Sample records for acute phase cytokines

  1. Alterations in cytokines and haematological parameters during the acute and convalescent phases of Plasmodium falciparum and Plasmodium vivax infections.

    PubMed

    Rodrigues-da-Silva, Rodrigo Nunes; Lima-Junior, Josué da Costa; Fonseca, Bruna de Paula Fonseca e; Antas, Paulo Renato Zuquim; Baldez, Arlete; Storer, Fabio Luiz; Santos, Fátima; Banic, Dalma Maria; Oliveira-Ferreira, Joseli de

    2014-04-01

    Haematological and cytokine alterations in malaria are a broad and controversial subject in the literature. However, few studies have simultaneously evaluated various cytokines in a single patient group during the acute and convalescent phases of infection. The aim of this study was to sequentially characterise alterations in haematological patters and circulating plasma cytokine and chemokine levels in patients infected with Plasmodium vivax or Plasmodium falciparum from a Brazilian endemic area during the acute and convalescent phases of infection. During the acute phase, thrombocytopaenia, eosinopaenia, lymphopaenia and an increased number of band cells were observed in the majority of the patients. During the convalescent phase, the haematologic parameters returned to normal. During the acute phase, P. vivax and P. falciparum patients had significantly higher interleukin (IL)-6, IL-8, IL-17, interferon-γ, tumour necrosis factor (TNF)-α, macrophage inflammatory protein-1β and granulocyte-colony stimulating factor levels than controls and maintained high levels during the convalescent phase. IL-10 was detected at high concentrations during the acute phase, but returned to normal levels during the convalescent phase. Plasma IL-10 concentration was positively correlated with parasitaemia in P. vivax and P. falciparum-infected patients. The same was true for the TNF-α concentration in P. falciparum-infected patients. Finally, the haematological and cytokine profiles were similar between uncomplicated P. falciparum and P. vivax infections.

  2. Proinflammatory cytokine levels in patients with conversion disorder.

    PubMed

    Tiyekli, Utkan; Calıyurt, Okan; Tiyekli, Nimet Dilek

    2013-06-01

    It was aimed to evaluate the relationship between proinflammatory cytokine levels and conversion disorder both commonly known as stress regulated. Baseline proinflammatory cytokine levels-[Tumour necrosis factor alpha (TNF-α), Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6)]-were evaluated with enzyme-linked immunosorbent assay in 35 conversion disorder patients and 30 healthy controls. Possible changes in proinflammatory cytokine levels were evaluated again, after their acute phase in conversion disorder patients. Statistically significant decreased serum TNF-α levels were obtained in acute phase of conversion disorder. Those levels increased after acute conversion phase. There were no statistically significant difference observed between groups in serum IL-1β and (IL-6) levels. Stress associated with conversion disorder may suppress immune function in acute conversion phase and may have diagnostic and therapeutic value.

  3. Acute Phase Proteins and Their Role in Periodontitis: A Review

    PubMed Central

    Moogala, Srinivas; Boggarapu, Shalini; Pesala, Divya Sai; Palagi, Firoz Babu

    2015-01-01

    Acute phase proteins are a class of proteins whose plasma concentration increase (positive acute phase proteins) or decrease (negative acute phase proteins) in response to inflammation. This response is called as the acute phase reaction, also called as acute phase response, which occurs approximately 90 minutes after the onset of a systemic inflammatory reaction. In Periodontitis endotoxins released from gram negative organisms present in the sub gingival plaque samples interact with Toll- like receptors (TLR) that are expressed on the surface of Polymorphonuclear leucocytes (PMNs) and monocytes which are in abundance in periodontal inflammation. The complex formed due to interaction of Endotoxins and TLR activates the Signal transduction pathway in both innate and adaptive immunity resulting in production of Cytokines that co- ordinate the local and systemic inflammatory response. The pro inflammatory cytokines originating at the diseased site activates the liver cells to produce acute phase proteins as a part of non specific response. The production of Acute phase proteins is regulated to a great extent by Cytokines such as IL-1, IL-6, IL-8, TNF-α and to a lesser extent by Glucocorticoid hormones. These proteins bind to bacteria leading to activation of complement proteins that destroys pathogenic organisms. Studies have shown that levels of acute phase proteins are increased in otherwise healthy adults with poor periodontal status. This article highlights about the synthesis, structure, types and function of acute phase proteins and the associated relation of acute phase proteins in Periodontitis. PMID:26674303

  4. Curcumin protects against radiation-induced acute and chronic cutaneous toxicity in mice and decreases mRNA expression of inflammatory and fibrogenic cytokines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okunieff, Paul; Xu Jianhua; Hu Dongping

    2006-07-01

    Purpose: To determine whether curcumin ameliorates acute and chronic radiation skin toxicity and to examine the expression of inflammatory cytokines (interleukin [IL]-1, IL-6, IL-18, IL-1Ra, tumor necrosis factor [TNF]-{alpha}, and lymphotoxin-{beta}) or fibrogenic cytokines (transforming growth factor [TGF]-{beta}) during the same acute and chronic phases. Methods and Materials: Curcumin was given intragastrically or intraperitoneally to C3H/HeN mice either: 5 days before radiation; 5 days after radiation; or both 5 days before and 5 days after radiation. The cutaneous damage was assessed at 15-21 days (acute) and 90 days (chronic) after a single 50 Gy radiation dose was given to themore » hind leg. Skin and muscle tissues were collected for measurement of cytokine mRNA. Results: Curcumin, administered before or after radiation, markedly reduced acute and chronic skin toxicity in mice (p < 0.05). Additionally, curcumin significantly decreased mRNA expression of early responding cytokines (IL-1 IL-6, IL-18, TNF-{alpha}, and lymphotoxin-{beta}) and the fibrogenic cytokine, TGF-{beta}, in cutaneous tissues at 21 days postradiation. Conclusion: Curcumin has a protective effect on radiation-induced cutaneous damage in mice, which is characterized by a downregulation of both inflammatory and fibrogenic cytokines in irradiated skin and muscle, particularly in the early phase after radiation. These results may provide the molecular basis for the application of curcumin in clinical radiation therapy.« less

  5. Rotavirus intestinal infection induces an oral mucosa cytokine response.

    PubMed

    Gómez-Rial, José; Curras-Tuala, María José; Rivero-Calle, Irene; Rodríguez-Tenreiro, Carmen; Redondo-Collazo, Lorenzo; Gómez-Carballa, Alberto; Pardo-Seco, Jacobo; Salas, Antonio; Martinón-Torres, Federico

    2018-01-01

    Salivary glands are known immune effector sites and considered to be part of the whole mucosal immune system. The aim of the present study was to assess the salivary immune response to rotavirus (RV) infection through the analysis of the cytokine immune profile in saliva. A prospective comparative study of serial saliva samples from 27 RV-infected patients (sampled upon admission to the hospital during acute phase and at convalescence-i.e. at least three months after recovery) and 36 healthy controls was performed. Concentrations of 11 salivary cytokines (IFN-γ, IFN-α2, IL-1β, IL-6, IL-8, IL-10, IL-15, IL12p70, TNF-α, IFN-λ1, IL-22) were determined. Cytokine levels were compared between healthy controls acute infection and convalescence. The correlation between clinical data and salivary cytokine profile in infected children was assessed. The salivary cytokine profile changes significantly in response to acute RV infection. In RV-infected patients, IL-22 levels were increased in the acute phase with respect to convalescence (P-value < 0.001). Comparisons between infected and control group showed significant differences in salivary IFN-α2, IL-1β, IL-6, IL-8, IL-10 and IL-22. Although acute-phase levels of IL-12, IL-10, IL-6 and IFN-γ showed nominal association with Vesikari's severity, this trend did not reach statistical significance after multiple test adjustment. RV infection induces a host salivary immune response, indicating that immune mucosal response to RV infection is not confined to the intestinal mucosa. Our data point to a whole mucosal implication in the RV infection as a result of the integrative mucosal immune response, and suggest the salivary gland as effector site for RV infection.

  6. Rotavirus intestinal infection induces an oral mucosa cytokine response

    PubMed Central

    Curras-Tuala, María José; Rivero-Calle, Irene; Rodríguez-Tenreiro, Carmen; Redondo-Collazo, Lorenzo; Gómez-Carballa, Alberto; Pardo-Seco, Jacobo

    2018-01-01

    Introduction Salivary glands are known immune effector sites and considered to be part of the whole mucosal immune system. The aim of the present study was to assess the salivary immune response to rotavirus (RV) infection through the analysis of the cytokine immune profile in saliva. Material and methods A prospective comparative study of serial saliva samples from 27 RV-infected patients (sampled upon admission to the hospital during acute phase and at convalescence—i.e. at least three months after recovery) and 36 healthy controls was performed. Concentrations of 11 salivary cytokines (IFN-γ, IFN-α2, IL-1β, IL-6, IL-8, IL-10, IL-15, IL12p70, TNF-α, IFN-λ1, IL-22) were determined. Cytokine levels were compared between healthy controls acute infection and convalescence. The correlation between clinical data and salivary cytokine profile in infected children was assessed. Results The salivary cytokine profile changes significantly in response to acute RV infection. In RV-infected patients, IL-22 levels were increased in the acute phase with respect to convalescence (P-value < 0.001). Comparisons between infected and control group showed significant differences in salivary IFN-α2, IL-1β, IL-6, IL-8, IL-10 and IL-22. Although acute-phase levels of IL-12, IL-10, IL-6 and IFN-γ showed nominal association with Vesikari’s severity, this trend did not reach statistical significance after multiple test adjustment. Conclusions RV infection induces a host salivary immune response, indicating that immune mucosal response to RV infection is not confined to the intestinal mucosa. Our data point to a whole mucosal implication in the RV infection as a result of the integrative mucosal immune response, and suggest the salivary gland as effector site for RV infection. PMID:29621276

  7. Cytokines and T-Lymphocute count in patients in the acute and chronic phases of Bartonella bacilliformis infection in an endemic area in peru: a pilot study.

    PubMed

    Huarcaya, Erick; Best, Ivan; Rodriguez-Tafur, Juan; Maguiña, Ciro; Solórzano, Nelson; Menacho, Julio; Lopez De Guimaraes, Douglas; Chauca, Jose; Ventosilla, Palmira

    2011-01-01

    Human Bartonellosis has an acute phase characterized by fever and hemolytic anemia, and a chronic phase with bacillary angiomatosis-like lesions. This cross-sectional pilot study evaluated the immunology patterns using pre- and post-treatment samples in patients with Human Bartonellosis. Patients between five and 60 years of age, from endemic areas in Peru, in the acute or chronic phases were included. In patients in the acute phase of Bartonellosis a state of immune peripheral tolerance should be established for persistence of the infection. Our findings were that elevation of the anti-inflammatory cytokine IL-10 and numeric abnormalities of CD4(+) and CD8(+) T-Lymphocyte counts correlated significantly with an unfavorable immune state. During the chronic phase, the elevated levels of IFN-γ and IL-4 observed in our series correlated with previous findings of endothelial invasion of B. henselae in animal models.

  8. Proinflammatory and anti-inflammatory cytokines present in the acute phase of experimental colitis treated with Saccharomyces boulardii.

    PubMed

    Grijó, Nathália Nahas; Borra, Ricardo Carneiro; Sdepanian, Vera Lucia

    2010-09-01

    To study the proinflammatory and anti-inflammatory cytokines present in the acute phase of trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis treated with Saccharomyces boulardii. Thirty male Wistar rats were divided into three groups: (1) treated group--received Saccharomyces boulardii for 14 days; (2) non-treated group--received sodium chloride solution for 14 days; (3) control group. Colitis was induced on the seventh day of the study in the treated and the non-treated groups using TNBS (10 mg) dissolved in 50% ethanol. Quantification of cytokines, including interleukin (IL)-1beta (IL-1beta), IL-6, transforming growth factor-beta (TGF-beta), IL-10 and tumor necrosis factor-alpha (TNF-alpha), in the serum and colonic tissue collected on day 14 were carried out using an enzyme-linked immunosorbent assay (ELISA). The mean concentrations of TGF-beta in both the serum and the colonic tissue of the treated group were statistically higher than that of the control group. The mean concentration of TGF-beta in the colonic tissue of the non-treated group was also statistically higher than the control group. The group treated with Saccharomyces boulardii showed increased amounts of TGF-beta, an anti-inflammatory cytokine, during the acute phase of colitis. There were no differences in the amount of TNF-alpha, IL-1beta, IL-6, and IL-10 between the treated and the non-treated or the control groups during the acute phase of experimental colitis induced by TNBS.

  9. Inflammatory Milieu and Cardiovascular Homeostasis in Children With Obstructive Sleep Apnea.

    PubMed

    Smith, David F; Hossain, Md M; Hura, Arjan; Huang, Guixia; McConnell, Keith; Ishman, Stacey L; Amin, Raouf S

    2017-04-01

    Biomarkers of atherosclerosis (pro-inflammatory cytokines and acute phase reactants) are elevated in children with obstructive sleep apnea (OSA). However, their association with cardiovascular endpoints in children are not understood. We hypothesized that biomarkers of atherosclerosis in children with OSA correlate with pulse transit time (PTT), a surrogate measure of vascular stiffness, with some positively influencing and others negatively influencing PTT. Children with OSA and matched controls were recruited to the study. Pro-inflammatory cytokines and acute phase reactants were measured at 6:00 pm and 6:00 am. Polysomnography with beat-to-beat blood pressure was performed. PTT during wakefulness and stage 2 sleep was calculated. Diurnal variation of biomarkers and their associations with PTT was estimated. Factor analysis was used to determine the effect of groups of cytokines on PTT. One hundred fifty-five children participated in the study; 90 were healthy controls and 65 had OSA. Children with OSA exhibited a different diurnal variation of biomarkers than healthy controls, with pro-inflammatory cytokines peaking in the morning and acute phase reactants peaking in the afternoon. Structural equation modeling demonstrated that interleukins 6 and 8, tumor necrosis factor-α, and sCD40L had a shortening effect, while serum amyloid A, C-reactive protein, and adiponectin had a prolonging effect on PTT. As a result, there was no difference in PTT between the two groups. The differential relationships of acute phase reactants and pro-inflammatory cytokines with PTT suggest that in children with OSA, these mediators may have opposing actions to maintain cardiovascular homeostasis. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  10. Cytokine expression during early and late phase of acute Puumala hantavirus infection

    PubMed Central

    2011-01-01

    Background Hantaviruses of the family Bunyaviridae are emerging zoonotic pathogens which cause hemorrhagic fever with renal syndrome (HFRS) in the Old World and hantavirus pulmonary syndrome (HPS) in the New World. An immune-mediated pathogenesis is discussed for both syndromes. The aim of our study was to investigate cytokine expression during the course of acute Puumala hantavirus infection. Results We retrospectively studied 64 patients hospitalised with acute Puumala hantavirus infection in 2010 during a hantavirus epidemic in Germany. Hantavirus infection was confirmed by positive anti-hantavirus IgG/IgM. Cytokine expression of IL-2, IL-5, IL-6, IL-8, IL-10, IFN-γ, TNF-α and TGF-β1 was analysed by ELISA during the early and late phase of acute hantavirus infection (average 6 and 12 days after onset of symptoms, respectively). A detailed description of the demographic and clinical presentation of severe hantavirus infection requiring hospitalization during the 2010 hantavirus epidemic in Germany is given. Acute hantavirus infection was characterized by significantly elevated levels of IL-2, IL-6, IL-8, TGF-β1 and TNF-α in both early and late phase compared to healthy controls. From early to late phase of disease, IL-6, IL-10 and TNF-α significantly decreased whereas TGF-β1 levels increased. Disease severity characterized by elevated creatinine and low platelet counts was correlated with high pro-inflammatory IL-6 and TNF-α but low immunosuppressive TGF-β1 levels and vice versa . Conclusion High expression of cytokines activating T-lymphocytes, monocytes and macrophages in the early phase of disease supports the hypothesis of an immune-mediated pathogenesis. In the late phase of disease, immunosuppressive TGF-β1 level increase significantly. We suggest that delayed induction of a protective immune mechanism to downregulate a massive early pro-inflammatory immune response might contribute to the pathologies characteristic of human hantavirus infection. PMID:22085404

  11. [The relationship between acute inflammatory cytokines, nerve function defect, daily living ability and PSD].

    PubMed

    Li, Ping; Zhang, Qiao-Lian; Li, Shuang-Ying

    2017-02-08

    To investigate the correlation between poststroke depression (PSD) and serum levels of inflammatory cytokines, neurologic impairment, daily life ability in patients with acute cerebral infarction at different time. Two hundreds and eighty patients who admitted to our hospital with a diagnosis of acute infarction excluded the patients mismatch conditions were evaluated by Hamilton depres-sion rating scale (HDRS) to diagnose PSD respectively at admission and 3 months after stroke. Serum inflammatory cytokines high-sensitivity C-reactive protein(hs-CRP), tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) were determined. NIH stroke scale(NIHSS) and Barthel index for daily life ability were used to evaluate nerve functions. Then we analyzed the correlation between PSD and serum inflammatory cytokines, correlation between PSD and functional impairment and daily life ability at different time. Logistic regression was performed to ana-lyze the risk factors of PSD. The PSD incidence was higher in recovery stage than that in acute stage, but there was no difference. Serum inflammatory cytokines were higher in PSD group at admission than that in non-PSD group. The NIHSS score and Barthel index in PSD group were different from those in non-group at acute and recovery stage. The OR score was 1.765, 1.646, 1.817, 1.188 and 2.015 respec-tively to TNF-α, IL-6 and Barthel index in the acute phase and to NIHSS and Barthel index in recovery stage. The pathogenesis of PSD at different courses of stroke is not same. TNF-α, IL-6 and Barthel index are the independent risk factors of PSD in acute phase, so do NIHSS score and Barthel index in recovery period.

  12. The Effects of Injury Magnitude on the Kinetics of the Acute Phase Response

    PubMed Central

    Bauzá, Graciela; Miller, Glenn; Kaseje, Neema; Wigner, Nathan A.; Wang, Zhongyan; Gerstenfeld, Louis C.; Burke, Peter A.

    2013-01-01

    Background The acute-phase response (APR) is critical to the body's ability to successfully respond to injury. A murine model of closed unilateral femur fractures and bilateral femur fracture were used to study the effect of injury magnitude on this response. Methods Standardized unilateral femur fracture and bilateral femur fracture in mice were performed. The femur fracture sites, livers, and serum were harvested over time after injury. Changes in mRNA expression of cytokines, hepatic acute-phase proteins, and serum cytokines overtime were measured. Results There was a rapid and short-lived hepatic APR to fracture injuries. The overall pattern in both models was similar. Both acute-phase proteins' mRNA (fibrinogen-γ and serum amyloid A-3) showed increased mRNA expression over baseline within the first 48 hours and their levels positively correlated with the extent of injury. However, increased severity of injury resulted in a delayed induction of the APR. A similar effect on the gene expression of cytokines (interleukin [IL]-1β, IL-6, and tumor necrosis factor-α) at the fracture site was seen. Serum IL-6 levels increased with increased injury and showed no delay between injury models. Conclusions Greater severity of injury resulted in a delayed induction of the liver's APR and a diminished expression of cytokines at the fracture site. Serum IL-6 levels were calibrated to the extent of the injury, and changes may represent mechanisms by which the local organ responses to injury are regulated by the injury magnitude. PMID:20693926

  13. Systemic cytokine response in moribund mice of streptococcal toxic shock syndrome model.

    PubMed

    Saito, Mitsumasa; Kajiwara, Hideko; Iida, Ken-ichiro; Hoshina, Takayuki; Kusuhara, Koichi; Hara, Toshiro; Yoshida, Shin-ichi

    2011-02-01

    Streptococcus pyogenes causes severe invasive disease in humans, including streptococcal toxic shock syndrome (STSS). We previously reported a mouse model that is similar to human STSS. When mice were infected intramuscularly with 10(7) CFU of S. pyogenes, all of them survived acute phase of infection. After 20 or more days of infection, a number of them died suddenly accompanied by S. pyogenes bacteremia. We call this phenomenon "delayed death". We analyzed the serum cytokine levels of mice with delayed death, and compared them with those of mice who died in the acute phase of intravenous S. pyogenes infection. The serum levels of TNF-α and IFN-γ in mice of delayed death were more than 100 times higher than those in acute death mice. IL-10 and IL-12, which were not detected in acute death, were also significantly higher in mice of delayed death. IL-6 and MCP-1 (CCL-2) were elevated in both groups of mice. It was noteworthy that not only pro-inflammatory cytokines but also anti-inflammatory cytokines were elevated in delayed death. We also found that intravenous TNF-α injection accelerated delayed death, suggesting that an increase of serum TNF-α induced S. pyogenes bacteremia in our mouse model. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. The effect of chronic ammonia exposure on acute phase proteins, immunoglobulin and cytokines in laying hens

    USDA-ARS?s Scientific Manuscript database

    Ammonia is a potential health hazard to both humans and animals, causing systemic low-grade inflammation based on its levels and durations. The objective of this study was to examine the effect of 45 weeks of exposure to 30 ppm NH3 on the concentrations of acute phase proteins, immunoglobulins and c...

  15. [The effect of docosahexaenoic acid on the loss of appetite in pediatric patients with pneumonia].

    PubMed

    López-Alarcón, Mardya; Furuya-Meguro, María Magdalena; García-Zúñiga, Pedro Alberto; Tadeo-Pulido, Irsa

    2006-01-01

    To evaluate the role of docosahexaenoic acid (DHA) administered during the acute phase of pneumonia in infants, on appetite, cytokines and leptin concentrations. Seventeen children between three months and 12 years of age were followed from hospitalization to discharge. Children were randomly assigned to receive DHA or placebo. The effect of treatment was evaluated on energy intake, cytokines, and leptin concentrations. Cytokine concentrations tended to decrease earlier in DHA children. By day 4, concentrations of IL-1beta and TNFalpha had decreased by 12%, while such concentrations increased by 12% and 250% in placebo children. Energy intake recovered in DHA children at discharge, but placebo children were still consuming only 60% of their requirements. Our results suggest that DHA administered in the acute phase of infection could modulate IL-1 and TNF production, and secondarily, decrease the effect of infection on appetite.

  16. G-CSF maintains controlled neutrophil mobilization during acute inflammation by negatively regulating CXCR2 signaling

    PubMed Central

    Bajrami, Besnik; Zhu, Haiyan; Zhang, Yu C.

    2016-01-01

    Cytokine-induced neutrophil mobilization from the bone marrow to circulation is a critical event in acute inflammation, but how it is accurately controlled remains poorly understood. In this study, we report that CXCR2 ligands are responsible for rapid neutrophil mobilization during early-stage acute inflammation. Nevertheless, although serum CXCR2 ligand concentrations increased during inflammation, neutrophil mobilization slowed after an initial acute fast phase, suggesting a suppression of neutrophil response to CXCR2 ligands after the acute phase. We demonstrate that granulocyte colony-stimulating factor (G-CSF), usually considered a prototypical neutrophil-mobilizing cytokine, was expressed later in the acute inflammatory response and unexpectedly impeded CXCR2-induced neutrophil mobilization by negatively regulating CXCR2-mediated intracellular signaling. Blocking G-CSF in vivo paradoxically elevated peripheral blood neutrophil counts in mice injected intraperitoneally with Escherichia coli and sequestered large numbers of neutrophils in the lungs, leading to sterile pulmonary inflammation. In a lipopolysaccharide-induced acute lung injury model, the homeostatic imbalance caused by G-CSF blockade enhanced neutrophil accumulation, edema, and inflammation in the lungs and ultimately led to significant lung damage. Thus, physiologically produced G-CSF not only acts as a neutrophil mobilizer at the relatively late stage of acute inflammation, but also prevents exaggerated neutrophil mobilization and the associated inflammation-induced tissue damage during early-phase infection and inflammation. PMID:27551153

  17. Signals generating anorexia during acute illness.

    PubMed

    Langhans, Wolfgang

    2007-08-01

    Anorexia is part of the body's acute-phase response to illness. Microbial products such as lipopolysaccharides (LPS), which are also commonly used to model acute illness, trigger the acute-phase response and cause anorexia mainly through pro-inflammatory cytokines. LPS stimulate cytokine production through the cell-surface structural molecule CD14 and toll-like receptor-4. Cytokines ultimately change neural activity in brain areas controlling food intake and energy balance. The blood-brain barrier endothelial cells (BBB EC) are an important site of cytokine action in this context. BBB EC and perivascular cells (microglia and macrophages) form a complex regulatory interface that modulates neuronal activity by the release of messengers (e.g. PG, NO) in response to peripheral challenges. Serotonergic neurons originating in the raphe nuclei and glucagon-like peptide-1-expressing neurons in the hindbrain may be among the targets of these messengers, because serotonin (5-HT), acting through the 5-HT2C receptor, and glucagon-like peptide-1 have recently emerged as neurochemical mediators of LPS anorexia. The central melanocortin system, which is a downstream target of serotonergic neurons, also appears to be involved in mediation of LPS anorexia. Interestingly, LPS also reduce orexin expression and the activity of orexin neurons in the lateral hypothalamic area of fasted mice. As the eating-stimulatory properties of orexin are apparently related to arousal, the inhibitory effect of LPS on orexin neurons might be involved in LPS-induced inactivity and anorexia. In summary, the immune signalling pathways of LPS-induced, and presumably acute illness-induced, anorexia converge on central neural signalling systems that control food intake and energy balance in healthy individuals.

  18. Parathyroid hormone-related protein (PTHrP) as a causative factor of cancer-associated wasting: possible involvement of PTHrP in the repression of locomotor activity in rats bearing human tumor xenografts.

    PubMed

    Onuma, Etsuro; Tsunenari, Toshiaki; Saito, Hidemi; Sato, Koh; Yamada-Okabe, Hisafumi; Ogata, Etsuro

    2005-09-01

    Nude rats bearing the LC-6-JCK human lung cancer xenograft displayed cancer-associated wasting syndrome in addition to humoral hypercalcemia of malignancy. In these rats, not only PTHrP but also several other human proinflammatory cytokines, such as IL-6, leukemia-inducing factor, IL-8, IL-5 and IL-11, were secreted to the bloodstream. Proinflammatory cytokines induce acute-phase reactions, as evidenced by a decrease of serum albumin and an increase in alpha1-acid glycoprotein. Tumor resection abolished the production of proinflammatory cytokines and improved acute-phase reactions, whereas anti-PTHrP antibody affected neither proinflammatory cytokine production nor acute-phase reactions. Nevertheless, tumor resection and administration of anti-PTHrP antibody similarly and markedly attenuated not only hypercalcemia but also loss of fat, muscle and body weight. Body weight gain by anti-PTHrP antibody was associated with increased food consumption; increased body weight from anti-PTHrP antibody was observed when animals were freely fed but not when they were given the same feeding as those that received only vehicle. Furthermore, nude rats bearing LC-6-JCK showed reduced locomotor activity, less eating and drinking and low blood phosphorus; and anti-PTHrP antibody restored them. Although alendronate, a bisphosphonate drug, decreased blood calcium, it affected neither locomotor activity nor serum phosphorus level. These results indicate that PTHrP represses physical activity and energy metabolism independently of hypercalcemia and proinflammatory cytokine actions and that deregulation of such physiologic activities and functions by PTHrP is at least in part involved in PTHrP-induced wasting syndrome.

  19. Effects of ACL Reconstructive Surgery on Temporal Variations of Cytokine Levels in Synovial Fluid

    PubMed Central

    Bigoni, Marco; Gandolla, Marta; Sacerdote, Paola; Piatti, Massimiliano; Castelnuovo, Alberto; Franchi, Silvia; Gorla, Massimo; Munegato, Daniele; Gaddi, Diego; Pedrocchi, Alessandra; Omeljaniuk, Robert J.; Locatelli, Vittorio; Torsello, Antonio

    2016-01-01

    Anterior cruciate ligament (ACL) reconstruction restores knee stability but does not reduce the incidence of posttraumatic osteoarthritis induced by inflammatory cytokines. The aim of this research was to longitudinally measure IL-1β, IL-6, IL-8, IL-10, and TNF-α levels in patients subjected to ACL reconstruction using bone-patellar tendon-bone graft. Synovial fluid was collected within 24–72 hours of ACL rupture (acute), 1 month after injury immediately prior to surgery (presurgery), and 1 month thereafter (postsurgery). For comparison, a “control” group consisted of individuals presenting chronic ACL tears. Our results indicate that levels of IL-6, IL-8, and IL-10 vary significantly over time in reconstruction patients. In the acute phase, the levels of these cytokines in reconstruction patients were significantly greater than those in controls. In the presurgery phase, cytokine levels in reconstruction patients were reduced and comparable with those in controls. Finally, cytokine levels increased again with respect to control group in the postsurgery phase. The levels of IL-1β and TNF-α showed no temporal variation. Our data show that the history of an ACL injury, including trauma and reconstruction, has a significant impact on levels of IL-6, IL-8, and IL-10 in synovial fluid but does not affect levels of TNF-α and IL-1β. PMID:27313403

  20. Effects of ACL Reconstructive Surgery on Temporal Variations of Cytokine Levels in Synovial Fluid.

    PubMed

    Bigoni, Marco; Turati, Marco; Gandolla, Marta; Sacerdote, Paola; Piatti, Massimiliano; Castelnuovo, Alberto; Franchi, Silvia; Gorla, Massimo; Munegato, Daniele; Gaddi, Diego; Pedrocchi, Alessandra; Omeljaniuk, Robert J; Locatelli, Vittorio; Torsello, Antonio

    2016-01-01

    Anterior cruciate ligament (ACL) reconstruction restores knee stability but does not reduce the incidence of posttraumatic osteoarthritis induced by inflammatory cytokines. The aim of this research was to longitudinally measure IL-1β, IL-6, IL-8, IL-10, and TNF-α levels in patients subjected to ACL reconstruction using bone-patellar tendon-bone graft. Synovial fluid was collected within 24-72 hours of ACL rupture (acute), 1 month after injury immediately prior to surgery (presurgery), and 1 month thereafter (postsurgery). For comparison, a "control" group consisted of individuals presenting chronic ACL tears. Our results indicate that levels of IL-6, IL-8, and IL-10 vary significantly over time in reconstruction patients. In the acute phase, the levels of these cytokines in reconstruction patients were significantly greater than those in controls. In the presurgery phase, cytokine levels in reconstruction patients were reduced and comparable with those in controls. Finally, cytokine levels increased again with respect to control group in the postsurgery phase. The levels of IL-1β and TNF-α showed no temporal variation. Our data show that the history of an ACL injury, including trauma and reconstruction, has a significant impact on levels of IL-6, IL-8, and IL-10 in synovial fluid but does not affect levels of TNF-α and IL-1β.

  1. Acute Zika Virus Infection in an Endemic Area Shows Modest Proinflammatory Systemic Immunoactivation and Cytokine-Symptom Associations.

    PubMed

    Barros, Jéssica Barletto de Sousa; da Silva, Paulo Alex Neves; Koga, Rosemary de Carvalho Rocha; Gonzalez-Dias, Patrícia; Carmo Filho, José Rodrigues; Nagib, Patrícia Resende Alo; Coelho, Verônica; Nakaya, Helder I; Fonseca, Simone Gonçalves; Pfrimer, Irmtraut Araci Hoffmann

    2018-01-01

    An early immune response to Zika virus (ZIKV) infection may determine its clinical manifestation and outcome, including neurological effects. However, low-grade and transient viremia limits the prompt diagnosis of acute ZIKV infection. We have investigated the plasma cytokine, chemokine, and growth factor profiles of 36 individuals from an endemic area displaying different symptoms such as exanthema, headache, myalgia, arthralgia, fever, hyperemia, swelling, itching, and nausea during early-phase infection. These profiles were then associated with symptoms, revealing important aspects of the immunopathophysiology of ZIKV infection. The levels of some cytokines/chemokines were significantly higher in acute ZIKV-infected individuals compared to healthy donors, including interferon (IFN) gamma-induced protein 10 (IP-10), regulated on activation, normal T cell expressed and secreted (RANTES), IFN-γ, interleukin (IL)-9, IL-7, IL-5, and IL-1ra, including some with predominantly immunoregulatory activity. Of note, we found that higher levels of IP-10 and IL-5 in ZIKV-infected individuals were strongly associated with exanthema and headache, respectively. Also, higher levels of IL-1ra were associated with subjects with arthralgia, whereas those with fever showed lower levels of granulocyte-colony stimulating factor (G-CSF). No correlation was observed between the number of symptoms and ZIKV viral load. Interestingly, only IP-10 showed significantly decreased levels in the recovery phase. In conclusion, our results indicate that acute ZIKV infection in a larger cohort resident to an endemic area displays a modest systemic immune activation profile, involving both proinflammatory and immunoregulatory cytokines and chemokines that could participate of virus control. In addition, we showed that differential cytokine/chemokine levels are related to specific clinical symptoms, suggesting their participation in underlying mechanisms.

  2. Ameliorating effect of Kalpaamruthaa, a Siddha preparation in adjuvant induced arthritis in rats with reference to changes in proinflammatory cytokines and acute phase proteins.

    PubMed

    Mythilypriya, Rajendran; Sachdanandam, Palanivelu Shanthi; Sachdanandam, Panchanadam

    2009-05-15

    As disease initiation and propagation still represents a research question in rheumatoid arthritis (RA), the cytokines play a central role in the inflammatory articular process including the synovial proliferation and cartilage destruction in RA and understanding the role of these cytokines in turn exploits them as therapeutic targets in RA. The present study illustrates the beneficial outcome of the Siddha drug Kalpaamruthaa (KA) in reducing the pathological lesions caused by the proinflammatory cytokines in adjuvant induced arthritis (AIA) in rats. KA consists of Semecarpus anacardium nut milk extract (SA), dried powder of Emblica officinalis fruit and honey. Both SA and KA were administered at dose of 150 mg/kg b.wt. for 14 days after 14 days of adjuvant injection in rats. The protein expressions of tumour necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta), the levels of acute phase proteins, immunoglobulins and the radiological, histopathological and electron microscopical changes in control and experimental animals were analyzed. Both SA and KA significantly regulated the inflammation in arthritic joints by reducing extracellular matrix degradation and cartilage and bone destruction via down regulating the levels of TNF-alpha and IL-1beta, as well the levels of acute phase proteins with appreciable increase in the levels of immunoglobulins in arthritic rats. Of both the drugs KA exhibited a profound effect than sole treatment of SA and the enhanced effect of KA might be attributed to the combined effect of the flavonoids, tannins, vitamin C and other phytoconstituents present in the drug.

  3. Inherited Variation in Cytokine, Acute Phase Response, and Calcium Metabolism Genes Affects Susceptibility to Infective Endocarditis

    PubMed Central

    Rutkovskaya, Natalia V.; Kondyukova, Natalia V.; Odarenko, Yuri N.; Kazachek, Yana V.; Tsepokina, Anna V.; Barbarash, Leonid S.

    2017-01-01

    Infective endocarditis (IE) is a septic inflammation of the endocardium. Recognition of microbial patterns, cytokine and acute phase responses, hemostasis features, and alterations in plasma lipid and calcium profile all have been reported to affect pathogenesis and clinical course of IE. Having recruited 123 patients with IE and 300 age-, sex-, and ethnicity-matched healthy blood donors, we profiled their genomic DNA for 35 functionally significant polymorphisms within the 22 selected genes involved in the abovementioned pathways, with the further genetic association analysis. We found that the G/A genotype of the rs1143634 polymorphism within the IL1B gene, the G/T genotype of the rs3212227 polymorphism within the IL12B gene, the A/G genotype of the rs1130864 polymorphism within the CRP gene, and the G allele of the rs1801197 polymorphism within the CALCR gene were associated with a decreased risk of IE whereas the T/T genotype of the rs1205 polymorphism within the CRP gene was associated with a higher risk of IE. Furthermore, heterozygous genotypes of the rs1143634 and rs3212227 polymorphisms were associated with the higher plasma levels of IL-1β and IL-12, respectively. Our results indicate that inherited variation in the cytokine, acute phase response, and calcium metabolism pathways may be linked to IE. PMID:28659664

  4. Tracking Spinal Cord Injury: Differences in Cytokine Expression of IGF-1, TGF- B1, and sCD95l Can Be Measured in Blood Samples and Correspond to Neurological Remission in a 12-Week Follow-Up.

    PubMed

    Ferbert, Thomas; Child, Christopher; Graeser, Viola; Swing, Tyler; Akbar, Michael; Heller, Raban; Biglari, Bahram; Moghaddam, Arash

    2017-02-01

    Neuroinflammation presumably has an important impact on the secondary phase of spinal cord injury and is regulated by pro- and anti-inflammatory cytokines. We analyzed serum levels of three different cytokines (insulin-like-growth-factor [IGF]-1, tumor growth factor [TGF]-β1, and soluble CD 95 ligand [sCD95L]), in blood samples of 23 patients admitted with acute traumatic spinal cord injury between November 2010 and July 2013 with a follow-up period of 12 weeks. Quantification was performed using Human Quantikine Immunoassays, classification of neurological impairment was performed using the American Spinal Cord Injury Impairment Scale at time of admission and after 12 weeks. After an initial drop of all three cytokine serum levels, IGF-1, TGF-β1, and sCD95L showed significantly increased serum levels during the acute and sub-acute phases. For IGF-1 and sCD95L, we could also observe significantly higher serum levels in patients without neurological improvement compared with patients who had improvement after 12 weeks. In this study, we were able to show differences in cytokine serum levels in patients with different neurological outcome. Measuring the serum level patterns of IGF-1, TGF-β1, and sCD95L might be a useful tool for prognosis in patients with neurological improvement and tracking the pathophysiology in further studies. Further, our observations might link promising therapeutic efforts in numerous animal studies and future studies in human patients.

  5. Host-pathogen interplay at primary infection sites in pigs challenged with Actinobacillus pleuropneumoniae.

    PubMed

    Sassu, Elena L; Frömbling, Janna; Duvigneau, J Catharina; Miller, Ingrid; Müllebner, Andrea; Gutiérrez, Ana M; Grunert, Tom; Patzl, Martina; Saalmüller, Armin; von Altrock, Alexandra; Menzel, Anne; Ganter, Martin; Spergser, Joachim; Hewicker-Trautwein, Marion; Verspohl, Jutta; Ehling-Schulz, Monika; Hennig-Pauka, Isabel

    2017-02-28

    Actinobacillus (A.) pleuropneumoniae is the causative agent of porcine pleuropneumonia and causes significant losses in the pig industry worldwide. Early host immune response is crucial for further progression of the disease. A. pleuropneumoniae is either rapidly eliminated by the immune system or switches to a long-term persistent form. To gain insight into the host-pathogen interaction during the early stages of infection, pigs were inoculated intratracheally with A. pleuropneumoniae serotype 2 and humanely euthanized eight hours after infection. Gene expression studies of inflammatory cytokines and the acute phase proteins haptoglobin, serum amyloid A and C-reactive protein were carried out by RT-qPCR from the lung, liver, tonsils and salivary gland. In addition, the concentration of cytokines and acute phase proteins were measured by quantitative immunoassays in bronchoalveolar lavage fluid, serum and saliva. In parallel to the analyses of host response, the impact of the host on the bacterial pathogen was assessed on a metabolic level. For the latter, Fourier-Transform Infrared (FTIR-) spectroscopy was employed. Significant cytokine and acute phase protein gene expression was detected in the lung and the salivary gland however this was not observed in the tonsils. In parallel to the analyses of host response, the impact of the host on the bacterial pathogen was assessed on a metabolic level. For the latter investigations, Fourier-Transform Infrared (FTIR-) spectroscopy was employed. The bacteria isolated from the upper and lower respiratory tract showed distinct IR spectral patterns reflecting the organ-specific acute phase response of the host. In summary, this study implies a metabolic adaptation of A. pleuropneumoniae to the porcine upper respiratory tract already during early infection, which might indicate a first step towards the persistence of A. pleuropneumoniae. Not only in lung, but also in the salivary gland an increased inflammatory gene expression was detectable during the acute stage of infection.

  6. Inhibition of plasmin attenuates murine acute graft-versus-host disease mortality by suppressing the matrix metalloproteinase-9-dependent inflammatory cytokine storm and effector cell trafficking.

    PubMed

    Sato, A; Nishida, C; Sato-Kusubata, K; Ishihara, M; Tashiro, Y; Gritli, I; Shimazu, H; Munakata, S; Yagita, H; Okumura, K; Tsuda, Y; Okada, Y; Tojo, A; Nakauchi, H; Takahashi, S; Heissig, B; Hattori, K

    2015-01-01

    The systemic inflammatory response observed during acute graft-versus-host disease (aGVHD) is driven by proinflammatory cytokines, a 'cytokine storm'. The function of plasmin in regulating the inflammatory response is not fully understood, and its role in the development of aGVHD remains unresolved. Here we show that plasmin is activated during the early phase of aGVHD in mice, and its activation correlated with aGVHD severity in humans. Pharmacological plasmin inhibition protected against aGVHD-associated lethality in mice. Mechanistically, plasmin inhibition impaired the infiltration of inflammatory cells, the release of membrane-associated proinflammatory cytokines including tumor necrosis factor-α (TNF-α) and Fas-ligand directly, or indirectly via matrix metalloproteinases (MMPs) and alters monocyte chemoattractant protein-1 (MCP-1) signaling. We propose that plasmin and potentially MMP-9 inhibition offers a novel therapeutic strategy to control the deadly cytokine storm in patients with aGVHD, thereby preventing tissue destruction.

  7. Dataset of proinflammatory cytokine and cytokine receptor gene expression in rainbow trout (Oncorhynchus mykiss) measured using a novel GeXP multiplex, RT-PCR assay

    USDA-ARS?s Scientific Manuscript database

    A GeXP multiplex, RT-PCR assay was developed and optimized that simultaneously measures expression of a suite of immune-relevant genes in rainbow trout (Oncorhynchus mykiss), concentrating on tumor necrosis factor and interleukin-1 ligand/receptor systems and acute phase response genes. The dataset ...

  8. STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia.

    PubMed

    Bonetto, Andrea; Aydogdu, Tufan; Kunzevitzky, Noelia; Guttridge, Denis C; Khuri, Sawsan; Koniaris, Leonidas G; Zimmers, Teresa A

    2011-01-01

    Cachexia, or weight loss despite adequate nutrition, significantly impairs quality of life and response to therapy in cancer patients. In cancer patients, skeletal muscle wasting, weight loss and mortality are all positively associated with increased serum cytokines, particularly Interleukin-6 (IL-6), and the presence of the acute phase response. Acute phase proteins, including fibrinogen and serum amyloid A (SAA) are synthesized by hepatocytes in response to IL-6 as part of the innate immune response. To gain insight into the relationships among these observations, we studied mice with moderate and severe Colon-26 (C26)-carcinoma cachexia. Moderate and severe C26 cachexia was associated with high serum IL-6 and IL-6 family cytokines and highly similar patterns of skeletal muscle gene expression. The top canonical pathways up-regulated in both were the complement/coagulation cascade, proteasome, MAPK signaling, and the IL-6 and STAT3 pathways. Cachexia was associated with increased muscle pY705-STAT3 and increased STAT3 localization in myonuclei. STAT3 target genes, including SOCS3 mRNA and acute phase response proteins, were highly induced in cachectic muscle. IL-6 treatment and STAT3 activation both also induced fibrinogen in cultured C2C12 myotubes. Quantitation of muscle versus liver fibrinogen and SAA protein levels indicates that muscle contributes a large fraction of serum acute phase proteins in cancer. These results suggest that the STAT3 transcriptome is a major mechanism for wasting in cancer. Through IL-6/STAT3 activation, skeletal muscle is induced to synthesize acute phase proteins, thus establishing a molecular link between the observations of high IL-6, increased acute phase response proteins and muscle wasting in cancer. These results suggest a mechanism by which STAT3 might causally influence muscle wasting by altering the profile of genes expressed and translated in muscle such that amino acids liberated by increased proteolysis in cachexia are synthesized into acute phase proteins and exported into the blood.

  9. STAT3 Activation in Skeletal Muscle Links Muscle Wasting and the Acute Phase Response in Cancer Cachexia

    PubMed Central

    Kunzevitzky, Noelia; Guttridge, Denis C.; Khuri, Sawsan; Koniaris, Leonidas G.; Zimmers, Teresa A.

    2011-01-01

    Background Cachexia, or weight loss despite adequate nutrition, significantly impairs quality of life and response to therapy in cancer patients. In cancer patients, skeletal muscle wasting, weight loss and mortality are all positively associated with increased serum cytokines, particularly Interleukin-6 (IL-6), and the presence of the acute phase response. Acute phase proteins, including fibrinogen and serum amyloid A (SAA) are synthesized by hepatocytes in response to IL-6 as part of the innate immune response. To gain insight into the relationships among these observations, we studied mice with moderate and severe Colon-26 (C26)-carcinoma cachexia. Methodology/Principal Findings Moderate and severe C26 cachexia was associated with high serum IL-6 and IL-6 family cytokines and highly similar patterns of skeletal muscle gene expression. The top canonical pathways up-regulated in both were the complement/coagulation cascade, proteasome, MAPK signaling, and the IL-6 and STAT3 pathways. Cachexia was associated with increased muscle pY705-STAT3 and increased STAT3 localization in myonuclei. STAT3 target genes, including SOCS3 mRNA and acute phase response proteins, were highly induced in cachectic muscle. IL-6 treatment and STAT3 activation both also induced fibrinogen in cultured C2C12 myotubes. Quantitation of muscle versus liver fibrinogen and SAA protein levels indicates that muscle contributes a large fraction of serum acute phase proteins in cancer. Conclusions/Significance These results suggest that the STAT3 transcriptome is a major mechanism for wasting in cancer. Through IL-6/STAT3 activation, skeletal muscle is induced to synthesize acute phase proteins, thus establishing a molecular link between the observations of high IL-6, increased acute phase response proteins and muscle wasting in cancer. These results suggest a mechanism by which STAT3 might causally influence muscle wasting by altering the profile of genes expressed and translated in muscle such that amino acids liberated by increased proteolysis in cachexia are synthesized into acute phase proteins and exported into the blood. PMID:21799891

  10. Bovine Intestinal Alkaline Phosphatase Reduces Inflammation After Induction of Acute Myocardial Infarction in Mice.

    PubMed

    Fiechter, Danielle; Kats, Suzanne; Brands, Ruud; van Middelaar, Ben; Pasterkamp, Gerard; de Kleijn, Dominique; Seinen, Willem

    2011-10-01

    There has been increasing evidence suggesting that lipopolysaccharide or endotoxin may be an important activator of the innate immune system after acute myocardial infarction. Bovine intestinal alkaline phosphatase reduces inflammation in several endotoxin mediated diseases by dephosphorylation of the lipid A moiety of lipopolysaccharide. The aim of this study was to investigate the effect of bovine intestinal alkaline phosphatase on reducing inflammation after acute myocardial infarction. Just before permanent ligation of the left anterior descending coronary (LAD) artery to induce acute myocardial infarction in Balb/c mice, bovine intestinal alkaline phosphatase (bIAP) was administrated intravenously. After 4 hours, mice were sacrificed and the inflammatory response was assessed. Acute myocardial infarction induced the production of different cytokines, which were measured in blood. Treatment with bovine intestinal alkaline phosphatase resulted in a significant reduction of the pro-inflammatory cytokines IL-6, IL-1β and the chymase mouse mast cell protease-1. No difference in the production of the anti-inflammatory cytokine IL-10 was observed between the control group and the bovine intestinal alkaline phosphatase treated group. In a mouse model of permanent LAD coronary artery ligation, bIAP diminishes the pro-inflammatory responses but does not have an effect on the anti-inflammatory response in the acute phase after acute myocardial infarction.

  11. Changes of gene expression of iron regulatory proteins during turpentine oil-induced acute-phase response in the rat.

    PubMed

    Sheikh, Nadeem; Dudas, Jozsef; Ramadori, Giuliano

    2007-07-01

    In the present study, turpentine oil was injected in the hind limb muscle of the rat to stimulate an acute-phase response (APR). The changes in the gene expression of cytokines and proteins known to be involved in the iron regulatory pathway were then studied in the liver and in extra-hepatic tissue. In addition to the strong upregulation of interleukin-6 (IL-6) and IL-1 beta observed in the inflamed muscle, an upregulation of the genes for IL1-beta and tumor necrosis factor-alpha, but not IL-6, were detectable in the liver. Hepatic Hepc gene expression increased to a maximum at 6 h after the onset of APR. An upregulation of transferrin, transferrin receptor 1 (TfR1), TfR2, ferritin-H, iron responsive element binding protein-1 (IRP1), IRP2 and divalent metal transporter gene expression was also found. Hemojuvelin (Hjv)-, ferroportin 1-, Dcytb-, hemochromatosis-gene- and hephaestin gene expression was downregulated. Hepcidin (Hepc) gene expression was not only detectable in extra-hepatic tissues such as heart, small intestine, colon, spleen and kidney but it was also upregulated under acute-phase conditions, with the Hjv gene being regulated antagonistically. Fpn-1 gene expression was downregulated significantly in heart, colon and spleen. Most of the genes of the known proteins involved in iron metabolism are expressed not only in the liver but also in extra-hepatic tissues. Under acute-phase conditions, acute-phase cytokines (eg IL-6) may modulate the gene expression of such proteins not only in the liver but also in other organs.

  12. Analysis of cytokines IFN-γ, TNF-α, TGF-β and nitric oxide in amniotic fluid and serum of pregnant women with toxoplasmosis in southern Brazil.

    PubMed

    Marchioro, Ariella Andrade; Colli, Cristiane Maria; de Souza, Carla Zangari; da Silva, Suelen Santos; Tiyo, Bruna Tiaki; Evangelista, Fernanda F; Higa, Lourenco; Conchon-Costa, Ivete; Falavigna-Guilherme, Ana Lúcia

    2018-06-01

    This study detected and compared the levels of IFN-γ, TNF-α, TGF-β and nitric oxide (NO) in amniotic fluid (AF) and serum of pregnancies with acute toxoplasmosis, Southern Brazil. It also was compared the levels of the same mediators in the serum of pregnancies in acute and chronic toxoplasmosis with non-infected. Serological investigation, anti-T gondii IgM and IgG, of the 67 pregnancies was determined by Elisa MEIA. Forty two were uninfected, eight in chronic phase and 17 in acute phase. Among the acute phase, seven agreed to amniocentesis. The cytokines, in serum and in AF, were assessed by sandwich ELISA, and NO was estimated from the nitrite measurement with Griess reagent. The IFN-γ and TGF-β levels in the AF and blood were similar, while TNF-α levels was lower in the AF. On the other hand, NO was higher in the AF. Chronically infected pregnant women have showed lower levels of INF-γ than those in acute and uninfected pregnancies. The serological levels of TNF-α were lower in pregnancies with toxoplasmosis, when compared with non-infected. TGF-β levels were higher in pregnancies in acute phase when compared with uninfected or chronically infected. NO in the serum of the infected had lower levels than those non-infected. In summary, higher concentrations of NO and lower levels of TNF-α were observed in the AF than in the serum of acute pregnancies, while TGF-β e INF-γ levels were similar in both biological material. In the serum of infected pregnancies was observed decrease in inflammatory mediators and increase of TGF-β. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. The acute-phase response impairs host defence against Enterococcus faecium peritonitis

    PubMed Central

    Leendertse, Masja; Willems, Rob J L; Giebelen, Ida A J; van den Pangaart, Petra S; Bonten, Marc J M; van der Poll, Tom

    2009-01-01

    Enterococcus faecium is an emerging pathogen that causes infections in hospitalized patients with various co-morbid diseases. These underlying diseases are often associated with an acute-phase response that renders patients vulnerable to nosocomial infections. To study the influence of the acute-phase response induced by sterile tissue injury on host defence against E. faecium, mice were injected subcutaneously with either turpentine or casein 1 day before intraperitoneal infection with E. faecium. Control mice were subcutaneously injected with saline or sodium bicarbonate, respectively. Turpentine and casein induced an acute-phase response as reflected by increases in the plasma concentrations of interleukin-6, serum amyloid P and C3. A pre-existent acute-phase response in mice was associated with a strongly reduced capacity to clear E. faecium, resulting in prolonged bacteraemia for several days. The inflammatory response to E. faecium was impaired in mice with an acute-phase response, as shown by reduced capacity to mount a neutrophilic leucocytosis in peripheral blood and by decreased local cytokine concentrations. These data indicate that the acute-phase response impairs host defence against E. faecium, suggesting that this condition may contribute to the increased vulnerability of critically ill patients to enterococcal infections. PMID:19175794

  14. Cytokine Release Syndrome After Chimeric Antigen Receptor T Cell Therapy for Acute Lymphoblastic Leukemia.

    PubMed

    Fitzgerald, Julie C; Weiss, Scott L; Maude, Shannon L; Barrett, David M; Lacey, Simon F; Melenhorst, J Joseph; Shaw, Pamela; Berg, Robert A; June, Carl H; Porter, David L; Frey, Noelle V; Grupp, Stephan A; Teachey, David T

    2017-02-01

    Initial success with chimeric antigen receptor-modified T cell therapy for relapsed/refractory acute lymphoblastic leukemia is leading to expanded use through multicenter trials. Cytokine release syndrome, the most severe toxicity, presents a novel critical illness syndrome with limited data regarding diagnosis, prognosis, and therapy. We sought to characterize the timing, severity, and intensive care management of cytokine release syndrome after chimeric antigen receptor-modified T cell therapy. Retrospective cohort study. Academic children's hospital. Thirty-nine subjects with relapsed/refractory acute lymphoblastic leukemia treated with chimeric antigen receptor-modified T cell therapy on a phase I/IIa clinical trial (ClinicalTrials.gov number NCT01626495). All subjects received chimeric antigen receptor-modified T cell therapy. Thirteen subjects with cardiovascular dysfunction were treated with the interleukin-6 receptor antibody tocilizumab. Eighteen subjects (46%) developed grade 3-4 cytokine release syndrome, with prolonged fever (median, 6.5 d), hyperferritinemia (median peak ferritin, 60,214 ng/mL), and organ dysfunction. Fourteen (36%) developed cardiovascular dysfunction treated with vasoactive infusions a median of 5 days after T cell therapy. Six (15%) developed acute respiratory failure treated with invasive mechanical ventilation a median of 6 days after T cell therapy; five met criteria for acute respiratory distress syndrome. Encephalopathy, hepatic, and renal dysfunction manifested later than cardiovascular and respiratory dysfunction. Subjects had a median of 15 organ dysfunction days (interquartile range, 8-20). Treatment with tocilizumab in 13 subjects resulted in rapid defervescence (median, 4 hr) and clinical improvement. Grade 3-4 cytokine release syndrome occurred in 46% of patients following T cell therapy for relapsed/refractory acute lymphoblastic leukemia. Clinicians should be aware of expanding use of this breakthrough therapy and implications for critical care units in cancer centers.

  15. Bovine Intestinal Alkaline Phosphatase Reduces Inflammation After Induction of Acute Myocardial Infarction in Mice

    PubMed Central

    Fiechter, Danielle; Kats, Suzanne; Brands, Ruud; van Middelaar, Ben; Pasterkamp, Gerard; de Kleijn, Dominique; Seinen, Willem

    2011-01-01

    Background There has been increasing evidence suggesting that lipopolysaccharide or endotoxin may be an important activator of the innate immune system after acute myocardial infarction. Bovine intestinal alkaline phosphatase reduces inflammation in several endotoxin mediated diseases by dephosphorylation of the lipid A moiety of lipopolysaccharide. The aim of this study was to investigate the effect of bovine intestinal alkaline phosphatase on reducing inflammation after acute myocardial infarction. Methods Just before permanent ligation of the left anterior descending coronary (LAD) artery to induce acute myocardial infarction in Balb/c mice, bovine intestinal alkaline phosphatase (bIAP) was administrated intravenously. After 4 hours, mice were sacrificed and the inflammatory response was assessed. Acute myocardial infarction induced the production of different cytokines, which were measured in blood. Results Treatment with bovine intestinal alkaline phosphatase resulted in a significant reduction of the pro-inflammatory cytokines IL-6, IL-1β and the chymase mouse mast cell protease-1. No difference in the production of the anti-inflammatory cytokine IL-10 was observed between the control group and the bovine intestinal alkaline phosphatase treated group. Conclusion In a mouse model of permanent LAD coronary artery ligation, bIAP diminishes the pro-inflammatory responses but does not have an effect on the anti-inflammatory response in the acute phase after acute myocardial infarction. PMID:28357012

  16. Pig model mimicking chronic hepatitis E virus infection in immunocompromised patients to assess immune correlates during chronicity

    PubMed Central

    Cao, Dianjun; Cao, Qian M.; Subramaniam, Sakthivel; Yugo, Danielle M.; Heffron, C. Lynn; Rogers, Adam J.; Kenney, Scott P.; Tian, Debin; Matzinger, Shannon R.; Overend, Christopher; Catanzaro, Nicholas; LeRoith, Tanya; Wang, Heng; Piñeyro, Pablo; Lindstrom, Nicole; Clark-Deener, Sherrie; Yuan, Lijuan; Meng, Xiang-Jin

    2017-01-01

    Chronic hepatitis E virus (HEV) infection is a significant clinical problem in immunocompromised individuals such as organ transplant recipients, although the mechanism remains unknown because of the lack of an animal model. We successfully developed a pig model of chronic HEV infection and examined immune correlates leading to chronicity. The conditions of immunocompromised patients were mimicked by treating pigs with an immunosuppressive regimen including cyclosporine, azathioprine, and prednisolone. Immunocompromised pigs infected with HEV progressed to chronicity, because 8/10 drug-treated HEV-infected pigs continued fecal virus shedding beyond the acute phase of infection, whereas the majority (7/10) of mock-treated HEV-infected pigs cleared fecal viral shedding at 8 wk postinfection. During chronic infection, serum levels of the liver enzyme γ-glutamyl transferase and fecal virus shedding were significantly higher in immunocompromised HEV-infected pigs. To identify potential immune correlates of chronic infection, we determined serum levels of cytokines and cell-mediated immune responses in pigs. Results showed that HEV infection of immunocompromised pigs reduced the serum levels of Th1 cytokines IL-2 and IL-12, and Th2 cytokines IL-4 and IL-10, particularly during the acute phase of infection. Furthermore IFN-γ–specific CD4+ T-cell responses were reduced in immunocompromised pigs during the acute phase of infection, but TNF-α–specific CD8+ T-cell responses increased during the chronic phase of infection. Thus, active suppression of cell-mediated immune responses under immunocompromised conditions may facilitate the establishment of chronic HEV infection. This pig model will aid in delineating the mechanisms of chronic HEV infection and in developing effective therapeutics against chronic hepatitis E. PMID:28630341

  17. Pig model mimicking chronic hepatitis E virus infection in immunocompromised patients to assess immune correlates during chronicity.

    PubMed

    Cao, Dianjun; Cao, Qian M; Subramaniam, Sakthivel; Yugo, Danielle M; Heffron, C Lynn; Rogers, Adam J; Kenney, Scott P; Tian, Debin; Matzinger, Shannon R; Overend, Christopher; Catanzaro, Nicholas; LeRoith, Tanya; Wang, Heng; Piñeyro, Pablo; Lindstrom, Nicole; Clark-Deener, Sherrie; Yuan, Lijuan; Meng, Xiang-Jin

    2017-07-03

    Chronic hepatitis E virus (HEV) infection is a significant clinical problem in immunocompromised individuals such as organ transplant recipients, although the mechanism remains unknown because of the lack of an animal model. We successfully developed a pig model of chronic HEV infection and examined immune correlates leading to chronicity. The conditions of immunocompromised patients were mimicked by treating pigs with an immunosuppressive regimen including cyclosporine, azathioprine, and prednisolone. Immunocompromised pigs infected with HEV progressed to chronicity, because 8/10 drug-treated HEV-infected pigs continued fecal virus shedding beyond the acute phase of infection, whereas the majority (7/10) of mock-treated HEV-infected pigs cleared fecal viral shedding at 8 wk postinfection. During chronic infection, serum levels of the liver enzyme γ-glutamyl transferase and fecal virus shedding were significantly higher in immunocompromised HEV-infected pigs. To identify potential immune correlates of chronic infection, we determined serum levels of cytokines and cell-mediated immune responses in pigs. Results showed that HEV infection of immunocompromised pigs reduced the serum levels of Th1 cytokines IL-2 and IL-12, and Th2 cytokines IL-4 and IL-10, particularly during the acute phase of infection. Furthermore IFN-γ-specific CD4 + T-cell responses were reduced in immunocompromised pigs during the acute phase of infection, but TNF-α-specific CD8 + T-cell responses increased during the chronic phase of infection. Thus, active suppression of cell-mediated immune responses under immunocompromised conditions may facilitate the establishment of chronic HEV infection. This pig model will aid in delineating the mechanisms of chronic HEV infection and in developing effective therapeutics against chronic hepatitis E.

  18. Beneficial effects of cytokine induced hyperlipidemia.

    PubMed

    Feingold, K R; Hardardóttir, I; Grunfeld, C

    1998-01-01

    Infection, inflammation and trauma induce marked changes in the plasma levels of a wide variety of proteins (acute phase response), and these changes are mediated by cytokines. The acute phase response is thought to be beneficial to the host. The host's response to injury also results in dramatic alterations in lipid metabolism and circulating lipoprotein levels which are mediated by cytokines. A large number of cytokines including TNF, the interleukins, and the interferons increase serum triglyceride levels. This rapid increase (1-2 h) is predominantly due to an increase in hepatic VLDL secretion while the late increase may be due to a variety of factors including increased hepatic production of VLDL or delayed clearance secondary to a decrease in lipoprotein lipase activity and/or apolipoprotein E levels on VLDL. In animals other than primates, cytokines also increase serum cholesterol levels, most likely by increasing hepatic cholesterol. Cytokines increase hepatic cholesterol synthesis by stimulating HMG CoA reductase gene expression and decrease hepatic cholesterol catabolism by inhibiting cholesterol 7 alpha-hydroxylase, the key enzyme in bile acid synthesis. Injury and/or cytokines also decrease HDL cholesterol levels and induce alterations in the composition of HDL. The content of SAA and apolipoprotein J increase, apolipoprotein A1 may decrease, and the cholesterol ester content decreases while free cholesterol increases. Additionally, key proteins involved in HDL metabolism are altered by cytokines; LCAT activity, hepatic lipase activity, and CETP levels decrease. These changes in lipid and lipoprotein metabolism may be beneficial in a number of ways including: lipoproteins competing with viruses for cellular receptors, apolipoproteins neutralizing viruses, lipoproteins binding and targeting parasites for destruction, apolipoproteins lysing parasites, redistribution of nutrients to cells involved in the immune response and/or tissue repair, and lipoproteins binding toxic agents and neutralizing their harmful effects. Thus, cytokines induce marked changes in lipid metabolism that lead to hyperlipidemia which represents part of the innate immune response and may be beneficial to the host.

  19. Correlation of APRIL with production of inflammatory cytokines during acute malaria in the Brazilian Amazon

    PubMed Central

    Pinna, Raquel A.; dos Santos, Adriana C.; Perce‐da‐Silva, Daiana S.; da Silva, Luciene A.; da Silva, Rodrigo N. Rodrigues; Alves, Marcelo R.; Santos, Fátima; de Oliveira Ferreira, Joseli; Lima‐Junior, Josué C.; Villa‐Verde, Déa M.; De Luca, Paula M.; Carvalho‐Pinto, Carla E.

    2018-01-01

    Abstract Introduction A proliferation‐inducing ligand (APRIL) and B cell activation factor (BAFF) are known to play a significant role in the pathogenesis of several diseases, including BAFF in malaria. The aim of this study was to investigate whether APRIL and BAFF plasma concentrations could be part of inflammatory responses associated with P. vivax and P. falciparum malaria in patients from the Brazilian Amazon. Methods Blood samples were obtained from P. vivax and P. falciparum malaria patients (n = 52) resident in Porto Velho before and 15 days after the beginning of treatment and from uninfected individuals (n = 12). We investigated APRIL and BAFF circulating levels and their association with parasitaemia, WBC counts, and cytokine/chemokine plasma levels. The expression levels of transmembrane activator and calcium‐modulating cyclophilin ligand interactor (TACI) on PBMC from a subset of 5 P. vivax‐infected patients were analyzed by flow cytometry. Results APRIL plasma levels were transiently increased during acute P. vivax and P. falciparum infections whereas BAFF levels were only increased during acute P. falciparum malaria. Although P. vivax and P. falciparum malaria patients have similar cytokine profiles during infection, in P. vivax acute phase malaria, APRIL but not BAFF levels correlated positively with IL‐1, IL‐2, IL‐4, IL‐6, and IL‐13 levels. We did not find any association between P. vivax parasitaemia and APRIL levels, while an inverse correlation was found between P. falciparum parasitaemia and APRIL levels. The percentage of TACI positive CD4+ and CD8+ T cells were increased in the acute phase P. vivax malaria. Conclusion These findings suggest that the APRIL and BAFF inductions reflect different host strategies for controlling infection with each malaria species. PMID:29314720

  20. Undernutrition, the Acute Phase Response to Infection, and Its Effects on Micronutrient Status Indicators12

    PubMed Central

    Bresnahan, Kara A.; Tanumihardjo, Sherry A.

    2014-01-01

    Infection and undernutrition are prevalent in developing countries and demonstrate a synergistic relation. Undernutrition increases infection-related morbidity and mortality. The acute phase response (APR) is an innate, systemic inflammatory reaction to a wide array of disruptions in a host’s homeostasis, including infection. Released from immune cells in response to deleterious stimuli, proinflammatory cytokines act on distant tissues to induce behavioral (e.g., anorexia, weakness, and fatigue) and systemic effects of the APR. Cytokines act to increase energy and protein requirements to manifest fever and support hepatic acute phase protein (APP) production. Blood concentrations of glucose and lipid are augmented to provide energy to immune cells in response to cytokines. Additionally, infection decreases intestinal absorption of nutrients and can cause direct loss of micronutrients. Traditional indicators of iron, zinc, and vitamin A status are altered during the APR, leading to inaccurate estimations of deficiency in populations with a high or unknown prevalence of infection. Blood concentrations of APPs can be measured in nutrition interventions to assess the time stage and severity of infection and correct for the APR; however, standardized cutoffs for nutrition applications are needed. Protein-energy malnutrition leads to increased gut permeability to pathogens, abnormal immune cell populations, and impaired APP response. Micronutrient deficiencies cause specific immune impairments that affect both innate and adaptive responses. This review describes the antagonistic interaction between the APR and nutritional status and emphasizes the need for integrated interventions to address undernutrition and to reduce disease burden in developing countries. PMID:25398733

  1. Relationship between gastro-intestinal complaints and endotoxaemia, cytokine release and the acute-phase reaction during and after a long-distance triathlon in highly trained men.

    PubMed

    Jeukendrup, A E; Vet-Joop, K; Sturk, A; Stegen, J H; Senden, J; Saris, W H; Wagenmakers, A J

    2000-01-01

    The aim of the present study was to establish whether gastro-intestinal (GI) complaints observed during and after ultra-endurance exercise are related to gut ischaemia-associated leakage of endotoxins [lipopolysaccharide (LPS)] into the circulation and associated cytokine production. Therefore we collected blood samples from 29 athletes before, immediately after, and 1, 2 and 16 h after a long-distance triathlon for measurement of LPS, tumour necrosis factor-alpha and interleukin-6 (IL-6). As the cytokine response would trigger an acute-phase response, characteristic variables of these responses were also measured, along with creatine kinase (CK) to obtain an indicator of muscle damage. There was a high incidence (93% of all participants) of GI symptoms; 45% reported severe complaints and 7% of the participants abandoned the race because of severe GI distress. Mild endotoxaemia (5-15 pg/ml) was evident in 68% of the athletes immediately after the race, as also indicated by a reduction in IgG anti-LPS levels. In addition, we observed production of IL-6 (27-fold increase immediately after the race), leading to an acute-phase response (20-fold increase in C-reactive protein and 12% decrease in pre-albumin 16 h after the race). The extent of endotoxaemia was not correlated with the GI complaints or the IL-6 response, but did show a correlation with the elevation in C-reactive protein (r(s) 0.389; P=0.037). Creatine kinase levels were increased significantly immediately post-race, and increased further in the follow-up period. Creatine kinase levels did not correlate with those of either IL-6 or C-reactive protein. It is therefore concluded that LPS does enter the circulation after ultra-endurance exercise and may, together with muscle damage, be responsible for the increased cytokine response and hence GI complaints in these athletes.

  2. Dysregulation of temperature and liver cytokine gene expression in immunodeficient wasted mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libertin, C.R.; Ling-Indeck, L.; Weaver, P.

    1995-04-25

    Wasted mice bear the spontaneous autosomal recessive mutation wst/wst; this genotype is associated with weight loss beginning at 21 days of age, neurologic dysfunction, immunodeficiency at mucosal sites, and increased sensitivity to the killing effects of ionizing radiation. The pathology underlying the disease symptoms is unknown. Experiments reported here were designed to examine thermoregulation and liver expression of specific cytokines in wasted mice and in littermate and parental controls. Our experiments found that wasted mice begin to show a drop in body temperature at 21-23 days following birth, continuing until death at the age of 28 days. Concomitant with that,more » livers from wasted mice expressed increased amounts of mRNAs specific for cytokines IL,6 and IL-1, the acute phase reactant C-reactive protein, c-jun, and apoptosis-associated Rp-8 when compared to littermate and parental control animals. Levels of {beta}-transforming growth factor (TGF), c-fos, proliferating cell nuclear antigen (PCNA), and ornithine amino transferase (OAT) transcripts were the same in livers from wasted mice and controls. These results suggest a relationship between an acute phase reactant response in wasted mice and temperature dysregulation.« less

  3. Dogs infected with the blood trypomastigote form of Trypanosoma cruzi display an increase expression of cytokines and chemokines plus an intense cardiac parasitism during acute infection.

    PubMed

    de Souza, Sheler Martins; Vieira, Paula Melo de Abreu; Roatt, Bruno Mendes; Reis, Levi Eduardo Soares; da Silva Fonseca, Kátia; Nogueira, Nívia Carolina; Reis, Alexandre Barbosa; Tafuri, Washington Luiz; Carneiro, Cláudia Martins

    2014-03-01

    The recent increase in immigration of people from areas endemic for Chagas disease (Trypanosoma cruzi) to the United States and Europe has raised concerns about the transmission via blood transfusion and organ transplants in these countries. Infection by these pathways occurs through blood trypomastigotes (BT), and these forms of T. cruzi are completely distinct of metacyclic trypomastigotes (MT), released by triatomine vector, in relation to parasite-host interaction. Thus, research comparing infection with these different infective forms is important for explaining the potential impacts on the disease course. Here, we investigated tissue parasitism and relative mRNA expression of cytokines, chemokines, and chemokine receptors in the heart during acute infection by MT or BT forms in dogs. BT-infected dogs presented a higher cardiac parasitism, increased relative mRNA expression of pro-inflammatory and immunomodulatory cytokines and of the chemokines CCL3/MIP-1α, CCL5/RANTES, and the chemokine receptor CCR5 during the acute phase of infection, as compared to MT-infected dogs. These results suggest that infection with BT forms may lead to an increased immune response, as revealed by the cytokines ratio, but this kind of immune response was not able to control the cardiac parasitism. Infection with the MT form presented an increase in the relative mRNA expression of IL-12p40 as compared to that of IL-10 or TGF-β1. Correlation analysis showed increased relative mRNA expression of IFN-γ as well as IL-10, which may be an immunomodulatory response, as well as an increase in the correlation of CCL5/RANTES and its CCR5 receptor. Our findings revealed a difference between inoculum sources of T. cruzi, as vectorial or transfusional routes of T. cruzi infection may trigger distinct parasite-host interactions during the acute phase, which may influence immunopathological aspects of Chagas disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Extrahepatic ischemia-reperfusion injury reduces hepatic oxidative drug metabolism as determined by serial antipyrine clearance.

    PubMed

    Gurley, B J; Barone, G W; Yamashita, K; Polston, S; Estes, M; Harden, A

    1997-01-01

    All transplanted solid organs experience some degree of ischemia-reperfusion (I-R) injury. This I-R injury can contribute to graft dysfunction which stems in part from the acute phase response and a resultant host of cytokines. Recent evidence suggests that organs remote to the site of I-R injury can be affected by circulating cytokines originating from these I-R injuries. Since many of these acute phase cytokines inhibit hepatic cytochrome P-450 (CYP) enzymes, we chose to investigate whether extrahepatic I-R injuries could influence hepatic oxidative drug metabolism. Fifteen dogs were divided into three surgical groups: (I) sham I-R; (II) bilateral normothermic renal I-R; and (III) normothermic intestinal I-R. Antipyrine (AP) was selected as a model substrate and administered intravenously at a dose of 10 mg/kg. AP serum concentrations were determined by HPLC and cytokine activity (IL-1, IL-6, and TNFalpha) was measured via bioassay. Serial AP clearance and serum cytokine concentrations were determined 3 days prior to and at 4 hr, 24 hr, 3 days and 7 days after surgery. Hematology and blood chemistries were monitored throughout the study period. AP clearance was significantly reduced in groups II and III at 4 and 24 hrs post-l-R injury, while AP binding and apparent volume of distribution were unaffected. Peak levels of TNF and IL-6 activity occurred at 1 and 4 hours, respectively. IL-I activity was not detected in any group. AP clearance correlated strongly to circulating levels of IL-6 (r = -0.789, p = 0.0002). Our findings indicate that extrahepatic I-R injury can affect hepatic oxidative drug metabolism and this effect is mediated in part by circulating cytokines.

  5. Lipopolysaccharide-Induced Acute Kidney Injury Is Dependent on an IL-18 Receptor Signaling Pathway

    PubMed Central

    Nozaki, Yuji; Hino, Shoichi; Ri, Jinhai; Sakai, Kenji; Nagare, Yasuaki; Kawanishi, Mai; Niki, Kaoru; Funauchi, Masanori; Matsumura, Itaru

    2017-01-01

    The proinflammatory cytokine interleukin (IL)-18 is an important mediator of the organ failure induced by endotoxemia. IL-18 (known as an interferon-gamma (IFN-γ) inducing factor), and other inflammatory cytokines have important roles in lipopolysaccharide (LPS)-induced acute kidney injury (AKI). We investigated the effect of inflammatory cytokines and Toll-like receptor 4 (TLR4) expression, an event that is accompanied by an influx of monocytes, including CD4+ T cells and antigen-presenting cells (APCs) in IL-18Rα knockout (KO) mice and wild-type (WT) mice after LPS injection. In the acute advanced phase, the IL-18Rα KO mice showed a higher survival rate and a suppressed increase of blood urea nitrogen, increased levels of proinflammatory cytokines such as IFN-γ and IL-18, the infiltration of CD4+ T cells and the expression of kidney injury molecule-1 as an AKI marker. In that phase, the renal mRNA expression of the M1 macrophage phenotype and C-C chemokine receptor type 7 as the maturation marker of dendritic cells (DCs) was also significantly decreased in the IL-18Rα KO mice, although there were small numbers of F4/80+ cells and DCs in the kidney. Conversely, there were no significant differences in the expressions of mRNA and protein TLR4 after LPS injection between the WT and IL-18Rα KO groups. Our results demonstrated that the IL-18Rα-mediated signaling pathway plays critical roles in CD4+ T cells and APCs and responded more quickly to IFN-γ and IL-18 than TLR4 stimulation in the pathogenesis of LPS-induced AKI. PMID:29261164

  6. Cytokine network in scrub typhus: high levels of interleukin-8 are associated with disease severity and mortality.

    PubMed

    Astrup, Elisabeth; Janardhanan, Jeshina; Otterdal, Kari; Ueland, Thor; Prakash, John A J; Lekva, Tove; Strand, Øystein A; Abraham, O C; Thomas, Kurien; Damås, Jan Kristian; Mathews, Prasad; Mathai, Dilip; Aukrust, Pål; Varghese, George M

    2014-02-01

    Scrub typhus, caused by Orientia tsutsugamushi, is endemic in the Asia-Pacific region. Mortality is high if untreated, and even with treatment as high as 10-20%, further knowledge of the immune response during scrub typhus is needed. The current study was aimed at comparing plasma levels of a variety of inflammatory mediators in scrub typhus patients and controls in South India in order to map the broader cytokine profile and their relation to disease severity and clinical outcome. We examined plasma levels of several cytokines in scrub typhus patients (n = 129) compared to healthy controls (n = 31) and infectious disease controls (n = 31), both in the acute phase and after recovery, by multiplex technology and enzyme immunoassays. Scrub typhus patients were characterized by marked changes in the cytokine network during the acute phase, differing not only from healthy controls but also from infectious disease controls. While most of the inflammatory markers were raised in scrub typhus, platelet-derived mediators such as RANTES were markedly decreased, probably reflecting enhanced platelet activation. Some of the inflammatory markers, including various chemokines (e.g., interleukin-8, monocyte chemoattractant peptide-1 and macrophage inflammatory protein-1β) and downstream markers of inflammation (e.g., C-reactive protein and pentraxin-3), were also associated with disease severity and mortality during follow-up, with a particular strong association with interleukin-8. Our findings suggest that scrub typhus is characterized by a certain cytokine profile that includes dysregulated levels of a wide range of mediators, and that this enhanced inflammation could contribute to disease severity and clinical outcome.

  7. Involvement of activated leukocytes in the regulation of plasma levels of acute phase proteins in microgravity simulation experiments

    NASA Astrophysics Data System (ADS)

    Larina, Olga; Bekker, Anna; Turin-Kuzmin, Alexey

    2016-07-01

    Earth-based studies of microgravity effects showed the induction of the mechanisms of acute phase reaction (APR). APR comprises the transition of stress-sensitive protein kinases of macrophages and other responsive cells into the active state and the phosphorylation of transcription factors which in turn stimulate the production of acute-phase reaction cytokines. Leukocyte activation is accompanied by the acceleration of the formation of oxygen radicals which can serve a functional indice of leukocyte cell state. The series of events at acute phase response result in selective changes in the synthesis of a number of secretory blood proteins (acute phase proteins, APPs) in liver cells thus contributing the recovery of homeostasis state in the organism. Earlier experiment with head-down tilt showed the increase in plasma concentrations of two cytokine mediators of acute phase response, tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) being the outcome of the activation of producer cells, foremost, leukocytes. In experiment with 4-day dry immersion chemiluminescent (ChL) reply of the whole blood samples to a test stimulus were studied along with the measurements of plasma levels of APPs, namely, alpha1-antitrypsin (alpha1-AT), alpha1-acid glycoprotein (alpha1-AGP), alpha2-macroglobulin (alpha2-M), ceruloplasmin (Cer), haptoglobin (Hp), C3-complement component (C3), C-reactive protein (CRP). Eight individuals aged 21.2 ± 3.2 years were the test subjects in the investigation. Protein studies showed a noticeable increase in the mean plasma levels of all APPs measured in experiment thus producing the evidence of the activation of acute phase response mechanisms while individual patterns revealed variability during the immersion period. The overall trends were similar to these in the previous immersion series. The augment in the strength of signal in stimulated light emission tests was higher after 1- and 2-day of immersion exposure than before the experiment. The effects obtained in this survey suggest the enhancement of the synthesis of active oxygen species by blood phagocytes at the initial stages of adaptation to immersion conditions. The gain of chemiluminescence signal correlated with maximal augment in APP concentrations registered in the course of 4-day immersion. Moreover, in the only case with zero effects in chemiluminescent reply stable APP levels were obtained. The data from functional studies performed with phagocytic cells in the experiment with dry immersion corroborate their implication in acute phase mechanisms participating in the adaptation to simulated microgravity conditions.

  8. Expression and functional characterization of killer whale (Orcinus orca) interleukin-6 (IL-6) and development of a competitive immunoassay.

    PubMed

    Funke, Christina; King, Donald P; McBain, Jim F; Adelung, Dieter; Stott, Jeffrey L

    2003-05-30

    Interleukin-6 (IL-6) is a cytokine that can reach detectable systemic levels and is a major inducer of the acute phase response. As such, clinical assays to identify this cytokine in mammalian sera are of diagnostic value. A 558 base-pair (bp) fragment of killer whale IL-6 was cloned and expressed as a 21 kDa protein in Escherichia coli. Biological activity of the recombinant killer whale IL-6 (rkwIL-6) was demonstrated using the IL-6-dependent B9 mouse hybridoma cell line; acute phase sera from a killer whale and supernatants from lipopolysaccharide (LPS)-stimulated killer whale peripheral blood mononuclear cells (PBMCs) also supported the proliferation of the B9 hybridoma. Rat anti-mouse IL-6 receptor antibody effectively blocked biological activity of all three sources of IL-6. Polyclonal antisera, specific for the recombinant protein, were obtained by successive immunization of a rabbit with rkwIL-6. The polyclonal antibody was capable of neutralizing the biological activity of both recombinant and native kwIL-6. A competitive enzyme-linked immunosorbent assay (ELISA) was developed using the polyclonal rabbit anti-rkwIL-6 and the recombinant protein; sensitivity of the assay was in the range of 1 ng/ml. The ELISA was subsequently used to identify the presence of native IL-6 in acute phase sera of two species of delphinidae, a killer whale and a bottlenose dolphin. The application of quantitative cytokine assays as diagnostic tools for monitoring cetacean health are becoming feasible as many animals are now being trained for fluke presentation, making blood collection a routine procedure.

  9. Integrated Assessment of Diclofenac Biotransformation, Pharmacokinetics, and Omics-Based Toxicity in a Three-Dimensional Human Liver-Immunocompetent Coculture System

    PubMed Central

    Ravindra, Kodihalli C.; Large, Emma; Young, Carissa L.; Rivera-Burgos, Dinelia; Yu, Jiajie; Cirit, Murat; Hughes, David J.; Wishnok, John S.; Lauffenburger, Douglas A.; Griffith, Linda G.

    2017-01-01

    In vitro hepatocyte culture systems have inherent limitations in capturing known human drug toxicities that arise from complex immune responses. Therefore, we established and characterized a liver immunocompetent coculture model and evaluated diclofenac (DCF) metabolic profiles, in vitro–in vivo clearance correlations, toxicological responses, and acute phase responses using liquid chromatography–tandem mass spectrometry. DCF biotransformation was assessed after 48 hours of culture, and the major phase I and II metabolites were similar to the in vivo DCF metabolism profile in humans. Further characterization of secreted bile acids in the medium revealed that a glycine-conjugated bile acid was a sensitive marker of dose-dependent toxicity in this three-dimensional liver microphysiological system. Protein markers were significantly elevated in the culture medium at high micromolar doses of DCF, which were also observed previously for acute drug-induced toxicity in humans. In this immunocompetent model, lipopolysaccharide treatment evoked an inflammatory response that resulted in a marked increase in the overall number of acute phase proteins. Kupffer cell–mediated cytokine release recapitulated an in vivo proinflammatory response exemplified by a cohort of 11 cytokines that were differentially regulated after lipopolysaccharide induction, including interleukin (IL)-1β, IL-1Ra, IL-6, IL-8, IP-10, tumor necrosis factor-α, RANTES (regulated on activation normal T cell expressed and secreted), granulocyte colony-stimulating factor, macrophage colony-stimulating factor, macrophage inflammatory protein-1β, and IL-5. In summary, our findings indicate that three-dimensional liver microphysiological systems may serve as preclinical investigational platforms from the perspective of the discovery of a set of clinically relevant biomarkers including potential reactive metabolites, endogenous bile acids, excreted proteins, and cytokines to predict early drug-induced liver toxicity in humans. PMID:28450578

  10. Changes in gene expression of DOR and other thyroid hormone receptors in rat liver during acute-phase response

    PubMed Central

    Baumgartner, Bernhard G.; Naz, Naila; Sheikh, Nadeem; Moriconi, Federico; Ramadori, Giuliano

    2010-01-01

    Non-thyroidal illness is characterized by low tri-iodothyronine (T3) serum level under acute-phase conditions. We studied hepatic gene expression of the newly identified thyroid hormone receptor (TR) cofactor DOR/TP53INP2 together with TRs in a rat model of aseptic abscesses induced by injecting intramuscular turpentine-oil into each hind limb. A fast (4-6 h) decrease in the serum level of free thyroxine and free T3 was observed. By immunohistology, abundant DOR protein expression was detected in the nuclei of hepatocytes and ED-1+ (mononuclear phagocytes), CK-19+ (biliary cells), and SMA+ (mesenchymal cells of the portal tract) cells. DOR signal was reduced with a minimum at 6-12 h after the acute-phase reaction (APR). Immunohistology also showed a similar pattern of protein expression in TRα1 but without a significant change during APR. Transcripts specific for DOR, nuclear receptor co-repressor 1 (NCoR-1), and TRβ1 were down-regulated with a minimum at 6-12 h, whereas expression for TRα1 and TRα2 was slightly and significantly up-regulated, respectively, with a maximum at 24 h after APR was initiated. In cultured hepatocytes, acute-phase cytokines interleukin-1β (IL-1β) and IL-6 down-regulated DOR and TRβ1 at the mRNA level. Moreover, gene expression of DOR and TRs (TRα1, TRα2, and TRβ1) was up-regulated in hepatocytes by adding T3 to the culture medium; this up-regulation was almost completely blocked by treating the cells with IL-6. Thus, TRβ1, NCoR-1, and the recently identified DOR/TP53INP2 are abundantly expressed and down-regulated in liver cells during APR. Their down-regulation is attributable to the decreased serum level of thyroid hormones and most probably also to the direct action of the main acute-phase cytokines. PMID:20949361

  11. Changes in gene expression of DOR and other thyroid hormone receptors in rat liver during acute-phase response.

    PubMed

    Malik, Ihtzaz Ahmed; Baumgartner, Bernhard G; Naz, Naila; Sheikh, Nadeem; Moriconi, Federico; Ramadori, Giuliano

    2010-11-01

    Non-thyroidal illness is characterized by low tri-iodothyronine (T3) serum level under acute-phase conditions. We studied hepatic gene expression of the newly identified thyroid hormone receptor (TR) cofactor DOR/TP53INP2 together with TRs in a rat model of aseptic abscesses induced by injecting intramuscular turpentine-oil into each hind limb. A fast (4-6 h) decrease in the serum level of free thyroxine and free T3 was observed. By immunohistology, abundant DOR protein expression was detected in the nuclei of hepatocytes and ED-1(+) (mononuclear phagocytes), CK-19(+) (biliary cells), and SMA(+) (mesenchymal cells of the portal tract) cells. DOR signal was reduced with a minimum at 6-12 h after the acute-phase reaction (APR). Immunohistology also showed a similar pattern of protein expression in TRα1 but without a significant change during APR. Transcripts specific for DOR, nuclear receptor co-repressor 1 (NCoR-1), and TRβ1 were down-regulated with a minimum at 6-12 h, whereas expression for TRα1 and TRα2 was slightly and significantly up-regulated, respectively, with a maximum at 24 h after APR was initiated. In cultured hepatocytes, acute-phase cytokines interleukin-1β (IL-1β) and IL-6 down-regulated DOR and TRβ1 at the mRNA level. Moreover, gene expression of DOR and TRs (TRα1, TRα2, and TRβ1) was up-regulated in hepatocytes by adding T3 to the culture medium; this up-regulation was almost completely blocked by treating the cells with IL-6. Thus, TRβ1, NCoR-1, and the recently identified DOR/TP53INP2 are abundantly expressed and down-regulated in liver cells during APR. Their down-regulation is attributable to the decreased serum level of thyroid hormones and most probably also to the direct action of the main acute-phase cytokines.

  12. The Acute Phase Response and Soman-Induced Status Epilepticus: Temporal, Regional and Cellular Changes in Rat Brain Cytokine Concentrations

    DTIC Science & Technology

    2010-07-22

    definite trend was observed, with an approximate 3-fold increase over vehicle control values. Significant IL-6 concentra- tion increases were observed in...differences occurred. How- ever, a strong increasing trend is apparent in both the mRNA (TNF-α and IL-6) and protein data (IL-1β) that is consistent with the...CNS pathologies. Trends Neurosci 1996, 19:409-410. 17. Wang CX, Shuaib A: Involvement of inflammatory cytokines in central nervous system injury

  13. Serum Inflammatory Mediators as Markers of Human Lyme Disease Activity

    PubMed Central

    Soloski, Mark J.; Crowder, Lauren A.; Lahey, Lauren J.; Wagner, Catriona A.

    2014-01-01

    Chemokines and cytokines are key signaling molecules that orchestrate the trafficking of immune cells, direct them to sites of tissue injury and inflammation and modulate their states of activation and effector cell function. We have measured, using a multiplex-based approach, the levels of 58 immune mediators and 7 acute phase markers in sera derived from of a cohort of patients diagnosed with acute Lyme disease and matched controls. This analysis identified a cytokine signature associated with the early stages of infection and allowed us to identify two subsets (mediator-high and mediator-low) of acute Lyme patients with distinct cytokine signatures that also differed significantly (p<0.0005) in symptom presentation. In particular, the T cell chemokines CXCL9 (MIG), CXCL10 (IP-10) and CCL19 (MIP3B) were coordinately increased in the mediator-high group and levels of these chemokines could be associated with seroconversion status and elevated liver function tests (p = 0.027 and p = 0.021 respectively). There was also upregulation of acute phase proteins including CRP and serum amyloid A. Consistent with the role of CXCL9/CXCL10 in attracting immune cells to the site of infection, CXCR3+ CD4 T cells are reduced in the blood of early acute Lyme disease (p = 0.01) and the decrease correlates with chemokine levels (p = 0.0375). The levels of CXCL9/10 did not relate to the size or number of skin lesions but elevated levels of serum CXCL9/CXCL10 were associated with elevated liver enzymes levels. Collectively these results indicate that the levels of serum chemokines and the levels of expression of their respective chemokine receptors on T cell subsets may prove to be informative biomarkers for Lyme disease and related to specific disease manifestations. PMID:24740099

  14. Cytokine Network in Scrub Typhus: High Levels of Interleukin-8 Are Associated with Disease Severity and Mortality

    PubMed Central

    Astrup, Elisabeth; Janardhanan, Jeshina; Otterdal, Kari; Ueland, Thor; Prakash, John A. J.; Lekva, Tove; Strand, Øystein A.; Abraham, O. C.; Thomas, Kurien; Damås, Jan Kristian; Mathews, Prasad; Mathai, Dilip; Aukrust, Pål; Varghese, George M.

    2014-01-01

    Background Scrub typhus, caused by Orientia tsutsugamushi, is endemic in the Asia-Pacific region. Mortality is high if untreated, and even with treatment as high as 10–20%, further knowledge of the immune response during scrub typhus is needed. The current study was aimed at comparing plasma levels of a variety of inflammatory mediators in scrub typhus patients and controls in South India in order to map the broader cytokine profile and their relation to disease severity and clinical outcome. Methodology/Principal Findings We examined plasma levels of several cytokines in scrub typhus patients (n = 129) compared to healthy controls (n = 31) and infectious disease controls (n = 31), both in the acute phase and after recovery, by multiplex technology and enzyme immunoassays. Scrub typhus patients were characterized by marked changes in the cytokine network during the acute phase, differing not only from healthy controls but also from infectious disease controls. While most of the inflammatory markers were raised in scrub typhus, platelet-derived mediators such as RANTES were markedly decreased, probably reflecting enhanced platelet activation. Some of the inflammatory markers, including various chemokines (e.g., interleukin-8, monocyte chemoattractant peptide-1 and macrophage inflammatory protein-1β) and downstream markers of inflammation (e.g., C-reactive protein and pentraxin-3), were also associated with disease severity and mortality during follow-up, with a particular strong association with interleukin-8. Conclusions/Significance Our findings suggest that scrub typhus is characterized by a certain cytokine profile that includes dysregulated levels of a wide range of mediators, and that this enhanced inflammation could contribute to disease severity and clinical outcome. PMID:24516677

  15. Gut dysbiosis and neuroimmune responses to brain infection with Theiler’s murine encephalomyelitis virus

    PubMed Central

    Carrillo-Salinas, F. J.; Mestre, L.; Mecha, M.; Feliú, A.; del Campo, R.; Villarrubia, N.; Espejo, C.; Montalbán, X.; Álvarez-Cermeño, J. C.; Villar, L. M.; Guaza, C.

    2017-01-01

    Recent studies have begun to point out the contribution of microbiota to multiple sclerosis (MS) pathogenesis. Theiler’s murine encephalomyelitis virus induced demyelinating disease (TMEV-IDD) is a model of progressive MS. Here, we first analyze the effect of intracerebral infection with TMEV on commensal microbiota and secondly, whether the early microbiota depletion influences the immune responses to TMEV on the acute phase (14 dpi) and its impact on the chronic phase (85 dpi). The intracranial inoculation of TMEV was associated with a moderate dysbiosis. The oral administration of antibiotics (ABX) of broad spectrum modified neuroimmune responses to TMEV dampening brain CD4+ and CD8+ T infiltration during the acute phase. The expression of cytokines, chemokines and VP2 capsid protein was enhanced and accompanied by clusters of activated microglia disseminated throughout the brain. Furthermore, ABX treated mice displayed lower levels of CD4+ and CD8+T cells in cervical and mesenteric lymph nodes. Increased mortality to TMEV was observed after ABX cessation at day 28pi. On the chronic phase, mice that survived after ABX withdrawal and recovered microbiota diversity showed subtle changes in brain cell infiltrates, microglia and gene expression of cytokines. Accordingly, the surviving mice of the group ABX-TMEV displayed similar disease severity than TMEV mice. PMID:28290524

  16. Cytokine levels (IL-4, IL-6, IL-8 and TGFβ) as potential biomarkers of systemic inflammatory response in trauma patients.

    PubMed

    Volpin, Gershon; Cohen, Miri; Assaf, Michael; Meir, Tamar; Katz, Rina; Pollack, Shimon

    2014-06-01

    Much research is now being conducted in order to understand the role of cytokines in the development of the inflammatory response following trauma. The purpose of this study was to evaluate whether serum levels of certain cytokines, measured immediately after initial injury, can be used as potential biomarkers for predicting the development and the degree of severity of the systemic inflammatory response (SIRS) in patients with moderate and severe trauma. We conducted a prospective study with 71 individuals of whom 13 (18.3 %) were healthy controls and 58 (81.7 %) were traumatized orthopaedic patients who were categorized into two groups: 31 (43.6 %) with moderate injuries and 27 (38.1 %) patients with severe orthopaedic trauma. Thirty cc of heparinized blood were drawn from each individual within a few hours after the injury. Serum levels of pro-inflammatory, regulatory and anti-inflammatory cytokines were measured in each individual participant. High levels of pro-inflammatory cytokines IL-1β,-6,-8,-12, tumour necrosis factor alpha and interferon gamma were found in all injured patients compared to healthy controls. Only IL-6 and IL-8 were significantly higher in the injured patients. Levels of the regulatory cytokines, transformed growth factor beta (TGF-β) and IL-10 were higher in the injured patients, but significant only for TGF-β. Levels of IL-4 were significantly lower in the injured groups as compared to the controls. Secretion of large amounts of pro-inflammatory cytokines and decreased level of anti-inflammatory cytokines during the acute phase of trauma may lead to the development of systemic inflammatory response syndrome (SIRS) in unstable polytraumatized patients. SIRS may result in life threatening conditions as acute respiratory distress syndrome (ARDS) and multiple organ failure (MOF). High levels of IL-6, IL-8, TGFβ and low levels of IL-4 were found to be reliable markers for the existence of immune reactivity in trauma patients. More research is needed to study pattern of cytokine levels along the acute period of injury, after surgical interventions and during recovery.

  17. Cytokine responses in acute and persistent human parvovirus B19 infection

    PubMed Central

    Isa, A; Lundqvist, A; Lindblom, A; Tolfvenstam, T; Broliden, K

    2007-01-01

    The aim of this study was to characterize the proinflammatory and T helper (Th)1/Th2 cytokine responses during acute parvovirus B19 (B19) infection and determine whether an imbalance of the Th1/Th2 cytokine pattern is related to persistent B19 infection. Cytokines were quantified by multiplex beads immunoassay in serum from B19-infected patients and controls. The cytokine responses were correlated with B19 serology, quantitative B19 DNA levels and clinical symptoms. In addition to a proinflammatory response, elevated levels of the Th1 type of cytokines interleukin (IL)-2, IL-12 and IL-15 were evident at time of the initial peak of B19 viral load in a few patients during acute infection. This pattern was seen in the absence of an interferon (IFN)-γ response. During follow-up (20–130 weeks post-acute infection) some of these patients had a sustained Th1 cytokine response. The Th1 cytokine response correlated with the previously identified sustained CD8+ T cell response and viraemia. A cross-sectional study on patients with persistent B19 infection showed no apparent imbalance of their cytokine pattern, except for an elevated level of IFN-γ response. No general immunodeficiency was diagnosed as an explanation for the viral persistence in this later group. Neither the acutely infected nor the persistently infected patients demonstrated a Th2 cytokine response. In conclusion, the acutely infected patients demonstrated a sustained Th1 cytokine response whereas the persistently infected patients did not exhibit an apparent imbalance of their cytokine pattern except for an elevated IFN-γ response. PMID:17302890

  18. [Cytokine profile in young children with acute stenotic laryngotracheitis].

    PubMed

    Гладченко, Ольга І; Токарєв, Павло В; Надрага, Олександр Б

    2016-01-01

    One of the most severe complications of acute respiratory infections in young children is acute stenotic laryngotracheitis (croup). The relationship between cytokine blood levels and symptoms of croup, croup severity, disease sequel, despite numerous studies is still unclear. Cytokine profile in young children with acute stenotic laryngotracheitis investigation. 112 children aged 12 min. - 36 mon. with acute stenotic laryngotracheitis which were treated at the Lviv Regional Infectious Diseases Hospital were kept under observation. Croup symptoms, levels of interleukins (IL1, IL4, IL6, IL10, IL17) in serum, DNA and RNA viruses in respiratory nasal mucus were studied; Chan croup severity was used. In the pathogenesis of croup has an important role the imbalance between inflammatory (IL1, IL6) and anti-inflammatory (IL4, IL10, IL17) cytokines, which does not reduce the intensity of inflammatory reactions and its lead to local swelling, muscle spasm, excessive production of mucus in the place of viral replication. The levels of inflammatory and anti-inflammatory cytokines in the blood serum of children with croup were significantly higher than in patients with acute laryngitis. In patients with recurrent croup, unlike patients with the first case of croup does we don't see a significant correlation between the concentrations of inflammatory and anti-inflammatory cytokine levels Conclusions: The significantly higher levels of cytokines in children with croup compared with the group of patients with acute laryngitis were found, imbalance between anti-inflammatory (IL1, IL6) cytokine levels and inflammatory (IL4, IL10, IL17) cytokine levels in children who developed recurrent croup.

  19. Changes in cytokines, leptin, and IGF-1 levels in overtrained athletes during a prolonged recovery phase: A case-control study.

    PubMed

    Joro, Raimo; Uusitalo, Arja; DeRuisseau, Keith C; Atalay, Mustafa

    2017-12-01

    We investigated how cytokines are implicated with overtraining syndrome (OTS) in athletes during a prolonged period of recovery. Plasma IL-6, IL-10, TNF-α, IL-1β, adipokine leptin, and insulin like growth factor-1 (IGF-1) concentrations were measured in overtrained (OA: 5 men, 2 women) and healthy control athletes (CA: 5 men, 5 women) before and after exercise to volitional exhaustion. Measurements were conducted at baseline and after 6 and 12 months. Inflammatory cytokines did not differ between groups at rest. However, resting leptin concentration was lower in OA than CA at every measurement (P < 0.050) but was not affected by acute exercise. Although IL-6 and TNF-α concentrations increased with exercise in both groups (P < 0.050), pro-inflammatory IL-1β concentration increased only in OA (P < 0.050) and anti-inflammatory IL-10 was greater in CA (P < 0.001). In OA, exercise-related IL-6 and TNF-α induction was enhanced during the follow-up (P < 0.050). IGF-1 decreased with exercise in OA (P < 0.050); however, no differences in resting IGF-1 were observed. In conclusion, low leptin level at rest and a pro-inflammatory cytokine response to acute exercise may reflect a chronic maladaptation state in overtrained athletes. In contrast, the accentuation of IL-6 and TNF-α responses to acute exercise seemed to associate with the progression of recovery from overtraining.

  20. The Role of Infected Cell Proliferation in the Clearance of Acute HBV Infection in Humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, Ashish; Ribeiro, Ruy Miguel; Perelson, Alan S.

    Around 90–95% of hepatitis B virus (HBV) infected adults do not progress to the chronic phase and, instead, recover naturally. The strengths of the cytolytic and non-cytolytic immune responses are key players that decide the fate of acute HBV infection. In addition, it has been hypothesized that proliferation of infected cells resulting in uninfected progeny and/or cytokine-mediated degradation of covalently closed circular DNA (cccDNA) leading to the cure of infected cells are two major mechanisms assisting the adaptive immune response in the clearance of acute HBV infection in humans. We employed fitting of mathematical models to human acute infection datamore » together with physiological constraints to investigate the role of these hypothesized mechanisms in the clearance of infection. Results suggest that cellular proliferation of infected cells resulting in two uninfected cells is required to minimize the destruction of the liver during the clearance of acute HBV infection. In contrast, we find that a cytokine-mediated cure of infected cells alone is insufficient to clear acute HBV infection. Lastly, our modeling indicates that HBV clearance without lethal loss of liver mass is associated with the production of two uninfected cells upon proliferation of an infected cell.« less

  1. The Role of Infected Cell Proliferation in the Clearance of Acute HBV Infection in Humans

    DOE PAGES

    Goyal, Ashish; Ribeiro, Ruy Miguel; Perelson, Alan S.

    2017-11-18

    Around 90–95% of hepatitis B virus (HBV) infected adults do not progress to the chronic phase and, instead, recover naturally. The strengths of the cytolytic and non-cytolytic immune responses are key players that decide the fate of acute HBV infection. In addition, it has been hypothesized that proliferation of infected cells resulting in uninfected progeny and/or cytokine-mediated degradation of covalently closed circular DNA (cccDNA) leading to the cure of infected cells are two major mechanisms assisting the adaptive immune response in the clearance of acute HBV infection in humans. We employed fitting of mathematical models to human acute infection datamore » together with physiological constraints to investigate the role of these hypothesized mechanisms in the clearance of infection. Results suggest that cellular proliferation of infected cells resulting in two uninfected cells is required to minimize the destruction of the liver during the clearance of acute HBV infection. In contrast, we find that a cytokine-mediated cure of infected cells alone is insufficient to clear acute HBV infection. Lastly, our modeling indicates that HBV clearance without lethal loss of liver mass is associated with the production of two uninfected cells upon proliferation of an infected cell.« less

  2. Hepatocyte growth factor modulates interleukin-6 production in bone marrow derived macrophages: implications for inflammatory mediated diseases.

    PubMed

    Coudriet, Gina M; He, Jing; Trucco, Massimo; Mars, Wendy M; Piganelli, Jon D

    2010-11-02

    The generation of the pro-inflammatory cytokines IL-6, TNF-α, and IL-1β fuel the acute phase response (APR). To maintain body homeostasis, the increase of inflammatory proteins is resolved by acute phase proteins via presently unknown mechanisms. Hepatocyte growth factor (HGF) is transcribed in response to IL-6. Since IL-6 production promotes the generation of HGF and induces the APR, we posited that accumulating HGF might be a likely candidate for quelling excess inflammation under non-pathological conditions. We sought to assess the role of HGF and how it influences the regulation of inflammation utilizing a well-defined model of inflammatory activation, lipopolysaccharide (LPS)-stimulation of bone marrow derived macrophages (BMM). BMM were isolated from C57BL6 mice and were stimulated with LPS in the presence or absence of HGF. When HGF was present, there was a decrease in production of the pro-inflammatory cytokine IL-6, along with an increase in the anti-inflammatory cytokine IL-10. Altered cytokine production correlated with an increase in phosphorylated GSK3β, increased retention of the phosphorylated NFκB p65 subunit in the cytoplasm, and an enhanced interaction between CBP and phospho-CREB. These changes were a direct result of signaling through the HGF receptor, MET, as effects were reversed in the presence of a selective inhibitor of MET (SU11274) or when using BMM from macrophage-specific conditional MET knockout mice. Combined, these data provide compelling evidence that under normal circumstances, HGF acts to suppress the inflammatory response.

  3. Conventional alpha beta (αβ) T cells do not contribute to acute intestinal ischemia-reperfusion injury in mice.

    PubMed

    Yu, Yi; Feng, Xiaoyan; Vieten, Gertrud; Dippel, Stephanie; Imvised, Tawan; Gueler, Faikah; Ure, Benno M; Kuebler, Jochen F; Klemann, Christian

    2017-01-01

    Ischemia-reperfusion injury (IRI) is associated with significant patient mortality and morbidity. The complex cascade of IRI is incompletely understood, but inflammation is known to be a key mediator. In addition to the predominant innate immune responses, previous research has also indicated that αβ T cells contribute to IRI in various organ models. The aim of this study was to clarify the role αβ T cells play in IRI to the gut. Adult wild-type (WT) and αβ T cell-deficient mice were subjected to acute intestinal IRI with 30min ischemia followed by 4h reperfusion. The gene expression of pro-inflammatory cytokines was measured by qPCR, and the influx of leukocyte subpopulations in the gut was assessed via flow cytometry and histology. Pro-inflammatory cytokines in the serum were measured, and transaminases were assessed as an indicator of distant organ IRI. Intestinal IRI led to an increased expression of pro-inflammatory cytokines in the gut tissue and an influx of leukocytes that predominantly consisted of neutrophils and macrophages. Furthermore, intestinal IRI increased serum IL-6, TNF-α, and ALT/AST levels. The αβ T cell-deficient mice did not exhibit a more significant increase in pro-inflammatory cytokines in the gut or serum following IR than the WT mice. There was also no difference between WT- and αβ T cell-deficient mice in terms of neutrophil infiltration or macrophage activation. Furthermore, the increase in transaminases was equal in both groups indicating that the level of distant organ injury was comparable. An increasing body of evidence demonstrates that αβ T cells play a key role in IRI. In the gut, however, αβ T cells are not pivotal in the first hours following acute IRI as deficiency does not impact cytokine production, neutrophil recruitment, macrophage activation, or distant organ injury. Thus, αβ T cells may be considered innocent bystanders during the acute phase of intestinal IRI.

