Acute Phase Proteins and Their Role in Periodontitis: A Review
Moogala, Srinivas; Boggarapu, Shalini; Pesala, Divya Sai; Palagi, Firoz Babu
2015-01-01
Acute phase proteins are a class of proteins whose plasma concentration increase (positive acute phase proteins) or decrease (negative acute phase proteins) in response to inflammation. This response is called as the acute phase reaction, also called as acute phase response, which occurs approximately 90 minutes after the onset of a systemic inflammatory reaction. In Periodontitis endotoxins released from gram negative organisms present in the sub gingival plaque samples interact with Toll- like receptors (TLR) that are expressed on the surface of Polymorphonuclear leucocytes (PMNs) and monocytes which are in abundance in periodontal inflammation. The complex formed due to interaction of Endotoxins and TLR activates the Signal transduction pathway in both innate and adaptive immunity resulting in production of Cytokines that co- ordinate the local and systemic inflammatory response. The pro inflammatory cytokines originating at the diseased site activates the liver cells to produce acute phase proteins as a part of non specific response. The production of Acute phase proteins is regulated to a great extent by Cytokines such as IL-1, IL-6, IL-8, TNF-α and to a lesser extent by Glucocorticoid hormones. These proteins bind to bacteria leading to activation of complement proteins that destroys pathogenic organisms. Studies have shown that levels of acute phase proteins are increased in otherwise healthy adults with poor periodontal status. This article highlights about the synthesis, structure, types and function of acute phase proteins and the associated relation of acute phase proteins in Periodontitis. PMID:26674303
Joe, Bina; Nagaraju, Anitha; Gowda, Lalitha R; Basrur, Venkatesha; Lokesh, Belur R
2014-01-01
Curcumin and capsaicin are dietary xenobiotics with well-documented anti-inflammatory properties. Previously, the beneficial effect of these spice principles in lowering chronic inflammation was demonstrated using a rat experimental model for arthritis. The extent of lowering of arthritic index by the spice principles was associated with a significant shift in macrophage function favoring the reduction of pro-inflammatory molecules such as reactive oxygen species and production and release of anti-inflammatory metabolites of arachidonic acid. Beyond the cellular effects on macrophage function, oral administration of curcumin and capsaicin caused alterations in serum protein profiles of rats injected with adjuvant to develop arthritis. Specifically, a 72 kDa acidic glycoprotein, GpA72, which was elevated in pre-arthritic rats, was significantly lowered by feeding either curcumin or capsaicin to the rats. Employing the tandem mass spectrometric approach for direct sequencing of peptides, here we report the identification of GpA72 as T-kininogen I also known as Thiostatin. Since T-kininogen I is an early acute-phase protein, we additionally tested the efficiency of curcumin and capsaicin to mediate the inflammatory response in an acute phase model. The results demonstrate that curcumin and capsaicin lower the acute-phase inflammatory response, the molecular mechanism for which is, in part, mediated by pathways associated with the lowering of T-kininogen I.
Watterson, Claire; Lanevschi, Anne; Horner, Judith; Louden, Calvert
2009-01-01
Recently, in early clinical development, a few biologics and small molecules intended as antitumor or anti-inflammatory agents have caused a severe adverse pro-inflammatory systemic reaction also known as systemic inflammatory response syndrome (SIRS). This toxicity could result from expected pharmacological effects of a therapeutic antibody and/or from interaction with antigens expressed on cells/tissues other than the intended target. Clinical monitoring of SIRS is challenging because of the narrow diagnostic window to institute a successful intervening therapeutic strategy prior to acute circulatory collapse. Furthermore, for these classes of therapeutic agents, studies in animals have low predictive ability to identify potential human hazards. In vitro screens with human cells, though promising, need further development. Therefore, identification of improved preclinical diagnostic markers of SIRS will enable clinicians to select applicable markers for clinical testing and avoid potentially catastrophic events. There is limited preclinical toxicology data describing the interspecies performance of acute-phase proteins because the response time, type, and duration of major acute-phase proteins vary significantly between species. This review will attempt to address this intellectual gap, as well as the use and applicability of acute-phase proteins as preclinical to clinical translational biomarkers of SIRS.
Inflammatory Milieu and Cardiovascular Homeostasis in Children With Obstructive Sleep Apnea.
Smith, David F; Hossain, Md M; Hura, Arjan; Huang, Guixia; McConnell, Keith; Ishman, Stacey L; Amin, Raouf S
2017-04-01
Biomarkers of atherosclerosis (pro-inflammatory cytokines and acute phase reactants) are elevated in children with obstructive sleep apnea (OSA). However, their association with cardiovascular endpoints in children are not understood. We hypothesized that biomarkers of atherosclerosis in children with OSA correlate with pulse transit time (PTT), a surrogate measure of vascular stiffness, with some positively influencing and others negatively influencing PTT. Children with OSA and matched controls were recruited to the study. Pro-inflammatory cytokines and acute phase reactants were measured at 6:00 pm and 6:00 am. Polysomnography with beat-to-beat blood pressure was performed. PTT during wakefulness and stage 2 sleep was calculated. Diurnal variation of biomarkers and their associations with PTT was estimated. Factor analysis was used to determine the effect of groups of cytokines on PTT. One hundred fifty-five children participated in the study; 90 were healthy controls and 65 had OSA. Children with OSA exhibited a different diurnal variation of biomarkers than healthy controls, with pro-inflammatory cytokines peaking in the morning and acute phase reactants peaking in the afternoon. Structural equation modeling demonstrated that interleukins 6 and 8, tumor necrosis factor-α, and sCD40L had a shortening effect, while serum amyloid A, C-reactive protein, and adiponectin had a prolonging effect on PTT. As a result, there was no difference in PTT between the two groups. The differential relationships of acute phase reactants and pro-inflammatory cytokines with PTT suggest that in children with OSA, these mediators may have opposing actions to maintain cardiovascular homeostasis. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Doi, Kent; Okamoto, Koji; Negishi, Kousuke; Suzuki, Yoshifumi; Nakao, Akihide; Fujita, Toshiro; Toda, Akiko; Yokomizo, Takehiko; Kita, Yoshihiro; Kihara, Yasuyuki; Ishii, Satoshi; Shimizu, Takao; Noiri, Eisei
2006-01-01
Platelet-activating factor (PAF), a potent lipid mediator with various biological activities, plays an important role in inflammation by recruiting leukocytes. In this study we used platelet-activating factor receptor (PAFR)-deficient mice to elucidate the role of PAF in inflammatory renal injury induced by folic acid administration. PAFR-deficient mice showed significant amelioration of renal dysfunction and pathological findings such as acute tubular damage with neutrophil infiltration, lipid peroxidation observed with antibody to 4-hydroxy-2-hexenal (day 2), and interstitial fibrosis with macrophage infiltration associated with expression of monocyte chemoattractant protein-1 and tumor necrosis factor-α in the kidney (day 14). Acute tubular damage was attenuated by neutrophil depletion using a monoclonal antibody (RB6-8C5), demonstrating the contribution of neutrophils to acute phase injury. Macrophage infiltration was also decreased when treatment with a PAF antagonist (WEB2086) was started after acute phase. In vitro chemotaxis assay using a Boyden chamber demonstrated that PAF exhibits a strong chemotactic activity for macrophages. These results indicate that PAF is involved in pathogenesis of folic acid-induced renal injury by activating neutrophils in acute phase and macrophages in chronic interstitial fibrosis. Inhibiting the PAF pathway might be therapeutic to kidney injury from inflammatory cells. PMID:16651609
Li, Ping; Zhang, Qiao-Lian; Li, Shuang-Ying
2017-02-08
To investigate the correlation between poststroke depression (PSD) and serum levels of inflammatory cytokines, neurologic impairment, daily life ability in patients with acute cerebral infarction at different time. Two hundreds and eighty patients who admitted to our hospital with a diagnosis of acute infarction excluded the patients mismatch conditions were evaluated by Hamilton depres-sion rating scale (HDRS) to diagnose PSD respectively at admission and 3 months after stroke. Serum inflammatory cytokines high-sensitivity C-reactive protein(hs-CRP), tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) were determined. NIH stroke scale(NIHSS) and Barthel index for daily life ability were used to evaluate nerve functions. Then we analyzed the correlation between PSD and serum inflammatory cytokines, correlation between PSD and functional impairment and daily life ability at different time. Logistic regression was performed to ana-lyze the risk factors of PSD. The PSD incidence was higher in recovery stage than that in acute stage, but there was no difference. Serum inflammatory cytokines were higher in PSD group at admission than that in non-PSD group. The NIHSS score and Barthel index in PSD group were different from those in non-group at acute and recovery stage. The OR score was 1.765, 1.646, 1.817, 1.188 and 2.015 respec-tively to TNF-α, IL-6 and Barthel index in the acute phase and to NIHSS and Barthel index in recovery stage. The pathogenesis of PSD at different courses of stroke is not same. TNF-α, IL-6 and Barthel index are the independent risk factors of PSD in acute phase, so do NIHSS score and Barthel index in recovery period.
Nishiyama, Tomoki; Hanaoka, Kazuo
2004-04-01
We investigated the interaction between spinally administered bupivacaine and clonidine using an animal model of acute and inflammatory pain. Rats implanted with lumbar intrathecal catheters were injected intrathecally with saline (control), bupivacaine (1 to 100 microg), or clonidine (0.1 to 3 microg) and tested for their responses to thermal stimulation to the tail (tail flick test) and subcutaneous formalin injection into the hindpaw (formalin test). The effects of the combination of bupivacaine and clonidine on both stimuli were tested by isobolographic analysis. General behavior and motor function were examined as side effects. The 50% effective doses of bupivacaine and clonidine were significantly smaller when combined compared with each single drug in both the tail flick test (2.82 and 0.11 microg versus 7.1 and 0.29 microg, respectively) and phase 1 (0.24 and 0.009 microg versus 5.7 and 0.15 microg) and phase 2 (0.31 and 0.012 microg versus 3.2 and 0.16 microg) of the formalin test. Side effects were decreased by the combination. These results suggest a favorable combination of intrathecal bupivacaine and clonidine in the management of acute and inflammatory pain. The analgesic interaction between intrathecally administered bupivacaine and clonidine was examined during acute thermal and inflammatory-induced pain in rats. The analgesia produced by the combination of these two drugs was synergistic in both acute thermal and inflammatory induced pain, with a decrease in behavioral side effects.
Marcella, J J; Ursell, P C; Goldberger, M; Lovejoy, W; Fenoglio, J J; Weiss, M B
1983-08-01
Kawasaki syndrome, an acute systemic inflammatory illness of unknown origin usually affecting children, may develop into a serious illness complicated by coronary artery aneurysms or myocarditis. This report describes an adult with Kawasaki syndrome studied by right ventricular endomyocardial biopsy and cardiac catheterization during the acute and recovery phases of illness. The initial biopsy specimen showed acute myocarditis and was associated with hemodynamic evidence of biventricular dysfunction, a severely depressed left ventricular ejection fraction and global hypokinesia. With time, there was spontaneous and rapid resolution of the inflammatory cell infiltrate with concurrent return to normal myocardial function. Right ventricular endomyocardial biopsy studies early in the course of the cardiac disease associated with Kawasaki syndrome may correlate with ventricular function and may be useful for monitoring immunosuppressive therapy in patients with this syndrome.
Dynamic Modulation of Microglia/Macrophage Polarization by miR-124 after Focal Cerebral Ischemia.
Hamzei Taj, Somayyeh; Kho, Widuri; Aswendt, Markus; Collmann, Franziska M; Green, Claudia; Adamczak, Joanna; Tennstaedt, Annette; Hoehn, Mathias
2016-12-01
Mononuclear phagocytes respond to ischemic stroke dynamically, undergoing an early anti-inflammatory and protective phenotype followed by the pro-inflammatory and detrimental type. These dual roles of microglia/macrophages suggest the need of subtle adjustment of their polarization state instead of broad suppression. The most abundant brain-specific miRNA, miR-124, promotes neuronal differentiation but can also modulate microglia activation and keeps them in a quiescent state. We addressed whether the intracerebral injection of miR-124 in a mouse model of ischemic stroke before or after the peak phase of the pro-inflammatory polarization modifies the pro-/anti- inflammatory balance. In the sub-acute phase, 48 h after stroke, liposomated miR-124 shifted the predominantly pro-inflammatory polarized microglia/macrophages toward the anti-inflammatory phenotype. The altered immune response improved neurological deficit at day 6 after stroke. When miR-124 was injected 10 days after stroke, the pro-/anti- inflammatory ratio was still significantly reduced although to a lower degree and had no effect on recovery at day 14. This study indicates that miR-124 administration before the peak of the pro-inflammatory process of stroke is most effective in support of increasing the rehabilitation opportunity in the sub-acute phases of stroke. Our findings highlight the important role of immune cells after stroke and the therapeutic relevance of their polarization balance.
Fiechter, Danielle; Kats, Suzanne; Brands, Ruud; van Middelaar, Ben; Pasterkamp, Gerard; de Kleijn, Dominique; Seinen, Willem
2011-10-01
There has been increasing evidence suggesting that lipopolysaccharide or endotoxin may be an important activator of the innate immune system after acute myocardial infarction. Bovine intestinal alkaline phosphatase reduces inflammation in several endotoxin mediated diseases by dephosphorylation of the lipid A moiety of lipopolysaccharide. The aim of this study was to investigate the effect of bovine intestinal alkaline phosphatase on reducing inflammation after acute myocardial infarction. Just before permanent ligation of the left anterior descending coronary (LAD) artery to induce acute myocardial infarction in Balb/c mice, bovine intestinal alkaline phosphatase (bIAP) was administrated intravenously. After 4 hours, mice were sacrificed and the inflammatory response was assessed. Acute myocardial infarction induced the production of different cytokines, which were measured in blood. Treatment with bovine intestinal alkaline phosphatase resulted in a significant reduction of the pro-inflammatory cytokines IL-6, IL-1β and the chymase mouse mast cell protease-1. No difference in the production of the anti-inflammatory cytokine IL-10 was observed between the control group and the bovine intestinal alkaline phosphatase treated group. In a mouse model of permanent LAD coronary artery ligation, bIAP diminishes the pro-inflammatory responses but does not have an effect on the anti-inflammatory response in the acute phase after acute myocardial infarction.
Kino, T; Rice, K C; Chrousos, G P
2007-05-01
Interleukin-6 and downstream liver effectors acute phase reactants are implicated in the systemic inflammatory reaction. Peroxisome proliferator-activated receptor delta (PPARdelta), which binds to and is activated by a variety of fatty acids, was recently shown to have anti-inflammatory actions. We examined the ability of the synthetic PPARdelta agonist GW501516 to suppress interleukin-6-induced expression of acute phase proteins in human hepatoma HepG2 cells and rat primary hepatocytes. Results GW501516 dose-dependently suppressed interleukin-6-induced mRNA expression of the acute phase protein alpha1-antichymotrypsin in HepG2 cells. The compound also suppressed interleukin-6-induced mRNA expression of alpha2-acid glycoprotein, beta-fibrinogen and alpha2-macroglobulin in and the secretion of C-reactive protein by rat primary hepatocytes. Depletion of the PPARdelta receptor, but not of PPARalpha or gamma, attenuated the suppressive effect of GW501516 on interleukin-6-induced alpha1-antichymotrypsin mRNA expression, indicating that PPARdelta specifically mediated this effect. Since interleukin-6 stimulates the transcriptional activity of the alpha1-antichymotrypsin promoter by activating the signal transducer and activator of transcription (STAT) 3, we examined functional interaction of this transcription factor and PPARdelta on this promoter. Overexpression of PPARdelta enhanced the suppressive effect of GW501516 on STAT3-activated transcriptional activity of the alpha1-antichymotrypsin promoter, while GW501516 suppressed interleukin-6-induced binding of this transcription factor to this promoter. These findings indicate that agonist-activated PPARdelta interferes with interleukin-6-induced acute phase reaction in the liver by inhibiting the transcriptional activity of STAT3. PPARdelta agonists might be useful for the suppression of systemic inflammatory reactions in which IL-6 plays a central role.
Grijó, Nathália Nahas; Borra, Ricardo Carneiro; Sdepanian, Vera Lucia
2010-09-01
To study the proinflammatory and anti-inflammatory cytokines present in the acute phase of trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis treated with Saccharomyces boulardii. Thirty male Wistar rats were divided into three groups: (1) treated group--received Saccharomyces boulardii for 14 days; (2) non-treated group--received sodium chloride solution for 14 days; (3) control group. Colitis was induced on the seventh day of the study in the treated and the non-treated groups using TNBS (10 mg) dissolved in 50% ethanol. Quantification of cytokines, including interleukin (IL)-1beta (IL-1beta), IL-6, transforming growth factor-beta (TGF-beta), IL-10 and tumor necrosis factor-alpha (TNF-alpha), in the serum and colonic tissue collected on day 14 were carried out using an enzyme-linked immunosorbent assay (ELISA). The mean concentrations of TGF-beta in both the serum and the colonic tissue of the treated group were statistically higher than that of the control group. The mean concentration of TGF-beta in the colonic tissue of the non-treated group was also statistically higher than the control group. The group treated with Saccharomyces boulardii showed increased amounts of TGF-beta, an anti-inflammatory cytokine, during the acute phase of colitis. There were no differences in the amount of TNF-alpha, IL-1beta, IL-6, and IL-10 between the treated and the non-treated or the control groups during the acute phase of experimental colitis induced by TNBS.
Acute-phase reactants in periodontal disease: current concepts and future implications.
Archana, Vilasan; Ambili, Ranjith; Nisha, Krishnavilasam Jayakumary; Seba, Abraham; Preeja, Chandran
2015-05-01
Periodontal disease has been linked to adverse cardiovascular events by unknown mechanisms. C-reactive protein is a systemic marker released during the acute phase of an inflammatory response and is a prognostic marker for cardiovascular disease, with elevated serum levels being reported during periodontal disease. Studies also reported elevated levels of various other acute-phase reactants in periodontal disease. It has been reported extensively in the literature that treatment of periodontal infections can significantly lower serum levels of C-reactive protein. Therefore, an understanding of the relationship between acute-phase response and the progression of periodontal disease and other systemic health complications would have a profound effect on the periodontal treatment strategies. In view of this fact, the present review highlights an overview of acute-phase reactants and their role in periodontal disease. © 2014 Wiley Publishing Asia Pty Ltd.
Kuribayashi, Takashi; Tomizawa, Misaki; Seita, Tetsurou; Tagata, Kazutoshi; Yamamoto, Shizuo
2011-07-01
The relationship between intensity of inflammatory stimulation and production of α(2)-macroglobulin (α2M) and α(1)-acid glycoprotein (AAG) in rats was investigated. Sprague-Dawley rats were injected with turpentine oil at doses of 0.05, 0.2 or 0.4 mL/rat. Serum levels of α2M, interleukin (IL)-6 and cytokine-induced neutrophil chemoattractant-1 (CINC-1) were measured by enzyme-linked immunosorbent assay, and AAG was measured by single radial immunodiffusion. Peak serum levels of α2M and AAG in rats injected at 0.05 mL/rat were significantly lower than those at 0.2 or 0.4 mL/rat. However, no significant differences were observed for peak serum levels of these acute-phase proteins between 0.2 and 0.4 mL/rat. Furthermore, peak serum levels of IL-6 and CINC-1 in rats injected at 0.05 mL/rat were significantly lower than those at 0.2 or 0.4 mL/rat. Thus, the production of these acute-phase proteins has upper limits, even under increased strength of inflammatory stimulation in rats injected with turpentine oil.
Kuribayashi, Takashi; Tomizawa, Misaki; Seita, Tetsurou; Tagata, Kazutoshi; Yamamoto, Shizuo
2011-01-01
The relationship between intensity of inflammatory stimulation and production of α 2-macroglobulin (α2M) and α 1-acid glycoprotein (AAG) in rats was investigated. Sprague-Dawley rats were injected with turpentine oil at doses of 0.05, 0.2 or 0.4 mL/rat. Serum levels of α2M, interleukin (IL)-6 and cytokine-induced neutrophil chemoattractant-1 (CINC-1) were measured by enzyme-linked immunosorbent assay, and AAG was measured by single radial immunodiffusion. Peak serum levels of α2M and AAG in rats injected at 0.05 mL/rat were significantly lower than those at 0.2 or 0.4 mL/rat. However, no significant differences were observed for peak serum levels of these acute-phase proteins between 0.2 and 0.4 mL/rat. Furthermore, peak serum levels of IL-6 and CINC-1 in rats injected at 0.05 mL/rat were significantly lower than those at 0.2 or 0.4 mL/rat. Thus, the production of these acute-phase proteins has upper limits, even under increased strength of inflammatory stimulation in rats injected with turpentine oil. PMID:21669904
Tuttolomondo, Antonino; Di Raimondo, Domenico; Pecoraro, Rosaria; Maida, Carlo; Arnao, Valentina; Corte, Vittoriano Della; Simonetta, Irene; Corpora, Francesca; Di Bona, Danilo; Maugeri, Rosario; Iacopino, Domenico Gerardo; Pinto, Antonio
2016-01-01
Abstract Statins have beneficial effects on cerebral circulation and brain parenchyma during ischemic stroke and reperfusion. The primary hypothesis of this randomized parallel trial was that treatment with 80 mg/day of atorvastatin administered early at admission after acute atherosclerotic ischemic stroke could reduce serum levels of markers of immune-inflammatory activation of the acute phase and that this immune-inflammatory modulation could have a possible effect on prognosis of ischemic stroke evaluated by some outcome indicators. We enrolled 42 patients with acute ischemic stroke classified as large arteries atherosclerosis stroke (LAAS) randomly assigned in a randomized parallel trial to the following groups: Group A, 22 patients treated with atorvastatin 80 mg (once-daily) from admission day until discharge; Group B, 20 patients not treated with atorvastatin 80 mg until discharge, and after discharge, treatment with atorvastatin has been started. At 72 hours and at 7 days after acute ischemic stroke, subjects of group A showed significantly lower plasma levels of tumor necrosis factor-α, interleukin (IL)-6, vascular cell adhesion molecule-1, whereas no significant difference with regard to plasma levels of IL-10, E-Selectin, and P-Selectin was observed between the 2 groups. At 72 hours and 7 days after admission, stroke patients treated with atorvastatin 80 mg in comparison with stroke subjects not treated with atorvastatin showed a significantly lower mean National Institutes of Health Stroke Scale and modified Rankin scores. Our findings provide the first evidence that atorvastatin acutely administered immediately after an atherosclerotic ischemic stroke exerts a lowering effect on immune-inflammatory activation of the acute phase of stroke and that its early use is associated to a better functional and prognostic profile. PMID:27043681
Tuttolomondo, Antonino; Di Raimondo, Domenico; Pecoraro, Rosaria; Maida, Carlo; Arnao, Valentina; Della Corte, Vittoriano; Simonetta, Irene; Corpora, Francesca; Di Bona, Danilo; Maugeri, Rosario; Iacopino, Domenico Gerardo; Pinto, Antonio
2016-03-01
Statins have beneficial effects on cerebral circulation and brain parenchyma during ischemic stroke and reperfusion. The primary hypothesis of this randomized parallel trial was that treatment with 80 mg/day of atorvastatin administered early at admission after acute atherosclerotic ischemic stroke could reduce serum levels of markers of immune-inflammatory activation of the acute phase and that this immune-inflammatory modulation could have a possible effect on prognosis of ischemic stroke evaluated by some outcome indicators. We enrolled 42 patients with acute ischemic stroke classified as large arteries atherosclerosis stroke (LAAS) randomly assigned in a randomized parallel trial to the following groups: Group A, 22 patients treated with atorvastatin 80 mg (once-daily) from admission day until discharge; Group B, 20 patients not treated with atorvastatin 80 mg until discharge, and after discharge, treatment with atorvastatin has been started. At 72 hours and at 7 days after acute ischemic stroke, subjects of group A showed significantly lower plasma levels of tumor necrosis factor-α, interleukin (IL)-6, vascular cell adhesion molecule-1, whereas no significant difference with regard to plasma levels of IL-10, E-Selectin, and P-Selectin was observed between the 2 groups. At 72 hours and 7 days after admission, stroke patients treated with atorvastatin 80 mg in comparison with stroke subjects not treated with atorvastatin showed a significantly lower mean National Institutes of Health Stroke Scale and modified Rankin scores. Our findings provide the first evidence that atorvastatin acutely administered immediately after an atherosclerotic ischemic stroke exerts a lowering effect on immune-inflammatory activation of the acute phase of stroke and that its early use is associated to a better functional and prognostic profile.
Fiechter, Danielle; Kats, Suzanne; Brands, Ruud; van Middelaar, Ben; Pasterkamp, Gerard; de Kleijn, Dominique; Seinen, Willem
2011-01-01
Background There has been increasing evidence suggesting that lipopolysaccharide or endotoxin may be an important activator of the innate immune system after acute myocardial infarction. Bovine intestinal alkaline phosphatase reduces inflammation in several endotoxin mediated diseases by dephosphorylation of the lipid A moiety of lipopolysaccharide. The aim of this study was to investigate the effect of bovine intestinal alkaline phosphatase on reducing inflammation after acute myocardial infarction. Methods Just before permanent ligation of the left anterior descending coronary (LAD) artery to induce acute myocardial infarction in Balb/c mice, bovine intestinal alkaline phosphatase (bIAP) was administrated intravenously. After 4 hours, mice were sacrificed and the inflammatory response was assessed. Acute myocardial infarction induced the production of different cytokines, which were measured in blood. Results Treatment with bovine intestinal alkaline phosphatase resulted in a significant reduction of the pro-inflammatory cytokines IL-6, IL-1β and the chymase mouse mast cell protease-1. No difference in the production of the anti-inflammatory cytokine IL-10 was observed between the control group and the bovine intestinal alkaline phosphatase treated group. Conclusion In a mouse model of permanent LAD coronary artery ligation, bIAP diminishes the pro-inflammatory responses but does not have an effect on the anti-inflammatory response in the acute phase after acute myocardial infarction. PMID:28357012
Analgesic Effect of Xenon in Rat Model of Inflammatory Pain.
Kukushkin, M L; Igon'kina, S I; Potapov, S V; Potapov, A V
2017-02-01
The analgesic effects of inert gas xenon were examined on rats. The formalin model of inflammatory pain, tail-flick test, and hot-plate test revealed the antinociceptive effects of subanesthetizing doses of inhalation anesthetic xenon. Inhalation of 50/50 xenon/oxygen mixture moderated the nociceptive responses during acute and tonic phases of inflammatory pain.
[Complex regional pain syndrome (CRPS) : An update].
Dimova, V; Birklein, F
2018-04-17
The acute phase of complex regional pain syndrome (CRPS) is pathophysiologically characterized by an activation of the immune system and its associated inflammatory response. During the course of CRPS, central nervous symptoms like mechanical hyperalgesia, loss of sensation, and body perception disorders develop. Psychological factors such as pain-related anxiety and traumatic events might have a negative effect on the treatment outcome. While the visible inflammatory symptoms improve, the pain often persists. A stage adapted, targeted treatment could improve the prognosis. Effective multidisciplinary treatment includes the following: pharmacotherapy with steroids, bisphosphonates, or dimethylsulfoxide cream (acute phase), and antineuropathic analgesics (all phases); physiotherapy and behavioral therapy for pain-related anxiety and avoidance of movement; and interventional treatment like spinal cord or dorsal root ganglion stimulation if noninvasive options failed.
Role of inflammation and its mediators in acute ischemic stroke
Jin, Rong; Liu, Lin; Zhang, Shihao; Nanda, Anil; Li, Guohong
2013-01-01
Inflammation plays an important role in the pathogenesis of ischemic stroke and other forms of ischemic brain injury. Increasing evidence suggests that inflammatory response is a double-edged sword, as it not only exacerbates secondary brain injury in the acute stage of stroke but also beneficially contributes to brain recovery after stroke. In this article, we provide an overview on the role of inflammation and its mediators in acute ischemic stroke. We discuss various pro-inflammatory and anti-inflammatory responses in different phases after ischemic stroke and the possible reasons for their failures in clinical trials. Undoubtedly, there is still much to be done in order to translate promising pre-clinical findings into clinical practice. A better understanding of the dynamic balance between pro- and anti-inflammatory responses and identifying the discrepancies between pre-clinical studies and clinical trials may serve as a basis for designing effective therapies. PMID:24006091
Kerasnoudis, Antonios; Pitarokoili, Kallia; Behrendt, Volker; Gold, Ralf; Yoon, Min-Suk
2015-06-01
The aim of this study was to evaluate whether a nerve ultrasound score (Bochum ultrasound score, BUS), clinical, and electrophysiological parameters could distinguish subacute chronic (CIDP) from acute inflammatory demyelinating polyneuropathy (AIDP). Phase 1: The charts of 35 patients with polyradiculoneuropathy were evaluated retrospectively regarding BUS, clinical, and electrophysiological parameters (A-waves, sural nerve sparing pattern, sensory ratio>1). Phase 2: All parameters were evaluated prospectively in 10 patients with subacute polyradiculoneuropathy. Phase 1: A sum score of ≥2 points in BUS and the presence of sensory symptoms were significantly more frequent in the subacute CIDP group than in the AIDP group (P<0.001).The electrophysiological parameters showed no significant changes between the 2 groups. Phase 2: BUS (83.3%; 100%;), sensory symptoms (100%; 75%), absence of autonomic nervous system dysfunction (83.3%; 75%), or bulbar palsy (83.3%; 50%) showed the best sensitivity and specificity in distinguishing subacute CIDP from AIDP. BUS is a useful diagnostic tool for distinguishing subacute CIDP from AIDP. © 2014 Wiley Periodicals, Inc.
THE ACUTE PHASE RESPONSE INDUCED BY BRONCHOSCOPY WITH LAVAGE
Bronchoscopy has been used to evaluate the inflammatory responses in vitro and in vivo. The procedure may affect acute inflammation in the lower respiratory tract. We reviewed consecutive bronchoscopies done in normal healthy non-smokers between April, 1998 and April, 2004. The...
Recio, María-Carmen; Cerdá-Nicolás, Miguel; Potterat, Olivier; Hamburger, Matthias; Ríos, José-Luis
2006-05-01
The effects of a supercritical CO2 (SFE) extract, a dichloromethane (DCM) extract from Isatis tinctoria leaf and the alkaloidal constituent tryptanthrin were studied in acute and subchronic experimental models of inflammation. The SFE and DCM extracts showed anti-inflammatory activity in the carrageenan-induced acute mouse paw oedema (ED50 values of 78 mg/kg and 165 mg/kg P. O., respectively) and in the acute tetradecanoylphorbol acetate (TPA)-induced mouse ear oedema in oral (62% and 32% oedema reduction at 100 and 125 mg/kg, respectively) and topical application (37% and 33% reduction of oedema at 0.5 mg/ear). In contrast, tryptanthrin showed no significant anti-inflammatory effect. The DCM extract inhibited oedema formation and neutrophil infiltration in subchronic inflammation in mice induced by repeated application of TPA. The extract showed activity after oral and topical administration by reducing the various parameters of the inflammatory response. The DCM extract (1 mg/ear) inhibited the delayed-type hypersensitivity (DTH) reaction induced by application of dinitrofluorobenzene (DNFB) after topical application. The response during the induction phase (24 h) was decreased by 48%, and the inflammatory phase (48 to 96 h) was reduced by 53 to 56%. The extract had no effect in this model when administered orally. The DCM extract (200 mg/kg P. O.) inhibited the acetic acid-induced writhing by 49%.
Nogueira-Paiva, Nívia Carolina; Fonseca, Kátia da Silva; Vieira, Paula Melo de Abreu; Diniz, Lívia Figueiredo; Caldas, Ivo Santana; Moura, Sandra Aparecida Lima de; Veloso, Vanja Maria; Guedes, Paulo Marcos da Matta; Tafuri, Washington Luiz; Bahia, Maria Terezinha; Carneiro, Cláudia Martins
2014-02-01
Chagasic megaoesophagus and megacolon are characterised by motor abnormalities related to enteric nervous system lesions and their development seems to be related to geographic distribution of distinct Trypanosoma cruzi subpopulations. Beagle dogs were infected with Y or Berenice-78 (Be-78) T. cruzi strains and necropsied during the acute or chronic phase of experimental disease for post mortem histopathological evaluation of the oesophagus and colon. Both strains infected the oesophagus and colon and caused an inflammatory response during the acute phase. In the chronic phase, inflammatory process was observed exclusively in the Be-78 infected animals, possibly due to a parasitism persistent only in this group. Myenteric denervation occurred during the acute phase of infection for both strains, but persisted chronically only in Be-78 infected animals. Glial cell involvement occurred earlier in animals infected with the Y strain, while animals infected with the Be-78 strain showed reduced glial fibrillary acidic protein immunoreactive area of enteric glial cells in the chronic phase. These results suggest that although both strains cause lesions in the digestive tract, the Y strain is associated with early control of the lesion, while the Be-78 strain results in progressive gut lesions in this model.
Herrera, Miguel F; Pantoja, Juan Pablo; Velázquez-Fernández, David; Cabiedes, Javier; Aguilar-Salinas, Carlos; García-García, Eduardo; Rivas, Alfredo; Villeda, Christian; Hernández-Ramírez, Diego F; Dávila, Andrea; Zaraín, Aarón
2010-07-01
To assess the additional effect of sudden visceral fat reduction by omentectomy on metabolic syndrome, acute-phase reactants, and inflammatory mediators in patients with grade III obesity (G-III O) undergoing laparoscopic Roux-en-Y gastric bypass (LRYGB). Twenty-two patients were randomized into two groups, LRYGB alone or with omentectomy. Levels of interleukin-6, C-reactive protein, tumor necrosis factor-alpha, leptin, adiponectin, glucose, total cholesterol, HDL cholesterol, LDL cholesterol, and triglycerides, as well as clinical characteristics, were evaluated before surgery and at 1, 3, 6, and 12 months after surgery. Results were compared between groups. Baseline characteristics were comparable in both groups. Mean operative time was significantly higher in the group of patients who underwent omentectomy (P < 0.001). Median weight of the omentum was 795 +/- 341 g. In one patient, a duodenal perforation occurred at the time of omentectomy. BMI, blood pressure, glucose, total cholesterol, LDL, and triglycerides significantly improved in both groups at 1, 3, 6, and 12 months of follow-up when compared with basal values. However, there were no consistent statistically significant differences among the groups in terms of metabolic syndrome components, acute-phase reactants, and inflammatory mediators. Omentectomy does not have an ancillary short-term significant impact on the components of metabolic syndrome and does not induce important changes in the inflammatory mediators in patients undergoing LRYGB. Operative time is more prolonged when omentectomy is performed.
Modification of acute and late-phase allergic responses to ovalbumin with lipopolysaccharide.
Tulic, Mark K; Holt, Patrick G; Sly, Peter D
2002-10-01
We have previously shown that lipopolysaccharide (LPS) exposure in sensitised animals 18 h after ovalbumin (OVA) challenge inhibits OVA-induced airway hyper-responsiveness (AHR). In the present study, we investigated the effect of LPS on OVA-induced acute and late-phase allergic responses in sensitised rats when challenged with OVA. Rats were sensitised with OVA and 11 days later challenged with 1% OVA in the presence or absence of LPS (0.5-50 microg/ml) given in the same nebulizer. Acute responses to OVA were measured each minute for 30 min after challenge. In a separate group of animals, late-phase responses to OVA were determined at 24 h. At the end of each study, Evans blue dye was injected and animals sacrificed 30 min later. Bronchoalveolar lavage was obtained to monitor inflammatory cell migration and microvascular leakage. OVA challenge in sensitised animals produced an acute response with changes in lung mechanics peaking 10.0 +/- 0.9 min after OVA and returning to baseline within 30 min. This was followed 24 h later by increased responses to methacholine chloride (MCh), inflammatory cell influx and increased Evans blue leakage into the lungs. Presence of 5 or 50 microg/ml LPS in the nebulizer during OVA challenge altered the kinetics of the acute-phase response, with an immediate decrease in lung function (time to peak decreased from 10.3 +/- 1.2 to 1.8 +/- 0.2 and 2.2 +/- 0.3 min, respectively: p < 0.001, n = 6) and a dose-dependent attenuation of late-phase AHR, cellular influx (n = 5, p < 0.001) and Evans blue leakage (n = 5, p < 0.001) at 24 h. In summary, co-administration of OVA with LPS modifies both the acute and late-phase responses to the allergen, inducing an earlier acute change in lung function and a dose-dependent inhibition of late-phase responses to the allergen. Copyright 2002 S. Karger AG, Basel
The acute-phase response impairs host defence against Enterococcus faecium peritonitis
Leendertse, Masja; Willems, Rob J L; Giebelen, Ida A J; van den Pangaart, Petra S; Bonten, Marc J M; van der Poll, Tom
2009-01-01
Enterococcus faecium is an emerging pathogen that causes infections in hospitalized patients with various co-morbid diseases. These underlying diseases are often associated with an acute-phase response that renders patients vulnerable to nosocomial infections. To study the influence of the acute-phase response induced by sterile tissue injury on host defence against E. faecium, mice were injected subcutaneously with either turpentine or casein 1 day before intraperitoneal infection with E. faecium. Control mice were subcutaneously injected with saline or sodium bicarbonate, respectively. Turpentine and casein induced an acute-phase response as reflected by increases in the plasma concentrations of interleukin-6, serum amyloid P and C3. A pre-existent acute-phase response in mice was associated with a strongly reduced capacity to clear E. faecium, resulting in prolonged bacteraemia for several days. The inflammatory response to E. faecium was impaired in mice with an acute-phase response, as shown by reduced capacity to mount a neutrophilic leucocytosis in peripheral blood and by decreased local cytokine concentrations. These data indicate that the acute-phase response impairs host defence against E. faecium, suggesting that this condition may contribute to the increased vulnerability of critically ill patients to enterococcal infections. PMID:19175794
van Rijn, Bas B; Bruinse, Hein W; Veerbeek, Jan H; Post Uiterweer, Emiel D; Koenen, Steven V; van der Bom, Johanna G; Rijkers, Ger T; Roest, Mark; Franx, Arie
2016-02-01
Preeclampsia is an inflammatory-mediated hypertensive disorder of pregnancy and seems to be an early indicator of increased cardiovascular risk, but mechanisms underlying this association are unclear. In this study, we identified levels of circulating inflammatory markers and dynamic changes in the systemic acute-phase response in 44 women with a history of severe early-onset preeclampsia, compared with 29 controls with only uneventful pregnancies at 1.5 to 3.5 years postpartum. Models used were in vivo seasonal influenza vaccination and in vitro whole-blood culture with T-cell stimulants and the toll-like receptor-4 ligand lipopolysaccharide. Outcome measures were C-reactive protein, interleukin-6 (IL-6), IL-18, fibrinogen, myeloperoxidase, and a panel of 13 cytokines representative of the innate and adaptive inflammatory response, in addition to established cardiovascular markers. The in vivo acute-phase response was higher for women with previous preeclampsia than that for controls without such a history, although only significant for C-reactive protein (P=0.04). Preeclampsia was associated with higher IL-1β (P<0.05) and IL-8 (P<0.01) responses to T-cell activation. Hierarchical clustering revealed 2 distinct inflammatory clusters associated with previous preeclampsia: an adaptive response cluster associated with increased C-reactive protein and IL-6 before and after vaccination, increased weight, and low high-density lipoprotein cholesterol; and a toll-like receptor-4 mediated the cluster associated with increased IL-18 before and after vaccination but not associated with other cardiovascular markers. Furthermore, we found interactions between previous preeclampsia, common TLR4 gene variants, and the IL-18 response to vaccination. In conclusion, preeclampsia is associated with alterations in the inflammatory response postpartum mostly independent of other established cardiovascular risk markers. © 2015 American Heart Association, Inc.
Histopathology of Lyme arthritis in LSH hamsters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hejka, A.; Schmitz, J.L.; England, D.M.
1989-05-01
The authors studied the histopathologic evolution of arthritis in nonirradiated and irradiated hamsters infected with Borrelia burgdorferi. Nonirradiated hamsters injected in the hind paws with B. burgdorferi developed an acute inflammatory reaction involving the synovium, periarticular soft tissues, and dermis. This acute inflammatory reaction was short-lived and was replaced by a mild chronic synovitis as the number of detectable spirochetes in the synovium, periarticular soft tissues, and perineurovascular areas diminished. Exposing hamsters to radiation before inoculation with B. burgdorferi exacerbated and prolonged the acute inflammatory phase. Spirochetes also persisted longer in the periarticular soft tissues. A major histopathologic finding wasmore » destructive and erosive bone changes of the hind paws, which resulted in deformation of the joints. These studies should be helpful in defining the immune mechanism participating in the onset, progression, and resolution of Lyme arthritis.« less
Barrachina, Laura; Remacha, Ana Rosa; Soler, Lourdes; García, Natalia; Romero, Antonio; Vázquez, Francisco José; Vitoria, Arantza; Álava, María Ángeles; Lamprave, Fermín; Rodellar, Clementina
2016-12-01
Acute phase proteins are useful inflammatory markers in horses. Haptoglobin (Hp) serum level is increased in horses undergoing different inflammatory processes, including arthritis. However, Hp concentration has not been assessed in inflammatory synovial fluid (SF). The aim of the present study was to investigate the Hp response in serum and SF in horses undergoing experimentally induced arthritis. For this purpose, serum and SF samples were collected from 12 animals before amphotericin B-induced arthritis was created (T0, healthy) and 15days after the lesion induction (T1, joint inflammation) and Hp was determined by single radial immunodiffusion. The Hp increase between T0 and T1 was significant in both serum and SF, and serum Hp concentration at T0 was significantly higher than in SF, but significant differences were not found at T1, indicating a higher Hp increase in SF. A significant positive correlation for Hp concentration between serum and SF samples was found. These results highlight the potential usefulness of Hp as inflammatory marker in horses, showing for the first time the increase of Hp in SF from joint inflammation in the horse. Copyright © 2016 Elsevier B.V. All rights reserved.
1999-12-01
1 alpha (MTP-la), macrophage inflammatory protein-2 (MIP-2), and acute phase reactive proteins ( Sabourin and Casillas, 1998; Casillas et ah, 1997...14. Sabourin , C.L.K., and R.P. Casillas. 1998. Inflammatory Gene Expression in Sulfur Mustard Exposed Mouse Skin. The Toxicologist, Vol. 42. 15
Liu, Tie Fu; Vachharajani, Vidula T; Yoza, Barbara K; McCall, Charles E
2012-07-27
The early initiation phase of acute inflammation is anabolic and primarily requires glycolysis with reduced mitochondrial glucose oxidation for energy, whereas the later adaptation phase is catabolic and primarily requires fatty acid oxidation for energy. We reported previously that switching from the early to the late acute inflammatory response following TLR4 stimulation depends on NAD(+) activation of deacetylase sirtuin 1 (SirT1). Here, we tested whether NAD(+) sensing by sirtuins couples metabolic polarity with the acute inflammatory response. We found in TLR4-stimulated THP-1 promonocytes that SirT1 and SirT 6 support a switch from increased glycolysis to increased fatty acid oxidation as early inflammation converts to late inflammation. Glycolysis enhancement required hypoxia-inducing factor-1α to up-regulate glucose transporter Glut1, phospho-fructose kinase, and pyruvate dehydrogenase kinase 1, which interrupted pyruvate dehydrogenase and reduced mitochondrial glucose oxidation. The shift to late acute inflammation and elevated fatty acid oxidation required peroxisome proliferator-activated receptor γ coactivators PGC-1α and β to increase external membrane CD36 and fatty acid mitochondrial transporter carnitine palmitoyl transferase 1. Metabolic coupling between early and late responses also required NAD(+) production from nicotinamide phosphoryltransferase (Nampt) and activation of SirT6 to reduce glycolysis and SirT1 to increase fatty oxidation. We confirmed similar shifts in metabolic polarity during the late immunosuppressed stage of human sepsis blood leukocytes and murine sepsis splenocytes. We conclude that NAD(+)-dependent bioenergy shifts link metabolism with the early and late stages of acute inflammation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okunieff, Paul; Xu Jianhua; Hu Dongping
2006-07-01
Purpose: To determine whether curcumin ameliorates acute and chronic radiation skin toxicity and to examine the expression of inflammatory cytokines (interleukin [IL]-1, IL-6, IL-18, IL-1Ra, tumor necrosis factor [TNF]-{alpha}, and lymphotoxin-{beta}) or fibrogenic cytokines (transforming growth factor [TGF]-{beta}) during the same acute and chronic phases. Methods and Materials: Curcumin was given intragastrically or intraperitoneally to C3H/HeN mice either: 5 days before radiation; 5 days after radiation; or both 5 days before and 5 days after radiation. The cutaneous damage was assessed at 15-21 days (acute) and 90 days (chronic) after a single 50 Gy radiation dose was given to themore » hind leg. Skin and muscle tissues were collected for measurement of cytokine mRNA. Results: Curcumin, administered before or after radiation, markedly reduced acute and chronic skin toxicity in mice (p < 0.05). Additionally, curcumin significantly decreased mRNA expression of early responding cytokines (IL-1 IL-6, IL-18, TNF-{alpha}, and lymphotoxin-{beta}) and the fibrogenic cytokine, TGF-{beta}, in cutaneous tissues at 21 days postradiation. Conclusion: Curcumin has a protective effect on radiation-induced cutaneous damage in mice, which is characterized by a downregulation of both inflammatory and fibrogenic cytokines in irradiated skin and muscle, particularly in the early phase after radiation. These results may provide the molecular basis for the application of curcumin in clinical radiation therapy.« less
Huarcaya, Erick; Best, Ivan; Rodriguez-Tafur, Juan; Maguiña, Ciro; Solórzano, Nelson; Menacho, Julio; Lopez De Guimaraes, Douglas; Chauca, Jose; Ventosilla, Palmira
2011-01-01
Human Bartonellosis has an acute phase characterized by fever and hemolytic anemia, and a chronic phase with bacillary angiomatosis-like lesions. This cross-sectional pilot study evaluated the immunology patterns using pre- and post-treatment samples in patients with Human Bartonellosis. Patients between five and 60 years of age, from endemic areas in Peru, in the acute or chronic phases were included. In patients in the acute phase of Bartonellosis a state of immune peripheral tolerance should be established for persistence of the infection. Our findings were that elevation of the anti-inflammatory cytokine IL-10 and numeric abnormalities of CD4(+) and CD8(+) T-Lymphocyte counts correlated significantly with an unfavorable immune state. During the chronic phase, the elevated levels of IFN-γ and IL-4 observed in our series correlated with previous findings of endothelial invasion of B. henselae in animal models.
Delgado, Jonathan; Terrón, María del Pilar; Garrido, María; Barriga, Carmen; Paredes, Sergio Damián; Espino, Javier
2012-01-01
Abstract A chronic subclinical inflammatory status that coexists with immune dysfunction is commonly found in the elderly population. Consumption of foods rich in antioxidants (e.g., cherries) is an attractive strategy to reduce risk from chronic diseases. Based on previous studies showing the antioxidant effect of a Jerte Valley cherry derivative product in humans, the objective of this work was to evaluate the effect of the intake of a Jerte Valley cherry-based beverage on inflammatory load in both young and old ringdoves (Streptopelia risoria). To this purpose, circulating levels of pro-inflammatory and anti-inflammatory cytokines as well as serum levels of different acute-phase proteins were measured before and after a 10-day treatment with the Jerte Valley cherry-based beverage. Thus, the 10-day treatment with the cherry-based beverage modulated the balance of pro- and anti-inflammatory cytokines in both young and old ringdoves by down-regulating the levels of pro-inflammatory cytokines (interleukin [IL]-1β, tumor necrosis factor-α, and interferon-γ) and up-regulating the levels of anti-inflammatory cytokines (IL-4, IL-2, and IL-10). Moreover, the 10-day treatment with the Jerte Valley cherry-based product reduced the levels of several proteins involved in acute-phase responses, such as C-reactive protein, haptoglobin, α2-macroglobulin, and serum amyloid P component. On the other hand, old birds showed imbalanced levels of inflammatory markers toward a pro-inflammatory status, thereby underlining the fact that aging is usually accompanied by systemic inflammation and inflammation-related chronic diseases. To sum up, the data suggest a potential health benefit by consuming the cherry-based beverage, especially in aged populations, through their anti-inflammatory properties. PMID:22846077
Study on analgesic and anti-inflammatory properties of Cordia myxa fruit hydro-alcoholic extract.
Ranjbar, Mohammadmehdi; Varzi, Hossein Najafzadeh; Sabbagh, Atefeh; Bolooki, Adeleh; Sazmand, Alireza
2013-12-15
Cordia myxa is a plant which is used in tropical regions of the world. Analgesic and anti-inflammatory effect of fruit of this medicinal plant was investigated in mice. Hydro-alcoholic extract of it was prepared by maceration method. Formalin test was conducted in six groups of mice (6 animals in each group) and acetic acid test in another six groups (6 mice). Groups one to six in each test were administered normal saline, oral indomethacin, intraperitoneal tramadol, 100 mg kg(-1) oral extract, 200 mg kg(-1) oral extract and 100 mg kg(-1) intraperitoneal extract, respectively. The duration of foot lickings were calculated in formalin- administered (1st) group within min 0 to 5 (acute phase) and 15 to 25 (chronic phase). Acetic acid-induced writhings were counted within 10 min in the 2nd group. The results showed that hydro-alcoholic extract of Cordia myxa fruit was considerably effective in formalin test. Also, analgesic and anti-inflammatory properties of this plant's fruit in both acute and chronic phase are somewhat similar to these properties in the study on animal model of experimental colitis.
Rodrigues-da-Silva, Rodrigo Nunes; Lima-Junior, Josué da Costa; Fonseca, Bruna de Paula Fonseca e; Antas, Paulo Renato Zuquim; Baldez, Arlete; Storer, Fabio Luiz; Santos, Fátima; Banic, Dalma Maria; Oliveira-Ferreira, Joseli de
2014-04-01
Haematological and cytokine alterations in malaria are a broad and controversial subject in the literature. However, few studies have simultaneously evaluated various cytokines in a single patient group during the acute and convalescent phases of infection. The aim of this study was to sequentially characterise alterations in haematological patters and circulating plasma cytokine and chemokine levels in patients infected with Plasmodium vivax or Plasmodium falciparum from a Brazilian endemic area during the acute and convalescent phases of infection. During the acute phase, thrombocytopaenia, eosinopaenia, lymphopaenia and an increased number of band cells were observed in the majority of the patients. During the convalescent phase, the haematologic parameters returned to normal. During the acute phase, P. vivax and P. falciparum patients had significantly higher interleukin (IL)-6, IL-8, IL-17, interferon-γ, tumour necrosis factor (TNF)-α, macrophage inflammatory protein-1β and granulocyte-colony stimulating factor levels than controls and maintained high levels during the convalescent phase. IL-10 was detected at high concentrations during the acute phase, but returned to normal levels during the convalescent phase. Plasma IL-10 concentration was positively correlated with parasitaemia in P. vivax and P. falciparum-infected patients. The same was true for the TNF-α concentration in P. falciparum-infected patients. Finally, the haematological and cytokine profiles were similar between uncomplicated P. falciparum and P. vivax infections.
Hochepied, T; Wullaert, A; Berger, F G; Baumann, H; Brouckaert, P; Steidler, L; Libert, C
2002-09-01
alpha(1)-Acid glycoprotein (alpha(1)-AGP) is an acute phase protein in most mammalian species whose concentration rises 2-5-fold during an acute phase reaction. Its serum concentration has often been used as a marker of disease, including inflammatory bowel disease (IBD). High alpha(1)-AGP levels were found to have a prognostic value for an increased risk of relapse in IBD. To investigate a possible role for increased serum levels of alpha(1)-AGP in the development of IBD. Dextran sodium sulphate (DSS) 2% was added to the drinking water of transgenic mice, overexpressing the rat alpha(1)-AGP gene, to induce acute colitis, thus mimicking the conditions of relapse. Clinical parameters, inflammatory parameters, and histological analyses on colon sections were performed. Homozygous alpha(1)-AGP-transgenic mice started losing weight and showed rectal bleeding significantly earlier than heterozygous transgenic or wild-type mice. Survival time of homozygous transgenic mice was significantly shorter compared with heterozygous and wild-type mice. The higher susceptibility of homozygous alpha(1)-AGP-transgenic mice to DSS induced acute colitis was also reflected in higher local myeloperoxidase levels, higher inflammation scores of the colon, and higher systemic levels of interleukin 6 and serum amyloid P component. Local inflammatory parameters were also significantly different in heterozygous transgenic mice compared with wild-type mice, indicating a local dosage effect. In homozygous transgenic mice, significantly higher amounts of bacteria were found in organs but IgA levels were only slightly lower than those of control mice. Sufficiently high serum levels of alpha(1)-AGP result in a more aggressive development of acute colitis.
Belmonte, Liliana; Coëffier, Moïse; Le Pessot, Florence; Miralles-Barrachina, Olga; Hiron, Martine; Leplingard, Antony; Lemeland, Jean-François; Hecketsweiler, Bernadette; Daveau, Maryvonne; Ducrotté, Philippe; Déchelotte, Pierre
2007-05-28
To evaluate the effect of glutamine on intestinal mucosa integrity, glutathione stores and acute phase response in protein-depleted rats during an inflammatory shock. Plasma acute phase proteins (APP), jejunal APP mRNA levels, liver and jejunal glutathione concentrations were measured before and one, three and seven days after turpentine injection in 4 groups of control, protein-restricted, protein-restricted rats supplemented with glutamine or protein powder. Bacterial translocation in mesenteric lymph nodes and intestinal morphology were also assessed. Protein deprivation and turpentine injection significantly reduced jejunal villus height, and crypt depths. Mucosal glutathione concentration significantly decreased in protein-restricted rats. Before turpentine oil, glutamine supplementation restored villus heights and glutathione concentration (3.24 +/- 1.05 vs 1.72 +/- 0.46 mumol/g tissue, P<0.05) in the jejunum, whereas in the liver glutathione remained low. Glutamine markedly increased jejunal alpha1-acid glycoprotein mRNA level after turpentine oil but did not affect its plasma concentration. Bacterial translocation in protein-restricted rats was not prevented by glutamine or protein powder supplementation. Glutamine restored gut glutathione stores and villus heights in malnourished rats but had no preventive effect on bacterial translocation in our model.
Acute versus chronic phase mechanisms in a rat model of CRPS.
Wei, Tzuping; Guo, Tian-Zhi; Li, Wen-Wu; Kingery, Wade S; Clark, John David
2016-01-19
Tibia fracture followed by cast immobilization in rats evokes nociceptive, vascular, epidermal, and bone changes resembling complex regional pain syndrome (CRPS). In most cases, CRPS has three stages. Over time, this acute picture, allodynia, warmth, and edema observed at 4 weeks, gives way to a cold, dystrophic but still painful limb. In the acute phase (at 4 weeks post fracture), cutaneous immunological and NK1-receptor signaling mechanisms underlying CRPS have been discovered; however, the mechanisms responsible for the chronic phase are still unknown. The purpose of this study is to understand the mechanisms responsible for the chronic phases of CRPS (at 16 weeks post fracture) at both the peripheral and central levels. We used rat tibial fracture/cast immobilization model of CRPS to study molecular, vascular, and nociceptive changes at 4 and 16 weeks post fracture. Immunoassays and Western blotting were carried out to monitor changes in inflammatory response and NK1-receptor signaling in the skin and spinal cord. Skin temperature and thickness were measured to elucidate vascular changes, whereas von Frey testing and unweighting were carried out to study nociceptive changes. All data were analyzed by one-way analysis of variance (ANOVA) followed by Neuman-Keuls multiple comparison test to compare among all cohorts. In the acute phase (at 4 weeks post fracture), hindpaw allodynia, unweighting, warmth, edema, and/or epidermal thickening were observed among 90 % fracture rats, though by 16 weeks (chronic phase), only the nociceptive changes persisted. The expression of the neuropeptide signaling molecule substance P (SP), NK1 receptor, inflammatory mediators TNFα, IL-1β, and IL-6 and nerve growth factor (NGF) were elevated at 4 weeks in sciatic nerve and/or skin, returning to normal levels by 16 weeks post fracture. The systemic administration of a peripherally restricted IL-1 receptor antagonist (anakinra) or of anti-NGF inhibited nociceptive behaviors at 4 weeks but not 16 weeks. However, spinal levels of NK1 receptor, TNFα, IL-1β, and NGF were elevated at 4 and 16 weeks, and intrathecal injection of an NK1-receptor antagonist (LY303870), anakinra, or anti-NGF each reduced nociceptive behaviors at both 4 and 16 weeks. These results demonstrate that tibia fracture and immobilization cause peripheral changes in neuropeptide signaling and inflammatory mediator production acutely, but central spinal changes may be more important for the persistent nociceptive changes in this CRPS model.
Nociceptor Sensitization Depends on Age and Pain Chronicity123
Dodge, Amanda K.
2016-01-01
Abstract Peripheral inflammation causes mechanical pain behavior and increased action potential firing. However, most studies examine inflammatory pain at acute, rather than chronic time points, despite the greater burden of chronic pain on patient populations, especially aged individuals. Furthermore, there is disagreement in the field about whether primary afferents contribute to chronic pain. Therefore, we sought to evaluate the contribution of nociceptor activity to the generation of pain behaviors during the acute and chronic phases of inflammation in both young and aged mice. We found that both young (2 months old) and aged (>18 months old) mice exhibited prominent pain behaviors during both acute (2 day) and chronic (8 week) inflammation. However, young mice exhibited greater behavioral sensitization to mechanical stimuli than their aged counterparts. Teased fiber recordings in young animals revealed a twofold mechanical sensitization in C fibers during acute inflammation, but an unexpected twofold reduction in firing during chronic inflammation. Responsiveness to capsaicin and mechanical responsiveness of A-mechanonociceptor (AM) fibers were also reduced chronically. Importantly, this lack of sensitization in afferent firing during chronic inflammation occurred even as these inflamed mice exhibited continued behavioral sensitization. Interestingly, C fibers from inflamed aged animals showed no change in mechanical firing compared with controls during either the acute or chronic inflammatory phases, despite strong behavioral sensitization to mechanical stimuli at these time points. These results reveal the following two important findings: (1) nociceptor sensitization to mechanical stimulation depends on age and the chronicity of injury; and (2) maintenance of chronic inflammatory pain does not rely on enhanced peripheral drive. PMID:26866058
The roles of special proresolving mediators in pain relief.
Zhang, Lan-Yu; Jia, Ming-Rui; Sun, Tao
2018-02-08
The resolution of acute inflammation, once thought to be a passive process, is now recognized as an active one. The productions of endogenous special proresolving mediators (SPMs) are involved in this process. SPMs, including lipoxins, resolvins, protectins, and maresins, are endogenous lipid mediators generated from ω-6 arachidonic acid or ω-3 poly-unsaturated fatty acids during the resolution phase of acute inflammation. They have potent anti-inflammatory and proresolving actions in various inflammatory disorders. Due to the potent proresolving and anti-inflammatory effects, SPMs are also used for pain relief. This review focuses on the mechanisms by which SPMs act on their respective G-protein-coupled receptors in immune cells and nerve cells to normalize pain via regulating inflammatory mediators, transient receptor potential ion channels, and central sensitization. SPMs may offer novel therapeutic approaches for preventing and treating pain conditions associated with inflammation.
Blocking NF-κB: an inflammatory issue.
Rahman, Arshad; Fazal, Fabeha
2011-11-01
The nuclear factor (NF)-κB is considered the master regulator of inflammatory responses. Studies in mouse models have established this transcription factor as an important mediator of many inflammatory disease states, including pulmonary diseases such as acute lung injury and acute respiratory distress syndrome. Endothelial cells provide the first barrier for leukocytes migrating to the inflamed sites and hence offer an attractive cellular context for targeting NF-κB for treatment of these diseases. However, recent studies showing that NF-κB also plays an important role in resolution phase of inflammation and in tissue repair and homeostasis have challenged the view of therapeutic inhibition of NF-κB. This article reviews the regulation of NF-κB in the context of endothelial cell signaling and provides a perspective on why "dampening" rather than "abolishing" NF-κB activation may be a safe and effective treatment strategy for inflammation-associated pulmonary and other inflammatory diseases.
Liu, Quan-Sheng; Nilsen-Hamilton, Marit; Xiong, Si-Dong
2003-10-25
SIP24/24p3 is a secreted murine acute phase protein which has been speculated to play an anti-inflammatory role in vivo. Recently SIP24/24p3 has been found to be able to specifically induce apoptosis in leukocytes. By using (35)S metabolic labeling method, we studied the regulation of SIP24/24p3 by glucocorticoid and pro-inflammatory cytokines IL-6 and TNF-alpha in cultured Balb/c 3T3 and BNL cells. The following results were observed: (1) dexamethasone induced the expression of SIP24/24p3 in both Balb/c 3T3 and BNL cells, the induction was more significant in BNL cells; (2) dexamethasone and IL-6 synergistically induced the expression of SIP24/24p3 in both Balb/c 3T3 and BNL cells; (3) in Balb/c 3T3 cells dexamethasone and TNF-alpha acted synergistically to induce the expression of SIP24/24p3, whereas in BNL cells dexamethasone and TNF-alpha induced the expression of SIP24/24p3 in an additive manner; (4) dexamethasone and IL-6/TNF-alpha acted synergistically in Balb/c 3T3 cells and additively in BNL cells to induce the expression of SIP24/24p3. The inducibility of SIP24/24p3 by multiple factors will help to explain its highly specific expression in vivo. The difference in the expression patterns of SIP24/24p3 in different cell types is also suggestive to its expression and regulation in hepatic and extrahepatic tissues. Finally, the fact that SIP24/24p3 protein can be induced by both pro-inflammatory as well as anti-inflammatory factors is indicative of the important role of SIP24/24p3 in the entire acute phase response process.
Kim, Sam-Moon; Neuendorff, Nichole; Chapkin, Robert S; Earnest, David J
2016-05-01
Inflammatory signaling may play a role in high-fat diet (HFD)-related circadian clock disturbances that contribute to systemic metabolic dysregulation. Therefore, palmitate, the prevalent proinflammatory saturated fatty acid (SFA) in HFD and the anti-inflammatory, poly-unsaturated fatty acid (PUFA), docosahexaenoic acid (DHA), were analyzed for effects on circadian timekeeping and inflammatory responses in peripheral clocks. Prolonged palmitate, but not DHA, exposure increased the period of fibroblast Bmal1-dLuc rhythms. Acute palmitate treatment produced phase shifts of the Bmal1-dLuc rhythm that were larger in amplitude as compared to DHA. These phase-shifting effects were time-dependent and contemporaneous with rhythmic changes in palmitate-induced inflammatory responses. Fibroblast and differentiated adipocyte clocks exhibited cell-specific differences in the time-dependent nature of palmitate-induced shifts and inflammation. DHA and other inhibitors of inflammatory signaling (AICAR, cardamonin) repressed palmitate-induced proinflammatory responses and phase shifts of the fibroblast clock, suggesting that SFA-mediated inflammatory signaling may feed back to modulate circadian timekeeping in peripheral clocks. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Knubel, Carolina P.; Martínez, Fernando F.; Acosta Rodríguez, Eva V.; Altamirano, Andrés; Rivarola, Héctor W.; Diaz Luján, Cintia; Fretes, Ricardo E.; Cervi, Laura; Motrán, Claudia C.
2011-01-01
Background 3-Hydroxy Kynurenine (3-HK) administration during the acute phase of Trypanosoma. cruzi infection decreases the parasitemia of lethally infected mice and improves their survival. However, due to the fact that the treatment with 3-HK is unable to eradicate the parasite, together with the known proapoptotic and immunoregulatory properties of 3-HK and their downstream catabolites, it is possible that the 3-HK treatment is effective during the acute phase of the infection by controlling the parasite replication, but at the same time suppressed the protective T cell response before pathogen clearance worsening the chronic phase of the infection. Therefore, in the present study, we investigated the effect of 3-HK treatment on the development of chronic Chagas’ disease. Principal Findings In the present study, we treated mice infected with T. cruzi with 3-HK at day five post infection during 5 consecutive days and investigated the effect of this treatment on the development of chronic Chagas disease. Cardiac functional (electrocardiogram) and histopathological studies were done at 60 dpi. 3-HK treatment markedly reduced the incidence and the severity of the electrocardiogram alterations and the inflammatory infiltrates and fibrosis in heart and skeletal muscle. 3-HK treatment modulated the immune response at the acute phase of the infection impairing the Th1- and Th2-type specific response and inducing TGF-β-secreting cells promoting the emergence of regulatory T cells and long-term specific IFN-γ secreting cells. 3-HK in vitro induced regulatory phenotype in T cells from T. cruzi acutely infected mice. Conclusions Our results show that the early 3-HK treatment was effective in reducing the cardiac lesions as well as altering the pattern of the immune response in experimental Chagas’ disease. Thus, we propose 3-HK as a novel therapeutic treatment able to control both the parasite replication and the inflammatory response. PMID:22028903
Young, Erin E.; Prentice, Thomas W.; Satterlee, Danielle; McCullough, Heath; Sieve, Amy N.; Johnson, Robin R.; Welsh, Thomas H.; Welsh, C. Jane R.; Meagher, Mary W.
2008-01-01
Previous research has shown that chronic restraint stress exacerbates Theiler’s virus infection, a murine model for CNS inflammation and multiple sclerosis. The current set of experiments was designed to evaluate the potential role of glucocorticoids in the deleterious effects of restraint stress on acute CNS inflammatory disease. Exposure to chronic restraint stress resulted in elevated levels of corticosterone as well as increased clinical scores and weight loss (Experiment 1). In addition, corticosterone administration alone exacerbated behavioral signs of TMEV-induced sickness (i.e. decreased body weight, increased symptoms of encephalitis, and increased mortality) and reduced inflammation in the CNS (Experiment 2). Infected subjects receiving exogenous corticosterone showed exacerbation of acute phase measures of sickness and severe mortality as well as decreased viral clearance from CNS (Experiment 3). These findings indicate that corticosterone exposure alone is sufficient to exacerbate acute CNS inflammatory disease. PMID:18538803
Cytokine expression during early and late phase of acute Puumala hantavirus infection
2011-01-01
Background Hantaviruses of the family Bunyaviridae are emerging zoonotic pathogens which cause hemorrhagic fever with renal syndrome (HFRS) in the Old World and hantavirus pulmonary syndrome (HPS) in the New World. An immune-mediated pathogenesis is discussed for both syndromes. The aim of our study was to investigate cytokine expression during the course of acute Puumala hantavirus infection. Results We retrospectively studied 64 patients hospitalised with acute Puumala hantavirus infection in 2010 during a hantavirus epidemic in Germany. Hantavirus infection was confirmed by positive anti-hantavirus IgG/IgM. Cytokine expression of IL-2, IL-5, IL-6, IL-8, IL-10, IFN-γ, TNF-α and TGF-β1 was analysed by ELISA during the early and late phase of acute hantavirus infection (average 6 and 12 days after onset of symptoms, respectively). A detailed description of the demographic and clinical presentation of severe hantavirus infection requiring hospitalization during the 2010 hantavirus epidemic in Germany is given. Acute hantavirus infection was characterized by significantly elevated levels of IL-2, IL-6, IL-8, TGF-β1 and TNF-α in both early and late phase compared to healthy controls. From early to late phase of disease, IL-6, IL-10 and TNF-α significantly decreased whereas TGF-β1 levels increased. Disease severity characterized by elevated creatinine and low platelet counts was correlated with high pro-inflammatory IL-6 and TNF-α but low immunosuppressive TGF-β1 levels and vice versa . Conclusion High expression of cytokines activating T-lymphocytes, monocytes and macrophages in the early phase of disease supports the hypothesis of an immune-mediated pathogenesis. In the late phase of disease, immunosuppressive TGF-β1 level increase significantly. We suggest that delayed induction of a protective immune mechanism to downregulate a massive early pro-inflammatory immune response might contribute to the pathologies characteristic of human hantavirus infection. PMID:22085404
[Advances in the pathophysiology and management of infections in the acute phase of stroke].
Salat, David; Campos, Mireia; Montaner, Joan
2012-12-15
Infection in the acute phase of stroke has been identified as an independent predictor of poor outcome, both in the short and intermediate term. Various factors raising the risk of developing an infection (exposure to multiple pathogens, disruption of the protective function of the mucous membranes and a state of relative immunosuppression) coexist during the acute phase of stroke. Several risk factors have been identified for their development (especially increasing age and stroke severity). It has been proposed that infection contributes to a worse prognosis through different mechanisms, notably the development of an inflammatory response to brain tissue (with a potential to add secondary damage to that caused by the ischemic insult). Clinical trials evaluating the prophylactic and early administration of antibiotics to reduce the incidence of infection in the acute phase of stroke have yielded inconsistent results. Immunomodulating strategies, which may provide therapeutic alternatives in the future, are currently being evaluated. Copyright © 2012 Elsevier España, S.L. All rights reserved.
Regulation of mitochondrial biogenesis and its intersection with inflammatory responses.
Cherry, Anne D; Piantadosi, Claude A
2015-04-20
Mitochondria play a vital role in cellular homeostasis and are susceptible to damage from inflammatory mediators released by the host defense. Cellular recovery depends, in part, on mitochondrial quality control programs, including mitochondrial biogenesis. Early-phase inflammatory mediator proteins interact with PRRs to activate NF-κB-, MAPK-, and PKB/Akt-dependent pathways, resulting in increased expression or activity of coactivators and transcription factors (e.g., PGC-1α, NRF-1, NRF-2, and Nfe2l2) that regulate mitochondrial biogenesis. Inflammatory upregulation of NOS2-induced NO causes mitochondrial dysfunction, but NO is also a signaling molecule upregulating mitochondrial biogenesis via PGC-1α, participating in Nfe2l2-mediated antioxidant gene expression and modulating inflammation. NO and reactive oxygen species generated by the host inflammatory response induce the redox-sensitive HO-1/CO system, causing simultaneous induction of mitochondrial biogenesis and antioxidant gene expression. Recent evidence suggests that mitochondrial biogenesis and mitophagy are coupled through redox pathways; for instance, parkin, which regulates mitophagy in chronic inflammation, may also modulate mitochondrial biogenesis and is upregulated through NF-κB. Further research on parkin in acute inflammation is ongoing. This highlights certain common features of the host response to acute and chronic inflammation, but caution is warranted in extrapolating findings across inflammatory conditions. Inflammatory mitochondrial dysfunction and oxidative stress initiate further inflammatory responses through DAMP/PRR interactions and by inflammasome activation, stimulating mitophagy. A deeper understanding of mitochondrial quality control programs' impact on intracellular inflammatory signaling will improve our approach to the restoration of mitochondrial homeostasis in the resolution of acute inflammation.
Kulkarni, S K; Mehta, A K; Kunchandy, J
1986-02-01
Clonidine (0.1-1.0 mg/kg, i.p.) exhibited anti-inflammatory activity in carrageenan-, formalin-, 5-HT- and histamine-induced paw oedema in rats. Similarly, other two alpha 2-adrenoceptor agonists, guanfacine and B-HT 920, also displayed an anti-inflammatory action in these models. The anti-inflammatory effect of all the three alpha 2-adrenoceptor agonists was reversed by yohimbine. However, prazosin failed to block the anti-inflammatory effect of clonidine. Intracerebroventricularly administered clonidine had a delayed onset of anti-inflammatory action, starting only from 60 min post carrageenan administration. This was in contrast to the systemically administered clonidine which was effective against both phases of carrageenan-induced oedema. On the other hand, irrespective of the route of administration, i.e. peripheral or central, guanfacine and B-HT 920 were effective against the early as well as against the delayed phases of the inflammatory reaction. The studies suggest that it is not the imidazoline moiety but the activation of alpha 2-adrenoceptors which is essential for the anti-inflammatory action of these agents.
Martins, D F; Turnes, B L; Cidral-Filho, F J; Bobinski, F; Rosas, R F; Danielski, L G; Petronilho, F; Santos, A R S
2016-06-02
During the last decades, the use of light-emitting diode therapy (LEDT) has increased significantly for the treatment of wound healing, analgesia and inflammatory processes. Nevertheless, scientific data on the mechanisms responsible for the therapeutic effect of LEDT are still insufficient. Thus, this study investigated the analgesic, anti-inflammatory and anti-oxidative effect of LEDT in the model of chronic inflammatory hyperalgesia. Mice injected with Complete Freund's Adjuvant (CFA) underwent behavioral, i.e. mechanical and hot hyperalgesia; determination of cytokine levels (tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), IL-10), oxidative stress markers (protein carbonyls and thiobarbituric acid reactive species (TBARS)) and antioxidant enzymes (catalase (CAT) and superoxide dismutase (SOD)). Additionally, mice were pretreated with either naloxone or fucoidin and mechanical hyperalgesia was assessed. LEDT inhibited mechanical and thermal hyperalgesia induced by CFA injection. LEDT did not reduce paw edema, neither influenced the levels of TNF-α and IL1-β; although it increased the levels of IL-10. LEDT significantly prevented TBARS increase in both acute and chronic phases post-CFA injection; whereas protein carbonyl levels were reduced only in the acute phase. LEDT induced an increase in both SOD and CAT activity, with effects observable in the acute but not in the chronic. And finally, pre-administration of naloxone or fucoidin prevented LEDT analgesic effect. These data contribute to the understanding of the neurobiological mechanisms involved in the therapeutic effect of LEDT as well as provides additional support for its use in the treatment of painful conditions of inflammatory etiology. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Coudriet, Gina M; He, Jing; Trucco, Massimo; Mars, Wendy M; Piganelli, Jon D
2010-11-02
The generation of the pro-inflammatory cytokines IL-6, TNF-α, and IL-1β fuel the acute phase response (APR). To maintain body homeostasis, the increase of inflammatory proteins is resolved by acute phase proteins via presently unknown mechanisms. Hepatocyte growth factor (HGF) is transcribed in response to IL-6. Since IL-6 production promotes the generation of HGF and induces the APR, we posited that accumulating HGF might be a likely candidate for quelling excess inflammation under non-pathological conditions. We sought to assess the role of HGF and how it influences the regulation of inflammation utilizing a well-defined model of inflammatory activation, lipopolysaccharide (LPS)-stimulation of bone marrow derived macrophages (BMM). BMM were isolated from C57BL6 mice and were stimulated with LPS in the presence or absence of HGF. When HGF was present, there was a decrease in production of the pro-inflammatory cytokine IL-6, along with an increase in the anti-inflammatory cytokine IL-10. Altered cytokine production correlated with an increase in phosphorylated GSK3β, increased retention of the phosphorylated NFκB p65 subunit in the cytoplasm, and an enhanced interaction between CBP and phospho-CREB. These changes were a direct result of signaling through the HGF receptor, MET, as effects were reversed in the presence of a selective inhibitor of MET (SU11274) or when using BMM from macrophage-specific conditional MET knockout mice. Combined, these data provide compelling evidence that under normal circumstances, HGF acts to suppress the inflammatory response.
Graham, Caroline; Thorleifson, Mullein; Stefura, William P.; Funk, Duane J.
2017-01-01
Abstract Introduction Obesity during pregnancy is associated with meta‐inflammation and an increased likelihood of clinical complications. Surgery results in intense, acute inflammatory responses in any individual. Because obese individuals exhibit constitutive inflammatory responses and high rates of Caesarian section, it is important to understand the impact of surgery in such populations. Whether more pronounced pro‐inflammatory cytokine responses and/or counterbalancing changes in anti‐inflammatory immune modulators occurs is unknown. Here we investigated innate immune capacity in vivo and in vitro in non‐obese, term‐pregnant controls versus healthy, term‐pregnant obese women (Class II, BMI 35–40). Methods Systemic in vivo induction of eleven pro‐ and anti‐inflammatory biomarkers and acute phase proteins was assessed in plasma immediately prior to and again following Caesarian section surgery. Independently, innate immune capacity was examined by stimulating freshly isolated PBMC in vitro with a panel of defined PRR‐ligands for TLR4, TLR8, TLR3, and RLR 24 h post‐surgery. Results The kinetics and magnitude of the in vivo inflammatory responses examined were indistinguishable in the two populations across the broad range of biomarkers examined, despite the fact that obese women had higher baseline inflammatory status. Deliberate in vitro stimulation with a range of PRR ligands also elicited pro‐ and anti‐inflammatory cytokine responses that were indistinguishable between control and obese mothers. Conclusions Acute in vivo innate immune responses to C‐section, as well as subsequent in vitro stimulation with a panel of microbial mimics, are not detectably altered in Class II obese women. The data argue that while Class II obesity is undesirable, it has minimal impact on the in vivo inflammatory response, or innate immunomodulatory capacity, in women selecting C‐section. PMID:28544689
Adenosine A2A Receptor Activation and Macrophage-mediated Experimental Glomerulonephritis
Garcia, Gabriela E.; Truong, Luan D.; Li, Ping; Zhang, Ping; Du, Jie; Chen, Jiang-Fan; Feng, Lili
2010-01-01
In immune-induced inflammation, leukocytes are key mediators of tissue damage. Since A2A adenosine receptors (A2AR) are endogenous suppressors of inflammation, we examined cellular and molecular mechanisms of kidney damage to determine whether selective activation of A2AR will suppress inflammation in a rat model of glomerulonephritis. Activation of A2AR reduced the degree of kidney injury in both the acute inflammatory phase and the progressive phase of glomerulonephritis. This protection against acute and chronic inflammation was associated with suppression of the glomerular expression of the MDC/CCL22 chemokine and down-regulation of MIP-1α/CCL3, RANTES/CCL5, MIP-1β/CCL4, and MCP-1/CCL2 chemokines. The expression of anti-inflammatory cytokines, IL-4 and IL-10, also increased. The mechanism for these anti-inflammatory responses to the A2AR agonist was suppression of macrophages function. A2AR expression was increased in macrophages, macrophage-derived chemokines were reduced in response to the A2AR agonist, and chemokines not expressed in macrophages did not respond to A2AR activation. Thus, activation of the A2AR on macrophages inhibits immune-associated inflammation. In glomerulonephritis, A2AR activation modulates inflammation and tissue damage even in the progressive phase of glomerulonephritis. Accordingly, pharmacological activation of A2AR could be developed into a novel treatment for glomerulonephritis and other macrophage-related inflammatory diseases. PMID:17898087
Deaño, Roderick C.; Basnet, Sandeep; Onandia, Zurine Galvan; Gandhi, Sachin; Tawakol, Ahmed; Min, James K.; Truong, Quynh A.
2014-01-01
Background Steroids are anti-inflammatory agents commonly used to treat inflammatory bowel disease. Inflammation plays a critical role in the pathophysiology of both inflammatory bowel disease and acute coronary syndrome. We examined the relationship between steroid use in patients with inflammatory bowel disease and acute coronary syndrome. Methods In 177 patients with inflammatory bowel disease (mean age 67, 75% male, 44% Crohn's disease, 56% ulcerative colitis), we performed a 1:2 case-control study matched for age, sex and inflammatory bowel disease type and compared 59 patients with inflammatory bowel disease with acute coronary syndrome to 118 patients with inflammatory bowel disease without acute coronary syndrome. Steroid use was defined as current or prior exposure. Acute coronary syndrome was defined as myocardial infarction or unstable angina, confirmed by cardiac biomarkers and coronary angiography. Results In patients with inflammatory bowel disease, 34% with acute coronary syndrome had exposure to steroids versus 58% without acute coronary syndrome (p<0.01). Steroid exposure reduced the adjusted odds of acute coronary syndrome by 82% (odds ratio [OR] 0.39, 95% CI 0.20-0.74; adjusted OR 0.18, 95% CI 0.06-0.51) in patients with inflammatory bowel disease, 77% in Crohn's disease (OR 0.36, 95% CI 0.14-0.92; adjusted OR 0.23, 95% CI 0.06-0.98), and 78% in ulcerative colitis (OR 0.41, 95% CI 0.16-1.04; adjusted OR 0.22, 95% CI 0.06-0.90). There was no association between other inflammatory bowel disease medications and acute coronary syndrome. Conclusions In patients with inflammatory bowel disease, steroid use significantly reduces the odds of acute coronary syndrome. These findings provide further mechanistic insight into the inflammatory processes involved in inflammatory bowel disease and acute coronary syndrome. PMID:25446295
Hyatt, Michael W; Field, Cara L; Clauss, Tonya M; Arheart, Kristopher L; Cray, Carolyn
2016-12-01
Preventative health care of elasmobranchs is an important but understudied field of aquatic veterinary medicine. Evaluation of inflammation through the acute phase response is a valuable tool in health assessments. To better assess the health of bonnethead sharks ( Sphyrna tiburo ) under managed care, normal reference intervals of protein electrophoresis (EPH) and the acute phase proteins, C-reactive protein (CRP) and haptoglobin (HP), were established. Blood was collected from wild caught, captive raised bonnethead sharks housed at public aquaria. Lithium heparinized plasma was either submitted fresh or stored at -80°C prior to submission. Electrophoresis identified protein fractions with migration characteristics similar to other animals with albumin, α-1 globulin, α-2 globulin, β globulin, and γ globulin. These fractions were classified as fractions 1-5 as fractional contents are unknown in this species. Commercial reagents for CRP and HP were validated for use in bonnethead sharks. Reference intervals were established using the robust method recommended by the American Society for Veterinary Clinical Pathology for the calculation of 90% reference intervals. Once established, the diagnostic and clinical applicability of these reference intervals was used to assess blood from individuals with known infectious diseases that resulted in systemic inflammation and eventual death. Unhealthy bonnethead sharks had significantly decreased fraction 2, fraction 3, and fraction 3:4 ratio and significantly increased fraction 5, CRP, and HP. These findings advance our understanding of elasmobranch acute phase inflammatory response and health and aid clinicians in the diagnosis of inflammatory disease in bonnethead sharks.
Isothiocyanate-enriched moringa seed extract alleviates ulcerative colitis symptoms in mice
Wu, Alex G.; Jaja-Chimedza, Asha; Graf, Brittany L.; Waterman, Carrie; Verzi, Michael P.; Raskin, Ilya
2017-01-01
Moringa (Moringa oleifera Lam.) seed extract (MSE) has anti-inflammatory and antioxidant activities. We investigated the effects of MSE enriched in moringa isothiocyanate-1 (MIC-1), its putative bioactive, on ulcerative colitis (UC) and its anti-inflammatory/antioxidant mechanism likely mediated through Nrf2-signaling pathway. Dextran sulfate sodium (DSS)-induced acute (n = 8/group; 3% DSS for 5 d) and chronic (n = 6/group; cyclic rotations of 2.5% DSS/water for 30 d) UC was induced in mice that were assigned to 4 experimental groups: healthy control (water/vehicle), disease control (DSS/vehicle), MSE treatment (DSS/MSE), or 5-aminosalicyic acid (5-ASA) treatment (positive control; DSS/5-ASA). Following UC induction, water (vehicle), 150 mg/kg MSE, or 50 mg/kg 5-ASA were orally administered for 1 or 2 wks. Disease activity index (DAI), spleen/colon sizes, and colonic histopathology were measured. From colon and/or fecal samples, pro-inflammatory biomarkers, tight-junction proteins, and Nrf2-mediated enzymes were analyzed at protein and/or gene expression levels. Compared to disease control, MSE decreased DAI scores, and showed an increase in colon lengths and decrease in colon weight/length ratios in both UC models. MSE also reduced colonic inflammation/damage and histopathological scores (modestly) in acute UC. MSE decreased colonic secretions of pro-inflammatory keratinocyte-derived cytokine (KC), tumor necrosis factor (TNF)-α, nitric oxide (NO), and myeloperoxidase (MPO) in acute and chronic UC; reduced fecal lipocalin-2 in acute UC; downregulated gene expression of pro-inflammatory interleukin (IL)-1, IL-6, TNF-α, and inducible nitric oxide synthase (iNOS) in acute UC; upregulated expression of claudin-1 and ZO-1 in acute and chronic UC; and upregulated GSTP1, an Nrf2-mediated phase II detoxifying enzyme, in chronic UC. MSE was effective in mitigating UC symptoms and reducing UC-induced colonic pathologies, likely by suppressing pro-inflammatory biomarkers and increasing tight-junction proteins. This effect is consistent with Nrf2-mediated anti-inflammatory/antioxidant signaling pathway documented for other isothiocyanates similar to MIC-1. Therefore, MSE, enriched with MIC-1, may be useful in prevention and treatment of UC. PMID:28922365
Isothiocyanate-enriched moringa seed extract alleviates ulcerative colitis symptoms in mice.
Kim, Youjin; Wu, Alex G; Jaja-Chimedza, Asha; Graf, Brittany L; Waterman, Carrie; Verzi, Michael P; Raskin, Ilya
2017-01-01
Moringa (Moringa oleifera Lam.) seed extract (MSE) has anti-inflammatory and antioxidant activities. We investigated the effects of MSE enriched in moringa isothiocyanate-1 (MIC-1), its putative bioactive, on ulcerative colitis (UC) and its anti-inflammatory/antioxidant mechanism likely mediated through Nrf2-signaling pathway. Dextran sulfate sodium (DSS)-induced acute (n = 8/group; 3% DSS for 5 d) and chronic (n = 6/group; cyclic rotations of 2.5% DSS/water for 30 d) UC was induced in mice that were assigned to 4 experimental groups: healthy control (water/vehicle), disease control (DSS/vehicle), MSE treatment (DSS/MSE), or 5-aminosalicyic acid (5-ASA) treatment (positive control; DSS/5-ASA). Following UC induction, water (vehicle), 150 mg/kg MSE, or 50 mg/kg 5-ASA were orally administered for 1 or 2 wks. Disease activity index (DAI), spleen/colon sizes, and colonic histopathology were measured. From colon and/or fecal samples, pro-inflammatory biomarkers, tight-junction proteins, and Nrf2-mediated enzymes were analyzed at protein and/or gene expression levels. Compared to disease control, MSE decreased DAI scores, and showed an increase in colon lengths and decrease in colon weight/length ratios in both UC models. MSE also reduced colonic inflammation/damage and histopathological scores (modestly) in acute UC. MSE decreased colonic secretions of pro-inflammatory keratinocyte-derived cytokine (KC), tumor necrosis factor (TNF)-α, nitric oxide (NO), and myeloperoxidase (MPO) in acute and chronic UC; reduced fecal lipocalin-2 in acute UC; downregulated gene expression of pro-inflammatory interleukin (IL)-1, IL-6, TNF-α, and inducible nitric oxide synthase (iNOS) in acute UC; upregulated expression of claudin-1 and ZO-1 in acute and chronic UC; and upregulated GSTP1, an Nrf2-mediated phase II detoxifying enzyme, in chronic UC. MSE was effective in mitigating UC symptoms and reducing UC-induced colonic pathologies, likely by suppressing pro-inflammatory biomarkers and increasing tight-junction proteins. This effect is consistent with Nrf2-mediated anti-inflammatory/antioxidant signaling pathway documented for other isothiocyanates similar to MIC-1. Therefore, MSE, enriched with MIC-1, may be useful in prevention and treatment of UC.
Campos, Francisco; Pérez-Mato, María; Agulla, Jesús; Blanco, Miguel; Barral, David; Almeida, Ángeles; Brea, David; Waeber, Christian; Castillo, José; Ramos-Cabrer, Pedro
2012-01-01
Glutamate excitotoxicity, metabolic rate and inflammatory response have been associated to the deleterious effects of temperature during the acute phase of stroke. So far, the association of temperature with these mechanisms has been studied individually. However, the simultaneous study of the influence of temperature on these mechanisms is necessary to clarify their contributions to temperature-mediated ischemic damage. We used non-invasive Magnetic Resonance Spectroscopy to simultaneously measure temperature, glutamate excitotoxicity and metabolic rate in the brain in animal models of ischemia. The immune response to ischemia was measured through molecular serum markers in peripheral blood. We submitted groups of animals to different experimental conditions (hypothermia at 33°C, normothermia at 37°C and hyperthermia at 39°C), and combined these conditions with pharmacological modulation of glutamate levels in the brain through systemic injections of glutamate and oxaloacetate. We show that pharmacological modulation of glutamate levels can neutralize the deleterious effects of hyperthermia and the beneficial effects of hypothermia, however the analysis of the inflammatory response and metabolic rate, demonstrated that their effects on ischemic damage are less critical than glutamate excitotoxity. We conclude that glutamate excitotoxicity is the key molecular mechanism which is influenced by body temperature during the acute phase of brain stroke. PMID:22952923
Belmonte, Liliana; Coëffier, Moïse; Pessot, Florence Le; Miralles-Barrachina, Olga; Hiron, Martine; Leplingard, Antony; Lemeland, Jean-François; Hecketsweiler, Bernadette; Daveau, Maryvonne; Ducrotté, Philippe; Déchelotte, Pierre
2007-01-01
AIM: To evaluate the effect of glutamine on intestinal mucosa integrity, glutathione stores and acute phase response in protein-depleted rats during an inflammatory shock. METHODS: Plasma acute phase proteins (APP), jejunal APP mRNA levels, liver and jejunal glutathione concentrations were measured before and one, three and seven days after turpentine injection in 4 groups of control, protein-restricted, protein-restricted rats supplemented with glutamine or protein powder. Bacterial translocation in mesenteric lymph nodes and intestinal morphology were also assessed. RESULTS: Protein deprivation and turpentine injection significantly reduced jejunal villus height, and crypt depths. Mucosal glutathione concentration significantly decreased in protein-restricted rats. Before turpentine oil, glutamine supplementation restored villus heights and glutathione concentration (3.24 ± 1.05 vs 1.72 ± 0.46 μmol/g tissue, P < 0.05) in the jejunum, whereas in the liver glutathione remained low. Glutamine markedly increased jejunal α1-acid glycoprotein mRNA level after turpentine oil but did not affect its plasma concentration. Bacterial translocation in protein-restricted rats was not prevented by glutamine or protein powder supplementation. CONCLUSION: Glutamine restored gut glutathione stores and villus heights in malnourished rats but had no preventive effect on bacterial translocation in our model. PMID:17569119
Campos, Francisco; Pérez-Mato, María; Agulla, Jesús; Blanco, Miguel; Barral, David; Almeida, Angeles; Brea, David; Waeber, Christian; Castillo, José; Ramos-Cabrer, Pedro
2012-01-01
Glutamate excitotoxicity, metabolic rate and inflammatory response have been associated to the deleterious effects of temperature during the acute phase of stroke. So far, the association of temperature with these mechanisms has been studied individually. However, the simultaneous study of the influence of temperature on these mechanisms is necessary to clarify their contributions to temperature-mediated ischemic damage. We used non-invasive Magnetic Resonance Spectroscopy to simultaneously measure temperature, glutamate excitotoxicity and metabolic rate in the brain in animal models of ischemia. The immune response to ischemia was measured through molecular serum markers in peripheral blood. We submitted groups of animals to different experimental conditions (hypothermia at 33°C, normothermia at 37°C and hyperthermia at 39°C), and combined these conditions with pharmacological modulation of glutamate levels in the brain through systemic injections of glutamate and oxaloacetate. We show that pharmacological modulation of glutamate levels can neutralize the deleterious effects of hyperthermia and the beneficial effects of hypothermia, however the analysis of the inflammatory response and metabolic rate, demonstrated that their effects on ischemic damage are less critical than glutamate excitotoxity. We conclude that glutamate excitotoxicity is the key molecular mechanism which is influenced by body temperature during the acute phase of brain stroke.
Hummig, Wagner; Kopruszinski, Caroline Machado; Chichorro, Juliana Geremias
2014-01-01
To assess the analgesic effect of pregabalin in orofacial models of acute inflammatory pain and of persistent pain associated with nerve injury and cancer, and so determine its effectiveness in controlling orofacial pains having different underlying mechanisms. Orofacial capsaicin and formalin tests were employed in male Wistar rats to assess the influence of pregabalin (or vehicle) pretreatment in acute pain models, and the results from these experiments were analyzed by one-way analysis of variance (ANOVA) followed by Newman Keuls post-hoc test. Pregabalin (or vehicle) treatment was also tested on the facial heat hyperalgesia that was evaluated in rats receiving injection of the inflammatory irritant carrageenan into the upper lip, as well as after constriction of the infraorbital nerve (a model of trigeminal neuropathic pain), or after inoculation of tumor cells into the facial vibrissal pad; two-way repeated measures ANOVA followed by Newman-Keuls post-hoc test was used to analyze data from these experiments. Facial grooming induced by capsaicin was abolished by pretreatment with pregabalin at 10 and 30 mg/kg. However, pregabalin failed to modify the first phase of the formalin response, but reduced the second phase at both doses (10 and 30 mg/kg). In addition, treatment of rats with pregabalin reduced the heat hyperalgesia induced by carrageenan, as well as by nerve injury and facial cancer. Pregabalin produced a marked antinociceptive effect in rat models of facial inflammatory pain as well as in facial neuropathic and cancer pain models, suggesting that it may represent an important agent for the clinical control of orofacial pain.
De Buck, Mieke; Gouwy, Mieke; Struyf, Sofie; Opdenakker, Ghislain; Van Damme, Jo
2018-06-02
During an inflammatory response, a large number of distinct mediators appears in the affected tissues or in the blood circulation. These include acute phase proteins such as serum amyloid A (SAA), cytokines and chemokines and proteolytic enzymes. Although these molecules are generated within a cascade sequence in specific body compartments allowing for independent action, their co-appearance in space and time during acute or chronic inflammation points toward important mutual interactions. Pathogen-associated molecular patterns lead to fast induction of the pro-inflammatory endogenous pyrogens, which are evoking the acute phase response. Interleukin-1, tumor necrosis factor-α and interferons simultaneously trigger different cell types, including leukocytes, endothelial cells and fibroblasts for tissue-specific or systemic production of chemokines and matrix metalloproteinases (MMPs). In addition, SAA induces chemokines and both stimulate secretion of MMPs from multiple cell types. As a consequence, these mediators may cooperate to enhance the inflammatory response. Indeed, SAA synergizes with chemokines to increase chemoattraction of monocytes and granulocytes. On the other hand, MMPs post-translationally modify chemokines and SAA to reduce their activity. Indeed, MMPs internally cleave SAA with loss of its cytokine-inducing and direct chemotactic potential whilst retaining its capacity to synergize with chemokines in leukocyte migration. Finally, MMPs truncate chemokines at their NH 2 - or COOH-terminal end, resulting in reduced or enhanced chemotactic activity. Therefore, the complex interactions between chemokines, SAA and MMPs either maintain or dampen the inflammatory response. Copyright © 2018. Published by Elsevier B.V.
2014-01-01
Introduction Post-traumatic arthritis (PTA) is a progressive, degenerative response to joint injury, such as articular fracture. The pro-inflammatory cytokines, interleukin 1(IL-1) and tumor necrosis factor alpha (TNF-α), are acutely elevated following joint injury and remain elevated for prolonged periods post-injury. To investigate the role of local and systemic inflammation in the development of post-traumatic arthritis, we targeted both the initial acute local inflammatory response and a prolonged 4 week systemic inflammatory response by inhibiting IL-1 or TNF-α following articular fracture in the mouse knee. Methods Anti-cytokine agents, IL-1 receptor antagonist (IL-1Ra) or soluble TNF receptor II (sTNFRII), were administered either locally via an acute intra-articular injection or systemically for a prolonged 4 week period following articular fracture of the knee in C57BL/6 mice. The severity of arthritis was then assessed at 8 weeks post-injury in joint tissues via histology and micro computed tomography, and systemic and local biomarkers were assessed in serum and synovial fluid. Results Intra-articular inhibition of IL-1 significantly reduced cartilage degeneration, synovial inflammation, and did not alter bone morphology following articular fracture. However, systemic inhibition of IL-1, and local or systemic inhibition of TNF provided no benefit or conversely led to increased arthritic changes in the joint tissues. Conclusion These results show that intra-articular IL-1, rather than TNF-α, plays a critical role in the acute inflammatory phase of joint injury and can be inhibited locally to reduce post-traumatic arthritis following a closed articular fracture. Targeted local inhibition of IL-1 following joint injury may represent a novel treatment option for PTA. PMID:24964765
NASA Astrophysics Data System (ADS)
Sergio, L. P. S.; Trajano, L. A. S. N.; Thomé, A. M. C.; Mencalha, A. L.; Paoli, F.; Fonseca, A. S.
2018-06-01
Acute lung injury (ALI) is a potentially fatal disease characterized by uncontrolled hyperinflammatory responses in the lungs as a consequence of sepsis. ALI is divided into two sequential and time-dependent phases, exudative and fibroproliferative phases, with increased permeability of the alveolar barrier, causing edema and inflammation. However, there are no specific treatments for ALI. Low-power lasers have been successfully used in the resolution of acute inflammatory processes. The aim of this study was to evaluate the effects of low-power infrared laser exposure on alveolus and interalveolar septa of Wistar rats affected by ALI-induced by sepsis. Laser fluences, power, and the emission mode were those used in clinical protocols for the treatment of acute inflammation. Adult male Wistar rats were randomized into six groups: control, 10 J cm‑2, 20 J cm‑2, ALI, ALI + 10 J cm‑2, and ALI + 20 J cm‑2. ALI was induced by intraperitoneal Escherichia coli lipopolysaccharide (LPS). Lungs were removed and processed for hematoxylin–eosin staining. Morphological alterations induced by LPS in lung tissue were quantified by morphometry with a 32-point cyclic arcs test system in Stepanizer. Data showed that exposure to low-power infrared laser in both fluences reduced the thickening of interalveolar septa in lungs affected by ALI, increasing the alveolar space; however, inflammatory infiltrate was still observed. Our research showed that exposure to low-power infrared laser improves the lung parenchyma in Wistar rats affected by ALI, which could be an alternative approach for treatment of inflammatory lung injuries.
Inflammatory Stroke Extracellular Vesicles Induce Macrophage Activation.
Couch, Yvonne; Akbar, Naveed; Davis, Simon; Fischer, Roman; Dickens, Alex M; Neuhaus, Ain A; Burgess, Annette I; Rothwell, Peter M; Buchan, Alastair M
2017-08-01
Extracellular vesicles (EVs) are protein-lipid complexes released from cells, as well as actively exocytosed, as part of normal physiology, but also during pathological processes such as those occurring during a stroke. Our aim was to determine the inflammatory potential of stroke EVs. EVs were quantified and analyzed in the sera of patients after an acute stroke (<24 hours; OXVASC [Oxford Vascular Study]). Isolated EV fractions were subjected to untargeted proteomic analysis by liquid chromatography mass-spectrometry/mass-spectrometry and then applied to macrophages in culture to investigate inflammatory gene expression. EV number, but not size, is significantly increased in stroke patients when compared to age-matched controls. Proteomic analysis reveals an overall increase in acute phase proteins, including C-reactive protein. EV fractions applied to monocyte-differentiated macrophage cultures induced inflammatory gene expression. Together these data show that EVs from stroke patients are proinflammatory in nature and are capable of inducing inflammation in immune cells. © 2017 American Heart Association, Inc.
Sato, A; Nishida, C; Sato-Kusubata, K; Ishihara, M; Tashiro, Y; Gritli, I; Shimazu, H; Munakata, S; Yagita, H; Okumura, K; Tsuda, Y; Okada, Y; Tojo, A; Nakauchi, H; Takahashi, S; Heissig, B; Hattori, K
2015-01-01
The systemic inflammatory response observed during acute graft-versus-host disease (aGVHD) is driven by proinflammatory cytokines, a 'cytokine storm'. The function of plasmin in regulating the inflammatory response is not fully understood, and its role in the development of aGVHD remains unresolved. Here we show that plasmin is activated during the early phase of aGVHD in mice, and its activation correlated with aGVHD severity in humans. Pharmacological plasmin inhibition protected against aGVHD-associated lethality in mice. Mechanistically, plasmin inhibition impaired the infiltration of inflammatory cells, the release of membrane-associated proinflammatory cytokines including tumor necrosis factor-α (TNF-α) and Fas-ligand directly, or indirectly via matrix metalloproteinases (MMPs) and alters monocyte chemoattractant protein-1 (MCP-1) signaling. We propose that plasmin and potentially MMP-9 inhibition offers a novel therapeutic strategy to control the deadly cytokine storm in patients with aGVHD, thereby preventing tissue destruction.
Anti-inflammatory activity of Ambrosia artemisiaefolia and Rhoeo spathacea.
Pérez G, R M
1996-09-01
Alcoholic extracts of the leaves of Ambrosia artemisiaefolia and Rhoeo spathacea have been investigated for anti-inflammatory activity using various experimental models of inflammation (croton oil ear oedema, carrageenan-induced edema, cotton pellet granuloma and formaldehyde induced arthritis) and the results compared with phenylbutazone and bethamethasone, standard anti-inflammatory drugs. These extracts at doses of 50, 100 and 150mg/kg of A. artemisiaefolia and R. spathacea, showed significant inhibition of acute oedema in rats and mice induced by the phlogistic agents, carrageenan and croton oil, in a dose-dependant manner. The ethanol extracts reduced cotton pellet granuloma and caused a statistically significant inhibitory effect on edema in the chronic model of formaldehyde arthritis in rats. Since Ambrosia artemisiaefolia and Rhoeo spathacea were found to be effective in both acute and chronic phases of inflammation they can be considered as general anti-inflammatory agents. Copyright © 1996 Gustav Fischer Verlag · Stuttgart · Jena · New York. Published by Elsevier GmbH.. All rights reserved.
Systemic cytokine response in moribund mice of streptococcal toxic shock syndrome model.
Saito, Mitsumasa; Kajiwara, Hideko; Iida, Ken-ichiro; Hoshina, Takayuki; Kusuhara, Koichi; Hara, Toshiro; Yoshida, Shin-ichi
2011-02-01
Streptococcus pyogenes causes severe invasive disease in humans, including streptococcal toxic shock syndrome (STSS). We previously reported a mouse model that is similar to human STSS. When mice were infected intramuscularly with 10(7) CFU of S. pyogenes, all of them survived acute phase of infection. After 20 or more days of infection, a number of them died suddenly accompanied by S. pyogenes bacteremia. We call this phenomenon "delayed death". We analyzed the serum cytokine levels of mice with delayed death, and compared them with those of mice who died in the acute phase of intravenous S. pyogenes infection. The serum levels of TNF-α and IFN-γ in mice of delayed death were more than 100 times higher than those in acute death mice. IL-10 and IL-12, which were not detected in acute death, were also significantly higher in mice of delayed death. IL-6 and MCP-1 (CCL-2) were elevated in both groups of mice. It was noteworthy that not only pro-inflammatory cytokines but also anti-inflammatory cytokines were elevated in delayed death. We also found that intravenous TNF-α injection accelerated delayed death, suggesting that an increase of serum TNF-α induced S. pyogenes bacteremia in our mouse model. Copyright © 2010 Elsevier Ltd. All rights reserved.
Salicytamide: a New Anti-inflammatory Designed Drug Candidate.
Guedes, Karen Marinho Maciel; Borges, Rosivaldo Santos; Fontes-Júnior, Enéas Andrade; Silva, Andressa Santa Brigida; Fernandes, Luanna Melo Pereira; Cartágenes, Sabrina Carvalho; Pinto, Ana Carla Godinho; Silva, Mallone Lopes; Queiroz, Luana Melo Diogo; Vieira, José Luís Fernandes; Sousa, Pergentino José Cunha; Maia, Cristiane Socorro Ferraz
2018-04-13
Salicytamide is a new drug developed through molecular modelling and rational drug design by the molecular association of paracetamol and salicylic acid. This study was conducted to assess the acute oral toxicity, antinociceptive, and antioedematogenic properties of salicytamide. Acute toxicity was based on the OECD 423 guidelines. Antinociceptive properties were investigated using the writhing, hot plate and formalin tests in Swiss mice. Antioedematogenic properties were evaluated using the carrageenan-induced paw oedema model and croton oil-induced dermatitis in Wistar rats. Salicytamide did not promote behavioural changes or animal deaths during acute oral toxicity evaluation. Furthermore, salicytamide exhibited peripheral antinociceptive activity as evidenced by the reduction in writhing behaviour (ED50 = 4.95 mg/kg) and licking time in the formalin test's inflammatory phase. Also, salicytamide elicited central antinociceptive activity on both hot plate test and formalin test's neurogenic phase. Additionally, salicytamide was effective in reducing carrageenan or croton oil-induced oedema formation. Overall, we have shown that salicytamide, proposed here as a new NSAID candidate, did not induce oral acute toxicity and elicited both peripheral antinociceptive effects (about 10-25 times more potent than its precursors in the writhing test) and antioedematogenic properties. Salicytamide also presented central antinociceptive activity, which seems to be mediated through opioid-independent mechanisms. These findings reveal salicytamide as a promising antinociceptive/antioedematogenic drug candidate.
2013-01-01
Background Despite decades of extensive studies, the morbidity and mortality for acute lung injury/acute respiratory distress syndrome (ALI/ARDS) remained high. Particularly, biomarkers essential for its early diagnosis and prognosis are lacking. Methods Recent studies suggest that alveolar macrophages (AMs) at the exudative phase of ALI/ARDS initiate, amplify and perpetuate inflammatory responses, while they resolve inflammation in the recovery phase to prevent further tissue injury and perpetuated inflammation in the lung. Therefore, proteins relevant to this functional switch could be valuable biomarkers for ALI/ARDS diagnosis and prognosis. We thus conducted comparative analysis of the AM proteome to assess its dynamic proteomic changes during ALI/ARDS progression and recovery. Results 135 proteins were characterized to be differentially expressed between AMs at the exudative and recovery phase. MALDI-TOF-MS and peptide mass fingerprint (PMF) analysis characterized 27 informative proteins, in which 17 proteins were found with a marked increase at the recovery phase, while the rest of 10 proteins were manifested by the significantly higher levels of expression at the exudative phase. Conclusions Given the role of above identified proteins played in the regulation of inflammatory responses, cell skeleton organization, oxidative stress, apoptosis and metabolism, they have the potential to serve as biomarkers for early diagnosis and prognosis in the setting of patients with ALI/ARDS. PMID:23773529
Satriano, J
2004-07-01
An early response to an acute inflammatory insult, such as wound healing or experimental glomerulonephritis, is the conversion of arginine to the cytostatic molecule nitric oxide (NO). This 'anti-bacterial' phase is followed by the conversion of arginine to ornithine, which is the precursor for the pro-proliferative polyamines as well as proline for the production of extracellular matrix. This latter, pro-growth phase constitutes a 'repair' phase response. The temporal switch of arginine as a substrate for the cytostatic iNOS/NO axis to the pro-growth arginase/ ornithine/polyamine and proline axis is subject to regulation by inflammatory cytokines as well as interregulation by the arginine metabolites themselves. Arginine is also the precursor for another biogenic amine, agmatine. Here we describe the capacity of these three arginine pathways to interregulate, and propose a model whereby agmatine has the potential to serve in the coordination of the early and repair phase pathways of arginine in the inflammatory response by acting as a gating mechanism at the transition from the iNOS/NO axis to the arginase/ODC/polyamine axis. Due to the pathophysiologic and therapeutic potential, we will further examine the antiproliferative effects of agmatine on the polyamine pathway.
Fernandes, Ricardo; Beserra, Bruna Teles Soares; Cunha, Raphael Salles Granato; Hillesheim, Elaine; Camargo, Carolina de Quadros; Pequito, Danielle Cristina Tonello; de Castro, Isabela Coelho; Fernandes, Luiz Cláudio; Nunes, Everson Araújo; Trindade, Erasmo Benício Santos de Moraes
2013-01-01
Background. Obesity is considered a low-grade inflammatory state and has been associated with increased acute phase proteins as well as changes in serum fatty acids. Few studies have assessed associations between acute phase proteins and serum fatty acids in morbidly obese patients. Objective. To investigate the relationship between acute phase proteins (C-Reactive Protein, Orosomucoid, and Albumin) and serum fatty acids in morbidly obese patients. Methods. Twenty-two morbidly obese patients were enrolled in this study. Biochemical and clinical data were obtained before bariatric surgery, and fatty acids measured in preoperative serum. Results. Orosomucoid was negatively correlated with lauric acid (P = 0.027) and eicosapentaenoic acid (EPA) (P = 0.037) and positively with arachidonic acid (AA) (P = 0.035), AA/EPA ratio (P = 0.005), and n-6/n-3 polyunsaturated fatty acids ratio (P = 0.035). C-Reactive Protein (CRP) was negatively correlated with lauric acid (P = 0.048), and both CRP and CRP/Albumin ratio were negatively correlated with margaric acid (P = 0.010, P = 0.008, resp.). Albumin was positively correlated with EPA (P = 0.027) and margaric acid (P = 0.008). Other correlations were not statistically significant. Conclusion. Our findings suggest that serum fatty acids are linked to acute phase proteins in morbidly obese patients. PMID:24167354
Bengtson, Stefan; Knudsen, Kristina B.; Kyjovska, Zdenka O.; Berthing, Trine; Skaug, Vidar; Levin, Marcus; Koponen, Ismo K.; Shivayogimath, Abhay; Booth, Timothy J.; Alonso, Beatriz; Pesquera, Amaia; Zurutuza, Amaia; Thomsen, Birthe L.; Troelsen, Jesper T.; Jacobsen, Nicklas R.
2017-01-01
We investigated toxicity of 2–3 layered >1 μm sized graphene oxide (GO) and reduced graphene oxide (rGO) in mice following single intratracheal exposure with respect to pulmonary inflammation, acute phase response (biomarker for risk of cardiovascular disease) and genotoxicity. In addition, we assessed exposure levels of particulate matter emitted during production of graphene in a clean room and in a normal industrial environment using chemical vapour deposition. Toxicity was evaluated at day 1, 3, 28 and 90 days (18, 54 and 162 μg/mouse), except for GO exposed mice at day 28 and 90 where only the lowest dose was evaluated. GO induced a strong acute inflammatory response together with a pulmonary (Serum-Amyloid A, Saa3) and hepatic (Saa1) acute phase response. rGO induced less acute, but a constant and prolonged inflammation up to day 90. Lung histopathology showed particle agglomerates at day 90 without signs of fibrosis. In addition, DNA damage in BAL cells was observed across time points and doses for both GO and rGO. In conclusion, pulmonary exposure to GO and rGO induced inflammation, acute phase response and genotoxicity but no fibrosis. PMID:28570647
Early identification of ‘acute-onset’ chronic inflammatory demyelinating polyneuropathy
Sung, Jia-Ying; Tani, Jowy; Park, Susanna B.; Kiernan, Matthew C.
2014-01-01
Distinguishing patients with acute-onset chronic inflammatory demyelinating polyneuropathy from acute inflammatory demyelinating polyneuropathy prior to relapse is often challenging at the onset of their clinical presentation. In the present study, nerve excitability tests were used in conjunction with the clinical phenotype and disease staging, to differentiate between patients with acute-onset chronic inflammatory demyelinating polyneuropathy and patients with acute inflammatory demyelinating polyneuropathy at an early stage, with the aim to better guide treatment. Clinical assessment, staging and nerve excitability tests were undertaken on patients initially fulfilling the diagnostic criteria of acute inflammatory demyelinating polyneuropathy soon after symptom onset and their initial presentation. Patients were subsequently followed up for minimum of 12 months to determine if their clinical presentations were more consistent with acute-onset chronic inflammatory demyelinating polyneuropathy. Clinical severity as evaluated by Medical Research Council sum score and Hughes functional grading scale were not significantly different between the two cohorts. There was no difference between the time of onset of initial symptoms and nerve excitability test assessment between the two cohorts nor were there significant differences in conventional nerve conduction study parameters. However, nerve excitability test profiles obtained from patients with acute inflammatory demyelinating polyneuropathy demonstrated abnormalities in the recovery cycle of excitability, including significantly reduced superexcitability (P < 0.001) and prolonged relative refractory period (P < 0.01), without changes in threshold electrotonus. In contrast, in patients with acute-onset chronic inflammatory demyelinating polyneuropathy, a different pattern occurred with the recovery cycle shifted downward (increased superexcitability, P < 0.05; decreased subexcitability, P < 0.05) and increased threshold change in threshold electrotonus in both hyperpolarizing and depolarizing directions [depolarizing threshold electrotonus (90–100 ms) P < 0.005, hyperpolarizing threshold electrotonus (10–20 ms), P < 0.01, hyperpolarizing threshold electrotonus (90–100 ms), P < 0.05], perhaps suggesting early hyperpolarization. In addition, using excitability parameters superexcitability, subexcitability and hyperpolarizing threshold electrotonus (10–20 ms), the patients with acute inflammatory demyelinating polyneuropathy and acute-onset chronic inflammatory demyelinating polyneuropathy could be clearly separated into two non-overlapping groups. Studies of nerve excitability may be able to differentiate acute from acute-onset chronic inflammatory demyelinating polyneuropathy at an early stage. Characteristic nerve excitability parameter changes occur in early acute-onset chronic inflammatory demyelinating polyneuropathy, to match the clinical phenotype. Importantly, this pattern of change was strikingly different to that shown by patients with acute inflammatory demyelinating polyneuropathy, suggesting that nerve excitability techniques may be useful in distinguishing acute-onset chronic inflammatory demyelinating polyneuropathy from acute inflammatory demyelinating polyneuropathy at the initial stage. PMID:24983276
Wigenstam, Elisabeth; Koch, Bo; Bucht, Anders; Jonasson, Sofia
2015-02-03
Chlorine (Cl2) causes tissue damage and a neutrophilic inflammatory response in the airways manifested by pronounced airway hyperreactivity (AHR). The importance of early anti-inflammatory treatment has previously been addressed. In the previous study, both high-dose and low-dose of dexamethasone (DEX) decreased the risk of developing delayed effects, such as persistent lung injuries, while only high-dose treatment could significantly counteract acute-phase effects. One aim of this study was to evaluate whether a low-dose of DEX in combination with the antioxidant N-acetyl cysteine (NAC) and if different treatments (Triptolide, Reparixin and Rolipram) administered 1h after Cl2-exposure could improve protection against acute lung injury in Cl2-exposed mice. BALB/c mice were exposed to 300 ppm Cl2 during 15 min. Assessment of AHR and inflammatory cells in bronchoalveolar lavage was analyzed 24h post exposure. Neither of DEX nor NAC reduced the AHR and displayed only minor effects on inflammatory cell influx when given as separate treatments. When given in combination, a protective effect on AHR and a significant reduction in inflammatory cells (neutrophils) was observed. Neither of triptolide, Reparixin nor Rolipram had an effect on AHR but Triptolide had major effect on the inflammatory cell influx. Treatments did not reduce the concentration of either fibrinogen or plasminogen activator inhibitor-1 in serum, thereby supporting the theory that the inflammatory response is not solely limited to the lung. These results provide a foundation for future studies aimed at identifying new concepts for treatment of chemical-induced lung injury. Studies addressing combination of anti-inflammatory and antioxidant treatment are highly motivated. Copyright © 2014. Published by Elsevier Ireland Ltd.
Zhou, Quan; Wood, Ronald; Schwarz, Edward M; Wang, Yong-Jun; Xing, Lianping
2010-07-01
To develop an in vivo imaging method to assess lymphatic draining function in the K/BxN mouse model of inflammatory arthritis. Indocyanine green, a near-infrared fluorescent dye, was injected intradermally into the footpads of wild-type mice, mouse limbs were illuminated with an 806-nm near-infrared laser, and the movement of indocyanine green from the injection site to the draining popliteal lymph node (LN) was recorded with a CCD camera. Indocyanine green near-infrared images were analyzed to obtain 5 measures of lymphatic function across time. Images of K/BxN arthritic mice and control nonarthritic littermates were obtained at 1 month of age, when acute joint inflammation commenced, and again at 3 months of age, when joint inflammation became chronic. Lymphangiogenesis in popliteal LNs was assessed by immunochemistry. Indocyanine green and its transport within lymphatic vessels were readily visualized, and quantitative measures were derived. During the acute phase of arthritis, the lymphatic vessels were dilated, with increased indocyanine green signal intensity and lymphatic pulses, and popliteal LNs became fluorescent quickly. During the chronic phase, new lymphatic vessels were present near the foot. However, the appearance of indocyanine green in lymphatic vessels was delayed. The size and area of popliteal LN lymphatic sinuses progressively increased in the K/BxN mice. Our findings indicate that indocyanine green near-infrared lymphatic imaging is a valuable method for assessing the lymphatic draining function in mice with inflammatory arthritis. Indocyanine green-near-infrared imaging of K/BxN mice identified 2 distinct lymphatic phenotypes during the acute and chronic phase of inflammation. This technique can be used to assess new therapies for lymphatic disorders.
Zhou, Quan; Wood, Ronald; Schwarz, Edward M.; Wang, Yong-Jun; Xing, Lianping
2010-01-01
Objective Development of an in vivo imaging method to assess lymphatic draining function in the K/B×N mouse model of inflammatory arthritis. Methods Indocyanine green (ICG), a near-infrared (NIR) fluorescent dye, was injected intradermally into the footpad of wild-type mice, the limb was illuminated with an 806 nm NIR laser, and the movement of ICG from the injection site to the draining popliteal lymph node (PLN) was recorded with a CCD camera. ICG-NIR images were analyzed to obtain 5 measures of lymphatic function across time. K/B×N arthritic mice and control non-arthritic littermates were imaged at one-month of age when acute joint inflammation commenced, and repeated at 3 months when joint inflammation became chronic. Lymphangiogenesis in PLNs was assessed by immunochemistry. Results ICG and its transport within lymphatic vessels were readily visualized and quantitative measures derived. During the acute phase of arthritis, the lymphatic vessels were dilated with increased ICG signal intensity and lymphatic pulses, and PLNs became fluorescent quickly. During the chronic phase, new lymphatic vessels were present near the foot. However, ICG appearance in lymphatic vessels was delayed. The size and area of PLN lymphatic sinuses progressively increased in the K/B×N mice. Conclusion ICG-NIR lymphatic imaging is a valuable method to assess the lymphatic draining function in mice with inflammatory arthritis. ICG-NIR imaging of K/B×N mice identified two distinct lymphatic phenotypes during the acute and chronic phase of inflammation. This technique can be used to assess new therapies for lymphatic disorders. PMID:20309866
Eicosanoids modulate hyperpnea-induced late phase airway obstruction and hyperreactivity in dogs.
Davis, Michael S; McCulloch, Sharron; Myers, Teresa; Freed, Arthur N
2002-01-01
A canine model of exercise-induced asthma was used to test the hypothesis that the development of a late phase response to hyperventilation depends on the acute production of pro-inflammatory mediators. Peripheral airway resistance, reactivity to hypocapnia and aerosol histamine, and bronchoalveolar lavage fluid (BALF) cell and eicosanoid content were measured in dogs approximately 5 h after dry air challenge (DAC). DAC resulted in late phase obstruction, hyperreactivity to histamine, and neutrophilic inflammation. Both cyclooxygenase and lipoxygenase inhibitors administered in separate experiments attenuated the late phase airway obstruction and hyperreactivity to histamine. Neither drug affected the late phase inflammation nor the concentrations of eicosanoids in the BALF obtained 5 h after DAC. This study confirms that hyperventilation of peripheral airways with unconditioned air causes late phase neutrophilia, airway obstruction, and hyperreactivity. The late phase changes in airway mechanics are related to the hyperventilation-induced release of both prostaglandins and leukotrienes, and appear to be independent of the late phase infiltration of inflammatory cells.
Acute-Phase Inflammatory Response to Single-Bout HIIT and Endurance Training: A Comparative Study.
Kaspar, Felix; Jelinek, Herbert F; Perkins, Steven; Al-Aubaidy, Hayder A; deJong, Bev; Butkowski, Eugene
2016-01-01
This study compared acute and late effect of single-bout endurance training (ET) and high-intensity interval training (HIIT) on the plasma levels of four inflammatory cytokines and C-reactive protein and insulin-like growth factor 1. Cohort study with repeated-measures design. Seven healthy untrained volunteers completed a single bout of ET and HIIT on a cycle ergometer. ET and HIIT sessions were held in random order and at least 7 days apart. Blood was drawn before the interventions and 30 min and 2 days after the training sessions. Plasma samples were analyzed with ELISA for the interleukins (IL), IL-1β, IL-6, and IL-10, monocyte chemoattractant protein-1 (MCP-1), insulin growth factor 1 (IGF-1), and C-reactive protein (CRP). Statistical analysis was with Wilcoxon signed-rank tests. ET led to both a significant acute and long-term inflammatory response with a significant decrease at 30 minutes after exercise in the IL-6/IL-10 ratio (-20%; p = 0.047) and a decrease of MCP-1 (-17.9%; p = 0.03). This study demonstrates that ET affects the inflammatory response more adversely at 30 minutes after exercise compared to HIIT. However, this is compensated by a significant decrease in MCP-1 at two days associated with a reduced risk of atherosclerosis.
Rajendran, Karthick; Devarajan, Nalini; Ganesan, Manohar; Ragunathan, Malathi
2012-08-14
Obesity, characterised by increased fat mass and is currently regarded as a pro-inflammatory state and often associated with increased risk of cardiovascular diseases (CVD) including Myocardial infarction. There is an upregulation of inflammatory markers such as interleukin-6, interleukin-6 receptor and acute phase protein CRP in Acute Myocardial Infarction (AMI) patients but the exact mechanism linking obesity and inflammation is not known. It is of our interest to investigate if serum leptin (ob gene product) is associated with AMI and correlated with inflammatory proteins namely Interleukin-6 (IL-6) and high sensitivity - C reactive protein (hs-CRP). Serum leptin levels were significantly higher in AMI patients when compared to Non-CVD controls. IL-6 and hs-CRP were also elevated in the AMI group and leptin correlated positively with IL-6 and hs-CRP. Incidentally this is the first report from Chennai based population, India. The strong correlation between serum levels of leptin and IL-6 implicates an involvement of leptin in the upregulation of inflammatory cytokines during AMI. We hypothesise that the increase in values of IL-6, hs-CRP and their correlation to leptin in AMI patients could be due to participation of leptin in the signaling cascade after myocardial ischemia.
[Chemical and Thermal Eye Burns].
Struck, H-G
2016-11-01
Background: This review gives a therapeutic approach for the early treatment of chemical and thermal burns of the ocular surface (CTOS). Method: Based on a review of international literature, the experiences of University Hospital Aachen and Halle/Saale, Eye Clinic Cologne as well as experimental data of the research institute (An-Institut) at RWTH Aachen University are considered and discussed. Results: As the risk depends on the stage of CTOS, recommendations are given for acute treatment for different stages. Pathophysiological considerations will be discussed. Special treatment options for exceptional situations and for late phase CTOS are demonstrated. Conclusion: According to the latest data, the most important clinical recommendation for the acute phase of CTOS is the application of a suitable rinsing solution. Furthermore, anti-inflammatory treatment is of central importance. For the therapy of severe CTOS, approved and advanced surgical methods need to be applied. In this way, anti-inflammatory and tissue-protecting mechanisms are activated simultaneously. Georg Thieme Verlag KG Stuttgart · New York.
Acute-onset chronic inflammatory demyelinating polyneuropathy: An electrodiagnostic study.
Anadani, Mohammad; Katirji, Bashar
2015-11-01
Acute-onset chronic inflammatory demyelinating polyneuropathy (A-CIDP) is an increasingly recognized CIDP subtype. Differentiating A-CIDP from Guillain-Barré syndrome (GBS) is challenging but important, because there are different treatment outcomes. We report 3 patients with A-CIDP who were initially diagnosed with severe GBS but were later confirmed to have CIDP based on their clinical course and electrodiagnostic (EDx) studies. We also report on the long-term treatment of these patients and review the literature on EDx studies in this syndrome. Three patients were initially diagnosed with GBS and responded to treatment. However, all 3 had arrest in improvement or deterioration during their rehabilitation phases. EDx studies showed prominent demyelinating changes many months after the initial presentation. All responded very well to immunotherapy. Although several features may suggest the diagnosis of A-CIDP at initial presentation, close follow-up of GBS patients during the recovery phase is also needed for accurate diagnosis. EDx studies may distinguish patients with A-CIDP from GBS patients. © 2015 Wiley Periodicals, Inc.
Pro-Resolving lipid mediators and Mechanisms in the resolution of acute inflammation
Buckley, Christopher D.; Gilroy, Derek W.; Serhan, Charles N.
2014-01-01
SUMMARY Inflammatory responses, like all biological cascades, are shaped by a delicate balance between positive and negative feedback loops. It is now clear that in addition to positive and negative checkpoints, the inflammatory cascade rather unexpectedly boasts an additional checkpoint, a family of chemicals that actively promote resolution and tissue repair without compromising host defence. Indeed the resolution phase of inflammation is just as actively orchestrated and carefully choreographed as its induction and inhibition. In this review we explore the immunological consequences of these omega-3-derived specialized pro-resolving mediators (SPMs) and discuss their place within what is currently understood of the role of the arachidonic acid-derived prostaglandins, lipoxins and their natural C15-epimers. We propose that treatment of inflammation should not be restricted to the use of inhibitors of the acute cascade (antagonism) but broadened to take account of the enormous therapeutic potential of inducers (agonists) of the resolution phase of inflammation. PMID:24656045
Sassu, Elena L; Frömbling, Janna; Duvigneau, J Catharina; Miller, Ingrid; Müllebner, Andrea; Gutiérrez, Ana M; Grunert, Tom; Patzl, Martina; Saalmüller, Armin; von Altrock, Alexandra; Menzel, Anne; Ganter, Martin; Spergser, Joachim; Hewicker-Trautwein, Marion; Verspohl, Jutta; Ehling-Schulz, Monika; Hennig-Pauka, Isabel
2017-02-28
Actinobacillus (A.) pleuropneumoniae is the causative agent of porcine pleuropneumonia and causes significant losses in the pig industry worldwide. Early host immune response is crucial for further progression of the disease. A. pleuropneumoniae is either rapidly eliminated by the immune system or switches to a long-term persistent form. To gain insight into the host-pathogen interaction during the early stages of infection, pigs were inoculated intratracheally with A. pleuropneumoniae serotype 2 and humanely euthanized eight hours after infection. Gene expression studies of inflammatory cytokines and the acute phase proteins haptoglobin, serum amyloid A and C-reactive protein were carried out by RT-qPCR from the lung, liver, tonsils and salivary gland. In addition, the concentration of cytokines and acute phase proteins were measured by quantitative immunoassays in bronchoalveolar lavage fluid, serum and saliva. In parallel to the analyses of host response, the impact of the host on the bacterial pathogen was assessed on a metabolic level. For the latter, Fourier-Transform Infrared (FTIR-) spectroscopy was employed. Significant cytokine and acute phase protein gene expression was detected in the lung and the salivary gland however this was not observed in the tonsils. In parallel to the analyses of host response, the impact of the host on the bacterial pathogen was assessed on a metabolic level. For the latter investigations, Fourier-Transform Infrared (FTIR-) spectroscopy was employed. The bacteria isolated from the upper and lower respiratory tract showed distinct IR spectral patterns reflecting the organ-specific acute phase response of the host. In summary, this study implies a metabolic adaptation of A. pleuropneumoniae to the porcine upper respiratory tract already during early infection, which might indicate a first step towards the persistence of A. pleuropneumoniae. Not only in lung, but also in the salivary gland an increased inflammatory gene expression was detectable during the acute stage of infection.
Early identification of 'acute-onset' chronic inflammatory demyelinating polyneuropathy.
Sung, Jia-Ying; Tani, Jowy; Park, Susanna B; Kiernan, Matthew C; Lin, Cindy Shin-Yi
2014-08-01
Distinguishing patients with acute-onset chronic inflammatory demyelinating polyneuropathy from acute inflammatory demyelinating polyneuropathy prior to relapse is often challenging at the onset of their clinical presentation. In the present study, nerve excitability tests were used in conjunction with the clinical phenotype and disease staging, to differentiate between patients with acute-onset chronic inflammatory demyelinating polyneuropathy and patients with acute inflammatory demyelinating polyneuropathy at an early stage, with the aim to better guide treatment. Clinical assessment, staging and nerve excitability tests were undertaken on patients initially fulfilling the diagnostic criteria of acute inflammatory demyelinating polyneuropathy soon after symptom onset and their initial presentation. Patients were subsequently followed up for minimum of 12 months to determine if their clinical presentations were more consistent with acute-onset chronic inflammatory demyelinating polyneuropathy. Clinical severity as evaluated by Medical Research Council sum score and Hughes functional grading scale were not significantly different between the two cohorts. There was no difference between the time of onset of initial symptoms and nerve excitability test assessment between the two cohorts nor were there significant differences in conventional nerve conduction study parameters. However, nerve excitability test profiles obtained from patients with acute inflammatory demyelinating polyneuropathy demonstrated abnormalities in the recovery cycle of excitability, including significantly reduced superexcitability (P < 0.001) and prolonged relative refractory period (P < 0.01), without changes in threshold electrotonus. In contrast, in patients with acute-onset chronic inflammatory demyelinating polyneuropathy, a different pattern occurred with the recovery cycle shifted downward (increased superexcitability, P < 0.05; decreased subexcitability, P < 0.05) and increased threshold change in threshold electrotonus in both hyperpolarizing and depolarizing directions [depolarizing threshold electrotonus (90-100 ms) P < 0.005, hyperpolarizing threshold electrotonus (10-20 ms), P < 0.01, hyperpolarizing threshold electrotonus (90-100 ms), P < 0.05], perhaps suggesting early hyperpolarization. In addition, using excitability parameters superexcitability, subexcitability and hyperpolarizing threshold electrotonus (10-20 ms), the patients with acute inflammatory demyelinating polyneuropathy and acute-onset chronic inflammatory demyelinating polyneuropathy could be clearly separated into two non-overlapping groups. Studies of nerve excitability may be able to differentiate acute from acute-onset chronic inflammatory demyelinating polyneuropathy at an early stage. Characteristic nerve excitability parameter changes occur in early acute-onset chronic inflammatory demyelinating polyneuropathy, to match the clinical phenotype. Importantly, this pattern of change was strikingly different to that shown by patients with acute inflammatory demyelinating polyneuropathy, suggesting that nerve excitability techniques may be useful in distinguishing acute-onset chronic inflammatory demyelinating polyneuropathy from acute inflammatory demyelinating polyneuropathy at the initial stage. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Martin-Subero, Marta; Anderson, George; Kanchanatawan, Buranee; Berk, Michael; Maes, Michael
2016-04-01
The nature of depression has recently been reconceptualized, being conceived as the clinical expression of activated immune-inflammatory, oxidative, and nitrosative stress (IO&NS) pathways, including tryptophan catabolite (TRYCAT), autoimmune, and gut-brain pathways. IO&NS pathways are similarly integral to the pathogenesis of inflammatory bowel disease (IBD). The increased depression prevalence in IBD associates with a lower quality of life and increased morbidity in IBD, highlighting the role of depression in modulating the pathophysiology of IBD.This review covers data within such a wider conceptualization that better explains the heightened co-occurrence of IBD and depression. Common IO&NS underpinning between both disorders is evidenced by increased pro-inflammatory cytokine levels, eg, interleukin-1 (IL-1) and tumor necrosis factor-α, IL-6 trans-signalling; Th-1- and Th-17-like responses; neopterin and soluble IL-2 receptor levels; positive acute phase reactants (haptoglobin and C-reactive protein); lowered levels of negative acute phase reactants (albumin, transferrin, zinc) and anti-inflammatory cytokines (IL-10 and transforming growth factor-β); increased O&NS with damage to lipids, proteinsm and DNA; increased production of nitric oxide (NO) and inducible NO synthase; lowered plasma tryptophan but increased TRYCAT levels; autoimmune responses; and increased bacterial translocation. As such, heightened IO&NS processes in depression overlap with the biological underpinnings of IBD, potentially explaining their increased co-occurrence. This supports the perspective that there is a spectrum of IO&NS disorders that includes depression, both as an emergent comorbidity and as a contributor to IO&NS processes. Such a frame of reference has treatment implications for IBD when "comorbid" with depression.
Treatment of inflammatory diseases with mesenchymal stem cells.
Newman, Robert E; Yoo, Dana; LeRoux, Michelle A; Danilkovitch-Miagkova, Alla
2009-06-01
Human mesenchymal stem cells (hMSCs) are rare progenitor cells present in adult bone marrow that have the capacity to differentiate into a variety of tissue types, including bone, cartilage, tendon, fat, and muscle. In addition to multilineage differentiation capacity, MSCs regulate immune and inflammatory responses, providing therapeutic potential for treating diseases characterized by the presence of an inflammatory component. The availability of bone marrow and the ability to isolate and expand hMSCs ex vivo make these cells an attractive candidate for drug development. The low immunogenicity of these cells suggests that hMSCs can be transplanted universally without matching between donors and recipients. MSCs universality, along with the ability to manufacture and store these cells long-term, present a unique opportunity to produce an "off-the-shelf" cellular drug ready for treatment of diseases in acute settings. Accumulated animal and human data support MSC therapeutic potential for inflammatory diseases. Several phase III clinical trials for treatment of acute Graft Versus Host Disease (GVHD) and Crohn's disease are currently in progress. The current understanding of cellular and molecular targets underlying the mechanisms of MSCs action in inflammatory settings as well as clinical experience with hMSCs is summarized in this review.
Anti-inflammatory activity of Elaeagnus angustifolia fruit extract on rat paw edema.
Motevalian, Manijeh; Shiri, Mehdi; Shiri, Saeedeh; Shiri, Zahra; Shiri, Hadi
2017-07-26
The Elaeagnus angustifolia fruit has been traditionally used in Iranian herbal medicine to treat diarrhea and rheumatoid arthritis. In the present study, the effects of E. angustifolia fruit extract on the acute and chronic phases of formalin-induced rat paw edema were examined. The acute and chronic anti-inflammatory effects of E. angustifolia fruit extract were investigated through the subcutaneous injection of 100 μL of formalin (2.5%) into a rat's hind paw. Thirty minutes before the procedure, the experimental groups were treated intraperitoneally with hydroalcoholic fruit extracts of E. angustifolia (concentrations of 100, 300, 700, and 1000 mg/kg); sodium salicylate (SS, 400 mg/kg) and distilled water were used as positive and negative control groups, respectively. Treatment with SS and the fruit extracts were performed daily for 8 days, and the degree of edema was measured by using mercury plethysmometer and digital caliper. In the acute anti-inflammatory study, the extract showed a significant anti-inflammatory effect in a dose-dependent manner. The results of 1000 mg/kg of the extract was significantly different compared with the negative control group (p<0.05) and was comparable to sodium salicylate (p<0.05). Results from the chronic study suggested that E. angustifolia extract significantly reduced paw edema and inflammation in a dose-dependent manner. The results also showed that the measurement by digital caliper and mercury plethysmometer were both reliable and might be applied interchangeably (p<0.01). Phytochemical tests indicated that the hydroalcoholic fruit extract of E. angustifolia was positive for cardiac glycosides, flavonoids, terpenoids, and saponins. Based on our findings, the E. angustifolia fruit extract probably has acute and chronic anti-inflammatory activities to support its applications in folk medicine.
Paradoxical effects of vitamin C in Chagas disease.
Castanheira, J R P T; Castanho, R E P; Rocha, H; Pagliari, C; Duarte, M I S; Therezo, A L S; Chagas, E F B; Martins, L P A
2018-05-05
Trypanosoma cruzi infection stimulates inflammatory mediators which cause oxidative stress, and the use of antioxidants can minimize the sequelae of Chagas disease. In order to evaluate the efficacy of vitamin C in minimizing oxidative damage in Chagas disease, we orally administered ascorbic acid to Swiss mice infected with 5.0 × 10 4 trypomastigote forms of T. cruzi QM2 strain. These animals were treated for 60 days to investigate the acute phase and 180 days for the chronic phase. During the acute phase, the animals in the infected and treated groups demonstrated lower parasitemia and inflammatory processes were seen in more mice in these groups, probably due to the higher concentration of nitric oxide, which led to the formation of peroxynitrite. The decrease in reduced glutathione concentration in this group showed a circulating oxidant state, and this antioxidant was used to regenerate vitamin C. During the chronic phase, the animals in the infected and treated group showed a decrease in ferric reducing ability of plasma and uric acid concentrations as well as mobilization of bilirubin (which had higher plasma concentration), demonstrating cooperation between endogenous non-enzymatic antioxidants to combat increased oxidative stress. However, lower ferrous oxidation in xylenol orange concentrations was found in the infected and treated group, suggesting that vitamin C provided biological protection by clearing the peroxynitrite, attenuating the chronic inflammatory process in the tissues and favoring greater survival in these animals. Complex interactions were observed between the antioxidant systems of the host and parasite, with paradoxical actions of vitamin C. Copyright © 2018 Elsevier B.V. All rights reserved.
Flores-Martinez, Yazmin M; Fernandez-Parrilla, Manuel A; Ayala-Davila, Jose; Reyes-Corona, David; Blanco-Alvarez, Victor M; Soto-Rojas, Luis O; Luna-Herrera, Claudia; Gonzalez-Barrios, Juan A; Leon-Chavez, Bertha A; Gutierrez-Castillo, Maria E; Martínez-Dávila, Irma A; Martinez-Fong, Daniel
2018-01-01
Models of Parkinson's disease with neurotoxins have shown that microglial activation does not evoke a typical inflammatory response in the substantia nigra, questioning whether neuroinflammation leads to neurodegeneration. To address this issue, the archetypal inflammatory stimulus, lipopolysaccharide (LPS), was injected into the rat substantia nigra. LPS induced fever, sickness behavior, and microglial activation (OX42 immunoreactivity), followed by astrocyte activation and leukocyte infiltration (GFAP and CD45 immunoreactivities). During the acute phase of neuroinflammation, pro- and anti-inflammatory cytokines (TNF- α , IL-1 β , IL-6, IL-4, and IL-10) responded differentially at mRNA and protein level. Increased NO production and lipid peroxidation occurred at 168 h after LPS injection. At this time, evidence of neurodegeneration could be seen, entailing decreased tyrosine hydroxylase (TH) immunoreactivity, irregular body contour, and prolongation discontinuity of TH + cells, as well as apparent phagocytosis of TH + cells by OX42 + cells. Altogether, these results show that LPS evokes a typical inflammatory response in the substantia nigra that is followed by dopaminergic neurodegeneration.
Gonzalez-Barrios, Juan A.; Gutierrez-Castillo, Maria E.
2018-01-01
Models of Parkinson's disease with neurotoxins have shown that microglial activation does not evoke a typical inflammatory response in the substantia nigra, questioning whether neuroinflammation leads to neurodegeneration. To address this issue, the archetypal inflammatory stimulus, lipopolysaccharide (LPS), was injected into the rat substantia nigra. LPS induced fever, sickness behavior, and microglial activation (OX42 immunoreactivity), followed by astrocyte activation and leukocyte infiltration (GFAP and CD45 immunoreactivities). During the acute phase of neuroinflammation, pro- and anti-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-4, and IL-10) responded differentially at mRNA and protein level. Increased NO production and lipid peroxidation occurred at 168 h after LPS injection. At this time, evidence of neurodegeneration could be seen, entailing decreased tyrosine hydroxylase (TH) immunoreactivity, irregular body contour, and prolongation discontinuity of TH+ cells, as well as apparent phagocytosis of TH+ cells by OX42+ cells. Altogether, these results show that LPS evokes a typical inflammatory response in the substantia nigra that is followed by dopaminergic neurodegeneration. PMID:29854828
Inflammatory biomarkers in heart failure revisited: much more than innocent bystanders.
von Haehling, Stephan; Schefold, Joerg C; Lainscak, Mitja; Doehner, Wolfram; Anker, Stefan D
2009-10-01
Chronic heart failure is viewed as a state of chronic inflammation. Many inflammatory markers have been shown to be up-regulated in patients who have this condition, but the markers' roles in clinical decision making have not yet been fully elucidated. A panel of biomarkers is likely to have a strong impact on patient management. Inflammatory biomarkers are interesting candidates that could answer specific clinical questions on their own or complement a multi-marker approach. This article provides a broad overview of several inflammatory biomarkers, including the pro-inflammatory cytokines tumor necrosis factor-alpha, interleukin (IL)-6, IL-1, IL-18, and the soluble receptors TNFR-1, TNFR-2, IL-6R, and gp130. In addition to these acute phase reactants, several adhesion molecules, and lipopolysaccharide-signaling pathways are discussed.
Serum acute phase protein concentrations in female dogs with mammary tumors.
Tecles, Fernando; Caldín, Marco; Zanella, Anna; Membiela, Francisco; Tvarijonaviciute, Asta; Subiela, Silvia Martínez; Cerón, José Joaquín
2009-03-01
Acute phase proteins (APPs) are proteins whose concentrations in serum change after any inflammatory stimulus or tissue damage. The aim of the current study was to evaluate 3 positive APPs (C-reactive protein, serum amyloid A, and haptoglobin) and 1 negative APP (albumin) in female dogs with mammary neoplasia. Acute phase proteins were studied in 70 female dogs aged 8-12 years in the following groups: healthy (n = 10); mammary tumors in stages I (n = 19), II (n = 5), III (n = 6), IV (n = 5), and V (n = 7); and with mammary neoplasia plus a concomitant disease (n = 18). In animals with mammary neoplasia, significant increases of positive APPs were only detected in those that had metastasis or a neoplasm with a diameter greater than 5 cm and ulceration. Dogs with mammary neoplasia and a concomitant disease also had high C-reactive protein concentrations. Albumin concentration was decreased in animals with metastasis and with a concomitant disease. The results of the present study indicate that the acute phase response could be stimulated in female dogs with mammary gland tumors because of different factors, such as metastasis, large size of the primary mass, and ulceration or secondary inflammation of the neoplasm.
Fujita, Katsuhide; Fukuda, Makiko; Fukui, Hiroko; Horie, Masanori; Endoh, Shigehisa; Uchida, Kunio; Shichiri, Mototada; Morimoto, Yasuo; Ogami, Akira; Iwahashi, Hitoshi
2015-01-01
Abstract The use of carbon nanotubes in the industry has grown; however, little is known about their toxicological mechanism of action. Single-wall carbon nanotube (SWCNT) suspensions were administered by single intratracheal instillation in rats. Persistence of alveolar macrophage-containing granuloma was observed around the sites of SWCNT aggregation at 90 days post-instillation in 0.2-mg- or 0.4-mg-injected doses per rat. Meanwhile, gene expression profiling revealed that a large number of genes involved in the inflammatory response were markedly upregulated until 90 days or 180 days post-instillation. Subsequently, gene expression patterns were dramatically altered at 365 days post-instillation, and the number of upregulated genes involved in the inflammatory response was reduced. These results suggested that alveolar macrophage-containing granuloma reflected a characteristic of the histopathological transition period from the acute-phase to the subchronic-phase of inflammation, as well as pulmonary acute phase response persistence up to 90 or 180 days after intratracheal instillation in this experimental setting. The expression levels of the genes Ctsk, Gcgr, Gpnmb, Lilrb4, Marco, Mreg, Mt3, Padi1, Slc26a4, Spp1, Tnfsf4 and Trem2 were persistently upregulated in a dose-dependent manner until 365 days post-instillation. In addition, the expression levels of Atp6v0d2, Lpo, Mmp7, Mmp12 and Rnase9 were significantly upregulated until 754 days post-instillation. We propose that these persistently upregulated genes in the chronic-phase response following the acute-phase response act as potential biomarkers in lung tissue after SWCNT instillation. This study provides further insight into the time-dependent changes in genomic expression associated with the pulmonary toxicity of SWCNTs. PMID:24911292
Anti-inflammatory and antinociceptive activities of azadirachtin in mice.
Soares, Darly G; Godin, Adriana M; Menezes, Raquel R; Nogueira, Rafaela D; Brito, Ana Mercy S; Melo, Ivo S F; Coura, Giovanna Maria E; Souza, Danielle G; Amaral, Flávio A; Paulino, Tony P; Coelho, Márcio M; Machado, Renes R
2014-06-01
Azadirachta indica (Meliaceae) extracts have been reported to exhibit anti-inflammatory and antinociceptive properties. However, the activities of azadirachtin, a limonoid and the major bioactive compound found in the extracts, have been poorly investigated in animal models. In the present study, we investigated the effects induced by azadirachtin in experimental models of pain and inflammation in mice. Carrageenan-induced paw edema and fibrovascular tissue growth induced by subcutaneous cotton pellet implantation were used to investigate the anti-inflammatory activity of azadirachtin in mice. Zymosan-induced writhing and hot plate tests were employed to evaluate the antinociceptive activity. To explore putative mechanisms of action, the level of tumor necrosis factor-α in inflammatory tissue was measured and the effect induced by opioidergic and serotonergic antagonists was evaluated. Previous per os (p. o.) administration of azadirachtin (120 mg/kg) significantly reduced the acute paw edema induced by carrageenan. However, the concomitant increase of the paw concentration of tumor necrosis factor-α induced by this inflammatory stimulus was not reduced by azadirachtin. In addition to inhibiting the acute paw edema induced by carrageenan, azadirachtin (6, 60, and 120 mg/kg) inhibited the proliferative phase of the inflammatory response, as demonstrated by the reduced formation of fibrovascular tissue growth. Azadirachtin (120 mg/kg) also inhibited the nociceptive response in models of nociceptive (hot plate) and inflammatory (writhing induced by zymosan) pain. The activity of azadirachtin (120 mg/kg) in the model of nociceptive pain was attenuated by a nonselective opioid antagonist, naltrexone (10 mg/kg, i. p.), but not by a nonselective serotonergic antagonist, cyproheptadine. In conclusion, this study demonstrates the activity of azadirachtin in experimental models of nociceptive and inflammatory pain, and also in models of acute and chronic inflammation. Finally, multiple mechanisms, including the inhibition of the production of inflammatory mediators and activation of endogenous opioid pathways, may mediate azadirachtin activities in experimental models of inflammation and pain. Georg Thieme Verlag KG Stuttgart · New York.
Studies recently showed that intratracheal (IT) instillation of Libby amphibole (LA) increases circulating acute-phase proteins (APP; a-2 macroglobulin, A2M; and a-1 acid glycoprotein, AGP) and inflammatory biomarkers (osteopontin and lipocalin) in rats. In this study, objectives...
Bajrami, Besnik; Zhu, Haiyan; Zhang, Yu C.
2016-01-01
Cytokine-induced neutrophil mobilization from the bone marrow to circulation is a critical event in acute inflammation, but how it is accurately controlled remains poorly understood. In this study, we report that CXCR2 ligands are responsible for rapid neutrophil mobilization during early-stage acute inflammation. Nevertheless, although serum CXCR2 ligand concentrations increased during inflammation, neutrophil mobilization slowed after an initial acute fast phase, suggesting a suppression of neutrophil response to CXCR2 ligands after the acute phase. We demonstrate that granulocyte colony-stimulating factor (G-CSF), usually considered a prototypical neutrophil-mobilizing cytokine, was expressed later in the acute inflammatory response and unexpectedly impeded CXCR2-induced neutrophil mobilization by negatively regulating CXCR2-mediated intracellular signaling. Blocking G-CSF in vivo paradoxically elevated peripheral blood neutrophil counts in mice injected intraperitoneally with Escherichia coli and sequestered large numbers of neutrophils in the lungs, leading to sterile pulmonary inflammation. In a lipopolysaccharide-induced acute lung injury model, the homeostatic imbalance caused by G-CSF blockade enhanced neutrophil accumulation, edema, and inflammation in the lungs and ultimately led to significant lung damage. Thus, physiologically produced G-CSF not only acts as a neutrophil mobilizer at the relatively late stage of acute inflammation, but also prevents exaggerated neutrophil mobilization and the associated inflammation-induced tissue damage during early-phase infection and inflammation. PMID:27551153
The role of the immune system in central nervous system plasticity after acute injury.
Peruzzotti-Jametti, Luca; Donegá, Matteo; Giusto, Elena; Mallucci, Giulia; Marchetti, Bianca; Pluchino, Stefano
2014-12-26
Acute brain injuries cause rapid cell death that activates bidirectional crosstalk between the injured brain and the immune system. In the acute phase, the damaged CNS activates resident and circulating immune cells via the local and systemic release of soluble mediators. This early immune activation is necessary to confine the injured tissue and foster the clearance of cellular debris, thus bringing the inflammatory reaction to a close. In the chronic phase, a sustained immune activation has been described in many CNS disorders, and the degree of this prolonged response has variable effects on spontaneous brain regenerative processes. The challenge for treating acute CNS damage is to understand how to optimally engage and modify these immune responses, thus providing new strategies that will compensate for tissue lost to injury. Herein we have reviewed the available information regarding the role and function of the innate and adaptive immune responses in influencing CNS plasticity during the acute and chronic phases of after injury. We have examined how CNS damage evolves along the activation of main cellular and molecular pathways that are associated with intrinsic repair, neuronal functional plasticity and facilitation of tissue reorganization. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Lim, Jia Pei; Devaux, Jérôme; Yuki, Nobuhiro
2014-10-01
Guillain-Barré syndrome is classified into acute inflammatory demyelinating polyneuropathy and acute motor axonal neuropathy. Whereas autoantibodies to GM1 or GD1a induce the development of acute motor axonal neuropathy, pathogenic autoantibodies have yet to be identified in acute inflammatory demyelinating polyneuropathy and chronic inflammatory demyelinating polyneuropathy. This review highlights the importance of autoantibodies to peripheral nerve proteins in the physiopathology of acute and chronic inflammatory demyelinating polyneuropathies. Moreover, we listed up other potential antigens, which may become helpful biomarkers for acquired, dysimmune demyelinating neuropathies based on their critical functions during myelination and their implications in hereditary demyelinating neuropathies. Copyright © 2014 Elsevier B.V. All rights reserved.
2010-01-01
Introduction Pristane-induced arthritis (PIA) in the rat has been described as an animal model of inflammatory arthritis which exhibits features similar to rheumatoid arthritis in humans, such as a chronic, destructive, and symmetrical involvement of peripheral joints. However, so far little is known about the earliest inflammatory events and their influence on locomotor behaviour during the course of PIA. To investigate this issue a detailed analysis of the pathologic changes occurring during the prodromal and early stages of PIA was performed. Methods Arthritis was induced in DA.rats by injection of 150 μl 2,6,10,4-tetramethyl-pentadecane (pristane) at the base of the tail and changes in locomotor behaviour of the affected paws were monitored using the CatWalk quantitative gait analysis system. The pathologic events occurring in the joints of pristane-injected animals were studied before onset, at onset, and during acute phase of arthritis by histological methods. Results Gait analysis revealed that changes in locomotion such as reduced paw print areas and stance phase time are already apparent before the onset of clinically discernible arthritis symptoms (erythema, paw swelling) and correlate with PIA scores. In agreement with these findings, inflammatory tenosynovitis could be observed by histology already before the onset of erythema and swelling of the respective paws. In the most heavily affected rats also irregularities in step sequence patterns occurred A kinetic analysis of clinical and histological findings demonstrated that gait changes precede the pathological changes occurring during the acute phase of pristane-induced arthritis. Conclusions Gait analysis allows for pinpointing the initial inflammatory changes in experimental arthritis models such as pristane-induced arthritis. Analysis of early clinically relevant symptoms in arthritis models may facilitate the search for novel therapeutics to interfere with pain, inflammation and joint destruction in patients suffering from inflammatory arthritis. PMID:20222952
Acute-Phase Inflammatory Response to Single-Bout HIIT and Endurance Training: A Comparative Study
Kaspar, Felix; Jelinek, Herbert F.; Perkins, Steven; Al-Aubaidy, Hayder A.; deJong, Bev; Butkowski, Eugene
2016-01-01
Objective. This study compared acute and late effect of single-bout endurance training (ET) and high-intensity interval training (HIIT) on the plasma levels of four inflammatory cytokines and C-reactive protein and insulin-like growth factor 1. Design. Cohort study with repeated-measures design. Methods. Seven healthy untrained volunteers completed a single bout of ET and HIIT on a cycle ergometer. ET and HIIT sessions were held in random order and at least 7 days apart. Blood was drawn before the interventions and 30 min and 2 days after the training sessions. Plasma samples were analyzed with ELISA for the interleukins (IL), IL-1β, IL-6, and IL-10, monocyte chemoattractant protein-1 (MCP-1), insulin growth factor 1 (IGF-1), and C-reactive protein (CRP). Statistical analysis was with Wilcoxon signed-rank tests. Results. ET led to both a significant acute and long-term inflammatory response with a significant decrease at 30 minutes after exercise in the IL-6/IL-10 ratio (−20%; p = 0.047) and a decrease of MCP-1 (−17.9%; p = 0.03). Conclusion. This study demonstrates that ET affects the inflammatory response more adversely at 30 minutes after exercise compared to HIIT. However, this is compensated by a significant decrease in MCP-1 at two days associated with a reduced risk of atherosclerosis. PMID:27212809
Klyne, David M; Barbe, Mary F; van den Hoorn, Wolbert; Hodges, Paul W
2018-04-01
Prospective longitudinal study. To determine whether systemic cytokines and C-reactive protein (CRP) during an acute episode of low back pain (LBP) differ between individuals who did and did not recover by 6 months and to identify sub-groups based on patterns of inflammatory, psychological, and sleep features associated with recovery/non-recovery. Systemic inflammation is observed in chronic LBP and may contribute to the transition from acute to persistent LBP. Longitudinal studies are required to determine whether changes present early or develop over time. Psychological and/or sleep-related factors may be related. Individuals within 2 weeks of onset of acute LBP (N = 109) and pain-free controls (N = 55) provided blood for assessment of CRP, tumor necrosis factor (TNF), interleukin-6 (IL-6) and interleukin-1β, and completed questionnaires related to pain, disability, sleep, and psychological status. LBP participants repeated measurements at 6 months. Biomarkers were compared between LBP and control participants at baseline, and in longitudinal (baseline/6 months) analysis, between unrecovered (≥pain and disability), partially recovered (reduced pain and/or disability) and recovered (no pain and disability) participants at 6 months. We assessed baseline patterns of inflammatory, psychological, sleep, and pain data using hierarchical clustering and related the clusters to recovery (% change in pain) at 6 months. CRP was higher in acute LBP than controls at baseline. In LBP, baseline CRP was higher in the recovered than non-recovered groups. Conversely, TNF was higher at both time-points in the non-recovered than recovered groups. Two sub-groups were identified that associated with more ("inflammatory/poor sleep") or less ("high TNF/depression") recovery. This is the first evidence of a relationship between an "acute-phase" systemic inflammatory response and recovery at 6 months. High inflammation (CRP/IL-6) was associated with good recovery, but specific elevation of TNF, along with depressive symptoms, was associated with bad recovery. Depression and TNF may have a two-way relationship. These slides can be retrieved under Electronic Supplementary Material.
Isaza, Ramiro; Wiedner, Ellen; Hiser, Sarah; Cray, Carolyn
2014-09-01
Acute phase protein (APP) immunoassays and serum protein electrophoresis (SPEP) are assays for evaluating the inflammatory response and have use as diagnostic tools in a variety of species. Acute phase proteins are markers of inflammation that are highly conserved across different species while SPEP separates and quantifies serum protein fractions based on their physical properties. In the current study, serum samples from 35 clinically healthy Asian elephants (Elephas maximus) were analyzed using automated assays for C-reactive protein, serum amyloid A, and haptoglobin and SPEP. Robust methods were used to generate reference intervals for the APPs: C-reactive protein (1.3-12.8 mg/l), serum amyloid A (0-47.5 mg/l), and haptoglobin (0-1.10 mg/ml). In addition, SPEP was performed on these samples to establish reference intervals for each protein fraction. A combination of APPs and SPEP measurements are valuable adjunctive diagnostic tools in elephant health care. © 2014 The Author(s).
de Morais Lima, Gedson Rodrigues; Machado, Flavia Danniele Frota; Périco, Larissa Lucena; de Faria, Felipe Meira; Luiz-Ferreira, Anderson; Souza Brito, Alba Regina Monteiro; Pellizzon, Cláudia Helena; Hiruma-Lima, Clélia Akiko; Tavares, Josean Fechine; Barbosa Filho, José Maria; Batista, Leônia Maria
2017-01-01
AIM To evaluate the anti-inflammatory intestinal effect of the ethanolic extract (EtOHE) and hexane phase (HexP) obtained from the leaves of Combretum duarteanum (Cd). METHODS Inflammatory bowel disease was induced using trinitrobenzenesulfonic acid in acute and relapsed ulcerative colitis in rat models. Damage scores, and biochemical, histological and immunohistochemical parameters were evaluated. RESULTS Both Cd-EtOHE and Cd-HexP caused significant reductions in macroscopic lesion scores and ulcerative lesion areas. The vegetable samples inhibited myeloperoxidase increase, as well as pro-inflammatory cytokines TNF-α and IL-1β. Anti-inflammatory cytokine IL-10 also increased in animals treated with the tested plant samples. The anti-inflammatory intestinal effect is related to decreased expression of cyclooxygenase-2, proliferating cell nuclear antigen, and an increase in superoxide dismutase. CONCLUSION The data indicate anti-inflammatory intestinal activity. The effects may also involve participation of the antioxidant system and principal cytokines relating to inflammatory bowel disease. PMID:28293082
MR Enterography of Inflammatory Bowel Disease with Endoscopic Correlation.
Kaushal, Pankaj; Somwaru, Alexander S; Charabaty, Aline; Levy, Angela D
2017-01-01
Crohn disease (CD) and ulcerative colitis (UC) are the two main forms of idiopathic inflammatory bowel disease (IBD). CD is a transmural chronic inflammatory disorder that can affect any part of the gastrointestinal tract in a discontinuous distribution. UC is a mucosal and submucosal chronic inflammatory disease that typically originates in the rectum and may extend proximally in a continuous manner. In treating patients with CD and UC, clinicians rely heavily on accurate diagnoses and disease staging. Magnetic resonance (MR) enterography used in conjunction with endoscopy and histopathologic analysis can help accurately diagnose and manage disease in the majority of patients. Endoscopy is more sensitive for detection of the early-manifesting mucosal abnormalities seen with IBD and enables histopathologic sampling. MR enterography yields more insightful information about the pathologic changes seen deep to the mucosal layer of the gastrointestinal tract wall and to those portions of the small bowel that are not accessible endoscopically. CD can be classified into active inflammatory, fistulizing and perforating, fibrostenotic, and reparative and regenerative phases of disease. Although CD has a progressive course, there is no stepwise progression between these disease phases, and various phases may exist at the same time. The endoscopic and MR enterographic features of UC can be broadly divided into two categories: acute phase and subacute-chronic phase. Understanding the endoscopic features of IBD and the pathologic processes that cause the MR enterographic findings of IBD can help improve the accuracy of disease characterization and thus optimize the medication and surgical therapies for these patients. © RSNA, 2016.
Cycloartanes from Oxyanthus pallidus and derivatives with analgesic activities.
Piegang, Basile Nganmegne; Tigoufack, Ignas Bertrand Nzedong; Ngnokam, David; Achounna, Angèle Sorel; Watcho, Pierre; Greffrath, Wolfgang; Treede, Rolf-Detlef; Nguelefack, Télesphore Benoît
2016-03-09
The leaves of Oxyanthus pallidus Hiern (Rubiaceae) are extensively used in the west region of Cameroon as analgesic. These leaves are rich in cycloartanes, a subclass of triterpenes known to possess analgesic and anti-inflammatory properties. The present study aimed at evaluating the analgesic properties of three cycloartanes isolated from Oxyanthus pallidus leaves as well as their aglycones and acetylated derivatives. Three cycloartanes OP3, OP5 and OP6 obtained by successive chromatography of the crude methanol extract of the leaves were hydrolysed to yield respective aglycone AOP1, AOP2, AOP3 and acetylated to HOP1, HOP2 and HOP3 respectively. Formalin-induced pain model was used to evaluate the acute anti-nociceptive properties of these cycloartanes (5 mg/kg, p.o) in mice and to determine the structure-activity relationship. Acute (24 h) and chronic (10 days) anti-hyperalgesic and anti-inflammatory activities of OP5 were evaluated at the doses of 2.5 and 5 mg/kg/day administered orally. OP6 was also evaluated in acute experiments. The antioxidant and hepato-protective activities of OP5 were evaluated at the end of the chronic treatment. The mixture and the individual isolated cycloartanes significantly inhibited both phases of formalin-induced pain with percentage inhibition ranging from 13 to 78%. Acid hydrolysis did not significantly affect their antinociceptive activities while acetylation significantly reduced the effects of these compounds during the second phase of pain. OP5 and OP6 induced acute anti-hyperalgesic activity in formalin-induced mechanical hyperalgesia but not an anti-inflammatory effect. Repeated administration of OP5 for 10 days did not induce any anti-hyperalgesic effect. The evaluation of in vivo antioxidant properties showed that OP5 significantly reduced malondialdehyde and increased superoxide dismutase levels in liver without significantly affecting other oxidative stress and hepatotoxic parameters. Chronic administration of OP5 did not cause gastric ulceration. Cycloartanes isolated from Oxyanthus pallidus possess analgesic effects but lack anti-inflammatory activities. This analgesic effect especially on inflammatory pain may be due to the presence of hydroxyl group in front of the plane. OP5 is devoid of ulcerogenic effect and possess antioxidant properties that might be of benefit to its analgesic properties.
Fever of unknown origin in the elderly.
Wakefield, K M; Henderson, S T; Streit, J G
1989-06-01
Fever is a prominent sign of an acute-phase response induced by microbial invasion, tissue injury, immunologic reactions, or inflammatory processes. This generalized host response is produced by a multiplicity of localized or systemic diseases and characterized by acute, subacute, or chronic changes in metabolic, endocrinologic, neurologic, and immunologic functions. The fundamental event is an initiation of the acute-phase response by the production of a mediated molecule called IL-1. This polypeptide is produced primarily from phagocytic cells such as blood monocytes, phagocytic lining cells of the liver and spleen, and other tissue macrophages. IL-1 produces a local reaction but also enters the circulation, acting as a hormone to mediate distant organ system responses to infection, immunologic reaction, and inflammatory processes. Fever is the result when IL-1 initiates the synthesis of prostaglandins, notably prostaglandin E2 in the thermoregulatory center located in the anterior hypothalamus. The thermostatic set point is then raised and mechanisms to conserve heat (vasoconstriction) and to produce heat (shivering) are initiated. The result is a sudden rise in body temperature. The same basic mechanisms are involved in FUO. Many of the biologic and biochemical changes that are seen in FUO are also evidence of an acute-phase response. The elevated erythrocyte sedimentation rate is partly due to increased synthesis of hepatic proteins, including compliment components, ceruloplasmin, fibrinogen, and C-reactive protein. IL-1 acts directly on the bone marrow to increase absolute numbers and immaturity of circulating neutrophils. Anemia is produced by many mechanisms, including the reduction of circulating serum iron. Although fever production in the elderly maybe delayed or of less intensity, it is still a marker of significant disease.(ABSTRACT TRUNCATED AT 400 WORDS)
Acute thyroid eye disease (TED): principles of medical and surgical management.
Verity, D H; Rose, G E
2013-03-01
The active inflammatory phase of thyroid eye disease (TED) is mediated by the innate immune system, and management is aimed at aborting this self-limited period of autoimmune activity. In most patients with TED, ocular and adnexal changes are mild and management involves controlling thyroid dysfunction, cessation of smoking, and addressing ocular surface inflammation and exposure. In patients with acute moderate disease, this being sufficient to impair orbital functions, immunosuppression reduces the long-term sequelae of acute inflammation, and adjunctive fractionated low-dose orbital radiotherapy is used as a steroid-sparing measure. Elective surgery is often required following moderate TED, be it for proptosis, diplopia, lid retraction, or to debulk the eyelid, and this should be delayed until the disease is quiescent, with the patient stable and weaned off all immunosuppression. Thus, surgical intervention during the active phase of moderate disease is rarely indicated, although clinical experience suggests that, where there is significant orbital congestion, early orbital decompression can limit progression to more severe disease. Acute severe TED poses a major risk of irreversible loss of vision due to marked exposure keratopathy, 'hydraulic' orbital congestion, or compressive optic neuropathy. If performed promptly, retractor recession with or without a suture tarsorrhaphy protects the ocular surface from severe exposure and, in patients not responding to high-dose corticosteroid treatment, decompression of the deep medial orbital wall and floor can rapidly relieve compressive optic neuropathy, as well as alleviate the inflammatory and congestive features of raised orbital pressure.
Acute thyroid eye disease (TED): Principles of medical and surgical management
Verity, D H; Rose, G E
2013-01-01
The active inflammatory phase of thyroid eye disease (TED) is mediated by the innate immune system, and management is aimed at aborting this self-limited period of autoimmune activity. In most patients with TED, ocular and adnexal changes are mild and management involves controlling thyroid dysfunction, cessation of smoking, and addressing ocular surface inflammation and exposure. In patients with acute moderate disease, this being sufficient to impair orbital functions, immunosuppression reduces the long-term sequelae of acute inflammation, and adjunctive fractionated low-dose orbital radiotherapy is used as a steroid-sparing measure. Elective surgery is often required following moderate TED, be it for proptosis, diplopia, lid retraction, or to debulk the eyelid, and this should be delayed until the disease is quiescent, with the patient stable and weaned off all immunosuppression. Thus, surgical intervention during the active phase of moderate disease is rarely indicated, although clinical experience suggests that, where there is significant orbital congestion, early orbital decompression can limit progression to more severe disease. Acute severe TED poses a major risk of irreversible loss of vision due to marked exposure keratopathy, ‘hydraulic' orbital congestion, or compressive optic neuropathy. If performed promptly, retractor recession with or without a suture tarsorrhaphy protects the ocular surface from severe exposure and, in patients not responding to high-dose corticosteroid treatment, decompression of the deep medial orbital wall and floor can rapidly relieve compressive optic neuropathy, as well as alleviate the inflammatory and congestive features of raised orbital pressure. PMID:23412559
[Idiopathic inflammatory bowel disease - advancements in surgical treatment].
Ulrych, J; Krška, Z
2012-10-01
Treatment of idiopathic inflammatory bowel disease is constantly developing. Biological therapy has become a standard part of conservative treatment, and gene and cell therapy of these diseases is in preclinical phase. Surgical therapy also offers some progress in the treatment, such as the increasingly preferred laparoscopic approach offering the numerous benefits of minimally invasive surgery or a tendency to perform stapled anastomosis. A retrospective analysis of patients with a diagnosis of idiopathic inflammatory bowel operated on at the First Department of Surgery, General University Hospital in the years 2007-2011 was performed. Within this period, 179 patients diagnosed with Crohns disease were operated on. 30 patients underwent acute operation and 149 patients were indicated for elective surgery. In the same period, 40 patients with ulcerative colitis were indicated for surgery, of whom 22 patients for acute surgery and 18 for elective surgery. Multidisciplinary approach in the treatment of patients with inflammatory bowel disease is crucial and patients should be treated in specialized centres. New possibilities of conservative treatment and progress in surgical therapy mutually correlate, and thus the choice of a correct therapeutic procedure requires specific cooperation between the surgeon and the gastroenterologist.
Preethi, Korengath Chandran; Kuttan, Girija; Kuttan, Ramadasan
2009-02-01
Calendula officinalis flower extract possessed significant anti-inflammatory activity against carrageenan and dextran-induced acute paw edema. Oral administration of 250 and 500 mg/kg body weight Calendula extract produced significant inhibition (50.6 and 65.9% respectively) in paw edema of animals induced by carrageenan and 41.9 and 42.4% respectively with inflammation produced by dextran. In chronic anti-inflammatory model using formalin, administration of 250 and 500 mg/kg body weight Calendula extract produced an inhibition of 32.9 and 62.3% respectively compared to controls. TNF-alpha production by macrophage culture treated with lipopolysaccharide (LPS) was found to be significantly inhibited by Calendula extract. Moreover, increased levels of proinflammatory cytokines IL- 1beta, IL-6, TNF-alpha and IFN-gamma and acute phase protein, C- reactive protein (CRP) in mice produced by LPS injection were inhibited significantly by the extract. LPS induced cyclooxygenase-2 (Cox-2) levels in mice spleen were also found to be inhibited by extract treatment. The results showed that potent anti-inflammatory response of C. officinalis extract may be mediated by the inhibition of proinflammatory cytokines and Cox-2 and subsequent prostaglandin synthesis.
Update on Inflammatory Biomarkers and Treatments in Ischemic Stroke
Bonaventura, Aldo; Liberale, Luca; Vecchié, Alessandra; Casula, Matteo; Carbone, Federico; Dallegri, Franco; Montecucco, Fabrizio
2016-01-01
After an acute ischemic stroke (AIS), inflammatory processes are able to concomitantly induce both beneficial and detrimental effects. In this narrative review, we updated evidence on the inflammatory pathways and mediators that are investigated as promising therapeutic targets. We searched for papers on PubMed and MEDLINE up to August 2016. The terms searched alone or in combination were: ischemic stroke, inflammation, oxidative stress, ischemia reperfusion, innate immunity, adaptive immunity, autoimmunity. Inflammation in AIS is characterized by a storm of cytokines, chemokines, and Damage-Associated Molecular Patterns (DAMPs) released by several cells contributing to exacerbate the tissue injury both in the acute and reparative phases. Interestingly, many biomarkers have been studied, but none of these reflected the complexity of systemic immune response. Reperfusion therapies showed a good efficacy in the recovery after an AIS. New therapies appear promising both in pre-clinical and clinical studies, but still need more detailed studies to be translated in the ordinary clinical practice. In spite of clinical progresses, no beneficial long-term interventions targeting inflammation are currently available. Our knowledge about cells, biomarkers, and inflammatory markers is growing and is hoped to better evaluate the impact of new treatments, such as monoclonal antibodies and cell-based therapies. PMID:27898011
Systems biomarkers as acute diagnostics and chronic monitoring tools for traumatic brain injury
NASA Astrophysics Data System (ADS)
Wang, Kevin K. W.; Moghieb, Ahmed; Yang, Zhihui; Zhang, Zhiqun
2013-05-01
Traumatic brain injury (TBI) is a significant biomedical problem among military personnel and civilians. There exists an urgent need to develop and refine biological measures of acute brain injury and chronic recovery after brain injury. Such measures "biomarkers" can assist clinicians in helping to define and refine the recovery process and developing treatment paradigms for the acutely injured to reduce secondary injury processes. Recent biomarker studies in the acute phase of TBI have highlighted the importance and feasibilities of identifying clinically useful biomarkers. However, much less is known about the subacute and chronic phases of TBI. We propose here that for a complex biological problem such as TBI, multiple biomarker types might be needed to harness the wide range of pathological and systemic perturbations following injuries, including acute neuronal death, neuroinflammation, neurodegeneration and neuroregeneration to systemic responses. In terms of biomarker types, they range from brain-specific proteins, microRNA, genetic polymorphism, inflammatory cytokines and autoimmune markers and neuro-endocrine hormones. Furthermore, systems biology-driven biomarkers integration can help present a holistic approach to understanding scenarios and complexity pathways involved in brain injury.
Bleau, Christian; Filliol, Aveline; Samson, Michel
2016-01-01
ABSTRACT Under physiological conditions, the liver sinusoidal endothelial cells (LSECs) mediate hepatic immune tolerance toward self or foreign antigens through constitutive expression of anti-inflammatory mediators. However, upon viral infection or Toll-like receptor 2 (TLR2) activation, LSECs can achieve proinflammatory functions, but their role in hepatic inflammation during acute viral hepatitis is unknown. Using the highly virulent mouse hepatitis virus type 3 (MHV3) and the attenuated variants 51.6-MHV3 and YAC-MHV3, exhibiting lower tropism for LSECs, we investigated in vivo and in vitro the consequence of LSEC infection on their proinflammatory profiles and the aggravation of acute hepatitis process. In vivo infection with virulent MHV3, in comparison to attenuated strains, resulted in fulminant hepatitis associated with higher hepatic viral load, tissue necrosis, and levels of inflammatory mediators and earlier recruitment of inflammatory cells. Such hepatic inflammatory disorders correlated with disturbed production of interleukin-10 (IL-10) and vascular factors by LSECs. We next showed in vitro that infection of LSECs by the virulent MHV3 strain altered their production of anti-inflammatory cytokines and promoted higher release of proinflammatory and procoagulant factors and earlier cell damage than infection by attenuated strains. This higher replication and proinflammatory activation in LSECs by the virulent MHV3 strain was associated with a specific activation of TLR2 signaling by the virus. We provide evidence that TLR2 activation of LSCEs by MHV3 is an aggravating factor of hepatic inflammation and correlates with the severity of hepatitis. Taken together, these results indicate that preservation of the immunotolerant properties of LSECs during acute viral hepatitis is imperative in order to limit hepatic inflammation and damage. IMPORTANCE Viral hepatitis B and C infections are serious health problems affecting over 350 million and 170 million people worldwide, respectively. It has been suggested that a balance between protection and liver damage mediated by the host's immune response during the acute phase of infection would be determinant in hepatitis outcome. Thus, it appears crucial to identify the factors that predispose in exacerbating liver inflammation to limit hepatocyte injury. Liver sinusoidal endothelial cells (LSECs) can express both anti- and proinflammatory functions, but their role in acute viral hepatitis has never been investigated. Using mouse hepatitis virus (MHV) infections as animal models of viral hepatitis, we report for the first time that in vitro and in vivo infection of LSECs by the pathogenic MHV3 serotype leads to a reversion of their intrinsic anti-inflammatory phenotype toward a proinflammatory profile as well to as disorders in vascular factors, correlating with the severity of hepatitis. These results highlight a new virus-promoted mechanism of exacerbation of liver inflammatory response during acute hepatitis. PMID:27489277
Bleau, Christian; Filliol, Aveline; Samson, Michel; Lamontagne, Lucie
2016-10-15
Under physiological conditions, the liver sinusoidal endothelial cells (LSECs) mediate hepatic immune tolerance toward self or foreign antigens through constitutive expression of anti-inflammatory mediators. However, upon viral infection or Toll-like receptor 2 (TLR2) activation, LSECs can achieve proinflammatory functions, but their role in hepatic inflammation during acute viral hepatitis is unknown. Using the highly virulent mouse hepatitis virus type 3 (MHV3) and the attenuated variants 51.6-MHV3 and YAC-MHV3, exhibiting lower tropism for LSECs, we investigated in vivo and in vitro the consequence of LSEC infection on their proinflammatory profiles and the aggravation of acute hepatitis process. In vivo infection with virulent MHV3, in comparison to attenuated strains, resulted in fulminant hepatitis associated with higher hepatic viral load, tissue necrosis, and levels of inflammatory mediators and earlier recruitment of inflammatory cells. Such hepatic inflammatory disorders correlated with disturbed production of interleukin-10 (IL-10) and vascular factors by LSECs. We next showed in vitro that infection of LSECs by the virulent MHV3 strain altered their production of anti-inflammatory cytokines and promoted higher release of proinflammatory and procoagulant factors and earlier cell damage than infection by attenuated strains. This higher replication and proinflammatory activation in LSECs by the virulent MHV3 strain was associated with a specific activation of TLR2 signaling by the virus. We provide evidence that TLR2 activation of LSCEs by MHV3 is an aggravating factor of hepatic inflammation and correlates with the severity of hepatitis. Taken together, these results indicate that preservation of the immunotolerant properties of LSECs during acute viral hepatitis is imperative in order to limit hepatic inflammation and damage. Viral hepatitis B and C infections are serious health problems affecting over 350 million and 170 million people worldwide, respectively. It has been suggested that a balance between protection and liver damage mediated by the host's immune response during the acute phase of infection would be determinant in hepatitis outcome. Thus, it appears crucial to identify the factors that predispose in exacerbating liver inflammation to limit hepatocyte injury. Liver sinusoidal endothelial cells (LSECs) can express both anti- and proinflammatory functions, but their role in acute viral hepatitis has never been investigated. Using mouse hepatitis virus (MHV) infections as animal models of viral hepatitis, we report for the first time that in vitro and in vivo infection of LSECs by the pathogenic MHV3 serotype leads to a reversion of their intrinsic anti-inflammatory phenotype toward a proinflammatory profile as well to as disorders in vascular factors, correlating with the severity of hepatitis. These results highlight a new virus-promoted mechanism of exacerbation of liver inflammatory response during acute hepatitis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Exposure to 100% Oxygen Abolishes the Impairment of Fracture Healing after Thoracic Trauma
Kemmler, Julia; Bindl, Ronny; McCook, Oscar; Wagner, Florian; Gröger, Michael; Wagner, Katja; Scheuerle, Angelika; Radermacher, Peter; Ignatius, Anita
2015-01-01
In polytrauma patients a thoracic trauma is one of the most critical injuries and an important trigger of post-traumatic inflammation. About 50% of patients with thoracic trauma are additionally affected by bone fractures. The risk for fracture malunion is considerably increased in such patients, the pathomechanisms being poorly understood. Thoracic trauma causes regional alveolar hypoxia and, subsequently, hypoxemia, which in turn triggers local and systemic inflammation. Therefore, we aimed to unravel the role of oxygen in impaired bone regeneration after thoracic trauma. We hypothesized that short-term breathing of 100% oxygen in the early post-traumatic phase ameliorates inflammation and improves bone regeneration. Mice underwent a femur osteotomy alone or combined with blunt chest trauma 100% oxygen was administered immediately after trauma for two separate 3 hour intervals. Arterial blood gas tensions, microcirculatory perfusion and oxygenation were assessed at 3, 9 and 24 hours after injury. Inflammatory cytokines and markers of oxidative/nitrosative stress were measured in plasma, lung and fracture hematoma. Bone healing was assessed on day 7, 14 and 21. Thoracic trauma induced pulmonary and systemic inflammation and impaired bone healing. Short-term exposure to 100% oxygen in the acute post-traumatic phase significantly attenuated systemic and local inflammatory responses and improved fracture healing without provoking toxic side effects, suggesting that hyperoxia could induce anti-inflammatory and pro-regenerative effects after severe injury. These results suggest that breathing of 100% oxygen in the acute post-traumatic phase might reduce the risk of poorly healing fractures in severely injured patients. PMID:26147725
Escobar, Javier; Pereda, Javier; Arduini, Alessandro; Sandoval, Juan; Sabater, Luis; Aparisi, Luis; López-Rodas, Gerardo; Sastre, Juan
2009-01-01
Acute pancreatitis is an acute inflammatory process localized in the pancreatic gland that frequently involves peripancreatic tissues. It is still under investigation why an episode of acute pancreatitis remains mild affecting only the pancreas or progresses to a severe form leading to multiple organ failure and death. Proinflammatory cytokines and oxidative stress play a pivotal role in the early pathophysiological events of the disease. Cytokines such as interleukin 1beta and tumor necrosis factor alpha initiate and propagate almost all consequences of the systemic inflammatory response syndrome. On the other hand, depletion of pancreatic glutathione is an early hallmark of acute pancreatitis and reactive oxygen species are also associated with the inflammatory process. Changes in thiol homestasis and redox signaling decisively contribute to amplification of the inflammatory cascade through mitogen activated protein kinase (MAP kinase) pathways. This review focuses on the relationship between oxidative stress, pro-inflammatory cytokines and MAP kinase/protein phosphatase pathways as major modulators of the inflammatory response in acute pancreatitis. Redox sensitive signal transduction mediated by inactivation of protein phosphatases, particularly protein tyrosin phosphatases, is highlighted.
Glaser, Rachel L.; Goldbach-Mansky, Raphaela
2009-01-01
Monogenic autoinflammatory diseases encompass a distinct and growing clinical entity of multisystem inflammatory diseases with known genetic defects in the innate immune system. The diseases present clinically with episodes of seemingly unprovoked inflammation (fever, rashes, and elevation of acute phase reactants). Understanding the genetics has led to discovery of new molecules involved in recognizing exogenous and endogenous danger signals, and the inflammatory response to these stimuli. These advances have furthered understanding of innate inflammatory pathways and spurred collaborative research in rheumatology and infectious diseases. The pivotal roles of interleukin (IL)-1β in cryopyrin-associated periodic syndromes, tumor necrosis factor (TNF) in TNF receptor-associated periodic syndrome, and links to inflammatory cytokine dysregulation in other monogenic autoinflammatory diseases have resulted in effective therapies targeting proinflammatory cytokines IL-1β and TNF and uncovered other new potential targets for anti-inflammatory therapies. PMID:18606080
Astrup, Elisabeth; Janardhanan, Jeshina; Otterdal, Kari; Ueland, Thor; Prakash, John A J; Lekva, Tove; Strand, Øystein A; Abraham, O C; Thomas, Kurien; Damås, Jan Kristian; Mathews, Prasad; Mathai, Dilip; Aukrust, Pål; Varghese, George M
2014-02-01
Scrub typhus, caused by Orientia tsutsugamushi, is endemic in the Asia-Pacific region. Mortality is high if untreated, and even with treatment as high as 10-20%, further knowledge of the immune response during scrub typhus is needed. The current study was aimed at comparing plasma levels of a variety of inflammatory mediators in scrub typhus patients and controls in South India in order to map the broader cytokine profile and their relation to disease severity and clinical outcome. We examined plasma levels of several cytokines in scrub typhus patients (n = 129) compared to healthy controls (n = 31) and infectious disease controls (n = 31), both in the acute phase and after recovery, by multiplex technology and enzyme immunoassays. Scrub typhus patients were characterized by marked changes in the cytokine network during the acute phase, differing not only from healthy controls but also from infectious disease controls. While most of the inflammatory markers were raised in scrub typhus, platelet-derived mediators such as RANTES were markedly decreased, probably reflecting enhanced platelet activation. Some of the inflammatory markers, including various chemokines (e.g., interleukin-8, monocyte chemoattractant peptide-1 and macrophage inflammatory protein-1β) and downstream markers of inflammation (e.g., C-reactive protein and pentraxin-3), were also associated with disease severity and mortality during follow-up, with a particular strong association with interleukin-8. Our findings suggest that scrub typhus is characterized by a certain cytokine profile that includes dysregulated levels of a wide range of mediators, and that this enhanced inflammation could contribute to disease severity and clinical outcome.
Joro, Raimo; Uusitalo, Arja; DeRuisseau, Keith C; Atalay, Mustafa
2017-12-01
We investigated how cytokines are implicated with overtraining syndrome (OTS) in athletes during a prolonged period of recovery. Plasma IL-6, IL-10, TNF-α, IL-1β, adipokine leptin, and insulin like growth factor-1 (IGF-1) concentrations were measured in overtrained (OA: 5 men, 2 women) and healthy control athletes (CA: 5 men, 5 women) before and after exercise to volitional exhaustion. Measurements were conducted at baseline and after 6 and 12 months. Inflammatory cytokines did not differ between groups at rest. However, resting leptin concentration was lower in OA than CA at every measurement (P < 0.050) but was not affected by acute exercise. Although IL-6 and TNF-α concentrations increased with exercise in both groups (P < 0.050), pro-inflammatory IL-1β concentration increased only in OA (P < 0.050) and anti-inflammatory IL-10 was greater in CA (P < 0.001). In OA, exercise-related IL-6 and TNF-α induction was enhanced during the follow-up (P < 0.050). IGF-1 decreased with exercise in OA (P < 0.050); however, no differences in resting IGF-1 were observed. In conclusion, low leptin level at rest and a pro-inflammatory cytokine response to acute exercise may reflect a chronic maladaptation state in overtrained athletes. In contrast, the accentuation of IL-6 and TNF-α responses to acute exercise seemed to associate with the progression of recovery from overtraining.
Complement Activation Alters Platelet Function
2015-12-01
haemostatic and coagulation properties of platelets. 15. SUBJECT TERMS Platelets, Complement, Trauma, Tissue Damage 16. SECURITY CLASSIFICATION... coagulation , there is mounting evidence that they may also be important in the development and progression of inflammatory processes (Coppinger et al...receptor-ligand interactions and/or through exposure to cytokines including IL-6, other acute-phase reactants, and pro- coagulant factors such as thrombin
Pinna, Raquel A.; dos Santos, Adriana C.; Perce‐da‐Silva, Daiana S.; da Silva, Luciene A.; da Silva, Rodrigo N. Rodrigues; Alves, Marcelo R.; Santos, Fátima; de Oliveira Ferreira, Joseli; Lima‐Junior, Josué C.; Villa‐Verde, Déa M.; De Luca, Paula M.; Carvalho‐Pinto, Carla E.
2018-01-01
Abstract Introduction A proliferation‐inducing ligand (APRIL) and B cell activation factor (BAFF) are known to play a significant role in the pathogenesis of several diseases, including BAFF in malaria. The aim of this study was to investigate whether APRIL and BAFF plasma concentrations could be part of inflammatory responses associated with P. vivax and P. falciparum malaria in patients from the Brazilian Amazon. Methods Blood samples were obtained from P. vivax and P. falciparum malaria patients (n = 52) resident in Porto Velho before and 15 days after the beginning of treatment and from uninfected individuals (n = 12). We investigated APRIL and BAFF circulating levels and their association with parasitaemia, WBC counts, and cytokine/chemokine plasma levels. The expression levels of transmembrane activator and calcium‐modulating cyclophilin ligand interactor (TACI) on PBMC from a subset of 5 P. vivax‐infected patients were analyzed by flow cytometry. Results APRIL plasma levels were transiently increased during acute P. vivax and P. falciparum infections whereas BAFF levels were only increased during acute P. falciparum malaria. Although P. vivax and P. falciparum malaria patients have similar cytokine profiles during infection, in P. vivax acute phase malaria, APRIL but not BAFF levels correlated positively with IL‐1, IL‐2, IL‐4, IL‐6, and IL‐13 levels. We did not find any association between P. vivax parasitaemia and APRIL levels, while an inverse correlation was found between P. falciparum parasitaemia and APRIL levels. The percentage of TACI positive CD4+ and CD8+ T cells were increased in the acute phase P. vivax malaria. Conclusion These findings suggest that the APRIL and BAFF inductions reflect different host strategies for controlling infection with each malaria species. PMID:29314720
An expert opinion on PANDAS/PANS: highlights and controversies.
Chiarello, Francesca; Spitoni, Silvia; Hollander, Eric; Matucci Cerinic, Marco; Pallanti, Stefano
2017-06-01
'Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections' (PANDAS) identified a unique subgroup of patients with abrupt onset of obsessive compulsive disorder (OCD) symptoms clinically related to Streptococcus infection and accompanied by neuropsychological and motor symptoms. After almost 20 years, PANDAS has not been accepted as distinct disorder and new criteria for paediatric acute-onset neuropsychiatric syndrome (PANS) have been replaced it, highlighting the fact that several agents rather than only Streptococcus might be involved. Extensive review of the PANDAS/PANS literature was performed on PubMed. Although antibiotics have been reported to be effective for acute and prophylactic phases in several uncontrolled studies and non-steroidal anti-inflammatory drugs (NSAID) are used during exacerbations, clinical multicenter trials are still missing. Selective serotonin reuptake inhibitors (SSRIs) and cognitive behavioural therapy (CBT) are still the first line of recommendation for acute onset OCD spectrum. Immunological therapies should be restricted to a few cases. While PANDAS has found no confirmation as a distinct syndrome, and it is not presented in DSM-5, patients with acute onset OCD spectrum, neurocognitive and motor symptoms should be evaluated for inflammatory, infective, immunological and metabolic abnormalities with a comprehensive diagnostic algorithm.
Williams, Anthony J; Wei, Hans H; Dave, Jitendra R; Tortella, Frank C
2007-01-01
Background Neuroinflammation following acute brain trauma is considered to play a prominent role in both the pathological and reconstructive response of the brain to injury. Here we characterize and contrast both an acute and delayed phase of inflammation following experimental penetrating ballistic brain injury (PBBI) in rats out to 7 days post-injury. Methods Quantitative real time PCR (QRT-PCR) was used to evaluate changes in inflammatory gene expression from the brain tissue of rats exposed to a unilateral frontal PBBI. Brain histopathology was assessed using hematoxylin and eosin (H&E), silver staining, and immunoreactivity for astrocytes (GFAP), microglia (OX-18) and the inflammatory proteins IL-1β and ICAM-1. Results Time course analysis of gene expression levels using QRT-PCR indicated a peak increase during the acute phase of the injury between 3–6 h for the cytokines TNF-α (8–11 fold), IL-1β (11–13 fold), and IL-6 (40–74 fold) as well as the cellular adhesion molecules VCAM (2–3 fold), ICAM-1 (7–15 fold), and E-selectin (11–13 fold). Consistent with the upregulation of pro-inflammatory genes, peripheral blood cell infiltration was a prominent post-injury event with peak levels of infiltrating neutrophils (24 h) and macrophages (72 h) observed throughout the core lesion. In regions of the forebrain immediately surrounding the lesion, strong immunoreactivity for activated astrocytes (GFAP) was observed as early as 6 h post-injury followed by prominent microglial reactivity (OX-18) at 72 h and resolution of both cell types in cortical brain regions by day 7. Delayed thalamic inflammation (remote from the primary lesion) was also observed as indicated by both microglial and astrocyte reactivity (72 h to 7 days) concomitant with the presence of fiber degeneration (silver staining). Conclusion In summary, PBBI induces both an acute and delayed neuroinflammatory response occurring in distinct brain regions, which may provide useful diagnostic information for the treatment of this type of brain injury. PMID:17605820
Volpin, Gershon; Cohen, Miri; Assaf, Michael; Meir, Tamar; Katz, Rina; Pollack, Shimon
2014-06-01
Much research is now being conducted in order to understand the role of cytokines in the development of the inflammatory response following trauma. The purpose of this study was to evaluate whether serum levels of certain cytokines, measured immediately after initial injury, can be used as potential biomarkers for predicting the development and the degree of severity of the systemic inflammatory response (SIRS) in patients with moderate and severe trauma. We conducted a prospective study with 71 individuals of whom 13 (18.3 %) were healthy controls and 58 (81.7 %) were traumatized orthopaedic patients who were categorized into two groups: 31 (43.6 %) with moderate injuries and 27 (38.1 %) patients with severe orthopaedic trauma. Thirty cc of heparinized blood were drawn from each individual within a few hours after the injury. Serum levels of pro-inflammatory, regulatory and anti-inflammatory cytokines were measured in each individual participant. High levels of pro-inflammatory cytokines IL-1β,-6,-8,-12, tumour necrosis factor alpha and interferon gamma were found in all injured patients compared to healthy controls. Only IL-6 and IL-8 were significantly higher in the injured patients. Levels of the regulatory cytokines, transformed growth factor beta (TGF-β) and IL-10 were higher in the injured patients, but significant only for TGF-β. Levels of IL-4 were significantly lower in the injured groups as compared to the controls. Secretion of large amounts of pro-inflammatory cytokines and decreased level of anti-inflammatory cytokines during the acute phase of trauma may lead to the development of systemic inflammatory response syndrome (SIRS) in unstable polytraumatized patients. SIRS may result in life threatening conditions as acute respiratory distress syndrome (ARDS) and multiple organ failure (MOF). High levels of IL-6, IL-8, TGFβ and low levels of IL-4 were found to be reliable markers for the existence of immune reactivity in trauma patients. More research is needed to study pattern of cytokine levels along the acute period of injury, after surgical interventions and during recovery.
Optimal combinations of acute phase proteins for detecting infectious disease in pigs.
Heegaard, Peter M H; Stockmarr, Anders; Piñeiro, Matilde; Carpintero, Rakel; Lampreave, Fermin; Campbell, Fiona M; Eckersall, P David; Toussaint, Mathilda J M; Gruys, Erik; Sorensen, Nanna Skall
2011-03-17
The acute phase protein (APP) response is an early systemic sign of disease, detected as substantial changes in APP serum concentrations and most disease states involving inflammatory reactions give rise to APP responses. To obtain a detailed picture of the general utility of porcine APPs to detect any disease with an inflammatory component seven porcine APPs were analysed in serum sampled at regular intervals in six different experimental challenge groups of pigs, including three bacterial (Actinobacillus pleuropneumoniae, Streptococcus suis, Mycoplasma hyosynoviae), one parasitic (Toxoplasma gondii) and one viral (porcine respiratory and reproductive syndrome virus) infection and one aseptic inflammation. Immunochemical analyses of seven APPs, four positive (C-reactive protein (CRP), haptoglobin (Hp), pig major acute phase protein (pigMAP) and serum amyloid A (SAA)) and three negative (albumin, transthyretin, and apolipoprotein A1 (apoA1)) were performed in the more than 400 serum samples constituting the serum panel. This was followed by advanced statistical treatment of the data using a multi-step procedure which included defining cut-off values and calculating detection probabilities for single APPs and for APP combinations. Combinations of APPs allowed the detection of disease more sensitively than any individual APP and the best three-protein combinations were CRP, apoA1, pigMAP and CRP, apoA1, Hp, respectively, closely followed by the two-protein combinations CRP, pigMAP and apoA1, pigMAP, respectively. For the practical use of such combinations, methodology is described for establishing individual APP threshold values, above which, for any APP in the combination, ongoing infection/inflammation is indicated.
Zhou, Xiurong; Chen, Jiafeng; Wang, Chengdong; Wu, Lili
2017-01-01
Intracerebral hemorrhage is one of the most common types of cerebrovascular disease in humans and often causes paralysis, a vegetative state and even death. Patients with acute intracerebral hemorrhage are frequently monitored in intensive care units (ICUs). Spontaneous intracerebral hemorrhage is associated with a higher rate of mortality and morbidity than other intracephalic diseases. The expression levels of inflammatory factors have important roles in inflammatory responses indicative of changes in a patient's condition and are therefore important in the monitoring and treatment of affected patients at the ICU as well as the development of therapeutic strategies for acute cerebral hemorrhage. The present study investigated the anti-inflammatory effects of Simvastatin in patients with acute intracerebral hemorrhage at an ICU, and inflammatory factors and cellular changes were systematically analyzed. The plasma concentrations of inflammatory factors, including interleukin (IL)-4, IL-6, IL-8 and IL-10, were evaluated by ELISAs. The plasma concentrations of inflammatory cellular changes were detected by using flow cytometry. The results demonstrated that after Simvastatin treatment of patients with acute cerebral hemorrhage at the ICU, the plasma concentrations of IL-4, IL-6, IL-8 and IL-10 were downregulated compared with those in placebo-treated controls. In addition, Simvastatin treatment at the ICU decreased lymphocytes, granulocytes and mononuclear cells in patients with acute cerebral hemorrhage. The levels of inflammatory factors were associated with brain edema in patients with acute cerebral hemorrhage treated at the ICU. In addition, the amount of bleeding was reduced in parallel with the inflammatory cell plasma concentration of lymphocytes, granulocytes and mononuclear cells. Importantly, Simvastatin treatment produced beneficial outcomes by improving brain edema and reducing the amount of bleeding. In conclusion, the present study demonstrated the efficacy of Simvastatin in treating acute intracerebral hemorrhage and evidenced the association between inflammatory responses and the progress of affected patients at the ICU, thereby providing insight for applying effective therapies for patients with acute intracerebral hemorrhage. PMID:29285177
Inflammatory Cell Infiltrates in Acute and Chronic Thoracic Aortic Dissection.
Wu, Darrell; Choi, Justin C; Sameri, Aryan; Minard, Charles G; Coselli, Joseph S; Shen, Ying H; LeMaire, Scott A
2013-12-01
Thoracic aortic dissection (TAD) is a highly lethal cardiovascular disease. Injury to the intima and media allows pulsatile blood to enter the media, leading to dissection formation. Inflammatory cells then infiltrate the site of aortic injury to clear dead cells and damaged tissue. This excessive inflammation may play a role in aneurysm formation after dissection. Using immunohistochemistry, we compared aortic tissues from patients with acute TAD (n = 11), patients with chronic TAD (n = 35), and donor controls (n = 20) for the presence of CD68+ macrophages, neutrophils, mast cells, and CD3+ T lymphocytes. Tissue samples from patients with acute or chronic TAD generally had significantly more inflammatory cells in both the medial and adventitial layers than did the control samples. In tissues from patients with acute TAD, the adventitia had more of the inflammatory cells studied than did the media. The pattern of increase in inflammatory cells was similar in chronic and acute TAD tissues, except for macrophages, which were seen more frequently in the adventitial layer of acute TAD tissue than in the adventitia of chronic TAD tissue. The inflammatory cell content of both acute and chronic TAD tissue was significantly different from that of control tissue. However, the inflammatory cell profile of aneurysmal chronic TAD was similar to that of acute TAD. This may reflect a sustained injury response that contributes to medial degeneration and aneurysm formation.
Nastasă, Cristina; Tiperciuc, Brînduşa; Pârvu, Alina; Duma, Mihaela; Ionuţ, Ioana; Oniga, Ovidiu
2013-06-01
A novel series of 5-arylidene-2,4-thiazolidinediones (TZDs) 2a-p was synthesized from the condensation of 3-((2-phenylthiazol-4-yl)methyl)thiazolidine-2,4-dione with different benzaldehyde derivatives. All the structures were confirmed by their spectral (IR, ¹H NMR, ¹³C NMR and mass) and elemental analytical data. The new molecules were evaluated in vivo as anti-inflammatory agents in an acute experimental inflammation, evaluating the acute phase bone marrow response and phagocyte activity. All compounds, excepting one, reduced the absolute leukocytes count due to the lower neutrophil percentage. Phagocytary index was decreased by the same molecules, while only half of them reduced the phagocytary activity. The effect was superior to meloxicam, the reference anti-inflammatory drug, for the majority of the TZD derivatives. The new molecules were also investigated for their antimicrobial properties on Gram-positive and Gram-negative bacteria and one fungal strain. Two compounds (2e and 2n) manifested growth inhibition capacity on all the tested strains. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Castillo, R.L; Carrasco Loza, R; Romero-Dapueto, C
2015-01-01
Experimental approaches have been implemented to research the lung damage related-mechanism. These models show in animals pathophysiological events for acute respiratory distress syndrome (ARDS), such as neutrophil activation, reactive oxygen species burst, pulmonary vascular hypertension, exudative edema, and other events associated with organ dysfunction. Moreover, these approaches have not reproduced the clinical features of lung damage. Lung inflammation is a relevant event in the develop of ARDS as component of the host immune response to various stimuli, such as cytokines, antigens and endotoxins. In patients surviving at the local inflammatory states, transition from injury to resolution is an active mechanism regulated by the immuno-inflammatory signaling pathways. Indeed, inflammatory process is regulated by the dynamics of cell populations that migrate to the lung, such as neutrophils and on the other hand, the role of the modulation of transcription factors and reactive oxygen species (ROS) sources, such as nuclear factor kappaB and NADPH oxidase. These experimental animal models reproduce key components of the injury and resolution phases of human ALI/ARDS and provide a methodology to explore mechanisms and potential new therapies. PMID:26312099
Chen, Zhiyong; Liao, Liping; Zhang, Zijia; Wu, Lihong; Wang, Zhengtao
2013-11-25
Erycibe obtusifolia and Erycibe schmidtii, which belong to the same genus as Erycibe, are widely used in traditional medicine for the treatment of joint pain and rheumatoid arthritis (RA). Porana sinensis has become a widely used substitute for Erycibe obtusifolia and Erycibe schmidtii as they have declined in the wild. In the present work, the content of the main active components, the acute toxicity, the anti-nociceptive and anti-inflammatory activities of Porana sinensis, Erycibe obtusifolia and Erycibe schmidtii were compared, and the mechanisms of anti-nociceptive and anti-inflammatory activities were discussed. A quantitative HPLC (high performance liquid chromatography) method was first developed to compare the content of the main active components (scopoletin, scopolin and chlorogenic acid). The anti-inflammatory and anti-nociceptive activities of 40% ethanolic extracts of the three plants were compared using the models of xylene-induced ear edema, formalin-induced inflammation, carrageenan-induced air pouch inflammation, acetic acid-induced writhing and formalin-induced nociception. The acute toxicity of the 40% ethanolic extracts of the three plants was studied. The assay suggested a large content of scopoletin, scopolin and chlorogenic acid in the three plants. The 40% ethanolic extracts of the three plants were almost non-toxic at the dose of 5g/kg and all of them showed significant anti-inflammatory effects in the tests of xylene-induced ear edema and formalin-induced inflammation. In the carrageenan-induced air pouch inflammation test, the synthesis of PGE2 was significantly inhibited by all the extracts. They significantly inhibited the number of contortions induced by acetic acid and the second phase of the formalin-induced licking response. Naloxone was not able to reverse the analgesic effect of these extracts. The study identifies the similarity of the three plants in their main active components as well as acute toxicity, anti-nociceptive and anti-inflammatory activities. It supports the use of Porana sinensis as a suitable substitute, but further studies are needed to confirm this. © 2013 Elsevier Ireland Ltd. All rights reserved.
Acute phase proteins in dogs naturally infected with the Giant Kidney Worm (Dioctophyme renale).
Schmidt, Elizabeth M S; Kjelgaard-Hansen, Mads; Thomas, Funmilola; Tvarijonaviciute, Asta; Cerón, José J; Eckersall, P David
2016-12-01
Dioctophyme renale is a nematode parasite of dogs, usually found in the right kidney, causing severe damage to the renal parenchyma. The objective was to evaluate the acute phase response in dogs naturally infected with this Giant Kidney Worm and the possible effects of nephrectomy on circulating concentrations of select acute phase proteins (APP) such as serum amyloid A (SAA), C-reactive protein (CRP), and haptoglobin (HP). Nephrectomy was performed in infected dogs and the worms were collected for identification. Blood samples were taken 24 hours before surgery, and 4, 8, and 12 hours postoperatively on the following 10 consecutive days, and 28 days after surgery. Acute phase protein concentrations were determined at all time points. Cortisol concentrations were determined 24 hours before surgery and at recovery (28 days after surgery). One-way ANOVA and Friedman test were used for multiple comparisons; the Wilcoxon-signed rank test was used to compare variables, and Spearman's rho rank test was used to assess the correlation between the number of parasites recovered from the dogs and the APP concentration. Forty-five parasites were recovered from the 12 dogs evaluated in this study. Dogs showed significantly increased HP concentrations (P < .05) but lower CRP and SAA concentrations before surgery, and cortisol concentrations were significantly higher at admission when compared to recovery. No significant correlations were found between the number of parasites and APP concentrations. There is a particular acute phase response profile in dogs with kidney worm infection. Nephrectomy induced a short-term inflammatory process. © 2016 American Society for Veterinary Clinical Pathology.
Unusual MRI findings in an immunocompetent patient with EBV encephalitis: a case report
2011-01-01
Blackground It is well-known that Epstein-Barr virus (EBV) can affect the central nervous system (CNS). Case presentation Herein the authors report unusual timely Magnetic Resonance Imaging (MRI) brain scan findings in an immunocompetent patient with EBV encephalitis. Diffusion weighted MRI sequence performed during the acute phase of the disease was normal, whereas the Fast Relaxation Fast Spin Echo T2 image showed diffuse signal intensity changes in white matter. The enhancement pattern suggested an inflammatory response restricted to the brain microcirculation. Acyclovir and corticosteroid therapy was administered. After three weeks, all signal intensities returned to normal and the patient showed clinical recovery. Conclusion This report demonstrates that EBV in an immunocompetent adult can present with diffuse, reversible brain white matter involvement in the acute phase of mononucleosis. Moreover, our case suggests that a negative DWI sequence is associated with a favorable improvement in severe EBV CNS infection. More extensive studies are needed to assess what other instrumental data can help to distinguish viral lesions from other causes in the acute phase of disease. PMID:21435249
Marchioro, Ariella Andrade; Colli, Cristiane Maria; de Souza, Carla Zangari; da Silva, Suelen Santos; Tiyo, Bruna Tiaki; Evangelista, Fernanda F; Higa, Lourenco; Conchon-Costa, Ivete; Falavigna-Guilherme, Ana Lúcia
2018-06-01
This study detected and compared the levels of IFN-γ, TNF-α, TGF-β and nitric oxide (NO) in amniotic fluid (AF) and serum of pregnancies with acute toxoplasmosis, Southern Brazil. It also was compared the levels of the same mediators in the serum of pregnancies in acute and chronic toxoplasmosis with non-infected. Serological investigation, anti-T gondii IgM and IgG, of the 67 pregnancies was determined by Elisa MEIA. Forty two were uninfected, eight in chronic phase and 17 in acute phase. Among the acute phase, seven agreed to amniocentesis. The cytokines, in serum and in AF, were assessed by sandwich ELISA, and NO was estimated from the nitrite measurement with Griess reagent. The IFN-γ and TGF-β levels in the AF and blood were similar, while TNF-α levels was lower in the AF. On the other hand, NO was higher in the AF. Chronically infected pregnant women have showed lower levels of INF-γ than those in acute and uninfected pregnancies. The serological levels of TNF-α were lower in pregnancies with toxoplasmosis, when compared with non-infected. TGF-β levels were higher in pregnancies in acute phase when compared with uninfected or chronically infected. NO in the serum of the infected had lower levels than those non-infected. In summary, higher concentrations of NO and lower levels of TNF-α were observed in the AF than in the serum of acute pregnancies, while TGF-β e INF-γ levels were similar in both biological material. In the serum of infected pregnancies was observed decrease in inflammatory mediators and increase of TGF-β. Copyright © 2018 Elsevier Ltd. All rights reserved.
[Cytokine profile in young children with acute stenotic laryngotracheitis].
Гладченко, Ольга І; Токарєв, Павло В; Надрага, Олександр Б
2016-01-01
One of the most severe complications of acute respiratory infections in young children is acute stenotic laryngotracheitis (croup). The relationship between cytokine blood levels and symptoms of croup, croup severity, disease sequel, despite numerous studies is still unclear. Cytokine profile in young children with acute stenotic laryngotracheitis investigation. 112 children aged 12 min. - 36 mon. with acute stenotic laryngotracheitis which were treated at the Lviv Regional Infectious Diseases Hospital were kept under observation. Croup symptoms, levels of interleukins (IL1, IL4, IL6, IL10, IL17) in serum, DNA and RNA viruses in respiratory nasal mucus were studied; Chan croup severity was used. In the pathogenesis of croup has an important role the imbalance between inflammatory (IL1, IL6) and anti-inflammatory (IL4, IL10, IL17) cytokines, which does not reduce the intensity of inflammatory reactions and its lead to local swelling, muscle spasm, excessive production of mucus in the place of viral replication. The levels of inflammatory and anti-inflammatory cytokines in the blood serum of children with croup were significantly higher than in patients with acute laryngitis. In patients with recurrent croup, unlike patients with the first case of croup does we don't see a significant correlation between the concentrations of inflammatory and anti-inflammatory cytokine levels Conclusions: The significantly higher levels of cytokines in children with croup compared with the group of patients with acute laryngitis were found, imbalance between anti-inflammatory (IL1, IL6) cytokine levels and inflammatory (IL4, IL10, IL17) cytokine levels in children who developed recurrent croup.
Swijnenburg, Rutger-Jan; Govaert, Johannes A.; van der Bogt, Koen E.A.; Pearl, Jeremy I.; Huang, Mei; Stein, William; Hoyt, Grant; Vogel, Hannes; Contag, Christopher H.; Robbins, Robert C.; Wu, Joseph C.
2011-01-01
Background Despite ongoing clinical trials, the optimal time for delivery of bone marrow mononuclear cells (BMCs) following myocardial infarction (MI) is unclear. We compared the viability and effects of transplanted BMCs on cardiac function in the acute and sub-acute inflammatory phases of MI. Methods and Results The time-course of acute inflammatory cell infiltration was quantified by FACS analysis of enzymatically digested hearts of FVB mice (n=12) following LAD ligation. Mac-1+Gr-1high neutrophil infiltration peaked at day 4. BMCs were harvested from transgenic FVB mice expressing firefly luciferase (Fluc) and green fluorescent protein (GFP). Afterwards, 2.5×106 BMCs were injected into the left ventricle of wild-type FVB mice either immediately (Acute BMC) or 7 days (Sub-acute BMC) after MI, or after a sham procedure (n=8 per group). In vivo bioluminescence imaging (BLI) showed an early signal increase in both BMC groups at day 7, followed by a non-significant trend (P=0.203) towards improved BMC survival in the Sub-acute BMC group that persisted until the BLI signal reached background levels after 42 days. Compared to controls (MI + saline injection), echocardiography showed a significant preservation of fractional shortening at 4 weeks (Acute BMC vs saline; P<0.01) and 6 weeks (both BMC groups vs saline; P<0.05), but no significant differences between the two BMC groups. FACS analysis of BMC injected hearts at day 7 revealed that GFP+ BMCs expressed hematopoietic (CD45, Mac-1, Gr-1), minimal progenitor (Sca-1, c-kit), and no endothelial (CD133, Flk-1) or cardiac (Trop-T) cell markers. Conclusion Timing of BMC delivery has minimal effects on intramyocardial retention and preservation of cardiac function. In general, there is poor long-term engraftment and BMCs tend to adopt inflammatory cell phenotypes. PMID:19920031
De Matteis, L; Bertoni, G; Lombardelli, R; Wellnitz, O; Van Dorland, H A; Vernay, M C M B; Bruckmaier, R M; Trevisi, E
2017-06-01
The link between energy availability, turnover of energy substrates and the onset of inflammation in dairy cows is complex and poorly investigated. To clarify this, plasma inflammatory variables were measured in mid-lactating dairy cows allocated to three groups: hyperinsulinemic hypoglycaemic clamp, induced by insulin infusion (HypoG, n = 5); hyperinsulinemic euglycaemic clamp, induced by insulin and glucose infusion (EuG; n = 6); control, receiving a saline solution infusion (NaCl; n = 6). At 48 h after the start of i.v. infusions, two udder quarters per cow were challenged with 200 μg of E. coli lipopolysaccharide (LPS). Individual blood samples were taken before clamps, before LPS challenge (i.e. 48 h after clamps) and 6.5 h after. At 48 h, positive acute phase proteins (posAPP) did not differ among groups, whereas albumin and cholesterol (index of lipoproteins), negative APP (negAPP), were lower (p < 0.05) in EuG compared to NaCl and HypoG. The concentration of IL-6 was greater in EuG (p < 0.05) but only vs. HypoG. At 6.5 h following LPS challenge, IL-6 increased in the NaCl and EuG clamps (p < 0.05), while TNF-α increased (p < 0.05) in the EuG only. Among the posAPP, haptoglobin markedly increased in EuG (p < 0.05), but not in NaCl (p = 0.76) and in HypoG; ceruloplasmin tended to decline during LPS challenge, the reduction was significant when all animals were considered (p < 0.05). Conversely, all the negAPP showed a marked reduction 6.5 h after LPS challenge in the three groups. In conclusion, EuG caused an inflammatory status after 48-h infusion (i.e. decrease of negAPP) and induced a quicker acute phase response (e.g. marked rise of TNF-α, IL-6) after the intramammary LPS challenge. These data suggest that the simultaneous high availability of glucose and insulin at the tissue-level makes dairy cows more susceptible to inflammatory events. In contrast, HypoG seems to attenuate the inflammatory response. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
USDA-ARS?s Scientific Manuscript database
This study was designed to determine if feeding a Saccharamyces cerevisiae fermentation product to weaned pigs would reduce the acute phase response (APR) following oral challenge with Salmonella typhimurium. Pigs (n=20; 5.9 ± 0.2 kg BW) were obtained and transported to an environmentally-controlled...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Mainul, E-mail: mainul.husain@hc-sc.gc.ca; Kyjovska, Zdenka O., E-mail: zky@nrcwe.dk; Bourdon-Lacombe, Julie, E-mail: julie.bourdon-lacombe@hc-sc.gc.ca
Inhalation of carbon black nanoparticles (CBNPs) causes pulmonary inflammation; however, time course data to evaluate the detailed evolution of lung inflammatory responses are lacking. Here we establish a time-series of lung inflammatory response to CBNPs. Female C57BL/6 mice were intratracheally instilled with 162 μg CBNPs alongside vehicle controls. Lung tissues were examined 3 h, and 1, 2, 3, 4, 5, 14, and 42 days (d) post-exposure. Global gene expression and pulmonary inflammation were assessed. DNA damage was evaluated in bronchoalveolar lavage (BAL) cells and lung tissue using the comet assay. Increased neutrophil influx was observed at all time-points. DNA strandmore » breaks were increased in BAL cells 3 h post-exposure, and in lung tissues 2–5 d post-exposure. Approximately 2600 genes were differentially expressed (± 1.5 fold; p ≤ 0.05) across all time-points in the lungs of exposed mice. Altered transcript levels were associated with immune-inflammatory response and acute phase response pathways, consistent with the BAL profiles and expression changes found in common respiratory infectious diseases. Genes involved in DNA repair, apoptosis, cell cycle regulation, and muscle contraction were also differentially expressed. Gene expression changes associated with inflammatory response followed a biphasic pattern, with initial changes at 3 h post-exposure declining to base-levels by 3 d, increasing again at 14 d, and then persisting to 42 d post-exposure. Thus, this single CBNP exposure that was equivalent to nine 8-h working days at the current Danish occupational exposure limit induced biphasic inflammatory response in gene expression that lasted until 42 d post-exposure, raising concern over the chronic effects of CBNP exposure. - Highlights: • A single exposure to CBNPs induced expression changes in over 2600 genes in mouse lungs. • Altered genes were associated with immune-inflammatory and acute phase responses. • Several genes were involved in DNA repair, apoptosis, and muscle contraction. • Effects of a single exposure to CBNPs lasted until 42 d post-exposure. • A single exposure to CBNPs induced a biphasic inflammatory response in gene expression.« less
Redox signaling in acute pancreatitis
Pérez, Salvador; Pereda, Javier; Sabater, Luis; Sastre, Juan
2015-01-01
Acute pancreatitis is an inflammatory process of the pancreatic gland that eventually may lead to a severe systemic inflammatory response. A key event in pancreatic damage is the intracellular activation of NF-κB and zymogens, involving also calcium, cathepsins, pH disorders, autophagy, and cell death, particularly necrosis. This review focuses on the new role of redox signaling in acute pancreatitis. Oxidative stress and redox status are involved in the onset of acute pancreatitis and also in the development of the systemic inflammatory response, being glutathione depletion, xanthine oxidase activation, and thiol oxidation in proteins critical features of the disease in the pancreas. On the other hand, the release of extracellular hemoglobin into the circulation from the ascitic fluid in severe necrotizing pancreatitis enhances lipid peroxidation in plasma and the inflammatory infiltrate into the lung and up-regulates the HIF–VEGF pathway, contributing to the systemic inflammatory response. Therefore, redox signaling and oxidative stress contribute to the local and systemic inflammatory response during acute pancreatitis. PMID:25778551
Immunologic alterations and the pathogenesis of organ failure in the ICU.
Opal, Steven M
2011-10-01
Rapid and marked alterations of innate and adaptive immunity typify the host response to systemic infection and acute inflammatory states. Immune dysfunction contributes to the development of organ failure in most patients with critical illness. The molecular mechanisms by which microbial pathogens and tissue injury activate myeloid cells and prime cellular and humoral immunity are increasingly understood. An early and effective immune response to microbial invasion is essential to mount an effective antimicrobial response. However, unchecked and nonresolving inflammation can induce diffuse vasodilation, increased capillary permeability, microvascular damage, coagulation activation, and organ dysfunction. Control of the inflammatory response to limit tissue damage, yet retain the antimicrobial responses in critically ill patients with severe infection, has been sought for decades. Anti-inflammatory approaches might be beneficial in some patients but detrimental in others. It is now clear that a state of sepsis-induced immune suppression can follow the immune activation phase of sepsis. In carefully selected patients, a better therapeutic strategy might be to provide immunoadjuvants to reconstitute immune function in intensive care unit (ICU) patients. Proresolving agents are also in development to terminate acute inflammatory reactions without immune suppression. This brief review summarizes the current understanding of the fundamental immune alterations in critical illness that lead to organ failure in critical illness. © Thieme Medical Publishers.
The Hepatic Response to Thermal Injury: Is the Liver Important for Postburn Outcomes?
Jeschke, Marc G
2009-01-01
Thermal injury produces a profound hypermetabolic and hypercatabolic stress response characterized by increased endogenous glucose production via gluconeogenesis and glycogenolysis, lipolysis, and proteolysis. The liver is the central body organ involved in these metabolic responses. It is suggested that the liver, with its metabolic, inflammatory, immune, and acute phase functions, plays a pivotal role in patient survival and recovery by modulating multiple pathways following thermal injury. Studies have evaluated the role and function of the liver during the postburn response and showed that liver integrity and function are essential for survival, and that hepatic acute phase proteins are strong predictors for postburn survival. This review discusses these studies and delineates the pivotal role of the liver in patients following severe thermal injury. PMID:19603107
Huang, Tiao-Lai; Lo, Li-Hua; Shiea, Jentaie; Su, Hung
2017-10-01
Matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF MS) is an extremely sensitive analytical tool for characterizing biological compounds in bio samples. In this study, we applied MALDI-TOF MS to assess potential protein biomarkers in the peripheral blood mononuclear cells (PBMCs) of patients with schizophrenia in the acute phase, recovery phase and healthy controls in Taiwan. We recruited 40 participants, including 20 pairs of patients diagnosed with schizophrenia in the acute phase, after four-week treatment with drug in the recovery phase, and 20 healthy controls. The schizophrenic patients were diagnosed using Structured Clinical Interview for DSM-IV Axis I Disorders (SCID), and severity was assessed by a positive and negative symptom scale at baseline and at endpoint following four-week treatment with drug. The patients' PBMCs biomarkers were rapidly measured using a technique that combines MALDI-TOF MS and principle component analysis. A receiver operating characteristic curve was created for the evaluated biomarker. Significant differences in α-defensins 1-3 were found between the patients in acute phase with schizophrenia and the healthy controls, but not between the schizophrenic patients in recovery phase and healthy controls or between the schizophrenic patients in acute phase and in recovery phase. α-Defensins can be biomarkers of Taiwanese patients with schizophrenia, thus supporting the hypothesis that the inflammatory response and immunity system is correlated with the pathophysiology of schizophrenia. Moreover, the result also implies that α-defensins may be related in schizophrenia-associated disease not in efficacy of drug-treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Astrup, Elisabeth; Janardhanan, Jeshina; Otterdal, Kari; Ueland, Thor; Prakash, John A. J.; Lekva, Tove; Strand, Øystein A.; Abraham, O. C.; Thomas, Kurien; Damås, Jan Kristian; Mathews, Prasad; Mathai, Dilip; Aukrust, Pål; Varghese, George M.
2014-01-01
Background Scrub typhus, caused by Orientia tsutsugamushi, is endemic in the Asia-Pacific region. Mortality is high if untreated, and even with treatment as high as 10–20%, further knowledge of the immune response during scrub typhus is needed. The current study was aimed at comparing plasma levels of a variety of inflammatory mediators in scrub typhus patients and controls in South India in order to map the broader cytokine profile and their relation to disease severity and clinical outcome. Methodology/Principal Findings We examined plasma levels of several cytokines in scrub typhus patients (n = 129) compared to healthy controls (n = 31) and infectious disease controls (n = 31), both in the acute phase and after recovery, by multiplex technology and enzyme immunoassays. Scrub typhus patients were characterized by marked changes in the cytokine network during the acute phase, differing not only from healthy controls but also from infectious disease controls. While most of the inflammatory markers were raised in scrub typhus, platelet-derived mediators such as RANTES were markedly decreased, probably reflecting enhanced platelet activation. Some of the inflammatory markers, including various chemokines (e.g., interleukin-8, monocyte chemoattractant peptide-1 and macrophage inflammatory protein-1β) and downstream markers of inflammation (e.g., C-reactive protein and pentraxin-3), were also associated with disease severity and mortality during follow-up, with a particular strong association with interleukin-8. Conclusions/Significance Our findings suggest that scrub typhus is characterized by a certain cytokine profile that includes dysregulated levels of a wide range of mediators, and that this enhanced inflammation could contribute to disease severity and clinical outcome. PMID:24516677
Notch3 orchestrates epithelial and inflammatory responses to promote acute kidney injury.
Kavvadas, Panagiotis; Keuylian, Zela; Prakoura, Niki; Placier, Sandrine; Dorison, Aude; Chadjichristos, Christos E; Dussaule, Jean-Claude; Chatziantoniou, Christos
2018-07-01
Acute kidney injury is a major risk factor for subsequent chronic renal and/or cardiovascular complications. Previous studies have shown that Notch3 was de novo expressed in the injured renal epithelium in the early phases of chronic kidney disease. Here we examined whether Notch3 is involved in the inflammatory response and the epithelial cell damage that typifies ischemic kidneys using Notch3 knockout mice and mice with short-term activated Notch3 signaling (N3ICD) in renal epithelial cells. After ischemia/reperfusion, N3ICD mice showed exacerbated infiltration of inflammatory cells and severe tubular damage compared to control mice. Inversely, Notch3 knockout mice were protected against ischemia/reperfusion injury. Renal macrophages derived from Notch3 knockout mice failed to activate proinflammatory cytokines. Chromatin immunoprecipitation analysis of the Notch3 promoter identified NF-κB as the principal inducer of Notch3 in ischemia/reperfusion. Thus, Notch3 induced by NF-κB in the injured epithelium sustains a proinflammatory environment attracting activated macrophages to the site of injury leading to a rapid deterioration of renal function and structure. Hence, targeting Notch3 may provide a novel therapeutic strategy against ischemia/reperfusion and acute kidney injury by preservation of epithelial structure and disruption of proinflammatory signaling. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
AIR SCORE ASSESSMENT FOR ACUTE APPENDICITIS
VON-MÜHLEN, Bruno; FRANZON, Orli; BEDUSCHI, Murilo Gamba; KRUEL, Nicolau; LUPSELO, Daniel
2015-01-01
Background: Acute appendicitis is the most common cause of acute abdomen. Approximately 7% of the population will be affected by this condition during full life. The development of AIR score may contribute to diagnosis associating easy clinical criteria and two simple laboratory tests. Aim: To evaluate the score AIR (Appendicitis Inflammatory Response score) as a tool for the diagnosis and prediction of severity of acute appendicitis. Method: Were evaluated all patients undergoing surgical appendectomy. From 273 patients, 126 were excluded due to exclusion criteria. All patients were submitted o AIR score. Results: The value of the C-reactive protein and the percentage of leukocytes segmented blood count showed a direct relationship with the phase of acute appendicitis. Conclusion: As for the laboratory criteria, serum C-reactive protein and assessment of the percentage of the polymorphonuclear leukocytes count were important to diagnosis and disease stratification. PMID:26537139
[The way of self-defence of the organism: inflammation].
Jakab, Lajos
2013-08-11
The acute and chronic constitutional reactions of the organism elicited by sterile causes and pathogenic structures threatening the soundness of the organism are surveyed by the author. It is emphasized that depending on causes which can be very different, there are various syndromes occurring in the clinical practice. On the basis of multitudiness of pathogenic factors and individual differences, the infammatory reactions are clinically, pathologically and pathobiochemically can be hugely variable. The acute inflammatory response may be sterile. It is often difficult to recognize in these processes whether the inflammation is harmful or beneficial for the organism as a whole. It is possible that the inflammatory response itself is the defending resource of the individual. The non-sterile acute inflammation is evoked by pathogenic microorganisms. The variety of clinical syndromes are explained by the high diversity of pathogenic microbes, the individualities of the defending organisms, and the natural and adaptive immunity of the organism which may be intact or possibly defective. In the latter case the inflammation itself is the disease, as a consequence of a pathological process conducted by the cortico-hypothalamo-adernal axis. The acute inflammation is a defending, preventing and repairing process, constituting an important part of the natural innate immune response. It is inseparable from the natural innate immune response, which is in close cooperation with the adaptive, specific immune response with mutual effects on each of the other. The conductor and the response reactions of the two immune responses are also the same. There are alterations in serum proteins/glycoproteins synthesized mostly by the hepatocytes. Because the concentration of almost all proteins/glycoproteins may change, the use of the discriminative term "acute phase reactant" is hardly relevant. For example, the HDL molecule is a negative "acute phase reactant". On the gound of clinical, pathological and biochemical caracteristics, the chronic sterile inflammation is a very different entity. It has been established that atherosclerosis is one of the ab origine chronic inflammatory syndrome. It is a long-lasting pathological entity progressing, rather than resolving with different celerity, namely a unique vasculitis syndrome. We are speaking about risk factors instead of causes, which constitute larger or smaller groups to elicite the preventing reaction of the host. The propagations and final outcomes are quite different from that of the acute process. The disadvantages or benefits for the organism are scarcely predictable, albeit the chronic process may have roles in its prolonged nature.
Ravindra, Kodihalli C.; Large, Emma; Young, Carissa L.; Rivera-Burgos, Dinelia; Yu, Jiajie; Cirit, Murat; Hughes, David J.; Wishnok, John S.; Lauffenburger, Douglas A.; Griffith, Linda G.
2017-01-01
In vitro hepatocyte culture systems have inherent limitations in capturing known human drug toxicities that arise from complex immune responses. Therefore, we established and characterized a liver immunocompetent coculture model and evaluated diclofenac (DCF) metabolic profiles, in vitro–in vivo clearance correlations, toxicological responses, and acute phase responses using liquid chromatography–tandem mass spectrometry. DCF biotransformation was assessed after 48 hours of culture, and the major phase I and II metabolites were similar to the in vivo DCF metabolism profile in humans. Further characterization of secreted bile acids in the medium revealed that a glycine-conjugated bile acid was a sensitive marker of dose-dependent toxicity in this three-dimensional liver microphysiological system. Protein markers were significantly elevated in the culture medium at high micromolar doses of DCF, which were also observed previously for acute drug-induced toxicity in humans. In this immunocompetent model, lipopolysaccharide treatment evoked an inflammatory response that resulted in a marked increase in the overall number of acute phase proteins. Kupffer cell–mediated cytokine release recapitulated an in vivo proinflammatory response exemplified by a cohort of 11 cytokines that were differentially regulated after lipopolysaccharide induction, including interleukin (IL)-1β, IL-1Ra, IL-6, IL-8, IP-10, tumor necrosis factor-α, RANTES (regulated on activation normal T cell expressed and secreted), granulocyte colony-stimulating factor, macrophage colony-stimulating factor, macrophage inflammatory protein-1β, and IL-5. In summary, our findings indicate that three-dimensional liver microphysiological systems may serve as preclinical investigational platforms from the perspective of the discovery of a set of clinically relevant biomarkers including potential reactive metabolites, endogenous bile acids, excreted proteins, and cytokines to predict early drug-induced liver toxicity in humans. PMID:28450578
Kyjovska, Zdenka O; Jacobsen, Nicklas R; Saber, Anne T; Bengtson, Stefan; Jackson, Petra; Wallin, Håkan; Vogel, Ulla
2015-01-01
We previously observed genotoxic effects of carbon black nanoparticles at low doses relative to the Danish Occupational Exposure Limit (3.5 mg/m3). Furthermore, DNA damage occurred in broncho-alveolar lavage (BAL) cells in the absence of inflammation, indicating that inflammation is not required for the genotoxic effects of carbon black. In this study, we investigated inflammatory and acute phase response in addition to genotoxic effects occurring following exposure to nanoparticulate carbon black (NPCB) at even lower doses. C57BL/6JBomTac mice were examined 1, 3, and 28 days after a single instillation of 0.67, 2, 6, and 162 µg Printex 90 NPCB and vehicle. Cellular composition and protein concentration was evaluated in BAL fluid as markers of inflammatory response and cell damage. DNA strand breaks in BAL cells, lung, and liver tissue were assessed using the alkaline comet assay. The pulmonary acute phase response was analyzed by Saa3 mRNA real-time quantitative PCR. Instillation of the low doses of NPCB induced a slight neutrophil influx one day after exposure. Pulmonary exposure to small doses of NPCB caused an increase in DNA strand breaks in BAL cells and lung tissue measured using the comet assay. We interpret the increased DNA strand breaks occurring following these low exposure doses of NPCB as DNA damage caused by primary genotoxicity in the absence of substantial inflammation, cell damage, and acute phase response. Environ. Mol. Mutagen. 56:41–49, 2015. © 2014 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society PMID:25042074
Modulation of P2X7 Receptor during Inflammation in Multiple Sclerosis
Amadio, Susanna; Parisi, Chiara; Piras, Eleonora; Fabbrizio, Paola; Apolloni, Savina; Montilli, Cinzia; Luchetti, Sabina; Ruggieri, Serena; Gasperini, Claudio; Laghi-Pasini, Franco; Battistini, Luca; Volonté, Cinzia
2017-01-01
Multiple sclerosis (MS) is characterized by macrophage accumulation and inflammatory infiltrates into the CNS contributing to demyelination. Because purinergic P2X7 receptor (P2X7R) is known to be abundantly expressed on cells of the hematopoietic lineage and of the nervous system, we further investigated its phenotypic expression in MS and experimental autoimmune encephalomyelitis conditions. By quantitative reverse transcription polymerase chain reaction and flow cytometry, we analyzed the P2X7R expression in human mononuclear cells of peripheral blood from stable and acute relapsing-remitting MS phases. Human monocytes were also challenged in vitro with pro-inflammatory stimuli such as the lipopolysaccharide, or the P2X7R preferential agonist 2′(3′)-O-(4 Benzoylbenzoyl)adenosine 5′-triphosphate, before evaluating P2X7R protein expression. Finally, by immunohistochemistry and immunofluorescence confocal analysis, we investigated the P2X7R expression in frontal cortex from secondary progressive MS cases. We demonstrated that P2X7R is present and inhibited on peripheral monocytes isolated from MS donors during the acute phase of the disease, moreover it is down-regulated in human monocytes after pro-inflammatory stimulation in vitro. P2X7R is instead up-regulated on astrocytes in the parenchyma of frontal cortex from secondary progressive MS patients, concomitantly with monocyte chemoattractant protein-1 chemokine, while totally absent from microglia/macrophages or oligodendrocytes, despite the occurrence of inflammatory conditions. Our results suggest that inhibition of P2X7R on monocytes and up-regulation in astrocytes might contribute to sustain inflammatory mechanisms in MS. By acquiring further knowledge about P2X7R dynamics and identifying P2X7R as a potential marker for the disease, we expect to gain insights into the molecular pathways of MS. PMID:29187851
Perruche, Sylvain; Saas, Philippe; Chen, Wanjun
2009-01-01
Introduction Experimental streptococcal cell wall (SCW)-induced arthritis is characterized by two successive phases of the disease. The acute phase occurs early and is associated with an inflammatory process and neutrophil infiltration into the synovium. The second chronic phase is related to effector T-cell activation and the dysregulation of macrophage function. Creation of an immunomodulatory environment has been attributed to apoptotic cells themselves, apoptotic cell uptake by phagocytes as well as a less sensibility of phagocytes capturing apoptotic bodies to activation. Therefore we evaluated the potential of apoptotic cell injection to influence the course of inflammation in SCW-induced arthritis in rats. Methods Rat apoptotic thymocytes were injected intraperitoneally (2 × 108) in addition to an arthritogenic dose of systemic SCW in LEW female rats. Control rats received SCW immunization and PBS. Rats were then followed for arthritis occurrence and circulating cytokine detection. At sacrifice, regulatory T cells (Tregs) and macrophages were analyzed. Results Apoptotic cell injection profoundly suppressed joint swelling and destruction typically observed during the acute and chronic phases of SCW-induced arthritis. Synovial inflammatory cell infiltration and bone destruction were also markedly suppressed. Ex vivo experiments revealed reduced levels of TNF in cultures of macrophages from rats challenged with SCW in the presence of apoptotic thymocytes as well as reduced macrophage response to lipopolysaccharide. Moreover, apoptotic cell injection induced higher Foxp3+ Tregs in the lymphoid organs, especially in the draining lymph nodes. Conclusions Our data indicate that apoptotic cells modulate macrophage function and result in Treg generation/increase. This may be involved in inhibition of inflammation and amelioration of arthritis. This highlights and confirms previous studies showing that in vivo generation of Tregs using apoptotic cell injection may be a useful tool to prevent and treat inflammatory autoimmune responses. PMID:19570235
Eriksson, Charlotta E; Studahl, Marie; Bergström, Tomas
2016-06-15
Herpes simplex encephalitis (HSE) is characterized by a pronounced inflammatory activity in the central nervous system (CNS). Here, we investigated the acute and prolonged complement system activity in HSE patients, by using enzyme-linked immunosorbent assays (ELISAs) for numerous complement components (C). We found increased cerebrospinal fluid concentrations of C3a, C3b, C5 and C5a in HSE patients compared with healthy controls. C3a and C5a concentrations remained increased also compared with patient controls. Our results conclude that the complement system is activated in CNS during HSE in the acute phase, and interestingly also in later stages supporting previous reports of prolonged inflammation. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, T.; Papaconstantinou, J.
1992-02-25
The synthesis and secretion of several acute-phase proteins increases markedly following physiological stress. {alpha}{sub 1}-Acid glycoprotein (AGP), a major acute-phase reactant made by the liver, is strongly induced by inflammatory agents such as lipopolysaccharide (LPS). Nuclear run-on assay showed a 17-fold increase in the rate of AGP transcription 4 h following LPS injection. DNase I footprinting assays revealed multiple protein binding domains in the mouse AGP-1 promoter region. Region B ({minus}104 to {minus}91) is protected by a liver-enriched transcription factor that is heat labile and in limiting quantity. An adjacent region, C ({minus}125 to {minus}104), is well-protected by nuclear extractsmore » from hepatocytes. Electrophoretic mobility shift assays indicated that only one DNA-protein complex can form with an oligonucleotide corresponding to region B. However, nuclear proteins from untreated mouse liver can form three strong complexes (C1, C2, and C3) and a weak one (C4) with oligonucleotide C. An acute-phase-inducible DNA-binding protein (AP-DBP) forms complex 4. A dramatic increase (over 11-fold) in AP-DBP binding activity is seen with nuclear proteins from LPS-stimulated animals. Interestingly, AP-DBP, a heat-stable factor, can form heterodimers with the transcription factor CCAAT/enhancer binding protein (C/EBP). Furthermore, purified C/EBP also binds avidly to region C. The studies indicate that several liver-enriched nuclear factors can interact with AGP-1 promoter and that AP-DBP binds to the AGP-1 promoter with high affinity only during the acute-phase induction.« less
Organ protection possibilities in acute heart failure.
Montero-Pérez-Barquero, M; Morales-Rull, J L
2016-04-01
Unlike chronic heart failure (HF), the treatment for acute HF has not changed over the last decade. The drugs employed have shown their ability to control symptoms but have not achieved organ protection or managed to reduce medium to long-term morbidity and mortality. Advances in our understanding of the pathophysiology of acute HF suggest that treatment should be directed not only towards correcting the haemodynamic disorders and achieving symptomatic relief but also towards preventing organ damage, thereby counteracting myocardial remodelling and cardiac and extracardiac disorders. Compounds that exert vasodilatory and anti-inflammatory action in the acute phase of HF and can stop cell death, thereby boosting repair mechanisms, could have an essential role in organ protection. Copyright © 2016 Elsevier España, S.L.U. y Sociedad Española de Medicina Interna (SEMI). All rights reserved.
Periodontitis in humans and non-human primates: oral-systemic linkage inducing acute phase proteins.
Ebersole, Jeffrey L; Cappelli, David; Mathys, Erik C; Steffen, Michelle J; Singer, Robert E; Montgomery, Michael; Mott, Glen E; Novak, M John
2002-12-01
The acute phase response (APR) represents a systemic counterpart to the localized inflammatory response. This report describes patient-oriented and non-human primate model studies to determine the effect of periodontal disease on systemic acute phase proteins (APP). Patient-oriented studies included comparison of the levels of APP, using enzyme-linked immunosorbent assay (ELISA), with the presence and severity of periodontitis in localized chronic periodontitis (LCP), generalized aggressive periodontitis (GAP), and Sjogren's syndrome (SS) patients. The non-human primate experiments evaluated the serum level of APPs under natural conditions, following mechanical hygiene, experimental gingivitis, and during ligature-induced periodontitis. Analysis of the LCP population showed what appeared to be a threshold of periodontal disease severity required for elevating the C-reactive protein (CRP) and haptoglobin (HG). The results demonstrated a significant elevation in CRP in the GAP versus the control groups, as well as lower levels of all mediators in healthy non-smokers (HNS) versus smokers (HS), suggesting that these systemic inflammatory markers were altered in response to challenge by noxious materials from smoking. Significantly different levels of CRP, HG, and alpha1-antiproteinase were noted in the SS patients suggesting that the autoimmune aspects of Sjögren's syndrome may impact upon oral health and systemic responses. Parallel evidence was also obtained from the primate studies. Providing mechanical oral hygiene, which significantly lowered clinical inflammation and bleeding of the gingiva, decreased the serum APP levels. Both CRP and fibrinogen were significantly elevated during progressing periodontitis, which also appeared to have an impact on serum lipids and lipoproteins. These findings supported results relating chronic oral infections and the inflammation of periodontitis as contributors to and/or triggers for systemic inflammatory responses. Finally, similarities in the clinical and microbiological parameters of gingival inflammation and periodontitis between humans and non-human primates was extended to identification of changes in serum APP in the non-human primates that appeared to be in direct response to the induction of progressing periodontitis. These systemic changes provide additional evidence for the biological plausibility of periodontal infections contributing to various systemic diseases.
Straub, Rainer H; Lehle, Karin; Herfarth, Hans; Weber, Markus; Falk, Werner; Preuner, Jurgen; Scholmerich, Jurgen
2002-03-01
Serum levels of dehydroepiandrosterone (DHEA) and DHEA sulphate (DHEAS) are low in chronic inflammatory diseases, although the reasons are unexplained. Furthermore, the behaviour of serum levels of these hormones during an acute inflammatory stressful disease state is not well known. In this study in patients with an acute inflammatory stressful disease state (13 patients undergoing cardiothoracic surgery) and patients with chronic inflammation (61 patients with inflammatory bowel diseases (IBD)) vs. 120 controls, we aimed to investigate adrenal hormone shifts looking at serum levels of DHEA in relation to other adrenal hormones. Furthermore, we tested the predictive role of serum tumour necrosis factor (TNF) and interleukin-6 (IL-6) for a change of serum levels of DHEA in relation to other adrenal hormones. The molar ratio of serum levels of DHEA/androstenedione (ASD) was increased in patients with an acute inflammatory stressful disease state and was decreased in patients with chronic inflammation. The molar ratio of serum levels of DHEAS/DHEA was reduced during an acute inflammatory stressful disease state and was increased in patients with chronic inflammation. A multiple linear regression analysis revealed that elevated serum levels of TNF were associated with a high ratio of serum levels of DHEA/ASD in all groups (for IL-6 in patients with an acute inflammatory stressful disease state only), and, similarly, elevated serum levels of TNF were associated with a high ratio of serum levels of DHEAS/DHEA only in IBD (for IL-6 only in healthy subjects). This study indicates that changes of serum levels of DHEA in relation to serum levels of other adrenal hormones are completely different in patients with an acute inflammatory stressful disease state compared with patients with chronic inflammation. The decrease of serum levels of DHEAS and DHEA is typical for chronic inflammation and TNF and IL-6 play a predictive role for these changes.
Hong, Yong-Han; Chao, Wen-Wan; Chen, Miaw-Ling; Lin, Bi-Fong
2009-07-14
This study aimed to investigate if food components that exert anti-inflammatory effects may be used for inflammatory disorders by examining alfalfa sprout ethyl acetate extract (ASEA). The cytokine profile and life span of BALB/c mice with acute inflammation after intra-peritoneal (ip) injection of 15 mg/kg BW lipopolysaccharide (LPS) were determined. The results showed that the life span of LPS-induced inflammatory mice were negatively correlated with serum levels of TNF-alpha, IL-6, and IL-1beta at 9 hr after LPS-injection, which indicated that suppressing these cytokines in the late phase of inflammation may be beneficial for survival. The in vitro experiment then showed that ASEA significantly reduced IL-6 and IL-1beta production and the NF-kappaB trans-activation activity of mitogen-stimulated RAW264.7 cells. To further evaluate the anti-inflammatory effects of ASEA in vivo, BALB/c mice were tube-fed with 25 mg ASEA/kg BW/day in 50 microl sunflower oil, while the control and PDTC (pyrrolidine dithiocarbamate, an anti-inflammatory agent) groups were tube-fed with 50 microl sunflower oil/day only. After one week of tube-feeding, the PDTC group was injected with 50 mg/kg BW PDTC and one hour later, all of the mice were injected with 15 mg/kg BW LPS. The results showed that the ASEA and PDTC groups had significantly lower serum TNF-alpha, IL-6, and IL-1beta levels at 9 hr after LPS challenge, and significantly higher survival rates than the control group. This study suggests that ASEA supplementation can suppress the production of pro-inflammatory cytokines and alleviate acute inflammatory hazards.
Hong, Yong-Han; Chao, Wen-Wan; Chen, Miaw-Ling; Lin, Bi-Fong
2009-01-01
This study aimed to investigate if food components that exert anti-inflammatory effects may be used for inflammatory disorders by examining alfalfa sprout ethyl acetate extract (ASEA). The cytokine profile and life span of BALB/c mice with acute inflammation after intra-peritoneal (ip) injection of 15 mg/kg BW lipopolysaccharide (LPS) were determined. The results showed that the life span of LPS-induced inflammatory mice were negatively correlated with serum levels of TNF-α, IL-6, and IL-1β at 9 hr after LPS-injection, which indicated that suppressing these cytokines in the late phase of inflammation may be beneficial for survival. The in vitro experiment then showed that ASEA significantly reduced IL-6 and IL-1β production and the NF-κB trans-activation activity of mitogen-stimulated RAW264.7 cells. To further evaluate the anti-inflammatory effects of ASEA in vivo, BALB/c mice were tube-fed with 25 mg ASEA/kg BW/day in 50 μl sunflower oil, while the control and PDTC (pyrrolidine dithiocarbamate, an anti-inflammatory agent) groups were tube-fed with 50 μl sunflower oil/day only. After one week of tube-feeding, the PDTC group was injected with 50 mg/kg BW PDTC and one hour later, all of the mice were injected with 15 mg/kg BW LPS. The results showed that the ASEA and PDTC groups had significantly lower serum TNF-α, IL-6, and IL-1β levels at 9 hr after LPS challenge, and significantly higher survival rates than the control group. This study suggests that ASEA supplementation can suppress the production of pro-inflammatory cytokines and alleviate acute inflammatory hazards. PMID:19594948
Nielsen, M K; Loynachan, A T; Jacobsen, S; Stewart, J C; Reinemeyer, C R; Horohov, D W
2015-12-15
Encysted cyathostomin larvae are ubiquitous in grazing horses. Arrested development occurs in this population and can lead to an accumulation of encysted larvae. Large numbers of tissue larvae place the horse at risk for developing larval cyathostominosis. This disease complex is caused by mass emergence of these larvae and is characterized by a generalized acute typhlocolitis and manifests itself as a profuse protein-losing watery diarrhea with a reported case-fatality rate of about 50%. Two anthelmintic formulations have a label claim for larvicidal therapy of these encysted stages; moxidectin and a five-day regimen of fenbendazole. There is limited knowledge about inflammatory and immunologic reactions to larvicidal therapy. This study was designed to evaluate blood acute phase reactants as well as gene expression of pro-inflammatory cytokines, both locally in the large intestinal walls and systemically. Further, mucosal tissue samples were evaluated histopathologically as well as analyzed for gene expression of pro- and anti-inflammatory cytokines, cluster of differentiation (CD) cell surface proteins, and select transcription factors. Eighteen juvenile horses with naturally acquired cyathostomin infections were randomly assigned to three treatment groups; one group served as untreated controls (Group 1), one received a five-day regimen of fenbendazole (10mg/kg) (Group 2), and one group received moxidectin (0.4mg/kg) (Group 3). Horses were treated on day 0 and euthanatized on days 18-20. Serum and whole blood samples were collected on days 0, 5, and 18. All horses underwent necropsy with collection of tissue samples from the ventral colon and cecum. Acute phase reactants measured included serum amyloid A, iron and fibrinogen, and the cytokines evaluated included interferon γ, tumor necrosis factor α, transforming growth factor (TGF)-β, and interleukins 1β, 4, 5, 6, and 10. Transcription factors evaluated were FoxP3, GATA3 and tBet, and CD markers included CD163, CD3z, CD4, CD40, and CD8b. Histopathology revealed an inflammatory reaction with higher levels of lymphocytes, T cells, B cells, eosinophils and fibrous tissue in the moxidectin-treated group compared to controls or horses treated with fenbendazole. No apparent systemic reactions were observed. Expression of IL-5 and TGF-β in intestinal tissues was significantly lower in Group 3 compared to Group 1. This study revealed a subtle inflammatory reaction to moxidectin, which is unlikely to cause clinical issues. Copyright © 2015 Elsevier B.V. All rights reserved.
The immune imbalance in the second hit of pancreatitis is independent of IL-17A.
Thomson, John-Edwin; Brand, Martin; Fonteh, Pascaline
2018-04-01
Severe acute pancreatitis (SAP) is characterised by two distinct clinical phases. Organ dysfunction and death is initially as a result of a systemic inflammatory response syndrome (SIRS). Systemic sepsis from infected pancreatic necrosis characterises the second phase, the so called 'second hit' of acute pancreatitis (AP). An immune imbalance during the second hit is postulated to contribute to the formation of the septic complications that occur in these patients. The pro-inflammatory T-helper (Th) 17 pathway has been shown to be an initiator of early SIRS in AP, however to date its role has not been established in the second hit in AP. Thirty-six patients with mild (n = 16), moderate (n = 10) and severe (n = 10) acute pancreatitis were enrolled. Peripheral blood samples were drawn on days 7, 9, 11 and 13 of illness for analysis of routine clinical markers as well as cytokine analysis. Flow cytometry and a IL-17A ELISA was performed to determine cytokine concentrations. There were no significant differences between days 7, 9, 11 and 13 for either the mild/moderate or SAP groups for IL-17A (CBA assay or ELISA), IFN-γ, TNF-α, IL-2 or IL-4. For each of the study days, the mean IL-6 and IL-10 concentrations were significantly higher in the SAP group compared to the mild/moderate group. WCC, CRP and PCT were all significantly higher in severe acute pancreatitis over the study days. An immune imbalance exists in patients with SAP, however secreted IL-17A is not responsible for the second hit in AP. Copyright © 2018 IAP and EPC. Published by Elsevier B.V. All rights reserved.
Martin, Francois-Pierre J; Lichti, Pia; Bosco, Nabil; Brahmbhatt, Viral; Oliveira, Manuel; Haller, Dirk; Benyacoub, Jalil
2015-04-03
Inflammatory bowel diseases are acute and chronic disabling inflammatory disorders with multiple complex etiologies that are not well-defined. Chronic intestinal inflammation has been linked to an energy-deficient state of gut epithelium with alterations in oxidative metabolism. Plasma-, urine-, stool-, and liver-specific metabonomic analyses are reported in a naïve T cell adoptive transfer (AT) experimental model of colitis, which evaluated the impact of long-chain n-3 polyunsaturated fatty acid (PUFA)-enriched diet. Metabolic profiles of AT animals and their controls under chow diet or fish oil supplementation were compared to describe the (i) consequences of inflammatory processes and (ii) the differential impact of n-3 fatty acids. Inflammation was associated with higher glycoprotein levels (related to acute-phase response) and remodeling of PUFAs. Low triglyceride levels and enhanced PUFA levels in the liver suggest activation of lipolytic pathways that could lead to the observed increase of phospholipids in the liver (including plasmalogens and sphingomyelins). In parallel, the increase in stool excretion of most amino acids may indicate a protein-losing enteropathy. Fecal content of glutamine was lower in AT mice, a feature exacerbated under fish oil intervention that may reflect a functional relationship between intestinal inflammatory status and glutamine metabolism. The decrease in Krebs cycle intermediates in urine (succinate, α-ketoglutarate) also suggests a reduction in the glutaminolytic pathway at a systemic level. Our data indicate that inflammatory status is related to this overall loss of energy homeostasis.
Krzyszczyk, Paulina; Schloss, Rene; Palmer, Andre; Berthiaume, François
2018-01-01
Macrophages play key roles in all phases of adult wound healing, which are inflammation, proliferation, and remodeling. As wounds heal, the local macrophage population transitions from predominantly pro-inflammatory (M1-like phenotypes) to anti-inflammatory (M2-like phenotypes). Non-healing chronic wounds, such as pressure, arterial, venous, and diabetic ulcers indefinitely remain in inflammation—the first stage of wound healing. Thus, local macrophages retain pro-inflammatory characteristics. This review discusses the physiology of monocytes and macrophages in acute wound healing and the different phenotypes described in the literature for both in vitro and in vivo models. We also discuss aberrations that occur in macrophage populations in chronic wounds, and attempts to restore macrophage function by therapeutic approaches. These include endogenous M1 attenuation, exogenous M2 supplementation and endogenous macrophage modulation/M2 promotion via mesenchymal stem cells, growth factors, biomaterials, heme oxygenase-1 (HO-1) expression, and oxygen therapy. We recognize the challenges and controversies that exist in this field, such as standardization of macrophage phenotype nomenclature, definition of their distinct roles and understanding which phenotype is optimal in order to promote healing in chronic wounds. PMID:29765329
Enhanced response to ozone exposure during the follicular phase of the menstrual cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, S.D.; Adams, W.C.; Brookes, K.A.
Exposure to ozone (O[sub 3]), a toxic component of photochemical smog, results in significant airway inflammation, respiratory discomfort, and pulmonary function impairment. These effects can be reduced via pretreatment with anti-inflammatory agents. Progesterone, a gonadal steroid, is known to reduce general inflammation in the uterine endometrium. However, it is not known whether fluctuation in blood levels of progesterone, which are experienced during the normal female menstrual cycle, could alter O[sub 3] inflammatory-induced pulmonary responses. In this study, we tested the hypothesis that young, adult females are more responsive to O[sub 3] inhalation with respect to pulmonary function impairment during theirmore » follicular (F) menstrual phase when progesterone levels are lowest that during their mid-luteal (ML) phase when progesterone levels are highest. Nine subjects with normal ovarian function were exposed in random order for 1 hour each to filtered air and to 0.30 ppm O[sub 3] in their F and ML menstrual phases. Ozone responsiveness was measured by percent change in pulmonary function from pre- to postexposure. Significant gas concentration effects (filtered air versus O[sub 3]) were observed for forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV[sub 1]), and forced expiratory flow between 25 and 75% of FVC (FEF[sub 25-75]), showed a significant menstrual phase and gas concentration interaction effect, with larger decrements observed in the F menstrual phase when progesterone concentrations were significantly lower. We conclude that young, adult females appear to be more responsive to acute O[sub 3] exposure during the F phase than during the ML phase of their menstrual cycles. This difference in pulmonary function response could be related to the anti-inflammatory effects of increased progesterone concentrations during the luteal phase.« less
Dakin, Stephanie Georgina; Werling, Dirk; Hibbert, Andrew; Abayasekara, Dilkush Robert Ephrem; Young, Natalie Jayne; Smith, Roger Kenneth Whealands; Dudhia, Jayesh
2012-01-01
Macrophages (Mϕ) orchestrate inflammatory and reparatory processes in injured connective tissues but their role during different phases of tendon healing is not known. We investigated the contribution of different Mϕ subsets in an equine model of naturally occurring tendon injury. Post mortem tissues were harvested from normal (uninjured), sub-acute (3–6 weeks post injury) and chronically injured (>3 months post injury) superficial digital flexor tendons. To determine if inflammation was present in injured tendons, Mϕ sub-populations were quantified based on surface antigen expression of CD172a (pan Mϕ), CD14highCD206low (pro-inflammatory M1Mϕ), and CD206high (anti-inflammatory M2Mϕ) to assess potential polarised phenotypes. In addition, the Lipoxin A4 receptor (FPR2/ALX) was used as marker for resolving inflammation. Normal tendons were negative for both Mϕ and FPR2/ALX. In contrast, M1Mϕ predominated in sub-acute injury, whereas a potential phenotype-switch to M2Mϕ polarity was seen in chronic injury. Furthermore, FPR2/ALX expression by tenocytes was significantly upregulated in sub-acute but not chronic injury. Expression of the FPR2/ALX ligand Annexin A1 was also significantly increased in sub-acute and chronic injuries in contrast to low level expression in normal tendons. The combination of reduced FPR2/ALX expression and persistence of the M2Mϕ phenotype in chronic injury suggests a potential mechanism for incomplete resolution of inflammation after tendon injury. To investigate the effect of pro-inflammatory mediators on lipoxin A4 (LXA4) production and FPR2/ALX expression in vitro, normal tendon explants were stimulated with interleukin-1 beta and prostaglandin E2. Stimulation with either mediator induced LXA4 release and maximal upregulation of FPR2/ALX expression after 72 hours. Taken together, our data suggests that although tenocytes are capable of mounting a protective mechanism to counteract inflammatory stimuli, this appears to be of insufficient duration and magnitude in natural tendon injury, which may potentiate chronic inflammation and fibrotic repair, as indicated by the presence of M2Mϕ. PMID:22384219
Dakin, Stephanie Georgina; Werling, Dirk; Hibbert, Andrew; Abayasekara, Dilkush Robert Ephrem; Young, Natalie Jayne; Smith, Roger Kenneth Whealands; Dudhia, Jayesh
2012-01-01
Macrophages (Mφ) orchestrate inflammatory and reparatory processes in injured connective tissues but their role during different phases of tendon healing is not known. We investigated the contribution of different Mφ subsets in an equine model of naturally occurring tendon injury. Post mortem tissues were harvested from normal (uninjured), sub-acute (3-6 weeks post injury) and chronically injured (>3 months post injury) superficial digital flexor tendons. To determine if inflammation was present in injured tendons, Mφ sub-populations were quantified based on surface antigen expression of CD172a (pan Mφ), CD14(high)CD206(low) (pro-inflammatory M1Mφ), and CD206(high) (anti-inflammatory M2Mφ) to assess potential polarised phenotypes. In addition, the Lipoxin A(4) receptor (FPR2/ALX) was used as marker for resolving inflammation. Normal tendons were negative for both Mφ and FPR2/ALX. In contrast, M1Mφ predominated in sub-acute injury, whereas a potential phenotype-switch to M2Mφ polarity was seen in chronic injury. Furthermore, FPR2/ALX expression by tenocytes was significantly upregulated in sub-acute but not chronic injury. Expression of the FPR2/ALX ligand Annexin A1 was also significantly increased in sub-acute and chronic injuries in contrast to low level expression in normal tendons. The combination of reduced FPR2/ALX expression and persistence of the M2Mφ phenotype in chronic injury suggests a potential mechanism for incomplete resolution of inflammation after tendon injury. To investigate the effect of pro-inflammatory mediators on lipoxin A(4) (LXA(4)) production and FPR2/ALX expression in vitro, normal tendon explants were stimulated with interleukin-1 beta and prostaglandin E(2). Stimulation with either mediator induced LXA(4) release and maximal upregulation of FPR2/ALX expression after 72 hours. Taken together, our data suggests that although tenocytes are capable of mounting a protective mechanism to counteract inflammatory stimuli, this appears to be of insufficient duration and magnitude in natural tendon injury, which may potentiate chronic inflammation and fibrotic repair, as indicated by the presence of M2Mφ.
Pathogenesis of vascular leak in dengue virus infection.
Malavige, Gathsaurie Neelika; Ogg, Graham S
2017-07-01
Endothelial dysfunction leading to vascular leak is the hallmark of severe dengue. Vascular leak typically becomes clinically evident 3-6 days after the onset of illness, which is known as the critical phase. This critical phase follows the period of peak viraemia, and lasts for 24-48 hr and usually shows rapid and complete reversal, suggesting that it is likely to occur as a result of inflammatory mediators, rather than infection of the endothelium. Cytokines such as tumour necrosis factor-α, which are known to be elevated in the critical phase of dengue, are likely to be contributing factors. Dengue NS1, a soluble viral protein, has also been shown to disrupt the endothelial glycocalyx and thus contribute to vascular leak, although there appears to be a discordance between the timing of NS1 antigenaemia and occurrence of vascular leak. In addition, many inflammatory lipid mediators are elevated in acute dengue viral infection such as platelet activating factor (PAF) and leukotrienes. Furthermore, many other inflammatory mediators such as vascular endothelial growth factor and angiopoietin-2 have been shown to be elevated in patients with dengue haemorrhagic fever, exerting their action in part by inducing the activity of phospholipases, which have diverse inflammatory effects including generation of PAF. Platelets have also been shown to significantly contribute to endothelial dysfunction by production of interleukin-1β through activation of the NLRP3 inflammasome and also by inducing production of inflammatory cytokines by monocytes. Drugs that block down-stream immunological mediator pathways such as PAF may also be beneficial in the treatment of severe disease. © 2017 John Wiley & Sons Ltd.
Mitulescu, T C; Stavaru, C; Voinea, L M; Banica, L M; Matache, C; Predeteanu, D
2016-01-01
Hypothesis: Abnormal Vitamin D (Vit D) level could have consequences on the immuno-inflammatory processes in Ankylosing Spondylitis (AS). Aim: The purpose of this study was to analyze the role of Vitamin D in the interplay between immune and inflammation effectors in AS associated-Acute Anterior Uveitis (AAU). Methods and Results: 25-hydroxyvitamin D (Vit D), LL-37 peptide, IL-8 and Serum Amyloid A (SAA) were identified and quantified in the serum/ plasma of thirty-four AS patients [eleven AS patients presenting AAU (AAU AS patients) and twenty-three AS patients without AAU (wAAU AS patients)] and eighteen healthy individuals (Control) using enzyme-linked immunosorbent assay. Acute-phase SAA level was significantly higher in AS patients compared to Controls. Contrary with wAAU AS patients, significantly elevated levels of IL-8, and diminished levels of Vit D characterized AAU AS patients. Regarding LL-37, its level decreased concomitantly with the level of Vit D. When AS patients were subgrouped based on AAU presence or on Vit D level, important associations between immuno-inflammatory assessed markers and AS features were noticed. Generally, Vit D levels were associated indirectly with leukocytes/ neutrophils number or with ESR, CRP, and Fibrinogen levels. The levels of SAA and IL-8 associated directly with AAU or with AAU relapses, especially in AS patients with Vit D insufficiency, while SAA associated directly with infection/ inflammatory markers and with disease activity indexes or with the degree of functional limitation. Discussion: Altered levels of Vit D affect the balance between LL-37, IL-8 and SAA, suggesting an association with AAU, an extra-articular manifestation of AS. Abbreviations: Vit D = Vitamin D, AS = Ankylosing Spondylitis, AAU = Acute Anterior Uveitis, AAU AS = AS patients with AAU, wAAU AS = AS patients without AAU, SSZ = Sulphasalazine, Leu = Leukocytes, Neu = Neutrophils.
Yu, Yi; Feng, Xiaoyan; Vieten, Gertrud; Dippel, Stephanie; Imvised, Tawan; Gueler, Faikah; Ure, Benno M; Kuebler, Jochen F; Klemann, Christian
2017-01-01
Ischemia-reperfusion injury (IRI) is associated with significant patient mortality and morbidity. The complex cascade of IRI is incompletely understood, but inflammation is known to be a key mediator. In addition to the predominant innate immune responses, previous research has also indicated that αβ T cells contribute to IRI in various organ models. The aim of this study was to clarify the role αβ T cells play in IRI to the gut. Adult wild-type (WT) and αβ T cell-deficient mice were subjected to acute intestinal IRI with 30min ischemia followed by 4h reperfusion. The gene expression of pro-inflammatory cytokines was measured by qPCR, and the influx of leukocyte subpopulations in the gut was assessed via flow cytometry and histology. Pro-inflammatory cytokines in the serum were measured, and transaminases were assessed as an indicator of distant organ IRI. Intestinal IRI led to an increased expression of pro-inflammatory cytokines in the gut tissue and an influx of leukocytes that predominantly consisted of neutrophils and macrophages. Furthermore, intestinal IRI increased serum IL-6, TNF-α, and ALT/AST levels. The αβ T cell-deficient mice did not exhibit a more significant increase in pro-inflammatory cytokines in the gut or serum following IR than the WT mice. There was also no difference between WT- and αβ T cell-deficient mice in terms of neutrophil infiltration or macrophage activation. Furthermore, the increase in transaminases was equal in both groups indicating that the level of distant organ injury was comparable. An increasing body of evidence demonstrates that αβ T cells play a key role in IRI. In the gut, however, αβ T cells are not pivotal in the first hours following acute IRI as deficiency does not impact cytokine production, neutrophil recruitment, macrophage activation, or distant organ injury. Thus, αβ T cells may be considered innocent bystanders during the acute phase of intestinal IRI.
Mitulescu, TC; Stavaru, C; Voinea, LM; Banica, LM; Matache, C; Predeteanu, D
2016-01-01
Hypothesis:Abnormal Vitamin D (Vit D) level could have consequences on the immuno-inflammatory processes in Ankylosing Spondylitis (AS). Aim:The purpose of this study was to analyze the role of Vitamin D in the interplay between immune and inflammation effectors in AS associated-Acute Anterior Uveitis (AAU). Methods and Results:25-hydroxyvitamin D (Vit D), LL-37 peptide, IL-8 and Serum Amyloid A (SAA) were identified and quantified in the serum/ plasma of thirty-four AS patients [eleven AS patients presenting AAU (AAU AS patients) and twenty-three AS patients without AAU (wAAU AS patients)] and eighteen healthy individuals (Control) using enzyme-linked immunosorbent assay. Acute-phase SAA level was significantly higher in AS patients compared to Controls. Contrary with wAAU AS patients, significantly elevated levels of IL-8, and diminished levels of Vit D characterized AAU AS patients. Regarding LL-37, its level decreased concomitantly with the level of Vit D. When AS patients were subgrouped based on AAU presence or on Vit D level, important associations between immuno-inflammatory assessed markers and AS features were noticed. Generally, Vit D levels were associated indirectly with leukocytes/ neutrophils number or with ESR, CRP, and Fibrinogen levels. The levels of SAA and IL-8 associated directly with AAU or with AAU relapses, especially in AS patients with Vit D insufficiency, while SAA associated directly with infection/ inflammatory markers and with disease activity indexes or with the degree of functional limitation. Discussion:Altered levels of Vit D affect the balance between LL-37, IL-8 and SAA, suggesting an association with AAU, an extra-articular manifestation of AS. Abbreviations:Vit D = Vitamin D, AS = Ankylosing Spondylitis, AAU = Acute Anterior Uveitis, AAU AS = AS patients with AAU, wAAU AS = AS patients without AAU, SSZ = Sulphasalazine, Leu = Leukocytes, Neu = Neutrophils. PMID:27713770
Faz-López, Berenice
2016-01-01
The Th1/Th2/Th17 balance is a fundamental feature in the regulation of the inflammatory microenvironment during helminth infections, and an imbalance in this paradigm greatly contributes to inflammatory disorders. In some cases of helminthiasis, an initial Th1 response could occur during the early phases of infection (acute), followed by a Th2 response that prevails in chronic infections. During the late phase of infection, alternatively activated macrophages (AAMs) are important to counteract the inflammation caused by the Th1/Th17 response and larval migration, limiting damage and repairing the tissue affected. Macrophages are the archetype of phagocytic cells, with the primary role of pathogen destruction and antigen presentation. Nevertheless, other subtypes of macrophages have been described with important roles in tissue repair and immune regulation. These types of macrophages challenge the classical view of macrophages activated by an inflammatory response. The role of these subtypes of macrophages during helminthiasis is a controversial topic in immunoparasitology. Here, we analyze some of the studies regarding the role of AAMs in tissue repair during the tissue migration of helminths. PMID:27648452
Participation of satellite glial cells of the dorsal root ganglia in acute nociception.
Lemes, Júlia Borges Paes; de Campos Lima, Tais; Santos, Débora Oliveira; Neves, Amanda Ferreira; de Oliveira, Fernando Silva; Parada, Carlos Almicar; da Cruz Lotufo, Celina Monteiro
2018-05-29
At dorsal root ganglia, neurons and satellite glial cells (SGC) can communicate through ATP release and P2X7 receptor activation. SGCs are also interconnected by gap junctions and have been previously implicated in modulating inflammatory and chronic pain.We now present evidence that SGCs are also involved in processing acute nociception in rat dorsal root ganglia. Using primary dorsal root ganglia cultures we observed that calcium transients induced in neurons by capsaicin administration were followed by satellite glial cells activation. Only satellite glial cells response was reduced by administration of the P2X7 receptor antagonist A740003. In vivo, acute nociception induced by intraplantar injection of capsaicin in rats was inhibited by A740003 or by the gap junction blocker carbenoxolone administered at the dorsal root ganglia (L5 level). Both drugs also reduced the second phase of the formalin test. These results suggest that communication between neurons and satellite glial cells is not only involved in inflammatory or pathological pain, but also in the transmission of the nociceptive signal, possibly in situations involving C-fiber activation. Copyright © 2018 Elsevier B.V. All rights reserved.
Fiore, Tito; Iaccheri, Barbara; Cerquaglia, Alessio; Lupidi, Marco; Torroni, Giovanni; Fruttini, Daniela; Cagini, Carlo
2018-01-01
To perform an analysis of optical coherence tomography (OCT) abnormalities in patients with MEWDS, during the acute and recovery stages, using enhanced depth imaging-OCT (EDI-OCT). A retrospective case series of five patients with MEWDS was included. EDI-OCT imaging was evaluated to detect retinal and choroidal features. In the acute phase, focal impairment of the ellipsoid zone and external limiting membrane, hyperreflective dots in the inner choroid, and full-thickness increase of the choroidal profile were observed in the affected eye; disappearance of these findings and restoration of the choroidal thickness (p = 0.046) was appreciated in the recovery phase. No OCT abnormalities were assessed in the unaffected eye. EDI-OCT revealed transient outer retinal layer changes and inner choroidal hyperreflective dots. A transient increased thickness of the whole choroid was also identified. This might confirm a short-lasting inflammatory involvement of the whole choroidal tissue in the active phase of MEWDS.
Zhao, Xiang; Yan, Shi-Gui
2011-02-01
Though it is well accepted that low-intensity pulsed ultrasound (LIPUS) can accelerate the healing process of a fracture with very good results, we should still pay attention to its side effects and further improve its application in detail, such as the appropriate time and point for the application. In the early phase of a bone fracture, there are millions of oxygen radicals released by neutrophils in the injured area. This article focuses on whether the increased permeability of normal cell membranes by LIPUS makes the concentration of oxygen radicals increase to such a high degree that damage occurs to healthy tissue cells. It is proposed that it may be better not to use LIPUS in the acute phase of a fracture (i.e. within 1week after injury) but instead delay its application until after any inflammatory reaction has weakened to yield better results. Copyright © 2010 Elsevier Ltd. All rights reserved.
Nutritional evaluation and management of AKI patients.
Fiaccadori, Enrico; Maggiore, Umberto; Cabassi, Aderville; Morabito, Santo; Castellano, Giuseppe; Regolisti, Giuseppe
2013-05-01
Protein-energy wasting is common in patients with acute kidney injury (AKI) and represents a major negative prognostic factor. Nutritional support as parenteral and/or enteral nutrition is frequently needed because the early phases of this are often a highly catabolic state, although the optimal nutritional requirements and nutrient intake composition remain a partially unresolved issue. Nutrient needs of patients with AKI are highly heterogeneous, depending on different pathogenetic mechanisms, catabolic rate, acute and chronic comorbidities, and renal replacement therapy (RRT) modalities. Thus, quantitative and qualitative aspects of nutrient intake should be frequently evaluated in this clinical setting to achieve better individualization of nutritional support, to integrate nutritional support with RRT, and to avoid under- and overfeeding. Moreover, AKI is now considered a kidney-centered inflammatory syndrome; indeed, recent experimental data indicate that specific nutrients with anti-inflammatory effects could play an important role in the prevention of renal function loss after an episode of AKI. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
The regulation of sulphurated amino acid junctions: fact or fiction in the field of inflammation?
Santangelo, F
2002-01-01
The diet of industrialised countries is usually rich in amino acids, which are in part used as a source of calories. However, metabolic alterations are observed in diseased patients and a preferential retention of Sulphurated Amino Acids (SAA) occurs during the inflammatory response. Moreover, it has been demonstrated in a model of an acute sepsis phase of rats that the metabolism of Cysteine is modified. The liver converts Cysteine at a different ratio of Sulphate to Taurine (Tau) i.e. the sulphate production decreases while the Tau conversion increases. The Glutathione (GSH) concentration is greater in the liver, kidneys and other organs and the Cysteine incorporation into proteins is higher in the spleen, lungs and plasma (Acute Phase Proteins) while the Albumin level decreases. The pro-inflammatory cytokines such as Interleukin-1, Interleukin-6 and TNF- alpha are the main initiators that alter protein and amino acid metabolism. Another important phenomenon is the impairment of Methionine conversion to Cysteine during stress. For example, premature infants or AIDS patients are capable of synthesizing Cysteine from Methionine at a much lower rate. Thus, the metabolic flow through the trans-sulphuration path may be inadequate to meet the Cysteine demand under critical conditions. In this complex picture, an SAA supply may contribute to an immune system regulation.
Bacterial Contribution in Chronicity of Wounds.
Rahim, Kashif; Saleha, Shamim; Zhu, Xudong; Huo, Liang; Basit, Abdul; Franco, Octavio Luiz
2017-04-01
A wound is damage of a tissue usually caused by laceration of a membrane, generally the skin. Wound healing is accomplished in three stages in healthy individuals, including inflammatory, proliferative, and remodeling stages. Healing of wounds normally starts from the inflammatory phase and ends up in the remodeling phase, but chronic wounds remain in an inflammatory stage and do not show progression due to some specific reasons. Chronic wounds are classified in different categories, such as diabetic foot ulcer (DFU), venous leg ulcers (VLU) and pressure ulcer (PU), surgical site infection (SSI), abscess, or trauma ulcers. Globally, the incidence rate of DFU is 1-4 % and prevalence rate is 5.3-10.5 %. However, colonization of pathogenic bacteria at the wound site is associated with wound chronicity. Most chronic wounds contain more than one bacterial species and produce a synergetic effect that results in previously non-virulent bacterial species becoming virulent and causing damage to the host. While investigating bacterial diversity in chronic wounds, Staphylococcus, Pseudomonas, Peptoniphilus, Enterobacter, Stenotrophomonas, Finegoldia, and Serratia were found most frequently in chronic wounds. Recently, it has been observed that bacteria in chronic wounds develop biofilms that contribute to a delay in healing. In a mature biofilm, bacteria grow slowly due to deficiency of nutrients that results in the resistance of bacteria to antibiotics. The present review reflects the reasons why acute wounds become chronic. Interesting findings include the bacterial load, which forms biofilms and shows high-level resistance toward antibiotics, which is a threat to human health in general and particularly to some patients who have acute wounds.
Update on pathogenesis and clinical management of acute pancreatitis
Cruz-Santamaría, Dulce M; Taxonera, Carlos; Giner, Manuel
2012-01-01
Acute pancreatitis (AP), defined as the acute nonbacterial inflammatory condition of the pancreas, is derived from the early activation of digestive enzymes found inside the acinar cells, with variable compromise of the gland itself, nearby tissues and other organs. So, it is an event that begins with pancreatic injury, elicits an acute inflammatory response, encompasses a variety of complications and generally resolves over time. Different conditions are known to induce this disorder, although the innermost mechanisms and how they act to develop the disease are still unknown. We summarize some well established aspects. A phase sequence has been proposed: etiology factors generate other conditions inside acinar cells that favor the AP development with some systemic events; genetic factors could be involved as susceptibility and modifying elements. AP is a disease with extremely different clinical expressions. Most patients suffer a mild and limited disease, but about one fifth of cases develop multi organ failure, accompanied by high mortality. This great variability in presentation, clinical course and complications has given rise to the confusion related to AP related terminology. However, consensus meetings have provided uniform definitions, including the severity of the illness. The clinical management is mainly based on the disease´s severity and must be directed to correct the underlying predisposing factors and control the inflammatory process itself. The first step is to determine if it is mild or severe. We review the principal aspects to be considered in this treatment, as reflected in several clinical practice guidelines. For the last 25 years, there has been a global increase in incidence of AP, along with many advances in diagnosis and treatment. However, progress in knowledge of its pathogenesis is scarce. PMID:22737590
Widespread pain reliever profile of a flower extract of Tanacetum parthenium.
Di Cesare Mannelli, Lorenzo; Tenci, Barbara; Zanardelli, Matteo; Maidecchi, Anna; Lugli, Andrea; Mattoli, Luisa; Ghelardini, Carla
2015-07-15
Tanacetum parthenium L., commonly called Feverfew, is known for anti-inflammatory and anti-migraine properties. Aimed to individuate new therapeutical strategies to control acute and persistent pain induced by different origins we tested two hydroalcoholic extracts obtained from Feverfew flowers and leaves, respectively. Extracts were characterized according to the European Pharmacopoeia monograph. Both the extracts were tested after acute per os administration in the dose range 30-1000 mg kg(-1). The anti-nociceptive properties were evaluated by the Writhing test in mice. The number of abdominal contractions was dose dependently reduced by the flower extract. It reduced mechanical hypersensitivity (Paw pressure test) related to the acute inflammatory phase induced by carrageenan similarly to diclofenac and ibuprofen. In the osteoarthritis model induced by intra articular injection of monoiodoacetate (MIA) the flower extract significantly increased the pain threshold peaking 30 min after treatment. Moreover, it was effective in the chronic constriction injury model of neuropathic pain showing activity similar to the anti-epileptic drug gabapentin. The flower extract activity was confirmed in rat models of chemotherapy-induced neuropathic pain. The mechanical hypersensitivity induced by repeated treatments with the anticancer drug oxaliplatin and with the antiviral dideoxycytidine was significantly reduced after a single injection of Feverfew flower extract. The leaf extract showed lesser efficacy and potency and it was devoid of any effect in carrageenan-, MIA- and chemotherapy-induced pain. The present Feverfew flower extract behaves as a potent pain reliever in acute, inflammatory, articular and neuropathic pain. It appears as a natural strategy potentially suitable for the treatment of different kinds of pain. Copyright © 2015 Elsevier GmbH. All rights reserved.
Duwiejua, M; Zeitlin, I J; Waterman, P G; Gray, A I
1994-04-01
The aqueous ethanolic extracts of Polygonum bistorta L. Polygonaceae, Guaiacum officinale L. Zygophyllaceae and Hamamelis virginiana L. Hamamelidaceae were screened for anti-inflammatory activity. Administered (100 and 200 mg kg-1, p.o.) before the induction of carrageenan rat paw oedema, extracts of P. bistorta significantly suppressed both the maximal oedema response and the total oedema response (monitored as area under the time course curve). H. virginiana was inactive and G. officinale was only active at 200 mg kg-1. At 200 mg kg-1 administered before the induction of adjuvant arthritis, P. bistorta significantly inhibited both the acute and chronic phases of the adjuvant-induced rat paw swelling, while G. officinale and H. virginiana were only active against the chronic phase. Further studies on P. bistorta (100-800 mg kg-1) revealed a dose-dependent inhibition of the carrageenan-induced rat paw oedema over the dose range 100-400 mg kg-1, the E50 value being approximately 158.5 mg kg-1. The extract (200 mg kg-1), administered after the onset of the inflammatory responses reversed the course of both the carrageenan- and adjuvant-induced rat paw swelling. The results confirm that the extracts of P. bistorta, G. officinale and H. virginiana contain anti-inflammatory substances.
Anderson, Per; Delgado, Mario
2008-01-01
Identification of the factors that regulate the immune tolerance and control the appearance of exacerbated inflammatory conditions is crucial for the development of new therapies of inflammatory and autoimmune diseases. Although much is known about the molecular basis of initiating signals and pro-inflammatory chemical mediators in inflammation, it has only recently become apparent that endogenous stop signals are critical at early checkpoints within the temporal events of inflammation. Some neuropeptides and lipid mediators that are produced during the ongoing inflammatory response have emerged as endogenous anti-inflammatory agents that participate in the regulation of the processes that ensure self-tolerance and/or inflammation resolution. Here we examine the latest research findings, which indicate that neuropeptides participate in maintaining immune tolerance in two distinct ways: by regulating the balance between pro-inflammatory and anti-inflammatory factors, and by inducing the emergence of regulatory T cells with suppressive activity against autoreactive T-cell effectors. On the other hand, we also focus on lipid mediators biosynthesized from ω-3 and ω-6 polyunsaturated fatty-acids in inflammatory exudates that promote the resolution phase of acute inflammation by regulating leucocyte influx to and efflux from local inflamed sites. Both anti-inflammatory neuropeptides and pro-resolving lipid mediators have shown therapeutic potential for a variety of inflammatory and autoimmune disorders and could be used as biotemplates for the development of novel pharmacologic agents. PMID:18554314
Martins, Anita Oliveira Brito Pereira Bezerra; Rodrigues, Lindaiane Bezerra; Cesário, Francisco Rafael Alves Santana; de Oliveira, Maria Rayane Correia; Tintino, Cicera Datiane Morais; Castro, Fyama Ferreira E; Alcântara, Isabel Sousa; Fernandes, Maria Neyze Martins; de Albuquerque, Thaís Rodrigues; da Silva, Maria Sanadia Alexandre; de Sousa Araújo, Adriano Antunes; Júniur, Lucindo José Quintans; da Costa, José Galberto Martins; de Menezes, Irwin Rose Alencar; Wanderley, Almir Gonçalves
2017-12-01
The species Croton rhamnifolioides, belonging to the Croton genus, is known in ethnomedicine as "quebra faca" and is used in the treatment of stomach pain, vomiting and fever. This study aims to evaluate the anti-edematogenic and anti-inflammatory effect of Croton rhamnifolioides leaf essential oil (OEFC) and its major constituent: 1,8-cineole (eucalyptol). The essential oil was extracted from fresh leaves through a hydrodistillation system. The chemical analysis was determined by gas chromatography-mass spectrometry (GC-MS). The acute anti-inflammatory activity was determined from the models of: ear edema by the single application of croton oil, paw edema induced by: carrageenan, dextran, histamine and arachidonic acid, while vascular permeability was determined by Evans blue extravasation and chronic anti-inflammatory activity by granuloma induction using the implantation of cotton pellets. The GC-MS results identified and quantified 11 constituents, with the major component being 1,8-cineole (41.33%). The OEFC (20mg/mL) and 1,8-cineole (8.26mg/mL) significantly reduced the edema induced by croton oil by 42.1 and 34.9%, respectively. The OEFC (25, 50, 100 and 200mg/kg) and 1,8-cineole (10.33, 20.66, 41.33 and 82.66mg/kg) statistically reduced paw edema induced by carrageenan, dextran as well as vascular permeability (protein extravasation). The OEFC (25mg/kg) and 1,8-cineole (10.33mg/kg) demonstrated efficacy in reducing edema induced by histamine and arachidonic acid and granuloma. In conclusion, the OEFC and 1,8-cineole have anti-inflammatory activity in the acute and chronic phase, suggesting therapeutic potential as a source for the development of new anti-inflammatory agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Sanjay, Rashmi; Flanagan, Janice; Sodano, Donata; Gorson, Kenneth C; Ropper, Allan H; Weinstein, Robert
2006-07-01
The Guillian Barré syndrome is an acute inflammatory disorder for which plasma exchange is effective treatment. Up to 10% relapse after plasma exchange suggesting that treatment sometimes finishes before disease activity has resolved. We studied whether plasma fibrinogen, an inflammatory marker, might be used to determine when to discontinue plasma exchange in patients with acute Guillain-Barré syndrome. We conducted a post-hoc analysis of apheresis database and hospital records of patients treated with plasma exchange for acute Guillain-Barré syndrome during 1999-2004. Data were analyzed from 28 patients who underwent a total of 29 courses of plasma exchange for acute Guillain-Barré syndrome. The mean (+/-SD) plasma fibrinogen concentration was 422.5 (+/-96.4) mg/dl at the time of presentation and, in 17 of the 29, it was above 400 mg/dl (reference range 200-400). Twenty of the 21 patients whose fibrinogen fell by more than 30% from baseline by the time of the final plasma exchange treatment had neurological improvement. There was improvement in only 3 of the 8 instances where fibrinogen decreased by less than 30% by the end of plasma exchange therapy. A > or =30% decrease in fibrinogen by the conclusion of plasma exchange was significantly associated with sustained neurological improvement (P = 0.0025). The plasma fibrinogen level appears to reflect disease activity in acute Guillain-Barré syndrome. A <30% fall in fibrinogen level despite plasma exchange may indicate the need to continue plasma exchange to maximize the benefit of treatment or minimize the risk of relapse. Therapeutic plasma exchange need not be extended when plasma fibrinogen remains > or =30% below its level at presentation by the time of the final planned plasma exchange procedure.
Taguchi, Kazuaki; Nagao, Saori; Maeda, Hitoshi; Yanagisawa, Hiroki; Sakai, Hiromi; Yamasaki, Keishi; Wakayama, Tomohiko; Watanabe, Hiroshi; Otagiri, Masaki; Maruyama, Toru
2018-11-01
Macrophages play a central role in various inflammatory disorders and are broadly divided into two subpopulations, M1 and M2 macrophage. In the healing process in acute inflammatory disorders, shifting the production of M1 macrophages to M2 macrophages is desirable, because M1 macrophages secrete pro-inflammatory cytokines, whilst the M2 variety secrete anti-inflammatory cytokines. Previous findings indicate that when macrophages are treated with carbon monoxide (CO), the secretion of anti-inflammatory cytokine is increased and the expression of pro-inflammatory cytokines is inhibited, indicating that CO may have a potential to modulate the production of macrophages toward the M2-like phenotype. In this study, we examined the issue of whether CO targeting macrophages using a nanotechnology-based CO donor, namely CO-bound hemoglobin vesicles (CO-HbV), modulates their polarization and show therapeutic effects against inflammatory disorders. The results showed that the CO-HbV treatment polarized a macrophage cell line toward an M2-like phenotype. Furthermore, in an in vivo study using acute pancreatitis model mice as a model of an inflammatory disease, a CO-HbV treatment also tended to polarize macrophages toward an M2-like phenotype and inhibited neutrophil infiltration in the pancreas, resulting in a significant inflammation. In addition to the suppression of acute pancreatitis, CO-HbV diminished a subsequent pancreatitis-associated acute lung injury. This could be due to the inhibition of the systemic inflammation, neutrophil infiltration in the lungs and the production of HMGB-1. These findings suggest that CO-HbV exerts superior anti-inflammatory effects against inflammatory disorders via the regulation of macrophage and neutrophil activity.
Guglielmetti, C.; Veraart, J.; Roelant, E.; Mai, Z.; Daans, J.; Van Audekerke, J.; Naeyaert, M.; Vanhoutte, G.; Delgado y Palacios, R.; Praet, J.; Fieremans, E.; Ponsaerts, P.; Sijbers, J.; Van der Linden, A.; Verhoye, M.
2016-01-01
Although MRI is the gold standard for the diagnosis and monitoring of multiple sclerosis (MS), current conventional MRI techniques often fail to detect cortical alterations and provide little information about gliosis, axonal damage and myelin status of lesioned areas. Diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) provide sensitive and complementary measures of the neural tissue microstructure. Additionally, specific white matter tract integrity (WMTI) metrics modelling the diffusion in white matter were recently derived. In the current study we used the well-characterized cuprizone mouse model of central nervous system demyelination to assess the temporal evolution of diffusion tensor (DT), diffusion kurtosis tensor (DK) and WMTI-derived metrics following acute inflammatory demyelination and spontaneous remyelination. While DT-derived metrics were unable to detect cuprizone induced cortical alterations, the mean kurtosis (MK) and radial kurtosis (RK) were found decreased under cuprizone administration, as compared to age-matched controls, in both the motor and somatosensory cortices. The MK remained decreased in the motor cortices at the end of the recovery period, reflecting long lasting impairment of myelination. In white matter, DT, DK and WMTI-derived metrics enabled the detection of cuprizone induced changes differentially according to the stage and the severity of the lesion. More specifically, MK, RK and the axonal water fraction (AWF) were the most sensitive for the detection of cuprizone induced changes in the genu of the corpus callosum, a region less affected by cuprizone administration. Additionally, microgliosis was associated with an increase of MK and RK during the acute inflammatory demyelination phase. In regions undergoing severe demyelination, namely the body and splenium of the corpus callosum, DT-derived metrics, notably the mean diffusion (MD) and radial diffusion (RD), were among the best discriminators between cuprizone and control groups, hence highlighting their ability to detect both acute and long lasting changes. Interestingly, WMTI-derived metrics showed the aptitude to distinguish between the different stage of the disease. Both the intra-axonal diffusivity (Da) and the AWF were found to be decreased in the cuprizone treated group, Da specifically decreased during the acute inflammatory demyelinating phase whereas the AWF decrease was associated to the spontaneous remyelination and the recovery period. Altogether our results demonstrate that DKI is sensitive to alterations of cortical areas and provides, along with WMTI metrics, information that is complementary to DT-derived metrics for the characterization of demyelination in both white and grey matter and subsequent inflammatory processes associated with a demyelinating event. PMID:26525654
Role of the inflammasome in acetaminophen-induced liver injury and acute liver failure.
Woolbright, Benjamin L; Jaeschke, Hartmut
2017-04-01
Drug-induced acute liver failure carries a high morbidity and mortality rate. Acetaminophen overdose is the number one cause of acute liver failure and remains a major problem in Western medicine. Administration of N-acetyl cysteine is an effective antidote when given before the initial rise in toxicity; however, many patients present to the hospital after this stage occurs. As such, treatments which can alleviate late-stage acetaminophen-induced acute liver failure are imperative. While the initial mechanisms of toxicity are well described, a debate has recently occurred in the literature over whether there is a second phase of injury, mediated by inflammatory processes. Critical to this potential inflammatory process is the activation of caspase-1 and interleukin-1β by a molecular complex known as the inflammasome. Several different stimuli for the formation of multiple different inflammasome complexes have been identified. Formation of the NACHT, leucine-rich repeat (LRR) and pyrin (PYD) domains-containing protein 3 (Nalp3) inflammasome in particular, has directly been attributed to late-stage acetaminophen toxicity. In this review, we will discuss the mechanisms of acetaminophen-induced liver injury in mice and man with a particular focus on the role of inflammation and the inflammasome. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Ribeiro, Alison; Ferraz-de-Paula, Viviane; Pinheiro, Milena L; Vitoretti, Luana B; Mariano-Souza, Domenica P; Quinteiro-Filho, Wanderley M; Akamine, Adriana T; Almeida, Vinícius I; Quevedo, João; Dal-Pizzol, Felipe; Hallak, Jaime E; Zuardi, Antônio W; Crippa, José A; Palermo-Neto, João
2012-03-05
Acute lung injury is an inflammatory condition for which treatment is mainly supportive because effective therapies have not been developed. Cannabidiol, a non-psychotropic cannabinoid component of marijuana (Cannabis sativa), has potent immunosuppressive and anti-inflammatory properties. Therefore, we investigated the possible anti-inflammatory effect of cannabidiol in a murine model of acute lung injury. Analysis of total inflammatory cells and differential in bronchoalveolar lavage fluid was used to characterize leukocyte migration into the lungs; myeloperoxidase activity of lung tissue and albumin concentration in the bronchoalveolar lavage fluid were analyzed by colorimetric assays; cytokine/chemokine production in the bronchoalveolar lavage fluid was also analyzed by Cytometric Bead Arrays and Enzyme-Linked Immunosorbent Assay (ELISA). A single dose of cannabidiol (20mg/kg) administered prior to the induction of LPS (lipopolysaccharide)-induced acute lung injury decreases leukocyte (specifically neutrophil) migration into the lungs, albumin concentration in the bronchoalveolar lavage fluid, myeloperoxidase activity in the lung tissue, and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) 1, 2, and 4days after the induction of LPS-induced acute lung injury. Additionally, adenosine A(2A) receptor is involved in the anti-inflammatory effects of cannabidiol on LPS-induced acute lung injury because ZM241385 (4-(2-[7-Amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol) (a highly selective antagonist of adenosine A(2A) receptor) abrogated all of the anti-inflammatory effects of cannabidiol previously described. Thus, we show that cannabidiol has anti-inflammatory effects in a murine model of acute lung injury and that this effect is most likely associated with an increase in the extracellular adenosine offer and signaling through adenosine A(2A) receptor. Copyright © 2012 Elsevier B.V. All rights reserved.
Use of activated protein C has no avail in the early phase of acute pancreatitis.
Akay, Sinan; Ozutemiz, Omer; Yenisey, Cigdem; Simsek, Nilufer Genc; Yuce, Gul; Batur, Yucel
2008-01-01
Sepsis and acute pancreatitis have similar pathogenetic mechanisms that have been implicated in the progression of multiple organ failure. Drotrecogin alfa, an analogue of endogenous protein C, reduces mortality in clinical sepsis. Our objective was to evaluate the early therapeutic effects of activated protein C (APC) in a rat model of acute necrotizing pancreatitis. Acute necrotizing pancreatitis was induced by intraductal injection of 5% Na taurocholate. Hourly bolus injections of saline or recombinant human APC (drotrecogin alfa) was commenced via femoral venous catheter four hours after the induction of acute pancreatitis. The experiment was terminated nine hours after pancreatitis induction. Animals in group one (n=20) had a sham operation while animals in group two (n=20) received saline and animals in group three (n=20) received drotrecogin alfa boluses after acute pancreatitis induction. Pancreatic tissue for histopathologic scores and myeloperoxidase, glutathione reductase, glutathione peroxidase, and catalase activities were collected, and blood for serum amylase, urea, creatinine, and interleukin-6 measurements was withdrawn. Serum amylase activity was significantly lower in the APC treated group than the untreated group (17,435+/-432 U/L vs. 27,426+/-118 U/L, respectively). While the serum interleukin-6 concentration in the APC untreated group was significantly lower than the treated group (970+/-323 pg/mL vs. 330+/-368 pg/mL, respectively). In the early phase of acute pancreatitis, drotrecogin alfa treatment did not result in a significant improvement in oxidative and inflammatory parameters or renal functions.
Inflammation and Alzheimer’s disease
Akiyama, Haruhiko; Barger, Steven; Barnum, Scott; Bradt, Bonnie; Bauer, Joachim; Cole, Greg M.; Cooper, Neil R.; Eikelenboom, Piet; Emmerling, Mark; Fiebich, Berndt L.; Finch, Caleb E.; Frautschy, Sally; Griffin, W.S.T.; Hampel, Harald; Hull, Michael; Landreth, Gary; Lue, Lih–Fen; Mrak, Robert; Mackenzie, Ian R.; McGeer, Patrick L.; O’Banion, M. Kerry; Pachter, Joel; Pasinetti, Guilio; Plata–Salaman, Carlos; Rogers, Joseph; Rydel, Russell; Shen, Yong; Streit, Wolfgang; Strohmeyer, Ronald; Tooyoma, Ikuo; Van Muiswinkel, Freek L.; Veerhuis, Robert; Walker, Douglas; Webster, Scott; Wegrzyniak, Beatrice; Wenk, Gary; Wyss–Coray, Tony
2013-01-01
Inflammation clearly occurs in pathologically vulnerable regions of the Alzheimer’s disease (AD) brain, and it does so with the full complexity of local peripheral inflammatory responses. In the periphery, degenerating tissue and the deposition of highly insoluble abnormal materials are classical stimulants of inflammation. Likewise, in the AD brain damaged neurons and neurites and highly insoluble amyloid β peptide deposits and neurofibrillary tangles provide obvious stimuli for inflammation. Because these stimuli are discrete, microlocalized, and present from early preclinical to terminal stages of AD, local upregulation of complement, cytokines, acute phase reactants, and other inflammatory mediators is also discrete, microlocalized, and chronic. Cumulated over many years, direct and bystander damage from AD inflammatory mechanisms is likely to significantly exacerbate the very pathogenic processes that gave rise to it. Thus, animal models and clinical studies, although still in their infancy, strongly suggest that AD inflammation significantly contributes to AD pathogenesis. By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder. PMID:10858586
The Acute Exercise-Induced Inflammatory Response: A Comparison of Young-Adult Smokers and Nonsmokers
ERIC Educational Resources Information Center
Kastelein, Tegan E.; Donges, Cheyne E.; Mendham, Amy E.; Duffield, Rob
2017-01-01
Purpose: This study examined postexercise inflammatory and leukocyte responses in smokers and nonsmokers, as well as the effects of cigarette smoking on the acute postexercise inflammatory and leukocyte response in habitual smokers. Method: Eleven recreationally active male smokers and 11 nonsmokers matched for age and aerobic fitness were…
Apolipoprotein A-I mutant proteins having cysteine substitutions and polynucleotides encoding same
Oda, Michael N [Benicia, CA; Forte, Trudy M [Berkeley, CA
2007-05-29
Functional Apolipoprotein A-I mutant proteins, having one or more cysteine substitutions and polynucleotides encoding same, can be used to modulate paraoxonase's arylesterase activity. These ApoA-I mutant proteins can be used as therapeutic agents to combat cardiovascular disease, atherosclerosis, acute phase response and other inflammatory related diseases. The invention also includes modifications and optimizations of the ApoA-I nucleotide sequence for purposes of increasing protein expression and optimization.
The transcriptome of a complete episode of acute otitis media.
Hernandez, Michelle; Leichtle, Anke; Pak, Kwang; Webster, Nicholas J; Wasserman, Stephen I; Ryan, Allen F
2015-04-03
Otitis media is the most common disease of childhood, and represents an important health challenge to the 10-15% of children who experience chronic/recurrent middle ear infections. The middle ear undergoes extensive modifications during otitis media, potentially involving changes in the expression of many genes. Expression profiling offers an opportunity to discover novel genes and pathways involved in this common childhood disease. The middle ears of 320 WBxB6 F1 hybrid mice were inoculated with non-typeable Haemophilus influenzae (NTHi) or PBS (sham control). Two independent samples were generated for each time point and condition, from initiation of infection to resolution. RNA was profiled on Affymetrix mouse 430 2.0 whole-genome microarrays. Approximately 8% of the sampled transcripts defined the signature of acute NTHi-induced otitis media across time. Hierarchical clustering of signal intensities revealed several temporal gene clusters. Network and pathway enrichment analysis of these clusters identified sets of genes involved in activation of the innate immune response, negative regulation of immune response, changes in epithelial and stromal cell markers, and the recruitment/function of neutrophils and macrophages. We also identified key transcriptional regulators related to events in otitis media, which likely determine the expression of these gene clusters. A list of otitis media susceptibility genes, derived from genome-wide association and candidate gene studies, was significantly enriched during the early induction phase and the middle re-modeling phase of otitis but not in the resolution phase. Our results further indicate that positive versus negative regulation of inflammatory processes occur with highly similar kinetics during otitis media, underscoring the importance of anti-inflammatory responses in controlling pathogenesis. The results characterize the global gene response during otitis media and identify key signaling and transcription factor networks that control the defense of the middle ear against infection. These networks deserve further attention, as dysregulated immune defense and inflammatory responses may contribute to recurrent or chronic otitis in children.
Late stage erythroid precursor production is impaired in mice with chronic inflammation.
Prince, Olivier D; Langdon, Jacqueline M; Layman, Andrew J; Prince, Ian C; Sabogal, Miguel; Mak, Howard H; Berger, Alan E; Cheadle, Chris; Chrest, Francis J; Yu, Qilu; Andrews, Nancy C; Xue, Qian-Li; Civin, Curt I; Walston, Jeremy D; Roy, Cindy N
2012-11-01
We and others have shown previously that over-expression of hepcidin antimicrobial peptide, independently of inflammation, induces several features of anemia of inflammation and chronic disease, including hypoferremia, sequestration of iron stores and iron-restricted erythropoiesis. Because the iron-restricted erythropoiesis evident in hepcidin transgenic mice differs from the normocytic, normochromic anemia most often observed in anemia of inflammation, we tested the hypothesis that chronic inflammation may contribute additional features to anemia of inflammation which continue to impair erythropoiesis following the acute phase of inflammation in which hepcidin is active. We compared erythropoiesis and iron handling in mice with turpentine-induced sterile abscesses with erythropoiesis and iron handling in hepcidin transgenic mice. We compared erythrocyte indices, expression of genes in the hepcidin regulatory pathway, tissue iron distribution, expression of heme and iron transport genes in splenic macrophages, the phenotype of erythroid maturation and chloromethyl dichlorodihydrofluorescein diacetate, acetyl ester fluorescence. Mice with sterile abscesses exhibited an intense, acute inflammatory phase followed by a mild to moderate chronic inflammatory phase. We found that erythrocytes in mice with sterile abscesses were normocytic and normochromic in contrast to those in hepcidin transgenic mice. We also observed that although hypoferremia resolved in the late phases of inflammation, erythropoiesis remained suppressed, with evidence of inefficient maturation of erythroid precursors in the bone marrow of mice with sterile abscesses. Finally, we observed increased oxidative stress in erythroid progenitors and circulating erythrocytes of mice with sterile abscesses which was not evident in hepcidin transgenic mice. Our results suggest that chronic inflammation inhibits late stages of erythroid production in the turpentine-induced sterile abscess model and induces features of impaired erythropoiesis which are distinct from those in hepcidin transgenic mice.
Late stage erythroid precursor production is impaired in mice with chronic inflammation
Prince, Olivier D.; Langdon, Jacqueline M.; Layman, Andrew J.; Prince, Ian C.; Sabogal, Miguel; Mak, Howard H.; Berger, Alan E.; Cheadle, Chris; Chrest, Francis J.; Yu, Qilu; Andrews, Nancy C.; Xue, Qian-Li; Civin, Curt I.; Walston, Jeremy D.; Roy, Cindy N.
2012-01-01
Background We and others have shown previously that over-expression of hepcidin antimicrobial peptide, independently of inflammation, induces several features of anemia of inflammation and chronic disease, including hypoferremia, sequestration of iron stores and iron-restricted erythropoiesis. Because the iron-restricted erythropoiesis evident in hepcidin transgenic mice differs from the normocytic, normochromic anemia most often observed in anemia of inflammation, we tested the hypothesis that chronic inflammation may contribute additional features to anemia of inflammation which continue to impair erythropoiesis following the acute phase of inflammation in which hepcidin is active. Design and Methods We compared erythropoiesis and iron handling in mice with turpentine-induced sterile abscesses with erythropoiesis and iron handling in hepcidin transgenic mice. We compared erythrocyte indices, expression of genes in the hepcidin regulatory pathway, tissue iron distribution, expression of heme and iron transport genes in splenic macrophages, the phenotype of erythroid maturation and chloromethyl dichlorodihydrofluorescein diacetate, acetyl ester fluorescence. Results Mice with sterile abscesses exhibited an intense, acute inflammatory phase followed by a mild to moderate chronic inflammatory phase. We found that erythrocytes in mice with sterile abscesses were normocytic and normochromic in contrast to those in hepcidin transgenic mice. We also observed that although hypoferremia resolved in the late phases of inflammation, erythropoiesis remained suppressed, with evidence of inefficient maturation of erythroid precursors in the bone marrow of mice with sterile abscesses. Finally, we observed increased oxidative stress in erythroid progenitors and circulating erythrocytes of mice with sterile abscesses which was not evident in hepcidin transgenic mice. Conclusions Our results suggest that chronic inflammation inhibits late stages of erythroid production in the turpentine-induced sterile abscess model and induces features of impaired erythropoiesis which are distinct from those in hepcidin transgenic mice. PMID:22581006
Li, Huihui; An, Yanpeng; Zhang, Lulu; Lei, Hehua; Zhang, Limin; Wang, Yulan; Tang, Huiru
2013-12-06
Inflammation is closely associated with pathogenesis of various metabolic disorders, cardiovascular diseases, and cancers. To understand the systems responses to localized inflammation, we analyzed the dynamic metabolic changes in rat plasma and urine associated with the carrageenan-induced self-limiting pleurisy using NMR spectroscopy in conjunction with multivariate data analysis. Fatty acids in plasma were also analyzed using GC-FID/MS with the data from clinical chemistry and histopathology as complementary information. We found that in the acute phase of inflammation rats with pleurisy had significantly lower levels in serum albumin, fatty acids, and lipoproteins but higher globulin level and larger quantity of pleural exudate than controls. The carrageenan-induced inflammation was accompanied by significant metabolic alterations involving TCA cycle, glycolysis, biosyntheses of acute phase proteins, and metabolisms of amino acids, fatty acids, ketone bodies, and choline in acute phase. The resolution process of pleurisy was heterogeneous, and two subgroups were observed for the inflammatory rats at day-6 post treatment with different metabolic features together with the quantity of pleural exudate and weights of thymus and spleen. The metabolic differences between these subgroups were reflected in the levels of albumin and acute-phase proteins, the degree of returning to normality for multiple metabolic pathways including glycolysis, TCA cycle, gut microbiota functions, and metabolisms of lipids, choline and vitamin B3. These findings provided some essential details for the dynamic metabolic changes associated with the carrageenan-induced self-limiting inflammation and demonstrated the combined NMR and GC-FID/MS analysis as a powerful approach for understanding biochemical aspects of inflammation.
Lee, P T; Bird, S; Zou, J; Martin, S A M
2017-06-01
The acute phase response (APR) is an early innate immune function that is initiated by inflammatory signals, leading to the release of acute phase proteins to the bloodstream to re-establish homeostasis following microbial infection. In this study we analysed the Atlantic salmon (Salmo salar) whole-genome database and identified five C-reactive protein (CRP)/serum amyloid P component (SAP) like molecules namely CRP/SAP-1a, CRP/SAP-1b, CRP/SAP-1c, CRP/SAP-2 and CRP/SAP-3. These CRP/SAP genes formed two distinct sub-families, a universal group (group I) present in all vertebrates and a fish/amphibian specific group (group II). Salmon CRP/SAP-1a, CRP/SAP-1b and CRP/SAP-1c and CRP/SAP-2 belong to the group I family whilst salmon CRP/SAP-3 is a member of group II. Gene expression analysis showed that the salmon CRP/SAP-1a as well as serum amyloid A-5 (SAA-5), one of the major acute phase proteins, were significantly up-regulated by recombinant cytokines (rIL-1β and rIFNγ) in primary head kidney cells whilst the other four CRP/SAPs remained refractory. Furthermore, SAA-5 was produced as the main acute phase protein (APP) in Atlantic salmon challenged with Aeromonas salmonicida (aroA(-) strain) whilst salmon CRP/SAPs remained unaltered. Overall, these data illustrate the potential different functions of expanded salmon CRP/SAPs to their mammalian homologues. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Stanford-A acute aortic dissection, inflammation, and metalloproteinases: a review.
Cifani, Noemi; Proietta, Maria; Tritapepe, Luigi; Di Gioia, Cira; Ferri, Livia; Taurino, Maurizio; Del Porto, Flavia
2015-01-01
Acute aortic dissection (AAD) is a life-threatening disease with an incidence of about 2.6-3.6 cases per 100,000/year. Depending on the site of rupture, AAD is classified as Stanford-A when the ascending aortic thoracic tract and/or the arch are involved, and Stanford-B when the descending thoracic aorta and/or aortic abdominal tract are targeted. It was recently shown that inflammatory pathways underlie aortic rupture in both type A and type B Stanford AAD. An immune infiltrate has been found within the middle and outer tunics of dissected aortic specimens. It has also been observed that the recall and activation of macrophages inside the middle tunic are key events in the early phases of AAD. Macrophages are able to release metalloproteinases (MMPs) and pro-inflammatory cytokines which, in turn, give rise to matrix degradation and neoangiogenesis. An imbalance between the production of MMPs and MMP tissue inhibitors is pivotal in the extracellular matrix degradation underlying aortic wall remodelling in dissections occurring both in inherited conditions and in atherosclerosis. Among MMPs, MMP-12 is considered a specific marker of aortic wall disease, whatever the genetic predisposition may be. The aim of this review is, therefore, to take a close look at the immune-inflammatory mechanisms underlying Stanford-A AAD.
Effects of ranavirus infection of red-eared sliders (Trachemys scripta elegans) on plasma proteins.
Moore, A Russell; Allender, Matthew C; MacNeill, Amy L
2014-06-01
Ranavirus is an emerging disease that infects fish, amphibians, and reptiles. Ranavirus induces an inflammatory response leading to death in many susceptible species. Red-eared sliders (RES; Trachemys scripta elegans) are vulnerable to ranavirus infection and are economically significant chelonians kept in the pet trade and utilized in research. Early identification of RES with inflammatory diseases would allow for isolation of affected individuals and subsequent disease investigation, including molecular testing for ranavirus. Validation of an inexpensive, clinically relevant, and reproducible diagnostic test that detects inflammation in turtles is needed. Although commonly used, plasma protein electrophoresis to detect an inflammatory acute-phase protein response has not been evaluated in a controlled environment in turtles with experimentally induced inflammatory disease. The objective of this study was to measure plasma protein fractions by electrophoresis to determine if an acute-phase protein response occurs in RES during infection with a frog virus 3-like ranavirus (FV3-like virus) isolated from a chelonian. A Bradford assay and agarose gel electrophoresis (AGE) were performed using plasma collected during a study of the effect of temperature on the pathogenesis of ranavirus in RES. In RES at the time of viremia, total albumin (ALB(mg/ml)) and albumin to globulin ratio were significantly lower and beta-globulin percentage was significantly higher in RES exposed to ranavirus (n = 4) as compared to matched, uninfected RES (n = 8). In the last sample collected prior to death, total protein (TP(mg/ml)), ALB(mg/ml), alpha-globulin percentage, and total alpha-globulin (alpha(mg/ml)) were significantly lower in RES exposed to ranavirus (n = 4) than control individuals (n = 8). In summary, FV3-like virus induces a decrease in plasma albumin concentration at the onset ofviremia and decreases in TP(mg/ml, ALB(mg/ml), and alpha(mg/ml) concentrations prior to death in RES as measured by AGE.
Jawor, Paulina; Stefaniak, Tadeusz; Mee, John F
2017-02-01
The objective of this study was to compare acute-phase protein [serum amyloid A (SAA) and haptoglobin (Hp)] and immunoglobulin G 1 and M concentrations in blood plasma of cases of bovine perinatal mortality due to infection in utero or traumotocia and in unexplained cases. Plasma samples were collected from 110 stillborn calves with bacterial infection (INF_B, n = 16), with viral or parasitic infection (INF_V/P, n = 31) during pregnancy, with lesions of fatal traumotocia (TRAUM, n = 22), and from unexplained deaths (UNEXPL, n = 41). Plasma immunoglobulin and SAA concentrations were measured by ELISA, and Hp concentrations were measured by the guaiacol method and ELISA. Concentrations of SAA in the INF_B group were higher than in the UNEXPL group and tended to be higher than in the INF_V/P group. A reference range (0-29 mg/L) was established for SAA in stillborn calves. Concentrations of Hp tended to be higher in the INF_B group compared with INF_V/P group. Concentrations of IgM tended to be higher in the INF_B group compared with the TRAUM and INF_V/P groups. Concentrations of IgG 1 were numerically, but not significantly, higher in the INF_V/P and INF_B groups compared with the other groups. The results demonstrate upregulation of immune and inflammatory responses in stillborn calves exposed to bacterial infection in utero. The immune-inflammatory parameters did not differ between calves with viral or parasitic infections and traumotocia. These immune-inflammatory profiles did not contribute to the diagnosis of unexplained stillbirth. This is the first report of an elevated acute phase protein response in stillborn calves. Measurement of SAA and IgM concentrations may be used in the diagnosis of bacterial infections in stillborn calves. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Dai, Heling; Xu, Li; Tang, Yu; Liu, Zhi; Sun, Tiansheng
2015-08-01
It has been well recognised that a deficit of numbers and function of CD4(+)CD25(+)Foxp3(+) cells (Treg) is attributed to the development of autoimmune diseases and inflammatory diseases; additionally, IL-17-producing cells (Th17) have a pro-inflammatory role. The balance between Th17 and Treg may be essential for maintaining immune homeostasis and has long been thought as one of the important factors in the development/prevention of autoimmune diseases and inflammatory diseases. In our previous research, we explored that cytokines (IL-17) and the balance of Treg/Th17 had a significant relevance with tissue (lung) inflammation and injury in acute-phase after multiple-trauma. To more verify whether an imbalance of Treg/Th17 is characteristic of rats suffering from multiple trauma. Using IL-17 monoclonal antibody (IL-17mAb)-treated multiple-trauma rat, we tested the pathogenic role of IL-17 in the development of multiple-trauma. Rat models were treated respectively with IL-17mAb or rat IgG 2A isotype control or phosphate-buffered solution after model was established. Normal rats only received anaesthesia and cannulation were taken as sham. Rats in each group were killed respectively at the end of 1h, 4h, 8h after injection. Collected serum and lung samples for assessment dynamically of MPO, IL-17, IL-6, and TGF-β-mRNA, and cytokine (IL-17, IL-6, TGF-β) and lung tissue for pulmonary histological analysis. Neutralisation of IL-17 with anti-IL-17 can decrease serum IL-17 level and the IL-17-mRNA transcript level in lung, and ameliorate tissue inflammatory, defer disease course. Our data suggest that IL-17 is crucially involved in the pathogenesis of multiple-trauma in rat, IL-17 inhibition might ameliorate the lung inflammation in acute-phase after multiple-trauma. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tokuda, Yuki; Miura, Natsuko; Kobayashi, Misato; Hoshinaga, Yukiko; Murai, Atsushi; Aoyama, Hiroaki; Ito, Hiroyuki; Morita, Tatsuya; Horio, Fumihiko
2015-02-01
The aim of this study was to determine whether ascorbic acid (AsA) deficiency-induced endotoxin influx into portal blood from the gastrointestinal tract contributes to the inflammatory changes in the liver. The mechanisms by which AsA deficiency provokes inflammatory changes in the liver were investigated in Osteogenic Disorder Shionogi (ODS) rats (which are unable to synthesize AsA). Male ODS rats (6-wk-old) were fed a diet containing sufficient (300 mg/kg) AsA (control group) or a diet without AsA (AsA-deficient group) for 14 or 18 d. On day 14, the hepatic mRNA levels of acute-phase proteins and inflammation-related genes were significantly higher in the AsA-deficient group than the control group, and these elevations by AsA deficiency were exacerbated on day 18. The serum concentrations of interleukin (IL)-1β and IL-6, which induce acute-phase proteins in the liver, were also significantly elevated on day 14 in the AsA-deficient group compared with the respective values in the control group. IL-1β mRNA levels in the liver, spleen, and lung were increased by AsA deficiency. Moreover, on both days 14 and 18, the portal blood endotoxin concentration was significantly higher in the AsA-deficient group than in the control group, and a significant correlation between serum IL-1β concentrations and portal endotoxin concentrations was found in AsA-deficient rats. In the histologic analysis of the ileum tissues, the number of goblet cells per villi was increased by AsA deficiency. These results suggest that AsA deficiency-induced endotoxin influx into portal blood from the gastrointestinal tract contributes to the inflammatory changes in the liver. Copyright © 2015 Elsevier Inc. All rights reserved.
Protein-C Reactive as Biomarker Predictor of Schizophrenia Phases of Illness? A Systematic Review.
Orsolini, Laura; Sarchione, Fabiola; Vellante, Federica; Fornaro, Michele; Matarazzo, Ilaria; Martinotti, Giovanni; Valchera, Alessandro; Di Nicola, Marco; Carano, Alessandro; Di Giannantonio, Massimo; Perna, Giampaolo; Olivieri, Luigi; De Berardis, Domenico
2018-01-01
Schizophrenia is a complex illness in which genetic, environmental, and epigenetic components have been implicated. However, recently, psychiatric disorders appear to be related to a chronic inflammatory state, at the level of specific cerebral areas which have been found as well impaired and responsible for schizophrenia symptomatology. Hence, a role of inflammatory mediators and cytokines has been as well defined. Accordingly, the role of an acute inflammatory phase protein, the C-reactive protein (CRP) has been recently investigated. The objective of the present study is to evaluate how PCR may represent a biomarker in schizophrenia, i.e. correlated with illness phases and/or clinical manifestation and/or psychopathological severity. A systematic review was here carried out by searching the following keywords ((C-reactive protein AND ((schizophrenia) OR (psychotic disorder))) for the topics 'PCR' and 'Schizophrenia', by using MESH terms. An immune dysfunction and inflammation have been described amongst schizophrenic patients. Findings reported elevated CRP levels in schizophrenia, mainly correlated with the severity of illness and during the recrudescent phase. CRP levels are higher when catatonic features, negative symptomatology and aggressiveness are associated. CRP levels appeared not to be related to suicidal behaviour and ideation. CRP and its blood levels have been reported higher amongst schizophrenic patients, by suggesting a role of inflammation in the pathogenesis of schizophrenia. Further studies are needed to better understand if CRP may be considered a biomarker in schizophrenia. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Iida, Tomoya; Wagatsuma, Kohei; Hirayama, Daisuke; Nakase, Hiroshi
2017-12-21
Osteopontin (OPN) is involved in a variety of biological processes, including bone remodeling, innate immunity, acute and chronic inflammation, and cancer. The expression of OPN occurs in various tissues and cells, including intestinal epithelial cells and immune cells such as macrophages, dendritic cells, and T lymphocytes. OPN plays an important role in the efficient development of T helper 1 immune responses and cell survival by inhibiting apoptosis. The association of OPN with apoptosis has been investigated. In this review, we described the role of OPN in inflammatory gastrointestinal and liver diseases, focusing on the association of OPN with apoptosis. OPN changes its association with apoptosis depending on the type of disease and the phase of disease activity, acting as a promoter or a suppressor of inflammation and inflammatory carcinogenesis. It is essential that the roles of OPN in those diseases are elucidated, and treatments based on its mechanism are developed.
Blood-brain barrier hyperpermeability precedes demyelination in the cuprizone model.
Berghoff, Stefan A; Düking, Tim; Spieth, Lena; Winchenbach, Jan; Stumpf, Sina K; Gerndt, Nina; Kusch, Kathrin; Ruhwedel, Torben; Möbius, Wiebke; Saher, Gesine
2017-12-01
In neuroinflammatory disorders such as multiple sclerosis, the physiological function of the blood-brain barrier (BBB) is perturbed, particularly in demyelinating lesions and supposedly secondary to acute demyelinating pathology. Using the toxic non-inflammatory cuprizone model of demyelination, we demonstrate, however, that the onset of persistent BBB impairment precedes demyelination. In addition to a direct effect of cuprizone on endothelial cells, a plethora of inflammatory mediators, which are mainly of astroglial origin during the initial disease phase, likely contribute to the destabilization of endothelial barrier function in vivo. Our study reveals that, at different time points of pathology and in different CNS regions, the level of gliosis correlates with the extent of BBB hyperpermeability and edema. Furthermore, in mutant mice with abolished type 3 CXC chemokine receptor (CXCR3) signaling, inflammatory responses are dampened and BBB dysfunction ameliorated. Together, these data have implications for understanding the role of BBB permeability in the pathogenesis of demyelinating disease.
Modulation of lipopolysaccharide-induced chorioamnionitis in fetal sheep by maternal betamethasone.
Wolfe, Katherine B; Snyder, Candice C; Gisslen, Tate; Kemp, Matthew W; Newnham, John P; Kramer, Boris W; Jobe, Alan H; Kallapur, Suhas
2013-12-01
We tested the hypothesis that the order of exposure to maternal betamethasone and intra-amniotic (IA) lipopolysaccharide (LPS) will differentially modulate inflammation in the chorioamnion. Time-mated Merino ewes with singleton fetuses received saline alone, IA LPS alone, maternal betamethasone before LPS, or betamethasone after LPS. We assessed inflammatory markers in the chorioamnion and the amniotic fluid. Inflammatory cell infiltration, expression of myeloperoxidase, serum amyloid A3 (acute phase reactant) in the chorioamnion, and levels of interleukin (IL)-8 in the amniotic fluid increased 7 days after LPS exposure. Betamethasone prior to LPS decreased infiltration of the inflammatory cells, CD3+ T cells, and decreased the levels of IL-1β and IL-8 in the amniotic fluid. Betamethasone 7 days prior to LPS exposure suppressed LPS-induced inflammation. The markers of inflammation largely had returned to the baseline 14 days after LPS exposure.
Howe, Charles L.; LaFrance-Corey, Reghann G.; Sundsbak, Rhianna S.; Sauer, Brian M.; LaFrance, Stephanie J.; Buenz, Eric J.; Schmalstieg, William F.
2012-01-01
Neuronal injury during acute viral infection of the brain is associated with the development of persistent cognitive deficits and seizures in humans. In C57BL/6 mice acutely infected with the Theiler's murine encephalomyelitis virus, hippocampal CA1 neurons are injured by a rapid innate immune response, resulting in profound memory deficits. In contrast, infected SJL and B6xSJL F1 hybrid mice exhibit essentially complete hippocampal and memory preservation. Analysis of brain-infiltrating leukocytes revealed that SJL mice mount a sharply attenuated inflammatory monocyte response as compared to B6 mice. Bone marrow transplantation experiments isolated the attenuation to the SJL immune system. Adoptive transfer of B6 inflammatory monocytes into acutely infected B6xSJL hosts converted these mice to a hippocampal damage phenotype and induced a cognitive deficit marked by failure to recognize a novel object. These findings show that inflammatory monocytes are the critical cellular mediator of hippocampal injury during acute picornavirus infection of the brain. PMID:22848791
Jayasena, Tharusha; Poljak, Anne; Braidy, Nady; Smythe, George; Raftery, Mark; Hill, Mark; Brodaty, Henry; Trollor, Julian; Kochan, Nicole; Sachdev, Perminder
2015-01-01
Alzheimer’s disease (AD) is a neurodegenerative disorder associated with increased oxidative stress and neuroinflammation. Markers of increased protein, lipid and nucleic acid oxidation and reduced activities of antioxidant enzymes have been reported in AD plasma. Amyloid plaques in the AD brain elicit a range of reactive inflammatory responses including complement activation and acute phase reactions, which may also be reflected in plasma. Previous studies have shown that human AD plasma may be cytotoxic to cultured cells. We investigated the effect of pooled plasma (n = 20 each) from healthy controls, individuals with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) on cultured microglial cells. AD plasma and was found to significantly decrease cell viability and increase glycolytic flux in microglia compared to plasma from healthy controls. This effect was prevented by the heat inactivation of complement. Proteomic methods and isobaric tags (iTRAQ) found the expression level of complement and other acute phase proteins to be altered in MCI and AD plasma and an upregulation of key enzymes involved in the glycolysis pathway in cells exposed to AD plasma. Altered expression levels of acute phase reactants in AD plasma may alter the energy metabolism of glia. PMID:25785936
Maqsood, Maria; Dancheck, Barbara; Gamble, Mary V; Palafox, Neal A; Ricks, Michelle O; Briand, Kennar; Semba, Richard D
2004-12-08
The exclusion of individuals with elevated acute phase proteins has been advocated in order to improve prevalence estimates of vitamin A deficiency in surveys, but it is unclear whether this will lead to sampling bias. The purpose of the study was to determine whether the exclusion of individuals with elevated acute phase proteins is associated with sampling bias and to characterize inflammation in children with night blindness. In a survey in the Republic of the Marshall Islands involving 281 children, aged 1-5 years, serum retinol, C-reactive protein (CRP), and alpha1-acid glycoprotein (AGP) were measured. Of 281 children, 24 (8.5%) had night blindness and 165 (58.7%) had serum retinol < 0.70 micromol/L. Of 248 children with AGP and CRP measurements, 123 (49.6%) had elevated acute phase proteins (CRP > mg/L and/or AGP > 1000 mg/L). Among children with and without night blindness, the proportion with serum retinol < 0.70 micromol/L was 79.2% and 56.8% (P = 0.03) and with anemia was 58.3% and 35.7% (P = 0.029), respectively. The proportion of children with serum retinol < 0.70 micromol/L was 52.0% after excluding children with elevated acute phase proteins. Among children with and without elevated acute phase proteins, mean age was 2.8 vs 3.2 years (P = 0.016), the proportion of boys was 43.1% vs. 54.3% (P = 0.075), with no hospitalizations in the last year was 11.0% vs 23.6% (P = 0.024), and with anemia was 43.8% vs 31.7% (P = 0.05), respectively. Exclusion of children with inflammation in this survey of vitamin A deficiency does not improve prevalence estimates for vitamin A deficiency and instead leads to sampling bias for variables such as age, gender, anemia, and hospitalization history.
Maqsood, Maria; Dancheck, Barbara; Gamble, Mary V; Palafox, Neal A; Ricks, Michelle O; Briand, Kennar; Semba, Richard D
2004-01-01
Background The exclusion of individuals with elevated acute phase proteins has been advocated in order to improve prevalence estimates of vitamin A deficiency in surveys, but it is unclear whether this will lead to sampling bias. The purpose of the study was to determine whether the exclusion of individuals with elevated acute phase proteins is associated with sampling bias and to characterize inflammation in children with night blindness. Methods In a survey in the Republic of the Marshall Islands involving 281 children, aged 1–5 years, serum retinol, C-reactive protein (CRP), and α1-acid glycoprotein (AGP) were measured. Results Of 281 children, 24 (8.5%) had night blindness and 165 (58.7%) had serum retinol <0.70 μmol/L. Of 248 children with AGP and CRP measurements, 123 (49.6%) had elevated acute phase proteins (CRP >5 mg/L and/or AGP >1000 mg/L). Among children with and without night blindness, the proportion with serum retinol <0.70 μmol/L was 79.2% and 56.8% (P = 0.03) and with anemia was 58.3% and 35.7% (P = 0.029), respectively. The proportion of children with serum retinol <0.70 μmol/L was 52.0% after excluding children with elevated acute phase proteins. Among children with and without elevated acute phase proteins, mean age was 2.8 vs 3.2 years (P = 0.016), the proportion of boys was 43.1% vs. 54.3% (P = 0.075), with no hospitalizations in the last year was 11.0% vs 23.6% (P = 0.024), and with anemia was 43.8% vs 31.7% (P = 0.05), respectively. Conclusions Exclusion of children with inflammation in this survey of vitamin A deficiency does not improve prevalence estimates for vitamin A deficiency and instead leads to sampling bias for variables such as age, gender, anemia, and hospitalization history. PMID:15588289
Andersen, U V; Reinemeyer, C R; Toft, N; Olsen, S N; Jacobsen, S; Nielsen, M K
2014-03-17
Migrating Strongylus vulgaris and encysted cyathostomin larvae cause a localized inflammatory response in horses. It is unknown whether these larvae elicit a systemic acute phase response (APR), evidenced by changes in serum amyloid A (SAA), haptoglobin (Hp), iron (Fe), albumin, or albumin/globulin (A/G) ratio. In this study, 28 horses were randomly allocated to receive either pyrantel tartrate or a pelleted placebo formulation in their daily feed. Concurrent with treatment, all the horses were administered 5000 pyrantel-susceptible cyathostomin infective larvae once daily, 5 days a week, for 24 weeks. Beginning in the fifth week, the horses also received 25 S. vulgaris larvae once weekly for the remainder of the study. At regular biweekly intervals, fecal samples were collected for quantitative egg counts, and whole blood and serum samples were collected for measurement of packed cell volume, total protein, albumin, globulin, A/G ratio, SAA, Hp, and Fe. On days 161-164, all the horses were euthanatized and necropsied. Samples were collected for enumeration of total luminal worm burdens, encysted cyathostomin larval populations, and migrating S. vulgaris larvae. Concentrations of Hp, Fe, and A/G ratio were associated significantly with strongyle burdens. Only treated male horses had significant increases in serum albumin. Larval S. vulgaris did not associate with Fe, whereas Fe was associated negatively with both total cyathostomin burdens and encysted L4s. The A/G ratios differed significantly between the two treatment groups. Significant differences between groups and individual time points were also observed for Hp and Fe, whereas SAA concentrations remained low throughout the study. In general, this study illustrated that experimental inoculations with S. vulgaris and cyathostomins may be associated with changes in Hp, Fe, and serum proteins, but not with SAA. Overall, these changes suggest that mixed strongyle infections elicit a mild acute phase reaction. Copyright © 2014 Elsevier B.V. All rights reserved.
Acute and chronic stress and the inflammatory response in hyperprolactinemic rats.
Ochoa-Amaya, J E; Malucelli, B E; Cruz-Casallas, P E; Nasello, A G; Felicio, L F; Carvalho-Freitas, M I R
2010-01-01
Prolactin (PRL), a hormone produced by the pituitary gland, has multiple physiological functions, including immunoregulation. PRL can also be secreted in response to stressful stimuli. During stress, PRL has been suggested to oppose the immunosuppressive effects of inflammatory mediators. Therefore, the aim of the present study was to analyze the effects of short- and long-term hyperprolactinemia on the inflammatory response in rats subjected to acute or chronic cold stress. Inflammatory edema was induced by carrageenan in male rats, and hyperprolactinemia was induced by injections of the dopamine receptor antagonist domperidone. The volume of inflammatory edema was measured by plethysmography after carrageenan injection. Additionally, the effects of hyperprolactinemia on body weight and serum corticosterone levels were evaluated. Five days of domperidone-induced hyperprolactinemia increased the volume of inflammatory edema. No differences in serum corticosterone levels were observed between groups. No significant differences were found among 30 days domperidone-induced hyperprolactinemic animals subjected to acute stress and the inflammatory response observed in chronic hyperprolactinemic animals subjected to chronic stress. The results suggest that short-term hyperprolactinemia has pro-inflammatory effects. Because such an effect was not observed in long-term hyperprolactinemic animals, PRL-induced tolerance seems likely. We suggest that short-term hyperprolactinemia may act as a protective factor in rats subjected to acute stress. These data suggest that hyperprolactinemia and stress interact differentially according to the time period. Copyright 2010 S. Karger AG, Basel.
Reversal of acute and chronic synovial inflammation by anti-transforming growth factor beta.
Wahl, S M; Allen, J B; Costa, G L; Wong, H L; Dasch, J R
1993-01-01
Transforming growth factor beta (TGF-beta) induces leukocyte recruitment and activation, events central to an inflammatory response. In this study, we demonstrate that antagonism of TGF-beta with a neutralizing antibody not only blocks inflammatory cell accumulation, but also tissue pathology in an experimental model of chronic erosive polyarthritis. Intraarticular injection of monoclonal antibody 1D11.16, which inhibits both TGF-beta 1 and TGF-beta 2 bioactivity, into animals receiving an arthropathic dose of bacterial cell walls significantly inhibits arthritis. Inhibition was observed with a single injection of 50 micrograms antibody, and a 1-mg injection blocked acute inflammation > 75% compared with the contralateral joints injected with an irrelevant isotype control antibody (MOPC21) as quantitated by an articular index (AI = 0.93 +/- 0.23 for 1D11.16, and AI = 4.0 +/- 0 on day 4; p < 0.001). Moreover, suppression of the acute arthritis achieved with a single injection of antibody was sustained into the chronic, destructive phase of the disease (on day 18, AI = 0.93 +/- 0.07 vs. AI = 2.6 +/- 0.5; p < 0.01). The decreased inflammatory index associated with anti-TGF-beta treatment was consistent with histopathologic and radiologic evidence of a therapeutic response. These data implicate TGF-beta as a profound agonist not only in the early events responsible for synovial inflammation, but also in the chronicity of streptococcal cell wall fragment-induced inflammation culminating in destructive pathology. Interrupting the cycle of leukocyte recruitment and activation with TGF-beta antagonists may provide a mechanism for resolution of chronic destructive lesions.
Reversal of acute and chronic synovial inflammation by anti- transforming growth factor beta
1993-01-01
Transforming growth factor beta (TGF-beta) induces leukocyte recruitment and activation, events central to an inflammatory response. In this study, we demonstrate that antagonism of TGF-beta with a neutralizing antibody not only blocks inflammatory cell accumulation, but also tissue pathology in an experimental model of chronic erosive polyarthritis. Intraarticular injection of monoclonal antibody 1D11.16, which inhibits both TGF-beta 1 and TGF-beta 2 bioactivity, into animals receiving an arthropathic dose of bacterial cell walls significantly inhibits arthritis. Inhibition was observed with a single injection of 50 micrograms antibody, and a 1-mg injection blocked acute inflammation > 75% compared with the contralateral joints injected with an irrelevant isotype control antibody (MOPC21) as quantitated by an articular index (AI = 0.93 +/- 0.23 for 1D11.16, and AI = 4.0 +/- 0 on day 4; p < 0.001). Moreover, suppression of the acute arthritis achieved with a single injection of antibody was sustained into the chronic, destructive phase of the disease (on day 18, AI = 0.93 +/- 0.07 vs. AI = 2.6 +/- 0.5; p < 0.01). The decreased inflammatory index associated with anti-TGF-beta treatment was consistent with histopathologic and radiologic evidence of a therapeutic response. These data implicate TGF-beta as a profound agonist not only in the early events responsible for synovial inflammation, but also in the chronicity of streptococcal cell wall fragment-induced inflammation culminating in destructive pathology. Interrupting the cycle of leukocyte recruitment and activation with TGF-beta antagonists may provide a mechanism for resolution of chronic destructive lesions. PMID:8418203
Sudo, Roberto T; Neto, Miguel L; Monteiro, Carlos E S; Amaral, Rachel V; Resende, Ângela C; Souza, Pergentino J C; Zapata-Sudo, Gisele; Moura, Roberto S
2015-07-02
Plants rich in flavonoids, such as açaí (Euterpe oleraceae Mart.), can induce antinociception in experimental animals. Here, we tested an extract obtained from the stones of açaí fruits (açaí stone extract, ASE), a native plant from the Amazon region of Brazil, in models of acute/inflammatory and chronic pain. Antinociceptive effects of ASE were evaluated in the hot plate, formalin, acetic acid writhing, carrageenan, and neuropathic pain models, as well as in thermal hyperalgesia and mechanical allodynia models induced by spinal nerve ligation. Antinociceptive activities were modulated by the administration of cholinergic, adrenergic, opioid, and L-arginine-NO antagonists. Oral administration of ASE (30, 100, or 300 mg.kg(-1)) dose-dependently reduced nociceptive responses to acute/inflammatory pain in mice, including thermal hyperalgesia, acetic acid-induced writhing, and carrageenan-induced thermal hyperalgesia. Moreover, ASE reduced the neurogenic and inflammatory phases after intraplantar injection of formalin in mice. The antinociceptive effect of ASE (100 mg · kg(-1)) in a hot plate protocol, was inhibited by pre-treatment with naloxone (1 mg · kg(-1)), atropine (2 mg · kg(-1)), yohimbine (5 mg · kg(-1)), or L-NAME (30 mg · kg(-1)). Furthermore, ASE prevented chronic pain in a rat spinal nerve ligation model, including thermal hyperalgesia and mechanical allodynia. ASE showed significant antinociceptive effect via a multifactorial mechanism of action, indicating that the extract may be useful in the development of new analgesic drugs.
Ren, Jiayi; Liu, Chunpeng; Zhao, Dan; Fu, Jing
2018-05-15
The aim of this study was to investigate the role of heat shock protein 70 (Hsp70) in oxidative stress and inflammatory damage in the spleen of quails which were induced by cold stress. One hundred ninety-two 15-day-old male quails were randomly divided into 12 groups and kept at 12 ± 1 °C to examine acute and chronic cold stress. We first detected the changes in activities of antioxidant enzymes in the spleen tissue under acute and chronic cold stress. The activities of glutathione peroxidase (GSH-Px) fluctuated in acute cold stress groups, while they were significantly decreased (p < 0.05) after chronic cold stress. The activities of superoxide dismutase (SOD), inducible nitric oxide synthase (iNOS), and nitric oxide (NO) content were decreased significantly (p < 0.05) in both of the acute and chronic cold stress groups. Malondialdehyde (MDA) content was significantly increased (p < 0.05) under cold stress except the 0.5 h group of acute cold stress. Besides, histopathological analysis showed that quail's spleen tissue was inflammatory injured seriously in both the acute and chronic cold stress groups. Additionally, the inflammatory factors (cyclooxygenase-2 (COX-2), prostaglandin E synthase (PTGES), iNOS, nuclear factor-kappa B (NF-κB), and tumor necrosis factor-a (TNF-α)) and Hsp70 mRNA levels were increased in both of the acute and chronic cold stress groups compared with the control groups. These results suggest that oxidative stress and inflammatory injury could be induced by cold stress in spleen tissues of quails. Furthermore, the increased expression of Hsp70 may play a role in protecting the spleen against oxidative stress and inflammatory damage caused by cold stress.
Markwart, Robby; Condotta, Stephanie A.; Requardt, Robert P.; Borken, Farina; Schubert, Katja; Weigel, Cynthia; Bauer, Michael; Griffith, Thomas S.; Förster, Martin; Brunkhorst, Frank M.; Badovinac, Vladimir P.; Rubio, Ignacio
2014-01-01
Sepsis describes the life-threatening systemic inflammatory response (SIRS) of an organism to an infection and is the leading cause of mortality on intensive care units (ICU) worldwide. An acute episode of sepsis is characterized by the extensive release of cytokines and other mediators resulting in a dysregulated immune response leading to organ damage and/or death. This initial pro-inflammatory burst often transits into a state of immune suppression characterised by loss of immune cells and T-cell dysfunction at later disease stages in sepsis survivors. However, despite these appreciations, the precise nature of the evoked defect in T-cell immunity in post-acute phases of SIRS remains unknown. Here we present an in-depth functional analysis of T-cell function in post-acute SIRS/sepsis. We document that T-cell function is not compromised on a per cell basis in experimental rodent models of infection-free SIRS (LPS or CpG) or septic peritonitis. Transgenic antigen-specific T-cells feature an unaltered cytokine response if challenged in vivo and ex vivo with cognate antigens. Isolated CD4+/CD8+ T-cells from post-acute septic animals do not exhibit defects in T-cell receptor-mediated activation at the the level of receptor-proximal signalling, activation marker upregulation or expansion. However, SIRS/sepsis induced transient lymphopenia and gave rise to an environment of immune attenuation at post acute disease stages. Thus, systemic inflammation has an acute impact on T-cell numbers and adaptive immunity, but does not cause major cell-autonomous enduring functional defects in T-cells. PMID:25541945
Acute inflammatory edema of the uvula (uvulitis) as a cause of respiratory distress: a case report.
Hawke, M; Kwok, P
1987-06-01
Acute inflammatory edema of the uvula (uvulitis) is a relatively rare cause of upper airway distress or obstruction. The authors present a case report of a 37-year-old man who developed an acute cellulitis and edema of the uvula with upper airway distress, which was managed by an emergency uvulectomy.
Predictive Value of IL-8 for Sepsis and Severe Infections after Burn Injury - A Clinical Study
Kraft, Robert; Herndon, David N; Finnerty, Celeste C; Cox, Robert A; Song, Juquan; Jeschke, Marc G
2014-01-01
The inflammatory response induced by burn injury contributes to increased incidence of infections, sepsis, organ failure, and mortality. Thus, monitoring post-burn inflammation is of paramount importance but so far there are no reliable biomarkers available to monitor and/or predict infectious complications after burn. As IL-8 is a major mediator for inflammatory responses, the aim of our study was to determine whether IL-8 expression can be used to predict post-burn sepsis, infections, and mortality other outcomes post-burn. Plasma cytokines, acute phase proteins, constitutive proteins, and hormones were analyzed during the first 60 days post injury from 468 pediatric burn patients. Demographics and clinical outcome variables (length of stay, infection, sepsis, multiorgan failure (MOF), and mortality were recorded. A cut-off level for IL-8 was determined using receiver operating characteristic (ROC) analysis. Statistical significance is set at (p<0.05). ROC analysis identified a cut-off level of 234 pg/ml for IL-8 for survival. Patients were grouped according to their average IL-8 levels relative to this cut off and stratified into high (H) (n=133) and low (L) (n=335) groups. In the L group, regression analysis revealed a significant predictive value of IL-8 to percent of total body surface area (TBSA) burned and incidence of MOF (p<0.001). In the H group IL-8 levels were able to predict sepsis (p<0.002). In the H group, elevated IL-8 was associated with increased inflammatory and acute phase responses compared to the L group (p<0.05). High levels of IL-8 correlated with increased MOF, sepsis, and mortality. These data suggest that serum levels of IL-8 may be a valid biomarker for monitoring sepsis, infections, and mortality in burn patients. PMID:25514427
Soewondo, Pradana; Suyono, Slamet; Sastrosuwignyo, Mpu Kanoko; Harahap, Alida R; Sutrisna, Bambang; Makmun, Lukman H
2017-01-01
to evaluate the role of clinical characteristics, functional markers of vasodilation, inflammatory response, and atherosclerosis in predicting wound healing in diabetic foot ulcer. a cohort study (February - October 2010) was conducted from 40 subjects with acute diabetic foot ulcer at clinical ward of Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia. Each subject underwent at least two variable measurements, i.e. during inflammatory phase and proliferation phase. The studied variables were clinical characteristics, complete peripheral blood count (CBC) and differential count, levels of HbA1c, ureum, creatinine, lipid profile, fasting blood glucose (FBG), marker of endothelial dysfunction (asymmetric dimethylarginine/ADMA, endothelin-1/ET-1, and flow-mediated dilation/FMD of brachial artery), and marker of vascular calcification (osteoprotegerin/OPG). median of time achieving 50% granulation tissue in our study was 21 days. There were nine factors that contribute in the development of 50% granulation tissue, i.e. family history of diabetes mellitus (DM), previous history of wound, wound area, duration of existing wound, captopril and simvastatin medications, levels of ADMA, ET-1, and OPG. There were three out of the nine factors that significantly correlated with wound healing, i.e. wound area, OPG levels, and simvastatin medications. in acute diabetic foot ulcers, wound area and OPG levels had positive correlation with wound healing, whereas simvastatin medications had negative correlation with wound healing.
Fibrin(ogen) mediates acute inflammatory responses to biomaterials
1993-01-01
Although "biocompatible" polymeric elastomers are generally nontoxic, nonimmunogenic, and chemically inert, implants made of these materials may trigger acute and chronic inflammatory responses. Early interactions between implants and inflammatory cells are probably mediated by a layer of host proteins on the material surface. To evaluate the importance of this protein layer, we studied acute inflammatory responses of mice to samples of polyester terephthalate film (PET) that were implanted intraperitoneally for short periods. Material preincubated with albumin is "passivated," accumulating very few adherent neutrophils or macrophages, whereas uncoated or plasma- coated PET attracts large numbers of phagocytes. Neither IgG adsorption nor surface complement activation is necessary for this acute inflammation; phagocyte accumulation on uncoated implants is normal in hypogammaglobulinemic mice and in severely hypocomplementemic mice. Rather, spontaneous adsorption of fibrinogen appears to be critical: (a) PET coated with serum or hypofibrinogenemic plasma attracts as few phagocytes as does albumin-coated material; (b) in contrast, PET preincubated with serum or hypofibrinogenemic plasma containing physiologic amounts of fibrinogen elicits "normal" phagocyte recruitment; (c) most importantly, hypofibrinogenemic mice do not mount an inflammatory response to implanted PET unless the material is coated with fibrinogen or the animals are injected with fibrinogen before implantation. Thus, spontaneous adsorption of fibrinogen appears to initiate the acute inflammatory response to an implanted polymer, suggesting an interesting nexus between two major iatrogenic effects of biomaterials: clotting and inflammation. PMID:8245787
Oxidative stress and inflammation: liver responses and adaptations to acute and regular exercise.
Pillon Barcelos, Rômulo; Freire Royes, Luiz Fernando; Gonzalez-Gallego, Javier; Bresciani, Guilherme
2017-02-01
The liver is remarkably important during exercise outcomes due to its contribution to detoxification, synthesis, and release of biomolecules, and energy supply to the exercising muscles. Recently, liver has been also shown to play an important role in redox status and inflammatory modulation during exercise. However, while several studies have described the adaptations of skeletal muscles to acute and chronic exercise, hepatic changes are still scarcely investigated. Indeed, acute intense exercise challenges the liver with increased reactive oxygen species (ROS) and inflammation onset, whereas regular training induces hepatic antioxidant and anti-inflammatory improvements. Acute and regular exercise protocols in combination with antioxidant and anti-inflammatory supplementation have been also tested to verify hepatic adaptations to exercise. Although positive results have been reported in some acute models, several studies have shown an increased exercise-related stress upon liver. A similar trend has been observed during training: while synergistic effects of training and antioxidant/anti-inflammatory supplementations have been occasionally found, others reported a blunting of relevant adaptations to exercise, following the patterns described in skeletal muscles. This review discusses current data regarding liver responses and adaptation to acute and regular exercise protocols alone or combined with antioxidant and anti-inflammatory supplementation. The understanding of the mechanisms behind these modulations is of interest for both exercise-related health and performance outcomes.
Underlying chronic inflammation alters the profile and mechanisms of acute neutrophil recruitment.
Ma, Bin; Whiteford, James R; Nourshargh, Sussan; Woodfin, Abigail
2016-11-01
Chronically inflamed tissues show altered characteristics that include persistent populations of inflammatory leukocytes and remodelling of the vascular network. As the majority of studies on leukocyte recruitment have been carried out in normal healthy tissues, the impact of underlying chronic inflammation on ongoing leukocyte recruitment is largely unknown. Here, we investigate the profile and mechanisms of acute inflammatory responses in chronically inflamed and angiogenic tissues, and consider the implications for chronic inflammatory disorders. We have developed a novel model of chronic ischaemia of the mouse cremaster muscle that is characterized by a persistent population of monocyte-derived cells (MDCs), and capillary angiogenesis. These tissues also show elevated acute neutrophil recruitment in response to locally administered inflammatory stimuli. We determined that Gr1 low MDCs, which are widely considered to have anti-inflammatory and reparative functions, amplified acute inflammatory reactions via the generation of additional proinflammatory signals, changing both the profile and magnitude of the tissue response. Similar vascular and inflammatory responses, including activation of MDCs by transient ischaemia-reperfusion, were observed in mouse hindlimbs subjected to chronic ischaemia. This response demonstrates the relevance of the findings to peripheral arterial disease, in which patients experience transient exercise-induced ischaemia known as claudication.These findings demonstrate that chronically inflamed tissues show an altered profile and altered mechanisms of acute inflammatory responses, and identify tissue-resident MDCs as potential therapeutic targets. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Drotrecogin alfa (activated): a novel therapeutic strategy for severe sepsis
Pastores, S
2003-01-01
Recent studies have highlighted the close link between activation of the coagulation system and the inflammatory response in the pathophysiology of severe sepsis. The protein C anticoagulant pathway plays an integral part in modulating the coagulation and inflammatory responses to infection. In patients with sepsis, endogenous protein C levels are decreased, shifting the balance toward greater systemic inflammation, coagulation, and cell death. On the basis of a single large randomised phase 3 trial, drotrecogin alfa (activated), a recombinant form of human activated protein C, was recently approved for the treatment of adult patients with severe sepsis and a high risk of death. Since its approval, several questions have been raised regarding the appropriate use of this agent. Given the increased risk of serious bleeding and the high cost of treatment, drotrecogin alfa (activated) should be reserved at this time for the most acutely ill patients with severe sepsis who meet the criteria that were used in the phase 3 trial. PMID:12566544
Use of activated protein C has no avail in the early phase of acute pancreatitis
Ozutemiz, Omer; Yenisey, Cigdem; Genc Simsek, Nilufer; Yuce, Gul; Batur, Yucel
2008-01-01
Objectives. Sepsis and acute pancreatitis have similar pathogenetic mechanisms that have been implicated in the progression of multiple organ failure. Drotrecogin alfa, an analogue of endogenous protein C, reduces mortality in clinical sepsis. Our objective was to evaluate the early therapeutic effects of activated protein C (APC) in a rat model of acute necrotizing pancreatitis. Subjects and method. Acute necrotizing pancreatitis was induced by intraductal injection of 5% Na taurocholate. Hourly bolus injections of saline or recombinant human APC (drotrecogin alfa) was commenced via femoral venous catheter four hours after the induction of acute pancreatitis. The experiment was terminated nine hours after pancratitis induction. Animals in group one (n=20) had a sham operation while animals in group two (n=20) received saline and animals in group three (n=20) received drotrecogin alfa boluses after acute pancreatitis induction. Pancreatic tissue for histopathologic scores and myeloperoxidase, glutathione reductase, glutathione peroxidase, and catalase activites were collected, and blood for serum amylase, urea, creatinine, and inleukin-6 measurements was withdrawn. Results. Serum amylase activity was significantly lower in the APC treated group than the untreated group (17,435±432 U/L vs. 27,426±118 U/L, respectively). While the serum interleukin-6 concentration in the APC untreated group was significantly lower than the treated group (970±323 pg/mL vs. 330±368 pg/mL, respectively). Conclusion. In the early phase of acute pancreatitis, drotrecogin alfa treatment did not result in a significant improvement in oxidative and inflammatory parameters or renal functions. PMID:19088933
Schneider, Christian; von Aulock, Sonja; Zedler, Siegfried; Schinkel, Christian; Hartung, Thomas; Faist, Eugen
2004-01-01
To examine the effects of perioperative rhG-CSF administration on immune function in patients subjected to major surgery. Severe trauma, such as major surgery, initiates acute immunodysfunction which predisposes the patient towards infectious complications. Sixty patients undergoing elective surgery received either recombinant human granulocyte colony-stimulating factor/rh G-CSF (Filgrastim) or a placebo perioperatively. At several time points before and after the surgical intervention immunofunctional parameters were assessed. RESULTS Leukocyte counts and serum levels of anti-inflammatory mediators (IL-1ra and TNF-R) were increased in Filgrastim-treated patients, while the post-operative acute phase response was attenuated. Monocyte deactivation (reduced TNF-alpha release and HLA-DR expression) and lymphocyte anergy (impaired mitogenic proliferation and reduced TH1 lymphokine release) were blunted and the incidence and severity of infectious complications were reduced. These results suggest that Filgrastim treatment reinforces innate immunity, enabling better prevention of infection. Thus, this unique combination of hematopoietic, anti-inflammatory and anti-infectious effects on the innate immune system warrants further study of clinical efficacy and sepsis prophylaxis.
Schneider, Christian; von Aulock, Sonja; Zedler, Siegfried; Schinkel, Christian; Hartung, Thomas; Faist, Eugen
2004-01-01
Objective: To examine the effects of perioperative rhG-CSF administration on immune function in patients subjected to major surgery. Summary Background Data: Severe trauma, such as major surgery, initiates acute immunodysfunction which predisposes the patient towards infectious complications. Methods: Sixty patients undergoing elective surgery received either recombinant human granulocyte colony-stimulating factor/rh G-CSF (Filgrastim) or a placebo perioperatively. At several time points before and after the surgical intervention immunofunctional parameters were assessed. Results: Leukocyte counts and serum levels of anti-inflammatory mediators (IL-1ra and TNF-R) were increased in Filgrastim-treated patients, while the post-operative acute phase response was attenuated. Monocyte deactivation (reduced TNF-α release and HLA-DR expression) and lymphocyte anergy (impaired mitogenic proliferation and reduced TH1 lymphokine release) were blunted and the incidence and severity of infectious complications were reduced. Conclusions: These results suggest that Filgrastim treatment reinforces innate immunity, enabling better prevention of infection. Thus, this unique combination of hematopoietic, anti-inflammatory and anti-infectious effects on the innate immune system warrants further study of clinical efficacy and sepsis prophylaxis. PMID:14685103
Orona, Nadia S; Ferraro, Sebastián A; Astort, Francisco; Morales, Celina; Brites, Fernando; Boero, Laura; Tiscornia, Gisela; Maglione, Guillermo A; Saldiva, Paulo H N; Yakisich, Sebastian; Tasat, Deborah R
2016-01-01
Exposure to air particulate matter (PM) is associated with increased cardiovascular morbimortality. However, PM doesn't affect equally to all people, being the old cohort the most susceptible and studied. We hypothesized that another specific life phase, the middle-aged subpopulation, may be negatively affected. Therefore, the aim of this study was to analyze in vivo the acute biological impact of two environmental particles, Urban Air Particles from Buenos Aires and Residual Oil Fly Ash, on the cardiorespiratory system of middle-aged mice, evaluating oxidative metabolism and inflammation. Both PM provoked a local and systemic inflammatory response, leading to a reduced alveolar area in the lung, an epicard inflammation in the heart, an increment of IL-6, and a reduction on PON 1 activity in serum of middle-aged animals. The positive correlation of local parameters with systemic markers of oxidative stress and inflammation could be responsible for associations of cardiovascular morbimortality in this subpopulation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Singh, Anju; Rahman, Tabassum; Bartiss, Rose; Arabshahi, Alireza; Prasain, Jeevan; Barnes, Stephen; Musteata, Florin Marcel; Sellati, Timothy J
2017-02-01
Respiratory infection with Francisella tularensis (Ft) is characterized by a muted, acute host response, followed by sepsis-like syndrome that results in death. Infection with Ft establishes a principally anti-inflammatory environment that subverts host-cell death programs to facilitate pathogen replication. Although the role of cytokines has been explored extensively, the role of eicosanoids in tularemia pathogenesis is not fully understood. Given that lipoxin A 4 (LXA 4 ) has anti-inflammatory properties, we investigated whether this lipid mediator affects host responses manifested early during infection. The addition of exogenous LXA 4 inhibits PGE 2 release by Ft-infected murine monocytes in vitro and diminishes apoptotic cell death. Tularemia pathogenesis was characterized in 5‑lipoxygenase-deficient (Alox5 -/- ) mice that are incapable of generating LXA 4 Increased release of proinflammatory cytokines and chemokines, as well as increased apoptosis, was observed in Alox5 -/- mice as compared with their wild-type counterparts. Alox5 -/- mice also exhibited elevated recruitment of neutrophils during the early phase of infection and increased resistance to lethal challenge. Conversely, administration of exogenous LXA 4 to Alox5 -/- mice made them more susceptible to infection thus mimicking wild-type animals. Taken together, our results suggest that 5-LO activity is a critical regulator of immunopathology observed during the acute phase of respiratory tularemia, regulating bacterial burden and neutrophil recruitment and production of proinflammatory modulators and increasing morbidity and mortality. These studies identify a detrimental role for the 5-LO-derived lipid mediator LXA 4 in Ft-induced immunopathology. Targeting this pathway may have therapeutic benefit as an adjunct to treatment with antibiotics and conventional antimicrobial peptides, which often have limited efficacy against intracellular bacteria. © Society for Leukocyte Biology.
Lipopolysaccharide-Induced Acute Kidney Injury Is Dependent on an IL-18 Receptor Signaling Pathway
Nozaki, Yuji; Hino, Shoichi; Ri, Jinhai; Sakai, Kenji; Nagare, Yasuaki; Kawanishi, Mai; Niki, Kaoru; Funauchi, Masanori; Matsumura, Itaru
2017-01-01
The proinflammatory cytokine interleukin (IL)-18 is an important mediator of the organ failure induced by endotoxemia. IL-18 (known as an interferon-gamma (IFN-γ) inducing factor), and other inflammatory cytokines have important roles in lipopolysaccharide (LPS)-induced acute kidney injury (AKI). We investigated the effect of inflammatory cytokines and Toll-like receptor 4 (TLR4) expression, an event that is accompanied by an influx of monocytes, including CD4+ T cells and antigen-presenting cells (APCs) in IL-18Rα knockout (KO) mice and wild-type (WT) mice after LPS injection. In the acute advanced phase, the IL-18Rα KO mice showed a higher survival rate and a suppressed increase of blood urea nitrogen, increased levels of proinflammatory cytokines such as IFN-γ and IL-18, the infiltration of CD4+ T cells and the expression of kidney injury molecule-1 as an AKI marker. In that phase, the renal mRNA expression of the M1 macrophage phenotype and C-C chemokine receptor type 7 as the maturation marker of dendritic cells (DCs) was also significantly decreased in the IL-18Rα KO mice, although there were small numbers of F4/80+ cells and DCs in the kidney. Conversely, there were no significant differences in the expressions of mRNA and protein TLR4 after LPS injection between the WT and IL-18Rα KO groups. Our results demonstrated that the IL-18Rα-mediated signaling pathway plays critical roles in CD4+ T cells and APCs and responded more quickly to IFN-γ and IL-18 than TLR4 stimulation in the pathogenesis of LPS-induced AKI. PMID:29261164
Population-based study of blood biomarkers in prediction of sub-acute recurrent stroke
Segal, Helen C; Burgess, Annette I; Poole, Debbie L; Mehta, Ziyah; Silver, Louise E; Rothwell, Peter M
2017-01-01
Background and purpose Risk of recurrent stroke is high in the first few weeks after TIA or stroke and clinic risk prediction tools have only limited accuracy, particularly after the hyper-acute phase. Previous studies of the predictive value of biomarkers have been small, been done in selected populations and have not concentrated on the acute phase or on intensively treated populations. We aimed to determine the predictive value of a panel of blood biomarkers in intensively treated patients early after TIA and stroke. Methods We studied 14 blood biomarkers related to inflammation, thrombosis, atherogenesis and cardiac or neuronal cell damage in early TIA or ischaemic stroke in a population-based study (Oxford Vascular Study). Biomarker levels were related to 90-day risk of recurrent stroke as Hazard Ratio (95%CI) per decile increase, adjusted for age and sex. Results Among 1292 eligible patients there were 53 recurrent ischaemic strokes within 90 days. There were moderate correlations (r>0.40; p<0001) between the inflammatory biomarkers and between the cell damage and thrombotic subsets. However, associations with risk of early recurrent stroke were weak, with significant associations limited to Interleukin-6 (HR=1.12, 1.01-1.24; p=0.035) and C-reactive protein (1.16, 1.02-1.30; p=0.019). When stratified by type of presenting event, P-selectin predicted stroke after TIA (1.31, 1.03-1.66; p=0.028) and C-reactive protein predicted stroke after stroke (1.16, 1.01-1.34; p=0.042). These associations remained after fully adjusting for other vascular risk factors. Conclusion In the largest study to date, we found very limited predictive utility for early recurrent stroke for a panel of inflammatory, thrombotic and cell damage biomarkers. PMID:25158774
Melo, Caroline M; Morais, Talita C; Tomé, Adriana R; Brito, Gerly Anne C; Chaves, Mariana H; Rao, Vietla S; Santos, Flávia A
2011-07-01
To evaluate the anti-inflammatory effect of α,β-amyrin, a pentacyclic triterpenoid from Protium heptaphyllum, on cerulein-induced acute pancreatitis in mice. Acute pancreatitis was induced in Swiss mice by five intraperitoneal injections of cerulein (50 μg/kg), at 1 h intervals. Mice received α,β-amyrin (10, 30 and 100 mg/kg), thalidomide (200 mg/kg), or vehicle (3% Tween 80) orally 1 h before and 12 h after the cerulein challenge. The severity of pancreatitis was evaluated 24 h after cerulein by assessing serum pro-inflammatory cytokines and amylase activity, pancreatic myeloperoxidase (MPO), and thiobarbituric acid-reactive substances (TBARS), as well as by histology. α,β-Amyrin and thalidomide significantly attenuated the cerulein-induced increase in tumor necrosis factor (TNF)-α, interleukin-6, lipase, amylase, MPO, and TBARS. Moreover, α,β-amyrin greatly suppressed the pancreatic edema, inflammatory cell infiltration, acinar cell necrosis, and expressions of TNFα and inducible nitric oxide synthase. α,β-Amyrin ameliorates cerulein-induced acute pancreatitis by acting as an anti-inflammatory and antioxidant agent.
Gundogan, Fatih C; Akay, Fahrettin; Uzun, Salih; Ozge, Gokhan; Toyran, Sami; Genç, Halil
2016-01-01
The aim of this study was to evaluate choroidal thickness changes during acute attacks of familial Mediterranean fever (FMF). Fifty patients with FMF and 50 healthy controls were included. Choroidal thickness of each participant was measured at the foveola and horizontal nasal and temporal quadrants at 500-µm intervals to 1,500 µm from the foveola using spectral-domain optical coherence tomography. White blood cell count, erythrocyte sedimentation rate (ESR) and serum levels of fibrinogen and C-reactive protein (CRP) were evaluated. The clinical findings (peritonitis, arthritis and pleuritis) were noted. Choroidal thickness was significantly thicker at all measurement points in FMF patients compared to healthy controls during an acute attack (p < 0.05). There were positive correlations between the choroidal thickness and ESR, fibrinogen and, particularly, CRP levels. Clinical findings did not change the choroidal thickness significantly (p > 0.05). Increased choroidal thickness in the acute phase of FMF is possibly related to the inflammatory edematous changes in the choroid. © 2015 S. Karger AG, Basel.
Systemic inflammatory response following acute myocardial infarction
Fang, Lu; Moore, Xiao-Lei; Dart, Anthony M; Wang, Le-Min
2015-01-01
Acute cardiomyocyte necrosis in the infarcted heart generates damage-associated molecular patterns, activating complement and toll-like receptor/interleukin-1 signaling, and triggering an intense inflammatory response. Inflammasomes also recognize danger signals and mediate sterile inflammatory response following acute myocardial infarction (AMI). Inflammatory response serves to repair the heart, but excessive inflammation leads to adverse left ventricular remodeling and heart failure. In addition to local inflammation, profound systemic inflammation response has been documented in patients with AMI, which includes elevation of circulating inflammatory cytokines, chemokines and cell adhesion molecules, and activation of peripheral leukocytes and platelets. The excessive inflammatory response could be caused by a deregulated immune system. AMI is also associated with bone marrow activation and spleen monocytopoiesis, which sustains a continuous supply of monocytes at the site of inflammation. Accumulating evidence has shown that systemic inflammation aggravates atherosclerosis and markers for systemic inflammation are predictors of adverse clinical outcomes (such as death, recurrent myocardial infarction, and heart failure) in patients with AMI. PMID:26089856
Prospects of apoptotic cell-based therapies for transplantation and inflammatory diseases.
Saas, Philippe; Kaminski, Sandra; Perruche, Sylvain
2013-10-01
Apoptotic cell removal or interactions of early-stage apoptotic cells with immune cells are associated with an immunomodulatory microenvironment that can be harnessed to exert therapeutic effects. While the involved immune mechanisms are still being deciphered, apoptotic cell infusion has been tested in different experimental models where inflammation is deregulated. This includes chronic and acute inflammatory disorders such as arthritis, contact hypersensitivity and acute myocardial infarction. Apoptotic cell infusion has also been used in transplantation settings to prevent or treat acute and chronic rejection, as well as to limit acute graft-versus-host disease associated with allogeneic hematopoietic cell transplantation. Here, we review the mechanisms involved in apoptotic cell-induced immunomodulation and data obtained in preclinical models of transplantation and inflammatory diseases.
Alfredo, Patrícia P; Anaruma, Carlos A; Pião, Antônio C S; João, Silvia M A; Casarotto, Raquel A
2009-05-01
This study aimed at verifying the effects of phonophoresis associated with Arnica montana on the acute phase of an inflammatory muscle lesion. Forty Wistar male rats (300+/-50 g), of which the Tibialis Anterior muscle was surgically lesioned, were divided into four groups (n=10 each): control group received no treatment; the ultrasound group (US) was treated in pulsed mode with 1-MHz frequency, 0.5 W/cm(2) intensity (spatial and temporal average - SATA), duty cycle of 1:2 (2 ms on, 4 ms off, 50%), time of application 3 min per session, one session per day, for 3 days; the phonophoresis or ultrasound plus arnica (US+A) group was treated with arnica with the same US parameters plus arnica gel; and the arnica group (A) was submitted to massage with arnica gel, also for 3 min, once a day, for 3 days. Treatment started 24h after the surgical lesion. On the 4th day after lesion creation, animals were sacrificed and sections of the lesioned, inflamed muscle were removed for quantitative (mononuclear and polymorphonuclear cell count) and qualitative histological analysis. Collected data from the 4 groups were statistically analyzed and the significance level set at p<0.05. Results show higher mononuclear cell density in all three treated groups with no significant difference between them, but values were significantly different (p<0.0001) when compared to control group's. As to polymorphonuclear cell density, significant differences were found between control group (p=0.0134) and US, US+A and A groups; the arnica group presented lesser density of polymorphonuclear cells when compared (p=0.0134) to the other groups. No significant difference was found between US and US+A groups. While the massage with arnica gel proved to be an effective anti-inflammatory on acute muscle lesion in topic use, these results point to ineffectiveness of Arnica montana phonophoresis, US having seemingly checked or minimized its anti-inflammatory effect.
Moran, Nick
2017-01-01
Neuronal autoantibodies targeting cell surface antigens have been described in association with autoimmune encephalitides which frequently feature psychosis and other psychiatric disturbances alongside neurological signs and symptoms. Little has been written however about the long-term psychiatric status of individuals following recovery from the acute phase of autoimmune encephalitis, despite case series and anecdotal evidence suggesting this may be a cause of considerable disability. Here, we describe a man aged 58 years with no psychiatric history who developed a severe and acute psychotic disorder following resolution of a protracted course of limbic encephalitis associated with antibodies to leucine-rich glioma inactivated 1 protein. No indications of a gross ongoing inflammatory or encephalopathic process were present at presentation of his psychosis. Possible aetiologies of his acute psychosis are discussed. This case highlights the importance of ongoing psychiatric follow-up of patients following an episode of autoimmune encephalitis. PMID:28363946
HILDA/LIF urinary excretion during acute kidney rejection.
Taupin, J L; Morel, D; Moreau, J F; Gualde, N; Potaux, L; Bezian, J H
1992-03-01
Recently, a new lymphokine called HILDA (human interleukin for DA cells) has been described and cloned. This cytokine, initially described to be produced by alloreactive T lymphocyte clones grown from a rejected human kidney allograft, is identical to other factors termed D-factor, differentiation-inducing factor, differentiation inhibitory activity, hepatocyte-stimulating factor III, and leukemia inhibitory factor. HILDA/LIF induces various effects on neural, hemopoietic, embryonic cells as well as on bone remodeling and acute phase protein synthesis in hepatocyte. In this study we demonstrate the presence of HILDA/LIF in the urine but not in the serum of kidney graft recipients during acute rejection episodes, whereas this lymphokine was detectable neither in the serum nor in the urine of kidney transplanted patients with stable renal function. These data reinforce the notion of a possible role for this lymphokine in the inflammatory and/or the immune response.
2010-07-22
definite trend was observed, with an approximate 3-fold increase over vehicle control values. Significant IL-6 concentra- tion increases were observed in...differences occurred. How- ever, a strong increasing trend is apparent in both the mRNA (TNF-α and IL-6) and protein data (IL-1β) that is consistent with the...CNS pathologies. Trends Neurosci 1996, 19:409-410. 17. Wang CX, Shuaib A: Involvement of inflammatory cytokines in central nervous system injury
The Surgically Induced Stress Response
Finnerty, Celeste C.; Mabvuure, Nigel Tapiwa; Ali, Arham; Kozar, Rosemary A.; Herndon, David N.
2013-01-01
The stress response to surgery, critical illness, trauma, and burns encompasses derangements of metabolic and physiological processes which induce perturbations in the inflammatory, acute phase, hormonal, and genomic responses. Hypermetabolism and hypercatabolism result, leading to muscle wasting, impaired immune function and wound healing, organ failure, and death. The surgery-induced stress response is largely similar to that triggered by traumatic injuries; the duration of the stress response, however, varies according to the severity of injury (surgical or traumatic). This spectrum of injuries and insults ranges from small lacerations to severe insults such as large poly-traumatic and burn injuries. Although the stress response to acute trauma evolved to improve chances of survival following injury, in modern surgical practice the stress response can be detrimental. PMID:24009246
Mikkelsen, S Rochelle; Long, Julie M; Zhang, Lin; Galemore, Erin R; VandeWoude, Sue; Dean, Gregg A
2011-02-25
Feline immunodeficiency virus (FIV) infection in cats follows a disease course similar to HIV-1, including a short acute phase characterized by high viremia, and a prolonged asymptomatic phase characterized by low viremia and generalized immune dysfunction. CD4(+)CD25(hi)FoxP3(+) immunosuppressive regulatory T (Treg) cells have been implicated as a possible cause of immune dysfunction during FIV and HIV-1 infection, as they are capable of modulating virus-specific and inflammatory immune responses. Additionally, the immunosuppressive capacity of feline Treg cells has been shown to be increased during FIV infection. We have previously shown that transient in vivo Treg cell depletion during asymptomatic FIV infection reveals FIV-specific immune responses suppressed by Treg cells. In this study, we sought to determine the immunological influence of Treg cells during acute FIV infection. We asked whether Treg cell depletion prior to infection with the highly pathogenic molecular clone FIV-C36 in cats could alter FIV pathogenesis. We report here that partial Treg cell depletion prior to FIV infection does not significantly change provirus, viremia, or CD4(+) T cell levels in blood and lymphoid tissues during the acute phase of disease. The effects of anti-CD25 mAb treatment are truncated in cats acutely infected with FIV-C36 as compared to chronically infected cats or FIV-naïve cats, as Treg cell levels were heightened in all treatment groups included in the study within two weeks post-FIV infection. Our findings suggest that the influence of Treg cell suppression during FIV pathogenesis is most prominent after Treg cells are activated in the environment of established FIV infection.
Inflammatory mediators of cognitive impairment in bipolar disorder
Bauer, Isabelle E.; Pascoe, Michaela C.; Wollenhaupt-Aguiar, Bianca; Kapczinski, Flavio; Soares, Jair C.
2014-01-01
Objectives Recent studies have pointed to neuroinflammation, oxidative stress and neurotrophic factors as key mediators in the pathophysiology of mood disorders. Little is however known about the cascade of biological episodes underlying the cognitive deficits observed during the acute and euthymic phases of bipolar disorder (BD). The aim of this review is to assess the potential association between cognitive impairment and biomarkers of inflammation, oxidative stress and neurotrophic activity in BD. Methods Scopus (all databases), Pubmed and Ovid Medline were systematically searched with no language or year restrictions, up to November 2013, for human studies that collected both inflammatory markers and cognitive data in BD. Selected search terms were bipolar disorder, depression, mania, psychosis, inflammatory, cognitive and neurotrophic. Results Ten human studies satisfied the criteria for consideration. The findings showed that high levels of peripheral inflammatory-cytokine, oxidative stress and reduced brain derived neurotrophic factor (BDNF) levels were associated with poor cognitive performance. The BDNF val66met polymorphism is a potential vulnerability factor for cognitive impairment in BD. Conclusions Current data provide preliminary evidence of a link between the cognitive decline observed in BD and mechanisms of neuroinflammation and neuroprotection. The identification of BD specific inflammatory markers and polymorphisms in inflammatory response genes may be of assistance for therapeutic intervention. PMID:24862657
Bi, Fangfang; Chen, Fang; Li, Yanning; Wei, Ai; Cao, Wangsen
2018-05-05
Renal anti-aging protein Klotho exhibits impressive properties of anti-inflammation and renal protection, however is suppressed early after renal injury, making Klotho restoration an attractive strategy of treating renal inflammatory disorders. Here, we reported that Klotho is enriched in macrophages and Klotho preservation by Rhein, an anthraquinone derived from medicinal plant rhubarb, attenuates lipopolysaccharide (LPS)-induced acute inflammation essentially via promoting toll-like receptor 4 (TLR4) degradation. LPS-induced pro-inflammatory NF-κB signaling and cytokine expressions coincided with Klotho repression and toll-like receptor 4 (TLR4) elevation in macrophages, renal epithelial cells, and acutely- inflamed kidney. Intriguingly, Rhein treatment effectively corrected the inverted alterations of Klotho and TLR4 and mitigated the TLR4 downstream inflammatory response in a Klotho restoration and TLR4 repression-dependent manner. Klotho inducibly associated with TLR4 after LPS stimulation and suppressed TLR4 protein abundance mainly via a proteolytic process sensitive to the inhibition of Klotho's putative β-glucuronidase activity. Consistently, Klotho knockdown by RNA interferences largely diminished the anti-inflammatory and renal protective effects of Rhein in a mouse model of acute kidney injury incurred by LPS. Thus, Klotho suppression of TLR4 via deglycosylation negatively controls TLR-associated inflammatory signaling and the endogenous Klotho preservation by Rhein or possibly other natural or synthetic compounds possesses promising potentials in the clinical treatment of renal inflammatory disorders. • Klotho is highly expressed in macrophages and repressed by LPS in vitro and in vivo. • Klotho inhibits LPS-induced TLR4 accumulation and the downstream signaling. • Klotho decreases TLR4 via a deglycosylation-associated proteolytic process. • Rhein effectively prevents acute inflammation-incurred Klotho suppression. • Rhein reversal of Klotho attenuates LPS-induced acute inflammation and kidney injury.
Fingerprint of Lung Fluid Ultrafine Particles, a Novel Marker of Acute Lung Inflammation.
Bar-Shai, Amir; Alcalay, Yifat; Sagiv, Adi; Rotem, Michal; Feigelson, Sara W; Alon, Ronen; Fireman, Elizabeth
2015-01-01
Acute lung inflammation can be monitored by various biochemical readouts of bronchoalveolar lavage fluid (BALF). To analyze the BALF content of ultrafine particles (UFP; <100 nm) as an inflammatory biomarker in early diagnosis of acute and chronic lung diseases. Mice were exposed to different stress conditions and inflammatory insults (acute lipopolysaccharide inhalation, tobacco smoke and lethal dose of total body irradiation, i.e. 950 rad). After centrifugation, the cellular pellet was assessed while cytokines and ultrafine particles were measured in the soluble fraction of the BALF. A characteristic UFP distribution with a D50 (i.e. the dimension of the 50th UFP percentile) was shared by all tested mouse strains in the BALF of resting lungs. All tested inflammatory insults similarly shifted this size distribution, resulting in a unique UFP fingerprint with an averaged D50 of 58.6 nm, compared with the mean UFP D50 of 23.7 nm for resting BALF (p < 0.0001). This UFP profile was highly reproducible and independent of the intensity or duration of the inflammatory trigger. It returned to baseline after resolution of the inflammation. Neither total body irradiation nor induction of acute cough induced this fingerprint. The UFP fingerprint in the BALF of resting and inflamed lungs can serve as a binary biomarker of healthy and acutely inflamed lungs. This marker can be used as a novel readout for the onset of inflammatory lung diseases and for complete lung recovery from different insults.
Kothur, Kavitha; Gill, Deepak; Wong, Melanie; Mohammad, Shekeeb S; Bandodkar, Sushil; Arbunckle, Susan; Wienholt, Louise; Dale, Russell C
2017-08-01
To examine the cytokine/chemokine profile of cerebrospinal fluid (CSF) during acute herpes simplex virus-induced N-methyl-d-aspartate receptor (NMDAR) autoimmunity and in chronic/relapsing post-herpes simplex virus encephalitis (HSE) neurological syndromes. We measured longitudinal serial CSF cyto-/chemokines (n=34) and a glial marker (calcium-binding astroglial protein, S100B) in one patient during acute HSE and subsequent anti-NMDAR encephalitis, and compared the results with those from two patients with anti-NMDAR encephalitis without preceding HSE. We also compared cyto-/chemokines in cross-sectional CSF samples from three children with previous HSE who had ongoing chronic or relapsing neurological symptoms (2yr 9 mo-16y after HSE) with those in a group of children having non-inflammatory neurological conditions (n=20). Acute HSE showed elevation of a broad range of all T-helper-subset-related cyto-/chemokines and S100B whereas the post-HSE anti-NMDAR encephalitis phase showed persistent elevation of two of five T-helper-1 (chemokine [C-X-C motif] ligand 9 [CXCL9], CXCL10), three of five predominantly B-cell (CXCL13, CCL19, a proliferation-inducing ligand [APRIL])-mediated cyto-/chemokines, and interferon-α. The post-HSE anti-NMDAR encephalitis inflammatory response was more pronounced than anti-NMDAR encephalitis. All three chronic post-HSE cases showed persistent elevation of CXCL9, CXCL10, and interferon-α, and there was histopathological evidence of chronic lymphocytic inflammation in one biopsied case 7 years after HSE. Two of three chronic cases showed a modest response to immune therapy. HSE-induced anti-NMDAR encephalitis is a complex and pronounced inflammatory syndrome. There is persistent CSF upregulation of cyto-/chemokines in chronic or relapsing post-HSE neurological symptoms, which may be modifiable with immune therapy. The elevated cyto-/chemokines may be targets of monoclonal therapies. © 2017 Mac Keith Press.
Quek, Amy May Lin; Soon, Derek; Chan, Yee Cheun; Thamboo, Thomas Paulraj; Yuki, Nobuhiro
2014-06-15
Inflammatory neuropathies have been reported to occur in association with nephrotic syndrome. Their underlying immuno-pathogenic mechanisms remain unknown. A 50-year-old woman concurrently presented with acute-onset chronic inflammatory demyelinating polyneuropathy and nephrotic syndrome secondary to focal segmental glomerulosclerosis. Both neuropathy and proteinuria improved after plasma exchange and steroids. Literature review of cases of concurrent inflammatory neuropathies and nephrotic syndrome revealed similar neuro-renal presentations. This neuro-renal condition may be mediated by autoantibodies targeting myelin and podocytes. Copyright © 2014 Elsevier B.V. All rights reserved.
Kim, Shi Hyoung; Park, Jae Gwang; Sung, Gi-Ho; Yang, Sungjae; Yang, Woo Seok; Kim, Eunji; Kim, Jun Ho; Ha, Van Thai; Kim, Han Gyung; Yi, Young-Su; Kim, Ji Hye; Baek, Kwang-Soo; Sung, Nak Yoon; Lee, Mi-nam; Kim, Jong-Hoon; Cho, Jae Youl
2015-07-01
Kaempferol (KF) is the most abundant polyphenol in tea, fruits, vegetables, and beans. However, little is known about its in vivo anti-inflammatory efficacy and mechanisms of action. To study these, several acute mouse inflammatory and nociceptive models, including gastritis, pancreatitis, and abdominal pain were employed. Kaempferol was shown to attenuate the expansion of inflammatory lesions seen in ethanol (EtOH)/HCl- and aspirin-induced gastritis, LPS/caerulein (CA) triggered pancreatitis, and acetic acid-induced writhing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Immune-modulating therapy in acute pancreatitis: Fact or fiction
Akinosoglou, Karolina; Gogos, Charalambos
2014-01-01
Acute pancreatitis (AP) is one of the most common diseases of the gastrointestinal tract, bearing significant morbidity and mortality worldwide. Current treatment of AP remains unspecific and supportive and is mainly targeted to aggressively prevent systemic complications and organ failure by intensive care. As acute pancreatitis shares an indistinguishable profile of inflammation with sepsis, therapeutic approaches have turned towards modulating the systemic inflammatory response. Targets, among others, have included pro- and anti-inflammatory modulators, cytokines, chemokines, immune cells, adhesive molecules and platelets. Even though, initial results in experimental models have been encouraging, clinical implementation of immune-regulating therapies in acute pancreatitis has had a slow progress. Main reasons include difficulty in clinical translation of experimental data, poor understanding of inflammatory response time-course, flaws in experimental designs, need for multimodal approaches and commercial drawbacks. Whether immune-modulation in acute pancreatitis remains a fact or just fiction remains to be seen in the future. PMID:25386069
Changes in serum interleukin-33 levels in patients with acute cerebral infarction.
Liu, Jingyao; Xing, Yingqi; Gao, Ying; Zhou, Chunkui
2014-02-01
Inflammation is widely considered to be involved in the pathogenesis of cerebral ischemic injury. The balance between inflammatory and anti-inflammatory factors significantly affects the prognosis of patients with cerebral infarction. Interleukin-33 (IL-33), a newly identified member of the interkeukin-1 superfamily, has been found to play very important roles in the inflammation of several human diseases including asthma, inflammatory bowel disease, and central nervous system inflammation. To our knowledge its role in the pathology of acute cerebral infarction has not yet been reported. In this study, we demonstrated that serum IL-33 levels were significantly increased in patients with acute cerebral infarction compared to control patients without acute cerebral infarction. Furthermore, serum IL-33 levels increased with the infarction volume. Our study suggests that IL-33 may be involved in the pathogenesis and/or progression of acute cerebral infarction. Copyright © 2013 Elsevier Ltd. All rights reserved.
Impaired Thiol-Disulfide Balance in Acute Brucellosis.
Kolgelier, Servet; Ergin, Merve; Demir, Lutfi Saltuk; Inkaya, Ahmet Cagkan; Aktug Demir, Nazlim; Alisik, Murat; Erel, Ozcan
2017-05-24
The objective of this study was to examine a novel profile: thiol-disulfide homeostasis in acute brucellosis. The study included 90 patients with acute brucellosis, and 27 healthy controls. Thiol-disulfide profile tests were analyzed by a recently developed method, and ceruloplasmin levels were determined. Native thiol levels were 256.72 ± 48.20 μmol/L in the acute brucellosis group and 461.13 ± 45.37 μmol/L in the healthy group, and total thiol levels were 298.58 ± 51.78 μmol/L in the acute brucellosis group and 504.83 ± 51.05 μmol/L in the healthy group (p < 0.001, for both). The disulfide/native thiol ratios and disulfide/total thiol ratios were significantly higher, and native thiol/total thiol ratios were significantly lower in patients with acute brucellosis than in the healthy controls (p < 0.001, for all ratios). There were either positive or negative relationships between ceruloplasmin levels and thiol-disulfide parameters. The thiol-disulfide homeostasis was impaired in acute brucellosis. The strong associations between thiol-disulfide parameters and a positive acute-phase reactant reflected the disruption of the balance between the antioxidant and oxidant systems. Since thiol groups act as anti-inflammatory mediators, the alteration in the thiol-disulfide homeostasis may be involved in brucellosis.
Post-traumatic arthritis: overview on pathogenic mechanisms and role of inflammation
Punzi, Leonardo; Galozzi, Paola; Luisetto, Roberto; Favero, Marta; Ramonda, Roberta; Oliviero, Francesca; Scanu, Anna
2016-01-01
Post-traumatic arthritis (PTA) develops after an acute direct trauma to the joints. PTA causes about 12% of all osteoarthritis cases, and a history of physical trauma may also be found in patients with chronic inflammatory arthritis. Symptoms include swelling, synovial effusion, pain and sometimes intra-articular bleeding. Usually, PTA recoveries spontaneously, but the persistence of symptoms after 6 months may be considered pathological and so-called chronic PTA. A variety of molecular, mechanobiological and cellular events involved in the pathogenesis and the progression of PTA have been identified. The activation of inflammatory mechanisms during the PTA acute phase appears to play a critical role in the chronic disease onset. Human studies and experimental models have revealed that a series of inflammatory mediators are released in synovial fluid immediately after the joint trauma. These molecules have been proposed as markers of disease and as a potential target for the development of specific and preventative interventions. Currently, chronic PTA cannot be prevented, although a large number of agents have been tested in preclinical studies. Given the relevance of inflammatory reaction, anticytokines therapy, in particular the inhibition of interleukin 1 (IL-1), seems to be the most promising strategy. At the present time, intra-articular injection of IL-1 receptor antagonist is the only anticytokine approach that has been used in a human study of PTA. Despite the fact that knowledge in this area has increased in the past years, the identification of more specific disease markers and new therapeutic opportunities are needed. PMID:27651925
Martins, Patrícia Rocha; Nascimento, Rodolfo Duarte; Lopes, Júlia Guimarães; Santos, Mônica Morais; de Oliveira, Cleida Aparecida; de Oliveira, Enio Chaves; Martinelli, Patrícia Massara; d'Ávila Reis, Débora
2015-05-01
Megacolon is frequently observed in patients who develop the digestive form of Chagas disease. It is characterized by dilation of the rectum-sigmoid portion and thickening of the colon wall. Microscopically, the affected organ presents denervation, which has been considered as consequence of an inflammatory process that begins at the acute phase and persists in the chronic phase of infection. Inflammatory infiltrates are composed of lymphocytes, macrophages, natural killer cells, mast cells, and eosinophils. In this study, we hypothesized that mast cells producing tryptase could influence the migration and the activation of eosinophils at the site, thereby contributing to the immunopathology of the chronic phase. We seek evidence of interactions between mast cells and eosinophils through (1) evaluation of eosinophils, regarding the expression of PAR2, a tryptase receptor; (2) correlation analysis between densities of mast cells and eosinophils; and (3) ultrastructural studies. The electron microscopy studies revealed signs of activation of mast cells and eosinophils, as well as physical interaction between these cells. Immunohistochemistry and correlation analyses point to the participation of tryptase immunoreactive mast cells in the migration and/or survival of eosinophils at the affected organ.
Agmatine: at the crossroads of the arginine pathways.
Satriano, Joseph
2003-12-01
In acute inflammatory responses, such as wound healing and glomerulonephritis, arginine is the precursor for production of the cytostatic molecule nitric oxide (NO) and the pro-proliferative polyamines. NO is an early phase response whereas increased generation of polyamines is requisite for the later, repair phase response. The temporal switch of arginine as a substrate for the inducible nitric oxide synthase (iNOS)/NO axis to arginase/ornithine decarboxylase (ODC)/polyamine axis is subject to regulation by inflammatory cytokines as well as interregulation by the arginine metabolites themselves. Herein we describe the capacity of another arginine pathway, the metabolism of arginine to agmatine by arginine decarboxylase (ADC), to aid in this interregulation. Agmatine is an antiproliferative molecule due to its suppressive effects on intracellular polyamine levels, whereas the aldehyde metabolite of agmatine is a potent inhibitor of iNOS. We propose that the catabolism of agmatine to its aldehyde metabolite may act as a gating mechanism at the transition from the iNOS/NO axis to the arginase/ODC/polyamine axis. Thus, agmatine has the potential to serve in the coordination of the early and repair phase pathways of arginine in inflammation.
Trimetazidine protects retinal ganglion cells from acute glaucoma via the Nrf2/Ho-1 pathway.
Wan, Peixing; Su, Wenru; Zhang, Yingying; Li, Zhidong; Deng, Caibin; Zhuo, Yehong
2017-09-15
Acute glaucoma is one of the leading causes of irreversible vision impairment characterized by the rapid elevation of intraocular pressure (IOP) and consequent retinal ganglion cell (RGC) death. Oxidative stress and neuroinflammation have been considered critical for the pathogenesis of RGC death in acute glaucoma. Trimetazidine (TMZ), an anti-ischemic drug, possesses antioxidative and anti-inflammatory properties, contributing to its therapeutic potential in tissue damage. However, the role of TMZ in acute glaucoma and the underlying molecular mechanisms remain elusive. Here, we report that treatment with TMZ significantly attenuated retinal damage and RGC death in mice with acute glaucoma, with a significant decrease in reactive oxygen species (ROS) and inflammatory cytokine production in the retina. Furthermore, TMZ treatment directly decreased ROS production and rebalanced the intracellular redox state, thus contributing to the survival of RGCs in vitro TMZ treatment also reduced the production of inflammatory cytokines in vitro Mechanistically, the TMZ-mediated inhibition of apoptosis and inflammatory cytokine production in RGCs occurred via the regulation of the nuclear factor erythroid 2-related factor 2/heme oxygenase 1/caspase-8 pathway. Moreover, the TMZ-mediated neuroprotection in acute glaucoma was abrogated when an HO-1 inhibitor, SnPP, was used. Our findings identify potential mechanisms of RGC apoptosis and propose a novel therapeutic agent, TMZ, which exerts a precise neuroprotective effect against acute glaucoma. © 2017 The Author(s).
Zaringhalam, Jalal; Akbari, Akhtar; Zali, Alireza; Manaheji, Homa; Nazemian, Vida; Shadnoush, Mahdi; Ezzatpanah, Somayeh
2016-01-01
Introduction: Immune system is involved in the etiology and pathophysiology of inflammation and vitamins are important sources of substances inducing nonspecific immunomodulatory effects. Given the proinflammatory role of cytokines in the inflammation and pain induction, this study aimed to assess the effects of long-term administration of vitamin B1 on the proinflammatory cytokines, edema, and hyperalgesia during the acute and chronic phases of adjuvant-induced arthritis. Methods: On the first day of study, inflammation was induced by intraplantar injection of complete Freund's adjuvant (CFA) in the hindpaws of rats. Vitamin B1 at doses of 100, 150, and 200 mg/kg was administrated intraperitoneally during 21 days of the study. Antinociceptive and anti-inflammatory effects of vitamin B1 were also compared to indomethacin (5 mg/kg). Inflammatory symptoms such as thermal hyperalgesia and paw edema were measured by radiant heat and plethysmometer, respectively. Serum TNF-α and IL-1β levels were checked by rat standard enzyme-linked immune sorbent assay (ELISA) specific kits. Results: The results indicated that vitamin B1(150 and 200 mg/kg) attenuated the paw edema, thermal hyperalgesia, and serum levels of TNF-α and IL-1β during both phases of CFA-induced inflammation in a dose-dependent manner. Effective dose of vitamin B1(150 mg/kg) reduced inflammatory symptoms and serum levels of TNF-α and IL-1β compare to indomethacin during the chronic phase of inflammation. Conclusion: Anti-inflammatory and antihyperalgesic effects of vitamin B1 during CFA-induced arthritis, more specifically after chronic vitamin B1 administration, suggest its therapeutic property for inflammation. PMID:27872694
Eosinophil-mediated signalling attenuates inflammatory responses in experimental colitis
Masterson, Joanne C; McNamee, Eóin N; Fillon, Sophie A; Hosford, Lindsay; Harris, Rachel; Fernando, Shahan D; Jedlicka, Paul; Iwamoto, Ryo; Jacobsen, Elizabeth; Protheroe, Cheryl; Eltzschig, Holger K; Colgan, Sean P; Arita, Makoto; Lee, James J; Furuta, Glenn T
2015-01-01
Objective Eosinophils reside in the colonic mucosa and increase significantly during disease. Although a number of studies have suggested that eosinophils contribute to the pathogenesis of GI inflammation, the expanding scope of eosinophil-mediated activities indicate that they also regulate local immune responses and modulate tissue inflammation. We sought to define the impact of eosinophils that respond to acute phases of colitis in mice. Design Acute colitis was induced in mice by administration of dextran sulfate sodium, 2,4,6-trinitrobenzenesulfonic acid or oxazolone to C57BL/6J (control) or eosinophil deficient (PHIL) mice. Eosinophils were also depleted from mice using antibodies against interleukin (IL)-5 or by grafting bone marrow from PHIL mice into control mice. Colon tissues were collected and analysed by immunohistochemistry, flow cytometry and reverse transcription PCR; lipids were analysed by mass spectroscopy. Results Eosinophil-deficient mice developed significantly more severe colitis, and their colon tissues contained a greater number of neutrophils, than controls. This compensatory increase in neutrophils was accompanied by increased levels of the chemokines CXCL1 and CXCL2, which attract neutrophils. Lipidomic analyses of colonic tissue from eosinophil-deficient mice identified a deficiency in the docosahexaenoic acid-derived anti-inflammatory mediator 10, 17- dihydroxydocosahexaenoic acid (diHDoHE), namely protectin D1 (PD1). Administration of an exogenous PD1-isomer (10S, 17S-DiHDoHE) reduced the severity of colitis in eosinophil-deficient mice. The PD1-isomer also attenuated neutrophil infiltration and reduced levels of tumour necrosis factor-α, IL-1β, IL-6 and inducible NO-synthase in colons of mice. Finally, in vitro assays identified a direct inhibitory effect of PD1-isomer on neutrophil transepithelial migration. Conclusions Eosinophils exert a protective effect in acute mouse colitis, via production of anti-inflammatory lipid mediators. PMID:25209655
Bansal, Shruti; Chhibber, Sanjay
2010-04-01
Acute lung injuries due to acute lung infections remain a major cause of mortality. Thus a combination of an antibiotic and a compound with immunomodulatory and anti-inflammatory activities can help to overcome acute lung infection-induced injuries. Curcumin derived from the rhizome of turmeric has been used for decades and it exhibits anti-inflammatory, anti-carcinogenic, immunomodulatory properties by downregulation of various inflammatory mediators. Keeping these properties in mind, we investigated the anti-inflammatory properties of curcumin in a mouse model of acute inflammation by introducing Klebsiella pneumoniae B5055 into BALB/c mice via the intranasal route. Intranasal instillation of bacteria in this mouse model of acute pneumonia-induced inflammation resulted in a significant increase in neutrophil infiltration in the lungs along with increased production of various inflammatory mediators [i.e. malondialdehyde (MDA), myeloperoxidase (MPO), nitric oxide (NO), tumour necrosis factor (TNF)-alpha] in the lung tissue. The animals that received curcumin alone orally or in combination with augmentin, 15 days prior to bacterial instillation into the lungs via the intranasal route, showed a significant (P <0.05) decrease in neutrophil influx into the lungs and a significant (P <0.05) decrease in the production of MDA, NO, MPO activity and TNF-alpha levels. Augmentin treatment alone did not decrease the MDA, MPO, NO and TNF-alpha levels significantly (P >0.05) as compared to the control group. We therefore conclude that curcumin ameliorates lung inflammation induced by K. pneumoniae B5055 without significantly (P <0.05) decreasing the bacterial load in the lung tissue whereas augmentin takes care of bacterial proliferation. Hence, curcumin can be used as an adjunct therapy along with antibiotics as an anti-inflammatory or an immunomodulatory agent in the case of acute lung infection.
Mediators of low-grade chronic inflammation in polycystic ovary syndrome (PCOS).
Ojeda-Ojeda, Miriam; Murri, Mora; Insenser, María; Escobar-Morreale, Héctor F
2013-01-01
Chronic low-grade subclinical inflammation has been increasingly recognized as an interposer in the endocrine, metabolic and reproductive disturbances that characterize the polycystic ovary syndrome (PCOS). Abdominal adiposity and obesity are often present in PCOS. Mounting evidence indicates that adipose tissue is involved in innate and adaptive immune responses. Continuous release of inflammatory mediators such as cytokines, acute phase proteins, and adipokines perpetuates the inflammatory condition associated with obesity in women with PCOS, possibly contributing to insulin resistance and other long-term cardiometabolic risk factors. Genetic variants in the genes encoding inflammation-related mediators underlie the development of PCOS and their interaction with environmental factors may contribute to the heterogeneous clinical phenotype of this syndrome. In the future, strategies ameliorating inflammation may prove useful for the management of PCOS and associated conditions.
Neuroinflammation in hepatic encephalopathy: mechanistic aspects.
Jayakumar, Arumugam R; Rama Rao, Kakulavarapu V; Norenberg, Michael D
2015-03-01
Hepatic encephalopathy (HE) is a major neurological complication of severe liver disease that presents in acute and chronic forms. While elevated brain ammonia level is known to be a major etiological factor in this disorder, recent studies have shown a significant role of neuroinflammation in the pathogenesis of both acute and chronic HE. This review summarizes the involvement of ammonia in the activation of microglia, as well as the means by which ammonia triggers inflammatory responses in these cells. Additionally, the role of ammonia in stimulating inflammatory events in brain endothelial cells (ECs), likely through the activation of the toll-like receptor-4 and the associated production of cytokines, as well as the stimulation of various inflammatory factors in ECs and in astrocytes, are discussed. This review also summarizes the inflammatory mechanisms by which activation of ECs and microglia impact on astrocytes leading to their dysfunction, ultimately contributing to astrocyte swelling/brain edema in acute HE. The role of microglial activation and its contribution to the progression of neurobehavioral abnormalities in chronic HE are also briefly presented. We posit that a better understanding of the inflammatory events associated with acute and chronic HE will uncover novel therapeutic targets useful in the treatment of patients afflicted with HE.
Cold Condition Influence on the Pulmonary Function in Smoking Military Men
2002-04-01
abundance, allergy and frequent airways acute inflammatory diseases in anamnesis and have been made routine clinical examination. 23-3 During...physical exercise, emotional stress etc.; and have in anamnesis (during last 2 year) 3-4 times and over acute airway inflammatory diseases: 17 persons
Cerebral Embolic Activity in a Patient during Acute Crisis of Takayasu's Arteritis
Nogueira, Ricardo de Carvalho; Bor-Seng-Shu, Edson; Marchiori, Paulo Eurípedes; Teixeira, Manoel Jacobsen
2012-01-01
Takayasu's arteritis is a disease that affects large vessels and may cause neurological symptoms either by stenoses/occlusions or embolisms from vessels with an inflammatory process. Transcranial Doppler (TCD) ultrasound can provide useful information for diagnosis and monitoring during the active phase of the disease. Cerebral embolic signals can be detected by TCD and have been considered a risk factor for vascular events. We report a patient in whom TCD ultrasound was used to monitor cerebral embolic signals during the active phase of the disease. This case report suggests that embolic activity in Takayasu's arteritis may represent disease activity, and its monitoring may be useful for evaluating the response to therapy. PMID:22379479
Nascif, Ana K S; Terreri, Maria T R A; Len, Cláudio A; Andrade, Luis E C; Hilário, Maria O E
2006-01-01
Nailfold capillaroscopy is an important tool for the diagnosis and follow-up of patients with rheumatic diseases, in particular dermatomyositis and scleroderma. A relationship has been observed in adults between improved capillaroscopic findings and reduced disease activity. Our aim was to correlate disease activity (clinical and laboratory data) and nailfold capillaroscopy findings in 18 patients with inflammatory myopathies. This prospective study included 13 juvenile dermatomyositis patients (Bohan and Peter criteria) (mean age of 8.8 years) and five patients with overlap syndrome (mean age of 15.7 years). We evaluated disease activity (skin abnormalities and muscle weakness, muscle enzymes and acute phase reactants) and its correlation with nailfold capillaroscopy findings (dilatation of isolated loops, dropout of surrounding vessels and giant capillary loops). We used a microscope with special light and magnification of 10 to 16X. Eighteen patients underwent a total of 26 capillaroscopic examinations, seven of them on two or more occasions (13 were performed during the active disease phase and 13 during remission). Twelve of the 13 examinations performed during the active phase exhibited scleroderma pattern and 8 of the 13 examinations performed during remission were normal. Therefore, in 20 of the 26 examinations clinical and laboratory data and nailfold capillaroscopy findings correlated (p = 0.01). Nailfold capillaroscopy is a non-invasive examination that offers satisfactory correlation with disease activity and could be a useful tool for the diagnosis and follow-up of inflammatory myopathies.
Nakai, Go; Yamada, Takashi; Hamada, Takamitsu; Atsukawa, Natsuko; Tanaka, Yoshikazu; Yamamoto, Kiyohito; Higashiyama, Akira; Juri, Hiroshi; Nakamoto, Atsushi; Yamamoto, Kazuhiro; Hirose, Yoshinobu; Ohmichi, Masahide; Narumi, Yoshifumi
2017-07-01
Venous infarction of a leiomyoma is known as red degeneration of leiomyoma (RDL) and can be a cause of acute abdomen. Although magnetic resonance imaging (MRI) is the only modality that can depict the inner condition of a leiomyoma, the typical MR findings of RDL are sometimes identified incidentally even in asymptomatic patients. The purpose of this study is to clarify common pathological findings of uterine tumors preoperatively diagnosed as RDL by MRI. We diagnosed 28 cases of RDL by MRI from March 2007 to April 2015. The ten lesions subjected to pathological analysis after resection were included in the study and reviewed by a gynecological pathologist. The average time from MRI to operation was 4.7 months. The typical beefy-red color was not observed on the cut surface of the tumor except in one tumor resected during the acute phase. All lesions diagnosed as RDL by MRI had common pathological findings consistent with red degeneration of leiomyoma, including coagulative necrosis. Other common pathological features of RDL besides extensive coagulative necrosis appear to be a lack of inflammatory cell infiltrate or hemorrhage in the entire lesion. Although RDL is known to cause acute abdomen, its typical MR findings can be observed even in asymptomatic patients in a condition that manifests long after red degeneration. The characteristic pathological findings in both the acute phase and the chronic phase that we found in this study, along with radiology reports, will be helpful references for gynecologists and pathologists in suspecting a history of red degeneration and confirming the diagnosis.
Docosahexaenoic acid affects markers of inflammation and muscle damage after eccentric exercise.
DiLorenzo, Frank M; Drager, Christopher J; Rankin, Janet W
2014-10-01
The effect of docosahexaenoic acid (DHA) on inflammatory and muscle damage response to acute eccentric exercise and to the subsequent initiation of a resistance training program was studied in 41 untrained men. Subjects consumed either 2 g·d of either DHA or placebo (PL) for 28 days before a 17-day exercise phase (day 1 to day 17) that began with an eccentric exercise bout of the elbow flexors (day 1). For analysis, the exercise period was further divided into an acute response phase (day 1-4). Isometric muscle strength (STR), range of motion (ROM), and delayed onset muscle soreness (DOMS) were measured on days 1, 2, 3, 4, 7, 12, and 17. Fasted blood was measured for interleukin 6 (IL-6), interleukin 1 receptor antagonist, C-reactive protein (CRP), and creatine kinase (CK) on days 1, 2, and 4. Serum CK and CRP were also measured in blood collected on days 7, 12, and 17. In the acute phase, DHA significantly reduced the serum CK (12.5%) and the IL-6 response (32%) but did not affect STR or DOMS. Over the entire 17-day resistance exercise period, DOMS area under the curve was 183.2 ± 96.2 for DHA and 203.2 ± 120.9 for PL (p = 0.054) and the CK response was numerically lower for DHA (p = 0.093). Docosahexaenoic acid supplementation reduced some but not all indicators of muscle damage and inflammation in the 4 days after an acute eccentric exercise bout but did not significantly affect the response to initiation of resistance exercise.
Inage, Kazuhide; Orita, Sumihisa; Yamauchi, Kazuyo; Suzuki, Takane; Suzuki, Miyako; Sakuma, Yoshihiro; Kubota, Go; Oikawa, Yasuhiro; Sainoh, Takeshi; Sato, Jun; Fujimoto, Kazuki; Shiga, Yasuhiro; Abe, Koki; Kanamoto, Hirohito; Inoue, Masahiro; Kinoshita, Hideyuki; Takahashi, Kazuhisa; Ohtori, Seiji
2016-08-01
Retrospective study. To determine whether low-dose tramadol plus non-steroidal anti-inflammatory drug combination therapy could prevent the transition of acute low back pain to chronic low back pain. Inadequately treated early low back pain transitions to chronic low back pain occur in approximately 30% of affected individuals. The administration of non-steroidal anti-inflammatory drugs is effective for treatment of low back pain in the early stages. However, the treatment of low back pain that is resistant to non-steroidal anti-inflammatory drugs is challenging. Patients who presented with acute low back pain at our hospital were considered for inclusion in this study. After the diagnosis of acute low back pain, non-steroidal anti-inflammatory drug administration was started. Forty patients with a visual analog scale score of >5 for low back pain 1 month after treatment were finally enrolled. The first 20 patients were included in a non-steroidal anti-inflammatory drug group, and they continued non-steroidal anti-inflammatory drug therapy for 1 month. The next 20 patients were included in a combination group, and they received low-dose tramadol plus non-steroidal anti-inflammatory drug combination therapy for 1 month. The incidence of adverse events and the improvement in the visual analog scale score at 2 months after the start of treatment were analyzed. No adverse events were observed in the non-steroidal anti-inflammatory drug group. In the combination group, administration was discontinued in 2 patients (10%) due to adverse events immediately following the start of tramadol administration. At 2 months, the improvement in the visual analog scale score was greater in the combination group than in the non-steroidal anti-inflammatory drug group (p<0.001). Low-dose tramadol plus non-steroidal anti-inflammatory drug combination therapy might decrease the incidence of adverse events and prevent the transition of acute low back pain to chronic low back pain.
ASEPTIC INFLAMMATION IN THE LUNGS IN ACUTE RADIATION SICKNESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, A.E.
1963-09-01
Inflammation in the lungs of irradiated rabbits at the site of turpentine injection has much in common with the inflammatory changes arising in other tissues and organs during local irradiation or acute radiation sickness. The fact that the inflammatory changes under different conditions of irradiation are similar in type regardless of the character of the inflammatory agent suggests that the phenomenon has a common mechanism. The absence of polymorphonuclear (eosinophtlic) leukocytes from inflammatory foci in irradiated rabbits is due not only to the developing leukopenia, but also to a disturbance of the leukocyte emigration process into the inflammatory focus. Inmore » irradiated rabbits in cortrast to the controls, the normal arrangement of the fibrous structures is preserved in the necrotic lung tissue at the site of turpentine injection. In animals with severe acute radiation sickness induced by external irradiation in sublethal doses, the ability of the organism to respond to introduction of an inflammatory agent by an increase in the number of leukocytes in the blood and by a rise of the body temperature is to some extent preserved. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kali, Avinash; Cokic, Ivan; Tang, Richard
Emerging evidence now supports the notion that persistent microvascular obstruction (PMO) may be more predictive of major adverse cardiovascular events than MI size itself. But, how PMO, a phenomenon limited to the acute/sub-acute period of MI, imparts adverse remodeling throughout the post MI period, particularly after its resolution, is incompletely understood. We hypothesized that PMOs resolve into chronic iron crystals within MI territories and actively impart a proinflammatory burden and adverse remodeling of infarction and LV in the chronic phase of MI. Canine models reperfused (n=20) and non-reperfused (n=20) with and without PMO were studied with serial cardiac MRI tomore » characterize the spatiotemporal relationships between PMO, iron deposition, and infarct and LV remodeling indices between acute (day 7, post MI) and chronic (week 8, post MI). Histopathology and immunohistochemistry were used to validate the iron deposition, microscopically map and quantify the relationship between iron-rich chronic MI regions against pro-inflammatory macrophages, proinflammatory cytokines and matrix metalloproteinase. Atomic resolution transmission electron microscopy (TEM) was used to determine the crystallinity of iron and assess the physical effects of iron on lysosomes within macrophages, and energy-dispersive X-ray spectroscopy (EDS) to identify the chemical composition of the iron composite. Results showed that PMOs lead to iron deposition within chronic MI and that the extent of chronic iron deposition is strongly related to PMO Volume (r>0.6, p<0.001). TEM and EDS analysis showed that iron within chronic MI is found within macrophages as aggregates of nanocrystals of ~2.5 nm diameter in ferric state. Correlative histological studies showed that iron content, proinflammatory burden and collagen degrading enzyme were highly correlated (r >0.7, p<0.001). Iron within chronic MI was significantly associated with infarct resorption (r>0.5, p<0.001) and adverse structural (r>0.5, p<0.001) remodeling. Territories of PMO in the acute phase of MI resolve into iron oxide nanocrystals in ferric state in the chronic phase of MI. The amount of iron deposition is determined by the extent of persistent microvascular obstruction and is directly related to the extent of pro-inflammatory burden, infarct thinning and adverse LV remodeling. Resolution of PMO into iron deposition could be a potential contributing source to the adverse remodeling of the heart in the chronic phase of MI.« less
Kjelgaard-Hansen, Mads; Christensen, Michelle B; Lee, Marcel H; Jensen, Asger L; Jacobsen, Stine
2007-06-15
Serum amyloid A (SAA) is a major acute phase protein in dogs. However, knowledge of qualitative properties of canine SAA and extent of its synthesis in extrahepatic tissues is limited. The aim of the study was to investigate expression of different SAA isoforms in serum and synovial fluid in samples obtained from dogs (n=16) suffering from different inflammatory or non-inflammatory conditions, which were either related or unrelated to joints. Expression of SAA isoforms was visualized by denaturing isoelectric focusing and Western blotting. Serum amyloid A was present in serum from all dogs with systemic inflammatory activity, and up to four major isoforms with apparent isoelectric points between 6.1 and 7.9 were identified. In synovial fluid from inflamed joints one or more highly alkaline SAA isoforms (with apparent isoelectric points above 9.3) were identified, with data suggesting local production of these isoforms in the canine inflamed joint.
Otterdal, Kari; Janardhanan, Jeshina; Astrup, Elisabeth; Ueland, Thor; Prakash, John A J; Lekva, Tove; Abraham, O C; Thomas, Kurien; Damås, Jan Kristian; Mathews, Prasad; Mathai, Dilip; Aukrust, Pål; Varghese, George M
2014-11-01
Scrub typhus is endemic in the Asia-Pacific region. Mortality is high even with treatment, and further knowledge of the immune response during this infection is needed. This study was aimed at comparing plasma levels of monocyte/macrophage and endothelial related inflammatory markers in patients and controls in South India and to explore a possible correlation to disease severity and clinical outcome. Plasma levels of ALCAM, VCAM-1, sCD163, sCD14, YKL-40 and MIF were measured in scrub typhus patients (n = 129), healthy controls (n = 31) and in infectious disease controls (n = 31), both in the acute phase and after recovery, by enzyme immunoassays. Patients had markedly elevated levels of all mediators in the acute phase, differing from both healthy and infectious disease controls. During follow-up levels of ALCAM, VCAM-1, sCD14 and YKL-40 remained elevated compared to levels in healthy controls. High plasma ALCAM, VCAM-1, sCD163, sCD14, and MIF, and in particular YKL-40 were all associated with disease severity and ALCAM, sCD163, MIF and especially YKL-40, were associated with mortality. Our findings show that scrub typhus is characterized by elevated levels of monocyte/macrophage and endothelial related markers. These inflammatory markers, and in particular YKL-40, may contribute to disease severity and clinical outcome. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Heterotopic ossification revisited.
Mavrogenis, Andreas F; Soucacos, Panayotis N; Papagelopoulos, Panayiotis J
2011-03-11
Heterotopic ossification is the abnormal formation of mature lamellar bone within extraskeletal soft tissues where bone does not exist. Heterotopic ossification has been classified into posttraumatic, nontraumatic or neurogenic, and myositis ossificans progressiva or fibrodysplasia ossificans progressive. The pathophysiology is unknown. Anatomically, heterotopic ossification occurs outside the joint capsule without disrupting it. The new bone can be contiguous with the skeleton but generally does not involve the periosteum. Three-phase technetium-99m (99mTc) methylene diphosphonate bone scan is the most sensitive imaging modality for early detection and assessing the maturity of heterotopic ossification. Nonsurgical treatment with indomethacin and radiation therapy is appropriate for prophylaxis or early treatment of heterotopic ossification. Although bisphosphonates are effective prophylaxis if initiated shortly after the trauma, mineralization of the bone matrix resumes after drug discontinuation. During the acute inflammatory stage, the patient should rest the involved joint in a functional position; once acute inflammatory signs subside, passive range of motion exercises and continued mobilization are indicated. Surgical indications for excision of heterotopic ossification include improvement of function, standing posture, sitting or ambulation, independent dressing, feeding and hygiene, and repeated pressure sores from underlying bone mass. The optimal timing of surgery has been suggested to be a delay of 12 to 18 months until radiographic evidence of heterotopic ossification maturation and maximal recovery after neurological injury. The ideal candidate for surgical treatment before 18 months should have no joint pain or swelling, a normal alkaline phosphatase level, and 3-phase bone scan indicating mature heterotopic ossification. Copyright 2011, SLACK Incorporated.
Morimoto, Yasuo; Izumi, Hiroto; Yoshiura, Yukiko; Fujisawa, Yuri; Fujita, Katsuhide
Inhalation tests are the gold standard test for the estimation of the pulmonary toxicity of respirable materials. Intratracheal instillation tests have been used widely, but they yield limited evidence of the harmful effects of respirable materials. We reviewed the effectiveness of intratracheal instillation tests for estimating the hazards of nanomaterials, mainly using research papers featuring intratracheal instillation and inhalation tests centered on a Japanese national project. Compared to inhalation tests, intratracheal instillation tests induced more acute inflammatory responses in the animal lung due to a bolus effect regardless of the toxicity of the nanomaterials. However, nanomaterials with high toxicity induced persistent inflammation in the chronic phase, and nanomaterials with low toxicity induced only transient inflammation. Therefore, in order to estimate the harmful effects of a nanomaterial, an observation period of 3 months or 6 months following intratracheal instillation is necessary. Among the endpoints of pulmonary toxicity, cell count and percentage of neutrophil, chemokines for neutrophils and macrophages, and oxidative stress markers are considered most important. These markers show persistent and transient responses in the lung from nanomaterials with high and low toxicity, respectively. If the evaluation of the pulmonary toxicity of nanomaterials is performed in not only the acute but also the chronic phase in order to avoid the bolus effect of intratracheal instillation and inflammatory-related factors that are used as endpoints of pulmonary toxicity, we speculate that intratracheal instillation tests can be useful for screening for the identification of the hazard of nanomaterials through pulmonary inflammation.
[Acute non-traumatic myelopathy in children and adolescents].
Arroyo, Hugo A
2013-09-06
The term 'acute myelopathies'--referred to a spinal cord dysfunction--represent a heterogeneous group of disorders with distinct etiologies, clinical and radiologic features, and prognoses. The objective of this review is to discuss the non-traumatic acute myelopathies. Acute myelopathy can be due to several causes as infective agents or inflammatory processes, such as in acute myelitis, compressive lesions, vascular lesions, etc. The clinical presentation is often dramatic with tetraparesis or paraparesis, sensory disturbances and bladder and/or bowel dysfunction. History and physical examination are used to localize the lesion to the root or specific level of the cord, which can guide imaging. Different syndromes are recognized: complete transverse lesion, central grey matter syndrome, anterior horn syndrome, anterior spinal artery syndrome, etc). The first priority is to rule out a compressive lesion. If a myelopathy is suspected, a gadolinium-enhanced MRI of the spinal cord should be obtained as soon as possible. If there is no structural lesion such as epidural blood or a spinal mass, then the presence or absence of spinal cord inflammation should be documented with a lumbar puncture. The absence of pleocytosis would lead to consideration of non inflammatory causes of myelopathy such as arteriovenous malformations, fibrocartilaginous embolism, or possibly early inflammatory myelopathy. In the presence of an inflammatory process (defined by gadolinium enhancement, cerebrospinal fluid pleocytosis, or elevated cerebrospinal fluid immunoglobulin index), one should determine whether there is an inflammatory or an infectious cause. Different virus, bacterias, parasites and fungi have to be considered as autoimmune and inflammatory diseases that involve the central nervous system.
Slusher, Aaron L; Whitehurst, Michael; Wells, Marie; Maharaj, Arun; Shibata, Yoshimi
2015-01-01
Chitinase 3-like 1 (CHI3L1) and intelectin 1 (ITLN-1) recognize microbial N-acetylglucosamine polymer and galactofuranosyl carbohydrates, respectively. Both lectins are highly abundant in plasma and seem to play pro- and anti-inflammatory roles, respectively, in obesity and inflammatory-related illnesses. The aim of this study was to examine whether plasma levels of these lectins in obese subjects are useful for monitoring inflammatory conditions immediately influenced by acute aerobic exercise. Plasma interleukin-6, a pro-inflammatory cytokine, was also examined. Twenty-two (11 obese and 11 normal-weight) healthy subjects, ages 18–30 years, were recruited to perform a 30 min bout of acute aerobic exercise at 75% VO2max. We confirmed higher baseline levels of plasma CHI3L1, but lower ITLN-1, in obese subjects than in normal-weight subjects. The baseline levels of CHI3L1 were negatively correlated with cardiorespiratory fitness (relative VO2max). However, when controlled for BMI, the relationship between baseline level of CHI3L1 and relative VO2max was no longer observed. While acute aerobic exercise elicited an elevation in these parameters, we found a lower ITLN-1 response in obese subjects compared to normal-weight subjects. Our study clearly indicates that acute aerobic exercise elicits a pro-inflammatory response (e.g. CHI3L1) with a lower anti-inflammatory effect (e.g. ITLN-1) in obese individuals. Furthermore, these lectins could be predictors of outcome of exercise interventions in obesity-associated inflammation. PMID:26316585
Singh, Kanhaiya; Agrawal, Neeraj K; Gupta, Sanjeev K; Mohan, Gyanendra; Chaturvedi, Sunanda; Singh, Kiran
2016-10-01
The inflammatory phase of wound healing cascade is an important determinant of the fate of the wound. Acute inflammation is necessary to initiate proper wound healing, while chronic inflammation abrogates wound healing. Different endosomal members of toll-like receptor (TLR) family initiate inflammatory signalling via a range of different inflammatory mediators such as interferons, internal tissue damaged-associated molecular patterns (DAMPs) and hyperactive effector T cells. Sustained signalling of TLR9 and TLR7 contributes to chronic inflammation by activating the plasmacytoid dendritic cells. Diabetic wounds are also characterised by sustained inflammatory phase. The objective of this study was to analyse the differential expression of endosomal TLRs in human diabetic wounds compared with control wounds. We analysed the differential expression of TLR7 and TLR9 both at transcriptional and translational levels in wounds of 84 patients with type 2 diabetes mellitus (T2DM) and 6 control subjects without diabetes using quantitative real-time polymerase chain reaction (RT-PCR), western blot and immunohistochemistry. TLR7 and TLR9 were significantly up-regulated in wounds of the patients with T2DM compared with the controls and were dependent on the infection status of the diabetic wounds, and wounds with microbial infection exhibited lower expression levels of endosomal TLRs. Altered endosomal TLR expression in T2DM subjects might be associated with wound healing impairment. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
ROS-activated calcium signaling mechanisms regulating endothelial barrier function.
Di, Anke; Mehta, Dolly; Malik, Asrar B
2016-09-01
Increased vascular permeability is a common pathogenic feature in many inflammatory diseases. For example in acute lung injury (ALI) and its most severe form, the acute respiratory distress syndrome (ARDS), lung microvessel endothelia lose their junctional integrity resulting in leakiness of the endothelial barrier and accumulation of protein rich edema. Increased reactive oxygen species (ROS) generated by neutrophils (PMNs) and other inflammatory cells play an important role in increasing endothelial permeability. In essence, multiple inflammatory syndromes are caused by dysfunction and compromise of the barrier properties of the endothelium as a consequence of unregulated acute inflammatory response. This review focuses on the role of ROS signaling in controlling endothelial permeability with particular focus on ALI. We summarize below recent progress in defining signaling events leading to increased endothelial permeability and ALI. Copyright © 2016 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Pain management and welfare are increasingly prevalent concerns within animal agriculture and oral analgesics may alleviate the pain associated with castration. This study was conducted to elucidate the effects of surgical castration on the acute inflammatory response and immunomodulation and whethe...
USDA-ARS?s Scientific Manuscript database
Pain management and welfare are increasingly prevalent concerns within animal agriculture. Analgesics may alleviate pain and inflammation associated with castration of beef cattle. This study was conducted to elucidate the effects of surgical castration on the acute inflammatory response and immunom...
USDA-ARS?s Scientific Manuscript database
Pain management and welfare are increasingly prevalent concerns within animal agriculture and oral analgesics may alleviate the pain associated with castration. This study was conducted to elucidate the effects of surgical castration on the acute inflammatory response and immunomodulation and whethe...
Involvement of prostaglandins and histamine in nickel wire-induced acute inflammation in mice.
Hirasawa, Noriyasu; Goi, Yoshiaki; Tanaka, Rina; Ishihara, Kenji; Ohtsu, Hiroshi; Ohuchi, Kazuo
2010-06-15
The irritancy of Nickel (Ni) ions has been well documented clinically. However, the chemical mediators involved in the acute inflammation induced by solid Ni are not fully understood. We used the Ni wire-implantation model in mice and examined roles of prostaglandins and histamine in plasma leakage in the acute phase. The subcutaneous implantation of a Ni wire into the back of mice induced plasma leakage from 8 to 24 h and tissue necrosis around the wire at 3 days, whereas the implantation of an aluminum wire induced no such inflammatory responses. An increase in the mRNA for cyclooxygenase (COX)-2 and HDC in cells around the Ni wire was detected 4 h after the implantation. The leakage of plasma at 8 h was inhibited by indomethacin in a dose-dependent manner. Dexamethasone and the p38 MAP kinase inhibitor SB203580 also inhibited the exudation of plasma consistent with the inhibition of the expression of COX-2 mRNA. Furthermore, plasma leakage was partially but siginificantly reduced in histamine H1 receptor knockout mice and histidine decarboxylase (HDC) knockout mice but not in H2 receptor knockout mice. These results suggested that the Ni ions released from the wire induced the expression of COX-2 and HDC, resulting in an increase in vascular permeability during the acute phase of inflammation. (c) 2009 Wiley Periodicals, Inc.
Conserved gene regulation during acute inflammation between zebrafish and mammals
Forn-Cuní, G.; Varela, M.; Pereiro, P.; Novoa, B.; Figueras, A.
2017-01-01
Zebrafish (Danio rerio), largely used as a model for studying developmental processes, has also emerged as a valuable system for modelling human inflammatory diseases. However, in a context where even mice have been questioned as a valid model for these analysis, a systematic study evaluating the reproducibility of human and mammalian inflammatory diseases in zebrafish is still lacking. In this report, we characterize the transcriptomic regulation to lipopolysaccharide in adult zebrafish kidney, liver, and muscle tissues using microarrays and demonstrate how the zebrafish genomic responses can effectively reproduce the mammalian inflammatory process induced by acute endotoxin stress. We provide evidence that immune signaling pathways and single gene expression is well conserved throughout evolution and that the zebrafish and mammal acute genomic responses after lipopolysaccharide stimulation are highly correlated despite the differential susceptibility between species to that compound. Therefore, we formally confirm that zebrafish inflammatory models are suited to study the basic mechanisms of inflammation in human inflammatory diseases, with great translational impact potential. PMID:28157230
Synthesis and Anti-inflammatory Evaluation of Novel Benzimidazole and Imidazopyridine Derivatives
2012-01-01
Sepsis, an acute inflammatory disease, remains the most common cause of death in intensive care units. A series of benzimidazole and imidazopyridine derivatives were synthesized and screened for anti-inflammatory activities, and the imidazopyridine series showed excellent inhibition of the expression of inflammatory cytokines in LPS-stimulated macrophages. Compounds X10, X12, X13, X14, and X15 inhibited TNF-α and IL-6 release in a dose-dependent manner, and X12 showed no cytotoxicity in hepatic cells. Furthermore, X12 exhibited a significant protection against LPS-induced septic death in mouse models. Together, these data present a series of new imidazopyridines with potential therapeutic effects in acute inflammatory diseases. PMID:24900565
Synthesis and Anti-inflammatory Evaluation of Novel Benzimidazole and Imidazopyridine Derivatives.
Chen, Gaozhi; Liu, Zhiguo; Zhang, Yali; Shan, Xiaoou; Jiang, Lili; Zhao, Yunjie; He, Wenfei; Feng, Zhiguo; Yang, Shulin; Liang, Guang
2013-01-10
Sepsis, an acute inflammatory disease, remains the most common cause of death in intensive care units. A series of benzimidazole and imidazopyridine derivatives were synthesized and screened for anti-inflammatory activities, and the imidazopyridine series showed excellent inhibition of the expression of inflammatory cytokines in LPS-stimulated macrophages. Compounds X10, X12, X13, X14, and X15 inhibited TNF-α and IL-6 release in a dose-dependent manner, and X12 showed no cytotoxicity in hepatic cells. Furthermore, X12 exhibited a significant protection against LPS-induced septic death in mouse models. Together, these data present a series of new imidazopyridines with potential therapeutic effects in acute inflammatory diseases.
Zhang, Yali; Wu, Jianzhang; Ying, Shilong; Chen, Gaozhi; Wu, Beibei; Xu, Tingting; Liu, Zhiguo; Liu, Xing; Huang, Lehao; Shan, Xiaoou; Dai, Yuanrong; Liang, Guang
2016-01-01
Acute lung injury (ALI) is a life-threatening acute inflammatory disease with limited options available for therapy. Myeloid differentiation protein 2, a co-receptor of TLR4, is absolutely required for TLR4 sense LPS, and represents an attractive target for treating severe inflammatory diseases. In this study, we designed and synthesized 31 chalcone derivatives that contain the moiety of (E)-4-phenylbut-3-en-2-one, which we consider the core structure of current MD2 inhibitors. We first evaluated the anti-inflammatory activities of these compounds in MPMs. For the most active compound 20, we confirmed that it is a specific MD2 inhibitor through a series of biochemical experiments and elucidated that it binds to the hydrophobic pocket of MD2 via hydrogen bonds with Arg90 and Tyr102 residues. Compound 20 also blocked the LPS-induced activation of TLR4/MD2 -downstream pro-inflammatory MAPKs/NF-κB signaling pathways. In a rat model with ALI induced by intracheal LPS instillation, administration with compound 20 exhibited significant protective effect against ALI, accompanied by the inhibition of TLR4/MD2 complex formation in lung tissues. Taken together, the results of this study suggest the specific MD2 inhibitor from chalcone derivatives we identified is a potential candidate for treating acute inflammatory diseases. PMID:27118147
Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shannahan, Jonathan H.; Alzate, Oscar; Winnik, Witold M.
Identification of biomarkers assists in the diagnosis of disease and the assessment of health risks from environmental exposures. We hypothesized that rats exposed to Libby amphibole (LA) would present with a unique serum proteomic profile which could help elucidate epidemiologically-relevant biomarkers. In four experiments spanning varied protocols and temporality, healthy (Wistar Kyoto, WKY; and F344) and cardiovascular compromised (CVD) rat models (spontaneously hypertensive, SH; and SH heart failure, SHHF) were intratracheally instilled with saline (control) or LA. Serum biomarkers of cancer, inflammation, metabolic syndrome (MetS), and the acute phase response (APR) were analyzed. All rat strains exhibited acute increases inmore » α-2-macroglobulin, and α1-acid glycoprotein. Among markers of inflammation, lipocalin-2 was induced in WKY, SH and SHHF and osteopontin only in WKY after LA exposure. While rat strain- and age-related changes were apparent in MetS biomarkers, no LA effects were evident. The cancer marker mesothelin was increased only slightly at 1 month in WKY in one of the studies. Quantitative Intact Proteomic profiling of WKY serum at 1 day or 4 weeks after 4 weekly LA instillations indicated no oxidative protein modifications, however APR proteins were significantly increased. Those included serine protease inhibitor, apolipoprotein E, α-2-HS-glycoprotein, t-kininogen 1 and 2, ceruloplasmin, vitamin D binding protein, serum amyloid P, and more 1 day after last LA exposure. All changes were reversible after a short recovery regardless of the acute or long-term exposures. Thus, LA exposure induces an APR and systemic inflammatory biomarkers that could have implications in systemic and pulmonary disease in individuals exposed to LA. -- Highlights: ► Biomarkers of asbestos exposure are required for disease diagnosis. ► Libby amphibole exposure is associated with increased human mortality. ► Libby amphibole increases circulating proteins involved in acute phase response. ► Libby amphibole exposure increases circulating osteopontin and lipocalin-2. ► Rats with heart failure have compromised ability to mount acute phase response.« less
NASA Astrophysics Data System (ADS)
Ushenko, Yu A.
2012-11-01
The complex technique of concerted polarization-phase and spatial-frequency filtering of blood plasma laser images is suggested. The possibility of obtaining the coordinate distributions of phases of linearly and circularly birefringent protein networks of blood plasma separately is presented. The statistical (moments of the first to fourth orders) and scale self-similar (logarithmic dependences of power spectra) structure of phase maps of different types of birefringence of blood plasma of two groups of patients-healthy people (donors) and those suffering from rectal cancer-is investigated. The diagnostically sensitive parameters of a pathological change of the birefringence of blood plasma polycrystalline networks are determined. The effectiveness of this technique for detecting change in birefringence in the smears of other biological fluids in diagnosing the appearance of cholelithiasis (bile), operative differentiation of the acute and gangrenous appendicitis (exudate), and differentiation of inflammatory diseases of joints (synovial fluid) is shown.
Systemic synergism between codeine and morphine in three pain models in mice.
Miranda, Hugo F; Noriega, Viviana; Zepeda, Ramiro J; Sierralta, Fernando; Prieto, Juan C
2013-01-01
The combination of two analgesic agents offers advantages in pain treatment. Codeine and morphine analgesia is due to activation of opioid receptor subtypes. This study, performed in mice using isobolographic analysis, evaluated the type of interaction in intraperitoneal (ip) or intrathecal (it) coadministration of codeine and morphine, in three nociceptive behavioral models. Intrathecal morphine resulted to be 7.5 times more potent than ip morphine in the writhing test, 55.6 times in the tail flick test and 1.7 times in phase II of the orofacial formalin test; however, in phase I of the same test ip was 1.2 times more potent than it morphine. Intrathecal codeine resulted being 3.4 times more potent than ip codeine in the writhing test, 1.6 times in the tail flick test, 2.5 times in phase I and 6.7 times in phase II of the orofacial formalin test. Opioid coadministration had a synergistic effect in the acute tonic pain (acetic acid writhing test), acute phasic pain (tail flick test) and inflammatory pain (orofacial formalin test). The interaction index ranged between 0.284 (writhing ip) and 0.440 (orofacial formalin phase II ip). This synergy may relate to the different pathways of pain transmission and to the different intracellular signal transduction. The present findings also raise the possibility of potential clinical advantages in combining opioids in pain management.
Loss of PAFR prevents neuroinflammation and brain dysfunction after traumatic brain injury
Yin, Xiang-Jie; Chen, Zhen-Yan; Zhu, Xiao-Na; Hu, Jin-Jia
2017-01-01
Traumatic brain injury (TBI) is a principal cause of death and disability worldwide, which is a major public health problem. Death caused by TBI accounts for a third of all damage related illnesses, which 75% TBI occurred in low and middle income countries. With the increasing use of motor vehicles, the incidence of TBI has been at a high level. The abnormal brain functions of TBI patients often show the acute and long-term neurological dysfunction, which mainly associated with the pathological process of malignant brain edema and neuroinflammation in the brain. Owing to the neuroinflammation lasts for months or even years after TBI, which is a pivotal causative factor that give rise to neurodegenerative disease at late stage of TBI. Studies have shown that platelet activating factor (PAF) inducing inflammatory reaction after TBI could not be ignored. The morphological and behavioral abnormalities after TBI in wild type mice are rescued by general knockout of PAFR gene that neuroinflammation responses and cognitive ability are improved. Our results thus define a key inflammatory molecule PAF that participates in the neuroinflammation and helps bring about cerebral dysfunction during the TBI acute phase. PMID:28094295
Substance P Promotes Wound Healing in Diabetes by Modulating Inflammation and Macrophage Phenotype
Leal, Ermelindo C.; Carvalho, Eugénia; Tellechea, Ana; Kafanas, Antonios; Tecilazich, Francesco; Kearney, Cathal; Kuchibhotla, Sarada; Auster, Michael E.; Kokkotou, Efi; Mooney, David J.; LoGerfo, Frank W.; Pradhan-Nabzdyk, Leena; Veves, Aristidis
2016-01-01
Diabetic foot ulceration is a major complication of diabetes. Substance P (SP) is involved in wound healing, but its effect in diabetic skin wounds is unclear. We examined the effect of exogenous SP delivery on diabetic mouse and rabbit wounds. We also studied the impact of deficiency in SP or its receptor, neurokinin-1 receptor, on wound healing in mouse models. SP treatment improved wound healing in mice and rabbits, whereas the absence of SP or its receptor impaired wound progression in mice. Moreover, SP bioavailability in diabetic skin was reduced as SP gene expression was decreased, whereas the gene expression and protein levels of the enzyme that degrades SP, neutral endopeptidase, were increased. Diabetes and SP deficiency were associated with absence of an acute inflammatory response important for wound healing progression and instead revealed a persistent inflammation throughout the healing process. SP treatment induced an acute inflammatory response, which enabled the progression to the proliferative phase and modulated macrophage activation toward the M2 phenotype that promotes wound healing. In conclusion, SP treatment reverses the chronic proinflammatory state in diabetic skin and promotes healing of diabetic wounds. PMID:25871534
Calycophyllum spruceanum BENTH ameliorates acute inflammation in mice.
da Silva, Ana Paula Azevedo Barros; Amorim, Renata Morais Ferreira; de Freitas Lopes, Roberta; Mota, Mário Rogério Lima; da Silva, Felipe Moura Araújo; Koolen, Hector Henrique Ferreira; Lima, Emerson Silva; Assreuy, Ana Maria S; da Cunha, Renildo Moura
2018-06-12
Calycophyllum spruceanum (Benth.) Hook. F. ex K. Schum. is widely distributed in the Amazonian region of Brazil, where it is popularly known as "mulateiro", "pau-mulato", "pau-mulato-de-várzea", "escorrega-macaco" or "pau-marfim". Preparations of C. spruceanum barks are used in the form of tea, poultice or skin patches to treat stomach diseases, skin inflammation and uterus tumors. To investigate in vivo the antinociceptive and anti-inflammatory activities of the hydroalcoholic extract of Calycophyllum spruceanum barks (HECSb) in order to validate its popular usage in inflammatory conditions. Chemical analysis of HECSb was performed using the UHPLC-MS system. Mice were treated per oral with HECSb (5-5000 mg/kg) and evaluated for acute toxicity (during 15 days); motor activity (Rota rod test); body weight (up to 72 h); antinociceptive activity: writhes induced by 0.8% acetic acid; paw licking induced by 2.5% formalin; paw withdrawal (von Frey test) induced by carrageenan (300 μg) or PGE2 (100 ng); anti-inflammatory (paw edema model). For histopathological analysis subplantar tissue fragments were collected 1 h after paw edema induction. HECSb chemical analysis revealed the presence of caffeoylquinic derivatives, small organic acids, and phenolic compounds. HECSb showed antinociceptive effect, reducing the number of acetic acid-induced writhes by 72% at 120 mg/kg, paw licking (phase 2- Formalin test) by 33% at 60 mg/kg and 49% at 120 mg/kg; and paw withdrawal elicited by carrageenan (53% at 120 mg/kg) and PGE2 (120 mg/kg) at 0.5 h (48%) and 1 h (45%). HECSb (120 mg/kg) also inhibited the paw edema elicited both by carrageenan (48%) and PGE2 (92%). Histopathological analysis (leukocyte infiltration, edema, focal areas of hemorrhage, vascular congestion) of HECSb treatment at 120 mg/kg demonstrated normal morphology [median 0 (0,1)] compared to PGE2, showing severe alterations [median 3 (2,3); p = 0,0035]. HECSb did not induce acute toxicity nor altered body mass or motor coordination. HECSb shows antinociceptive and anti-inflammatory effect in mice without inducing apparent acute toxicity. Copyright © 2018 Elsevier B.V. All rights reserved.
Amniotic membrane traps and induces apoptosis of inflammatory cells in ocular surface chemical burn
Liu, Ting; Zhai, Hualei; Xu, Yuanyuan; Dong, Yanling; Sun, Yajie; Zang, Xinjie
2012-01-01
Purpose Severe chemical burns can cause necrosis of ocular surface tissues following the infiltration of inflammatory cells. It has been shown that amniotic membrane transplantation (AMT) is an effective treatment for severe chemical burns, but the phenotypes of cells that infiltrate the amniotic membrane and the clinical significance of these cellular infiltrations have not previously been reported. The present work studies the inflammation cell traps and apoptosis inducing roles of the amniotic membrane after AMT in patients with acute chemical burns. Methods A total of 30 patients with acute alkaline burns were classified as having either moderate or severe burns. In all participants, AMT was performed within one week of his/her injury. After 7–9 days, the transplanted amniotic membranes were removed. Histopathological and immunohistochemical techniques were used for the examination and detection of infiltrating cells, and tests for the expression of CD (cluster of differentiation)15, CD68, CD3, CD20, CD57, CD31, CD147, and CD95 (Fas) were performed. A TUNEL (TdT-mediated dUTP nick end labeling) assay was used to confirm apoptosis of the infiltrating cells. Three patients with herpes simplex-induced keratitis who had undergone AMT to treat persistent epithelium defects were used as a control group. Amniotic membrane before transplantation was used as another control. Results After amniotic membrane transplantation, the number of infiltrating cells in patients with severe burns was significantly higher than in patients with moderate burns or in control patients (p<0.05). Among the severe burns patients, CD15 and CD68 were widely expressed in the infiltrating cells, and CD3, CD20, and CD57 were only found in a small number of cells. Occasionally, CD31-positive cells were found in the amniotic membranes. More cells that were CD147, Fas, and TUNEL positive were found in patients with severe burns than in patients with moderate burns or in control patients. Conclusions Neutrophils and macrophages were the main cells that had infiltrated into the amniotic membrane during the acute phase of healing from a chemical burns. AMT can trap different inflammatory cells and induce apoptosis of inflammatory cells in acute ocular chemical burns. PMID:22876141
Xu, Xin; Gao, Weiwei; Cheng, Shiqi; Yin, Dongpei; Li, Fei; Wu, Yingang; Sun, Dongdong; Zhou, Shuai; Wang, Dong; Zhang, Yongqiang; Jiang, Rongcai; Zhang, Jianning
2017-08-23
Neuroinflammation is an important secondary injury mechanism that has dual beneficial and detrimental roles in the pathophysiology of traumatic brain injury (TBI). Compelling data indicate that statins, a group of lipid-lowering drugs, also have extensive immunomodulatory and anti-inflammatory properties. Among statins, atorvastatin has been demonstrated as a neuroprotective agent in experimental TBI; however, there is a lack of evidence regarding its effects on neuroinflammation during the acute phase of TBI. The current study aimed to evaluate the effects of atorvastatin therapy on modulating the immune reaction, and to explore the possible involvement of peripheral leukocyte invasion and microglia/macrophage polarization in the acute period post-TBI. C57BL/6 mice were subjected to TBI using a controlled cortical impact (CCI) device. Either atorvastatin or vehicle saline was administered orally starting 1 h post-TBI for three consecutive days. Short-term neurological deficits were evaluated using the modified neurological severity score (mNSS) and Rota-rod. Brain-invading leukocyte subpopulations were analyzed by flow cytometry and immunohistochemistry. Pro- and anti-inflammatory cytokines and chemokines were examined using enzyme-linked immunosorbent assay (ELISA). Markers of classically activated (M1) and alternatively activated (M2) microglia/macrophages were then determined by quantitative real-time PCR (qRT-PCR) and flow cytometry. Neuronal apoptosis was identified by double staining of terminal deoxynucleotidyl transferase-dUTP nick end labeling (TUNEL) staining and immunofluorescence labeling for neuronal nuclei (NeuN). Acute treatment with atorvastatin at doses of 1 mg/kg/day significantly reduced neuronal apoptosis and improved behavioral deficits. Invasions of T cells, neutrophils and natural killer (NK) cells were attenuated profoundly after atorvastatin therapy, as was the production of pro-inflammatory cytokines (IFN-γ and IL-6) and chemokines (RANTES and IP-10). Notably, atorvastatin treatment significantly increased the proportion of regulatory T cells (Tregs) in both the peripheral spleen and brain, and at the same time, increased their main effector cytokines IL-10 and TGF-β1. We also found that atorvastatin significantly attenuated total microglia/macrophage activation but augmented the M2/M1 ratio by both inhibiting M1 polarization and enhancing M2 polarization. Our data demonstrated that acute atorvastatin administration could modulate post-TBI neuroinflammation effectively, via a mechanism that involves altering peripheral leukocyte invasion and the alternative polarization of microglia/macrophages.
Zakaria, Z A; Somchit, M N; Mat Jais, A M; Teh, L K; Salleh, M Z; Long, K
2011-01-01
The present study was carried out to investigate the antinociceptive and anti-inflammatory activities of virgin coconut oil (VCO) produced by the Malaysian Agriculture Research and Development Institute (MARDI) using various in vivo models. Two types of VCOs, produced via standard drying (VCOA) and fermentation (VCOB) processes were used in this study. Both VCOA and VCOB were serially diluted using 1% Tween 80 to concentrations (v/v) of 10, 50 and 100%. Antinociceptive and anti- inflammatory activities of both VCOs were examined using various in vivo model systems. The antinociceptive activity of the VCOs were compared to those of 1% Tween 80 (used as a negative control), morphine (5 mg/kg) and/or acetylsalicylic acid (100 mg/kg). Both VCOA and VCOB exhibited significant (p < 0.05) dose-dependent antinociceptive activity in the acetic acid-induced writhing test. Both VCOs also exerted significant (p < 0.05) antinociceptive activity in both phases of the formalin and hot-plate tests. Interestingly, the VCOs exhibited anti-inflammatory activity in an acute (carrageenan-induced paw edema test), but not in a chronic (cotton-pellet-induced granuloma test) model of inflammation. The MARDI-produced VCOs possessed antinociceptive and anti-inflammatory activities. Further studies are needed to confirm these observations. Copyright © 2011 S. Karger AG, Basel.
Yeo, Marie; Kim, Dong-Kyu; Cho, Sung Won; Lee, Song-Jin; Cho, Il-Hwan; Song, Geun-Seog; Moon, Byoung-Seok
2012-05-01
CJ-20001 is a phytopharmaceutical agent and currently being investigated in a Phase II trial for the treatment of acute and chronic gastritis patients in Korea. In this study we addressed the protective effects of CJ-20001 against water immersion restraint stress (WIRS)-induced gastric injury in rats and studied the underlying mechanisms. To evaluate the protective effect of CJ-20001 on stress-induced gastric lesions, rats were exposed to water immersion restraint stress. Inflammatory infiltration into gastric mucosa was examined by immunohistochemistry and in vitro invasion assay. Expression of proinflammatory cytokines was detected with reverse transcription-polymerase chain reaction (RT-PCR). Pretreatment with CJ-20001 dose-dependently attenuated the WIRS-induced gastric lesions as demonstrated by gross pathology and histology. WIRS increased infiltration of mast cells and macrophages into the gastric mucosa and submucosal layer, whereas the inflammatory infiltration was markedly inhibited by CJ-20001 administration. An in vitro cell invasion assay showed that treatment with CJ-20001 decreased the migration of macrophages. CJ-20001 suppressed the expression of proinflammatory cytokines, IL-18, IP-10 and GRO/KC, in lipopolysaccharides (LPS)-treated macrophages. These data suggest that novel phytopharmaceutical agent CJ-20001 has the potent anti-inflammatory properties through inhibition of inflammatory infiltration in psycho-physiological stress-induced gastric injury.
Acute Illness Is Associated with Suppression of the Growth Hormone Axis in Zimbabwean Infants
Jones, Andrew D.; Rukobo, Sandra; Chasekwa, Bernard; Mutasa, Kuda; Ntozini, Robert; Mbuya, Mduduzi N. N.; Stoltzfus, Rebecca J.; Humphrey, Jean H.; Prendergast, Andrew J.
2015-01-01
Frequent infections contribute to childhood stunting in developing countries but the causal pathways are uncertain. We tested the hypothesis that intercurrent illnesses suppress the growth hormone axis through reductions in insulin-like growth factor 1 (IGF-1). In a birth cohort of 202 HIV-unexposed Zimbabwean infants, we analyzed data on 7-day illness recall and measured plasma interleukin-6, C-reactive protein, alpha-1-acid glycoprotein, and IGF-1 by enzyme-linked immunosorbent assay, at age 6 weeks, and then 3, 6, 12, and 18 months. Children with recent acute illness had lower IGF-1 concentrations than healthy children and IGF-1 correlated inversely (P < 0.05) with inflammatory biomarkers at most time points between 3 and 18 months. Using path analysis, we showed that cough and fever had a predominantly indirect effect on suppressing IGF-1, through the acute-phase response, whereas diarrhea had a predominantly direct effect on IGF-1. Acute illness may therefore impact the growth hormone axis through both direct and indirect pathways. PMID:25535308
New and Pipeline Drugs for Gout.
Keenan, Robert T; Schlesinger, Naomi
2016-06-01
Gout is the most common inflammatory arthropathy in the western world. Affecting millions and accounting for lost wages, increased health care costs, and significant disability, it remains a burden for those afflicted, their families, and the health care system. Despite the availability of a number of effective therapies, gout is often inadequately treated, and its impact on the patients overall health and well-being is underestimated by physicians and patients alike. For many decades, controlling acute flares was the priority in the management of gout. More recently, however, a deeper understanding of gout pathophysiology has resulted in a new appreciation that gout impacts the patient with consequences well beyond the episodes of acute inflammatory arthritis. Reflecting the chronic nature of the disease, gout treatment needs to be chronic as well, and aimed at reducing the underlying cause of gout-hyperuricemia-as well as the symptom of acute attacks. Therapy therefore requires both urate lowering and anti-inflammatory strategies. Unfortunately, the most commonly used urate lowering and anti-inflammatory treatments may be problematic in some gout patients, who often have multiple comorbidities that establish relative contraindications. Novel urate lowering therapies, and new medications to treat and prevent acute gouty flares, can not only improve care of the individual; they can also lead to a better discourse for the edification of those who manage and are managed for this underestimated disease. In this paper, we discuss new and pipeline drugs for acute gout, prophylactic anti-inflammatory therapies as well as urate lowering therapies.
Rittig, N; Bach, E; Thomsen, H H; Johannsen, M; Jørgensen, J O; Richelsen, B; Jessen, N; Møller, N
2016-04-01
Inflammation is catabolic and causes muscle loss. It is unknown if amino acid supplementation reverses these effects during the acute phase of inflammation. The aim was to test whether amino acid supplementation counteracts endotoxin-induced catabolism. Eight young, healthy, lean males were investigated three times in randomized order: (i) normal conditions (Placebo), (ii) endotoxemia (LPS), and (iii) endotoxemia with amino acid supplementation (LPS + A). Protein kinetics were determined using phenylalanine, tyrosine, and urea tracers. Each study day consisted of a four-hour non-insulin stimulated period and a two-hour hyperinsulinemic euglycemic clamp period. Muscle biopsies were collected once each period. Endotoxin administration created a significant inflammatory response (cytokines, hormones, and vital parameters) without significant differences between LPS and LPS + A. Whole body protein breakdown was elevated during LPS compared with Placebo and LPS + A (p < 0.05). Whole body protein synthesis was higher during LPS + A than both Placebo and LPS (p < 0.003). Furthermore, protein synthesis was higher during LPS than during Placebo (p < 0.02). Net muscle phenylalanine release was markedly decreased during LPS + A (p < 0.004), even though muscle protein synthesis and breakdown rates did not differ significantly between interventions. LPS + A increased mammalian target of rapamycin (mTOR) phosphorylation (p < 0.05) and eukaryotic translation factor 4E-binding protein 1 (4EBP1) phosphorylation (p = 0.007) without activating AMPK or affecting insulin signaling through Akt. During insulin stimulation net muscle phenylalanine release and protein degradation were further reduced. Amino acid supplementation in the acute phase of inflammation reduces whole body and muscle protein loss, and this effect is associated with activation of mTOR and downstream signaling to protein synthesis through mTORC1, suggesting a therapeutic role for intravenous amino acids in inflammatory states. The Central Denmark Region Ethics Commitee (1-10-71-410-12) www.clinicaltrials.gov (identification number NCT01705782). Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Blood cultures for women hospitalized with acute pelvic inflammatory disease. Are they necessary?
Apuzzio, J J; Hessami, S; Rodriguez, P
2001-09-01
To determine the incidence of positive blood cultures and if the results affect the clinical management or the duration of hospital stay in patients with acute pelvic inflammatory disease (PID). Retrospective study of all patients hospitalized with a diagnosis of acute PID from January 1, 1996, to December 31, 1997. Of 93 patients in the study, 3 had significant bacterial growth from blood culture specimens. The results of blood culture specimens did not affect clinical management. Routine specimens for blood culture may not be needed from patients hospitalized with acute PID.
Citral inhibits lipopolysaccharide-induced acute lung injury by activating PPAR-γ.
Shen, Yongbin; Sun, Zhanfeng; Guo, Xiaotong
2015-01-15
Citral, a component of lemongrass oil, has been reported to have many pharmacological activities such as anti-bacterial and anti-inflammatory effects. However, the effects of citral on acute lung injury (ALI) and the molecular mechanisms have not been reported. The aim of this study was to detect the effects of citral on lipopolysaccharide (LPS)-induced acute lung injury and investigate the molecular mechanisms. LPS-induced acute lung injury model was used to detect the anti-inflammatory effect of citral in vivo. The alveolar macrophages were used to investigate the molecular mechanism of citral in vitro. The results showed that pretreatment with citral remarkably attenuated pulmonary edema, histological severities, TNF-α, IL-6 and IL-1β production in LPS-induced ALI in vivo. In vitro, citral inhibited LPS-induced TNF-α, IL-6 and IL-1β production in alveolar macrophages. LPS-induced NF-κB activation was also inhibited by citral. Furthermore, we found that citral activated PPAR-γ and the anti-inflammatory effects of citral can be reversed by PPAR-γ antagonist GW9662. In conclusion, this is the first to demonstrate that citral protects LPS-induced ALI in mice. The anti-inflammatory mechanism of citral is associated with activating PPAR-γ, thereby inhibiting LPS-induced inflammatory response. Copyright © 2014 Elsevier B.V. All rights reserved.
Acute and Chronic Effects of Endurance Running on Inflammatory Markers: A Systematic Review
Barros, Edilberto S.; Nascimento, Dahan C.; Prestes, Jonato; Nóbrega, Otávio T.; Córdova, Claúdio; Sousa, Fernando; Boullosa, Daniel A.
2017-01-01
In order to understand the effect of endurance running on inflammation, it is necessary to quantify the extent to which acute and chronic running affects inflammatory mediators. The aim of this study was to summarize the literature on the effects of endurance running on inflammation mediators. Electronic searches were conducted on PubMED and Science Direct with no limits of date and language of publication. Randomized controlled trials (RCTs) and non-randomized controlled trials (NRCTs) investigating the acute and chronic effects of running on inflammation markers in runners were reviewed by two researchers for eligibility. The modified Downs and Black checklist for the assesssments of the methodological quality of studies was subsequently used. Fifty-one studies were finally included. There were no studies with elite athletes. Only two studies were chronic interventions. Results revealed that acute and chronic endurance running may affect anti- and pro-inflammatory markers but methodological differences between studies do not allow comparisons or generalization of the results. The information provided in this systematic review would help practitioners for better designing further studies while providing reference values for a better understanding of inflammatory responses after different running events. Further longitudinal studies are needed to identify the influence of training load parameters on inflammatory markers in runners of different levels and training background. PMID:29089897
Watchorn, Tammy M; Dowidar, Nabil; Dejong, Cornelis H C; Waddell, Ian D; Garden, O James; Ross, James A
2005-10-01
A novel proteoglycan, proteolysis inducing factor (PIF), is capable of inducing muscle proteolysis during the process of cancer cachexia, and of inducing an acute phase response in human hepatocytes. We investigated whether PIF is able to activate pro-inflammatory pathways in human Kupffer cells, the resident macrophages of the liver, and in monocytes, resulting in the production of pro-inflammatory cytokines. Normal liver tissue was obtained from patients undergoing partial hepatectomy and Kupffer cells were isolated. Monocytes were isolated from peripheral blood. Following exposure to native PIF, pro-inflammatory cytokine production from Kupffer cells and monocytes was measured and the NF-kappaB and STAT3 transcriptional pathways were investigated using electrophoretic mobility shift assays. We demonstrate that PIF is able to activate the transcription factor NF-kappaB and NF-kappaB-inducible genes in human Kupffer cells, and in monocytes, resulting in the production of pro-inflammatory cytokines such as TNF-alpha, IL-8 and IL-6. PIF enhances the expression of the cell surface molecules LFA-1 and CD14 on macrophages. PIF also activates the transcription factor STAT3 in Kupffer cells. The pro-inflammatory effects of PIF, mediated via NF-kappaB and STAT3, are important in macrophage behaviour and may contribute to the inflammatory pro-cachectic process in the liver.
Almeida, Camila Bononi; Souza, Lucas Eduardo Botelho; Leonardo, Flavia Costa; Costa, Fabio Trindade Maranhão; Werneck, Claudio C; Covas, Dimas Tadeu; Costa, Fernando Ferreira; Conran, Nicola
2015-08-06
Hemolysis and consequent release of cell-free hemoglobin (CFHb) impair vascular nitric oxide (NO) bioavailability and cause oxidative and inflammatory processes. Hydroxyurea (HU), a common therapy for sickle cell disease (SCD), induces fetal Hb production and can act as an NO donor. We evaluated the acute inflammatory effects of intravenous water-induced hemolysis in C57BL/6 mice and determined the abilities of an NO donor, diethylamine NONOate (DEANO), and a single dose of HU to modulate this inflammation. Intravenous water induced acute hemolysis in C57BL/6 mice, attaining plasma Hb levels comparable to those observed in chimeric SCD mice. This hemolysis resulted in significant and rapid systemic inflammation and vascular leukocyte recruitment within 15 minutes, accompanied by NO metabolite generation. Administration of another potent NO scavenger (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) to C57BL/6 mice induced similar alterations in leukocyte recruitment, whereas hemin-induced inflammation occurred over a longer time frame. Importantly, the acute inflammatory effects of water-induced hemolysis were abolished by the simultaneous administration of DEANO or HU, without altering CFHb, in an NO pathway-mediated manner. In vitro, HU partially reversed the Hb-mediated induction of endothelial proinflammatory cytokine secretion and adhesion molecule expression. In summary, pathophysiological levels of hemolysis trigger an immediate inflammatory response, possibly mediated by vascular NO consumption. HU presents beneficial anti-inflammatory effects by inhibiting rapid-onset hemolytic inflammation via an NO-dependent mechanism, independently of fetal Hb elevation. Data provide novel insights into mechanisms of hemolytic inflammation and further support perspectives for the use of HU as an acute treatment for SCD and other hemolytic disorders. © 2015 by The American Society of Hematology.
Huang, Chun-Jung; Slusher, Aaron L; Whitehurst, Michael; Wells, Marie; Maharaj, Arun; Shibata, Yoshimi
2016-01-01
Chitinase 3-like 1 (CHI3L1) and intelectin 1 (ITLN-1) recognize microbial N-acetylglucosamine polymer and galactofuranosyl carbohydrates, respectively. Both lectins are highly abundant in plasma and seem to play pro- and anti-inflammatory roles, respectively, in obesity and inflammatory-related illnesses. The aim of this study was to examine whether plasma levels of these lectins in obese subjects are useful for monitoring inflammatory conditions immediately influenced by acute aerobic exercise. Plasma interleukin-6, a pro-inflammatory cytokine, was also examined. Twenty-two (11 obese and 11 normal-weight) healthy subjects, ages 18-30 years, were recruited to perform a 30 min bout of acute aerobic exercise at 75% VO2max. We confirmed higher baseline levels of plasma CHI3L1, but lower ITLN-1, in obese subjects than in normal-weight subjects. The baseline levels of CHI3L1 were negatively correlated with cardiorespiratory fitness (relative VO2max). However, when controlled for BMI, the relationship between baseline level of CHI3L1 and relative VO2max was no longer observed. While acute aerobic exercise elicited an elevation in these parameters, we found a lower ITLN-1 response in obese subjects compared to normal-weight subjects. Our study clearly indicates that acute aerobic exercise elicits a pro-inflammatory response (e.g. CHI3L1) with a lower anti-inflammatory effect (e.g. ITLN-1) in obese individuals. Furthermore, these lectins could be predictors of outcome of exercise interventions in obesity-associated inflammation. © 2015 by the Society for Experimental Biology and Medicine.
Kaul, A M K; Goparaju, S; Dvorina, N; Iida, S; Keslar, K S; de la Motte, C A; Valujskikh, A; Fairchild, R L; Baldwin, W M
2015-02-01
Acute and chronic rejection impact distinct compartments of cardiac allografts. Intramyocardial mononuclear cell infiltrates define acute rejection, whereas chronic rejection affects large arteries. Hearts transplanted from male to female C57BL/6 mice undergo acute rejection with interstitial infiltrates at 2 weeks that resolve by 6 weeks when large arteries develop arteriopathy. These processes are dependent on T cells because no infiltrates developed in T cell-deficient mice and transfer of CD4 T cells restored T cell as well as macrophage infiltrates and ultimately neointima formation. Markers of inflammatory macrophages were up-regulated in the interstitium acutely and decreased as markers of wound healing macrophages increased chronically. Programmed cell death protein, a negative costimulator, and its ligand PDL1 were up-regulated in the interstitium during resolution of acute rejection. Blocking PDL1:PD1 interactions in the acute phase increased interstitial T cell infiltrates. Toll-like receptor (TLR) 4 and its endogenous ligand hyaluronan were increased in arteries with neointimal expansion. Injection of hyaluronan fragments increased intragraft production of chemokines. Our data indicate that negative costimulatory pathways are critical for the resolution of acute interstitial infiltrates. In the arterial compartment recognition of endogenous ligands including hyaluronan by the innate TLRs may support the progression of arteriopathy. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.
Protective effects of aerobic exercise on acute lung injury induced by LPS in mice
2012-01-01
Introduction The regular practice of physical exercise has been associated with beneficial effects on various pulmonary conditions. We investigated the mechanisms involved in the protective effect of exercise in a model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Methods Mice were divided into four groups: Control (CTR), Exercise (Exe), LPS, and Exercise + LPS (Exe + LPS). Exercised mice were trained using low intensity daily exercise for five weeks. LPS and Exe + LPS mice received 200 µg of LPS intratracheally 48 hours after the last physical test. We measured exhaled nitric oxide (eNO); respiratory mechanics; neutrophil density in lung tissue; protein leakage; bronchoalveolar lavage fluid (BALF) cell counts; cytokine levels in BALF, plasma and lung tissue; antioxidant activity in lung tissue; and tissue expression of glucocorticoid receptors (Gre). Results LPS instillation resulted in increased eNO, neutrophils in BALF and tissue, pulmonary resistance and elastance, protein leakage, TNF-alpha in lung tissue, plasma levels of IL-6 and IL-10, and IL-1beta, IL-6 and KC levels in BALF compared to CTR (P ≤0.02). Aerobic exercise resulted in decreases in eNO levels, neutrophil density and TNF-alpha expression in lung tissue, pulmonary resistance and elastance, and increased the levels of IL-6, IL-10, superoxide dismutase (SOD-2) and Gre in lung tissue and IL-1beta in BALF compared to the LPS group (P ≤0.04). Conclusions Aerobic exercise plays important roles in protecting the lungs from the inflammatory effects of LPS-induced ALI. The effects of exercise are mainly mediated by the expression of anti-inflammatory cytokines and antioxidants, suggesting that exercise can modulate the inflammatory-anti-inflammatory and the oxidative-antioxidative balance in the early phase of ALI. PMID:23078757
Koami, Hiroyuki; Sakamoto, Yuichiro; Miyasho, Taku; Noguchi, Ryo; Sato, Norio; Kai, Keita; Chris Yamada, Kosuke; Inoue, Satoshi
2017-01-01
Haptoglobin exerts renal protective function by scavenging free hemoglobin from the urine and blood stream in patients with hemolytic disorders. Recent studies elucidate the relationships between haptoglobin and inflammation. In addition, coagulopathy is often induced by systemic inflammation characterized by the presence of vascular endothelial damage. We hypothesize that haptoglobin might have an anti-inflammatory effect and affect hypercoagulability using rat burn model. Thirty anesthetized rats of six-weeks of age received over 30% full-thickness scald burn on the dorsal skin surface. All rats were injected with either haptoglobin (Hpt) or normal saline (NS) intraperitoneally. The rats were divided into three groups: 1) control group (NS 20 mL/kg); 2) low concentration of Hpt group, L-Hpt, (Hpt 4 mL (80 U) /kg+NS 16 mL/kg); and 3) high concentration of Hpt group, H-Hpt, (Hpt 20 mL (400 U) /kg). While under anesthesia, all rats were euthanized by exsanguination at 6 hours (N=5) and 24 hours (N=5). Inflammatory and anti-inflammatory cytokines were measured and whole-blood viscoelastic tests were performed by thromboelastometry (ROTEM). Haptoglobin significantly reduced free hemoglobin 24 hours after the injury. Improvement of hematuria was confirmed in the H-Hpt group. There were no differences in thrombin-antithrombin complex and plasmin-α2 plasmin inhibitor complex. The haptoglobin tended to decrease interferon-gamma (IFN-γ) in H-Hpt group. ROTEM findings of the L-Hpt group showed significantly higher clot firmness and shorter time to maximum clot formation velocity than the control group. Haptoglobin reduced INF-γ, and accelerated speed of clot formation in acute phase of severe burn.
Ibarrola Vidaurre, M; Benito, J; Azcona, B; Zubeldía, N
2009-01-01
Sexually transmitted diseases are those where the principal path of infection is through intimate contact. Numerous patients attend Accidents and emergencies for this reason, both because of the clinical features and because of social implications. The most frequent symptoms are lower abdominal pain, vaginal bleeding or excessive or troubling vaginal flow. Vulvovaginites are one of the principal problems in the everyday clinical practice of gynaecology. A genital ulcer whose principal aetiology is herpes, followed by syphilis and chancroid, increases the risk of contracting HIV infection and alters the course of other sexually transmitted diseases. Inflammatory pelvic disease encompasses infections of the upper female genital tract. The importance of early diagnosis and suitable treatment is both due to the complications in its acute phase and to its sequels, which include chronic pain and sterility.
Stankovic, Marija; Pantic, Igor; De Luka, Silvio R; Puskas, Nela; Zaletel, Ivan; Milutinovic-Smiljanic, Sanja; Pantic, Senka; Trbovich, Alexander M
2016-03-01
The aim of the study was to examine alteration and possible application of fractal dimension, angular second moment, and correlation for quantification of structural changes in acutely inflamed tissue. Acute inflammation was induced by injection of turpentine oil into the right and left hind limb muscles of mice, whereas control animals received intramuscular saline injection. After 12 h, animals were anesthetised and treated muscles collected. The tissue was stained by hematoxylin and eosin, digital micrographs produced, enabling determination of fractal dimension of the cells, angular second moment and correlation of studied tissue. Histopathological analysis showed presence of inflammatory infiltrate and tissue damage in inflammatory group, whereas tissue structure in control group was preserved, devoid of inflammatory infiltrate. Fractal dimension of the cells, angular second moment and correlation of treated tissue in inflammatory group decreased in comparison to the control group. In this study, we were first to observe and report that fractal dimension of the cells, angular second moment, and correlation were reduced in acutely inflamed tissue, indicating loss of overall complexity of the cells in the tissue, the tissue uniformity and structure regularity. Fractal dimension, angular second moment and correlation could be useful methods for quantification of structural changes in acute inflammation. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Silva, Aniélen D; Bottari, Nathieli B; do Carmo, Guilherme M; Baldissera, Matheus D; Souza, Carine F; Machado, Vanessa S; Morsch, Vera M; Schetinger, Maria Rosa C; Mendes, Ricardo E; Monteiro, Silvia G; Da Silva, Aleksandro S
2018-01-01
Chagas disease is an acute or chronic illness that causes severe inflammatory response, and consequently, it may activate the inflammatory cholinergic pathway, which is regulated by cholinesterases, including the acetylcholinesterase. This enzyme is responsible for the regulation of acetylcholine levels, an anti-inflammatory molecule linked to the inflammatory response during parasitic diseases. Thus, the aim of this study was to investigate whether Trypanosoma cruzi infection can alter the activity of acetylcholinesterase and acetylcholine levels in mice, and whether these alterations are linked to the inflammatory cholinergic signaling pathway. Twenty-four mice were divided into two groups: uninfected (control group, n = 12) and infected by T. cruzi, Y strain (n = 12). The animals developed acute disease with a peak of parasitemia on day 7 post-infection (PI). Blood, lymphocytes, and brain were analyzed on days 6 and 12 post-infection. In the brain, acetylcholine and nitric oxide levels, myeloperoxidase activity, and histopathology were analyzed. In total blood and brain, acetylcholinesterase activity decreased at both times. On the other hand, acetylcholinesterase activity in lymphocytes increased on day 6 PI compared with the control group. Infection by T. cruzi increased acetylcholine and nitric oxide levels and histopathological damage in the brain of mice associated to increased myeloperoxidase activity. Therefore, an intense inflammatory response in mice with acute Chagas disease in the central nervous system caused an anti-inflammatory response by the activation of the cholinergic inflammatory pathway.
Pinkerton, James W; Kim, Richard Y; Robertson, Avril A B; Hirota, Jeremy A; Wood, Lisa G; Knight, Darryl A; Cooper, Matthew A; O'Neill, Luke A J; Horvat, Jay C; Hansbro, Philip M
2017-06-01
Innate immune responses act as first line defences upon exposure to potentially noxious stimuli. The innate immune system has evolved numerous intracellular and extracellular receptors that undertake surveillance for potentially damaging particulates. Inflammasomes are intracellular innate immune multiprotein complexes that form and are activated following interaction with these stimuli. Inflammasome activation leads to the cleavage of pro-IL-1β and release of the pro-inflammatory cytokine, IL-1β, which initiates acute phase pro-inflammatory responses, and other responses are also involved (IL-18, pyroptosis). However, excessive activation of inflammasomes can result in chronic inflammation, which has been implicated in a range of chronic inflammatory diseases. The airways are constantly exposed to a wide variety of stimuli. Inflammasome activation and downstream responses clears these stimuli. However, excessive activation may drive the pathogenesis of chronic respiratory diseases such as severe asthma and chronic obstructive pulmonary disease. Thus, there is currently intense interest in the role of inflammasomes in chronic inflammatory lung diseases and in their potential for therapeutic targeting. Here we review the known associations between inflammasome-mediated responses and the development and exacerbation of chronic lung diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hueston, Cara M; Barnum, Christopher J; Eberle, Jaime A; Ferraioli, Frank J; Buck, Hollin M; Deak, Terrence
2011-08-03
Exposure to acute stress has been shown to increase the expression of pro-inflammatory cytokines in brain, blood and peripheral organs. However, the nature of the inflammatory response evoked by acute stress varies depending on the stressor used and species examined. The goal of the following series of studies was to characterize the consequences of social defeat in the Sprague Dawley (SD) rat using three different social defeat paradigms. In Experiments 1 and 2, adult male SD rats were exposed to a typical acute resident-intruder paradigm of social defeat (60 min) by placement into the home cage of a larger, aggressive Long Evans rat and brain tissue was collected at multiple time points for analysis of IL-1β protein and gene expression changes in the PVN, BNST and adrenal glands. In subsequent experiments, rats were exposed to once daily social defeat for 7 or 21 days (Experiment 3) or housed continuously with an aggressive partner (separated by a partition) for 7 days (Experiment 4) to assess the impact of chronic social stress on inflammatory measures. Despite the fact that social defeat produced a comparable corticosterone response as other stressors (restraint, forced swim and footshock; Experiment 5), acute social defeat did not affect inflammatory measures. A small but reliable increase in IL-1 gene expression was observed immediately after the 7th exposure to social defeat, while other inflammatory measures were unaffected. In contrast, restraint, forced swim and footshock all significantly increased IL-1 gene expression in the PVN; other inflammatory factors (IL-6, cox-2) were unaffected in this structure. These findings provide a comprehensive evaluation of stress-dependent inflammatory changes in the SD rat, raising intriguing questions regarding the features of the stress challenge that may be predictive of stress-dependent neuroinflammation. Copyright © 2011 Elsevier Inc. All rights reserved.
Uterine and systemic inflammation influences ovarian follicular function in postpartum dairy cows
Sá Filho, Ocilon G.; Absalon-Medina, Victor A.; Schneider, Augusto; Butler, W. R.; Gilbert, Robert O.
2017-01-01
The objective of this study was to determine the effects of uterine and systemic inflammatory responses to uterine bacterial contamination at calving in dairy cows on the growth and ovulatory outcomes of the first dominant follicle postpartum. Ovulatory capability of the first dominant follicle postpartum was predicted in 53 multiparous cows by using a combination of follicle growth characteristics and circulating estradiol concentrations. Endotoxin levels were assayed in follicular fluid samples that were aspirated the day after ovulatory outcome prediction. Plasma levels of haptoglobin, a proinflammatory acute phase protein, and paraoxonase, a negative acute phase protein were determined. Uterine bacteria and inflammation were evaluated in three uterine fluid samples from each cow collected on the day of calving, the day after follicle aspiration, and at 35 days postpartum. Cows that had a strong initial uterine inflammatory response (robust recruitment of polymorphonuclear leukocytes of ≥ 35% and cows with uterine pH < 8.5 on the day of calving) were more likely to have an ovulatory first dominant follicle. Follicular fluid endotoxin levels were higher in non-ovulatory cows compared with ovulatory cows. Endotoxin levels in circulation were not different between ovulatory groups but were higher prepartum than on day 7 and 14 postpartum. Systemic inflammation characterized by elevated haptoglobin concentrations was higher in non-ovulatory cows despite similar bacterial contamination and circulating endotoxin levels. Paraoxonase activity in follicular fluid was significantly associated with the paraoxonase activity in plasma, however, plasma paraoxonase concentrations were not different between non-ovulatory and ovulatory cows. Cows with a higher uterine bacterial load on the day of calving had slower ovarian follicle growth. In summary, a robust uterine inflammatory response on the day of calving was positively associated with ovarian function while elevated systemic inflammation during the early postpartum period was negatively associated with the ovulatory status of the first dominant follicle postpartum. PMID:28542500
Faqueti, Larissa G; Brieudes, Vincent; Halabalaki, Maria; Skaltsounis, Alexios L; Nascimento, Leandro F; Barros, Wellinghton M; Santos, Adair R S; Biavatti, Maique W
2016-12-24
Ageratum conyzoides L. is a plant widely used in traditional medicine in tropical and subtropical regions of the world due to its anti-inflammatory, antinociceptive and antibacterial properties. To characterize the standardized extract of polymethoxyflavones (SEPAc) from the plant and evaluate its antinociceptive and anti-inflammatory effects. The SEPAc purified from the ethanol extract of the plant leaves was characterized by high resolution mass spectrometry and the methoxyflavones were quantified by a validated UPLC-PDA method. The antinociceptive and anti-inflammatory activities of the SEPAc were evaluated after oral administration on the acute nocifensive behavior of mice induced by formalin, prostaglandin E2 (PGE2) and proinflammatory cytokines (interleukin-1beta (IL-1β)) and tumor necrosis factor-alpha (TNF-α) in mice. Qualitative analyses revealed the presence of seven methoxyflavones in the SEPAc, also a simple UPLC-PDA method was developed and validated for the quantification of 5,6,7,3',4',5'-hexametoxyflavone; nobiletin; 5'-methoxynobiletin and eupalestin, major compounds in the extract. The SEPAc exhibited antinociceptive and anti-inflammatory activities in both formalin phases, with significant inhibition of the paw edema formation and significant reduction of the nocifensive response induced by an intraplantar injection of PGE2 and intrathecal injection of interleukin-1β. The SEPAc exhibited significant antinociceptive and anti-inflammatory effects. These results provided scientific suggestion of its potential as a source of new medicines to treat inflammatory diseases, such rheumatoid arthritis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Lopera, Damaris; Urán-Jiménez, Martha Eugenia
2016-01-01
Neutrophils predominate during the acute phase of the Paracoccidioides brasiliensis infection. Herein, we determined the role of the neutrophil during the early stages of experimental pulmonary paracoccidioidomycosis using a monoclonal antibody (mAb) specific for neutrophils. Male BALB/c mice were inoculated intranasally with 1.5 × 106 or 2 × 106 P. brasiliensis yeast cells. The mAb was administered 24 h before infection, followed by doses every 48 h until mice were sacrificed. Survival time was evaluated and mice were sacrificed at 48 h and 96 h after inoculation to assess cellularity, fungal load, cytokine/chemokine levels, and histopathological analysis. Neutrophils from mAb-treated mice were efficiently depleted (99.04%). Eighty percent of the mice treated with the mAb and infected with 1.5 × 106 yeast cells died during the first two weeks after infection. When mice were treated and infected with 2 × 106 yeast cells, 100% of them succumbed by the first week after infection. During the acute inflammatory response significant increases in numbers of eosinophils, fungal load and levels of proinflammatory cytokines/chemokines were observed in the mAb-treated mice. We also confirmed that neutrophils are an important source of IFN-γ and IL-17. These results indicate that neutrophils are essential for protection as well as being important for regulating the early inflammatory immune response in experimental pulmonary paracoccidioidomycosis. PMID:27642235
The protective effect of CDDO-Me on lipopolysaccharide-induced acute lung injury in mice.
Chen, Tong; Mou, Yi; Tan, Jiani; Wei, Linlin; Qiao, Yixue; Wei, Tingting; Xiang, Pengjun; Peng, Sixun; Zhang, Yihua; Huang, Zhangjian; Ji, Hui
2015-03-01
CDDO-Me, initiated in a phase II clinical trial, is a potential useful therapeutic agent for cancer and inflammatory dysfunctions, whereas the therapeutic efficacy of CDDO-Me on LPS-induced acute lung injury (ALI) has not been reported as yet. The purpose of the present study was to explore the protective effect of CDDO-Me on LPS-induced ALI in mice and to investigate its possible mechanism. BalB/c mice received CDDO-Me (0.5mg/kg, 2mg/kg) or dexamethasone (5mg/kg) intraperitoneally 1h before LPS stimulation and were sacrificed 6h later. W/D ratio, lung MPO activity, number of total cells and neutrophils, pulmonary histopathology, IL-6, IL-1β, and TNF-α in the BALF were assessed. Furthermore, we estimated iNOS, IL-6, IL-1β, and TNF-α mRNA expression and NO production as well as the activation of the three main MAPKs, AkT, IκB-α and p65. Pretreatment with CDDO-Me significantly ameliorated W/D ratio, lung MPO activity, inflammatory cell infiltration, and inflammatory cytokine production in BALF from the in vivo study. Additionally, CDDO-Me had beneficial effects on the intervention for pathogenesis process at molecular, protein and transcriptional levels in vitro. These analytical results provided evidence that CDDO-Me could be a potential therapeutic candidate for treating LPS-induced ALI. Copyright © 2015 Elsevier B.V. All rights reserved.
Orbe, Josune; Zudaire, Maite; Serrano, Rosario; Coma-Canella, Isabel; Martínez de Sizarrondo, Sara; Rodríguez, Jose A; Páramo, Jose A
2008-02-01
Atherosclerosis is the most common pathophysiologic substrate of coronary artery disease (CAD). Whereas plaque progression and arterial remodeling are critical components in chronic CAD, intracoronary thrombosis over plaque disruption is causally related to acute CAD. It was the objective of this study to investigate the differences between prior acute CAD and chronic CAD by a simple global coagulation assay measuring thrombin generation. A cross-sectional study involving 15 healthy controls, 35 patients with chronic stable CAD, and 60 patients after an episode of acute myocardial infarction (AMI) was performed. Thrombin generation was measured between three and 11 months after the initial diagnosis (mean 6 months) by a commercially available fluorogenic assay (Technothrombin TGA). In each patient the lag phase, velocity index and peak thrombin were obtained from the thrombogram profile. Traditional cardiovascular risk factors were recorded, and the inflammatory markers, fibrinogen and hs-C-reactive protein were determined. Compared with stable CAD patients, showing normal thrombograms, those with previous AMI showed earlier lag phase (p < 0.05) and significant increase of both the velocity index (p < 0.001) and peak thrombin (p < 0.05), indicating faster and higher thrombin generation in the AMI group. Differences in thrombin generation between stable and acute CAD patients remained significant (p < 0.001) after adjusting for conventional CAD risk factors (age, gender, diabetes, hypertension, smoking, and hypercholesterolemia). In conclusion, patients with a previous history of acute CAD showed earlier, faster and higher thrombin generation than stable chronic CAD patients. The thrombin generation test may be of clinical value to monitor hypercoagulable/vulnerable blood and/or guide therapy in CAD.
Stanton, Jeffrey J; Cray, Carolyn; Rodriguez, Marilyn; Arheart, Kristopher L; Ling, Paul D; Herron, Alan
2013-09-01
Infection of Asian elephants (Elephas maximus) with elephant endotheliotropic herpesvirus (EEHV) can be associated with rapid, lethal hemorrhagic disease and has been documented in elephant herds in human care and in the wild. Recent reports describe real-time quantitative polymerase chain reaction (qPCR) assays used to monitor clinically ill elephants and also to detect subclinical EEHV1 infection in apparently healthy Asian elephants. Acute phase proteins have been demonstrated to increase with a variety of infectious etiologies in domesticated mammals but have not yet been described in elephants. In addition, the immune response of Asian elephants to EEHV1 infection has not been described. In this study, whole blood and trunk wash samples representing repeated measures from eight elephants were examined for the presence of EEHV1 using a qPCR assay. Elephants were classified into groups, as follows: whole blood negative and positive and trunk wash negative and positive. Serum amyloid A (SAA) and haptoglobin (HP) levels were compared between these groups. A significant difference in SAA was observed with nearly a threefold higher mean value during periods of viremia (P=0.011). Higher values of SAA were associated with >10,000 virus genome copies/ml EEHV1 in whole blood. There were no significant differences in HP levels, although some individual animals did exhibit increased levels with infection. These data indicate that an inflammatory process is stimulated during EEHV1 viremia. Acute phase protein quantitation may aid in monitoring the health status of Asian elephants.
Signals generating anorexia during acute illness.
Langhans, Wolfgang
2007-08-01
Anorexia is part of the body's acute-phase response to illness. Microbial products such as lipopolysaccharides (LPS), which are also commonly used to model acute illness, trigger the acute-phase response and cause anorexia mainly through pro-inflammatory cytokines. LPS stimulate cytokine production through the cell-surface structural molecule CD14 and toll-like receptor-4. Cytokines ultimately change neural activity in brain areas controlling food intake and energy balance. The blood-brain barrier endothelial cells (BBB EC) are an important site of cytokine action in this context. BBB EC and perivascular cells (microglia and macrophages) form a complex regulatory interface that modulates neuronal activity by the release of messengers (e.g. PG, NO) in response to peripheral challenges. Serotonergic neurons originating in the raphe nuclei and glucagon-like peptide-1-expressing neurons in the hindbrain may be among the targets of these messengers, because serotonin (5-HT), acting through the 5-HT2C receptor, and glucagon-like peptide-1 have recently emerged as neurochemical mediators of LPS anorexia. The central melanocortin system, which is a downstream target of serotonergic neurons, also appears to be involved in mediation of LPS anorexia. Interestingly, LPS also reduce orexin expression and the activity of orexin neurons in the lateral hypothalamic area of fasted mice. As the eating-stimulatory properties of orexin are apparently related to arousal, the inhibitory effect of LPS on orexin neurons might be involved in LPS-induced inactivity and anorexia. In summary, the immune signalling pathways of LPS-induced, and presumably acute illness-induced, anorexia converge on central neural signalling systems that control food intake and energy balance in healthy individuals.
Warzecha, Zygmunt; Sendur, Paweł; Ceranowicz, Piotr; Cieszkowski, Jakub; Dembiński, Marcin; Sendur, Ryszard; Bonior, Joanna; Jaworek, Jolanta; Ambroży, Tadeusz; Olszanecki, Rafał; Kuśnierz-Cabala, Beata; Tomasz, Kaczmarzyk; Tomaszewska, Romana; Dembiński, Artur
2017-04-21
Intravascular activation of coagulation is observed in acute pancreatitis and is related to the severity of this inflammation. The aim of our study was to evaluate the impact of acenocoumarol therapy on the course of acute pancreatitis induced in male rats by pancreatic ischemia followed by reperfusion. Acenocoumarol at a dose of 50, 100, or 150 µg/kg/dose was administered intragastrically once a day, starting the first dose 24 h after the initiation of pancreatic reperfusion. Histological examination showed that treatment with acenocoumarol reduces pancreatic edema, necrosis, and hemorrhages in rats with pancreatitis. Moreover, the administration of acenocoumarol decreased pancreatic inflammatory infiltration and vacuolization of pancreatic acinar cells. These findings were accompanied with a reduction in the serum activity of lipase and amylase, concentration of interleukin-1β, and plasma d-Dimer concentration. Moreover, the administration of acenocoumarol improved pancreatic blood flow and pancreatic DNA synthesis. Acenocoumarol given at a dose of 150 µg/kg/dose was the most effective in the treatment of early phase acute pancreatitis. However later, acenocoumarol given at the highest dose failed to exhibit any therapeutic effect; whereas lower doses of acenocoumarol were still effective in the treatment of acute pancreatitis. Treatment with acenocoumarol accelerates the recovery of ischemia/reperfusion-induced acute pancreatitis in rats.
Interaction between dexibuprofen and dexketoprofen in the orofacial formalin test in mice.
Miranda, H F; Noriega, V; Sierralta, F; Prieto, J C
2011-01-01
Animal models are used to research the mechanisms of pain and to mimic human pain. The purpose of this study was to determine the degree of interaction between dexketoprofen and dexibuprofen, by isobolographic analysis using the formalin orofacial assay in mice. This assay presents two-phase time course: an early short-lasting, phase I, starting immediately after the formalin injection producing a tonic acute pain, leaving a 15 min quiescent period, followed by a prolonged, phase II, after the formalin and representing inflammatory pain. Administration of dexketoprofen or dexibuprofen produced a dose-dependent antinociception, with different potency, either during phases I or II. The co-administration of dexketoprofen and dexibuprofen produced synergism in phase I and II. In conclusion, both dexketoprofen and dexibuprofen are able to induce antinociception in the orofacial formalin assay. Their co-administration produced a synergism, which could be related to the different degree of COX inhibition and other mechanisms of analgesics. Copyright © 2010 Elsevier Inc. All rights reserved.
Orita, Sumihisa; Yamauchi, Kazuyo; Suzuki, Takane; Suzuki, Miyako; Sakuma, Yoshihiro; Kubota, Go; Oikawa, Yasuhiro; Sainoh, Takeshi; Sato, Jun; Fujimoto, Kazuki; Shiga, Yasuhiro; Abe, Koki; Kanamoto, Hirohito; Inoue, Masahiro; Kinoshita, Hideyuki; Takahashi, Kazuhisa; Ohtori, Seiji
2016-01-01
Study Design Retrospective study. Purpose To determine whether low-dose tramadol plus non-steroidal anti-inflammatory drug combination therapy could prevent the transition of acute low back pain to chronic low back pain. Overview of Literature Inadequately treated early low back pain transitions to chronic low back pain occur in approximately 30% of affected individuals. The administration of non-steroidal anti-inflammatory drugs is effective for treatment of low back pain in the early stages. However, the treatment of low back pain that is resistant to non-steroidal anti-inflammatory drugs is challenging. Methods Patients who presented with acute low back pain at our hospital were considered for inclusion in this study. After the diagnosis of acute low back pain, non-steroidal anti-inflammatory drug administration was started. Forty patients with a visual analog scale score of >5 for low back pain 1 month after treatment were finally enrolled. The first 20 patients were included in a non-steroidal anti-inflammatory drug group, and they continued non-steroidal anti-inflammatory drug therapy for 1 month. The next 20 patients were included in a combination group, and they received low-dose tramadol plus non-steroidal anti-inflammatory drug combination therapy for 1 month. The incidence of adverse events and the improvement in the visual analog scale score at 2 months after the start of treatment were analyzed. Results No adverse events were observed in the non-steroidal anti-inflammatory drug group. In the combination group, administration was discontinued in 2 patients (10%) due to adverse events immediately following the start of tramadol administration. At 2 months, the improvement in the visual analog scale score was greater in the combination group than in the non-steroidal anti-inflammatory drug group (p<0.001). Conclusions Low-dose tramadol plus non-steroidal anti-inflammatory drug combination therapy might decrease the incidence of adverse events and prevent the transition of acute low back pain to chronic low back pain. PMID:27559448
1996-01-01
Interleukin 6 (IL-6) is considered an important mediator of acute inflammatory responses. Moreover, IL-6 functions as a differentiation and growth factor of hematopoietic precursor cells, B cells, T cells, keratinocytes, neuronal cells, osteoclasts, and endothelial cells. IL-6 exhibits its action via a receptor complex consisting of a specific IL- 6 receptor (IL-6R) and a signal transducing subunit (gp130). Soluble forms of both receptor components are generated by shedding and are found in patients with various diseases such as acquired immune deficiency syndrome, rheumatoid arthritis, and others. The function of the soluble (s)IL-6R in vivo is unknown. Since human (h)IL-6 acts on human and murine target cells, but murine IL-6 on murine cells only, we constructed transgenic mice expressing the hsIL-6R. We report here that in the presence of hsIL-6R, mice are hypersensitized towards hIL-6, mounting an acute phase protein gene induction at significantly lower IL-6 dosages compared to control animals. Furthermore, in hsIL-6R transgenic mice, the detected acute phase response persists for a longer period of time. The IL-6/IL-6R complex prolongs markedly the Il- 6 plasma half-life. Our results reinforce the role of the hsIL-6R as an agonistic protein, help to understand the function of the hsIL-6R in vivo, and highlight the significance of the receptor in the induction of the acute phase response. PMID:8666898
Xiao, Siyang; Zhang, Wenxin; Chen, Hongjin; Fang, Bo; Qiu, Yinda; Chen, Xianxin; Chen, Lingfeng; Shu, Sheng; Zhang, Yali; Zhao, Yunjie; