis is dependent on completion of DNA replication. In the fission yeast Schizosaccharomyces pombe, the SM checkpoint mutant cdc2-3w is thought to be defective in receiving the checkpoint signal. To isolate genes that function in the checkpoint pathway, we screened an S. pombe cDNA library for genes that, when overexpressed, could suppress the checkpoint defect of cdc2-3w. Using this approach, we have identified a novel gene, sum1+ (suppressor of uncontrolled mitosis). sum1+ encodes a highly conserved WD-transducin repeat protein with striking sequence similarity to the human transforming growth factor (TGF)-beta-receptor interacting protein TRIP-1 and to the translation initiation factor 3 subunit eIF3-p39, encoded by the TIF34 gene in Saccharomyces cerevisiae. S. pombe sum1+ is an essential gene, required for normal cell growth and division. In addition to restoring checkpoint control, overexpression of sum1+ inhibits the normal cell cycle response to osmotic stress. Furthermore, we demonstrate that inactivation of the stress-activated MAP kinase pathway, required for cell cycle stress response, restores the S-M checkpoint in cdc2-3w cells. These results suggest that Suml interacts with the stress-activated MAP kinase pathway and raise the possibility that environmental conditions may influence the checkpoint response in fission yeast. PMID:9560390

  5. Interplay between circadian rhythm, time of the day and osmotic stress constraints in the regulation of the expression of a Solanum Double B-box gene

    PubMed Central

    Kiełbowicz-Matuk, Agnieszka; Rey, Pascal; Rorat, Tadeusz

    2014-01-01

    Background and Aims Double B-box zinc finger (DBB) proteins are recently identified plant transcription regulators that participate in the response to sodium chloride-induced stress in arabidopsis plants. Little is known regarding their subcellular localization and expression patterns, particularly in relation to other osmotic constraints and the day/night cycle. This study investigated natural variations in the amount of a Solanum DBB protein, SsBBX24, during plant development, and also under various environmental constraints leading to cell dehydration in relation to the circadian clock and the time of day. Methods SsBBX24 transcript and protein abundance in various organs of phytotron-grown Solanum tuberosum and S. sogarandinum plants were investigated at different time points of the day and under various osmotic constraints. The intracellular location of SsBBX24 was determined by western blot analysis of subcellular fractions. Key Results Western blot analysis of SsBBX24 protein revealed that it was located in the nucleus at the beginning of the light period and in the cytosol at the end, suggesting movement (‘trafficking’) during the light phase. SsBBX24 gene expression exhibited circadian cycling under control conditions, with the highest and lowest abundances of both transcript and protein occurring 8 and 18 h after dawn, respectively. Exposing Solanum plants to low temperature, salinity and polyethylene glycol (PEG), but not to drought, disturbed the circadian regulation of SsBBX24 gene expression at the protein level. SsBBX24 transcript and protein accumulated in Solanum plants in response to salt and PEG treatments, but not in response to low temperature or water deficit. Most interestingly, the time of the day modulated the magnitude of SsBBX24 expression in response to high salt concentration. Conclusions The interplay between circadian rhythm and osmotic constraints in the regulation of the expression of a Solanum DBB transcriptional regulator is

  6. Skin temperature reveals the intensity of acute stress.

    PubMed

    Herborn, Katherine A; Graves, James L; Jerem, Paul; Evans, Neil P; Nager, Ruedi; McCafferty, Dominic J; McKeegan, Dorothy E F

    2015-12-01

    Acute stress triggers peripheral vasoconstriction, causing a rapid, short-term drop in skin temperature in homeotherms. We tested, for the first time, whether this response has the potential to quantify stress, by exhibiting proportionality with stressor intensity. We used established behavioural and hormonal markers: activity level and corticosterone level, to validate a mild and more severe form of an acute restraint stressor in hens (Gallus gallus domesticus). We then used infrared thermography (IRT) to non-invasively collect continuous temperature measurements following exposure to these two intensities of acute handling stress. In the comb and wattle, two skin regions with a known thermoregulatory role, stressor intensity predicted the extent of initial skin cooling, and also the occurrence of a more delayed skin warming, providing two opportunities to quantify stress. With the present, cost-effective availability of IRT technology, this non-invasive and continuous method of stress assessment in unrestrained animals has the potential to become common practice in pure and applied research. PMID:26434785

  7. Skin temperature reveals the intensity of acute stress

    PubMed Central

    Herborn, Katherine A.; Graves, James L.; Jerem, Paul; Evans, Neil P.; Nager, Ruedi; McCafferty, Dominic J.; McKeegan, Dorothy E.F.

    2015-01-01

    Acute stress triggers peripheral vasoconstriction, causing a rapid, short-term drop in skin temperature in homeotherms. We tested, for the first time, whether this response has the potential to quantify stress, by exhibiting proportionality with stressor intensity. We used established behavioural and hormonal markers: activity level and corticosterone level, to validate a mild and more severe form of an acute restraint stressor in hens (Gallus gallus domesticus). We then used infrared thermography (IRT) to non-invasively collect continuous temperature measurements following exposure to these two intensities of acute handling stress. In the comb and wattle, two skin regions with a known thermoregulatory role, stressor intensity predicted the extent of initial skin cooling, and also the occurrence of a more delayed skin warming, providing two opportunities to quantify stress. With the present, cost-effective availability of IRT technology, this non-invasive and continuous method of stress assessment in unrestrained animals has the potential to become common practice in pure and applied research. PMID:26434785

  8. Dynamics of telomerase activity in response to acute psychological stress

    PubMed Central

    Epel, Elissa S.; Lin, Jue; Dhabhar, Firdaus S.; Wolkowitz, Owen M.; Puterman, E; Karan, Lori; Blackburn, Elizabeth H.

    2010-01-01

    Telomerase activity plays an essential role in cel0l survival, by lengthening telomeres and promoting cell growth and longevity. It is now possible to quantify the low levels of telomerase activity in human leukocytes. Low basal telomerase activity has been related to chronic stress in people and to chronic glucocorticoid exposure in vitro. Here we test whether leukocyte telomerase activity changes under acute psychological stress. We exposed 44 elderly women, including 22 high stress dementia caregivers and 22 matched low stress controls, to a brief laboratory psychological stressor, while examining changes in telomerase activity of peripheral blood mononuclear cells (PBMC). At baseline, caregivers had lower telomerase activity levels than controls, but during stress telomerase activity increased similarly in both groups. Across the entire sample, subsequent telomerase activity increased by 18% one hour after the end of the stressor (p<0.01). The increase in telomerase activity was independent of changes in numbers or percentages of monocytes, lymphocytes, and specific T cell types, although we cannot fully rule out some potential contribution from immune cell redistribution in the change in telomerase activity. Telomerase activity increases were associated with greater cortisol increases in response to the stressor. Lastly, psychological response to the tasks (greater threat perception) was also related to greater telomerase activity increases in controls. These findings uncover novel relationships of dynamic telomerase activity with exposure to an acute stressor, and with two classic aspects of the stress response -- perceived psychological stress and neuroendocrine (cortisol) responses to the stressor. PMID:20018236

  9. Interspecies and Intraspecies Analysis of Trehalose Contents and the Biosynthesis Pathway Gene Family Reveals Crucial Roles of Trehalose in Osmotic-Stress Tolerance in Cassava

    PubMed Central

    Han, Bingying; Fu, Lili; Zhang, Dan; He, Xiuquan; Chen, Qiang; Peng, Ming; Zhang, Jiaming

    2016-01-01

    Trehalose is a nonreducing α,α-1,1-disaccharide in a wide range of organisms, and has diverse biological functions that range from serving as an energy source to acting as a protective/signal sugar. However, significant amounts of trehalose have rarely been detected in higher plants, and the function of trehalose in the drought-tolerant crop cassava (Manihot esculenta Crantz) is unclear. We measured soluble sugar concentrations of nine plant species with differing levels of drought tolerance and 41 cassava varieties using high-performance liquid chromatography with evaporative light-scattering detector (HPLC-ELSD). Significantly high amounts of trehalose were identified in drought-tolerant crops cassava, Jatropha curcas, and castor bean (Ricinus communis). All cassava varieties tested contained high amounts of trehalose, although their concentrations varied from 0.23 to 1.29 mg·g−1 fresh weight (FW), and the trehalose level was highly correlated with dehydration stress tolerance of detached leaves of the varieties. Moreover, the trehalose concentrations in cassava leaves increased 2.3–5.5 folds in response to osmotic stress simulated by 20% PEG 6000. Through database mining, 24 trehalose pathway genes, including 12 trehalose-6-phosphate synthases (TPS), 10 trehalose-6-phosphate phosphatases (TPP), and two trehalases were identified in cassava. Phylogenetic analysis indicated that there were four cassava TPS genes (MeTPS1–4) that were orthologous to the solely active TPS gene (AtTPS1 and OsTPS1) in Arabidopsis and rice, and a new TPP subfamily was identified in cassava, suggesting that the trehalose biosynthesis activities in cassava had potentially been enhanced in evolutionary history. RNA-seq analysis indicated that MeTPS1 was expressed at constitutionally high level before and after osmotic stress, while other trehalose pathway genes were either up-regulated or down-regulated, which may explain why cassava accumulated high level of trehalose under

  10. Interspecies and Intraspecies Analysis of Trehalose Contents and the Biosynthesis Pathway Gene Family Reveals Crucial Roles of Trehalose in Osmotic-Stress Tolerance in Cassava.

    PubMed

    Han, Bingying; Fu, Lili; Zhang, Dan; He, Xiuquan; Chen, Qiang; Peng, Ming; Zhang, Jiaming

    2016-01-01

    Trehalose is a nonreducing α,α-1,1-disaccharide in a wide range of organisms, and has diverse biological functions that range from serving as an energy source to acting as a protective/signal sugar. However, significant amounts of trehalose have rarely been detected in higher plants, and the function of trehalose in the drought-tolerant crop cassava (Manihot esculenta Crantz) is unclear. We measured soluble sugar concentrations of nine plant species with differing levels of drought tolerance and 41 cassava varieties using high-performance liquid chromatography with evaporative light-scattering detector (HPLC-ELSD). Significantly high amounts of trehalose were identified in drought-tolerant crops cassava, Jatropha curcas, and castor bean (Ricinus communis). All cassava varieties tested contained high amounts of trehalose, although their concentrations varied from 0.23 to 1.29 mg·g(-1) fresh weight (FW), and the trehalose level was highly correlated with dehydration stress tolerance of detached leaves of the varieties. Moreover, the trehalose concentrations in cassava leaves increased 2.3-5.5 folds in response to osmotic stress simulated by 20% PEG 6000. Through database mining, 24 trehalose pathway genes, including 12 trehalose-6-phosphate synthases (TPS), 10 trehalose-6-phosphate phosphatases (TPP), and two trehalases were identified in cassava. Phylogenetic analysis indicated that there were four cassava TPS genes (MeTPS1-4) that were orthologous to the solely active TPS gene (AtTPS1 and OsTPS1) in Arabidopsis and rice, and a new TPP subfamily was identified in cassava, suggesting that the trehalose biosynthesis activities in cassava had potentially been enhanced in evolutionary history. RNA-seq analysis indicated that MeTPS1 was expressed at constitutionally high level before and after osmotic stress, while other trehalose pathway genes were either up-regulated or down-regulated, which may explain why cassava accumulated high level of trehalose under normal

  11. Salivary Markers of Inflammation in Response to Acute Stress

    PubMed Central

    Slavish, Danica C.; Graham-Engeland, Jennifer E.; Smyth, Joshua M.; Engeland, Christopher G.

    2014-01-01

    There is burgeoning interest in the ability to detect inflammatory markers in response to stress within naturally occurring social contexts and/or across multiple time points per day within individuals. Salivary collection is a less invasive process than current methods of blood collection and enables intensive naturalistic methodologies, such as those involving extensive repeated measures per day over time. Yet the reliability and validity of saliva-based to blood-based inflammatory biomarkers in response to stress remains unclear. We review and synthesize the published studies that have examined salivary markers of inflammation following exposure to an acute laboratory stressor. Results from each study are reviewed by analyte (IL-1β, TNF-α, IL-6, IL-2, IL-4, IL-10, IL-12, CRP) and stress type (social-cognitive and exercise-physical), after which methodological issues and limitations are addressed. Although the literature is limited, several inflammatory markers (including IL-1β, TNF-α, and IL-6) have been reliably determined from saliva and have increased significantly in response to stress across multiple studies, with effect sizes ranging from very small to very large. Although CRP from saliva has been associated with CRP in circulating blood more consistently than other biomarkers have been associated with their counterparts in blood, evidence demonstrating it reliably responds to acute stress is absent. Although the current literature is presently too limited to allow broad assertion that inflammatory biomarkers determined from saliva are valuable for examining acute stress responses, this review suggests that specific targets may be valid and highlights specific areas of need for future research. PMID:25205395

  12. Fluoxetine and diazepam acutely modulate stress induced-behavior.

    PubMed

    Giacomini, Ana Cristina V V; Abreu, Murilo S; Giacomini, Luidia V; Siebel, Anna M; Zimerman, Fernanda F; Rambo, Cassiano L; Mocelin, Ricieri; Bonan, Carla D; Piato, Angelo L; Barcellos, Leonardo J G

    2016-01-01

    Drug residue contamination in aquatic ecosystems has been studied extensively, but the behavioral effects exerted by the presence of these drugs are not well known. Here, we investigated the effects of acute stress on anxiety, memory, social interaction, and aggressiveness in zebrafish exposed to fluoxetine and diazepam at concentrations that disrupt the hypothalamic-pituitary-interrenal (HPI) axis. Stress increased the locomotor activity and time spent in the bottom area of the tank (novel tank). Fluoxetine and diazepam prevented these behaviors. We also observed that stress and fluoxetine and diazepam exposures decreased social interaction. Stress also increased aggressive behavior, which was not reversed by fluoxetine or diazepam. These data suggest that the presence of these drugs in aquatic ecosystems causes significant behavioral alterations in fish. PMID:26403161

  13. Acute stress is detrimental to heart regeneration in zebrafish

    PubMed Central

    Sallin, Pauline; Jaźwińska, Anna

    2016-01-01

    Psychological stress is one of the factors associated with human cardiovascular disease. Here, we demonstrate that acute perceived stress impairs the natural capacity of heart regeneration in zebrafish. Beside physical and chemical disturbances, intermittent crowding triggered an increase in cortisol secretion and blocked the replacement of fibrotic tissue with new myocardium. Pharmacological simulation of stress by pulse treatment with dexamethasone/adrenaline reproduced the regeneration failure, while inhibition of the stress response with anxiolytic drugs partially rescued the regenerative process. Impaired heart regeneration in stressed animals was associated with a reduced cardiomyocyte proliferation and with the downregulation of several genes, including igfbp1b, a modulator of IGF signalling. Notably, daily stress induced a decrease in Igf1r phosphorylation. As cardiomyocyte proliferation was decreased in response to IGF-1 receptor inhibition, we propose that the stress-induced cardiac regenerative failure is partially caused by the attenuation of IGF signalling. These findings indicate that the natural regenerative ability of the zebrafish heart is vulnerable to the systemic paracrine stress response. PMID:27030176

  14. Acute stress is detrimental to heart regeneration in zebrafish.

    PubMed

    Sallin, Pauline; Jaźwińska, Anna

    2016-03-01

    Psychological stress is one of the factors associated with human cardiovascular disease. Here, we demonstrate that acute perceived stress impairs the natural capacity of heart regeneration in zebrafish. Beside physical and chemical disturbances, intermittent crowding triggered an increase in cortisol secretion and blocked the replacement of fibrotic tissue with new myocardium. Pharmacological simulation of stress by pulse treatment with dexamethasone/adrenaline reproduced the regeneration failure, while inhibition of the stress response with anxiolytic drugs partially rescued the regenerative process. Impaired heart regeneration in stressed animals was associated with a reduced cardiomyocyte proliferation and with the downregulation of several genes, includingigfbp1b, a modulator of IGF signalling. Notably, daily stress induced a decrease in Igf1r phosphorylation. As cardiomyocyte proliferation was decreased in response to IGF-1 receptor inhibition, we propose that the stress-induced cardiac regenerative failure is partially caused by the attenuation of IGF signalling. These findings indicate that the natural regenerative ability of the zebrafish heart is vulnerable to the systemic paracrine stress response. PMID:27030176

  15. Severe physical exertion, oxidative stress, and acute lung injury.

    PubMed

    Shah, Nikunj R; Iqbal, M Bilal; Barlow, Andrew; Bayliss, John

    2011-11-01

    We report the case of a 27-year-old male athlete presenting with severe dyspnoea 24 hours after completing an "Ironman Triathlon." Subsequent chest radiology excluded pulmonary embolus but confirmed an acute lung injury (ALI). Echocardiography corroborated a normal brain natriuretic peptide level by demonstrating good biventricular systolic function with no regional wall motion abnormalities. He recovered well, without requiring ventilatory support, on supplemental oxygen therapy and empirical antibiotics. To date, ALI following severe physical exertion has never been described. Exercise is a form of physiological stress resulting in oxidative stress through generation of reactive oxygen/nitrogen species. In its extreme form, there is potential for an excessive oxidative stress response--one that overwhelms the body's protective antioxidant mechanisms. As our case demonstrated, oxidative stress secondary to severe physical exertion was the most likely factor in the pathogenesis of ALI. Further studies are necessary to explore the pathological consequences of exercise-induced oxidative stress. Although unproven as of yet, further research may be needed to demonstrate if antioxidant therapy can prevent or ameliorate potential life-threatening complications in the acute setting. PMID:22064719

  16. The Osmotic Pump

    ERIC Educational Resources Information Center

    Levenspiel, Octave; de Nevers, Noel

    1974-01-01

    Describes the principle involved in an osmotic pump used to extract fresh water from the oceans and in an osmotic power plant used to generate electricity. Although shown to be thermodynamically feasible, the osmotic principle is not likely to be used commerically for these purposes in the near future. (JR)

  17. Role for leptin in promoting glucose mobilization during acute hyperosmotic stress in teleost fishes.

    PubMed

    Baltzegar, David A; Reading, Benjamin J; Douros, Jonathon D; Borski, Russell J

    2014-01-01

    Osmoregulation is critical for survival in all vertebrates, yet the endocrine regulation of this metabolically expensive process is not fully understood. Specifically, the function of leptin in the regulation of energy expenditure in fishes, and among ectotherms, in general, remains unresolved. In this study, we examined the effects of acute salinity transfer (72  h) and the effects of leptin and cortisol on plasma metabolites and hepatic energy reserves in the euryhaline fish, the tilapia (Oreochromis mossambicus). Transfer to 2/3 seawater (23  ppt) significantly increased plasma glucose, amino acid, and lactate levels relative to those in the control fish. Plasma glucose levels were positively correlated with amino acid levels (R2=0.614), but not with lactate levels. The mRNA expression of liver leptin A (lepa), leptin receptor (lepr), and hormone-sensitive and lipoprotein lipases (hsl and lpl) as well as triglyceride content increased during salinity transfer, but plasma free fatty acid and triglyceride levels remained unchanged. Both leptin and cortisol significantly increased plasma glucose levels in vivo, but only leptin decreased liver glycogen levels. Leptin decreased the expression of liver hsl and lpl mRNAs, whereas cortisol significantly increased the expression of these lipases. These findings suggest that hepatic glucose mobilization into the blood following an acute salinity challenge involves both glycogenolysis, induced by leptin, and subsequent gluconeogenesis of free amino acids. This is the first study to report that teleost leptin A has actions that are functionally distinct from those described in mammals acting as a potent hyperglycemic factor during osmotic stress, possibly in synergism with cortisol. These results suggest that the function of leptin may have diverged during the evolution of vertebrates, possibly reflecting differences in metabolic regulation between poikilotherms and homeotherms. PMID:24194509

  18. Populus euphratica Displays Apoplastic Sodium Accumulation, Osmotic Adjustment by Decreases in Calcium and Soluble Carbohydrates, and Develops Leaf Succulence under Salt Stress1[W

    PubMed Central

    Ottow, Eric A.; Brinker, Monika; Teichmann, Thomas; Fritz, Eberhard; Kaiser, Werner; Brosché, Mikael; Kangasjärvi, Jaakko; Jiang, Xiangning; Polle, Andrea

    2005-01-01

    Populus euphratica Olivier is known to exist in saline and arid environments. In this study we investigated the physiological mechanisms enabling this species to cope with stress caused by salinity. Acclimation to increasing Na+ concentrations required adjustments of the osmotic pressure of leaves, which were achieved by accumulation of Na+ and compensatory decreases in calcium and soluble carbohydrates. The counterbalance of Na+/Ca2+ was also observed in mature leaves from field-grown P. euphratica trees exposed to an environmental gradient of increasing salinity. X-ray microanalysis showed that a primary strategy to protect the cytosol against sodium toxicity was apoplastic but not vacuolar salt accumulation. The ability to cope with salinity also included maintenance of cytosolic potassium concentrations and development of leaf succulence due to an increase in cell number and cell volume leading to sodium dilution. Decreases in apoplastic and vacuolar Ca2+ combined with suppression of calcineurin B-like protein transcripts suggest that Na+ adaptation required suppression of calcium-related signaling pathways. Significant increases in galactinol synthase and alternative oxidase after salt shock and salt adaptation point to shifts in carbohydrate metabolism and suppression of reactive oxygen species in mitochondria under salt stress. PMID:16299175

  19. Two glycerol 3-phosphate dehydrogenase isogenes from Candida versatilis SN-18 play an important role in glycerol biosynthesis under osmotic stress.

    PubMed

    Mizushima, Daiki; Iwata, Hisashi; Ishimaki, Yuki; Ogihara, Jun; Kato, Jun; Kasumi, Takafumi

    2016-05-01

    Two isogenes of glycerol 3-phosphate dehydrogenase (GPD) from Candida versatilis SN-18 were cloned and sequenced. These intronless genes (Cagpd1 and Cagpd2) were both predicted to encode a 378 amino acid polypeptide, and the deduced amino acid sequences mutually showed 76% identity. Interestingly, Cagpd1 and Cagpd2 were located tandemly in a locus of genomic DNA within a 262 bp interval. To our knowledge, this represents a novel instance of isogenic genes relating to glucose metabolism. The stress response element (STRE) was found respectively at -93 to -89 bp upstream of the 5'end of Cagpd1 and -707 to -703 bp upstream of Cagpd2, indicating that these genes are involved in osmotic stress response. In heterologous expression using a gpd1Δgpd2Δ double deletion mutant of Saccharomyces cerevisiae, Cagpd1 and Cagpd2 transformants complemented the function of GPD, with Cagpd2 being much more effective than Cagpd1 in promoting growth and glycerol synthesis. Phylogenetic analysis of the amino acid sequences suggested that Cagpd1p and Cagpd2p are NADP(+)-dependent GPDs (EC 1.1.1.94). However, crude enzyme extract from Cagpd1 and Cagpd2 transformants showed GPD activity with only NAD(+) as cofactor. Hence, both Cagpd1p and Cagpd2p are likely NAD(+)-dependent GPDs (EC 1.1.1.8), similar to GPDs from S. cerevisiae and Candida magnoliae. PMID:26906228

  20. Resilience as a correlate of acute stress disorder symptoms in patients with acute myocardial infarction

    PubMed Central

    Meister, Rebecca E; Weber, Tania; Princip, Mary; Schnyder, Ulrich; Barth, Jürgen; Znoj, Hansjörg; Schmid, Jean-Paul; von Känel, Roland

    2015-01-01

    Objectives Myocardial infarction (MI) may be experienced as a traumatic event causing acute stress disorder (ASD). This mental disorder has an impact on the daily life of patients and is associated with the development of post-traumatic stress disorder. Trait resilience has been shown to be a protective factor for post-traumatic stress disorder, but its association with ASD in patients with MI is elusive and was examined in this study. Methods We investigated 71 consecutive patients with acute MI within 48 h of having stable haemodynamic conditions established and for 3 months thereafter. All patients completed the Acute Stress Disorder Scale and the Resilience Scale to self-rate the severity of ASD symptoms and trait resilience, respectively. Results Hierarchical regression analysis showed that greater resilience was associated with lower symptoms of ASD independent of covariates (b=−0.22, p<0.05). Post hoc analysis revealed resilience level to be inversely associated with the ASD symptom clusters of re-experiencing (b=−0.05, p<0.05) and arousal (b=−0.09, p<0.05), but not with dissociation and avoidance. Conclusions The findings suggest that patients with acute MI with higher trait resilience experience relatively fewer symptoms of ASD during MI. Resilience was particularly associated with re-experiencing and arousal symptoms. Our findings contribute to a better understanding of resilience as a potentially important correlate of ASD in the context of traumatic situations such as acute MI. These results emphasise the importance of identifying patients with low resilience in medical settings and to offer them adequate support. PMID:26568834

  1. Functional Characterization of the Tau Class Glutathione-S-Transferases Gene (SbGSTU) Promoter of Salicornia brachiata under Salinity and Osmotic Stress

    PubMed Central

    Tiwari, Vivekanand; Patel, Manish Kumar; Chaturvedi, Amit Kumar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    Reactive oxygen or nitrogen species are generated in the plant cell during the extreme stress condition, which produces toxic compounds after reacting with the organic molecules. The glutathione-S-transferase (GST) enzymes play a significant role to detoxify these toxins and help in excretion or sequestration of them. In the present study, we have cloned 1023 bp long promoter region of tau class GST from an extreme halophyte Salicornia brachiata and functionally characterized using the transgenic approach in tobacco. Computational analysis revealed the presence of abiotic stress responsive cis-elements like ABRE, MYB, MYC, GATA, GT1 etc., phytohormones, pathogen and wound responsive motifs. Three 5’-deletion constructs of 730 (GP2), 509 (GP3) and 348 bp (GP4) were made from 1023 (GP1) promoter fragment and used for tobacco transformation. The single event transgenic plants showed notable GUS reporter protein expression in the leaf tissues of control as well as treated plants. The expression level of the GUS gradually decreases from GP1 to GP4 in leaf tissues, whereas the highest level of expression was detected with the GP2 construct in root and stem under control condition. The GUS expression was found higher in leaves and stems of salinity or osmotic stress treated transgenic plants than that of the control plants, but, lower in roots. An efficient expression level of GUS in transgenic plants suggests that this promoter can be used for both constitutive as well as stress inducible expression of gene(s). And this property, make it as a potential candidate to be used as an alternative promoter for crop genetic engineering. PMID:26885663

  2. Functional Characterization of the Tau Class Glutathione-S-Transferases Gene (SbGSTU) Promoter of Salicornia brachiata under Salinity and Osmotic Stress.

    PubMed

    Tiwari, Vivekanand; Patel, Manish Kumar; Chaturvedi, Amit Kumar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    Reactive oxygen or nitrogen species are generated in the plant cell during the extreme stress condition, which produces toxic compounds after reacting with the organic molecules. The glutathione-S-transferase (GST) enzymes play a significant role to detoxify these toxins and help in excretion or sequestration of them. In the present study, we have cloned 1023 bp long promoter region of tau class GST from an extreme halophyte Salicornia brachiata and functionally characterized using the transgenic approach in tobacco. Computational analysis revealed the presence of abiotic stress responsive cis-elements like ABRE, MYB, MYC, GATA, GT1 etc., phytohormones, pathogen and wound responsive motifs. Three 5'-deletion constructs of 730 (GP2), 509 (GP3) and 348 bp (GP4) were made from 1023 (GP1) promoter fragment and used for tobacco transformation. The single event transgenic plants showed notable GUS reporter protein expression in the leaf tissues of control as well as treated plants. The expression level of the GUS gradually decreases from GP1 to GP4 in leaf tissues, whereas the highest level of expression was detected with the GP2 construct in root and stem under control condition. The GUS expression was found higher in leaves and stems of salinity or osmotic stress treated transgenic plants than that of the control plants, but, lower in roots. An efficient expression level of GUS in transgenic plants suggests that this promoter can be used for both constitutive as well as stress inducible expression of gene(s). And this property, make it as a potential candidate to be used as an alternative promoter for crop genetic engineering. PMID:26885663

  3. Comparison of sperm quality and DNA integrity in mouse sperm exposed to various cooling velocities and osmotic stress.

    PubMed

    Yildiz, Cengiz; Law, Napoleon; Ottaviani, Palma; Jarvi, Keith; McKerlie, Colin

    2010-11-01

    The first objective was to compare sperm quality following conventional manual sperm freezing (cryovials held 1, 2, 3, and 4 cm, respectively, above liquid nitrogen (LN(2)) for 10 min, resulting in cooling velocities of approximately -14.9, -10.1, -6.6, and -5.1 °C/min, respectively), and cooling velocities of -5, -20, -40, and -100 °C/min in a programmed automated freezer, for sperm recovered from CD-1, B6129SF1, and C57BL/6NCrlBR mice. Furthermore, using these strains, as well as 129S/SvPaslco, and DBA/2NCrlBR mice, the second objective was to determine the effects on DNA integrity of sperm exposed to hyposmotic (1 mOsm/L) and hyperosmotic (2400 mOsm/L) solutions, compared to an isosmotic control (300 mOsm/L). For freezing above LN(2) or in an automated freezer, 2 cm above LN(2) and -100 °C/min, respectively, were optimal (P < 0.05-0.01), with no significant differences between these two approaches for post-thaw progressive motility, DNA integrity, and in vitro rates of fertilization and blastocyst formation. Both manual and automated freezing techniques increased post-thaw sperm DNA fragmentation (P < 0.01); the DNA integrity of post-thaw sperm was significantly affected by cooling velocity and strain background. Relative to isosmotic controls, a hyposmotic solution was more deleterious (P < 0.05-0.01) to sperm DNA integrity than a hyperosmotic solution for CD-1, B6129SF1, C57BL/6, and DBA mice (there were strain-dependent differences). In conclusion, optimization of freezing distance and cooling velocity (manual and automated freezing, respectively) were significant factors for efficient cryopreservation and re-derivation of mice from frozen-thawed sperm. Additionally, osmotically-driven volume changes in mouse sperm increased DNA fragmentation, with susceptibility affected by background strain. PMID:20728931

  4. Acute exercise and oxidative stress: a 30 year history

    PubMed Central

    Fisher-Wellman, Kelsey; Bloomer, Richard J

    2009-01-01

    The topic of exercise-induced oxidative stress has received considerable attention in recent years, with close to 300 original investigations published since the early work of Dillard and colleagues in 1978. Single bouts of aerobic and anaerobic exercise can induce an acute state of oxidative stress. This is indicated by an increased presence of oxidized molecules in a variety of tissues. Exercise mode, intensity, and duration, as well as the subject population tested, all can impact the extent of oxidation. Moreover, the use of antioxidant supplements can impact the findings. Although a single bout of exercise often leads to an acute oxidative stress, in accordance with the principle of hormesis, such an increase appears necessary to allow for an up-regulation in endogenous antioxidant defenses. This review presents a comprehensive summary of original investigations focused on exercise-induced oxidative stress. This should provide the reader with a well-documented account of the research done within this area of science over the past 30 years. PMID:19144121

  5. Osmotic Homeostasis

    PubMed Central

    Zeidel, Mark L.

    2015-01-01

    Alterations in water homeostasis can disturb cell size and function. Although most cells can internally regulate cell volume in response to osmolar stress, neurons are particularly at risk given a combination of complex cell function and space restriction within the calvarium. Thus, regulating water balance is fundamental to survival. Through specialized neuronal “osmoreceptors” that sense changes in plasma osmolality, vasopressin release and thirst are titrated in order to achieve water balance. Fine-tuning of water absorption occurs along the collecting duct, and depends on unique structural modifications of renal tubular epithelium that confer a wide range of water permeability. In this article, we review the mechanisms that ensure water homeostasis as well as the fundamentals of disorders of water balance. PMID:25078421

  6. Glutamatergic Mechanisms of Comorbidity Between Acute Stress and Cocaine Self-administration

    PubMed Central

    Garcia-Keller, Constanza; Kupchik, Yonatan; Gipson, Cassandra D; Brown, Robyn M; Spencer, Sade; Bollati, Flavia; Esparza, Maria A; Roberts-Wolfe, Doug; Heinsbroek, Jasper; Bobadilla, Ana-Clara; Cancela, Liliana M; Kalivas, Peter W

    2015-01-01

    There is substantial comorbidity between stress disorders and substance use disorders (SUDs), and acute stress augments the locomotor stimulant effect of cocaine in animal models. Here we endeavor to understand the neural underpinnings of comorbid stress disorders and drug use by determining if the glutamatergic neuroadaptations that characterize cocaine self-administration are induced by acute stress. Rats were exposed to acute (2 h) immobilization stress and 3 weeks later the nucleus accumbens core was examined for changes in glutamate transport, glutamate mediated synaptic currents, and dendritic spine morphology. We also determined if acute stress potentiated the acquisition of cocaine self-administration. Acute stress produced an enduring reduction in glutamate transport, and potentiated excitatory synapses on medium spiny neurons. Acute stress also augmented the acquisition of cocaine self-administration. Importantly, by restoring glutamate transport in the accumbens core with ceftriaxone the capacity of acute stress to augment the acquisition of cocaine self-administration was abolished. Similarly, ceftriaxone treatment prevented stress-induced potentiation of cocaine-induced locomotor activity. However, ceftriaxone did not reverse stress-induced synaptic potentiation, indicating that this effect of stress exposure did not underpin the increased acquisition of cocaine self-administration. Reversing acute stress-induced vulnerability to self-administer cocaine by normalizing glutamate transport poses a novel treatment possibility for reducing comorbid SUDs in stress disorders. PMID:26821978

  7. Glutamatergic mechanisms of comorbidity between acute stress and cocaine self-administration.

    PubMed

    Garcia-Keller, C; Kupchik, Y M; Gipson, C D; Brown, R M; Spencer, S; Bollati, F; Esparza, M A; Roberts-Wolfe, D J; Heinsbroek, J A; Bobadilla, A-C; Cancela, L M; Kalivas, P W

    2016-08-01

    There is substantial comorbidity between stress disorders and substance use disorders (SUDs), and acute stress augments the locomotor stimulant effect of cocaine in animal models. Here we endeavor to understand the neural underpinnings of comorbid stress disorders and drug use by determining whether the glutamatergic neuroadaptations that characterize cocaine self-administration are induced by acute stress. Rats were exposed to acute (2 h) immobilization stress, and 3 weeks later the nucleus accumbens core was examined for changes in glutamate transport, glutamate-mediated synaptic currents and dendritic spine morphology. We also determined whether acute stress potentiated the acquisition of cocaine self-administration. Acute stress produced an enduring reduction in glutamate transport and potentiated excitatory synapses on medium spiny neurons. Acute stress also augmented the acquisition of cocaine self-administration. Importantly, by restoring glutamate transport in the accumbens core with ceftriaxone the capacity of acute stress to augment the acquisition of cocaine self-administration was abolished. Similarly, ceftriaxone treatment prevented stress-induced potentiation of cocaine-induced locomotor activity. However, ceftriaxone did not reverse stress-induced synaptic potentiation, indicating that this effect of stress exposure did not underpin the increased acquisition of cocaine self-administration. Reversing acute stress-induced vulnerability to self-administer cocaine by normalizing glutamate transport poses a novel treatment possibility for reducing comorbid SUDs in stress disorders. PMID:26821978

  8. Autobiographical memory after acute stress in healthy young men.

    PubMed

    Tollenaar, Marieke S; Elzinga, Bernet M; Spinhoven, Philip; Everaerd, Walter

    2009-04-01

    Autobiographical memories have been found to be less specific after hydrocortisone administration in healthy men, resembling memory deficits in, for example, depression. This is the first study to investigate the effects of stress-induced elevated cortisol levels on autobiographic memory specificity and experience in healthy young men. Autobiographical memories were elicited by neutral and negative cue words, with instructions to recall either recent or remote memories. No effect of psychosocial stress was found on memory specificity or experience, but cortisol increases tended to be related to less specific, recent memories elicited by neutral cue words, especially when participants were physically aroused during memory retrieval. These results indicate that autobiographical memories are fairly resistant to an acute stressor in healthy young men, but that endogenous cortisol increases might be related to autobiographical memory retrieval. More research into the relation between endogenous cortisol increases and autobiographic memory retrieval is needed, especially in stress-related disorders. PMID:19156564

  9. Acute stress impairs the retrieval of extinction memory in humans

    PubMed Central

    Raio, Candace M.; Brignoni-Perez, Edith; Goldman, Rachel; Phelps, Elizabeth A.

    2014-01-01

    Extinction training is a form of inhibitory learning that allows an organism to associate a previously aversive cue with a new, safe outcome. Extinction does not erase a fear association, but instead creates a competing association that may or may not be retrieved when a cue is subsequently encountered. Characterizing the conditions under which extinction learning is expressed is important to enhancing the treatment of anxiety disorders that rely on extinction-based exposure therapy as a primary treatment technique. The ventromedial prefrontal cortex, which plays an important role in the expression of extinction memory, has been shown to be functionally impaired after stress exposure. Further, recent research in rodents found that exposure to stress led to deficits in extinction retrieval, although this has yet to be tested in humans. To explore how stress might influence extinction retrieval in humans, participants underwent a differential aversive learning paradigm, in which one image was probabilistically paired with an aversive shock while the other image denoted safety. Extinction training directly followed, at which point reinforcement was omitted. A day later, participants returned to the lab and either completed an acute stress manipulation (i.e., cold pressor), or a control task, before undergoing an extinction retrieval test. Skin conductance responses and salivary cortisol concentrations were measured throughout each session as indices of fear arousal and neuroendocrine stress responses, respectively. The efficacy of our stress induction was established by observing significant increases in cortisol for the stress condition only. We examined extinction retrieval by comparing conditioned responses during the last trial of extinction (day 1) with that of the first trial of re-extinction (day 2). Groups did not differ on initial fear acquisition or extinction, however, one day later participants in the stress group (n = 27) demonstrated significantly less

  10. Think aloud: acute stress and coping strategies during golf performances.

    PubMed

    Nicholls, Adam R; Polman, Remco C J

    2008-07-01

    A limitation of the sport psychology coping literature is the amount of time between a stressful episode and the recall of the coping strategies used in the stressful event (Nicholls & Polman, 2007). The purpose of this study was to develop and implement a technique to measure acute stress and coping during performance. Five high-performance adolescent golfers took part in Level 2 verbalization think aloud trials (Ericsson & Simon, 1993), which involved participants verbalizing their thoughts, over six holes of golf. Verbal reports were audio-recorded during each performance, transcribed verbatim, and analyzed using protocol analysis (Ericsson & Simon, 1993). Stressors and coping strategies varied throughout the six holes, which support the proposition that stress and coping is a dynamic process that changes across phases of the same performance (Lazarus, 1999). The results also revealed information regarding the sequential patterning of stress and coping, suggesting that the golfers experienced up to five stressors before reporting a coping strategy. Think aloud appears a suitable method to collect concurrent stress and coping data. PMID:18612855

  11. Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress.

    PubMed

    Saikia, Mridusmita; Jobava, Raul; Parisien, Marc; Putnam, Andrea; Krokowski, Dawid; Gao, Xing-Huang; Guan, Bo-Jhih; Yuan, Yiyuan; Jankowsky, Eckhard; Feng, Zhaoyang; Hu, Guo-fu; Pusztai-Carey, Marianne; Gorla, Madhavi; Sepuri, Naresh Babu V; Pan, Tao; Hatzoglou, Maria

    2014-07-01

    Adaptation to changes in extracellular tonicity is essential for cell survival. However, severe or chronic hyperosmotic stress induces apoptosis, which involves cytochrome c (Cyt c) release from mitochondria and subsequent apoptosome formation. Here, we show that angiogenin-induced accumulation of tRNA halves (or tiRNAs) is accompanied by increased survival in hyperosmotically stressed mouse embryonic fibroblasts. Treatment of cells with angiogenin inhibits stress-induced formation of the apoptosome and increases the interaction of small RNAs with released Cyt c in a ribonucleoprotein (Cyt c-RNP) complex. Next-generation sequencing of RNA isolated from the Cyt c-RNP complex reveals that 20 tiRNAs are highly enriched in the Cyt c-RNP complex. Preferred components of this complex are 5' and 3' tiRNAs of specific isodecoders within a family of isoacceptors. We also demonstrate that Cyt c binds tiRNAs in vitro, and the pool of Cyt c-interacting RNAs binds tighter than individual tiRNAs. Finally, we show that angiogenin treatment of primary cortical neurons exposed to hyperosmotic stress also decreases apoptosis. Our findings reveal a connection between angiogenin-generated tiRNAs and cell survival in response to hyperosmotic stress and suggest a novel cellular complex involving Cyt c and tiRNAs that inhibits apoptosome formation and activity. PMID:24752898

  12. The Arabidopsis thaliana Immunophilin ROF1 Directly Interacts with PI(3)P and PI(3,5)P2 and Affects Germination under Osmotic Stress

    PubMed Central

    Karali, Debora; Oxley, David; Runions, John; Ktistakis, Nicholas; Farmaki, Theodora

    2012-01-01

    A direct interaction of the Arabidopsis thaliana immunophilin ROF1 with phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-bisphosphate was identified using a phosphatidylinositol-phosphate affinity chromatography of cell suspension extracts, combined with a mass spectrometry (nano LC ESI-MS/MS) analysis. The first FK506 binding domain was shown sufficient to bind to both phosphatidylinositol-phosphate stereoisomers. GFP-tagged ROF1 under the control of a 35S promoter was localised in the cytoplasm and the cell periphery of Nicotiana tabacum leaf explants. Immunofluorescence microscopy of Arabidopsis thaliana root tips verified its cytoplasmic localization and membrane association and showed ROF1 localization in the elongation zone which was expanded to the meristematic zone in plants grown on high salt media. Endogenous ROF1 was shown to accumulate in response to high salt treatment in Arabidopsis thaliana young leaves as well as in seedlings germinated on high salt media (0.15 and 0.2 M NaCl) at both an mRNA and protein level. Plants over-expressing ROF1, (WSROF1OE), exhibited enhanced germination under salinity stress which was significantly reduced in the rof1− knock out mutants and abolished in the double mutants of ROF1 and of its interacting homologue ROF2 (WSrof1−/2−). Our results show that ROF1 plays an important role in the osmotic/salt stress responses of germinating Arabidopsis thaliana seedlings and suggest its involvement in salinity stress responses through a phosphatidylinositol-phosphate related protein quality control pathway. PMID:23133621

  13. Memory and executive dysfunctions associated with acute posttraumatic stress disorder.

    PubMed

    Lagarde, Geneviève; Doyon, Julien; Brunet, Alain

    2010-05-15

    Posttraumatic stress disorder (PTSD) in its chronic form has been associated with a number of neurocognitive impairments involving emotionally neutral stimuli. It remains unknown whether such impairments also characterize acute PTSD. In the present investigation, neurocognitive functions were examined in trauma exposed individuals with (n=21) and without (n=16) acute PTSD, as well as in a group of individuals never exposed to trauma (n=17) using specific and standardized tasks such as the Rey Auditory Verbal Learning Test, the Aggie's Figure Learning Test, the Autobiographical Memory Interview, the D2 test, the Stroop task, the digit and visual span tasks of the Wechsler Memory Scale-III, the Trail Making Test, the Tower of London and the vocabulary subtest of the Wechsler Adult Intelligence Scale-III. A number of deficits in the cognitive domains of memory, high-level attentional resources, executive function and working memory were found in the group with a diagnosis of acute PTSD only and not among the other groups. The findings, which point to the possibility of disturbed fronto-temporal system function in trauma-exposed individuals with acute PTSD, are particularly relevant for the early clinical management of this disorder. PMID:20381880

  14. Ectopic expression of a grapevine transcription factor VvWRKY11 contributes to osmotic stress tolerance in Arabidopsis.

    PubMed

    Liu, Huaying; Yang, Wenlong; Liu, Dongcheng; Han, Yuepeng; Zhang, Aimin; Li, Shaohua

    2011-01-01

    Plant WRKY transcriptional factors play an important role in response to biotic and abiotic stresses. In this study, a WRKY transcription factor was isolated from grapevine. This transcription factor showed 66% and 58% identity at the DNA and amino acid sequence levels, respectively, with Arabidopsis AtWRKY11 genes, and was therefore designated VvWRKY11. Phylogenetic analysis and structure comparison indicated that VvWRKY11 protein belongs to group IIc. The VvWRKY11 protein was shown to be located in the nucleus based on green fluorescent protein analysis. Yeast one-hybrid analysis further indicated that VvWRKY11 protein binds specifically to the W-box element. The expression profile of VvWRKY11 in response to treatment with phytohormone salicylic acid or pathogen Plasmopara viticola is rapid and transient. Transgenic Arabidopsis seedlings overexpressing VvWRKY11 showed higher tolerance to water stress induced by mannitol than wild-type plants. These results clearly demonstrated that the VvWRKY11 gene is involved in the response to dehydration stress. In addition, the role of VvWRKY11 protein in regulating the expression of two stress response genes, AtRD29A and AtRD29B, is also discussed. PMID:20354906

  15. A Native Threonine Coordinates Ordered Water to Tune Light-Oxygen-Voltage (LOV) Domain Photocycle Kinetics and Osmotic Stress Signaling in Trichoderma reesei ENVOY.

    PubMed

    Lokhandwala, Jameela; Silverman Y de la Vega, Rafael I; Hopkins, Hilary C; Britton, Collin W; Rodriguez-Iglesias, Aroa; Bogomolni, Roberto; Schmoll, Monika; Zoltowski, Brian D

    2016-07-01

    Light-oxygen-voltage (LOV) domain-containing proteins function as small light-activated modules capable of imparting blue light control of biological processes. Their small modular nature has made them model proteins for allosteric signal transduction and optogenetic devices. Despite intense research, key aspects of their signal transduction mechanisms and photochemistry remain poorly understood. In particular, ordered water has been identified as a possible key mediator of photocycle kinetics, despite the lack of ordered water in the LOV active site. Herein, we use recent crystal structures of a fungal LOV protein ENVOY to interrogate the role of Thr(101) in recruiting water to the flavin active site where it can function as an intrinsic base to accelerate photocycle kinetics. Kinetic and molecular dynamic simulations confirm a role in solvent recruitment to the active site and identify structural changes that correlate with solvent recruitment. In vivo analysis of T101I indicates a direct role of the Thr(101) position in mediating adaptation to osmotic stress, thereby verifying biological relevance of ordered water in LOV signaling. The combined studies identify position 101 as a mediator of both allostery and photocycle catalysis that can impact organism physiology. PMID:27226624

  16. Acute psychological stress induces short-term variable immune response.

    PubMed

    Breen, Michael S; Beliakova-Bethell, Nadejda; Mujica-Parodi, Lilianne R; Carlson, Joshua M; Ensign, Wayne Y; Woelk, Christopher H; Rana, Brinda K

    2016-03-01

    In spite of advances in understanding the cross-talk between the peripheral immune system and the brain, the molecular mechanisms underlying the rapid adaptation of the immune system to an acute psychological stressor remain largely unknown. Conventional approaches to classify molecular factors mediating these responses have targeted relatively few biological measurements or explored cross-sectional study designs, and therefore have restricted characterization of stress-immune interactions. This exploratory study analyzed transcriptional profiles and flow cytometric data of peripheral blood leukocytes with physiological (endocrine, autonomic) measurements collected throughout the sequence of events leading up to, during, and after short-term exposure to physical danger in humans. Immediate immunomodulation to acute psychological stress was defined as a short-term selective up-regulation of natural killer (NK) cell-associated cytotoxic and IL-12 mediated signaling genes that correlated with increased cortisol, catecholamines and NK cells into the periphery. In parallel, we observed down-regulation of innate immune toll-like receptor genes and genes of the MyD88-dependent signaling pathway. Correcting gene expression for an influx of NK cells revealed a molecular signature specific to the adrenal cortex. Subsequently, focusing analyses on discrete groups of coordinately expressed genes (modules) throughout the time-series revealed immune stress responses in modules associated to immune/defense response, response to wounding, cytokine production, TCR signaling and NK cell cytotoxicity which differed between males and females. These results offer a spring-board for future research towards improved treatment of stress-related disease including the impact of stress on cardiovascular and autoimmune disorders, and identifies an immune mechanism by which vulnerabilities to these diseases may be gender-specific. PMID:26476140

  17. Two-Component Signaling Regulates Osmotic Stress Adaptation via SskA and the High-Osmolarity Glycerol MAPK Pathway in the Human Pathogen Talaromyces marneffei.

    PubMed

    Boyce, Kylie J; Cao, Cunwei; Andrianopoulos, Alex

    2016-01-01

    For successful infection to occur, a pathogen must be able to evade or tolerate the host's defense systems. This requires the pathogen to first recognize the host environment and then signal this response to elicit a complex adaptive program in order to activate its own defense strategies. In both prokaryotes and eukaryotes, two-component signaling systems are utilized to sense and respond to changes in the external environment. The hybrid histidine kinases (HHKs) at the start of the two-component signaling pathway have been well characterized in human pathogens. However, how these HHKs regulate processes downstream currently remains unclear. This study describes the role of a response regulator downstream of these HHKs, sskA, in Talaromyces marneffei, a dimorphic human pathogen. sskA is required for asexual reproduction, hyphal morphogenesis, cell wall integrity, osmotic adaptation, and the morphogenesis of yeast cells both in vitro at 37°C and during macrophage infection, but not during dimorphic switching. Comparison of the ΔsskA mutant with a strain in which the mitogen-activated protein kinase (MAPK) of the high-osmolarity glycerol pathway (SakA) has been deleted suggests that SskA acts upstream of this pathway in T. marneffei to regulate these morphogenetic processes. This was confirmed by assessing the amount of phosphorylated SakA in the ΔsskA mutant, antifungal resistance due to a lack of SakA activation, and the ability of a constitutively active sakA allele (sakA(F316L) ) to suppress the ΔsskA mutant phenotypes. We conclude that SskA regulates morphogenesis and osmotic stress adaptation in T. marneffei via phosphorylation of the SakA MAPK of the high-osmolarity glycerol pathway. IMPORTANCE This is the first study in a dimorphic fungal pathogen to investigate the role of a response regulator downstream of two-component signaling systems and its connection to the high-osmolarity glycerol pathway. This study will inspire further research into the

  18. Two-Component Signaling Regulates Osmotic Stress Adaptation via SskA and the High-Osmolarity Glycerol MAPK Pathway in the Human Pathogen Talaromyces marneffei

    PubMed Central

    Cao, Cunwei; Andrianopoulos, Alex

    2016-01-01

    ABSTRACT For successful infection to occur, a pathogen must be able to evade or tolerate the host’s defense systems. This requires the pathogen to first recognize the host environment and then signal this response to elicit a complex adaptive program in order to activate its own defense strategies. In both prokaryotes and eukaryotes, two-component signaling systems are utilized to sense and respond to changes in the external environment. The hybrid histidine kinases (HHKs) at the start of the two-component signaling pathway have been well characterized in human pathogens. However, how these HHKs regulate processes downstream currently remains unclear. This study describes the role of a response regulator downstream of these HHKs, sskA, in Talaromyces marneffei, a dimorphic human pathogen. sskA is required for asexual reproduction, hyphal morphogenesis, cell wall integrity, osmotic adaptation, and the morphogenesis of yeast cells both in vitro at 37°C and during macrophage infection, but not during dimorphic switching. Comparison of the ΔsskA mutant with a strain in which the mitogen-activated protein kinase (MAPK) of the high-osmolarity glycerol pathway (SakA) has been deleted suggests that SskA acts upstream of this pathway in T. marneffei to regulate these morphogenetic processes. This was confirmed by assessing the amount of phosphorylated SakA in the ΔsskA mutant, antifungal resistance due to a lack of SakA activation, and the ability of a constitutively active sakA allele (sakAF316L) to suppress the ΔsskA mutant phenotypes. We conclude that SskA regulates morphogenesis and osmotic stress adaptation in T. marneffei via phosphorylation of the SakA MAPK of the high-osmolarity glycerol pathway. IMPORTANCE This is the first study in a dimorphic fungal pathogen to investigate the role of a response regulator downstream of two-component signaling systems and its connection to the high-osmolarity glycerol pathway. This study will inspire further research into

  19. Arabidopsis thaliana KORRIGAN1 protein: N-glycan modification, localization, and function in cellulose biosynthesis and osmotic stress responses.

    PubMed

    von Schaewen, Antje; Rips, Stephan; Jeong, In Sil; Koiwa, Hisashi

    2015-01-01

    Plant cellulose biosynthesis is a complex process involving cellulose-synthase complexes (CSCs) and various auxiliary factors essential for proper orientation and crystallinity of cellulose microfibrils in the apoplast. Among them is KORRIGAN1 (KOR1), a type-II membrane protein with multiple N-glycans within its C-terminal cellulase domain. N-glycosylation of the cellulase domain was important for KOR1 targeting to and retention within the trans-Golgi network (TGN), and prevented accumulation of KOR1 at tonoplasts. The degree of successful TGN localization of KOR1 agreed well with in vivo-complementation efficacy of the rsw2-1 mutant, suggesting non-catalytic functions in the TGN. A dynamic interaction network involving microtubules, CSCs, KOR1, and currently unidentified glycoprotein component(s) likely determines stress-triggered re-organization of cellulose biosynthesis and resumption of cell-wall growth under stress. PMID:26039485

  20. Arabidopsis thaliana KORRIGAN1 protein: N-glycan modification, localization, and function in cellulose biosynthesis and osmotic stress responses

    PubMed Central

    von Schaewen, Antje; Rips, Stephan; Jeong, In Sil; Koiwa, Hisashi

    2015-01-01

    Plant cellulose biosynthesis is a complex process involving cellulose-synthase complexes (CSCs) and various auxiliary factors essential for proper orientation and crystallinity of cellulose microfibrils in the apoplast. Among them is KORRIGAN1 (KOR1), a type-II membrane protein with multiple N-glycans within its C-terminal cellulase domain. N-glycosylation of the cellulase domain was important for KOR1 targeting to and retention within the trans-Golgi network (TGN), and prevented accumulation of KOR1 at tonoplasts. The degree of successful TGN localization of KOR1 agreed well with in vivo-complementation efficacy of the rsw2–1 mutant, suggesting non-catalytic functions in the TGN. A dynamic interaction network involving microtubules, CSCs, KOR1, and currently unidentified glycoprotein component(s) likely determines stress-triggered re-organization of cellulose biosynthesis and resumption of cell-wall growth under stress. PMID:26039485

  1. Identification of a new polyphosphoinositide in plants, phosphatidylinositol 5-monophosphate (PtdIns5P), and its accumulation upon osmotic stress.

    PubMed Central

    Meijer, H J; Berrie, C P; Iurisci, C; Divecha, N; Musgrave, A; Munnik, T

    2001-01-01

    Polyphosphoinositides play an important role in membrane trafficking and cell signalling. In plants, two PtdInsP isomers have been described, PtdIns3P and PtdIns4P. Here we report the identification of a third, PtdIns5P. Evidence is based on the conversion of the endogenous PtdInsP pool into PtdIns(4,5)P(2) by a specific PtdIns5P 4-OH kinase, and on in vivo (32)P-labelling studies coupled to HPLC head-group analysis. In Chlamydomonas, 3-8% of the PtdInsP pool was PtdIns5P, 10-15% was PtdIns3P and the rest was PtdIns4P. In seedlings of Vicia faba and suspension-cultured tomato cells, the level of PtdIns5P was about 18%, indicating that PtdIns5P is a general plant lipid that represents a significant proportion of the PtdInsP pool. Activating phospholipase C (PLC) signalling in Chlamydomonas cells with mastoparan increased the turnover of PtdIns(4,5)P(2) at the cost of PtdIns4P, but did not affect the level of PtdIns5P. This indicates that PtdIns(4,5)P(2) is synthesized from PtdIns4P rather than from PtdIns5P during PLC signalling. However, when cells were subjected to hyperosmotic stress, PtdIns5P levels rapidly increased, suggesting a role in osmotic-stress signalling. The potential pathways of PtdIns5P formation are discussed. PMID:11716778

  2. Acute Anteroseptal Myocardial Infarction after a Negative Exercise Stress Test

    PubMed Central

    Al-Alawi, Abdullah M.; Janardan, Jyotsna; Peck, Kah Y.; Soward, Alan

    2016-01-01

    A myocardial infarction is a rare complication which can occur after an exercise stress test. We report a 48-year-old male who was referred to the Mildura Cardiology Practice, Victoria, Australia, in August 2014 with left-sided chest pain. He underwent an exercise stress test which was negative for myocardial ischaemia. However, the patient presented to the Emergency Department of the Mildura Base Hospital 30 minutes after the test with severe retrosternal chest pain. An acute anteroseptal ST segment elevation myocardial infarction was observed on electrocardiography. After thrombolysis, he was transferred to a tertiary hospital where coronary angiography subsequently revealed significant left anterior descending coronary artery stenosis. Thrombus aspiration and a balloon angioplasty were performed. The patient was discharged three days after the surgical procedure in good health. PMID:27226918

  3. Saltstone Osmotic Pressure

    SciTech Connect

    Nichols, Ralph L.; Dixon, Kenneth L.

    2013-09-23

    Recent research into the moisture retention properties of saltstone suggest that osmotic pressure may play a potentially significant role in contaminant transport (Dixon et al., 2009 and Dixon, 2011). The Savannah River Remediation Closure and Disposal Assessments Group requested the Savannah River National Laboratory (SRNL) to conduct a literature search on osmotic potential as it relates to contaminant transport and to develop a conceptual model of saltstone that incorporates osmotic potential. This report presents the findings of the literature review and presents a conceptual model for saltstone that incorporates osmotic potential. The task was requested through Task Technical Request HLW-SSF-TTR- 2013-0004.

  4. Increased oxidative stress following acute and chronic high altitude exposure.

    PubMed

    Jefferson, J Ashley; Simoni, Jan; Escudero, Elizabeth; Hurtado, Maria-Elena; Swenson, Erik R; Wesson, Donald E; Schreiner, George F; Schoene, Robert B; Johnson, Richard J; Hurtado, Abdias

    2004-01-01

    The generation of reactive oxygen species is typically associated with hyperoxia and ischemia reperfusion. Recent evidence has suggested that increased oxidative stress may occur with hypoxia. We hypothesized that oxidative stress would be increased in subjects exposed to high altitude hypoxia. We studied 28 control subjects living in Lima, Peru (sea level), at baseline and following 48 h exposure to high altitude (4300 m). To assess the effects of chronic altitude exposure, we studied 25 adult males resident in Cerro de Pasco, Peru (altitude 4300 m). We also studied 27 subjects living in Cerro de Pasco who develop excessive erythrocytosis (hematocrit > 65%) and chronic mountain sickness. Acute high altitude exposure led to increased urinary F(2)-isoprostane, 8-iso PGF(2 alpha) (1.31 +/- 0.8 microg/g creatinine versus 2.15 +/- 1.1, p = 0.001) and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.37 +/- 0.09, p = 0.002), with a trend to increased plasma thiobarbituric acid reactive substance (TBARS) (59.7 +/- 36 pmol/mg protein versus 63.8 +/- 27, p = NS). High altitude residents had significantly elevated levels of urinary 8-iso PGF(2 alpha) (1.3 +/- 0.8 microg/g creatinine versus 4.1 +/- 3.4, p = 0.007), plasma TBARS (59.7 +/- 36 pmol/mg protein versus 85 +/- 28, p = 0.008), and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.55 +/- 0.19, p < 0.0001) compared to sea level. High altitude residents with excessive erythrocytosis had higher levels of oxidative stress compared to high altitude residents with normal hematological adaptation. In conclusion, oxidative stress is increased following both acute exposure to high altitude without exercise and with chronic residence at high altitude. PMID:15072717

  5. A homologue of vitamin K epoxide reductase in Solanum lycopersicum is involved in resistance to osmotic stress.

    PubMed

    Yu, Zhi-Bo; Yang, Xiao-Jian; Du, Jia-Jia; Wan, Chun-Mei; Xu, Jia-Ning; Wang, Wen-Jun; Feng, Yue-Guang; Wang, Xiao-Yun

    2016-03-01

    Vitamin K epoxide reductase (VKOR) exists widely in the chloroplasts of higher plants and plays important roles in redox regulation. However, investigations of plant VKOR function have primarily focused on VKOR from Arabidopsis, and knowledge concerning this function is therefore quite limited. In this study, Solanum lycopersicum was used to study the function of VKOR. Transcription level analysis revealed that SlVKOR (S. lycopersicum VKOR) expression was upregulated by salt or drought stress. To further investigate the function of SlVKOR in plants, we generated sense and antisense transgenic S. lycopersicum homozygotes at T2 generation plants. Compared with wild-type (WT) plants, the leaf disks of the SlVKOR overexpression plants retained a much higher percentage of chlorophyll after salt or drought treatment, whereas the antisense transgenic plants displayed an opposite response. The overexpressed plants displayed lower levels of H2O2 and superoxide anion radical (O2(·-)) than WT plants, whereas antisense plants accumulated considerably more H2O2 and O2(·-). The activities of reactive oxygen scavenger enzymes, including superoxide dismutase, peroxidase, ascorbate peroxidase and catalase, were consistent with the accumulation of reactive oxygen species. Based on these results, we suggest that SlVKOR is involved in resistance to salt or drought stress. PMID:26294083

  6. Effects of acute restraint stress on set-shifting and reversal learning in male rats

    PubMed Central

    Thai, Chester A.; Zhang, Ying

    2015-01-01

    Exposure to acute stress alters cognition; however, few studies have examined the effects of acute stress on executive functions such as behavioral flexibility. The goal of the present experiments was to determine the effects of acute periods of stress on two distinct forms of behavioral flexibility: set-shifting and reversal learning. Male Sprague-Dawley rats were trained and tested in an operant-chamber-based task. Some of the rats were exposed to acute restraint stress (30 min) immediately before either the set-shifting test day or the reversal learning test day. Acute stress had no effect on set-shifting, but it significantly facilitated reversal learning, as assessed by both trials to criterion and total errors. In a second experiment, the roles of glucocorticoid (GR) and mineralocorticoid receptors (MR) in the acute-stress-induced facilitation of reversal learning were examined. Systemic administration of the GR-selective antagonist RU38486 (10 mg/kg) or the MR-selective antagonist spironolactone (50 mg/kg) 30 min prior to acute stress failed to block the facilitation on reversal learning. The present results demonstrate a dissociable effect of acute stress on set-shifting and reversal learning and suggest that the facilitation of reversal learning by acute stress may be mediated by factors other than corticosterone. PMID:23055093

  7. Osmotic stress adaptation in Lactobacillus casei BL23 leads to structural changes in the cell wall polymer lipoteichoic acid.

    PubMed

    Palomino, Maria Mercedes; Allievi, Mariana C; Gründling, Angelika; Sanchez-Rivas, Carmen; Ruzal, Sandra M

    2013-11-01

    The probiotic Gram-positive bacterium Lactobacillus casei BL23 is naturally confronted with salt-stress habitats. It has been previously reported that growth in high-salt medium, containing 0.8 M NaCl, leads to modifications in the cell envelope of this bacterium. In this study, we report that L. casei BL23 has an increased ability to form biofilms and to bind cations in high-salt conditions. This behaviour correlated with modifications of surface properties involving teichoic acids, which are important cell wall components. We also showed that, in these high-salt conditions, L. casei BL23 produces less of the cell wall polymer lipoteichoic acid (LTA), and that this anionic polymer has a shorter mean chain length and a lower level of d-alanyl-substitution. Analysis of the transcript levels of the dltABCD operon, encoding the enzymes required for the incorporation of d-alanine into anionic polymers, showed a 16-fold reduction in mRNA levels, which is consistent with a decrease in d-alanine substitutions on LTA. Furthermore, a 13-fold reduction in the transcript levels was observed for the gene LCABL_09330 coding for a putative LTA synthase. To provide further experimental evidence that LCABL_09330 is a true LTA synthase (LtaS) in L. casei BL23, the enzymic domain was cloned and expressed in E. coli. The purified protein was able to hydrolyse the membrane lipid phosphatidylglycerol as expected for an LTA synthase enzyme, and hence LCABL_09330 was renamed LtaS. The purified enzyme showed Mn(2+)-ion dependent activity, and its activity was modulated by differences in NaCl concentration. The decrease in both ltaS transcript levels and enzyme activity observed in high-salt conditions might influence the length of the LTA backbone chain. A putative function of the modified LTA structure is discussed that is compatible with the growth under salt-stress conditions and with the overall envelope modifications taking place during this stress condition. PMID:24014660

  8. Reduced Osmotic Potential Effects on Photosynthesis 1

    PubMed Central

    Berkowitz, Gerald A.; Gibbs, Martin

    1983-01-01

    Addition of sorbitol, which facilitated reductions in reaction medium osmotic potential from standard (0.33 molar sorbitol, −10 bars) isotonic conditions to a stress level of 0.67 molar sorbitol (−20 bars), inhibited the photosynthetic capacity of isolated spinach (Spinacia oleracea) chloroplasts. This inhibition, which ranged from 64 to 74% under otherwise standard reaction conditions, was dependent on reaction medium inorganic phosphate concentration, with the phosphate optimum for photosynthesis reduced to 0.05 millimolar at the low osmotic potential stress treatment from a value of 0.25 millimolar under control conditions. Stromal alkalating agents such as NH4Cl (0.75 millimolar) and KCl (35 millimolar) were also found to affect the degree of low osmotic potential inhibition of photosynthesis. Both agents doubled the rate of NaHCO3-supported O2 evolution under the stress treatment, while hardly affecting the control rate at optimal concentrations. These agents also reduced the length of the lag phase of photosynthetic O2 evolution under the stress treatment to a much greater degree. The rate-enhancement effect of these agents under the stress treatment was reversed by sodium acetate, which is known to facilitate stromal acidification. The reaction medium pH optimum for photosynthesis under the stress treatment was higher than under control conditions. In the presence of optimal NH4Cl, this shift was no longer evident. Internal pH measurements indicated that the stress treatment caused a 0.43 and 0.24 unit reduction in the stromal and intrathylakoid pH, respectively, under illumination. This osmotically induced acidification was not evident in the dark. The presence of 0.75 millimolar NH4Cl partially reversed the osmotically induced reduction in the illuminated stromal pH. It was concluded that stromal acidification is a mediating mechanism of the most severe site of low osmotic potential inhibition of the photosynthetic process. PMID:16662927

  9. The interaction of acute and chronic stress impairs model-based behavioral control.

    PubMed

    Radenbach, Christoph; Reiter, Andrea M F; Engert, Veronika; Sjoerds, Zsuzsika; Villringer, Arno; Heinze, Hans-Jochen; Deserno, Lorenz; Schlagenhauf, Florian

    2015-03-01

    It is suggested that acute stress shifts behavioral control from goal-directed, model-based toward habitual, model-free strategies. Recent findings indicate that interindividual differences in the cortisol stress response influence model-based decision-making. Although not yet investigated in humans, animal studies show that chronic stress also shifts decision-making toward more habitual behavior. Here, we ask whether acute stress and individual vulnerability factors, such as stress reactivity and previous exposure to stressful life events, impact the balance between model-free and model-based control systems. To test this, 39 male participants (21-30 years old) were exposed to a potent psychosocial stressor (Trier Social Stress Test) and a control condition in a within-subjects design before they performed a sequential decision-making task which evaluates the balance between the two systems. Physiological and subjective stress reactivity was assessed before, during, and after acute stress exposure. By means of computational modeling, we demonstrate that interindividual variability in stress reactivity predicts impairments in model-based decision-making. Whereas acute psychosocial stress did not alter model-based behavioral control, we found chronic and acute stress to interact in their detrimental effect on decision-making: subjects with high but not low chronic stress levels as indicated by stressful life events exhibited reduced model-based control in response to acute psychosocial stress. These findings emphasize that stress reactivity and chronic stress play an important role in mediating the relationship between stress and decision-making. Our results might stimulate new insights into the interplay between chronic and acute stress, attenuated model-based control, and the pathogenesis of various psychiatric diseases. PMID:25662093

  10. The control of intracellular glycerol in Saccharomyces cerevisiae influences osmotic stress response and resistance to increased temperature.

    PubMed

    Siderius, M; Van Wuytswinkel, O; Reijenga, K A; Kelders, M; Mager, W H

    2000-06-01

    Glycerol has been demonstrated to serve as the major osmolyte of Saccharomyces cerevisiae. Consistently, mutant strains gpd1gpd2 and gpp1gpp2, which are devoid of the main glycerol biosynthesis pathway, have been shown to be osmosensitive. In addition, the primary hyperosmotic stress response is affected in these strains. Hog1p phosphorylation turned out to be prolonged and osmostress-induced gene expression is delayed compared with the kinetics observed in wild-type cells. A hog1 deletion strain was previously found to contain lower internal glycerol and therefore displays an osmosensitive phenotype. Here, we show that the osmosensitivity of hog1 is suppressed by growth at 37 degrees C. We reasoned that this temperature-remedial osmoresistance might be caused by a higher intracellular glycerol level at the elevated temperature. This hypothesis was confirmed by measurement of the glycerol concentration, which was shown to be similar for wild type and hog1 cells only at elevated growth temperatures. In agreement with this finding, hog1 cells containing an fps1 allele, encoding a constitutively open glycerol channel, have lost their temperature-remedial osmoresistance. Furthermore, gpd1gpd2 and gpp1gpp2 strains were found to be temperature sensitive. The growth defect of these strains could be suppressed by adding external glycerol. In conclusion, the ability to control glycerol levels influences proper osmostress-induced signalling and the cellular potential to grow at elevated temperatures. These data point to an important, as yet unidentified, role of glycerol in cellular functioning. PMID:10931288

  11. Traumatic Memories in Acute Stress Disorder: An Analysis of Narratives before and after Treatment

    ERIC Educational Resources Information Center

    Moulds, Michelle L.; Bryant, Richard A.

    2005-01-01

    The dissociative reactions in acute stress disorder purportedly impede encoding and organization of traumatic memories and consequently impair the individual's ability to retrieve trauma-related details. A qualitative examination was conducted on trauma narratives of individuals with acute stress disorder (N = 15) prior to cognitive behavior…

  12. Factor Structure of the Acute Stress Disorder Scale in a Sample of Hurricane Katrina Evacuees

    ERIC Educational Resources Information Center

    Edmondson, Donald; Mills, Mary Alice; Park, Crystal L.

    2010-01-01

    Acute stress disorder (ASD) is a poorly understood and controversial diagnosis (A. G. Harvey & R. A. Bryant, 2002). The present study used confirmatory factor analysis (CFA) to test the factor structure of the most widely used self-report measure of ASD, the Acute Stress Disorder Scale (R. A. Bryant, M. L. Moulds, & R. M. Guthrie, 2000), in a…

  13. Acute Stress Symptoms in Children: Results From an International Data Archive

    ERIC Educational Resources Information Center

    Kassam-Adams, Nancy; Palmieri, Patrick A.; Rork, Kristine; Delahanty, Douglas L.; Kenardy, Justin; Kohser, Kristen L.; Landolt, Markus A.; Le Brocque, Robyne; Marsac, Meghan L.; Meiser-Stedman, Richard; Nixon, Reginald D.V.; Bui, Eric; McGrath, Caitlin

    2012-01-01

    Objective: To describe the prevalence of acute stress disorder (ASD) symptoms and to examine proposed "DSM-5" symptom criteria in relation to concurrent functional impairment in children and adolescents. Method: From an international archive, datasets were identified that included assessment of acute traumatic stress reactions and concurrent…

  14. Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ‘Micro-Tom’) fruits in an ABA- and osmotic stress-independent manner

    PubMed Central

    Yin, Yong-Gen; Kobayashi, Yoshie; Sanuki, Atsuko; Kondo, Satoru; Fukuda, Naoya; Ezura, Hiroshi; Sugaya, Sumiko; Matsukura, Chiaki

    2010-01-01

    Salinity stress enhances sugar accumulation in tomato (Solanum lycopersicum) fruits. To elucidate the mechanisms underlying this phenomenon, the transport of carbohydrates into tomato fruits and the regulation of starch synthesis during fruit development in tomato plants cv. ‘Micro-Tom’ exposed to high levels of salinity stress were examined. Growth with 160 mM NaCl doubled starch accumulation in tomato fruits compared to control plants during the early stages of development, and soluble sugars increased as the fruit matured. Tracer analysis with 13C confirmed that elevated carbohydrate accumulation in fruits exposed to salinity stress was confined to the early development stages and did not occur after ripening. Salinity stress also up-regulated sucrose transporter expression in source leaves and increased activity of ADP-glucose pyrophosphorylase (AGPase) in fruits during the early development stages. The results indicate that salinity stress enhanced carbohydrate accumulation as starch during the early development stages and it is responsible for the increase in soluble sugars in ripe fruit. Quantitative RT-PCR analyses of salinity-stressed plants showed that the AGPase-encoding genes, AgpL1 and AgpS1 were up-regulated in developing fruits, and AgpL1 was obviously up-regulated by sugar at the transcriptional level but not by abscisic acid and osmotic stress. These results indicate AgpL1 and AgpS1 are involved in the promotion of starch biosynthesis under the salinity stress in ABA- and osmotic stress-independent manners. These two genes are differentially regulated at the transcriptional level, and AgpL1 is suggested to play a regulatory role in this event. PMID:19995825

  15. OsSFR6 is a functional rice orthologue of SENSITIVE TO FREEZING-6 and can act as a regulator of COR gene expression, osmotic stress and freezing tolerance in Arabidopsis.

    PubMed

    Wathugala, Deepthi L; Richards, Shane A; Knight, Heather; Knight, Marc R

    2011-09-01

    The Arabidopsis protein SENSITIVE TO FREEZING-6 (AtSFR6) is required for cold- and drought-inducible expression of COLD-ON REGULATED (COR) genes and, as a consequence, AtSFR6 is essential for osmotic stress and freezing tolerance in Arabidopsis. Therefore, orthologues of AtSFR6 in crop species represent important candidate targets for future manipulation of stress tolerance. We identified and cloned a homologue of AtSFR6 from rice (Oryza sativa), OsSFR6, and confirmed its orthology in Arabidopsis. OsSFR6 was identified by homology searches, and a full-length coding region isolated using reverse transcription polymerase chain reaction (RT-PCR) from Oryza sativa cDNA. To test for orthology, OsSFR6 was expressed in an Arabidopsis sfr6 loss-of-function mutant background, and restoration of wild-type phenotypes was assessed. Searching the rice genome revealed a single homologue of AtSFR6. Cloning and sequencing the OsSFR6 coding region showed OsSFR6 to have 61.7% identity and 71.1% similarity to AtSFR6 at the predicted protein sequence level. Expression of OsSFR6 in the atsfr6 mutant background restored the wild-type visible phenotype, as well as restoring wild-type levels of COR gene expression and tolerance of osmotic and freezing stresses. OsSFR6 is an orthologue of AtSFR6, and thus a target for future manipulation to improve tolerance to osmotic and other abiotic stresses. PMID:21585388

  16. Slow release delivery of rioprostil by an osmotic pump inhibits the formation of acute aspirin-induced gastric lesions in dogs and accelerates the healing of chronic lesions without incidence of side effects.

    PubMed

    Katz, L B; Shriver, D A

    1989-10-01

    Rioprostil, a primary alcohol prostaglandin E1 analog, inhibits gastric acid secretion and prevents gastric lesions induced by a variety of irritants in experimental animals. Because rioprostil is relatively short-acting, it would be of significant benefit clinically if its duration of action could be extended to allow once daily dosing. This investigation demonstrates that when administered via an osmotically driven pump (Osmet, Alza Corp.), rioprostil prevents the acute effects of aspirin on the gastric mucosa of dogs, accelerates the healing of aspirin-induced gastric lesions, and heals preexisting aspirin-induced gastric lesions during chronic administration of aspiring. The potency of rioprostil against acute gastric lesion formation was greatest when delivered from a 24-hr release pump (ED50 = 0.77 micrograms/kg/24 hr) and was 37 times greater than when administered as a single oral bolus. In addition, this activity occurred at doses which had little or no gastric antisecretory activity in betazole-stimulated Heidenhain pouch dogs. When delivered from a 24-hr pump, rioprostil (100 micrograms/kg/24 hr) healed preexisting aspirin-induced gastric lesions within 8 days after removal of aspirin, or after 15 days during continued daily aspirin administration. Additional studies determined that administration of rioprostil at doses of 720, 1440, or 2160 micrograms/kg/24 hr (935-2805 times the gastroprotective ED50 in 24 hr pumps) was well tolerated, with only slight, transient increases in body temperature, softening of the stools, and mild sedation at the highest dose. Administration of rioprostil daily for 5 days at 960 micrograms/kg/24 hr from 24-hr release pumps was also well tolerated by all dogs with no evidence of any accumulation of effect of rioprostil. In summary, administration of rioprostil via an osmotic pump increases its potency and duration of action against the gastric lesion-inducing effect of aspirin, and maintains a wide ratio of safety. PMID

  17. Effects of acute and chronic psychological stress on isolated islets' insulin release

    PubMed Central

    Zardooz, Homeira; Zahediasl, Saleh; Rostamkhani, Fatemeh; Farrokhi, Babak; Nasiraei, Shiva; Kazeminezhad, Behrang; Gholampour, Roohollah

    2012-01-01

    This study investigated the effects of acute and chronic psychological stress on glucose-stimulated insulin secretion from isolated pancreatic islets. Male Wistar rats were divided into two control and stressed groups; each further was allocated into fed and fasted groups. Stress was induced by communication box for one (acute), fifteen and thirty (chronic) days. After islet isolation, their number, size and insulin output were assessed. Plasma corticosterone level was determined. In fasted animals, acute stress increased basal and post stress plasma corticosterone level, while 30 days stress decreased it compared to day 1. In fed rats, acute stress increased only post stress plasma corticosterone concentration, however, after 15 days stress, it was decreased compared to day 1. Acute stress did not change insulin output; however, the insulin output was higher in the fed acutely stressed rats at 8.3 and 16.7 mM glucose than fasted ones. Chronic stress increased insulin output on day 15 in the fasted animals but decreased it on day 30 in the fed animals at 8.3 and 16.7 mM glucose. In the fasted control rats insulin output was lower than fed ones. In the chronic stressed rats insulin output at 8.3 and 16.7 mM glucose was higher in the fasted than fed rats. The number of islets increased in the fasted rats following 15 days stress. This study indicated that the response of the isolated islets from acute and chronically stressed rats are different and depends on the feeding status.

  18. Acute phase proteins in cattle after exposure to complex stress.

    PubMed

    Lomborg, S R; Nielsen, L R; Heegaard, P M H; Jacobsen, S

    2008-10-01

    Stressors such as weaning, mixing and transportation have been shown to lead to increased blood concentrations of acute phase proteins (APP), including serum amyloid A (SAA) and haptoglobin, in calves. This study was therefore undertaken to assess whether SAA and haptoglobin levels in blood mirror stress in adult cattle. Six clinically healthy Holstein cows and two Holstein heifers were transported for four to six hours to a research facility, where each animal was housed in solitary tie stalls. Blood samples for evaluation of leukocyte counts and serum SAA and haptoglobin concentrations were obtained before (0-sample) and at 8, 24 and 48 hours after the start of transportation. Upon arrival the animals gave the impression of being anxious, and they appeared to have difficulty coping with isolation and with being tied on the slippery floors of the research stable. Serum concentrations of SAA and haptoglobin increased significantly in response to the stressors (P < 0.01 and 0.05 at 48 hours, respectively). Additionally, the animals had transient neutrophilia at 8 and 24 hours (P < 0.05). In conclusion, the results of the study suggest that SAA and haptoglobin may serve as markers of stress in adult cattle. PMID:18461465

  19. Computer Models of Stress, Allostasis, and Acute and Chronic Diseases

    PubMed Central

    Goldstein, David S.

    2009-01-01

    The past century has seen a profound shift in diseases of humankind. Acute, unifactorial diseases are being replaced increasingly by multifactorial disorders that arise from complex interactions among genes, environment, concurrent morbidities and treatments, and time. According to the concept of allostasis, there is no single, ideal set of steady-state conditions in life. Allostasis reflects active, adaptive processes that maintain apparent steady states, via multiple, interacting effectors regulated by homeostatic comparators “homeostats.” Stress can be defined as a condition or state in which a sensed discrepancy between afferent information and a setpoint for response leads to activation of effectors, reducing the discrepancy. “Allostatic load” refers to the consequences of sustained or repeated activation of mediators of allostasis. From the analogy of a home temperature control system, the temperature can be maintained at any of a variety of levels (allostatic states) by multiple means (effectors), regulated by a comparator thermostat (homeostat). Stress might exert adverse health consequences via allostatic load. This presentation describes models of homeostatic systems that incorporate negative feedback regulation, multiple effectors, effector sharing, environmental influences, intrinsic obsolescence, and destabilizing positive feedback loops. These models can be used to predict effects of environmental and genetic alterations on allostatic load and therefore on the development of multi-system disorders and failures. PMID:19120114

  20. Induction of neutral trehalase Nth1 by heat and osmotic stress is controlled by STRE elements and Msn2/Msn4 transcription factors: variations of PKA effect during stress and growth.

    PubMed

    Zähringer, H; Thevelein, J M; Nwaka, S

    2000-01-01

    Saccharomyces cerevisiae neutral trehalase, encoded by NTH1, controls trehalose hydrolysis in response to multiple stress conditions, including nutrient limitation. The presence of three stress responsive elements (STREs, CCCCT) in the NTH1 promoter suggested that the transcriptional activator proteins Msn2 and Msn4, as well as the cAMP-dependent protein kinase (PKA), control the stress-induced expression of Nth1. Here, we give direct evidence that Msn2/Msn4 and the STREs control the heat-, osmotic stress- and diauxic shift-dependent induction of Nth1. Disruption of MSN2 and MSN4 abolishes or significantly reduces the heat- and NaCl-induced increases in Nth1 activity and transcription. Stress-induced increases in activity of a lacZ reporter gene put under control of the NTH1 promoter is nearly absent in the double mutant. In all instances, basal expression is also reduced by about 50%. The trehalose concentration in the msn2 msn4 double mutant increases less during heat stress and drops more slowly during recovery than in wild-type cells. This shows that Msn2/Msn4-controlled expression of enzymes of trehalose synthesis and hydrolysis help to maintain trehalose concentration during stress. However, the Msn2/Msn4-independent mechanism exists for heat control of trehalose metabolism. Site-directed mutagenesis of the three STREs (CCCCT changed to CATCT) in NTH1 promoter fused to a reporter gene indicates that the relative proximity of STREs to each other is important for the function of NTH1. Elimination of the three STREs abolishes the stress-induced responses and reduces basal expression by 30%. Contrary to most STRE-regulated genes, the PKA effect on the induction of NTH1 by heat and sodium chloride is variable. During diauxic growth, NTH1 promoter-controlled reporter activity strongly increases, as opposed to the previously observed decrease in Nth1 activity, suggesting a tight but opposite control of the enzyme at the transcriptional and post-translational levels

  1. TNF-α from hippocampal microglia induces working memory deficits by acute stress in mice.

    PubMed

    Ohgidani, Masahiro; Kato, Takahiro A; Sagata, Noriaki; Hayakawa, Kohei; Shimokawa, Norihiro; Sato-Kasai, Mina; Kanba, Shigenobu

    2016-07-01

    The role of microglia in stress responses has recently been highlighted, yet the underlying mechanisms of action remain unresolved. The present study examined disruption in working memory due to acute stress using the water-immersion resistant stress (WIRS) test in mice. Mice were subjected to acute WIRS, and biochemical, immunohistochemical, and behavioral assessments were conducted. Spontaneous alternations (working memory) significantly decreased after exposure to acute WIRS for 2h. We employed a 3D morphological analysis and site- and microglia-specific gene analysis techniques to detect microglial activity. Morphological changes in hippocampal microglia were not observed after acute stress, even when assessing ramification ratios and cell somata volumes. Interestingly, hippocampal tumor necrosis factor (TNF)-α levels were significantly elevated after acute stress, and acute stress-induced TNF-α was produced by hippocampal-ramified microglia. Conversely, plasma concentrations of TNF-α were not elevated after acute stress. Etanercept (TNF-α inhibitor) recovered working memory deficits in accordance with hippocampal TNF-α reductions. Overall, results suggest that TNF-α from hippocampal microglia is a key contributor to early-stage stress-to-mental responses. PMID:26551431

  2. Secondhand smoke exposure induces acutely airway acidification and oxidative stress.

    PubMed

    Kostikas, Konstantinos; Minas, Markos; Nikolaou, Eftychia; Papaioannou, Andriana I; Liakos, Panagiotis; Gougoura, Sofia; Gourgoulianis, Konstantinos I; Dinas, Petros C; Metsios, Giorgos S; Jamurtas, Athanasios Z; Flouris, Andreas D; Koutedakis, Yiannis

    2013-02-01

    Previous studies have shown that secondhand smoke induces lung function impairment and increases proinflammatory cytokines. The aim of the present study was to evaluate the acute effects of secondhand smoke on airway acidification and airway oxidative stress in never-smokers. In a randomized controlled cross-over trial, 18 young healthy never-smokers were assessed at baseline and 0, 30, 60, 120, 180 and 240 min after one-hour secondhand smoke exposure at bar/restaurant levels. Exhaled NO and CO measurements, exhaled breath condensate collection (for pH, H(2)O(2) and NO(2)(-)/NO(3)(-) measurements) and spirometry were performed at all time-points. Secondhand smoke exposure induced increases in serum cotinine and exhaled CO that persisted until 240 min. Exhaled breath condensate pH decreased immediately after exposure (p < 0.001) and returned to baseline by 180 min, whereas H(2)O(2) increased at 120 min and remained increased at 240 min (p = 0.001). No changes in exhaled NO and NO(2)/NO(3) were observed, while decreases in FEV(1) (p < 0.001) and FEV(1)/FVC (p < 0.001) were observed after exposure and returned to baseline by 180 min. A 1-h exposure to secondhand smoke induced airway acidification and increased airway oxidative stress, accompanied by significant impairment of lung function. Despite the reversal in EBC pH and lung function, airway oxidative stress remained increased 4 h after the exposure. Clinical trial registration number (EudraCT): 2009-013545-28. PMID:23218453

  3. Investigating boundaries of survival, growth and expression of genes associated with stress and virulence of Listeria monocytogenes in response to acid and osmotic stress.

    PubMed

    Makariti, I P; Printezi, A; Kapetanakou, A E; Zeaki, N; Skandamis, P N

    2015-02-01

    The objective of this study was to correlate the relative transcription of Listeria monocytogenes (strains C5, 6179) stress- (gad2, sigB) and virulence- (prfA) associated genes following habituation at twenty-five pH (4.8, 5.0, 5.2, 5.5, 6.4) and NaCl (2, 4, 6, 8, 10% w/v) combinations at 7 °C, with the survival against subsequent exposure to severe acid stress (pH 2.0 at 37 °C). Our findings pointed out the inter-strain variation governing growth inhibiting conditions (pH ≤5.0 and NaCl ≥6%), where C5 was less affected (a reduction of 2.0-3.0 log CFU/mL) than 6179 which was reduced by 4.0-6.0 log CFU/mL at the end of storage. Nevertheless, the higher the habituation at the growth permitting (pH ≥5.5; NaCl ≤4% w/v) or growth inhibiting conditions, the higher the acquired acid resistance or sensitization, respectively. At day 2, gad2 increased relative transcriptional levels are more related to elevated acid resistance, while at day 6 both gad2 transcriptional levels and upregulation of sigB were correlated to low log reductions and high DpH:2.0-values against severe acid stress. Regarding virulence, the increased transcriptional levels of prfA at day 2 were correlated to adverse pH and NaCl combinations, while prolonged stay in suboptimal conditions as well as exposure to severe acid stress resulted in general activation of the virulence regulator. Such data could definitely contribute in designing safe intervention strategies and additionally integrate -omics aspects in quantitative microbial risk assessment. PMID:25500389

  4. Entrainment of the mouse circadian clock by sub-acute physical and psychological stress.

    PubMed

    Tahara, Yu; Shiraishi, Takuya; Kikuchi, Yosuke; Haraguchi, Atsushi; Kuriki, Daisuke; Sasaki, Hiroyuki; Motohashi, Hiroaki; Sakai, Tomoko; Shibata, Shigenobu

    2015-01-01

    The effects of acute stress on the peripheral circadian system are not well understood in vivo. Here, we show that sub-acute stress caused by restraint or social defeat potently altered clock gene expression in the peripheral tissues of mice. In these peripheral tissues, as well as the hippocampus and cortex, stressful stimuli induced time-of-day-dependent phase-advances or -delays in rhythmic clock gene expression patterns; however, such changes were not observed in the suprachiasmatic nucleus, i.e. the central circadian clock. Moreover, several days of stress exposure at the beginning of the light period abolished circadian oscillations and caused internal desynchronisation of peripheral clocks. Stress-induced changes in circadian rhythmicity showed habituation and disappeared with long-term exposure to repeated stress. These findings suggest that sub-acute physical/psychological stress potently entrains peripheral clocks and causes transient dysregulation of circadian clocks in vivo. PMID:26073568

  5. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways.

    PubMed

    Christou, Anastasis; Manganaris, George A; Papadopoulos, Ioannis; Fotopoulos, Vasileios

    2013-04-01

    Hydrogen sulfide (H2S) has been recently found to act as a potent priming agent. This study explored the hypothesis that hydroponic pretreatment of strawberry (Fragaria × ananassa cv. Camarosa) roots with a H2S donor, sodium hydrosulfide (NaHS; 100 μM for 48 h), could induce long-lasting priming effects and tolerance to subsequent exposure to 100mM NaCI or 10% (w/v) PEG-6000 for 7 d. Hydrogen sulfide pretreatment of roots resulted in increased leaf chlorophyll fluorescence, stomatal conductance and leaf relative water content as well as lower lipid peroxidation levels in comparison with plants directly subjected to salt and non-ionic osmotic stress, thus suggesting a systemic mitigating effect of H2S pretreatment to cellular damage derived from abiotic stress factors. In addition, root pretreatment with NaHS resulted in the minimization of oxidative and nitrosative stress in strawberry plants, manifested via lower levels of synthesis of NO and H(2)O(2) in leaves and the maintenance of high ascorbate and glutathione redox states, following subsequent salt and non-ionic osmotic stresses. Quantitative real-time RT-PCR gene expression analysis of key antioxidant (cAPX, CAT, MnSOD, GR), ascorbate and glutathione biosynthesis (GCS, GDH, GS), transcription factor (DREB), and salt overly sensitive (SOS) pathway (SOS2-like, SOS3-like, SOS4) genes suggests that H2S plays a pivotal role in the coordinated regulation of multiple transcriptional pathways. The ameliorative effects of H2S were more pronounced in strawberry plants subjected to both stress conditions immediately after NaHS root pretreatment, rather than in plants subjected to stress conditions 3 d after root pretreatment. Overall, H2S-pretreated plants managed to overcome the deleterious effects of salt and non-ionic osmotic stress by controlling oxidative and nitrosative cellular damage through increased performance of antioxidant mechanisms and the coordinated regulation of the SOS pathway, thus proposing a

  6. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways

    PubMed Central

    Christou, Anastasis; Manganaris, George A.; Papadopoulos, Ioannis; Fotopoulos, Vasileios

    2013-01-01

    Hydrogen sulfide (H2S) has been recently found to act as a potent priming agent. This study explored the hypothesis that hydroponic pretreatment of strawberry (Fragaria × ananassa cv. Camarosa) roots with a H2S donor, sodium hydrosulfide (NaHS; 100 μM for 48h), could induce long-lasting priming effects and tolerance to subsequent exposure to 100mM NaCI or 10% (w/v) PEG-6000 for 7 d. Hydrogen sulfide pretreatment of roots resulted in increased leaf chlorophyll fluorescence, stomatal conductance and leaf relative water content as well as lower lipid peroxidation levels in comparison with plants directly subjected to salt and non-ionic osmotic stress, thus suggesting a systemic mitigating effect of H2S pretreatment to cellular damage derived from abiotic stress factors. In addition, root pretreatment with NaHS resulted in the minimization of oxidative and nitrosative stress in strawberry plants, manifested via lower levels of synthesis of NO and H2O2 in leaves and the maintenance of high ascorbate and glutathione redox states, following subsequent salt and non-ionic osmotic stresses. Quantitative real-time RT-PCR gene expression analysis of key antioxidant (cAPX, CAT, MnSOD, GR), ascorbate and glutathione biosynthesis (GCS, GDH, GS), transcription factor (DREB), and salt overly sensitive (SOS) pathway (SOS2-like, SOS3-like, SOS4) genes suggests that H2S plays a pivotal role in the coordinated regulation of multiple transcriptional pathways. The ameliorative effects of H2S were more pronounced in strawberry plants subjected to both stress conditions immediately after NaHS root pretreatment, rather than in plants subjected to stress conditions 3 d after root pretreatment. Overall, H2S-pretreated plants managed to overcome the deleterious effects of salt and non-ionic osmotic stress by controlling oxidative and nitrosative cellular damage through increased performance of antioxidant mechanisms and the coordinated regulation of the SOS pathway, thus proposing a novel

  7. Lower Electrodermal Activity to Acute Stress in Caregivers of People with Autism Spectrum Disorder: An Adaptive Habituation to Stress

    ERIC Educational Resources Information Center

    Ruiz-Robledillo, Nicolás; Moya-Albiol, Luis

    2015-01-01

    Caring for a relative with autism spectrum disorder (ASD) entails being under chronic stress that could alter body homeostasis. Electrodermal activity (EDA) is an index of the sympathetic activity of the autonomic nervous system related to emotionality and homeostasis. This study compares EDA in response to acute stress in the laboratory between…

  8. The effect of acute stress on memory depends on word valence.

    PubMed

    Smeets, Tom; Jelicic, Marko; Merckelbach, Harald

    2006-10-01

    The present study investigated the effect of acute stress on working memory and memory for neutral, emotionally negative, and emotionally positive words in healthy undergraduates. Participants (N=60) were exposed to either the Trier Social Stress Test (stress group) or a non-stressful task (control group). Analyses of salivary cortisol samples taken throughout the study showed elevated glucocorticoid levels after the experimental manipulation in the stress group, but not in the control group. Recall performance was impaired in the stress group, but only so for neutral words. No differences between the stress and control group were found on working memory measures. For the stress group, digit span forward and digit span total scores were associated with correct recall of neutral words. All in all, this study lends further support to the notion that the memory effects of exposure to acute stress depend on the valence of the memory material. PMID:16388863

  9. Cognitive Load Undermines Thought Suppression in Acute Stress Disorder.

    PubMed

    Nixon, Reginald D V; Rackebrandt, Julie

    2016-05-01

    Thought suppression studies demonstrate that attempts to suppress can be undermined by cognitive load. We report the first instance in which this has been tested experimentally in a sample of recently traumatized individuals. Individuals with and without acute stress disorder (ASD) were recruited following recent trauma and randomized to load or no load conditions (N=56). They monitored intrusive memories during baseline, suppression, and think anything phases. The impact of suppression and load on self-reported intrusions, attention bias (dot-probe), and memory priming (word-stem task) was assessed. The ASD load group were less able to suppress memories (d=0.32, CI95 [-0.15, 0.83], p=.088) than the ASD no load group (d=0.63, CI95 [0.08, 1.24], p<.001). In the think anything phase, the ASD load group reported more intrusions than the ASD no load or non-ASD groups (with and without load). No consistent findings were observed in relation to attentional bias. ASD load individuals exhibited stronger priming responses for motor vehicle accident and assault words than all other groups (ds between 0.35-0.73). Working memory did not moderate any outcomes of interest. The findings indicate that cognitive load interferes with suppression and may enhance access to trauma memories and associated material. The study extends previous research by demonstrating these effects for the first time in a clinical sample of recent survivors of trauma. PMID:27157032

  10. Acute stress switches spatial navigation strategy from egocentric to allocentric in a virtual Morris water maze.

    PubMed

    van Gerven, Dustin J H; Ferguson, Thomas; Skelton, Ronald W

    2016-07-01

    Stress and stress hormones are known to influence the function of the hippocampus, a brain structure critical for cognitive-map-based, allocentric spatial navigation. The caudate nucleus, a brain structure critical for stimulus-response-based, egocentric navigation, is not as sensitive to stress. Evidence for this comes from rodent studies, which show that acute stress or stress hormones impair allocentric, but not egocentric navigation. However, there have been few studies investigating the effect of acute stress on human spatial navigation, and the results of these have been equivocal. To date, no study has investigated whether acute stress can shift human navigational strategy selection between allocentric and egocentric navigation. The present study investigated this question by exposing participants to an acute psychological stressor (the Paced Auditory Serial Addition Task, PASAT), before testing navigational strategy selection in the Dual-Strategy Maze, a modified virtual Morris water maze. In the Dual-Strategy maze, participants can chose to navigate using a constellation of extra-maze cues (allocentrically) or using a single cue proximal to the goal platform (egocentrically). Surprisingly, PASAT stress biased participants to solve the maze allocentrically significantly more, rather than less, often. These findings have implications for understanding the effects of acute stress on cognitive function in general, and the function of the hippocampus in particular. PMID:27174311

  11. Collective osmotic shock in ordered materials

    NASA Astrophysics Data System (ADS)

    Zavala-Rivera, Paul; Channon, Kevin; Nguyen, Vincent; Sivaniah, Easan; Kabra, Dinesh; Friend, Richard H.; Nataraj, S. K.; Al-Muhtaseb, Shaheen A.; Hexemer, Alexander; Calvo, Mauricio E.; Miguez, Hernan

    2012-01-01

    Osmotic shock in a vesicle or cell is the stress build-up and subsequent rupture of the phospholipid membrane that occurs when a relatively high concentration of salt is unable to cross the membrane and instead an inflow of water alleviates the salt concentration gradient. This is a well-known failure mechanism for cells and vesicles (for example, hypotonic shock) and metal alloys (for example, hydrogen embrittlement). We propose the concept of collective osmotic shock, whereby a coordinated explosive fracture resulting from multiplexing the singular effects of osmotic shock at discrete sites within an ordered material results in regular bicontinuous structures. The concept is demonstrated here using self-assembled block copolymer micelles, yet it is applicable to organized heterogeneous materials where a minority component can be selectively degraded and solvated whilst ensconced in a matrix capable of plastic deformation. We discuss the application of these self-supported, perforated multilayer materials in photonics, nanofiltration and optoelectronics.

  12. Collective osmotic shock in ordered materials.

    PubMed

    Zavala-Rivera, Paul; Channon, Kevin; Nguyen, Vincent; Sivaniah, Easan; Kabra, Dinesh; Friend, Richard H; Nataraj, S K; Al-Muhtaseb, Shaheen A; Hexemer, Alexander; Calvo, Mauricio E; Miguez, Hernan

    2012-01-01

    Osmotic shock in a vesicle or cell is the stress build-up and subsequent rupture of the phospholipid membrane that occurs when a relatively high concentration of salt is unable to cross the membrane and instead an inflow of water alleviates the salt concentration gradient. This is a well-known failure mechanism for cells and vesicles (for example, hypotonic shock) and metal alloys (for example, hydrogen embrittlement). We propose the concept of collective osmotic shock, whereby a coordinated explosive fracture resulting from multiplexing the singular effects of osmotic shock at discrete sites within an ordered material results in regular bicontinuous structures. The concept is demonstrated here using self-assembled block copolymer micelles, yet it is applicable to organized heterogeneous materials where a minority component can be selectively degraded and solvated whilst ensconced in a matrix capable of plastic deformation. We discuss the application of these self-supported, perforated multilayer materials in photonics, nanofiltration and optoelectronics. PMID:22120413

  13. Acute stress differentially affects spatial configuration learning in high and low cortisol-responding healthy adults

    PubMed Central

    Meyer, Thomas; Smeets, Tom; Giesbrecht, Timo; Quaedflieg, Conny W. E. M.; Merckelbach, Harald

    2013-01-01

    Background Stress and stress hormones modulate memory formation in various ways that are relevant to our understanding of stress-related psychopathology, such as posttraumatic stress disorder (PTSD). Particular relevance is attributed to efficient memory formation sustained by the hippocampus and parahippocampus. This process is thought to reduce the occurrence of intrusions and flashbacks following trauma, but may be negatively affected by acute stress. Moreover, recent evidence suggests that the efficiency of visuo-spatial processing and learning based on the hippocampal area is related to PTSD symptoms. Objective The current study investigated the effect of acute stress on spatial configuration learning using a spatial contextual cueing task (SCCT) known to heavily rely on structures in the parahippocampus. Method Acute stress was induced by subjecting participants (N = 34) to the Maastricht Acute Stress Test (MAST). Following a counterbalanced within-subject approach, the effects of stress and the ensuing hormonal (i.e., cortisol) activity on subsequent SCCT performance were compared to SCCT performance following a no-stress control condition. Results Acute stress did not impact SCCT learning overall, but opposing effects emerged for high versus low cortisol responders to the MAST. Learning scores following stress were reduced in low cortisol responders, while high cortisol-responding participants showed improved learning. Conclusions The effects of stress on spatial configuration learning were moderated by the magnitude of endogenous cortisol secretion. These findings suggest a possible mechanism by which cortisol responses serve an adaptive function during stress and trauma, and this may prove to be a promising route for future research in this area. PMID:23671762

  14. Osmotic tolerance of human granulocytes

    SciTech Connect

    Armitage, W.J.; Mazur, P.

    1984-11-01

    Human granulocytes are injured when returned to isotonic conditions after exposure at 0/sup 0/C to hyperosmotic solutions of NaCl or sucrose with osmolalities above 0.6 osmolal. The damage was expressed as a loss of membrane integrity (fluorescein diacetate (FDA) assay) only after 60-90 min incubation at 37/sup 0/C. Survival after exposure to a 1.4-osmolal solution at 0/sup 0/C was dependent on the extent of subsequent dilution. Dilution to below 0.6 osmolal was damaging, but cells could be returned to near-osmotic conditions provided that the solute concentration was increased again to 0.64 osmolal before the cells were incubated at 37/sup 0/C. Granulocyte cell volumes were measured under various osmotic conditions by computer-assisted micrometry. The cells did not display a minimum volume but behaved as osmometers over the observed range of 0.2-1.4 osmolal. Granulocyte volume at a given osmolality was independent of whether the cells had first been exposed to a strongly hyperosmotic medium, indicating that no solute loading occurred in hyperosmotic sucrose solutions. Even though the cells did not survive sequential exposure to >0.6 osmolal solutions, subsequent return to isotonicity, and incubation at 37/sup 0/C, neither cell lysis nor loss in FDA-positive cells occurred after the first two steps. This finding is not consistent with the critical-surface area-increment theory of freezing injury. The mechanism of cell injury in hyperosmotic solutions is thus not known. However, the results show that osmotic stress is potentially a major damaging factor both in the equilibration of cells with protective additives and during freezing and thawing.

  15. Inhibition of food intake induced by acute stress in rats is due to satiation effects.

    PubMed

    Calvez, J; Fromentin, G; Nadkarni, N; Darcel, N; Even, P; Tomé, D; Ballet, N; Chaumontet, C

    2011-10-24

    Acute mild stress induces an inhibition of food intake in rats. In most studies, the cumulative daily food intake is measured but this only provides a quantitative assessment of ingestive behavior. The present study was designed to analyze the reduction in food intake induced by acute stress and to understand which behavioral and central mechanisms are responsible for it. Two different stressors, restraint stress (RS) and forced swimming stress (FSS), were applied acutely to male Wistar rats. We first measured corticosterone and ACTH in plasma samples collected immediately after acute RS and FSS in order to validate our stress models. We measured food intake after RS and FSS and determined meal patterns and behavioral satiety sequences. The expressions of CRF, NPY and POMC in the hypothalamus were also determined immediately after acute RS and FSS. The rise in corticosterone and ACTH levels after both acute RS and FSS validated our models. Furthermore, we showed that acute stress induced a reduction in cumulative food intake which lasted the whole day for RS but only for the first hour after FSS. For both stressors, this stress-induced food intake inhibition was explained by a decrease in meal size and duration, but there was no difference in ingestion speed. The behavioral satiety sequence was preserved after RS and FSS but grooming was markedly increased, which thus competed with, and could reduce, other behaviors, including eating. Lastly, we showed that RS induced an increase in hypothalamic POMC expression. These results suggest that acute stress may affect ingestive behavior by increasing satiation and to some extent by enhancing grooming, and this may be due to stimulation of the hypothalamic POMC neurons. PMID:21787797

  16. Alterations in neuronal morphology in infralimbic cortex predict resistance to fear extinction following acute stress

    PubMed Central

    Moench, Kelly M.; Maroun, Mouna; Kavushansky, Alexandra; Wellman, Cara

    2015-01-01

    Dysfunction in corticolimbic circuits that mediate the extinction of learned fear responses is thought to underlie the perseveration of fear in stress-related psychopathologies, including post-traumatic stress disorder. Chronic stress produces dendritic hypertrophy in basolateral amygdala (BLA) and dendritic hypotrophy in medial prefrontal cortex, whereas acute stress leads to hypotrophy in both BLA and prelimbic cortex. Additionally, both chronic and acute stress impair extinction retrieval. Here, we examined the effects of a single elevated platform stress on extinction learning and dendritic morphology in infralimbic cortex, a region considered to be critical for extinction. Acute stress produced resistance to extinction, as well as dendritic retraction in infralimbic cortex. Spine density on apical and basilar terminal branches was unaffected by stress. However, animals that underwent conditioning and extinction had decreased spine density on apical terminal branches. Thus, whereas dendritic morphology in infralimbic cortex appears to be particularly sensitive to stress, changes in spines may more sensitively reflect learning. Further, in stressed rats that underwent conditioning and extinction, the level of extinction learning was correlated with spine densities, in that rats with poorer extinction retrieval had more immature spines and fewer thin spines than rats with better extinction retrieval, suggesting that stress may have impaired learning-related spine plasticity. These results may have implications for understanding the role of medial prefrontal cortex in learning deficits associated with stress-related pathologies. PMID:26844245

  17. Individual differences in early adolescents' latent trait cortisol (LTC): Relation to recent acute and chronic stress.

    PubMed

    Stroud, Catherine B; Chen, Frances R; Doane, Leah D; Granger, Douglas A

    2016-08-01

    Research suggests that environmental stress contributes to health by altering the regulation of the hypothalamic pituitary adrenal (HPA) axis. Recent evidence indicates that early life stress alters trait indicators of HPA axis activity, but whether recent stress alters such indicators is unknown. Using objective contextual stress interviews with adolescent girls and their mothers, we examined the impact of recent acute and chronic stress occurring during the past year on early adolescent girls' latent trait cortisol (LTC) level. We also examined whether associations between recent stress and LTC level: a) varied according to the interpersonal nature and controllability of the stress; and b) remained after accounting for the effect of early life stress. Adolescents (n=117;M age=12.39years) provided salivary cortisol samples three times a day (waking, 30min post-waking and bedtime) over 3days. Results indicated that greater recent interpersonal acute stress and greater recent independent (i.e., uncontrollable) acute stress were each associated with a higher LTC level, over and above the effect of early adversity. In contrast, greater recent chronic stress was associated with a lower LTC level. Findings were similar in the overall sample and a subsample of participants who strictly adhered to the timed schedule of saliva sample collection. Implications for understanding the impact of recent stress on trait-like individual differences in HPA axis activity are discussed. PMID:27155256

  18. Alterations in neuronal morphology in infralimbic cortex predict resistance to fear extinction following acute stress.

    PubMed

    Moench, Kelly M; Maroun, Mouna; Kavushansky, Alexandra; Wellman, Cara

    2016-06-01

    Dysfunction in corticolimbic circuits that mediate the extinction of learned fear responses is thought to underlie the perseveration of fear in stress-related psychopathologies, including post-traumatic stress disorder. Chronic stress produces dendritic hypertrophy in basolateral amygdala (BLA) and dendritic hypotrophy in medial prefrontal cortex, whereas acute stress leads to hypotrophy in both BLA and prelimbic cortex. Additionally, both chronic and acute stress impair extinction retrieval. Here, we examined the effects of a single elevated platform stress on extinction learning and dendritic morphology in infralimbic cortex, a region considered to be critical for extinction. Acute stress produced resistance to extinction, as well as dendritic retraction in infralimbic cortex. Spine density on apical and basilar terminal branches was unaffected by stress. However, animals that underwent conditioning and extinction had decreased spine density on apical terminal branches. Thus, whereas dendritic morphology in infralimbic cortex appears to be particularly sensitive to stress, changes in spines may more sensitively reflect learning. Further, in stressed rats that underwent conditioning and extinction, the level of extinction learning was correlated with spine densities, in that rats with poorer extinction retrieval had more immature spines and fewer thin spines than rats with better extinction retrieval, suggesting that stress may have impaired learning-related spine plasticity. These results may have implications for understanding the role of medial prefrontal cortex in learning deficits associated with stress-related pathologies. PMID:26844245

  19. Child Anxiety Symptoms Related to Longitudinal Cortisol Trajectories and Acute Stress Responses: Evidence of Developmental Stress Sensitization

    PubMed Central

    Laurent, Heidemarie K.; Gilliam, Kathryn S.; Wright, Dorianne B.; Fisher, Philip A.

    2015-01-01

    Cross-sectional research suggests that individuals at risk for internalizing disorders show differential activation levels and/or dynamics of stress-sensitive physiological systems, possibly reflecting a process of stress sensitization. However, there is little longitudinal research to clarify how the development of these systems over time relates to activation during acute stress, and how aspects of such activation map onto internalizing symptoms. We investigated children’s (n=107) diurnal hypothalamic-pituitary-adrenal activity via salivary cortisol (morning and evening levels) across 29 assessments spanning 6+ years, and related longitudinal patterns to acute stress responses at the end of this period (age 9–10). Associations with child psychiatric symptoms at age 10 were also examined to determine internalizing risk profiles. Increasing morning cortisol levels across assessments predicted less of a cortisol decline following interpersonal stress at age 9, and higher cortisol levels during performance stress at age 10. These same profiles of high and/or sustained cortisol elevation during psychosocial stress were associated with child anxiety symptoms. Results suggest developmental sensitization to stress—reflected in rising morning cortisol and eventual hyperactivation during acute stress exposure—may distinguish children at risk for internalizing disorders. PMID:25688433

  20. Chronic and acute effects of stress on energy balance: are there appropriate animal models?

    PubMed Central

    2014-01-01

    Stress activates multiple neural and endocrine systems to allow an animal to respond to and survive in a threatening environment. The corticotropin-releasing factor system is a primary initiator of this integrated response, which includes activation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis. The energetic response to acute stress is determined by the nature and severity of the stressor, but a typical response to an acute stressor is inhibition of food intake, increased heat production, and increased activity with sustained changes in body weight, behavior, and HPA reactivity. The effect of chronic psychological stress is more variable. In humans, chronic stress may cause weight gain in restrained eaters who show increased HPA reactivity to acute stress. This phenotype is difficult to replicate in rodent models where chronic psychological stress is more likely to cause weight loss than weight gain. An exception may be hamsters subjected to repeated bouts of social defeat or foot shock, but the data are limited. Recent reports on the food intake and body composition of subordinate members of group-housed female monkeys indicate that these animals have a similar phenotype to human stress-induced eaters, but there are a limited number of investigators with access to the model. Few stress experiments focus on energy balance, but more information on the phenotype of both humans and animal models during and after exposure to acute or chronic stress may provide novel insight into mechanisms that normally control body weight. PMID:25519732

  1. Evolution of osmotic pressure in solid tumors

    PubMed Central

    Voutouri, Chysovalantis; Stylianopoulos, Triantafyllos

    2014-01-01

    The mechanical microenvironment of solid tumors includes both fluid and solid stresses. These stresses play a crucial role in cancer progression and treatment and have been analyzed rigorously both mathematically and experimentally. The magnitude and spatial distribution of osmotic pressures in tumors, however, cannot be measured experimentally and to our knowledge there is no mathematical model to calculate osmotic pressures in the tumor interstitial space. In this study, we developed a triphasic biomechanical model of tumor growth taking into account not only the solid and fluid phase of a tumor, but also the transport of cations and anions, as well as the fixed charges at the surface of the glycosaminoglycan chains. Our model predicts that the osmotic pressure is negligible compared to the interstitial fluid pressure for values of glycosaminoglycans (GAGs) taken from the literature for sarcomas, melanomas and adenocarcinomas. Furthermore, our results suggest that an increase in the hydraulic conductivity of the tumor, increases considerably the intratumoral concentration of free ions and thus, the osmotic pressure but it does not reach the levels of the interstitial fluid pressure. PMID:25287111

  2. Acute stress and cardiovascular health: is there an ACE gene connection?

    PubMed

    Holman, E Alison

    2012-10-01

    Cardiovascular disorders (CVD) are associated with acute and posttraumatic stress responses, yet biological processes underlying this association are poorly understood. This study examined whether renin-angiotensin-aldosterone system activity, as indicated by a functional single nucleotide polymorphism (SNP) in the angiotensin converting enzyme (ACE) gene, is associated with both CVD and acute stress related to the September 11, 2001 (9/11) terrorist attacks. European-American respondents (N = 527) from a nationally representative longitudinal study of coping following 9/11 provided saliva for genotyping. Respondents had completed health surveys before 9/11 and annually for 3 years after, and acute stress assessments 9 to 23 days after 9/11. Respondents with rs4291 AA or TT genotypes reported high acute stress twice as often as those with the AT genotype. Individuals with the TT genotype were 43% more likely to report increased physician-diagnosed CVD over 3 years following 9/11, when the following variables were included in the model: (a) pre-9/11 CVD, mental health, and non-CVD ailments; (b) cardiac risk factors; (c) ongoing endocrine disorders; and (d) significant demographics. The ACE rs4291 TT genotype, which has been associated with HPA axis hyperactivity and higher levels of serum angiotensin converting enzyme (ACE), predicted acute stress response and reports of physician-diagnosed CVD in a national sample following collective stress. ACE gene function may be associated with both mental and physical health disorders following collective stress. PMID:23055331

  3. An experimental test of the capture-restraint protocol for estimating the acute stress response.

    PubMed

    Pakkala, Jesse J; Norris, D Ryan; Newman, Amy E M

    2013-01-01

    Stress-induced increases in glucocorticoids (GCs) modulate behavior and are key in directing energy reserves. The capture-restraint protocol was developed to experimentally stimulate and quantify the magnitude of the acute stress response by comparing baseline GC levels with those collected after restraining a subject for a period of time, typically 30 min. This protocol has been used extensively in the field and lab, yet few studies have investigated whether it parallels hypothalamic-pituitary-adrenal (HPA) activation under natural acute stressors. We examined the hypothesis that acute stress from the capture-restraint protocol accurately mimics the adrenocortical response induced by a natural acute stressor. Using wild-caught rock pigeons Columba livia in a repeated-measures design, we compared plasma corticosterone (CORT) concentrations at baseline, after exposure to acute capture-restraint (30 min in a cloth bag), after tethering in a harness (30 min), and after a real but nonlethal attack by a predatory raptor. As found in previous studies, the capture-restraint treatment significantly increased CORT levels of pigeons compared with baseline. However, we also found that when pigeons were exposed to an attack by a raptor, their CORT levels were more than twice as high compared with the capture-restraint treatment. Our results provide evidence that an authentic acute stressor can activate the HPA axis to a greater extent than the capture-restraint protocol and also suggest that real predation attempts can have a significant effect on acute stress levels of wild birds. PMID:23434787

  4. Acute stress, depression, and anxiety symptoms among English and Spanish speaking children with recent trauma exposure

    PubMed Central

    Barber, Beth A.; Kohl, Krista L.; Kassam-Adams, Nancy; Gold, Jeffrey I.

    2015-01-01

    A growing literature suggests the clinical importance of acute stress disorder (ASD) symptoms in youth following potentially traumatic events. A multisite sample of English and Spanish speaking children and adolescents (N=479) between the ages of 8 to 17, along with their caregivers completed interviews and self-report questionnaires between 2 days and one month following the event. The results indicate that children with greater total acute stress symptoms reported greater depressive (r = .41, p < .01), and anxiety symptoms (r = .53, p < .01). Examining specific acute stress subscales, re-experiencing was correlated with anxiety (r = .47, p < .01) and arousal was correlated with depression (r = .50, p < .01) and anxiety (r = .55, p < .01). Age was inversely associated with total acute stress symptoms (r = -.24, p < .01), re-experiencing (r = -.17, p < .01), avoidance (r = -.27, p < .01), and arousal (r = -.19, p < .01) and gender was related to total anxiety symptoms (Spearman's rho = .17, p < .01). The current study supports the importance of screening acute stress symptoms and other mental health outcomes following a potentially traumatic event in children and adolescents. Early screening may enable clinicians to identify and acutely intervene to support children's psychological and physical recovery. PMID:24337685

  5. EPR spectroscopy as a tool for investigation of differences in radical status in wheat plants of various tolerances to osmotic stress induced by NaCl and PEG-treatment.

    PubMed

    Labanowska, Maria; Filek, Maria; Kurdziel, Magdalena; Bidzińska, Ewa; Miszalski, Zbigniew; Hartikainen, Hélina

    2013-01-15

    Two kinds of wheat genotypes with different tolerance to osmotic stress (NaCl and PEG-treatment) were investigated with biochemical analyses, including the measurements of total antioxidant capacity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity, reducing power and starch content. The results were compared with electron paramagnetic resonance (EPR) data concerning the nature and amounts of stable long lived radicals present in the control and stressed plants. In addition, the changes in manganese content upon stress conditions were monitored. Different mechanisms of protection against PEG stress in sensitive and tolerant wheat genotypes were postulated. In sensitive genotypes, electrons were created in excess in stress conditions, and were stabilized by polysaccharide molecules, whereas in tolerant genotypes, protection by antioxidants dominated. Moreover, the quinone-semiquinone balance shifted towards semiquinone, which became the place of electron trapping. NaCl-treatment yielded significant effects mainly in sensitive genotypes and was connected with the changes of water structure, leading to inactivation of reactive oxygen species by water molecules. PMID:23141807

  6. Cognitive Processing Therapy for Acute Stress Disorder Resulting from an Anti-Gay Assault

    ERIC Educational Resources Information Center

    Kaysen, Debra; Lostutter, Ty W.; Goines, Marie A.

    2005-01-01

    This case study describes Cognitive Processing Therapy (CPT) with a 30-year-old gay man with symptoms of acute stress disorder (ASD) following a recent homophobic assault. Treatment addressed assault-related posttraumatic stress disorder symptoms and depressive symptoms. Also addressed were low self-esteem, helplessness, and high degrees of…

  7. Acute restraint stress enhances hippocampal endocannabinoid function via glucocorticoid receptor activation.

    PubMed

    Wang, Meina; Hill, Matthew N; Zhang, Longhua; Gorzalka, Boris B; Hillard, Cecilia J; Alger, Bradley E

    2012-01-01

    Exposure to behavioural stress normally triggers a complex, multilevel response of the hypothalamic-pituitary-adrenal (HPA) axis that helps maintain homeostatic balance. Although the endocannabinoid (eCB) system (ECS) is sensitive to chronic stress, few studies have directly addressed its response to acute stress. Here we show that acute restraint stress enhances eCB-dependent modulation of GABA release measured by whole-cell voltage clamp of inhibitory postsynaptic currents (IPSCs) in rat hippocampal CA1 pyramidal cells in vitro. Both Ca(2+)-dependent, eCB-mediated depolarization-induced suppression of inhibition (DSI), and muscarinic cholinergic receptor (mAChR)-mediated eCB mobilization are enhanced following acute stress exposure. DSI enhancement is dependent on the activation of glucocorticoid receptors (GRs) and is mimicked by both in vivo and in vitro corticosterone treatment. This effect does not appear to involve cyclooxygenase-2 (COX-2), an enzyme that can degrade eCBs; however, treatment of hippocampal slices with the L-type calcium (Ca(2+)) channel inhibitor, nifedipine, reverses while an agonist of these channels mimics the effect of in vivo stress. Finally, we find that acute stress produces a delayed (by 30 min) increase in the hippocampal content of 2-arachidonoylglycerol, the eCB responsible for DSI. These results support the hypothesis that the ECS is a biochemical effector of glucocorticoids in the brain, linking stress with changes in synaptic strength. PMID:21890595

  8. A Simple Student Laboratory on Osmotic Flow, Osmotic Pressure, and the Reflection Coefficient.

    ERIC Educational Resources Information Center

    Feher, Joseph J.; Ford, George D.

    1995-01-01

    Describes a laboratory exercise containing a practical series of experiments that novice students can perform within two hours. The exercise provides a confirmation of van't Hoff's law while placing more emphasis on osmotic flow than pressure. Students can determine parameters such as the reflection coefficient which stress the interaction of both…

  9. Phase-Dependent Shifting of the Adrenal Clock by Acute Stress-Induced ACTH.

    PubMed

    Engeland, William C; Yoder, J Marina; Karsten, Carley A; Kofuji, Paulo

    2016-01-01

    The adrenal cortex has a molecular clock that generates circadian rhythms in glucocorticoid production, yet it is unclear how the clock responds to acute stress. We hypothesized that stress-induced ACTH provides a signal that phase shifts the adrenal clock. To assess whether acute stress phase shifts the adrenal clock in vivo in a phase-dependent manner, mPER2:LUC mice on a 12:12-h light:dark cycle underwent restraint stress for 15 min or no stress at zeitgeber time (ZT) 2 (early subjective day) or at ZT16 (early subjective night). Adrenal explants from mice stressed at ZT2 showed mPER2:LUC rhythms that were phase-advanced by ~2 h, whereas adrenals from mice stressed at ZT16 showed rhythms that were phase-delayed by ~2 h. The biphasic response was also observed in mice injected subcutaneously either with saline or with ACTH at ZT2 or ZT16. Blockade of the ACTH response with the glucocorticoid, dexamethasone, prevented restraint stress-induced phase shifts in the mPER2:LUC rhythm both at ZT2 and at ZT16. The finding that acute stress results in a phase-dependent shift in the adrenal mPER2:LUC rhythm that can be blocked by dexamethasone indicates that stress-induced effectors, including ACTH, act to phase shift the adrenal clock rhythm. PMID:27445984

  10. Phase-Dependent Shifting of the Adrenal Clock by Acute Stress-Induced ACTH

    PubMed Central

    Engeland, William C.; Yoder, J. Marina; Karsten, Carley A.; Kofuji, Paulo

    2016-01-01

    The adrenal cortex has a molecular clock that generates circadian rhythms in glucocorticoid production, yet it is unclear how the clock responds to acute stress. We hypothesized that stress-induced ACTH provides a signal that phase shifts the adrenal clock. To assess whether acute stress phase shifts the adrenal clock in vivo in a phase-dependent manner, mPER2:LUC mice on a 12:12-h light:dark cycle underwent restraint stress for 15 min or no stress at zeitgeber time (ZT) 2 (early subjective day) or at ZT16 (early subjective night). Adrenal explants from mice stressed at ZT2 showed mPER2:LUC rhythms that were phase-advanced by ~2 h, whereas adrenals from mice stressed at ZT16 showed rhythms that were phase-delayed by ~2 h. The biphasic response was also observed in mice injected subcutaneously either with saline or with ACTH at ZT2 or ZT16. Blockade of the ACTH response with the glucocorticoid, dexamethasone, prevented restraint stress-induced phase shifts in the mPER2:LUC rhythm both at ZT2 and at ZT16. The finding that acute stress results in a phase-dependent shift in the adrenal mPER2:LUC rhythm that can be blocked by dexamethasone indicates that stress-induced effectors, including ACTH, act to phase shift the adrenal clock rhythm. PMID:27445984

  11. Acute Immobilization Stress Modulate GABA Release from Rat Olfactory Bulb: Involvement of Endocannabinoids—Cannabinoids and Acute Stress Modulate GABA Release

    PubMed Central

    Delgado, Alejandra; Jaffé, Erica H.

    2011-01-01

    We studied the effects of cannabinoids and acute immobilization stress on the regulation of GABA release in the olfactory bulb. Glutamate-stimulated 3H-GABA release was measured in superfused slices. We report that cannabinoids as WIN55, 212-2, methanandamide, and 2-arachidonoylglycerol were able to inhibit glutamate- and KCl-stimulated 3H-GABA release. This effect was blocked by the CB1 antagonist AM281. On the other hand, acute stress was able per se to increase endocannabinoid activity. This effect was evident since the inhibition of stimulated GABA release by acute stress was reversed with AM281 and tetrahydrolipstatin. Inhibition of the endocannabinoid transport or its catabolism showed reduction of GABA release, antagonized by AM281 in control and stressed animals. These results point to endocannabinoids as inhibitory modulators of GABA release in the olfactory bulb acting through an autocrine mechanism. Apparently, stress increases the endocannabinoid system, modulating GABAergic synaptic function in a primary sensory organ. PMID:21785597

  12. The effect of obesity on inflammatory cytokine and leptin production following acute mental stress.

    PubMed

    Caslin, H L; Franco, R L; Crabb, E B; Huang, C J; Bowen, M K; Acevedo, E O

    2016-02-01

    Obesity may contribute to cardiovascular disease (CVD) risk by eliciting chronic systemic inflammation and impairing the immune response to additional stressors. There has been little assessment of the effect of obesity on psychological stress, an independent risk factor for CVD. Therefore, it was of interest to examine interleukin-6, tumor necrosis factor-α, interleukin-1β (IL-1β), interleukin-1 receptor antagonist (IL-1Ra), and leptin following an acute mental stress task in nonobese and obese males. Twenty college-aged males (21.3 ± 0.56 years) volunteered to participate in a 20-min Stroop color-word and mirror-tracing task. Subjects were recruited for obese (body mass index: BMI > 30) and nonobese (BMI < 25) groups, and blood samples were collected for enzyme-linked immunosorbent assay analysis. The acute mental stress task elicited an increase in heart rate, catecholamines, and IL-1β in all subjects. Additionally, acute mental stress increased cortisol concentrations in the nonobese group. There was a significant reduction in leptin in obese subjects 30 min posttask compared with a decrease in nonobese subjects 120 min posttask. Interestingly, the relationship between the percent change in leptin and IL-1Ra at 120 min posttask in response to an acute mental stress task was only observed in nonobese individuals. This is the first study to suggest that adiposity in males may impact leptin and inflammatory signaling mechanisms following acute mental stress. PMID:26511907

  13. Osmotic micropumps for drug delivery.

    PubMed

    Herrlich, Simon; Spieth, Sven; Messner, Stephan; Zengerle, Roland

    2012-11-01

    This paper reviews miniaturized drug delivery systems applying osmotic principles for pumping. Osmotic micropumps require no electrical energy and consequently enable drug delivery systems of smallest size for a broad field of new applications. In contrast to common tablets, these pumps provide constant (zero-order) drug release rates. This facilitates systems for long term use not limited by gastrointestinal transit time and first-pass metabolism. The review focuses on parenteral routes of administration targeting drug delivery either in a site-specific or systemic way. Osmotic pumps consist of three building blocks: osmotic agent, solvent, and drug. This is used to categorize pumps into (i) single compartment systems using water from body fluids as solvent and the drug itself as the osmotic agent, (ii) two compartment systems employing a separate osmotic agent, and (iii) multi-compartment architectures employing solvent, drug and osmotic agent separately. In parallel to the micropumps, relevant applications and therapies are discussed. PMID:22370615

  14. Acute restraint stress and corticosterone transiently disrupts novelty preference in an object recognition task.

    PubMed

    Vargas-López, Viviana; Torres-Berrio, Angélica; González-Martínez, Lina; Múnera, Alejandro; Lamprea, Marisol R

    2015-09-15

    The object recognition task is a procedure based on rodents' natural tendency to explore novel objects which is frequently used for memory testing. However, in some instances novelty preference is replaced by familiarity preference, raising questions regarding the validity of novelty preference as a pure recognition memory index. Acute stress- and corticosterone administration-induced novel object preference disruption has been frequently interpreted as memory impairment; however, it is still not clear whether such effect can be actually attributed to either mnemonic disruption or altered novelty seeking. Seventy-five adult male Wistar rats were trained in an object recognition task and subjected to either acute stress or corticosterone administration to evaluate the effect of stress or corticosterone on an object recognition task. Acute stress was induced by restraining movement for 1 or 4h, ending 30 min before the sample trial. Corticosterone was injected intraperitoneally 10 min before the test trial which was performed either 1 or 24h after the sample trial. Four-hour, but not 1-h, stress induced familiar object preference during the test trial performed 1h after the sample trial; however, acute stress had no effects on the test when performed 24h after sample trial. Systemic administration of corticosterone before the test trial performed either 1 or 24h after the sample trial also resulted in familiar object preference. However, neither acute stress nor corticosterone induced changes in locomotor behaviour. Taken together, such results suggested that acute stress probably does not induce memory retrieval impairment but, instead, induces an emotional arousing state which motivates novelty avoidance. PMID:25986403

  15. Media's role in broadcasting acute stress following the Boston Marathon bombings.

    PubMed

    Holman, E Alison; Garfin, Dana Rose; Silver, Roxane Cohen

    2014-01-01

    We compared the impact of media vs. direct exposure on acute stress response to collective trauma. We conducted an Internet-based survey following the Boston Marathon bombings between April 29 and May 13, 2013, with representative samples of residents from Boston (n = 846), New York City (n = 941), and the remainder of the United States (n = 2,888). Acute stress symptom scores were comparable in Boston and New York [regression coefficient (b) = 0.43; SE = 1.42; 95% confidence interval (CI), -2.36, 3.23], but lower nationwide when compared with Boston (b = -2.21; SE = 1.07; 95% CI, -4.31, -0.12). Adjusting for prebombing mental health (collected prospectively), demographics, and prior collective stress exposure, six or more daily hours of bombing-related media exposure in the week after the bombings was associated with higher acute stress than direct exposure to the bombings (continuous acute stress symptom total: media exposure b = 15.61 vs. direct exposure b = 5.69). Controlling for prospectively collected prebombing television-watching habits did not change the findings. In adjusted models, direct exposure to the 9/11 terrorist attacks and the Sandy Hook School shootings were both significantly associated with bombing-related acute stress; Superstorm Sandy exposure wasn't. Prior exposure to similar and/or violent events may render some individuals vulnerable to the negative effects of collective traumas. Repeatedly engaging with trauma-related media content for several hours daily shortly after collective trauma may prolong acute stress experiences and promote substantial stress-related symptomatology. Mass media may become a conduit that spreads negative consequences of community trauma beyond directly affected communities. PMID:24324161

  16. Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model

    PubMed Central

    Hacioglu, Gulay; Senturk, Ayse; Ince, Imran; Alver, Ahmet

    2016-01-01

    Objective(s): Exposing to stress may be associated with increased production of reactive oxygen species (ROS). Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF) supports neurons against various neurodegenerative conditions. Lately, there has been growing evidence that changes in the cerebral neurotrophic support and especially in the BDNF expression and its engagement with ROS might be important in various disorders and neurodegenerative diseases. Hence, we aimed to investigate protective effects of BDNF against stress-induced oxidative damage. Materials and Methods: Five- to six-month-old male wild-type and BDNF knock-down mice were used in this study. Activities of catalase (CAT) and superoxide dismutase (SOD) enzymes, and the amount of malondialdehyde (MDA) were assessed in the cerebral homogenates of studied groups in response to acute restraint stress. Results: Exposing to acute physiological stress led to significant elevation in the markers of oxidative stress in the cerebral cortexes of experimental groups. Conclusion: As BDNF-deficient mice were observed to be more susceptible to stress-induced oxidative damage, it can be suggested that there is a direct interplay between oxidative stress indicators and BDNF levels in the brain. PMID:27279982

  17. The evolution of the painful sensitivity in acute and chronic stress.

    PubMed

    Cristea, A; Ciobanu, A; Stoenescu, M; Rusei, I

    1994-01-01

    The clinical research was made on two groups of young volunteer students. We considered stress consisting in chronic informational overexposure during the examination session and the acute stress from their emotions before a hard examination. The painful sensitivity was analysed by measuring the retraction time of the finger from water at 55 degrees C. The experimental research was made on a group of 100 male mice. The acute stress was performed by subjecting each mouse to swim (behavioral despair test). Painful sensitivity was determined by the test of the hot plate heated at 50 degrees C. Individuals with hyper (H) and hypo (h) painful sensitivity were selected for the tests. In chronic stress, the results proved increased painful sensitivity (hyperalgia) more important at "h" compared to "H" (p < 0.05). In acute stress decreased painful sensitivity (stress analgesia) was noticed more significant at "H" compared to h" (p < 0.05). All these results suggested that the extreme "H" and "h" are two different stress behaviors with opposite mechanisms involved in stress analgesia. This hypothesis is related with studies which demonstrate the involvement in stress analgesia of non-opioid monoaminergic mechanisms together with the opioid mechanisms (Lewis, 1980). PMID:8640371

  18. Acute pulmonary edema due to stress cardiomyopathy in a patient with aortic stenosis: a case report

    PubMed Central

    2009-01-01

    Introduction Stress cardiomyopathy is a condition of chest pain, breathlessness, abnormal heart rhythms and sometimes congestive heart failure or shock precipitated by intense mental or physical stress. Case presentation A 64-year-old male with a known diagnosis of moderate-to-severe aortic stenosis and advised that valve replacement was not urgent, presented with acute pulmonary edema following extraordinary mental distress. The patient was misdiagnosed as having a "massive heart attack" and died when managed by a traditional protocol for acute myocardial infarction/coronary artery disease, irrespective of his known aortic stenosis. Conclusion Intense mental stress poses a considerable risk, particularly to patients with significant aortic stenosis. As described here, it can precipitate acute pulmonary edema. Importantly, effective management of acute pulmonary edema due to stress cardiomyopathy in patients with known aortic stenosis requires its distinction from acute pulmonary edema caused by an acute myocardial infarction. Treatment options include primarily urgent rhythm and/or rate control, as well as cautious vasodilation. PMID:20062645

  19. Plasma omega 3 polyunsaturated fatty acid status and monounsaturated fatty acids are altered by chronic social stress and predict endocrine responses to acute stress in titi monkeys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disturbances in fatty acid (FA) metabolism may link chronic psychological stress, endocrine responsiveness, and psychopathology. Therefore, lipid metabolome-wide responses and their relationships with endocrine (cortisol; insulin; adiponectin) responsiveness to acute stress (AS) were assessed in a ...

  20. Chronic stress increases the opioid-mediated inhibition of the pituitary-adrenocortical response to acute stress in pigs.

    PubMed

    Janssens, C J; Helmond, F A; Loyens, L W; Schouten, W G; Wiegant, V M

    1995-04-01

    The role of endogenous opioid mechanisms in the pituitary-adrenocortical response to acute stress was investigated in a longitudinal study in cyclic female pigs before and after exposure to chronic stress (long term tethered housing). Challenge of loose-housed pigs with acute nose-sling stress for 15 min induced an activation of the hypothalamic-pituitary-adrenocortical axis, evidenced by a transient increase in plasma ACTH (peak height above basal, 98 +/- 12 pg/ml; mean +/- SEM) and cortisol (54 +/- 3 ng/ml) concentrations. Pretreatment with the opioid receptor antagonist naloxone (0.5 mg/kg BW, iv bolus) increased the challenge-induced ACTH and cortisol responses to 244 +/- 36 pg/ml and 65 +/- 5 ng/ml, respectively. This indicates that during acute nose-sling stress, endogenous opioid systems are activated that inhibit the pituitary-adrenocortical response. After exposure of the pigs to chronic stress (10-11 weeks of tethered housing), the challenge-induced ACTH response was attenuated, whereas the cortisol response remained unchanged, suggesting an increased adrenocortical sensitivity to circulating ACTH. In addition, pretreatment with naloxone induced a greater increment in the ACTH and cortisol responses in tethered pigs than in loose-housed pigs. As no such changes were found in control animals housed loose during the entire experimental period, this indicates that the impact of opioid systems had increased due to chronic stress. The increased impact of opioid systems during chronic stress may prevent excessive hypothalamic-pituitary-adrenocortical responses to acute stressors and, thus, may be of adaptive value. PMID:7895656

  1. Glucocorticoids Protect Against the Delayed Behavioral and Cellular Effects of Acute Stress on the Amygdala

    PubMed Central

    Rao, Rajnish P.; Anilkumar, Shobha; McEwen, Bruce; Chattarji, Sumantra

    2013-01-01

    Background A single episode of acute immobilization stress has previously been shown to trigger a delayed onset of anxiety-like behavior and spinogenesis in the basolateral amygdala (BLA) of rats. Spurred on by a seemingly paradoxical observation in which even a modest increase in corticosterone (CORT), caused by a single vehicle injection before stress, could dampen the delayed effects of stress, we hypothesized a protective role for glucocorticoids against stress. Methods We tested this hypothesis by analyzing how manipulations in CORT levels modulate delayed increase in anxiety-like behavior of rats on the elevated plus-maze 10 days after acute stress. We also investigated the cellular correlates of different levels of anxiety under different CORT conditions by quantifying spine density on Golgi-stained BLA principal neurons. Results CORT in drinking water for 12 hours preceding acute stress prevented delayed increase in anxiety rather than exacerbating it. Conversely, vehicle injection failed to prevent the anxiogenic effect of stress in bilaterally adrenalectomized rats. However, when CORT was restored in adrenalectomized rats by injection, the delayed anxiogenic effect of stress was once again blocked. Finally, high and low anxiety states were accompanied by high and low levels of BLA spine density. Conclusions Our findings suggest that the presence of elevated levels of CORT at the time of acute stress confers protection against the delayed enhancing effect of stress on BLA synaptic connectivity and anxiety-like behavior. These observations are consistent with clinical reports on the protective effects of glucocorticoids against the development of posttraumatic symptoms triggered by traumatic stress. PMID:22572034

  2. Diazepam blocks striatal lipid peroxidation and improves stereotyped activity in a rat model of acute stress.

    PubMed

    Méndez-Cuesta, Luis A; Márquez-Valadez, Berenice; Pérez-De La Cruz, Verónica; Escobar-Briones, Carolina; Galván-Arzate, Sonia; Alvarez-Ruiz, Yarummy; Maldonado, Perla D; Santana, Ricardo A; Santamaría, Abel; Carrillo-Mora, Paul

    2011-11-01

    In this work, the effect of a single dose of diazepam was tested on different markers of oxidative damage in the striatum of rats in an acute model of immobilization (restraint) stress. In addition, the locomotor activity was measured at the end of the restraint period. Immobilization was induced to animals for 24 hr, and then, lipid peroxidation, superoxide dismutase activity and content, and mitochondrial function were all estimated in striatal tissue samples. Corticosterone levels were measured in serum. Diazepam was given to rats as a pre-treatment (1 mg/kg, i.p.) 20 min. before the initiation of stress. Our results indicate that acute stress produced enhanced striatal levels of lipid peroxidation (73% above the control), decreased superoxide dismutase activity (54% below the control), reduced levels of mitochondrial function (35% below the control) and increased corticosterone serum levels (86% above the control). Pre-treatment of stressed rats with diazepam decreased the striatal lipid peroxidation levels (68% below the stress group) and improved mitochondrial function (18% above the stress group), but only mild preservation of superoxide dismutase activity was detected (17% above the stress group). In regard to the motor assessment, only the stereotyped activity was increased in the stress group with respect to control (46% above the control), and this effect was prevented by diazepam administration (30% below the stress group). The preventive actions of diazepam in this acute model of stress suggest that drugs exhibiting anxiolytic and antioxidant properties might be useful for the design of therapies against early acute phases of physic stress. PMID:21645264

  3. The influence of acute stress on the regulation of conditioned fear

    PubMed Central

    Raio, Candace M.; Phelps, Elizabeth A.

    2014-01-01

    Fear learning and regulation is a prominent model for describing the pathogenesis of anxiety disorders and stress-related psychopathology. Fear expression can be modulated using a number of regulatory strategies, including extinction, cognitive emotion regulation, avoidance strategies and reconsolidation. In this review, we examine research investigating the effects of acute stress and stress hormones on these regulatory techniques. We focus on what is known about the impact of stress on the ability to flexibly regulate fear responses that are acquired through Pavlovian fear conditioning. Our primary aim is to explore the impact of stress on fear regulation in humans. Given this, we focus on techniques where stress has been linked to alterations of fear regulation in humans (extinction and emotion regulation), and briefly discuss other techniques (avoidance and reconsolidation) where the impact of stress or stress hormones have been mainly explored in animal models. These investigations reveal that acute stress may impair the persistent inhibition of fear, presumably by altering prefrontal cortex function. Characterizing the effects of stress on fear regulation is critical for understanding the boundaries within which existing regulation strategies are viable in everyday life and can better inform treatment options for those who suffer from anxiety and stress-related psychopathology. PMID:25530986

  4. Megalencephalic leukoencephalopathy with subcortical cysts protein 1 functionally cooperates with the TRPV4 cation channel to activate the response of astrocytes to osmotic stress: dysregulation by pathological mutations.

    PubMed

    Lanciotti, Angela; Brignone, Maria S; Molinari, Paola; Visentin, Sergio; De Nuccio, Chiara; Macchia, Gianfranco; Aiello, Chiara; Bertini, Enrico; Aloisi, Francesca; Petrucci, Tamara C; Ambrosini, Elena

    2012-05-15

    Megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare leukodystrophy characterized by macrocephaly, subcortical fluid cysts and myelin vacuolation, has been linked to mutations in the MLC1 gene. This gene encodes a membrane protein that is highly expressed in astrocytes. Based on MLC pathological features, it was proposed that astrocyte-mediated defects in ion and fluid homeostasis could account for the alterations observed in MLC-affected brains. However, the role of MLC1 and the effects of pathological mutations on astrocyte osmoregulatory functions have still to be demonstrated. Using human astrocytoma cells stably overexpressing wild-type MLC1 or three known MLC-associated pathological mutations, we investigated MLC1 involvement in astrocyte reaction to osmotic changes using biochemical, dynamic video imaging and immunofluorescence techniques. We have found that MLC1 overexpressed in astrocytoma cells is mainly localized in the plasma membrane, is part of the Na,K-ATPase-associated molecular complex that includes the potassium channel Kir4.1, syntrophin and aquaporin-4 and functionally interacts with the calcium permeable channel TRPV4 (transient receptor potential vanilloid-4 cation channel) which mediates swelling-induced cytosolic calcium increase and volume recovery in response to hyposmosis. Pathological MLC mutations cause changes in MLC1 expression and intracellular localization as well as in the astrocyte response to osmotic changes by altering MLC1 molecular interactions with the Na,K-ATPase molecular complex and abolishing the increase in calcium influx induced by hyposmosis and treatment with the TRPV4 agonist 4αPDD. These data demonstrate, for the first time, that MLC1 plays a role in astrocyte osmo-homeostasis and that defects in intracellular calcium dynamics may contribute to MLC pathogenesis. PMID:22328087

  5. Being a grump only makes things worse: a transactional account of acute stress on mind wandering

    PubMed Central

    Vinski, Melaina T.; Watter, Scott

    2013-01-01

    The current work investigates the influence of acute stress on mind wandering. Participants completed the Positive and Negative Affect Schedule as a measure of baseline negative mood, and were randomly assigned to either the high-stress or low-stress version of the Trier Social Stress Test. Participants then completed the Sustained Attention to Response Task as a measure of mind-wandering behavior. In Experiment 1, participants reporting a high degree of negative mood that were exposed to the high-stress condition were more likely to engage in a variable response time, make more errors, and were more likely to report thinking about the stressor relative to participants that report a low level of negative mood. These effects diminished throughout task performance, suggesting that acute stress induces a temporary mind-wandering state in participants with a negative mood. The temporary affect-dependent deficits observed in Experiment 1 were replicated in Experiment 2, with the high negative mood participants demonstrating limited resource availability (indicated by pupil diameter) immediately following stress induction. These experiments provide novel evidence to suggest that acute psychosocial stress briefly suppresses the availability of cognitive resources and promotes an internally oriented focus of attention in participants with a negative mood. PMID:24273520

  6. Exposure to acute stress enhances decision-making competence: Evidence for the role of DHEA.

    PubMed

    Shields, Grant S; Lam, Jovian C W; Trainor, Brian C; Yonelinas, Andrew P

    2016-05-01

    Exposure to acute stress can impact performance on numerous cognitive abilities, but little is known about how acute stress affects real-world decision-making ability. In the present study, we induced acute stress with a standard laboratory task involving uncontrollable socio-evaluative stress and subsequently assessed decision-making ability using the Adult Decision Making Competence index. In addition, we took baseline and post-test saliva samples from participants to examine associations between decision-making competence and adrenal hormones. Participants in the stress induction group showed enhanced decision-making competence, relative to controls. Further, although both cortisol and dehydroepiandrosterone (DHEA) reactivity predicted decision-making competence when considered in isolation, DHEA was a significantly better predictor than cortisol when both hormones were considered simultaneously. Thus, our results show that exposure to acute stress can have beneficial effects on the cognitive ability underpinning real-world decision-making and that this effect relates to DHEA reactivity more than cortisol. PMID:26874561

  7. Genome-wide alterations in hippocampal 5-hydroxymethylcytosine links plasticity genes to acute stress.

    PubMed

    Li, Sisi; Papale, Ligia A; Zhang, Qi; Madrid, Andy; Chen, Li; Chopra, Pankaj; Keleş, Sündüz; Jin, Peng; Alisch, Reid S

    2016-02-01

    Environmental stress is among the most important contributors to increased susceptibility to develop psychiatric disorders, including anxiety and post-traumatic stress disorder. While even acute stress alters gene expression, the molecular mechanisms underlying these changes remain largely unknown. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive DNA modification that is highly enriched in post-mitotic neurons and is associated with active transcription of neuronal genes. Recently, we found a hippocampal increase of 5hmC in the glucocorticoid receptor gene (Nr3c1) following acute stress, warranting a deeper investigation of stress-related 5hmC levels. Here we used an established chemical labeling and affinity purification method coupled with high-throughput sequencing technology to generate the first genome-wide profile of hippocampal 5hmC following exposure to acute restraint stress and a one-hour recovery. This approach found a genome-wide disruption in 5hmC associated with acute stress response, primarily in genic regions, and identified known and potentially novel stress-related targets that have a significant enrichment for neuronal ontological functions. Integration of these data with hippocampal gene expression data from these same mice found stress-related hydroxymethylation correlated to altered transcript levels and sequence motif predictions indicated that 5hmC may function by mediating transcription factor binding to these transcripts. Together, these data reveal an environmental impact on this newly discovered epigenetic mark in the brain and represent a critical step toward understanding stress-related epigenetic mechanisms that alter gene expression and can lead to the development of psychiatric disorders. PMID:26598390

  8. Overcoming the effects of acute stress through good teamwork practices

    SciTech Connect

    Harrington, D.K. ); Gaddy, C.D. )

    1992-01-01

    Two recent industry studies have taken a look at operators in stressful situations. In the context of severe-accident management, Mumaw et al. discussed four approaches to training operators for severe accidents: (1) training for knowledge or procedural skills; (2) training decision makers about goals and plans; (3) training to avoid cognitive biases; and (4) training within a realistic setting. These four approaches address directly the cognitive skills important for decision making. These types of training can also address indirectly the effects of stress on performance. First, effects of stress on decision making, such as reduced working memory, can be addressed by training cognitive skills. Second, exposure to realistically stressful situations can reduce the novelty and uncertainty, which is a primary cause of stress reactions. In a second study reported by Desaulniers, the stress of requalification exams was the focus. Desaulniers concluded that repeated changes in the exam process, inconsistency in interpretation of examiner guidelines, and some content and grading practices resulted in undue stress for the operators. The US Nuclear Regulatory Commission staff actions to remedy these sources of undue stress were described.

  9. Models and Methods to Investigate Acute Stress Responses in Cattle

    PubMed Central

    Chen, Yi; Arsenault, Ryan; Napper, Scott; Griebel, Philip

    2015-01-01

    There is a growing appreciation within the livestock industry and throughout society that animal stress is an important issue that must be addressed. With implications for animal health, well-being, and productivity, minimizing animal stress through improved animal management procedures and/or selective breeding is becoming a priority. Effective management of stress, however, depends on the ability to identify and quantify the effects of various stressors and determine if individual or combined stressors have distinct biological effects. Furthermore, it is critical to determine the duration of stress-induced biological effects if we are to understand how stress alters animal production and disease susceptibility. Common stress models used to evaluate both psychological and physical stressors in cattle are reviewed. We identify some of the major gaps in our knowledge regarding responses to specific stressors and propose more integrated methodologies and approaches to measuring these responses. These approaches are based on an increased knowledge of both the metabolic and immune effects of stress. Finally, we speculate on how these findings may impact animal agriculture, as well as the potential application of large animal models to understanding human stress. PMID:26633525

  10. Vasopressin and oxytocin in stress.

    PubMed

    Jezova, D; Skultetyova, I; Tokarev, D I; Bakos, P; Vigas, M

    1995-12-29

    Though oxytocin and vasopressin are similar in structure and are produced in the same brain regions, they show specific responses under stress conditions. In humans, increases in peripheral blood vasopressin appear to be a consistent finding during many acute stress situations, while in rats, vasopressin secretion is unresponsive to several stimuli known to induce ACTH and catecholamine release. Even decreases in vasopressin levels during stress were described. In accordance with others, we observed enhanced vasopressin release in response to stress stimuli with an osmotic component such as hypertonic saline injection but also during exposure of rats to a warm environment. Immobilization stress which fails to induce vasopressin release was reported to increase hypothalamic vasopressin mRNA and plasma vasopressin levels in chronically adreno-demedullated rats. Unlike vasopressin, oxytocin may be considered a typical stress hormone responding to osmotic as well as other stress stimuli. We found that acute exposure of rats to immobilization stress resulted in an increase in oxytocin mRNA level. In addition, we have shown that magnocellular neurons of the paraventricular nucleus, but not the supraoptic nucleus, are essential for oxytocin release during immobilization stress. The release of posterior pituitary hormones represents an important component of the stress response. PMID:8597399

  11. The Cold Signaling Attenuator HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 Activates FLOWERING LOCUS C Transcription via Chromatin Remodeling under Short-Term Cold Stress in Arabidopsis[C][W

    PubMed Central

    Jung, Jae-Hoon; Park, Ju-Hyung; Lee, Sangmin; To, Taiko Kim; Kim, Jong-Myong; Seki, Motoaki; Park, Chung-Mo

    2013-01-01

    Exposure to short-term cold stress delays flowering by activating the floral repressor FLOWERING LOCUS C (FLC) in Arabidopsis thaliana. The cold signaling attenuator HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 (HOS1) negatively regulates cold responses. Notably, HOS1-deficient mutants exhibit early flowering, and FLC expression is suppressed in the mutants. However, it remains unknown how HOS1 regulates FLC expression. Here, we show that HOS1 induces FLC expression by antagonizing the actions of FVE and its interacting partner histone deacetylase 6 (HDA6) under short-term cold stress. HOS1 binds to FLC chromatin in an FVE-dependent manner, and FVE is essential for the HOS1-mediated activation of FLC transcription. HOS1 also interacts with HDA6 and inhibits the binding of HDA6 to FLC chromatin. Intermittent cold treatments induce FLC expression by activating HOS1, which attenuates the activity of HDA6 in silencing FLC chromatin, and the effects of intermittent cold are diminished in hos1 and fve mutants. These observations indicate that HOS1 acts as a chromatin remodeling factor for FLC regulation under short-term cold stress. PMID:24220632

  12. Effects of Acute Laboratory Stress on Executive Functions

    PubMed Central

    Starcke, Katrin; Wiesen, Carina; Trotzke, Patrick; Brand, Matthias

    2016-01-01

    Recent research indicates that stress can affect executive functioning. However, previous results are mixed with respect to the direction and size of effects, especially when considering different subcomponents of executive functions. The current study systematically investigates the effects of stress on the five components of executive functions proposed by Smith and Jonides (1999): attention and inhibition; task management; planning; monitoring; and coding. Healthy participants (N = 40) were either exposed to the computerized version of the Paced Auditory Serial Addition Test as a stressor (N = 20), or to a rest condition (N = 20). Stress reactions were assessed with heart rate and subjective measures. After the experimental manipulation, all participants performed tasks that measure the different executive functions. The manipulation check indicates that stress induction was successful (i.e., the stress group showed a higher heart rate and higher subjective responses than the control group). The main results demonstrate that stressed participants show a poorer performance compared with unstressed participants in all executive subcomponents, with the exception of monitoring. Effect sizes for the tasks that reveal differences between stressed and unstressed participants are high. We conclude that the laboratory stressor used here overall reduced executive functioning. PMID:27065926

  13. Metabolic Changes in Masseter Muscle of Rats Submitted to Acute Stress Associated with Exodontia

    PubMed Central

    Iyomasa, Mamie Mizusaki; Fernandes, Fernanda Silva; Iyomasa, Daniela Mizusaki; Pereira, Yamba Carla Lara; Fernández, Rodrigo Alberto Restrepo; Calzzani, Ricardo Alexandre; Nascimento, Glauce Crivelaro; Leite-Panissi, Christie Ramos Andrade; Issa, João Paulo Mardegan

    2015-01-01

    Clinical evidence has shown that stress may be associated with alterations in masticatory muscle functions. Morphological changes in masticatory muscles induced by occlusal alterations and associated with emotional stress are still lacking in the literature. The objective of this study was to evaluate the influence of acute stress on metabolic activity and oxidative stress of masseter muscles of rats subjected to occlusal modification through morphological and histochemical analyses. In this study, adult Wistar rats were divided into 4 groups: a group with extraction and acute stress (E+A); group with extraction and without stress (E+C); group without extraction and with acute stress (NO+A); and control group without both extraction and stress (NO+C). Masseter muscles were analyzed by Succinate Dehydrogenase (SDH), Nicotinamide Adenine Dinucleotide Diaphorase (NADH) and Reactive Oxygen Species (ROS) techniques. Statistical analyses and two-way ANOVA were applied, followed by Tukey-Kramer tests. In the SDH test, the E+C, E+A and NO+A groups showed a decrease in high desidrogenase activities fibers (P < 0.05), compared to the NO+C group. In the NADH test, there was no difference among the different groups. In the ROS test, in contrast, E+A, E+C and NO+A groups showed a decrease in ROS expression, compared to NO+C groups (P < 0.05). Modified dental occlusion and acute stress - which are important and prevalent problems that affect the general population - are important etiologic factors in metabolic plasticity and ROS levels of masseter muscles. PMID:26053038

  14. Acute Stress Induces Selective Alterations in Cost/Benefit Decision-Making

    PubMed Central

    Shafiei, Naghmeh; Gray, Megan; Viau, Victor; Floresco, Stan B

    2012-01-01

    Acute stress can exert beneficial or detrimental effects on different forms of cognition. In the present study, we assessed the effects of acute restraint stress on different forms of cost/benefit decision-making, and some of the hormonal and neurochemical mechanisms that may underlie these effects. Effort-based decision-making was assessed where rats chose between a low effort/reward (1 press=2 pellets) or high effort/reward option (4 pellets), with the effort requirement increasing over 4 blocks of trials (2, 5, 10, and 20 lever presses). Restraint stress for 1 h decreased preference for the more costly reward and induced longer choice latencies. Control experiments revealed that the effects on decision-making were not mediated by general reductions in motivation or preference for larger rewards. In contrast, acute stress did not affect delay-discounting, when rats chose between a small/immediate vs larger/delayed reward. The effects of stress on decision-making were not mimicked by treatment with physiological doses of corticosterone (1–3 mg/kg). Blockade of dopamine receptors with flupenthixol (0.25 mg/kg) before restraint did not attenuate stress-induced effects on effort-related choice, but abolished effects on choice latencies. These data suggest that acute stress interferes somewhat selectively with cost/benefit evaluations concerning effort costs. These effects do not appear to be mediated solely by enhanced glucocorticoid activity, whereas dopaminergic activation may contribute to increased deliberation times induced by stress. These findings may provide insight into impairments in decision-making and anergia associated with stress-related disorders, such as depression. PMID:22569506

  15. Adaptive response of vascular endothelial cells to an acute increase in shear stress magnitude.

    PubMed

    Zhang, Ji; Friedman, Morton H

    2012-02-15

    The adaptation of vascular endothelial cells to shear stress alteration induced by global hemodynamic changes, such as those accompanying exercise or digestion, is an essential component of normal endothelial physiology in vivo. An understanding of the transient regulation of endothelial phenotype during adaptation to changes in mural shear will advance our understanding of endothelial biology and may yield new insights into the mechanism of atherogenesis. In this study, we characterized the adaptive response of arterial endothelial cells to an acute increase in shear stress magnitude in well-defined in vitro settings. Porcine endothelial cells were preconditioned by a basal level shear stress of 15 ± 15 dyn/cm(2) at 1 Hz for 24 h, after which an acute increase in shear stress to 30 ± 15 dyn/cm(2) was applied. Endothelial permeability nearly doubled after 40-min exposure to the elevated shear stress and then decreased gradually. Transcriptomics studies using microarray techniques identified 86 genes that were sensitive to the elevated shear. The acute increase in shear stress promoted the expression of a group of anti-inflammatory and antioxidative genes. The adaptive response of the global gene expression profile is triphasic, consisting of an induction period, an early adaptive response (ca. 45 min) and a late remodeling response. Our results suggest that endothelial cells exhibit a specific phenotype during the adaptive response to changes in shear stress; this phenotype is different than that of fully adapted endothelial cells. PMID:22140046

  16. Acute stress and episodic memory retrieval: neurobiological mechanisms and behavioral consequences.

    PubMed

    Gagnon, Stephanie A; Wagner, Anthony D

    2016-04-01

    Episodic retrieval allows people to access memories from the past to guide current thoughts and decisions. In many real-world situations, retrieval occurs under conditions of acute stress, either elicited by the retrieval task or driven by other, unrelated concerns. Memory under such conditions may be hindered, as acute stress initiates a cascade of neuromodulatory changes that can impair episodic retrieval. Here, we review emerging evidence showing that dissociable stress systems interact over time, influencing neural function. In addition to the adverse effects of stress on hippocampal-dependent retrieval, we consider how stress biases attention and prefrontal cortical function, which could further affect controlled retrieval processes. Finally, we consider recent data indicating that stress at retrieval increases activity in a network of brain regions that enable reflexive, rapid responding to upcoming threats, while transiently taking offline regions supporting flexible, goal-directed thinking. Given the ubiquity of episodic memory retrieval in everyday life, it is critical to understand the theoretical and applied implications of acute stress. The present review highlights the progress that has been made, along with important open questions. PMID:26799371

  17. Acute psychosocial stress and emotion regulation skills modulate empathic reactions to pain in others.

    PubMed

    Buruck, Gabriele; Wendsche, Johannes; Melzer, Marlen; Strobel, Alexander; Dörfel, Denise

    2014-01-01

    Psychosocial stress affects resources for adequate coping with environmental demands. A crucial question in this context is the extent to which acute psychosocial stressors impact empathy and emotion regulation. In the present study, 120 participants were randomly assigned to a control group vs. a group confronted with the Trier Social Stress Test (TSST), an established paradigm for the induction of acute psychosocial stress. Empathy for pain as a specific subgroup of empathy was assessed via pain intensity ratings during a pain-picture task. Self-reported emotion regulation skills were measured as predictors using an established questionnaire. Stressed individuals scored significantly lower on the appraisal of pain pictures. A regression model was chosen to find variables that further predict the pain ratings. These findings implicate that acute psychosocial stress might impair empathic processes to observed pain in another person and the ability to accept one's emotion additionally predicts the empathic reaction. Furthermore, the ability to tolerate negative emotions modulated the relation between stress and pain judgments, and thus influenced core cognitive-affective functions relevant for coping with environmental challenges. In conclusion, our study emphasizes the necessity of reducing negative emotions in terms of empathic distress when confronted with pain of another person under psychosocial stress, in order to be able to retain pro-social behavior. PMID:24910626

  18. Acute psychosocial stress and emotion regulation skills modulate empathic reactions to pain in others

    PubMed Central

    Buruck, Gabriele; Wendsche, Johannes; Melzer, Marlen; Strobel, Alexander; Dörfel, Denise

    2014-01-01

    Psychosocial stress affects resources for adequate coping with environmental demands. A crucial question in this context is the extent to which acute psychosocial stressors impact empathy and emotion regulation. In the present study, 120 participants were randomly assigned to a control group vs. a group confronted with the Trier Social Stress Test (TSST), an established paradigm for the induction of acute psychosocial stress. Empathy for pain as a specific subgroup of empathy was assessed via pain intensity ratings during a pain-picture task. Self-reported emotion regulation skills were measured as predictors using an established questionnaire. Stressed individuals scored significantly lower on the appraisal of pain pictures. A regression model was chosen to find variables that further predict the pain ratings. These findings implicate that acute psychosocial stress might impair empathic processes to observed pain in another person and the ability to accept one's emotion additionally predicts the empathic reaction. Furthermore, the ability to tolerate negative emotions modulated the relation between stress and pain judgments, and thus influenced core cognitive-affective functions relevant for coping with environmental challenges. In conclusion, our study emphasizes the necessity of reducing negative emotions in terms of empathic distress when confronted with pain of another person under psychosocial stress, in order to be able to retain pro-social behavior. PMID:24910626

  19. Dual-task performance under acute stress in female adolescents with borderline personality disorder.

    PubMed

    Kaess, Michael; Parzer, Peter; Koenig, Julian; Resch, Franz; Brunner, Romuald

    2016-09-01

    Research to elucidate early alterations of higher cognitive processes in adolescents with BPD is rare. This study investigated differences in dual-task performance in adolescents with BPD during stress and non-stress conditions. The study sample comprised 30 female adolescents with BPD and 34 healthy controls. The impact of stress on dual-task performance was measured using a standardized stressor. Self-reports of distress and measures of heart rate (HR) were obtained to measure stress reactivity. There were no group differences in task performance. Under stress conditions, the performance on the auditory task decreased in both groups but without significant group differences. Healthy controls showed an increase of mean HR after stress induction compared to no change in the BPD group. The finding of attenuated HR response to acute stress in adolescent patients with BPD may contradict current theories that the affective hyperresponsivity in BPD is based on a biologically determined mechanism. PMID:26852226

  20. Acute Stress Increases Sex Differences in Risk Seeking in the Balloon Analogue Risk Task

    PubMed Central

    Lighthall, Nichole R.; Mather, Mara; Gorlick, Marissa A.

    2009-01-01

    Background Decisions involving risk often must be made under stressful circumstances. Research on behavioral and brain differences in stress responses suggest that stress might have different effects on risk taking in males and females. Methodology/Principal Findings In this study, participants played a computer game designed to measure risk taking (the Balloon Analogue Risk Task) fifteen minutes after completing a stress challenge or control task. Stress increased risk taking among men but decreased it among women. Conclusions/Significance Acute stress amplifies sex differences in risk seeking; making women more risk avoidant and men more risk seeking. Evolutionary principles may explain these stress-induced sex differences in risk taking behavior. PMID:19568417

  1. Acute Stress Induces Hyperacusis in Women with High Levels of Emotional Exhaustion

    PubMed Central

    Hasson, Dan; Theorell, Töres; Bergquist, Jonas; Canlon, Barbara

    2013-01-01

    Background Hearing problems is one of the top ten public health disorders in the general population and there is a well-established relationship between stress and hearing problems. The aim of the present study was to explore if an acute stress will increase auditory sensitivity (hyperacusis) in individuals with high levels of emotional exhaustion (EE). Methods Hyperacusis was assessed using uncomfortable loudness levels (ULL) in 348 individuals (140 men; 208 women; age 23–71 years). Multivariate analyses (ordered logistic regression), were used to calculate odds ratios, including interacting or confounding effects of age, gender, ear wax and hearing loss (PTA). Two-way ANCOVAs were used to assess possible differences in mean ULLs between EE groups pre- and post-acute stress task (a combination of cold pressor, emotional Stroop and Social stress/video recording). Results There were no baseline differences in mean ULLs between the three EE groups (one-way ANOVA). However, after the acute stress exposure there were significant differences in ULL means between the EE-groups in women. Post-hoc analyses showed that the differences in mean ULLs were between those with high vs. low EE (range 5.5–6.5 dB). Similar results were found for frequencies 0.5 and 1 kHz. The results demonstrate that women with high EE-levels display hyperacusis after an acute stress task. The odds of having hyperacusis were 2.5 (2 kHz, right ear; left ns) and 2.2 (4 kHz, right ear; left ns) times higher among those with high EE compared to those with low levels. All these results are adjusted for age, hearing loss and ear wax. Conclusion Women with high levels of emotional exhaustion become more sensitive to sound after an acute stress task. This novel finding highlights the importance of including emotional exhaustion in the diagnosis and treatment of hearing problems. PMID:23301005

  2. Stress among nurses working in an acute hospital in Ireland.

    PubMed

    Donnelly, Teresa

    Stress among nurses leads to absenteeism, reduced efficiency, long-term health problems and a decrease in the quality of patient care delivered. A quantitative cross-sectional study was conducted. The study's aim was to identify perceived stressors and influencing factors among nurses working in the critical and non-critical care practice areas. A convenience sample of 200 nurses were invited to complete the Bianchi Stress Questionnaire. Information was collected on demographics and daily nursing practice. Findings indicated that perceived stressors were similar in both groups. The most severe stressors included redeployment to work in other areas and staffing levels. Results from this study suggest that age, job title, professional experience and formal post-registration qualifications had no influence on stress perception. These results will increase awareness of nurses' occupational stress in Ireland. PMID:25072339

  3. Acute Psychological Stress Results in the Rapid Development of Insulin Resistance

    PubMed Central

    Li, Li; Li, Xiaohua; Zhou, Wenjun; Messina, Joseph L.

    2013-01-01

    In recent years, the roles of chronic stress and depression as an independent risk factor for decreased insulin sensitivity and the development of diabetes have been increasingly recognized. However, an understanding and the mechanisms linking insulin resistance and acute psychological stress are very limited. We hypothesized that acute psychological stress may cause the development of insulin resistance, which may be a risk factor in developing type 2 diabetes. We tested the hypothesis in a well-established mouse model using 180 episodes of inescapable foot shock (IES), followed by a behavioral escape test. In this study, mice that received IES treatment were tested for acute insulin resistance by measuring glucose metabolism and insulin signaling. When compared to normal and sham mice, mice that were exposed to IES resulting in escape failure (defined as IES with behavioral escape failure) displayed elevated blood glucose levels in both glucose tolerance and insulin tolerance tests. Furthermore, mice with IES exposure and behavioral escape failure exhibited impaired hepatic insulin signaling via the insulin-induced insulin receptor/insulin receptor substrate 1/Akt pathway, without affecting similar pathways in skeletal muscle, adipose tissue and brain. Additionally, a rise in murine growth-related oncogene KC/GRO was associated with impaired glucose metabolism in IES mice, suggesting a mechanism by which psychological stress by IES may influence glucose metabolism. The present results indicate that psychological stress induced by IES can acutely alter hepatic responsiveness to insulin and affect whole-body glucose metabolism. PMID:23444388

  4. Longitudinal platelet reactivity to acute psychological stress among older men and women.

    PubMed

    Aschbacher, Kirstin; von Känel, Roland; Mills, Paul J; Roepke, Susan K; Hong, Suzi; Dimsdale, Joel E; Mausbach, Brent T; Patterson, Thomas L; Ziegler, Michael G; Ancoli-Israel, Sonia; Grant, Igor

    2009-09-01

    Platelet reactivity to acute stress is associated with increased cardiovascular disease risk; however, little research exists to provide systematic methodological foundations needed to generate strong longitudinal research designs. Study objectives were: 1) to evaluate whether markers of platelet function increase in response to an acute psychological stress test among older adults, 2) to establish whether reactivity remains robust upon repeated administration (i.e. three occasions approximately 1 year apart), and 3) to evaluate whether two different acute speech stress tasks elicit similar platelet responses. The 149 subjects (mean age 71 years) gave a brief impromptu speech on one of two randomly assigned topics involving interpersonal conflict. Blood samples drawn at baseline and post-speech were assayed using flow cytometry for platelet responses on three outcomes (% aggregates, % P-selectin expression, and % fibrinogen receptor expression). Three-level hierarchical linear modeling analyses revealed significant stress-induced increases in platelet activation on all outcomes (p < 0.001). No significant habituation on any measure was found. Additional reactivity differences were associated with male gender, history of myocardial infarction, and use of aspirin, statins, and antidepressants. The results demonstrate that laboratory acute stress tests continued to produce robust platelet reactivity on three activation markers among older adults over 3 years. PMID:19096987

  5. Rho5p is involved in mediating the osmotic stress response in Saccharomyces cerevisiae, and its activity is regulated via Msi1p and Npr1p by phosphorylation and ubiquitination.

    PubMed

    Annan, Robert B; Wu, Cunle; Waller, Daniel D; Whiteway, Malcolm; Thomas, David Y

    2008-09-01

    Small GTPases of the Rho family act as molecular switches, and modulation of the GTP-bound state of Rho proteins is a well-characterized means of regulating their signaling activity in vivo. In contrast, the regulation of Rho-type GTPases by posttranslational modifications is poorly understood. Here, we present evidence of the control of the Saccharomyces cerevisiae Rho-type GTPase Rho5p by phosphorylation and ubiquitination. Rho5p binds to Ste50p, and the expression of the activated RHO5(Q91H) allele in an Deltaste50 strain is lethal under conditions of osmotic stress. An overexpression screen identified RGD2 and MSI1 as being high-copy suppressors of the osmotic sensitivity of this lethality. Rgd2p had been identified as being a possible Rho5p GTPase-activating protein based on an in vitro assay; this result supports its function as a regulator of Rho5p activity in vivo. MSI1 was previously identified as being a suppressor of hyperactive Ras/cyclic AMP signaling, where it antagonizes Npr1p kinase activity and promotes ubiquitination. Here, we show that Msi1p also acts via Npr1p to suppress activated Rho5p signaling. Rho5p is ubiquitinated, and its expression is lethal in a strain that is compromised for proteasome activity. These data identify Rho5p as being a target of Msi1p/Npr1p regulation and describe a regulatory circuit involving phosphorylation and ubiquitination. PMID:18621925

  6. Acute stress blocks the caffeine-induced enhancement of contextual memory retrieval in mice.

    PubMed

    Pierard, Chistophe; Krazem, Ali; Henkous, Nadia; Decorte, Laurence; Béracochéa, Daniel

    2015-08-15

    This study investigated in mice the dose-effect of caffeine on memory retrieval in non-stress and stress conditions. C57 Bl/6 Jico mice learned two consecutive discriminations (D1 and D2) in a four-hole board which involved either distinct contextual (CSD) or similar contextual (SSD) cues. All mice received an i.p. injection of vehicle or caffeine (8, 16 or 32mg/kg) 30min before the test session. Results showed that in non-stress conditions, the 16mg/kg caffeine dose induced a significant enhancement of D1 performance in CSD but not in SSD. Hence, we studied the effect of an acute stress (electric footshocks) administered 15min before the test session on D1 performance in caffeine-treated mice. Results showed that stress significantly decreased D1 performance in vehicle-treated controls and the memory-enhancing effect induced by the 16mg/kg caffeine dose in non-stress condition is no longer observed. Interestingly, whereas caffeine-treated mice exhibited weaker concentrations of plasma corticosterone as compared to vehicles in non-stress condition, stress significantly increased plasma corticosterone concentrations in caffeine-treated mice which reached similar level to that of controls. Overall, the acute stress blocked both the endocrinological and memory retrieval enhancing effects of caffeine. PMID:25934571

  7. Viable but non-culturable state (VBNC) of Escherichia coli related to EnvZ under the effect of pH, starvation and osmotic stress in sea water.

    PubMed

    Darcan, Cihan; Ozkanca, Reşit; Idil, Onder; Flint, Ken P

    2009-01-01

    When exposed extreme environmental conditions such as sea water, bacteria have been shown different survival strategy for continue their life. One of this strategy known as viable but nonculturable (VBNC) state which is very important for nondifferiation bacteria. VBNC cells cause serious human health problems. Little is known, however, about the genetic mechanisms underlying the VBNC state. Under different environmental conditions, porins are important in the survival strategy of bacteria. EnvZ/OmpR work together as regulators of ompF and ompC gene expression. It is known that the EnvZ system has a role in VBNC state. In this study we tried to find out the viability of EnvZ, OmpC and OmpF mutant E. coli under stress effect of osmolarity, pH and starvation. Bacteria were suspended in filtered-autoclaved sea water microcosms and numbers determined over 25 day incubation periods by plate count (PC), direct viable count (DVC) and count of cells capable of respiration (RCC). As regard to results, alkaline pH affected E. coli more than acidic pH, which led to decline in number. On the contrary glycine betaine addition to sea water protected E. coli porin mutants and also reduced the death rate of bacteria. Under the effect of pH, osmotic stress and starvation stress, wild type E. coli and porin mutants entered a dormant state or became VBNC with the exception of MSZ31 (envZ mutant) E. coli cells which did not enter the VBNC state under the three tested stress conditions. This study is the first report to demonstrate that E. coli could not enter the VBNC state in the lack of EnvZ product under the stress of osmolarity, pH and starvation and the relationship between EnvZ and VBNC state are not affected by pH, osmolarity and starvation. PMID:20380141

  8. Acute stress, depression, and anxiety symptoms among English and Spanish speaking children with recent trauma exposure.

    PubMed

    Barber, Beth A; Kohl, Krista L; Kassam-Adams, Nancy; Gold, Jeffrey I

    2014-03-01

    A growing literature suggests the clinical importance of acute stress disorder symptoms in youth following potentially traumatic events. A multisite sample of English and Spanish speaking children and adolescents (N = 479) between the ages of 8-17, along with their caregivers completed interviews and self-report questionnaires between 2 days and 1 month following the event. The results indicate that children with greater total acute stress symptoms reported greater depressive (r = .41, p < .01) and anxiety symptoms (r = .53, p < .01). Examining specific acute stress subscales, reexperiencing was correlated with anxiety (r = .47, p < .01) and arousal was correlated with depression (r = .50, p < .01) and anxiety (r = .55, p < .01). Age was inversely associated with total acute stress symptoms (r = -.24, p < .01), reexperiencing (r = -.17, p < .01), avoidance (r = -.27, p < .01), and arousal (r = -.19, p < .01) and gender was related to total anxiety symptoms (Spearman's ρ = .17, p < .01). The current study supports the importance of screening acute stress symptoms and other mental health outcomes following a potentially traumatic event in children and adolescents. Early screening may enable clinicians to identify and acutely intervene to support children's psychological and physical recovery. PMID:24337685

  9. Physiological adjustment to salt stress in Jatropha curcas is associated with accumulation of salt ions, transport and selectivity of K+, osmotic adjustment and K+/Na+ homeostasis.

    PubMed

    Silva, E N; Silveira, J A G; Rodrigues, C R F; Viégas, R A

    2015-09-01

    This study assessed the capacity of Jatropha curcas to physiologically adjust to salinity. Seedlings were exposed to increasing NaCl concentrations (25, 50, 75 and 100 mm) for 15 days. Treatment without NaCl was adopted as control. Shoot dry weight was strongly reduced by NaCl, reaching values of 35% to 65% with 25 to 100 mm NaCl. The shoot/root ratio was only affected with 100 mm NaCl. Relative water content (RWC) increased only with 100 mm NaCl, while electrolyte leakage (EL) was much enhanced with 50 mm NaCl. The Na(+) transport rate to the shoot was more affected with 50 and 100 mm NaCl. In parallel, Cl(-) transport rate increased with 75 and 100 mm NaCl, while K(+) transport rate fell from 50 mm to 100 mm NaCl. In roots, Na(+) and Cl(-) transport rates fell slightly only in 50 mm (to Na(+)) and 50 and 100 mm (to Cl(-)) NaCl, while K(+) transport rate fell significantly with increasing NaCl. In general, our data demonstrate that J. curcas seedlings present changes in key physiological processes that allow this species to adjust to salinity. These responses are related to accumulation of Na(+) and Cl(-) in leaves and roots, K(+)/Na(+) homeostasis, transport of K(+) and selectivity (K-Na) in roots, and accumulation of organic solutes contributing to osmotic adjustment of the species. PMID:25865670

  10. Solute concentration effect on osmotic reflection coefficient.

    PubMed Central

    Adamski, R P; Anderson, J L

    1983-01-01

    A theory for the effect of concentration on osmotic reflection coefficient, correct to first order, was developed at the molecular level by considering the effect of solute-solute interactions on solute concentration and the fluid stress tensor within a solvent-filled pore. The solvent was modeled as a continuous fluid and potential energies between solute molecules and the pore wall were assumed to be pairwise additive. Although the theory is more general, calculations are presented only for excluded volume effects (hard-sphere for solute, hard-wall for pore). The relationship between the first-order concentration effect and the infinite dilution value of reflection coefficient appears to be geometry independent. The theory is discussed in light of experimental studies of osmotic flow that have recently appeared in the literature. PMID:6626681

  11. Physics of Bacteria During Osmotic Shock

    NASA Astrophysics Data System (ADS)

    Price, Jordan; Klug, William

    Bacteria combat hypoosmotic shocks by opening mechanosensitive ion channels located within the inner membrane. These channels are believed to act as ``emergency release valves,'' reducing transient pressure during the shock by regulating solute and water flux. Recent experiments have shown that cell survivability depends strongly on channel populations and the rate of osmotic shock. However, the understanding of the physical mechanisms behind osmotic protection remains unclear. We investigate how channel deletions, variations in shock rate, and cell envelope mechanics affect survivability by constructing theoretical elasticity and transport models. We find that reducing the number of channels and applying faster shocks significantly increases the time-dependent stress of the cell membrane and wall. This result provides insight into physical mechanisms that govern cell failure, including membrane rupture and wall fracture.

  12. Aged rats are hypo-responsive to acute restraint: implications for psychosocial stress in aging

    PubMed Central

    Buechel, Heather M.; Popovic, Jelena; Staggs, Kendra; Anderson, Katie L.; Thibault, Olivier; Blalock, Eric M.

    2013-01-01

    Cognitive processes associated with prefrontal cortex and hippocampus decline with age and are vulnerable to disruption by stress. The stress/stress hormone/allostatic load hypotheses of brain aging posit that brain aging, at least in part, is the manifestation of life-long stress exposure. In addition, as humans age, there is a profound increase in the incidence of new onset stressors, many of which are psychosocial (e.g., loss of job, death of spouse, social isolation), and aged humans are well-understood to be more vulnerable to the negative consequences of such new-onset chronic psychosocial stress events. However, the mechanistic underpinnings of this age-related shift in chronic psychosocial stress response, or the initial acute phase of that chronic response, have been less well-studied. Here, we separated young (3 month) and aged (21 month) male F344 rats into control and acute restraint (an animal model of psychosocial stress) groups (n = 9–12/group). We then assessed hippocampus-associated behavioral, electrophysiological, and transcriptional outcomes, as well as blood glucocorticoid and sleep architecture changes. Aged rats showed characteristic water maze, deep sleep, transcriptome, and synaptic sensitivity changes compared to young. Young and aged rats showed similar levels of distress during the 3 h restraint, as well as highly significant increases in blood glucocorticoid levels 21 h after restraint. However, young, but not aged, animals responded to stress exposure with water maze deficits, loss of deep sleep and hyperthermia. These results demonstrate that aged subjects are hypo-responsive to new-onset acute psychosocial stress, which may have negative consequences for long-term stress adaptation and suggest that age itself may act as a stressor occluding the influence of new onset stressors. PMID:24575039

  13. Effects of acute handling stress on cerebral monoaminergic neurotransmitters in juvenile Senegalese sole Solea senegalensis.

    PubMed

    Weber, R A; Pérez Maceira, J J; Aldegunde, M J; Peleteiro, J B; García Martín, L O; Aldegunde, M

    2015-11-01

    Juvenile Senegalese sole Solea senegalensis were subjected for short periods to two different types of handling-related stress: air exposure stress and net handling stress. The S. senegalensis were sacrificed 2 and 24 h after the stress events and the levels of serotonin (5-HT), noradrenaline (NA), dopamine (DA) and their respective major metabolites, 5-hydroxyindoleacetic acid (5-HIAA), 3-methoxy-4-hydroxyphenylglycol (MHPG) and 3,4-dihydroxyphenylacetic acid (DOPAC), were measured in three brain regions (telencephalon, hypothalamus and optic tectum) and compared with those in control, non-stressed S. senegalensis. Neither type of stress caused any significant alteration of serotoninergic activity (5-HIAA:5-HT ratio) or NA levels. Dopaminergic activity (DOPAC:DA ratio) was lower in stressed fish in all of the brain regions studied. For both air exposure stress and net handling stress, DA levels were significantly higher (P < 0.05) than in the control S. senegalensis. In addition, the higher DA levels after net handling stress were always significantly higher (P < 0.05) than those observed after acute air exposure stress, except in the telencephalon after 24 h. The significantly lower DOPAC:DA ratio (P < 0.05) in all of the brain regions studied was only observed in response to net handling stress. PMID:26387448

  14. Transcriptional expression levels of cell stress marker genes in the Pacific oyster Crassostrea gigas exposed to acute thermal stress

    PubMed Central

    Farcy, Émilie; Voiseux, Claire; Lebel, Jean-Marc

    2008-01-01

    During the annual cycle, oysters are exposed to seasonal slow changes in temperature, but during emersion at low tide on sunny summer days, their internal temperature may rise rapidly, resulting in acute heat stress. We experimentally exposed oysters to a 1-h acute thermal stress and investigated the transcriptional expression level of some genes involved in cell stress defence mechanisms, including chaperone proteins (heat shock proteins Hsp70, Hsp72 and Hsp90 (HSP)), regulation of oxidative stress (Cu-Zn superoxide dismutase, metallothionein (MT)), cell detoxification (glutathione S-transferase sigma, cytochrome P450 and multidrug resistance (MDR1)) and regulation of the cell cycle (p53). Gene mRNA levels were quantified by reverse transcription-quantitative polymerase chain reaction and expressed as their ratio to actin mRNA, used as a reference. Of the nine genes studied, HSP, MT and MDR1 mRNA levels increased in response to thermal stress. We compared the responses of oysters exposed to acute heat shock in summer and winter and observed differences in terms of magnitude and kinetics. A larger increase was observed in September, with recovery within 48 h, whereas in March, the increase was smaller and lasted more than 2 days. The results were also compared with data obtained from the natural environment. Though the functional molecule is the protein and information at the mRNA level only has limitations, the potential use of mRNAs coding for cell stress defence proteins as early sensitive biomarkers is discussed. PMID:19002605

  15. Social stress modulates the cortisol response to an acute stressor in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Jeffrey, J D; Gollock, M J; Gilmour, K M

    2014-01-15

    In rainbow trout (Oncorhynchus mykiss) of subordinate social status, circulating cortisol concentrations were elevated under resting conditions but the plasma cortisol and glucose responses to an acute stressor (confinement in a net) were attenuated relative to those of dominant trout. An in vitro head kidney preparation, and analysis of the expression of key genes in the stress axis prior to and following confinement in a net were then used to examine the mechanisms underlying suppression of the acute cortisol stress response in trout experiencing chronic social stress. With porcine adrenocorticotropic hormone (ACTH) as the secretagogue, ACTH-stimulated cortisol production was significantly lower for head kidney preparations from subordinate trout than for those from dominant trout. Dominant and subordinate fish did not, however, differ in the relative mRNA abundance of melanocortin-2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) or cytochrome P450 side chain cleavage enzyme (P450scc) within the head kidney, although the relative mRNA abundance of these genes was significantly higher in both dominant and subordinate fish than in sham trout (trout that did not experience social interactions but were otherwise treated identically to the dominant and subordinate fish). The relative mRNA abundance of all three genes was significantly higher in trout exposed to an acute net stressor than under control conditions. Upstream of cortisol production in the stress axis, plasma ACTH concentrations were not affected by social stress, nor was the relative mRNA abundance of the binding protein for corticotropin releasing factor (CRF-BP). The relative mRNA abundance of CRF in the pre-optic area of subordinate fish was significantly higher than that of dominant or sham fish 1h after exposure to the stressor. Collectively, the results indicate that chronic social stress modulates cortisol production at the level of the interrenal cells, resulting in an attenuated

  16. Differential changes in platelet reactivity induced by acute physical compared to persistent mental stress.

    PubMed

    Hüfner, Katharina; Koudouovoh-Tripp, Pia; Kandler, Christina; Hochstrasser, Tanja; Malik, Peter; Giesinger, Johannes; Semenitz, Barbara; Humpel, Christian; Sperner-Unterweger, Barbara

    2015-11-01

    Platelets are important in hemostasis, but also contain adhesion molecules, pro-inflammatory and immune-modulatory compounds, as well as most of the serotonin outside the central nervous system. Dysbalance in the serotonin pathways is involved in the pathogenesis of depressive symptoms. Thus, changes in platelet aggregation and content of bioactive compounds are of interest when investigating physiological stress-related mental processes as well as stress-related psychiatric diseases such as depression. In the present study, a characterization of platelet reactivity in acute physical and persistent mental stress was performed (aggregation, serotonin and serotonin 2A-receptor, P-selectin, CD40 ligand, matrix metalloproteinase-2 and -9 (MMP-2 and -9), platelet/endothelial adhesion molecule-1 (PECAM-1), intercellular adhesion molecule-1 (ICAM-1), β-thromboglobulin (β-TG) and platelet factor 4 (PF-4). Acute physical stress increased platelet aggregability while leaving platelet content of bioactive compounds unchanged. Persistent mental stress led to changes in platelet content of bioactive compounds and serotonin 2A-receptor only. The values of most bioactive compounds correlated with each other. Acute physical and persistent mental stress influences platelets through distinct pathways, leading to differential changes in aggregability and content of bioactive compounds. PMID:26192713

  17. Acute stress-induced antinociception is cGMP-dependent but heme oxygenase-independent

    PubMed Central

    Carvalho-Costa, P.G.; Branco, L.G.S.; Leite-Panissi, C.R.A.

    2014-01-01

    Endogenous carbon monoxide (CO), which is produced by the enzyme heme oxygenase (HO), participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3′,5′-cyclic guanosine monophosphate (cGMP). In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group) using the analgesia index (AI) in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) blocked the increase in the AI induced by acute stress. PMID:25387672

  18. Chemical composition of rainbow trout urine following acute hypoxic stress

    USGS Publications Warehouse

    Hunn, Joseph B.

    1969-01-01

    Rainbow trout (Salmo gairdnerii) were anesthetized with MS-222, catheterized, and introduced into urine collecting chambers. Twenty-four hours after introduction, a 4-hour accumulation of urine was collected to serve as the control. Water flow to the chambers was then discontinued for 30 minutes during which the oxygen content of the water exiting in the chamber dropped from 4.9 to 2.8 mg/l. Following this hypoxic stress fresh water was restored and accumulated urine samples were taken for analysis at 1, 4, and 20 hours post-hypoxic stress. Rainbow trout excrete abnormally high concentrations of Na, K, Mg, Cl, and inorganic PO4 following hypoxia.

  19. Effects of Prepubertal Acute Immobilization Stress on Serum Kisspeptin Level and Testis Histology in Rats.

    PubMed

    Maalhagh, Mehrnoosh; Jahromi, Abdolreza Sotoodeh; Yusefi, Alireza; Razeghi, Ali; Zabetiyan, Hassan; Karami, Mohammad Yasin; Madani, Abdol Hossein

    2016-01-01

    Stress has inhibitory effect on HPG axis through increasing cortisol serum level. In this study, the effect of acute prepubertal stress on kisspeptin, which plays essential role in puberty achievement is assessed. To do this experimental study thirty immature healthy male wistar rats of 4 weeks old and without any symptoms of puberty were selected randomly. These rats were divided into three groups, randomly. Two groups were chosen as control and pretest and one as stress (test) group. Immobilization stress was applied for 10 days and serum level of cortisol, testosterone and kisspeptin were measured. Primary and secondary spermatocyte and sertoli cell evaluated and compared among groups. Mean serum level of kisspeptin in pretest group, control group and stress (test) group were 0.0381 ± 0.0079, 91.0500 ± 4.87430 and 15.2156 ± 3.88135 pg mL(-1) respectively. Serum level of kisspeptin had significant differences between three groups (p < 0.001). Acute prepubertal immobilization stress led to decrease in serum level of kisspeptin and testosterone in stress (test) group compared to control groups. Also stress caused a significant decrease in the numbers of secondary spermatocytes of the test group. PMID:26930799

  20. Systolic blood pressure reactivity during submaximal exercise and acute psychological stress in youth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Studies in youth show an association between systolic blood-pressure (SBP) reactivity to acute psychological stress and carotid artery intima-media thickness (CIMT). However, it has not yet been determined whether SBP reactivity during submaximal exercise is also associated with CIMT i...

  1. Symptom Differences in Acute and Chronic Presentation of Childhood Post-Traumatic Stress Disorder.

    ERIC Educational Resources Information Center

    Famularo, Richard; And Others

    1990-01-01

    Twenty-four child abuse victims, age 5-13, were diagnosed with posttraumatic stress disorder (PTSD). Children with the acute form of PTSD exhibited such symptoms as difficulty falling asleep, hypervigilance, nightmares, and generalized anxiety. Children exhibiting chronic PTSD exhibited increased detachment, restricted range of affect,…

  2. The Nature of Trauma Memories in Acute Stress Disorder in Children and Adolescents

    ERIC Educational Resources Information Center

    Salmond, C. H.; Meiser-Stedman, R.; Glucksman, E.; Thompson, P.; Dalgleish, T.; Smith, P.

    2011-01-01

    Background: There is increasing theoretical, clinical and research evidence for the role of trauma memory in the aetiology of acute pathological stress responses in adults. However, research into the phenomenology of trauma memories in young people is currently scarce. Methods: This study compared the nature of trauma narratives to narratives of…

  3. Family Stress Management Following Acute Myocardial Infarction: An Educational and Skills Training Intervention Program.

    ERIC Educational Resources Information Center

    Nelson, David V.; Cleveland, Sidney E.; Baer, Paul E.

    1998-01-01

    Provides a conceptual background for specific behavioral-therapy approach to family stress management in dealing with the sequelae of acute myocardial infarction for all family members with the goal of reducing morbidity for all family members as they cope with ongoing survivorship issues. Describes the program and discusses its pilot…

  4. The Additive Benefit of Hypnosis and Cognitive-Behavioral Therapy in Treating Acute Stress Disorder

    ERIC Educational Resources Information Center

    Bryant, Richard A.; Moulds, Michelle L.; Guthrie, Rachel M.; Nixon, Reginald D. V.

    2005-01-01

    This research represents the first controlled treatment study of hypnosis and cognitive- behavioral therapy (CBT) of acute stress disorder (ASD). Civilian trauma survivors (N = 87) who met criteria for ASD were randomly allocated to 6 sessions of CBT, CBT combined with hypnosis (CBT-hypnosis), or supportive counseling (SC). CBT comprised exposure,…

  5. Baroreflex sensitivity is higher during acute psychological stress in healthy subjects under β-adrenergic blockade

    PubMed Central

    Truijen, Jasper; Davis, Shyrin C.A.T.; Stok, Wim J.; Kim, Yu-Sok; van Westerloo, David J.; Levi, Marcel; van der Poll, Tom; Westerhof, Berend E.; Karemaker, John M.; van Lieshout, Johannes J.

    2010-01-01

    Acute psychological stress challenges the cardiovascular system with an increase in BP (blood pressure), HR (heart rate) and reduced BRS (baroreflex sensitivity). β-adrenergic blockade enhances BRS during rest, but its effect on BRS during acute psychological stress is unknown. This study tested the hypothesis that BRS is higher during acute psychological stress in healthy subjects under β-adrenergic blockade. Twenty healthy novice male bungee jumpers were randomized and studied with (PROP, n=10) or without (CTRL, n=10) propranolol. BP and HR responses and BRS [cross-correlation time-domain (BRSTD) and cross-spectral frequency-domain (BRSFD) analysis] were evaluated from 30 min prior up to 2 h after the jump. HR, cardiac output and pulse pressure were lower in the PROP group throughout the study. Prior to the bungee jump, BRS was higher in the PROP group compared with the CTRL group [BRSTD: 28 (24–42) compared with 17 (16–28) ms·mmHg−1, P<0.05; BRSFD: 27 (20–34) compared with 14 (9–19) ms·mmHg−1, P<0.05; values are medians (interquartile range)]. BP declined after the jump in both groups, and post-jump BRS did not differ between the groups. In conclusion, during acute psychological stress, BRS is higher in healthy subjects treated with non-selective β-adrenergic blockade with significantly lower HR but comparable BP. PMID:20828371

  6. Cumulative exposure to prior collective trauma and acute stress responses to the Boston marathon bombings.

    PubMed

    Garfin, Dana Rose; Holman, E Alison; Silver, Roxane Cohen

    2015-06-01

    The role of repeated exposure to collective trauma in explaining response to subsequent community-wide trauma is poorly understood. We examined the relationship between acute stress response to the 2013 Boston Marathon bombings and prior direct and indirect media-based exposure to three collective traumatic events: the September 11, 2001 (9/11) terrorist attacks, Superstorm Sandy, and the Sandy Hook Elementary School shooting. Representative samples of residents of metropolitan Boston (n = 846) and New York City (n = 941) completed Internet-based surveys shortly after the Boston Marathon bombings. Cumulative direct exposure and indirect exposure to prior community trauma and acute stress symptoms were assessed. Acute stress levels did not differ between Boston and New York metropolitan residents. Cumulative direct and indirect, live-media-based exposure to 9/11, Superstorm Sandy, and the Sandy Hook shooting were positively associated with acute stress responses in the covariate-adjusted model. People who experience multiple community-based traumas may be sensitized to the negative impact of subsequent events, especially in communities previously exposed to similar disasters. PMID:25896419

  7. Acute exercise improves endothelial function despite increasing vascular resistance during stress in smokers and nonsmokers.

    PubMed

    Rooks, Cherie R; McCully, Kevin K; Dishman, Rod K

    2011-09-01

    The present study examined the effect of acute exercise on flow mediated dilation (FMD) and reactivity to neurovascular challenges among female smokers and nonsmokers. FMD was determined by arterial diameter, velocity, and blood flow measured by Doppler ultrasonography after forearm occlusion. Those measures and blood pressure and heart rate were also assessed in response to forehead cold and the Stroop Color-Word Conflict Test (CWT) before and after 30 min of rest or an acute bout of cycling exercise (∼50% VO₂ peak). Baseline FMD and stress responses were not different between smokers and nonsmokers. Compared to passive rest, exercise increased FMD and decreased arterial velocity and blood flow responses during the Stroop CWT and forehead cold in both groups. Overall, acute exercise improved endothelial function among smokers and nonsmokers despite increasing vascular resistance and reducing limb blood flow during neurovascular stress. PMID:21457274

  8. The Acute Effect of Aerobic Exercise on Measures of Stress.

    ERIC Educational Resources Information Center

    Fort, Inza L.; And Others

    The immediate response of stress to aerobic exercise was measured by utilizing the Palmar Sweat Index (PSI) and the State-Trait Anxiety Inventory (STAI). Forty subjects (20 male and 20 female) from the ages of 18-30 sustained a single bout of aerobic activity for 30 minutes at 60 percent of their maximum heart rate. Pre-treatment procedures…

  9. [Ischemic stroke as reaction to an acute stressful event].

    PubMed

    Ibrahimagić, Omer C; Sinanović, Osman; Cickusić, Amra; Smajlović, Dzevdet

    2005-01-01

    The period following ischemic stroke can be considered as a reaction to a stressful event. Changes in cortisol secretion are one of the indicators of stress reaction. The aim of the study was to determine morning serum levels of cortisol in stroke patients within 48 hours and 15 days of ischemic stroke onset. Study group included 40 patients, 20 of them were females, mean age 65.3 +/- 10.3 years. The patients did not receive any corticosteroid agents or spironolactone, and did not suffer from Cushing's or Addison's syndrome. Ischemic stroke was verified by computed tomography of the brain. The fluorometric method with DELFIA Cortisol immunoassay was used to determine morning serum cortisol levels. Reference values of the measured hormone were 201-681 nmol/l. The mean level of serum cortisol within 48 hours of stroke was 560.9 +/- 318.9 nmol/l, and on day 15 it was 426.2 +/- 159.3 nmol/l, i.e. significantly lower (p < 0.02). On the first measurement, the level of serum cortisol was elevated in 32%, and on the second measurement in only 7.5% patients, which was also significantly lower (p < 0.001). It was concluded that the stress reaction in ischemic stroke patients was more pronounced within the first 48 hours of stroke onset. Judging from the morning cortisol levels, the reaction to stress was considerably less pronounced 15 days after stroke onset. PMID:15875466

  10. Effect of acute heat stress on plant nutrient metabolism proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abrupt heating decreased the levels (per unit total root protein) of all but one of the nutrient metabolism proteins examined, and for most of the proteins, effects were greater for severe vs. moderate heat stress. For many of the nutrient metabolism proteins, initial effects of heat (1 d) were r...

  11. Osmotic buckling of spherical capsules.

    PubMed

    Knoche, Sebastian; Kierfeld, Jan

    2014-11-01

    We study the buckling of elastic spherical shells under osmotic pressure with the osmolyte concentration of the exterior solution as a control parameter. We compare our results for the bifurcation behavior with results for buckling under mechanical pressure control, that is, with an empty capsule interior. We find striking differences for the buckling states between osmotic and mechanical buckling. Mechanical pressure control always leads to fully collapsed states with opposite sides in contact, whereas uncollapsed states with a single finite dimple are generic for osmotic pressure control. For sufficiently large interior osmolyte concentrations, osmotic pressure control is qualitatively similar to buckling under volume control with the volume prescribed by the osmolyte concentrations inside and outside the shell. We present a quantitative theory which also captures the influence of shell elasticity on the relationship between osmotic pressure and volume. These findings are relevant for the control of buckled shapes in applications. We show how the osmolyte concentration can be used to control the volume of buckled shells. An accurate analytical formula is derived for the relationship between the osmotic pressure, the elastic moduli and the volume of buckled capsules. This also allows use of elastic capsules as osmotic pressure sensors or deduction of elastic properties and the internal osmolyte concentration from shape changes in response to osmotic pressure changes. We apply our findings to published experimental data on polyelectrolyte capsules. PMID:25209240

  12. Roles of Four Putative DEAD-Box RNA Helicase Genes in Growth of Listeria monocytogenes EGD-e under Heat, pH, Osmotic, Ethanol, and Oxidative Stress Conditions

    PubMed Central

    Lindström, Miia; Johansson, Per; Björkroth, Johanna; Korkeala, Hannu

    2012-01-01

    To examine the role of the four putative DEAD-box RNA helicase genes of Listeria monocytogenes EGD-e in stress tolerance, the growth of the Δlmo0866, Δlmo1246, Δlmo1450, and Δlmo1722 deletion mutant strains at 42.5°C, at pH 5.6 or pH 9.4, in 6% NaCl, in 3.5% ethanol, and in 5 mM H2O2 was studied. Restricted growth of the Δlmo0866 deletion mutant strain in 3.5% ethanol suggests that Lmo0866 contributes to ethanol stress tolerance of L. monocytogenes EGD-e. The Δlmo1450 mutant strain showed negligible growth at 42.5°C, at pH 9.4, and in 5 mM H2O2 and a lower maximum growth temperature than the wild-type EGD-e, suggesting that Lmo1450 is involved in the tolerance of L. monocytogenes EGD-e to heat, alkali, and oxidative stresses. The altered stress tolerance of the Δlmo0866 and Δlmo1450 deletion mutant strains did not correlate with changes in relative expression levels of lmo0866 and lmo1450 genes under corresponding stresses, suggesting that Lmo0866- and Lmo1450-dependent tolerance to heat, alkali, ethanol, or oxidative stress is not regulated at the transcriptional level. Growth of the Δlmo1246 and Δlmo1722 deletion mutant strains did not differ from that of the wild-type EGD-e under any of the conditions tested, suggesting that Lmo1246 and Lmo1722 have no roles in the growth of L. monocytogenes EGD-e under heat, pH, osmotic, ethanol, or oxidative stress. This study shows that the putative DEAD-box RNA helicase genes lmo0866 and lmo1450 play important roles in tolerance of L. monocytogenes EGD-e to ethanol, heat, alkali, and oxidative stresses. PMID:22820328

  13. Acute stress affects free recall and recognition of pictures differently depending on age and sex.

    PubMed

    Hidalgo, Vanesa; Pulopulos, Matias M; Puig-Perez, Sara; Espin, Laura; Gomez-Amor, Jesus; Salvador, Alicia

    2015-10-01

    Little is known about age differences in the effects of stress on memory retrieval. Our aim was to perform an in-depth examination of acute psychosocial stress effects on memory retrieval, depending on age and sex. For this purpose, data from 52 older subjects (27 men and 25 women) were reanalyzed along with data from a novel group of 50 young subjects (26 men and 24 women). Participants were exposed to an acute psychosocial stress task (Trier Social Stress Test) or a control task. After the experimental manipulation, the retrieval of positive, negative and neutral pictures learned the previous day was tested. As expected, there was a significant response to the exposure to the stress task, but the older participants had a lower cortisol response to TSST than the younger ones. Stress impaired free recall of emotional (positive and negative) and neutral pictures only in the group of young men. Also in this group, correlation analyses showed a marginally significant association between cortisol and free recall. However, exploratory analyses revealed only a negative relationship between the stress-induced cortisol response and free recall of negative pictures. Moreover, stress impaired recognition memory of positive pictures in all participants, although this effect was not related to the cortisol or alpha-amylase response. These results indicate that both age and sex are critical factors in acute stress effects on specific aspects of long-term memory retrieval of emotional and neutral material. They also point out that more research is needed to better understand their specific role. PMID:26149415

  14. Sex-specific variation in brown-headed cowbird immunity following acute stress: a mechanistic approach.

    PubMed

    Merrill, Loren; Angelier, Frédéric; O'Loghlen, Adrian L; Rothstein, Stephen I; Wingfield, John C

    2012-09-01

    There is some discrepancy in the literature regarding whether acute stress is immunostimulatory or immunosuppressive. Studies of domesticated (laboratory and food) animals and humans typically indicate that acute stress is immunostimulatory, whereas studies of non-domesticated species document both immunostimulatory and immunosuppressive results. Few studies have examined the mechanisms responsible for changes in immune activity in species other than those classically used in laboratory research. We examined the effect of both acute stress and exogenous corticosterone (CORT) on the bactericidal capacity (BC) of blood plasma from captive, wild-caught brown-headed cowbirds (Molothrus ater) to determine if CORT is responsible for changes in levels of immune activity. We conducted "stress tests" in which we handled birds to elicit a stress response and then measured the birds' total CORT and BC at 30 or 90 min post-stressor. We also conducted non-invasive tests in which we administered exogenous CORT by injecting it into mealworms that were fed to the cowbirds remotely. Total, free, and bound CORT levels, corticosteroid binding globulins (CBGs), and BC at 7 or 90 min post-mealworm ingestion were measured. Both males and females exhibited significant increases in total CORT following handling stress and the administration of exogenous CORT. Experimental males and females also exhibited a significant increase in CBG capacity at 7 min post-mealworm ingestion compared to controls. Male cowbirds exhibited a significant decline in their BC following both handling stress and the administration of exogenous CORT whereas female cowbirds exhibited no decline under either condition. Female CBG levels were not different than those of males, suggesting that differences in BC could be due to differences between the sexes in the number of corticosteroid receptors which, along with CBGs, regulate the stress response. Female cowbirds may modulate their stress response as an adaptive

  15. The Response Regulator RRG-1 Functions Upstream of a Mitogen-activated Protein Kinase Pathway Impacting Asexual Development, Female Fertility, Osmotic Stress, and Fungicide Resistance in Neurospora crassa

    PubMed Central

    Jones, Carol A.; Greer-Phillips, Suzanne E.

    2007-01-01

    Two-component systems, consisting of proteins with histidine kinase and/or response regulator domains, regulate environmental responses in bacteria, Archaea, fungi, slime molds, and plants. Here, we characterize RRG-1, a response regulator protein from the filamentous fungus Neurospora crassa. The cell lysis phenotype of Δrrg-1 mutants is reminiscent of osmotic-sensitive (os) mutants, including nik-1/os-1 (a histidine kinase) and strains defective in components of a mitogen-activated protein kinase (MAPK) pathway: os-4 (MAPK kinase kinase), os-5 (MAPK kinase), and os-2 (MAPK). Similar to os mutants, Δrrg-1 strains are sensitive to hyperosmotic conditions, and they are resistant to the fungicides fludioxonil and iprodione. Like os-5, os-4, and os-2 mutants, but in contrast to nik-1/os-1 strains, Δrrg-1 mutants do not produce female reproductive structures (protoperithecia) when nitrogen starved. OS-2-phosphate levels are elevated in wild-type cells exposed to NaCl or fludioxonil, but they are nearly undetectable in Δrrg-1 strains. OS-2-phosphate levels are also low in Δrrg-1, os-2, and os-4 mutants under nitrogen starvation. Analysis of the rrg-1D921N allele, mutated in the predicted phosphorylation site, provides support for phosphorylation-dependent and -independent functions for RRG-1. The data indicate that RRG-1 controls vegetative cell integrity, hyperosmotic sensitivity, fungicide resistance, and protoperithecial development through regulation of the OS-4/OS-5/OS-2 MAPK pathway. PMID:17392518

  16. Guilt is associated with acute stress symptoms in children after road traffic accidents

    PubMed Central

    Haag, Ann-Christin; Zehnder, Daniel; Landolt, Markus A.

    2015-01-01

    Background Although previous research has consistently found considerable rates of acute stress disorder (ASD) in children with accidental injuries, knowledge about determinants of ASD remains incomplete. Guilt is a common reaction among children after a traumatic event and has been shown to contribute to posttraumatic stress disorder. However, its relationship to ASD has never been examined. Objective This study assessed the prevalence of ASD in children and adolescents following road traffic accidents (RTAs). Moreover, the association between peritraumatic guilt and ASD was investigated relying on current cognitive theories of posttraumatic stress and controlling for female sex, age, socioeconomic status (SES), injury severity, inpatient treatment, pretrauma psychopathology, and maternal posttraumatic stress symptoms (PTSS). Methods One hundred and one children and adolescents (aged 7–16 years) were assessed by means of a clinical interview approximately 10 days after an RTA. Mothers were assessed by questionnaires. Results Three participants (3.0%) met diagnostic criteria for full ASD according to DSM-IV, and 17 (16.8%) for subsyndromal ASD. In a multivariate regression model, guilt was found to be a significant predictor of ASD severity. Female sex, outpatient treatment, and maternal PTSS also predicted ASD severity. Child age, SES, injury severity, and pretraumatic child psychopathology were not related to ASD severity. Conclusions Future research should examine the association between peritraumatic guilt and acute stress symptoms in more detail. Moreover, guilt appraisals in the acute phase after an accident might be a relevant target for clinical attention. PMID:26514158

  17. The implicit affiliation motive moderates cortisol responses to acute psychosocial stress in high school students.

    PubMed

    Wegner, Mirko; Schüler, Julia; Budde, Henning

    2014-10-01

    It has been previously shown that the implicit affiliation motive - the need to establish and maintain friendly relationships with others - leads to chronic health benefits. The underlying assumption for the present research was that the implicit affiliation motive also moderates the salivary cortisol response to acute psychological stress when some aspects of social evaluation and uncontrollability are involved. By contrast we did not expect similar effects in response to exercise as a physical stressor. Fifty-nine high school students aged M=14.8 years were randomly assigned to a psychosocial stress (publishing the results of an intelligence test performed), a physical stress (exercise intensity of 65-75% of HRmax), and a control condition (normal school lesson) each lasting 15min. Participants' affiliation motives were assessed using the Operant Motive Test and salivary cortisol samples were taken pre and post stressor. We found that the strength of the affiliation motive negatively predicted cortisol reactions to acute psychosocial but not to physical stress when compared to a control group. The results suggest that the affiliation motive buffers the effect of acute psychosocial stress on the HPA axis. PMID:25016451

  18. Effect of the acute crowding stress on the rat brown adipose tissue metabolic function.

    PubMed

    Djordjevic, Jelena; Cvijic, Gordana; Petrovic, Natasa; Davidovic, Vukosava

    2005-12-01

    Our previous results have shown that metabolic and thermal stressors influence interscapular brown adipose tissue (IBAT) metabolic activity by increasing oxygen consumption and, consequently, altering the toxic reactive oxygen species (ROS) production and the antioxidative system activity. Since there is not enough evidence about the effect of psychosocial stressors on these processes, we studied the effect of acute crowding stress on the IBAT and hypothalamic monoamine oxidase (MAO) activity as well as IBAT antioxidative enzymes, manganese (MnSOD), copper-zinc superoxide dismutase (CuZnSOD) and catalase (CAT), as the relevant indicators of IBAT metabolic alternations under the stress exposure and the returning of animals to control conditions. The results indicated that acute crowding stress did not change the hypothalamic and IBAT MAO activities, the generation of ROS and, consequently, the IBAT CuZnSOD and CAT activities. However, all three antioxidative enzymes were affected only after the recovery period. It seems that peripheral overheating of rats during acute crowding changes the stress nature, by becoming more thermal than psychosocial and by suppression the hypothalamic efferent pathways involved in the IBAT thermogenesis regulation. However, it seems that returning of the animals to the control conditions after the stress termination causes the reactivation of IBAT thermogenesis with tendency to normalise the body temperature. PMID:16309937