  4. STAT3 in the Systemic Inflammation of Cancer Cachexia

    PubMed Central

    Zimmers, Teresa A.; Fishel, Melissa L.; Bonetto, Andrea

    2016-01-01

    Weight loss is diagnostic of cachexia, a debilitating syndrome contributing mightily to morbidity and mortality in cancer. Most research has probed mechanisms leading to muscle atrophy and adipose wasting in cachexia; however cachexia is a truly systemic phenomenon. Presence of the tumor elicits an inflammatory response and profound metabolic derangements involving not only muscle and fat, but also the hypothalamus, liver, heart, blood, spleen and likely other organs. This global response is orchestrated in part through circulating cytokines that rise in conditions of cachexia. Exogenous Interleukin-6 (IL6) and related cytokines can induce most cachexia symptomatology, including muscle and fat wasting, the acute phase response and anemia, while IL-6 inhibition reduces muscle loss in cancer. Although mechanistic studies are ongoing, certain of these cachexia phenotypes have been causally linked to the cytokine-activated transcription factor, STAT3, including skeletal muscle wasting, cardiac dysfunction and hypothalamic inflammation. Correlative studies implicate STAT3 in fat wasting and the acute phase response in cancer cachexia. Parallel data in non-cancer models and disease states suggest both contributory and protective functions for STAT3 in other organs during cachexia. Finally, STAT3 contributes to cancer cachexia through enhancing tumorigenesis, metastasis and immune suppression, particularly in tumors associated with high prevalence of cachexia. This review examines the evidence linking STAT3 to multi-organ manifestations of cachexia in cancer and evidence for targeting STAT3 for anti-cachexia therapies. PMID:26860754

  5. Cytokine Profiles during Invasive Nontyphoidal Salmonella Disease Predict Outcome in African Children.

    PubMed

    Gilchrist, James J; Heath, Jennifer N; Msefula, Chisomo L; Gondwe, Esther N; Naranbhai, Vivek; Mandala, Wilson; MacLennan, Jenny M; Molyneux, Elizabeth M; Graham, Stephen M; Drayson, Mark T; Molyneux, Malcolm E; MacLennan, Calman A

    2016-07-01

    Nontyphoidal Salmonella is a leading cause of sepsis in African children. Cytokine responses are central to the pathophysiology of sepsis and predict sepsis outcome in other settings. In this study, we investigated cytokine responses to invasive nontyphoidal Salmonella (iNTS) disease in Malawian children. We determined serum concentrations of 48 cytokines with multiplexed immunoassays in Malawian children during acute iNTS disease (n = 111) and in convalescence (n = 77). Principal component analysis and logistic regression were used to identify cytokine signatures of acute iNTS disease. We further investigated whether these responses are altered by HIV coinfection or severe malnutrition and whether cytokine responses predict inpatient mortality. Cytokine changes in acute iNTS disease were associated with two distinct cytokine signatures. The first is characterized by increased concentrations of mediators known to be associated with macrophage function, and the second is characterized by raised pro- and anti-inflammatory cytokines typical of responses reported in sepsis secondary to diverse pathogens. These cytokine responses were largely unaltered by either severe malnutrition or HIV coinfection. Children with fatal disease had a distinctive cytokine profile, characterized by raised mediators known to be associated with neutrophil function. In conclusion, cytokine responses to acute iNTS infection in Malawian children are reflective of both the cytokine storm typical of sepsis secondary to diverse pathogens and the intramacrophage replicative niche of NTS. The cytokine profile predictive of fatal disease supports a key role of neutrophils in the pathogenesis of NTS sepsis. Copyright © 2016 Gilchrist et al.

  6. Interferon beta 2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells.

    PubMed Central

    Gauldie, J; Richards, C; Harnish, D; Lansdorp, P; Baumann, H

    1987-01-01

    One of the oldest and most preserved of the homeostatic responses of the body to injury is the acute phase protein response associated with inflammation. The liver responds to hormone-like mediators by the increased synthesis of a series of plasma proteins called acute phase reactants. In these studies, we examined the relationship of hepatocyte-stimulating factor derived from peripheral blood monocytes to interferon beta 2 (IFN-beta 2), which has been cloned. Antibodies raised against fibroblast-derived IFN-beta having neutralizing activity against both IFN-beta 1 and -beta 2 inhibited the major hepatocyte-stimulating activity derived from monocytes. Fibroblast-derived mediator elicited the identical stimulated response in human HepG2 cells and primary rat hepatocytes as the monocyte cytokine. Finally, recombinant-derived human B-cell stimulatory factor type 2 (IFN-beta 2) from Escherichia coli induced the synthesis of all major acute phase proteins studied in human hepatoma HepG2 and primary rat hepatocyte cultures. These data demonstrate that monocyte-derived hepatocyte-stimulating factor and IFN-beta 2 share immunological and functional identity and that IFN-beta 2, also known as B-cell stimulatory factor and hybridoma plasmacytoma growth factor, has the hepatocyte as a major physiologic target and thereby is essential in controlling the hepatic acute phase response. Images PMID:2444978

  7. High level of IL-10 expression in the blood of animal models possibly relates to resistance against leptospirosis.

    PubMed

    Matsui, Mariko; Roche, Louise; Soupé-Gilbert, Marie-Estelle; Hasan, Milena; Monchy, Didier; Goarant, Cyrille

    2017-08-01

    Leptospirosis is a severe zoonosis which immunopathogenesis is poorly understood. We evaluated correlation between acute form of the disease and the ratio of the anti-inflammatory cytokine IL-10 to the pro-inflammatory TNF-α and IL-1β expression during the early phase of infection comparing resistant mice and susceptible hamsters infected with two different species of virulent Leptospira. The IL-10/TNF-α and IL-10/IL-1β expression ratios were higher in mouse compared to hamster independently of the Leptospira strain, suggesting a preponderant role of the host response and notably these cytokines in the clinical expression and survival to leptospirosis. Using an IL-10 neutralization strategy in Leptospira-infected mouse model, we also showed evidence of a possible role of this cytokine on host susceptibility, bacterial clearance and on regulation of cytokine gene expression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. THE EMBRYOLETHALITY OF LIPOPOLYSACCHARIDE IN CD-1 AND METALLOTHIONEIN I-II NULL MICE: LACK OF A ROLE FOR INDUCED ZINC DEFICIENCY OR METALLOTHIONEIN INDUCTION

    EPA Science Inventory

    ABSTRACT

    Lipopolysaccharide (LPS) is embryolethal in CD-1 mice. LPS induces metallothionein (MT) via cytokines, including TNF-, IL-1 and IL-6, which initiate and maintain the acute phase response. Maternal hepatic MT induction in pregnant rats, by diverse toxicants, can ...

  9. Complement Activation Alters Platelet Function

    DTIC Science & Technology

    2015-12-01

    haemostatic and coagulation properties of platelets. 15. SUBJECT TERMS Platelets, Complement, Trauma, Tissue Damage 16. SECURITY CLASSIFICATION... coagulation , there is mounting evidence that they may also be important in the development and progression of inflammatory processes (Coppinger et al...receptor-ligand interactions and/or through exposure to cytokines including IL-6, other acute-phase reactants, and pro- coagulant factors such as thrombin

  10. Intoxication- and withdrawal-dependent expression of central and peripheral cytokines following initial ethanol exposure

    PubMed Central

    Doremus-Fitzwater, Tamara L.; Buck, Hollin M.; Bordner, Kelly A.; Richey, Laura; Jones, Megan E.; Deak, Terrence

    2016-01-01

    Background Evidence has emerged demonstrating that ethanol influences cytokine expression within the CNS, although most studies have examined long-term exposure. Thus, the cytokine response to an acute ethanol challenge was investigated, in order to characterize profiles of cytokine changes following acute exposure. Methods Rats pups were injected intraperitoneally (i.p.) with 2-g/kg ethanol and IL-1 mRNA and protein assessed 0, 60, 120, 180, and 240 min post-injection (Exp. 1). In Exps. 2-5, the expression of several cytokines was examined in adult male rats during acute intoxication (3 hr after 4-g/kg ethanol), as well as withdrawal (18 hr post-injection), after i.p. and intragastric (i.g.) ethanol administration. Results Early in ontogeny, acute ethanol significantly decreased brain IL-1 mRNA and protein. Subsequently, when adult rats were examined, significant and temporally dynamic alterations in central and peripheral cytokines were observed following acute i.p. ethanol exposure (4-g/kg). Although cytokine- and region-dependent, central IL-6 expression was generally increased and TNFα decreased during intoxication, whereas IL-1 expression exhibited increases during withdrawal. In the periphery, acute i.p. ethanol elevated expression of all cytokines, with the response growing in magnitude as the time post-injection increased. Following acute i.g. ethanol (4-g/kg), intoxication-related increases in IL-6 expression were again observed in the PVN, although to a lesser extent. Long-term, voluntary, intermittent ethanol consumption resulted in tolerance to the effects of an i.g. ethanol challenge (4-g/kg) on PVN IL-6 expression, whereas these same elevations in IL-6 expression were still seen in the amygdala in rats with a history of moderate ethanol intake. Treatment with minocycline did not significantly attenuate i.p. or i.g. ethanol-induced changes in central cytokine expression. Conclusions Together, these studies provide a foundation for understanding fluctuations in central and peripheral cytokines following acute ethanol as potential contributors to the constellation of neural and behavioral alterations observed during ethanol intoxication and withdrawal. PMID:25156612

  11. Regulatory role of NKG2D+ NK cells in intestinal lamina propria by secreting double-edged Th1 cytokines in ulcerative colitis

    PubMed Central

    Lin, Xue; Chang, Ying; Liu, Jing; Zhou, Rui; Nie, Jia-Yan; Dong, Wei-Guo; Zhao, Qiu; Li, Jin

    2017-01-01

    The role of intestinal lamina propria (LP) NKG2D+ NK cells is unclear in regulating Th1/Th2 balance in ulcerative colitis (UC). In this study, we investigated the frequency of LP NKG2D+ NK cells in DSS-induced colitis model and intestinal mucosal samples of UC patients, as well as the secretion of Th1/Th2/Th17 cytokines in NK cell lines after MICA stimulation. The role of Th1 cytokines in UC was validated by bioinformatics analysis. We found that DSS-induced colitis in mice was characterized by a Th2-mediated process. In acute phrase, the frequency of LP NKG2D+ lymphocytes increased significantly and decreased in remission, while the frequency of LP NKG2D+ NK cells decreased significantly in acute phase and increased in remission. No obvious change was found in the frequency of total LP NK cells. Similarly, severe UC patients had a higher expression of mucosal NKG2D and a lower number of NKG2D+ NK cells than mild to moderate UC. In NK cell lines, the MICA stimulation could induce a predominant secretion of Th1 cytokines (TNF, IFN-γ). Furthermore, in bioinformatics analysis, mucosal Th1 cytokine of TNF, showed a double-edged role in UC when compared to the Th1-mediated disease of Crohn's colitis. In conclusion, LP NKG2D+ NK cells partially played a regulatory role in UC through secreting Th1 cytokines to regulate the Th2-predominant Th1/Th2 imbalance, despite of the concomitant pro-inflammatory effects of Th1 cytokines. PMID:29228739

  12. Acute effects of alemtuzumab infusion in patients with active relapsing-remitting MS

    PubMed Central

    Thomas, Katja; Eisele, Judith; Rodriguez-Leal, Francisco Alejandro; Hainke, Undine

    2016-01-01

    Objective: Alemtuzumab exerts its clinical efficacy by its specific pattern of depletion and repopulation of different immune cells. Beyond long-term immunologic and clinical data, little is known about acute changes in immunologic and routine laboratory parameters and their clinical relevance during the initial alemtuzumab infusion. Methods: Fifteen patients with highly active MS were recruited. In addition to parameters including heart rate, blood pressure, body temperature, and monitoring of adverse events, complete blood cell count, liver enzymes, kidney function, acute-phase proteins, serum cytokine profile, complement activation, peripheral immune cell distribution, and their potential of cytokine release were investigated prior to and after methylprednisolone and after alemtuzumab on each day of alemtuzumab infusion. Results: After the first alemtuzumab infusion, both the total leukocyte and granulocyte counts markedly increased, whereas lymphocyte counts dramatically decreased. In addition to lymphocyte depletion, cell subtypes important for innate immunity also decreased within the first week after alemtuzumab infusion. Although patients reported feeling well, C-reactive protein and procalcitonin peaked at serum levels consistent with septic conditions. Increases in liver enzymes were detected, although kidney function remained stable. Proinflammatory serum cytokine levels clearly rose after the first alemtuzumab infusion. Alemtuzumab led to impaired cytokine release ex vivo in nondepleted cells. Normal clinical parameters and mild adverse events were presented. Conclusions: Dramatic immunologic effects were observed. Standardized infusion procedure and pretreatment management attenuated infusion-related reactions. Alemtuzumab-mediated effects led to artificially altered parameters in standard blood testing. We recommend clinical decision-making based on primarily clinical symptoms within the first alemtuzumab treatment week. PMID:27213173

  13. Systemic Inflammatory Load in Young and Old Ringdoves Is Modulated by Consumption of a Jerte Valley Cherry-Based Product

    PubMed Central

    Delgado, Jonathan; Terrón, María del Pilar; Garrido, María; Barriga, Carmen; Paredes, Sergio Damián; Espino, Javier

    2012-01-01

    Abstract A chronic subclinical inflammatory status that coexists with immune dysfunction is commonly found in the elderly population. Consumption of foods rich in antioxidants (e.g., cherries) is an attractive strategy to reduce risk from chronic diseases. Based on previous studies showing the antioxidant effect of a Jerte Valley cherry derivative product in humans, the objective of this work was to evaluate the effect of the intake of a Jerte Valley cherry-based beverage on inflammatory load in both young and old ringdoves (Streptopelia risoria). To this purpose, circulating levels of pro-inflammatory and anti-inflammatory cytokines as well as serum levels of different acute-phase proteins were measured before and after a 10-day treatment with the Jerte Valley cherry-based beverage. Thus, the 10-day treatment with the cherry-based beverage modulated the balance of pro- and anti-inflammatory cytokines in both young and old ringdoves by down-regulating the levels of pro-inflammatory cytokines (interleukin [IL]-1β, tumor necrosis factor-α, and interferon-γ) and up-regulating the levels of anti-inflammatory cytokines (IL-4, IL-2, and IL-10). Moreover, the 10-day treatment with the Jerte Valley cherry-based product reduced the levels of several proteins involved in acute-phase responses, such as C-reactive protein, haptoglobin, α2-macroglobulin, and serum amyloid P component. On the other hand, old birds showed imbalanced levels of inflammatory markers toward a pro-inflammatory status, thereby underlining the fact that aging is usually accompanied by systemic inflammation and inflammation-related chronic diseases. To sum up, the data suggest a potential health benefit by consuming the cherry-based beverage, especially in aged populations, through their anti-inflammatory properties. PMID:22846077

  14. A new look on brain mechanisms of acute illness anorexia.

    PubMed

    Asarian, Lori; Langhans, Wolfgang

    2010-07-14

    Bacterial lipopolysaccharide (LPS) and other microbial substances trigger the organism's acute phase response and cause acute illness anorexia. Pro-inflammatory cytokines are major endogenous mediators of acute illness anorexia, but how LPS or cytokines stimulate the brain to inhibit eating is not fully resolved. One emerging mechanism involves the activation of the enzyme cyclooxygenase-2 (COX-2) in blood-brain barrier endothelial cells and the subsequent release of prostaglandin E2 (PGE2). Serotonin neurons in the midbrain raphe are targets of PGE2, and serotonergic projections from the midbrain raphe to the hypothalamus appear to be crucial for LPS anorexia. That is, raphe projections activate (1) the corticotrophin-releasing hormone neurons in the paraventricular nucleus which then elicit the stress response and (2) the pro-opiomelanocortin neurons in the arcuate nucleus which then release alphaMSH and elicit anorexia. Here we review available data to support a role for this brain mechanism in acute illness anorexia by center staging PGE2 signaling pathways that converge on central neural circuits that control normal eating. In addition, we review interactions between gonadal hormones and immune function that lead to sex differences in acute illness anorexia. The paper represents an invited review by a symposium, award winner or keynote speaker at the Society for the Study of Ingestive Behavior [SSIB] Annual Meeting in Portland, July 2009. 2010 Elsevier Inc. All rights reserved.

  15. Proinflammatory cytokines oppose opioid induced acute and chronic analgesia

    PubMed Central

    Hutchinson, Mark R.; Coats, Benjamen D.; Lewis, Susannah S.; Zhang, Yingning; Sprunger, David B.; Rezvani, Niloofar; Baker, Eric M.; Jekich, Brian M.; Wieseler, Julie L.; Somogyi, Andrew A.; Martin, David; Poole, Stephen; Judd, Charles M.; Maier, Steven F.; Watkins, Linda R.

    2008-01-01

    Spinal proinflammatory cytokines are powerful pain-enhancing signals that contribute to pain following peripheral nerve injury (neuropathic pain). Recently, one proinflammatory cytokine, interleukin-1, was also implicated in the loss of analgesia upon repeated morphine exposure (tolerance). In contrast to prior literature, we demonstrate that the action of several spinal proinflammatory cytokines oppose systemic and intrathecal opioid analgesia, causing reduced pain suppression. In vitro morphine exposure of lumbar dorsal spinal cord caused significant increases in proinflammatory cytokine and chemokine release. Opposition of analgesia by proinflammatory cytokines is rapid, occurring ≤5 minutes after intrathecal (perispinal) opioid administration. We document that opposition of analgesia by proinflammatory cytokines cannot be accounted for by an alteration in spinal morphine concentrations. The acute anti-analgesic effects of proinflammatory cytokines occur in a p38 mitogen-activated protein kinase and nitric oxide dependent fashion. Chronic intrathecal morphine or methadone significantly increased spinal glial activation (toll-like receptor 4 mRNA and protein) and the expression of multiple chemokines and cytokines, combined with development of analgesic tolerance and pain enhancement (hyperalgesia, allodynia). Statistical analysis demonstrated that a cluster of cytokines and chemokines was linked with pain-related behavioral changes. Moreover, blockade of spinal proinflammatory cytokines during a stringent morphine regimen previously associated with altered neuronal function also attenuated enhanced pain, supportive that proinflammatory cytokines are importantly involved in tolerance induced by such regimens. These data implicate multiple opioid-induced spinal proinflammatory cytokines in opposing both acute and chronic opioid analgesia, and provide a novel mechanism for the opposition of acute opioid analgesia. PMID:18599265

  16. Plasma Cytokines and Chemokines in Zambian Children With Measles: Innate Responses and Association With HIV-1 Coinfection and In-Hospital Mortality.

    PubMed

    Lin, Wen-Hsuan W; Nelson, Ashley N; Ryon, Judith J; Moss, William J; Griffin, Diane E

    2017-03-01

    To identify immune factors present during the acute rash phase of measles and associations with outcome and human immunodeficiency virus type 1 (HIV-1) coinfection, we measured the plasma levels of 22 cytokines and chemokines in Zambian children hospitalized with measles (n = 148) and control children (n = 44). Children with measles had higher levels of innate cytokines tumor necrosis factor (TNF) α, interleukin 1β (IL-1β), interleukin 18, and interleukin 6; chemokines CCL2, CCL4, CCL11, CCL22, CXCL8, and CXCL10; and T-cell cytokines interferon γ, and interleukin 2, 10, and 17. Children who died in the hospital had higher levels of TNF-α, IL-1β, interleukin 12p70; CCL2, CCL4, CCL13, CCL17, CXCL8, CXCL10; and interleukin 2 and interferon γ than children who survived, and lower levels of interleukin 4. Children coinfected with HIV-1 had higher levels of TNF-α and IL-1β than HIV-uninfected children with measles, and lower levels of interleukin 4 and 5. Therefore, acute measles was characterized by activation of macrophages and T cells producing type 1, but not type 2, cytokines, which was more pronounced in fatal disease. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  17. Targeting pro-inflammatory cytokines following joint injury: acute intra-articular inhibition of interleukin-1 following knee injury prevents post-traumatic arthritis

    PubMed Central

    2014-01-01

    Introduction Post-traumatic arthritis (PTA) is a progressive, degenerative response to joint injury, such as articular fracture. The pro-inflammatory cytokines, interleukin 1(IL-1) and tumor necrosis factor alpha (TNF-α), are acutely elevated following joint injury and remain elevated for prolonged periods post-injury. To investigate the role of local and systemic inflammation in the development of post-traumatic arthritis, we targeted both the initial acute local inflammatory response and a prolonged 4 week systemic inflammatory response by inhibiting IL-1 or TNF-α following articular fracture in the mouse knee. Methods Anti-cytokine agents, IL-1 receptor antagonist (IL-1Ra) or soluble TNF receptor II (sTNFRII), were administered either locally via an acute intra-articular injection or systemically for a prolonged 4 week period following articular fracture of the knee in C57BL/6 mice. The severity of arthritis was then assessed at 8 weeks post-injury in joint tissues via histology and micro computed tomography, and systemic and local biomarkers were assessed in serum and synovial fluid. Results Intra-articular inhibition of IL-1 significantly reduced cartilage degeneration, synovial inflammation, and did not alter bone morphology following articular fracture. However, systemic inhibition of IL-1, and local or systemic inhibition of TNF provided no benefit or conversely led to increased arthritic changes in the joint tissues. Conclusion These results show that intra-articular IL-1, rather than TNF-α, plays a critical role in the acute inflammatory phase of joint injury and can be inhibited locally to reduce post-traumatic arthritis following a closed articular fracture. Targeted local inhibition of IL-1 following joint injury may represent a novel treatment option for PTA. PMID:24964765

  18. STAT3 in the systemic inflammation of cancer cachexia.

    PubMed

    Zimmers, Teresa A; Fishel, Melissa L; Bonetto, Andrea

    2016-06-01

    Weight loss is diagnostic of cachexia, a debilitating syndrome contributing mightily to morbidity and mortality in cancer. Most research has probed mechanisms leading to muscle atrophy and adipose wasting in cachexia; however cachexia is a truly systemic phenomenon. Presence of the tumor elicits an inflammatory response and profound metabolic derangements involving not only muscle and fat, but also the hypothalamus, liver, heart, blood, spleen and likely other organs. This global response is orchestrated in part through circulating cytokines that rise in conditions of cachexia. Exogenous Interleukin-6 (IL6) and related cytokines can induce most cachexia symptomatology, including muscle and fat wasting, the acute phase response and anemia, while IL-6 inhibition reduces muscle loss in cancer. Although mechanistic studies are ongoing, certain of these cachexia phenotypes have been causally linked to the cytokine-activated transcription factor, STAT3, including skeletal muscle wasting, cardiac dysfunction and hypothalamic inflammation. Correlative studies implicate STAT3 in fat wasting and the acute phase response in cancer cachexia. Parallel data in non-cancer models and disease states suggest both pathological and protective functions for STAT3 in other organs during cachexia. STAT3 also contributes to cancer cachexia through enhancing tumorigenesis, metastasis and immune suppression, particularly in tumors associated with high prevalence of cachexia. This review examines the evidence linking STAT3 to multi-organ manifestations of cachexia and the potential and perils for targeting STAT3 to reduce cachexia and prolong survival in cancer patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Systems biomarkers as acute diagnostics and chronic monitoring tools for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Wang, Kevin K. W.; Moghieb, Ahmed; Yang, Zhihui; Zhang, Zhiqun

    2013-05-01

    Traumatic brain injury (TBI) is a significant biomedical problem among military personnel and civilians. There exists an urgent need to develop and refine biological measures of acute brain injury and chronic recovery after brain injury. Such measures "biomarkers" can assist clinicians in helping to define and refine the recovery process and developing treatment paradigms for the acutely injured to reduce secondary injury processes. Recent biomarker studies in the acute phase of TBI have highlighted the importance and feasibilities of identifying clinically useful biomarkers. However, much less is known about the subacute and chronic phases of TBI. We propose here that for a complex biological problem such as TBI, multiple biomarker types might be needed to harness the wide range of pathological and systemic perturbations following injuries, including acute neuronal death, neuroinflammation, neurodegeneration and neuroregeneration to systemic responses. In terms of biomarker types, they range from brain-specific proteins, microRNA, genetic polymorphism, inflammatory cytokines and autoimmune markers and neuro-endocrine hormones. Furthermore, systems biology-driven biomarkers integration can help present a holistic approach to understanding scenarios and complexity pathways involved in brain injury.

  20. Acute phase cytokines, TAC1, and Toll-like receptor 4 mRNA expression association with housing and health in veal calves

    USDA-ARS?s Scientific Manuscript database

    Chronic stressors are a major health and well-being issue in animals. Immune status of animals under chronic stress is compromised, thus reducing disease resistance and compromising well-being of the animal. The objective of this study was to determine the influence of group size of veal calves on i...

  1. Supplementation with an all-natural saccharomyces cerevisiae fermentation product alters intraperitoneal temperature and serum pro-inflammatory cytokines following an oral salmonella typhimiurium challenge

    USDA-ARS?s Scientific Manuscript database

    This study was designed to determine if feeding a Saccharamyces cerevisiae fermentation product to weaned pigs would reduce the acute phase response (APR) following oral challenge with Salmonella typhimurium. Pigs (n=20; 5.9 ± 0.2 kg BW) were obtained and transported to an environmentally-controlled...

  2. Concentrations of Cytokines, Soluble Interleukin-2 Receptor, and Soluble CD30 in Sera of Patients with Hepatitis B Virus Infection during Acute and Convalescent Phases

    PubMed Central

    Monsalve-de Castillo, Francisca; Romero, Tania A.; Estévez, Jesús; Costa, Luciana L.; Atencio, Ricardo; Porto, Leticia; Callejas, Diana

    2002-01-01

    The immunoregulatory roles of interleukin-2 (IL-2), IL-4, IL-10, gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), the soluble form of the IL-2 receptor (sIL-2R), and the soluble form of CD30 (sCD30) were evaluated in patients with hepatitis B virus (HBV) infection. Two groups of subjects were studied: 15 healthy individuals without hepatitis antecedents and 15 patients with HBV infection. Blood samples were taken during the acute and convalescent phases. The analysis of the samples was done by the enzyme-linked immunosorbent assay technique. IFN-γ and TNF-α levels decreased in the convalescent phase. IL-10, IL-2, and sIL-2R levels increased in the acute and convalescent phases, while sCD30 levels increased during the acute phase. The IL-4 concentrations decreased in both phases. During the acute phase, IFN-γ and TNF-α induced increases in IL-2, sIL-2R, IL-10, and sCD30 levels in serum, which allowed the development of immunity characterized by the nonreactivity of the HBV surface antigen, the onset of antibodies to the HBV surface antigen (anti-HBs), and normal alanine aminotransferase levels during the convalescent phase. Increased IL-2 levels during the acute phase would stimulate the activities of NK cells and CD8+ lymphocytes, which are responsible for viral clearing. The raised sIL-2R levels reveal activation of T lymphocytes and control of the IL-2-dependent immune response. The sCD30 increment during the acute phase reflects the greater activation of the Th2 cellular phenotype. Its decrease in the convalescent phase points out the decrease in the level of HBV replication. The increase in IL-10 levels could result in a decrease in IL-4 levels and modulate IFN-γ and TNF-α levels during both phases of disease, allowing the maintenance of anti-HBs concentrations. PMID:12414777

  3. Longitudinal study of cellular and systemic cytokines signatures define the dynamics of a balanced immune environment in disease manifestation in Zika virus-infected patients.

    PubMed

    Lum, Fok-Moon; Lye, David C B; Tan, Jeslin J L; Lee, Bernett; Chia, Po-Ying; Chua, Tze-Kwang; Amrun, Siti N; Kam, Yiu-Wing; Yee, Wearn-Xin; Ling, Wei-Ping; Lim, Vanessa W X; Pang, Vincent J X; Lee, Linda K; Mok, Esther W H; Chong, Chia-Yin; Leo, Yee-Sin; Ng, Lisa F P

    2018-04-16

    The unexpected re-emergence of Zika virus (ZIKV) has caused numerous outbreaks globally. This study characterized the host immune responses during ZIKV infection. Patient samples were collected longitudinally during the acute, convalescence and recovery phases of ZIKV infection over 6 months during the Singapore outbreak in late 2016. Plasma immune mediators were profiled via multiplex micro-bead assay, while changes in blood cell numbers were determined with immune-phenotyping. Data showed the involvement of various immune mediators during acute ZIKV infection accompanied by a general reduction in blood cell numbers for all immune subsets except CD14+ monocytes. Importantly, viremic patients experiencing moderate symptoms had significantly higher quantities of IP-10, MCP-1, IL-1RA, IL-8 and PIGF-1, accompanied by reduced numbers of peripheral CD8+, CD4+ and DNT cells. Levels of T-cell associated mediators including IP-10, IFNγ, and IL-10 were high in recovery phases of ZIKV infection, suggesting a functional role for T-cells. The identification of different markers at specific disease phases emphasizes the dynamics of a balanced cytokine environment in disease progression. This is the first comprehensive study that highlights specific cellular changes and immune signatures during ZIKV disease progression and provides valuable insights into ZIKV immuno-pathogenesis.

  4. CSF cytokine profile in MOG-IgG+ neurological disease is similar to AQP4-IgG+ NMOSD but distinct from MS: a cross-sectional study and potential therapeutic implications.

    PubMed

    Kaneko, Kimihiko; Sato, Douglas Kazutoshi; Nakashima, Ichiro; Ogawa, Ryo; Akaishi, Tetsuya; Takai, Yoshiki; Nishiyama, Shuhei; Takahashi, Toshiyuki; Misu, Tatsuro; Kuroda, Hiroshi; Tanaka, Satoru; Nomura, Kyoichi; Hashimoto, Yuji; Callegaro, Dagoberto; Steinman, Lawrence; Fujihara, Kazuo; Aoki, Masashi

    2018-06-06

    To evaluate cerebrospinal fluid (CSF) cytokine profiles in myelin oligodendrocyte glycoprotein IgG-positive (MOG-IgG+) disease in adult and paediatric patients. In this cross-sectional study, we measured 27 cytokines in the CSF of MOG-IgG+ disease in acute phase before treatment (n=29). The data were directly compared with those in aquaporin-4 antibody-positive (AQP4-IgG+) neuromyelitis optica spectrum disorder (NMOSD) (n=20), multiple sclerosis (MS) (n=20) and non-inflammatory controls (n=14). In MOG-IgG+ disease, there was no female preponderance and the ages were younger (mean 18 years, range 3-68; 15 were below 18 years) relative to AQP4-IgG+ NMOSD (41, 15-77) and MS (34, 17-48). CSF cell counts were higher and oligoclonal IgG bands were mostly negative in MOG-IgG+ disease and AQP4-IgG+ NMOSD compared with MS. MOG-IgG+ disease had significantly elevated levels of interleukin (IL)-6, IL-8, granulocyte-colony stimulating factor and granulocyte macrophage-colony stimulating factor, interferon-γ, IL-10, IL-1 receptor antagonist, monocyte chemotactic protein-1 and macrophage inflammatory protein-1α as compared with MS. No cytokine in MOG-IgG+ disease was significantly different from AQP4-IgG+ NMOSD. Moreover many elevated cytokines were correlated with each other in MOG-IgG+ disease and AQP4-IgG+ NMOSD but not in MS. No difference in the data was seen between adult and paediatric MOG-IgG+ cases. The CSF cytokine profile in the acute phase of MOG-IgG+ disease is characterised by coordinated upregulation of T helper 17 (Th17) and other cytokines including some Th1-related and regulatory T cells-related ones in adults and children, which is similar to AQP4-IgG+ NMOSD but clearly different from MS. The results suggest that as with AQP4-IgG+ NMOSD, some disease-modifying drugs for MS may be ineffective in MOG-IgG+ disease while they may provide potential therapeutic targets. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Polarized type 2 alloreactive CD4+ and CD8+ donor T cells fail to induce experimental acute graft-versus-host disease.

    PubMed

    Krenger, W; Snyder, K M; Byon, J C; Falzarano, G; Ferrara, J L

    1995-07-15

    Acute graft-vs-host disease (GVHD) is thought to be mediated by alloreactive T cells with a type 1 cytokine phenotype. To prevent the development of acute GVHD, we have successfully polarized mature donor T cells toward a type 2 cytokine phenotype ex-vivo by incubating them with murine rIL-4 in a primary MLC. Polarized type 2 T cells were then transplanted with T cell-depleted bone marrow cells into irradiated recipients across either MHC class II (bm12-->C57BL/6) or class I (bm1-->C57BL/6) barriers, and the intensity of GVHD was measured by assessment of several in vitro and in vivo parameters. The injection of polarized type 2 T cells abrogated the mitogen-induced production of IFN-gamma by splenocytes from transplanted hosts on day 13 after bone marrow transplantation (BMT). Injection of polarized type 2 T cells failed to induce secretion of the effector phase cytokine TNF-alpha by splenocytes stimulated with LPS both in vitro and in vivo, and survival of transplanted mice after i.v. injection with LPS was significantly improved. Furthermore, cell-mixing experiments revealed that polarized type 2 T cells were able to inhibit type 1 cytokine responses induced by naive T cells after BMT. These data demonstrate that both polarized CD4+ and CD8+ type 2 alloreactive donor T cells can be generated in vitro from mature T cell populations. These cells function in vivo to inhibit type 1 T cell responses, and such inhibition attenuates the systemic morbidity of GVHD after BMT across both MHC class II or class I barriers in mice.

  6. Maternal immune response to helminth infection during pregnancy determines offspring susceptibility to allergic airway inflammation.

    PubMed

    Straubinger, Kathrin; Paul, Sabine; Prazeres da Costa, Olivia; Ritter, Manuel; Buch, Thorsten; Busch, Dirk H; Layland, Laura E; Prazeres da Costa, Clarissa U

    2014-12-01

    Schistosomiasis, a chronic helminth infection, elicits distinct immune responses within the host, ranging from an initial TH1 and subsequent TH2 phase to a regulatory state, and is associated with dampened allergic reactions within the host. We sought to evaluate whether non-transplacental helminth infection during pregnancy alters the offspring's susceptibility to allergy. Ovalbumin-induced allergic airway inflammation was analyzed in offspring from Schistosoma mansoni-infected mothers mated during the TH1, TH2, or regulatory phase of infection. Embryos derived from in vitro fertilized oocytes of acutely infected females were transferred into uninfected foster mice to determine the role of placental environment. The fetomaternal unit was further characterized by helminth-specific immune responses and microarray analyses. Eventually, IFN-γ-deficient mice were infected to evaluate the role of this predominant cytokine on the offspring's allergy phenotype. We demonstrate that offspring from schistosome-infected mothers that were mated in the TH1 and regulatory phases, but not the TH2 immune phase, are protected against the onset of allergic airway inflammation. Interestingly, these effects were associated with distinctly altered schistosome-specific cytokine and gene expression profiles within the fetomaternal interface. Furthermore, we identified that it is not the transfer of helminth antigens but rather maternally derived IFN-γ during the acute phase of infection that is essential for the progeny's protective immune phenotype. Overall, we present a novel immune phase-dependent coherency between the maternal immune responses during schistosomiasis and the progeny's predisposition to allergy. Therefore, we propose to include helminth-mediated transmaternal immune modulation into the expanded hygiene hypothesis. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  7. Infection dynamics and acute phase response of an Actinobacillus pleuropneumoniae field isolate of moderate virulence in pigs.

    PubMed

    Gómez-Laguna, Jaime; Islas, Armando; Muñoz, Dennis; Ruiz, Alvaro; Villamil, Aura; Carrasco, Librado; Quezada, Manuel

    2014-10-10

    Actinobacillus pleuropneumoniae, the causative agent of porcine contagious pleuropneumonia (PCP), causes significant economic losses associated mainly with growth stunting of animals. Although serotypes can be distinguished according to their virulence, most of the studies are focused in A. pleuropneumoniae infections with virulent serotypes. There is little information regarding the role of acute phase proteins (APPs) and proinflammatory cytokines in infections with isolates of mild or moderate virulence. Thus, the present study aims to evaluate the kinetics of infection with an A. pleuropneumoniae serotype 6 (Ap6) field isolate of moderate virulence and the changes in the serum concentration of specific antibodies and different APPs and proinflammatory cytokines. Control animals showed no clinical signs or lesions throughout the study. Infected animals showed increased rectal temperature, respiratory distress and depression from 24hpi, and typical gross and microscopic lesions of PCP from 6hpi onwards. Ap6 was isolated from nasal swabs of four out of five inoculated animals at 24hpi, and from nasal swabs, tonsil and lung samples from all inoculated animals at 72hpi. Specific antibodies against Ap6 or changes in the serum concentration of IL-1β, IL-10 and TNF-α were not detected throughout the study. The serum concentration of IL-6 increased from 6hpi as well as serum A amyloid, C-reactive protein and haptoglobin from 24hpi onwards. Our results highlight the onset of the acute phase response after the infection with a field isolate of A. pleuropneumoniae of moderate virulence from 24hpi onwards which may be of interest in the study of the pathogenesis of this disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Serum cytokine/chemokine profiles in patients with dengue fever (DF) and dengue hemorrhagic fever (FHD) by using protein array.

    PubMed

    Oliveira, Renato Antonio Dos Santos; Cordeiro, Marli Tenório; Moura, Patrícia Muniz Mendes Freire de; Baptista Filho, Paulo Neves Bapti; Braga-Neto, Ulisses de Mendonça; Marques, Ernesto Torres de Azevedo; Gil, Laura Helena Vega Gonzales

    2017-04-01

    DENV infection can induce different clinical manifestations varying from mild forms to dengue fever (DF) or the severe hemorrhagic fever (DHF). Several factors are involved in the progression from DF to DHF. No marker is available to predict this progression. Such biomarker could allow a suitable medical care at the beginning of the infection, improving patient prognosis. The aim of this study was to compare the serum expression levels of acute phase proteins in a well-established cohort of dengue fever (DF) and dengue hemorrhagic fever (DHF) patients, in order to individuate a prognostic marker of diseases severity. The serum levels of 36 cytokines, chemokines and acute phase proteins were determined in DF and DHF patients and compared to healthy volunteers using a multiplex protein array and near-infrared (NIR) fluorescence detection. Serum levels of IL-1ra, IL-23, MIF, sCD40 ligand, IP-10 and GRO-α were also determined by ELISA. At the early stages of infection, GRO-α and IP-10 expression levels were different in DF compared to DHF patients. Besides, GRO-α was positively correlated with platelet counts and IP-10 was negatively correlated with total protein levels. These findings suggest that high levels of GRO-α during acute DENV infection may be associated with a good prognosis, while high levels of IP-10 may be a warning sign of infection severity. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Evaluation of immune and stress status in harbour porpoises (Phocoena phocoena): can hormones and mRNA expression levels serve as indicators to assess stress?

    PubMed Central

    2013-01-01

    Background The harbour porpoise is exposed to increasing pressure caused by anthropogenic activities in its marine environment. Numerous offshore wind farms are planned or under construction in the North and Baltic Seas, which will increase underwater noise during both construction and operation. A better understanding of how anthropogenic impacts affect the behaviour, health, endocrinology, immunology and physiology of the animals is thus needed. The present study compares levels of stress hormones and mRNA expression of cytokines and acute-phase proteins in blood samples of harbour porpoises exposed to different levels of stress during handling, in rehabilitation or permanent human care. Free-ranging harbour porpoises, incidentally caught in pound nets in Denmark, were compared to harbour porpoises in rehabilitation at SOS Dolfijn in Harderwijk, the Netherlands, and individuals permanently kept in human care in the Dolfinarium Harderwijk and Fjord & Belt Kerteminde, Denmark. Blood samples were investigated for catecholamines, adrenaline, noradrenaline and dopamine, as well as for adrenocorticotropic hormone (ACTH), cortisol, metanephrine and normetanephrine. mRNA expression levels of relevant cell mediators (cytokines IL-10 and TNFα, acute-phase proteins haptoglobin and C-reactive protein and the heat shock protein HSP70) were measured using real-time PCR. Results Biomarker expression levels varied between free-ranging animals and porpoises in human care. Hormone and cytokine ranges showed correlations to each other and to the health status of investigated harbour porpoises. Hormone concentrations were higher in free-ranging harbour porpoises than in animals in human care. Adrenaline can be used as a parameter for the initial reaction to acute stress situations; noradrenaline, dopamine, ACTH and cortisol are more likely indicators for the following minutes of acute stress. There is evidence for different correlations between production of normetanephrine, metanephrine, cortisol and the expression of IL-10, HSP70 and haptoglobin. Conclusions The expression patterns of the selected molecular biomarkers of the immune system are promising to reflect the health and immune status of the harbour porpoise under different levels of stress. PMID:23866055

  10. Cross-talk between oxidative stress and pro-inflammatory cytokines in acute pancreatitis: a key role for protein phosphatases.

    PubMed

    Escobar, Javier; Pereda, Javier; Arduini, Alessandro; Sandoval, Juan; Sabater, Luis; Aparisi, Luis; López-Rodas, Gerardo; Sastre, Juan

    2009-01-01

    Acute pancreatitis is an acute inflammatory process localized in the pancreatic gland that frequently involves peripancreatic tissues. It is still under investigation why an episode of acute pancreatitis remains mild affecting only the pancreas or progresses to a severe form leading to multiple organ failure and death. Proinflammatory cytokines and oxidative stress play a pivotal role in the early pathophysiological events of the disease. Cytokines such as interleukin 1beta and tumor necrosis factor alpha initiate and propagate almost all consequences of the systemic inflammatory response syndrome. On the other hand, depletion of pancreatic glutathione is an early hallmark of acute pancreatitis and reactive oxygen species are also associated with the inflammatory process. Changes in thiol homestasis and redox signaling decisively contribute to amplification of the inflammatory cascade through mitogen activated protein kinase (MAP kinase) pathways. This review focuses on the relationship between oxidative stress, pro-inflammatory cytokines and MAP kinase/protein phosphatase pathways as major modulators of the inflammatory response in acute pancreatitis. Redox sensitive signal transduction mediated by inactivation of protein phosphatases, particularly protein tyrosin phosphatases, is highlighted.

  11. Cytokine polymorphisms have a synergistic effect on severity of the acute sickness response to infection.

    PubMed

    Vollmer-Conna, Uté; Piraino, Barbara F; Cameron, Barbara; Davenport, Tracey; Hickie, Ian; Wakefield, Denis; Lloyd, Andrew R

    2008-12-01

    Functional polymorphisms in immune response genes are increasingly recognized as important contributors to the marked individual differences in susceptibility to and outcomes of infectious disease. The acute sickness response is a stereotypical set of illness manifestations mediated by the proinflammatory cytokines induced by many different pathogens. The genetic determinants of severity of the acute sickness response have not previously been explored. We examined the impact of functional polymorphisms in cytokine genes with critical roles in the early immune response (tumor necrosis factor-alpha, interleukin-6, interleukin-10, and interferon-gamma) on the severity and duration of illness following acute infection with Epstein-Barr virus, Coxiella burnetii (the causative agent of Q fever), or Ross River virus. We found that the interferon-gamma +874T/A and the interleukin-10 -592C/A polymorphisms significantly affected illness severity, cytokine protein levels, and the duration of illness. These cytokine genotypes acted in synergy to potentiate their influence on disease outcomes. These findings suggest that genetically determined variations in the intensity of the inflammatory response underpin the severity of the acute sickness response and predict the recovery time across varied infections.

  12. The immune imbalance in the second hit of pancreatitis is independent of IL-17A.

    PubMed

    Thomson, John-Edwin; Brand, Martin; Fonteh, Pascaline

    2018-04-01

    Severe acute pancreatitis (SAP) is characterised by two distinct clinical phases. Organ dysfunction and death is initially as a result of a systemic inflammatory response syndrome (SIRS). Systemic sepsis from infected pancreatic necrosis characterises the second phase, the so called 'second hit' of acute pancreatitis (AP). An immune imbalance during the second hit is postulated to contribute to the formation of the septic complications that occur in these patients. The pro-inflammatory T-helper (Th) 17 pathway has been shown to be an initiator of early SIRS in AP, however to date its role has not been established in the second hit in AP. Thirty-six patients with mild (n = 16), moderate (n = 10) and severe (n = 10) acute pancreatitis were enrolled. Peripheral blood samples were drawn on days 7, 9, 11 and 13 of illness for analysis of routine clinical markers as well as cytokine analysis. Flow cytometry and a IL-17A ELISA was performed to determine cytokine concentrations. There were no significant differences between days 7, 9, 11 and 13 for either the mild/moderate or SAP groups for IL-17A (CBA assay or ELISA), IFN-γ, TNF-α, IL-2 or IL-4. For each of the study days, the mean IL-6 and IL-10 concentrations were significantly higher in the SAP group compared to the mild/moderate group. WCC, CRP and PCT were all significantly higher in severe acute pancreatitis over the study days. An immune imbalance exists in patients with SAP, however secreted IL-17A is not responsible for the second hit in AP. Copyright © 2018 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  13. Immunomodulatory effects of high-protein diet with resveratrol supplementation on radiation-induced acute-phase inflammation in rats.

    PubMed

    Kim, Kyoung-Ok; Park, HyunJin; Chun, Mison; Kim, Hyun-Sook

    2014-09-01

    We hypothesized that a high-protein diet and/or resveratrol supplementation will improve acute inflammatory responses in rats after receiving experimental abdominal radiation treatment (ART). Based on our previous study, the period of 10 days after ART was used as an acute inflammation model. Rats were exposed to a radiation dose of 17.5 Gy and were supplied with a control (C), 30% high-protein diet (HP), resveratrol supplementation (RES), or HP with RES diet ([HP+RES]). At day 10 after ART, we measured profiles of lipids, proteins, and immune cells in blood. The levels of clusters of differentiating 4(+) (CD4(+)) cells and regulatory T cells, serum proinflammatory cytokines, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in urine were also measured. ART caused significant disturbances of lipid profiles by increasing triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C), and decreasing high-density lipoprotein cholesterol. The proinflammatroy cytokine levels were also increased by ART. All the experimental diets (HP, RES, and [HP+RES]) significantly decreased levels of TG, monocytes, proinflammatory cytokines, and 8-OHdG, whereas the platelet counts were increased. In addition, the HP and [HP+RES] diets decreased the concentrations of plasma LDL-C and total cholesterol. Also, the HP and RES diets decreased regulatory T cells compared with those of the control diet in ART group. Further, the HP diet led to a significant recovery of white blood cell counts, as well as increased percentages of lymphocyte and decreased percentages of neutrophils. In summary, RES appeared to be significantly effective in minimizing radiation-induced damage to lipid metabolism and immune responses. Our study also demonstrated the importance of dietary protein intake in recovering from acute inflammation by radiation.

  14. Comparative Analysis of Liver Injury-Associated Cytokines in Acute Hepatitis A and B.

    PubMed

    Shin, So Youn; Jeong, Sook-Hyang; Sung, Pil Soo; Lee, Jino; Kim, Hyung Joon; Lee, Hyun Woong; Shin, Eui-Cheol

    2016-05-01

    Acute hepatitis A (AHA) and acute hepatitis B (AHB) are caused by an acute infection of the hepatitis A virus and the hepatitis B virus, respectively. In both AHA and AHB, liver injury is known to be mediated by immune cells and cytokines. In this study, we measured serum levels of various cytokines and T-cell cytotoxic proteins in patients with AHA or AHB to identify liver injury-associated cytokines. Forty-six patients with AHA, 16 patients with AHB, and 14 healthy adults were enrolled in the study. Serum levels of 17 cytokines and T-cell cytotoxic proteins were measured by enzyme-linked immunosorbent assays or cytometric bead arrays and analyzed for correlation with serum alanine aminotransferase (ALT) levels. Interleukin (IL)-18, IL-8, CXCL9, and CXCL10 were significantly elevated in both AHA and AHB. IL-6, IL-22, granzyme B, and soluble Fas ligand (sFasL) were elevated in AHA but not in AHB. In both AHA and AHB, the serum level of CXCL10 significantly correlated with the peak ALT level. Additionally, the serum level of granzyme B in AHA and the serum level of sFasL in AHB correlated with the peak ALT level. We identified cytokines and T-cell cytotoxic proteins associated with liver injury in AHA and AHB. These findings deepen the existing understanding of immunological mechanisms responsible for liver injury in acute viral hepatitis.

  15. Cytokine expression in response to root canal infection in gnotobiotic mice.

    PubMed

    Maciel, K F; Neves de Brito, L C; Tavares, W L F; Moreira, G; Nicoli, J R; Vieira, L Q; Ribeiro Sobrinho, A P

    2012-04-01

    To examine cytokine expression profiles during periapical lesion development in response to synergetic human pathogens in a gnotobiotic mouse model. Human strains of Fusobacterium nucleatum and Peptostreptococcus prevotii were inoculated into the root canals of germ-free mice in either mono- or bi-association. Animals were killed 7 and 14 days after infection, and periapical tissues were collected. mRNA expression of the cytokines IFN-γ, TNF-α, Receptor activator of nuclear factor kappa-B ligand (RANKL), IL-10, IL-4 and transforming growth factor β (TGF-β) was assessed using real-time PCR. Levene's test was used to assess the equality of variance of the data, whereas a t-test for independent samples was used to evaluate the significance of the differences between groups (P < 0.05). The mRNA expression of IFN-γ and TNF-α was up-regulated by F. nucleatum during the acute (day 7) and chronic phase (day 14) of periapical lesion development. However, in bi-infection the expression of IFN-γ and TNF-α were effectively absent at both time-points. RANKL mRNA expression was down-regulated during dual infection at the chronic phase. As IL-4 expression was similar at both time-points, IL-4 does not appear to be involved in the periapical response to these bacterial strains. IL-10 was up-regulated during the chronic phase by mono-infection with either F. nucleatum or P. prevotii. Dual infection increased TGF-β mRNA expression on day 7, which paralleled the decrease in IFN-γ and TNF-α mRNA levels at the same time-point. F. nucleatum increased TGF-β mRNA expression during the chronic phase. Cytokine profiles depend on the nature of the bacterial challenge. Both TGF-β and IL-10 appeared to be regulating the proinflammatory cytokine responses at both time-points of the periapical immune response. © 2012 International Endodontic Journal.

  16. Temporal profiles of age-dependent changes in cytokine mRNA expression and glial cell activation after status epilepticus in postnatal rat hippocampus.

    PubMed

    Järvelä, Juha T; Lopez-Picon, Francisco R; Plysjuk, Anna; Ruohonen, Saku; Holopainen, Irma E

    2011-04-08

    Status epilepticus (SE) is proposed to lead to an age-dependent acute activation of a repertoire of inflammatory processes, which may contribute to neuronal damage in the hippocampus. The extent and temporal profiles of activation of these processes are well known in the adult brain, but less so in the developing brain. We have now further elucidated to what extent inflammation is activated by SE by investigating the acute expression of several cytokines and subacute glial reactivity in the postnatal rat hippocampus. SE was induced by an intraperitoneal (i.p.) injection of kainic acid (KA) in 9- and 21-day-old (P9 and P21) rats. The mRNA expression of interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), matrix metalloproteinase-9 (MMP-9), glial-derived neurotrophic factor (GDNF), interferon gamma (IFN-γ), and transforming growth factor-beta 1 (TGF-β1) were measured from 4 h up to 3 days after KA injection with real-time quantitative PCR (qPCR). IL-1β protein expression was studied with ELISA, GFAP expression with western blotting, and microglial and astrocyte morphology with immunohistochemistry 3 days after SE. SE increased mRNA expression of IL-1β, TNF-α and IL-10 mRNA in hippocampus of both P9 and P21 rats, their induction being more rapid and pronounced in P21 than in P9 rats. MMP-9 expression was augmented similarly in both age groups and GDNF expression augmented only in P21 rats, whereas neither IFN-γ nor TGF-β1 expression was induced in either age group. Microglia and astrocytes exhibited activated morphology in the hippocampus of P21 rats, but not in P9 rats 3 d after SE. Microglial activation was most pronounced in the CA1 region and also detected in the basomedial amygdala. Our results suggest that SE provokes an age-specific cytokine expression in the acute phase, and age-specific glial cell activation in the subacute phase as verified now in the postnatal rat hippocampus. In the juvenile hippocampus, transient increases in cytokine mRNA expression after SE, in contrast to prolonged glial reactivity and region-specific microglial activity after SE, suggest that the inflammatory response is changed from a fulminant and general initial phase to a more moderate and specific subacute response.

  17. Role of acute ethanol exposure and TLR4 in early events of sepsis in a mouse model

    PubMed Central

    Bhatty, Minny; Jan, Basit L; Tan, Wei; Pruett, Stephen B; Nanduri, Bindu

    2011-01-01

    Sepsis is a major cause of death worldwide. The associated risks and mortality are known to significantly increase on exposure to alcohol (chronic or acute). The underlying mechanisms of the association of acute ethanol ingestion and poor prognosis of sepsis are largely unknown. The study described here was designed to determine in detail the role of ethanol and TLR4 in the pathogenesis of the sepsis syndrome. The effects of acute ethanol exposure and TLR4 on bacterial clearance, spleen cell numbers, peritoneal macrophage numbers, and cytokine production were evaluated using wild type and TLR4 hypo-responsive mice treated with ethanol and then challenged with a non pathogenic strain of Escherichia. coli (E. coli). Ethanol treated mice exhibited a decreased clearance of bacteria and produced lesser amounts of most pro-inflammatory cytokines in both strains of mice at two hours after challenge. Neither ethanol treatment nor a hypo-responsive TLR4 had significant effects on the cell numbers in the peritoneal cavity and spleen 2 hours post infection. The suppressive effect of acute ethanol exposure on cytokine and chemokine production was more pronounced in the wild type mice, but the untreated hyporesponsive mice produced less of most cytokines than untreated wild type mice. The major conclusion of this study is that acute ethanol exposure suppresses pro-inflammatory cytokine production and that a hypo-responsive TLR4 (in C3H/HeJ mice) decreases pro-inflammatory cytokine levels but the cytokines and other mediators induced through other receptors are sufficient to ultimately clear the infection but not enough to induce lethal septic shock. In addition, results reported here demonstrate previously unknown effects of acute ethanol exposure on LIF (leukemia inhibitory factor) and eotaxin and provide the first evidence that IL-9 is induced through TLR4 in vivo. PMID:21872420

  18. [In vitro examination of the influence of lipase and amylase on dog's pancreas tissue incubated with endotoxins, phospholipase A2 or cytokines].

    PubMed

    Kerekes, László; Antal-Szalmás, Péter; Dezso, Balázs; Sipka, Sándor; Furka, Andrea; Mikó, Irén; Sápy, Péter

    2005-04-01

    Proinflammatory cytokines are elevated during acute pancreatitis. The endotoxins and Phospholipase A2 (PLA2) also have important role in acute pancreatitis. The aim of this study was to determine, what factors are responsible for the tissue damage in acute pancreatitis. The examinations were performed on fixed and frozen sections of healthy dog's pancreas tissue. Direct effects of endotoxins, PLA2, and proinflammatory cytokines together with pancreas enzymes were examined on pancreatic tissue. Pancreas enzymes themselves did not cause any change in the structure of pancreas. The common influence of endotoxins, PLA2 and pancreas enzymes was examined, and finally the effect of proinflammatory cytokines and enzymes was examined on pancreas tissue. Our results show, that besides enzymes many other factors are necessary to inflict tissue damage in acute pancreatitis, but for necrosis the presence of TNF alfa is a must.

  19. Zinc and Regulation of Inflammatory Cytokines: Implications for Cardiometabolic Disease

    PubMed Central

    Foster, Meika; Samman, Samir

    2012-01-01

    In atherosclerosis and diabetes mellitus, the concomitant presence of low-grade systemic inflammation and mild zinc deficiency highlights a role for zinc nutrition in the management of chronic disease. This review aims to evaluate the literature that reports on the interactions of zinc and cytokines. In humans, inflammatory cytokines have been shown both to up- and down-regulate the expression of specific cellular zinc transporters in response to an increased demand for zinc in inflammatory conditions. The acute phase response includes a rapid decline in the plasma zinc concentration as a result of the redistribution of zinc into cellular compartments. Zinc deficiency influences the generation of cytokines, including IL-1β, IL-2, IL-6, and TNF-α, and in response to zinc supplementation plasma cytokines exhibit a dose-dependent response. The mechanism of action may reflect the ability of zinc to either induce or inhibit the activation of NF-κB. Confounders in understanding the zinc-cytokine relationship on the basis of in vitro experimentation include methodological issues such as the cell type and the means of activating cells in culture. Impaired zinc homeostasis and chronic inflammation feature prominently in a number of cardiometabolic diseases. Given the high prevalence of zinc deficiency and chronic disease globally, the interplay of zinc and inflammation warrants further examination. PMID:22852057

  20. Comparative Analysis of Liver Injury-Associated Cytokines in Acute Hepatitis A and B

    PubMed Central

    Shin, So Youn; Jeong, Sook-Hyang; Sung, Pil Soo; Lee, Jino; Kim, Hyung Joon; Lee, Hyun Woong

    2016-01-01

    Purpose Acute hepatitis A (AHA) and acute hepatitis B (AHB) are caused by an acute infection of the hepatitis A virus and the hepatitis B virus, respectively. In both AHA and AHB, liver injury is known to be mediated by immune cells and cytokines. In this study, we measured serum levels of various cytokines and T-cell cytotoxic proteins in patients with AHA or AHB to identify liver injury-associated cytokines. Materials and Methods Forty-six patients with AHA, 16 patients with AHB, and 14 healthy adults were enrolled in the study. Serum levels of 17 cytokines and T-cell cytotoxic proteins were measured by enzyme-linked immunosorbent assays or cytometric bead arrays and analyzed for correlation with serum alanine aminotransferase (ALT) levels. Results Interleukin (IL)-18, IL-8, CXCL9, and CXCL10 were significantly elevated in both AHA and AHB. IL-6, IL-22, granzyme B, and soluble Fas ligand (sFasL) were elevated in AHA but not in AHB. In both AHA and AHB, the serum level of CXCL10 significantly correlated with the peak ALT level. Additionally, the serum level of granzyme B in AHA and the serum level of sFasL in AHB correlated with the peak ALT level. Conclusion We identified cytokines and T-cell cytotoxic proteins associated with liver injury in AHA and AHB. These findings deepen the existing understanding of immunological mechanisms responsible for liver injury in acute viral hepatitis. PMID:26996565

  1. Cytokine-Mediated Loss of Blood Dendritic Cells During Epstein-Barr Virus-Associated Acute Infectious Mononucleosis: Implication for Immune Dysregulation.

    PubMed

    Panikkar, Archana; Smith, Corey; Hislop, Andrew; Tellam, Nick; Dasari, Vijayendra; Hogquist, Kristin A; Wykes, Michelle; Moss, Denis J; Rickinson, Alan; Balfour, Henry H; Khanna, Rajiv

    2015-12-15

    Acute infectious mononucleosis (IM) is associated with altered expression of inflammatory cytokines and disturbed T-cell homeostasis, however, the precise mechanism of this immune dysregulation remains unresolved. In the current study we demonstrated a significant loss of circulating myeloid and plasmacytoid dendritic cells (DCs) during acute IM, a loss correlated with the severity of clinical symptoms. In vitro exposure of blood DCs to acute IM plasma resulted in loss of plasmacytoid DCs, and further studies with individual cytokines showed that exposure to interleukin 10 could replicate this effect. Our data provide important mechanistic insight into dysregulated immune homeostasis during acute IM. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. The ectoenzyme-side of matrix metalloproteinases (MMPs) makes inflammation by serum amyloid A (SAA) and chemokines go round.

    PubMed

    De Buck, Mieke; Gouwy, Mieke; Struyf, Sofie; Opdenakker, Ghislain; Van Damme, Jo

    2018-06-02

    During an inflammatory response, a large number of distinct mediators appears in the affected tissues or in the blood circulation. These include acute phase proteins such as serum amyloid A (SAA), cytokines and chemokines and proteolytic enzymes. Although these molecules are generated within a cascade sequence in specific body compartments allowing for independent action, their co-appearance in space and time during acute or chronic inflammation points toward important mutual interactions. Pathogen-associated molecular patterns lead to fast induction of the pro-inflammatory endogenous pyrogens, which are evoking the acute phase response. Interleukin-1, tumor necrosis factor-α and interferons simultaneously trigger different cell types, including leukocytes, endothelial cells and fibroblasts for tissue-specific or systemic production of chemokines and matrix metalloproteinases (MMPs). In addition, SAA induces chemokines and both stimulate secretion of MMPs from multiple cell types. As a consequence, these mediators may cooperate to enhance the inflammatory response. Indeed, SAA synergizes with chemokines to increase chemoattraction of monocytes and granulocytes. On the other hand, MMPs post-translationally modify chemokines and SAA to reduce their activity. Indeed, MMPs internally cleave SAA with loss of its cytokine-inducing and direct chemotactic potential whilst retaining its capacity to synergize with chemokines in leukocyte migration. Finally, MMPs truncate chemokines at their NH 2 - or COOH-terminal end, resulting in reduced or enhanced chemotactic activity. Therefore, the complex interactions between chemokines, SAA and MMPs either maintain or dampen the inflammatory response. Copyright © 2018. Published by Elsevier B.V.

  3. Altered Expression of Middle and Inner Ear Cytokines in Mouse Otitis Media

    PubMed Central

    MacArthur, Carol J.; Pillers, De-Ann M.; Pang, Jiaqing; Kempton, J. Beth; Trune, Dennis R.

    2010-01-01

    Objectives/Hypothesis The inner ear is at risk for sensorineural hearing loss in both acute and chronic otitis media (OM), but the underlying mechanisms underlying sensorineural hearing loss are unknown. Previous gene expression array studies showed cytokine genes might be upregulated in the cochleas of mice with acute and chronic otitis media. This implies that the inner ear could manifest a direct inflammatory response to OM that may cause sensorineural damage. Therefore, to better understand inner ear cytokine gene expression during OM, quantitative RT-PCR and immunohistochemistry were performed on mouse models to evaluate middle and inner ear inflammatory and remodeling cytokines. Study Design Basic science experiment. Methods An acute OM model was created in Balb/c mice by a transtympanic injection of S. pneumoniae in one ear; the other ear used as a control. C3H/HeJ mice were screened for unilateral chronic OM with the non-infected ear serving as control. Results Both acute and chronic OM caused both the middle ear and inner tissues in these two mouse models to over express numerous cytokine genes related to tissue remodeling (TNFα, FGF, BMP) and angiogenesis (VEGF), as well as inflammatory cell proliferation (IL-1α,β, IL-2, IL-6). Immunohistochemistry confirmed that both the middle ear and inner ear tissues expressed these cytokines. Conclusion Cochlear tissues are capable of expressing cytokine mRNA that contributes to the inflammation and remodeling that occur in association with middle ear disease. This provides a potential molecular basis for the transient and permanent sensorineural hearing loss often reported with acute and chronic OM. Level of Evidence N/A PMID:21271590

  4. Virus detection and cytokine profile in relation to age among acute exacerbations of childhood asthma.

    PubMed

    Kato, Masahiko; Suzuki, Kazuo; Yamada, Yoshiyuki; Maruyama, Kenichi; Hayashi, Yasuhide; Mochizuki, Hiroyuki

    2015-09-01

    Little information is available regarding eosinophil activation and cytokine profiles in relation to age in virus-induced bronchial asthma. We therefore explored the association between age, respiratory viruses, serum eosinophil cationic protein (ECP), and cytokines/chemokines in acute exacerbations of childhood asthma. We investigated viruses in nasal secretions from 88 patients with acute exacerbation of childhood asthma by using antigen detection kits and/or RT-PCR, followed by direct DNA sequencing analysis. We also measured peripheral eosinophil counts, and the serum levels of ECP and 27 types of cytokines/chemokines in 71 virus-induced acute asthma cases and 13 controls. Viruses were detected in 71(80.7%) of the 88 samples. The three major viruses detected were rhinoviruses, RS viruses, and enteroviruses; enteroviruses were found to be dominant in patients aged ≥3 years. There was no change in the levels of rhinoviruses and RS viruses between the two age groups, defined as children aged <3 years and children aged ≥3 years. Serum concentrations of ECP, IL-5, and IP-10 were significantly elevated in virus-induced acute asthma cases compared with controls. Serum ECP values were significantly higher in patients with virus-induced asthma at age ≥3 years compared with those aged <3 years. Among the 27 cytokines/chemokines, serum IP-10 was significantly higher in virus-induced asthma in patients <3 years than in those ≥3 years. Serum ECP and IL-5 production correlated significantly with age, whereas serum IP-10 showed an inverse correlation with age. Age-related differences in cytokine profiles and eosinophil activation may be related to virus-induced acute exacerbations of childhood asthma. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  5. Relationship between production of acute-phase proteins and strength of inflammatory stimulation in rats.

    PubMed

    Kuribayashi, Takashi; Tomizawa, Misaki; Seita, Tetsurou; Tagata, Kazutoshi; Yamamoto, Shizuo

    2011-07-01

    The relationship between intensity of inflammatory stimulation and production of α(2)-macroglobulin (α2M) and α(1)-acid glycoprotein (AAG) in rats was investigated. Sprague-Dawley rats were injected with turpentine oil at doses of 0.05, 0.2 or 0.4 mL/rat. Serum levels of α2M, interleukin (IL)-6 and cytokine-induced neutrophil chemoattractant-1 (CINC-1) were measured by enzyme-linked immunosorbent assay, and AAG was measured by single radial immunodiffusion. Peak serum levels of α2M and AAG in rats injected at 0.05 mL/rat were significantly lower than those at 0.2 or 0.4 mL/rat. However, no significant differences were observed for peak serum levels of these acute-phase proteins between 0.2 and 0.4 mL/rat. Furthermore, peak serum levels of IL-6 and CINC-1 in rats injected at 0.05 mL/rat were significantly lower than those at 0.2 or 0.4 mL/rat. Thus, the production of these acute-phase proteins has upper limits, even under increased strength of inflammatory stimulation in rats injected with turpentine oil.

  6. Relationship between production of acute-phase proteins and strength of inflammatory stimulation in rats

    PubMed Central

    Kuribayashi, Takashi; Tomizawa, Misaki; Seita, Tetsurou; Tagata, Kazutoshi; Yamamoto, Shizuo

    2011-01-01

    The relationship between intensity of inflammatory stimulation and production of α 2-macroglobulin (α2M) and α 1-acid glycoprotein (AAG) in rats was investigated. Sprague-Dawley rats were injected with turpentine oil at doses of 0.05, 0.2 or 0.4 mL/rat. Serum levels of α2M, interleukin (IL)-6 and cytokine-induced neutrophil chemoattractant-1 (CINC-1) were measured by enzyme-linked immunosorbent assay, and AAG was measured by single radial immunodiffusion. Peak serum levels of α2M and AAG in rats injected at 0.05 mL/rat were significantly lower than those at 0.2 or 0.4 mL/rat. However, no significant differences were observed for peak serum levels of these acute-phase proteins between 0.2 and 0.4 mL/rat. Furthermore, peak serum levels of IL-6 and CINC-1 in rats injected at 0.05 mL/rat were significantly lower than those at 0.2 or 0.4 mL/rat. Thus, the production of these acute-phase proteins has upper limits, even under increased strength of inflammatory stimulation in rats injected with turpentine oil. PMID:21669904

  7. Cytokine Signatures Discriminate Highly Frequent Acute Hepatitis a Virus and Hepatitis E Virus Coinfections from Monoinfections in Mexican Pediatric Patients.

    PubMed

    Realpe-Quintero, Mauricio; Copado-Villagrana, Edgar Daniel; Trujillo-Ochoa, Jorge Luis; Alvarez, Angel Hilario; Panduro, Arturo; Fierro, Nora Alma

    2017-07-01

    The frequency of hepatitis A virus and hepatitis E virus infections and their cytokine profiles were analyzed in Mexican pediatric patients with acute hepatitis. A high frequency of coinfections was found. Significant overexpression of interleukin (IL)-4, IL-12, IL-13 and interferon-gamma during hepatitis A virus monoinfections and limited secretion of cytokines in hepatitis E virus infections were observed.

  8. One-Week Exposure to a Free-Choice High-Fat High-Sugar Diet Does Not Interfere With the Lipopolysaccharide-Induced Acute Phase Response in the Hypothalamus of Male Rats.

    PubMed

    Belegri, Evita; Eggels, Leslie; la Fleur, Susanne E; Boelen, Anita

    2018-01-01

    Obesity has been associated with increased susceptibility to infection in humans and rodents. Obesity is also associated with low-grade hypothalamic inflammation that depends not only on body weight but also on diet. In the present study, we investigated if the bacterial endotoxin [lipopolysaccharide (LPS)]-induced acute phase response is aggravated in rats on a 1-week free-choice high-fat high-sugar (fcHFHS) diet and explained by diet-induced hypothalamic inflammation. Male Wistar rats were on an fcHFHS diet or chow for 1 week and afterwards intraperitoneally injected with LPS or saline. Hypothalamic inflammatory intermediates and plasma cytokines were measured after LPS. Both LPS and the fcHFHS diet altered hypothalamic Nfkbia mRNA and nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor alpha (NFKBIA) protein levels, whereas Il1 β, Il6 , and Tnf α mRNA expression was solely induced upon LPS. We observed an interaction in hypothalamic Nfkbia and suppressor of cytokine signaling (SOCS) 3 mRNA upon LPS; both were higher in rats on a fcHFHS diet compared with chow animals. Despite this, plasma cytokine levels between fcHFHS diet-fed and chow-fed rats were similar after LPS administration. Consuming a fcHFHS diet but not LPS injections increased hypothalamic Atf4 (a cellular stress marker) mRNA expression, whereas Tlr4 mRNA was decreased only upon LPS. Our study does not support a role for diet-induced mild hypothalamic inflammation in the increased susceptibility to infection despite altered Nfkbia and Socs3 mRNA expression after the diet. Additional factors, related to increased fat mass, might be involved.

  9. Phase I/Phase II Study of Blinatumomab in Pediatric Patients With Relapsed/Refractory Acute Lymphoblastic Leukemia.

    PubMed

    von Stackelberg, Arend; Locatelli, Franco; Zugmaier, Gerhard; Handgretinger, Rupert; Trippett, Tanya M; Rizzari, Carmelo; Bader, Peter; O'Brien, Maureen M; Brethon, Benoît; Bhojwani, Deepa; Schlegel, Paul Gerhardt; Borkhardt, Arndt; Rheingold, Susan R; Cooper, Todd Michael; Zwaan, Christian M; Barnette, Phillip; Messina, Chiara; Michel, Gérard; DuBois, Steven G; Hu, Kuolung; Zhu, Min; Whitlock, James A; Gore, Lia

    2016-12-20

    Purpose Blinatumomab is a bispecific T-cell engager antibody construct targeting CD19 on B-cell lymphoblasts. We evaluated the safety, pharmacokinetics, recommended dosage, and potential for efficacy of blinatumomab in children with relapsed/refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Methods This open-label study enrolled children < 18 years old with relapsed/refractory BCP-ALL in a phase I dosage-escalation part and a phase II part, using 6-week treatment cycles. Primary end points were maximum-tolerated dosage (phase I) and complete remission rate within the first two cycles (phase II). Results We treated 49 patients in phase I and 44 patients in phase II. Four patients had dose-limiting toxicities in cycle 1 (phase I). Three experienced grade 4 cytokine-release syndrome (one attributed to grade 5 cardiac failure); one had fatal respiratory failure. The maximum-tolerated dosage was 15 µg/m 2 /d. Blinatumomab pharmacokinetics was linear across dosage levels and consistent among age groups. On the basis of the phase I data, the recommended blinatumomab dosage for children with relapsed/refractory ALL was 5 µg/m 2 /d for the first 7 days, followed by 15 µg/m 2 /d thereafter. Among the 70 patients who received the recommended dosage, 27 (39%; 95% CI, 27% to 51%) achieved complete remission within the first two cycles, 14 (52%) of whom achieved complete minimal residual disease response. The most frequent grade ≥ 3 adverse events were anemia (36%), thrombocytopenia (21%), and hypokalemia (17%). Three patients (4%) and one patient (1%) had cytokine-release syndrome of grade 3 and 4, respectively. Two patients (3%) interrupted treatment after grade 2 seizures. Conclusion This trial, which to the best of our knowledge was the first such trial in pediatrics, demonstrated antileukemic activity of single-agent blinatumomab with complete minimal residual disease response in children with relapsed/refractory BCP-ALL. Blinatumomab may represent an important new treatment option in this setting, requiring further investigation in curative indications.

  10. Effects of resistance training on the inflammatory response

    PubMed Central

    Calle, Mariana C

    2010-01-01

    Resistance training (RT) is associated with reduced risk of low grade inflammation related diseases, such as cardiovascular disease and type 2 diabetes. The majority of the data studying cytokines and exercise comes from endurance exercise. In contrast, evidence establishing a relationship between RT and inflammation is more limited. This review focuses on the cytokine responses both following an acute bout, and after chronic RT. In addition, the effect of RT on low grade systemic inflammation such as individuals at risk for type 2 diabetes is reviewed. Cytokines are secreted proteins that influence the survival, proliferation, and differentiation of immune cells and other organ systems. Cytokines function as intracellular signals and almost all cells in the body either secrete them or have cytokine receptors. Thus, understanding cytokine role in a specific physiological situation such as a bout of RT can be exceedingly complex. The overall effect of long term RT appears to ameliorate inflammation, but the specific effects on the inflammatory cytokine, tumor necrosis factor alpha are not clear, requiring further research. Furthermore, it is critical to differentiate between chronically and acute Interleukin-6 levels and its sources. The intensity of the RT and the characteristics of the training protocol may exert singular cytokine responses and as a result different adaptations to exercise. More research is needed in the area of RT in healthy populations, specifically sorting out gender and age RT acute responses. More importantly, studies are needed in obese individuals who are at high risk of developing low grade systemic inflammatory related diseases. Assuring adherence to the RT program is essential to get the benefits after overcoming the first acute RT responses. Hence RT could be an effective way to prevent, and delay low grade systemic inflammatory related diseases. PMID:20827340

  11. Immunosuppression after Sepsis: Systemic Inflammation and Sepsis Induce a Loss of Naïve T-Cells but No Enduring Cell-Autonomous Defects in T-Cell Function

    PubMed Central

    Markwart, Robby; Condotta, Stephanie A.; Requardt, Robert P.; Borken, Farina; Schubert, Katja; Weigel, Cynthia; Bauer, Michael; Griffith, Thomas S.; Förster, Martin; Brunkhorst, Frank M.; Badovinac, Vladimir P.; Rubio, Ignacio

    2014-01-01

    Sepsis describes the life-threatening systemic inflammatory response (SIRS) of an organism to an infection and is the leading cause of mortality on intensive care units (ICU) worldwide. An acute episode of sepsis is characterized by the extensive release of cytokines and other mediators resulting in a dysregulated immune response leading to organ damage and/or death. This initial pro-inflammatory burst often transits into a state of immune suppression characterised by loss of immune cells and T-cell dysfunction at later disease stages in sepsis survivors. However, despite these appreciations, the precise nature of the evoked defect in T-cell immunity in post-acute phases of SIRS remains unknown. Here we present an in-depth functional analysis of T-cell function in post-acute SIRS/sepsis. We document that T-cell function is not compromised on a per cell basis in experimental rodent models of infection-free SIRS (LPS or CpG) or septic peritonitis. Transgenic antigen-specific T-cells feature an unaltered cytokine response if challenged in vivo and ex vivo with cognate antigens. Isolated CD4+/CD8+ T-cells from post-acute septic animals do not exhibit defects in T-cell receptor-mediated activation at the the level of receptor-proximal signalling, activation marker upregulation or expansion. However, SIRS/sepsis induced transient lymphopenia and gave rise to an environment of immune attenuation at post acute disease stages. Thus, systemic inflammation has an acute impact on T-cell numbers and adaptive immunity, but does not cause major cell-autonomous enduring functional defects in T-cells. PMID:25541945

  12. Anti-inflammatory intestinal activity of Combretum duarteanum Cambess. in trinitrobenzene sulfonic acid colitis model

    PubMed Central

    de Morais Lima, Gedson Rodrigues; Machado, Flavia Danniele Frota; Périco, Larissa Lucena; de Faria, Felipe Meira; Luiz-Ferreira, Anderson; Souza Brito, Alba Regina Monteiro; Pellizzon, Cláudia Helena; Hiruma-Lima, Clélia Akiko; Tavares, Josean Fechine; Barbosa Filho, José Maria; Batista, Leônia Maria

    2017-01-01

    AIM To evaluate the anti-inflammatory intestinal effect of the ethanolic extract (EtOHE) and hexane phase (HexP) obtained from the leaves of Combretum duarteanum (Cd). METHODS Inflammatory bowel disease was induced using trinitrobenzenesulfonic acid in acute and relapsed ulcerative colitis in rat models. Damage scores, and biochemical, histological and immunohistochemical parameters were evaluated. RESULTS Both Cd-EtOHE and Cd-HexP caused significant reductions in macroscopic lesion scores and ulcerative lesion areas. The vegetable samples inhibited myeloperoxidase increase, as well as pro-inflammatory cytokines TNF-α and IL-1β. Anti-inflammatory cytokine IL-10 also increased in animals treated with the tested plant samples. The anti-inflammatory intestinal effect is related to decreased expression of cyclooxygenase-2, proliferating cell nuclear antigen, and an increase in superoxide dismutase. CONCLUSION The data indicate anti-inflammatory intestinal activity. The effects may also involve participation of the antioxidant system and principal cytokines relating to inflammatory bowel disease. PMID:28293082

  13. Synergistic regulation of the acute phase protein SIP24/24p3 by glucocorticoid and pro-inflammatory cytokines.

    PubMed

    Liu, Quan-Sheng; Nilsen-Hamilton, Marit; Xiong, Si-Dong

    2003-10-25

    SIP24/24p3 is a secreted murine acute phase protein which has been speculated to play an anti-inflammatory role in vivo. Recently SIP24/24p3 has been found to be able to specifically induce apoptosis in leukocytes. By using (35)S metabolic labeling method, we studied the regulation of SIP24/24p3 by glucocorticoid and pro-inflammatory cytokines IL-6 and TNF-alpha in cultured Balb/c 3T3 and BNL cells. The following results were observed: (1) dexamethasone induced the expression of SIP24/24p3 in both Balb/c 3T3 and BNL cells, the induction was more significant in BNL cells; (2) dexamethasone and IL-6 synergistically induced the expression of SIP24/24p3 in both Balb/c 3T3 and BNL cells; (3) in Balb/c 3T3 cells dexamethasone and TNF-alpha acted synergistically to induce the expression of SIP24/24p3, whereas in BNL cells dexamethasone and TNF-alpha induced the expression of SIP24/24p3 in an additive manner; (4) dexamethasone and IL-6/TNF-alpha acted synergistically in Balb/c 3T3 cells and additively in BNL cells to induce the expression of SIP24/24p3. The inducibility of SIP24/24p3 by multiple factors will help to explain its highly specific expression in vivo. The difference in the expression patterns of SIP24/24p3 in different cell types is also suggestive to its expression and regulation in hepatic and extrahepatic tissues. Finally, the fact that SIP24/24p3 protein can be induced by both pro-inflammatory as well as anti-inflammatory factors is indicative of the important role of SIP24/24p3 in the entire acute phase response process.

  14. Zika Virus Causing Encephalomyelitis Associated With Immunoactivation

    PubMed Central

    Galliez, Rafael Mello; Spitz, Mariana; Rafful, Patricia Piazza; Cagy, Marcelo; Escosteguy, Claudia; Germano, Caroline Spósito Brito; Sasse, Elisa; Gonçalves, Alessandro Luis; Silveira, Paola Paz; Pezzuto, Paula; Ornelas, Alice Maria de Magalhães; Tanuri, Amilcar; Aguiar, Renato Santana

    2016-01-01

    Brazil has experienced a Zika virus (ZIKV) outbreak with increased incidence of congenital malformations and neurological manifestations. We describe a case of a 26-year-old Brazilian Caucasian man infected with ZIKV and diagnosed with encephalomyelitis. Brain and spinal cord images showed hyperintense lesions on T2 and fluid-attenuated inversion recovery (FLAIR), and levels of proinflammatory cytokines in the cerebrospinal fluid showed a remarkable increase of interleukin (IL)-6 and IL-8. The observed pattern suggests immune activation during the acute phase, along with the neurological impairment, with normalization in the recovery phase. This is the first longitudinal report of ZIKV infection causing encephalomyelitis with documented immune activation. PMID:28053996

  15. Lipoxin A4, a 5-lipoxygenase pathway metabolite, modulates immune response during acute respiratory tularemia.

    PubMed

    Singh, Anju; Rahman, Tabassum; Bartiss, Rose; Arabshahi, Alireza; Prasain, Jeevan; Barnes, Stephen; Musteata, Florin Marcel; Sellati, Timothy J

    2017-02-01

    Respiratory infection with Francisella tularensis (Ft) is characterized by a muted, acute host response, followed by sepsis-like syndrome that results in death. Infection with Ft establishes a principally anti-inflammatory environment that subverts host-cell death programs to facilitate pathogen replication. Although the role of cytokines has been explored extensively, the role of eicosanoids in tularemia pathogenesis is not fully understood. Given that lipoxin A 4 (LXA 4 ) has anti-inflammatory properties, we investigated whether this lipid mediator affects host responses manifested early during infection. The addition of exogenous LXA 4 inhibits PGE 2 release by Ft-infected murine monocytes in vitro and diminishes apoptotic cell death. Tularemia pathogenesis was characterized in 5‑lipoxygenase-deficient (Alox5 -/- ) mice that are incapable of generating LXA 4 Increased release of proinflammatory cytokines and chemokines, as well as increased apoptosis, was observed in Alox5 -/- mice as compared with their wild-type counterparts. Alox5 -/- mice also exhibited elevated recruitment of neutrophils during the early phase of infection and increased resistance to lethal challenge. Conversely, administration of exogenous LXA 4 to Alox5 -/- mice made them more susceptible to infection thus mimicking wild-type animals. Taken together, our results suggest that 5-LO activity is a critical regulator of immunopathology observed during the acute phase of respiratory tularemia, regulating bacterial burden and neutrophil recruitment and production of proinflammatory modulators and increasing morbidity and mortality. These studies identify a detrimental role for the 5-LO-derived lipid mediator LXA 4 in Ft-induced immunopathology. Targeting this pathway may have therapeutic benefit as an adjunct to treatment with antibiotics and conventional antimicrobial peptides, which often have limited efficacy against intracellular bacteria. © Society for Leukocyte Biology.

  16. Interleukin-18, together with interleukin-12, induces severe acute pancreatitis in obese but not in nonobese leptin-deficient mice

    PubMed Central

    Sennello, Joseph A.; Fayad, Raja; Pini, Maria; Gove, Melissa E.; Ponemone, Venkatesh; Cabay, Robert J.; Siegmund, Britta; Dinarello, Charles A.; Fantuzzi, Giamila

    2008-01-01

    Obesity is associated with increased severity of acute pancreatitis (AP). The cytokines IL-18 and IL-12 are elevated in patients with AP, and IL-18 levels are high in obesity. We aimed to develop a pathologically relevant model to study obesity-associated severe AP. Lean WT and obese leptin-deficient ob/ob mice received two injections of IL-12 plus IL-18. Survival, pancreatic inflammation, and biochemical markers of AP were measured. Dosing with IL-12 plus IL-18 induced 100% lethality in ob/ob mice; no lethality was observed in WT mice. Disruption of pancreatic exocrine tissue and acinar cell death as well as serum amylase and lipase levels were significantly higher in ob/ob than in WT mice. Edematous AP developed in WT mice, whereas obese ob/ob mice developed necrotizing AP. Adipose tissue necrosis and saponification were present in cytokine-injected ob/ob but not in WT mice. Severe hypocalcemia and elevated acute-phase response developed in ob/ob mice. The cytokine combination induced high levels of regenerating protein 1 and pancreatitis-associated protein expression in the pancreas of WT but not of ob/ob mice. To differentiate the contribution of obesity to that of leptin deficiency, mice received short- and long-term leptin replacement therapy. Short-term leptin reconstitution in the absence of major weight loss did not protect ob/ob mice, whereas leptin deficiency in the absence of obesity resulted in a significant reduction in the severity of the pancreatitis. In conclusion, we developed a pathologically relevant model of AP in which obesity per se is associated with increased severity. PMID:18515422

  17. Inflammatory cytokine levels in synovial fluid 3, 4 days postoperatively and its correlation with early-phase functional recovery after anterior cruciate ligament reconstruction: a cohort study.

    PubMed

    Inoue, Makiko; Muneta, Takeshi; Ojima, Miyoko; Nakamura, Kaori; Koga, Hideyuki; Sekiya, Ichiro; Okazaki, Mutsumi; Tsuji, Kunikazu

    2016-12-01

    Synovial fluid was collected prior to and at 3 to 4 days after ACL reconstruction to investigate the correlation between inflammatory cytokine levels in the acute phase after surgery and physical functional recovery at 3 months postoperatively.  For this purpose, 79 patients with ACL reconstruction using semitendinosus tendons were included in the study. Median days from injury to surgery were 80 days (13-291 days). Synovial fluid was obtained just before surgery and at 3 to 4 days after surgery. Physical activity of each patient was evaluated at 3 months postoperatively, and scored from 0 (hard to walk) to 5 (run). Patients able to jog (score 4) or run (score 5) were considered as the "quick recovery" group and others (scores 1-3) as the "delayed recovery" group. Physical activity recovery scores in the early surgery group (preoperative period less than 60 days; Group I) were significantly better than those in the delayed surgery group (Group II). Among the cytokines tested, TNF-alpha and IL10 levels in synovial fluid were significantly higher in Group II at 3 to 4 days postoperatively, while levels of these cytokines were quite comparable preoperatively between the groups. Increased IL1-beta expression was noted in the delayed recovery group at 3 to 4 days postoperatively. In addition, levels of IL6, IL10 and IFN-gamma also tended to increase in patients with delayed recovery. Delayed ACL reconstruction increases levels of inflammatory cytokines in synovial fluid after surgery and correlates with a prolonged recovery of short-period physical activity of the patients.

  18. Effect of Ergothioneine on Acute Lung Injury and Inflammation in Cytokine Insufflated Rats

    PubMed Central

    Repine, John E.; Elkins, Nancy D.

    2012-01-01

    Objective The Acute Respiratory Distress Syndrome (ARDS), the most severe form of Acute Lung Injury (ALI), is a highly-fatal, diffuse non-cardiogenic edematous lung disorder. The pathogenesis of ARDS is unknown but lung inflammation and lung oxidative stress are likely contributing factors. Since no specific pharmacologic intervention exists for ARDS, our objective was to determine the effect of treatment with ergothioneine---a safe agent with multiple anti-inflammatory and antioxidant properties on the development of lung injury and inflammation in rats insufflated with cytokines found in lung lavages of ARDS patients. Method Sprague-Dawley rats (3-10/group) were given 15 mg/kg or 150 mg/kg L-ergothioneine intravenously 1 hour before or 18 hours after cytokine (IL-1 and IFNγ) insufflation. Lung injury (lavage LDH levels) and lung inflammation (lavage neutrophil numbers) were measured 24 hours after cytokine insufflation. Results Ergothioneine pre- and post- treatment generally decreased lung injury and lung inflammation in cytokine insufflated rats. Conclusion Ergothioneine should be considered for additional testing as a potential therapy for treating and preventing ARDS. PMID:22197759

  19. Spinal microglia are required for long-term maintenance of neuropathic pain.

    PubMed

    Echeverry, Stefania; Shi, Xiang Qun; Yang, Mu; Huang, Hao; Wu, YiChen; Lorenzo, Louis-Etienne; Perez-Sanchez, Jimena; Bonin, Robert P; De Koninck, Yves; Zhang, Ji

    2017-09-01

    While spinal microglia play a role in early stages of neuropathic pain etiology, whether they are useful targets to reverse chronic pain at late stages remains unknown. Here, we show that microglia activation in the spinal cord persists for >3 months following nerve injury in rodents, beyond involvement of proinflammatory cytokine and chemokine signalling. In this chronic phase, selective depletion of spinal microglia in male rats with the targeted immunotoxin Mac1-saporin and blockade of brain-derived neurotrophic factor-TrkB signalling with intrathecal TrkB Fc chimera, but not cytokine inhibition, almost completely reversed pain hypersensitivity. By contrast, local spinal administration of Mac1-saporin did not affect nociceptive withdrawal threshold in control animals nor did it affect the strength of afferent-evoked synaptic activity in the spinal dorsal horn in normal conditions. These findings show that the long-term, chronic phase of nerve injury-induced pain hypersensitivity is maintained by microglia-neuron interactions. The findings also effectively separate the central signalling pathways underlying the maintenance phase of the pathology from the early and peripheral inflammatory reactions to injury, pointing to different targets for the treatment of acute vs chronic injury-induced pain.

  20. Phylogeny and expression analysis of C-reactive protein (CRP) and serum amyloid-P (SAP) like genes reveal two distinct groups in fish.

    PubMed

    Lee, P T; Bird, S; Zou, J; Martin, S A M

    2017-06-01

    The acute phase response (APR) is an early innate immune function that is initiated by inflammatory signals, leading to the release of acute phase proteins to the bloodstream to re-establish homeostasis following microbial infection. In this study we analysed the Atlantic salmon (Salmo salar) whole-genome database and identified five C-reactive protein (CRP)/serum amyloid P component (SAP) like molecules namely CRP/SAP-1a, CRP/SAP-1b, CRP/SAP-1c, CRP/SAP-2 and CRP/SAP-3. These CRP/SAP genes formed two distinct sub-families, a universal group (group I) present in all vertebrates and a fish/amphibian specific group (group II). Salmon CRP/SAP-1a, CRP/SAP-1b and CRP/SAP-1c and CRP/SAP-2 belong to the group I family whilst salmon CRP/SAP-3 is a member of group II. Gene expression analysis showed that the salmon CRP/SAP-1a as well as serum amyloid A-5 (SAA-5), one of the major acute phase proteins, were significantly up-regulated by recombinant cytokines (rIL-1β and rIFNγ) in primary head kidney cells whilst the other four CRP/SAPs remained refractory. Furthermore, SAA-5 was produced as the main acute phase protein (APP) in Atlantic salmon challenged with Aeromonas salmonicida (aroA(-) strain) whilst salmon CRP/SAPs remained unaltered. Overall, these data illustrate the potential different functions of expanded salmon CRP/SAPs to their mammalian homologues. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Immune Profiling of Pregnant Toxoplasma-Infected US and Colombia Patients Reveals Surprising Impacts of Infection on Peripheral Blood Cytokines

    PubMed Central

    Pernas, Lena; Ramirez, Raymund; Holmes, Tyson H.; Montoya, José G.; Boothroyd, John C.

    2014-01-01

    In North America (NA) and Europe, the majority of toxoplasmosis cases are benign and generally asymptomatic, whereas in South America (SA) toxoplasmosis is associated with much more severe symptoms in adults and congenitally infected children. The reasons for these differences remain unknown; currently, there is little information from patients in either region on how the immune system responds to infection with Toxoplasma gondii. Here, we report the relative abundance of 51 serum cytokines from acute and chronic toxoplasmosis cohorts of pregnant women from the United States, where approximately one-half of clinical isolates are Type II, and Colombia, where clinical isolates are generally “atypical” or Type I-like strains. Surprisingly, the results showed notably lower levels of 23 cytokines in acutely infected patients from the United States, relative to uninfected US controls. In acutely infected Colombian patients, however, only 8 cytokine levels differed detectably with 4 being lower and 4 higher relative to uninfected controls. Strikingly, there were also differences in the cytokine profiles of the chronically infected patients relative to uninfected controls in the US cohort. Hence, Toxoplasma appears to specifically impact levels of circulating cytokines, and our results may partly explain region-specific differences in the clinical spectrum of toxoplasmosis. PMID:24664173

  2. Evaluation of the immunomodulatory and antiviral effects of the cytokine combination IFN-α and IL-7 in the lymphocytic choriomeningitis virus and Friend retrovirus mouse infection models.

    PubMed

    Audigé, Annette; Hofer, Ursula; Dittmer, Ulf; van den Broek, Maries; Speck, Roberto F

    2011-10-01

    Existing therapies for chronic viral infections are still suboptimal or have considerable side effects, so new therapeutic strategies need to be developed. One option is to boost the host's immune response with cytokines. We have recently shown in an acute ex vivo HIV infection model that co-administration of interferon (IFN)-α and interleukin (IL)-7 allows us to combine the potent anti-HIV activity of IFN-α with the beneficial effects of IL-7 on T-cell survival and function. Here we evaluated the effect of combining IFN-α and IL-7 on viral replication in vivo in the chronic lymphocytic choriomeningitis virus (LCMV) and acute Friend retrovirus (FV) infection models. In the chronic LCMV model, cytokine treatment was started during the early replication phase (i.e., on day 7 post-infection [pi]). Under the experimental conditions used, exogenous IFN-α inhibited FV replication, but had no effect on viral replication in the LCMV model. There was no therapeutic benefit of IL-7 either alone or in combination with IFN-α in either of the two infection models. In the LCMV model, dose-dependent effects of the cytokine combination on T-cell phenotype/function were observed. It is possible that these effects would translate into antiviral activity in re-challenged mice. It is also possible that another type of IFN-α/β or induction of endogenous IFN-α/β alone or in combination with IL-7 would have antiviral activity in the LCMV model. Furthermore, we cannot exclude that some effect on viral titers would have been seen at later time points not investigated here (i.e., beyond day 34 pi). Finally, IFN-α/IL-7 may inhibit the replication of other viruses. Thus it might be worth testing these cytokines in other in vivo models of chronic viral infections.

  3. HILDA/LIF urinary excretion during acute kidney rejection.

    PubMed

    Taupin, J L; Morel, D; Moreau, J F; Gualde, N; Potaux, L; Bezian, J H

    1992-03-01

    Recently, a new lymphokine called HILDA (human interleukin for DA cells) has been described and cloned. This cytokine, initially described to be produced by alloreactive T lymphocyte clones grown from a rejected human kidney allograft, is identical to other factors termed D-factor, differentiation-inducing factor, differentiation inhibitory activity, hepatocyte-stimulating factor III, and leukemia inhibitory factor. HILDA/LIF induces various effects on neural, hemopoietic, embryonic cells as well as on bone remodeling and acute phase protein synthesis in hepatocyte. In this study we demonstrate the presence of HILDA/LIF in the urine but not in the serum of kidney graft recipients during acute rejection episodes, whereas this lymphokine was detectable neither in the serum nor in the urine of kidney transplanted patients with stable renal function. These data reinforce the notion of a possible role for this lymphokine in the inflammatory and/or the immune response.

  4. Correlative mRNA and Protein Expression of Middle and Inner Ear Inflammatory Cytokines during Mouse Acute Otitis Media

    PubMed Central

    Trune, Dennis R.; Kempton, Beth; Hausman, Frances A.; Larrain, Barbara E.; MacArthur, Carol J.

    2015-01-01

    Although the inner ear has long been reported to be susceptible to middle ear disease, little is known of the inflammatory mechanisms that might cause permanent sensorineural hearing loss. Recent studies have shown inner ear tissues are capable of expressing inflammatory cytokines during otitis media. However, little quantitative information is available concerning cytokine gene expression in the inner ear and the protein products that result. Therefore, this study was conducted of mouse middle and inner ear during acute otitis media to measure the relationship between inflammatory cytokine genes and their protein products with quantitative RT-PCR and ELISA, respectively. Balb/c mice were inoculated transtympanically with heat-killed Haemophilus influenzae and middle and inner ear tissues collected for either quantitative RT-PCR microarrays or ELISA multiplex arrays. mRNA for several cytokine genes was significantly increased in both the middle and inner ear at 6 hours. In the inner ear, these included MIP-2 (448 fold), IL-6 (126 fold), IL-1β (7.8 fold), IL-10 (10.7 fold), TNFα (1.8 fold), and IL-1α (1.5 fold). The 24 hour samples showed a similar pattern of gene expression, although generally at lower levels. In parallel, the ELISA showed the related cytokines were present in the inner ear at concentrations higher by 2 to 122 fold higher at 18 hours, declining slightly from there at 24 hours. Immunohistochemistry with antibodies to a number of these cytokines demonstrated they occurred in greater amounts in the inner ear tissues. These findings demonstrate considerable inflammatory gene expression and gene products in the inner ear following acute otitis media. These higher cytokine levels suggest one potential mechanism for the permanent hearing loss seen in some cases of acute and chronic otitis media. PMID:25922207

  5. Correlative mRNA and protein expression of middle and inner ear inflammatory cytokines during mouse acute otitis media.

    PubMed

    Trune, Dennis R; Kempton, Beth; Hausman, Frances A; Larrain, Barbara E; MacArthur, Carol J

    2015-08-01

    Although the inner ear has long been reported to be susceptible to middle ear disease, little is known of the inflammatory mechanisms that might cause permanent sensorineural hearing loss. Recent studies have shown inner ear tissues are capable of expressing inflammatory cytokines during otitis media. However, little quantitative information is available concerning cytokine gene expression in the inner ear and the protein products that result. Therefore, this study was conducted of mouse middle and inner ear during acute otitis media to measure the relationship between inflammatory cytokine genes and their protein products with quantitative RT-PCR and ELISA, respectively. Balb/c mice were inoculated transtympanically with heat-killed Haemophilus influenzae and middle and inner ear tissues collected for either quantitative RT-PCR microarrays or ELISA multiplex arrays. mRNA for several cytokine genes was significantly increased in both the middle and inner ear at 6 h. In the inner ear, these included MIP-2 (448 fold), IL-6 (126 fold), IL-1β (7.8 fold), IL-10 (10.7 fold), TNFα (1.8 fold), and IL-1α (1.5 fold). The 24 h samples showed a similar pattern of gene expression, although generally at lower levels. In parallel, the ELISA showed the related cytokines were present in the inner ear at concentrations higher by 2-122 fold higher at 18 h, declining slightly from there at 24 h. Immunohistochemistry with antibodies to a number of these cytokines demonstrated they occurred in greater amounts in the inner ear tissues. These findings demonstrate considerable inflammatory gene expression and gene products in the inner ear following acute otitis media. These higher cytokine levels suggest one potential mechanism for the permanent hearing loss seen in some cases of acute and chronic otitis media. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Contribution of herpesvirus specific CD8 T cells to anti-viral T cell response in humans.

    PubMed

    Sandalova, Elena; Laccabue, Diletta; Boni, Carolina; Tan, Anthony T; Fink, Katja; Ooi, Eng Eong; Chua, Robert; Shafaeddin Schreve, Bahar; Ferrari, Carlo; Bertoletti, Antonio

    2010-08-19

    Herpesviruses infect most humans. Their infections can be associated with pathological conditions and significant changes in T cell repertoire but evidences of symbiotic effects of herpesvirus latency have never been demonstrated. We tested the hypothesis that HCMV and EBV-specific CD8 T cells contribute to the heterologous anti-viral immune response. Volume of activated/proliferating virus-specific and total CD8 T cells was evaluated in 50 patients with acute viral infections: 20 with HBV, 12 with Dengue, 12 with Influenza, 3 with Adenovirus infection and 3 with fevers of unknown etiology. Virus-specific (EBV, HCMV, Influenza) pentamer+ and total CD8 T cells were analyzed for activation (CD38/HLA-DR), proliferation (Ki-67/Bcl-2(low)) and cytokine production. We observed that all acute viral infections trigger an expansion of activated/proliferating CD8 T cells, which differs in size depending on the infection but is invariably inflated by CD8 T cells specific for persistent herpesviruses (HCMV/EBV). CD8 T cells specific for other non-related non persistent viral infection (i.e. Influenza) were not activated. IL-15, which is produced during acute viral infections, is the likely contributing mechanism driving the selective activation of herpesvirus specific CD8 T cells. In addition we were able to show that herpesvirus specific CD8 T cells displayed an increased ability to produce the anti-viral cytokine interferon-gamma during the acute phase of heterologous viral infection. Taken together, these data demonstrated that activated herpesvirus specific CD8 T cells inflate the activated/proliferating CD8 T cells population present during acute viral infections in human and can contribute to the heterologous anti-viral T cell response.

  7. Anti-inflammatory activity of flower extract of Calendula officinalis Linn. and its possible mechanism of action.

    PubMed

    Preethi, Korengath Chandran; Kuttan, Girija; Kuttan, Ramadasan

    2009-02-01

    Calendula officinalis flower extract possessed significant anti-inflammatory activity against carrageenan and dextran-induced acute paw edema. Oral administration of 250 and 500 mg/kg body weight Calendula extract produced significant inhibition (50.6 and 65.9% respectively) in paw edema of animals induced by carrageenan and 41.9 and 42.4% respectively with inflammation produced by dextran. In chronic anti-inflammatory model using formalin, administration of 250 and 500 mg/kg body weight Calendula extract produced an inhibition of 32.9 and 62.3% respectively compared to controls. TNF-alpha production by macrophage culture treated with lipopolysaccharide (LPS) was found to be significantly inhibited by Calendula extract. Moreover, increased levels of proinflammatory cytokines IL- 1beta, IL-6, TNF-alpha and IFN-gamma and acute phase protein, C- reactive protein (CRP) in mice produced by LPS injection were inhibited significantly by the extract. LPS induced cyclooxygenase-2 (Cox-2) levels in mice spleen were also found to be inhibited by extract treatment. The results showed that potent anti-inflammatory response of C. officinalis extract may be mediated by the inhibition of proinflammatory cytokines and Cox-2 and subsequent prostaglandin synthesis.

  8. NNZ-2566 treatment inhibits neuroinflammation and pro-inflammatory cytokine expression induced by experimental penetrating ballistic-like brain injury in rats

    PubMed Central

    Wei, Hans H; Lu, Xi-Chun M; Shear, Deborah A; Waghray, Anu; Yao, Changping; Tortella, Frank C; Dave, Jitendra R

    2009-01-01

    Background Inflammatory cytokines play a crucial role in the pathophysiology of traumatic brain injury (TBI), exerting either deleterious effects on the progression of tissue damage or beneficial roles during recovery and repair. NNZ-2566, a synthetic analogue of the neuroprotective tripeptide Glypromate®, has been shown to be neuroprotective in animal models of brain injury. The goal of this study was to determine the effects of NNZ-2566 on inflammatory cytokine expression and neuroinflammation induced by penetrating ballistic-like brain injury (PBBI) in rats. Methods NNZ-2566 or vehicle (saline) was administered intravenously as a bolus injection (10 mg/kg) at 30 min post-injury, immediately followed by a continuous infusion of NNZ-2566 (3 mg/kg/h), or equal volume of vehicle, for various durations. Inflammatory cytokine gene expression from the brain tissue of rats exposed to PBBI was evaluated using microarray, quantitative real time PCR (QRT-PCR), and enzyme-linked immunosorbent assay (ELISA) array. Histopathology of the injured brains was examined using hematoxylin and eosin (H&E) and immunocytochemistry of inflammatory cytokine IL-1β. Results NNZ-2566 treatment significantly reduced injury-mediated up-regulation of IL-1β, TNF-α, E-selectin and IL-6 mRNA during the acute injury phase. ELISA cytokine array showed that NZ-2566 treatment significantly reduced levels of the pro-inflammatory cytokines IL-1β, TNF-α and IFN-γ in the injured brain, but did not affect anti-inflammatory cytokine IL-6 levels. Conclusion Collectively, these results suggest that the neuroprotective effects of NNZ-2566 may, in part, be functionally attributed to the compound's ability to modulate expression of multiple neuroinflammatory mediators in the injured brain. PMID:19656406

  9. Increased Systemic Cytokine/Chemokine Expression in Asthmatic and Non-asthmatic Patients with Bacterial, Viral or Mixed Lung Infection.

    PubMed

    Giuffrida, M J; Valero, N; Mosquera, J; Duran, A; Arocha, F; Chacín, B; Espina, L M; Gotera, J; Bermudez, J; Mavarez, A; Alvarez-Mon, M

    2017-04-01

    This study was aimed to determine the profiles of serum cytokines (IL-1β, TNF-α, IL-4, IL-5) and chemokines (MCP-1: monocyte chemoattract protein-1 and RANTES: regulated on activation normal T cell expressed and secreted) in individuals with an asthmatic versus a non-asthmatic background with bacterial, viral or mixed acute respiratory infection. Asthmatic (n = 14) and non-asthmatic (n = 29) patients with acute viral, bacterial or mixed (bacterial and viruses) respiratory infection were studied. Patients were also analysed as individuals with pneumonia or bronchitis. Healthy individuals with similar age and sex (n = 10) were used as controls. Cytokine/chemokine content in serum was determined by ELISA. Increased cytokine/chemokine concentration in asthmatic and non-asthmatic patients was observed. However, higher concentrations of chemokines (MCP-1 and RANTES) in asthmatic patients infected by viruses, bacteria or bacteria and viruses (mixed) than in non-asthmatic patients were observed. In general, viral and mixed infections were better cytokine/chemokine inducers than bacterial infection. Cytokine/chemokine expression was similarly increased in both asthmatic and non-asthmatic patients with pneumonia or bronchitis, except that RANTES remained at normal levels in bronchitis. Circulating cytokine profiles induced by acute viral, bacterial or mixed lung infection were not related to asthmatic background, except for chemokines that were increased in asthmatic status. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  10. Exogenous cytokines released by spleen and Peyer's patch cells removed from mice infected with Giardia muris.

    PubMed

    Djamiatun, K; Faubert, G M

    1998-01-01

    The role that T and B lymphocytes play in the clearance of Giardia muris in the mouse model is well known, but the cytokines produced by CD4+ T cells in response to Giardia antigenic stimulation are unknown. In this study, we have determined how Giardia trophozoite antigenic crude extract and T cell mitogens can trigger the production of cytokines by Peyer's patch and spleen cells removed from infected animals. When Giardia trophozoite proteins were used to challenge the cells in vitro, IL-4, IL-5 and IFN-gamma were not detected in the culture supernatant. When the cells were challenged with Con-A, all three cytokines were released in vitro. However, the level of each cytokine released by the spleen or Peyer's patch cells varied with the latent, acute and elimination phases of the infection. The high levels of IL-4 and IL-5 released by Peyer's patch cells confirm the importance of IgA in the control of the infection. However, we propose that the relative success of G. muris in completing its life cycle in a primary infection might be due, in part, to the stimulation of a Th2-type response (IL-4, IL-5). A stronger Th1 response (IFN-gamma) may lead to a better control of the primary infection.

  11. Inhibition of ex vivo proinflammatory cytokine secretion in fatal Mycobacterium tuberculosis infection.

    PubMed Central

    Friedland, J S; Hartley, J C; Hartley, C G; Shattock, R J; Griffin, G E

    1995-01-01

    Tuberculosis is characterized by fever, weight loss, a prolonged acute-phase protein response and granuloma formation. These characteristics may partly be due to action of proinflammatory cytokines tumour necrosis factor (TNF), IL-6 and IL-8. We investigated plasma concentrations of these cytokines before and after ex vivo lipopolysaccharide stimulation of whole blood leucocytes from 41 Zambian patients with tuberculosis, 32 of whom were also HIV+. Although patients had a reduced weight, were more anaemic and had higher erythrocyte sedimentation rate compared with controls (all P < 0.0005), clinical and laboratory measurements of disease state were similar in those who died and survivors. In contrast, plasma IL-6 and IL-8 concentrations were higher in patients who died (P < 0.05). There was no detectable cytokine mRNA in unstimulated leucocytes. There was reduced secretion of TNF (P < 0.005 at 2 h), IL-6 (P < 0.005 at 8 h) and IL-8 (P < 0.005 at 24 h) after ex vivo stimulation of whole blood leucocytes from patients who died compared with survivors. This was partly due to a soluble inhibitory factor present in plasma. The only additional effect of concurrent infection by HIV with Myco. tuberculosis was decreased IL-6 secretion following ex vivo stimulation of leucocytes. Reduced proinflammatory cytokine release may represent a critical impairment of host immune defences important in determining outcome in tuberculosis. PMID:7743661

  12. [Role of pendoxifiline (PTX) in different and cute and chronic models of pain in rats].

    PubMed

    Nowak, Łukasz; Zurowski, Daniel; Garlicki, Jarosław; Thor, Piotr J

    2008-01-01

    Pentoxifilne (PTX) is a non specific inhibitor of cytokines release, which suppress mainly TNF production. The aim of this study was to evaluate behavioural activity changes in response to acute and chronic nociceptive stimulus. PTX was more effective in neuropathic pain than acute pain model. Use of cytokine inhibitors might offer new strategies of drug-resistant chronic pain treatment.

  13. Endogenous concentrations of IL-1. alpha. , IL-1. beta. , and IL-6 male Sprague-Dawley rats after surgery, subcutaneous (SC) injections of turpentine, and intraperitoneal (IP) injections of lipopolysaccharide (LPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadeau, R.; Ni-Wu, G.; Valle, C.D.

    1991-03-11

    The purpose of this study was to measure serum concentrations of cytokines implicated in the acute phase response with the long term goal of investigating how endogenous concentrations of cytokines impact on drug disposition. Nonfasted rats were anesthetized with pentobarbital after which a cannula was implanted in the jugular vein. In the surgery model of inflammation, blood samples were drawn from 0-48 hrs post surgery. In the turpentine model, rats were injected with 3 ml/kg turpentine sc immediately after completions of surgery. In the final model, 1 ml/kg of LPS was injected ip 24 hrs after recovery from surgery. Serialmore » blood samples were drawn after turpentine or LPS had been given. Concentrations if IL-1{alpha} were measured by a two stage immunobioassay based on the principle that IL-2 dependent CTLL-2 cells respond in a dose dependent manner to IL-2 secreted by the mouse thymoma EL-4 NOB-1 clone in response to IL-1. IL-1{beta} was measured by omitting the specific mAb capture step and serially diluting samples shown to be negative for IL-1{alpha}. IL-6 activity was assayed by the B9 subclone hybridoma assay. After incubation, cell proliferation was measured by thymidine incorporation. In none of the three models was IL-1{alpha} detectable in serum at any time. IL-1{beta} was present at low concentrations shortly after surgery and turpentine injection. IL-1{beta} serum concentrations were increased by LPS injection. IL-6 concentrations, however, were significantly elevated in all the models leading the authors and others to conclude that IL-6 may be the cytokine which most often induces the full spectrum of the acute phase response.« less

  14. Plasma cytokines can help to identify the development of severe acute pancreatitis on admission

    PubMed Central

    Deng, Li-Hui; Hu, Cheng; Cai, Wen-Hao; Chen, Wei-Wei; Zhang, Xiao-Xin; Shi, Na; Huang, Wei; Ma, Yun; Jin, Tao; Lin, Zi-Qi; Jiang, Kun; Guo, Jia; Yang, Xiao-Nan; Xia, Qing

    2017-01-01

    Abstract Severe acute pancreatitis (AP) is associated with high morbidity and mortality. Early severity stratification remains a challenging issue to overcome to improve outcomes. We aim to find novel plasma cytokines for the early identification of severe AP according to the revised Atlanta criteria. In this prospective observational study, 30 cytokines, screened semiquantitatively with a human multicytokine array, were submitted to quantitative determination using either microparticle-based multiplex immunoassays analyzed on a Luminex 100 platform or enzyme-linked immunosorbent assay kits. The cytokine profiles of patients and the discriminative value of cytokines for severe AP were analyzed. Plasma samples of 70 patients with AP (20 mild, 30 moderately severe, and 20 severe) were selected in this study if they were admitted within 48 hours of the onset of symptoms. Plasma from healthy volunteers was collected as the healthy control. Growth differentiation factor-15 (GDF-15) and pentraxin 3 (PTX3) on admission were independent prognostic markers for the development of severe AP and had higher discriminative powers than conventional markers (GDF-15 vs hematocrit, P = .003; GDF-15 vs C-reactive protein, P = .037; GDF-15 vs creatinine, P = .048; GDF-15 vs Acute Physiology and Chronic Health Evaluation II, P = .007; PTX3 vs hematocrit, P = .006; PTX3 vs C-reactive protein, P = .047; PTX3 vs Acute Physiology and Chronic Health Evaluation II, P = .011; PTX3 vs Bedside Index for Severity in Acute Pancreatitis, P = .048). Plasma GDF-15 and PTX3 can help to identify the development of severe AP on admission. Future work should validate their accuracy in a larger, multicenter patient cohort. PMID:28700471

  15. Acute illness-induced behavioral alterations are similar to those observed during withdrawal from acute alcohol exposure

    PubMed Central

    Richey, Laura; Doremus-Fitzwater, Tamara L.; Buck, Hollin M.; Deak, Terrence

    2012-01-01

    Exposure to an immunogen results in a constellation of behavioral changes collectively referred to as “sickness behaviors,” with alterations in cytokine expression previously shown to contribute to this sickness response. Since behaviors observed during ethanol withdrawal are strikingly similar to sickness behaviors, we hypothesized that behavioral manifestations of ethanol withdrawal might be an expression of sickness behaviors induced by ethanol-related changes in peripheral and/or central cytokine expression. Accordingly, behaviors exhibited during a modified social investigation test were first characterized in male rats following an acute injection of lipopolysaccharide (LPS; 100 μg/kg). Subsequently, behavioral changes after either a high (4-g/kg; Experiment 2) or low dose (0.5 g/kg; Experiment 3) of ethanol were also examined in the same social investigation test, as well as in the forced-swim test (FST; Experiment 4). Results from these experiments demonstrated similar reductions in both exploration and social investigatory behavior during acute illness and ethanol withdrawal, while a seemingly paradoxical decrease in immobility was observed in the FST during acute ethanol withdrawal. In follow-up studies, neither indomethacin (Experiment 5) nor interleukin-1 receptor antagonist (Experiment 6) pre-exposure reversed the ethanol withdrawal-induced behavioral changes observed in this social investigation test. Taken together, these studies demonstrate that the behavioral sequelae of acute illness and ethanol withdrawal are similar in nature, while antagonist studies suggest that these behavioral alterations are not reversed by blockade of IL-1 receptors or inhibition of prostaglandin synthesis. Though a direct mechanistic link between cytokines and the expression of acute ethanol withdrawal-related behaviors has yet to be found, future studies examining the involvement of brain cytokines as potential mediators of ethanol effects are greatly needed. PMID:22921768

  16. Cytokine profile of NALT during acute stress and its possible effect on IgA secretion.

    PubMed

    Gutiérrez-Meza, Juan Manuel; Jarillo-Luna, Rosa Adriana; Rivera-Aguilar, Victor; Miliar-García, Angel; Campos-Rodríguez, Rafael

    2017-08-01

    Stress stimuli affect the immune system responses that occur at mucosal membranes, particularly IgA secretion. It has been suggested that acute stress increases the levels of IgA and that sympathetic innervation plays an important role in this process. We herein explore in a murine model how acute stress affects the Th1/Th2/Treg cytokine balance in NALT, and the possible role of glucocorticoids in this effect. Nine-week-old male CD1 mice were divided into three groups: unstressed (control), stressed (subjected to 4h of immobilization), and stressed after pretreatment with a single dose of the corticosterone receptor antagonist RU-486. The parameters evaluated included plasma corticosterone and epinephrine, IgA levels in nasal fluid (by ELISA), the percentage of CD19 + B220 + IgA + lymphocytes and CD138 + IgA + plasma cells, and the mRNA expression of heavy α chain, J chain and pIgR. Moreover, the gene and protein expression of Th1 cytokines (TNFα, IL-2 and INF-γ), Th2 cytokines (IL-4 and IL-5) and Treg cytokines (IL-10 and TGFβ) were determined in nasal mucosa. The results show that acute stress generated a shift towards the dominance of an anti-inflammatory immune response (Th2 and Treg cytokines), evidenced by a significant rise in the amount of T cells that produce IL4, IL-5 and IL-10. This immune environment may favor IgA biosynthesis by CD138 + IgA + plasma cells, a process mediated mostly by glucocorticoids. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  17. Immune cell inflammatory cytokine responses differ between central and systemic compartments in response to acute exercise in mice.

    PubMed

    Pervaiz, Nabeel; Hoffman-Goetz, Laurie

    2012-01-01

    Exhaustive exercise induces apoptosis and oxidative stress in systemic organs and tissues and is associated with increased levels of pro-inflammatory cytokines. The effects of acute exercise on cytokine expression and apoptosis of immune cells in the central nervous system (CNS) have not been well characterized. We investigated the effects of a single bout of strenuous exercise on the expression of TNF-alpha, IL-6, and IL-beta, as well as the apoptotic status of cells in the hippocampus of healthy mice. To compare central vs. systemic differences, cytokine expression in the intestinal lymphocytes of a subset of mice were also assessed. Female C57BL/6 mice were divided into three groups: sedentary controls (NOTREAD) (n = 22), treadmill exercise with immediate sacrifice (TREAD-Imm) (n = 21), or treadmill exercise with sacrifice after 2 hours (TREAD-2h). TNF-alpha, IL-6, and IL-1beta expression in the hippocampus and intestinal lymphocytes were measured by Western blot analysis. Percentages of hippocampal cells undergoing apoptosis (Annexin+) or necrosis (Propidium Iodide+) were determined through flow cytometry. Plasma levels of 8-isoprostane and corticosterone were measured using commercially available EIA kits. Acute treadmill exercise led to significant decreases in TNF-alpha (p<0.05) and increases in IL-6 (p<0.05) expression in the hippocampus of healthy mice. No effects of acute exercise on the apoptotic status of hippocampal cells were observed. In intestinal lymphocytes, the exercise bout led to significant increases in TNF-alpha (p<0.05), IL-6 (p<0.05), and IL-1beta (p<0.05). Acute exercise was associated with a significant increase in both plasma 8-isoprostane (p<0.05) and corticosterone (p<0.05) levels. Acute exercise differentially affects the pattern ofpro-inflammatory cytokine expression in the hippocampus compared to intestinal lymphocytes and, further, does not induce apoptosis in hippocampal cells.

  18. Breaking the asymptomatic phase of HIV-1 infection.

    PubMed

    Tomar, R H

    1994-01-01

    AIDS typically consists of three phases: (1) an acute, infectious mononucleosis-like syndrome followed by (2) a prolonged asymptomatic stage ending in (3) the appearance of frank AIDS. The asymptomatic phase may last for years and its presence suggests a persistent conflagration between the virus and the host's immune response. There is considerable evidence that an immune response develops but the response is ultimately inadequate. From the work of others as well as our own, we have constructed a hypothesis which attempts to explain some aspects of the immune response. We propose that HIV-1 preferentially infects a subset of CD4+ lymphocytes which are then either destroyed or altered in their biological functions. Further, we suggest that this subset represents the CD4+ TH1 lymphocyte population. By decreasing the quantity of IL-2 and interferon-gamma produced by TH1 lymphocytes, the production of cytokines by TH2 cells is increased. One of the cytokines produced by TH2 lymphocytes is IL-10, a polypeptide with significant inhibitory properties towards lymphocytes. Sera from patients with frank AIDS have significant lymphocyte inhibitory activities some of which operate through IL-10. Thus, a gradual shift to a TH2-type response and release of increasing amounts of inhibitors eventually prevents the host from replacing destroyed cells or mounting new and appropriate immune responses.

  19. Time-dependent progression from the acute to chronic phases in atopic dermatitis induced by epicutaneous allergen stimulation in NC/Nga mice.

    PubMed

    Kim, Ji-Yun; Jeong, Mi Sook; Park, Mi Kyung; Lee, Mi-Kyung; Seo, Seong Jun

    2014-01-01

    Atopic dermatitis (AD) is a complicated skin condition influenced by genetic background and environmental factors. In this study, we applied Dermatophagoides farinae body extract (DfE) to the barrier-disrupted skin of NC/Nga mice twice a week for 8 weeks to identify the clinical and immunological factors in AD progression. Repeated application of the DfE to the skin of NC/Nga mice showed the similar consequences for the natural course of progression in human AD, histologically and immunologically. We confirmed that the AD-like skin lesions in NC/Nga mice did not last for the whole period of our experiment in spite of repeated topical applications of DfE twice a week. Topical DfE stimulation increased the skin mRNA expressions of Th1-, Th2- and Th17-related cytokines in the acute phase. The expression patterns of IL-4 and IL-13 in splenic T cells and skin lesions were consistent with the time course alterations of clinical features of AD-like skin symptoms. We also showed that there was a remission phase either just before or right after the chronic phase in this experimental model. Interestingly, splenic T-cell-derived IL-5 expression began to increase in the chronic phase, while skin-derived IL-5 mRNA expression increased in the acute phase. In conclusion, our results suggest that we should pay attention to the characteristics of each stage of AD progression and choose a suitable corresponding stage of animal model not only to elucidate the pathogenesis of AD but also to develop and evaluate therapeutic drugs for AD. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. The Spectrum of Monogenic Autoinflammatory Syndromes: Understanding Disease Mechanisms and Use of Targeted Therapies

    PubMed Central

    Glaser, Rachel L.; Goldbach-Mansky, Raphaela

    2009-01-01

    Monogenic autoinflammatory diseases encompass a distinct and growing clinical entity of multisystem inflammatory diseases with known genetic defects in the innate immune system. The diseases present clinically with episodes of seemingly unprovoked inflammation (fever, rashes, and elevation of acute phase reactants). Understanding the genetics has led to discovery of new molecules involved in recognizing exogenous and endogenous danger signals, and the inflammatory response to these stimuli. These advances have furthered understanding of innate inflammatory pathways and spurred collaborative research in rheumatology and infectious diseases. The pivotal roles of interleukin (IL)-1β in cryopyrin-associated periodic syndromes, tumor necrosis factor (TNF) in TNF receptor-associated periodic syndrome, and links to inflammatory cytokine dysregulation in other monogenic autoinflammatory diseases have resulted in effective therapies targeting proinflammatory cytokines IL-1β and TNF and uncovered other new potential targets for anti-inflammatory therapies. PMID:18606080

  1. Cooperative Effects of Corticosteroids and Catecholamines upon Immune Deviation of the Type-1/Type-2 Cytokine Balance in Favor of Type-2 Expression in Human Peripheral Blood Mononuclear Cells

    NASA Technical Reports Server (NTRS)

    Salicru, A. N.; Sams, Clarence F.; Marshall, G. D.

    2007-01-01

    A growing number of studies show strong associations between stress and altered immune function. In vivo studies of chronic and acute stress have demonstrated that cognitive stressors are strongly correlated with high levels of catecholamines (CT) and corticosteroids (CS). Although both CS and CT individually can inhibit the production of T-helper 1 (TH1, type-1 like) cytokines and simultaneously promote the production of T-helper 2 (TH2, type-2 like) cytokines in antigen-specific and mitogen stimulated human leukocyte cultures in vitro, little attention has been focused on the effects of combination CT and CS in immune responses that may be more physiologically relevant. We therefore investigated the combined effects of in vitro CT and CS upon the type-1/type-2 cytokine balance of human peripheral blood mononuclear cells (PBMC) as a model to study the immunomodulatory effects of superimposed acute and chronic stress. Results demonstrated a significant decrease in type-1 cytokine production (IFN-gamma) and a significant increase in type-2 cytokine production (IL-4, IL-10) in our CS+CT incubated cultures when compared to either CT or CS agents alone. Furthermore, variable enhancement of type-1/type-2 immune deviation occurred depending upon when the CT was added. The data suggest that CS can increase the sensitivity of PBMC to the immunomodulatory effects of CT and establishes an in vitro model to study the combined effects of in vivo type-1/type-2 cytokine alterations observed in acute and chronic stress.

  2. Autoantibodies, C-reactive protein, erythrocyte sedimentation rate and serum cytokine profiling in monitoring of early treatment.

    PubMed

    Brzustewicz, Edyta; Henc, Izabella; Daca, Agnieszka; Szarecka, Maria; Sochocka-Bykowska, Malgorzata; Witkowski, Jacek; Bryl, Ewa

    2017-01-01

    Currently used clinical scale and laboratory markers to monitor patients with early rheumatoid arthritis (RA) seem to be not sufficient. It has been demonstrated that disease- related cytokines may be elevated very early in RA development and cytokines are considered as the biomarkers potentially useful for RA monitoring. The group of patients with undifferentiated arthritis (UA) developing RA (UA→RA) was identified from a total of 121 people with arthralgia. UA→RA (n = 16) and healthy control (n = 16) subjects underwent clinical and laboratory evaluation, including acute phase reactants (APRs) and autoantibodies. Cytokines IFN-γ, IL-10, TNF, IL-17A, IL-6, IL-1b, IL-2 in sera were assayed using flow cytometric bead array test. 34.5% of patients with UA developed RA. DAS28 reduced as early as 3 months after initiation of treatment. No DAS28 difference between groups of autoantibody (RF, anti-CCP, ANA-HEp-2) -positive and -negative patients was observed, however, comparing groups of anti-CCP and RF-double negative and -double positive patients, the trend of sooner clinical improvement was visible in the second abovementioned group. After the treatment introduction, the ESR level reduced significantly, while CRP level reduction was not significant. Serum cytokine levels of IL-10, IL-6 and IL-17A reduced after 6 months since introduction of treatment. The positive correlations between ESR, CRP and specific cytokine levels were observed. The autoantibody and APR profile is poorly connected with the RA course. The serum cytokine profile change in the course of RA and may be potentially used for optimization of RA monitoring.

  3. Ascorbic acid deficiency stimulates hepatic expression of inflammatory chemokine, cytokine-induced neutrophil chemoattractant-1, in scurvy-prone ODS rats.

    PubMed

    Horio, Fumihiko; Kiyama, Keiichiro; Kobayashi, Misato; Kawai, Kaori; Tsuda, Takanori

    2006-02-01

    ODS rat has a hereditary defect in ascorbic acid biosynthesis and is a useful animal model for elucidating the physiological role of ascorbic acid. We previously demonstrated by using ODS rats that ascorbic acid deficiency changes the hepatic gene expression of acute phase proteins, as seen in acute inflammation. In this study, we investigated the effects of ascorbic acid deficiency on the production of inflammatory chemokine, cytokine-induced neutrophil chemoattractant-1 (CINC-1), in ODS rats. Male ODS rats (6 wk of age) were fed a basal diet containing ascorbic acid (300 mg/kg diet) or a diet without ascorbic acid for 14 d. Obvious symptoms of scurvy were not observed in the ascorbic acid-deficient rats. Ascorbic acid deficiency significantly elevated the serum concentration of CINC-1 on d 14. The liver and spleen CINC-1 concentrations in the ascorbic acid-deficient rats were significantly elevated to 600% and 180% of the respective values in the control rats. However, the lung concentration of CINC-1 was not affected by ascorbic acid deficiency. Ascorbic acid deficiency significantly elevated the hepatic mRNA level of CINC-1 (to 480% of the value in the control rats), but not the lung mRNA level. These results demonstrate that ascorbic acid deficiency elevates the serum, liver and spleen concentrations of CINC-1 as seen in acute inflammation, and suggest that ascorbic acid deficiency stimulate the hepatic CINC-1 gene expression.

  4. Trimetazidine protects retinal ganglion cells from acute glaucoma via the Nrf2/Ho-1 pathway.

    PubMed

    Wan, Peixing; Su, Wenru; Zhang, Yingying; Li, Zhidong; Deng, Caibin; Zhuo, Yehong

    2017-09-15

    Acute glaucoma is one of the leading causes of irreversible vision impairment characterized by the rapid elevation of intraocular pressure (IOP) and consequent retinal ganglion cell (RGC) death. Oxidative stress and neuroinflammation have been considered critical for the pathogenesis of RGC death in acute glaucoma. Trimetazidine (TMZ), an anti-ischemic drug, possesses antioxidative and anti-inflammatory properties, contributing to its therapeutic potential in tissue damage. However, the role of TMZ in acute glaucoma and the underlying molecular mechanisms remain elusive. Here, we report that treatment with TMZ significantly attenuated retinal damage and RGC death in mice with acute glaucoma, with a significant decrease in reactive oxygen species (ROS) and inflammatory cytokine production in the retina. Furthermore, TMZ treatment directly decreased ROS production and rebalanced the intracellular redox state, thus contributing to the survival of RGCs in vitro TMZ treatment also reduced the production of inflammatory cytokines in vitro Mechanistically, the TMZ-mediated inhibition of apoptosis and inflammatory cytokine production in RGCs occurred via the regulation of the nuclear factor erythroid 2-related factor 2/heme oxygenase 1/caspase-8 pathway. Moreover, the TMZ-mediated neuroprotection in acute glaucoma was abrogated when an HO-1 inhibitor, SnPP, was used. Our findings identify potential mechanisms of RGC apoptosis and propose a novel therapeutic agent, TMZ, which exerts a precise neuroprotective effect against acute glaucoma. © 2017 The Author(s).

  5. Increased serum IL-6, TNF-alpha and IL-10 levels in patients with bullous pemphigoid: relationships with disease activity.

    PubMed

    D'Auria, L; Mussi, A; Bonifati, C; Mastroianni, A; Giacalone, B; Ameglio, F

    1999-01-01

    The present report analyzes the serum levels of three cytokines, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10) in 15 patients with bullous pemphigoid (BP) (compared with 20 healthy controls) to evaluate a possible involvement of these biological modulators in the clinical expression of this disease. BP is a rare bullous disease of autoimmune origin with evidence of inflammatory processes that cause skin lesions with local increase of various pro-inflammatory mediators. Determination of cytokine concentrations were obtained employing commercially available ELISA kits. The sera of BP patients showed increased levels of these three cytokines (P < 0.01). When the number of skin lesions (blisters and/or erosion) of each patient, employed as a marker of disease activity, was correlated with the serum levels of IL-6 and TNF-alpha, significant correlations were found (IL-6: P < 0.01 and TNF-alpha: P < 0.01, respectively), suggesting a possible role of these mediators in the development of BP blisters. The serum levels of IL-6 also correlated (P = 0.01 with those of serum C reactive protein (CRP), an acute-phase protein induced by IL-6 in hepatocytes. In addition, serum TNF-alpha and sE-selectin (an adhesion molecule previously reported to be increased by this cytokine) levels were also correlated (P < 0.05). On the basis of these data, it may be indicated that at least IL-6 and TNF-alpha are associated with the clinical expression of BP and that the endothelial activation (possibly induced by the TNF-alpha activity), seems to be an important phase of this dermatosis.

  6. Atomic layer deposition coating of carbon nanotubes with zinc oxide causes acute phase immune responses in human monocytes in vitro and in mice after pulmonary exposure.

    PubMed

    Dandley, Erinn C; Taylor, Alexia J; Duke, Katherine S; Ihrie, Mark D; Shipkowski, Kelly A; Parsons, Gregory N; Bonner, James C

    2016-06-08

    Atomic layer deposition (ALD) is a method for applying conformal nanoscale coatings on three-dimensional structures. We hypothesized that surface functionalization of multi-walled carbon nanotubes (MWCNTs) with polycrystalline ZnO by ALD would alter pro-inflammatory cytokine expression by human monocytes in vitro and modulate the lung and systemic immune response following oropharyngeal aspiration in mice. Pristine (U-MWCNTs) were coated with alternating doses of diethyl zinc and water over increasing ALD cycles (10 to 100 ALD cycles) to yield conformal ZnO-coated MWCNTs (Z-MWCNTs). Human THP-1 monocytic cells were exposed to U-MWCNTs or Z-MWCNTs in vitro and cytokine mRNAs measured by Taqman real-time RT-PCR. Male C57BL6 mice were exposed to U- or Z-MWCNTs by oropharyngeal aspiration (OPA) and lung inflammation evaluated at one day post-exposure by histopathology, cytokine expression and differential counting of cells in bronchoalveolar lavage fluid (BALF) cells. Lung fibrosis was evaluated at 28 days. Cytokine mRNAs (IL-6, IL-1β, CXCL10, TNF-α) in lung, heart, spleen, and liver were quantified at one and 28 days. DNA synthesis in lung tissue was measured by bromodeoxyuridine (BrdU) uptake. ALD resulted in a conformal coating of MWCNTs with ZnO that increased proportionally to the number of coating cycles. Z-MWCNTs released Zn(+2) ions in media and increased IL-6, IL-1β, CXCL10, and TNF-α mRNAs in THP-1 cells in vitro. Mice exposed to Z-MWCNTs by OPA had exaggerated lung inflammation and a 3-fold increase in monocytes and neutrophils in BALF compared to U-MWCNTs. Z-MWCNTs, but not U-MWCNTs, induced IL-6 and CXCL10 mRNA and protein in the lungs of mice and increased IL-6 mRNA in heart and liver. U-MWCNTs but not Z-MWCNTs stimulated airway epithelial DNA synthesis in vivo. Lung fibrosis at 28 days was not significantly different between mice treated with U-MWCNT or Z-MWCNT. Pulmonary exposure to ZnO-coated MWCNTs produces a systemic acute phase response that involves the release of Zn(+2), lung epithelial growth arrest, and increased IL-6. ALD functionalization with ZnO generates MWCNTs that possess increased risk for human exposure.

  7. The -1082 interleukin-10 polymorphism is associated with acute respiratory failure after major trauma: a prospective cohort study.

    PubMed

    Schroeder, Ove; Schulte, Klaus-Martin; Schroeder, Julia; Ekkernkamp, Axel; Laun, Reinhold Alexander

    2008-02-01

    Acute respiratory failure is a common, life-threatening complication after severe trauma. Polymorphisms in cytokine genes, linked to cytokine inducibility, may influence the susceptibility to acute respiratory failure and serve as risk predictors. This PROSPECTIVE cohort study (n = 100) included Caucasian multiple trauma (Injury Severity Score [ISS] >15) patients at a level 1 trauma center in Berlin, Germany. Primary outcome measure acute respiratory failure was defined as a Pao(2)/fraction of inspired oxygen (Fio(2)) ratio of <200 and the need for mechanical respiratory support. We investigated the association of polymorphisms of the interleukin (IL)-1beta, IL-6, and IL-10 genes with acute respiratory failure. Of 100 patients with severe mechanic injury (median ISS 34, interquartile range 19-45), 49 developed acute respiratory failure. Acute respiratory failure frequency differed significantly with the IL-10 -1082 genotype (P = .007; P corrected, .03), whereas there was no significant relation to any other cytokine genotype after Bonferroni correction for multiple testing. The -1082 GG genotype was a marker of decreased risk to develop acute respiratory failure in univariate (odds ratio [OR], 0.2; 95% confidence interval [CI], 0.1-0.6; P = .004) and multivariate (OR, 0.2; 95% CI, 0.1-0.9; P = .03) logistic regression analysis, with male gender, severe abdominal injury, and an APACHE II score >19 being significant risk factors. We conclude that the IL-10 -1082 genotype may be a risk marker for development of acute respiratory failure after trauma.

  8. Long-Term Treatment by Vitamin B1 and Reduction of Serum Proinflammatory Cytokines, Hyperalgesia, and Paw Edema in Adjuvant-Induced Arthritis

    PubMed Central

    Zaringhalam, Jalal; Akbari, Akhtar; Zali, Alireza; Manaheji, Homa; Nazemian, Vida; Shadnoush, Mahdi; Ezzatpanah, Somayeh

    2016-01-01

    Introduction: Immune system is involved in the etiology and pathophysiology of inflammation and vitamins are important sources of substances inducing nonspecific immunomodulatory effects. Given the proinflammatory role of cytokines in the inflammation and pain induction, this study aimed to assess the effects of long-term administration of vitamin B1 on the proinflammatory cytokines, edema, and hyperalgesia during the acute and chronic phases of adjuvant-induced arthritis. Methods: On the first day of study, inflammation was induced by intraplantar injection of complete Freund's adjuvant (CFA) in the hindpaws of rats. Vitamin B1 at doses of 100, 150, and 200 mg/kg was administrated intraperitoneally during 21 days of the study. Antinociceptive and anti-inflammatory effects of vitamin B1 were also compared to indomethacin (5 mg/kg). Inflammatory symptoms such as thermal hyperalgesia and paw edema were measured by radiant heat and plethysmometer, respectively. Serum TNF-α and IL-1β levels were checked by rat standard enzyme-linked immune sorbent assay (ELISA) specific kits. Results: The results indicated that vitamin B1(150 and 200 mg/kg) attenuated the paw edema, thermal hyperalgesia, and serum levels of TNF-α and IL-1β during both phases of CFA-induced inflammation in a dose-dependent manner. Effective dose of vitamin B1(150 mg/kg) reduced inflammatory symptoms and serum levels of TNF-α and IL-1β compare to indomethacin during the chronic phase of inflammation. Conclusion: Anti-inflammatory and antihyperalgesic effects of vitamin B1 during CFA-induced arthritis, more specifically after chronic vitamin B1 administration, suggest its therapeutic property for inflammation. PMID:27872694

  9. Efficacy of intranasal LaAg vaccine against Leishmania amazonensis infection in partially resistant C57Bl/6 mice.

    PubMed

    Pratti, Juliana Elena Silveira; Ramos, Tadeu Diniz; Pereira, Joyce Carvalho; da Fonseca-Martins, Alessandra Marcia; Maciel-Oliveira, Diogo; Oliveira-Silva, Gabriel; de Mello, Mirian França; Chaves, Suzana Passos; Gomes, Daniel Claudio Oliveira; Diaz, Bruno Lourenço; Rossi-Bergmann, Bartira; de Matos Guedes, Herbert Leonel

    2016-10-06

    We have previously demonstrated that intranasal vaccination of highly susceptible BALB/c mice with whole Leishmania amazonensis antigens (LaAg) leads to protection against murine cutaneous leishmaniasis. Here, we evaluate the response of partially resistant C57BL/6 mice to vaccination as a more representative experimental model of human cutaneous leishmaniasis. C57BL/6 mice from different animal facilities were infected with L. amazonensis (Josefa strain) to establish the profile of infection. Intranasal vaccination was performed before the infection challenge with two doses of 10 μg of LaAg alone or associated with the adjuvant ADDAVAX® by instillation in the nostrils. The lesion progression was measured with a dial caliper and the parasite load by limited dilution assay in the acute and chronic phases of infection. Cytokines were quantified by ELISA in the homogenates of infected footpads. C57BL/6 mice from different animal facilities presented the same L. amazonensis infection profile, displaying a progressive acute phase followed by a controlled chronic phase. Parasites cultured in M199 and Schneider's media were equally infective. Intranasal vaccination with LaAg led to milder acute and chronic phases of the disease. The mechanism of protection was associated with increased production of IFN-gamma in the infected tissue as measured in the acute phase. Association with the ADDAVAX® adjuvant did not improve the efficacy of intranasal LaAg vaccination. Rather, ADDAVAX® reduced vaccination efficacy. This study demonstrates that the efficacy of adjuvant-free intranasal vaccination with LaAg is extendable to the more resistant C57Bl/6 mouse model of infection with L. amazonensis, and is thus not exclusive to the susceptible BALB/c model. These results imply that mucosal immunomodulation by LaAg leads to peripheral protection irrespective of the genetic background of the host.

  10. Postexposure Application of Fas Receptor Small-Interfering RNA to Suppress Sulfur Mustard-Induced Apoptosis in Human Airway Epithelial Cells: Implication for a Therapeutic Approach

    DTIC Science & Technology

    2013-01-01

    bronchiolitis, bronchopneumo- nia, chronic obstructive pulmonary disease, bronchiectasis, asthma, large airway narrowing, and pulmonary fibrosis ... pulmonary fibrosis , acute lung injury [ALI], acute respiratory distress syndrome, etc.) (Beheshti et al., 2006; Emmler et al., 2007; Kuwano, 2008...cytokine in bronchoalveolar lavage (BAL) fluid in patients with pulmonary fibrosis due to sulfur mustard gas inhalation. J In- terferon Cytokine Res 27:38

  11. Cytokines and metabolic patterns in pediatric patients with critical illness.

    PubMed

    Briassoulis, George; Venkataraman, Shekhar; Thompson, Ann

    2010-01-01

    It is not known if cytokines, which are cell-derived mediators released during the host immune response to stress, affect metabolic response to stress during critical illness. The aim of this prospective study was to determine whether the metabolic response to stress is related to the inflammatory interleukin-6 (IL-6), 10 (IL-10), and other stress mediators' responses and to assess their relationships with different feeding patterns, nutritional markers, the severity of illness as assessed by the Multiple Organ System Failure (MOSF), the Pediatric Risk of Mortality Score (PRISM), systemic inflammatory response syndrome (SIRS), and mortality in critically ill children. Patients were classified as hypermetabolic, normometabolic, and hypometabolic when the measured resting energy expenditures (REE) were >110%, 90-110% and, <90% of the predicted basal metabolic rate, respectively. The initial predominance of the hypometabolic pattern (48.6%) declined within 1 week of acute stress (20%), and the hypermetabolic patterns dominated only after 2 weeks (60%). Only oxygen consumption (VO(2)) and carbon dioxide production (VCO(2)) (P < .0001) but none of the cytokines and nutritional markers, were independently associated with a hypometabolic pattern. REE correlated with the IL-10 but not PRISM. In the presence of SIRS or sepsis, CRP, IL-6, IL-10, Prognostic Inflammatory and Nutritional Index (NI), and triglycerides--but not glucose, VO(2), or VCO(2) increased significantly. High IL-10 levels (P = .0000) and low measured REE (P = .0000) were independently associated with mortality (11.7%), which was higher in the hypometabolic compared to other metabolic patterns (P < .005). Our results showed that only VO(2) and VCO(2), but not IL-6 or IL-10, were associated with a hypometabolic pattern which predominated the acute phase of stress, and was associated with increased mortality. Although in SIRS or sepsis, the cytokine response was reliably reflected by increases in NI and triglycerides, it was different from the metabolic (VO(2), VCO(2)) or glucose response.

  12. Cytokines and Metabolic Patterns in Pediatric Patients with Critical Illness

    PubMed Central

    Briassoulis, George; Venkataraman, Shekhar; Thompson, Ann

    2010-01-01

    It is not known if cytokines, which are cell-derived mediators released during the host immune response to stress, affect metabolic response to stress during critical illness. The aim of this prospective study was to determine whether the metabolic response to stress is related to the inflammatory interleukin-6 (IL-6), 10 (IL-10), and other stress mediators' responses and to assess their relationships with different feeding patterns, nutritional markers, the severity of illness as assessed by the Multiple Organ System Failure (MOSF), the Pediatric Risk of Mortality Score (PRISM), systemic inflammatory response syndrome (SIRS), and mortality in critically ill children. Patients were classified as hypermetabolic, normometabolic, and hypometabolic when the measured resting energy expenditures (REE) were >110%, 90–110% and, <90% of the predicted basal metabolic rate, respectively. The initial predominance of the hypometabolic pattern (48.6%) declined within 1 week of acute stress (20%), and the hypermetabolic patterns dominated only after 2 weeks (60%). Only oxygen consumption (VO2) and carbon dioxide production (VCO2) (P < .0001) but none of the cytokines and nutritional markers, were independently associated with a hypometabolic pattern. REE correlated with the IL-10 but not PRISM. In the presence of SIRS or sepsis, CRP, IL-6, IL-10, Prognostic Inflammatory and Nutritional Index (NI), and triglycerides—but not glucose, VO2, or VCO2 increased significantly. High IL-10 levels (P = .0000) and low measured REE (P = .0000) were independently associated with mortality (11.7%), which was higher in the hypometabolic compared to other metabolic patterns (P < .005). Our results showed that only VO2 and VCO2, but not IL-6 or IL-10, were associated with a hypometabolic pattern which predominated the acute phase of stress, and was associated with increased mortality. Although in SIRS or sepsis, the cytokine response was reliably reflected by increases in NI and triglycerides, it was different from the metabolic (VO2, VCO2) or glucose response. PMID:20490277

  13. Protective Action of Se-Supplement Against Acute Alcoholism Is Regulated by Selenoprotein P (SelP) in the Liver.

    PubMed

    Zhang, Zhenbiao; Guo, Yingfang; Qiu, Changwei; Deng, Ganzhen; Guo, Mengyao

    2017-02-01

    Acute alcoholism is a major cause of cirrhosis and liver failure around the world. Selenium (Se) is an essential micronutrient promoting liver health in humans and animals. Selenoprotein P (SelP) is a glycoprotein secreted within the liver, which interacts with cytokines and the growth factor pathway to provide protection for hepatic cells. The present study was conducted to confirm the effect and mechanism of Se and SelP action in livers affected by acute alcoholism. In this study, a mouse model of acute alcoholism, as well as a hepatocyte model, was successfully established. The Se content of the liver was detected by atomic fluorescence spectrophotometry. The expression of messenger RNA (mRNA) was analyzed by quantitative polymerase chain reaction (qPCR). The protein expression of inflammatory factors was detected by ELISA. The other proteins were analyzed by western blotting. The results showed that pathological damage to the liver was gradually weakened by Se-supplementation, which was evaluated by hematoxylin and eosin (H&E) and TUNEL staining. Se-supplementation inhibited expression of pro-inflammatory factors TNF-α and IL-1β and promoted production of anti-inflammatory cytokine IL-10 in the liver with acute alcoholism. Se-supplementation also prevented the apoptosis of hepatocytes by suppressing the cleavage of caspases-9, 3, 6, 7, and poly(ADP-ribose) polymerase (PARP). Through correlational analysis, it was determined that the effects of Se-supplement were closely related to SelP expression, inflammatory cytokines, and apoptosis molecule production. The sienna of SelP further confirmed the protective action of Se-supplementation on the liver and that the mechanism of SelP involves the regulation of inflammatory cytokines and apoptosis molecules in acute alcoholism. These findings provide information regarding a new potential target for the treatment of acute alcoholism.

  14. In response to: Unsolved enigma of atrial myxoma with biventricular dysfunction.

    PubMed

    Dixit, Aanchal; Tewari, Prabhat; Soori, Rashmi; Agarwal, Surendra Kumar

    2018-01-01

    Thanks to Raut et al.[1] for appreciating our efforts in managing the case of biatrial myxomas. A brief discussion is warranted here on the types, size of cardiac myxomas, interleukin 6 (IL-6) levels, left ventricle (LV) dysfunction, and their relation. IL-6 is a pleiotropic cytokine with a variety of biologic activities, including differentiation of B cell, thymocytes, and T cells; activation of macrophages; and stimulation of hepatocyte to produce acute-phase proteins such as C-reactive protein.[2],[3] It is also said to have paracrine, endocrine, and autocrine growth functions.[3].

  15. Flaxseed lignans enriched in secoisolariciresinol diglucoside prevent acute asbestos-induced peritoneal inflammation in mice

    PubMed Central

    Pietrofesa, Ralph A.; Velalopoulou, Anastasia; Arguiri, Evguenia; Menges, Craig W.; Testa, Joseph R.; Hwang, Wei-Ting; Albelda, Steven M.

    2016-01-01

    Malignant mesothelioma (MM), linked to asbestos exposure, is a highly lethal form of thoracic cancer with a long latency period, high mortality and poor treatment options. Chronic inflammation and oxidative tissue damage caused by asbestos fibers are linked to MM development. Flaxseed lignans, enriched in secoisolariciresinol diglucoside (SDG), have antioxidant, anti-inflammatory and cancer chemopreventive properties. As a prelude to chronic chemoprevention studies for MM development, we tested the ability of flaxseed lignan component (FLC) to prevent acute asbestos-induced inflammation in MM-prone Nf2+/mu mice. Mice (n = 16–17 per group) were placed on control (CTL) or FLC-supplemented diets initiated 7 days prior to a single intraperitoneal bolus of 400 µg of crocidolite asbestos. Three days post asbestos exposure, mice were evaluated for abdominal inflammation, proinflammatory/profibrogenic cytokine release, WBC gene expression changes and oxidative and nitrosative stress in peritoneal lavage fluid (PLF). Asbestos-exposed mice fed CTL diet developed acute inflammation, with significant (P < 0.0001) elevations in WBCs and proinflammatory/profibrogenic cytokines (IL-1ß, IL-6, TNFα, HMGB1 and active TGFß1) relative to baseline (BL) levels. Alternatively, asbestos-exposed FLC-fed mice had a significant (P < 0.0001) decrease in PLF WBCs and proinflammatory/profibrogenic cytokine levels relative to CTL-fed mice. Importantly, PLF WBC gene expression of cytokines (IL-1ß, IL-6, TNFα, HMGB1 and TGFß1) and cytokine receptors (TNFαR1 and TGFßR1) were also downregulated by FLC. FLC also significantly (P < 0.0001) blunted asbestos-induced nitrosative and oxidative stress. FLC reduces acute asbestos-induced peritoneal inflammation, nitrosative and oxidative stress and may thus prove to be a promising agent in the chemoprevention of MM. PMID:26678224

  16. Immunological dynamics associated with rapid virological response during the early phase of type I interferon therapy in patients with chronic hepatitis C.

    PubMed

    Lee, Jae-Won; Kim, Won; Kwon, Eun-Kyung; Kim, Yuri; Shin, Hyun Mu; Kim, Dong-Hyun; Min, Chan-Ki; Choi, Ji-Yeob; Lee, Won-Woo; Choi, Myung-Sik; Kim, Byeong Gwan; Cho, Nam-Hyuk

    2017-01-01

    Type I interferons (IFNs) play an important role in antiviral immunity as well as immunopathogenesis of diverse chronic viral infections. However, the precise mechanisms regulating the multifaceted effects of type I IFNs on the immune system and pathological inflammation still remain unclear. In order to assess the immunological dynamics associated with rapid viral clearance in chronic hepatitis C patients during the acute phase of type I IFN therapy, we analyzed multiple parameters of virological and immunological responses in a cohort of 59 Korean hepatitis C patients who received pegylated IFN-α and ribavirin (IFN/RBV). Most of the Korean patients had favorable alleles in the IFN-λ loci for responsiveness to IFN/RBV (i.e., C/C in rs12979860, T/T in rs8099917, and TT/TT in rs368234815). Rapid virological response (RVR) was determined mainly by the hepatitis C virus genotype. Among the cytokines analyzed, higher plasma levels of IL-17A and FGF were observed in non-RVR patients infected with viral genotype 1 and IP-10 was consistently elevated in RVR group infected with genotype 2 during the early phase of antiviral therapy. In addition, these three cytokines were correlated each other, suggesting a functional linkage of the cytokines in antiviral responses during IFN/RBV therapy. A low baseline frequencies of regulatory T cells and γδ T cells, but high level of group 2 innate lymphoid cells, in peripheral bloods were also significantly associated with the RVR group, implicating a potential role of the cellular immunity during the early phase of IFN/RBV therapy. Therefore, the immunological programs established by chronic hepatitis C and rapid disruption of the delicate balance by exogenous type I IFN might be associated with the subsequent virological outcomes in chronic hepatitis C patients.

  17. Immunological dynamics associated with rapid virological response during the early phase of type I interferon therapy in patients with chronic hepatitis C

    PubMed Central

    Lee, Jae-Won; Kim, Won; Kwon, Eun-Kyung; Kim, Yuri; Shin, Hyun Mu; Kim, Dong-Hyun; Min, Chan-Ki; Choi, Ji-Yeob; Lee, Won-Woo; Choi, Myung-Sik; Kim, Byeong Gwan

    2017-01-01

    Type I interferons (IFNs) play an important role in antiviral immunity as well as immunopathogenesis of diverse chronic viral infections. However, the precise mechanisms regulating the multifaceted effects of type I IFNs on the immune system and pathological inflammation still remain unclear. In order to assess the immunological dynamics associated with rapid viral clearance in chronic hepatitis C patients during the acute phase of type I IFN therapy, we analyzed multiple parameters of virological and immunological responses in a cohort of 59 Korean hepatitis C patients who received pegylated IFN-α and ribavirin (IFN/RBV). Most of the Korean patients had favorable alleles in the IFN-λ loci for responsiveness to IFN/RBV (i.e., C/C in rs12979860, T/T in rs8099917, and TT/TT in rs368234815). Rapid virological response (RVR) was determined mainly by the hepatitis C virus genotype. Among the cytokines analyzed, higher plasma levels of IL-17A and FGF were observed in non-RVR patients infected with viral genotype 1 and IP-10 was consistently elevated in RVR group infected with genotype 2 during the early phase of antiviral therapy. In addition, these three cytokines were correlated each other, suggesting a functional linkage of the cytokines in antiviral responses during IFN/RBV therapy. A low baseline frequencies of regulatory T cells and γδ T cells, but high level of group 2 innate lymphoid cells, in peripheral bloods were also significantly associated with the RVR group, implicating a potential role of the cellular immunity during the early phase of IFN/RBV therapy. Therefore, the immunological programs established by chronic hepatitis C and rapid disruption of the delicate balance by exogenous type I IFN might be associated with the subsequent virological outcomes in chronic hepatitis C patients. PMID:28614389

  18. Inflammatory protein response in CDKL5-Rett syndrome: evidence of a subclinical smouldering inflammation.

    PubMed

    Cortelazzo, Alessio; de Felice, Claudio; Leoncini, Silvia; Signorini, Cinzia; Guerranti, Roberto; Leoncini, Roberto; Armini, Alessandro; Bini, Luca; Ciccoli, Lucia; Hayek, Joussef

    2017-03-01

    Mutations in the cyclin-dependent kinase-like 5 gene cause a clinical variant of Rett syndrome (CDKL5-RTT). A role for the acute-phase response (APR) is emerging in typical RTT caused by methyl-CpG-binding protein 2 gene mutations (MECP2-RTT). No information is, to date, available on the inflammatory protein response in CDKL5-RTT. We evaluated, for the first time, the APR protein response in CDKL5-RTT. Protein patterns in albumin- and IgG-depleted plasma proteome from CDKL5-RTT patients were evaluated by two-dimensional gel electrophoresis/mass spectrometry. The resulting data were related to circulating cytokines and compared to healthy controls or MECP2-RTT patients. The effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) were evaluated. CDKL5-RTT mutations resulted in a subclinical attenuated inflammation, specifically characterized by an overexpression of the complement component C3 and CD5 antigen-like, both strictly related to the inflammatory response. Cytokine dysregulation featuring a bulk increase of anti-inflammatory cytokines, predominantly IL-10, could explain the unchanged erythrocyte sedimentation rate and atypical features of inflammation in CDKL5-RTT. Omega-3 PUFAs were able to counterbalance the pro-inflammatory status. For the first time, we revealed a subclinical smouldering inflammation pattern in CDKL5-RTT consisting in the coexistence of an atypical APR coupled with a dysregulated cytokine response.

  19. Cytokines as biomarkers of Crimean-Congo hemorrhagic fever.

    PubMed

    Papa, Anna; Tsergouli, Katerina; Çağlayık, Dilek Yağcı; Bino, Silvia; Como, Najada; Uyar, Yavuz; Korukluoglu, Gulay

    2016-01-01

    Crimean-Congo hemorrhagic fever (CCHF) is a potentially severe disease caused by CCHF virus. As in other viral hemorrhagic fevers, it is considered that the course and outcome of the disease depend on the viral load and the balance among the immune response mediators, and that a fatal outcome is the result of a "cytokine storm." The level of 27 cytokines was measured in serum samples taken from 29 patients during the acute phase of the disease. Two cases were fatal. Among survivors, significant differences between severe and non-severe cases were observed in the levels of IP-10, and MCP-1, while the levels of IL-1b, IL-5, IL-6, IL-8, IL-9, IL-10, IL-15, IP-10, MCP-1, TNF-α, and RANTES differed significantly between fatal and non-fatal cases (P < 0.05). RANTES was negatively correlated with the outcome of the disease. A striking similarity with the cytokine patterns seen in Ebola virus disease was observed. A weak Th1 immune response was seen. The viral load was positively correlated with IL-10, IP-10, and MCP-1 levels, and negatively correlated with the ratio IL-12/IL-10. Especially IP-10 and MCP-1 were significantly associated with the viral load, the severity and outcome of the disease, and they could act as biomarkers and, probably, as potential targets for treatment strategies design. © 2015 Wiley Periodicals, Inc.

  20. Interleukin-6: structure-function relationships.

    PubMed Central

    Simpson, R. J.; Hammacher, A.; Smith, D. K.; Matthews, J. M.; Ward, L. D.

    1997-01-01

    Interleukin-6 (IL-6) is a multifunctional cytokine that plays a central role in host defense due to its wide range of immune and hematopoietic activities and its potent ability to induce the acute phase response. Overexpression of IL-6 has been implicated in the pathology of a number of diseases including multiple myeloma, rheumatoid arthritis, Castleman's disease, psoriasis, and post-menopausal osteoporosis. Hence, selective antagonists of IL-6 action may offer therapeutic benefits. IL-6 is a member of the family of cytokines that includes interleukin-11, leukemia inhibitory factor, oncostatin M, cardiotrophin-1, and ciliary neurotrophic factor. Like the other members of this family, IL-6 induces growth or differentiation via a receptor-system that involves a specific receptor and the use of a shared signaling subunit, gp130. Identification of the regions of IL-6 that are involved in the interactions with the IL-6 receptor, and gp130 is an important first step in the rational manipulation of the effects of this cytokine for therapeutic benefit. In this review, we focus on the sites on IL-6 which interact with its low-affinity specific receptor, the IL-6 receptor, and the high-affinity converter gp130. A tentative model for the IL-6 hexameric receptor ligand complex is presented and discussed with respect to the mechanism of action of the other members of the IL-6 family of cytokines. PMID:9144766

  1. Endogenous Cortisol: Acute Modulation of Cytokine Gene Expression in Bovine PBMCs

    USDA-ARS?s Scientific Manuscript database

    Cortisol suppresses many aspects of immune function. However, recent publications suggest acute cortisol exposure may actually enhance immune function (Dhabhar, Neuroimmunomod 2009;16:300). The objective of this study was to determine the influence of acute increases in endogenous cortisol on expres...

  2. Electronic cigarette inhalation alters innate immunity and airway cytokines while increasing the virulence of colonizing bacteria.

    PubMed

    Hwang, John H; Lyes, Matthew; Sladewski, Katherine; Enany, Shymaa; McEachern, Elisa; Mathew, Denzil P; Das, Soumita; Moshensky, Alexander; Bapat, Sagar; Pride, David T; Ongkeko, Weg M; Crotty Alexander, Laura E

    2016-06-01

    Electronic (e)-cigarette use is rapidly rising, with 20 % of Americans ages 25-44 now using these drug delivery devices. E-cigarette users expose their airways, cells of host defense, and colonizing bacteria to e-cigarette vapor (EV). Here, we report that exposure of human epithelial cells at the air-liquid interface to fresh EV (vaped from an e-cigarette device) resulted in dose-dependent cell death. After exposure to EV, cells of host defense-epithelial cells, alveolar macrophages, and neutrophils-had reduced antimicrobial activity against Staphylococcus aureus (SA). Mouse inhalation of EV for 1 h daily for 4 weeks led to alterations in inflammatory markers within the airways and elevation of an acute phase reactant in serum. Upon exposure to e-cigarette vapor extract (EVE), airway colonizer SA had increased biofilm formation, adherence and invasion of epithelial cells, resistance to human antimicrobial peptide LL-37, and up-regulation of virulence genes. EVE-exposed SA were more virulent in a mouse model of pneumonia. These data suggest that e-cigarettes may be toxic to airway cells, suppress host defenses, and promote inflammation over time, while also promoting virulence of colonizing bacteria. Acute exposure to e-cigarette vapor (EV) is cytotoxic to airway cells in vitro. Acute exposure to EV decreases macrophage and neutrophil antimicrobial function. Inhalation of EV alters immunomodulating cytokines in the airways of mice. Inhalation of EV leads to increased markers of inflammation in BAL and serum. Staphylococcus aureus become more virulent when exposed to EV.

  3. Longevity of T-cell memory following acute viral infection.

    PubMed

    Walker, Joshua M; Slifka, Mark K

    2010-01-01

    Investigation of T-cell-mediated immunity following acute viral infection represents an area of research with broad implications for both fundamental immunology research as well as vaccine development. Here, we review techniques that are used to assess T-cell memory including limiting dilution analysis, enzyme-linked immunospot (ELISPOT) assays, intracellular cytokine staining (ICCS) and peptide-MHC Class I tetramer staining. The durability of T-cell memory is explored in the context of several acute viral infections including vaccinia virus (VV), measles virus (MV) and yellow fever virus (YFV). Following acute infection, different virus-specific T-cell subpopulations exhibit distinct cytokine profiles and these profiles change over the course of infection. Differential regulation of the cytotoxic proteins, granzyme A, granzyme B and perforin are also observed in virus-specific T cells following infection. As a result of this work, we have gained a broader understanding of the kinetics and magnitude of antiviral T-cell immunity as well as new insight into the patterns of immunodominance and differential regulation of cytokines and cytotoxicity-associated molecules. This information may eventually lead to the generation of more effective vaccines that elicit T-cell memory with the optimal combination of functional characteristics required for providing protective immunity against infectious disease.

  4. A pilot study evaluating protein abundance in pressure ulcer fluid from people with and without spinal cord injury

    PubMed Central

    Edsberg, Laura E.; Wyffels, Jennifer T.; Ogrin, Rajna; Craven, B. Catharine; Houghton, Pamela

    2015-01-01

    Objective To determine whether the biochemistry of chronic pressure ulcers differs between patients with and without chronic spinal cord injury (SCI) through measurement and comparison of the concentration of wound fluid inflammatory mediators, growth factors, cytokines, acute phase proteins, and proteases. Design Survey. Setting Tertiary spinal cord rehabilitation center and skilled nursing facilities. Participants Twenty-nine subjects with SCI and nine subjects without SCI (>18 years) with at least one chronic pressure ulcer Stage II, III, or IV were enrolled. Outcome measures Total protein and 22 target analyte concentrations including inflammatory mediators, growth factors, cytokines, acute phase proteins, and proteases were quantified in the wound fluid and blood serum samples. Blood samples were tested for complete blood count, albumin, hemoglobin A1c, total iron binding capacity, iron, percent (%) saturation, C-reactive protein, and erythrocyte sedimentation rate. Results Wound fluid concentrations were significantly different between subjects with SCI and subjects without SCI for total protein concentration and nine analytes, MMP-9, S100A12, S100A8, S100A9, FGF2, IL-1b, TIMP-1, TIMP-2, and TGF-b1. Subjects without SCI had higher values for all significantly different analytes measured in wound fluid except FGF2, TGF-b1, and wound fluid total protein. Subject-matched circulating levels of analytes and the standardized local concentration of the same proteins in the wound fluid were weakly or not correlated. Conclusions The biochemical profile of chronic pressure ulcers is different between SCI and non-SCI populations. These differences should be considered when selecting treatment options. Systemic blood serum properties may not represent the local wound environment. PMID:24968005

  5. Comorbidity between depression and inflammatory bowel disease explained by immune-inflammatory, oxidative, and nitrosative stress; tryptophan catabolite; and gut-brain pathways.

    PubMed

    Martin-Subero, Marta; Anderson, George; Kanchanatawan, Buranee; Berk, Michael; Maes, Michael

    2016-04-01

    The nature of depression has recently been reconceptualized, being conceived as the clinical expression of activated immune-inflammatory, oxidative, and nitrosative stress (IO&NS) pathways, including tryptophan catabolite (TRYCAT), autoimmune, and gut-brain pathways. IO&NS pathways are similarly integral to the pathogenesis of inflammatory bowel disease (IBD). The increased depression prevalence in IBD associates with a lower quality of life and increased morbidity in IBD, highlighting the role of depression in modulating the pathophysiology of IBD.This review covers data within such a wider conceptualization that better explains the heightened co-occurrence of IBD and depression. Common IO&NS underpinning between both disorders is evidenced by increased pro-inflammatory cytokine levels, eg, interleukin-1 (IL-1) and tumor necrosis factor-α, IL-6 trans-signalling; Th-1- and Th-17-like responses; neopterin and soluble IL-2 receptor levels; positive acute phase reactants (haptoglobin and C-reactive protein); lowered levels of negative acute phase reactants (albumin, transferrin, zinc) and anti-inflammatory cytokines (IL-10 and transforming growth factor-β); increased O&NS with damage to lipids, proteinsm and DNA; increased production of nitric oxide (NO) and inducible NO synthase; lowered plasma tryptophan but increased TRYCAT levels; autoimmune responses; and increased bacterial translocation. As such, heightened IO&NS processes in depression overlap with the biological underpinnings of IBD, potentially explaining their increased co-occurrence. This supports the perspective that there is a spectrum of IO&NS disorders that includes depression, both as an emergent comorbidity and as a contributor to IO&NS processes. Such a frame of reference has treatment implications for IBD when "comorbid" with depression.

  6. Deficiency of Endogenous Acute Phase Serum Amyloid A Does Not Impact Atherosclerotic Lesions in ApoE-/- Mice

    PubMed Central

    De Beer, Maria C; Wroblewski, Joanne M; Noffsinger, Victoria P; Rateri, Debra L; Howatt, Deborah A; Balakrishnan, Anju; Ji, Ailing; Shridas, Preetha; Thompson, Joel C; van der Westhuyzen, Deneys R; Tannock, Lisa R; Daugherty, Alan; Webb, Nancy R; De Beer, Frederick C

    2014-01-01

    Objective Although elevated plasma concentrations of serum amyloid A (SAA) are strongly associated with increased risk for atherosclerotic cardiovascular disease in humans, the role of SAA in the pathogenesis of lesion formation remains obscure. Our goal was to determine the impact of SAA deficiency on atherosclerosis in hypercholesterolemic mice. Approach and Results ApoE-/- mice, either wild type or deficient in both major acute phase SAA isoforms, SAA1.1 and SAA2.1 (SAAWT and SAAKO, respectively), were fed a normal rodent diet for 50 weeks. Female, but not male SAAKO mice had a modest increase (22%; p ≤ 0.05) in plasma cholesterol concentrations and a 53% increase in adipose mass compared to SAAWT mice that did not impact the plasma cytokine levels or the expression of adipose tissue inflammatory markers. SAA deficiency did not impact lipoprotein cholesterol distributions or plasma triglyceride concentrations in either male or female mice. Atherosclerotic lesion areas measured on the intimal surfaces of the arch, thoracic, and abdominal regions were not significantly different between SAAKO and SAAWT mice in either gender. To accelerate lesion formation, mice were fed a Western diet for 12 weeks. SAA deficiency had no effect on diet-induced alterations in plasma cholesterol, triglyceride or cytokine concentrationsn or on aortic atherosclerotic lesion areas in either male or female mice. In addition, SAA deficiency in male mice had no effect on lesion areas or macrophage accumulation in the aortic roots. Conclusions The absence of endogenous SAA1.1 and 2.1 does not impact atherosclerotic lipid deposition in apoE-/- mice fed either normal or Western diets. PMID:24265416

  7. Measles virus infection of human keratinocytes: Possible link between measles and atopic dermatitis.

    PubMed

    Gourru-Lesimple, Geraldine; Mathieu, Cyrille; Thevenet, Thomas; Guillaume-Vasselin, Vanessa; Jégou, Jean-François; Boer, Cindy G; Tomczak, Katarzyna; Bloyet, Louis-Marie; Giraud, Celine; Grande, Sophie; Goujon, Catherine; Cornu, Catherine; Horvat, Branka

    2017-05-01

    Measles virus (MV) infection is marked with a skin rash in the acute phase of the disease, which pathogenesis remains poorly understood. Moreover, the association between measles and progression of skin diseases, such as atopic dermatitis (AD), is still elusive. We have thus analysed the susceptibility of human keratinocytes to MV infection and explore the potential relationship between MV vaccination and the pathogenesis the AD. We performed immunovirological characterisation of MV infection in human keratinocytes and then tested the effect of live attenuated measles vaccine on the progression of AD in adult patients, in a prospective, double-blind study. We showed that both human primary keratinocytes and the keratinocyte cell line HaCaT express MV receptors and could be infected by MV. The infection significantly modulated the expression of several keratinocyte-produced cytokines, known to be implicated in the pathogenesis of inflammatory allergic diseases, including AD. We then analysed the relationship between exposure to MV by vaccination and the progression of AD in 20 adults during six weeks. We found a significant decrease in CCL26 and thymic stromal lymphopoietin (TSLP) mRNA in biopsies from acute lesions of vaccinated patients, suggesting MV-induced modulation of skin cytokine expression. Clinical analysis revealed a transient improvement of SCORAD index in vaccinated compared to placebo-treated patients, two weeks after vaccination. Altogether, these results clearly demonstrate that keratinocytes are susceptible to MV infection, which could consequently modulate their cytokine production, resulting with a beneficial effect in the progression of AD. This study provides thus a proof of concept for the vaccination therapy in AD and may open new avenues for the development of novel strategies in the treatment of this allergic disease. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  8. Ethyl acetate extracts of alfalfa (Medicago sativa L.) sprouts inhibit lipopolysaccharide-induced inflammation in vitro and in vivo.

    PubMed

    Hong, Yong-Han; Chao, Wen-Wan; Chen, Miaw-Ling; Lin, Bi-Fong

    2009-07-14

    This study aimed to investigate if food components that exert anti-inflammatory effects may be used for inflammatory disorders by examining alfalfa sprout ethyl acetate extract (ASEA). The cytokine profile and life span of BALB/c mice with acute inflammation after intra-peritoneal (ip) injection of 15 mg/kg BW lipopolysaccharide (LPS) were determined. The results showed that the life span of LPS-induced inflammatory mice were negatively correlated with serum levels of TNF-alpha, IL-6, and IL-1beta at 9 hr after LPS-injection, which indicated that suppressing these cytokines in the late phase of inflammation may be beneficial for survival. The in vitro experiment then showed that ASEA significantly reduced IL-6 and IL-1beta production and the NF-kappaB trans-activation activity of mitogen-stimulated RAW264.7 cells. To further evaluate the anti-inflammatory effects of ASEA in vivo, BALB/c mice were tube-fed with 25 mg ASEA/kg BW/day in 50 microl sunflower oil, while the control and PDTC (pyrrolidine dithiocarbamate, an anti-inflammatory agent) groups were tube-fed with 50 microl sunflower oil/day only. After one week of tube-feeding, the PDTC group was injected with 50 mg/kg BW PDTC and one hour later, all of the mice were injected with 15 mg/kg BW LPS. The results showed that the ASEA and PDTC groups had significantly lower serum TNF-alpha, IL-6, and IL-1beta levels at 9 hr after LPS challenge, and significantly higher survival rates than the control group. This study suggests that ASEA supplementation can suppress the production of pro-inflammatory cytokines and alleviate acute inflammatory hazards.

  9. Ethyl acetate extracts of alfalfa (Medicago sativa L.) sprouts inhibit lipopolysaccharide-induced inflammation in vitro and in vivo

    PubMed Central

    Hong, Yong-Han; Chao, Wen-Wan; Chen, Miaw-Ling; Lin, Bi-Fong

    2009-01-01

    This study aimed to investigate if food components that exert anti-inflammatory effects may be used for inflammatory disorders by examining alfalfa sprout ethyl acetate extract (ASEA). The cytokine profile and life span of BALB/c mice with acute inflammation after intra-peritoneal (ip) injection of 15 mg/kg BW lipopolysaccharide (LPS) were determined. The results showed that the life span of LPS-induced inflammatory mice were negatively correlated with serum levels of TNF-α, IL-6, and IL-1β at 9 hr after LPS-injection, which indicated that suppressing these cytokines in the late phase of inflammation may be beneficial for survival. The in vitro experiment then showed that ASEA significantly reduced IL-6 and IL-1β production and the NF-κB trans-activation activity of mitogen-stimulated RAW264.7 cells. To further evaluate the anti-inflammatory effects of ASEA in vivo, BALB/c mice were tube-fed with 25 mg ASEA/kg BW/day in 50 μl sunflower oil, while the control and PDTC (pyrrolidine dithiocarbamate, an anti-inflammatory agent) groups were tube-fed with 50 μl sunflower oil/day only. After one week of tube-feeding, the PDTC group was injected with 50 mg/kg BW PDTC and one hour later, all of the mice were injected with 15 mg/kg BW LPS. The results showed that the ASEA and PDTC groups had significantly lower serum TNF-α, IL-6, and IL-1β levels at 9 hr after LPS challenge, and significantly higher survival rates than the control group. This study suggests that ASEA supplementation can suppress the production of pro-inflammatory cytokines and alleviate acute inflammatory hazards. PMID:19594948

  10. Biomimetic carbon monoxide delivery based on hemoglobin vesicles ameliorates acute pancreatitis in mice via the regulation of macrophage and neutrophil activity.

    PubMed

    Taguchi, Kazuaki; Nagao, Saori; Maeda, Hitoshi; Yanagisawa, Hiroki; Sakai, Hiromi; Yamasaki, Keishi; Wakayama, Tomohiko; Watanabe, Hiroshi; Otagiri, Masaki; Maruyama, Toru

    2018-11-01

    Macrophages play a central role in various inflammatory disorders and are broadly divided into two subpopulations, M1 and M2 macrophage. In the healing process in acute inflammatory disorders, shifting the production of M1 macrophages to M2 macrophages is desirable, because M1 macrophages secrete pro-inflammatory cytokines, whilst the M2 variety secrete anti-inflammatory cytokines. Previous findings indicate that when macrophages are treated with carbon monoxide (CO), the secretion of anti-inflammatory cytokine is increased and the expression of pro-inflammatory cytokines is inhibited, indicating that CO may have a potential to modulate the production of macrophages toward the M2-like phenotype. In this study, we examined the issue of whether CO targeting macrophages using a nanotechnology-based CO donor, namely CO-bound hemoglobin vesicles (CO-HbV), modulates their polarization and show therapeutic effects against inflammatory disorders. The results showed that the CO-HbV treatment polarized a macrophage cell line toward an M2-like phenotype. Furthermore, in an in vivo study using acute pancreatitis model mice as a model of an inflammatory disease, a CO-HbV treatment also tended to polarize macrophages toward an M2-like phenotype and inhibited neutrophil infiltration in the pancreas, resulting in a significant inflammation. In addition to the suppression of acute pancreatitis, CO-HbV diminished a subsequent pancreatitis-associated acute lung injury. This could be due to the inhibition of the systemic inflammation, neutrophil infiltration in the lungs and the production of HMGB-1. These findings suggest that CO-HbV exerts superior anti-inflammatory effects against inflammatory disorders via the regulation of macrophage and neutrophil activity.

  11. Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior.

    PubMed

    Haroon, Ebrahim; Raison, Charles L; Miller, Andrew H

    2012-01-01

    The potential contribution of chronic inflammation to the development of neuropsychiatric disorders such as major depression has received increasing attention. Elevated biomarkers of inflammation, including inflammatory cytokines and acute-phase proteins, have been found in depressed patients, and administration of inflammatory stimuli has been associated with the development of depressive symptoms. Data also have demonstrated that inflammatory cytokines can interact with multiple pathways known to be involved in the development of depression, including monoamine metabolism, neuroendocrine function, synaptic plasticity, and neurocircuits relevant to mood regulation. Further understanding of mechanisms by which cytokines alter behavior have revealed a host of pharmacologic targets that may be unique to the impact of inflammation on behavior and may be especially relevant to the treatment and prevention of depression in patients with evidence of increased inflammation. Such targets include the inflammatory signaling pathways cyclooxygenase, p38 mitogen-activated protein kinase, and nuclear factor-κB, as well as the metabolic enzyme, indoleamine-2,3-dioxygenase, which breaks down tryptophan into kynurenine. Other targets include the cytokines themselves in addition to chemokines, which attract inflammatory cells from the periphery to the brain. Psychosocial stress, diet, obesity, a leaky gut, and an imbalance between regulatory and pro-inflammatory T cells also contribute to inflammation and may serve as a focus for preventative strategies relevant to both the development of depression and its recurrence. Taken together, identification of mechanisms by which cytokines influence behavior may reveal a panoply of personalized treatment options that target the unique contributions of the immune system to depression.

  12. Acute modulation of cytokine gene expression in bovine PBMCs by endogenous cortisol

    USDA-ARS?s Scientific Manuscript database

    Cortisol suppresses many aspects of immune function. However, recent publications suggest acute cortisol exposure may actually enhance immune function (Dhabhar, Neuroimmunomod 2009;16:300). The objective of this study was to determine the influence of acute increases in endogenous cortisol on expres...

  13. T cell–derived interleukin (IL)-21 promotes brain injury following stroke in mice

    PubMed Central

    Clarkson, Benjamin D.S.; Ling, Changying; Shi, Yejie; Harris, Melissa G.; Rayasam, Aditya; Sun, Dandan; Salamat, M. Shahriar; Kuchroo, Vijay; Lambris, John D.; Sandor, Matyas

    2014-01-01

    T lymphocytes are key contributors to the acute phase of cerebral ischemia reperfusion injury, but the relevant T cell–derived mediators of tissue injury remain unknown. Using a mouse model of transient focal brain ischemia, we report that IL-21 is highly up-regulated in the injured mouse brain after cerebral ischemia. IL-21–deficient mice have smaller infarcts, improved neurological function, and reduced lymphocyte accumulation in the brain within 24 h of reperfusion. Intracellular cytokine staining and adoptive transfer experiments revealed that brain-infiltrating CD4+ T cells are the predominant IL-21 source. Mice treated with decoy IL-21 receptor Fc fusion protein are protected from reperfusion injury. In postmortem human brain tissue, IL-21 localized to perivascular CD4+ T cells in the area surrounding acute stroke lesions, suggesting that IL-21–mediated brain injury may be relevant to human stroke. PMID:24616379

  14. [The clinical significance of hepcidin detection in the patients with anemia and rheumatoid arthritis].

    PubMed

    Galushko, E A

    2014-01-01

    The prevalence of anemia in patients with rheumatoid arthritis (RA) varies from 30 to 70%. 25% of the cases are diagnosed within 1 year after onset of the disease. On the whole, anemia in RA is described as anemia of a chronic disease (ACD). Pathogenesis ofACD is a multifactor process underlain by an immune mechanism: cytokines and cells ofthe reticuloendothelial system cause changes in iron homeostasis, proliferation of erythroid precursors, erythropoietin production and lifespan of erythrocytes. The key pathogenetic factor is disordered iron metabolism. IL-6 increasing hepatic production acute-phase protein (hepcidin) is the most important cytokine involved in ACD pathogenesis. Hence the necessity to measure its serum level for differential diagnostics of anemic syndrome in patients with RA and the choice of effective basal therapy. Recent data on the therapeutic potency of tocilizumab (IL-6 receptor inhibitor) demonstrate not its safety and sustainable beneficial clinical effect in combination with the favourable action on hemoglobin profile and reduction offatigue.

  15. Vitamin D-binding protein deficiency in mice decreases systemic and select tissue levels of inflammatory cytokines in a murine model of acute muscle injury.

    PubMed

    Kew, Richard R; Tabrizian, Tahmineh; Vosswinkel, James A; Davis, James E; Jawa, Randeep S

    2018-06-01

    Severe acute muscle injury results in massive cell damage, causing the release of actin into extracellular fluids where it complexes with the vitamin D-binding protein (DBP). We hypothesized that a systemic DBP deficiency would result in a less proinflammatory phenotype. C57BL/6 wild-type (WT) and DBP-deficient (DBP-/-) mice received intramuscular injections of either 50% glycerol or phosphate-buffered saline into thigh muscles. Muscle injury was assessed by histology. Cytokine levels were measured in plasma, muscle, kidney, and lung. All animals survived the procedure, but glycerol injection in both strains of mice showed lysis of skeletal myocytes and inflammatory cell infiltrate. The muscle inflammatory cell infiltrate in DBP-deficient mice had remarkably few neutrophils as compared with WT mice. The neutrophil chemoattractant CXCL1 was significantly reduced in muscle tissue from DBP-/- mice. However, there were no other significant differences in muscle cytokine levels. In contrast, plasma obtained 48 hours after glycerol injection revealed that DBP-deficient mice had significantly lower levels of systemic cytokines interleukin 6, CCL2, CXCL1, and granulocyte colony-stimulating factor. Lung tissue from DBP-/- mice showed significantly decreased amounts of CCL2 and CXCL1 as compared with glycerol-treated WT mice. Several chemokines in kidney homogenates following glycerol-induced injury were significantly reduced in DBP-/- mice: CCL2, CCL5, CXCL1, and CXCL2. Acute muscle injury triggered a systemic proinflammatory response as noted by elevated plasma cytokine levels. However, mice with a systemic DBP deficiency demonstrated a change in their cytokine profile 48 hours after muscle injury to a less proinflammatory phenotype.

  16. Acute and subacute IL-1β administrations differentially modulate neuroimmune and neurotrophic systems: possible implications for neuroprotection and neurodegeneration

    PubMed Central

    2013-01-01

    Background In Alzheimer’s disease, stroke and brain injuries, activated microglia can release proinflammatory cytokines, such as interleukin (IL)-1β. These cytokines may change astrocyte and neurotrophin functions, which influences neuronal survival and induces apoptosis. However, the interaction between neuroinflammation and neurotrophin functions in different brain conditions is unknown. The present study hypothesized that acute and subacute elevated IL-1β differentially modulates glial and neurotrophin functions, which are related to their role in neuroprotection and neurodegeneration. Method Rats were i.c.v. injected with saline or IL-1β for 1 or 8 days and tested in a radial maze. mRNA and protein expressions of glial cell markers, neurotrophins, neurotrophin receptors, β-amyloid precursor protein (APP) and the concentrations of pro- and anti-inflammatory cytokines were measured in the hippocampus. Results When compared to controls, memory deficits were found 4 days after IL-1 administrations, however the deficits were attenuated by IL-1 receptor antagonist (RA). Subacute IL-1 administrations increased expressions of APP, microglial active marker CD11b, and p75 neurotrophin receptor, and the concentration of tumor necrosis factor (TNF)-α and IL-1β, but decreased expressions of astrocyte active marker glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF) and TrK B. By contrast, up-regulations of NGF, BDNF and TrK B expressions were found after acute IL-1 administration, which are associated with the increase in both glial marker expressions and IL-10 concentrations. However, TrK A was down-regulated by acute and up-regulated by subacute IL-1 administrations. Subacute IL-1-induced changes in the glial activities, cytokine concentrations and expressions of BDNF and p75 were reversed by IL-1RA treatment. Conclusion These results indicate that acute and subacute IL-1 administrations induce different changes toward neuroprotection after acute IL-1 administrations but neurodegeneration after subacute ones. PMID:23651534

  17. CXCL4-induced monocyte survival, cytokine expression, and oxygen radical formation is regulated by sphingosine kinase 1.

    PubMed

    Kasper, Brigitte; Winoto-Morbach, Supandi; Mittelstädt, Jessica; Brandt, Ernst; Schütze, Stefan; Petersen, Frank

    2010-04-01

    Human monocytes respond to a variety of stimuli with a complex spectrum of activities ranging from acute defense mechanisms to cell differentiation or cytokine release. However, the individual intracellular signaling pathways related to these functions are not well understood. CXC chemokine ligand 4 (CXCL4) represents a broad activator of monocytes, which induces acute as well as delayed activities in these cells including cell differentiation, survival, or the release of ROS, and cytokines. Here, we report for the first time that CXCL4-treated monocytes significantly upregulate sphingosine kinase 1 (SphK1) mRNA and that CXCL4 induces SphK1 enzyme activity as well as its translocation to the cell membrane. Furthermore, we could show that pharmacological inhibition of SphK results in reversal of CXCL4-induced monocyte survival, cytokine expression, and release of oxygen radicals, which was confirmed by the use of SphK1-specific siRNA. CXCL4-mediated rescue from apoptosis, which is accompanied by inhibition of caspases, is controlled by SphK1 and its downstream element Erk. Taken together, these data assign SphK1 as a central regulator of acute and delayed monocyte activation and suggest SphK1 as a potential therapeutic target to suppress pro-inflammatory responses induced by CXCL4.

  18. Local and systemic inflammatory and immunologic reactions to cyathostomin larvicidal therapy in horses.

    PubMed

    Nielsen, M K; Loynachan, A T; Jacobsen, S; Stewart, J C; Reinemeyer, C R; Horohov, D W

    2015-12-15

    Encysted cyathostomin larvae are ubiquitous in grazing horses. Arrested development occurs in this population and can lead to an accumulation of encysted larvae. Large numbers of tissue larvae place the horse at risk for developing larval cyathostominosis. This disease complex is caused by mass emergence of these larvae and is characterized by a generalized acute typhlocolitis and manifests itself as a profuse protein-losing watery diarrhea with a reported case-fatality rate of about 50%. Two anthelmintic formulations have a label claim for larvicidal therapy of these encysted stages; moxidectin and a five-day regimen of fenbendazole. There is limited knowledge about inflammatory and immunologic reactions to larvicidal therapy. This study was designed to evaluate blood acute phase reactants as well as gene expression of pro-inflammatory cytokines, both locally in the large intestinal walls and systemically. Further, mucosal tissue samples were evaluated histopathologically as well as analyzed for gene expression of pro- and anti-inflammatory cytokines, cluster of differentiation (CD) cell surface proteins, and select transcription factors. Eighteen juvenile horses with naturally acquired cyathostomin infections were randomly assigned to three treatment groups; one group served as untreated controls (Group 1), one received a five-day regimen of fenbendazole (10mg/kg) (Group 2), and one group received moxidectin (0.4mg/kg) (Group 3). Horses were treated on day 0 and euthanatized on days 18-20. Serum and whole blood samples were collected on days 0, 5, and 18. All horses underwent necropsy with collection of tissue samples from the ventral colon and cecum. Acute phase reactants measured included serum amyloid A, iron and fibrinogen, and the cytokines evaluated included interferon γ, tumor necrosis factor α, transforming growth factor (TGF)-β, and interleukins 1β, 4, 5, 6, and 10. Transcription factors evaluated were FoxP3, GATA3 and tBet, and CD markers included CD163, CD3z, CD4, CD40, and CD8b. Histopathology revealed an inflammatory reaction with higher levels of lymphocytes, T cells, B cells, eosinophils and fibrous tissue in the moxidectin-treated group compared to controls or horses treated with fenbendazole. No apparent systemic reactions were observed. Expression of IL-5 and TGF-β in intestinal tissues was significantly lower in Group 3 compared to Group 1. This study revealed a subtle inflammatory reaction to moxidectin, which is unlikely to cause clinical issues. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. TAM receptor-dependent regulation of SOCS3 and MAPKs contributes to pro-inflammatory cytokine downregulation following chronic NOD2 stimulation of human macrophages1

    PubMed Central

    Zheng, Shasha; Hedl, Matija; Abraham, Clara

    2014-01-01

    Microbial-induced cytokine regulation is critical to intestinal immune homeostasis. Acute stimulation of NOD2, the Crohn’s disease-associated sensor of bacterial peptidoglycan, induces cytokines. However, cytokines are attenuated after chronic NOD2 and pattern recognition receptor (PRR) stimulation of macrophages; similar attenuation is observed in intestinal macrophages. The role of Tyro3, Axl and Mer (TAM) receptors in regulating chronic PRR stimulation and NOD2-induced outcomes has not been examined. Moreover, TAM receptors have been relatively less investigated in human macrophages. Whereas TAM receptors did not downregulate acute NOD2-induced cytokines in primary human macrophages, they were essential for downregulating signaling and pro-inflammatory cytokine secretion after chronic NOD2 and TLR4 stimulation. Axl and Mer were similarly required in mice for cytokine downregulation after chronic NOD2 stimulation in vivo and in intestinal tissues. Consistently, TAM expression was increased in human intestinal myeloid-derived cells. Chronic NOD2 stimulation led to IL-10- and TGFβ-dependent TAM upregulation in human macrophages, which in turn, upregulated SOCS3 expression. Restoring SOCS3 expression under TAM knockdown conditions restored chronic NOD2-mediated pro-inflammatory cytokine downregulation. In contrast to the upregulated pro-inflammatory cytokines, attenuated IL-10 secretion was maintained in TAM-deficient macrophages upon chronic NOD2 stimulation. The level of MAPK activation in TAM-deficient macrophages after chronic NOD2 stimulation was insufficient to upregulate IL-10 secretion; however, full restoration of MAPK activation under these conditions restored c-Fos, c-Jun, MAFK and PU.1 binding to the IL-10 promoter and IL-10 secretion. Therefore, TAM receptors are critical for downregulating pro-inflammatory cytokines under the chronic NOD2 stimulation conditions observed in the intestinal environment. PMID:25567680

  20. Acute modulation of cytokine gene expression in bovine peripheral blood mononuclear cells (PBMCs) by endogenous cortisol

    USDA-ARS?s Scientific Manuscript database

    Cortisol suppresses many aspects of immune function. However, recent publications suggest acute cortisol exposure may actually enhance immune function (Dhabhar. 2009. Neuroimmunomod. 16:300). The objective of this study was to determine the influence of acute increases in endogenous cortisol on expr...

  1. Anti-inflammatory and immunomodulatory mechanisms of atorvastatin in a murine model of traumatic brain injury.

    PubMed

    Xu, Xin; Gao, Weiwei; Cheng, Shiqi; Yin, Dongpei; Li, Fei; Wu, Yingang; Sun, Dongdong; Zhou, Shuai; Wang, Dong; Zhang, Yongqiang; Jiang, Rongcai; Zhang, Jianning

    2017-08-23

    Neuroinflammation is an important secondary injury mechanism that has dual beneficial and detrimental roles in the pathophysiology of traumatic brain injury (TBI). Compelling data indicate that statins, a group of lipid-lowering drugs, also have extensive immunomodulatory and anti-inflammatory properties. Among statins, atorvastatin has been demonstrated as a neuroprotective agent in experimental TBI; however, there is a lack of evidence regarding its effects on neuroinflammation during the acute phase of TBI. The current study aimed to evaluate the effects of atorvastatin therapy on modulating the immune reaction, and to explore the possible involvement of peripheral leukocyte invasion and microglia/macrophage polarization in the acute period post-TBI. C57BL/6 mice were subjected to TBI using a controlled cortical impact (CCI) device. Either atorvastatin or vehicle saline was administered orally starting 1 h post-TBI for three consecutive days. Short-term neurological deficits were evaluated using the modified neurological severity score (mNSS) and Rota-rod. Brain-invading leukocyte subpopulations were analyzed by flow cytometry and immunohistochemistry. Pro- and anti-inflammatory cytokines and chemokines were examined using enzyme-linked immunosorbent assay (ELISA). Markers of classically activated (M1) and alternatively activated (M2) microglia/macrophages were then determined by quantitative real-time PCR (qRT-PCR) and flow cytometry. Neuronal apoptosis was identified by double staining of terminal deoxynucleotidyl transferase-dUTP nick end labeling (TUNEL) staining and immunofluorescence labeling for neuronal nuclei (NeuN). Acute treatment with atorvastatin at doses of 1 mg/kg/day significantly reduced neuronal apoptosis and improved behavioral deficits. Invasions of T cells, neutrophils and natural killer (NK) cells were attenuated profoundly after atorvastatin therapy, as was the production of pro-inflammatory cytokines (IFN-γ and IL-6) and chemokines (RANTES and IP-10). Notably, atorvastatin treatment significantly increased the proportion of regulatory T cells (Tregs) in both the peripheral spleen and brain, and at the same time, increased their main effector cytokines IL-10 and TGF-β1. We also found that atorvastatin significantly attenuated total microglia/macrophage activation but augmented the M2/M1 ratio by both inhibiting M1 polarization and enhancing M2 polarization. Our data demonstrated that acute atorvastatin administration could modulate post-TBI neuroinflammation effectively, via a mechanism that involves altering peripheral leukocyte invasion and the alternative polarization of microglia/macrophages.

  2. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia.

    PubMed

    Davila, Marco L; Riviere, Isabelle; Wang, Xiuyan; Bartido, Shirley; Park, Jae; Curran, Kevin; Chung, Stephen S; Stefanski, Jolanta; Borquez-Ojeda, Oriana; Olszewska, Malgorzata; Qu, Jinrong; Wasielewska, Teresa; He, Qing; Fink, Mitsu; Shinglot, Himaly; Youssif, Maher; Satter, Mark; Wang, Yongzeng; Hosey, James; Quintanilla, Hilda; Halton, Elizabeth; Bernal, Yvette; Bouhassira, Diana C G; Arcila, Maria E; Gonen, Mithat; Roboz, Gail J; Maslak, Peter; Douer, Dan; Frattini, Mark G; Giralt, Sergio; Sadelain, Michel; Brentjens, Renier

    2014-02-19

    We report on 16 patients with relapsed or refractory B cell acute lymphoblastic leukemia (B-ALL) that we treated with autologous T cells expressing the 19-28z chimeric antigen receptor (CAR) specific to the CD19 antigen. The overall complete response rate was 88%, which allowed us to transition most of these patients to a standard-of-care allogeneic hematopoietic stem cell transplant (allo-SCT). This therapy was as effective in high-risk patients with Philadelphia chromosome-positive (Ph(+)) disease as in those with relapsed disease after previous allo-SCT. Through systematic analysis of clinical data and serum cytokine levels over the first 21 days after T cell infusion, we have defined diagnostic criteria for a severe cytokine release syndrome (sCRS), with the goal of better identifying the subset of patients who will likely require therapeutic intervention with corticosteroids or interleukin-6 receptor blockade to curb the sCRS. Additionally, we found that serum C-reactive protein, a readily available laboratory study, can serve as a reliable indicator for the severity of the CRS. Together, our data provide strong support for conducting a multicenter phase 2 study to further evaluate 19-28z CAR T cells in B-ALL and a road map for patient management at centers now contemplating the use of CAR T cell therapy.

  3. TAM receptor-dependent regulation of SOCS3 and MAPKs contributes to proinflammatory cytokine downregulation following chronic NOD2 stimulation of human macrophages.

    PubMed

    Zheng, Shasha; Hedl, Matija; Abraham, Clara

    2015-02-15

    Microbial-induced cytokine regulation is critical to intestinal immune homeostasis. Acute stimulation of nucleotide-binding oligomerization domain 2 (NOD2), the Crohn's disease-associated sensor of bacterial peptidoglycan, induces cytokines. However, cytokines are attenuated after chronic NOD2 and pattern recognition receptor stimulation of macrophages; similar attenuation is observed in intestinal macrophages. The role of Tyro3, Axl, and Mer (TAM) receptors in regulating chronic pattern recognition receptor stimulation and NOD2-induced outcomes has not been examined. Moreover, TAM receptors have been relatively less investigated in human macrophages. Whereas TAM receptors did not downregulate acute NOD2-induced cytokines in primary human macrophages, they were essential for downregulating signaling and proinflammatory cytokine secretion after chronic NOD2 and TLR4 stimulation. Axl and Mer were similarly required in mice for cytokine downregulation after chronic NOD2 stimulation in vivo and in intestinal tissues. Consistently, TAM expression was increased in human intestinal myeloid-derived cells. Chronic NOD2 stimulation led to IL-10- and TGF-β-dependent TAM upregulation in human macrophages, which, in turn, upregulated suppressor of cytokine signaling 3 expression. Restoring suppressor of cytokine signaling 3 expression under TAM knockdown conditions restored chronic NOD2-mediated proinflammatory cytokine downregulation. In contrast to the upregulated proinflammatory cytokines, attenuated IL-10 secretion was maintained in TAM-deficient macrophages upon chronic NOD2 stimulation. The level of MAPK activation in TAM-deficient macrophages after chronic NOD2 stimulation was insufficient to upregulate IL-10 secretion; however, full restoration of MAPK activation under these conditions restored c-Fos, c-Jun, musculoaponeurotic fibrosarcoma oncogene homolog K, and PU.1 binding to the IL-10 promoter and IL-10 secretion. Therefore, TAM receptors are critical for downregulating proinflammatory cytokines under the chronic NOD2 stimulation conditions observed in the intestinal environment. Copyright © 2015 by The American Association of Immunologists, Inc.

  4. The effect of acute physical exercise on cytokine levels in patients with systemic lupus erythematosus.

    PubMed

    da Silva, A E; dos Reis-Neto, E Torres; da Silva, N P; Sato, E I

    2013-12-01

    Acute exercise increases IL-6, IL-10 and TNF-α levels in healthy subjects. There is no study evaluating the effect of exercise on cytokines level in systemic lupus erythematosus (SLE) patients. Our aim was to assess IL-10, IL-6 and TNF-α levels at baseline and after acute physical exercise in patients with SLE. In total, 27 female SLE patients and 30 healthy controls were evaluated. Serum levels of IL-10, IL-6 and TNF-α at baseline and soon after the ergospirometric test were measured by ELISA test. Student's t-tests and Mann-Whitney test were used for intra- and inter-group comparisons; p values <0.05 were considered significant. Patients with SLE presented worse ergospirometric parameters compared with controls: VO2max (25.78 ± 5.51 vs. 32.74 ± 5.85 ml/kg/min, p < 0.001); maximum heart rate (174.18 ± 12.36 vs. 185.15 ± 2.07 bpm, p = 0.001); maximum ventilation (65.51 ± 15.68 vs. 80.48 ± 18.98 l/min, p = 0.001) and maximum speed (7.70 ± 1.24 vs. 9.40 ± 1.22 km/h, p < 0.001). At baseline, SLE patients presented higher levels of IL-6 (2.38 ± 1.70 vs. 1.71 ± 0.29 pg/ml, p = 0.035) and IL-10 (1.09 ± 1.55 vs. 0.30 ± 0.11 pg/ml, p = 0.037) than controls. Acute exercise in controls increased IL-6 level (1.71 ± 0.29 vs. 2.01 ± 0.27 pg/ml, p = 0.003) without change in IL-10 and TNF-α levels. However, no significant change in cytokine levels was observed in SLE patients after acute exercise. This is the first study evaluating the effect of acute exercise on cytokine levels in patients with SLE. In contrast to healthy controls, acute physical exercise did not increase the levels of IL-6 in patients with SLE, and seems to be safe in those patients with inactive or mild active disease.

  5. Association of Cytokine Candidate Genes with Severity of Pain and Co-Occurring Symptoms in Breast Cancer Patients Receiving Chemotherapy

    DTIC Science & Technology

    2014-12-01

    chemotherapy administration (i.e., acute symptoms). 3 Keywords Pain, fatigue, sleep disturbance, depressive symptoms, symptom cluster, breast cancer, gene ...across a greater number of cytokine genes were evaluated than initially proposed (See Table 2 below for genes evaluated). 5 DNA samples were...Cooper, B. A., Dhruva, A., et al. (2012). Evidence of associations between cytokine genes and subjective reports of sleep disturbance in oncology

  6. Monocyte dysregulation and systemic inflammation during pediatric falciparum malaria

    PubMed Central

    Dobbs, Katherine R.; Embury, Paula; Odada, Peter S.; Rosa, Bruce A.; Mitreva, Makedonka; Kazura, James W.; Dent, Arlene E.

    2017-01-01

    BACKGROUND. Inflammation and monocytes are thought to be important to human malaria pathogenesis. However, the relationship of inflammation and various monocyte functions to acute malaria, recovery from acute malaria, and asymptomatic parasitemia in endemic populations is poorly understood. METHODS. We evaluated plasma cytokine levels, monocyte subsets, monocyte functional responses, and monocyte inflammatory transcriptional profiles of 1- to 10-year-old Kenyan children at the time of presentation with acute uncomplicated malaria and at recovery 6 weeks later; these results were compared with analogous data from asymptomatic children and adults in the same community. RESULTS. Acute malaria was marked by elevated levels of proinflammatory and regulatory cytokines and expansion of the inflammatory “intermediate” monocyte subset that returned to levels of healthy asymptomatic children 6 weeks later. Monocytes displayed activated phenotypes during acute malaria, with changes in surface expression of markers important to innate and adaptive immunity. Functionally, acute malaria monocytes and monocytes from asymptomatic infected children had impaired phagocytosis of P. falciparum–infected erythrocytes relative to asymptomatic children with no blood-stage infection. Monocytes from both acute malaria and recovery time points displayed strong and equivalent cytokine responsiveness to innate immune agonists that were independent of infection status. Monocyte transcriptional profiles revealed regulated and balanced proinflammatory and antiinflammatory and altered phagocytosis gene expression patterns distinct from malaria-naive monocytes. CONCLUSION. These observations provide insights into monocyte functions and the innate immune response during uncomplicated malaria and suggest that asymptomatic parasitemia in children is not clinically benign. FUNDING. Support for this work was provided by NIH/National Institute of Allergy and Infectious Diseases (R01AI095192-05), the Burroughs Wellcome Fund/American Society of Tropical Medicine and Hygiene, and the Rainbow Babies & Children’s Foundation. PMID:28931756

  7. The effect of aliskiren on urinary cytokine/chemokine responses to clamped hyperglycaemia in type 1 diabetes.

    PubMed

    Cherney, David Z I; Reich, Heather N; Scholey, James W; Daneman, Denis; Mahmud, Farid H; Har, Ronnie L H; Sochett, Etienne B

    2013-10-01

    Acute clamped hyperglycaemia activates the renin-angiotensin-aldosterone system (RAAS) and increases the urinary excretion of inflammatory cytokines/chemokines in patients with uncomplicated type 1 diabetes mellitus. Our objective was to determine whether blockade of the RAAS would blunt the effect of acute hyperglycaemia on urinary cytokine/chemokine excretion, thereby giving insights into potentially protective effects of these agents prior to the onset of clinical nephropathy. Blood pressure, renal haemodynamic function (inulin and para-aminohippurate clearances) and urinary cytokines/chemokines were measured after 6 h of clamped euglycaemia (4-6 mmol/l) and hyperglycaemia (9-11 mmol/l) on two consecutive days in patients with type 1 diabetes mellitus (n = 27) without overt nephropathy. Measurements were repeated after treatment with aliskiren (300 mg daily) for 30 days. Before aliskiren, clamped hyperglycaemia increased filtration fraction (from 0.188 ± 0.007 to 0.206 ± 0.007, p = 0.003) and urinary fibroblast growth factor-2 (FGF2), IFN-α2 and macrophage-derived chemokine (MDC) (p < 0.005). After aliskiren, the filtration fraction response to hyperglycaemia was abolished, resulting in a lower filtration fraction after aliskiren under clamped hyperglycaemic conditions (p = 0.004), and none of the biomarkers increased in response to hyperglycaemia. Aliskiren therapy also reduced levels of urinary eotaxin, FGF2, IFN-α2, IL-2 and MDC during clamped hyperglycaemia (p < 0.005). The increased urinary excretion of inflammatory cytokines/chemokines in response to acute hyperglycaemia is blunted by RAAS blockade in humans with uncomplicated type 1 diabetes mellitus.

  8. Whole Blood Cytokine Response to Local Traffic-Related Particulate Matter in Peruvian Children With and Without Asthma

    PubMed Central

    Negherbon, Jesse P.; Romero, Karina; Williams, D’Ann L.; Guerrero-Preston, Rafael E.; Hartung, Thomas; Scott, Alan L.; Breysse, Patrick N.; Checkley, William; Hansel, Nadia N.

    2017-01-01

    This study sought to investigate if acute phase immune responses of whole blood from Peruvian children with controlled and uncontrolled asthma differed from children without asthma, following exposure to traffic-related particulate matter (TRPM). TRPM, including particulate matter from diesel combustion, has been shown to stimulate acute airway inflammation in individuals with and without asthma. For this study, a whole blood assay (WBA) was used to test peripheral whole blood samples from 27 children with asthma, and 12 without asthma. Participant blood samples were stimulated, ex vivo, for 24-h with an aqueous extract of TRPM that was collected near study area highways in Lima, Peru. All participant blood samples were tested against the same TRPM extract, in addition to purified bacterial endotoxin and pyrogen-free water, which served as positive and negative WBA controls, respectively. The innate and adaptive cytokine responses were evaluated in cell-free supernatants of the whole blood incubations. Comparatively similar levels were recorded for nine out of the 10 cytokines measured [e.g., – Interleukin (IL)-1β, IL-6, IL-10], regardless of study participant asthma status. However, IL-8 levels in TRPM-stimulated blood from children with uncontrolled asthma were diminished, compared to subjects without asthma (633 pg/ml vs. 1,023 pg/ml, respectively; p < 0.01); IL-8 responses for subjects with controlled asthma were also reduced, but to a lesser degree (799 pg/ml vs. 1,023 pg/ml, respectively; p = 0.10). These relationships were present before, and after, adjusting for age, sex, obesity/overweight status, C-reactive protein levels, and residential proximity to the study area’s major roadway. For tests conducted with endotoxin, there were no discernible differences in cytokine response between groups, for all cytokines measured. The WBA testing conducted for this study highlighted the capacity of the TRPM extract to potently elicit the release of IL-8 from the human whole blood system. Although the small sample size of the study limits the capacity to draw definitive conclusions, the IL-8 responses suggest that that asthma control may be associated with the regulation of a key mediator in neutrophil chemotaxis, at a systemic level, following exposure to PM derived from traffic-related sources. PMID:28424616

  9. [The liver and the immune system].

    PubMed

    Jakab, Lajos

    2015-07-26

    The liver is known to be the metabolic centre of the organism and is under the control of the central nervous system. It has a peculiar tissue structure and its anatomic localisation defines it as part of the immune system having an individual role in the defence of the organism. The determinant of its particular tissue build-up is the sinusoid system. In addition to hepatocytes, one cell row "endothelium", stellate cells close to the external surface, Kupffer cells tightly to its inner surface, as well as dendritic cells and other cell types (T and B lymphocytes, natural killer and natural killer T-cells, mast cells, granulocytes) are present. The multitudes and variety of cells make it possible to carry out the tasks according to the assignment of the organism. The liver is a member of the immune system having immune cells largely in an activated state. Its principal tasks are the assurance of the peripheral immune tolerance of the organism with the help of the haemopoetic cells and transforming growth factor-β. The liver takes part in the determination of the manner of the non-specific immune response of the organism. In addition to acute phase reaction of the organism, the liver has a role in the adaptive/specific immune response. These functions include retardation of the T and B lymphocytes and the defence against harmful pathogens. With the collaboration of transforming growth factor-β, immunoglobulins and their subclasses are inhibited just as the response of the T lymphocytes. The only exception is the undisturbed immunoglobulin A production. Particularly important is the intensive participation of the liver in the acute phase reaction of the organism, which is organised and guided by the coordinated functions of the cortico-hypothalamo-hypophysis-adrenal axis. Beside cellular elements, hormones, adhesion molecules, chemokines and cytokines are also involved in the cooperation with the organs. Acute phase reactants play a central role in these processes. Until recently the α2-macroglobulin was not considered as an acute reactant of the organism, but it is now functionally included in the acute phase reaction presumably due to its close connection with the transforming growth factor-β. Transforming growth factor-β has extraordinarily important roles in all phases of inflammation and in the specific immune response. The peripheral immune tolerance of the organism involves tightly coupled regulation of proliferation, differentiation and survival of lymphocytes.

  10. Class II obese and healthy pregnant controls exhibit indistinguishable pro‐ and anti‐inflammatory immune responses to Caesarian section

    PubMed Central

    Graham, Caroline; Thorleifson, Mullein; Stefura, William P.; Funk, Duane J.

    2017-01-01

    Abstract Introduction Obesity during pregnancy is associated with meta‐inflammation and an increased likelihood of clinical complications. Surgery results in intense, acute inflammatory responses in any individual. Because obese individuals exhibit constitutive inflammatory responses and high rates of Caesarian section, it is important to understand the impact of surgery in such populations. Whether more pronounced pro‐inflammatory cytokine responses and/or counterbalancing changes in anti‐inflammatory immune modulators occurs is unknown. Here we investigated innate immune capacity in vivo and in vitro in non‐obese, term‐pregnant controls versus healthy, term‐pregnant obese women (Class II, BMI 35–40). Methods Systemic in vivo induction of eleven pro‐ and anti‐inflammatory biomarkers and acute phase proteins was assessed in plasma immediately prior to and again following Caesarian section surgery. Independently, innate immune capacity was examined by stimulating freshly isolated PBMC in vitro with a panel of defined PRR‐ligands for TLR4, TLR8, TLR3, and RLR 24 h post‐surgery. Results The kinetics and magnitude of the in vivo inflammatory responses examined were indistinguishable in the two populations across the broad range of biomarkers examined, despite the fact that obese women had higher baseline inflammatory status. Deliberate in vitro stimulation with a range of PRR ligands also elicited pro‐ and anti‐inflammatory cytokine responses that were indistinguishable between control and obese mothers. Conclusions Acute in vivo innate immune responses to C‐section, as well as subsequent in vitro stimulation with a panel of microbial mimics, are not detectably altered in Class II obese women. The data argue that while Class II obesity is undesirable, it has minimal impact on the in vivo inflammatory response, or innate immunomodulatory capacity, in women selecting C‐section. PMID:28544689

  11. Cytokine response signatures in disease progression and development of severe clinical outcomes for leptospirosis.

    PubMed

    Reis, Eliana A G; Hagan, José E; Ribeiro, Guilherme S; Teixeira-Carvalho, Andrea; Martins-Filho, Olindo A; Montgomery, Ruth R; Shaw, Albert C; Ko, Albert I; Reis, Mitermayer G

    2013-01-01

    The role of the immune response in influencing leptospirosis clinical outcomes is not yet well understood. We hypothesized that acute-phase serum cytokine responses may play a role in disease progression, risk for death, and severe pulmonary hemorrhage syndrome (SPHS). We performed a case-control study design to compare cytokine profiles in patients with mild and severe forms of leptospirosis. Among patients hospitalized with severe disease, we compared those with fatal and nonfatal outcomes. During active outpatient and hospital-based surveillance we prospectively enrolled 172 patients, 23 with mild disease (outpatient) and 149 with severe leptospirosis (hospitalized). Circulating concentrations of pro- and anti-inflammatory cytokines at the time of patient presentation were measured using a multiplex bead array assay. Concentrations of IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-17A, and TNF-α were significantly higher (P<0.05) in severe disease compared to mild disease. Among severe patients, levels of IL-6 (P<0.001), IL-8 (P = 0.0049) and IL-10 (P<0.001), were higher in fatal compared to non-fatal cases. High levels of IL-6 and IL-10 were independently associated (P<0.05) with case fatality after adjustment for age and days of symptoms. IL-6 levels were higher (P = 0.0519) among fatal cases who developed SPHS than among who did not. This study shows that severe cases of leptospirosis are differentiated from mild disease by a "cytokine storm" process, and that IL-6 and IL-10 may play an immunopathogenic role in the development of life-threatening outcomes in human leptospirosis.

  12. Cytokine and chemokine expression in the skin from patients with maculopapular exanthema to drugs.

    PubMed

    Fernandez, T D; Mayorga, C; Torres, M J; Cornejo-Garcia, J A; López, S; Chaves, P; Rondon, C; Blanca, M

    2008-06-01

    Maculopapular exanthema (MPE) is the most frequent clinical manifestation of nonimmediate allergic reactions to drugs and T helper 1 (Th1) cytokines and CD4(+) T cells have been shown to play an important role in its pathogenesis. We assessed the role of cytokines and chemokines and their receptors in the pathogenesis of MPE. We evaluated skin biopsies and peripheral CD4(+) and CD8(+) T cells from 27 patients during the acute phase of the reaction and 26 exposed controls. Semiquantitative real-time PCR was performed to determine the expression of cytokines and chemokines and their receptors and immunohistochemistry was used to determine the same chemokines and their receptor proteins in skin. There was a high expression of the Th1 cytokines interferon-gamma (P = 0.006) and tumor necrosis factor-alpha (P = 0.022) in skin and CD4(+) T cells (P = 0.007 and P = 0.005, respectively); and of the Th1 chemokines CXCL9 (P = 0.005) and CXCL10 (P = 0.028) in the skin, while their receptor CXCR3 was increased in skin (P = 0.006) and CD4(+) T cells (P = 0.03). Homing chemokine receptors were also increased: CCR6 in skin (P = 0.026) and CD4(+) T cells (P = 0.016), and CCR10 only in CD4(+) T cells (P = 0.016), as well as their ligands, CCL20 and CCL27, in skin alone. Immunohistochemistry confirmed these results. These data show significant differences in the expression of chemokines and chemokine receptors, related with a Th1 profile, in both skin biopsies and peripheral CD4(+) T cells in patients with drug-induced MPE.

  13. Lipopolysaccharide stimulates HepG2 human hepatoma cells in the presence of lipopolysaccharide-binding protein via CD14.

    PubMed

    Nanbo, A; Nishimura, H; Muta, T; Nagasawa, S

    1999-02-01

    Lipopolysaccharide (LPS)-binding protein (LBP), an opsonin for activation of macrophages by bacterial LPS, is synthesized in hepatocytes and is known to be an acute phase protein. Recently, cytokine-induced production of LBP was reported to increase 10-fold in hepatocytes isolated from LPS-treated rats, compared with those from normal rats. However, the mechanism by which the LPS treatment enhances the effect of cytokines remains to be clarified. In the present study, we examined whether LPS alone or an LPS/LBP complex directly stimulates the hepatocytes, leading to acceleration of the cytokine-induced LBP production. HepG2 cells (a human hepatoma cell line) were shown to express CD14, a glycosylphosphatidylinositol-anchored LPS receptor, by both RT/PCR and flow cytometric analyses. An LPS/LBP complex was an effective stimulator for LBP and CD14 production in HepG2 cells, but stimulation of the cells with either LPS or LBP alone did not significantly accelerate the production of these proteins. The findings were confirmed by semiquantitative RT/PCR analysis of mRNA levels of LBP and CD14 in HepG2 cells after stimulation with LPS alone and an LPS/LBP complex. In addition, two monoclonal antibodies (mAbs) to CD14 (3C10 and MEM-18) inhibited LPS/LBP-induced cellular responses of HepG2 cells. Furthermore, prestimulation of HepG2 cells with LPS/LBP augmented cytokine-induced production and gene expression of LBP and CD14. All these findings suggest that an LPS/LBP complex, but not free LPS, stimulates HepG2 cells via CD14 leading to increased basal and cytokine-induced LBP and CD14 production.

  14. Circulating microparticles in acute diabetic Charcot foot exhibit a high content of inflammatory cytokines, and support monocyte-to-osteoclast cell induction.

    PubMed

    Pasquier, Jennifer; Thomas, Binitha; Hoarau-Véchot, Jessica; Odeh, Tala; Robay, Amal; Chidiac, Omar; Dargham, Soha R; Turjoman, Rebal; Halama, Anna; Fakhro, Khalid; Menzies, Robert; Jayyousi, Amin; Zirie, Mahmoud; Al Suwaidi, Jassim; Rafii, Arash; Malik, Rayaz A; Talal, Talal; Abi Khalil, Charbel

    2017-11-27

    Circulating microparticles (MPs) are major mediators in cardiovascular complications of type 2 diabetes (T2D); however, their contribution to Charcot foot (CF) disease is not known. Here, we purified and assessed the origin, concentration and content of circulating MPs from 33 individuals: 11 with T2D and acute CF, 11 T2D patients with equivalent neuropathy and 11 non-diabetic controls. First, we demonstrated that there were no differences in the distribution of MPs of endothelial, platelet origin among the 3 groups. However, MPs from leukocytes and monocytes origin were increased in CF patients. Moreover, we demonstrated that monocytes-derived MPs originated more frequently from intermediate and non-classical monocytes in CF patients. Five cytokines (G-CSF, GM-CSF, IL-1-ra, IL-2 and IL-16) were significantly increased in MPs from acute CF patients. Applying ingenuity pathways analysis, we found that those cytokines interacted well and induced the activation of pathways that are involved in osteoclast formation. Further, we treated THP-1 monocytes and monocytes sorted from healthy patients with CF-derived MPs during their differentiation into osteoclasts, which increased their differentiation into multinucleated osteoclast-like cells. Altogether, our study suggests that circulating MPs in CF disease have a high content of inflammatory cytokines and could increase osteoclast differentiation in vitro.

  15. Serum Cytokine Profiles Differentiating Hemorrhagic Fever with Renal Syndrome and Hantavirus Pulmonary Syndrome.

    PubMed

    Khaiboullina, Svetlana F; Levis, Silvana; Morzunov, Sergey P; Martynova, Ekaterina V; Anokhin, Vladimir A; Gusev, Oleg A; St Jeor, Stephen C; Lombardi, Vincent C; Rizvanov, Albert A

    2017-01-01

    Hantavirus infection is an acute zoonosis that clinically manifests in two primary forms, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). HFRS is endemic in Europe and Russia, where the mild form of the disease is prevalent in the Tatarstan region. HPS is endemic in Argentina, as well as other countries of North and South American. HFRS and HPS are usually acquired via the upper respiratory tract by inhalation of virus-contaminated aerosol. Although the pathogenesis of HFRS and HPS remains largely unknown, postmortem tissue studies have identified endothelial cells as the primary target of infection. Importantly, cell damage due to virus replication, or subsequent tissue repair, has not been documented. Since no single factor has been identified that explains the complexity of HFRS or HPS pathogenesis, it has been suggested that a cytokine storm may play a crucial role in the manifestation of both diseases. In order to identify potential serological markers that distinguish HFRS and HPS, serum samples collected during early and late phases of the disease were analyzed for 48 analytes using multiplex magnetic bead-based assays. Overall, serum cytokine profiles associated with HPS revealed a more pro-inflammatory milieu as compared to HFRS. Furthermore, HPS was strictly characterized by the upregulation of cytokine levels, in contrast to HFRS where cases were distinguished by a dichotomy in serum cytokine levels. The severe form of hantavirus zoonosis, HPS, was characterized by the upregulation of a higher number of cytokines than HFRS (40 vs 21). In general, our analysis indicates that, although HPS and HFRS share many characteristic features, there are distinct cytokine profiles for these diseases. These profiles suggest a strong activation of an innate immune and inflammatory responses are associated with HPS, relative to HFRS, as well as a robust activation of Th1-type immune responses. Finally, the results of our analysis suggest that serum cytokines profiles of HPS and HFRS cases are consistent with the presence of extracellular matrix degradation, increased mononuclear leukocyte proliferation, and transendothelial migration.

  16. Lack of pro-inflammatory cytokine mobilization predicts poor prognosis in patients with acute heart failure.

    PubMed

    Vistnes, M; Høiseth, A D; Røsjø, H; Nygård, S; Pettersen, E; Søyseth, V; Hurlen, P; Christensen, G; Omland, T

    2013-03-01

    The aim of this study was to gain insight in the inflammatory response in acute heart failure (AHF) by assessing (1) plasma cytokine profiles and (2) prognostic value of circulating cytokines in AHF patients. Plasma levels of 26 cytokines were quantified by multiplex protein arrays in 36 patients with congestive AHF, characterized by echocardiographic, radiologic, and clinical examinations on admission, during hospitalization and at discharge. Recurrent AHF leading to death or readmission constituted the combined end point, and all patients were followed for 120 days after discharge. Levels of 15 of the measured cytokines were higher in AHF than in healthy subjects (n=22) on admission. Low levels of MCP-1, IL-1β and a low IL-1β/IL-1ra ratio predicted fatal and non-fatal AHF within 120 days. Patients with low circulating levels of IL-1β had lower left ventricular ejection fraction and higher levels of N-terminal pro-B-type natriuretic peptide, while patients with low levels of MCP-1 had higher E/E' and inferior caval vein diameter, than patients with high levels. Immune activation, reflected in increased cytokine levels, is present in AHF patients. Interestingly, failure to increase secretion of IL-1β and MCP-1 during AHF is associated with poor outcome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. M2 macrophages coexist with a Th1-driven profile in periapical cysts.

    PubMed

    Ribeiro, C M; de Carli, M L; Nonogaki, S; Nogueira, D A; Pereira, A A C; Sperandio, F F; Hanemann, J A C

    2018-02-01

    To evaluate the participation of both Th1 and Th2 responses in periapical cysts by assessing the presence of M2 macrophages, as well as acute IL-1 β, TNF-α and IL-6 cytokines. Twenty-four cases of periapical cysts were selected. Immuno-expressions of IL-1 β, IL-6, TNF-α and CD163 were analysed in the cystic capsules in both superficial and deeper regions. Data were analysed with paired Wilcoxon test and Spearman correlation coefficient (P ≤ 0.05). There was a higher expression of IL-1β, IL-6, TNF-α and M2 macrophages in the superficial region (P < 0.001) of cystic capsules. All acute cytokines had significant positive correlations amongst them regardless of the cystic capsule region. Regarding CD163, positive correlations occurred only with TNF-α (P = 0.007; r = 0.537) and IL-6 (P = 0.018; r = 0.478) in the superficial regions of the cystic capsule. M2 macrophages participated actively in the inflammatory response of periapical cysts and correlated with the expression of certain acute Th1-related cytokines. This illustrates the coexistence of an acute and chronic Th2-driven immune response in these lesions. Although M2 macrophages favour the healing process, their presence is not sufficient for periapical cyst regression, once an acute active response has occurred due to an infectious stimuli. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  18. Transcript profiling of the immunological interactions between Actinobacillus pleuropneumoniae serotype 7 and the host by dual RNA-seq.

    PubMed

    Li, Ping; Xu, Zhiwen; Sun, Xiangang; Yin, Yue; Fan, Yi; Zhao, Jun; Mao, Xiyu; Huang, Jianbo; Yang, Fan; Zhu, Ling

    2017-09-12

    The complexity of the pathogenic mechanism underlying the host immune response to Actinobacillus pleuropneumonia (App) makes the use of preventive measures difficult, and a more global view of the host-pathogen interactions and new insights into this process are urgently needed to reveal the pathogenic and immune mechanisms underlying App infection. Here, we infected specific pathogen-free Mus musculus with App serotype 7 by intranasal inoculation to construct an acute hemorrhagic pneumonia infection model and isolated the infected lungs for analysis of the interactions by dual RNA-seq. Four cDNA libraries were constructed, and 2428 differentially expressed genes (DEGs) of the host and 333 DEGs of App were detected. The host DEGs were mainly enriched in inflammatory signaling pathways, such as the TLR, NLR, RLR, BCR and TCR signaling pathways, resulting in large-scale cytokine up-regulation and thereby yielding a cytokine cascade for anti-infection and lung damage. The majority of the up-regulated cytokines are involved in the IL-23/IL-17 cytokine-regulated network, which is crucial for host defense against bacterial infection. The DEGs of App were mainly related to the transport and metabolism of energy and materials. Most of these genes are metabolic genes involved in anaerobic metabolism and important for challenging the host and adapting to the anaerobic stress conditions observed in acute hemorrhagic pneumonia. Some of these genes, such as adhE, dmsA, and aspA, might be potential virulence genes. In addition, the up-regulation of genes associated with peptidoglycan and urease synthesis and the restriction of major virulence genes might be immune evasion strategies of App. The regulation of metabolic genes and major virulence genes indicate that the dominant antigens might differ during the infection process and that vaccines based on these antigens might allow establishment of a precise and targeted immune response during the early phase of infection. Through an analysis of transcriptional data by dual RNA-seq, our study presents a novel global view of the interactions of App with its host and provides a basis for further study.

  19. [Drug trials in humans. Risks in the light of the London catastrophe].

    PubMed

    Otte, A

    2007-06-01

    London's first-in-man drug trial with the monoclonal anti-CD28 antibody TGN1412 used for the treatment of oncological and autoimmune diseases resulted in a disaster with life-threatening adverse events in the volunteers triggered by an unexpected cytokine storm. Potential mistakes and consequences from this trial are highlighted in the general context of drug development and its risks. Risks in drug testing are not only found for high risk substances, such as TGN1412, or in the critical first-in-man phase, but can sometimes be detected only in later phases of the clinical testing, such as the phase 3 submission studies, or even after market authorization, as for example was the case in the cyclooxygenase-2-inhibitor rofecoxib (Vioxx) used for the treatment of rheumatic diseases and acute pain. Regulatory requirements to minimize risks in drug trials, however, have improved substantially over the last decades. Moreover, in light of the London incident these are being continuously modified with great diligence.

  20. Expression Profile of Cytokines and Enzymes mRNA in Blood Leukocytes of Dogs with Leptospirosis and Its Associated Pulmonary Hemorrhage Syndrome.

    PubMed

    Maissen-Villiger, Carla A; Schweighauser, Ariane; van Dorland, H Anette; Morel, Claudine; Bruckmaier, Rupert M; Zurbriggen, Andreas; Francey, Thierry

    2016-01-01

    Dogs with leptospirosis show similar organ manifestations and disease course as human patients, including acute kidney injury and pulmonary hemorrhage, making this naturally-occurring infection a good animal model for human leptospirosis. Expression patterns of cytokines and enzymes have been correlated with disease manifestations and clinical outcome in humans and animals. The aim of this study was to describe mRNA expression of pro- and anti-inflammatory mediators in canine leptospirosis and to compare it with other renal diseases to identify patterns characterizing the disease and especially its pulmonary form. The mRNA abundance of cytokines (IL-1α, IL-1β, IL-8, IL-10, TNF-α, TGF-β) and enzymes (5-LO, iNOS) was measured prospectively in blood leukocytes from 34 dogs with severe leptospirosis and acute kidney injury, including 22 dogs with leptospirosis-associated pulmonary hemorrhages. Dogs with leptospirosis were compared to 14 dogs with acute kidney injury of other origin than leptospirosis, 8 dogs with chronic kidney disease, and 10 healthy control dogs. Canine leptospirosis was characterized by high 5-LO and low TNF-α expression compared to other causes of acute kidney injury, although the decreased TNF-α expression was also seen in chronic kidney disease. Leptospirosis-associated pulmonary hemorrhage was not characterized by a specific pattern, with only mild changes noted, including increased IL-10 and decreased 5-LO expression on some days in affected dogs. Fatal outcome from pulmonary hemorrhages was associated with low TNF-α, high IL-1β, and high iNOS expression, a pattern possibly expressed also in dogs with other forms of acute kidney injury. The patterns of cytokine and enzyme expression observed in the present study indicate a complex pro- and anti-inflammatory response to the infection with leptospires. The recognition of these signatures may be of diagnostic and prognostic relevance for affected individuals and they may indicate options for newer therapies targeting the identified pathways.

  1. Identification of a single nucleotide polymorphism indicative of high risk in acute myocardial infarction

    PubMed Central

    Shalia, Kavita; Saranath, Dhananjaya; Rayar, Jaipreet; Shah, Vinod K.; Mashru, Manoj R.; Soneji, Surendra L.

    2017-01-01

    Background & objectives: Acute myocardial infarction (AMI) is a major health concern in India. The aim of the study was to identify single nucleotide polymorphisms (SNPs) associated with AMI in patients using dedicated chip and validating the identified SNPs on custom-designed chips using high-throughput microarray analysis. Methods: In pilot phase, 48 AMI patients and 48 healthy controls were screened for SNPs using human CVD55K BeadChip with 48,472 SNP probes on Illumina high-throughput microarray platform. The identified SNPs were validated by genotyping additional 160 patients and 179 controls using custom-made Illumina VeraCode GoldenGate Genotyping Assay. Analysis was carried out using PLINK software. Results: From the pilot phase, 98 SNPs present on 94 genes were identified with increased risk of AMI (odds ratio of 1.84-8.85, P=0.04861-0.003337). Five of these SNPs demonstrated association with AMI in the validation phase (P<0.05). Among these, one SNP rs9978223 on interferon gamma receptor 2 [IFNGR2, interferon (IFN)-gamma transducer 1] gene showed a significant association (P=0.00021) with AMI below Bonferroni corrected P value (P=0.00061). IFNGR2 is the second subunit of the receptor for IFN-gamma, an important cytokine in inflammatory reactions. Interpretation & conclusions: The study identified an SNP rs9978223 on IFNGR2 gene, associated with increased risk in AMI patient from India. PMID:29434065

  2. Acute over-the-counter pharmacological intervention does not adversely affect behavioral outcome following diffuse traumatic brain injury in the mouse.

    PubMed

    Harrison, Jordan L; Rowe, Rachel K; O'Hara, Bruce F; Adelson, P David; Lifshitz, Jonathan

    2014-09-01

    Following mild traumatic brain injury (TBI), patients may self-treat symptoms of concussion, including post-traumatic headache, taking over-the-counter (OTC) analgesics. Administering one dose of OTC analgesics immediately following experimental brain injury mimics the at-home treated population of concussed patients and may accelerate the understanding of the relationship between brain injury and OTC pharmacological intervention. In the current study, we investigate the effect of acute administration of OTC analgesics on neurological function and cortical cytokine levels after experimental diffuse TBI in the mouse. Adult, male C57BL/6 mice were injured using a midline fluid percussion (mFPI) injury model of concussion (6-10 min righting reflex time for brain-injured mice). Experimental groups included mFPI paired with either ibuprofen (60 mg/kg, i.p.; n = 16), acetaminophen (40 mg/kg, i.p.; n = 9), or vehicle (15% ethanol (v/v) in 0.9% saline; n = 13) and sham injury paired OTC medicine or vehicle (n = 7-10 per group). At 24 h after injury, functional outcome was assessed using the rotarod task and a modified neurological severity score. Following behavior assessment, cortical cytokine levels were measured by multiplex ELISA at 24 h post-injury. To evaluate efficacy on acute inflammation, cortical cytokine levels were measured also at 6 h post-injury. In the diffuse brain-injured mouse, immediate pharmacological intervention did not attenuate or exacerbate TBI-induced functional deficits. Cortical cytokine levels were affected by injury, time, or their interaction. However, levels were not affected by treatment at 6 or 24 h post-injury. These data indicate that acute administration of OTC analgesics did not exacerbate or attenuate brain-injury deficits which may inform clinical recommendations for the at-home treated mildly concussed patient.

  3. Phase I clinical trial of costimulated, IL-4 polarized donor CD4+ T cells as augmentation of allogeneic hematopoietic cell transplantation.

    PubMed

    Fowler, Daniel H; Odom, Jeanne; Steinberg, Seth M; Chow, Catherine K; Foley, Jason; Kogan, Yelena; Hou, Jeannie; Gea-Banacloche, Juan; Sportes, Claude; Pavletic, Steven; Leitman, Susan; Read, Elizabeth J; Carter, Charles; Kolstad, Arne; Fox, Rebecca; Beatty, Gregory L; Vonderheide, Robert H; Levine, Bruce L; June, Carl H; Gress, Ronald E; Bishop, Michael R

    2006-11-01

    The primary objective of this clinical trial was to evaluate the safety, feasibility, and biologic effects of administering costimulated, interleukin (IL)-4 polarized donor CD4(+) T cells in the setting of HLA-matched sibling, T cell-replete allogeneic hematopoietic cell transplantation (HCT). Forty-seven subjects with hematologic malignancy received granulocyte colony-stimulating factor-mobilized allogeneic hematopoietic cell transplants and cyclosporine graft-versus-host disease (GVHD) prophylaxis after reduced intensity conditioning. Initial subjects received no additional cells (n = 19); subsequent subjects received additional donor CD4(+) T cells generated ex vivo by CD3/CD28 costimulation in medium containing IL-4 and IL-2 (administered day 1 after HCT at 5, 25, or 125 x 10(6) cells/kg). Studies after HCT included measurement of monocyte IL-1alpha and tumor necrosis factor alpha, detection of T cells with antitumor specificity, and characterization of T cell cytokine phenotype. The culture method generated donor CD4(+) T cells that secreted increased T helper 2 (Th2) cytokines and decreased T helper 1 (Th1) cytokines. Such Th2-like cells were administered without infusional or dose-limiting toxicity. The Th2 cohort had accelerated lymphocyte reconstitution; both cohorts had rapid hematopoietic recovery and alloengraftment. Acute GVHD and overall survival were similar in the Th2 and non-Th2 cohorts. Th2 cell recipients tended to have increased monocyte IL-1alpha and had increased tumor necrosis factor alpha secretion. CD8(+) T cells with antitumor specificity were observed in Th2 and non-Th2 cohorts. Post-transplantation T cells from Th2 cell recipients secreted IL-4 and IL-10 (Th2 cytokines) and IL-2 and interferon gamma (Th1 cytokines). Allograft augmentation with costimulated, IL-4-polarized donor CD4(+) T cells resulted in activated Th1, Th2, and inflammatory cytokine pathways without an apparent increase in GVHD.

  4. Sepsis-induced morbidity in mice: effects on body temperature, body weight, cage activity, social behavior and cytokines in brain

    PubMed Central

    Granger, Jill I.; Ratti, Pietro-Luca; Datta, Subhash C.; Raymond, Richard M.; Opp, Mark R.

    2012-01-01

    Infection negatively impacts mental health, as evidenced by the lethargy, malaise, and cognitive deficits experienced during illness. These changes in central nervous system processes, collectively termed sickness behavior, have been shown in animal models to be mediated primarily by the actions of cytokines in brain. Most studies of sickness behavior to date have used bolus injection of bacterial lipopolysaccharide (LPS) or selective administration of the proinflammatory cytokines interleukin-1β (IL-1β) or IL-6 as the immune challenge. Such models, although useful for determining mechanisms responsible for acute changes in physiology and behavior, do not adequately represent the more complex effects on central nervous system (CNS) processes of a true infection with replicating pathogens. In the present study, we used the cecal ligation and puncture (CLP) model to quantify sepsis-induced alterations in several facets of physiology and behavior of mice. We determined the impact of sepsis on cage activity, body temperature, food and water consumption and body weights of mice. Because cytokines are critical mediators of changes in behavior and temperature regulation during immune challenge, we also quantified sepsis-induced alterations in cytokine mRNA and protein in brain during the acute period of sepsis onset. We now report that cage activity and temperature regulation in mice that survive are altered for up to 23 days after sepsis induction. Food and water consumption are transiently reduced, and body weight is lost during sepsis. Furthermore, sepsis decreases social interactions for 24 – 48 hours. Finally, mRNA and protein for IL-1β, IL-6, and tumor necrosis factor-α (TNFα) are upregulated in the hypothalamus, hippocampus, and brain stem during sepsis onset, from 6–72 hour post sepsis induction. Collectively, these data indicate that sepsis not only acutely alters physiology, behavior and cytokine profiles in brain, but that some brain functions are impaired for long periods in animals that survive. PMID:23146654

  5. Ethyl pyruvate inhibits hypoxic pulmonary vasoconstriction and attenuates pulmonary artery cytokine expression

    PubMed Central

    Tsai, Ben M.; Lahm, Tim; Morrell, Eric D.; Crisostomo, Paul R.; Markel, Troy; Wang, Meijing; Meldrum, Daniel R.

    2009-01-01

    Hypoxic pulmonary vasoconstriction is a common consequence of acute lung injury and may be mediated by increased local production of proinflammatory cytokines. Ethyl pyruvate is a novel anti-inflammatory agent that has been shown to downregulate proinflammatory genes following hemorrhagic shock; however, its effects on hypoxic pulmonary vasoconstriction are unknown. We hypothesized that ethyl pyruvate would inhibit hypoxic pulmonary vasoconstriction and downregulate pulmonary artery cytokine expression during hypoxia. To study this, isometric force displacement was measured in isolated rat pulmonary artery rings (n=8/group) during hypoxia (95% N2/5% CO2) with or without prior ethyl pyruvate (10 mM) treatment. Following 60 minutes of hypoxia, pulmonary artery rings were analyzed for TNF-α and IL-1 mRNA via RT-PCR. Ethyl pyruvate inhibited hypoxic pulmonary artery contraction (4.49±2.32% vs. 88.80±5.68% hypoxia alone) and attenuated the hypoxic upregulation of pulmonary artery TNF and IL-1 mRNA (p<0.05). These data indicate that: 1) hypoxia increases pulmonary artery vasoconstriction and proinflammatory cytokine gene expression; 2) ethyl pyruvate decreases hypoxic pulmonary vasoconstriction and downregulates hypoxia-induced pulmonary artery proinflammatory cytokine gene expression; and 3) ethyl pyruvate may represent a novel therapeutic adjunct in the treatment of acute lung injury. PMID:17574585

  6. Smad phosphoisoform signals in acute and chronic liver injury: similarities and differences between epithelial and mesenchymal cells.

    PubMed

    Matsuzaki, Koichi

    2012-01-01

    Hepatocellular carcinoma (HCC) usually arises from hepatic fibrosis caused by chronic inflammation. In chronic liver damage, hepatic stellate cells undergo progressive activation to myofibroblasts (MFB), which are important extracellular-matrix-producing mesenchymal cells. Concomitantly, perturbation of transforming growth factor (TGF)-β signaling by pro-inflammatory cytokines in the epithelial cells of the liver (hepatocytes) promotes both fibrogenesis and carcinogenesis (fibro-carcinogenesis). Insights into fibro-carcinogenic effects on chronically damaged hepatocytes have come from recent detailed analyses of the TGF-β signaling process. Smad proteins, which convey signals from TGF-β receptors to the nucleus, have intermediate linker regions between conserved Mad homology (MH) 1 and MH2 domains. TGF-β type I receptor and pro-inflammatory cytokine-activated kinases differentially phosphorylate Smad2 and Smad3 to create phosphoisoforms phosphorylated at the COOH-terminal, linker, or both (L/C) regions. After acute liver injury, TGF-β-mediated pSmad3C signaling terminates hepatocytic proliferation induced by the pro-inflammatory cytokine-mediated mitogenic pSmad3L pathway; TGF-β and pro-inflammatory cytokines synergistically enhance collagen synthesis by activated hepatic stellate cells via pSmad2L/C and pSmad3L/C pathways. During chronic liver disease progression, pre-neoplastic hepatocytes persistently affected by TGF-β together with pro-inflammatory cytokines come to exhibit the same carcinogenic (mitogenic) pSmad3L and fibrogenic pSmad2L/C signaling as do MFB, thereby accelerating liver fibrosis while increasing risk of HCC. This review of Smad phosphoisoform-mediated signals examines similarities and differences between epithelial and mesenchymal cells in acute and chronic liver injuries and considers Smad linker phosphorylation as a potential target for the chemoprevention of fibro-carcinogenesis.

  7. The acute neutrophil response mediated by S100 alarmins during vaginal Candida infections is independent of the Th17-pathway.

    PubMed

    Yano, Junko; Kolls, Jay K; Happel, Kyle I; Wormley, Floyd; Wozniak, Karen L; Fidel, Paul L

    2012-01-01

    Vulvovaginal candidiasis (VVC) caused by Candida albicans affects a significant number of women during their reproductive ages. Clinical observations revealed that a robust vaginal polymorphonuclear neutrophil (PMN) migration occurs in susceptible women, promoting pathological inflammation without affecting fungal burden. Evidence to date in the mouse model suggests that a similar acute PMN migration into the vagina is mediated by chemotactic S100A8 and S100A9 alarmins produced by vaginal epithelial cells in response to Candida. Based on the putative role for the Th17 response in mucosal candidiasis as well as S100 alarmin induction, this study aimed to determine whether the Th17 pathway plays a role in the S100 alarmin-mediated acute inflammation during VVC using the experimental mouse model. For this, IL-23p19(-/-), IL-17RA(-/-) and IL-22(-/-) mice were intravaginally inoculated with Candida, and vaginal lavage fluids were evaluated for fungal burden, PMN infiltration, the presence of S100 alarmins and inflammatory cytokines and chemokines. Compared to wild-type mice, the cytokine-deficient mice showed comparative levels of vaginal fungal burden and PMN infiltration following inoculation. Likewise, inoculated mice of all strains with substantial PMN infiltration exhibited elevated levels of vaginal S100 alarmins in both vaginal epithelia and secretions in the vaginal lumen. Finally, cytokine analyses of vaginal lavage fluid from inoculated mice revealed equivalent expression profiles irrespective of the Th17 cytokine status or PMN response. These data suggest that the vaginal S100 alarmin response to Candida does not require the cells or cytokines of the Th17 lineage, and therefore, the immunopathogenic inflammatory response during VVC occurs independently of the Th17-pathway.

  8. The Acute Neutrophil Response Mediated by S100 Alarmins during Vaginal Candida Infections Is Independent of the Th17-Pathway

    PubMed Central

    Yano, Junko; Kolls, Jay K.; Happel, Kyle I.; Wormley, Floyd; Wozniak, Karen L.; Fidel, Paul L.

    2012-01-01

    Vulvovaginal candidiasis (VVC) caused by Candida albicans affects a significant number of women during their reproductive ages. Clinical observations revealed that a robust vaginal polymorphonuclear neutrophil (PMN) migration occurs in susceptible women, promoting pathological inflammation without affecting fungal burden. Evidence to date in the mouse model suggests that a similar acute PMN migration into the vagina is mediated by chemotactic S100A8 and S100A9 alarmins produced by vaginal epithelial cells in response to Candida. Based on the putative role for the Th17 response in mucosal candidiasis as well as S100 alarmin induction, this study aimed to determine whether the Th17 pathway plays a role in the S100 alarmin-mediated acute inflammation during VVC using the experimental mouse model. For this, IL-23p19−/−, IL-17RA−/− and IL-22−/− mice were intravaginally inoculated with Candida, and vaginal lavage fluids were evaluated for fungal burden, PMN infiltration, the presence of S100 alarmins and inflammatory cytokines and chemokines. Compared to wild-type mice, the cytokine-deficient mice showed comparative levels of vaginal fungal burden and PMN infiltration following inoculation. Likewise, inoculated mice of all strains with substantial PMN infiltration exhibited elevated levels of vaginal S100 alarmins in both vaginal epithelia and secretions in the vaginal lumen. Finally, cytokine analyses of vaginal lavage fluid from inoculated mice revealed equivalent expression profiles irrespective of the Th17 cytokine status or PMN response. These data suggest that the vaginal S100 alarmin response to Candida does not require the cells or cytokines of the Th17 lineage, and therefore, the immunopathogenic inflammatory response during VVC occurs independently of the Th17-pathway. PMID:23050010

  9. A combination of cytokines EGF and CNTF protects the functional beta cell mass in mice with short-term hyperglycaemia.

    PubMed

    Lemper, Marie; De Groef, Sofie; Stangé, Geert; Baeyens, Luc; Heimberg, Harry

    2016-09-01

    When the beta cell mass or function declines beyond a critical point, hyperglycaemia arises. Little is known about the potential pathways involved in beta cell rescue. As two cytokines, epidermal growth factor (EGF) and ciliary neurotrophic factor (CNTF), restored a functional beta cell mass in mice with long-term hyperglycaemia by reprogramming acinar cells that transiently expressed neurogenin 3 (NGN3), the current study assesses the effect of these cytokines on the functional beta cell mass after an acute chemical toxic insult. Glycaemia and insulin levels, pro-endocrine gene expression and beta cell origin, as well as the role of signal transducer and activator of transcription 3 (STAT3) signalling, were assessed in EGF+CNTF-treated mice following acute hyperglycaemia. The mice were hyperglycaemic 1 day following i.v. injection of the beta cell toxin alloxan, when the two cytokines were applied. One week later, 68.6 ± 4.6% of the mice had responded to the cytokine treatment and increased their insulin(+) cell number to 30% that of normoglycaemic control mice, resulting in restoration of euglycaemia. Although insulin(-) NGN3(+) cells appeared following acute EGF+CNTF treatment, genetic lineage tracing showed that the majority of the insulin(+) cells originated from pre-existing beta cells. Beta cell rescue by EGF+CNTF depends on glycaemia rather than on STAT3-induced NGN3 expression in acinar cells. In adult mice, EGF+CNTF allows the rescue of beta cells in distress when treatment is given shortly after the diabetogenic insult. The rescued beta cells restore a functional beta cell mass able to control normal blood glucose levels. These findings may provide new insights into compensatory pathways activated early after beta cell loss.

  10. Bone Marrow Mononuclear Cell Transplantation Restores Inflammatory Balance of Cytokines after ST Segment Elevation Myocardial Infarction

    PubMed Central

    Alestalo, Kirsi; Miettinen, Johanna A.; Vuolteenaho, Olli; Huikuri, Heikki; Lehenkari, Petri

    2015-01-01

    Background Acute myocardial infarction (AMI) launches an inflammatory response and a repair process to compensate cardiac function. During this process, the balance between proinflammatory and anti-inflammatory cytokines is important for optimal cardiac repair. Stem cell transplantation after AMI improves tissue repair and increases the ventricular ejection fraction. Here, we studied in detail the acute effect of bone marrow mononuclear cell (BMMNC) transplantation on proinflammatory and anti-inflammatory cytokines in patients with ST segment elevation myocardial infarction (STEMI). Methods Patients with STEMI treated with thrombolysis followed by percutaneous coronary intervention (PCI) were randomly assigned to receive either BMMNC or saline as an intracoronary injection. Cardiac function was evaluated by left ventricle angiogram during the PCI and again after 6 months. The concentrations of 27 cytokines were measured from plasma samples up to 4 days after the PCI and the intracoronary injection. Results Twenty-six patients (control group, n = 12; BMMNC group, n = 14) from the previously reported FINCELL study (n = 80) were included to this study. At day 2, the change in the proinflammatory cytokines correlated with the change in the anti-inflammatory cytokines in both groups (Kendall’s tau, control 0.6; BMMNC 0.7). At day 4, the correlation had completely disappeared in the control group but was preserved in the BMMNC group (Kendall’s tau, control 0.3; BMMNC 0.7). Conclusions BMMNC transplantation is associated with preserved balance between pro- and anti-inflammatory cytokines after STEMI in PCI-treated patients. This may partly explain the favorable effect of stem cell transplantation after AMI. PMID:26690350

  11. Depletion of Neutrophils Exacerbates the Early Inflammatory Immune Response in Lungs of Mice Infected with Paracoccidioides brasiliensis

    PubMed Central

    Lopera, Damaris; Urán-Jiménez, Martha Eugenia

    2016-01-01

    Neutrophils predominate during the acute phase of the Paracoccidioides brasiliensis infection. Herein, we determined the role of the neutrophil during the early stages of experimental pulmonary paracoccidioidomycosis using a monoclonal antibody (mAb) specific for neutrophils. Male BALB/c mice were inoculated intranasally with 1.5 × 106 or 2 × 106 P. brasiliensis yeast cells. The mAb was administered 24 h before infection, followed by doses every 48 h until mice were sacrificed. Survival time was evaluated and mice were sacrificed at 48 h and 96 h after inoculation to assess cellularity, fungal load, cytokine/chemokine levels, and histopathological analysis. Neutrophils from mAb-treated mice were efficiently depleted (99.04%). Eighty percent of the mice treated with the mAb and infected with 1.5 × 106 yeast cells died during the first two weeks after infection. When mice were treated and infected with 2 × 106 yeast cells, 100% of them succumbed by the first week after infection. During the acute inflammatory response significant increases in numbers of eosinophils, fungal load and levels of proinflammatory cytokines/chemokines were observed in the mAb-treated mice. We also confirmed that neutrophils are an important source of IFN-γ and IL-17. These results indicate that neutrophils are essential for protection as well as being important for regulating the early inflammatory immune response in experimental pulmonary paracoccidioidomycosis. PMID:27642235

  12. Lnk adaptor suppresses radiation resistance and radiation-induced B-cell malignancies by inhibiting IL-11 signaling

    PubMed Central

    Louria-Hayon, Igal; Frelin, Catherine; Ruston, Julie; Gish, Gerald; Jin, Jing; Kofler, Michael M.; Lambert, Jean-Philippe; Adissu, Hibret A.; Milyavsky, Michael; Herrington, Robert; Minden, Mark D.; Dick, John E.; Gingras, Anne-Claude; Iscove, Norman N.; Pawson, Tony

    2013-01-01

    The Lnk (Sh2b3) adaptor protein dampens the response of hematopoietic stem cells and progenitors (HSPCs) to a variety of cytokines by inhibiting JAK2 signaling. As a consequence, Lnk−/− mice develop hematopoietic hyperplasia, which progresses to a phenotype resembling the nonacute phase of myeloproliferative neoplasm. In addition, Lnk mutations have been identified in human myeloproliferative neoplasms and acute leukemia. We find that Lnk suppresses the development of radiation-induced acute B-cell malignancies in mice. Lnk-deficient HSPCs recover more effectively from irradiation than their wild-type counterparts, and this resistance of Lnk−/− HSPCs to radiation underlies the subsequent emergence of leukemia. A search for the mechanism responsible for radiation resistance identified the cytokine IL-11 as being critical for the ability of Lnk−/− HSPCs to recover from irradiation and subsequently become leukemic. In IL-11 signaling, wild-type Lnk suppresses tyrosine phosphorylation of the Src homology region 2 domain-containing phosphatase-2/protein tyrosine phosphatase nonreceptor type 11 and its association with the growth factor receptor-bound protein 2, as well as activation of the Erk MAP kinase pathway. Indeed, Src homology region 2 domain-containing phosphatase-2 has a binding motif for the Lnk Src Homology 2 domain that is phosphorylated in response to IL-11 stimulation. IL-11 therefore drives a pathway that enhances HSPC radioresistance and radiation-induced B-cell malignancies, but is normally attenuated by the inhibitory adaptor Lnk. PMID:24297922

  13. Postpartum Circulating Markers of Inflammation and the Systemic Acute-Phase Response After Early-Onset Preeclampsia.

    PubMed

    van Rijn, Bas B; Bruinse, Hein W; Veerbeek, Jan H; Post Uiterweer, Emiel D; Koenen, Steven V; van der Bom, Johanna G; Rijkers, Ger T; Roest, Mark; Franx, Arie

    2016-02-01

    Preeclampsia is an inflammatory-mediated hypertensive disorder of pregnancy and seems to be an early indicator of increased cardiovascular risk, but mechanisms underlying this association are unclear. In this study, we identified levels of circulating inflammatory markers and dynamic changes in the systemic acute-phase response in 44 women with a history of severe early-onset preeclampsia, compared with 29 controls with only uneventful pregnancies at 1.5 to 3.5 years postpartum. Models used were in vivo seasonal influenza vaccination and in vitro whole-blood culture with T-cell stimulants and the toll-like receptor-4 ligand lipopolysaccharide. Outcome measures were C-reactive protein, interleukin-6 (IL-6), IL-18, fibrinogen, myeloperoxidase, and a panel of 13 cytokines representative of the innate and adaptive inflammatory response, in addition to established cardiovascular markers. The in vivo acute-phase response was higher for women with previous preeclampsia than that for controls without such a history, although only significant for C-reactive protein (P=0.04). Preeclampsia was associated with higher IL-1β (P<0.05) and IL-8 (P<0.01) responses to T-cell activation. Hierarchical clustering revealed 2 distinct inflammatory clusters associated with previous preeclampsia: an adaptive response cluster associated with increased C-reactive protein and IL-6 before and after vaccination, increased weight, and low high-density lipoprotein cholesterol; and a toll-like receptor-4 mediated the cluster associated with increased IL-18 before and after vaccination but not associated with other cardiovascular markers. Furthermore, we found interactions between previous preeclampsia, common TLR4 gene variants, and the IL-18 response to vaccination. In conclusion, preeclampsia is associated with alterations in the inflammatory response postpartum mostly independent of other established cardiovascular risk markers. © 2015 American Heart Association, Inc.

  14. The pharmacokinetics of etanercept in patients with end-stage renal disease on haemodialysis.

    PubMed

    Don, Burl R; Spin, Gregory; Nestorov, Ivan; Hutmacher, Matt; Rose, Aubri; Kaysen, George A

    2005-11-01

    Inflammation is strongly associated with malnutrition and cardiovascular risk in patients with chronic renal failure on haemodialysis (HD). The acute-phase inflammatory response, defined by the increased synthesis of positive acute-phase proteins, is stimulated by the production of such cytokines as interleukin 6 (IL-6), interleukin 1 (IL-1) and tumour necrosis factor-alpha TNF-alpha The availability of cytokine antagonists allows testing of the hypothesis that suppression of inflammation reverses the malnutrition-inflammation syndrome in HD patients. Etanercept is a soluble TNF-alpha receptor fusion protein used to suppress inflammation in rheumatoid and psoriatic arthritis. Its metabolism in HD patients is unknown. In a study designed to test the safety and pharmacokinetics of etanercept in HD patients, etanercept was administered to six HD patients with albumin levels above 4.2 g dL(-1) and C-reactive protein levels <5 mg L(-1) (five men, one woman, age range 34-59 years). Etanercept (25 mg) was administered subcutaneously twice weekly immediately after dialysis for 13-16 weeks. Etanercept concentrations were measured pre- and post-dialysis by ELISA. Concentrations were compared graphically to assess whether, firstly, dialysis affects etanercept apparent clearance and, secondly, etanercept kinetics were similar between HD patients and the more extensively studied psoriasis population with normal renal function (PS). The second stage examined model-based parameter predictions of the terminal elimination rate constant (k) for HD patients. Steady-state etanercept levels were comparable between HD and PS patients. Treatment with HD had no effect on etanercept levels. When etanercept was discontinued, the terminal rate constant for HD patients was not significantly different from that observed in PS patients. No adverse effects were noted during the 3-month treatment phase and subsequent 6-month follow-up. Albumin and C-reactive protein levels did not change in these non-inflamed patients during the study period. The pharmacokinetics of etanercept in patients with chronic renal failure on HD are similar to patients with normal renal function. It is, therefore, feasible to administer etanercept to HD patients without adjusting the dose.

  15. Mechanisms Mediating Vibration-induced Chronic Musculoskeletal Pain Analyzed in the Rat

    PubMed Central

    Dina, Olayinka A.; Joseph, Elizabeth K.; Levine, Jon D.; Green, Paul G.

    2009-01-01

    While occupational exposure to vibration is a common cause of acute and chronic musculoskeletal pain, eliminating exposure produces limited symptomatic improvement, and re-exposure precipitates rapid recurrence or exacerbation. To evaluate mechanisms underlying these pain syndromes, we have developed a model in the rat, in which exposure to vibration (60–80 Hz) induces, in skeletal muscle, both acute mechanical hyperalgesia as well as long-term changes characterized by enhanced hyperalgesia to a pro-inflammatory cytokine or re-exposure to vibration. Exposure of a hind limb to vibration produced mechanical hyperalgesia measured in the gastrocnemius muscle of the exposed hind limb, which persisted for ~2 weeks. When nociceptive thresholds had returned to baseline, exposure to a pro-inflammatory cytokine or re-exposure to vibration produced markedly prolonged hyperalgesia. The chronic prolongation of vibration- and cytokine-hyperalgesia induced by vibration was prevented by spinal intrathecal injection of oligodeoxynucleotide (ODN) antisense to protein kinase Cε, a second messenger in nociceptors implicated in the induction and maintenance of chronic pain. Vibration-induced hyperalgesia was inhibited by spinal intrathecal administration of ODN antisense to receptors for the type-1 tumor necrosis factor-α (TNFα) receptor. Finally, in TNFα-pretreated muscle, subsequent vibration-induced hyperalgesia was markedly prolonged. Perspective These studies establish a model of vibration-induced acute and chronic musculoskeletal pain, and identify the proinflammatory cytokine TNFα and the second messenger PKCε as targets against which therapies might be directed to prevent and/or treat this common and very debilitating chronic pain syndrome. PMID:19962353

  16. Mechanisms mediating vibration-induced chronic musculoskeletal pain analyzed in the rat.

    PubMed

    Dina, Olayinka A; Joseph, Elizabeth K; Levine, Jon D; Green, Paul G

    2010-04-01

    While occupational exposure to vibration is a common cause of acute and chronic musculoskeletal pain, eliminating exposure produces limited symptomatic improvement, and reexposure precipitates rapid recurrence or exacerbation. To evaluate mechanisms underlying these pain syndromes, we have developed a model in the rat, in which exposure to vibration (60-80Hz) induces, in skeletal muscle, both acute mechanical hyperalgesia as well as long-term changes characterized by enhanced hyperalgesia to a proinflammatory cytokine or reexposure to vibration. Exposure of a hind limb to vibration-produced mechanical hyperalgesia measured in the gastrocnemius muscle of the exposed hind limb, which persisted for approximately 2 weeks. When nociceptive thresholds had returned to baseline, exposure to a proinflammatory cytokine or reexposure to vibration produced markedly prolonged hyperalgesia. The chronic prolongation of vibration- and cytokine-hyperalgesia was prevented by spinal intrathecal injection of oligodeoxynucleotide (ODN) antisense to protein kinase Cepsilon, a second messenger in nociceptors implicated in the induction and maintenance of chronic pain. Vibration-induced hyperalgesia was inhibited by spinal intrathecal administration of ODN antisense to receptors for the type-1 tumor necrosis factor-alpha (TNFalpha) receptor. Finally, in TNFalpha-pretreated muscle, subsequent vibration-induced hyperalgesia was markedly prolonged. These studies establish a model of vibration-induced acute and chronic musculoskeletal pain, and identify the proinflammatory cytokine TNFalpha and the second messenger protein kinase Cepsilon as targets against which therapies might be directed to prevent and/or treat this common and very debilitating chronic pain syndrome. Copyright 2010 American Pain Society. All rights reserved.

  17. Pathogenesis of vascular leak in dengue virus infection.

    PubMed

    Malavige, Gathsaurie Neelika; Ogg, Graham S

    2017-07-01

    Endothelial dysfunction leading to vascular leak is the hallmark of severe dengue. Vascular leak typically becomes clinically evident 3-6 days after the onset of illness, which is known as the critical phase. This critical phase follows the period of peak viraemia, and lasts for 24-48 hr and usually shows rapid and complete reversal, suggesting that it is likely to occur as a result of inflammatory mediators, rather than infection of the endothelium. Cytokines such as tumour necrosis factor-α, which are known to be elevated in the critical phase of dengue, are likely to be contributing factors. Dengue NS1, a soluble viral protein, has also been shown to disrupt the endothelial glycocalyx and thus contribute to vascular leak, although there appears to be a discordance between the timing of NS1 antigenaemia and occurrence of vascular leak. In addition, many inflammatory lipid mediators are elevated in acute dengue viral infection such as platelet activating factor (PAF) and leukotrienes. Furthermore, many other inflammatory mediators such as vascular endothelial growth factor and angiopoietin-2 have been shown to be elevated in patients with dengue haemorrhagic fever, exerting their action in part by inducing the activity of phospholipases, which have diverse inflammatory effects including generation of PAF. Platelets have also been shown to significantly contribute to endothelial dysfunction by production of interleukin-1β through activation of the NLRP3 inflammasome and also by inducing production of inflammatory cytokines by monocytes. Drugs that block down-stream immunological mediator pathways such as PAF may also be beneficial in the treatment of severe disease. © 2017 John Wiley & Sons Ltd.

  18. Production and structural characterization of amino terminally histidine tagged human oncostatin M in E. coli.

    PubMed

    Sporeno, E; Barbato, G; Graziani, R; Pucci, P; Nitti, G; Paonessa, G

    1994-05-01

    Oncostatin M is a cytokine that acts as a growth regulator on a wide variety of cells and has diverse biological activities including acute phase protein induction, LDL receptor up-regulation and cell-specific gene expression. In order to gather information about the Onc M structure, we established a protocol for large scale production and single step purification of this functional cytokine from bacterial cells. The cDNA of human Onc M was cloned by RT-PCR from total RNA of PMA induced U937 cells. After the addition of a six histidine tag at the N-terminus, the coding region of mature Onc M was cloned in the pT7.7 expression vector. Histidine tagged Onc M was overexpressed in bacterial cells and purified to homogeneity in one step on a metal chelating column. We found that recombinant 6xHis-OncM remains fully active in a growth inhibition assay. Structural characterization of the purified protein was performed by electrospray mass spectrometry, automated Edman degradation and peptide mapping by high-pressure liquid chromatography/fast-atom-bombardment mass spectrometry. Thermal and pH stability dependence of Onc M was assessed by circular dichroism spectroscopy; the helical content is about 50%, in agreement with the four helix bundle fold postulated for cytokines that bind haematopoietic receptors of type I.

  19. The novel guanylhydrazone CPSI-2364 ameliorates ischemia reperfusion injury after experimental small bowel transplantation.

    PubMed

    Websky, Martin von; Fujishiro, Jun; Ohsawa, Ichiro; Praktiknjo, Michael; Wehner, Sven; Abu-Elmagd, Kareem; Kitamura, Koji; Kalff, Joerg C; Schaefer, Nico; Pech, Thomas

    2013-06-15

    Resident macrophages within the tunica muscularis are known to play a crucial role in initiating severe inflammation in response to ischemia reperfusion injury after intestinal transplantation contributing to graft dysmotility, bacterial translocation, and possibly, acute rejection. The p38 mitogen-activated protein kinase is a key player in the signaling of proinflammatory cytokine synthesis in macrophages. Therefore, we investigated the effects of CPSI-2364, an apparent macrophage-specific inhibitor of the p38 mitogen-activated protein kinase pathway in an isogenic intestinal rat transplantation model. Recipient and donor animals were treated perioperatively with CPSI-2364 (1 mg/kg, intravenously) or vehicle solution. Nontransplanted animals served as control. Animals were killed 30 min, 3 hr, and 18 hr after reperfusion. CPSI-2364 treatment resulted in significantly less leukocyte infiltration and significantly improved graft motor function (18 hr). Messenger RNA expression of proinflammatory cytokines (interleukin 6) and kinetic active mediators (NO) was reduced by CPSI-2364 in the early phase after transplantation. Histologic evaluation revealed the protective effects of CPSI-2364 treatment by a significantly less destruction of mucosal integrity at all time points. Perioperative treatment with CPSI-2364 improves graft motor function through impaired inflammatory responses to ischemia reperfusion injury by inhibition of proinflammatory cytokines and suppression of nitric oxide production in macrophages. CPSI-2364 presents as a promising complementary pharmacological approach preventing postoperative dysmotility for clinical intestinal transplantation.

  20. The cachectic mediator proteolysis inducing factor activates NF-kappaB and STAT3 in human Kupffer cells and monocytes.

    PubMed

    Watchorn, Tammy M; Dowidar, Nabil; Dejong, Cornelis H C; Waddell, Ian D; Garden, O James; Ross, James A

    2005-10-01

    A novel proteoglycan, proteolysis inducing factor (PIF), is capable of inducing muscle proteolysis during the process of cancer cachexia, and of inducing an acute phase response in human hepatocytes. We investigated whether PIF is able to activate pro-inflammatory pathways in human Kupffer cells, the resident macrophages of the liver, and in monocytes, resulting in the production of pro-inflammatory cytokines. Normal liver tissue was obtained from patients undergoing partial hepatectomy and Kupffer cells were isolated. Monocytes were isolated from peripheral blood. Following exposure to native PIF, pro-inflammatory cytokine production from Kupffer cells and monocytes was measured and the NF-kappaB and STAT3 transcriptional pathways were investigated using electrophoretic mobility shift assays. We demonstrate that PIF is able to activate the transcription factor NF-kappaB and NF-kappaB-inducible genes in human Kupffer cells, and in monocytes, resulting in the production of pro-inflammatory cytokines such as TNF-alpha, IL-8 and IL-6. PIF enhances the expression of the cell surface molecules LFA-1 and CD14 on macrophages. PIF also activates the transcription factor STAT3 in Kupffer cells. The pro-inflammatory effects of PIF, mediated via NF-kappaB and STAT3, are important in macrophage behaviour and may contribute to the inflammatory pro-cachectic process in the liver.

  1. NLRP3 inflammasome activation is associated with proliferative diabetic retinopathy.

    PubMed

    Loukovaara, Sirpa; Piippo, Niina; Kinnunen, Kati; Hytti, Maria; Kaarniranta, Kai; Kauppinen, Anu

    2017-12-01

    Innate immunity and dysregulation of inflammatory processes play a role in vascular diseases like atherosclerosis or diabetes. Nucleotide-binding domain and Leucine-rich repeat Receptor containing a Pyrin domain 3 (NLRP3) inflammasomes are pro-inflammatory signalling complexes that were found in 2002. In addition to pathogens and other extracellular threats, they can be activated by various endogenous danger signals. The purpose of this study was to find out whether NLRP3 activation occurs in patients with sight-threatening forms of diabetic retinopathy (DR). Inflammasome components NLRP3 and caspase-1, inflammasome-related pro-inflammatory cytokines IL-1β and IL-18, vascular endothelial growth factor (VEGF), acute-phase cytokines TNF-α and IL-6, as well as adaptive immunity-related cytokine interferon gamma (IFN-γ) were measured from the vitreous samples of 15 non-proliferative diabetic retinopathy (non-PDR) and 23 proliferative diabetic retinopathy (PDR) patients using the enzyme-linked immunosorbent assay (ELISA) method. The adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC) was determined using the Western blot technique. Inflammasome components were present in the vitreous of DR patients. Along with VEGF, the levels of caspase-1 and IL-18 were significantly increased, especially in PDR eyes. Interestingly, clearly higher levels of NLRP3 were found in the PDR eyes with tractional retinal detachment (TRD) than from PDR eyes with fully attached retina. There were no significant differences in the amounts of IL-1β, TNF-α, IL-6, and IFN-γ that were detectable in the vitreous of both non-PDR and PDR patients. Our results suggest that NLRP3 inflammasome activation can be associated especially with the pathogenesis of PDR. The lack of differences in TNF-α, IL-6, and IFN-γ also alludes that acute inflammation or T-cell-mediated responses do not dominate in PDR pathogenesis. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  2. Trypanosoma cruzi-induced depressive-like behavior is independent of meningoencephalitis but responsive to parasiticide and TNF-targeted therapeutic interventions.

    PubMed

    Vilar-Pereira, Glaucia; Silva, Andrea Alice da; Pereira, Isabela Resende; Silva, Rafael Rodrigues; Moreira, Otacílio Cruz; de Almeida, Luciana Rodrigues; de Souza, Amanda Santos; Rocha, Monica Santos; Lannes-Vieira, Joseli

    2012-10-01

    Inflammatory cytokines and microbe-borne immunostimulators have emerged as triggers of depressive behavior. Behavioral alterations affect patients chronically infected by the parasite Trypanosoma cruzi. We have previously shown that C3H/He mice present acute phase-restricted meningoencephalitis with persistent central nervous system (CNS) parasitism, whereas C57BL/6 mice are resistant to T. cruzi-induced CNS inflammation. In the present study, we investigated whether depression is a long-term consequence of acute CNS inflammation and a contribution of the parasite strain that infects the host. C3H/He and C57BL/6 mice were infected with the Colombian (type I) and Y (type II) T. cruzi strains. Forced-swim and tail-suspension tests were used to assess depressive-like behavior. Independent of the mouse lineage, the Colombian-infected mice showed significant increases in immobility times during the acute and chronic phases of infection. Therefore, T. cruzi-induced depression is independent of active or prior CNS inflammation. Furthermore, chronic depressive-like behavior was triggered only by the type I Colombian T. cruzi strain. Acute and chronic T. cruzi infection increased indoleamine 2,3-dioxygenase (IDO) expression in the CNS. Treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine abrogated the T. cruzi-induced depressive-like behavior. Moreover, treatment with the parasiticide drug benznidazole abrogated depression. Chronic T. cruzi infection of C57BL/6 mice increased tumor necrosis factor (TNF) expression systemically but not in the CNS. Importantly, TNF modulators (anti-TNF and pentoxifylline) reduced immobility. Therefore, direct or indirect parasite-induced immune dysregulation may contribute to chronic depressive disorder in T. cruzi infection, which opens a new therapeutic pathway to be explored. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Regulation of Spi 2.1 and 2.2 gene expression after turpentine inflammation: discordant responses to IL-6.

    PubMed

    Berry, S A; Bergad, P L; Stolz, A M; Towle, H C; Schwarzenberg, S J

    1999-06-01

    The rat serine protease inhibitor (Spi) 2 gene family includes both positive (Spi 2.2) and negative (Spi 2.1) acute phase reactants, facilitating modeling of regulation of hepatic acute phase response (APR). To examine the role of signal transducer and activation of transcription (STAT) proteins in the divergent regulation of these model genes after induction of APR, we evaluated the proximal promoters of the genes, focusing on STAT binding sites contained in these promoter elements. Induction of APR by turpentine injection includes activation of a STAT3 complex that can bind to a gamma-activated sequence (GAS) in the Spi 2.2 gene promoter, although the Spi 2.2 GAS site can bind STAT1 or STAT5 as well. To create an in vitro model of APR, primary hepatocytes were treated with combinations of cytokines and hormones to mimic the hormonal milieu of the whole animal after APR induction. Incubation of primary rat hepatocytes with interleukin (IL)-6, a critical APR cytokine, leads to activation of STAT3 and a 28-fold induction of a chloramphenicol acetyltransferase reporter construct containing the -319 to +85 region of the Spi 2.2 promoter. This suggests the turpentine-induced increase of Spi 2.2 is mediated primarily by IL-6. In contrast, although turpentine treatment reduces Spi 2.1 mRNA in vivo and IL-6 does not increase Spi 2.1 mRNA in primary rat hepatocytes, treatment of hepatocytes with IL-6 results in a 5. 4-fold induction of Spi 2.1 promoter activity mediated through the paired GAS elements in this promoter. Differential regulation of Spi 2.1 and 2.2 genes is due in part to differences in the promoters of these genes at the GAS sites. IL-6 alone fails to reproduce the pattern of rat Spi 2 gene expression that results from turpentine-induced inflammation.

  4. Platelet-derived growth factor predicts prolonged relapse-free period in multiple sclerosis.

    PubMed

    Stampanoni Bassi, Mario; Iezzi, Ennio; Marfia, Girolama A; Simonelli, Ilaria; Musella, Alessandra; Mandolesi, Georgia; Fresegna, Diego; Pasqualetti, Patrizio; Furlan, Roberto; Finardi, Annamaria; Mataluni, Giorgia; Landi, Doriana; Gilio, Luana; Centonze, Diego; Buttari, Fabio

    2018-04-14

    In the early phases of relapsing-remitting multiple sclerosis (RR-MS), a clear correlation between brain lesion load and clinical disability is often lacking, originating the so-called clinico-radiological paradox. Different factors may contribute to such discrepancy. In particular, synaptic plasticity may reduce the clinical expression of brain damage producing enduring enhancement of synaptic strength largely dependent on neurotrophin-induced protein synthesis. Cytokines released by the immune cells during acute inflammation can alter synaptic transmission and plasticity possibly influencing the clinical course of MS. In addition, immune cells may promote brain repair during the post-acute phases, by secreting different growth factors involved in neuronal and oligodendroglial cell survival. Platelet-derived growth factor (PDGF) is a neurotrophic factor that could be particularly involved in clinical recovery. Indeed, PDGF promotes long-term potentiation of synaptic activity in vitro and in MS and could therefore represent a key factor improving the clinical compensation of new brain lesions. The aim of the present study is to explore whether cerebrospinal fluid (CSF) PDGF concentrations at the time of diagnosis may influence the clinical course of RR-MS. At the time of diagnosis, we measured in 100 consecutive early MS patients the CSF concentrations of PDGF, of the main pro- and anti-inflammatory cytokines, and of reliable markers of neuronal damage. Clinical and radiological parameters of disease activity were prospectively collected during follow-up. CSF PDGF levels were positively correlated with prolonged relapse-free survival. Radiological markers of disease activity, biochemical markers of neuronal damage, and clinical parameters of disease progression were instead not influenced by PDGF concentrations. Higher CSF PDGF levels were associated with an anti-inflammatory milieu within the central nervous system. Our results suggest that PDGF could promote a more prolonged relapse-free period during the course of RR-MS, without influencing inflammation reactivation and inflammation-driven neuronal damage and likely enhancing adaptive plasticity.

  5. Treatment with a neutralising anti-rat interleukin-17 antibody after multiple-trauma reduces lung inflammation.

    PubMed

    Dai, Heling; Xu, Li; Tang, Yu; Liu, Zhi; Sun, Tiansheng

    2015-08-01

    It has been well recognised that a deficit of numbers and function of CD4(+)CD25(+)Foxp3(+) cells (Treg) is attributed to the development of autoimmune diseases and inflammatory diseases; additionally, IL-17-producing cells (Th17) have a pro-inflammatory role. The balance between Th17 and Treg may be essential for maintaining immune homeostasis and has long been thought as one of the important factors in the development/prevention of autoimmune diseases and inflammatory diseases. In our previous research, we explored that cytokines (IL-17) and the balance of Treg/Th17 had a significant relevance with tissue (lung) inflammation and injury in acute-phase after multiple-trauma. To more verify whether an imbalance of Treg/Th17 is characteristic of rats suffering from multiple trauma. Using IL-17 monoclonal antibody (IL-17mAb)-treated multiple-trauma rat, we tested the pathogenic role of IL-17 in the development of multiple-trauma. Rat models were treated respectively with IL-17mAb or rat IgG 2A isotype control or phosphate-buffered solution after model was established. Normal rats only received anaesthesia and cannulation were taken as sham. Rats in each group were killed respectively at the end of 1h, 4h, 8h after injection. Collected serum and lung samples for assessment dynamically of MPO, IL-17, IL-6, and TGF-β-mRNA, and cytokine (IL-17, IL-6, TGF-β) and lung tissue for pulmonary histological analysis. Neutralisation of IL-17 with anti-IL-17 can decrease serum IL-17 level and the IL-17-mRNA transcript level in lung, and ameliorate tissue inflammatory, defer disease course. Our data suggest that IL-17 is crucially involved in the pathogenesis of multiple-trauma in rat, IL-17 inhibition might ameliorate the lung inflammation in acute-phase after multiple-trauma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Altered Cytokine Gene Expression in Peripheral Blood Monocytes across the Menstrual Cycle in Primary Dysmenorrhea: A Case-Control Study

    PubMed Central

    Ma, Hongyue; Hong, Min; Duan, Jinao; Liu, Pei; Fan, Xinsheng; Shang, Erxin; Su, Shulan; Guo, Jianming; Qian, Dawei; Tang, Yuping

    2013-01-01

    Primary dysmenorrhea is one of the most common gynecological complaints in young women, but potential peripheral immunologic features underlying this condition remain undefined. In this paper, we compared 84 common cytokine gene expression profiles of peripheral blood mononuclear cells (PBMCs) from six primary dysmenorrheic young women and three unaffected controls on the seventh day before (secretory phase), and the first (menstrual phase) and the fifth (regenerative phase) days of menstruation, using a real-time PCR array assay combined with pattern recognition and gene function annotation methods. Comparisons between dysmenorrhea and normal control groups identified 11 (nine increased and two decreased), 14 (five increased and nine decreased), and 15 (seven increased and eight decreased) genes with ≥2-fold difference in expression (P<0.05) in the three phases of menstruation, respectively. In the menstrual phase, genes encoding pro-inflammatory cytokines (IL1B, TNF, IL6, and IL8) were up-regulated, and genes encoding TGF-β superfamily members (BMP4, BMP6, GDF5, GDF11, LEFTY2, NODAL, and MSTN) were down-regulated. Functional annotation revealed an excessive inflammatory response and insufficient TGF-β superfamily member signals with anti-inflammatory consequences, which may directly contribute to menstrual pain. In the secretory and regenerative phases, increased expression of pro-inflammatory cytokines and decreased expression of growth factors were also observed. These factors may be involved in the regulation of decidualization, endometrium breakdown and repair, and indirectly exacerbate primary dysmenorrhea. This first study of cytokine gene expression profiles in PBMCs from young primary dysmenorrheic women demonstrates a shift in the balance between expression patterns of pro-inflammatory cytokines and TGF-β superfamily members across the whole menstrual cycle, underlying the peripheral immunologic features of primary dysmenorrhea. PMID:23390521

  7. The regulation of sulphurated amino acid junctions: fact or fiction in the field of inflammation?

    PubMed

    Santangelo, F

    2002-01-01

    The diet of industrialised countries is usually rich in amino acids, which are in part used as a source of calories. However, metabolic alterations are observed in diseased patients and a preferential retention of Sulphurated Amino Acids (SAA) occurs during the inflammatory response. Moreover, it has been demonstrated in a model of an acute sepsis phase of rats that the metabolism of Cysteine is modified. The liver converts Cysteine at a different ratio of Sulphate to Taurine (Tau) i.e. the sulphate production decreases while the Tau conversion increases. The Glutathione (GSH) concentration is greater in the liver, kidneys and other organs and the Cysteine incorporation into proteins is higher in the spleen, lungs and plasma (Acute Phase Proteins) while the Albumin level decreases. The pro-inflammatory cytokines such as Interleukin-1, Interleukin-6 and TNF- alpha are the main initiators that alter protein and amino acid metabolism. Another important phenomenon is the impairment of Methionine conversion to Cysteine during stress. For example, premature infants or AIDS patients are capable of synthesizing Cysteine from Methionine at a much lower rate. Thus, the metabolic flow through the trans-sulphuration path may be inadequate to meet the Cysteine demand under critical conditions. In this complex picture, an SAA supply may contribute to an immune system regulation.

  8. Deficits in serum amyloid A contribute to increased neonatal mortality during murine listeriosis.

    PubMed

    Hawkins, J Seth; Wu, Qingqing; Wang, Yanxia; Lu, Christopher Y

    2013-12-01

    To understand the increased susceptibility of preterm neonates to infection. A murine listeriosis model using immunohistochemistry, microarray technology, and real-time polymerase chain reaction (PCR). We report that recombinant serum amyloid A (SAA) administered prophylactically 18 h before intraperitoneal (i.p.) inoculation with Listeria monocytogenes conferred a dramatic survival benefit compared with administration of only vehicle in neonatal mice. Neonates that received the recombinant SAA protein had significantly fewer Listeria colony counts on plating of infected liver and showed significantly more activated macrophages, but SAA did not affect postnatal growth. Real-time PCR was used to confirm the microarray findings that gene expression levels for the SAA proteins 1 (Saa1) and 2 (Saa2), in addition to that for orosomucoid-2 (Orm2), were strikingly elevated in the adult compared with those in the neonate. Real-time PCR analysis showed that of the acute phase cytokines, tumor necrosis factor (TNF) gene expression increased exponentially with time in the infected adult, whereas neonates did not show similar increases. The increased susceptibility of neonatal mice to listeriosis is in part mediated by a deficiency in the acute phase response, specifically expression of SAA, and that prophylactic SAA protein before neonatal murine listeriosis results in more macrophage activation, lower Listeria counts, and greater survival.

  9. Influence of HMB supplementation and resistance training on cytokine responses to resistance exercise.

    PubMed

    Kraemer, William J; Hatfield, Disa L; Comstock, Brett A; Fragala, Maren S; Davitt, Patrick M; Cortis, Cristina; Wilson, Jacob M; Lee, Elaine C; Newton, Robert U; Dunn-Lewis, Courtenay; Häkkinen, Keijo; Szivak, Tunde K; Hooper, David R; Flanagan, Shawn D; Looney, David P; White, Mark T; Volek, Jeff S; Maresh, Carl M

    2014-01-01

    The purpose of this study was to determine the effects of a multinutritional supplement including amino acids, β-hydroxy-β-methylbutyrate (HMB), and carbohydrates on cytokine responses to resistance exercise and training. Seventeen healthy, college-aged men were randomly assigned to a Muscle Armor™ (MA; Abbott Nutrition, Columbus, OH) or placebo supplement group and 12 weeks of resistance training. An acute resistance exercise protocol was administered at 0, 6, and 12 weeks of training. Venous blood samples at pre-, immediately post-, and 30-minutes postexercise were analyzed via bead multiplex immunoassay for 17 cytokines. After 12 weeks of training, the MA group exhibited decreased interferon-gamma (IFN-γ) and interleukin (IL)-10. IL-1β differed by group at various times. Granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6, IL-7, IL-8, IL-12p70, IL-13, IL-17, monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β) changed over the 12-week training period but did not differ by group. Twelve weeks of resistance training alters the cytokine response to acute resistance exercise, and supplementation with HMB and amino acids appears to further augment this result.

  10. Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis

    PubMed Central

    2010-01-01

    Background No effective treatment for acute lung injury and fibrosis currently exists. Aim of this study was to investigate the time-dependent effect of bone marrow-derived mesenchymal stem cells (BMDMSCs) on bleomycin (BLM)-induced acute lung injury and fibrosis and nitric oxide metabolites and inflammatory cytokine production. Methods BMDMSCs were transferred 4 days after BLM inhalation. Wet/dry ratio, bronchoalveolar lavage cell profiles, histologic changes and deposition of collagen were analyzed. Results Nitrite, nitrate and cytokines were measured weekly through day 28. At day 7, the wet/dry ratio, neutrophilic inflammation, and amount of collagen were elevated in BLM-treated rats compared to sham rats (p = 0.05-0.002). Levels nitrite, nitrate, IL-1β, IL-6, TNF-α, TGF-β and VEGF were also higher at day 7 (p < 0.05). Degree of lymphocyte and macrophage infiltration increased steadily over time. BMDMSC transfer significantly reduced the BLM-induced increase in wet/dry ratio, degree of neutrophilic infiltration, collagen deposition, and levels of the cytokines, nitrite, and nitrate to those in sham-treated rats (p < 0.05). Fluorescence in situ hybridization localized the engrafted cells to areas of lung injury. Conclusion Systemic transfer of BMDMSCs effectively reduced the BLM-induced lung injury and fibrosis through the down-regulation of nitric oxide metabolites, and proinflammatory and angiogenic cytokines. PMID:20137099

  11. Lectins from Synadenium carinatum (ScLL) and Artocarpus heterophyllus (ArtinM) Are Able to Induce Beneficial Immunomodulatory Effects in a Murine Model for Treatment of Toxoplasma gondii Infection.

    PubMed

    Ramos, Eliézer L P; Santana, Silas S; Silva, Murilo V; Santiago, Fernanda M; Mineo, Tiago W P; Mineo, José R

    2016-01-01

    Infection by Toxoplasma gondii affects around one-third of world population and the treatment for patients presenting toxoplasmosis clinically manifested disease is mainly based by a combination of sulfadiazine, pyrimethamine, and folinic acid. However, this therapeutic protocol is significantly toxic, causing relevant dose-related bone marrow damage. Thus, it is necessary to improve new approaches to investigate the usefulness of more effective and non-toxic agents for treatment of patients with toxoplasmosis. It has been described that lectins from plants can control parasite infections, when used as immunological adjuvants in vaccination procedures. This type of lectins, such as ArtinM and ScLL is able to induce immunostimulatory activities, including efficient immune response against parasites. The present study aimed to evaluate the potential immunostimulatory effect of ScLL and ArtinM for treatment of T. gondii infection during acute phase, considering that there is no study in the literature accomplishing this issue. For this purpose, bone marrow-derived macrophages (BMDMs) were treated with different concentrations from each lectin to determine the maximum concentration without or with lowest cytotoxic effect. After, it was also measured the cytokine levels produced by these cells when stimulated by the selected concentrations of lectins. We found that ScLL showed high capacity to induce of pro-inflammatory cytokine production, while ArtinM was able to induce especially an anti-inflammatory cytokines production. Furthermore, both lectins were able to increase NO levels. Next, we evaluated the treatment effect of ScLL and ArtinM in C57BL/6 mice infected by ME49 strain from T. gondii . The animals were infected and treated with ScLL, ArtinM, ArtinM plus ScLL, or sulfadiazine, and the following parameters analyzed: Cytokines production, brain parasite burden and survival rates. Our results demonstrated that the ScLL or ScLL plus ArtinM treatment induced production of pro-inflammatory and anti-inflammatory cytokines, showing differential but complementary profiles. Moreover, when compared with non-treated mice, the parasite burden was significantly lower and survival rates higher in mice treated with ScLL or ScLL plus ArtinM, similarly with sulfadiazine treatment. In conclusion, the results demonstrated the suitable potential immunotherapeutic effect of ScLL and ArtinM lectins to control acute toxoplasmosis in this experimental murine model.

  12. Lectins from Synadenium carinatum (ScLL) and Artocarpus heterophyllus (ArtinM) Are Able to Induce Beneficial Immunomodulatory Effects in a Murine Model for Treatment of Toxoplasma gondii Infection

    PubMed Central

    Ramos, Eliézer L. P.; Santana, Silas S.; Silva, Murilo V.; Santiago, Fernanda M.; Mineo, Tiago W. P.; Mineo, José R.

    2016-01-01

    Infection by Toxoplasma gondii affects around one-third of world population and the treatment for patients presenting toxoplasmosis clinically manifested disease is mainly based by a combination of sulfadiazine, pyrimethamine, and folinic acid. However, this therapeutic protocol is significantly toxic, causing relevant dose-related bone marrow damage. Thus, it is necessary to improve new approaches to investigate the usefulness of more effective and non-toxic agents for treatment of patients with toxoplasmosis. It has been described that lectins from plants can control parasite infections, when used as immunological adjuvants in vaccination procedures. This type of lectins, such as ArtinM and ScLL is able to induce immunostimulatory activities, including efficient immune response against parasites. The present study aimed to evaluate the potential immunostimulatory effect of ScLL and ArtinM for treatment of T. gondii infection during acute phase, considering that there is no study in the literature accomplishing this issue. For this purpose, bone marrow-derived macrophages (BMDMs) were treated with different concentrations from each lectin to determine the maximum concentration without or with lowest cytotoxic effect. After, it was also measured the cytokine levels produced by these cells when stimulated by the selected concentrations of lectins. We found that ScLL showed high capacity to induce of pro-inflammatory cytokine production, while ArtinM was able to induce especially an anti-inflammatory cytokines production. Furthermore, both lectins were able to increase NO levels. Next, we evaluated the treatment effect of ScLL and ArtinM in C57BL/6 mice infected by ME49 strain from T. gondii. The animals were infected and treated with ScLL, ArtinM, ArtinM plus ScLL, or sulfadiazine, and the following parameters analyzed: Cytokines production, brain parasite burden and survival rates. Our results demonstrated that the ScLL or ScLL plus ArtinM treatment induced production of pro-inflammatory and anti-inflammatory cytokines, showing differential but complementary profiles. Moreover, when compared with non-treated mice, the parasite burden was significantly lower and survival rates higher in mice treated with ScLL or ScLL plus ArtinM, similarly with sulfadiazine treatment. In conclusion, the results demonstrated the suitable potential immunotherapeutic effect of ScLL and ArtinM lectins to control acute toxoplasmosis in this experimental murine model. PMID:27933277

  13. Catch and Release of Cytokines Mediated by Tumor Phosphatidylserine Converts Transient Exposure into Long-Lived Inflammation.

    PubMed

    Oyler-Yaniv, Jennifer; Oyler-Yaniv, Alon; Shakiba, Mojdeh; Min, Nina K; Chen, Ying-Han; Cheng, Sheue-Yann; Krichevsky, Oleg; Altan-Bonnet, Nihal; Altan-Bonnet, Grégoire

    2017-06-01

    Immune cells constantly survey the host for pathogens or tumors and secrete cytokines to alert surrounding cells of these threats. In vivo, activated immune cells secrete cytokines for several hours, yet an acute immune reaction occurs over days. Given these divergent timescales, we addressed how cytokine-responsive cells translate brief cytokine exposure into phenotypic changes that persist over long timescales. We studied melanoma cell responses to transient exposure to the cytokine interferon γ (IFNγ) by combining a systems-scale analysis of gene expression dynamics with computational modeling and experiments. We discovered that IFNγ is captured by phosphatidylserine (PS) on the surface of viable cells both in vitro and in vivo then slowly released to drive long-term transcription of cytokine-response genes. This mechanism introduces an additional function for PS in dynamically regulating inflammation across diverse cancer and primary cell types and has potential to usher in new immunotherapies targeting PS and inflammatory pathways. Published by Elsevier Inc.

  14. Alpha-tocopherol succinate- and AMD3100-mobilized progenitors mitigate radiation combined injury in mice.

    PubMed

    Singh, Vijay K; Wise, Stephen Y; Fatanmi, Oluseyi O; Beattie, Lindsay A; Ducey, Elizabeth J; Seed, Thomas M

    2014-01-01

    The purpose of this study was to elucidate the role of alpha-tocopherol succinate (TS)- and AMD3100-mobilized progenitors in mitigating combined injury associated with acute radiation exposure in combination with secondary physical wounding. CD2F1 mice were exposed to high doses of cobalt-60 gamma-radiation and then transfused intravenously with 5 million peripheral blood mononuclear cells (PBMCs) from TS- and AMD3100-injected mice after irradiation. Within 1 h after irradiation, mice were exposed to secondary wounding. Mice were observed for 30 d after irradiation and cytokine analysis was conducted by multiplex Luminex assay at various time-points after irradiation and wounding. Our results initially demonstrated that transfusion of TS-mobilized progenitors from normal mice enhanced survival of acutely irradiated mice exposed 24 h prior to transfusion to supralethal doses (11.5-12.5 Gy) of (60)Co gamma-radiation. Subsequently, comparable transfusions of TS-mobilized progenitors were shown to significantly mitigate severe combined injuries in acutely irradiated mice. TS administered 24 h before irradiation was able to protect mice against combined injury as well. Cytokine results demonstrated that wounding modulates irradiation-induced cytokines. This study further supports the conclusion that the infusion of TS-mobilized progenitor-containing PBMCs acts as a bridging therapy in radiation-combined-injury mice. We suggest that this novel bridging therapeutic approach involving the infusion of TS-mobilized hematopoietic progenitors following acute radiation exposure or combined injury might be applicable to humans.

  15. Minocycline attenuates experimental colitis in mice by blocking expression of inducible nitric oxide synthase and matrix metalloproteinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, T.-Y.; Division of Gastroenterology and Hepatology, Tri-Service General Hospital, Taipei, Taiwan; Chu, H.-C.

    2009-05-15

    In addition to its antimicrobial activity, minocycline exerts anti-inflammatory effects in several disease models. However, whether minocycline affects the pathogenesis of inflammatory bowel disease has not been determined. We investigated the effects of minocycline on experimental colitis and its underlying mechanisms. Acute and chronic colitis were induced in mice by treatment with dextran sulfate sodium (DSS) or trinitrobenzene sulfonic acid (TNBS), and the effect of minocycline on colonic injury was assessed clinically and histologically. Prophylactic and therapeutic treatment of mice with minocycline significantly diminished mortality rate and attenuated the severity of DSS-induced acute colitis. Mechanistically, minocycline administration suppressed inducible nitricmore » oxide synthase (iNOS) expression and nitrotyrosine production, inhibited proinflammatory cytokine expression, repressed the elevated mRNA expression of matrix metalloproteinases (MMPs) 2, 3, 9, and 13, diminished the apoptotic index in colonic tissues, and inhibited nitric oxide production in the serum of mice with DSS-induced acute colitis. In DSS-induced chronic colitis, minocycline treatment also reduced body weight loss, improved colonic histology, and blocked expression of iNOS, proinflammatory cytokines, and MMPs from colonic tissues. Similarly, minocycline could ameliorate the severity of TNBS-induced acute colitis in mice by decreasing mortality rate and inhibiting proinflammatory cytokine expression in colonic tissues. These results demonstrate that minocycline protects mice against DSS- and TNBS-induced colitis, probably via inhibition of iNOS and MMP expression in intestinal tissues. Therefore, minocycline is a potential remedy for human inflammatory bowel diseases.« less

  16. Acute ileitis facilitates infection with multidrug resistant Pseudomonas aeruginosa in human microbiota-associated mice.

    PubMed

    von Klitzing, Eliane; Ekmekciu, Ira; Bereswill, Stefan; Heimesaat, Markus M

    2017-01-01

    The rising incidence of multidrug resistant (MDR) Gram-negative bacteria including Pseudomonas aeruginosa has become a serious issue in prevention of its spread particularly among hospitalized patients. It is, however, unclear whether distinct conditions such as acute intestinal inflammation facilitate P. aeruginosa infection of vertebrate hosts. To address this, we analysed P. aeruginosa infection in human microbiota-associated (hma) mice with acute ileitis induced by peroral Toxoplasma gondii challenge. When perorally infected with P. aeruginosa at day 3 post ileitis induction, hma mice displayed higher intestinal P. aeruginosa loads as compared to hma mice without ileitis. However, the overall intestinal microbiota composition was not disturbed by P. aeruginosa (except for lowered bifidobacterial populations), and the infection did not further enhance ileal immune cell responses. Pro-inflammatory cytokines including IFN-γ and IL-12p70 were similarly increased in ileum and mesenteric lymph nodes of P. aeruginosa infected and uninfected hma mice with ileitis. The anti-inflammatory cytokine IL-10 increased multifold upon ileitis induction, but interestingly more distinctly in P. aeruginosa infected as compared to uninfected controls. Immune responses were not restricted to the intestines as indicated by elevated pro-inflammatory cytokine levels in liver and kidney upon ileitis induction. However, except for hepatic TNF-α levels, P. aeruginosa infection did not result in more distinct pro-inflammatory cytokine secretion in liver and kidney of hma mice with ileitis. Whereas viable intestinal bacteria were more frequently detected in systemic compartments such as spleen and cardiac blood of P. aeruginosa infected than uninfected mice at day 7 following ileitis induction, P. aeruginosa infection did not exacerbate systemic pro-inflammatory sequelae, but resulted in lower IL-10 serum levels. Acute intestinal inflammation facilitates infection of the vertebrate host with MDR bacteria including P. aeruginosa and might also pose particularly hospitalized patients at risk for acquisition. Since acute T. gondii induced inflammation might mask immunopathology caused by P. aeruginosa , a subacute or chronic inflammation model might be better suited to investigate the potential role of P. aeruginosa infection in the aggravation of intestinal disease.

  17. Adenosine A2A Receptor Activation and Macrophage-mediated Experimental Glomerulonephritis

    PubMed Central

    Garcia, Gabriela E.; Truong, Luan D.; Li, Ping; Zhang, Ping; Du, Jie; Chen, Jiang-Fan; Feng, Lili

    2010-01-01

    In immune-induced inflammation, leukocytes are key mediators of tissue damage. Since A2A adenosine receptors (A2AR) are endogenous suppressors of inflammation, we examined cellular and molecular mechanisms of kidney damage to determine whether selective activation of A2AR will suppress inflammation in a rat model of glomerulonephritis. Activation of A2AR reduced the degree of kidney injury in both the acute inflammatory phase and the progressive phase of glomerulonephritis. This protection against acute and chronic inflammation was associated with suppression of the glomerular expression of the MDC/CCL22 chemokine and down-regulation of MIP-1α/CCL3, RANTES/CCL5, MIP-1β/CCL4, and MCP-1/CCL2 chemokines. The expression of anti-inflammatory cytokines, IL-4 and IL-10, also increased. The mechanism for these anti-inflammatory responses to the A2AR agonist was suppression of macrophages function. A2AR expression was increased in macrophages, macrophage-derived chemokines were reduced in response to the A2AR agonist, and chemokines not expressed in macrophages did not respond to A2AR activation. Thus, activation of the A2AR on macrophages inhibits immune-associated inflammation. In glomerulonephritis, A2AR activation modulates inflammation and tissue damage even in the progressive phase of glomerulonephritis. Accordingly, pharmacological activation of A2AR could be developed into a novel treatment for glomerulonephritis and other macrophage-related inflammatory diseases. PMID:17898087

  18. Apoptosis in acute shigellosis is associated with increased production of Fas/Fas ligand, perforin, caspase-1, and caspase-3 but reduced production of Bcl-2 and interleukin-2.

    PubMed

    Raqib, Rubhana; Ekberg, Caroline; Sharkar, Protim; Bardhan, Pradip K; Zychlinsky, Arturo; Sansonetti, Philippe J; Andersson, Jan

    2002-06-01

    Shigella dysenteriae type 1-induced apoptotic cell death in rectal tissues from patients infected with Shigella dysenteriae type 1 was studied by the terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) technique and annexin V staining. Expression of proteins and cytokines participating in the apoptotic process (caspase-1, caspase-3, Fas [CD95], Fas ligand [Fas-L], perforin, granzyme A, Bax, WAF-1, Bcl-2, interleukin-2 [IL-2], IL-18, and granulocyte-macrophage colony-stimulating factor) in tissue in the acute and convalescent stages of dysentery was quantified at the single-cell level by in situ immunostaining. Apoptotic cell death in the lamina propria was markedly up-regulated at the acute stage (P < 0.05), where an increased number of necrotic cells were also seen. Phenotypic analysis of apoptotic cells revealed that 43% of T cells (CD3), 10% of granulocytes (CD15), and 5% of macrophages (CD56) underwent apoptosis. Increased activity of caspase-1 persisted in the rectum up to 1 month after onset. More-extensive expression of Fas, Fas-L, perforin, caspase-3, and IL-18, but not IL-2, at the acute stage than at the convalescent stage was observed. Increased expression of caspase-3 and IL-18 in tissues with severe inflammation compared to expression in those with mild inflammation was evident, implying a possible role in the perpetuation of inflammation. Significantly reduced cell death during convalescence was associated with a significant up-regulation of Bcl-2, Bax, and WAF-1 expression in the rectum compared to that in the acute phase of infection. Thus, induction of apoptosis at the local site in the early phase of S. dysenteriae type 1 infection was associated with a significant up-regulation of Fas/Fas-L and perforin and granzyme A expression and a down-regulation of Bcl-2 and IL-2, which promote cell survival.

  19. Apoptosis in Acute Shigellosis Is Associated with Increased Production of Fas/Fas Ligand, Perforin, Caspase-1, and Caspase-3 but Reduced Production of Bcl-2 and Interleukin-2

    PubMed Central

    Raqib, Rubhana; Ekberg, Caroline; Sharkar, Protim; Bardhan, Pradip K.; Zychlinsky, Arturo; Sansonetti, Philippe J.; Andersson, Jan

    2002-01-01

    Shigella dysenteriae type 1-induced apoptotic cell death in rectal tissues from patients infected with Shigella dysenteriae type 1 was studied by the terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) technique and annexin V staining. Expression of proteins and cytokines participating in the apoptotic process (caspase-1, caspase-3, Fas [CD95], Fas ligand [Fas-L], perforin, granzyme A, Bax, WAF-1, Bcl-2, interleukin-2 [IL-2], IL-18, and granulocyte-macrophage colony-stimulating factor) in tissue in the acute and convalescent stages of dysentery was quantified at the single-cell level by in situ immunostaining. Apoptotic cell death in the lamina propria was markedly up-regulated at the acute stage (P < 0.05), where an increased number of necrotic cells were also seen. Phenotypic analysis of apoptotic cells revealed that 43% of T cells (CD3), 10% of granulocytes (CD15), and 5% of macrophages (CD56) underwent apoptosis. Increased activity of caspase-1 persisted in the rectum up to 1 month after onset. More-extensive expression of Fas, Fas-L, perforin, caspase-3, and IL-18, but not IL-2, at the acute stage than at the convalescent stage was observed. Increased expression of caspase-3 and IL-18 in tissues with severe inflammation compared to expression in those with mild inflammation was evident, implying a possible role in the perpetuation of inflammation. Significantly reduced cell death during convalescence was associated with a significant up-regulation of Bcl-2, Bax, and WAF-1 expression in the rectum compared to that in the acute phase of infection. Thus, induction of apoptosis at the local site in the early phase of S. dysenteriae type 1 infection was associated with a significant up-regulation of Fas/Fas-L and perforin and granzyme A expression and a down-regulation of Bcl-2 and IL-2, which promote cell survival. PMID:12011015

  20. Prospective crossover trial of the influence of vitamin E-coated dialyzer membranes on T-cell activation and cytokine induction.

    PubMed

    Girndt, M; Lengler, S; Kaul, H; Sester, U; Sester, M; Köhler, H

    2000-01-01

    Cytokine induction by dialyzer membranes has been related to several acute and chronic side effects of hemodialysis treatment, among them being immune dysfunction and progressive atherosclerosis. Surface modification of cuprophane dialyzers with the antioxidant vitamin E is a new approach to enhance biocompatibility and improve cytokine levels, as well as immune function. Twenty-one patients undergoing treatment with hemophane (HE) dialyzers were enrolled onto a crossover study with a vitamin E-coated (VE) dialyzer or a synthetic polyamide (PA) dialyzer. In vitro assays of lymphocyte activation and measurements of cytokine induction were performed to evaluate biocompatibility. Four weeks of treatment with either VE or PA dialyzers enhanced in vitro proliferation of peripheral blood leukocytes in comparison to treatment with HE membranes used before study entry. Enhancement of lymphocyte function was independent of dialysis efficiency, which was kept constant during the study. In the interdialytic interval, preactivation of monocytes for the production of interleukin-6 (IL-6) did not differ between VE or PA dialysis. In contrast, the VE membrane reduced acute production of IL-6 during a dialysis treatment, whereas the PA membrane did not. Unlike IL-6, the regulatory cytokine IL-10 is not inhibited by either membrane. This is important because IL-10 is believed to have a beneficial effect on immune function in dialysis patients. The VE membrane, despite being based on a cuprophane backbone, is similar to the highly biocompatible PA dialyzer in terms of its effect on lymphocyte function, whereas it exerts an additional suppressive effect on the overproduction of proinflammatory cytokines.

  1. Acute cold stress improved the transcription of pro-inflammatory cytokines of Chinese soft-shelled turtle against Aeromonas hydrophila.

    PubMed

    Zhang, Zuobing; Chen, Bojian; Yuan, Lin; Niu, Cuijuan

    2015-03-01

    Chinese soft-shelled turtle, Pelodiscus sinensis, is widely cultured in East and Southeast Asian countries. It frequently encounters the stress of abrupt temperature changes, which leads to mass death in most cases. However, the mechanism underlying the stress-elicited death remains unknown. We have suspected that the stress impaired the immune function of Chinese soft-shelled turtle, which could result in the mass death, as we noticed that there was a clinical syndrome of infection in dead turtles. To test our hypothesis, we first performed bioinformatic annotation of several pro-inflammatory molecules (IL-1β, TNFα, IL-6, IL-12β) of Chinese soft-shelled turtle. Then, we treated the turtles in six groups, injected with Aeromonas hydrophila before acute cold stress (25 °C) and controls, after acute cold stress (15 °C) and controls as well as after the temperature was restored to 25 °C and controls, respectively. Subsequently, real-time PCR for several pro-inflammatory cytokines (IL-1β, TNFα, IL-6, IL-12β, IL-8 and IFNγ) was performed to assess the turtle immune function in spleen and intestine, 24 hours after the injection. We found that the mRNA expression levels of the immune molecules were all enhanced after acute cold stress. This change disappeared when the temperature was restored back to 25 °C. Our results suggest that abrupt temperature drop did not suppress the immune function of Chinese soft-shelled turtle in response to germ challenge after abrupt temperature drop. In contrast, it may even increase the expression of various cytokines at least, within a short time after acute cold stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Protective Effects of Lithospermum erythrorhizon Against Cerulein-Induced Acute Pancreatitis.

    PubMed

    Choi, Sun Bok; Bae, Gi-Sang; Jo, Il-Joo; Seo, Seung-Hee; Kim, Dong-Goo; Shin, Joon-Yeon; Hong, Seung-Heon; Choi, Byung-Min; Park, Sang-Hyun; Song, Ho-Joon; Park, Sung-Joo

    2015-01-01

    We aimed to evaluate the anti-inflammatory and inhibitory effects of Lithospermum erythrorhizon (LE) on cerulein-induced acute pancreatitis (AP) in a mouse model. Acute pancreatitis was induced via intraperitoneal injection of cerulein (50 μg/kg) every hour for 6 times. In the LE, water extract (100, 250, or 500 mg/kg) was administered intraperitoneally 1 hour before the first injection of cerulein. Six hours after AP, blood, the pancreas, and the lung were harvested for further examination. In addition, pancreatic acinar cells were isolated using a collagenase method, and then, we investigated the acinar cell viability and cytokine productions. Treatment with LE reduced pancreatic damage and AP-associated lung injury and attenuated the severity of AP, as evidenced by the reduction in neutrophil infiltration, serum amylase and lipase levels, trypsin activity, and proinflammatory cytokine expression. In addition, treatment with LE inhibited high mobility group box 1 expression in the pancreas during AP. In accordance with in vivo data, LE inhibited the cerulein-induced acinar cell death, cytokine productions, and high-mobility group box 1 expression. Furthermore, LE also inhibited the activation of p38 mitogen-activated protein kinases. These results suggest that LE plays a protective role during the development of AP by inhibiting the activation of p38.

  3. Protective Effects of Lithospermum erythrorhizon Against Cerulein-Induced Acute Pancreatitis

    PubMed Central

    Choi, Sun Bok; Bae, Gi-Sang; Jo, Il-Joo; Seo, Seung-Hee; Kim, Dong-Goo; Shin, Joon-Yeon; Hong, Seung-Heon; Choi, Byung-Min; Park, Sang-Hyun; Song, Ho-Joon; Park, Sung-Joo

    2015-01-01

    Objectives We aimed to evaluate the anti-inflammatory and inhibitory effects of Lithospermum erythrorhizon (LE) on cerulein-induced acute pancreatitis (AP) in a mouse model. Methods Acute pancreatitis was induced via intraperitoneal injection of cerulein (50 μg/kg) every hour for 6 times. In the LE, water extract (100, 250, or 500 mg/kg) was administered intraperitoneally 1 hour before the first injection of cerulein. Six hours after AP, blood, the pancreas, and the lung were harvested for further examination. In addition, pancreatic acinar cells were isolated using a collagenase method, and then, we investigated the acinar cell viability and cytokine productions. Results Treatment with LE reduced pancreatic damage and AP-associated lung injury and attenuated the severity of AP, as evidenced by the reduction in neutrophil infiltration, serum amylase and lipase levels, trypsin activity, and proinflammatory cytokine expression. In addition, treatment with LE inhibited high mobility group box 1 expression in the pancreas during AP. In accordance with in vivo data, LE inhibited the cerulein-induced acinar cell death, cytokine productions, and high-mobility group box 1 expression. Furthermore, LE also inhibited the activation of p38 mitogen-activated protein kinases. Conclusions These results suggest that LE plays a protective role during the development of AP by inhibiting the activation of p38. PMID:25102438

  4. Association between sex, nutritional status, severity of dengue hemorrhagic fever, and immune status in infants with dengue hemorrhagic fever.

    PubMed

    Nguyen, Thanh Hung; Nguyen, Trong Lan; Lei, Huan-Yao; Lin, Yee-Shin; Le, Bich Lien; Huang, Kao-Jean; Lin, Chiou-Feng; Do, Quang Ha; Vu, Thi Que Huong; Lam, Thi My; Yeh, Trai-Ming; Huang, Jyh-Hsiung; Liu, Ching-Chuan; Halstead, Scott B

    2005-04-01

    The association between sex, nutritional status, and the severity of dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), and immune status was investigated in 245 Vietnamese infants with predominantly primary infections with dengue virus. Male and female infants were at equal risk of developing DHF/DSS. However, infants of low height and weight for age were under-represented among DHF/DSS cases compared with 533 healthy baby clinic infant controls. Acute illness phase blood levels of selected cytokines (interferon-gamma and tumor necrosis factor-alpha) and serum levels of antibodies to dengue virus were elevated in the same range in male and female infants with DHF/DSS, as well as in infants with and without malnutrition.

  5. [Diagnosis of acute heart failure and relevance of biomarkers in elderly patients].

    PubMed

    Ruiz Ortega, Raúl Antonio; Manzano, Luis; Montero-Pérez-Barquero, Manuel

    2014-03-01

    Diagnosis of acute heart failure (HF) is difficult in elderly patients with multiple comorbidities. Risk scales and classification criteria based exclusively on clinical manifestations, such as the Framingham scales, lack sufficient specificity. In addition to clinical manifestations, diagnosis should be based on two key factors: natriuretic peptides and echocardiographic study. When there is clinical suspicion of acute HF, a normal natriuretic peptide level will rule out this process. When a consistent clinical suspicion is present, an echocardiographic study should also be performed. Diagnosis of HF with preserved ejection fraction (HF/pEF) requires detection of an enlarged left atrium or the presence of parameters of diastolic dysfunction. Elevation of cardiac biomarkers seems to be due to myocardial injury and the compensatory mechanisms of the body against this injury (hormone and inflammatory response and repair mechanisms). Elevation of markers of cardiac damage (troponins and natriuretic peptides) have been shown to be useful both in the diagnosis of acute HF and in prediction of outcome. MMP-2 could be useful in the diagnosis of HF/pEF. In addition to biomarkers with diagnostic value, other biomarkers are helpful in prognosis in the acute phase of HF, such as biomarkers of renal failure (eGFR, cystatin and urea), inflammation (cytokines and CRP), and the cell regeneration marker, galectin-3. A promising idea that is under investigation is the use of panels of biomarkers, which could allow more accurate diagnosis and prognosis of acute HF. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  6. Exacerbated febrile responses to LPS, but not turpentine, in TNF double receptor-knockout mice.

    PubMed

    Leon, L R; Kozak, W; Peschon, J; Kluger, M J

    1997-02-01

    We examined the effects of injections of systemic [lipopolysaccharide (LPS), 2.5 mg/kg or 50 pg/kg ip] or local (turpentine, 100 microl sc) inflammatory stimuli on fever, motor activity, body weight, and food intake in tumor necrosis factor (TNF) double receptor (TNFR)-knockout mice. A high dose of LPS resulted in exacerbated fevers in TNFR-knockout mice compared with wild-type mice for the early phase of fever (3-15 h); the late phase of fever (16-24 h) and fevers to a low dose of LPS were similar in both groups. Motor activity, body weight, and food intake were similarly reduced in both groups of mice after LPS administration. In response to turpentine, TNFR-knockout and wild-type mice developed virtually identical responses to all variables monitored. These results suggest that 1) TNF modulates fevers to LPS dose dependently, 2) TNF does not modulate fevers to a subcutaneous injection of turpentine, and 3) knockout mice may develop cytokine redundancy in the regulation of the acute phase response to intraperitoneally injected LPS or subcutaneously injected turpentine.

  7. Functional Characterization of Cultured Keratinocytes after Acute Cutaneous Burn Injury

    PubMed Central

    Gauglitz, Gerd G.; Zedler, Siegfried; v. Spiegel, Felix; Fuhr, Jasmin; v. Donnersmarck, Guido Henkel; Faist, Eugen

    2012-01-01

    Background In addition to forming the epithelial barrier against the outside environment keratinocytes are immunologically active cells. In the treatment of severely burned skin, cryoconserved keratinocyte allografts gain in importance. It has been proposed that these allografts accelerate wound healing also due to the expression of a favourable - keratinocyte-derived - cytokine and growth factor milieu. Methods In this study the morphology and cytokine expression profile of keratinocytes from skin after acute burn injury was compared to non-burned skin. Skin samples were obtained from patients after severe burn injury and healthy controls. Cells were cultured and secretion of selected inflammatory mediators was quantified using Bioplex Immunoassays. Immunohistochemistry was performed to analyse further functional and morphologic parameters. Results Histology revealed increased terminal differentiation of keratinocytes (CK10, CK11) in allografts from non-burned skin compared to a higher portion of proliferative cells (CK5, vimentin) in acute burn injury. Increased levels of IL-1α, IL-2, IL-4, IL-10, IFN-γ and TNFα could be detected in culture media of burn injury skin cultures. Both culture groups contained large amounts of IL-1RA. IL-6 and GM-CSF were increased during the first 15 days of culture of burned skin compared to control skin. Levels of VEGF, FGF-basic, TGF-ß und G-CSF were high in both but not significantly different. Cryoconservation led to a diminished mediator synthesis except for higher levels of intracellular IL-1α and IL-1ß. Conclusion Skin allografts from non-burned skin show a different secretion pattern of keratinocyte-derived cytokines and inflammatory mediators compared to keratinocytes after burn injury. As these secreted molecules exert auto- and paracrine effects and subsequently contribute to healing and barrier restoration after acute burn injury therapies affecting this specific cytokine/growth factor micromilieu could be beneficial in burned patients. PMID:22359539

  8. Anti-Inflammatory Effects of Licorice and Roasted Licorice Extracts on TPA-Induced Acute Inflammation and Collagen-Induced Arthritis in Mice

    PubMed Central

    Kim, Ki Rim; Jeong, Chan-Kwon; Park, Kwang-Kyun; Choi, Jong-Hoon; Park, Jung Han Yoon; Lim, Soon Sung; Chung, Won-Yoon

    2010-01-01

    The anti-inflammatory activity of licorice (LE) and roated licorice (rLE) extracts determined in the murine phorbol ester-induced acute inflammation model and collagen-induced arthritis (CIA) model of human rheumatoid arthritis. rLE possessed greater activity than LE in inhibiting phorbol ester-induced ear edema. Oral administration of LE or rLE reduced clinical arthritis score, paw swelling, and histopathological changes in a murine CIA. LE and rLE decreased the levels of proinflammatory cytokines in serum and matrix metalloproteinase-3 expression in the joints. Cell proliferation and cytokine secretion in response to type II collagen or lipopolysaccharide stimulation were suppressed in spleen cells from LE or rLE-treated CIA mice. Furthermore, LE and rLE treatment prevented oxidative damages in liver and kidney tissues of CIA mice. Taken together, LE and rLE have benefits in protecting against both acute inflammation and chronic inflammatory conditions including rheumatoid arthritis. rLE may inhibit the acute inflammation more potently than LE. PMID:20300198

  9. Inflammatory Cytokines in Depression: Neurobiological Mechanisms and Therapeutic Implications

    PubMed Central

    Felger, Jennifer C.; Lotrich, Francis E.

    2013-01-01

    Mounting evidence indicates that inflammatory cytokines contribute to the development of depression in both medically ill and medically healthy individuals. Cytokines are important for development and normal brain function, and have the ability to influence neurocircuitry and neurotransmitter systems to produce behavioral alterations. Acutely, inflammatory cytokine administration or activation of the innate immune system produces adaptive behavioral responses that promote conservation of energy to combat infection or recovery from injury. However, chronic exposure to elevated inflammatory cytokines and persistent alterations in neurotransmitter systems can lead to neuropsychiatric disorders and depression. Mechanisms of cytokine behavioral effects involve activation of inflammatory signaling pathways in the brain that results in changes in monoamine, glutamate, and neuropeptide systems, and decreases in growth factors, e.g. brain derived neurotrophic factor. Furthermore, inflammatory cytokines may serve as mediators of both environmental (e.g. childhood trauma, obesity, stress, and poor sleep) and genetic (functional gene polymorphisms) factors that contribute to depression’s development. This review explores the idea that specific gene polymorphisms and neurotransmitter systems can confer protection from or vulnerability to specific symptom dimensions of cytokine-related depression. Additionally, potential therapeutic strategies that target inflammatory cytokine signaling or the consequences of cytokines on neurotransmitter systems in the brain to prevent or reverse cytokine effects on behavior are discussed. PMID:23644052

  10. Early induction of IL-1 receptor antagonist (IL-1Ra) in infants and children undergoing surgery.

    PubMed Central

    O Nualláin, E M; Puri, P; Reen, D J

    1993-01-01

    The cytokine response to injury or trauma is of interest in terms of both its mediation of the acute phase response and its possible relation to the immunological depression observed after major surgery. In this study, the production of cytokines IL-1 beta, tumour necrosis factor-alpha (TNF-alpha), IL-6 and the naturally occurring inhibitor of IL-1, IL-1Ra, have been investigated in infants and children undergoing Swenson's pull-through operation for Hirschsprung's disease. Samples of peripheral blood were taken before, during and after surgery for the measurement of cytokines. IL-1Ra levels increased significantly (P < 0.01) at 2 h after commencement of surgery, with maximal levels for individual patients being attained between 3 h and 5 h (range 7.6-67.9 ng/ml). The mean level of IL-1Ra was maximal (26.2 ng/ml) at 5 h and returned to baseline levels between 24 h and 72 h. There were no changes observed in the circulating levels of IL-1 beta in nine out of 11 patients following commencement of surgery. TNF-alpha levels did not increase in any of the patients studied. IL-6 levels increased significantly (P < 0.02) 3 h after commencement of surgery, reaching maximum concentrations at 24 h (range 20-670 pg/ml), with levels falling between 48 h and 72 h. This study demonstrates, in vivo, the independent induction of IL-1Ra without a concomitant increase of IL-1 beta levels after major surgery. It also shows that IL-1Ra is the earliest cytokine produced in response to surgical stress. PMID:8348747

  11. CP7_E2alf oral vaccination confers partial protection against early classical swine fever virus challenge and interferes with pathogeny-related cytokine responses

    PubMed Central

    2013-01-01

    The conventional C-strain vaccine induces early protection against classical swine fever (CSF), but infected animals cannot be distinguished from vaccinated animals. The CP7_E2alf marker vaccine, a pestivirus chimera, could be a suitable substitute for C-strain vaccine to control CSF outbreaks. In this study, single oral applications of CP7_E2alf and C-strain vaccines were compared for their efficacy to induce protection against a CSF virus (CSFV) challenge with the moderately virulent Bas-Rhin isolate, in pigs as early as two days post-immunization. This work emphasizes the powerful potential of CP7_E2alf vaccine administered orally by a rapid onset of partial protection similar to that induced by the C-strain vaccine. Furthermore, our results revealed that both vaccinations attenuated the effects induced by CSFV on production of the pig major acute phase protein (PigMAP), IFN-α, IL-12, IL-10, and TGF-β1 cytokines. By this interference, several cytokines that may play a role in the pathogeny induced by moderately virulent CSFV strains were revealed. New hypotheses concerning the role of each of these cytokines in CSFV pathogeny are discussed. Our results also show that oral vaccination with either vaccine (CP7_E2alf or C-strain) enhanced CSFV–specific IgG2 production, compared to infection alone. Interestingly, despite the similar antibody profiles displayed by both vaccines post-challenge, the production of CSFV-specific IgG1 and neutralizing antibodies without challenge was lower with CP7_E2alf vaccination than with C-strain vaccination, suggesting a slight difference in the balance of adaptive immune responses between these vaccines. PMID:23398967

  12. Arginine pathways and the inflammatory response: interregulation of nitric oxide and polyamines: review article.

    PubMed

    Satriano, J

    2004-07-01

    An early response to an acute inflammatory insult, such as wound healing or experimental glomerulonephritis, is the conversion of arginine to the cytostatic molecule nitric oxide (NO). This 'anti-bacterial' phase is followed by the conversion of arginine to ornithine, which is the precursor for the pro-proliferative polyamines as well as proline for the production of extracellular matrix. This latter, pro-growth phase constitutes a 'repair' phase response. The temporal switch of arginine as a substrate for the cytostatic iNOS/NO axis to the pro-growth arginase/ ornithine/polyamine and proline axis is subject to regulation by inflammatory cytokines as well as interregulation by the arginine metabolites themselves. Arginine is also the precursor for another biogenic amine, agmatine. Here we describe the capacity of these three arginine pathways to interregulate, and propose a model whereby agmatine has the potential to serve in the coordination of the early and repair phase pathways of arginine in the inflammatory response by acting as a gating mechanism at the transition from the iNOS/NO axis to the arginase/ODC/polyamine axis. Due to the pathophysiologic and therapeutic potential, we will further examine the antiproliferative effects of agmatine on the polyamine pathway.

  13. Differences in synovial fluid cytokine levels but not in synovial tissue cell infiltrate between anti-citrullinated peptide/protein antibody-positive and –negative rheumatoid arthritis patients

    PubMed Central

    2013-01-01

    Introduction Comparative data on synovial cell infiltrate and cytokine levels in anti citrullinated peptide/protein antibody (ACPA)-positive and ACPA negative rheumatoid arthritis (RA) patients are scarce. Our aim was to analyze synovial cell infiltrate and synovial fluid (SF) levels of cytokines in patients with RA according to the presence or absence of ACPA in serum. Methods A cross-sectional study in a single center including consecutive RA patients was performed. Patients were defined as 'ACPA negative' if serum was negative to two different ACPAs [second generation commercial anti-cyclic citrullinated peptide antibodies (CCP2) and chimeric fibrin/filaggrin citrullinated antibodies]. Parallel synovial tissue (ST) biopsies and SF were obtained by knee arthroscopy. Synovial cell infiltrate and endothelial cells were analyzed by immunohistochemistry and SF levels of Th1, Th2, Th17 and pro-inflammatory cytokines by Quantibody(R) Human Array. Results A total of 83 patients underwent arthroscopy, with a mean age of 55.9 ± 12 years, and mean disease duration of 45 months (interquartile range, IQR 10.8 to 122). 62% were female and 77% were ACPA positive. No significant differences were found in clinical variables, acute phase reactants, synovial cell infiltrate or lymphoid neogenesis (LN) between ACPA positive and negative patients. However ACPA positive patients had significantly higher levels of IL-1β, IL-10, IL-17 F and CC chemokine ligand 20 (CCL-20) than ACPA negative patients. Conclusions In our cohort of patients with RA no significant differences were found in synovial cell infiltrate or synovial LN according to ACPA status. However, ACPA positive patients had higher levels of T-cell derived and pro-inflammatory cytokines than ACPA negative patients. As systemic and local inflammation was similar in the two groups, these findings support a distinct synovial physiopathology. PMID:24485167

  14. Characterization of synovial fluid cytokine profiles in chronic meniscal tear of the knee.

    PubMed

    Bigoni, Marco; Turati, Marco; Sacerdote, Paola; Gaddi, Diego; Piatti, Massimiliano; Castelnuovo, Alberto; Franchi, Silvia; Gandolla, Marta; Pedrocchi, Alessandra; Omeljaniuk, Robert J; Bresciani, Elena; Locatelli, Vittorio; Torsello, Antonio

    2017-02-01

    Concentrations of pro- and anti-inflammatory cytokines in synovial fluid samples collected from patients with chronic meniscal tears were investigated. An acute inflammatory response is generally reported 24-48 h after knee injury, but the largest body of data available in literature concerns anterior cruciate ligament injury and very little information is available about the balance of soluble factors in the synovial fluid of knees with chronic meniscal tears. Sixty-nine patients (46 males and 23 females) with meniscal tear that occurred more than 3 months earlier were enrolled. According to cartilage integrity assessment by arthroscopic examination, patients were assigned to one of the following groups: (i) no chondral damage (n = 18); (ii) chondral damage graded from I to II (n = 15); and (iii) chondral damage graded from III to IV (n = 37). In all groups, levels of IL-10 and inflammatory cytokines IL-6, TNF-α, and IL-8 where greater compared with those reported in the intact population; by contrast, levels of IL-1ra and IL-1β were significantly lower. Interestingly, IL-6 levels were higher in female than male patients. Cytokine levels did not correlate with degree of chondral damage. IL-6 and IL-1ra levels positively correlated with IL-1β, and negatively correlated with TNF-α. Interestingly, levels of IL-1β and TNF-α were inversely correlated. Our data demonstrate increased levels of pro-inflammatory cytokines (IL-6, IL-8, and TNF-α) in the chronic phase of meniscal trauma. This pro-inflammatory state is maintained in the joint from the time of initial injury to several months later and could be a key factor in hampering cartilage regeneration. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:340-346, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial.

    PubMed

    Lee, Daniel W; Kochenderfer, James N; Stetler-Stevenson, Maryalice; Cui, Yongzhi K; Delbrook, Cindy; Feldman, Steven A; Fry, Terry J; Orentas, Rimas; Sabatino, Marianna; Shah, Nirali N; Steinberg, Seth M; Stroncek, Dave; Tschernia, Nick; Yuan, Constance; Zhang, Hua; Zhang, Ling; Rosenberg, Steven A; Wayne, Alan S; Mackall, Crystal L

    2015-02-07

    Chimeric antigen receptor (CAR) modified T cells targeting CD19 have shown activity in case series of patients with acute and chronic lymphocytic leukaemia and B-cell lymphomas, but feasibility, toxicity, and response rates of consecutively enrolled patients treated with a consistent regimen and assessed on an intention-to-treat basis have not been reported. We aimed to define feasibility, toxicity, maximum tolerated dose, response rate, and biological correlates of response in children and young adults with refractory B-cell malignancies treated with CD19-CAR T cells. This phase 1, dose-escalation trial consecutively enrolled children and young adults (aged 1-30 years) with relapsed or refractory acute lymphoblastic leukaemia or non-Hodgkin lymphoma. Autologous T cells were engineered via an 11-day manufacturing process to express a CD19-CAR incorporating an anti-CD19 single-chain variable fragment plus TCR zeta and CD28 signalling domains. All patients received fludarabine and cyclophosphamide before a single infusion of CD19-CAR T cells. Using a standard 3 + 3 design to establish the maximum tolerated dose, patients received either 1 × 10(6) CAR-transduced T cells per kg (dose 1), 3 × 10(6) CAR-transduced T cells per kg (dose 2), or the entire CAR T-cell product if sufficient numbers of cells to meet the assigned dose were not generated. After the dose-escalation phase, an expansion cohort was treated at the maximum tolerated dose. The trial is registered with ClinicalTrials.gov, number NCT01593696. Between July 2, 2012, and June 20, 2014, 21 patients (including eight who had previously undergone allogeneic haematopoietic stem-cell transplantation) were enrolled and infused with CD19-CAR T cells. 19 received the prescribed dose of CD19-CAR T cells, whereas the assigned dose concentration could not be generated for two patients (90% feasible). All patients enrolled were assessed for response. The maximum tolerated dose was defined as 1 × 10(6) CD19-CAR T cells per kg. All toxicities were fully reversible, with the most severe being grade 4 cytokine release syndrome that occurred in three (14%) of 21 patients (95% CI 3·0-36·3). The most common non-haematological grade 3 adverse events were fever (nine [43%] of 21 patients), hypokalaemia (nine [43%] of 21 patients), fever and neutropenia (eight [38%] of 21 patients), and cytokine release syndrome (three [14%) of 21 patients). CD19-CAR T cell therapy is feasible, safe, and mediates potent anti-leukaemic activity in children and young adults with chemotherapy-resistant B-precursor acute lymphoblastic leukaemia. All toxicities were reversible and prolonged B-cell aplasia did not occur. National Institutes of Health Intramural funds and St Baldrick's Foundation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Mesenchymal Stem Cell Therapy for Acute Radiation Syndrome: Innovative Medical Approaches in Military Medicine

    DTIC Science & Technology

    2015-01-30

    mesenchymal stem cells . Cytokine Growth Factor Rev. 2009;20:419–27. 8. Wang L, Li Y, Chen X, Chen J, Gautam SC, Xu Y, et al. MCP...Literature 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Mesenchymal stem cell therapy for acute radiation syndrome: innovative medical...Independent Research Program 14. ABSTRACT See reprint. 15. SUBJECT TERMS Acute radiation syndrome, Mesenchymal stem cell , cell therapy,

  17. Intratracheal IL-6 protects against lung inflammation in direct, but not indirect, causes of acute lung injury in mice.

    PubMed

    Bhargava, Rhea; Janssen, William; Altmann, Christopher; Andrés-Hernando, Ana; Okamura, Kayo; Vandivier, R William; Ahuja, Nilesh; Faubel, Sarah

    2013-01-01

    Serum and bronchoalveolar fluid IL-6 are increased in patients with acute respiratory distress syndrome (ARDS) and predict prolonged mechanical ventilation and poor outcomes, although the role of intra-alveolar IL-6 in indirect lung injury is unknown. We investigated the role of endogenous and exogenous intra-alveolar IL-6 in AKI-mediated lung injury (indirect lung injury), intraperitoneal (IP) endotoxin administration (indirect lung injury) and, for comparison, intratracheal (IT) endotoxin administration (direct lung injury) with the hypothesis that IL-6 would exert a pro-inflammatory effect in these causes of acute lung inflammation. Bronchoalveolar cytokines (IL-6, CXCL1, TNF-α, IL-1β, and IL-10), BAL fluid neutrophils, lung inflammation (lung cytokines, MPO activity [a biochemical marker of neutrophil infiltration]), and serum cytokines were determined in adult male C57Bl/6 mice with no intervention or 4 hours after ischemic AKI (22 minutes of renal pedicle clamping), IP endotoxin (10 µg), or IT endotoxin (80 µg) with and without intratracheal (IT) IL-6 (25 ng or 200 ng) treatment. Lung inflammation was similar after AKI, IP endotoxin, and IT endotoxin. BAL fluid IL-6 was markedly increased after IT endotoxin, and not increased after AKI or IP endotoxin. Unexpectedly, IT IL-6 exerted an anti-inflammatory effect in healthy mice characterized by reduced BAL fluid cytokines. IT IL-6 also exerted an anti-inflammatory effect in IT endotoxin characterized by reduced BAL fluid cytokines and lung inflammation; IT IL-6 had no effect on lung inflammation in AKI or IP endotoxin. IL-6 exerts an anti-inflammatory effect in direct lung injury from IT endotoxin, yet has no role in the pathogenesis or treatment of indirect lung injury from AKI or IP endotoxin. Since intra-alveolar inflammation is important in the pathogenesis of direct, but not indirect, causes of lung inflammation, IT anti-inflammatory treatments may have a role in direct, but not indirect, causes of ARDS.

  18. IL-1 or TNF receptor gene deletion delays onset of encephalopathy and attenuates brain edema in experimental acute liver failure.

    PubMed

    Bémeur, Chantal; Qu, Hong; Desjardins, Paul; Butterworth, Roger F

    2010-01-01

    Previous reports suggested that brain-derived proinflammatory cytokines are involved in the pathogenesis of hepatic encephalopathy (HE) and brain edema in acute liver failure (ALF). To further address this issue, expression of interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) mRNAs were measured in the brains of mice with acute liver failure resulting from exposure to azoxymethane. In addition, time to severe encephalopathy (coma) was assessed in mice lacking genes coding for interferon-gamma, the tumor necrosis factor receptor-1 or the interleukin-1 type 1 receptor. Interleukin-1beta, tumor necrosis factor-alpha and interferon-gamma expression were quantified using RT-PCR. Significant increases in interleukin-1beta and tumor necrosis factor-alpha mRNA were observed in the frontal cortex of azoxymethane-treated wild-type mice at coma stages of encephalopathy. Interferon-gamma, however, could not be detected in the brains of these animals. Onset of severe encephalopathy (coma) and brain edema in ALF mice were significantly delayed in interleukin-1 type 1 receptor or tumor necrosis factor receptor-1 knockout mice. Deletion of the interferon-gamma gene, on the other hand, had no significative effect on the neurological status or brain water content of acute liver failure mice. These results demonstrate that toxic liver injury resulting from exposure to azoxymethane is associated with selective induction of proinflammatory cytokines in the brain and that deletion of tumor necrosis factor receptor-1 or interlukin-1 type 1 receptor delays the onset of coma and brain edema in this model of acute liver failure. These findings further support a role for selective brain-derived cytokines in the pathogenesis of the cerebral complications in acute liver failure and suggest that anti-inflammatory strategies could be beneficial in their prevention. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Effects of B Cell Depletion on Early Mycobacterium tuberculosis Infection in Cynomolgus Macaques.

    PubMed

    Phuah, Jiayao; Wong, Eileen A; Gideon, Hannah P; Maiello, Pauline; Coleman, M Teresa; Hendricks, Matthew R; Ruden, Rachel; Cirrincione, Lauren R; Chan, John; Lin, Philana Ling; Flynn, JoAnne L

    2016-05-01

    Although recent studies in mice have shown that components of B cell and humoral immunity can modulate the immune responses against Mycobacterium tuberculosis, the roles of these components in human and nonhuman primate infections are unknown. The cynomolgus macaque (Macaca fascicularis) model of M. tuberculosis infection closely mirrors the infection outcomes and pathology in human tuberculosis (TB). The present study used rituximab, an anti-CD20 antibody, to deplete B cells in M. tuberculosis-infected macaques to examine the contribution of B cells and humoral immunity to the control of TB in nonhuman primates during the acute phase of infection. While there was no difference in the overall pathology, disease profession, and clinical outcome between the rituximab-treated and untreated macaques in acute infection, analyzing individual granulomas revealed that B cell depletion resulted in altered local T cell and cytokine responses, increased bacterial burden, and lower levels of inflammation. There were elevated frequencies of T cells producing interleukin-2 (IL-2), IL-10, and IL-17 and decreased IL-6 and IL-10 levels within granulomas from B cell-depleted animals. The effects of B cell depletion varied among granulomas in an individual animal, as well as among animals, underscoring the previously reported heterogeneity of local immunologic characteristics of tuberculous granulomas in nonhuman primates. Taken together, our data clearly showed that B cells can modulate the local granulomatous response in M. tuberculosis-infected macaques during acute infection. The impact of these alterations on disease progression and outcome in the chronic phase remains to be determined. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Immunotherapeutic implications of IL-6 blockade for cytokine storm.

    PubMed

    Tanaka, Toshio; Narazaki, Masashi; Kishimoto, Tadamitsu

    2016-07-01

    IL-6 contributes to host defense against infections and tissue injuries. However, exaggerated, excessive synthesis of IL-6 while fighting environmental stress leads to an acute severe systemic inflammatory response known as 'cytokine storm', since high levels of IL-6 can activate the coagulation pathway and vascular endothelial cells but inhibit myocardial function. Remarkable beneficial effects of IL-6 blockade therapy using a humanized anti-IL-6 receptor antibody, tocilizumab were recently observed in patients with cytokine release syndrome complicated by T-cell engaged therapy. In this review we propose the possibility that IL-6 blockade may constitute a novel therapeutic strategy for other types of cytokine storm, such as the systemic inflammatory response syndrome including sepsis, macrophage activation syndrome and hemophagocytic lymphohistiocytosis.

  1. Profile of sarilumab and its potential in the treatment of rheumatoid arthritis.

    PubMed

    Raimondo, Maria Gabriella; Biggioggero, Martina; Crotti, Chiara; Becciolini, Andrea; Favalli, Ennio Giulio

    2017-01-01

    In recent years the use of biotechnological agents has drastically revolutionized the therapeutic approach and the progression of rheumatoid arthritis (RA). In particular, interleukin-6 (IL-6) has been demonstrated as a pivotal cytokine in the pathogenesis of the disease by contributing to both the innate and the adaptive immune system perturbation, and to the production of acute-phase proteins involved in the systemic expression of the disorder. The first marketed IL-6 blocker was tocilizumab, a humanized anti-IL-6 receptor (anti-IL-6R) monoclonal antibody. The successful use of tocilizumab in RA has encouraged the development of other biologic agents specifically targeting the IL-6 pathway, either directed against IL-6 cytokine (sirukumab, olokizumab, and clazakizumab) or IL-6 receptor (sarilumab). One Phase II and six Phase III randomized controlled trials demonstrated a broad efficacy of sarilumab across all RA patient subtypes, ranging from methotrexate (MTX) to tumor necrosis factor inhibitor insufficient responders. In particular, sarilumab as monotherapy demonstrated a clear head-to-head superiority over adalimumab in MTX-intolerant subjects. In addition, compared with tocilizumab, sarilumab showed a similar safety profile with significantly higher affinity and longer half-life, responsible for a reduction of the frequency of administration (every other week instead weekly). All these aspects may be important in defining the strategy for positioning sarilumab in the treatment algorithm of RA. Indeed, observational data coming from post-marketing real-life studies may provide crucial additional information for better understanding the role of sarilumab in the management of the disease. This review summarizes both the biological role of IL-6 in RA and the clinical data available on sarilumab as an alternative therapeutic option in RA patients.

  2. Distinctive inflammatory profile between acute focal bacterial nephritis and acute pyelonephritis in children.

    PubMed

    Mizutani, Makoto; Hasegawa, Shunji; Matsushige, Takeshi; Ohta, Naoki; Kittaka, Setsuaki; Hoshide, Madoka; Kusuda, Takeshi; Takahashi, Kazumasa; Ichihara, Kiyoshi; Ohga, Shouichi

    2017-11-01

    Acute focal bacterial nephritis (AFBN) is a severe form of upper urinary tract infection (UTI) with neurological manifestations and focal renal mass lesions on computed tomography (CT). Prolonged antibiotic therapy may improve the renal outcome, but the early differential diagnosis of AFBN from acute pyelonephritis (APN) is challenging. We searched for effective biomarkers of AFBN based on the pathophysiology of upper UTIs. Of 52 upper UTI cases treated at Yamaguchi University between 2009 and 2016, 38 pediatric patients with AFBN (n=17) or APN (n=21) who underwent ultrasonography and/or CT were enrolled. The clinical data and serum cytokine concentrations were analyzed to differentiate AFBN from APN. AFBN patients tended to be older, and have a higher body temperature, longer febrile period, more frequent neurological symptoms, higher immature neutrophil count, lower lymphocyte count, higher procalcitonin and urine β 2 -microglobulin levels. AFBN patients showed higher serum levels of IFN-γ, IL-6, IL-10 and soluble TNF-receptor 1 (sTNFR1) (all p<0.05). Although the cytokine levels were variably correlated among each other, multiple logistic regression analysis revealed that combination of IFN-γ and IL-6 levels were most relevant for distinguishing AFBN from APN. The discriminant power of the logistic equation was 0.86 in terms of the area under the curve by the ROC analysis. Circulating 4 out of 7 cytokines in AFBN patients were at higher levels compared with those in APN patients. IFN-γ and IL-6 levels might most effectively distinguish AFBN from APN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Acute Morphine, Chronic Morphine, and Morphine Withdrawal Differently Affect Pleiotrophin, Midkine, and Receptor Protein Tyrosine Phosphatase β/ζ Regulation in the Ventral Tegmental Area.

    PubMed

    García-Pérez, Daniel; Laorden, M Luisa; Milanés, M Victoria

    2017-01-01

    Pleiotrophin (PTN) and midkine (MK) are secreted growth factors and cytokines, proposed to be significant neuromodulators with multiple neuronal functions. PTN and MK are generally related with cell proliferation, growth, and differentiation by acting through different receptors. PTN or MK, signaling through receptor protein tyrosine phosphatase β/ζ (RPTPβ/ζ), lead to the activation of extracellular signal-regulated kinases (ERKs) and thymoma viral proto-oncogene (Akt), which induce morphological changes and modulate addictive behaviors. Besides, there is increasing evidence that during the development of drug addiction, astrocytes contribute to the synaptic plasticity by synthesizing and releasing substances such as cytokines. In the present work, we studied the effect of acute morphine, chronic morphine, and morphine withdrawal on PTN, MK, and RPTPβ/ζ expression and on their signaling pathways in the ventral tegmental area (VTA). Present results indicated that PTN, MK, and RPTPβ/ζ levels increased after acute morphine injection, returned to basal levels during chronic opioid treatment, and were upregulated again during morphine withdrawal. We also observed an activation of astrocytes after acute morphine injection and during opiate dependence and withdrawal. In addition, immunofluorescence analysis revealed that PTN, but not MK, was overexpressed in astrocytes and that dopaminergic neurons expressed RPTPβ/ζ. Interestingly, p-ERK 1/2 levels during chronic morphine and morphine withdrawal correlated RPTPβ/ζ expression. All these observations suggest that the neuroprotective and behavioral adaptations that occur during opiate addiction could be, at least partly, mediated by these cytokines.

  4. Orally administered Taenia solium Calreticulin prevents experimental intestinal inflammation and is associated with a type 2 immune response

    PubMed Central

    Cruz-Rivera, Mayra; Diaz-Gandarilla, Jose Alfredo; Flores-Torres, Marco Antonio; Avila, Guillermina; Perfiliev, Maria; Salazar, Ana Maria; Arriaga-Pizano, Lourdes; Ostrosky-Wegman, Patricia; Flisser, Ana

    2017-01-01

    Intestinal helminth antigens are inducers of type 2 responses and can elicit regulatory immune responses, resulting in dampened inflammation. Several platyhelminth proteins with anti-inflammatory activity have been reported. We have identified, cloned and expressed the Taenia solium calreticulin (rTsCRT) and shown that it predominantly induces a type 2 response characterized by IgG1, IL-4 and IL-5 production in mice. Here, we report the rTsCRT anti-inflammatory activity in a well-known experimental colitis murine model. Mice were orally immunized with purified rTsCRT and colitis was induced with trinitrobenzene sulfonic acid (TNBS). Clinical signs of disease, macroscopic and microscopic tissue inflammation, cytokine production and micronuclei formation, as a marker of genotoxicity, were measured in order to assess the effect of rTsCRT immunization on experimentally induced colitis. rTsCRT administration prior to TNBS instillation significantly reduced the inflammatory parameters, including the acute phase cytokines TNF-α, IL-1β and IL-6. Dampened inflammation was associated with increased local expression of IL-13 and systemic IL-10 and TGF-β production. Genotoxic damage produced by the inflammatory response was also precluded. Our results show that oral treatment with rTsCRT prevents excessive TNBS-induced inflammation in mice and suggest that rTsCRT has immunomodulatory properties associated with the expression of type 2 and regulatory cytokines commonly observed in other helminths. PMID:29036211

  5. Cytokine effects on the basal ganglia and dopamine function: the subcortical source of inflammatory malaise.

    PubMed

    Felger, Jennifer C; Miller, Andrew H

    2012-08-01

    Data suggest that cytokines released during the inflammatory response target subcortical structures including the basal ganglia as well as dopamine function to acutely induce behavioral changes that support fighting infection and wound healing. However, chronic inflammation and exposure to inflammatory cytokines appears to lead to persisting alterations in the basal ganglia and dopamine function reflected by anhedonia, fatigue, and psychomotor slowing. Moreover, reduced neural responses to hedonic reward, decreased dopamine metabolites in the cerebrospinal fluid and increased presynaptic dopamine uptake and decreased turnover have been described. This multiplicity of changes in the basal ganglia and dopamine function suggest fundamental effects of inflammatory cytokines on dopamine synthesis, packaging, release and/or reuptake, which may sabotage and circumvent the efficacy of current treatment approaches. Thus, examination of the mechanisms by which cytokines alter the basal ganglia and dopamine function will yield novel insights into the treatment of cytokine-induced behavioral changes and inflammatory malaise. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Phase II Evaluation of IPI-926, an Oral Hedgehog Inhibitor, in Patients with Myelofibrosis

    PubMed Central

    Sasaki, Koji; Gotlib, Jason R.; Mesa, Ruben A.; Newberry, Kate J.; Ravandi, Farhad; Cortes, Jorge E.; Kelly, Patrick; Kutok, Jeffery L.; Kantarjian, Hagop M.; Verstovsek, Srdan

    2016-01-01

    The clinical safety and efficacy of IPI-926 was evaluated in 14 patients with myelofibrosis in a phase II study. Patients received 160-mg IPI-926 orally in continuous 28-day cycles. The median treatment duration was 5.1 months, and all patients had discontinued treatment by 7.5 months. Nine patients discontinued due to lack of response as determined by the treating physician, two after developing acute leukemia and one due to disease progression/loss of response. Twelve patients had slight reductions in spleen size (less than 50% from baseline), but symptoms did not improve consistently. One patient achieved transfusion independence lasting 5 months. Reductions in GLI1 mRNA and protein levels, JAK2V617F allele burden, degree of fibrosis, or cytokine levels were observed in some patients, but were not significant when evaluated for the cohort. Low-grade gastrointestinal/liver abnormalities were the most common toxicities. The results did not support continued evaluation of IPI-926 as a monotherapy in myelofibrosis. PMID:25641433

  7. Involvement of the cytokine-IDO1-AhR loop in zinc oxide nanoparticle-induced acute pulmonary inflammation.

    PubMed

    Ho, Chia-Chi; Lee, Hui-Ling; Chen, Chao-Yu; Luo, Yueh-Hsia; Tsai, Ming-Hsien; Tsai, Hui-Ti; Lin, Pinpin

    2017-04-01

    Zinc oxide nanoparticles (ZnONPs) are widely used in our daily life, such as in sunscreens and electronic nanodevices. However, pulmonary exposure to ZnONPs causes acute pulmonary inflammation, which is considered as an initial event for various respiratory diseases. Thus, elucidation of the underlying cellular mechanisms of ZnONPs can help us in predicting their potential effects in respiratory diseases. In this study, we observed that ZnONPs increased proinflammatory cytokines, accompanied with an increased expression of aryl hydrocarbon receptor (AhR) and its downstream target cytochrome P450 1A1 (CYP1A1) in macrophages in vitro and in mouse lung epithelia in vivo. Moreover, zinc nitrate, but not silica or titanium dioxide nanoparticles (NPs), had similar effects on macrophages, indicating that the zinc element or ion released from ZnONPs is likely responsible for the activation of the AhR pathway. Cotreatment with an AhR antagonist or AhR knockout reduced ZnONPs-induced cytokine secretion in macrophages or mice, respectively. Furthermore, kynurenine (KYN), an endogenous AhR agonist and a tryptophan metabolite catalyzed by indoleamine 2,3-dioxygenase (IDO), was increased in the serums of mice that aspirated ZnONPs. Consistently, ZnONPs increased IDO1 expression in lung cells in vitro and in vivo. Finally, AhR knockout reduced ZnONPs-induced pulmonary inflammation, cytokine secretion and KYN production in mice, suggesting that AhR activation is involved in ZnONPs-induced cytokine secretion and pulmonary inflammation. In summary, we demonstrated that the pulmonary exposure of ZnONPs stimulated the cytokine-IDO1-AhR loop in the lungs, which has been implied to play roles in immune dysfunctions.

  8. Low level exposure to monomethyl arsonous acid-induced the over-production of inflammation-related cytokines and the activation of cell signals associated with tumor progression in a urothelial cell model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escudero-Lourdes, C., E-mail: cescuder@uaslp.m; Medeiros, M.K.; Cardenas-Gonzalez, M.C.

    2010-04-15

    Human bladder cancer has been associated with chronic exposure to arsenic. Chronic exposure of an immortalized non-tumorigenic urothelial cell line (UROtsa cells) to arsenicals has transformed these cells to a malignant phenotype, but the involved mechanisms are not fully understood. Chronic inflammation has been linked with cancer development mainly because many pro-inflammatory cytokines, growth factors as well as angiogenic chemokines have been found in tumors. In this study the chronology of inflammatory cytokines production was profiled in UROtsa cells chronically exposed to the toxic arsenic metabolite, monomethylarsonous acid [50 nM MMA(III)] to know the role of inflammation in cell transformation.more » Acute 50 nM MMA(III) exposure induced over-production of many pro-inflammatory cytokines as soon as 12 h after acute exposure. The same cytokines remain over-regulated after chronic exposure to 50 nM MMA(III), especially after 3 mo exposure. At 3 mo exposure the sustained production of cytokines like IL-1, IL-6, IL-8 and TNF is coincident with the appearance of characteristics associated with cell transformation seen in other arsenic-UROtsa studies. The sustained and increased activation of NFkappaB and c-Jun is also present along the transformation process and the phosphorylated proteins p38 MAPK and ERK 1/2 are increased also through the time line. Taken together these results support the notion that chronic inflammation is associated within MMA(III)-induced cell transformation and may act as a promoting factor in UROtsa cell transformation.« less

  9. Multiplex Analysis of Serum Cytokines in Humans with Hantavirus Pulmonary Syndrome.

    PubMed

    Morzunov, Sergey P; Khaiboullina, Svetlana F; St Jeor, Stephen; Rizvanov, Albert A; Lombardi, Vincent C

    2015-01-01

    Hantavirus pulmonary syndrome (HPS) is an acute zoonotic disease transmitted primarily through inhalation of virus-contaminated aerosols. Hantavirus infection of endothelial cells leads to increased vascular permeability without a visible cytopathic effect. For this reason, it has been suggested that the pathogenesis of HPS is indirect with immune responses, such as cytokine production, playing a dominant role. In order to investigate their potential contribution to HPS pathogenesis, we analyzed the serum of hantavirus-infected subjects and healthy controls for 68 different cytokines, chemokines, angiogenic, and growth factors. Our analysis identified differential expression of cytokines that promote tissue migration of mononuclear cells including T lymphocytes, natural killer cells, and dendritic cells. Additionally, we observed a significant upregulation of cytokines known to regulate leukocyte migration and subsequent repair of lung tissue, as well as cytokines known to increase endothelial monolayer permeability and facilitate leukocyte transendothelial migration. Conversely, we observed a downregulation of cytokines associated with platelet numbers and function, consistent with the thrombocytopenia observed in subjects with HPS. This study corroborates clinical findings and extends our current knowledge regarding immunological and laboratory findings in subjects with HPS.

  10. Liver Tumor Promotion by 2,3,7,8-Tetrachlorodibenzo-p-dioxin Is Dependent on the Aryl Hydrocarbon Receptor and TNF/IL-1 Receptors

    PubMed Central

    Kennedy, Gregory D.; Nukaya, Manabu; Moran, Susan M.; Glover, Edward; Weinberg, Samuel; Balbo, Silvia; Hecht, Stephen S.; Pitot, Henry C.; Drinkwater, Norman R.; Bradfield, Christopher A.

    2014-01-01

    We set out to better understand the signal transduction pathways that mediate liver tumor promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxn (“dioxin”). To this end, we first employed congenic mice homozygous for either the Ahrb1 or Ahrd alleles (encoding an aryl hydrocarbon receptor (AHR) with high or low binding affinity for dioxin, respectively) and demonstrated that hepatocellular tumor promotion in response to dioxin segregated with the Ahr locus. Once we had genetic evidence for the importance of AHR signaling, we then asked if tumor promotion by dioxin was influenced by “interleukin-1 (IL-1)-like” inflammatory cytokines. The importance of this question arose from our earlier observation that aspects of the acute hepatocellular toxicity of dioxin are dependent upon IL1-like cytokine signaling. To address this issue, we employed a triple knock-out (TKO) mouse model with null alleles at the loci encoding the three relevant receptors for tumor necrosis factors α and β and IL-1α and IL-1β (i.e., null alleles at the Tnfrsf1a, Tnfrsf1b, and Il-1r1 loci). The observation that TKO mice were resistant to the tumor promoting effects of dioxin in liver suggests that inflammatory cytokines play an important step in dioxin mediated liver tumor promotion in the mouse. Collectively, these data support the idea that the mechanism of dioxin acute hepatotoxicity and its activity as a promoter in a mouse two stage liver cancer model may be similar, i.e., tumor promotion by dioxin, like acute hepatotoxicity, are mediated by the linked action of two receptor systems, the AHR and the receptors for the “IL-1-like” cytokines. PMID:24718703

  11. Circulating cytokine levels in acute pancreatitis-model of SIRS/CARS can help in the clinical assessment of disease severity.

    PubMed

    Gunjaca, Ivan; Zunic, Josip; Gunjaca, Mihaela; Kovac, Zdenko

    2012-04-01

    The aim of our study was to evaluate the pro- and anti-inflammatory cytokine response during acute pancreatitis and its predictive value on severity of disease. A hospital-based prospective clinical study was conducted. Twenty patients with acute pancreatitis were enrolled during a 12-month period. Plasma concentrations of TNF-α, IL-1β, IL-6, and IL-10 were determined at days 1, 2, 3, 6, and 9. The patient population was analyzed by type of acute pancreatitis. Severity was defined according to the Atlanta criteria for assessing severity of acute pancreatitis. Clinical variables were recorded to patients classified in one of two groups: severe acute pancreatitis (SAP group) and mild acute pancreatitis (MILD group). Patients with SAP had significantly higher average levels of IL-6 compared to the MILD group patients (539.2 pg/L vs. 23.4 pg/L, p < 0.0001). Also, the values of IL-10 were significantly higher in patients with SAP (242.4 pg/L vs. 8.1 pg/L, p = 0.003). The values of TNF-α were not significantly different in both groups. The value of IL-6 and IL-10 showed a positive correlation (r = 0.7964, p < 0.0001). Although a relatively small sample of patients was used, we can conclude that the determination of the value of IL-6 and IL-10 can help in the clinical assessment of disease severity.

  12. Intermittent fasting prompted recovery from dextran sulfate sodium-induced colitis in mice.

    PubMed

    Okada, Toshihiko; Otsubo, Takeshi; Hagiwara, Teruki; Inazuka, Fumika; Kobayashi, Eiko; Fukuda, Shinji; Inoue, Takuya; Higuchi, Kazuhide; Kawamura, Yuki I; Dohi, Taeko

    2017-09-01

    Fasting-refeeding in mice induces transient hyperproliferation of colonic epithelial cells, which is dependent on the lactate produced as a metabolite of commensal bacteria. We attempted to manipulate colonic epithelial cell turnover with intermittent fasting to prompt recovery from acute colitis. Acute colitis was induced in C57BL/6 mice by administration of dextran sulfate sodium in the drinking water for 5 days. From day 6, mice were fasted for 36 h and refed normal bait, glucose powder, or lactylated high-amylose starch. On day 9, colon tissues were subjected to analysis of histology and cytokine expression. The effect of lactate on the proliferation of colonocytes was assessed by enema in vivo and primary culture in vitro . Intermittent fasting resulted in restored colonic crypts and less expression of interleukin-1β and interleukin-17 in the colon than in mice fed ad libitum . Administration of lactate in the colon at refeeding time by enema or by feeding lactylated high-amylose starch increased the number of regenerating crypts. Addition of lactate but not butyrate or acetate supported colony formation of colonocytes in vitro . In conclusion, intermittent fasting in the resolution phase of acute colitis resulted in better recovery of epithelial cells and reduced inflammation.

  13. Intermittent fasting prompted recovery from dextran sulfate sodium-induced colitis in mice

    PubMed Central

    Okada, Toshihiko; Otsubo, Takeshi; Hagiwara, Teruki; Inazuka, Fumika; Kobayashi, Eiko; Fukuda, Shinji; Inoue, Takuya; Higuchi, Kazuhide; Kawamura, Yuki I.; Dohi, Taeko

    2017-01-01

    Fasting-refeeding in mice induces transient hyperproliferation of colonic epithelial cells, which is dependent on the lactate produced as a metabolite of commensal bacteria. We attempted to manipulate colonic epithelial cell turnover with intermittent fasting to prompt recovery from acute colitis. Acute colitis was induced in C57BL/6 mice by administration of dextran sulfate sodium in the drinking water for 5 days. From day 6, mice were fasted for 36 h and refed normal bait, glucose powder, or lactylated high-amylose starch. On day 9, colon tissues were subjected to analysis of histology and cytokine expression. The effect of lactate on the proliferation of colonocytes was assessed by enema in vivo and primary culture in vitro. Intermittent fasting resulted in restored colonic crypts and less expression of interleukin-1β and interleukin-17 in the colon than in mice fed ad libitum. Administration of lactate in the colon at refeeding time by enema or by feeding lactylated high-amylose starch increased the number of regenerating crypts. Addition of lactate but not butyrate or acetate supported colony formation of colonocytes in vitro. In conclusion, intermittent fasting in the resolution phase of acute colitis resulted in better recovery of epithelial cells and reduced inflammation. PMID:28955126

  14. Acute-Phase Inflammatory Response to Single-Bout HIIT and Endurance Training: A Comparative Study.

    PubMed

    Kaspar, Felix; Jelinek, Herbert F; Perkins, Steven; Al-Aubaidy, Hayder A; deJong, Bev; Butkowski, Eugene

    2016-01-01

    This study compared acute and late effect of single-bout endurance training (ET) and high-intensity interval training (HIIT) on the plasma levels of four inflammatory cytokines and C-reactive protein and insulin-like growth factor 1. Cohort study with repeated-measures design. Seven healthy untrained volunteers completed a single bout of ET and HIIT on a cycle ergometer. ET and HIIT sessions were held in random order and at least 7 days apart. Blood was drawn before the interventions and 30 min and 2 days after the training sessions. Plasma samples were analyzed with ELISA for the interleukins (IL), IL-1β, IL-6, and IL-10, monocyte chemoattractant protein-1 (MCP-1), insulin growth factor 1 (IGF-1), and C-reactive protein (CRP). Statistical analysis was with Wilcoxon signed-rank tests. ET led to both a significant acute and long-term inflammatory response with a significant decrease at 30 minutes after exercise in the IL-6/IL-10 ratio (-20%; p = 0.047) and a decrease of MCP-1 (-17.9%; p = 0.03). This study demonstrates that ET affects the inflammatory response more adversely at 30 minutes after exercise compared to HIIT. However, this is compensated by a significant decrease in MCP-1 at two days associated with a reduced risk of atherosclerosis.

  15. Obesity, Inflammation and Acute Myocardial Infarction - Expression of leptin, IL-6 and high sensitivity-CRP in Chennai based population.

    PubMed

    Rajendran, Karthick; Devarajan, Nalini; Ganesan, Manohar; Ragunathan, Malathi

    2012-08-14

    Obesity, characterised by increased fat mass and is currently regarded as a pro-inflammatory state and often associated with increased risk of cardiovascular diseases (CVD) including Myocardial infarction. There is an upregulation of inflammatory markers such as interleukin-6, interleukin-6 receptor and acute phase protein CRP in Acute Myocardial Infarction (AMI) patients but the exact mechanism linking obesity and inflammation is not known. It is of our interest to investigate if serum leptin (ob gene product) is associated with AMI and correlated with inflammatory proteins namely Interleukin-6 (IL-6) and high sensitivity - C reactive protein (hs-CRP). Serum leptin levels were significantly higher in AMI patients when compared to Non-CVD controls. IL-6 and hs-CRP were also elevated in the AMI group and leptin correlated positively with IL-6 and hs-CRP. Incidentally this is the first report from Chennai based population, India. The strong correlation between serum levels of leptin and IL-6 implicates an involvement of leptin in the upregulation of inflammatory cytokines during AMI. We hypothesise that the increase in values of IL-6, hs-CRP and their correlation to leptin in AMI patients could be due to participation of leptin in the signaling cascade after myocardial ischemia.

  16. Mesenchymal stem cells correct haemodynamic dysfunction associated with liver injury after extended resection in a pig model.

    PubMed

    Tautenhahn, Hans-Michael; Brückner, Sandra; Uder, Christiane; Erler, Silvio; Hempel, Madlen; von Bergen, Martin; Brach, Janine; Winkler, Sandra; Pankow, Franziska; Gittel, Claudia; Baunack, Manja; Lange, Undine; Broschewitz, Johannes; Dollinger, Matthias; Bartels, Michael; Pietsch, Uta; Amann, Kerstin; Christ, Bruno

    2017-06-01

    In patients, acute kidney injury (AKI) is often due to haemodynamic impairment associated with hepatic decompensation following extended liver surgery. Mesenchymal stem cells (MSCs) supported tissue protection in a variety of acute and chronic diseases, and might hence ameliorate AKI induced by extended liver resection. Here, 70% liver resection was performed in male pigs. MSCs were infused through a central venous catheter and haemodynamic parameters as well as markers of acute kidney damage were monitored under intensive care conditions for 24 h post-surgery. Cytokine profiles were established to anticipate the MSCs' potential mode of action. After extended liver resection, hyperdynamic circulation, associated with hyponatraemia, hyperkalaemia, an increase in serum aldosterone and low urine production developed. These signs of hepatorenal dysfunction and haemodynamic impairment were corrected by MSC treatment. MSCs elevated PDGF levels in the serum, possibly contributing to circulatory homeostasis. Another 14 cytokines were increased in the kidney, most of which are known to support tissue regeneration. In conclusion, MSCs supported kidney and liver function after extended liver resection. They probably acted through paracrine mechanisms improving haemodynamics and tissue homeostasis. They might thus provide a promising strategy to prevent acute kidney injury in the context of post-surgery acute liver failure.

  17. Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP

    PubMed Central

    Mukherjee, Rajarshi; Mareninova, Olga A; Odinokova, Irina V; Huang, Wei; Murphy, John; Chvanov, Michael; Javed, Muhammad A; Wen, Li; Booth, David M; Cane, Matthew C; Awais, Muhammad; Gavillet, Bruno; Pruss, Rebecca M; Schaller, Sophie; Molkentin, Jeffery D; Tepikin, Alexei V; Petersen, Ole H; Pandol, Stephen J; Gukovsky, Ilya; Criddle, David N; Gukovskaya, Anna S

    2016-01-01

    Objective Acute pancreatitis is caused by toxins that induce acinar cell calcium overload, zymogen activation, cytokine release and cell death, yet is without specific drug therapy. Mitochondrial dysfunction has been implicated but the mechanism not established. Design We investigated the mechanism of induction and consequences of the mitochondrial permeability transition pore (MPTP) in the pancreas using cell biological methods including confocal microscopy, patch clamp technology and multiple clinically representative disease models. Effects of genetic and pharmacological inhibition of the MPTP were examined in isolated murine and human pancreatic acinar cells, and in hyperstimulation, bile acid, alcoholic and choline-deficient, ethionine-supplemented acute pancreatitis. Results MPTP opening was mediated by toxin-induced inositol trisphosphate and ryanodine receptor calcium channel release, and resulted in diminished ATP production, leading to impaired calcium clearance, defective autophagy, zymogen activation, cytokine production, phosphoglycerate mutase 5 activation and necrosis, which was prevented by intracellular ATP supplementation. When MPTP opening was inhibited genetically or pharmacologically, all biochemical, immunological and histopathological responses of acute pancreatitis in all four models were reduced or abolished. Conclusions This work demonstrates the mechanism and consequences of MPTP opening to be fundamental to multiple forms of acute pancreatitis and validates the MPTP as a drug target for this disease. PMID:26071131

  18. Slc15a4, a gene required for pDC sensing of TLR ligands, is required to control persistent viral infection.

    PubMed

    Blasius, Amanda L; Krebs, Philippe; Sullivan, Brian M; Oldstone, Michael B; Popkin, Daniel L

    2012-09-01

    Plasmacytoid dendritic cells (pDCs) are the major producers of type I IFN in response to viral infection and have been shown to direct both innate and adaptive immune responses in vitro. However, in vivo evidence for their role in viral infection is lacking. We evaluated the contribution of pDCs to acute and chronic virus infection using the feeble mouse model of pDC functional deficiency. We have previously demonstrated that feeble mice have a defect in TLR ligand sensing. Although pDCs were found to influence early cytokine secretion, they were not required for control of viremia in the acute phase of the infection. However, T cell priming was deficient in the absence of functional pDCs and the virus-specific immune response was hampered. Ultimately, infection persisted in feeble mice. We conclude that pDCs are likely required for efficient T cell priming and subsequent viral clearance. Our data suggest that reduced pDC functionality may lead to chronic infection.

  19. Acute Neuroinflammatory Response in the Substantia Nigra Pars Compacta of Rats after a Local Injection of Lipopolysaccharide.

    PubMed

    Flores-Martinez, Yazmin M; Fernandez-Parrilla, Manuel A; Ayala-Davila, Jose; Reyes-Corona, David; Blanco-Alvarez, Victor M; Soto-Rojas, Luis O; Luna-Herrera, Claudia; Gonzalez-Barrios, Juan A; Leon-Chavez, Bertha A; Gutierrez-Castillo, Maria E; Martínez-Dávila, Irma A; Martinez-Fong, Daniel

    2018-01-01

    Models of Parkinson's disease with neurotoxins have shown that microglial activation does not evoke a typical inflammatory response in the substantia nigra, questioning whether neuroinflammation leads to neurodegeneration. To address this issue, the archetypal inflammatory stimulus, lipopolysaccharide (LPS), was injected into the rat substantia nigra. LPS induced fever, sickness behavior, and microglial activation (OX42 immunoreactivity), followed by astrocyte activation and leukocyte infiltration (GFAP and CD45 immunoreactivities). During the acute phase of neuroinflammation, pro- and anti-inflammatory cytokines (TNF- α , IL-1 β , IL-6, IL-4, and IL-10) responded differentially at mRNA and protein level. Increased NO production and lipid peroxidation occurred at 168 h after LPS injection. At this time, evidence of neurodegeneration could be seen, entailing decreased tyrosine hydroxylase (TH) immunoreactivity, irregular body contour, and prolongation discontinuity of TH + cells, as well as apparent phagocytosis of TH + cells by OX42 + cells. Altogether, these results show that LPS evokes a typical inflammatory response in the substantia nigra that is followed by dopaminergic neurodegeneration.

  20. Acute Neuroinflammatory Response in the Substantia Nigra Pars Compacta of Rats after a Local Injection of Lipopolysaccharide

    PubMed Central

    Gonzalez-Barrios, Juan A.; Gutierrez-Castillo, Maria E.

    2018-01-01

    Models of Parkinson's disease with neurotoxins have shown that microglial activation does not evoke a typical inflammatory response in the substantia nigra, questioning whether neuroinflammation leads to neurodegeneration. To address this issue, the archetypal inflammatory stimulus, lipopolysaccharide (LPS), was injected into the rat substantia nigra. LPS induced fever, sickness behavior, and microglial activation (OX42 immunoreactivity), followed by astrocyte activation and leukocyte infiltration (GFAP and CD45 immunoreactivities). During the acute phase of neuroinflammation, pro- and anti-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-4, and IL-10) responded differentially at mRNA and protein level. Increased NO production and lipid peroxidation occurred at 168 h after LPS injection. At this time, evidence of neurodegeneration could be seen, entailing decreased tyrosine hydroxylase (TH) immunoreactivity, irregular body contour, and prolongation discontinuity of TH+ cells, as well as apparent phagocytosis of TH+ cells by OX42+ cells. Altogether, these results show that LPS evokes a typical inflammatory response in the substantia nigra that is followed by dopaminergic neurodegeneration. PMID:29854828

  1. Pathophysiological Approaches of Acute Respiratory Distress syndrome: Novel Bases for Study of Lung Injury

    PubMed Central

    Castillo, R.L; Carrasco Loza, R; Romero-Dapueto, C

    2015-01-01

    Experimental approaches have been implemented to research the lung damage related-mechanism. These models show in animals pathophysiological events for acute respiratory distress syndrome (ARDS), such as neutrophil activation, reactive oxygen species burst, pulmonary vascular hypertension, exudative edema, and other events associated with organ dysfunction. Moreover, these approaches have not reproduced the clinical features of lung damage. Lung inflammation is a relevant event in the develop of ARDS as component of the host immune response to various stimuli, such as cytokines, antigens and endotoxins. In patients surviving at the local inflammatory states, transition from injury to resolution is an active mechanism regulated by the immuno-inflammatory signaling pathways. Indeed, inflammatory process is regulated by the dynamics of cell populations that migrate to the lung, such as neutrophils and on the other hand, the role of the modulation of transcription factors and reactive oxygen species (ROS) sources, such as nuclear factor kappaB and NADPH oxidase. These experimental animal models reproduce key components of the injury and resolution phases of human ALI/ARDS and provide a methodology to explore mechanisms and potential new therapies. PMID:26312099

  2. Biochemical changes in response to intensive resistance exercise training in the elderly.

    PubMed

    Bautmans, Ivan; Njemini, Rose; Vasseur, Sabine; Chabert, Hans; Moens, Lisa; Demanet, Christian; Mets, Tony

    2005-01-01

    It is assumed that low-grade inflammation, characterized by increased circulating IL-6 and TNF-alpha, is related to the development of sarcopenia. Physical exercise, especially high intensity resistance training, has been shown to be effective in restoring the strength deficit in the elderly. Intensive exercise is accompanied by significant release of IL-6 and TNF-alpha into the blood circulation, but does not result in muscle wasting. Exercise-induced changes in heat-shock protein (Hsp), responsible for cellular protection during stressful situations, might interfere with the acute phase reaction and muscle adaptation. To investigate if intensive strength training in elderly persons induces changes in Hsp70 expression, and if these changes are related to changes in the acute phase reaction or muscle adaptation. 31 elderly persons (aged 68.4+/-5.4 years) performed 6 weeks' intensive strength training. At baseline and after 6 weeks, muscle strength, functional performance (physical activity profile, 6-min walk, 30- second chair stand, grip strength, chair sit & reach and back scratch), linear isokinetic leg extension, circulating IL-6, TNF-alpha, IL-10 and TGF-beta, and Hsp70 in monocytes (M) and lymphocytes (L) immediately after sampling (IAS), after incubation at 37 and 42 degrees C were determined. In 12 participants, cytokines were determined in untrained and trained conditions before and after a single training session. After 6 weeks' training, muscle strength and functional performance improved significantly, together with decreased Hsp70 IAS and Hsp70 37 degrees C and increased Hsp70 42 degrees C (all p<0.05). Strength gains correlated positively with baseline Hsp70 37 degrees C and training-induced changes of Hsp70 42 degrees C in M and L. In an untrained condition, training induced an increase of IL-6 (p<0.05) and a tendency of IL-10 to decrease (p=0.06). In a trained condition the decrease of IL-10 disappeared. Baseline physical activity and 6-min walk distance correlated negatively with circulating IL-6 (p<0.05); except for a negative correlation between TGF-beta and Hsp70 37 degrees C L (p<0.05), no significant relationships were found between cytokines and Hsp70. After the training program, Hsp70 37 degrees C was negatively related to circulating TNF-alpha, IL-10 and TGF-beta. Strength training in the elderly induces changes in Hsp70 expression, associated to strength gains and circulating cytokines. Copyright (c) 2005 S. Karger AG, Basel.

  3. MicroRNA-10b downregulation mediates acute rejection of renal allografts by derepressing BCL2L11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaoyou; Dong, Changgui; Jiang, Zhengyao

    Kidney transplantation is the major therapeutic option for end-stage kidney diseases. However, acute rejection could cause allograft loss in some of these patients. Emerging evidence supports that microRNA (miRNA) dysregulation is implicated in acute allograft rejection. In this study, we used next-generation sequencing to profile miRNA expression in normal and acutely rejected kidney allografts. Among 75 identified dysregulated miRNAs, miR-10b was the most significantly downregulated miRNAs in rejected allografts. Transfecting miR-10b inhibitor into human renal glomerular endothelial cells recapitulated key features of acute allograft rejection, including endothelial cell apoptosis, release of pro-inflammatory cytokines (interleukin-6, tumor necrosis factor α, interferon-γ, andmore » chemokine (C–C motif) ligand 2) and chemotaxis of macrophages whereas transfection of miR-10b mimics had opposite effects. Downregulation of miR-10b directly derepressed the expression of BCL2L11 (an apoptosis inducer) as revealed by luciferase reporter assay. Taken together, miR-10b downregulation mediates many aspects of disease pathogenicity of acute kidney allograft rejection. Restoring miR-10b expression in glomerular endothelial cells could be a novel therapeutic approach to reduce acute renal allograft loss. - Highlights: • miR-10b was the most downregulated microRNAs in acutely rejected renal allografts. • miR-10b downregulation triggered glomerular endothelial cell apoptosis. • miR-10b downregulation induced release of pro-inflammatory cytokines. • miR-10b downregulation derepressed its pro-apoptotic target BCL2L11.« less

  4. Fetal asphyctic preconditioning modulates the acute cytokine response thereby protecting against perinatal asphyxia in neonatal rats.

    PubMed

    Vlassaks, Evi; Strackx, Eveline; Vles, Johan Sh; Nikiforou, Maria; Martinez-Martinez, Pilar; Kramer, Boris W; Gavilanes, Antonio Wd

    2013-01-26

    Perinatal asphyxia (PA) is a major cause of brain damage and neurodevelopmental impairment in infants. Recent investigations have shown that experimental sublethal fetal asphyxia (FA preconditioning) protects against a subsequent more severe asphyctic insult at birth. The molecular mechanisms of this protection have, however, not been elucidated. Evidence implicates that inflammatory cytokines play a protective role in the induction of ischemic tolerance in the adult brain. Accordingly, we hypothesize that FA preconditioning leads to changes in the fetal cytokine response, thereby protecting the newborn against a subsequent asphyctic insult. In rats, FA preconditioning was induced at embryonic day 17 by clamping the uterine vasculature for 30 min. At term birth, global PA was induced by placing the uterine horns, containing the pups, in a saline bath for 19 min. We assessed, at different time points after FA and PA, mRNA and protein expression of several cytokines and related receptor mRNA levels in total hemispheres of fetal and neonatal brains. Additionally, we measured pSTAT3/STAT3 levels to investigate cellular responses to these cytokines. Prenatally, FA induced acute downregulation in IL-1β, TNF-α and IL-10 mRNA levels. At 96 h post FA, IL-6 mRNA and IL-10 protein expression were increased in FA brains compared with controls. Two hours after birth, all proinflammatory cytokines and pSTAT3/STAT3 levels decreased in pups that experienced FA and/or PA. Interestingly, IL-10 and IL-6 mRNA levels increased after PA. When pups were FA preconditioned, however, IL-10 and IL-6 mRNA levels were comparable to those in controls. FA leads to prenatal changes in the neuroinflammatory response. This modulation of the cytokine response probably results in the protective inflammatory phenotype seen when combining FA and PA and may have significant implications for preventing post-asphyctic perinatal encephalopathy.

  5. Fetal asphyctic preconditioning modulates the acute cytokine response thereby protecting against perinatal asphyxia in neonatal rats

    PubMed Central

    2013-01-01

    Background Perinatal asphyxia (PA) is a major cause of brain damage and neurodevelopmental impairment in infants. Recent investigations have shown that experimental sublethal fetal asphyxia (FA preconditioning) protects against a subsequent more severe asphyctic insult at birth. The molecular mechanisms of this protection have, however, not been elucidated. Evidence implicates that inflammatory cytokines play a protective role in the induction of ischemic tolerance in the adult brain. Accordingly, we hypothesize that FA preconditioning leads to changes in the fetal cytokine response, thereby protecting the newborn against a subsequent asphyctic insult. Methods In rats, FA preconditioning was induced at embryonic day 17 by clamping the uterine vasculature for 30 min. At term birth, global PA was induced by placing the uterine horns, containing the pups, in a saline bath for 19 min. We assessed, at different time points after FA and PA, mRNA and protein expression of several cytokines and related receptor mRNA levels in total hemispheres of fetal and neonatal brains. Additionally, we measured pSTAT3/STAT3 levels to investigate cellular responses to these cytokines. Results Prenatally, FA induced acute downregulation in IL-1β, TNF-α and IL-10 mRNA levels. At 96 h post FA, IL-6 mRNA and IL-10 protein expression were increased in FA brains compared with controls. Two hours after birth, all proinflammatory cytokines and pSTAT3/STAT3 levels decreased in pups that experienced FA and/or PA. Interestingly, IL-10 and IL-6 mRNA levels increased after PA. When pups were FA preconditioned, however, IL-10 and IL-6 mRNA levels were comparable to those in controls. Conclusions FA leads to prenatal changes in the neuroinflammatory response. This modulation of the cytokine response probably results in the protective inflammatory phenotype seen when combining FA and PA and may have significant implications for preventing post-asphyctic perinatal encephalopathy. PMID:23351591

  6. Systemic and intraperitoneal proinflammatory cytokines profiles in patients on chronic peritoneal dialysis.

    PubMed

    Maksić, Doko; Colić, Miodrag; Stanković-Popović, Verica; Radojević, Milorad; Bokonjić, Dubravko

    2007-01-01

    Cytokines are essential mediators of immune response and inflammatory reactions. Patients with chronic renal failure and on Continuous Ambulatory Peritoneal Dialysis commonly present abnormalities of immune function related to impaired kidney function, accumulation of uremic toxins and bioincompatibility of peritoneal dialysis solutions. Aim of this study was to examine effects of the CAPD solutions (standard v.s. biocompatible), as well as dialysis duration upon the local and systemic profile of the pro-inflammatory cytokines (IL-1, TNF and IL-6) in patients on CAPD. The cross-sectional study included 44 CAPD patients (27 M and 17 F, average mean age 57.12+/-16.66), of whom 21 patients were on the standard solutions (A.N.D.Y.Disc) for peritoneal dialysis and 23 on the biocompatible solutions (Gambrosol bio trio, Stay Safe balance). The average dialysis treatment period was 3.59+/-2.67 years. In all CAPD patients dialysed longer than 6 months, levels of IL-1. TNF and IL-6 in the serum and dialysis effluent were analysed in the phase without acute infection-related complications (CAPD peritonitis, infection of the catheter exit-site, other acute infections). The control group included 20 patients with the CRF (stage IV and V) whose serum levels of the examined cytokines were also determined. Levels of the inflammatory cytokines were measured by commercial specific ELISA kits (BioSource, Camarillo, California, USA). Statistical analysis of the obtained results was performed by commercial statistics PC software (Stat for Windows, R.4.5. SAD). The serum IL-1 and IL-6 levels were not statistically significantly different in patients on CAPD, irrespective of the type of the used dialysis solutions and in the control group of patients with CRF. The serum TNF levels, unlike IL-1 and IL-6, were statistically significantly higher in patients on CAPD in comparison with the control group of patients (13.203.23 v.s. 5.594.54, p< 0.001, Mann Whitney test). The serum and effluent IL-1 levels in patients on CAPD within one and longer than one year of dialysation did not significantly differ, but the effluent IL-6 levels were significantly higher than in the serum of both groups of patients, that is, effluent IL-6 levels in CAPD patients dialysed more than one year was significantly higher in comparison with those in patients dialysed within a year. Both serum and intraperitoneal levels of the examined cytokines did not significantly differ in patients on the standard and biocompatible solutions, regardless of the present trend toward decrease of intraperitoneal IL-6 levels in patients on biocompatible solutions. Residual renal funcion and number of CAPD peritonitis did not have any important impact upon the serum and IP levels of the examined ctokynes. Elevated serum TNF levels and significant local IL-6 production in our CAPD patients indirectly confirm importance of peritoneal dialysis in amplification of the chronic inflammation substantially depend on the duration of dialysis treatment.

  7. Emerging biological therapies to treat acute lymphoblastic leukemia.

    PubMed

    Huguet, Françoise; Tavitian, Suzanne

    2017-03-01

    Various settings of acute lymphoblastic leukemia (ALL) represent unmet medical needs: first remission at high risk of relapse, such as persistent minimal residual disease (MRD); relapse/refractoriness (R/R); elderly patients. Biological therapies targeting widely-shared antigens of blast cells have entered the clinic in B-cell precursor (BCP)-ALL. Area covered: Results of phase II/III trials of monoclonal antibodies (MoAbs) and phase I/II trials of adoptive cell therapy by chimeric antigen receptor-engineered T cells (CAR-T cells) are presented. Rituximab, a naked anti-CD20 MoAb, improves the results of chemotherapy in Philadelphia chromosome-negative BCP-ALL. Inotuzumab ozogamicin, an anti-CD22 immunotoxin, yields complete remission (CR) rates of 80% in R/R patients and in elderly newly diagnosed patients. Blinatumomab, a bispecific anti-CD19 and anti-CD3 agent redirects effector T cells towards B leukemic cells, is approved in R/R patients (40% CR, duration 6 months) and under investigation in MRD+ CR patients (80% negativation). Autologous anti-CD19 CAR-T cells undergo proliferation and persistence in the recipient. In limited series, they salvage more than 80% of advanced patients. Cytokine-release syndrome, encephalopathy and B-cell aplasia are shared, to varying extents, by blinatumomab and CAR-T cells. Expert opinion: Despite technological, ethical and clinical issues, biological therapies are currently changing the paradigm of treatment in BCP-ALL, and seem promised to dramatic developments.

  8. Serum amyloid A is an endogenous ligand that differentially induces IL-12 and IL-23.

    PubMed

    He, Rong; Shepard, Larry W; Chen, Jia; Pan, Zhixing K; Ye, Richard D

    2006-09-15

    The acute-phase proteins, C-reactive protein and serum amyloid A (SAA), are biomarkers of infection and inflammation. However, their precise role in immunity and inflammation remains undefined. We report in this study a novel property of SAA in the differential induction of Th1-type immunomodulatory cytokines IL-12 and IL-23. In peripheral blood monocytes and the THP-1 monocytic cell line, SAA induces the expression of IL-12p40, a subunit shared by IL-12 and IL-23. SAA-stimulated expression of IL-12p40 was rapid (< or = 4 h), sustainable (> or = 20 h), potent (up to 3380 pg/ml/10(6) cells in 24 h), and insensitive to polymyxin B treatment. The SAA-stimulated IL-12p40 secretion required de novo protein synthesis and was accompanied by activation of the transcription factors NF-kappaB and C/EBP. Expression of IL-12p40 required activation of the p38 MAPK and PI3K. Interestingly, the SAA-induced IL-12p40 production was accompanied by a sustained expression of IL-23p19, but not IL-12p35, resulting in preferential secretion of IL-23, but not IL-12. These results identify SAA as an endogenous ligand that potentially activates the IL-23/IL-17 pathway and present a novel mechanism for regulation of inflammation and immunity by an acute-phase protein.

  9. The role of TRAIL in fatigue induced by repeated stress from radiotherapy.

    PubMed

    Feng, Li Rebekah; Suy, Simeng; Collins, Sean P; Saligan, Leorey N

    2017-08-01

    Fatigue is one of the most common and debilitating side effects of cancer and cancer treatment, and yet its etiology remains elusive. The goal of this study is to understand the role of chronic inflammation in fatigue following repeated stress from radiotherapy. Fatigue and non-fatigue categories were assessed using ≥ 3-point change in Functional Assessment of Cancer Therapy-Fatigue questionnaire (FACT-F) administered to participants at baseline/before radiotherapy and one year post-radiotherapy. Whole genome microarray and cytokine multiplex panel were used to examine fatigue-related transcriptome and serum cytokine changes, respectively. The study included 86 subjects (discovery phase n = 40, validation phase n = 46). The sample in the discovery phase included men with prostate cancer scheduled to receive external-beam radiotherapy. A panel of 48 cytokines were measured and the significantly changed cytokine found in the discovery phase was validated using sera from a separate cohort of men two years after completing radiotherapy for prostate cancer at a different institution. Effects of the significantly changed cytokine on cell viability was quantified using the MTT assay. During the discovery phase, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and TRAIL decoy receptor, TNFRSF10C (TRAIL-R3), were significantly upregulated in fatigued (≥3-point decrease from baseline to 1yr-post radiotherapy) subjects (n = 15). In the validation phase, TRAIL correlated with fatigue scores 2yrs post-radiotherapy. TRAIL caused selective cytotoxicity in neuronal cells, but not in microglial and muscle cells, in vitro. Late-onset inflammation directed by TRAIL may play a role in fatigue pathogenesis post-repeated stress from irradiation. Published by Elsevier Ltd.

  10. [Infectious mononucleosis: etiology, immunological variants, methods of correction].

    PubMed

    Gordeets, A V; Savina, O G; Beniova, S N; Chernikova, A A

    2011-01-01

    Clinical options of infectious mononucleosis course depending on infecting agent etiology are presented for Epstein-Barr virus (EBV), cytomegalovirus (CMV), mono and mixed forms of the disease. Examined cytokine profiles demonstrate analogous changes of serum cytokines in the acute stage of the disease irrespective of etiological factors. Data show that it is important and useful clinically and immunologically to include immunomodulators--in particular, cycloferon--info a complex therapy of different types of mononucleosis.

  11. Functional Invariant NKT Cells in Pig Lungs Regulate the Airway Hyperreactivity: A Potential Animal Model

    PubMed Central

    Manickam, Cordelia; Khatri, Mahesh; Rauf, Abdul; Li, Xiangming; Tsuji, Moriya; Rajashekara, Gireesh; Dwivedi, Varun

    2015-01-01

    Important roles played by invariant natural killer T (iNKT) cells in asthma pathogenesis have been demonstrated. We identified functional iNKT cells and CD1d molecules in pig lungs. Pig iNKT cells cultured in the presence of α-GalCer proliferated and secreted Th1 and Th2 cytokines. Like in other animal models, direct activation of pig lung iNKT cells using α-GalCer resulted in acute airway hyperreactivity (AHR). Clinically, acute AHR-induced pigs had increased respiratory rate, enhanced mucus secretion in the airways, fever, etc. In addition, we observed petechial hemorrhages, infiltration of CD4+ cells, and increased Th2 cytokines in AHR-induced pig lungs. Ex vivo proliferated iNKT cells of asthma induced pigs in the presence of C-glycoside analogs of α-GalCer had predominant Th2 phenotype and secreted more of Th2 cytokine, IL-4. Thus, baby pigs may serve as a useful animal model to study iNKT cell-mediated AHR caused by various environmental and microbial CD1d-specific glycolipid antigens. PMID:21042929

  12. Comparative expression profile of NOD1/2 and certain acute inflammatory cytokines in thermal-stressed cell culture model of native and crossbred cattle

    NASA Astrophysics Data System (ADS)

    Bhanuprakash, V.; Singh, Umesh; Sengar, Gyanendra Singh; Raja, T. V.; Sajjanar, Basavraj; Alex, Rani; Kumar, Sushil; Alyethodi, R. R.; Kumar, Ashish; Sharma, Ankur; Kumar, Suresh; Bhusan, Bharat; Deb, Rajib

    2017-05-01

    Thermotolerance depends mainly on the health and immune status of the animals. The variation in the immune status of the animals may alter the level of tolerance of animals exposed to heat or cold stress. The present study was conducted to investigate the expression profile of two important nucleotide binding and oligomerization domain receptors (NLRs) (NOD1 and NOD2) and their central signalling molecule RIP2 gene during in vitro thermal-stressed bovine peripheral blood mononuclear cells (PBMCs) of native (Sahiwal) and crossbred (Sahiwal X HF) cattle. We also examined the differential expression profile of certain acute inflammatory cytokines in in vitro thermal-stressed PBMC culture among native and its crossbred counterparts. Results revealed that the expression profile of NOD1/2 positively correlates with the thermal stress, signalling molecule and cytokines. Present findings also highlighted that the expression patterns during thermal stress were comparatively superior among indigenous compared to crossbred cattle which may add references regarding the better immune adaptability of Zebu cattle.

  13. Cytokine adsorbing columns.

    PubMed

    Taniguchi, Takumi

    2010-01-01

    Sepsis induces the activation of complement and the release of inflammatory cytokines such as TNF-alpha and IL-1beta. The inflammatory cytokines and nitric oxide induced by sepsis can decrease systemic vascular resistance, resulting in profound hypotension. The combination of hypotension and microvascular occlusion results in tissue ischemia and ultimately leads to multiple organ failure. Recently, several experimental and clinical studies have reported that treatment for adsorption of cytokines is beneficial during endotoxemia and sepsis. Therefore, the present article discusses cytokine adsorbing columns. These columns, such as CytoSorb, CYT-860-DHP, Lixelle, CTR-001 and MPCF-X, the structures of which vary significantly, have excellent adsorption rates for inflammatory cytokines such as TNF-alpha, IL-1beta, IL-6 and IL8. Many studies have demonstrated that treatment with cytokine adsorbing columns has beneficial effects on the survival rate and inflammatory responses in animal septic models. Moreover, several cases have been reported in which treatment with cytokine adsorbing columns is very effective in hemodynamics and organ failures in critically ill patients. Although further investigations and clinical trials are needed, in the future treatment with cytokine adsorbing columns may play a major role in the treatment of hypercytokinemia such as multiple organ failure and acute respiratory distress syndrome. Copyright 2010 S. Karger AG, Basel.

  14. TNF-α signaling in Fanconi anemia

    PubMed Central

    Du, Wei; Erden, Ozlem; Pang, Qishen

    2013-01-01

    Tumor necrosis factor-alpha (TNF-α is a major pro-inflammatory cytokine involved in systemic inflammation and the acute phase reaction. Dysregulation of TNF production has been implicated in a variety of human diseases including Fanconi anemia (FA). FA is a genomic instability syndrome characterized by progressive bone marrow failure and cancer susceptibility. The patients with FA are often found overproducing TNF-α, which may directly affect hematopoietic stem cell (HSC) function by impairing HSC survival, homing and proliferation, or indirectly change the bone marrow microenvironment critical for HSC homeostasis and function, therefore contribute to disease progression in FA. In this brief review, we discuss the link between TNF-α signaling and FA pathway with emphasis on the implication of inflammation in the pathophysiology and abnormal hematopoiesis in FA. PMID:23890415

  15. TNF-α signaling in Fanconi anemia.

    PubMed

    Du, Wei; Erden, Ozlem; Pang, Qishen

    2014-01-01

    Tumor necrosis factor-alpha (TNF-α) is a major pro-inflammatory cytokine involved in systemic inflammation and the acute phase reaction. Dysregulation of TNF production has been implicated in a variety of human diseases including Fanconi anemia (FA). FA is a genomic instability syndrome characterized by progressive bone marrow failure and cancer susceptibility. The patients with FA are often found overproducing TNF-α, which may directly affect hematopoietic stem cell (HSC) function by impairing HSC survival, homing and proliferation, or indirectly change the bone marrow microenvironment critical for HSC homeostasis and function, therefore contributing to disease progression in FA. In this brief review, we discuss the link between TNF-α signaling and FA pathway with emphasis on the implication of inflammation in the pathophysiology and abnormal hematopoiesis in FA. © 2013.

  16. Mediators of low-grade chronic inflammation in polycystic ovary syndrome (PCOS).

    PubMed

    Ojeda-Ojeda, Miriam; Murri, Mora; Insenser, María; Escobar-Morreale, Héctor F

    2013-01-01

    Chronic low-grade subclinical inflammation has been increasingly recognized as an interposer in the endocrine, metabolic and reproductive disturbances that characterize the polycystic ovary syndrome (PCOS). Abdominal adiposity and obesity are often present in PCOS. Mounting evidence indicates that adipose tissue is involved in innate and adaptive immune responses. Continuous release of inflammatory mediators such as cytokines, acute phase proteins, and adipokines perpetuates the inflammatory condition associated with obesity in women with PCOS, possibly contributing to insulin resistance and other long-term cardiometabolic risk factors. Genetic variants in the genes encoding inflammation-related mediators underlie the development of PCOS and their interaction with environmental factors may contribute to the heterogeneous clinical phenotype of this syndrome. In the future, strategies ameliorating inflammation may prove useful for the management of PCOS and associated conditions.

  17. Inflammatory biomarkers in heart failure revisited: much more than innocent bystanders.

    PubMed

    von Haehling, Stephan; Schefold, Joerg C; Lainscak, Mitja; Doehner, Wolfram; Anker, Stefan D

    2009-10-01

    Chronic heart failure is viewed as a state of chronic inflammation. Many inflammatory markers have been shown to be up-regulated in patients who have this condition, but the markers' roles in clinical decision making have not yet been fully elucidated. A panel of biomarkers is likely to have a strong impact on patient management. Inflammatory biomarkers are interesting candidates that could answer specific clinical questions on their own or complement a multi-marker approach. This article provides a broad overview of several inflammatory biomarkers, including the pro-inflammatory cytokines tumor necrosis factor-alpha, interleukin (IL)-6, IL-1, IL-18, and the soluble receptors TNFR-1, TNFR-2, IL-6R, and gp130. In addition to these acute phase reactants, several adhesion molecules, and lipopolysaccharide-signaling pathways are discussed.

  18. Cytokine mediated tissue fibrosis☆

    PubMed Central

    Borthwick, Lee A.; Wynn, Thomas A.; Fisher, Andrew J.

    2013-01-01

    Acute inflammation is a recognised part of normal wound healing. However, when inflammation fails to resolve and a chronic inflammatory response is established this process can become dysregulated resulting in pathological wound repair, accumulation of permanent fibrotic scar tissue at the site of injury and the failure to return the tissue to normal function. Fibrosis can affect any organ including the lung, skin, heart, kidney and liver and it is estimated that 45% of deaths in the western world can now be attributed to diseases where fibrosis plays a major aetiological role. In this review we examine the evidence that cytokines play a vital role in the acute and chronic inflammatory responses that drive fibrosis in injured tissues. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease. PMID:23046809

  19. Exposure to 100% Oxygen Abolishes the Impairment of Fracture Healing after Thoracic Trauma

    PubMed Central

    Kemmler, Julia; Bindl, Ronny; McCook, Oscar; Wagner, Florian; Gröger, Michael; Wagner, Katja; Scheuerle, Angelika; Radermacher, Peter; Ignatius, Anita

    2015-01-01

    In polytrauma patients a thoracic trauma is one of the most critical injuries and an important trigger of post-traumatic inflammation. About 50% of patients with thoracic trauma are additionally affected by bone fractures. The risk for fracture malunion is considerably increased in such patients, the pathomechanisms being poorly understood. Thoracic trauma causes regional alveolar hypoxia and, subsequently, hypoxemia, which in turn triggers local and systemic inflammation. Therefore, we aimed to unravel the role of oxygen in impaired bone regeneration after thoracic trauma. We hypothesized that short-term breathing of 100% oxygen in the early post-traumatic phase ameliorates inflammation and improves bone regeneration. Mice underwent a femur osteotomy alone or combined with blunt chest trauma 100% oxygen was administered immediately after trauma for two separate 3 hour intervals. Arterial blood gas tensions, microcirculatory perfusion and oxygenation were assessed at 3, 9 and 24 hours after injury. Inflammatory cytokines and markers of oxidative/nitrosative stress were measured in plasma, lung and fracture hematoma. Bone healing was assessed on day 7, 14 and 21. Thoracic trauma induced pulmonary and systemic inflammation and impaired bone healing. Short-term exposure to 100% oxygen in the acute post-traumatic phase significantly attenuated systemic and local inflammatory responses and improved fracture healing without provoking toxic side effects, suggesting that hyperoxia could induce anti-inflammatory and pro-regenerative effects after severe injury. These results suggest that breathing of 100% oxygen in the acute post-traumatic phase might reduce the risk of poorly healing fractures in severely injured patients. PMID:26147725

  20. Interleukin-23 mediates the pathogenesis of LPS/GalN-induced liver injury in mice.

    PubMed

    Bao, Suxia; Zhao, Qiang; Zheng, Jianming; Li, Ning; Huang, Chong; Chen, Mingquan; Cheng, Qi; Zhu, Mengqi; Yu, Kangkang; Liu, Chenghai; Shi, Guangfeng

    2017-05-01

    Interleukin-23 (IL-23) is required for T helper 17 (Th17) cell responses and IL-17 production in hepatitis B virus infection. A previous study showed that the IL-23/IL-17 axis aggravates immune injury in patients with chronic hepatitis B virus infection. However, the role of IL-23 in acute liver injury remains unclear. The purpose of this study was to determine the role of the inflammatory cytokine IL-23 in lipopolysaccharide/d-galactosamine (LPS/GalN)-induced acute liver injury in mice. Serum IL-23 from patients with chronic hepatitis B virus (CHB), acute-on-chronic liver failure (ACLF) and healthy individuals who served as healthy controls (HCs) was measured by ELISA. An IL-23p19 neutralizing antibody or an IL-23p40 neutralizing antibody was administered intravenously at the time of challenge with LPS (10μg/kg) and GalN (400mg/kg) in C57BL/6 mice. Hepatic pathology and the expression of Th17-related cytokines, including IL-17 and TNF-α; neutrophil chemoattractants, including Cxcl1, Cxcl2, Cxcl9, and Cxcl10; and the stabilization factor Csf3 were assessed in liver tissue. Serum IL-23 was significantly upregulated in ACLF patients compared with CHB patients and HCs (P<0.05 for both). Serum IL-23 was significantly upregulated in the non-survival group compared with the survival group of ACLF patients, which was consistent with LPS/GalN-induced acute hepatic injury in mice (P<0.05 for both). Moreover, after treatment, serum IL-23 was downregulated in the survival group of ACLF patients (P<0.001). Compared with LPS/GalN mice, mice treated with either an IL-23p19 neutralizing antibody or an IL-23p40 neutralizing antibody showed less severe liver tissue histopathology and significant reductions in the expression of Th17-related inflammatory cytokine, including IL-17 and TNF-α; neutrophil chemoattractants, including Cxcl1, Cxcl2, Cxcl9, and Cxcl10; and stabilization factors Csf3 within the liver tissue compared with LPS/GalN mice (P<0.05 for all). High serum IL-23 was associated with mortality in ACLF patients and LPS/GalN-induced acute liver injury in mice. IL-23 neutralizing antibodies attenuated liver injury by reducing the expression of Th17-related inflammatory cytokines, neutrophil chemoattractants and stabilization factors within the liver tissue, which indicated that IL-23 likely functions upstream of Th17-related cytokine and chemokine expression to recruit inflammatory cells into the liver. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Male adolescent rats display blunted cytokine responses in the CNS after acute ethanol or lipopolysaccharide exposure

    PubMed Central

    Doremus-Fitzwater, Tamara L.; Gano, Anny; Paniccia, Jacqueline E.; Deak, Terrence

    2015-01-01

    Alcohol induces widespread changes in cytokine expression, with recent data from our laboratory having demonstrated that, during acute ethanol intoxication, adult rats exhibit consistent increases in interleukin (IL)-6 mRNA expression in several brain regions, while showing reductions in IL-1 and TNFα expression. Given evidence indicating that adolescence may be an ontogenetic period in which some neuroimmune processes and cells may not yet have fully matured, the purpose of the current experiments was to examine potential age differences in the central cytokine response of adolescent (P31–33 days of age) and adult (69–71 days of age) rats to either an acute immune (lipopolysaccharide; LPS) or non-immune challenge (ethanol). In Experiment 1, male Sprague-Dawley rats were given an intraperitoneal (i.p.) injection of either sterile saline, LPS (250 µg/kg), or ethanol (4-g/kg), and then trunk blood and brain tissue were collected 3 hr later for measurement of blood EtOH concentrations (BECs), plasma endotoxin, and central mRNA expression of several immune-related gene targets. In Experiment 2, the response to intragastrically (i.g.) administered ethanol was examined and compared to animals given tap water (i.g.). Results showed that LPS stimulated robust increases in expression of IL-1, IL-6, TNFα, and IκBα in the hippocampus, PVN, and amygdala, and that these increases were generally less pronounced in adolescents relative to adults. Following an i.p. EtOH challenge, IL-6 and IκBα expression were significantly increased in both ages in the PVN and amygdala, and adults exhibited even greater increases in IκBα than adolescents. I.g. administration of ethanol also increased IL-6 and IκBα expression in all three brain regions, with hippocampal IL-6 expression elevated even more so in adults compared to adolescents. Furthermore, assessment of plasma endotoxin concentrations revealed (i) whereas robust increases in plasma endotoxin were observed in adults injected with LPS, no corresponding elevations were seen in adolescents after LPS; and (ii) neither adolescents nor adults demonstrated increases in plasma endotoxin concentrations following i.p. or i.g. ethanol administration. Analysis of BECs indicated that, for both routes of exposure, adolescents exhibited lower BECs than adults. Taken together, these data suggest that categorically different mechanisms are involved in the central cytokine response to antigen exposure versus ethanol administration. Furthermore, these findings confirm once again that acute ethanol intoxication is a potent activator of brain cytokines, and calls for future studies to identify the mechanisms underlying age-related differences in the cytokine response observed during ethanol intoxication. PMID:25708278

  2. Up-regulation of brain cytokines and chemokines mediates neurotoxicity in early acute liver failure by a mechanism independent of microglial activation.

    PubMed

    Faleiros, Bruno E; Miranda, Aline S; Campos, Alline C; Gomides, Lindisley F; Kangussu, Lucas M; Guatimosim, Cristina; Camargos, Elizabeth R S; Menezes, Gustavo B; Rachid, Milene A; Teixeira, Antônio L

    2014-08-26

    The neurological involvement in acute liver failure (ALF) is characterized by arousal impairment with progression to coma. There is a growing body of evidence that neuroinflammatory mechanisms play a role in this process, including production of inflammatory cytokines and microglial activation. However, it is still uncertain whether brain-derived cytokines and glial cells are crucial to the pathophysiology of ALF at the early stage, before coma development. Here, we investigated the influence of cytokines and microglia in ALF-induced encephalopathy in mice as soon as neurological symptoms were identifiable. Behavior was assessed at 12, 24, 36 and 48 h post-injection of thioacetamide, a hepatotoxic drug, through locomotor activity by an open field test. Brain concentration of cytokines (TNF-α and IL-1β) and chemokines (CXCL1, CCL2, CCL3 and CCL5) were assessed by ELISA. Microglial activation in brain sections was investigated through immunohistochemistry, and cellular ultrastructural changes were observed by transmission electron microscopy. We found that ALF-induced animals presented a significant decrease in locomotor activity at 24 h, which was accompanied by an increase in IL-1β, CXCL1, CCL2, CCL3 and CCL5 in the brain. TNF-α level was significantly increased only at 36 h. Despite marked morphological changes in astrocytes and brain endothelial cells, no microglial activation was observed. These findings suggest an involvement of brain-derived chemokines and IL-1β in early pathophysiology of ALF by a mechanism independent of microglial activation. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Analysis of the immunological biomarker profile during acute Zika virus infection reveals the overexpression of CXCL10, a chemokine linked to neuronal damage.

    PubMed

    Naveca, Felipe Gomes; Pontes, Gemilson Soares; Chang, Aileen Yu-Hen; Silva, George Allan Villarouco da; Nascimento, Valdinete Alves do; Monteiro, Dana Cristina da Silva; Silva, Marineide Souza da; Abdalla, Lígia Fernandes; Santos, João Hugo Abdalla; Almeida, Tatiana Amaral Pires de; Mejía, Matilde Del Carmen Contreras; Mesquita, Tirza Gabrielle Ramos de; Encarnação, Helia Valeria de Souza; Gomes, Matheus de Souza; Amaral, Laurence Rodrigues; Campi-Azevedo, Ana Carolina; Coelho-Dos-Reis, Jordana Graziela; Antonelli, Lis Ribeiro do Vale; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis; Ramasawmy, Rajendranath

    2018-05-14

    Infection with Zika virus (ZIKV) manifests in a broad spectrum of disease ranging from mild illness to severe neurological complications and little is known about Zika immunopathogenesis. To define the immunologic biomarkers that correlate with acute ZIKV infection. We characterized the levels of circulating cytokines, chemokines, and growth factors in 54 infected patients of both genders at five different time points after symptom onset using microbeads multiplex immunoassay; comparison to 100 age-matched controls was performed for statistical analysis and data mining. ZIKV-infected patients present a striking systemic inflammatory response with high levels of pro-inflammatory mediators. Despite the strong inflammatory pattern, IL-1Ra and IL-4 are also induced during the acute infection. Interestingly, the inflammatory cytokines IL-1β, IL-13, IL-17, TNF-α, and IFN-γ; chemokines CXCL8, CCL2, CCL5; and the growth factor G-CSF, displayed a bimodal distribution accompanying viremia. While this is the first manuscript to document bimodal distributions of viremia in ZIKV infection, this has been documented in other viral infections, with a primary viremia peak during mild systemic disease and a secondary peak associated with distribution of the virus to organs and tissues. Biomarker network analysis demonstrated distinct dynamics in concurrence with the bimodal viremia profiles at different time points during ZIKV infection. Such a robust cytokine and chemokine response has been associated with blood-brain barrier permeability and neuroinvasiveness in other flaviviral infections. High-dimensional data analysis further identified CXCL10, a chemokine involved in foetal neuron apoptosis and Guillain-Barré syndrome, as the most promising biomarker of acute ZIKV infection for potential clinical application.

  4. Analysis of the immunological biomarker profile during acute Zika virus infection reveals the overexpression of CXCL10, a chemokine linked to neuronal damage

    PubMed Central

    Naveca, Felipe Gomes; Pontes, Gemilson Soares; Chang, Aileen Yu-hen; da Silva, George Allan Villarouco; do Nascimento, Valdinete Alves; Monteiro, Dana Cristina da Silva; da Silva, Marineide Souza; Abdalla, Lígia Fernandes; Santos, João Hugo Abdalla; de Almeida, Tatiana Amaral Pires; Mejía, Matilde del Carmen Contreras; de Mesquita, Tirza Gabrielle Ramos; Encarnação, Helia Valeria de Souza; Gomes, Matheus de Souza; Amaral, Laurence Rodrigues; Campi-Azevedo, Ana Carolina; Coelho-dos-Reis, Jordana Graziela; Antonelli, Lis Ribeiro do Vale; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis; Ramasawmy, Rajendranath

    2018-01-01

    BACKGROUND Infection with Zika virus (ZIKV) manifests in a broad spectrum of disease ranging from mild illness to severe neurological complications and little is known about Zika immunopathogenesis. OBJECTIVES To define the immunologic biomarkers that correlate with acute ZIKV infection. METHODS We characterized the levels of circulating cytokines, chemokines, and growth factors in 54 infected patients of both genders at five different time points after symptom onset using microbeads multiplex immunoassay; comparison to 100 age-matched controls was performed for statistical analysis and data mining. FINDINGS ZIKV-infected patients present a striking systemic inflammatory response with high levels of pro-inflammatory mediators. Despite the strong inflammatory pattern, IL-1Ra and IL-4 are also induced during the acute infection. Interestingly, the inflammatory cytokines IL-1β, IL-13, IL-17, TNF-α, and IFN-γ; chemokines CXCL8, CCL2, CCL5; and the growth factor G-CSF, displayed a bimodal distribution accompanying viremia. While this is the first manuscript to document bimodal distributions of viremia in ZIKV infection, this has been documented in other viral infections, with a primary viremia peak during mild systemic disease and a secondary peak associated with distribution of the virus to organs and tissues. MAIN CONCLUSIONS Biomarker network analysis demonstrated distinct dynamics in concurrence with the bimodal viremia profiles at different time points during ZIKV infection. Such a robust cytokine and chemokine response has been associated with blood-brain barrier permeability and neuroinvasiveness in other flaviviral infections. High-dimensional data analysis further identified CXCL10, a chemokine involved in foetal neuron apoptosis and Guillain-Barré syndrome, as the most promising biomarker of acute ZIKV infection for potential clinical application. PMID:29768624

  5. Mesenchymal stromal cell treatment prevents H9N2 avian influenza virus-induced acute lung injury in mice.

    PubMed

    Li, Yan; Xu, Jun; Shi, Weiqing; Chen, Cheng; Shao, Yan; Zhu, Limei; Lu, Wei; Han, XiaoDong

    2016-10-28

    The avian influenza virus (AIV) can cross species barriers and expand its host range from birds to mammals, even humans. Avian influenza is characterized by pronounced activation of the proinflammatory cytokine cascade, which perpetuates the inflammatory response, leading to persistent systemic inflammatory response syndrome and pulmonary infection in animals and humans. There are currently no specific treatment strategies for avian influenza. We hypothesized that mesenchymal stromal cells (MSCs) would have beneficial effects in the treatment of H9N2 AIV-induced acute lung injury in mice. Six- to 8-week-old C57BL/6 mice were infected intranasally with 1 × 10 4 MID 50 of A/HONG KONG/2108/2003 [H9N2 (HK)] H9N2 virus to induce acute lung injury. After 30 min, syngeneic MSCs were delivered through the caudal vein. Three days after infection, we measured the survival rate, lung weight, arterial blood gas, and cytokines in both bronchoalveolar lavage fluid (BALF) and serum, and assessed pathological changes to the lungs. MSC administration significantly palliated H9N2 AIV-induced pulmonary inflammation by reducing chemokines and proinflammatory cytokines levels, as well as reducing inflammatory cell recruit into the lungs. Thus, H9N2 AIV-induced lung injury was markedly alleviated in mice treated with MSCs. Lung histopathology and arterial blood gas analysis were improved in mice with H9N2 AIV-induced lung injury following MSC treatment. MSC treatment significantly reduces H9N2 AIV-induced acute lung injury in mice and is associated with reduced pulmonary inflammation. These results indicate a potential role for MSC therapy in the treatment of clinical avian influenza.

  6. The plasma interleukin-6 response to acute psychosocial stress in humans is detected by a magnetic multiplex assay: comparison to high-sensitivity ELISA.

    PubMed

    Quinn, Andrea M; Williams, Allison R; Sivilli, Teresa I; Raison, Charles L; Pace, Thaddeus W W

    2018-03-13

    Circulating concentrations of interleukin (IL)-6, an inflammatory biomarker widely assessed in humans to study the inflammatory response to acute psychological stress, have for decades been quantified using enzyme-linked immunosorbent assay (ELISA). However, biobehavioral researchers are increasingly using cytokine multiplex assays instead of ELISA to measure IL-6 and other cytokines. Despite this trend, multiplex assays have not been directly compared to ELISA for their ability to detect subtle stress-induced changes of IL-6. Here, we tested the prediction that a high-sensitivity multiplex assay (human Magnetic Luminex Performance Assay, R&D Systems, Minneapolis, MN) would detect changes in IL-6 as a result of acute stress challenge in a manner comparable to high-sensitivity ELISA. Blood was collected from 12 healthy adults immediately before and then 90 and 210 min after the start of the Trier Social Stress Test (TSST), an acute laboratory psychosocial stress challenge. In addition to quantifying IL-6 concentrations in plasma with both multiplex and ELISA, we also assessed concentrations of tumor necrosis factor-alpha, IL-8, IL-10, IL-5, and IL-2 with multiplex. The multiplex detected IL-6 in all samples. Concentrations strongly correlated with values determined by ELISA across all samples (r = 0.941, p < .001) as well as among samples collected at individual TSST time points. IL-6 responses to the TSST (i.e. area under the curve) captured by multiplex and ELISA were also strongly correlated (r s   = 0.937, p < .001). While other cytokines were detected by multiplex, none changed as a result of TSST challenge at time points examined. These results suggest high-sensitivity magnetic multiplex assay is able to detect changes in plasma concentrations of IL-6 as a result of acute stress in humans.

  7. Regulatory T cells inhibit acute IFN-γ synthesis without blocking T-helper cell type 1 (Th1) differentiation via a compartmentalized requirement for IL-10

    PubMed Central

    Sojka, Dorothy K.; Fowell, Deborah J.

    2011-01-01

    CD4+CD25+Forkhead box P3 (Foxp3)+ regulatory T cells (Tregs) control immune responses to self and foreign antigens in secondary lymphoid organs and at tissue sites of inflammation. Tregs can modify the function of many immune cells and have been proposed to block early proliferation, differentiation, and effector function. Acute ablation of Tregs has revealed rapid cytokine production immediately after Treg removal, suggesting that Tregs may regulate effector function acutely rather than regulating the programming for immune function. We developed in vitro and in vivo models that enabled the direct test of Treg regulation of T-helper cell type 1 (Th1) differentiation. CD28 signaling is known to abrogate Treg suppression of IL-2 secretion and proliferation, but our studies show that Treg suppression of IFN-γ during Th1 priming proceeds despite enhanced CD28 signaling. Importantly, during Th1 differentiation, Tregs inhibited early IFN-γ transcription without disrupting expression of Th1-specific T-box transcription factor (Tbet) and Th1 programming. Acute shutoff of effector cytokine production by Tregs was selective for IFN-γ but not TNF-α and was independent of TGF-β and Epstein-Barr virus-induced gene 3. In vivo, Tregs potently controlled CD4 IFN-γ and CD4 effector cell expansion in the lymph node (four- to fivefold reduction) but not Th1 programming, independent of IL-10. Tregs additionally reduced CD4 IFN-γ in the inflamed dermis (twofold reduction) dependent on their production of IL-10. We propose a model for Treg inhibition of effector function based on acute cytokine regulation. Interestingly, Tregs used different regulatory mechanisms to regulate IFN-γ (IL-10–dependent or –independent) subject to the target T-cell stage of activation and its tissue location. PMID:22025707

  8. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells

    PubMed Central

    Kebriaei, Partow; Singh, Harjeet; Huls, M. Helen; Figliola, Matthew J.; Bassett, Roland; Olivares, Simon; Jena, Bipulendu; Dawson, Margaret J.; Kumaresan, Pappanaicken R.; Su, Shihuang; Maiti, Sourindra; Dai, Jianliang; Moriarity, Branden; Forget, Marie-Andrée; Senyukov, Vladimir; Orozco, Aaron; Liu, Tingting; McCarty, Jessica; Jackson, Rineka N.; Moyes, Judy S.; Rondon, Gabriela; Qazilbash, Muzaffar; Ciurea, Stefan; Alousi, Amin; Nieto, Yago; Rezvani, Katy; Marin, David; Popat, Uday; Hosing, Chitra; Shpall, Elizabeth J.; Kantarjian, Hagop; Keating, Michael; Wierda, William; Do, Kim Anh; Largaespada, David A.; Lee, Dean A.; Hackett, Perry B.; Champlin, Richard E.; Cooper, Laurence J.N.

    2016-01-01

    BACKGROUND. T cells expressing antigen-specific chimeric antigen receptors (CARs) improve outcomes for CD19-expressing B cell malignancies. We evaluated a human application of T cells that were genetically modified using the Sleeping Beauty (SB) transposon/transposase system to express a CD19-specific CAR. METHODS. T cells were genetically modified using DNA plasmids from the SB platform to stably express a second-generation CD19-specific CAR and selectively propagated ex vivo with activating and propagating cells (AaPCs) and cytokines. Twenty-six patients with advanced non-Hodgkin lymphoma and acute lymphoblastic leukemia safely underwent hematopoietic stem cell transplantation (HSCT) and infusion of CAR T cells as adjuvant therapy in the autologous (n = 7) or allogeneic settings (n = 19). RESULTS. SB-mediated genetic transposition and stimulation resulted in 2,200- to 2,500-fold ex vivo expansion of genetically modified T cells, with 84% CAR expression, and without integration hotspots. Following autologous HSCT, the 30-month progression-free and overall survivals were 83% and 100%, respectively. After allogeneic HSCT, the respective 12-month rates were 53% and 63%. No acute or late toxicities and no exacerbation of graft-versus-host disease were observed. Despite a low antigen burden and unsupportive recipient cytokine environment, CAR T cells persisted for an average of 201 days for autologous recipients and 51 days for allogeneic recipients. CONCLUSIONS. CD19-specific CAR T cells generated with SB and AaPC platforms were safe, and may provide additional cancer control as planned infusions after HSCT. These results support further clinical development of this nonviral gene therapy approach. TRIAL REGISTRATION. Autologous, NCT00968760; allogeneic, NCT01497184; long-term follow-up, NCT01492036. FUNDING. National Cancer Institute, private foundations, and institutional funds. Please see Acknowledgments for details. PMID:27482888

  9. Protective effects of aerobic exercise on acute lung injury induced by LPS in mice

    PubMed Central

    2012-01-01

    Introduction The regular practice of physical exercise has been associated with beneficial effects on various pulmonary conditions. We investigated the mechanisms involved in the protective effect of exercise in a model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Methods Mice were divided into four groups: Control (CTR), Exercise (Exe), LPS, and Exercise + LPS (Exe + LPS). Exercised mice were trained using low intensity daily exercise for five weeks. LPS and Exe + LPS mice received 200 µg of LPS intratracheally 48 hours after the last physical test. We measured exhaled nitric oxide (eNO); respiratory mechanics; neutrophil density in lung tissue; protein leakage; bronchoalveolar lavage fluid (BALF) cell counts; cytokine levels in BALF, plasma and lung tissue; antioxidant activity in lung tissue; and tissue expression of glucocorticoid receptors (Gre). Results LPS instillation resulted in increased eNO, neutrophils in BALF and tissue, pulmonary resistance and elastance, protein leakage, TNF-alpha in lung tissue, plasma levels of IL-6 and IL-10, and IL-1beta, IL-6 and KC levels in BALF compared to CTR (P ≤0.02). Aerobic exercise resulted in decreases in eNO levels, neutrophil density and TNF-alpha expression in lung tissue, pulmonary resistance and elastance, and increased the levels of IL-6, IL-10, superoxide dismutase (SOD-2) and Gre in lung tissue and IL-1beta in BALF compared to the LPS group (P ≤0.04). Conclusions Aerobic exercise plays important roles in protecting the lungs from the inflammatory effects of LPS-induced ALI. The effects of exercise are mainly mediated by the expression of anti-inflammatory cytokines and antioxidants, suggesting that exercise can modulate the inflammatory-anti-inflammatory and the oxidative-antioxidative balance in the early phase of ALI. PMID:23078757

  10. Non-immediate reactions to beta-lactams: diagnostic value of skin testing and drug provocation test.

    PubMed

    Padial, A; Antunez, C; Blanca-Lopez, N; Fernandez, T D; Cornejo-Garcia, J A; Mayorga, C; Torres, M J; Blanca, M

    2008-05-01

    beta-Lactam (BL) antibiotics can induce non-immediate skin reactions, frequently manifested as exanthema or urticaria. The time between drug intake and the reaction appearance is generally 24-48 h. Because the mechanisms involved are not completely understood, diagnostic tests for these reactions have still to be fully validated. To evaluate the role of skin and drug provocation tests (DPTs) in the diagnosis of patients with non-immediate reactions to BL. We evaluated a group of 22 patients who developed maculopapular exanthema or urticarial exanthema after BL intake. Diagnosis was confirmed by DPT with BL. Intradermal/patch testing was performed with benzylpenicilloyl, minor determinant mixture, amoxicillin (AX), ampicillin (AMP) and the culprit drug in patients and in 22 negative controls. Immunohistochemical studies were done in the affected skin at the acute phase of the reaction and after a delayed positive skin test/DPT. IFN-gamma and IL-4 were quantified in peripheral mononuclear cells, obtained during the positive response to DPT and after resolution of the symptoms. From the total number of cases, 12 patients developed urticarial exanthema and 10 maculopapular exanthema after DPT. Only two of the 22 patients (9%) had a positive delayed intradermal skin test: one to AX/AMP and the other to cloxacillin. Biopsies showed a mononuclear CD4, CD8 infiltrate and activated and memory cells. The cytokine expression showed a Th1 pattern in patients, in contrast with the Th0 pattern in controls. In patients with non-immediate reactions to BLs (maculopapular exathema or urticarial exanthema), the sensitivity of skin testing is low and DPT may be required to establish the diagnosis. The reproducibility of the reactions and the cytokine pattern expressed during the acute episode support a T cell-induced non-immediate response.

  11. Haptoglobin Reduces Inflammatory Cytokine INF-γ and Facilitates Clot Formation in Acute Severe Burn Rat Model.

    PubMed

    Koami, Hiroyuki; Sakamoto, Yuichiro; Miyasho, Taku; Noguchi, Ryo; Sato, Norio; Kai, Keita; Chris Yamada, Kosuke; Inoue, Satoshi

    2017-01-01

    Haptoglobin exerts renal protective function by scavenging free hemoglobin from the urine and blood stream in patients with hemolytic disorders. Recent studies elucidate the relationships between haptoglobin and inflammation. In addition, coagulopathy is often induced by systemic inflammation characterized by the presence of vascular endothelial damage. We hypothesize that haptoglobin might have an anti-inflammatory effect and affect hypercoagulability using rat burn model. Thirty anesthetized rats of six-weeks of age received over 30% full-thickness scald burn on the dorsal skin surface. All rats were injected with either haptoglobin (Hpt) or normal saline (NS) intraperitoneally. The rats were divided into three groups: 1) control group (NS 20 mL/kg); 2) low concentration of Hpt group, L-Hpt, (Hpt 4 mL (80 U) /kg+NS 16 mL/kg); and 3) high concentration of Hpt group, H-Hpt, (Hpt 20 mL (400 U) /kg). While under anesthesia, all rats were euthanized by exsanguination at 6 hours (N=5) and 24 hours (N=5). Inflammatory and anti-inflammatory cytokines were measured and whole-blood viscoelastic tests were performed by thromboelastometry (ROTEM). Haptoglobin significantly reduced free hemoglobin 24 hours after the injury. Improvement of hematuria was confirmed in the H-Hpt group. There were no differences in thrombin-antithrombin complex and plasmin-α2 plasmin inhibitor complex. The haptoglobin tended to decrease interferon-gamma (IFN-γ) in H-Hpt group. ROTEM findings of the L-Hpt group showed significantly higher clot firmness and shorter time to maximum clot formation velocity than the control group. Haptoglobin reduced INF-γ, and accelerated speed of clot formation in acute phase of severe burn.

  12. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells.

    PubMed

    Kebriaei, Partow; Singh, Harjeet; Huls, M Helen; Figliola, Matthew J; Bassett, Roland; Olivares, Simon; Jena, Bipulendu; Dawson, Margaret J; Kumaresan, Pappanaicken R; Su, Shihuang; Maiti, Sourindra; Dai, Jianliang; Moriarity, Branden; Forget, Marie-Andrée; Senyukov, Vladimir; Orozco, Aaron; Liu, Tingting; McCarty, Jessica; Jackson, Rineka N; Moyes, Judy S; Rondon, Gabriela; Qazilbash, Muzaffar; Ciurea, Stefan; Alousi, Amin; Nieto, Yago; Rezvani, Katy; Marin, David; Popat, Uday; Hosing, Chitra; Shpall, Elizabeth J; Kantarjian, Hagop; Keating, Michael; Wierda, William; Do, Kim Anh; Largaespada, David A; Lee, Dean A; Hackett, Perry B; Champlin, Richard E; Cooper, Laurence J N

    2016-09-01

    T cells expressing antigen-specific chimeric antigen receptors (CARs) improve outcomes for CD19-expressing B cell malignancies. We evaluated a human application of T cells that were genetically modified using the Sleeping Beauty (SB) transposon/transposase system to express a CD19-specific CAR. T cells were genetically modified using DNA plasmids from the SB platform to stably express a second-generation CD19-specific CAR and selectively propagated ex vivo with activating and propagating cells (AaPCs) and cytokines. Twenty-six patients with advanced non-Hodgkin lymphoma and acute lymphoblastic leukemia safely underwent hematopoietic stem cell transplantation (HSCT) and infusion of CAR T cells as adjuvant therapy in the autologous (n = 7) or allogeneic settings (n = 19). SB-mediated genetic transposition and stimulation resulted in 2,200- to 2,500-fold ex vivo expansion of genetically modified T cells, with 84% CAR expression, and without integration hotspots. Following autologous HSCT, the 30-month progression-free and overall survivals were 83% and 100%, respectively. After allogeneic HSCT, the respective 12-month rates were 53% and 63%. No acute or late toxicities and no exacerbation of graft-versus-host disease were observed. Despite a low antigen burden and unsupportive recipient cytokine environment, CAR T cells persisted for an average of 201 days for autologous recipients and 51 days for allogeneic recipients. CD19-specific CAR T cells generated with SB and AaPC platforms were safe, and may provide additional cancer control as planned infusions after HSCT. These results support further clinical development of this nonviral gene therapy approach. Autologous, NCT00968760; allogeneic, NCT01497184; long-term follow-up, NCT01492036. National Cancer Institute, private foundations, and institutional funds. Please see Acknowledgments for details.

  13. Genomic Profiling of Tumor Necrosis Factor Alpha (TNF-α) Receptor and Interleukin-1 Receptor Knockout Mice Reveals a Link between TNF-α Signaling and Increased Severity of 1918 Pandemic Influenza Virus Infection▿ †

    PubMed Central

    Belisle, Sarah E.; Tisoncik, Jennifer R.; Korth, Marcus J.; Carter, Victoria S.; Proll, Sean C.; Swayne, David E.; Pantin-Jackwood, Mary; Tumpey, Terrence M.; Katze, Michael G.

    2010-01-01

    The influenza pandemic of 1918 to 1919 was one of the worst global pandemics in recent history. The highly pathogenic nature of the 1918 virus is thought to be mediated in part by a dysregulation of the host response, including an exacerbated proinflammatory cytokine response. In the present study, we compared the host transcriptional response to infection with the reconstructed 1918 virus in wild-type, tumor necrosis factor (TNF) receptor-1 knockout (TNFRKO), and interleukin-1 (IL-1) receptor-1 knockout (IL1RKO) mice as a means of further understanding the role of proinflammatory cytokine signaling during the acute response to infection. Despite reported redundancy in the functions of IL-1β and TNF-α, we observed that reducing the signaling capacity of each of these molecules by genetic disruption of their key receptor genes had very different effects on the host response to infection. In TNFRKO mice, we found delayed or decreased expression of genes associated with antiviral and innate immune signaling, complement, coagulation, and negative acute-phase response. In contrast, in IL1RKO mice numerous genes were differentially expressed at 1 day postinoculation, including an increase in the expression of genes that contribute to dendritic and natural killer cell processes and cellular movement, and gene expression profiles remained relatively constant at later time points. We also observed a compensatory increase in TNF-α expression in virus-infected IL1RKO mice. Our data suggest that signaling through the IL-1 receptor is protective, whereas signaling through the TNF-α receptor increases the severity of 1918 virus infection. These findings suggest that manipulation of these pathways may have therapeutic benefit. PMID:20926563

  14. Depletion of H2S during obesity enhances store-operated Ca2+ entry in adipose tissue macrophages to increase cytokine production.

    PubMed

    Velmurugan, Gopal V; Huang, Huiya; Sun, Hongbin; Candela, Joseph; Jaiswal, Mukesh K; Beaman, Kenneth D; Yamashita, Megumi; Prakriya, Murali; White, Carl

    2015-12-15

    The increased production of proinflammatory cytokines by adipose tissue macrophages (ATMs) contributes to chronic, low-level inflammation during obesity. We found that obesity in mice reduced the bioavailability of the gaseous signaling molecule hydrogen sulfide (H2S). Steady-state, intracellular concentrations of H2S were lower in ATMs isolated from mice with diet-induced obesity than in ATMs from lean mice. In addition, the intracellular concentration of H2S in the macrophage cell line RAW264.7 was reduced during an acute inflammatory response evoked by the microbial product lipopolysaccharide (LPS). Reduced intracellular concentrations of H2S led to increased Ca(2+) influx through the store-operated Ca(2+) entry (SOCE) pathway, which was prevented by the exogenous H2S donor GYY4137. Furthermore, GYY4137 inhibited the Orai3 channel, a key component of the SOCE machinery. The enhanced production of proinflammatory cytokines by RAW264.7 cells and ATMs from obese mice was reduced by exogenous H2S or by inhibition of SOCE. Together, these data suggest that the depletion of macrophage H2S that occurs during acute (LPS-induced) or chronic (obesity) inflammation increases SOCE through disinhibition of Orai3 and promotes the production of proinflammatory cytokines. Copyright © 2015, American Association for the Advancement of Science.

  15. Plasma cytokines eotaxin, MIP-1α, MCP-4, and vascular endothelial growth factor in acute lower respiratory tract infection.

    PubMed

    Relster, Mette Marie; Holm, Anette; Pedersen, Court

    2017-02-01

    Major overlaps of clinical characteristics and the limitations of conventional diagnostic tests render the initial diagnosis and clinical management of pulmonary disorders difficult. In this pilot study, we analyzed the predictive value of eotaxin, macrophage inflammatory protein 1 alpha (MIP-1α), monocyte chemoattractant protein 4 (MCP-4), and vascular endothelial growth factor (VEGF) in 40 patients hospitalized with acute lower respiratory tract infections (LRTI). The cytokines contribute to the pathogenesis of several inflammatory respiratory diseases, indicating a potential as markers for LRTI. Patients were stratified according to etiology and severity of LRTI, based on baseline C-reactive protein and CURB-65 scores. Using a multiplex immunoassay of plasma, levels of eotaxin and MCP-4 were shown to increase from baseline until day 6 after admission to hospital. The four cytokines were unable to predict the etiology and severity. Eotaxin and MCP-4 were significantly lower in patients with C-reactive protein ≥100, and MIP-1α was significantly higher in the patients with CURB-65 > 3, but the predictive power was low. In conclusion, further evaluation, including more patients, is required to assess the full potential of eotaxin, MCP-4, MIP-1α, and VEGF as biomarkers for LRTI because of their low predictive power and a high interindividual variation of cytokine levels. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  16. Serum amyloid A: an ozone-induced circulating factor with potentially important functions in the lung-brain axis.

    PubMed

    Erickson, Michelle A; Jude, Joseph; Zhao, Hengjiang; Rhea, Elizabeth M; Salameh, Therese S; Jester, William; Pu, Shelley; Harrowitz, Jenna; Nguyen, Ngan; Banks, William A; Panettieri, Reynold A; Jordan-Sciutto, Kelly L

    2017-09-01

    Accumulating evidence suggests that O 3 exposure may contribute to CNS dysfunction. Here, we posit that inflammatory and acute-phase proteins in the circulation increase after O 3 exposure and systemically convey signals of O 3 exposure to the CNS. To model acute O 3 exposure, female Balb/c mice were exposed to 3 ppm O 3 or forced air for 2 h and were studied after 6 or 24 h. Of 23 cytokines and chemokines, only KC/CXCL1 was increased in blood 6 h after O 3 exposure. The acute-phase protein serum amyloid A (A-SAA) was significantly increased by 24 h, whereas C-reactive protein was unchanged. A-SAA in blood correlated with total leukocytes, macrophages, and neutrophils in bronchoalveolar lavage from O 3 -exposed mice. A-SAA mRNA and protein were increased in the liver. We found that both isoforms of A-SAA completely crossed the intact blood-brain barrier, although the rate of SAA2.1 influx was approximately 5 times faster than that of SAA1.1. Finally, A-SAA protein, but not mRNA, was increased in the CNS 24 h post-O 3 exposure. Our findings suggest that A-SAA is functionally linked to pulmonary inflammation in our O 3 exposure model and that A-SAA could be an important systemic signal of O 3 exposure to the CNS.-Erickson, M. A., Jude, J., Zhao, H., Rhea, E. M., Salameh, T. S., Jester, W., Pu, S., Harrowitz, J., Nguyen, N., Banks, W. A., Panettieri, R. A., Jr., Jordan-Sciutto, K. L. Serum amyloid A: an ozone-induced circulating factor with potentially important functions in the lung-brain axis. © FASEB.

  17. Light-emitting diode therapy reduces persistent inflammatory pain: Role of interleukin 10 and antioxidant enzymes.

    PubMed

    Martins, D F; Turnes, B L; Cidral-Filho, F J; Bobinski, F; Rosas, R F; Danielski, L G; Petronilho, F; Santos, A R S

    2016-06-02

    During the last decades, the use of light-emitting diode therapy (LEDT) has increased significantly for the treatment of wound healing, analgesia and inflammatory processes. Nevertheless, scientific data on the mechanisms responsible for the therapeutic effect of LEDT are still insufficient. Thus, this study investigated the analgesic, anti-inflammatory and anti-oxidative effect of LEDT in the model of chronic inflammatory hyperalgesia. Mice injected with Complete Freund's Adjuvant (CFA) underwent behavioral, i.e. mechanical and hot hyperalgesia; determination of cytokine levels (tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), IL-10), oxidative stress markers (protein carbonyls and thiobarbituric acid reactive species (TBARS)) and antioxidant enzymes (catalase (CAT) and superoxide dismutase (SOD)). Additionally, mice were pretreated with either naloxone or fucoidin and mechanical hyperalgesia was assessed. LEDT inhibited mechanical and thermal hyperalgesia induced by CFA injection. LEDT did not reduce paw edema, neither influenced the levels of TNF-α and IL1-β; although it increased the levels of IL-10. LEDT significantly prevented TBARS increase in both acute and chronic phases post-CFA injection; whereas protein carbonyl levels were reduced only in the acute phase. LEDT induced an increase in both SOD and CAT activity, with effects observable in the acute but not in the chronic. And finally, pre-administration of naloxone or fucoidin prevented LEDT analgesic effect. These data contribute to the understanding of the neurobiological mechanisms involved in the therapeutic effect of LEDT as well as provides additional support for its use in the treatment of painful conditions of inflammatory etiology. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Agmatine: at the crossroads of the arginine pathways.

    PubMed

    Satriano, Joseph

    2003-12-01

    In acute inflammatory responses, such as wound healing and glomerulonephritis, arginine is the precursor for production of the cytostatic molecule nitric oxide (NO) and the pro-proliferative polyamines. NO is an early phase response whereas increased generation of polyamines is requisite for the later, repair phase response. The temporal switch of arginine as a substrate for the inducible nitric oxide synthase (iNOS)/NO axis to arginase/ornithine decarboxylase (ODC)/polyamine axis is subject to regulation by inflammatory cytokines as well as interregulation by the arginine metabolites themselves. Herein we describe the capacity of another arginine pathway, the metabolism of arginine to agmatine by arginine decarboxylase (ADC), to aid in this interregulation. Agmatine is an antiproliferative molecule due to its suppressive effects on intracellular polyamine levels, whereas the aldehyde metabolite of agmatine is a potent inhibitor of iNOS. We propose that the catabolism of agmatine to its aldehyde metabolite may act as a gating mechanism at the transition from the iNOS/NO axis to the arginase/ODC/polyamine axis. Thus, agmatine has the potential to serve in the coordination of the early and repair phase pathways of arginine in inflammation.

  19. Fate of Neutrophils during the Recovery Phase of Ischemia/Reperfusion Induced Acute Kidney Injury

    PubMed Central

    2017-01-01

    Effective clearance of inflammatory cells is required for resolution of inflammation. Here, we show in vivo evidence that apoptosis and reverse transendothelial migration (rTEM) are important mechanisms in eliminating neutrophils and facilitating recovery following ischemia/reperfusion injury (IRI) of the kidney. The clearance of neutrophils was delayed in the Bax knockout (KO)BM → wild-type (WT) chimera in which bone marrow derived cells are partially resistant to apoptosis, compared to WTBM → WT mice. These mice also showed delayed functional, histological recovery, increased tissue cytokines, and accelerated fibrosis. The circulating intercellular adhesion molecule-1 (ICAM-1)+ Gr-1+ neutrophils displaying rTEM phenotype increased during the recovery phase and blockade of junctional adhesion molecule-C (JAM-C), a negative regulator of rTEM, resulted in an increase in circulating ICAM-1+ neutrophils, faster resolution of inflammation and recovery. The presence of Tamm-Horsfall protein (THP) in circulating ICAM-1+ neutrophils could suggest that they are derived from injured kidneys. In conclusion, we suggest that apoptosis and rTEM are critically involved in the clearance mechanisms of neutrophils during the recovery phase of IRI. PMID:28875605

  20. Reduction of Acute Rejection by Bone Marrow Mesenchymal Stem Cells during Rat Small Bowel Transplantation

    PubMed Central

    Zhang, Wen; Wu, Ben-Juan; Fu, Nan-Nan; Zheng, Wei-Ping; Don, Chong; Shen, Zhong-Yang

    2014-01-01

    Background Bone marrow mesenchymal stem cells (BMMSCs) have shown immunosuppressive activity in transplantation. This study was designed to determine whether BMMSCs could improve outcomes of small bowel transplantation in rats. Methods Heterotopic small bowel transplantation was performed from Brown Norway to Lewis rats, followed by infusion of BMMSCs through the superficial dorsal veins of the penis. Controls included rats infused with normal saline (allogeneic control), isogeneically transplanted rats (BN-BN) and nontransplanted animals. The animals were sacrificed after 1, 5, 7 or 10 days. Small bowel histology and apoptosis, cytokine concentrations in serum and intestinal grafts, and numbers of T regulatory (Treg) cells were assessed at each time point. Results Acute cellular rejection occurred soon after transplantation and became aggravated over time in the allogeneic control rats, with increase in apoptosis, inflammatory response, and T helper (Th)1/Th2 and Th17/Treg-related cytokines. BMMSCs significantly attenuated acute cellular rejection, reduced apoptosis and suppressed the concentrations of interleukin (IL)-2, IL-6, IL-17, IL-23, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ while upregulating IL-10 and transforming growth factor (TGF)-β expression and increasing Treg levels. Conclusion BMMSCs improve the outcomes of allogeneic small bowel transplantation by attenuating the inflammatory response and acute cellular rejection. Treatment with BMMSCs may overcome acute cellular rejection in small bowel transplantation. PMID:25500836

  1. Noninvasive optical monitoring multiple physiological parameters response to cytokine storm

    NASA Astrophysics Data System (ADS)

    Li, Zebin; Li, Ting

    2018-02-01

    Cancer and other disease originated by immune or genetic problems have become a main cause of death. Gene/cell therapy is a highlighted potential method for the treatment of these diseases. However, during the treatment, it always causes cytokine storm, which probably trigger acute respiratory distress syndrome and multiple organ failure. Here we developed a point-of-care device for noninvasive monitoring cytokine storm induced multiple physiological parameters simultaneously. Oxy-hemoglobin, deoxy-hemoglobin, water concentration and deep-tissue/tumor temperature variations were simultaneously measured by extended near infrared spectroscopy. Detection algorithms of symptoms such as shock, edema, deep-tissue fever and tissue fibrosis were developed and included. Based on these measurements, modeling of patient tolerance and cytokine storm intensity were carried out. This custom device was tested on patients experiencing cytokine storm in intensive care unit. The preliminary data indicated the potential of our device in popular and milestone gene/cell therapy, especially, chimeric antigen receptor T-cell immunotherapy (CAR-T).

  2. Monitoring of Immune and Microbial Reconstitution in (HCT) and Novel Immunotherapies

    ClinicalTrials.gov

    2018-06-25

    Immune and Microbial Reconstitution; Systemic Viral Infection; Acute-graft-versus-host Disease; Chronic Graft-versus-host-disease; Recurrent Malignancy; Cytokine Release Syndrome; Allogenic Related Donors; Cell Therapy/Immunotherapy Patients

  3. Attenuation of the Influenza Virus Sickness Behavior in Mice Deficient in Toll-like Receptor 3

    PubMed Central

    Majde, Jeannine A.; Kapás, Levente; Bohnet, Stewart G.; De, Alok; Krueger, James M.

    2009-01-01

    Certain sickness behaviors occur consistently in influenza-infected humans and mice. These include body temperature changes, somnolence, and anorexia. Several cytokines serve as mediators of the influenza acute phase response (APR), including these sickness behaviors, and one likely inducer of these cytokines is dsRNA produced during viral replication. TLR3 is known to be one of the host cellular components capable of recognizing dsRNA and activating cytokine synthesis. To determine the role of TLR3-detected viral dsRNA in the causation of viral symptoms, TLR3-deficient mice (TLR3 knockouts, or KOs) were infected with a marginally lethal dose of mouse-adapted X-31 influenza virus. TLR3 KOs and their wild-type (WT) controls were monitored for baseline body temperature, locomotor activity, and sleep profiles prior to infection. Both mouse strains were then infected and monitored for changes in these sickness behaviors plus body weight changes and mortality for up to 14 days post-infection. Consistent with the observations that influenza pathology is reduced in TLR3 KOs, we showed that hypothermia after post-infection day 5 and the total loss of body weight were attenuated in the TLR3 KOs. Sleep changes characteristic of this infection model [particularly increased non-rapid-eye-movement sleep (NREMS)] were also attenuated in TLR3 KOs and returned to baseline values more rapidly. Locomotor activity suppression was similar in both strains. Therefore virus-associated dsRNA detected by TLR3 appears to play a substantial role in mediating several aspects of the influenza syndrome in mice. PMID:19861156

  4. Regulation of Pleiotrophin, Midkine, Receptor Protein Tyrosine Phosphatase β/ζ, and Their Intracellular Signaling Cascades in the Nucleus Accumbens During Opiate Administration

    PubMed Central

    Laorden, María Luisa; Milanés, María Victoria

    2016-01-01

    Background: Most classes of addictive substances alter the function and structural plasticity of the brain reward circuitry. Midkine (MK) and pleiotrophin (PTN) are growth/differentiation cytokines which, similarly to neurotrophins, play an important role in repair, neurite outgrowth, and cell differentiation. PTN or MK signaling through receptor protein tyrosine phosphatase β/ζ (RPTPβ/ζ), leads to the activation of extracellular signal-regulated kinases and thymoma viral proto-oncogene. This activation induces morphological changes and modulates addictive behaviors. Besides, there is increasing evidence that during the development of drug addiction, astrocytes contribute to the synaptic plasticity by synthesizing and releasing substances such as cytokines. Methods: In the present work we studied the effect of acute morphine administration, chronic morphine administration, and morphine withdrawal on PTN, MK, and RPTPβ/ζ expression and on their signaling pathways in the nucleus accumbens. Results: Present results indicated that PTN, MK, and RPTPβ/ζ levels increased after acute morphine injection, returned to basal levels during chronic opioid treatment, and were up-regulated again during morphine withdrawal. We also observed an activation of astrocytes after acute morphine injection and during opiate dependence and withdrawal. In addition, immunofluorescence analysis revealed that PTN, but not MK, was overexpressed in astrocytes and that dopaminoceptive neurons expressed RPTPβ/ζ. Conclusions: All these observations suggest that the neurotrophic and behavioral adaptations that occur during opiate addiction could be, at least partly, mediated by cytokines. PMID:26164717

  5. Regulation of Pleiotrophin, Midkine, Receptor Protein Tyrosine Phosphatase β/ζ, and Their Intracellular Signaling Cascades in the Nucleus Accumbens During Opiate Administration.

    PubMed

    García-Pérez, Daniel; Laorden, María Luisa; Milanés, María Victoria

    2015-07-11

    Most classes of addictive substances alter the function and structural plasticity of the brain reward circuitry. Midkine (MK) and pleiotrophin (PTN) are growth/differentiation cytokines which, similarly to neurotrophins, play an important role in repair, neurite outgrowth, and cell differentiation. PTN or MK signaling through receptor protein tyrosine phosphatase β/ζ (RPTPβ/ζ), leads to the activation of extracellular signal-regulated kinases and thymoma viral proto-oncogene. This activation induces morphological changes and modulates addictive behaviors. Besides, there is increasing evidence that during the development of drug addiction, astrocytes contribute to the synaptic plasticity by synthesizing and releasing substances such as cytokines. In the present work we studied the effect of acute morphine administration, chronic morphine administration, and morphine withdrawal on PTN, MK, and RPTPβ/ζ expression and on their signaling pathways in the nucleus accumbens. Present results indicated that PTN, MK, and RPTPβ/ζ levels increased after acute morphine injection, returned to basal levels during chronic opioid treatment, and were up-regulated again during morphine withdrawal. We also observed an activation of astrocytes after acute morphine injection and during opiate dependence and withdrawal. In addition, immunofluorescence analysis revealed that PTN, but not MK, was overexpressed in astrocytes and that dopaminoceptive neurons expressed RPTPβ/ζ. All these observations suggest that the neurotrophic and behavioral adaptations that occur during opiate addiction could be, at least partly, mediated by cytokines. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  6. Acute and delayed neuroinflammatory response following experimental penetrating ballistic brain injury in the rat

    PubMed Central

    Williams, Anthony J; Wei, Hans H; Dave, Jitendra R; Tortella, Frank C

    2007-01-01

    Background Neuroinflammation following acute brain trauma is considered to play a prominent role in both the pathological and reconstructive response of the brain to injury. Here we characterize and contrast both an acute and delayed phase of inflammation following experimental penetrating ballistic brain injury (PBBI) in rats out to 7 days post-injury. Methods Quantitative real time PCR (QRT-PCR) was used to evaluate changes in inflammatory gene expression from the brain tissue of rats exposed to a unilateral frontal PBBI. Brain histopathology was assessed using hematoxylin and eosin (H&E), silver staining, and immunoreactivity for astrocytes (GFAP), microglia (OX-18) and the inflammatory proteins IL-1β and ICAM-1. Results Time course analysis of gene expression levels using QRT-PCR indicated a peak increase during the acute phase of the injury between 3–6 h for the cytokines TNF-α (8–11 fold), IL-1β (11–13 fold), and IL-6 (40–74 fold) as well as the cellular adhesion molecules VCAM (2–3 fold), ICAM-1 (7–15 fold), and E-selectin (11–13 fold). Consistent with the upregulation of pro-inflammatory genes, peripheral blood cell infiltration was a prominent post-injury event with peak levels of infiltrating neutrophils (24 h) and macrophages (72 h) observed throughout the core lesion. In regions of the forebrain immediately surrounding the lesion, strong immunoreactivity for activated astrocytes (GFAP) was observed as early as 6 h post-injury followed by prominent microglial reactivity (OX-18) at 72 h and resolution of both cell types in cortical brain regions by day 7. Delayed thalamic inflammation (remote from the primary lesion) was also observed as indicated by both microglial and astrocyte reactivity (72 h to 7 days) concomitant with the presence of fiber degeneration (silver staining). Conclusion In summary, PBBI induces both an acute and delayed neuroinflammatory response occurring in distinct brain regions, which may provide useful diagnostic information for the treatment of this type of brain injury. PMID:17605820

  7. Pathophysiology of Cisplatin-Induced Acute Kidney Injury

    PubMed Central

    Ozkok, Abdullah; Edelstein, Charles L.

    2014-01-01

    Cisplatin and other platinum derivatives are the most widely used chemotherapeutic agents to treat solid tumors including ovarian, head and neck, and testicular germ cell tumors. A known complication of cisplatin administration is acute kidney injury (AKI). The nephrotoxic effect of cisplatin is cumulative and dose-dependent and often necessitates dose reduction or withdrawal. Recurrent episodes of AKI may result in chronic kidney disease. The pathophysiology of cisplatin-induced AKI involves proximal tubular injury, oxidative stress, inflammation, and vascular injury in the kidney. There is predominantly acute tubular necrosis and also apoptosis in the proximal tubules. There is activation of multiple proinflammatory cytokines and infiltration of inflammatory cells in the kidney. Inhibition of the proinflammatory cytokines TNF-α or IL-33 or depletion of CD4+ T cells or mast cells protects against cisplatin-induced AKI. Cisplatin also causes endothelial cell injury. An understanding of the pathogenesis of cisplatin-induced AKI is important for the development of adjunctive therapies to prevent AKI, to lessen the need for dose decrease or drug withdrawal, and to lessen patient morbidity and mortality. PMID:25165721

  8. First in-depth analysis of the novel Th2-type cytokines in salmonid fish reveals distinct patterns of expression and modulation but overlapping bioactivities

    PubMed Central

    Wang, Tiehui; Johansson, Petronella; Abós, Beatriz; Holt, Amy; Tafalla, Carolina; Jiang, Youshen; Wang, Alex; Xu, Qiaoqing; Qi, Zhitao; Huang, Wenshu; Costa, Maria M.; Diaz-Rosales, Patricia; Holland, Jason W.; Secombes, Christopher J.

    2016-01-01

    IL-4 and IL-13 are closely related canonical type-2 cytokines in mammals and have overlapping bioactivities via shared receptors. They are frequently activated together as part of the same immune response and are the signature cytokines produced by T-helper (Th)2 cells and type-2 innate lymphoid cells (ILC2), mediating immunity against extracellular pathogens. Little is known about the origin of type-2 responses, and whether they were an essential component of the early adaptive immune system that gave a fitness advantage by limiting collateral damage caused by metazoan parasites. Two evolutionary related type-2 cytokines, IL-4/13A and IL-4/13B, have been identified recently in several teleost fish that likely arose by duplication of an ancestral IL-4/13 gene as a consequence of a whole genome duplication event that occurred at the base of this lineage. However, studies of their comparative expression levels are largely missing and bioactivity analysis has been limited to IL-4/13A in zebrafish. Through interrogation of the recently released salmonid genomes, species in which an additional whole genome duplication event has occurred, four genomic IL-4/13 loci have been identified leading to the cloning of three active genes, IL-4/13A, IL-4/13B1 and IL-4/13B2, in both rainbow trout and Atlantic salmon. Comparative expression analysis by real-time PCR in rainbow trout revealed that the IL-4/13A expression is broad and high constitutively but less responsive to pathogen-associated molecular patterns (PAMPs) and pathogen challenge. In contrast, the expression of IL-4/13B1 and IL-4/13B2 is low constitutively but is highly induced by viral haemorrhagic septicaemia virus (VHSH) infection and during proliferative kidney disease (PKD) in vivo, and by formalin-killed bacteria, PAMPs, the T cell mitogen PHA, and the T-cell cytokines IL-2 and IL-21 in vitro. Moreover, bioactive recombinant cytokines of both IL-4/13A and B were produced and found to have shared but also distinct bioactivities. Both cytokines rapidly induce the gene expression of antimicrobial peptides and acute phase proteins, providing an effector mechanism of fish type-2 cytokines in immunity. They are anti-inflammatory via up-regulation of IL-10 and down-regulation of IL-1β and IFN-γ. They modulate the expression of cellular markers of T cells, macrophages and B cells, the receptors of IFN-γ, the IL-6 cytokine family and their own potential receptors, suggesting multiple target cells and important roles of fish type-2 cytokines in the piscine cytokine network. Furthermore both cytokines increased the number of IgM secreting B cells but had no effects on the proliferation of IgM+ B cells in vitro. Taken as a whole, fish IL-4/13A may provide a basal level of type-2 immunity whilst IL-4/13B, when activated, provides an enhanced type-2 immunity, which may have an important role in specific cell-mediated immunity. To our knowledge this is the first in-depth analysis of the expression, modulation and bioactivities of type-2 cytokines in the same fish species, and in any early vertebrate. It contributes to a broader understanding of the evolution of type-2 immunity in vertebrates, and establishes a framework for further studies and manipulation of type-2 cytokines in fish. PMID:26870894

  9. Surface area-dependence of gas-particle interactions influences pulmonary and neuroinflammatory outcomes.

    PubMed

    Tyler, Christina R; Zychowski, Katherine E; Sanchez, Bethany N; Rivero, Valeria; Lucas, Selita; Herbert, Guy; Liu, June; Irshad, Hammad; McDonald, Jacob D; Bleske, Barry E; Campen, Matthew J

    2016-12-01

    Deleterious consequences of exposure to traffic emissions may derive from interactions between carbonaceous particulate matter (PM) and gaseous components in a manner that is dependent on the surface area or complexity of the particles. To determine the validity of this hypothesis, we examined pulmonary and neurological inflammatory outcomes in C57BL/6 and apolipoprotein E knockout (ApoE -/- ) male mice after acute and chronic exposure to vehicle engine-derived particulate matter, generated as ultrafine (UFP) and fine (FP) sizes, with additional exposures using UFP or FP combined with gaseous copollutants derived from fresh gasoline and diesel emissions, labeled as UFP + G and FP + G. The UFP and UFP + G exposure groups resulted in the most profound pulmonary and neuroinflammatory effects. Phagocytosis of UFP + G particles via resident alveolar macrophages was substantial in both mouse strains, particularly after chronic exposure, with concurrent increased proinflammatory cytokine expression of CXCL1 and TNFα in the bronchial lavage fluid. In the acute exposure paradigm, only UFP and UFP + G induced significant changes in pulmonary inflammation and only in the ApoE -/- animals. Similarly, acute exposure to UFP and UFP + G increased the expression of several cytokines in the hippocampus of ApoE -/- mice including Il-1β, IL-6, Tgf-β and Tnf-α and in the hippocampus of C57BL/6 mice including Ccl5, Cxcl1, Il-1β, and Tnf-α. Interestingly, Il-6 and Tgf-β expression were decreased in the C57BL/6 hippocampus after acute exposure. Chronic exposure to UFP + G increased expression of Ccl5, Cxcl1, Il-6, and Tgf-β in the ApoE -/- hippocampus, but this effect was minimal in the C57BL/6 mice, suggesting compensatory mechanisms to manage neuroinflammation in this strain. Inflammatory responses the lung and brain were most substantial in ApoE -/- animals exposed to UFP + G, suggesting that the surface area-dependent interaction of gases and particles is an important determinant of toxic responses. As such, freshly generated UFP, in the presence of combustion-derived gas phase pollutants, may be a greater health hazard than would be predicted from PM concentration, alone, lending support for epidemiological findings of adverse neurological outcomes associated with roadway proximity.

  10. Inhibition of HSV-1 replication by laser diode-irradiation: possible mechanism of action.

    PubMed

    Donnarumma, G; De Gregorio, V; Fusco, A; Farina, E; Baroni, A; Esposito, V; Contaldo, M; Petruzzi, M; Pannone, G; Serpico, R

    2010-01-01

    Herpes labialis are the most frequent clinical manifestations of HSV-1 infection. Epithelial cells are able to respond to HSV-1 presence inducing the expression of IL-6, IL-1, TNF-α and IL-8. These proinflammatory cytokines have a function in the acute-phase response mediation, chemotaxis, inflammatory cell activation and antigen-presenting cells. In the human epithelial cell models, it has been demonstrated that, after an early induction of proinflammatory host response, HSV-1 down-modulates the proinflammatory cytokine production through the accumulation of two viral proteins, ICP4 and ICP27, whose transcription is induced by tegument protein VP16. These viral proteins, through the decreasing of stabilizing the mRNAs of proinflammatory genes, delay cytokine production to an extent that allows the virus to replicate. Moreover, viral transactivating proteins, ICP-0 and VP-16 induce IL-10 expression. The conventional treatment of herpes labialis involves the topical and systemic use of antiviral drugs but it is necessary to find new therapies that can act in a selective and non-cytotoxic manner in viral infection. Laser diode therapy has been considered as a non-invasive alternative treatment to the conventional treatment of herpes labialis in pain therapy, in modulation of inflammation and in wound healing. This study aims to report a possible mechanism of action of laser diode irradiation in prevention and reduction of severity of labial manifestations of herpes labialis virus. We investigated, in an in vitro model of epithelial cells HaCat, the laser-effect on HSV-1 replication and we evaluated the modulation of expression of certain proinflammatory cytokines (TNF-α, IL-1β and IL-6), antimicrobial peptide HBD2, chemokine IL-8 and the immunosuppressive cytokine, IL-10. Our results lead us to hypothesize that LD-irradiation acts in the final stage of HSV-1 replication by limiting viral spread from cell to cell and that laser therapy acts also on the host immune response unblocking the suppression of proinflammatory mediators induced by accumulation of progeny virus in infected epithelial cells.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Sun Hee; Choi, Dalwoong; Chun, Young-Jin

    Keratinocytes are the major cellular components of human epidermis and play a key role in the modulating cutaneous inflammation and toxic responses. In human chronic skin diseases, the common skin inflammatory phenotypes like skin barrier disruption and epidermal hyperplasia are manifested in epidermal keratinocytes by interactions with T helper (Th) cells. To find a common gene expression signature of human keratinocytes in chronic skin diseases, we performed a whole genome microarray analysis on normal human epidermal keratinocytes (NHKs) treated with IFNγ, IL-4, IL-17A or IL-22, major cytokines from Th1, Th2, Th17 or Th22 cells, respectively. The microarray results showed thatmore » the four genes, IL-24, PDZK1IP1, H19 and filaggrin, had common expression profiles in NHKs exposed to Th cell cytokines. In addition, the acute phase pro-inflammatory cytokines, IL-1β, IL-6 and TNFα, also change the gene transcriptional profile of IL-24, PDZK1IP1, H19, and filaggrin in NHKs as those of Th cytokines. Therefore, the signature gene set, consisting of IL-24, PDZK1IP1, H19, and filaggrin, provides essential insights for understanding the process of cutaneous inflammation and toxic responses. We demonstrate that environmental toxic stressors, such as chemical irritants and ultraviolet irradiation stimulate the production of IL-24 in NHKs. IL-24 stimulates the JAK1-STAT3 and MAPK pathways in NHKs, and promotes the secretion of pro-inflammatory mediators IL-8, PGE2, and MMP-1. These results suggest that keratinocyte-derived IL-24 participates in the positive feedback regulation of epidermal inflammation in response to both endogenous and environmental toxic stressors. - Highlights: • Cutaneous inflammatory gene signature consists of PDZK1IP1, IL-24, H19 and filaggrin. • Pro-inflammatory cytokines increase IL-24 production in human keratinocytes. • Environmental toxic stressors increase IL-24 production in human keratinocytes. • IL-24 stimulates human keratinocytes to produce pro-inflammatory mediators. • IL-24 activates STAT3 and MAPK signaling pathways in human keratinocytes.« less

  12. Thermal degradation events as health hazards - Particle vs gas phase effects, mechanistic studies with particles

    NASA Technical Reports Server (NTRS)

    Oberdoerster, G.; Ferin, J.; Finkelstein, J.; Soderholm, S.

    1992-01-01

    Experiments on animal subjects are performed to demonstrate that significant lung injury can result from the inhalation of ultrafine TiO2 or Al2O3 particles. The methods include intratracheal instillation of particles, long-term inhalation of particles, and in vitro studies of alveolar macrophages (AMs) to study the production of fibroplast growth factors. The ultrafine TiO2 particles are shown to induce more acute inflammatory reactions than larger particles and lead to persistent chronic effects in the AM-mediated clearance function of particles. The ultrafine particles also induce cytokines more readily, and the data generally suggests that the occurrence of such particles in thermal degradation events makes the fumes highly toxic. The exposure to thermal degradation products is therefore a critical concern for manned space missions with potentially degradable plastic products.

  13. Genetic Susceptibility to Chagas Disease: An Overview about the Infection and about the Association between Disease and the Immune Response Genes

    PubMed Central

    Ayo, Christiane Maria; Dalalio, Márcia Machado de Oliveira; Visentainer, Jeane Eliete Laguila; Reis, Pâmela Guimarães; Jarduli, Luciana Ribeiro; Alves, Hugo Vicentin; Sell, Ana Maria

    2013-01-01

    Chagas disease, which is caused by the flagellate parasite Trypanosoma cruzi, affects 8–10 million people in Latin America. The disease is endemic and is characterised by acute and chronic phases that develop in the indeterminate, cardiac, and/or gastrointestinal forms. The immune response during human T. cruzi infection is not completely understood, despite its role in driving the development of distinct clinical manifestations of chronic infection. Polymorphisms in genes involved in the innate and specific immune response are being widely studied in order to clarify their possible role in the occurrence or severity of disease. Here we review the role of classic and nonclassic MHC, KIR, and cytokine host genetic factors on the infection by T. cruzi and the clinical course of Chagas disease. PMID:24069594

  14. Topical atorvastatin ameliorates 12-O-tetradecanoylphorbol-13-acetate induced skin inflammation by reducing cutaneous cytokine levels and NF-κB activation.

    PubMed

    Kulkarni, Nagaraj M; Muley, Milind M; Jaji, Mallikarjun S; Vijaykanth, G; Raghul, J; Reddy, Neetin Kumar D; Vishwakarma, Santosh L; Rajesh, Navin B; Mookkan, Jeyamurugan; Krishnan, Uma Maheswari; Narayanan, Shridhar

    2015-06-01

    Atorvastatin is a 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitor used in the treatment of atherosclerosis and dyslipidemia. Studies have evaluated the utility of statins in the treatment of skin inflammation but with varied results. In the present study, we investigated the effect of atorvastatin on TNF-α release and keratinocyte proliferation in vitro and in acute and chronic 12-O-tetradecanoylphorbol-13-acetate (TPA) induced skin inflammation in vivo. Atorvastatin significantly inhibited lipopolysacharide induced TNF-α release in THP-1 cells and keratinocyte proliferation in HaCaT cells. In an acute study, topical atorvastatin showed dose dependent reduction in TPA induced skin inflammation with highest efficacy observed at 500 µg/ear dose. In chronic study, topical atorvastatin significantly reduced TPA induced ear thickness, ear weight, cutaneous cytokines, MPO activity and improved histopathological features comparable to that of dexamethasone. Atorvastatin also inhibited TPA stimulated NF-κB activation in mouse ear. In conclusion, our results suggest that atorvastatin ameliorates TPA induced skin inflammation in mice at least in part, due to inhibition of cytokine release and NF-κB activation and may be beneficial for the treatment skin inflammation like psoriasis.

  15. Cutting Edge: Notch Signaling Promotes the Plasticity of Group-2 Innate Lymphoid Cells.

    PubMed

    Zhang, Kangning; Xu, Xingyuan; Pasha, Muhammad Asghar; Siebel, Christian W; Costello, Angelica; Haczku, Angela; MacNamara, Katherine; Liang, Tingbo; Zhu, Jinfang; Bhandoola, Avinash; Maillard, Ivan; Yang, Qi

    2017-03-01

    The mechanisms underlying lymphocyte lineage stability and plasticity remain elusive. Recent work indicates that innate lymphoid cells (ILC) possess substantial plasticity. Whereas natural ILC2 (nILC2) produce type-2 cytokines, plastic inflammatory ILC2 (iILC2) can coproduce both type-2 cytokines and the ILC3-characteristic cytokine, IL-17. Mechanisms that elicit this lineage plasticity, and the importance in health and disease, remain unclear. In this study we show that iILC2 are potent inducers of airway inflammation in response to acute house dust mite challenge. We find that Notch signaling induces lineage plasticity of mature ILC2 and drives the conversion of nILC2 into iILC2. Acute blockade of Notch signaling abolished functional iILC2, but not nILC2, in vivo. Exposure of isolated nILC2 to Notch ligands induced Rorc expression and elicited dual IL-13/IL-17 production, converting nILC2 into iILC2. Together these results reveal a novel role for Notch signaling in eliciting ILC2 plasticity and driving the emergence of highly proinflammatory innate lymphocytes. Copyright © 2017 by The American Association of Immunologists, Inc.

  16. Interleukin-6 in the injured patient. Marker of injury or mediator of inflammation?

    PubMed Central

    Biffl, W L; Moore, E E; Moore, F A; Peterson, V M

    1996-01-01

    OBJECTIVE: The effects of interleukin (IL)-6 in the injured patient are examined in an attempt to clarify the potential pathophysiologic role of IL-6 in the response to injury. SUMMARY BACKGROUND DATA: Interleukin-6 is an integral cytokine mediator of the acute phase response to injury and infection. However, prolonged and excessive elevations of circulating IL-6 levels in patients after trauma, burns, and elective surgery have been associated with complications and mortality. The mechanistic role of IL-6 in mediating these effects is unclear. METHODS: A review of current literature is performed to summarize the origins, mechanisms of action, and biologic effects of IL-6 and to characterize the IL-6 response to injury. RESULTS: Interleukin-6 is a multifunctional cytokine expressed by a variety of cells after a multitude of stimuli, under complex regulatory control mechanisms. The IL-6 response to injury is uniquely consistent and related to the magnitude of the insult. Moreover, the early postinjury IL-6 response correlates with complications as well as mortality. CONCLUSIONS: Interleukin-6 appears to play an active role in the postinjury immune response, making it an attractive therapeutic target in attempts to control hyperinflammatory provoked organ injury. Images Figure 2. PMID:8916880

  17. Relationship between theoretical molecular weight and blister fluid/serum ratio of cytokines and five other molecules evaluated in patients with bullous pemphigoid.

    PubMed

    D'Auria, L; Pimpinelli, F; Ferraro, C; D'Ambrogio, G; Giacalone, B; Bellocci, M; Ameglio, F

    1998-01-01

    Bullous pemphigoid (BP) blisters contain several molecules, some of which spread into the blisters from the interstitial fluid, while others are produced locally and migrate into the circulation. The calculation of the ratios between blister/serum concentrations may help to distinguish between these two types of molecules. The rules regulating the diffusion of the molecules have been described only in suction blisters, where the theoretical molecular weight (MW) represents one of the principal influencing factors. The aim of the present study was to analyse the relationship between theoretical MWs and the ratios of concentrations of several molecules evaluated both in sera and in blister fluids. Eight cytokines (interleukin-2, interleukin-3, interleukin-4, interleukin-5, interleukin-10, tumor necrosis factor-alpha, oncostatin-M and vascular endothelial growth factor), two acute phase reactants (alpha-1 acid glycoprotein, haptoglobin), albumin, one soluble membrane molecule with adhesion functions (sICAM-1) and the eosinophil cathionic protein (ECP) were measured in samples from 15 patients affected with BP by means of commercially available tests. The data suggest that the MW may influence the rate of diffusion throughout the blister, both in input and output directions, despite the discontinuity observed at the basement membrane level on the BP blister floor.

  18. New phytopharmaceutical agent CJ-20001 modulates stress-induced inflammatory infiltration into gastric mucosa.

    PubMed

    Yeo, Marie; Kim, Dong-Kyu; Cho, Sung Won; Lee, Song-Jin; Cho, Il-Hwan; Song, Geun-Seog; Moon, Byoung-Seok

    2012-05-01

    CJ-20001 is a phytopharmaceutical agent and currently being investigated in a Phase II trial for the treatment of acute and chronic gastritis patients in Korea. In this study we addressed the protective effects of CJ-20001 against water immersion restraint stress (WIRS)-induced gastric injury in rats and studied the underlying mechanisms. To evaluate the protective effect of CJ-20001 on stress-induced gastric lesions, rats were exposed to water immersion restraint stress. Inflammatory infiltration into gastric mucosa was examined by immunohistochemistry and in vitro invasion assay. Expression of proinflammatory cytokines was detected with reverse transcription-polymerase chain reaction (RT-PCR). Pretreatment with CJ-20001 dose-dependently attenuated the WIRS-induced gastric lesions as demonstrated by gross pathology and histology. WIRS increased infiltration of mast cells and macrophages into the gastric mucosa and submucosal layer, whereas the inflammatory infiltration was markedly inhibited by CJ-20001 administration. An in vitro cell invasion assay showed that treatment with CJ-20001 decreased the migration of macrophages. CJ-20001 suppressed the expression of proinflammatory cytokines, IL-18, IP-10 and GRO/KC, in lipopolysaccharides (LPS)-treated macrophages. These data suggest that novel phytopharmaceutical agent CJ-20001 has the potent anti-inflammatory properties through inhibition of inflammatory infiltration in psycho-physiological stress-induced gastric injury.

  19. Endotoxemia and the host systemic response during experimental gingivitis.

    PubMed

    Wahaidi, Vivian Y; Kowolik, Michael J; Eckert, George J; Galli, Dominique M

    2011-05-01

    To assess endotoxemia episodes and subsequent changes in serum inflammatory biomarkers using the experimental gingivitis model. Data from 50 healthy black and white adult males and females were compared for serum concentrations of endotoxin, and serum biomarkers [neutrophil oxidative activity, interleukin (IL)-1β, IL-6, IL-8, C-reactive protein (CRP), and fibrinogen] at baseline, at 3 weeks of experimental gingivitis, and after 2 weeks of recovery. Means were compared using repeated measures analysis of variance. Endotoxemia was reported in 56% of the serum samples at 3 weeks of induced gingivitis. At 2 weeks of recovery, endotoxin levels decreased to levels similar to those reported at baseline. Neutrophil oxidative activity increased significantly following 3 weeks of gingivitis versus baseline (p<0.05). In the endotoxin-negative group this increase was associated with the black subjects whereas in the endotoxin-positive group change in neutrophil activity was driven by the female subpopulation. Serum cytokines, CRP, and fibrinogen levels did not change during the study. Experimental gingivitis was associated with endotoxemia and hyperactivity of circulating neutrophils, but not with changes in systemic levels of cytokines and acute-phase proteins. This may be attributed to the mild nature and the short duration of the induced gingivitis. © 2011 John Wiley & Sons A/S.

  20. Endotoxemia and the host systemic response during experimental gingivitis

    PubMed Central

    Wahaidi, Vivian Y.; Kowolik, Michael J.; Eckert, George J.; Galli, Dominique M.

    2011-01-01

    Aim To assess endotoxemia episodes and subsequent changes in serum inflammatory biomarkers using the experimental gingivitis model Materials and Methods Data from 50 healthy black and white adult males and females were compared for serum concentrations of endotoxin, and serum biomarkers [neutrophil oxidative activity, interleukin (IL)-1β, IL-6, IL-8, C-reactive protein, and fibrinogen] at baseline, at 3 weeks of experimental gingivitis, and after 2 weeks of recovery. Means were compared using repeated measures ANOVA. Results Endotoxemia was reported in 56% of the serum samples at three weeks of induced gingivitis. At two weeks of recovery, endotoxin levels decreased to levels similar to those reported at baseline. Neutrophil oxidative activity increased significantly following three weeks of gingivitis versus baseline (p<0.05). In the endotoxin-negative group this increase was associated with the black subjects whereas in the endotoxin-positive group change in neutrophil activity was driven by the female subpopulation. Serum cytokines, CRP, and fibrinogen levels did not change during the study. Conclusions Experimental gingivitis was associated with endotoxemia and hyperactivity of circulating neutrophils, but not with changes in systemic levels of cytokines and acute phase proteins. This may be attributed to the mild nature and the short duration of the induced gingivitis. PMID:21320151

  1. Acute ethanol administration results in a protective cytokine and neuroinflammatory profile in traumatic brain injury.

    PubMed

    Chandrasekar, Akila; Heuvel, Florian Olde; Palmer, Annette; Linkus, Birgit; Ludolph, Albert C; Boeckers, Tobias M; Relja, Borna; Huber-Lang, Markus; Roselli, Francesco

    2017-10-01

    Ethanol intoxication is a common comorbidity in traumatic brain injury. To date, the effect of ethanol on TBI pathogenic cascades and resulting outcomes remains debated. A closed blunt weight-drop murine TBI model has been implemented to investigate behavioral (by sensorimotor and neurological tests), and neuro-immunological (by tissue cytokine arrays and immuno-histology) effects of ethanol intoxication on TBI. The effect of the occurrence of traumatic intracerebral hemorrhage was also studied. The results indicate that ethanol pretreatment results in a faster and better recovery after TBI with reduced infiltration of leukocytes and reduced microglia activation. These outcomes correspond to reduced parenchymal levels of GM-CSF, IL-6 and IL-3 and to the transient upregulation of IL-13 and VEGF, indicating an early shift in the cytokine profile towards reduced inflammation. A significant difference in the cytokine profile was still observed 24h post injury in the ethanol pretreated mice, as shown by the delayed peak in IL-6 and by the suppression of GM-CSF, IFN-γ, and IL-3. Seven days post-injury, ethanol-pretreated mice displayed a significant decrease both in CD45+ cells infiltration and in microglial activation. On the other hand, in the case of traumatic intracerebral hemorrhage, the cytokine profile was dominated by KC, CCL5, M-CSF and several interleukins and ethanol pretreatment did not produce any modification. We can thus conclude that ethanol intoxication suppresses the acute neuro-inflammatory response to TBI, an effect which is correlated with a faster and complete neurological recovery, whereas, the presence of traumatic intracerebral hemorrhage overrides the effects of ethanol. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Interactions between pro-inflammatory cytokines and statins on depression in patients with acute coronary syndrome.

    PubMed

    Kim, Sung-Wan; Kang, Hee-Ju; Bae, Kyung-Yeol; Shin, Il-Seon; Hong, Young Joon; Ahn, Young-Keun; Jeong, Myung Ho; Berk, Michael; Yoon, Jin-Sang; Kim, Jae-Min

    2018-01-03

    Pro-inflammatory cytokines are associated with the development of depression and statins exert anti-inflammatory and antidepressant effects. The present study aimed to investigate associations between interleukin (IL)-6 and IL-18 and depression in patients with acute coronary syndrome (ACS) and potential interactions between statin use and pro-inflammatory cytokines on depression in this population. We used pooled datasets from 1-year follow-up data from a 24-week randomized double-blind placebo-controlled trial (RCT) of escitalopram for treatment of depressive disorder and data from a naturalistic, prospective, observational cohort study in patients with ACS. IL-6 and IL-18 levels were measured at baseline. Logistic regression models were used to investigate independent associations of IL-6/IL-18 levels with depressive disorder at baseline and at 1year. We repeated all analyses by reference to statin use to determine whether any significant association emerged. Of the 969 participants, 378 (39.0%) had major or minor depression at baseline. Of 711 patients followed-up at 1year, 183 (25.7%) had depression. Logistic regression analysis showed that higher IL-6 and IL-18 levels at baseline were significantly associated with baseline depression after adjusting for other variables (adjusted p-values=0.005 and 0.001, respectively). IL-6 and IL-18 levels were also significantly higher in patients with depression at the 1-year follow-up after adjusting for other variables amongst those not taking statins (adjusted p-values=0.040 and 0.004, respectively); but this was not the case in patients taking statins. Levels of pro-inflammatory cytokines appear to predict development of depression after ACS and statins attenuate the effects of cytokines on depression. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Use of Oral Steroid and its Effects on Atrial Fibrillation Recurrence and Inflammatory Cytokines Post Ablation - The Steroid AF Study.

    PubMed

    Iskandar, Sandia; Reddy, Madhu; Afzal, Muhammad R; Rajasingh, Johnson; Atoui, Moustapha; Lavu, Madhav; Atkins, Donita; Bommana, Sudha; Umbarger, Linda; Jaeger, Misty; Pimentel, Rhea; Dendi, Raghuveer; Emert, Martin; Turagam, Mohit; Di Biase, Luigi; Natale, Andrea; Lakkireddy, Dhanunjaya

    2017-01-01

    Use of corticosteroids before and after atrial fibrillation (AF) ablation can decrease acute inflammation and reduce AF recurrence. To assess the efficacy of oral prednisone in improving the outcomes of pulmonary vein isolation with radiofrequency ablation and its effect on inflammatory cytokine. A total of 60 patients with paroxysmal AF undergoing radiofrequency ablation were randomized (1:1) to receive either 3 doses of 60 mg daily of oral prednisone or a placebo. Inflammatory cytokine levels (TNF-α, IL-1, IL6, IL-8) were measured at baseline, prior to ablation, immediately after ablation, and 24 hours post ablation. Patients underwent 30 day event monitoring at 3 months, 6 months and 12 months post procedure. Immediate post ablation levels of inflammatory cytokines were lower in the steroid group when compared to the placebo group; IL-6: 9.0 ±7 vs 15.8 ±13 p=0.031; IL-8: 10.5 ±9 vs 15.3 ±8; p=0.047 respectively. Acute PV reconnection rates during the procedure (7/23% vs 10/36%; p = 0.39), and RF ablation time (51±13 vs 56±11 min, p = 0.11) trended to be lower in the placebo group than the steroid group. There was no difference in the incidence of early recurrence of AF during the blanking period and freedom from AF off AAD at 12 months between both groups (5/17% vs 8/27%; p = 0.347 and 21/70% vs 18/60%; p=0.417 in placebo and steroid groups respectively). Although oral corticosteroids have significant effect in lowering certain cytokines, it did not impact the clinical outcomes of AF ablation.

  4. The Impact of Sleep Restriction and Simulated Physical Firefighting Work on Acute Inflammatory Stress Responses.

    PubMed

    Wolkow, Alexander; Ferguson, Sally A; Vincent, Grace E; Larsen, Brianna; Aisbett, Brad; Main, Luana C

    2015-01-01

    This study investigated the effect restricted sleep has on wildland firefighters' acute cytokine levels during 3 days and 2 nights of simulated physical wildfire suppression work. Firefighters completed multiple days of physical firefighting work separated by either an 8-h (Control condition; n = 18) or 4-h (Sleep restriction condition; n = 17) sleep opportunity each night. Blood samples were collected 4 times a day (i.e., 06:15, 11:30, 18:15, 21:30) from which plasma cytokine levels (IL-6, IL-8, IL-1β, TNF-α, IL-4, IL-10) were measured. The primary findings for cytokine levels revealed a fixed effect for condition that showed higher IL-8 levels among firefighters who received an 8-h sleep each night. An interaction effect demonstrated differing increases in IL-6 over successive days of work for the SR and CON conditions. Fixed effects for time indicated that IL-6 and IL-4 levels increased, while IL-1β, TNF-α and IL-8 levels decreased. There were no significant effects for IL-10 observed. Findings demonstrate increased IL-8 levels among firefighters who received an 8-h sleep when compared to those who had a restricted 4-h sleep. Firefighters' IL-6 levels increased in both conditions which may indicate that a 4-h sleep restriction duration and/or period (i.e., 2 nights) was not a significant enough stressor to affect this cytokine. Considering the immunomodulatory properties of IL-6 and IL-4 that inhibit pro-inflammatory cytokines, the rise in IL-6 and IL-4, independent of increases in IL-1β and TNF-α, could indicate a non-damaging response to the stress of simulated physical firefighting work. However, given the link between chronically elevated cytokine levels and several diseases, further research is needed to determine if firefighters' IL-8 and IL-6 levels are elevated following repeated firefighting deployments across a fire season and over multiple fire seasons.

  5. Docosahexaenoic diet supplementation, exercise and temperature affect cytokine production by lipopolysaccharide-stimulated mononuclear cells.

    PubMed

    Capó, Xavier; Martorell, Miquel; Sureda, Antoni; Batle, Juan Miguel; Tur, Josep Antoni; Pons, Antoni

    2016-09-01

    Acute exercise induces changes in peripheral mononuclear cells' (PBMCs) capabilities to produce cytokines. The aim was to investigate the effect of docosahexaenoic acid (DHA) diet supplementation on cytokine production, by lipopolysaccharide (LPS)-stimulated PBMCs after exercise, and the in vitro influence of temperature. Fifteen male soccer players were randomly assigned to a placebo or an experimental group. The experimental group consumed an almond-based beverage enriched with DHA (1.16 g DHA/day) for 8 weeks, whereas the placebo group consumed a similar non-enriched beverage. Blood samples were taken before and after the nutritional intervention in basal conditions and 2 h after acute exercise. Nutritional intervention significantly increased the DHA content in erythrocytes only in experimental group (from 34 ± 3.6 to 43 ± 3.6 nmols DHA/10(9) erythrocytes). Exercise significantly increased Toll-like receptor 4 (TLR4) in PBMCs but only in the placebo group (203 %). Exercise also significantly increased IL6, IL8, VEGF, INFγ, TNFα, IL1α, IL1β, MCP1, and EGG production rates by LPS-stimulated PBMCs, and this response was attenuated by DHA supplementation. Temperature but not DHA also affected the pattern of cytokine production increasing IL6, IL8, IL1β, and MCP1 synthesis. The higher change was evidenced in IL1β increasing the production rate at 39.5 °C from 3.19 ± 0.77 to 22.4 ± 6.1 pg/h 10(6) PBMC in placebo and from 2.36 ± 0.11 to 10.6 ± 0.38 pg/h 10(6) PBMC in the supplemented group. The profile of affected cytokines differs between temperature and exercise, suggesting a different PBMC activation pathway. DHA diet supplementation only attenuated cytokine production after exercise and not that induced by temperature.

  6. Notch3 orchestrates epithelial and inflammatory responses to promote acute kidney injury.

    PubMed

    Kavvadas, Panagiotis; Keuylian, Zela; Prakoura, Niki; Placier, Sandrine; Dorison, Aude; Chadjichristos, Christos E; Dussaule, Jean-Claude; Chatziantoniou, Christos

    2018-07-01

    Acute kidney injury is a major risk factor for subsequent chronic renal and/or cardiovascular complications. Previous studies have shown that Notch3 was de novo expressed in the injured renal epithelium in the early phases of chronic kidney disease. Here we examined whether Notch3 is involved in the inflammatory response and the epithelial cell damage that typifies ischemic kidneys using Notch3 knockout mice and mice with short-term activated Notch3 signaling (N3ICD) in renal epithelial cells. After ischemia/reperfusion, N3ICD mice showed exacerbated infiltration of inflammatory cells and severe tubular damage compared to control mice. Inversely, Notch3 knockout mice were protected against ischemia/reperfusion injury. Renal macrophages derived from Notch3 knockout mice failed to activate proinflammatory cytokines. Chromatin immunoprecipitation analysis of the Notch3 promoter identified NF-κB as the principal inducer of Notch3 in ischemia/reperfusion. Thus, Notch3 induced by NF-κB in the injured epithelium sustains a proinflammatory environment attracting activated macrophages to the site of injury leading to a rapid deterioration of renal function and structure. Hence, targeting Notch3 may provide a novel therapeutic strategy against ischemia/reperfusion and acute kidney injury by preservation of epithelial structure and disruption of proinflammatory signaling. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  7. Acute-Phase Inflammatory Response to Single-Bout HIIT and Endurance Training: A Comparative Study

    PubMed Central

    Kaspar, Felix; Jelinek, Herbert F.; Perkins, Steven; Al-Aubaidy, Hayder A.; deJong, Bev; Butkowski, Eugene

    2016-01-01

    Objective. This study compared acute and late effect of single-bout endurance training (ET) and high-intensity interval training (HIIT) on the plasma levels of four inflammatory cytokines and C-reactive protein and insulin-like growth factor 1. Design. Cohort study with repeated-measures design. Methods. Seven healthy untrained volunteers completed a single bout of ET and HIIT on a cycle ergometer. ET and HIIT sessions were held in random order and at least 7 days apart. Blood was drawn before the interventions and 30 min and 2 days after the training sessions. Plasma samples were analyzed with ELISA for the interleukins (IL), IL-1β, IL-6, and IL-10, monocyte chemoattractant protein-1 (MCP-1), insulin growth factor 1 (IGF-1), and C-reactive protein (CRP). Statistical analysis was with Wilcoxon signed-rank tests. Results. ET led to both a significant acute and long-term inflammatory response with a significant decrease at 30 minutes after exercise in the IL-6/IL-10 ratio (−20%; p = 0.047) and a decrease of MCP-1 (−17.9%; p = 0.03). Conclusion. This study demonstrates that ET affects the inflammatory response more adversely at 30 minutes after exercise compared to HIIT. However, this is compensated by a significant decrease in MCP-1 at two days associated with a reduced risk of atherosclerosis. PMID:27212809

  8. Serology and cytokine profiles in patients infected with the newly discovered Bundibugyo ebolavirus.

    PubMed

    Gupta, Manisha; MacNeil, Adam; Reed, Zachary D; Rollin, Pierre E; Spiropoulou, Christina F

    2012-02-20

    A new species of Ebolavirus, Bundibugyo ebolavirus, was discovered in an outbreak in western Uganda in November 2007. To study the correlation between fatal infection and immune response in Bundibugyo ebolavirus infection, viral antigen, antibodies, and 17 soluble factors important for innate immunity were examined in 44 patient samples. Using Luminex assays, we found that fatal infection was associated with high levels of viral antigen, low levels of pro-inflammatory cytokines, such as IL-1α, IL-1β, IL-6, TNF-α, and high levels of immunosuppressor cytokines like IL-10. Also, acute infected patients died in spite of generating high levels of antibodies against the virus. Thus, our results imply that disease severity in these patients is not due to the multi-organ failure and septic shock caused by a flood of inflammatory cytokines, as seen in infections with other Ebolavirus species. Published by Elsevier Inc.

  9. Modeling the NF-κB mediated inflammatory response predicts cytokine waves in tissue

    PubMed Central

    2011-01-01

    Background Waves propagating in "excitable media" is a reliable way to transmit signals in space. A fascinating example where living cells comprise such a medium is Dictyostelium D. which propagates waves of chemoattractant to attract distant cells. While neutrophils chemotax in a similar fashion as Dictyostelium D., it is unclear if chemoattractant waves exist in mammalian tissues and what mechanisms could propagate them. Results We propose that chemoattractant cytokine waves may naturally develop as a result of NF-κB response. Using a heuristic mathematical model of NF-κB-like circuits coupled in space we show that the known characteristics of NF-κB response favor cytokine waves. Conclusions While the propagating wave of cytokines is generally beneficial for inflammation resolution, our model predicts that there exist special conditions that can cause chronic inflammation and re-occurrence of acute inflammatory response. PMID:21771307

  10. β-Cell–Specific Protein Kinase A Activation Enhances the Efficiency of Glucose Control by Increasing Acute-Phase Insulin Secretion

    PubMed Central

    Kaihara, Kelly A.; Dickson, Lorna M.; Jacobson, David A.; Tamarina, Natalia; Roe, Michael W.; Philipson, Louis H.; Wicksteed, Barton

    2013-01-01

    Acute insulin secretion determines the efficiency of glucose clearance. Moreover, impaired acute insulin release is characteristic of reduced glucose control in the prediabetic state. Incretin hormones, which increase β-cell cAMP, restore acute-phase insulin secretion and improve glucose control. To determine the physiological role of the cAMP-dependent protein kinase (PKA), a mouse model was developed to increase PKA activity specifically in the pancreatic β-cells. In response to sustained hyperglycemia, PKA activity potentiated both acute and sustained insulin release. In contrast, a glucose bolus enhanced acute-phase insulin secretion alone. Acute-phase insulin secretion was increased 3.5-fold, reducing circulating glucose to 58% of levels in controls. Exendin-4 increased acute-phase insulin release to a similar degree as PKA activation. However, incretins did not augment the effects of PKA on acute-phase insulin secretion, consistent with incretins acting primarily via PKA to potentiate acute-phase insulin secretion. Intracellular calcium signaling was unaffected by PKA activation, suggesting that the effects of PKA on acute-phase insulin secretion are mediated by the phosphorylation of proteins involved in β-cell exocytosis. Thus, β-cell PKA activity transduces the cAMP signal to dramatically increase acute-phase insulin secretion, thereby enhancing the efficiency of insulin to control circulating glucose. PMID:23349500

  11. Botulinum Toxin Confers Radioprotection in Murine Salivary Glands

    PubMed Central

    Zeidan, Youssef H.; Xiao, Nan; Cao, Hongbin; Kong, Christina; Le, Quynh-Thu; Sirjani, Davud

    2016-01-01

    Purpose Xerostomia is a common radiation sequela, which has a negative impact on the quality of life of patients with head and neck cancer. Current treatment strategies offer only partial relief. Botulinum toxins (BTX) have been successfully used in treating a variety of radiation sequelae such as cystitis, proctitis, fibrosis, and facial pain. The purpose of this study was to evaluate the effect of BTX on radiation-induced salivary gland damage. Methods and Materials We used a previously established model for murine salivary gland irradiation (IR). The submandibular glands (SMGs) of C5BL/6 mice (n=6/group) were injected with saline or BTX 72 hours before receiving 15 Gy of focal irradiation. Saliva flow was measured 3, 7, and 28 days after treatment. The SMGs were collected for immunohistochemistry, confocal microscopy, and Western blotting. A cytokine array consisting of 40 different mouse cytokines was used to evaluate cytokine profiles after radiation treatment. Results Irradiated mice showed a 50% reduction in saliva flow after 3 days, whereas mice preinjected with BTX had 25% reduction in saliva flow (P<.05). Cell death detected by TUNEL staining was similar in SMG sections of both groups. However, neutrophil infiltrate, detected by myeloperoxidase staining, was 3-fold lower for the BTX treated mice. A cytokine array showed a 2-fold upregulation of LPS-induced chemokine (LIX/CXCL5) 3 days after IR. BTX pretreatment reduced LIX levels by 40%. At 4 weeks after IR, the saline (control) group showed a 40% reduction in basal SMG weight, compared with 20% in the BTX group. Histologically, BTX-pretreated glands showed relative preservation of acinar structures after radiation. Conclusions These data suggest that BTX pretreatment ameliorates radiation-induced saliva dysfunction. Moreover, we demonstrate a novel role for CXCL5 in the acute phase of salivary gland damage after radiation. These results carry important clinical implications for the treatment of xerostomia in patients with head and neck cancer. PMID:26907915

  12. Botulinum Toxin Confers Radioprotection in Murine Salivary Glands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeidan, Youssef H., E-mail: zeidan@miami.edu; Xiao, Nan; Cao, Hongbin

    Purpose: Xerostomia is a common radiation sequela, which has a negative impact on the quality of life of patients with head and neck cancer. Current treatment strategies offer only partial relief. Botulinum toxins (BTX) have been successfully used in treating a variety of radiation sequelae such as cystitis, proctitis, fibrosis, and facial pain. The purpose of this study was to evaluate the effect of BTX on radiation-induced salivary gland damage. Methods and Materials: We used a previously established model for murine salivary gland irradiation (IR). The submandibular glands (SMGs) of C5BL/6 mice (n=6/group) were injected with saline or BTX 72 hoursmore » before receiving 15 Gy of focal irradiation. Saliva flow was measured 3, 7, and 28 days after treatment. The SMGs were collected for immunohistochemistry, confocal microscopy, and Western blotting. A cytokine array consisting of 40 different mouse cytokines was used to evaluate cytokine profiles after radiation treatment. Results: Irradiated mice showed a 50% reduction in saliva flow after 3 days, whereas mice preinjected with BTX had 25% reduction in saliva flow (P<.05). Cell death detected by TUNEL staining was similar in SMG sections of both groups. However, neutrophil infiltrate, detected by myeloperoxidase staining, was 3-fold lower for the BTX treated mice. A cytokine array showed a 2-fold upregulation of LPS-induced chemokine (LIX/CXCL5) 3 days after IR. BTX pretreatment reduced LIX levels by 40%. At 4 weeks after IR, the saline (control) group showed a 40% reduction in basal SMG weight, compared with 20% in the BTX group. Histologically, BTX-pretreated glands showed relative preservation of acinar structures after radiation. Conclusions: These data suggest that BTX pretreatment ameliorates radiation-induced saliva dysfunction. Moreover, we demonstrate a novel role for CXCL5 in the acute phase of salivary gland damage after radiation. These results carry important clinical implications for the treatment of xerostomia in patients with head and neck cancer.« less

  13. Mitochondria-targeted antioxidant MitoQ ameliorates experimental mouse colitis by suppressing NLRP3 inflammasome-mediated inflammatory cytokines.

    PubMed

    Dashdorj, Amarjargal; Jyothi, K R; Lim, Sangbin; Jo, Ara; Nguyen, Minh Nam; Ha, Joohun; Yoon, Kyung-Sik; Kim, Hyo Jong; Park, Jae-Hoon; Murphy, Michael P; Kim, Sung Soo

    2013-08-06

    MitoQ is a mitochondria-targeted derivative of the antioxidant ubiquinone, with antioxidant and anti-apoptotic functions. Reactive oxygen species are involved in many inflammatory diseases including inflammatory bowel disease. In this study, we assessed the therapeutic effects of MitoQ in a mouse model of experimental colitis and investigated the possible mechanisms underlying its effects on intestinal inflammation. Reactive oxygen species levels and mitochondrial function were measured in blood mononuclear cells of patients with inflammatory bowel disease. The effects of MitoQ were evaluated in a dextran sulfate sodium-induced colitis mouse model. Clinical and pathological markers of disease severity and oxidative injury, and levels of inflammatory cytokines in mouse colonic tissue were measured. The effect of MitoQ on inflammatory cytokines released in the human macrophage-like cell line THP-1 was also analyzed. Cellular and mitochondrial reactive oxygen species levels in mononuclear cells were significantly higher in patients with inflammatory bowel disease (P <0.003, cellular reactive oxygen species; P <0.001, mitochondrial reactive oxygen species). MitoQ significantly ameliorated colitis in the dextran sulfate sodium-induced mouse model in vivo, reduced the increased oxidative stress response (malondialdehyde and 3-nitrotyrosine formation), and suppressed mitochondrial and histopathological injury by decreasing levels of inflammatory cytokines IL-1 beta and IL-18 (P <0.001 and P <0.01 respectively). By decreasing mitochondrial reactive oxygen species, MitoQ also suppressed activation of the NLRP3 inflammasome that was responsible for maturation of IL-1 beta and IL-18. In vitro studies demonstrated that MitoQ decreases IL-1 beta and IL-18 production in human THP-1 cells. Taken together, our results suggest that MitoQ may have potential as a novel therapeutic agent for the treatment of acute phases of inflammatory bowel disease.

  14. Mitochondria-targeted antioxidant MitoQ ameliorates experimental mouse colitis by suppressing NLRP3 inflammasome-mediated inflammatory cytokines

    PubMed Central

    2013-01-01

    Background MitoQ is a mitochondria-targeted derivative of the antioxidant ubiquinone, with antioxidant and anti-apoptotic functions. Reactive oxygen species are involved in many inflammatory diseases including inflammatory bowel disease. In this study, we assessed the therapeutic effects of MitoQ in a mouse model of experimental colitis and investigated the possible mechanisms underlying its effects on intestinal inflammation. Methods Reactive oxygen species levels and mitochondrial function were measured in blood mononuclear cells of patients with inflammatory bowel disease. The effects of MitoQ were evaluated in a dextran sulfate sodium-induced colitis mouse model. Clinical and pathological markers of disease severity and oxidative injury, and levels of inflammatory cytokines in mouse colonic tissue were measured. The effect of MitoQ on inflammatory cytokines released in the human macrophage-like cell line THP-1 was also analyzed. Results Cellular and mitochondrial reactive oxygen species levels in mononuclear cells were significantly higher in patients with inflammatory bowel disease (P <0.003, cellular reactive oxygen species; P <0.001, mitochondrial reactive oxygen species). MitoQ significantly ameliorated colitis in the dextran sulfate sodium-induced mouse model in vivo, reduced the increased oxidative stress response (malondialdehyde and 3-nitrotyrosine formation), and suppressed mitochondrial and histopathological injury by decreasing levels of inflammatory cytokines IL-1 beta and IL-18 (P <0.001 and P <0.01 respectively). By decreasing mitochondrial reactive oxygen species, MitoQ also suppressed activation of the NLRP3 inflammasome that was responsible for maturation of IL-1 beta and IL-18. In vitro studies demonstrated that MitoQ decreases IL-1 beta and IL-18 production in human THP-1 cells. Conclusion Taken together, our results suggest that MitoQ may have potential as a novel therapeutic agent for the treatment of acute phases of inflammatory bowel disease. PMID:23915129

  15. The Effective Regulation of Pro- and Anti-inflammatory Cytokines Induced by Combination of PA-MSHA and BPIFB1 in Initiation of Innate Immune Responses.

    PubMed

    Zhou, Weiqiang; Duan, Zhiwen; Yang, Biao; Xiao, Chunling

    2017-01-01

    PA-MSHA and BPIFB1 play especially important roles in triggering innate immune responses by inducing production of pro- or anti-inflammatory cytokines in the oral cavity and upper airway. We found that PA-MSHA had a strong ability to activate pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α. However, BPIFB1 alone did not express a directly inductive effect. With incubation of PA-MSHA and BPIFB1, the combination can activate the CD14/TLR4/MyD88 complex and induce secretion of subsequent downstream cytokines. We used a proteome profiler antibody array to evaluate the phosphokinases status with PA-MSHA and BPIFB1 treatment. The results showed that the activation of MAPK, STAT, and PI-3K pathways is involved in PA-MSHA-BPIFB1 treatment, and that the related pathways control the secretion of targeting cytokines in the downstream. When we assessed the content changes of cytokines, we found that PA-MSHA-BPIFB1 treatment increased the production of pro-inflammatory cytokines in the early phase of treatment and induced the increase of IL-4 in the late phase. Our observations suggest that PA-MSHA-BPIFB1 stimulates the release of pro-inflammatory cytokines, and thereby initiates the innate immune system against inflammation. Meanwhile, the gradual release of anti-inflammatory cytokine IL-4 by PA-MSHA-BPIFB1 can also regulate the degree of inflammatory response; thus the host can effectively resist the environmental risks, but also manipulate inflammatory response in an appropriate and adjustable manner.

  16. [Imaging origins and characteristics analysis of acute and chronic aspiration pneumonia].

    PubMed

    Wang, Kang; Li, Ming; Wang, Xiongbiao; Qin, Jianmin; Wang, Zhi; Zhao, Zehua; Qin, Le; Hua, Yanqing

    2014-11-11

    To discuss about the pathologic and imaging origins and characteristics of CT scaning and X-ray radiography for acute and chronic aspiration pneumonia. Imaging data from 30 patients with aspiration pneumonia were retrospectively analyzed, CT scaning was performed in 27 patients, which PMVR reconstruction was performed in 21 cases;3 exammed by X-ray with 2 used by esophagography. Opaque bodies were detected in trachea by CT scaning in 12 patients.7 patients in acute phase rapidly developed into acute respiratory distress syndrome(ARDS). CT signs of 30 patients with acute and chronic aspiration pneumonia included: centrilobular nodules were detected in 2 cases with acute phase, 4 cases with subacute phase and 4 cases with chronic phase; the imaging of ground glass opacity were detected in 9 cases with acute phase, 2 cases with subacute phase and 3 cases with chronic phase; the imaging of bronchiectasis was detected in 8 cases with chronic phase, which mucilage embolism was detected in 3 of 8 cases; the imaging of atelectasis was detected in 6 cases with chronic phase; the imaging of sheeted consolidation was detected in 5 cases with chronic phase, 8 case with acute phase; the imaging of interstitial fibrosis was detected in 3 cases with chronic phase. Lesions of inferior lobe of right lung were detected in 9 cases with chronic phase, 4 cases with subacute phase, 11 case with acute phase;lesions of inferior lobe of left lung were detected in 6 cases with chronic phase and 3 cases with subacute group, 11 case with acute phase. The imaging features of acute and chronic aspiration pneumonia overlap with GGO and centrilobular nodules in every group. While the imaging features of atelectasis, bronchiectasis or mucilage embolism are found in chronic phase. The chest CT scaning may accurately evaluate the dynamic change of aspiration pneumonia.

  17. Acute myotube protein synthesis regulation by IL-6-related cytokines.

    PubMed

    Gao, Song; Durstine, J Larry; Koh, Ho-Jin; Carver, Wayne E; Frizzell, Norma; Carson, James A

    2017-11-01

    IL-6 and leukemia inhibitory factor (LIF), members of the IL-6 family of cytokines, play recognized paradoxical roles in skeletal muscle mass regulation, being associated with both growth and atrophy. Overload or muscle contractions can induce a transient increase in muscle IL-6 and LIF expression, which has a regulatory role in muscle hypertrophy. However, the cellular mechanisms involved in this regulation have not been completely identified. The induction of mammalian target of rapamycin complex 1 (mTORC1)-dependent myofiber protein synthesis is an established regulator of muscle hypertrophy, but the involvement of the IL-6 family of cytokines in this process is poorly understood. Therefore, we investigated the acute effects of IL-6 and LIF administration on mTORC1 signaling and protein synthesis in C2C12 myotubes. The role of glycoprotein 130 (gp130) receptor and downstream signaling pathways, including phosphoinositide 3-kinase (PI3K)-Akt-mTORC1 and signal transducer and activator of transcription 3 (STAT3)-suppressor of cytokine signaling 3 (SOCS3), was investigated by administration of specific siRNA or pharmaceutical inhibitors. Acute administration of IL-6 and LIF induced protein synthesis, which was accompanied by STAT3 activation, Akt-mTORC1 activation, and increased SOCS3 expression. This induction of protein synthesis was blocked by both gp130 siRNA knockdown and Akt inhibition. Interestingly, STAT3 inhibition or Akt downstream mTORC1 signaling inhibition did not fully block the IL-6 or LIF induction of protein synthesis. SOCS3 siRNA knockdown increased basal protein synthesis and extended the duration of the protein synthesis induction by IL-6 and LIF. These results demonstrate that either IL-6 or LIF can activate gp130-Akt signaling axis, which induces protein synthesis via mTORC1-independent mechanisms in cultured myotubes. However, IL-6- or LIF-induced SOCS3 negatively regulates the activation of myotube protein synthesis. Copyright © 2017 the American Physiological Society.

  18. Liver tumor promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxin is dependent on the aryl hydrocarbon receptor and TNF/IL-1 receptors.

    PubMed

    Kennedy, Gregory D; Nukaya, Manabu; Moran, Susan M; Glover, Edward; Weinberg, Samuel; Balbo, Silvia; Hecht, Stephen S; Pitot, Henry C; Drinkwater, Norman R; Bradfield, Christopher A

    2014-07-01

    We set out to better understand the signal transduction pathways that mediate liver tumor promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxn ("dioxin"). To this end, we first employed congenic mice homozygous for either the Ahr(b1) or Ahr(d) alleles (encoding an aryl hydrocarbon receptor (AHR) with high or low binding affinity for dioxin, respectively) and demonstrated that hepatocellular tumor promotion in response to dioxin segregated with the Ahr locus. Once we had genetic evidence for the importance of AHR signaling, we then asked if tumor promotion by dioxin was influenced by "interleukin-1 (IL-1)-like" inflammatory cytokines. The importance of this question arose from our earlier observation that aspects of the acute hepatocellular toxicity of dioxin are dependent upon IL1-like cytokine signaling. To address this issue, we employed a triple knock-out (TKO) mouse model with null alleles at the loci encoding the three relevant receptors for tumor necrosis factors α and β and IL-1α and IL-1β (i.e., null alleles at the Tnfrsf1a, Tnfrsf1b, and Il-1r1 loci). The observation that TKO mice were resistant to the tumor promoting effects of dioxin in liver suggests that inflammatory cytokines play an important step in dioxin mediated liver tumor promotion in the mouse. Collectively, these data support the idea that the mechanism of dioxin acute hepatotoxicity and its activity as a promoter in a mouse two stage liver cancer model may be similar, i.e., tumor promotion by dioxin, like acute hepatotoxicity, are mediated by the linked action of two receptor systems, the AHR and the receptors for the "IL-1-like" cytokines. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  19. Acute and "chronic" phase reaction-a mother of disease.

    PubMed

    Bengmark, Stig

    2004-12-01

    The world is increasingly threatened by a global epidemic of chronic diseases. Almost half of the global morbidity and almost two thirds of global mortality is due to these diseases-approximately 35 million die each year from chronic diseases. And they continue to increase. Increasing evidence suggest that these diseases are associated with lifestyle, stress, lack of physical exercise, over-consumption of calorie-condensed foods rich in saturated fat, sugar and starch, but also under-consumption of antioxidant-rich fruits and vegetables. As a result the function of the innate immune system is severe impaired. This review discusses the changes induced in response to mental and physical stress and their association with the subsequent development of metabolic syndrome, and its association with various chronic diseases. The endothelial cells and their function appears to be of great importance, and the function of their cellular membranes of special importance to the function of the underlying cells; their ability to obtain nutrients and antioxidants and to eliminate waste products. The abdominal adipocytes seen to play a key role, as they have the ability to in stressful situations release much of proinflammatory cytokines, PAI-1 and free fatty acids compared to elsewhere in the body. The load on the liver of these various substances in often of greater magnitude than the liver can handle. Some of the most common chronic diseases and their potential association with acute and "chronic" phase response, and with metabolic syndrome are discussed separately. The need for studies with lifestyle modifications is especially emphasized.

  20. Pathophysiology of Glia in Perinatal White Matter Injury

    PubMed Central

    Back, Stephen A.; Rosenberg, Paul A.

    2014-01-01

    Injury to the preterm brain has a particular predilection for cerebral white matter. White matter injury (WMI) is the most common cause of brain injury in preterm infants and a major cause of chronic neurological morbidity including cerebral palsy. Factors that predispose to WMI include cerebral oxygenation disturbances and maternal-fetal infection. During the acute phase of WMI, pronounced oxidative damage occurs that targets late oligodendrocyte progenitors (preOLs). The developmental predilection for WMI to occur during prematurity appears to be related to both the timing of appearance and regional distribution of susceptible preOLs that are vulnerable to a variety of chemical mediators including reactive oxygen species, glutamate, cytokines, and adenosine. During the chronic phase of WMI, the white matter displays abberant regeneration and repair responses. Early OL progenitors responds to WMI with a rapid robust proliferative response that results in a several fold regeneration of preOLs that fail to terminally differentiate along their normal developmental time course. PreOL maturation arrest appears to be related in part to inhibitory factors that derive from reactive astrocytes in chronic lesions. Recent high field MRI data support that three distinct forms of chronic WMI exist, each of which displays unique MRI and histopathological features. These findings suggest the possibility that therapies directed at myelin regeneration and repair could be initiated early after WMI and monitored over time. These new mechanisms of acute and chronic WMI provide access to a variety of new strategies to prevent or promote repair of WMI in premature infants. PMID:24687630

  1. Sulforaphane-stimulated phase II enzyme induction inhibits cytokine production by airway epithelial cells stimulated with diesel extract.

    PubMed

    Ritz, Stacey A; Wan, Junxiang; Diaz-Sanchez, David

    2007-01-01

    Airborne particulate pollutants, such as diesel exhaust particles, are thought to exacerbate lung and cardiovascular diseases through induction of oxidative stress. Sulforaphane, derived from cruciferous vegetables, is the most potent known inducer of phase II enzymes involved in the detoxification of xenobiotics. We postulated that sulforaphane may be able to ameliorate the adverse effects of pollutants by upregulating expression of endogenous antioxidant enzymes. Stimulation of bronchial epithelial cells with the chemical constituents of diesel particles result in the production of proinflammatory cytokines. We first demonstrated a role for phase II enzymes in regulating diesel effects by transfecting the airway epithelial cell line (BEAS-2B) with the sentinel phase II enzyme NAD(P)H: quinine oxidoreductase 1 (NQO1). IL-8 production in response to diesel extract was significantly reduced in these compared with untransfected cells. We then examined whether sulforaphane would stimulate phase II induction and whether this would thereby ablate the effect of diesel extracts on cytokine production. We verified that sulforaphane significantly augmented expression of the phase II enzyme genes GSTM1 and NQO1 and confirmed that sulforaphane treatment increased glutathione S-transferase activity in epithelial cells without inducing cell death or apoptosis. Sulforaphane pretreatment inhibited IL-8 production by BEAS-2B cells upon stimulation with diesel extract. Similarly, whereas diesel extract stimulated production of IL-8, granulocyte-macrophage colony-stimulating factor, and IL-1beta from primary human bronchial epithelial cells, sulforaphane pretreatment inhibited diesel-induced production of all of these cytokines. Our studies show that sulforaphane can mitigate the effect of diesel in respiratory epithelial cells and demonstrate the chemopreventative potential of phase II enzyme enhancement.

  2. Efficacy and safety of adoptive immunotherapy using anti-CD19 chimeric antigen receptor transduced T-cells: a systematic review of phase I clinical trials.

    PubMed

    Xu, Xiao-Jun; Zhao, Hai-Zhao; Tang, Yong-Min

    2013-02-01

    There remain some key questions regarding the adoptive infusion of chimeric antigen receptor (CAR) transduced T-cells in the clinical setting. This article systematically reviews the phase I clinical trials using CARs targeting CD19 in B-lineage malignancies. Twenty-nine patients were enrolled and the 6-month progression free survival for this cohort was 50.0 ± 9.9%. Univariate analysis showed that patients benefited from lymphodepletion before CAR+T-cell infusion and the administration of interleukin-2 (IL-2). Longer-term persistence (≥ 4 weeks) and stronger expansion of CAR+ T-cells in the blood and higher peak serum interferon-γ (IFN-γ) level (≥ 200 pg/mL) were also related to superior outcome. Regarding treatment-related adverse events, the most prominent toxicities were fever, rigors, chills, acute renal failure, hypotension and capillary leak syndrome. In conclusion, anti-CD19 CAR+ T-cells have shown some benefits in patients with B-lineage malignancies and are well tolerated in most patients. Preconditioning and cytokine supplement are required to improve the clinical outcome.

  3. Coronavirus Infections in the Central Nervous System and Respiratory Tract Show Distinct Features in Hospitalized Children.

    PubMed

    Li, Yuanyuan; Li, Haipeng; Fan, Ruyan; Wen, Bo; Zhang, Jian; Cao, Xiaoying; Wang, Chengwu; Song, Zhanyi; Li, Shuochi; Li, Xiaojie; Lv, Xinjun; Qu, Xiaowang; Huang, Renbin; Liu, Wenpei

    2016-01-01

    Coronavirus (CoV) infections induce respiratory tract illnesses and central nervous system (CNS) diseases. We aimed to explore the cytokine expression profiles in hospitalized children with CoV-CNS and CoV-respiratory tract infections. A total of 183 and 236 hospitalized children with acute encephalitis-like syndrome and respiratory tract infection, respectively, were screened for anti-CoV IgM antibodies. The expression profiles of multiple cytokines were determined in CoV-positive patients. Anti-CoV IgM antibodies were detected in 22/183 (12.02%) and 26/236 (11.02%) patients with acute encephalitis-like syndrome and respiratory tract infection, respectively. Cytokine analysis revealed that the level of serum granulocyte colony-stimulating factor (G-CSF) was significantly higher in both CoV-CNS and CoV-respiratory tract infection compared with healthy controls. Additionally, the serum level of granulocyte macrophage colony-stimulating factor (GM-CSF) was significantly higher in CoV-CNS infection than in CoV-respiratory tract infection. In patients with CoV-CNS infection, the levels of IL-6, IL-8, MCP-1, and GM-CSF were significantly higher in their cerebrospinal fluid samples than in matched serum samples. To the best of our knowledge, this is the first report showing a high incidence of CoV infection in hospitalized children, especially with CNS illness. The characteristic cytokine expression profiles in CoV infection indicate the importance of host immune response in disease progression. © 2017 S. Karger AG, Basel.

  4. Fisetin administration improves LPS-induced acute otitis media in mouse in vivo.

    PubMed

    Li, Peng; Chen, Dan; Huang, Yang

    2018-07-01

    Acute otitis media is one of the most common infectious diseases worldwide in spite of the widespread vaccination. The present study was conducted to explore the effects of fisetin on mouse acute otitis media models. The animal models were established by lipopolysaccharide (LPS) injection into the middle ear of mice via the tympanic membrane. Fisetin was administered to mice for ten days through intragastric administration immediate after LPS application. Hematoxylin and eosin (H&E) staining was performed and the pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6 and VEGF, were measured through enzyme-linked immunosorbent assay (ELISA) method and RT-qPCR analysis. Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway was detected by immunoblotting assays. Reactive oxygen species (ROS) generated levels were determined through assessment of anti-oxidants, and TXNIP/MAPKs signaling pathways were explored to reveal the possible molecular mechanism for acute otitis media progression and the function of fisetin. Fisetin reduced mucosal thickness caused by LPS. In fisetin-treated animals, pro-inflammatory cytokine release was downregulated accompanied with TLR4/NF-κB inactivation. ROS production was significantly decreased in comparison to the LPS-treated group. The TXNIP/MAPKs signaling pathway was inactivated for fisetin treatment in LPS-induced mice with acute otitis media. The above results indicated that fisetin improved acute otitis media through inflammation and ROS suppression via inactivating TLR4/NF-κB and TXNIP/MAPKs signaling pathways.

  5. Fisetin administration improves LPS-induced acute otitis media in mouse in vivo

    PubMed Central

    Li, Peng; Chen, Dan; Huang, Yang

    2018-01-01

    Acute otitis media is one of the most common infectious diseases worldwide in spite of the widespread vaccination. The present study was conducted to explore the effects of fisetin on mouse acute otitis media models. The animal models were established by lipopolysaccharide (LPS) injection into the middle ear of mice via the tympanic membrane. Fisetin was administered to mice for ten days through intragastric administration immediate after LPS application. Hematoxylin and eosin (H&E) staining was performed and the pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6 and VEGF, were measured through enzyme-linked immunosorbent assay (ELISA) method and RT-qPCR analysis. Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway was detected by immunoblotting assays. Reactive oxygen species (ROS) generated levels were determined through assessment of anti-oxidants, and TXNIP/MAPKs signaling pathways were explored to reveal the possible molecular mechanism for acute otitis media progression and the function of fisetin. Fisetin reduced mucosal thickness caused by LPS. In fisetin-treated animals, pro-inflammatory cytokine release was downregulated accompanied with TLR4/NF-κB inactivation. ROS production was significantly decreased in comparison to the LPS-treated group. The TXNIP/MAPKs signaling pathway was inactivated for fisetin treatment in LPS-induced mice with acute otitis media. The above results indicated that fisetin improved acute otitis media through inflammation and ROS suppression via inactivating TLR4/NF-κB and TXNIP/MAPKs signaling pathways. PMID:29568876

  6. Age-related cognitive impairment is associated with long-term neuroinflammation and oxidative stress in a mouse model of episodic systemic inflammation.

    PubMed

    d'Avila, Joana Costa; Siqueira, Luciana Domett; Mazeraud, Aurélien; Azevedo, Estefania Pereira; Foguel, Debora; Castro-Faria-Neto, Hugo Caire; Sharshar, Tarek; Chrétien, Fabrice; Bozza, Fernando Augusto

    2018-01-30

    Microglia function is essential to maintain the brain homeostasis. Evidence shows that aged microglia are primed and show exaggerated response to acute inflammatory challenge. Systemic inflammation signals to the brain inducing changes that impact cognitive function. However, the mechanisms involved in age-related cognitive decline associated to episodic systemic inflammation are not completely understood. The aim of this study was to identify neuropathological features associated to age-related cognitive decline in a mouse model of episodic systemic inflammation. Young and aged Swiss mice were injected with low doses of LPS once a week for 6 weeks to induce episodic systemic inflammation. Sickness behavior, inflammatory markers, and neuroinflammation were assessed in different phases of systemic inflammation in young and aged mice. Behavior was evaluated long term after episodic systemic inflammation by open field, forced swimming, object recognition, and water maze tests. Episodic systemic inflammation induced systemic inflammation and sickness behavior mainly in aged mice. Systemic inflammation induced depressive-like behavior in both young and aged mice. Memory and learning were significantly affected in aged mice that presented lower exploratory activity and deficits in episodic and spatial memories, compared to aged controls and to young after episodic systemic inflammation. Systemic inflammation induced acute microglia activation in young mice that returned to base levels long term after episodic systemic inflammation. Aged mice presented dystrophic microglia in the hippocampus and entorhinal cortex at basal level and did not change morphology in the acute response to SI. Regardless of their dystrophic microglia, aged mice produced higher levels of pro-inflammatory (IL-1β and IL-6) as well as pro-resolution (IL-10 and IL-4) cytokines in the brain. Also, higher levels of Nox2 expression, oxidized proteins and lower antioxidant defenses were found in the aged brains compared to the young after episodic systemic inflammation. Our data show that aged mice have increased susceptibility to episodic systemic inflammation. Aged mice that showed cognitive impairments also presented higher oxidative stress and abnormal production of cytokines in their brains. These results indicate that a neuroinflammation and oxidative stress are pathophysiological mechanisms of age-related cognitive impairments.

  7. Update on Inflammatory Biomarkers and Treatments in Ischemic Stroke

    PubMed Central

    Bonaventura, Aldo; Liberale, Luca; Vecchié, Alessandra; Casula, Matteo; Carbone, Federico; Dallegri, Franco; Montecucco, Fabrizio

    2016-01-01

    After an acute ischemic stroke (AIS), inflammatory processes are able to concomitantly induce both beneficial and detrimental effects. In this narrative review, we updated evidence on the inflammatory pathways and mediators that are investigated as promising therapeutic targets. We searched for papers on PubMed and MEDLINE up to August 2016. The terms searched alone or in combination were: ischemic stroke, inflammation, oxidative stress, ischemia reperfusion, innate immunity, adaptive immunity, autoimmunity. Inflammation in AIS is characterized by a storm of cytokines, chemokines, and Damage-Associated Molecular Patterns (DAMPs) released by several cells contributing to exacerbate the tissue injury both in the acute and reparative phases. Interestingly, many biomarkers have been studied, but none of these reflected the complexity of systemic immune response. Reperfusion therapies showed a good efficacy in the recovery after an AIS. New therapies appear promising both in pre-clinical and clinical studies, but still need more detailed studies to be translated in the ordinary clinical practice. In spite of clinical progresses, no beneficial long-term interventions targeting inflammation are currently available. Our knowledge about cells, biomarkers, and inflammatory markers is growing and is hoped to better evaluate the impact of new treatments, such as monoclonal antibodies and cell-based therapies. PMID:27898011

  8. Liver - guardian, modifier and target of sepsis.

    PubMed

    Strnad, Pavel; Tacke, Frank; Koch, Alexander; Trautwein, Christian

    2017-01-01

    Sepsis and septic shock are characterized by life-threatening organ dysfunction caused by a dysregulated host response to infection. The liver has a central role during sepsis, and is essential to the regulation of immune defence during systemic infections by mechanisms such as bacterial clearance, acute-phase protein or cytokine production and metabolic adaptation to inflammation. However, the liver is also a target for sepsis-related injury, including hypoxic hepatitis due to ischaemia and shock, cholestasis due to altered bile metabolism, hepatocellular injury due to drug toxicity or overwhelming inflammation, as well as distinct pathologies such as secondary sclerosing cholangitis in critically ill patients. Hence, hepatic dysfunction substantially impairs the prognosis of sepsis and serves as a powerful independent predictor of mortality in the intensive care unit. Sepsis is particularly problematic in patients with liver cirrhosis (who experience increased bacterial translocation from the gut and impaired microbial defence) as it can trigger acute-on-chronic liver failure - a syndrome with high short-term mortality. Here, we review the importance of the liver as a guardian, modifier and target of sepsis, the factors that contribute to sepsis in patients with liver cirrhosis and new therapeutic strategies.

  9. Persistent gut motor dysfunction in a murine model of T-cell-induced enteropathy.

    PubMed

    Mizutani, T; Akiho, H; Khan, W I; Murao, H; Ogino, H; Kanayama, K; Nakamura, K; Takayanagi, R

    2010-02-01

    Inflammatory bowel disease (IBD) patients in remission often experience irritable bowel syndrome (IBS)-like symptoms. We investigated the mechanism for intestinal muscle hypercontractility seen in T-cell-induced enteropathy in recovery phase. BALB/c mice were treated with an anti-CD3 antibody (100 microg per mouse) and euthanized at varying days post-treatment to investigate the histological changes, longitudinal smooth muscle cell contraction, cytokines (Th1, Th2 cytokines, TNF-alpha) and serotonin (5-HT)-expressing enterochromaffin cell numbers in the small intestine. The role of 5-HT in anti-CD3 antibody-induced intestinal muscle function in recovery phase was assessed by inhibiting 5-HT synthesis using 4-chloro-DL-phenylalanine (PCPA). Small intestinal tissue damage was observed from 24 h after the anti-CD3 antibody injection, but had resolved by day 5. Carbachol-induced smooth muscle cell contractility was significantly increased from 4 h after injection, and this muscle hypercontractility was evident in recovery phase (at day 7). Th2 cytokines (IL-4, IL-13) were significantly increased from 4 h to day 7. 5-HT-expressing cells in the intestine were increased from day 1 to day 7. The 5-HT synthesis inhibitor PCPA decreased the anti-CD3 antibody-induced muscle hypercontractility in recovery phase. Intestinal muscle hypercontractility in remission is maintained at the smooth muscle cell level. Th2 cytokines and 5-HT in the small intestine contribute to the maintenance of the altered muscle function in recovery phase.

  10. Protective effects of tropisetron on cerulein-induced acute pancreatitis in mice.

    PubMed

    Rahimian, Reza; Zirak, Mohammad Reza; Seyedabadi, Mohammad; Keshavarz, Mojtaba; Rashidian, Amir; Kazmi, Sareh; Jafarian, Amir Hossein; Karimi, Gholamreza; Mousavizadeh, Kazem

    2017-09-01

    Acute pancreatitis (AP) causes morbidity and mortality. The aim of the present study was to investigate the protective effect of tropisetron against AP induced by cerulein. Cerulein (50μg/kg, 5 doses) was used to induce AP in mice. Six hours after final cerulein injection, animals were decapitated. Hepatic/pancreatic enzymes in the serum, pancreatic content of malondialdehyde (MDA), pro-inflammatory cytokines and myeloperoxidase (MPO) activity were measured. Tropisetron significantly attenuated pancreatic injury markers and decreased the amount of elevated serum amylase, lipase, alanine aminotransferase (ALT), aspartate aminotransferase (AST), MPO activities and pro-inflammatory cytokines levels caused by AP in mice. Tropisetron didn't affect the pancreatic levels of MDA. Our results suggest that tropisetron could attenuate cerulein-induced AP by combating inflammatory signaling. Further clinical studies are needed to confirm its efficacy in patients with AP. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Virus-specific T cell responses in macaques acutely infected with SHIV(sf162p3).

    PubMed

    Pahar, Bapi; Wang, Xiaolei; Dufour, Jason; Lackner, Andrew A; Veazey, Ronald S

    2007-06-20

    CD4(+) T helper and CD8(+) cytotoxic T lymphocyte responses are believed to play an important role in the control of primary HIV and SIV infection. However, the role of these cells in macaques acutely infected with SHIV(sf162p3) has not been well characterized. In this study, ten adult rhesus macaques were intravaginally infected with SHIV(sf162p3), and antigen-specific cytokine responses to SHIV-Tat, Nef, Gag and Env peptide pools were examined through 70 days post inoculation (p.i.) using ELISPOT and/or cytokine flow cytometry (CFC). Peak plasma viral replication occurred between 14 and 21 days p.i. followed by low to undetectable plasma viremia by 70 days of infection in most macaques. Although some animals had strong virus-specific cellular immune responses, many had weak or minimal responses that did not correlate with the post peak decline in plasma viremia.

  12. Virus-specific T cell responses in macaques acutely infected with SHIVsf162p3

    PubMed Central

    Pahar, Bapi; Wang, Xiaolei; Dufour, Jason; Lackner, Andrew A.; Veazey, Ronald S.

    2007-01-01

    CD4+ T helper and CD8+ cytotoxic T lymphocyte responses are believed to play an important role in the control of primary HIV and SIV infection. However, the role of these cells in macaques acutely infected with SHIVsf162p3 has not been well characterized. In this study, ten adult rhesus macaques were intravaginally infected with SHIVsf162p3, and antigen specific cytokine responses to SHIV-Tat, Nef, Gag and Env peptide pools were examined through 70 days post inoculation (p.i.) using ELISPOT and/or cytokine flow cytometry (CFC). Peak plasma viral replication occurred between 14 and 21 days p.i., followed by low to undetectable plasma viremia by 70 days of infection in most macaques. Although some animals had strong virus-specific cellular immune responses, many had weak or minimal responses that did not correlate with the post peak decline in plasma viremia. PMID:17307212

  13. Stressful events and coping related to acute and sub-acute whiplash-associated disorders.

    PubMed

    Pettersson, Susanne; Bring, Annika; Åsenlöf, Pernilla

    2017-03-01

    Purpose To describe daily stressors affecting and coping strategies employed by individuals with whiplash-associated disorders (WAD) immediately to one month (acute) and three to four months (sub-acute) after injury events using a daily coping assessment. Levels of pain, anxiety, depressed mood and activity are also compared between phases. Method A descriptive prospective design with a content analysis approach was used. Participants completed daily coping assessments for one week during both acute and sub-acute phases. Main measure was whiplash-associated disorders-daily coping assessment (WAD-DCA). Results Nine participants used words describing recovery in the sub-acute phase; 31 described stressful events during both phases. Most frequently reported stressors were related to "symptoms", "emotions" and "occupations/studies". These were equally reported during both phases. Cognitive coping strategies were employed more often during the sub-acute phase (p = 0.008). The only behavioral strategy that increased in prevalence over time was the "relaxed" strategy (p = 0.001). Anxiety levels declined over time (p = 0.022). Conclusion The reported stressors were largely uniform across both acute and sub-acute phases; however, the use of cognitive coping strategies increased over time. The WAD-DCA captures individual stressors and coping strategies employed during a vulnerable phase of rehabilitation and can thus provide information that is useful to clinical practice. Implications for rehabilitation The WAD-DCA provides valuable information for clinical practice when employed during early phases of whiplash-associated disorder development. Reported stressors during the acute and sub-acute phases are essentially the same, whereas cognitive coping strategies grow in prevalence over time. Tailored treatments in early phases of whip-lash associated disorders may benefit from strategies aimed at matching patient-specific stressors with contextually adapted coping strategies.

  14. Relationship between Acute Phase of Chronic Periodontitis and Meteorological Factors in the Maintenance Phase of Periodontal Treatment: A Pilot Study.

    PubMed

    Takeuchi, Noriko; Ekuni, Daisuke; Tomofuji, Takaaki; Morita, Manabu

    2015-08-05

    The acute phase of chronic periodontitis may occur even in patients during supportive periodontal therapy. However, the details are not fully understood. Since the natural environment, including meteorology affects human health, we hypothesized that weather conditions may affect occurrence of acute phase of chronic periodontitis. The aim of this study was to investigate the relationship between weather conditions and acute phase of chronic periodontitis in patients under supportive periodontal therapy. Patients who were diagnosed with acute phase of chronic periodontitis under supportive periodontal therapy during 2011-2013 were selected for this study. We performed oral examinations and collected questionnaires and meteorological data. Of 369 patients who experienced acute phase of chronic periodontitis, 153 had acute phase of chronic periodontitis without direct-triggered episodes. When using the autoregressive integrated moving average model of time-series analysis, the independent covariant of maximum hourly range of barometric pressure, maximum hourly range of temperature, and maximum daily wind speed were significantly associated with occurrence of acute phase of chronic periodontitis (p < 0.05), and 3.1% of the variations in these occurrence over the study period were explained by these factors. Meteorological variables may predict occurrence of acute phase of chronic periodontitis.

  15. Persistent Microvascular Obstruction After Myocardial Infarction Culminates in the Confluence of Ferric Iron Oxide Crystals, Proinflammatory Burden, and Adverse RemodelingCLINICAL PERSPECTIVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kali, Avinash; Cokic, Ivan; Tang, Richard

    Emerging evidence now supports the notion that persistent microvascular obstruction (PMO) may be more predictive of major adverse cardiovascular events than MI size itself. But, how PMO, a phenomenon limited to the acute/sub-acute period of MI, imparts adverse remodeling throughout the post MI period, particularly after its resolution, is incompletely understood. We hypothesized that PMOs resolve into chronic iron crystals within MI territories and actively impart a proinflammatory burden and adverse remodeling of infarction and LV in the chronic phase of MI. Canine models reperfused (n=20) and non-reperfused (n=20) with and without PMO were studied with serial cardiac MRI tomore » characterize the spatiotemporal relationships between PMO, iron deposition, and infarct and LV remodeling indices between acute (day 7, post MI) and chronic (week 8, post MI). Histopathology and immunohistochemistry were used to validate the iron deposition, microscopically map and quantify the relationship between iron-rich chronic MI regions against pro-inflammatory macrophages, proinflammatory cytokines and matrix metalloproteinase. Atomic resolution transmission electron microscopy (TEM) was used to determine the crystallinity of iron and assess the physical effects of iron on lysosomes within macrophages, and energy-dispersive X-ray spectroscopy (EDS) to identify the chemical composition of the iron composite. Results showed that PMOs lead to iron deposition within chronic MI and that the extent of chronic iron deposition is strongly related to PMO Volume (r>0.6, p<0.001). TEM and EDS analysis showed that iron within chronic MI is found within macrophages as aggregates of nanocrystals of ~2.5 nm diameter in ferric state. Correlative histological studies showed that iron content, proinflammatory burden and collagen degrading enzyme were highly correlated (r >0.7, p<0.001). Iron within chronic MI was significantly associated with infarct resorption (r>0.5, p<0.001) and adverse structural (r>0.5, p<0.001) remodeling. Territories of PMO in the acute phase of MI resolve into iron oxide nanocrystals in ferric state in the chronic phase of MI. The amount of iron deposition is determined by the extent of persistent microvascular obstruction and is directly related to the extent of pro-inflammatory burden, infarct thinning and adverse LV remodeling. Resolution of PMO into iron deposition could be a potential contributing source to the adverse remodeling of the heart in the chronic phase of MI.« less

  16. Epidermal Dysfunction Leads to an Age-Associated Increase in Levels of Serum Inflammatory Cytokines.

    PubMed

    Hu, Lizhi; Mauro, Theodora M; Dang, Erle; Man, George; Zhang, Jing; Lee, Dale; Wang, Gang; Feingold, Kenneth R; Elias, Peter M; Man, Mao-Qiang

    2017-06-01

    Even though elderly populations lack visible or other clinical signs of inflammation, their serum cytokine and C-reactive protein levels typically are elevated. However, the origin of age-associated systemic inflammation is unknown. Our previous studies showed that abnormalities in epidermal function provoke cutaneous inflammation, and because intrinsically aged skin displays compromised permeability barrier homeostasis and reduced stratum corneum hydration, we hypothesized here that epidermal dysfunction could contribute to the elevations in serum cytokines in the elderly. Our results show first that acute disruption of the epidermal permeability barrier in young mice leads not only to a rapid increase in cutaneous cytokine mRNA expression but also an increase in serum cytokine levels. Second, cytokine levels in both the skin and serum increase in otherwise normal, aged mice (>12 months). Third, expression of tumor necrosis factor-α and amyloid A mRNA levels increased in the epidermis, but not in the liver, in parallel with a significant elevation in serum levels of cytokines. Fourth, disruption of the permeability barrier induced similar elevations in epidermal and serum cytokine levels in normal and athymic mice, suggesting that T cells play a negligible role in the elevations in cutaneous and serum inflammatory cytokines induced by epidermal dysfunction. Fifth, correction of epidermal function significantly reduced cytokine levels not only in the skin but also in the serum of aged mice. Together, these results indicate that the sustained abnormalities in epidermal function in chronologically aged skin contribute to the elevated serum levels of inflammatory cytokines, potentially predisposing the elderly to the subsequent development or exacerbation of chronic inflammatory disorders. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Smoking in asthma is associated with elevated levels of corticosteroid resistant sputum cytokines-an exploratory study.

    PubMed

    Spears, Mark; McSharry, Charles; Chaudhuri, Rekha; Weir, Christopher J; de Wet, Carl; Thomson, Neil C

    2013-01-01

    Current cigarette smoking is associated with reduced acute responses to corticosteroids and worse clinical outcomes in stable chronic asthma. The mechanism by which current smoking promotes this altered behavior is currently unclear. Whilst cytokines can induce corticosteroid insensitivity in-vitro, how current and former smoking affects airway cytokine concentrations and their responses to oral corticosteroids in stable chronic asthma is unclear. To examine blood and sputum cytokine concentrations in never, ex and current smokers with asthma before and after oral corticosteroids. Exploratory study utilizing two weeks of oral dexamethasone (equivalent to 40 mg/day prednisolone) in 22 current, 21 never and 10 ex-smokers with asthma. Induced sputum supernatant and plasma was obtained before and after oral dexamethasone. 25 cytokines were measured by multiplex microbead system (Invitrogen, UK) on a Luminex platform. Smokers with asthma had elevated sputum cytokine interleukin (IL) -6, -7, and -12 concentrations compared to never smokers with asthma. Few sputum cytokine concentrations changed in response to dexamethasone IL-17 and IFNα increased in smokers, CCL4 increased in never smokers and CCL5 and CXCL10 reduced in ex-smokers with asthma. Ex-smokers with asthma appeared to have evidence of an ongoing corticosteroid resistant elevation of cytokines despite smoking cessation. Several plasma cytokines were lower in smokers with asthma compared to never smokers with asthma. Cigarette smoking in asthma is associated with a corticosteroid insensitive increase in multiple airway cytokines. Distinct airway cytokine profiles are present in current smokers and never smokers with asthma and could provide an explanatory mechanism for the altered clinical behavior observed in smokers with asthma.

  18. The meteorology of cytokine storms, and the clinical usefulness of this knowledge.

    PubMed

    Clark, Ian A; Vissel, Bryce

    2017-07-01

    The term cytokine storm has become a popular descriptor of the dramatic harmful consequences of the rapid release of polypeptide mediators, or cytokines, that generate inflammatory responses. This occurs throughout the body in both non-infectious and infectious disease states, including the central nervous system. In infectious disease it has become a useful concept through which to appreciate that most infectious disease is not caused directly by a pathogen, but by an overexuberant innate immune response by the host to its presence. It is less widely known that in addition to these roles in disease pathogenesis these same cytokines are also the basis of innate immunity, and in lower concentrations have many essential physiological roles. Here we update this field, including what can be learned through the history of how these interlinking three aspects of biology and disease came to be appreciated. We argue that understanding cytokine storms in their various degrees of acuteness, severity and persistence is essential in order to grasp the pathophysiology of many diseases, and thus the basis of newer therapeutic approaches to treating them. This particularly applies to the neurodegenerative diseases.

  19. Cytokine Network Involvement in Subjects Exposed to Benzene

    PubMed Central

    Gangemi, Sebastiano

    2014-01-01

    Benzene represents an ubiquitous pollutant both in the workplace and in the general environment. Health risk and stress posed by benzene have long been a concern because of the carcinogenic effects of the compound which was classified as a Group 1 carcinogen to humans and animals. There is a close correlation between leukemia, especially acute myeloid leukemia, and benzene exposure. In addition, exposure to benzene can cause harmful effects on immunological, neurological, and reproductive systems. Benzene can directly damage hematopoietic progenitor cells, which in turn could lead to apoptosis or may decrease responsiveness to cytokines and cellular adhesion molecules. Alternatively, benzene toxicity to stromal cells or mature blood cells could disrupt the regulation of hematopoiesis, including hematopoietic commitment, maturation, or mobilization, through the network of cytokines, chemokines, and adhesion molecules. Today there is mounting evidence that benzene may alter the gene expression, production, or processing of several cytokines in vitro and in vivo. The purpose of this review was to systematically analyze the published cases of cytokine effects on human benzene exposure, particularly hematotoxicity, and atopy, and on lungs. PMID:25202711

  20. [PREVENTION AND CORRECTION OF PULMONARY COMPLICATIONS FOR SEVERE ACUTE PANCREATITIS].

    PubMed

    Fedorkiv, M B

    2015-06-01

    Increased of proinflammatory cytokines levels, including interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-alpha) on severe acute pancreatitis causes vasodilatation, increased permeability of the wall, accumulation of fluid in lung tissue and pleural sinuses. Transudate from acute parapancreatyc clusters of hot liquid and abdomen falls into the chest cavity through microscopic defects in the diaphragm due to the formation of pathological pleural-peritoneal connections or the relevant pressure gradient between the abdominal and pleural cavities. Remediation and removal of acute parapancreatyc clusters combined with the use of a multicomponent drug infusion therapy Cytoflavin provide a reduction in the frequency of pulmonary complications of acute pancreatitis from 48.3 to 31.0%. Use of the drug Cytoflavin reduces the severity of endogenous intoxication and mortality from acute lung injury from 12.9 to 6.1%.

  1. Frequency of Th17 cells correlates with the presence of lung lesions in pigs chronically infected with Actinobacillus pleuropneumoniae.

    PubMed

    Sassu, Elena L; Ladinig, Andrea; Talker, Stephanie C; Stadler, Maria; Knecht, Christian; Stein, Heiko; Frömbling, Janna; Richter, Barbara; Spergser, Joachim; Ehling-Schulz, Monika; Graage, Robert; Hennig-Pauka, Isabel; Gerner, Wilhelm

    2017-02-06

    Porcine contagious pleuropneumonia caused by Actinobacillus pleuropneumoniae (APP) remains one of the major causes of poor growth performance and respiratory disease in pig herds. While the role of antibodies against APP has been intensely studied, the porcine T cell response remains poorly characterized. To address this, pigs were intranasally infected with APP serotype 2 and euthanized during the acute phase [6-10 days post-infection (dpi)] or the chronic phase of APP infection (27-31 dpi). Lymphocytes isolated from blood, tonsils, lung tissue and tracheobronchial lymph nodes were analyzed by intracellular cytokine staining (ICS) for IL-17A, IL-10 and TNF-α production after in vitro stimulation with crude capsular extract (CCE) of the APP inoculation strain. This was combined with cell surface staining for the expression of CD4, CD8α and TCR-γδ. Clinical records, microbiological investigations and pathological findings confirmed the induction of a subclinical APP infection. ICS-assays revealed the presence of APP-CCE specific CD4 + CD8α dim IL-17A-producing T cells in blood and lung tissue in most infected animals during the acute and chronic phase of infection and a minor fraction of these cells co-produced TNF-α. APP-CCE specific IL-17A-producing γδ T cells could not be found and APP-CCE specific IL-10-producing CD4 + T cells were present in various organs but only in a few infected animals. The frequency of identified putative Th17 cells (CD4 + CD8α dim IL-17A + ) in lung and blood correlated positively with lung lesion scores and APP-specific antibody titers during the chronic phase. These results suggest a potential role of Th17 cells in the immune pathogenesis of APP infection.

  2. Apoptotic cell-mediated suppression of streptococcal cell wall-induced arthritis is associated with alteration of macrophage function and local regulatory T-cell increase: a potential cell-based therapy?

    PubMed Central

    Perruche, Sylvain; Saas, Philippe; Chen, Wanjun

    2009-01-01

    Introduction Experimental streptococcal cell wall (SCW)-induced arthritis is characterized by two successive phases of the disease. The acute phase occurs early and is associated with an inflammatory process and neutrophil infiltration into the synovium. The second chronic phase is related to effector T-cell activation and the dysregulation of macrophage function. Creation of an immunomodulatory environment has been attributed to apoptotic cells themselves, apoptotic cell uptake by phagocytes as well as a less sensibility of phagocytes capturing apoptotic bodies to activation. Therefore we evaluated the potential of apoptotic cell injection to influence the course of inflammation in SCW-induced arthritis in rats. Methods Rat apoptotic thymocytes were injected intraperitoneally (2 × 108) in addition to an arthritogenic dose of systemic SCW in LEW female rats. Control rats received SCW immunization and PBS. Rats were then followed for arthritis occurrence and circulating cytokine detection. At sacrifice, regulatory T cells (Tregs) and macrophages were analyzed. Results Apoptotic cell injection profoundly suppressed joint swelling and destruction typically observed during the acute and chronic phases of SCW-induced arthritis. Synovial inflammatory cell infiltration and bone destruction were also markedly suppressed. Ex vivo experiments revealed reduced levels of TNF in cultures of macrophages from rats challenged with SCW in the presence of apoptotic thymocytes as well as reduced macrophage response to lipopolysaccharide. Moreover, apoptotic cell injection induced higher Foxp3+ Tregs in the lymphoid organs, especially in the draining lymph nodes. Conclusions Our data indicate that apoptotic cells modulate macrophage function and result in Treg generation/increase. This may be involved in inhibition of inflammation and amelioration of arthritis. This highlights and confirms previous studies showing that in vivo generation of Tregs using apoptotic cell injection may be a useful tool to prevent and treat inflammatory autoimmune responses. PMID:19570235

  3. Xuebijing injection improves the respiratory function in rabbits with oleic acid-induced acute lung injury by inhibiting IL-6 expression and promoting IL-10 expression at the protein and mRNA levels

    PubMed Central

    WANG, YUXIA; JI, MINGLI; WANG, LEI; CHEN, LIPING; LI, JING

    2014-01-01

    Xuebijing injection is a complex herbal medicine, and clinical and experimental studies have shown that it has a significant effect on acute respiratory distress syndrome and multiple organ dysfunction syndrome. However, the majority of studies regarding Xuebijing injection have focused on serum inflammatory factors, and few studies have been carried out from the perspective of the protein and mRNA expression of inflammatory cytokines. In this study, 60 healthy rabbits of mixed gender were randomly assigned to a normal control group (CG), oleic acid group (model group; MG) and oleic acid + Xuebijing injection group (treatment group; TG). Rabbits of the CG were treated with normal saline through the ear vein, rabbits of the MG were injected with oleic acid (0.4 ml/kg) and rabbits of the TG received 0.4 ml/kg oleic acid + 10 ml/kg Xuebijing injection. Blood samples were collected from the common carotid artery of all rabbits of all groups 1 h after the ear vein was injected with the corresponding reagent, and was used to measure the arterial partial pressure of oxygen (PaO2) and of carbon dioxide (PaCO2). The activity of myeloperoxidase (MPO) was tested, and the protein and mRNA expression levels of interleukin (IL)-6 and IL-10 were determined. Rabbits of the MG exhibited evident respiratory dysfunction (PaO2 and PaCO2 were low), histopathological lung damage and overactive inflammatory responses (the expression of the proinflammatory cytokine IL-6 and the anti-inflammatory cytokine IL-10 was increased at the protein and mRNA levels). Following the administration of the Xuebijing injection, the inflammatory response of the rabbits was significantly reduced. Xuebijing injection raised PaO2 and PaCO2, weakened the activity of MPO in the lung tissue, downregulated the expression of the proinflammatory cytokine IL-6 and further increased the expression of the anti-inflammatory cytokine IL-10. These results demonstrated that Xuebijing injection improved the respiratory function of rabbits with acute oleic acid-induced lung injury by inhibiting IL-6 expression and promoting IL-10 expression. PMID:25289065

  4. Hydroxysafflor yellow A suppress oleic acid-induced acute lung injury via protein kinase A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chaoyun; Huang, Qingxian; Wang, Chunhua

    Inflammation response and oxidative stress play important roles in acute lung injury (ALI). Activation of the cAMP/protein kinase A (PKA) signaling pathway may attenuate ALI by suppressing immune responses and inhibiting the generation of reactive oxygen species (ROS). Hydroxysafflor yellow A (HSYA) is a natural flavonoid compound that reduces oxidative stress and inflammatory cytokine-mediated damage. In this study, we examined whether HSYA could protect the lungs from oleic acid (OA)-induced injury, which was used to mimic ALI, and determined the role of the cAMP/PKA signaling pathway in this process. Arterial oxygen tension (PaO{sub 2}), carbon dioxide tension, pH, and themore » PaO{sub 2}/fraction of inspired oxygen ratio in the blood were detected using a blood gas analyzer. We measured wet/dry lung weight ratio and evaluated tissue morphology. The protein and inflammatory cytokine levels in the bronchoalveolar lavage fluid and serum were determined using enzyme-linked immunoassay. The activities of superoxide dismutase, glutathione peroxidase, PKA, and nicotinamide adenine dinucleotide phosphate oxidase, and the concentrations of cAMP and malondialdehyde in the lung tissue were detected using assay kits. Bcl-2, Bax, caspase 3, and p22{sup phox} levels in the lung tissue were analyzed using Western blotting. OA increased the inflammatory cytokine and ROS levels and caused lung dysfunction by decreasing cAMP synthesis, inhibiting PKA activity, stimulating caspase 3, and reducing the Bcl-2/Bax ratio. H-89 increased these effects. HSYA significantly increased the activities of antioxidant enzymes, inhibited the inflammatory response via cAMP/PKA pathway activation, and attenuated OA-induced lung injury. Our results show that the cAMP/PKA signaling pathway is required for the protective effect of HSYA against ALI. - Highlights: • Oleic acid (OA) cause acute lung injury (ALI) via inhibiting cAMP/PKA signal pathway. • Blocking protein kinase A (PKA) activation may enhance Cytokine release, increase NADPH oxidase activation and reduce activities of antioxidant enzymes. • Hydroxysafflor yellow A (HSYA) up regulate cAMP/PKA signal pathway in lung tissue induced by OA. • HSYA attenuate OA mediated lung injury via reducing inflammatory cytokine release and improving antioxidant capacity.« less

  5. Changing interdigestive migrating motor complex in rats under acute liver injury.

    PubMed

    Liu, Mei; Zheng, Su-Jun; Xu, Weihong; Zhang, Jianying; Chen, Yu; Duan, Zhongping

    2014-01-01

    Gastrointestinal motility disorder is a major clinical manifestation of acute liver injury, and interdigestive migrating motor complex (MMC) is an important indicator. We investigated the changes and characteristics of MMC in rats with acute liver injury. Acute liver injury was created by d-galactosamine, and we recorded the interdigestive MMC using a multichannel physiological recorder and compared the indexes of interdigestive MMC. Compared with normal controls, antral MMC Phase I duration was significantly prolonged and MMC Phase III duration was significantly shortened in the rats with acute liver injury. The duodenal MMC cycle and MMC Phases I and IV duration were significantly prolonged and MMC Phase III duration was significantly shortened in the rats with acute liver injury. The jejunal MMC cycle and MMC Phases I and IV duration were significantly prolonged and MMC Phase III duration was significantly shortened in the rats with acute liver injury compared with normal controls. Compared with the normal controls, rats with acute liver injury had a significantly prolonged interdigestive MMC cycle, related mainly to longer MMC Phases I and IV, shortened MMC Phase III, and MMC Phase II characterized by increased migrating clustered contractions, which were probably major contributors to the gastrointestinal motility disorders.

  6. Nilotinib and Imatinib Mesylate After Donor Stem Cell Transplant in Treating Patients With ALL or CML

    ClinicalTrials.gov

    2017-07-11

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Phase Chronic Myelogenous Leukemia; Philadelphia Positive Adult Acute Lymphoblastic Leukemia; Philadelphia Positive Childhood Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Relapsing Chronic Myelogenous Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  7. Low-level laser therapy (LLLT; 780 nm) acts differently on mRNA expression of anti- and pro-inflammatory mediators in an experimental model of collagenase-induced tendinitis in rat.

    PubMed

    Pires, Débora; Xavier, Murilo; Araújo, Tiago; Silva, José Antônio; Aimbire, Flavio; Albertini, Regiane

    2011-01-01

    Low-level laser therapy (LLLT) has been found to produce anti-inflammatory effects in a variety of disorders. Tendinopathies are directly related to unbalance in expression of pro- and anti-inflammatory cytokines which are responsible by degeneration process of tendinocytes. In the current study, we decided to investigate if LLLT could reduce mRNA expression for TNF-α, IL-1β, IL-6, TGF-β cytokines, and COX-2 enzyme. Forty-two male Wistar rats were divided randomly in seven groups, and tendinitis was induced with a collagenase intratendinea injection. The mRNA expression was evaluated by real-time PCR in 7th and 14th days after tendinitis. LLLT irradiation with wavelength of 780 nm required for 75 s with a dose of 7.7 J/cm(2) was administered in distinct moments: 12 h and 7 days post tendinitis. At the 12 h after tendinitis, the animals were irradiated once in intercalate days until the 7th or 14th day in and them the animals were killed, respectively. In other series, 7 days after tendinitis, the animals were irradiated once in intercalated days until the 14th day and then the animals were killed. LLLT in both acute and chronic phases decreased IL-6, COX-2, and TGF-β expression after tendinitis, respectively, when compared to tendinitis groups: IL-6, COX-2, and TGF-β. The LLLT not altered IL-1β expression in any time, but reduced the TNF-α expression; however, only at chronic phase. We conclude that LLLT administered with this protocol reduces one of features of tendinopathies that is mRNA expression for pro-inflammatory mediators.

  8. CD73 Inhibition Shifts Cardiac Macrophage Polarization toward a Microbicidal Phenotype and Ameliorates the Outcome of Experimental Chagas Cardiomyopathy.

    PubMed

    Ponce, Nicolás Eric; Sanmarco, Liliana Maria; Eberhardt, Natalia; García, Mónica Cristina; Rivarola, Héctor Walter; Cano, Roxana Carolina; Aoki, Maria Pilar

    2016-08-01

    Increasing evidence demonstrates that generation of extracellular adenosine from ATP, which is hydrolyzed by the CD39/CD73 enzyme pair, attenuates the inflammatory response and deactivates macrophage antimicrobial mechanisms. Although CD73 is emerging as a critical pathway and therapeutic target in cardiovascular disorders, the involvement of this ectonucleotidase during myocardial infection has not been explored. Using a murine model of infection with Trypanosoma cruzi, the causal agent of Chagas cardiomyopathy, we observed a sudden switch from the classical M1 macrophage (microbicidal) phenotype toward an alternative M2 (repairing/anti-inflammatory) phenotype that occurred within the myocardium very shortly after BALB/c mice infection. The observed shift in M1/M2 rate correlated with the cardiac cytokine milieu. Considering that parasite persistence within myocardium is a necessary and sufficient condition for the development of the chronic myocarditis, we hypothesized that CD73 activity may counteract cardiac macrophage microbicidal polarization, rendering the local immune response less effective. In fact, a transient treatment with a specific CD73 inhibitor (adenosine 5'-α,β-methylene-diphosphate) enhanced the microbicidal M1 subset predominance, diminished IL-4- and IL-10-producing CD4(+) T cells, promoted a proinflammatory cytokine milieu, and reduced parasite load within the myocardium during the acute phase. As a direct consequence of these events, there was a reduction in serum levels of creatine kinase muscle-brain isoenzyme, a myocardial-specific injury marker, and an improvement in the electrocardiographic characteristics during the chronic phase. Our results demonstrate that this purinergic system drives the myocardial immune response postinfection and harbors a promising potential as a therapeutic target. Copyright © 2016 by The American Association of Immunologists, Inc.

  9. Insights into the pathogenesis of GvHD: what mice can teach us about man.

    PubMed

    Hülsdünker, J; Zeiser, R

    2015-01-01

    Acute graft-vs-host disease (GvHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT). Most of the knowledge about the biology of GvHD is derived from mouse models of this disease and therefore a critical analysis of potential advantages and disadvantages of the murine GvHD models is important to classify and understand the findings made in these models. The central events leading up to GvHD were characterized in three phases which includes the tissue damage-phase, the T cell priming-phase and the effector-phase, when the disease becomes clinically overt. The role of individual cytokines, chemokines, transcription factor or receptors was studied in these models by using gene deficient or transgenic mice in the donor or recipient compartments. Besides, numerous studies have been performed in these models to prevent or treat GvHD. Several recent clinical trials were all based on previously reported findings from the mouse model of GvHD such as the trials on CCR5-blockade, donor statin treatment, vorinostat treatment or adoptive transfer of regulatory T cells for GvHD prevention. The different mouse models for GvHD and graft-vs-leukemia effects are critically reviewed and their impact on current clinical practice is discussed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Surgical reconstruction of ruptured anterior cruciate ligament prolongs trauma-induced increase of inflammatory cytokines in synovial fluid: an exploratory analysis in the KANON trial.

    PubMed

    Larsson, S; Struglics, A; Lohmander, L S; Frobell, R

    2017-09-01

    Prospectively monitor how treatment of acutely ruptured anterior cruciate ligament (ACL) affects biomarkers of inflammation and proteolytic degradation over 5 years. We studied 119 subjects with acute ACL injury from the randomized controlled knee anterior cruciate ligament, non-surgical versus surgical treatment (KANON)-trial (Clinical trial ISRCTN 84752559) who had synovial fluid, serum and urine samples available from at least two out of six visits over 5 years after acute ACL rupture. All subjects followed a similar rehabilitation protocol where, according to randomization, 60 also had early ACL reconstruction and 59 had the option to undergo a delayed ACL reconstruction if needed. Interleukin (IL)-6, IL-8, IL-10, interferon-gamma (IFNγ), tumor necrosis factor (TNF), amino acids alanine, arginine, glycine, serine (ARGS)-aggrecan, C-terminal crosslinking telopeptide type II collagen (CTX-II) and N-terminal crosslinking telopeptide type I collagen (NTX-I) were quantified by enzyme-linked immunosorbent assays (ELISA). Subjects randomized to early ACL reconstruction had higher cytokine concentrations in index knee synovial fluid at 4 months (IL-6, IL-8, IL-10, TNF), 8 months (IL-6 and TNF) and at 5 years (IFNγ) compared to those randomized to optional delayed reconstruction. Those that underwent delayed ACL reconstruction within 5 years (30 subjects), had higher synovial fluid concentrations of IL-6 at 5 years compared to those treated with rehabilitation alone. No differences between groups were noted for ARGS-aggrecan in synovial fluid and serum or CTX-II and NTX-I in urine over 5 years, neither as randomized nor as treated. Surgical ACL reconstruction constitutes a second trauma to the acutely injured joint resulting in a prolonged elevation of already high synovial fluid levels of inflammatory cytokines. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  11. AA amyloidosis: Mount Sinai experience, 1997-2012.

    PubMed

    Bunker, Daniel; Gorevic, Peter

    2012-01-01

    AA amyloidosis is a systemic disease characterized by the extracellular deposition of amyloid fibrils derived from the acute-phase reactant serum amyloid A protein. It is typically a consequence of chronic inflammatory conditions like rheumatoid arthritis or Crohn's disease, although more patients are being identified who have more unusual causes or no known inflammatory stimulus. We performed a retrospective chart review of all patients with AA amyloidosis seen at Mount Sinai during the period of 1997-2012. Particular attention was paid to the patients' underlying diseases, extent of organ involvement, levels of inflammatory markers and proinflammatory cytokines, presence of pyrin gene mutations, and outcomes. Forty-three patients were seen at Mount Sinai with AA amyloidosis during this period. The most common underlying diseases were rheumatoid arthritis (21%) and Crohn's disease (16%), though 21% of patients were considered to have idiopathic AA amyloid after an extensive search found no underlying inflammatory disease. Almost all patients (95%) had renal involvement based on biopsy or clinical criteria, with 19 patients (44%) eventually requiring dialysis and 5 (12%) undergoing renal transplantation. Inflammatory markers were elevated in most patients; however, interleukin-6 was the only consistently elevated cytokine. Three patients (of 9 tested) were found to be positive for the E148Q pyrin gene mutation. Our study confirms the increasing number of patients being seen with idiopathic AA amyloidosis. More research is needed to determine if these patients have an underlying genetic susceptibility encoded in pyrin or other genes. Our study also confirms the dominance of renal disease in this population. The elevated levels of interleukin-6, in comparison with other cytokines, could represent a therapeutic target. © 2012 Mount Sinai School of Medicine.

  12. Association of peripheral arterial disease with periodontal disease: analysis of inflammatory cytokines and an acute phase protein in gingival crevicular fluid and serum.

    PubMed

    Çalapkorur, M Unlu; Alkan, B A; Tasdemir, Z; Akcali, Y; Saatçi, E

    2017-06-01

    Inflammation is a common feature of both peripheral arterial disease (PAD) and periodontal disease. The aim of this study was to evaluate the relationship between PAD and periodontal disease by examining the levels of inflammatory cytokines (pentraxin 3 and interleukin 1β) and high sensitive C-reactive protein from gingival crevicular fluid and serum. A total of 60 patients were included in this cross-sectional study. Patients were divided into two groups based on ankle-brachial index values: with PAD (test group) and non-PAD (control group). Demographic evaluations, clinical periodontal examinations and biochemical analysis for pentraxin 3, interleukin 1β and high sensitive C-reactive protein were performed to compare the two groups. There were no significant differences with respect to gender, age, body mass index, or smoking history (duration, amount) between the two groups (p > 0.05). There were no significant differences between the two groups in terms of clinical periodontal parameters (p > 0.05). Neither gingival crevicular fluid nor serum levels of the cytokines showed differences between the two groups. Logistic regression analysis revealed that, after adjusting for confounding factors (age, gender, diabetes, hypertension and body mass index), periodontitis raised the odds ratio for having PAD to 5.842 (95% confidence interval: 1.558-21.909). Although there were no significant differences with respect to clinical periodontal parameters and biochemical analyses between the study group and control, periodontitis did raise the odds ratio for having PAD. To clarify this possible relationship, future prospective studies are needed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Splanchnic Th(2) and Th(1) cytokine redistribution in microsurgical cholestatic rats.

    PubMed

    García-Dominguez, José; Aller, María-Angeles; García, Cruz; de Vicente, Felipe; Corcuera, Maria-Teresa; Gómez-Aguado, Fernando; Alonso, María José; Vara, Elena; Arias, Jaime

    2010-08-01

    Long-term extrahepatic cholestasis in the rat induces ductular proliferation and fibrosis in the liver, portal hypertension, splenomegaly, portosystemic collateral circulation, and ascites. These splanchnic alterations could have an inflammatory pathophysiology. We measured serum levels of hepatobiliary injury markers and the acute phase proteins, alpha-1-major acid protein (alpha(1)-MAP) and alpha-1-acid glycoprotein (alpha(1)-GPA) in rats 6 wk after microsurgical extrahepatic cholestasis. We also assayed Th(1) (TNF-alpha and IL-1beta) and Th(2) (IL-4 and IL-10) cytokine levels in the liver, ileum, spleen, and mesenteric lymph complex by enzyme-linked immunosorbent assay (ELISA) techniques. Liver fibrosis was measured by Sirius red stain and by using an image system computer-assisted method and mast cell liver infiltration by Giemsa stain. The cholestatic rats showed an increase (P<0.001) in serum levels of bile acids, total and direct bilirubin, AST, ALT, AST/ALT index, gamma-GT, alkaline phosphatase, alpha(1)- MAP, alpha(1)-GPA, and LDH (P<0.05) in relation to sham-operated rats. TNF-alpha, IL-1beta, IL-4, and IL-10 increased in the ileum (P<0.01) and mesenteric lymph complex (P<0.001), and decreased in the liver (P<0.001). A marked bile proliferation associated with fibrosis (P<0.001) and mast cell infiltration was also shown in the liver of cholestatic rats. The splanchnic redistribution of cytokines, with an increase of Th(1) and Th(2) production in the small bowel and in the mesenteric lymph complex, supports the key role of inflammatory mechanisms in rats with secondary biliary fibrosis. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Cytokine modulation by glucocorticoids: mechanisms and actions in cellular studies.

    PubMed

    Brattsand, R; Linden, M

    1996-01-01

    Glucocorticoids inhibit the expression and action of most cytokines. This is part of the in vivo feed-back system between inflammation-derived cytokines and CNS-adrenal produced corticosteroids with the probable physiological relevance to balance parts of the host defence and anti-inflammatory systems of the body. Glucocorticoids modulate cytokine expression by a combination of genomic mechanisms. The activated glucocorticoid-receptor complex can (i) bind to and inactivate key proinflammatory transcription factors (e.g. AP-1, NF kappa B). This takes place at the promotor responsive elements of these factors, but has also been reported without the presence of DNA; (ii) via glucocorticoid responsive elements (GRE), upregulate the expression of cytokine inhibitory proteins, e.g. I kappa B, which inactivates the transcription factor NF kappa B and thereby the secondary expression of a series of cytokines; (iii) reduce the half-life time and utility of cytokine mRNAs. In studies with triggered human blood mononuclear cells in culture, glucocorticoids strongly diminish the production of the 'initial phase' cytokines IL-1 beta and TNF-alpha and the 'immunomodulatory' cytokines IL-2, IL-3, IL-4, IL-5, IL-10, IL-12 and IFN-gamma, as well as of IL-6, IL-8 and the growth factor GM-CSF. While steroid treatment broadly attenuates cytokine production, it cannot modulate it selectively, e.g. just the TH0, the TH1 or the TH2 pathways. The production of the 'anti-inflammatory' IL-10 is also inhibited. The exceptions of steroid down-regulatory activity on cytokine expression seem to affect 'repair phase' cytokines like TGF-beta and PDGF. These are even reported to be upregulated, which may explain the rather weak steroid dampening action on healing and fibrotic processes. Some growth factors, e.g. G-CSF and M-CSF, are only weakly affected. In addition to diminishing the production of a cytokine, steroids can also often inhibit its subsequent actions. Because cytokines work in cascades, this means that steroid treatment can block expression of the subsequent cytokines. The blocked cytokine activity does not depend on a reduced cytokine receptor expression; in fact available in vitro investigations show that while the cytokine expression is blunted, its receptor is upregulated. The cellular studies presented here may represent the maximum potential of steroids to modulate cytokine expression in human mononuclear cells. It remains to be determined by clinical-experimental studies how effective cytokine modulation can be achieved in situ in inflamed bowel by systemic or by topical steroid therapy. Such studies may also answer whether a blocked cytokine production/action is the key or just a secondary mechanism behind the unique efficacy of steroids in active inflammatory bowel disease.

  15. A narrative review on the similarities and dissimilarities between myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and sickness behavior.

    PubMed

    Morris, Gerwyn; Anderson, George; Galecki, Piotr; Berk, Michael; Maes, Michael

    2013-03-08

    It is of importance whether myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a variant of sickness behavior. The latter is induced by acute infections/injury being principally mediated through proinflammatory cytokines. Sickness is a beneficial behavioral response that serves to enhance recovery, conserves energy and plays a role in the resolution of inflammation. There are behavioral/symptomatic similarities (for example, fatigue, malaise, hyperalgesia) and dissimilarities (gastrointestinal symptoms, anorexia and weight loss) between sickness and ME/CFS. While sickness is an adaptive response induced by proinflammatory cytokines, ME/CFS is a chronic, disabling disorder, where the pathophysiology is related to activation of immunoinflammatory and oxidative pathways and autoimmune responses. While sickness behavior is a state of energy conservation, which plays a role in combating pathogens, ME/CFS is a chronic disease underpinned by a state of energy depletion. While sickness is an acute response to infection/injury, the trigger factors in ME/CFS are less well defined and encompass acute and chronic infections, as well as inflammatory or autoimmune diseases. It is concluded that sickness behavior and ME/CFS are two different conditions.

  16. High Sensitivity of Aged Mice to Deoxynivalenol (Vomitoxin)-Induced Anorexia Corresponds to Elevated Proinflammatory Cytokine and Satiety Hormone Responses

    PubMed Central

    Clark, Erica S.; Flannery, Brenna M.; Gardner, Elizabeth M.; Pestka, James J.

    2015-01-01

    Deoxynivalenol (DON), a trichothecene mycotoxin that commonly contaminates cereal grains, is a public health concern because of its adverse effects on the gastrointestinal and immune systems. The objective of this study was to compare effects of DON on anorectic responses in aged (22 mos) and adult (3 mos) mice. Aged mice showed increased feed refusal with both acute i.p. (1 mg/kg and 5 mg/kg) and dietary (1, 2.5, 10 ppm) DON exposure in comparison to adult mice. In addition to greater suppression of food intake from dietary DON exposure, aged mice also exhibited greater but transient body weight suppression. When aged mice were acutely exposed to 1 mg/kg bw DON i.p., aged mice displayed elevated DON and DON3GlcA tissue levels and delayed clearance in comparison with adult mice. Acute DON exposure also elicited higher proinflammatory cytokine and satiety hormone responses in the plasma of the aged group compared with the adult group. Increased susceptibility to DON-induced anorexia in aged mice relative to adult mice suggests that advanced life stage could be a critical component in accurate human risk assessments for DON and other trichothecenes. PMID:26492270

  17. High Sensitivity of Aged Mice to Deoxynivalenol (Vomitoxin)-Induced Anorexia Corresponds to Elevated Proinflammatory Cytokine and Satiety Hormone Responses.

    PubMed

    Clark, Erica S; Flannery, Brenna M; Gardner, Elizabeth M; Pestka, James J

    2015-10-19

    Deoxynivalenol (DON), a trichothecene mycotoxin that commonly contaminates cereal grains, is a public health concern because of its adverse effects on the gastrointestinal and immune systems. The objective of this study was to compare effects of DON on anorectic responses in aged (22 mos) and adult (3 mos) mice. Aged mice showed increased feed refusal with both acute i.p. (1 mg/kg and 5 mg/kg) and dietary (1, 2.5, 10 ppm) DON exposure in comparison to adult mice. In addition to greater suppression of food intake from dietary DON exposure, aged mice also exhibited greater but transient body weight suppression. When aged mice were acutely exposed to 1 mg/kg bw DON i.p., aged mice displayed elevated DON and DON3GlcA tissue levels and delayed clearance in comparison with adult mice. Acute DON exposure also elicited higher proinflammatory cytokine and satiety hormone responses in the plasma of the aged group compared with the adult group. Increased susceptibility to DON-induced anorexia in aged mice relative to adult mice suggests that advanced life stage could be a critical component in accurate human risk assessments for DON and other trichothecenes.

  18. A narrative review on the similarities and dissimilarities between myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and sickness behavior

    PubMed Central

    2013-01-01

    It is of importance whether myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a variant of sickness behavior. The latter is induced by acute infections/injury being principally mediated through proinflammatory cytokines. Sickness is a beneficial behavioral response that serves to enhance recovery, conserves energy and plays a role in the resolution of inflammation. There are behavioral/symptomatic similarities (for example, fatigue, malaise, hyperalgesia) and dissimilarities (gastrointestinal symptoms, anorexia and weight loss) between sickness and ME/CFS. While sickness is an adaptive response induced by proinflammatory cytokines, ME/CFS is a chronic, disabling disorder, where the pathophysiology is related to activation of immunoinflammatory and oxidative pathways and autoimmune responses. While sickness behavior is a state of energy conservation, which plays a role in combating pathogens, ME/CFS is a chronic disease underpinned by a state of energy depletion. While sickness is an acute response to infection/injury, the trigger factors in ME/CFS are less well defined and encompass acute and chronic infections, as well as inflammatory or autoimmune diseases. It is concluded that sickness behavior and ME/CFS are two different conditions. PMID:23497361

  19. Interleukin-1 inhibition facilitates recovery from liver injury and promotes regeneration of hepatocytes in alcoholic hepatitis in mice.

    PubMed

    Iracheta-Vellve, Arvin; Petrasek, Jan; Gyogyosi, Benedek; Bala, Shashi; Csak, Timea; Kodys, Karen; Szabo, Gyongyi

    2017-07-01

    Inflammation and impaired hepatocyte regeneration contribute to liver failure in alcoholic hepatitis (AH). Interleukin (IL)-1 is a key inflammatory cytokine in the pathobiology of AH. The role of IL-1 in liver regeneration in the recovery phase of alcohol-induced liver injury is unknown. In this study, we tested IL-1 receptor antagonist to block IL-1 signalling in a mouse model of acute-on-chronic liver injury on liver inflammation and hepatocyte regeneration in AH. We observed that inhibition of IL-1 signalling decreased liver inflammation and neutrophil infiltration, and resulted in enhanced regeneration of hepatocytes and increased rate of recovery from liver injury in AH. Our novel findings suggest that IL-1 drives sustained liver inflammation and impaired hepatocyte regeneration even after cessation of ethanol exposure. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. C-reactive protein as a marker of periodontal disease.

    PubMed

    Kanaparthy, Rosaiah; Kanaparthy, Aruna; Mahendra, Muktishree

    2012-01-01

    Periodontal subgingival pathogens affect local and systemic immune and inflammatory response and cause the release of cytokines; this results in periodontal destruction and initiation of an acute phase systemic inflammatory response characterized by the release of C-reactive proteins (CRP). This study set out to evaluate the serum concentration of CRP that can be used as a marker of periodontal disease as well as a risk indicator for cardiovascular disease. Based on their periodontal status, 45 patients were divided into three groups. The following clinical parameters were recorded: plaque index, gingival index, bleeding index, probing pocket depth, and clinical attachment levels. Scoring was done on six tooth surfaces for all teeth. For the CRP assessment, blood samples were collected from subjects at the time of clinical examination. The results indicated an increase in serum CRP levels in patients with generalized aggressive periodontitis and chronic periodontitis as compared to controls.

  1. Chemical Burns of the Eye: The Role of Retinal Injury and New Therapeutic Possibilities.

    PubMed

    Dohlman, Claes H; Cade, Fabiano; Regatieri, Caio V; Zhou, Chengxin; Lei, Fengyang; Crnej, Alja; Harissi-Dagher, Mona; Robert, Marie-Claude; Papaliodis, George N; Chen, Dongfeng; Aquavella, James V; Akpek, Esen K; Aldave, Anthony J; Sippel, Kimberly C; DʼAmico, Donald J; Dohlman, Jan G; Fagerholm, Per; Wang, Liqiang; Shen, Lucy Q; González-Andrades, Miguel; Chodosh, James; Kenyon, Kenneth R; Foster, C Stephen; Pineda, Roberto; Melki, Samir; Colby, Kathryn A; Ciolino, Joseph B; Vavvas, Demetrios G; Kinoshita, Shigeru; Dana, Reza; Paschalis, Eleftherios I

    2018-02-01

    To propose a new treatment paradigm for chemical burns to the eye - in the acute and chronic phases. Recent laboratory and clinical data on the biology and treatment of chemical burns are analyzed. Corneal blindness from chemical burns can now be successfully treated with a keratoprosthesis, on immediate and intermediate bases. Long term outcomes, however, are hampered by early retinal damage causing glaucoma. New data suggest that rapid diffusion of inflammatory cytokines posteriorly (TNF-α, etc) can severely damage the ganglion cells. Prompt anti-TNF-α treatment is markedly neuroprotective. Long term profound reduction of the intraocular pressure is also vital. A new regimen, in addition to standard treatment, for severe chemical burns is proposed. This involves tumor necrosis factor alpha (TNF-α) inhibition promptly after the accident (primarily for retinal neuroprotection), prophylactic maximal lowering of the intraocular pressure (starting immediately), and keratoprosthesis implantation in a later quiet state.

  2. The thalidomide analogue CC-3052 inhibits HIV-1 and tumour necrosis factor-alpha (TNF-α) expression in acutely and chronically infected cells in vitro

    PubMed Central

    La Maestra, L; Zaninoni, A; Marriott, J B; Lazzarin, A; Dalgleish, A G; Barcellini, W

    2000-01-01

    We investigated the in vitro effect of the water-soluble, highly stable thalidomide analogue CC-3052 on HIV-1 expression and TNF-α production in latently infected promonocytic U1 cells, acutely infected T cells and monocyte-derived human macrophages (MDM), and in mitogen-stimulated ex vivo cultures from patients with primary acute HIV-1 infection. HIV-1 expression was assessed by Northern blot analysis of RNAs, and ELISA for p24 antigen release and reverse transcriptase (RT) activity. TNF-α expression was evaluated by RT-polymerase chain reaction (PCR)-ELISA for mRNA and ELISA for protein secretion. We demonstrated that CC-3052 is able to inhibit HIV-1 expression, as evaluated by mRNA, p24 release and RT activity, in phorbol myristate acetate (PMA)- and cytokine-stimulated U1 cells. Furthermore, CC-3052 inhibited HIV-1 expression, as evaluated by p24 and RT activity, in acutely infected MDM and T cells. As far as TNF-α is concerned, CC-3052 significantly reduced TNF-α mRNA and protein secretion in PMA-stimulated U937 and U1 cells, and in PMA-stimulated uninfected and acutely infected MDM. Consistently, the addition of CC-3052 reduced TNF-α production in phytohaemagglutinin (PHA) and lipopolysaccharide (LPS)-stimulated whole blood cultures from patients during the primary acute phase of HIV-1 infection. Since TNF-α is among the most potent enhancers of HIV-1 expression, the effect of CC-3052 on TNF-α may account for its inhibitory activity on HIV-1 expression. Given the well documented immunopathological role of TNF-α and its correlation with viral load, advanced disease and poor prognosis, CC-3052 could be an interesting drug for the design of therapeutic strategies in association with anti-retroviral agents. PMID:10606973

  3. The thalidomide analogue CC-3052 inhibits HIV-1 and tumour necrosis factor-alpha (TNF-alpha) expression in acutely and chronically infected cells in vitro.

    PubMed

    La Maestra, L; Zaninoni, A; Marriott, J B; Lazzarin, A; Dalgleish, A G; Barcellini, W

    2000-01-01

    We investigated the in vitro effect of the water-soluble, highly stable thalidomide analogue CC-3052 on HIV-1 expression and TNF-alpha production in latently infected promonocytic U1 cells, acutely infected T cells and monocyte-derived human macrophages (MDM), and in mitogen-stimulated ex vivo cultures from patients with primary acute HIV-1 infection. HIV-1 expression was assessed by Northern blot analysis of RNAs, and ELISA for p24 antigen release and reverse transcriptase (RT) activity. TNF-alpha expression was evaluated by RT-polymerase chain reaction (PCR)-ELISA for mRNA and ELISA for protein secretion. We demonstrated that CC-3052 is able to inhibit HIV-1 expression, as evaluated by mRNA, p24 release and RT activity, in phorbol myristate acetate (PMA)- and cytokine-stimulated U1 cells. Furthermore, CC-3052 inhibited HIV-1 expression, as evaluated by p24 and RT activity, in acutely infected MDM and T cells. As far as TNF-alpha is concerned, CC-3052 significantly reduced TNF-alpha mRNA and protein secretion in PMA-stimulated U937 and U1 cells, and in PMA-stimulated uninfected and acutely infected MDM. Consistently, the addition of CC-3052 reduced TNF-alpha production in phytohaemagglutinin (PHA) and lipopolysaccharide (LPS)-stimulated whole blood cultures from patients during the primary acute phase of HIV-1 infection. Since TNF-alpha is among the most potent enhancers of HIV-1 expression, the effect of CC-3052 on TNF-alpha may account for its inhibitory activity on HIV-1 expression. Given the well documented immunopathological role of TNF-alpha and its correlation with viral load, advanced disease and poor prognosis, CC-3052 could be an interesting drug for the design of therapeutic strategies in association with anti-retroviral agents.

  4. Poliomyelitis: immunoglobulin-containing cells in the central nervous system in acute and convalescent phases of the human disease.

    PubMed Central

    Esiri, M M

    1980-01-01

    The immunoperoxidase method has been used to demonstrate the presence of immunoglobulin-containing cells in the central nervous system in acute and convalescent phases of poliomyelitis. These cells were found in considerable numbers in the areas of damage during the acute phase, and persisted at the same sites, though in smaller numbers, during the convalescent phase for at least 8 months. Most of the positively stained cells were plasma cells. IgA was the commonest heavy chain type demonstrated, with lesser amounts also of IgG and, during the acute phase, IgM. In the acute phase more lambda than kappa light chain was demonstrated but in the convalescent phase this ratio was reversed. More light chain than heavy chain was demonstrable during the acute phase. The significance of these results is briefly discussed. Images Fig. 2 PMID:6771081

  5. 3,4-Methylenedioxymethamphetamine (MDMA) alters acute gammaherpesvirus burden and limits Interleukin 27 responses in a mouse model of viral infection

    PubMed Central

    Nelson, Daniel A.; Singh, Sam J.; Young, Amy B.; Tolbert, Melanie D.; Bost, Kenneth L.

    2011-01-01

    Aims To test whether 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) abuse might increase the susceptibility, or alter the immune response, to murine gammaherpesvirus 68 (HV-68) and/or bacterial lipopolysaccharide. Methods Groups of experimental and control mice were subjected to three day binges of MDMA, and the effect of this drug abuse on acute and latent HV-68 viral burden were assessed. In vitro and in vivo studies were also performed to assess the MDMA effect on IL-27 expression in virally infected or LPS-exposed macrophages and dendritic cells, and latently infected animals, exposed to this drug of abuse. Results Acute viral burden was significantly increased in MDMA-treated mice when compared to controls. However the latent viral burden, and physiological and behavioral responses were not altered in infected mice despite repeated bingeing with MDMA. MDMA could limit the IL-27 response of HV-68 infected or LPS-exposed macrophages and dendritic cells in vitro and in vivo, demonstrating the ability of this drug to alter normal cytokine responses in the context of a viral infection and/or a TLR4 agonist. Conclusion MDMA bingeing could alter the host’s immune response resulting in greater acute viral replication and reductions in the production of the cytokine, IL-27 during immune responses. PMID:21269783

  6. Punica granatum L. Leaf Extract Attenuates Lung Inflammation in Mice with Acute Lung Injury

    PubMed Central

    Pinheiro, Aruanã Joaquim Matheus Costa Rodrigues; Gonçalves, Jaciara Sá; Dourado, Ádylla Wilenna Alves; de Sousa, Eduardo Martins; Brito, Natilene Mesquita; Silva, Lanna Karinny; Batista, Marisa Cristina Aranha; de Sá, Joicy Cortez; Monteiro, Cinara Regina Aragão Vieira; Fernandes, Elizabeth Soares; Campbell, Lee Ann; Zago, Patrícia Maria Wiziack

    2018-01-01

    The hydroalcoholic extract of Punica granatum (pomegranate) leaves was previously demonstrated to be anti-inflammatory in a rat model of lipopolysaccharide- (LPS-) induced acute peritonitis. Here, we investigated the anti-inflammatory effects of the ethyl acetate fraction obtained from the pomegranate leaf hydroalcoholic extract (EAFPg) on the LPS-induced acute lung injury (ALI) mouse model. Male Swiss mice received either EAFPg at different doses or dexamethasone (per os) prior to LPS intranasal instillation. Vehicle-treated mice were used as controls. Animals were culled at 4 h after LPS challenge, and the bronchoalveolar lavage fluid (BALF) and lung samples were collected for analysis. EAFPg and kaempferol effects on NO and cytokine production by LPS-stimulated RAW 264.7 macrophages were also investigated. Pretreatment with EAFPg (100–300 mg/kg) markedly reduced cell accumulation (specially neutrophils) and collagen deposition in the lungs of ALI mice. The same animals presented with reduced lung and BALF TNF-α and IL-1β expression in comparison with vehicle controls (p < 0.05). Additionally, incubation with either EAFPg or kaempferol (100 μg/ml) reduced NO production and cytokine gene expression in cultured LPS-treated RAW 264.7 macrophages. Overall, these results demonstrate that the prophylactic treatment with EAFPg attenuates acute lung inflammation. We suggest this fraction may be useful in treating ALI. PMID:29675437

  7. The Peripheral Whole Blood Transcriptome of Acute Pyelonephritis in Human Pregnancy

    PubMed Central

    Madan, Ichchha; Than, Nandor Gabor; Romero, Roberto; Chaemsaithong, Piya; Miranda, Jezid; Tarca, Adi L.; Bhatti, Gaurav; Draghici, Sorin; Yeo, Lami; Mazor, Moshe; Hassan, Sonia S.; Chaiworapongsa, Tinnakorn

    2018-01-01

    Objective Human pregnancy is characterized by activation of the innate immune response and suppression of adaptive immunity. The former is thought to provide protection against infection to the mother, and the latter, tolerance against paternal antigens expressed in fetal cells. Acute pyelonephritis is associated with an increased risk of acute respiratory distress syndrome and sepsis in pregnant (vs. nonpregnant) women. The objective of this study was to describe the gene expression profile (transcriptome) of maternal whole blood in acute pyelonephritis. Method A case-control study was conducted to include pregnant women with acute pyelonephritis (n=15) and women with a normal pregnancy (n=34). Affymetrix HG-U133 Plus 2.0 arrays (Affymetrix, Santa Clara, CA, USA) were used for gene expression profiling. A linear model was used to test the association between the presence of pyelonephritis and gene expression levels while controlling for white blood cell count and gestational age. A fold change of 1.5 was considered significant at a false discovery rate of 0.1. A subset of differentially expressed genes (n=56) was tested with real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) (cases, n=19; controls, n=59). Gene ontology and pathway analysis were applied. Results A total of 983 genes were differentially expressed in acute pyelonephritis: 457 were up-regulated and 526 were down-regulated. Significant enrichment of 300 biological processes and 63 molecular functions was found in pyelonephritis. Significantly impacted pathways in pyelonephritis included a) cytokine-cytokine receptor interaction; b) T-cell receptor signaling; c) Jak-STAT signaling; and d) complement and coagulation cascades. Of 56 genes tested by qRT-PCR, 48 (85.7%) had confirmation of differential expression. Conclusion This is the first study of the transcriptomic signature of whole blood in pregnant women with acute pyelonephritis. Acute infection during pregnancy is associated with the increased expression of genes involved in innate immunity and the decreased expression of genes involved in lymphocyte function. PMID:24293448

  8. Autoantibodies Targeting AT1 Receptor from Patients with Acute Coronary Syndrome Upregulate Proinflammatory Cytokines Expression in Endothelial Cells Involving NF-κB Pathway

    PubMed Central

    Li, Weijuan; Li, Zhi; Chen, Yaoqi; Li, Songhai; Lv, Yuanyuan; Zhou, Wenping; Liao, Mengyang; Zhu, Feng; Zhou, Zihua; Cheng, Xiang; Zeng, Qiutang; Liao, Yuhua; Wei, Yumiao

    2014-01-01

    Our study intended to prove whether agonistic autoantibodies to angiotensin II type 1 receptor (AT1-AAs) exist in patients with coronary heart disease (CHD) and affect the human endothelial cell (HEC) by upregulating proinflammatory cytokines expression involved in NF-κB pathway. Antibodies were determined by chronotropic responses of cultured neonatal rat cardiomyocytes coupled with receptor-specific antagonists (valsartan and AT1-EC2) as described previously. Interleukin-6 (IL-6), vascular cell adhesion molecule-1 (VCAM-1), and monocyte chemotactic protein-1 (MCP-1) expression were improved at both mRNA and protein levels in HEC, while NF-κB in the DNA level was improved detected by electrophoretic mobility shift assays (EMSA). These improvements could be inhibited by specific AT1 receptor blocker valsartan, NF-κB blocker pyrrolidine dithiocarbamate (PDTC), and specific short peptides from the second extracellular loop of AT1 receptor. These results suggested that AT1-AAs, via the AT1 receptor, induce expression of proinflammatory cytokines involved in the activation of NF-κB. AT1-AAs may play a great role in the pathogenesis of the acute coronary syndrome by mediating vascular inflammatory effects involved in the NF-κB pathway. PMID:25762441

  9. Autoantibodies targeting AT1 receptor from patients with acute coronary syndrome upregulate proinflammatory cytokines expression in endothelial cells involving NF-κB pathway.

    PubMed

    Li, Weijuan; Li, Zhi; Chen, Yaoqi; Li, Songhai; Lv, Yuanyuan; Zhou, Wenping; Liao, Mengyang; Zhu, Feng; Zhou, Zihua; Cheng, Xiang; Zeng, Qiutang; Liao, Yuhua; Wei, Yumiao

    2014-01-01

    Our study intended to prove whether agonistic autoantibodies to angiotensin II type 1 receptor (AT1-AAs) exist in patients with coronary heart disease (CHD) and affect the human endothelial cell (HEC) by upregulating proinflammatory cytokines expression involved in NF-κB pathway. Antibodies were determined by chronotropic responses of cultured neonatal rat cardiomyocytes coupled with receptor-specific antagonists (valsartan and AT1-EC2) as described previously. Interleukin-6 (IL-6), vascular cell adhesion molecule-1 (VCAM-1), and monocyte chemotactic protein-1 (MCP-1) expression were improved at both mRNA and protein levels in HEC, while NF-κB in the DNA level was improved detected by electrophoretic mobility shift assays (EMSA). These improvements could be inhibited by specific AT1 receptor blocker valsartan, NF-κB blocker pyrrolidine dithiocarbamate (PDTC), and specific short peptides from the second extracellular loop of AT1 receptor. These results suggested that AT1-AAs, via the AT1 receptor, induce expression of proinflammatory cytokines involved in the activation of NF-κB. AT1-AAs may play a great role in the pathogenesis of the acute coronary syndrome by mediating vascular inflammatory effects involved in the NF-κB pathway.

  10. Increased Level of IFN-γ and IL-4 Spot-Forming Cells on ELISPOT Assay as Biomarkers for Acute Graft-Versus-Host Disease and Concurrent Infections

    PubMed Central

    Hirayama, Masahiro; Azuma, Eiichi; Komada, Yoshihiro

    2012-01-01

    Acute graft-versus-host disease (aGVHD) remains a significant cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Infections may coexist and in certain circumstances aggravate aGVHD. It was described that type 1 as well as type 2 cytokines are important mediators of aGVHD. We measured spot-forming cells (SFCs) for interferon (IFN)-γ, interleukin (IL)-4, IL-10, and IL-17 in unstimulated peripheral blood from 80 patients with hematological disorders who underwent allogeneic hematopoietic stem cell transplantation by using the enzyme-linked immunospot (ELISPOT) assay that reflects the ongoing in vivo immune status. A serial monitoring showed that both type 1 and type 2 cytokine SFCs were correlated with aGVHD activity. The numbers of IFN-γ and IL-4 SFCs in patients with grade II-IV aGVHD were significantly higher than those in patients with grade 0 and/or I aGVHD. Elevation of IFN-γ and IL-4 SFCs was significantly correlated with the severity of aGVHD, but not with infection itself, e.g., cytomegalovirus infection. Cytokine SFCs are clinically relevant biomarkers for the diagnostic and therapeutic evaluation of aGVHD and concurrent infection. PMID:24710414

  11. Pulmonary Response to Surface-Coated Nanotitanium Dioxide Particles Includes Induction of Acute Phase Response Genes, Inflammatory Cascades, and Changes in MicroRNAs: A Toxicogenomic Study

    PubMed Central

    Halappanavar, Sabina; Jackson, Petra; Williams, Andrew; Jensen, Keld A; Hougaard, Karin S; Vogel, Ulla; Yauk, Carole L; Wallin, Håkan

    2011-01-01

    Titanium dioxide nanoparticles (nanoTiO2) are used in various applications including in paints. NanoTiO2 inhalation may induce pulmonary toxicity and systemic effects. However, the underlying molecular mechanisms are poorly understood. In this study, the effects of inhaled surface-coated nanoTiO2 on pulmonary global messenger RNA (mRNA) and microRNA (miRNA) expression in mouse were characterized to provide insight into the molecular response. Female C57BL/6BomTac mice were exposed for 1 hr daily to 42.4 ± 2.9 (SEM) mg surface-coated nanoTiO2/m3 for 11 consecutive days by inhalation and were sacrificed 5 days following the last exposure. Physicochemical properties of the particles were determined. Pulmonary response to nanoTiO2 was characterized using DNA microarrays and pathway-specific PCR arrays and related to data on pulmonary inflammation from bronchial lavages. NanoTiO2 exposure resulted in increased levels of mRNA for acute phase markers serum amyloid A-1 (Saa1) and serum amyloid A-3 (Saa3), several C-X-C and C-C motif chemokines, and cytokine tumor necrosis factor genes. Protein analysis of Saa1 and 3 showed selective upregulation of Saa3 in lung tissues. Sixteen miRNAs were induced by more than 1.2-fold (adjusted P-value < 0.05) following exposure. Real time polymerase chain reaction confirmed the upregulation of miR-1, miR-449a and revealed dramatic induction of miR-135b (60-fold). Thus, inhalation of surface-coated nanoTiO2 results in changes in the expression of genes associated with acute phase, inflammation and immune response 5 days post exposure with concomitant changes in several miRNAs. The role of these miRNAs in pulmonary response to inhaled particles is unknown and warrants further research. Environ. Mol. Mutagen., 2011. © 2011 Wiley-Liss, Inc.† PMID:21259345

  12. Amino acid supplementation is anabolic during the acute phase of endotoxin-induced inflammation: A human randomized crossover trial.

    PubMed

    Rittig, N; Bach, E; Thomsen, H H; Johannsen, M; Jørgensen, J O; Richelsen, B; Jessen, N; Møller, N

    2016-04-01

    Inflammation is catabolic and causes muscle loss. It is unknown if amino acid supplementation reverses these effects during the acute phase of inflammation. The aim was to test whether amino acid supplementation counteracts endotoxin-induced catabolism. Eight young, healthy, lean males were investigated three times in randomized order: (i) normal conditions (Placebo), (ii) endotoxemia (LPS), and (iii) endotoxemia with amino acid supplementation (LPS + A). Protein kinetics were determined using phenylalanine, tyrosine, and urea tracers. Each study day consisted of a four-hour non-insulin stimulated period and a two-hour hyperinsulinemic euglycemic clamp period. Muscle biopsies were collected once each period. Endotoxin administration created a significant inflammatory response (cytokines, hormones, and vital parameters) without significant differences between LPS and LPS + A. Whole body protein breakdown was elevated during LPS compared with Placebo and LPS + A (p < 0.05). Whole body protein synthesis was higher during LPS + A than both Placebo and LPS (p < 0.003). Furthermore, protein synthesis was higher during LPS than during Placebo (p < 0.02). Net muscle phenylalanine release was markedly decreased during LPS + A (p < 0.004), even though muscle protein synthesis and breakdown rates did not differ significantly between interventions. LPS + A increased mammalian target of rapamycin (mTOR) phosphorylation (p < 0.05) and eukaryotic translation factor 4E-binding protein 1 (4EBP1) phosphorylation (p = 0.007) without activating AMPK or affecting insulin signaling through Akt. During insulin stimulation net muscle phenylalanine release and protein degradation were further reduced. Amino acid supplementation in the acute phase of inflammation reduces whole body and muscle protein loss, and this effect is associated with activation of mTOR and downstream signaling to protein synthesis through mTORC1, suggesting a therapeutic role for intravenous amino acids in inflammatory states. The Central Denmark Region Ethics Commitee (1-10-71-410-12) www.clinicaltrials.gov (identification number NCT01705782). Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  13. Dendritic cells with increased expression of suppressor of cytokine signaling 1(SOCS1) gene ameliorate lipopolysaccharide/d-galactosamine-induced acute liver failure.

    PubMed

    Li, Shan-Shan; Yang, Min; Chen, Yong-Ping; Tang, Xin-Yue; Zhang, Sheng-Guo; Ni, Shun-Lan; Yang, Nai-Bin; Lu, Ming-Qin

    2018-05-28

    Acute liver failure is a devastating clinical syndrome with extremely terrible inflammation reaction, which is still lack of effective treatment in clinic. Suppressor of Cytokine Signaling 1 protein is inducible intracellular negative regulator of Janus kinases (JAK)/signal transducers and activators of transcription (STAT) pathway that plays essential role in inhibiting excessive intracellular signaling cascade and preventing autoimmune reaction. In this paper, we want to explore whether dendritic cells (DCs) with overexpression of SOCS1 have a therapeutic effect on experimental acute liver failure. Bone marrow derived dendritic cells were transfected with lentivirus encoding SOCS1 and negative control lentivirus, thereafter collected for costimulatory molecules analysis, allogeneic Mixed Lymphocyte Reaction and Western blot test of JAK/STAT pathway. C57BL/6 mice were randomly separated into normal control and treatment groups which respectively received tail vein injection of modified DCs, negative control DCs and normal saline 12 h earlier than acute liver failure induction. Our results indicated that DCs with overexpression of SOCS1 exhibited like regulatory DCs (DCregs) with low level of costimulatory molecules and poor allostimulatory ability in vitro, which was supposed to correlate with block of JAK2/STAT1 signaling. In vivo tests, we found that infusion of modified DCs increased survival rate of acute liver failure mice and alleviate liver injury via inhibition of TLR4/HMGB1 pathway. We concluded that DCs transduced with SOCS1 gene exhibit as DCregs through negative regulation of JAK2/STAT1 pathway and ameliorated lipopolysaccharide/d-galactosamine induced acute liver failure via inhibition of TLR4 pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. UP-REGULATION OF IL-6, IL-8 AND CCL2 GENE EXPRESSION AFTER ACUTE INFLAMMATION: CORRELATION TO CLINICAL PAIN

    PubMed Central

    Wang, Xiao-Min; Hamza, May; Wu, Tai-Xia; Dionne, Raymond A.

    2012-01-01

    Tissue injury initiates a cascade of inflammatory mediators and hyperalgesic substances including prostaglandins, cytokines and chemokines. Using microarray and qRT-PCR gene expression analyses, the present study evaluated changes in gene expression of a cascade of cytokines following acute inflammation and the correlation between the changes in the gene expression level and pain intensity in the oral surgery clinical model of acute inflammation. Tissue injury resulted in a significant up-regulation in the gene expression of Interleukin-6 (IL-6; 63.3-fold), IL-8 (8.1-fold), chemokine (C-C motif) ligand 2 (CCL2; 8.9-fold), chemokine (C-X-C motif) ligand 1 (CXCL1; 30.5-fold), chemokine (C-X-C motif) ligand 2 (CXCL2; 26-fold) and annexin A1 (ANXA1; 12-fold). The up-regulation of IL-6 gene expression was significantly correlated to the up-regulation on the gene expression of IL-8, CCL2, CXCL1 and CXCL2. Interestingly, the tissue injury induced up-regulation of IL-6 gene expression, IL-8 and CCL2 were positively correlated to pain intensity at 3 hours post-surgery, the onset of acute inflammatory pain. However, ketorolac treatment did not have a significant effect on the gene expression of IL-6, IL-8, CCL2, CXCL2 and ANXA1 at the same time point of acute inflammation. These results demonstrate that up-regulation of IL-6, IL-8 and CCL2 gene expression contributes to the development of acute inflammation and inflammatory pain. The lack of effect for ketorolac on the expression of these gene products may be related to the ceiling analgesic effects of non-steroidal anti-inflammatory drugs. PMID:19233564

  15. Role of CD28/B7 costimulation in the dexamethasone-induced suppression of IFN-gamma.

    PubMed

    Agarwal, S K; Marshall, G D

    2000-11-01

    In vitro exposure of peripheral blood mononuclear cells (PBMC) to glucocorticoids (GC), at concentrations observed during psychologic stress, induces a shift in the human type 1/type 2 cytokine balance toward a type 2 cytokine response. The mechanisms involved in these cytokine alterations are unknown but likely include modulation of regulatory cytokines or the interaction between the antigen-presenting cell (APC) and T lymphocyte or both. The CD28/B7 costimulation pathway has been reported to modulate the type 1/type 2 cytokine balance and may contribute to the GC-associated cytokine alterations. Therefore, we sought to determine the effect of dexamethasone (Dex) on the expression and function of the human CD28/B7 costimulatory pathway and whether these alterations contribute to the Dex-induced type 1/type 2 cytokine alterations. Dex inhibited the expression of both CD80 and CD86 on THP-1 cells, a human acute monocytic leukemia cell line, as determined by flow cytometry. Dex also inhibited the expression of CD28 and CTLA-4 on phytohemagglutinin (PHA)-stimulated CD3+ T lymphocytes, which was attenuated by the addition of interleukin-12 (IL-12). Lastly, activation of CD28 with anti-CD28 antibody attenuated the Dex-induced decrease in interferon-gamma (IFN-gamma) production by anti-CD3 antibody-stimulated PBMC. These data suggest that Dex induces a modulation of the CD28/B7 costimulatory pathway that contributes to the shift in the type 1/type 2 cytokine balance toward a predominant type 2 cytokine response.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecoraro, Michela; Del Pizzo, Mariagiovanna; Marzocco, Stefania

    Doxorubicin (DOXO) is commonly used to treat a wide range of malignant tumors, but its clinical use is limited by acute and chronic cardiotoxicity. The precise mechanism underlying DOXO-induced cardiotoxicity is still not completely elucidated, but cardiac inflammation seems to be involved. Effects of DOXO on proinflammatory cytokines, inflammatory cell infiltration, and necrosis have been proven only when a functional impairment has already occurred, so this study aimed to investigate the acute effect of DOXO administration in mouse heart. The results of our study demonstrated alterations in cardiac function parameters assessed by ultrasound within 24 h after a single injectionmore » of DOXO, with a cumulative effect along the increase of the dose and the number of DOXO administrations. At the same time, DOXO causes a significant production of proinflammatory cytokines (such as TNF-α and IL-6) with a concomitant reduction of IL-10, a well-known antiinflammatory cytokine. Furthermore, overexpression of inducible nitric oxide synthase (iNOS) in heart tissue and increased levels of serum nitrite in DOXO-treated mice were detected. Notably, DOXO administration significantly increased nitrotyrosine expression in mouse heart. Our data support the hypothesis that these early events, could be responsible for the later onset of more severe deleterious remodeling leading to DOXO induced cardiomyopathy. - Highlights: • Doxorubicin induces echocardiographic alterations of the main cardiac functional parameters. • Doxorubicin induces increase of TNF-α and IL-6 production and iNOS expression. • Doxorubicin causes a significant reduction of the antiinflammatory cytokine IL-10. • The doses are lower than that used in human. • Doxorubicin administration significantly increased nitrotyrosine expression.« less

  17. Increased cytokine/chemokines in serum from asthmatic and non-asthmatic patients with viral respiratory infection

    PubMed Central

    Giuffrida, María J; Valero, Nereida; Mosquera, Jesús; Alvarez de Mon, Melchor; Chacín, Betulio; Espina, Luz Marina; Gotera, Jennifer; Bermudez, John; Mavarez, Alibeth

    2014-01-01

    Background Respiratory viral infections can induce different cytokine/chemokine profiles in lung tissues and have a significant influence on patients with asthma. There is little information about the systemic cytokine status in viral respiratory-infected asthmatic patients compared with non-asthmatic patients. Objectives The aim of this study was to determine changes in circulating cytokines (IL-1β, TNF-α, IL-4, IL-5) and chemokines (MCP1: monocyte chemoattractant protein-1 and RANTES: regulated on activation normal T cell expressed and secreted) in patients with an asthmatic versus a non-asthmatic background with respiratory syncytial virus, parainfluenza virus or adenovirus respiratory infection. In addition, human monocyte cultures were incubated with respiratory viruses to determine the cytokine/chemokine profiles. Patients/Methods Patients with asthmatic (n = 34) and non-asthmatic (n = 18) history and respiratory infections with respiratory syncytial virus, parainfluenza, and adenovirus were studied. Healthy individuals with similar age and sex (n = 10) were used as controls. Cytokine/chemokine content in blood and culture supernatants was determined by ELISA. Monocytes were isolated by Hystopaque gradient and cocultured with each of the above-mentioned viruses. Results Similar increased cytokine concentrations were observed in asthmatic and non-asthmatic patients. However, higher concentrations of chemokines were observed in asthmatic patients. Virus-infected monocyte cultures showed similar cytokine/chemokine profiles to those observed in the patients. Conclusions Circulating cytokine profiles induced by acute viral lung infection were not related to asthmatic status, except for chemokines that were already increased in the asthmatic status. Monocytes could play an important role in the increased circulating concentration of cytokines found during respiratory viral infections. PMID:23962134

  18. Thermal degradation events as health hazards: Particle vs gas phase effects, mechanistic studies with particles

    NASA Astrophysics Data System (ADS)

    Oberdörster, G.; Ferin, J.; Finkelstein, J.; Soderholm, S.

    Exposure to thermal degradation products arising from fire or smoke could be a major concern for manned space missions. Severe acute lung damage has been reported in people after accidental exposure to fumes from plastic materials, and animal studies revealed the extremely high toxicity of freshly generated fumes whereas a decrease in toxicity of aged fumes has been found. This and the fact that toxicity of the freshly generated fumes can be prevented with filters raises the question whether the toxicity may be due to the particulate rather than the gas phase components of the thermodegradation products. Indeed, results from recent studies implicate ultrafine particles (particle diameter in the nm range) as potential severe pulmonary toxicants. We have conducted a number of in vivo (inhalation and instillation studies in rats) and in vitro studies to test the hypothesis that ultrafine particles possess an increased potential to injure the lung compared to larger-sized particles. We used as surrogate particles ultrafine TiO 2 particles (12 and 20 nm diameter). Results in exposed rats showed that the ultrafine TiO 2 particles not only induce a greater acute inflammatory reaction in the lung than larger-sized TiO 2 particles, but can also lead to persistent chronic effects, as indicated by an adverse effect on alveolar macrophage mediated clearance function of particles. Release of mediators from alveolar macrophages during phagocytosis of the ultrafine particles and an increased access of the ultrafine particles to the pulmonary interstitium are likely factors contributing to their pulmonary toxicity. In vitro studies with lung cells (alveolar macrophages) showed, in addition, that ultrafine TiO 2 particles have a greater potential to induce cytokines than larger-sized particles. We conclude from our present studies that ultrafine particles have a significant potential to injure the lung and that their occurrence in thermal degradation events can play a major role in the highly acute toxicity of fumes. Future studies will include adsorption of typical gas phase components (HCl, HF) on surrogate particles to differentiate between gas and particle phase effects and to perform mechanistic studies aimed at introducing therapeutic/preventive measures. These studies will be complemented by a comparison with actual thermal degradation products.

  19. Acute stress induces increases in salivary IL-10 levels.

    PubMed

    Szabo, Yvette Z; Newton, Tamara L; Miller, James J; Lyle, Keith B; Fernandez-Botran, Rafael

    2016-09-01

    The purpose of this study was to investigate the stress-reactivity of the anti-inflammatory cytokine, IL-10, in saliva and to determine how salivary IL-10 levels change in relation to those of IL-1β, a pro-inflammatory cytokine, following stress. Healthy young adults were randomly assigned to retrieve a negative emotional memory (n = 46) or complete a modified version of the Trier Social Stress Test (n = 45). Saliva samples were taken 10 min before (baseline) and 50 min after (post-stressor) onset of a 10-min stressor, and were assayed using a high sensitivity multiplex assay for cytokines. Measurable IL-10 levels (above the minimum detectable concentration) were found in 96% of the baseline samples, and 98% of the post-stressor samples. Flow rate-adjusted salivary IL-10 levels as well as IL-1β/IL-10 ratios showed moderate but statistically significant increases in response to stress. Measurement of salivary IL-10 and pro-/anti-inflammatory cytokine ratios may be useful, noninvasive tools, in stress research.

  20. Interleukin-17B Antagonizes Interleukin-25-Mediated Mucosal Inflammation.

    PubMed

    Reynolds, Joseph M; Lee, Young-Hee; Shi, Yun; Wang, Xiaohu; Angkasekwinai, Pornpimon; Nallaparaju, Kalyan C; Flaherty, Stephanie; Chang, Seon Hee; Watarai, Hiroshi; Dong, Chen

    2015-04-21

    The interleukin-17 (IL-17) family of cytokines has emerged as a critical player in inflammatory diseases. Among them, IL-25 has been shown to be important in allergic inflammation and protection against parasitic infection. Here we have demonstrated that IL-17B, a poorly understood cytokine, functions to inhibit IL-25-driven inflammation. IL-17B and IL-25, both binding to the interleukin-17 receptor B (IL-17RB), were upregulated in their expression after acute colonic inflammation. Individual inhibition of these cytokines revealed opposing functions in colon inflammation: IL-25 was pathogenic but IL-17B was protective. Similarly opposing phenotypes were observed in Citrobacter rodentium infection and allergic asthma. Moreover, IL-25 was found to promote IL-6 production from colon epithelial cells, which was inhibited by IL-17B. Therefore, our data demonstrate that IL-17B is an anti-inflammatory cytokine in the IL-17 family. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Low-grade chronic inflammation mediated by mast cells in fibromyalgia: role of IL-37.

    PubMed

    Mastrangelo, F; Frydas, I; Ronconi, G; Kritas, S K; Tettamanti, L; Caraffa, Al; D Ovidio, C; Younes, A; Gallenga, C E; Conti, P

    2018-01-01

    It has been observed that acute stress causes the activation of TH1 cells, while TH2 cells regulate and act on chronic inflammation. Fibromyalgia (FM) is a chronic, idiopathic disorder which affects about twelve million people in the United States. FM is characterized by chronic widespread pain, fatigue, aching, joint stiffness, depression, cognitive dysfunction and non-restorative sleep. The mechanism of induction of muscle pain and inflammation is not yet clear. In FM there is an increase in reactivity of central neurons with increased sensitivity localized mainly in the CNS. Mast cells are involved in FM by releasing proinflammatory cytokines, chemokines, chemical mediators, and PGD2. TNF is a cytokine generated by MCs and its level is higher in FM. The inhibition of pro-inflammatory IL-1 family members and TNF by IL-37 in FM could have a therapeutic effect. Here, we report for the first time the relationship between MCs, inflammatory cytokines and the new anti-inflammatory cytokine IL-37 in FM.

  2. Middle Ear Fluid Cytokine and Inflammatory Cell Kinetics in the Chinchilla Otitis Media Model

    PubMed Central

    Sato, Katsuro; Liebeler, Carol L.; Quartey, Moses K.; Le, Chap T.; Giebink, G. Scott

    1999-01-01

    Streptococcus pneumoniae is the most frequent microbe causing middle ear infection. The pathophysiology of pneumococcal otitis media has been characterized by measurement of local inflammatory mediators such as inflammatory cells, lysozyme, oxidative metabolic products, and inflammatory cytokines. The role of cytokines in bacterial infection has been elucidated with animal models, and interleukin (IL)-1β, IL-6, and IL-8 and tumor necrosis factor alpha (TNF-α) are recognized as being important local mediators in acute inflammation. We characterized middle ear inflammatory responses in the chinchilla otitis media model after injecting a very small number of viable pneumococci into the middle ear, similar to the natural course of infection. Middle ear fluid (MEF) concentrations of IL-1β, IL-6, IL-8, and TNF-α were measured by using anti-human cytokine enzyme-linked immunosorbent assay reagents. IL-1β showed the earliest peak, at 6 h after inoculation, whereas IL-6, IL-8, and TNF-α concentrations were increasing 72 h after pneumococcal inoculation. IL-6, IL-8, and TNF-α but not IL-1β concentrations correlated significantly with total inflammatory cell numbers in MEF, and all four cytokines correlated significantly with MEF neutrophil concentration. Several intercytokine correlations were significant. Cytokines, therefore, participate in the early middle ear inflammatory response to S. pneumoniae. PMID:10085040

  3. Genetic predisposition toward suicidal ideation in patients with acute coronary syndrome.

    PubMed

    Kang, Hee-Ju; Bae, Kyung-Yeol; Kim, Sung-Wan; Shin, Il-Seon; Hong, Young Joon; Ahn, Youngkeun; Jeong, Myung Ho; Yoon, Jin-Sang; Kim, Jae-Min

    2017-11-07

    The genetic predisposition toward suicidal ideation has been explored to identify subgroups at high risk and to prevent suicide. Acute coronary syndrome (ACS) is associated with an increased risk of suicide, but few studies have explored the genetic predisposition toward suicide in ACS populations. Therefore, this longitudinal study explored the genetic predisposition toward suicidal ideation in ACS patients. In total, of 969 patients within 2 weeks after ACS, 711 were followed at 1 year after ACS. Suicidal ideation was evaluated with the relevant items on the Montgomery-Åsberg Depression Rating Scale. Ten genetic polymorphisms associated with serotonergic systems, neurotrophic factors, carbon metabolism, and inflammatory cytokines were examined. Associations between genetic polymorphisms and suicidal ideation within 2 weeks and 1 year of ACS were investigated using logistic regression models. The 5-HTTLPR s allele was significantly associated with suicidal ideation within 2 weeks of ACS after adjusting for covariates and after the Bonferroni correction. TNF-α -308 G/A , IL-1β -511 C/T , and IL-1β + 3953C/T were significantly associated with suicidal ideation within 2 weeks after ACS, but these associations did not reach significance after the Bonferroni correction in unadjusted analyses and after adjusting for covariance. However, no significant association between genetic polymorphisms and suicidal ideation was found at 1 year. Genetic predisposition, 5-HTTLPR s allele in particular, may confer susceptibility to suicidal ideation in ACS patients during the acute phase of ACS.

  4. PD-L1 Expression on Retrovirus-Infected Cells Mediates Immune Escape from CD8+ T Cell Killing.

    PubMed

    Akhmetzyanova, Ilseyar; Drabczyk, Malgorzata; Neff, C Preston; Gibbert, Kathrin; Dietze, Kirsten K; Werner, Tanja; Liu, Jia; Chen, Lieping; Lang, Karl S; Palmer, Brent E; Dittmer, Ulf; Zelinskyy, Gennadiy

    2015-10-01

    Cytotoxic CD8+ T Lymphocytes (CTL) efficiently control acute virus infections but can become exhausted when a chronic infection develops. Signaling of the inhibitory receptor PD-1 is an important mechanism for the development of virus-specific CD8+ T cell dysfunction. However, it has recently been shown that during the initial phase of infection virus-specific CD8+ T cells express high levels of PD-1, but are fully competent in producing cytokines and killing virus-infected target cells. To better understand the role of the PD-1 signaling pathway in CD8+ T cell cytotoxicity during acute viral infections we analyzed the expression of the ligand on retrovirus-infected cells targeted by CTLs. We observed increased levels of PD-L1 expression after infection of cells with the murine Friend retrovirus (FV) or with HIV. In FV infected mice, virus-specific CTLs efficiently eliminated infected target cells that expressed low levels of PD-L1 or that were deficient for PD-L1 but the population of PD-L1high cells escaped elimination and formed a reservoir for chronic FV replication. Infected cells with high PD-L1 expression mediated a negative feedback on CD8+ T cells and inhibited their expansion and cytotoxic functions. These findings provide evidence for a novel immune escape mechanism during acute retroviral infection based on PD-L1 expression levels on virus infected target cells.

  5. Functional and phenotypic evaluation of eosinophils from patients with the acute form of paracoccidioidomycosis.

    PubMed

    Braga, Fernanda Gambogi; Ruas, Luciana Pereira; Pereira, Ricardo Mendes; Lima, Xinaida Taligare; Antunes, Edson; Mamoni, Ronei Luciano; Blotta, Maria Heloisa Souza Lima

    2017-05-01

    Eosinophilia is a typical finding of the acute/juvenile form of paracoccidioidomycosis (PCM), a systemic mycosis endemic in Latin America. This clinical form is characterized by depressed cellular immune response and production of Th2 cytokines. Moreover, it has been shown that the increased number of eosinophils in peripheral blood of patients returns to normal values after antifungal treatment. However, the role of eosinophils in PCM has never been evaluated. This study aimed to assess the phenotypic and functional characteristics of eosinophils in PCM. In 15 patients with the acute form of the disease, we detected expression of MBP, CCL5 (RANTES) and CCL11 (eotaxin) in biopsies of lymph nodes and liver. In addition, there were higher levels of chemokines and granule proteins in the peripheral blood of patients compared to controls. Isolation of eosinophils from blood revealed a higher frequency of CD69+ and TLR2+ eosinophils in patients compared to controls, and a lower population of CD80+ cells. We also evaluated the fungicidal capacity of eosinophils in vitro. Our results revealed that eosinophils from PCM patients and controls exhibit similar ability to kill P. brasiliensis yeast cells, although eosinophils of patients were less responsive to IL-5 stimulation than controls. In conclusion, we suggest that eosinophils might play a role in the host response to fungi and in the pathophysiology of PCM by inducing an intense and systemic inflammatory response in the initial phase of the infection.

  6. Evaluation of effect of hybrid bioartificial liver using end-stage liver disease model

    PubMed Central

    Liu, Qing; Duan, Zhong-Ping; Huang, Chun; Zhao, Chun-Hui

    2004-01-01

    AIM: To study the role of hybrid bioartificial liver (HBL) in clearing proinflammatory cytokines and endotoxin in patients with acute and sub-acute liver failure and the effects of HBL on systemic inflammatory syndrome (SIRS) and multiple organ dysfunction syndrome (MODS). METHODS: Five cases with severe liver failure (3 acute and 2 subacute) were treated with HBL. The clinical signs and symptoms, total bilirubin (TBIL), serum ammonia, endotoxin TNF-α, IL-6 and prothrombin activity (PTA), cholinesterase (CHE) were recorded before, during and after treatment. The end-stage liver disease (MELD) was used for the study. RESULTS: Two patients were bridged for spontaneous recovery and 1 patient was bridged for OLT successfully. Another 2 patients died on d 8 and d 21. The spontaneous recovery rate was 30.0%. PTA and CHE in all patients were significantly increased (P < 0.01), while the serum TBIL, endotoxin,TNF-α, IL-6 were decreased. MELD score (mean 43.6) predicted 100% deaths within 3 mo before treatment with HBL. After treatment with HBL, four out of 5 patients had decreased MELD scores (mean 36.6). The MELD score predicted 66% mortalities. CONCLUSION: The proinflammatory cytokines (TNFα, IL-6 and endotoxin)can be significantly removed by hybrid bioartificial liver and HBL appears to be effective in blocking SIRS and MODS in patients with acute and sub-acute liver failure. MELD is a reliable measure for predicting short-term mortality risk in patients with end-stage liver disease. The prognostic result also corresponds to clinical outcome. PMID:15112365

  7. Animal model of respiratory syncytial virus: CD8+ T cells cause a cytokine storm that is chemically tractable by sphingosine-1-phosphate 1 receptor agonist therapy.

    PubMed

    Walsh, Kevin B; Teijaro, John R; Brock, Linda G; Fremgen, Daniel M; Collins, Peter L; Rosen, Hugh; Oldstone, Michael B A

    2014-06-01

    The cytokine storm is an intensified, dysregulated, tissue-injurious inflammatory response driven by cytokine and immune cell components. The cytokine storm during influenza virus infection, whereby the amplified innate immune response is primarily responsible for pulmonary damage, has been well characterized. Now we describe a novel event where virus-specific T cells induce a cytokine storm. The paramyxovirus pneumonia virus of mice (PVM) is a model of human respiratory syncytial virus (hRSV). Unexpectedly, when C57BL/6 mice were infected with PVM, the innate inflammatory response was undetectable until day 5 postinfection, at which time CD8(+) T cells infiltrated into the lung, initiating a cytokine storm by their production of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). Administration of an immunomodulatory sphingosine-1-phosphate (S1P) receptor 1 (S1P1R) agonist significantly inhibited PVM-elicited cytokine storm by blunting the PVM-specific CD8(+) T cell response, resulting in diminished pulmonary disease and enhanced survival. A dysregulated overly exuberant immune response, termed a "cytokine storm," accompanies virus-induced acute respiratory diseases (VARV), is primarily responsible for the accompanying high morbidity and mortality, and can be controlled therapeutically in influenza virus infection of mice and ferrets by administration of sphingosine-1-phosphate 1 receptor (S1P1R) agonists. Here, two novel findings are recorded. First, in contrast to influenza infection, where the cytokine storm is initiated early by the innate immune system, for pneumonia virus of mice (PVM), a model of RSV, the cytokine storm is initiated late in infection by the adaptive immune response: specifically, by virus-specific CD8 T cells via their release of IFN-γ and TNF-α. Blockading these cytokines with neutralizing antibodies blunts the cytokine storm and protects the host. Second, PVM infection is controlled by administration of an S1P1R agonist.

  8. Cytokine Responses to Acute Exercise in Healthy Older Adults: The Effect of Cardiorespiratory Fitness

    PubMed Central

    Windsor, Mark T.; Bailey, Tom G.; Perissiou, Maria; Meital, Lara; Golledge, Jonathan; Russell, Fraser D.; Askew, Christopher D.

    2018-01-01

    Markers of chronic inflammation increase with aging, and are associated with cardiovascular disease prevalence and mortality. Increases in fitness with exercise training have been associated with lower circulating concentrations of cytokines known to have pro-inflammatory actions (such as interleukin-6 [IL-6]) and higher circulating concentrations of anti-inflammatory cytokines (interleukin-10 [IL-10]). However, the effect of cardiorespiratory fitness on acute cytokine responses to a single bout of exercise in healthy older individuals is unknown. We compared the response of plasma cytokines IL-6, tumor necrosis factor-alpha (TNF-α) and IL-10 to a bout of moderate-intensity continuous and higher-intensity interval exercise between older individuals with higher and lower levels of cardiorespiratory fitness. Sixteen lower-fit (VO2peak: 22.6±2.8 mL.kg−1.min−1) and fourteen higher-fit participants (VO2peak: 37.4±5.9 mL.kg−1.min−1) completed three 24 min experimental protocols in a randomized order: (1) moderate-intensity continuous exercise (40% of peak power output [PPO]); (2) higher-intensity interval exercise (12 × 1 min intervals at 70% PPO separated by 1 min periods at 10% PPO); or (3) non-exercise control. Plasma cytokines were measured at rest, immediately after, and during 90 min of recovery following exercise or control. Plasma IL-6 concentrations at baseline were greater in the higher-fit compared to the lower-fit group (P = 0.02), with no difference in plasma IL-10 or TNF-α concentrations at baseline between groups. Plasma IL-6 and IL-10 concentrations in both groups increased immediately after all protocols (IL-6: P = 0.02, IL-10: P < 0.01). However, there was no difference in the IL-6 and IL-10 response between the exercise and non-exercise (control) protocols. After all protocols, no changes in plasma TNF-α concentrations were observed in either the higher- or lower-fit groups. In this study, basal concentrations of circulating IL-6 were elevated in older individuals with higher levels of cardiorespiratory fitness. However, changes in plasma cytokine concentrations after exercise were not different to changes after non-exercise control in both the lower- and higher-fit groups. PMID:29599722

  9. The anti-tumor role of NK cells in vivo pre-activated and re-stimulated by interleukins in acute lymphoblastic leukemia

    PubMed Central

    Jin, Fengyan; Lin, Hai; Gao, Sujun; Hu, Zheng; Zuo, Song; Sun, Liguang; Jin, Chunhui; Li, Wei; Yang, Yanping

    2016-01-01

    Although natural killer cells (NK cells) were traditionally classified as members of the innate immune system, NK cells have recently been found also to be an important player in the adaptive immune systems. In this context, in vitro activation of NK cells by cytokines leads to generation of NK cells with memory-like properties characterized by increased interferon-γ (IFNγ) production. However, it remains to be defined whether these memory-like NK cells exist in vivo after cytokine activation. Furthermore, it is also unclear whether such memory-like NK cells induced in vivo by cytokines could have effective anti-leukemia response. To address these issues, we used an in vivo pre-activation and re-stimulation system that was able to produce NK cells with increased IFNγ secretion. It was found that after in vivo pre-activation and re-stimulation with interleukins (ILs), NK cells retained a state to produce increased amount of IFNγ. Of note, whereas this intrinsic capacity of enhanced IFNγ production after in vivo IL pre-activation and re-stimulation could be transferred to the next generation of NK cells and was associated with prolonged survival of the mice with acute lymphoid leukemia. Moreover, the anti-leukemia activity of these memory-like NK cells was associated with IFNγ production and up-regulation of NK cells activation receptor-NK Group 2 member D (NKG2D). Together, these findings argue strongly that in vivo IL pre-activation and re-stimulation is capable to induce memory-like NK cells as observed previously in vitro, which are effective against acute lymphoblastic leukemia, likely via NKG2D-dependent IFNγ production, in intact animals. PMID:27816971

  10. The anti-tumor role of NK cells in vivo pre-activated and re-stimulated by interleukins in acute lymphoblastic leukemia.

    PubMed

    Jin, Fengyan; Lin, Hai; Gao, Sujun; Hu, Zheng; Zuo, Song; Sun, Liguang; Jin, Chunhui; Li, Wei; Yang, Yanping

    2016-11-29

    Although natural killer cells (NK cells) were traditionally classified as members of the innate immune system, NK cells have recently been found also to be an important player in the adaptive immune systems. In this context, in vitro activation of NK cells by cytokines leads to generation of NK cells with memory-like properties characterized by increased interferon-γ (IFNγ) production. However, it remains to be defined whether these memory-like NK cells exist in vivo after cytokine activation. Furthermore, it is also unclear whether such memory-like NK cells induced in vivo by cytokines could have effective anti-leukemia response. To address these issues, we used an in vivo pre-activation and re-stimulation system that was able to produce NK cells with increased IFNγ secretion. It was found that after in vivo pre-activation and re-stimulation with interleukins (ILs), NK cells retained a state to produce increased amount of IFNγ. Of note, whereas this intrinsic capacity of enhanced IFNγ production after in vivo IL pre-activation and re-stimulation could be transferred to the next generation of NK cells and was associated with prolonged survival of the mice with acute lymphoid leukemia. Moreover, the anti-leukemia activity of these memory-like NK cells was associated with IFNγ production and up-regulation of NK cells activation receptor-NK Group 2 member D (NKG2D). Together, these findings argue strongly that in vivo IL pre-activation and re-stimulation is capable to induce memory-like NK cells as observed previously in vitro, which are effective against acute lymphoblastic leukemia, likely via NKG2D-dependent IFNγ production, in intact animals.

  11. Acute diesel exhaust particle exposure increases viral titre and inflammation associated with existing influenza infection, but does not exacerbate deficits in lung function

    PubMed Central

    Larcombe, Alexander N.; Foong, Rachel E.; Boylen, Catherine E.; Zosky, Graeme R.

    2012-01-01

    Please cite this paper as: Larcombe et al. (2012) Acute diesel exhaust particle exposure increases viral titre and inflammation associated with existing influenza infection, but does not exacerbate deficits in lung function. Influenza and Other Respiratory Viruses DOI:10.1111/irv.12012. Background  Exposure to diesel exhaust particles (DEP) is thought to exacerbate many pre‐existing respiratory diseases, including asthma, bronchitis and chronic obstructive pulmonary disease, however, there is a paucity of data on whether DEP exacerbates illness due to respiratory viral infection. Objectives  To assess the physiological consequences of an acute DEP exposure during the peak of influenza‐induced illness. Methods  We exposed adult female BALB/c mice to 100 μg DEP (or control) 3·75 days after infection with 104·5 plaque forming units of influenza A/Mem71 (or control). Six hours, 24 hours and 7 days after DEP exposure we measured thoracic gas volume and lung function at functional residual capacity. Bronchoalveolar lavage fluid was taken for analyses of cellular inflammation and cytokines, and whole lungs were taken for measurement of viral titre. Results  Influenza infection resulted in significantly increased inflammation, cytokine influx and impairment to lung function. DEP exposure alone resulted in less inflammation and cytokine influx, and no impairment to lung function. Mice infected with influenza and exposed to DEP had higher viral titres and neutrophilia compared with infected mice, yet they did not have more impaired lung mechanics than mice infected with influenza alone. Conclusions  A single dose of DEP is not sufficient to physiologically exacerbate pre‐existing respiratory disease caused by influenza infection in mice. PMID:22994877

  12. Chimeric Antigen Receptor–Modified T Cells for Acute Lymphoid Leukemia

    PubMed Central

    Barrett, David; Aplenc, Richard; Porter, David L.; Rheingold, Susan R.; Teachey, David T.; Chew, Anne; Hauck, Bernd; Wright, J. Fraser; Milone, Michael C.; Levine, Bruce L.; June, Carl H.

    2014-01-01

    Summary Chimeric antigen receptor–modified T cells with specificity for CD19 have shown promise in the treatment of chronic lymphocytic leukemia (CLL). It remains to be established whether chimeric antigen receptor T cells have clinical activity in acute lymphoblastic leukemia (ALL). Two children with relapsed and refractory pre–B-cell ALL received infusions of T cells transduced with anti-CD19 antibody and a T-cell signaling molecule (CTL019 chimeric antigen receptor T cells), at a dose of 1.4×106 to 1.2×107 CTL019 cells per kilogram of body weight. In both patients, CTL019 T cells expanded to a level that was more than 1000 times as high as the initial engraftment level, and the cells were identified in bone marrow. In addition, the chimeric antigen receptor T cells were observed in the cerebrospinal fluid (CSF), where they persisted at high levels for at least 6 months. Eight grade 3 or 4 adverse events were noted. The cytokine-release syndrome and B-cell aplasia developed in both patients. In one child, the cytokine-release syndrome was severe; cytokine blockade with etanercept and tocilizumab was effective in reversing the syndrome and did not prevent expansion of chimeric antigen receptor T cells or reduce anti-leukemic efficacy. Complete remission was observed in both patients and is ongoing in one patient at 11 months after treatment. The other patient had a relapse, with blast cells that no longer expressed CD19, approximately 2 months after treatment. Chimeric antigen receptor–modified T cells are capable of killing even aggressive, treatment-refractory acute leukemia cells in vivo. The emergence of tumor cells that no longer express the target indicates a need to target other molecules in addition to CD19 in some patients with ALL. PMID:23527958

  13. Resolution of Toll-like receptor 4-mediated acute lung injury is linked to eicosanoids and suppressor of cytokine signaling 3

    PubMed Central

    Hilberath, Jan N.; Carlo, Troy; Pfeffer, Michael A.; Croze, Roxanne H.; Hastrup, Frantz; Levy, Bruce D.

    2011-01-01

    The purpose of this study was to investigate roles for Toll-like receptor 4 (TLR4) in host responses to sterile tissue injury. Hydrochloric acid was instilled into the left mainstem bronchus of TLR4-defective (both C3H/HeJ and congenic C.C3-Tlr4Lps-d/J) and control mice to initiate mild, self-limited acute lung injury (ALI). Outcome measures included respiratory mechanics, barrier integrity, leukocyte accumulation, and levels of select soluble mediators. TLR4-defective mice were more resistant to ALI, with significantly decreased perturbations in lung elastance and resistance, resulting in faster resolution of these parameters [resolution interval (Ri); ∼6 vs. 12 h]. Vascular permeability changes and oxidative stress were also decreased in injured HeJ mice. These TLR4-defective mice paradoxically displayed increased lung neutrophils [(HeJ) 24×103 vs. (control) 13×103 cells/bronchoalveolar lavage]. Proresolving mechanisms for TLR4-defective animals included decreased eicosanoid biosynthesis, including cysteinyl leukotrienes (80% mean decrease) that mediated CysLT1 receptor-dependent vascular permeability changes; and induction of lung suppressor of cytokine signaling 3 (SOCS3) expression that decreased TLR4-driven oxidative stress. Together, these findings indicate pivotal roles for TLR4 in promoting sterile ALI and suggest downstream provocative roles for cysteinyl leukotrienes and protective roles for SOCS3 in the intensity and duration of host responses to ALI.—Hilberath, J N., Carlo, T., Pfeffer, M. A., Croze, R. H., Hastrup, F., Levy, B. D. Resolution of Toll-like receptor 4-mediated acute lung injury is linked to eicosanoids and suppressor of cytokine signaling 3. PMID:21321188

  14. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia.

    PubMed

    Grupp, Stephan A; Kalos, Michael; Barrett, David; Aplenc, Richard; Porter, David L; Rheingold, Susan R; Teachey, David T; Chew, Anne; Hauck, Bernd; Wright, J Fraser; Milone, Michael C; Levine, Bruce L; June, Carl H

    2013-04-18

    Chimeric antigen receptor-modified T cells with specificity for CD19 have shown promise in the treatment of chronic lymphocytic leukemia (CLL). It remains to be established whether chimeric antigen receptor T cells have clinical activity in acute lymphoblastic leukemia (ALL). Two children with relapsed and refractory pre-B-cell ALL received infusions of T cells transduced with anti-CD19 antibody and a T-cell signaling molecule (CTL019 chimeric antigen receptor T cells), at a dose of 1.4×10(6) to 1.2×10(7) CTL019 cells per kilogram of body weight. In both patients, CTL019 T cells expanded to a level that was more than 1000 times as high as the initial engraftment level, and the cells were identified in bone marrow. In addition, the chimeric antigen receptor T cells were observed in the cerebrospinal fluid (CSF), where they persisted at high levels for at least 6 months. Eight grade 3 or 4 adverse events were noted. The cytokine-release syndrome and B-cell aplasia developed in both patients. In one child, the cytokine-release syndrome was severe; cytokine blockade with etanercept and tocilizumab was effective in reversing the syndrome and did not prevent expansion of chimeric antigen receptor T cells or reduce antileukemic efficacy. Complete remission was observed in both patients and is ongoing in one patient at 11 months after treatment. The other patient had a relapse, with blast cells that no longer expressed CD19, approximately 2 months after treatment. Chimeric antigen receptor-modified T cells are capable of killing even aggressive, treatment-refractory acute leukemia cells in vivo. The emergence of tumor cells that no longer express the target indicates a need to target other molecules in addition to CD19 in some patients with ALL.

  15. Modulation of the Early Inflammatory Microenvironment in the Alkali-Burned Eye by Systemically Administered Interferon-γ-Treated Mesenchymal Stromal Cells

    PubMed Central

    Javorkova, Eliska; Trosan, Peter; Zajicova, Alena; Krulova, Magdalena; Hajkova, Michaela

    2014-01-01

    The aim of this study was to investigate the effects of systemically administered bone-marrow-derived mesenchymal stromal cells (MSCs) on the early acute phase of inflammation in the alkali-burned eye. Mice with damaged eyes were either untreated or treated 24 h after the injury with an intravenous administration of fluorescent-dye-labeled MSCs that were unstimulated or pretreated with interleukin-1α (IL-1α), transforming growth factor-β (TGF-β), or interferon-γ (IFN-γ). Analysis of cell suspensions prepared from the eyes of treated mice on day 3 after the alkali burn revealed that MSCs specifically migrated to the damaged eye and that the number of labeled MSCs was more than 30-times higher in damaged eyes compared with control eyes. The study of the composition of the leukocyte populations within the damaged eyes showed that all types of tested MSCs slightly decreased the number of infiltrating lymphoid and myeloid cells, but only MSCs pretreated with IFN-γ significantly decreased the percentage of eye-infiltrating cells with a more profound effect on myeloid cells. Determining cytokine and NO production in the damaged eyes confirmed that the most effective immunomodulation was achieved with MSCs pretreated with IFN-γ, which significantly decreased the levels of the proinflammatory molecules IL-1α, IL-6, and NO. Taken together, the results show that systemically administered MSCs specifically migrate to the damaged eye and that IFN-γ-pretreated MSCs are superior in inhibiting the acute phase of inflammation, decreasing leukocyte infiltration, and attenuating the early inflammatory environment. PMID:24849741

  16. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study.

    PubMed

    Topp, Max S; Gökbuget, Nicola; Stein, Anthony S; Zugmaier, Gerhard; O'Brien, Susan; Bargou, Ralf C; Dombret, Hervé; Fielding, Adele K; Heffner, Leonard; Larson, Richard A; Neumann, Svenja; Foà, Robin; Litzow, Mark; Ribera, Josep-Maria; Rambaldi, Alessandro; Schiller, Gary; Brüggemann, Monika; Horst, Heinz A; Holland, Chris; Jia, Catherine; Maniar, Tapan; Huber, Birgit; Nagorsen, Dirk; Forman, Stephen J; Kantarjian, Hagop M

    2015-01-01

    Adults with relapsed or refractory B-precursor acute lymphoblastic leukaemia have an unfavourable prognosis. Blinatumomab is a bispecific T-cell engager antibody construct targeting CD19, an antigen consistently expressed on B-lineage acute lymphoblastic leukaemia cells. We aimed to confirm the activity and safety profile of blinatumomab for acute lymphoblastic leukaemia. In a multicentre, single-arm, open-label phase 2 study, we enrolled adult patients with Philadelphia-chromosome-negative, primary refractory or relapsed (first relapse within 12 months of first remission, relapse within 12 months after allogeneic haemopoietic stem-cell transplantation [HSCT], or no response to or relapse after first salvage therapy or beyond) leukaemia. Patients received blinatumomab (9 μg/day for the first 7 days and 28 μg/day thereafter) by continuous intravenous infusion over 4 weeks every 6 weeks (up to five cycles), per protocol. The primary endpoint was complete remission (CR) or CR with partial haematological recovery of peripheral blood counts (CRh) within the first two cycles. Analysis was by intention to treat. This trial is registered at ClinicalTrials.gov, number NCT01466179. Between Jan 13, 2012, and Oct 10, 2013, 189 patients were enrolled and treated with blinatumomab. After two cycles, 81 (43%, 95% CI 36-50) patients had achieved a CR or CRh: 63 (33%) patients had a CR and 18 (10%) patients had a CRh. 32 (40%) of patients who achieved CR/CRh underwent subsequent allogeneic HSCT. The most frequent grade 3 or worse adverse events were febrile neutropenia (48 patients, 25%), neutropenia (30 patients, 16%), and anaemia (27 patients, 14%). Three (2%) patients had grade 3 cytokine release syndrome. Neurologic events of worst grade 3 or 4 occurred in 20 (11%) and four (2%) patients, respectively. Three deaths (due to sepsis, Escherichia coli sepsis, and Candida infection) were thought to be treatment-related by the investigators. Single-agent blinatumomab showed antileukaemia activity in adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia characterised by negative prognostic factors. Further assessment of blinatumomab treatment earlier in the course of the disease and in combination with other treatment approaches is warranted. Amgen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Heat stress upregulation of Toll-like receptors 2/4 and acute inflammatory cytokines in peripheral blood mononuclear cell (PBMC) of Bama miniature pigs: an in vivo and in vitro study.

    PubMed

    Ju, X-H; Xu, H-J; Yong, Y-H; An, L-L; Jiao, P-R; Liao, M

    2014-09-01

    Global warming is a challenge to animal health, because of increased heat stress, with subsequent induction of immunosuppression and increased susceptibility to disease. Toll-like receptors (TLR) are pattern recognition receptors that act as sentinels of pathogen invasion and tissue damage. Ligation of TLRs results in a signaling cascade and production of inflammatory cytokines, which eradicate pathogens and maintain the health of the host. We hypothesized that the TLR signaling pathway plays a role in immunosuppression in heat-stressed pigs. We explored the changes in the expression of TLR2, TLR4 and the concentration of acute inflammatory cytokines, such as IL-2, IL-8, IL-12 and IFN-γ in Bama miniature pigs subjected to 21 consecutive days of heat stress, both in vitro and in vivo models. The results showed that heat stress induced the upregulation of cortisol in the plasma of pigs (P<0.05); TLR4 mRNA was elevated, but IL-2 was reduced in peripheral blood mononuclear cells (PBMC, P<0.05). The white blood cell count and the percentage of granulocytes (eosinophilic+basophilic) decreased significantly in heat-stressed pigs (P<0.05). In the in vitro model (PBMC heat shocked for 1 h followed by a 9 h recovery period), TLR2 and TLR4 mRNA expression also increased, as did the concentration of IL-12 in supernatants. However, IFN-γ was significantly reduced in PBMC culture supernatants (P<0.05). We concluded that a consecutive heat stress period elevated the expression of TLR2 and TLR4 in PBMC and increased the plasma levels of inflammatory cytokines. These data indicate that TLR activation and dysregulation of cytokine expression in response to prolonged heat stress may be associated with immunosuppression and increased susceptibility to antigenic challenge in Bama miniature pigs.

  18. Anti-inflammatory effect of a Nuphar lutea partially purified leaf extract in murine models of septic shock.

    PubMed

    Ozer, J; Levi, T; Golan-Goldhirsh, A; Gopas, J

    2015-02-23

    Various plant organs of Nuphar lutea (L.) SM. (Nymphaeaceae) are used in traditional medicine for the treatment of arthritis, fever, aches, pains and inflammation. The main purpose of this study was to determine the anti-inflammatory effect of Nuphar lutea leaf extract (NUP) in two septic shock models: (1) Survival of mice challenged with a lethal dose of LPS, determination of pro-inflammatory and anti-inflammatory cytokines in serum, as well as in peritoneal macrophages in cell culture. (2) The effect of NUP in a murine model of fecal-induced peritonitis. NUP pre-treatment partially protected mice in two models of acute septic shock. We concluded that NUP is anti-inflammatory by inhibiting the NF-κB pathway, modulating cytokine production and ERK phosphorylation. A significant average survival rate (60%) of LPS lethally-challenged mice was achieved by pre-treatment with NUP. In addition, NUP pre-treatment reduced nuclear NF-κB translocation in peritoneal macrophages. The production of pro-inflammatory cytokines, TNF-α, IL-6 and IL-12, in the sera of LPS-treated mice or in the supernatants of peritoneal macrophages stimulated with LPS for 2-6 h was also decreased by NUP. Pre-treatment with NUP caused a significant increase in the anti-inflammatory cytokine IL-10. The NUP pre-treatment reduced and delayed mortality in mice with fecal-induced peritonitis. Our studies also revealed that NUP pre-treatment induced a dose-dependent phosphorylation of ERK in peritoneal macrophages. Since most of the reports about the anti-inflammatory effect of Nuphar lutea refer to rhizome and root powder and extracts, it is important to clarify the effectiveness of leaf extract as a source for such activity. NUP pre-treatment partially protected mice in two models of acute septic shock. We concluded that NUP is anti-inflammatory by inhibiting the NF-κB pathway, modulating cytokine production and ERK phosphorylation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Lamellar pro-inflammatory cytokine expression patterns in laminitis at the developmental stage and at the onset of lameness: innate vs. adaptive immune response.

    PubMed

    Belknap, J K; Giguère, S; Pettigrew, A; Cochran, A M; Van Eps, A W; Pollitt, C C

    2007-01-01

    Recent research has indicated that inflammation plays a role in the early stages of laminitis and that, similar to organ failure in human sepsis, early inflammatory mechanisms may lead to downstream events resulting in lamellar failure. Characterisation of the type of immune response (i.e. innate vs. adaptive) is essential in order to develop therapeutic strategies to counteract these deleterious events. To quantitate gene expression of pro-inflammatory cytokines known to be important in the innate and adaptive immune response during the early stages of laminitis, using both the black walnut extract (BWE) and oligofructose (OF) models of laminitis. Real-time qPCR was used to assess lamellar mRNA expression of interleukins-1beta, 2, 4, 6, 8, 10, 12 and 18, and tumour necrosis factor alpha and interferon gamma at the developmental stage and at the onset of lameness. Significantly increased lamellar mRNA expression of cytokines important in the innate immune response were present at the developmental stage of the BWE model, and at the onset of acute lameness in both the BWE model and OF model. Of the cytokines characteristic of the Th1 and Th2 arms of the adaptive immune response, a mixed response was noted at the onset of acute lameness in the BWE model, whereas the response was skewed towards a Th1 response at the onset of lameness in the OF model. Lamellar inflammation is characterised by strong innate immune response in the developmental stages of laminitis; and a mixture of innate and adaptive immune responses at the onset of lameness. These results indicate that anti-inflammatory treatment of early stage laminitis (and the horse at risk of laminitis) should include not only therapeutic drugs that address prostanoid activity, but should also address the marked increases in lamellar cytokine expression.

  20. Ablation of the Regulatory IE1 Protein of Murine Cytomegalovirus Alters In Vivo Pro-inflammatory TNF-alpha Production during Acute Infection

    PubMed Central

    Wilhelmi, Vanessa; Lisnic, Vanda Juranic; Hsieh, Wei Yuan; Blanc, Mathieu; Livingston, Andrew; Busche, Andreas; Tekotte, Hille; Messerle, Martin; Auer, Manfred; Fraser, Iain; Jonjic, Stipan; Angulo, Ana; Reddehase, Matthias J.; Ghazal, Peter

    2012-01-01

    Little is known about the role of viral genes in modulating host cytokine responses. Here we report a new functional role of the viral encoded IE1 protein of the murine cytomegalovirus in sculpting the inflammatory response in an acute infection. In time course experiments of infected primary macrophages (MΦs) measuring cytokine production levels, genetic ablation of the immediate-early 1 (ie1) gene results in a significant increase in TNFα production. Intracellular staining for cytokine production and viral early gene expression shows that TNFα production is highly associated with the productively infected MΦ population of cells. The ie1- dependent phenotype of enhanced MΦ TNFα production occurs at both protein and RNA levels. Noticeably, we show in a series of in vivo infection experiments that in multiple organs the presence of ie1 potently inhibits the pro-inflammatory cytokine response. From these experiments, levels of TNFα, and to a lesser extent IFNβ, but not the anti-inflammatory cytokine IL10, are moderated in the presence of ie1. The ie1- mediated inhibition of TNFα production has a similar quantitative phenotype profile in infection of susceptible (BALB/c) and resistant (C57BL/6) mouse strains as well as in a severe immuno-ablative model of infection. In vitro experiments with infected macrophages reveal that deletion of ie1 results in increased sensitivity of viral replication to TNFα inhibition. However, in vivo infection studies show that genetic ablation of TNFα or TNFRp55 receptor is not sufficient to rescue the restricted replication phenotype of the ie1 mutant virus. These results provide, for the first time, evidence for a role of IE1 as a regulator of the pro-inflammatory response and demonstrate a specific pathogen gene capable of moderating the host production of TNFα in vivo. PMID:22952450

  1. The Ron Receptor Regulates Kupffer Cell-Dependent Cytokine Production and Hepatocyte Survival Following Endotoxin Exposure in Mice

    PubMed Central

    Stuart, William D.; Kulkarni, Rishikesh M.; Gray, Jerilyn K.; Vasiliauskas, Juozas; Leonis, Mike A.; Waltz, Susan E.

    2011-01-01

    Previous studies demonstrated that targeted deletion of the Ron receptor tyrosine kinase (TK) domain in mice leads to marked hepatocyte protection in a well-characterized model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (GalN)-sensitized mice. Hepatocyte protection in TK−/− mice was observed despite paradoxically elevated serum levels of tumor necrosis factor alpha (TNFα). To understand the role of Ron in the liver, purified populations of Kupffer cells and hepatocytes from wild-type (TK+/+) and TK−/− mice were studied. Utilizing quantitative RT-PCR, we demonstrated that Ron is expressed in these cell-types. Moreover, we also recapitulated the protected hepatocyte phenotype and exaggerated cytokine production observed in the TK−/− mice in vivo through the use of purified cultured cells ex vivo. We show that isolated TK−/− Kupffer cells produce increased levels of TNFα and select cytokines compared to TK+/+ cells following LPS stimulation. We also show that conditioned media from LPS-treated TK−/− Kupffer cells was more toxic to hepatocytes than control media, suggesting the exaggerated levels of cytokines produced from the TK−/− Kupffer cells are detrimental to wild type hepatocytes. In addition, we observed that TK−/− hepatocytes were more resistant to cell death compared to TK+/+ hepatocytes, suggesting that Ron functions in both the epithelial and inflammatory cell compartments to regulate acute liver injury. These findings were confirmed in vivo in mice with hepatocyte and macrophage cell-type-specific conditional Ron deletions. Mice with Ron loss selectively in hepatocytes exhibited less liver damage and increased survival compared to mice with Ron loss in macrophages. In conclusion, we have dissected cell-type-specific roles for Ron such that this receptor modulates cytokine production from Kupffer cells and inhibits hepatocyte survival in response to injury. PMID:21520175

  2. Antibody-cytokine fusion proteins for treatment of cancer: engineering cytokines for improved efficacy and safety.

    PubMed

    Young, Patricia A; Morrison, Sherie L; Timmerman, John M

    2014-10-01

    The true potential of cytokine therapies in cancer treatment is limited by the inability to deliver optimal concentrations into tumor sites due to dose-limiting systemic toxicities. To maximize the efficacy of cytokine therapy, recombinant antibody-cytokine fusion proteins have been constructed by a number of groups to harness the tumor-targeting ability of monoclonal antibodies. The aim is to guide cytokines specifically to tumor sites where they might stimulate more optimal anti-tumor immune responses while avoiding the systemic toxicities of free cytokine therapy. Antibody-cytokine fusion proteins containing interleukin (IL)-2, IL-12, IL-21, tumor necrosis factor (TNF)α, and interferons (IFNs) α, β, and γ have been constructed and have shown anti-tumor activity in preclinical and early-phase clinical studies. Future priorities for development of this technology include optimization of tumor targeting, bioactivity of the fused cytokine, and choice of appropriate agents for combination therapies. This review is intended to serve as a framework for engineering an ideal antibody-cytokine fusion protein, focusing on previously developed constructs and their clinical trial results. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Changes in Gene Expression and Metabolism in the Testes of the Rat following Spinal Cord Injury

    PubMed Central

    Fortune, Ryan D.; Grill, Raymond J.; Beeton, Christine; Tanner, Mark; Huq, Redwan

    2017-01-01

    Abstract Spinal cord injury (SCI) results in devastating changes to almost all aspects of a patient's life. In addition to a permanent loss of sensory and motor function, males also will frequently exhibit a profound loss of fertility through poorly understood mechanisms. We demonstrate that SCI causes measureable pathology in the testis both acutely (24 h) and chronically up to 1.5 years post-injury, leading to loss in sperm motility and viability. SCI has been shown in humans and rats to induce leukocytospermia, with the presence of inflammatory cytokines, anti-sperm antibodies, and reactive oxygen species found within the ejaculate. Using messenger RNA and metabolomic assessments, we describe molecular and cellular changes that occur within the testis of adult rats over an acute to chronic time period. From 24 h, 72 h, 28 days, and 90 days post-SCI, the testis reveal a distinct time course of pathological events. The testis show an acute drop in normal sexual organ processes, including testosterone production, and establishment of a pro-inflammatory environment. This is followed by a subacute initiation of an innate immune response and loss of cell cycle regulation, possibly due to apoptosis within the seminiferous tubules. At 1.5 years post-SCI, there is a chronic low level immune response as evidenced by an elevation in T cells. These data suggest that SCI elicits a wide range of pathological processes within the testes, the actions of which are not restricted to the acute phase of injury but rather extend chronically, potentially through the lifetime of the subject. The multiplicity of these pathological events suggest a single therapeutic intervention is unlikely to be successful. PMID:27750479

  4. Staphylococcal enterotoxin A regulates bone marrow granulocyte trafficking during pulmonary inflammatory disease in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeshita, W.M.; Gushiken, V.O.; Ferreira-Duarte, A.P.

    Pulmonary neutrophil infiltration produced by Staphylococcal enterotoxin A (SEA) airway exposure is accompanied by marked granulocyte accumulation in bone marrow (BM). Therefore, the aim of this study was to investigate the mechanisms of BM cell accumulation, and trafficking to circulating blood and lung tissue after SEA airway exposure. Male BALB/C mice were intranasally exposed to SEA (1 μg), and at 4, 12 and 24 h thereafter, BM, circulating blood, bronchoalveolar lavage (BAL) fluid and lung tissue were collected. Adhesion of BM granulocytes and flow cytometry for MAC-1, LFA1-α and VLA-4 and cytokine and/or chemokine levels were assayed after SEA-airway exposure.more » Prior exposure to SEA promoted a marked PMN influx to BAL and lung tissue, which was accompanied by increased counts of immature and/or mature neutrophils and eosinophils in BM, along with blood neutrophilia. Airway exposure to SEA enhanced BM neutrophil MAC-1 expression, and adhesion to VCAM-1 and/or ICAM-1-coated plates. Elevated levels of GM-CSF, G-CSF, INF-γ, TNF-α, KC/CXCL-1 and SDF-1α were detected in BM after SEA exposure. SEA exposure increased production of eosinopoietic cytokines (eotaxin and IL-5) and BM eosinophil VLA-4 expression, but it failed to affect eosinophil adhesion to VCAM-1 and ICAM-1. In conclusion, BM neutrophil accumulation after SEA exposure takes place by integrated action of cytokines and/or chemokines, enhancing the adhesive responses of BM neutrophils and its trafficking to lung tissues, leading to acute lung injury. BM eosinophil accumulation in SEA-induced acute lung injury may occur via increased eosinopoietic cytokines and VLA-4 expression. - Highlights: • Airway exposure to SEA causes acute lung inflammation. • SEA induces accumulation of bone marrow (BM) in immature and mature neutrophils. • SEA increases BM granulocyte or BM PMN adhesion to ICAM-1 and VCAM-1, and MAC-1 expression. • SEA induces BM elevations of CXCL-1, INF-γ, TNF-α, GM-CSF, G-CSF and SDF-1α. • Our results contribute to elucidating BM events during SEA-induced lung inflammation.« less

  5. Propagation of respiratory viruses in human airway epithelia reveals persistent virus-specific signatures.

    PubMed

    Essaidi-Laziosi, Manel; Brito, Francisco; Benaoudia, Sacha; Royston, Léna; Cagno, Valeria; Fernandes-Rocha, Mélanie; Piuz, Isabelle; Zdobnov, Evgeny; Huang, Song; Constant, Samuel; Boldi, Marc-Olivier; Kaiser, Laurent; Tapparel, Caroline

    2018-06-01

    The leading cause of acute illnesses, respiratory viruses, typically cause self-limited diseases, although severe complications can occur in fragile patients. Rhinoviruses (RVs), respiratory enteroviruses (EVs), influenza virus, respiratory syncytial viruses (RSVs), and coronaviruses are highly prevalent respiratory pathogens, but because of the lack of reliable animal models, their differential pathogenesis remains poorly characterized. We sought to compare infections by respiratory viruses isolated from clinical specimens using reconstituted human airway epithelia. Tissues were infected with RV-A55, RV-A49, RV-B48, RV-C8, and RV-C15; respiratory EV-D68; influenza virus H3N2; RSV-B; and human coronavirus (HCoV)-OC43. Replication kinetics, cell tropism, effect on tissue integrity, and cytokine secretion were compared. Viral adaptation and tissue response were assessed through RNA sequencing. RVs, RSV-B, and HCoV-OC43 infected ciliated cells and caused no major cell death, whereas H3N2 and EV-D68 induced ciliated cell loss and tissue integrity disruption. H3N2 was also detected in rare goblet and basal cells. All viruses, except RV-B48 and HCoV-OC43, altered cilia beating and mucociliary clearance. H3N2 was the strongest cytokine inducer, and HCoV-OC43 was the weakest. Persistent infection was observed in all cases. RNA sequencing highlighted perturbation of tissue metabolism and induction of a transient but important immune response at 4 days after infection. No majority mutations emerged in the viral population. Our results highlight the differential in vitro pathogenesis of respiratory viruses during the acute infection phase and their ability to persist under immune tolerance. These data help to appreciate the range of disease severity observed in vivo and the occurrence of chronic respiratory tract infections in immunocompromised hosts. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  6. Impact of anesthesia, analgesia, and euthanasia technique on the inflammatory cytokine profile in a rodent model of severe burn injury.

    PubMed

    Al-Mousawi, Ahmed M; Kulp, Gabriela A; Branski, Ludwik K; Kraft, Robert; Mecott, Gabriel A; Williams, Felicia N; Herndon, David N; Jeschke, Marc G

    2010-09-01

    Anesthetics used in burn and trauma animal models may be influencing results by modulating inflammatory and acute-phase responses. Accordingly, we determined the effects of various anesthetics, analgesia, and euthanasia techniques in a rodent burn model. Isoflurane (ISO), ketamine-xylazine (KX), or pentobarbital (PEN) with or without buprenorphine were administered before scald-burn in 72 rats that were euthanized without anesthesia by decapitation after 24 h and compared with unburned shams. In a second experiment, 120 rats underwent the same scald-burn injury using KX, and 24 h later were euthanized under anesthesia or carbon dioxide (CO2). In addition, we compared euthanasia by exsanguination with that of decapitation. Serum cytokine levels were determined by an enzyme-linked immunosorbent assay. In the first experiment, ISO was associated with elevation of cytokine-induced neutrophil chemoattractant 2 (CINC-2) and monocyte chemotactic protein 1 (MCP-1), and KX and PEN was associated with elevation of CINC-1,CINC-2, IL-6, and MCP-1. Pentobarbital also decreased IL-1". IL-6 increased significantly when ISO or PEN were combined with buprenorphine. In the second experiment, euthanasia performed by exsanguination under ISO was associated with reduced levels of IL-1", CINC-1, CINC-2, and MCP-1, whereas KX reduced CINC-2 and increased IL-6 levels. Meanwhile, PEN reduced levels of IL-1" and MCP-1, and CO2 reduced CINC-2 and MCP-1. In addition,decapitation after KX, PEN, or CO2 decreased IL-1" and MCP-1, although we found no significant difference between ISO and controls. Euthanasia by exsanguination compared with decapitation using the same agent also led to modulation of several cytokines. Differential expression of inflammatory markers with the use of anesthetics and analgesics should be considered when designing animal studies and interpreting results because these seem to have a significant modulating impact. Our findings indicate that brief anesthesia with ISO immediately before euthanasia by decapitation exerted the least dampening effect on the cytokines measured. Conversely, KX with buprenorphine may offer a better balance during longer procedures to avoid significant modulation. Standardization across all experiments that are compared and awareness of these findings are essential for those investigating the pathophysiology of inflammation in animal models.

  7. Current perspectives on behavioural and cellular mechanisms of illness anorexia.

    PubMed

    Asarian, Lori; Langhans, Wolfgang

    2005-12-01

    Here we review our current understanding of the integration of immune, neural, metabolic and endocrine signals involved in the generation of anorexia during acute infection, with the focus on anorexia elicited by peripheral administration of bacterial lipopolysaccharide (LPS). We chose to limit this review to peripheral LPS-anorexia because the mechanisms underlying this response may also be valid for anorexia during other types of acute or chronic infections, with slight differences in the duration of anorexia, levels of circulating concentrations of pro-inflammatory cytokines and hypermetabolism. Evidence so far indicates that LPS-anorexia is a complex response beneficial to host defence that involves both peripheral and central action of pro-inflammatory cytokines, other immune factors, such as prostanoids, and neurotransmitters, such as serotonin. One interesting characteristic of LPS-anorexia is its sexual differentiation, an aspect mainly mediated by the gonadal hormone estradiol. Understanding the behavioural and molecular mechanisms of LPS-anorexia may even provide useful leads for identifying mechanisms of eating disorders in humans.

  8. Topical anti-inflammatory potential of Physalin E from Physalis angulata on experimental dermatitis in mice.

    PubMed

    Pinto, N B; Morais, T C; Carvalho, K M B; Silva, C R; Andrade, G M; Brito, G A C; Veras, M L; Pessoa, O D L; Rao, V S; Santos, F A

    2010-08-01

    The anti-inflammatory effect of physalin E, a seco-steroid isolated from Physalis angulata L. was evaluated on acute and chronic models of dermatitis induced by 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and oxazolone, respectively, in mouse ear. The changes in ear edema/thickness, production of pro-inflammatory cytokines (TNF-alpha and IFN-gamma), myeloperoxidase (MPO) activity, and histological and immunohistochemical findings were analysed, as indicators of dermal inflammation. Similar to dexamethasone, topically applied Physalin E (0.125; 0.25 and 0.5 mg/ear) potently inhibited the TPA and oxazolone-induced dermatitis, leading to substantial reductions in ear edema/thickness, pro-inflammatory cytokines, and MPO activity. These effects were reversed by mifepristone, a steroid antagonist and confirmed by immunohistochemical and histopathological analysis. The data suggest that physalin E may be a potent and topically effective anti-inflammatory agent useful to treat the acute and chronic skin inflammatory conditions. 2010 Elsevier GmbH. All rights reserved.

  9. Fisetin attenuates cerulein-induced acute pancreatitis through down regulation of JNK and NF-κB signaling pathways.

    PubMed

    Jo, Il-Joo; Bae, Gi-Sang; Choi, Sun Bok; Kim, Dong-Goo; Shin, Joon-Yeon; Seo, Seung-Hee; Choi, Mee-Ok; Kim, Tae-Hyeon; Song, Ho-Joon; Park, Sung-Joo

    2014-08-15

    Acute pancreatitis (AP) is a complicated disease which is largely undiscovered. Fisetin, a natural flavonoid from fruits and vegetables, has been shown to have anti-inflammatory, antioxidant, and anti-cancer activities in various disease models. However, the effects of fisetin on AP have not been determined. Pre- and post- treatment of mice with fisetin reduced the severity of AP and pancreatitis-associated lung injury and inhibited several biochemical parameters (pancreatic weight to body weight ratio, amylase, lipase, and myeloperoxidase activity) and production of inflammatory cytokines. In pancreatic acinar cells, fisetin also inhibited cell death and production of inflammatory cytokines. In addition, fisetin inhibited activation of c-Jun NH2-terminal kinase (JNK) and nuclear factor (NF)-κB in vivo and in vitro. In conclusion, these results suggest that fisetin exhibits anti-inflammatory effect on AP and could be a beneficial agent in the treatment of AP and its pulmonary complications. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Pregnancy-associated Sweet's syndrome in an acute episode of ulcerative colitis.

    PubMed

    Best, J; Dechene, A; Esser, S; Gerken, G; Canbay, A

    2009-08-01

    A 33-year old pregnant patient (pregnancy week 15) with a past medical history of ulcerative colitis with onset of the disease following the birth of her first child was admitted to the hospital with symptoms of weight loss, pyrexia, leukocytosis and bloody and mucous diarrhoea. Total ileocolonoscopy revealed an acute flare of ulcerative colitis. Within a few days, tender erythematous skin lesions occurred and were histologically proven to be neutrophilic dermatosis. Treatment with highly-dosed prednisone led to a complete remission of both cutaneous and intestinal manifestations. Both pathogenic entities are associated with similar immunological alterations, such as comparable cytokine and chemokine release patterns and recruitment of inflammatory cells. Recent data also indicates that proinflammatory cytokine levels are elevated in pregnancy, which might be pivotal in the pathogenesis and the severity of intestinal and extraintestinal symptoms. We present and discuss a diagnostic algorithm and an overall therapeutic rationale for Sweet's syndrome. Copyright Georg Thieme Verlag KG Stuttgart. New York.

  11. Costunolide ameliorates lipoteichoic acid-induced acute lung injury via attenuating MAPK signaling pathway.

    PubMed

    Chen, Zhengxu; Zhang, Dan; Li, Man; Wang, Baolong

    2018-06-12

    Lipoteichoic acid (LTA)-induced acute lung injury (ALI) is an experimental model for mimicking Gram-positive bacteria-induced pneumonia that is a refractory disease with lack of effective medicines. Here, we reported that costunolide, a sesquiterpene lactone, ameliorated LTA-induced ALI. Costunolide treatment reduced LTA-induced neutrophil lung infiltration, cytokine and chemokine production (TNF-α, IL-6 and KC), and pulmonary edema. In response to LTA challenge, treatment with costunolide resulted less iNOS expression and produced less inflammatory cytokines in bone marrow derived macrophages (BMDMs). Pretreatment with costunolide also attenuated the LTA-induced the phosphorylation of p38 MAPK and ERK in BMDMs. Furthermore, costunolide treatment reduced the phosphorylation of TAK1 and inhibited the interaction of TAK1 with Tab1. In conclusion, we have demonstrated that costunolide protects against LTA-induced ALI via inhibiting TAK1-mediated MAPK signaling pathway, and our studies suggest that costunolide is a promising agent for treatment of Gram-positive bacteria-mediated pneumonia. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Cannabidiol, a non-psychotropic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: role for the adenosine A(2A) receptor.

    PubMed

    Ribeiro, Alison; Ferraz-de-Paula, Viviane; Pinheiro, Milena L; Vitoretti, Luana B; Mariano-Souza, Domenica P; Quinteiro-Filho, Wanderley M; Akamine, Adriana T; Almeida, Vinícius I; Quevedo, João; Dal-Pizzol, Felipe; Hallak, Jaime E; Zuardi, Antônio W; Crippa, José A; Palermo-Neto, João

    2012-03-05

    Acute lung injury is an inflammatory condition for which treatment is mainly supportive because effective therapies have not been developed. Cannabidiol, a non-psychotropic cannabinoid component of marijuana (Cannabis sativa), has potent immunosuppressive and anti-inflammatory properties. Therefore, we investigated the possible anti-inflammatory effect of cannabidiol in a murine model of acute lung injury. Analysis of total inflammatory cells and differential in bronchoalveolar lavage fluid was used to characterize leukocyte migration into the lungs; myeloperoxidase activity of lung tissue and albumin concentration in the bronchoalveolar lavage fluid were analyzed by colorimetric assays; cytokine/chemokine production in the bronchoalveolar lavage fluid was also analyzed by Cytometric Bead Arrays and Enzyme-Linked Immunosorbent Assay (ELISA). A single dose of cannabidiol (20mg/kg) administered prior to the induction of LPS (lipopolysaccharide)-induced acute lung injury decreases leukocyte (specifically neutrophil) migration into the lungs, albumin concentration in the bronchoalveolar lavage fluid, myeloperoxidase activity in the lung tissue, and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) 1, 2, and 4days after the induction of LPS-induced acute lung injury. Additionally, adenosine A(2A) receptor is involved in the anti-inflammatory effects of cannabidiol on LPS-induced acute lung injury because ZM241385 (4-(2-[7-Amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol) (a highly selective antagonist of adenosine A(2A) receptor) abrogated all of the anti-inflammatory effects of cannabidiol previously described. Thus, we show that cannabidiol has anti-inflammatory effects in a murine model of acute lung injury and that this effect is most likely associated with an increase in the extracellular adenosine offer and signaling through adenosine A(2A) receptor. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Stanford-A acute aortic dissection, inflammation, and metalloproteinases: a review.

    PubMed

    Cifani, Noemi; Proietta, Maria; Tritapepe, Luigi; Di Gioia, Cira; Ferri, Livia; Taurino, Maurizio; Del Porto, Flavia

    2015-01-01

    Acute aortic dissection (AAD) is a life-threatening disease with an incidence of about 2.6-3.6 cases per 100,000/year. Depending on the site of rupture, AAD is classified as Stanford-A when the ascending aortic thoracic tract and/or the arch are involved, and Stanford-B when the descending thoracic aorta and/or aortic abdominal tract are targeted. It was recently shown that inflammatory pathways underlie aortic rupture in both type A and type B Stanford AAD. An immune infiltrate has been found within the middle and outer tunics of dissected aortic specimens. It has also been observed that the recall and activation of macrophages inside the middle tunic are key events in the early phases of AAD. Macrophages are able to release metalloproteinases (MMPs) and pro-inflammatory cytokines which, in turn, give rise to matrix degradation and neoangiogenesis. An imbalance between the production of MMPs and MMP tissue inhibitors is pivotal in the extracellular matrix degradation underlying aortic wall remodelling in dissections occurring both in inherited conditions and in atherosclerosis. Among MMPs, MMP-12 is considered a specific marker of aortic wall disease, whatever the genetic predisposition may be. The aim of this review is, therefore, to take a close look at the immune-inflammatory mechanisms underlying Stanford-A AAD.

  14. Reovirus-Mediated Cytotoxicity and Enhancement of Innate Immune Responses Against Acute Myeloid Leukemia

    PubMed Central

    Hall, Kathryn; Scott, Karen J.; Rose, Ailsa; Desborough, Michael; Harrington, Kevin; Pandha, Hardev; Parrish, Christopher; Vile, Richard; Coffey, Matt; Bowen, David; Errington-Mais, Fiona

    2012-01-01

    Abstract Reovirus is a naturally occurring oncolytic virus that has shown preclinical efficacy in the treatment of a wide range of tumor types and has now reached phase III testing in clinical trials. The anti-cancer activity of reovirus has been attributed to both its direct oncolytic activity and the enhancement of anti-tumor immune responses. In this study, we have investigated the direct effect of reovirus on acute myeloid leukemia (AML) cells and its potential to enhance innate immune responses against AML, including the testing of primary samples from patients. Reovirus was found to replicate in and kill AML cell lines, and to reduce cell viability in primary AML samples. The pro-inflammatory cytokine interferon alpha (IFNα) and the chemokine (C-C motif) ligand 5 (known as RANTES [regulated upon activation, normal T-cell expressed, and secreted]) were also secreted from AML cells in response to virus treatment. In addition, reovirus-mediated activation of natural killer (NK) cells, within the context of peripheral blood mononuclear cells, stimulated their anti-leukemia response, with increased NK degranulation and IFNγ production and enhanced killing of AML targets. These data suggest that reovirus has the potential as both a direct cytotoxic and an immunotherapeutic agent for the treatment of AML. PMID:23515241

  15. SOCS1 cooperates with FLT3-ITD in the development of myeloproliferative disease by promoting the escape from external cytokine control.

    PubMed

    Reddy, Pavankumar N G; Sargin, Bülent; Choudhary, Chunaram; Stein, Stefan; Grez, Manuel; Müller-Tidow, Carsten; Berdel, Wolfgang E; Serve, Hubert; Brandts, Christian H

    2012-08-23

    Activating mutations in the receptor tyrosine kinase FLT3 are frequently found in acute myelogenous leukemia patients and confer poor clinical prognosis. It is unclear how leukemic blasts escape cytokine control that regulates normal hematopoiesis. We have recently demonstrated that FLT3-internal tandem duplication (ITD), when localized to the biosynthetic compartment, aberrantly activates STAT5. Here, we show that one of the target genes induced by STAT5 is suppressor of cytokine signaling (SOCS)1-a surprising finding for a known tumor suppressor. Although SOCS1 expression in murine bone marrow severely impaired cytokine-induced colony growth, it failed to inhibit FLT3-ITD-supported colony growth, indicating resistance of FLT3-ITD to SOCS1. In addition, SOCS1 coexpression did not affect FLT3-ITD-mediated signaling or proliferation. Importantly, SOCS1 coexpression inhibited interferon-α and interferon-γ signaling and protected FLT3-ITD hematopoietic cells from interferon-mediated growth inhibitory effects. In a murine bone marrow transplantation model, the coexpression of SOCS1 and FLT3-ITD significantly shortened the latency of a myeloproliferative disease compared with FLT3-ITD alone (P < .01). Mechanistically, SOCS proteins shield FLT3-ITD from external cytokine control, thereby promoting leukemogenesis. The data demonstrate that SOCS1 acts as a conditional oncogene, providing novel molecular insights into cytokine resistance in oncogenic transformation. Restoring cytokine control may provide a new way of therapeutic intervention.

  16. The Effect of Oseltamivir on the Disease Progression of Lethal Influenza A Virus Infection: Plasma Cytokine and miRNA Responses in a Mouse Model

    PubMed Central

    Chockalingam, Ashok K.; Hamed, Salaheldin; Goodwin, David G.; Rosenzweig, Barry A.; Pang, Eric; Boyne II, Michael T.

    2016-01-01

    Lethal influenza A virus infection leads to acute lung injury and possibly lethal complications. There has been a continuous effort to identify the possible predictors of disease severity. Unlike earlier studies, where biomarkers were analyzed on certain time points or days after infection, in this study biomarkers were evaluated over the entire course of infection. Circulating proinflammatory cytokines and/or miRNAs that track with the onset and progression of lethal A/Puerto Rico/8/34 (PR8) influenza A virus infection and their response to oseltamivir treatment were investigated up to 10 days after infection. Changes in plasma cytokines (IL-1β, IL-10, IL-12p70, IL-6, KC, TNF-α, and IFN-γ) and several candidate miRNAs were profiled. Among the cytokines analyzed, IL-6 and KC/GRO cytokines appeared to correlate with peak viral titer. Over the selected 48 miRNAs profiled, certain miRNAs were up- or downregulated in a manner that was dependent on the oseltamivir treatment and disease severity. Our findings suggest that IL-6 and KC/GRO cytokines can be a potential disease severity biomarker and/or marker for the progression/remission of infection. Further studies to explore other cytokines, miRNAs, and lung injury proteins in serum with different subtypes of influenza A viruses with varying disease severity may provide new insight into other unique biomarkers. PMID:27110056

  17. Oral delivery of Lactococcus lactis that secretes bioactive heme oxygenase-1 alleviates development of acute colitis in mice.

    PubMed

    Shigemori, Suguru; Watanabe, Takafumi; Kudoh, Kai; Ihara, Masaki; Nigar, Shireen; Yamamoto, Yoshinari; Suda, Yoshihito; Sato, Takashi; Kitazawa, Haruki; Shimosato, Takeshi

    2015-11-25

    Mucosal delivery of therapeutic proteins using genetically modified strains of lactic acid bacteria (gmLAB) is being investigated as a new therapeutic strategy. We developed a strain of gmLAB, Lactococcus lactis NZ9000 (NZ-HO), which secretes the anti-inflammatory molecule recombinant mouse heme oxygenase-1 (rmHO-1). The effects of short-term continuous oral dosing with NZ-HO were evaluated in mice with dextran sulfate sodium (DSS)-induced acute colitis as a model of inflammatory bowel diseases (IBD). We identified the secretion of rmHO-1 by NZ-HO. rmHO-1 was biologically active as determined with spectroscopy. Viable NZ-HO was directly delivered to the colon via oral administration, and rmHO-1 was secreted onto the colonic mucosa in mice. Acute colitis in mice was induced by free drinking of 3 % DSS in water and was accompanied by an increase in the disease activity index score and histopathological changes. Daily oral administration of NZ-HO significantly improved these colitis-associated symptoms. In addition, NZ-HO significantly increased production of the anti-inflammatory cytokine interleukin (IL)-10 and decreased the expression of pro-inflammatory cytokines such as IL-1α and IL-6 in the colon compared to a vector control strain. Oral administration of NZ-HO alleviates DSS-induced acute colitis in mice. Our results suggest that NZ-HO may be a useful mucosal therapeutic agent for treating IBD.

  18. Fermented herbal formula KIOM-MA-128 protects against acute colitis induced by dextran sodium sulfate in mice.

    PubMed

    Kim, Dong-Gun; Lee, Mi-Ra; Yoo, Jae-Myung; Park, Kwang-Il; Ma, Jin-Yeul

    2017-07-05

    Colitis is a well-known subtype of inflammatory bowel disease and is caused by diverse factors. Previous research has shown that KIOM-MA elicits anti-inflammatory and anti-allergic effects on various diseases. KIOM-MA-128, our novel herbal formula, was generated from KIOM-MA using probiotics to improve the therapeutic efficacy. We investigated whether KIOM-MA-128 has protective activity in a mouse model of acute colitis induced by dextran sodium sulfate (DSS). Colitis was induced by DSS administered to ICR mice in drinking water. KIOM-MA-128 (125 or 250 mg/kg) was orally administered once per day. The body weights of the mice were measured daily, and colonic endoscopies were performed at 5 and 8 days. Colon length as well as histological and cytokine changes were observed at the end of drug administration. KIOM-MA-128 has pharmacological activity in an acute colitis model. KIOM-MA-128 reduced the loss of body weight and disease activity index (DAI) and inhibited the abnormally short colon lengths and the colonic damage in this mouse model of acute colitis. Moreover, KIOM-MA-128 suppressed pro-inflammatory cytokine expression and maintained the integrity of the tight junctions during DSS-induced colitis. The results indicated that KIOM-MA-128 protects against DSS-induced colitis in mice and suggested that this formula might be a candidate treatment for inflammatory bowel disease (IBD).

  19. The central role of hypothalamic inflammation in the acute illness response and cachexia.

    PubMed

    Burfeind, Kevin G; Michaelis, Katherine A; Marks, Daniel L

    2016-06-01

    When challenged with a variety of inflammatory threats, multiple systems across the body undergo physiological responses to promote defense and survival. The constellation of fever, anorexia, and fatigue is known as the acute illness response, and represents an adaptive behavioral and physiological reaction to stimuli such as infection. On the other end of the spectrum, cachexia is a deadly and clinically challenging syndrome involving anorexia, fatigue, and muscle wasting. Both of these processes are governed by inflammatory mediators including cytokines, chemokines, and immune cells. Though the effects of cachexia can be partially explained by direct effects of disease processes on wasting tissues, a growing body of evidence shows the central nervous system (CNS) also plays an essential mechanistic role in cachexia. In the context of inflammatory stress, the hypothalamus integrates signals from peripheral systems, which it translates into neuroendocrine perturbations, altered neuronal signaling, and global metabolic derangements. Therefore, we will discuss how hypothalamic inflammation is an essential driver of both the acute illness response and cachexia, and why this organ is uniquely equipped to generate and maintain chronic inflammation. First, we will focus on the role of the hypothalamus in acute responses to dietary and infectious stimuli. Next, we will discuss the role of cytokines in driving homeostatic disequilibrium, resulting in muscle wasting, anorexia, and weight loss. Finally, we will address mechanisms and mediators of chronic hypothalamic inflammation, including endothelial cells, chemokines, and peripheral leukocytes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. MicroRNA Expression Patterns of CD8+ T Cells in Acute and Chronic Brucellosis

    PubMed Central

    Budak, Ferah; Bal, S. Haldun; Tezcan, Gulcin; Guvenc, Furkan; Akalin, E. Halis; Goral, Guher; Deniz, Gunnur

    2016-01-01

    Although our knowledge about Brucella virulence factors and the host response increase rapidly, the mechanisms of immune evasion by the pathogen and causes of chronic disease are still unknown. Here, we aimed to investigate the immunological factors which belong to CD8+ T cells and their roles in the transition of brucellosis from acute to chronic infection. Using miRNA microarray, more than 2000 miRNAs were screened in CD8+ T cells of patients with acute or chronic brucellosis and healthy controls that were sorted from peripheral blood with flow cytometry and validated through qRT-PCR. Findings were evaluated using GeneSpring GX (Agilent) 13.0 software and KEGG pathway analysis. Expression of two miRNAs were determined to display a significant fold change in chronic group when compared with acute or control groups. Both miRNAs (miR-126-5p and miR-4753-3p) were decreased (p <0.05 or fold change > 2). These miRNAs have the potential to be the regulators of CD8+ T cell-related marker genes for chronic brucellosis infections. The differentially expressed miRNAs and their predicted target genes are involved in MAPK signaling pathway, cytokine-cytokine receptor interactions, endocytosis, regulation of actin cytoskeleton, and focal adhesion indicating their potential roles in chronic brucellosis and its progression. It is the first study of miRNA expression analysis of human CD8+ T cells to clarify the mechanism of inveteracy in brucellosis. PMID:27824867

  1. On-chip immune cell activation and subsequent time-resolved magnetic bead-based cytokine detection.

    PubMed

    Kongsuphol, Patthara; Liu, Yunxiao; Ramadan, Qasem

    2016-10-01

    Cytokine profiling and immunophenotyping offer great potential for understanding many disease mechanisms, personalized diagnosis, and immunotherapy. Here, we demonstrate a time-resolved detection of cytokine from a single cell cluster using an in situ magnetic immune assay. An array of triple-layered microfluidic chambers was fabricated to enable simultaneous cell culture under perfusion flow and detection of the induced cytokines at multiple time-points. Each culture chamber comprises three fluidic compartments which are dedicated to, cell culture, perfusion and immunoassay. The three compartments are separated by porous membranes, which allow the diffusion of fresh nutrient from the perfusion compartment into the cell culture compartment and cytokines secretion from the cell culture compartment into the immune assay compartment. This structure hence enables capturing the released cytokines without disturbing the cell culture and without minimizing benefit gain from perfusion. Functionalized magnetic beads were used as a solid phase carrier for cytokine capturing and quantification. The cytokines released from differential stimuli were quantified in situ in non-differentiated U937 monocytes and differentiated macrophages.

  2. Halofuginone alleviates acute viral myocarditis in suckling BALB/c mice by inhibiting TGF-β1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiao-Hua; Fu, Jia; Sun, Da-Qing, E-mail: daqingsuncd@163.com

    2016-04-29

    Viral myocarditis (VMC) is an inflammation of heart muscle in infants and young adolescents. This study explored the function of halofuginone (HF) in Coxsackievirus B3 (CVB3) -treated suckling mice. HF-treated animal exhibited higher survival rate, lower heart/body weight, and more decreased blood sugar concentration than CVB3 group. HF also reduced the expressions of interleukin(IL)-17 and IL-23 and the numbers of Th17 cells. Moreover, HF downregulated pro-inflammatory cytokine levels and increased anti-inflammatory cytokine levels. The expressions of transforming growth factor(TGF-β1) and nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) p65/ tumor necrosis factor-α (TNF-α) proteins were decreased by HF as well. Finally,more » the overexpression of TGF-β1 counteracted the protection effect of HF in CVB3-treated suckling mice. In summary, our study suggests HF increases the survival of CVB3 suckling mice, reduces the Th17 cells and pro-inflammatory cytokine levels, and may through downregulation of the TGF-β1-mediated expression of NF-κB p65/TNF-α pathway proteins. These results offer a potential therapeutic strategy for the treatment of VMC. - Highlights: • Halofuginone (HF) increases the survival of suckling BALB/c mice infected with acute CVB3. • HF reduces the expression of Th17 cell markers (IL-17 and IL-23) and the number of CD4{sup +} IL17{sup +} cells. • Pro-inflammatory cytokines levels associated with myocarditis were reduced by HF in CVB3-treated suckling mice. • HF alleviates VMC via inhibition of TGF-β1-mediated NF-κB p65/TNF-α pathway.« less

  3. Osthole ameliorates neurogenic and inflammatory hyperalgesia by modulation of iNOS, COX-2, and inflammatory cytokines in mice.

    PubMed

    Singh, Gurjit; Bhatti, Rajbir; Mannan, Rahul; Singh, Drishtant; Kesavan, Anup; Singh, Palwinder

    2018-05-07

    Osthole is a bioactive component reported in medicinal plants such as Angelica pubescens and Cnidium monnieri, known for analgesic activity. However, the toxicity, median effective dose (ED 50 ), and dual modulation of nitric oxide and cyclooxygenase pathways along with inflammatory cytokines of osthole are yet to be determined. The animals (mice) were assessed for general behaviour and mortality in varying doses (50, 300, and 2000 mg kg -1 ) of osthole for acute toxicity over 14 days. The analgesic activity was investigated using acetic acid and formalin-induced hyperalgesia, and anti-inflammatory activity was explored in carrageenan-induced paw oedema. ED 50 of osthole was calculated using Design Expert software. Involvement of nitric oxide and cyclooxygenase pathways was investigated by agonist challenges with L-arginine and substance P, respectively. The expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was determined in spinal sections by immunohistochemical analysis. Lipopolysaccharide (LPS) challenge was used to assess in vivo effect on inflammatory cytokines (TNFα and IL-6). Acute toxicity studies revealed no behavioural abnormality or mortality on osthole treatment and unremarkable histological findings. Osthole was found to significantly decrease acetic acid and formalin-induced hyperalgesia (ED 50  = 5.43 mg kg -1 ) and carrageenan-induced paw oedema with no toxicity symptoms. Osthole produced a marked decrease in iNOS and COX-2 expression as well as TNFα and IL-6. The findings corroborate to modulation of iNOS and COX-2 and inflammatory cytokines by osthole. This study provides promising insights and prospects for application of osthole in pain management.

  4. Translational overview of cytokine inhibition in acute myocardial infarction and chronic heart failure.

    PubMed

    Hartman, Minke H T; Groot, Hilde E; Leach, Irene Mateo; Karper, Jacco C; van der Harst, Pim

    2018-02-15

    Many cytokines are currently under investigation as potential target to improve cardiac function and outcome in the setting of acute myocardial infarction (MI) or chronic heart failure (HF). Here we aim to provide a translational overview of cytokine inhibiting therapies tested in experimental models and clinical studies. In various experimental studies, inhibition of interleukin-1 (IL-1), -6 (IL-6), -8 (IL-8), monocyte chemoattractant protein-1 (MCP-1), CC- and CXC chemokines, and tumor necrosis factor-α (TNF-α) had beneficial effects on cardiac function and outcome. On the other hand, neutral or even detrimental results have been reported for some (IL-1, IL-6, IL-8, and MCP-1). Ambivalence of cytokine function, differences in study designs, treatment regimens and chosen endpoints hamper the translation of experimental research into clinical practice. Human studies are currently limited to IL-1β inhibition, IL-1 receptor antagonists (IL-1RA), IL-6 receptor antagonists (IL-6RA) or TNF inhibition. Despite favorable effects on cardiovascular events observed in retrospective cohort studies of rheumatoid arthritis patients treated with TNF inhibition or IL-1RA, most prospective studies reported disappointing and inconsistent results. Smaller studies (n < 100) generally reported favorable results of anticytokine therapy on cardiac function, but only one of the larger studies (n > 100) evaluating IL-1β inhibition presented positive results on outcome. In conclusion, of the 10 anticytokine therapies tested in animals models beneficial effects have been reported in at least one setting. In larger clinical studies, findings were unsatisfactory in all but one. Many anticytokine therapies with promising animal experimental data continue to require further evaluation in humans. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Growth factors and cytokines in patients with long bone fractures and associated spinal cord injury.

    PubMed

    Khallaf, Fathy G; Kehinde, Elijah O; Mostafa, Ahmed

    2016-06-01

    The aim of the study was to test the effect of acute traumatic spinal cord injury of quadriplegia or paraplegia on bone healing in patients with associated long bone fractures and to investigate the molecular and cellular events of the underlying mechanism for a possible acceleration. Healing indicators of long bone fractures and growth factors, IGF-II, platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), Activin-A, and cytokine I-L-1, in the patients' blood were calculated and measured for 21 patients with spinal cord injuries and associated long bone fractures in prospective controlled study and compared to 20 patients with only spinal cord injuries, 30 patients with only long bone fractures, and 30 healthy volunteers. The study results showed that long bone fractures in patients with associated acute traumatic spinal cord injury of quadriplegia or paraplegia heal more expectedly, faster, and with exuberant florid union callus (P > 0.001) and show statistically significant higher levels of growth factors like PDGF, VEGF, Activin-A, and cytokine I-L-1, along the 3 weeks of follow-up (P > 0.005). I-IGF-II showed statistically significant subnormal level along the whole follow-up period in the same patients (P > 0.005). We concluded that long bone fractures in spinal cord injury patients heal more expectedly, faster, and with exuberant and florid callus formation; growth factors like IGF-II, PDGF, VEGF, Activin-A, and cytokine I-L-I have roles as mediators, in molecular events and as byproducts of the subtle mechanism of accelerated osteogenesis in these patients and may represent therapeutic potentials to serve as agents to enhance bone repair.

  6. An Anti-Interleukin-2 Receptor Drug Attenuates T- Helper 1 Lymphocytes-Mediated Inflammation in an Acute Model of Endotoxin-Induced Uveitis

    PubMed Central

    Navea, Amparo; Almansa, Inmaculada; Muriach, María; Bosch-Morell, Francisco

    2014-01-01

    The aim of the present study was to evaluate the anti-inflammatory efficacy of Daclizumab, an anti-interleukin-2 receptor drug, in an experimental uveitis model upon a subcutaneous injection of lipopolysaccharide into Lewis rats, a valuable model for ocular acute inflammatory processes. The integrity of the blood-aqueous barrier was assessed 24 h after endotoxin-induced uveitis by evaluating two parameters: cell count and protein concentration in aqueous humors. The histopathology of all the ocular structures (cornea, lens, sclera, choroid, retina, uvea, and anterior and posterior chambers) was also considered. Enzyme-linked immunosorbent assays of the aqueous humor samples were performed to quantify the levels of the different chemokine and cytokine proteins. Similarly, a biochemical analysis of oxidative stress-related markers was also assessed. The inflammation observed in the anterior chamber of the eyes when Daclizumab was administered with endotoxin was largely prevented since the aqueous humor protein concentration substantially lowered concomitantly with a significant reduction in the uveal and vitreous histopathological grading. Th1 lymphocytes-related cytokines, such as Interleukin-2 and Interferon-γ, also significantly reduced with related anti-oxidant systems recovery. Daclizumab treatment in endotoxin-induced uveitis reduced Th1 lymphocytes-related cytokines, such as Interleukin-2 and Interferon gamma, by about 60–70% and presented a preventive role in endotoxin-induced oxidative stress. This antioxidant protective effect of Daclizumab may be related to several of the observed Daclizumab effects in our study, including IL-6 cytokine regulatory properties and a substantial concomitant drop in INFγ. Concurrently, Daclizumab treatment triggered a significant reduction in both the uveal histopathological grading and protein concentration in aqueous humors, but not in cellular infiltration. PMID:24595020

  7. FABP4 inhibitors suppress inflammation and oxidative stress in murine and cell models of acute lung injury.

    PubMed

    Gong, Yuanqi; Yu, Zhihong; Gao, Yi; Deng, Linlin; Wang, Meng; Chen, Yu; Li, Jingying; Cheng, Bin

    2018-02-19

    Acute lung injury (ALI) is a severe disease with high morbidity and mortality, and is characterized by devastating inflammation of the lung and increased production of reactive oxygen species (ROS). Recent studies have indicated that fatty acid binding protein (FABP4) is important in the regulation of inflammation. However, the role of FABP4 in sepsis-related ALI, and the specific mechanism of action have not been examined. In vitro, the exposure of human alveolar epithelial A549 cells to lipopolysaccharide (LPS) and recombinant FABP4 (hrFABP4) resulted in the production of pro-inflammatory cytokines, inflammatory cytokines, and ROS, while these changes were ameliorated by pretreatment with the FABP4 inhibitor BMS309403 and FABP4 siRNA. Sequentially, treatment of A549 cells with N-acetylcysteine (NAC) significantly attenuated LPS and hrFABP4-induced the generation of ROS and the release of inflammatory cytokines. In vivo, a cecal ligation and puncture (CLP)-induced ALI murine model was successfully established. Then, the mice were treated with FABP4 inhibitor BMS309403. The results showed treatment with BMS309403 improved the survival rate of CLP-induced ALI mice, and prevented lung inflammation, histopathological changes, and increase of FABP4 induced by CLP. These data indicate that FABP4 plays an important role in lung inflammation of sepsis-induced ALI. Blockade of FABP4 signaling exhibits a protective effect in a CLP-induced ALI mouse model, and in A549 cell LPS specifically induces enhanced expression of FABP4, which then causes inflammatory cytokine production by elevating the ROS level. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult.

    PubMed

    Xiao, Han; Li, Hao; Wang, Jing-Jing; Zhang, Jian-Shu; Shen, Jing; An, Xiang-Bo; Zhang, Cong-Cong; Wu, Ji-Min; Song, Yao; Wang, Xin-Yu; Yu, Hai-Yi; Deng, Xiang-Ning; Li, Zi-Jian; Xu, Ming; Lu, Zhi-Zhen; Du, Jie; Gao, Wei; Zhang, Ai-Hua; Feng, Yue; Zhang, You-Yi

    2018-01-01

    Rapid over-activation of β-adrenergic receptor (β-AR) upon stress leads to cardiac inflammation, a prevailing factor that underlies heart injury. However, mechanisms by which acute β-AR stimulation induce cardiac inflammation still remain unknown. Here, we set out to identify the crucial role of inflammasome/interleukin (IL)-18 in initiating and maintaining cardiac inflammatory cascades upon β-AR insult. Male C57BL/6 mice were injected with a single dose of β-AR agonist, isoproterenol (ISO, 5 mg/kg body weight) or saline subcutaneously. Cytokine array profiling demonstrated that chemokines dominated the initial cytokines upregulation specifically within the heart upon β-AR insult, which promoted early macrophage infiltration. Further investigation revealed that the rapid inflammasome-dependent activation of IL-18, but not IL-1β, was the critical up-stream regulator for elevated chemokine expression in the myocardium upon ISO induced β1-AR-ROS signalling. Indeed, a positive correlation was observed between the serum levels of norepinephrine and IL-18 in patients with chest pain. Genetic deletion of IL-18 or the up-stream inflammasome component NLRP3 significantly attenuated ISO-induced chemokine expression and macrophage infiltration. In addition, IL-18 neutralizing antibodies selectively abated ISO-induced chemokines, proinflammatory cytokines and adhesion molecules but not growth factors. Moreover, blocking IL-18 early after ISO treatment effectively attenuated cardiac inflammation and fibrosis. Inflammasome-dependent activation of IL-18 within the myocardium upon acute β-AR over-activation triggers cytokine cascades, macrophage infiltration and pathological cardiac remodelling. Blocking IL-18 at the early stage of β-AR insult can successfully prevent inflammatory responses and cardiac injuries. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  9. Burkholderia pseudomallei Capsule Exacerbates Respiratory Melioidosis but Does Not Afford Protection against Antimicrobial Signaling or Bacterial Killing in Human Olfactory Ensheathing Cells

    PubMed Central

    Dando, Samantha J.; Ipe, Deepak S.; Batzloff, Michael; Sullivan, Matthew J.; Crossman, David K.; Crowley, Michael; Strong, Emily; Kyan, Stephanie; Leclercq, Sophie Y.; Ekberg, Jenny A. K.; St. John, James

    2016-01-01

    Melioidosis, caused by the bacterium Burkholderia pseudomallei, is an often severe infection that regularly involves respiratory disease following inhalation exposure. Intranasal (i.n.) inoculation of mice represents an experimental approach used to study the contributions of bacterial capsular polysaccharide I (CPS I) to virulence during acute disease. We used aerosol delivery of B. pseudomallei to establish respiratory infection in mice and studied CPS I in the context of innate immune responses. CPS I improved B. pseudomallei survival in vivo and triggered multiple cytokine responses, neutrophil infiltration, and acute inflammatory histopathology in the spleen, liver, nasal-associated lymphoid tissue, and olfactory mucosa (OM). To further explore the role of the OM response to B. pseudomallei infection, we infected human olfactory ensheathing cells (OECs) in vitro and measured bacterial invasion and the cytokine responses induced following infection. Human OECs killed >90% of the B. pseudomallei in a CPS I-independent manner and exhibited an antibacterial cytokine response comprising granulocyte colony-stimulating factor, tumor necrosis factor alpha, and several regulatory cytokines. In-depth genome-wide transcriptomic profiling of the OEC response by RNA-Seq revealed a network of signaling pathways activated in OECs following infection involving a novel group of 378 genes that encode biological pathways controlling cellular movement, inflammation, immunological disease, and molecular transport. This represents the first antimicrobial program to be described in human OECs and establishes the extensive transcriptional defense network accessible in these cells. Collectively, these findings show a role for CPS I in B. pseudomallei survival in vivo following inhalation infection and the antibacterial signaling network that exists in human OM and OECs. PMID:27091931

  10. Chrysin Induces Antidiabetic, Antidyslipidemic and Anti-Inflammatory Effects in Athymic Nude Diabetic Mice.

    PubMed

    Ramírez-Espinosa, Juan José; Saldaña-Ríos, Johann; García-Jiménez, Sara; Villalobos-Molina, Rafael; Ávila-Villarreal, Gabriela; Rodríguez-Ocampo, Angélica Nallelhy; Bernal-Fernández, Germán; Estrada-Soto, Samuel

    2017-12-28

    Extensive knowledge of diabetes and its complications is helpful to find new drugs for proper treatment to stop degenerative changes derived from this disease. In this context, chrysin (5,7-dihydroxyflavone) is a natural product that occurs in a variety of flowers and fruits with anti-inflammatory and antidiabetic effects, among others. Thus, a diabetic model in athymic nude mice was developed and used to establish the ability of chrysin to decrease the secretion of pro-inflammatory cytokines. Also, it was determined the acute (50 mg/kg) and sub-acute (50 mg/kg/day/10 days) antidiabetic and antihyperlipidemic activities after the period of time treatment. Results indicate that chrysin has significant acute antihyperglycemic and antidiabetic effects in nude diabetic mice ( p < 0.05). Moreover, triglyceride blood levels were reduced and IL-1β and TNF-α were diminished after 10 days' treatment compared with control group ( p < 0.05). In conclusion, it was found that chrysin could produce similar effects as metformin, a drug used for the treatment of diabetes, since both test samples decreased glucose and triglycerides levels, they impaired the generation of pro-inflammatory cytokines involved in the development of diabetes and its consequences, such as atherosclerosis and other cardiovascular diseases.

  11. The Role of Regulatory T Cell in Nontypeable Haemophilus influenzae-Induced Acute Exacerbation of Chronic Obstructive Pulmonary Disease

    PubMed Central

    Guan, Xuewa; Lu, Yanjiao; Wang, Guoqiang; Fang, Keyong; Wang, Ziyan; Pang, Zhiqiang; Guo, Yingqiao; Lu, Junying; Yuan, Yuze; Ran, Nan

    2018-01-01

    Chronic obstructive pulmonary disease (COPD) is associated with irreversible persistent airflow limitation and enhanced inflammation. The episodes of acute exacerbation (AECOPD) largely depend on the colonized pathogens such as nontypeable Haemophilus influenzae (NTHi), one of the most commonly isolated bacteria. Regulatory T cells (Tregs) are critical in controlling inflammatory immune responses and maintaining tolerance; however, their role in AECOPD is poorly understood. In this study, we hypothesized a regulatory role of Tregs, as NTHi participated in the progress of COPD. Immunological pathogenesis was investigated in a murine COPD model induced by cigarette smoke (CS). NTHi was administrated through intratracheal instillation for an acute exacerbation. Weight loss and lung function decline were observed in smoke-exposed mice. Mice in experimental groups exhibited serious inflammatory responses via histological and cytokine assessment. Expression levels of Tregs and Th17 cells with specific cytokines TGF-β1 and IL-17 were detected to assess the balance of pro-/anti-inflammatory influence partially. Our findings suggested an anti-inflammatory activity of Tregs in CS-induced model. But this activity was suppressed after NTHi administration. Collectively, these data suggested that NTHi might play a necessary role in downregulating Foxp3 to impair the function of Tregs, helping development into AECOPD. PMID:29725272

  12. Beneficial effects of low alcohol exposure, but adverse effects of high alcohol intake on glymphatic function.

    PubMed

    Lundgaard, Iben; Wang, Wei; Eberhardt, Allison; Vinitsky, Hanna Sophia; Reeves, Benjamin Cameron; Peng, Sisi; Lou, Nanhong; Hussain, Rashad; Nedergaard, Maiken

    2018-02-02

    Prolonged intake of excessive amounts of ethanol is known to have adverse effects on the central nervous system (CNS). Here we investigated the effects of acute and chronic ethanol exposure and withdrawal from chronic ethanol exposure on glymphatic function, which is a brain-wide metabolite clearance system connected to the peripheral lymphatic system. Acute and chronic exposure to 1.5 g/kg (binge level) ethanol dramatically suppressed glymphatic function in awake mice. Chronic exposure to 1.5 g/kg ethanol increased GFAP expression and induced mislocation of the astrocyte-specific water channel aquaporin 4 (AQP4), but decreased the levels of several cytokines. Surprisingly, glymphatic function increased in mice treated with 0.5 g/kg (low dose) ethanol following acute exposure, as well as after one month of chronic exposure. Low doses of chronic ethanol intake were associated with a significant decrease in GFAP expression, with little change in the cytokine profile compared with the saline group. These observations suggest that ethanol has a J-shaped effect on the glymphatic system whereby low doses of ethanol increase glymphatic function. Conversely, chronic 1.5 g/kg ethanol intake induced reactive gliosis and perturbed glymphatic function, which possibly may contribute to the higher risk of dementia observed in heavy drinkers.

  13. Gain-of-function mutations in interleukin-7 receptor-α (IL7R) in childhood acute lymphoblastic leukemias

    PubMed Central

    Shochat, Chen; Tal, Noa; Bandapalli, Obul R.; Palmi, Chiara; Ganmore, Ithamar; te Kronnie, Geertruy; Cario, Gunnar; Cazzaniga, Giovanni; Kulozik, Andreas E.; Stanulla, Martin; Schrappe, Martin; Biondi, Andrea; Basso, Giuseppe; Bercovich, Dani; Muckenthaler, Martina U.

    2011-01-01

    Interleukin-7 receptor α (IL7R) is required for normal lymphoid development. Loss-of-function mutations in this gene cause autosomal recessive severe combined immune deficiency. Here, we describe somatic gain-of-function mutations in IL7R in pediatric B and T acute lymphoblastic leukemias. The mutations cause either a serine-to-cysteine substitution at amino acid 185 in the extracellular domain (4 patients) or in-frame insertions and deletions in the transmembrane domain (35 patients). In B cell precursor leukemias, the mutations were associated with the aberrant expression of cytokine receptor-like factor 2 (CRLF2), and the mutant IL-7R proteins formed a functional receptor with CRLF2 for thymic stromal lymphopoietin (TSLP). Biochemical and functional assays reveal that these IL7R mutations are activating mutations conferring cytokine-independent growth of progenitor lymphoid cells. A cysteine, included in all but three of the mutated IL-7R alleles, is essential for the constitutive activation of the receptor. This is the first demonstration of gain-of-function mutations of IL7R. Our current and recent observations of mutations in IL7R and CRLF2, respectively suggest that the addition of cysteine to the juxtamembranous domains is a general mechanism for mutational activation of type I cytokine receptors in leukemia. PMID:21536738

  14. Vinpocetine reduces diclofenac-induced acute kidney injury through inhibition of oxidative stress, apoptosis, cytokine production, and NF-κB activation in mice.

    PubMed

    Fattori, Victor; Borghi, Sergio M; Guazelli, Carla F S; Giroldo, Andressa C; Crespigio, Jefferson; Bussmann, Allan J C; Coelho-Silva, Letícia; Ludwig, Natasha G; Mazzuco, Tânia L; Casagrande, Rubia; Verri, Waldiceu A

    2017-06-01

    Acute kidney injury (AKI) represents a complex clinical condition associated with significant morbidity and mortality. Approximately, 19-33% AKI episodes in hospitalized patients are related to drug-induced nephrotoxicity. Although, considered safe, non-steroidal anti-inflammatory drugs such as diclofenac have received special attention in the past years due to the potential risk of renal damage. Vinpocetine is a nootropic drug known to have anti-inflammatory properties. In this study, we investigated the effect and mechanisms of vinpocetine in a model of diclofenac-induced AKI. We observed that diclofenac increased proteinuria and blood urea, creatinine, and oxidative stress levels 24h after its administration. In renal tissue, diclofenac also increased oxidative stress and induced morphological changes consistent with renal damage. Moreover, diclofenac induced kidney cells apoptosis, up-regulated proinflammatory cytokines, and induced the activation of NF-κB in renal tissue. On the other hand, vinpocetine reduced diclofenac-induced blood urea and creatinine. In the kidneys, vinpocetine inhibited diclofenac-induced oxidative stress, morphological changes, apoptosis, cytokine production, and NF-κB activation. To our knowledge, this is the first study demonstrating that diclofenac-induced AKI increases NF-κB activation, and that vinpocetine reduces the nephrotoxic effects of diclofenac. Therefore, vinpocetine is a promising molecule for the treatment of diclofenac-induced AKI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Plasma cytokines IL-6, IL-8, and IL-10 are associated with the development of acute respiratory distress syndrome in patients with severe traumatic brain injury.

    PubMed

    Aisiku, Imo P; Yamal, Jose-Miguel; Doshi, Pratik; Benoit, Julia S; Gopinath, Shankar; Goodman, Jerry C; Robertson, Claudia S

    2016-09-15

    Patients with severe traumatic brain injury (TBI) are at risk of the development of acute respiratory distress syndrome (ARDS). TBI and ARDS pathophysiologic mechanisms are known to independently involve significant inflammatory responses. The literature on the association between plasma inflammatory cytokines and ARDS in patients with TBI is sparse. The study was a secondary analysis of the safety of a randomized trial of erythropoietin and transfusion threshold in patients with severe TBI. Inflammatory markers within the first 24 hours after injury were compared in patients who developed ARDS and patients without ARDS, using Cox proportional hazards models. There were 200 patients enrolled in the study. The majority of plasma and cerebrospinal fluid (CSF) cytokine levels were obtained within 6 hours. Plasma proinflammatory markers IL-6 and IL-8 and anti-inflammatory marker IL-10 were associated with the development of ARDS (adjusted hazard ratio (HR) = 1.55, confidence interval (CI) = 1.14, 2.11, P = 0.005 for IL-6; adjusted HR = 1.32, CI = 1.10, 1.59, P = 0.003 for IL-8). Plasma markers of IL-6, IL-8, and IL-10 are associated with ARDS in patients with severe TBI. NCT00313716 registered 4/2006.

  16. Effects of a Single Dose of Parecoxib on Inflammatory Response and Ischemic Tubular Injury Caused by Hemorrhagic Shock in Rats.

    PubMed

    Takaku, Mariana; da Silva, Andre Carnevali; Iritsu, Nathalie Izumi; Vianna, Pedro Thadeu Galvao; Castiglia, Yara Marcondes Machado

    2018-01-01

    Parecoxib, a selective COX-2 inhibitor, is used to improve analgesia in postoperative procedures. Here we evaluated whether pretreatment with a single dose of parecoxib affects the function, cell injury, and inflammatory response of the kidney of rats subjected to acute hemorrhage. Inflammatory response was determined according to serum and renal tissue cytokine levels (IL-1 α , IL-1 β , IL-6, IL-10, and TNF- α ). Forty-four adult Wistar rats anesthetized with sevoflurane were randomized into four groups: placebo/no hemorrhage (Plc/NH); parecoxib/no hemorrhage (Pcx/NH); placebo/hemorrhage (Plc/H); and parecoxib/hemorrhage (Pcx/H). Pcx groups received a single dose of intravenous parecoxib while Plc groups received a single dose of placebo (isotonic saline). Animals in hemorrhage groups underwent bleeding of 30% of blood volume. Renal function and renal histology were then evaluated. Plc/H showed the highest serum levels of cytokines, suggesting that pretreatment with parecoxib reduced the inflammatory response in rats subjected to hemorrhage. No difference in tissue cytokine levels between groups was observed. Plc/H showed higher percentage of tubular dilation and degeneration, indicating that parecoxib inhibited tubular injury resulting from renal hypoperfusion. Our findings indicate that pretreatment with a single dose of parecoxib reduced the inflammatory response and tubular renal injury without altering renal function in rats undergoing acute hemorrhage.

  17. Positive and negative regulation of T cell responses by fibroblastic reticular cells within paracortical regions of lymph nodes

    PubMed Central

    Siegert, Stefanie; Luther, Sanjiv A.

    2012-01-01

    Fibroblastic reticular cells (FRC) form the structural backbone of the T cell rich zones in secondary lymphoid organs (SLO), but also actively influence the adaptive immune response. They provide a guidance path for immigrating T lymphocytes and dendritic cells (DC) and are the main local source of the cytokines CCL19, CCL21, and IL-7, all of which are thought to positively regulate T cell homeostasis and T cell interactions with DC. Recently, FRC in lymph nodes (LN) were also described to negatively regulate T cell responses in two distinct ways. During homeostasis they express and present a range of peripheral tissue antigens, thereby participating in peripheral tolerance induction of self-reactive CD8+ T cells. During acute inflammation T cells responding to foreign antigens presented on DC very quickly release pro-inflammatory cytokines such as interferon γ. These cytokines are sensed by FRC which transiently produce nitric oxide (NO) gas dampening the proliferation of neighboring T cells in a non-cognate fashion. In summary, we propose a model in which FRC engage in a bidirectional crosstalk with both DC and T cells to increase the efficiency of the T cell response. However, during an acute response, FRC limit excessive expansion and inflammatory activity of antigen-specific T cells. This negative feedback loop may help to maintain tissue integrity and function during rapid organ growth. PMID:22973278

  18. Switching and augmentation strategies for antipsychotic medications in acute-phase schizophrenia: latest evidence and place in therapy

    PubMed Central

    Hatta, Kotaro; Sugiyama, Naoya; Ito, Hiroto

    2018-01-01

    In terms of effectiveness of antipsychotics in schizophrenia, discrepancy often exists between results from double-blind randomized controlled trials and observations in emergency or acute-phase clinical practice. For instance, the antipsychotic switching strategy is not always applicable in emergency or acute-phase situations, and augmentation of another antipsychotic is occasionally done instead. In this review, we discuss strategies for early nonresponse to an antipsychotic drug such as switching and augmentation from the perspective of emergency and acute-phase treatment. We searched PubMed for the latest evidence on switching and augmentation strategies of antipsychotics for an emergency or acute-phase period. For risperidone and olanzapine, there is some evidence on switching and augmentation strategies in the management of acute-phase schizophrenia. There may be responders to olanzapine alone among early nonresponders to risperidone, whereas there may be few responders to risperidone alone among early nonresponders to olanzapine. However, there is still insufficient evidence at this time for application of these findings to routine clinical practice. For other antipsychotics, there is little evidence for their augmentation in acute-phase practice. We should be wary of polypharmacy, as multiple agents are too often prescribed by clinicians when not warranted. Considering current evidence, we propose how to switch antipsychotics in the acute phase of schizophrenia in routine practice. PMID:29854396

  19. Third-generation CD28/4-1BB chimeric antigen receptor T cells for chemotherapy relapsed or refractory acute lymphoblastic leukaemia: a non-randomised, open-label phase I trial protocol.

    PubMed

    Tang, Xiao-Yi; Sun, Yao; Zhang, Ang; Hu, Guo-Liang; Cao, Wei; Wang, Dan-Hong; Zhang, Bin; Chen, Hu

    2016-12-30

    There is no curative treatment available for patients with chemotherapy relapsed or refractory CD19+ B cells-derived acute lymphoblastic leukaemia (r/r B-ALL). Although CD19-targeting second-generation (2nd-G) chimeric antigen receptor (CAR)-modified T cells carrying CD28 or 4-1BB domains have demonstrated potency in patients with advanced B-ALL, these 2 signalling domains endow CAR-T cells with different and complementary functional properties. Preclinical results have shown that third-generation (3rd-G) CAR-T cells combining 4-1BB and CD28 signalling domains have superior activation and proliferation capacity compared with 2nd-G CAR-T cells carrying CD28 domain. The aim of the current study is therefore to investigate the safety and efficacy of 3rd-G CAR-T cells in adults with r/r B-ALL. This study is a phase I clinical trial for patients with r/r B-ALL to test the safety and preliminary efficacy of 3rd-G CAR-T cells. Before receiving lymphodepleting conditioning regimen, the peripheral blood mononuclear cells from eligible patients will be leukapheresed, and the T cells will be purified, activated, transduced and expanded ex vivo. On day 6 in the protocol, a single dose of 1 million CAR-T cells per kg will be administrated intravenously. The phenotypes of infused CAR-T cells, copy number of CAR transgene and plasma cytokines will be assayed for 2 years after CAR-T infusion using flow cytometry, real-time quantitative PCR and cytometric bead array, respectively. Moreover, several predictive plasma cytokines including interferon-γ, interleukin (IL)-6, IL-8, Soluble Interleukin (sIL)-2R-α, solubleglycoprotein (sgp)130, sIL-6R, Monocyte chemoattractant protein (MCP1), Macrophage inflammatory protein (MIP1)-α, MIP1-β and Granulocyte-macrophage colony-stimulating factor (GM-CSF), which are highly associated with severe cytokine release syndrome (CRS), will be used to forecast CRS to allow doing earlier intervention, and CRS will be managed based on a revised CRS grading system. In addition, patients with grade 3 or 4 neurotoxicities or persistent B-cell aplasia will be treated with dexamethasone (10 mg intravenously every 6 hours) or IgG, respectively. Descriptive and analytical analyses will be performed. Ethical approval for the study was granted on 10 July 2014 (YLJS-2014-7-10). Written informed consent will be taken from all participants. The results of the study will be reported, through peer-reviewed journals, conference presentations and an internal organisational report. NCT02186860. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Differential Expression of Inflammatory Cytokines and Stress Genes in Male and Female Mice in Response to a Lipopolysaccharide Challenge

    PubMed Central

    Everhardt Queen, Ashleigh; Moerdyk-Schauwecker, Megan; McKee, Leslie M.; Leamy, Larry J.

    2016-01-01

    Background Sex plays a key role in an individual’s immune response against pathogenic challenges such that females fare better when infected with certain pathogens. It is thought that sex hormones impact gene expression in immune cells and lead to sexually dimorphic responses to pathogens. We predicted that, in the presence of E. coli gram-negative lipopolysaccharide (LPS), there would be a sexually dimorphic response in proinflammatory cytokine production and acute phase stress gene expression and that these responses might vary among different mouse strains and times in a pattern opposite to that of body temperature associated with LPS-induced shock. Materials and Methods Interleukin-6 (IL-6), macrophage inflammatory protein-Iβ (MIP-1β), tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) as well as beta-fibrinogen (Fgb) and metallothionein-1 (Mt-1) mRNA expression were measured at four time points (0, 2, 4 and 7 hours) after injection of E. coli LPS in mice from three inbred strains. Results Statistical analysis using analyses of variance (ANOVAs) showed that the levels of the all six traits changed over time, generally peaking at 2 hours after LPS injection. Mt-1, Fgb, and IL-6 showed differences among strains, although these were time-specific. Sexual dimorphism was seen for Fgb and IL6, and was most pronounced at the latest time period (7 hours) where male levels exceeded those for females. Trends for all six cytokine/gene expression traits were negatively correlated with those for body temperatures. Discussion The higher levels of expression of Fgb and IL6 in males compared with females are consistent with the greater vulnerability of males to infection and subsequent inflammation. Temperature appears to be a useful proxy for mortality in endotoxic shock, but sexual dimorphism in cytokine and stress gene expression levels may persist after an LPS challenge even if temperatures in the two sexes are similar and have begun to stabilize. PMID:27120355

  1. Imbalanced immune responses involving inflammatory molecules and immune-related pathways in the lung of acute and subchronic arsenic-exposed mice.

    PubMed

    Li, Jinlong; Zhao, Lu; Zhang, Yang; Li, Wei; Duan, Xiaoxu; Chen, Jinli; Guo, Yuanyuan; Yang, Shan; Sun, Guifan; Li, Bing

    2017-11-01

    Inorganic arsenic has been claimed to increase the risk of pulmonary diseases through ingestion, as opposed to inhalation, which makes it a unique and intriguing environmental toxicant. However, the immunotoxic effects of lung, one of the targets of arsenic exposure, have not been extensively investigated in vivo. In the present study, we first confirmed that 2.5, 5 and 10mg/kg NaAsO 2 orally for 24h dose-dependently triggered the infiltration of neutrophils, lymphocytes and macrophages in BALF. Not only the transcription activity, but also the secretion of proinflammatory cytokines IL-1β, IL-6 and TNF-α were consistently raised in the lung and BALF of acute arsenic-exposed mice. Acute oral administration of NaAsO 2 also raised pulmonary MPO activity and mRNA levels of chemokine Mip-2 and Mcp-1. Meanwhile, obvious histopathological damages with inflammatory cells infiltration and erythrocyte aggregation around the capillaries were verified in the lung of mice drank arsenic-rich water freely for 3 months. Furthermore, we affirmed notable disturbance of CD4 + T-cell differentiation in the lung of acute arsenic-exposed mice, as demonstrated by up-regulated mRNA levels of regulator Gata3 and cytokine Il-4 of Th2, enhanced Foxp3 and Il-10 of Treg, down-regulated T-bet and Ifn-γ of Th1, as well as lessened Ror-γt and Il-23 of Th17. However, impressive elevation of cytokine Ifn-γ and Il-23, as well as moderate enhancement of Il-4 and Il-10 were found in the lung by subchronic arsenic administration. Finally, our present study demonstrated that both a single and sustained arsenic exposure prominently increased the expression of immune-related p38, JNK, ERK1/2 and NF-κB proteins in the lung tissue. While disrupting the pulmonary redox homeostasis by increasing MDA levels, exhausting GSH and impaired enzyme activities of CAT and GSH-Px, antioxidant regulator NRF2 and its downstream targets HO-1 and GSTO1/2 were also up-regulated by both acute and subchronic arsenic treatment. Conclusively, our present study demonstrated both acute and subchronic oral administration of arsenic triggers multiple pulmonary immune responses involving inflammatory molecules and T-cell differentiation, which might be closely associated with the imbalanced redox status and activation of immune-related MAPKs, NF-κB and anti-inflammatory NRF2 pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Immune-modulating therapy in acute pancreatitis: Fact or fiction

    PubMed Central

    Akinosoglou, Karolina; Gogos, Charalambos

    2014-01-01

    Acute pancreatitis (AP) is one of the most common diseases of the gastrointestinal tract, bearing significant morbidity and mortality worldwide. Current treatment of AP remains unspecific and supportive and is mainly targeted to aggressively prevent systemic complications and organ failure by intensive care. As acute pancreatitis shares an indistinguishable profile of inflammation with sepsis, therapeutic approaches have turned towards modulating the systemic inflammatory response. Targets, among others, have included pro- and anti-inflammatory modulators, cytokines, chemokines, immune cells, adhesive molecules and platelets. Even though, initial results in experimental models have been encouraging, clinical implementation of immune-regulating therapies in acute pancreatitis has had a slow progress. Main reasons include difficulty in clinical translation of experimental data, poor understanding of inflammatory response time-course, flaws in experimental designs, need for multimodal approaches and commercial drawbacks. Whether immune-modulation in acute pancreatitis remains a fact or just fiction remains to be seen in the future. PMID:25386069

  3. Protein-C Reactive as Biomarker Predictor of Schizophrenia Phases of Illness? A Systematic Review.

    PubMed

    Orsolini, Laura; Sarchione, Fabiola; Vellante, Federica; Fornaro, Michele; Matarazzo, Ilaria; Martinotti, Giovanni; Valchera, Alessandro; Di Nicola, Marco; Carano, Alessandro; Di Giannantonio, Massimo; Perna, Giampaolo; Olivieri, Luigi; De Berardis, Domenico

    2018-01-01

    Schizophrenia is a complex illness in which genetic, environmental, and epigenetic components have been implicated. However, recently, psychiatric disorders appear to be related to a chronic inflammatory state, at the level of specific cerebral areas which have been found as well impaired and responsible for schizophrenia symptomatology. Hence, a role of inflammatory mediators and cytokines has been as well defined. Accordingly, the role of an acute inflammatory phase protein, the C-reactive protein (CRP) has been recently investigated. The objective of the present study is to evaluate how PCR may represent a biomarker in schizophrenia, i.e. correlated with illness phases and/or clinical manifestation and/or psychopathological severity. A systematic review was here carried out by searching the following keywords ((C-reactive protein AND ((schizophrenia) OR (psychotic disorder))) for the topics 'PCR' and 'Schizophrenia', by using MESH terms. An immune dysfunction and inflammation have been described amongst schizophrenic patients. Findings reported elevated CRP levels in schizophrenia, mainly correlated with the severity of illness and during the recrudescent phase. CRP levels are higher when catatonic features, negative symptomatology and aggressiveness are associated. CRP levels appeared not to be related to suicidal behaviour and ideation. CRP and its blood levels have been reported higher amongst schizophrenic patients, by suggesting a role of inflammation in the pathogenesis of schizophrenia. Further studies are needed to better understand if CRP may be considered a biomarker in schizophrenia. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Pereskia aculeata Miller leaves present in vivo topical anti-inflammatory activity in models of acute and chronic dermatitis.

    PubMed

    Pinto, Nícolas de Castro Campos; Machado, Danielle Cunha; da Silva, Josiane Mello; Conegundes, Jéssica Leiras Mota; Gualberto, Ana Cristina Moura; Gameiro, Jacy; Moreira Chedier, Luciana; Castañon, Maria Christina Marques Nogueira; Scio, Elita

    2015-09-15

    The leaves of Pereskia aculeata Miller (Cactaceae), known as Barbados gooseberry, are used in Brazilian traditional medicine as emollients and to treat skin wounds and inflammation. This study investigated the topical anti-inflammatory activity of the hexane fraction (HF) obtained from the methanol extract of the leaves of this species in models of acute and chronic ear dermatitis in mice. Mice ear edema was induced by topical application of croton oil, arachidonic acid, capsaicin, ethyl-phenylpropiolate and phenol; and by subcutaneous injection of histamine. Ear biopsies were obtained to determine the levels of IL-1β, IL-6 and TNF-α cytokines by ELISA assay. Histopathological analysis was also performed to evaluate the HF activity in croton oil multiple application test. In addition, acute dermal irritation/corrosion test in rats was accomplished. HF chemical characterization was performed by GC-MS analysis. HF intensively reduced the inflammatory process induced by all irritant agents used, except for arachidonic acid. This activity is related, at least in part, to the reduction of IL-6 and TNF-α cytokines levels. Moreover, when the glucocorticoid receptor antagonist mifepristone was used, HF failed to respond to the croton oil application.The results strongly suggested a glucocorticoid-like effect, which was reinforced by the presence of considerable amounts of sterol compounds identified in HF. The acute dermal irritaton/corrosion test showed no signs of toxicity. This study showed that the acute and chronic anti-inflammatory activity of P. aculeata leaves is very promising, and corroborates to better understand their ethnopharmacological applications. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Reassessment of HIV-1 Acute Phase Infectivity: Accounting for Heterogeneity and Study Design with Simulated Cohorts

    PubMed Central

    Bellan, Steve E.; Dushoff, Jonathan; Galvani, Alison P.; Meyers, Lauren Ancel

    2015-01-01

    Background The infectivity of the HIV-1 acute phase has been directly measured only once, from a retrospectively identified cohort of serodiscordant heterosexual couples in Rakai, Uganda. Analyses of this cohort underlie the widespread view that the acute phase is highly infectious, even more so than would be predicted from its elevated viral load, and that transmission occurring shortly after infection may therefore compromise interventions that rely on diagnosis and treatment, such as antiretroviral treatment as prevention (TasP). Here, we re-estimate the duration and relative infectivity of the acute phase, while accounting for several possible sources of bias in published estimates, including the retrospective cohort exclusion criteria and unmeasured heterogeneity in risk. Methods and Findings We estimated acute phase infectivity using two approaches. First, we combined viral load trajectories and viral load-infectivity relationships to estimate infectivity trajectories over the course of infection, under the assumption that elevated acute phase infectivity is caused by elevated viral load alone. Second, we estimated the relative hazard of transmission during the acute phase versus the chronic phase (RHacute) and the acute phase duration (d acute) by fitting a couples transmission model to the Rakai retrospective cohort using approximate Bayesian computation. Our model fit the data well and accounted for characteristics overlooked by previous analyses, including individual heterogeneity in infectiousness and susceptibility and the retrospective cohort's exclusion of couples that were recorded as serodiscordant only once before being censored by loss to follow-up, couple dissolution, or study termination. Finally, we replicated two highly cited analyses of the Rakai data on simulated data to identify biases underlying the discrepancies between previous estimates and our own. From the Rakai data, we estimated RHacute = 5.3 (95% credibility interval [95% CrI]: 0.79–57) and d acute = 1.7 mo (95% CrI: 0.55–6.8). The wide credibility intervals reflect an inability to distinguish a long, mildly infectious acute phase from a short, highly infectious acute phase, given the 10-mo Rakai observation intervals. The total additional risk, measured as excess hazard-months attributable to the acute phase (EHMacute) can be estimated more precisely: EHMacute = (RHacute - 1) × d acute, and should be interpreted with respect to the 120 hazard-months generated by a constant untreated chronic phase infectivity over 10 y of infection. From the Rakai data, we estimated that EHMacute = 8.4 (95% CrI: -0.27 to 64). This estimate is considerably lower than previously published estimates, and consistent with our independent estimate from viral load trajectories, 5.6 (95% confidence interval: 3.3–9.1). We found that previous overestimates likely stemmed from failure to account for risk heterogeneity and bias resulting from the retrospective cohort study design. Our results reflect the interaction between the retrospective cohort exclusion criteria and high (47%) rates of censorship amongst incident serodiscordant couples in the Rakai study due to loss to follow-up, couple dissolution, or study termination. We estimated excess physiological infectivity during the acute phase from couples data, but not the proportion of transmission attributable to the acute phase, which would require data on the broader population's sexual network structure. Conclusions Previous EHMacute estimates relying on the Rakai retrospective cohort data range from 31 to 141. Our results indicate that these are substantial overestimates of HIV-1 acute phase infectivity, biased by unmodeled heterogeneity in transmission rates between couples and by inconsistent censoring. Elevated acute phase infectivity is therefore less likely to undermine TasP interventions than previously thought. Heterogeneity in infectiousness and susceptibility may still play an important role in intervention success and deserves attention in future analyses PMID:25781323

  6. Chemotherapy Plus Sargramostim in Treating Patients With Refractory Myeloid Cancer

    ClinicalTrials.gov

    2013-01-08

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Paroxysmal Nocturnal Hemoglobinuria; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia; Refractory Anemia With Ringed Sideroblasts; Relapsing Chronic Myelogenous Leukemia; Thrombocytopenia; Untreated Adult Acute Myeloid Leukemia

  7. Dynamic functional-structural coupling within acute functional state change phases: Evidence from a depression recognition study.

    PubMed

    Bi, Kun; Hua, Lingling; Wei, Maobin; Qin, Jiaolong; Lu, Qing; Yao, Zhijian

    2016-02-01

    Dynamic functional-structural connectivity (FC-SC) coupling might reflect the flexibility by which SC relates to functional connectivity (FC). However, during the dynamic acute state change phases of FC, the relationship between FC and SC may be distinctive and embody the abnormality inherent in depression. This study investigated the depression-related inter-network FC-SC coupling within particular dynamic acute state change phases of FC. Magnetoencephalography (MEG) and diffusion tensor imaging (DTI) data were collected from 26 depressive patients (13 women) and 26 age-matched controls (13 women). We constructed functional brain networks based on MEG data and structural networks from DTI data. The dynamic connectivity regression algorithm was used to identify the state change points of a time series of inter-network FC. The time period of FC that contained change points were partitioned into types of dynamic phases (acute rising phase, acute falling phase,acute rising and falling phase and abrupt FC variation phase) to explore the inter-network FC-SC coupling. The selected FC-SC couplings were then fed into the support vector machine (SVM) for depression recognition. The best discrimination accuracy was 82.7% (P=0.0069) with FC-SC couplings, particularly in the acute rising phase of FC. Within the FC phases of interest, the significant discriminative network pair was related to the salience network vs ventral attention network (SN-VAN) (P=0.0126) during the early rising phase (70-170ms). This study suffers from a small sample size, and the individual acute length of the state change phases was not considered. The increased values of significant discriminative vectors of FC-SC coupling in depression suggested that the capacity to process negative emotion might be more directly related to the SC abnormally and be indicative of more stringent and less dynamic brain function in SN-VAN, especially in the acute rising phase of FC. We demonstrated that depressive brain dysfunctions could be better characterized by reduced FC-SC coupling flexibility in this particular phase. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. DIESEL EXHAUST PARTICULATE (DEP)-INDUCED ACTIV ATION OF STAT3 REQUIRES ACTIVITIES OF EGFR AND SRC IN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    In vivo exposure to diesel exhaust particles (DEP) elicits acute inflammatory responses in the lung characterized by inflammatory cell influx and elevated expression of mediators such as cytokines, and chemokines. Signal transducers and activators of transcription (STAT) protein...

  9. Assessment of hypoxia and TNF-alpha response by a vector with HRE and NF-kappaB response elements.

    PubMed

    Chen, Zhilin; Eadie, Ashley L; Hall, Sean R; Ballantyne, Laurel; Ademidun, David; Tse, M Yat; Pang, Stephen C; Melo, Luis G; Ward, Christopher A; Brunt, Keith R

    2017-01-01

    Hypoxia and inflammatory cytokine activation (H&I) are common processes in many acute and chronic diseases. Thus, a single vector that responds to both hypoxia and inflammatory cytokines, such as TNF-alpha, is useful for assesing the severity of such diseases. Adaptation to hypoxia is regulated primarily by hypoxia inducible transcription factor (HIF alpha) nuclear proteins that engage genes containing a hypoxia response element (HRE). Inflammation activates a multitude of cytokines, including TNF-alpha, that invariably modulate activation of the nuclear factor kappa B (NF-kB) transcription factor. We constructed a vector that encompassed both a hypoxia response element (HRE), and a NF-kappaB responsive element. We show that this vector was functionally responsive to both hypoxia and TNF-alpha, in vitro and in vivo . Thus, this vector might be suitable for the detection and assessment of hypoxia or TNF-alpha.

  10. Phase I Trial of AZD1775 and Belinostat in Treating Patients With Relapsed or Refractory Myeloid Malignancies or Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2018-05-24

    Acute Myeloid Leukemia; Blast Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Refractory Acute Myeloid Leukemia; Refractory Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Secondary Acute Myeloid Leukemia; Therapy-Related Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  11. Role of cytokine hemoadsorption in cardiopulmonary bypass-induced ventricular dysfunction in a porcine model.

    PubMed

    Vocelka, Craig R; Jones, Krystal M; Mikhova, Krasimira M; Ebisu, Ryan M; Shar, Ashley; Kellum, John A; Verrier, Edward D; Rabkin, David G

    2013-12-01

    Little is known about the effect of cardiopulmonary bypass alone on cardiac function; in an attempt to illuminate this relationship and test a possible mechanism, we used Cytosorb, a device capable of removing virtually all types of circulating cytokines to test the hypothesis that hemoadsorption of cytokines during bypass attenuates bypass-induced acute organ dysfunction. Twelve Yorkshire pigs (50-65 kg) were instrumented with a left ventricular conductance catheter. Baseline mechanics and cytokine expression (tumor necrosis factor [TNF], interleukin-6 [IL-6], and interleukin-10) were measured before and hourly after 1 hour of normothermic cardiopulmonary bypass. Animals underwent bypass without (cardiopulmonary bypass [CPB], n = 6) or with (CPB+HA, n = 6) the CytosorbTM device. Data were compared with "historical" controls (n = 6) that were similarly instrumented but underwent observation instead of bypass. Five hours after separation from bypass (or observation), animals were euthanized. Myocardial water content was determined postmortem. Neither TNF nor IL-6 was significantly elevated in either experimental group versus controls at any time point. Preload recruitable stroke work and dP/dtmax were significantly depressed immediately after separation from bypass in both CPB+HA and CPB and remained depressed for the duration of the experiment. Although Tau remained unchanged, dP/dTmin was significantly diminished in both bypass groups at all time points after separation from bypass. Cytokine hemoadsorption had no effect on any measurable index of function. Differences in postmortem data were not evident between groups. One hour of normothermic CPB results in a significant and sustained decline in left ventricular function that appears unrelated to changes in cytokine expression. Because we did not appreciate a significant change in cytokine concentrations postbypass, the capacity of cytokine hemoadsorption to attenuate CPB-induced ventricular dysfunction could not be assessed.

  12. Prospective investigation of the hypothalamo-pituitary-adrenal axis in patients with tularemia.

    PubMed

    Demiraslan, Hayati; Şimşek, Yasin; Tanriverdi, Fatih; Doğanay, Mehmet; Keleştemur, Hasan Fahrettin

    2015-01-01

    To investigate prospectively the hypothalamo-pituitary-adrenal (HPA) axis by adrenocorticotropic hormone (ACTH) stimulation test. Tularemia was diagnosed according to guidelines. An ACTH stimulation test (1 µg) and a dexamethasone suppression test (DST; 1 mg) were performed in patients in the acute phase of tularemia before antibiotic treatment and in the chronic phase. Nineteen patients (mean age: 41.0 ± 13.2 years; 57.9% female) with tularemia were enrolled in the study in 2011 and 2012. Cortisol response to ACTH stimulation test was sufficient in all patients during the acute phase. After the DST, the cortisol was not suppressed during the acute phase in only one patient. The median control time of 11 patients after acute tularemia was 13 months. During the chronic phase, cortisol response to ACTH stimulation was normal in all patients, and after DST cortisol was suppressed in all patients. The peak cortisol level after the ACTH stimulation test in the acute phase was higher than that in the chronic phase, but the difference was not statistically significant. The HPA axis of patients with tularemia was not significantly affected in the acute and chronic phases.

  13. Mitochondrial dysfunction in skeletal muscle during experimental Chagas disease.

    PubMed

    Báez, Alejandra L; Reynoso, María N; Lo Presti, María S; Bazán, Paola C; Strauss, Mariana; Miler, Noemí; Pons, Patricia; Rivarola, Héctor W; Paglini-Oliva, Patricia

    2015-06-01

    Trypanosoma cruzi invasion and replication in cardiomyocytes and other tissues induce cellular injuries and cytotoxic reactions, with the production of inflammatory cytokines and nitric oxide, both sources of reactive oxygen species. The myocyte response to oxidative stress involves the progression of cellular changes primarily targeting mitochondria. Similar alterations could be taking place in mitochondria from the skeletal muscle; if that is the case, a simple skeletal muscle biopsy would give information about the cardiac energetic production that could be used as a predictor of the chagasic cardiopathy evolution. Therefore, in the present paper we studied skeletal muscle mitochondrial structure and the enzymatic activity of citrate synthase and respiratory chain complexes I to IV (CI-CIV), in Albino Swiss mice infected with T. cruzi, Tulahuen strain and SGO Z12 and Lucky isolates, along the infection. Changes in the mitochondrial structure were detected in 100% of the mitochondria analyzed from the infected groups: they all presented at least 1 significant abnormality such as increase in their matrix or disorganization of their cristae, which are probably related to the enzymatic dysfunction. When we studied the Krebs cycle functionality through the measurement of the specific citrate synthase activity, we found it to be significantly diminished during the acute phase of the infection in Tulahuen and SGO Z12 infected groups with respect to the control one; citrate synthase activity from the Lucky group was significantly increased (p<0.05). The activity of this enzyme was reduced in all the infected groups during the chronic asymptomatic phase (p<0.001) and return to normal values (Tulahuen and SGO Z12) or increased its activity (Lucky) by day 365 post-infection (p.i.). When the mitochondrial respiratory chain was analyzed from the acute to the chronic phase of the infection through the measurement of the activity of complexes I to IV, the activity of CI remained similar to control in Tulahuen and Lucky groups, but was significantly augmented in the SGO Z12 one in the acute and chronic phases (p<0.05). CII increased its activity in Tulahuen and Lucky groups by day 75 p.i. and in SGO Z12 by day 365 p.i. (p<0.05). CIII showed a similar behavior in the 3 infected groups, remaining similar to control values in the first two stages of the infection and significantly increasing later on (p<0.0001). CIV showed an increase in its activity in Lucky throughout all stages of infection (p<0.0001) and an increase in Tulahuen by day 365days p.i. (p<0.0001); SGO Z12 on the other hand, showed a decreased CIV activity at the same time. The structural changes in skeletal muscle mitochondria and their altered enzyme activity began in the acute phase of infection, probably modifying the ability of mitochondria to generate energy; these changes were not compensated in the rest of the phases of the infection. Chagas is a systemic disease, which produces not only heart damage but also permanent skeletal muscle alterations. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Transient early neurotrophin release and delayed inflammatory cytokine release by microglia in response to PAR-2 stimulation.

    PubMed

    Chen, Chen-Wen; Chen, Qian-Bo; Ouyang, Qing; Sun, Ji-Hu; Liu, Fang-Ting; Song, Dian-Wen; Yuan, Hong-Bin

    2012-06-25

    Activated microglia exerts both beneficial and deleterious effects on neurons, but the signaling mechanism controlling these distinct responses remain unclear. We demonstrated that treatment of microglial cultures with the PAR-2 agonist, 2-Furoyl-LIGRLO-NH2, evoked early transient release of BDNF, while sustained PAR-2 stimulation evoked the delayed release of inflammatory cytokines (IL-1 β and TNF-α) and nitric oxide. Culture medium harvested during the early phase (at 1 h) of microglial activation induced by 2-Furoyl-LIGRLO-NH2 (microglial conditioned medium, MCM) had no deleterious effects on cultured neurons, while MCM harvested during the late phase (at 72 h) promoted DNA fragmentation and apoptosis as indicated by TUNEL and annexin/PI staining. Blockade of PAR-1 during the early phase of PAR-2 stimulation enhanced BDNF release (by 11%, small but significant) while a PAR-1 agonist added during the late phase (24 h after 2-Furoyl-LIGRLO-NH2 addition) suppressed the release of cytokines and NO. The neuroprotective and neurotoxic effects of activated microglial exhibit distinct temporal profiles that are regulated by PAR-1 and PAR-2 stimulation. It may be possible to facilitate neuronal recovery and repair by appropriately timed stimulation and inhibition of microglial PAR-1 and PAR-2 receptors.

  15. Reduced maximal oxygen consumption and overproduction of proinflammatory cytokines in athletes.

    PubMed

    Vaisberg, Mauro; de Mello, Marco Tulio; Seelaender, Marília Cerqueira Leite; dos Santos, Ronaldo Vagner Thomatieli; Costa Rosa, Luis Fernando Bicudo Pereira

    2007-01-01

    It was the aim of this study to evaluate whether chronic pain in athletes is related to performance, measured by the maximum oxygen consumption and production of hormones and cytokines. Fifty-five athletes with a mean age of 31.9 +/- 4.2 years engaged in regular competition and showing no symptoms of acute inflammation, particularly fever, were studied. They were divided into 2 subgroups according to the occurrence of pain. Plasma concentrations of adrenaline, noradrenaline, cortisol, prolactin, growth hormone and dopamine were measured by radioimmunoassay, and the production of the cytokines interleukin (IL)-1, IL-2, IL-4, IL-6, tumor necrosis factor-alpha, interferon-alpha and prostaglandin E(2) by whole-blood culture. Maximal oxygen consumption was determined during an incremental treadmill test. There was no change in the concentration of stress hormones, but the athletes with chronic pain showed a reduction in maximum oxygen consumption (22%) and total consumption at the anaerobic threshold (25%), as well as increased cytokine production. Increases of 2.7-, 8.1-, 1.7- and 3.7-fold were observed for IL-1, IL-2, tumor necrosis factor-alpha and interferon-alpha, respectively. Our data show that athletes with chronic pain have enhanced production of proinflammatory cytokines and lipid mediators and reduced performance in the ergospirometric test. (c) 2008 S. Karger AG, Basel.

  16. The dynamics of acute inflammation

    NASA Astrophysics Data System (ADS)

    Kumar, Rukmini

    The acute inflammatory response is the non-specific and immediate reaction of the body to pathogenic organisms, tissue trauma and unregulated cell growth. An imbalance in this response could lead to a condition commonly known as "shock" or "sepsis". This thesis is an attempt to elucidate the dynamics of acute inflammatory response to infection and contribute to its systemic understanding through mathematical modeling and analysis. The models of immunity discussed use Ordinary Differential Equations (ODEs) to model the variation of concentration in time of the various interacting species. Chapter 2 discusses three such models of increasing complexity. Sections 2.1 and 2.2 discuss smaller models that capture the core features of inflammation and offer general predictions concerning the design of the system. Phase-space and bifurcation analyses have been used to examine the behavior at various parameter regimes. Section 2.3 discusses a global physiological model that includes several equations modeling the concentration (or numbers) of cells, cytokines and other mediators. The conclusions drawn from the reduced and detailed models about the qualitative effects of the parameters are very similar and these similarities have also been discussed. In Chapter 3, the specific applications of the biologically detailed model are discussed in greater detail. These include a simulation of anthrax infection and an in silico simulation of a clinical trial. Such simulations are very useful to biologists and could prove to be invaluable tools in drug design. Finally, Chapter 4 discusses the general problem of extinction of populations modeled as continuous variables in ODES is discussed. The average time to extinction and threshold are estimated based on analyzing the equivalent stochastic processes.

  17. Functional and phenotypic evaluation of eosinophils from patients with the acute form of paracoccidioidomycosis

    PubMed Central

    Braga, Fernanda Gambogi; Ruas, Luciana Pereira; Pereira, Ricardo Mendes; Lima, Xinaida Taligare; Antunes, Edson; Mamoni, Ronei Luciano

    2017-01-01

    Background Eosinophilia is a typical finding of the acute/juvenile form of paracoccidioidomycosis (PCM), a systemic mycosis endemic in Latin America. This clinical form is characterized by depressed cellular immune response and production of Th2 cytokines. Moreover, it has been shown that the increased number of eosinophils in peripheral blood of patients returns to normal values after antifungal treatment. However, the role of eosinophils in PCM has never been evaluated. This study aimed to assess the phenotypic and functional characteristics of eosinophils in PCM. Methods/Principal findings In 15 patients with the acute form of the disease, we detected expression of MBP, CCL5 (RANTES) and CCL11 (eotaxin) in biopsies of lymph nodes and liver. In addition, there were higher levels of chemokines and granule proteins in the peripheral blood of patients compared to controls. Isolation of eosinophils from blood revealed a higher frequency of CD69+ and TLR2+ eosinophils in patients compared to controls, and a lower population of CD80+ cells. We also evaluated the fungicidal capacity of eosinophils in vitro. Our results revealed that eosinophils from PCM patients and controls exhibit similar ability to kill P. brasiliensis yeast cells, although eosinophils of patients were less responsive to IL-5 stimulation than controls. Conclusion/Principal findings In conclusion, we suggest that eosinophils might play a role in the host response to fungi and in the pathophysiology of PCM by inducing an intense and systemic inflammatory response in the initial phase of the infection. PMID:28489854

  18. Phenotypic expression of autoimmune autistic disorder (AAD): a major subset of autism.

    PubMed

    Singh, Vijendra K

    2009-01-01

    Autism causes incapacitating neurologic problems in children that last a lifetime. The author of this article previously hypothesized that autism may be caused by autoimmunity to the brain, possibly triggered by a viral infection. This article is a summary of laboratory findings to date plus new data in support of an autoimmune pathogenesis for autism. Autoimmune markers were analyzed in the sera of autistic and normal children, but the cerebrospinal fluid (CSF) of some autistic children was also analyzed. Laboratory procedures included enzyme-linked immunosorbent assay and protein immunoblotting assay. Autoimmunity was demonstrated by the presence of brain autoantibodies, abnormal viral serology, brain and viral antibodies in CSF, a positive correlation between brain autoantibodies and viral serology, elevated levels of proinflammatory cytokines and acute-phase reactants, and a positive response to immunotherapy. Many autistic children harbored brain myelin basic protein autoantibodies and elevated levels of antibodies to measles virus and measles-mumps-rubella (MMR) vaccine. Measles might be etiologically linked to autism because measles and MMR antibodies (a viral marker) correlated positively to brain autoantibodies (an autoimmune marker)--salient features that characterize autoimmune pathology in autism. Autistic children also showed elevated levels of acute-phase reactants--a marker of systemic inflammation. The scientific evidence is quite credible for our autoimmune hypothesis, leading to the identification of autoimmune autistic disorder (AAD) as a major subset of autism. AAD can be identified by immune tests to determine immune problems before administering immunotherapy. The author has advanced a speculative neuroautoimmune (NAI) model for autism, in which virus-induced autoimmunity is a key player. The latter should be targeted by immunotherapy to help children with autism.

  19. The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response.

    PubMed

    Akondy, Rama S; Monson, Nathan D; Miller, Joseph D; Edupuganti, Srilatha; Teuwen, Dirk; Wu, Hong; Quyyumi, Farah; Garg, Seema; Altman, John D; Del Rio, Carlos; Keyserling, Harry L; Ploss, Alexander; Rice, Charles M; Orenstein, Walter A; Mulligan, Mark J; Ahmed, Rafi

    2009-12-15

    The live yellow fever vaccine (YF-17D) offers a unique opportunity to study memory CD8(+) T cell differentiation in humans following an acute viral infection. We have performed a comprehensive analysis of the virus-specific CD8(+) T cell response using overlapping peptides spanning the entire viral genome. Our results showed that the YF-17D vaccine induces a broad CD8(+) T cell response targeting several epitopes within each viral protein. We identified a dominant HLA-A2-restricted epitope in the NS4B protein and used tetramers specific for this epitope to track the CD8(+) T cell response over a 2 year period. This longitudinal analysis showed the following. 1) Memory CD8(+) T cells appear to pass through an effector phase and then gradually down-regulate expression of activation markers and effector molecules. 2) This effector phase was characterized by down-regulation of CD127, Bcl-2, CCR7, and CD45RA and was followed by a substantial contraction resulting in a pool of memory T cells that re-expressed CD127, Bcl-2, and CD45RA. 3) These memory cells were polyfunctional in terms of degranulation and production of the cytokines IFN-gamma, TNF-alpha, IL-2, and MIP-1beta. 4) The YF-17D-specific memory CD8(+) T cells had a phenotype (CCR7(-)CD45RA(+)) that is typically associated with terminally differentiated cells with limited proliferative capacity (T(EMRA)). However, these cells exhibited robust proliferative potential showing that expression of CD45RA may not always associate with terminal differentiation and, in fact, may be an indicator of highly functional memory CD8(+) T cells generated after acute viral infections.

  20. Predictive Value of IL-8 for Sepsis and Severe Infections after Burn Injury - A Clinical Study

    PubMed Central

    Kraft, Robert; Herndon, David N; Finnerty, Celeste C; Cox, Robert A; Song, Juquan; Jeschke, Marc G

    2014-01-01

    The inflammatory response induced by burn injury contributes to increased incidence of infections, sepsis, organ failure, and mortality. Thus, monitoring post-burn inflammation is of paramount importance but so far there are no reliable biomarkers available to monitor and/or predict infectious complications after burn. As IL-8 is a major mediator for inflammatory responses, the aim of our study was to determine whether IL-8 expression can be used to predict post-burn sepsis, infections, and mortality other outcomes post-burn. Plasma cytokines, acute phase proteins, constitutive proteins, and hormones were analyzed during the first 60 days post injury from 468 pediatric burn patients. Demographics and clinical outcome variables (length of stay, infection, sepsis, multiorgan failure (MOF), and mortality were recorded. A cut-off level for IL-8 was determined using receiver operating characteristic (ROC) analysis. Statistical significance is set at (p<0.05). ROC analysis identified a cut-off level of 234 pg/ml for IL-8 for survival. Patients were grouped according to their average IL-8 levels relative to this cut off and stratified into high (H) (n=133) and low (L) (n=335) groups. In the L group, regression analysis revealed a significant predictive value of IL-8 to percent of total body surface area (TBSA) burned and incidence of MOF (p<0.001). In the H group IL-8 levels were able to predict sepsis (p<0.002). In the H group, elevated IL-8 was associated with increased inflammatory and acute phase responses compared to the L group (p<0.05). High levels of IL-8 correlated with increased MOF, sepsis, and mortality. These data suggest that serum levels of IL-8 may be a valid biomarker for monitoring sepsis, infections, and mortality in burn patients. PMID:25514427

Top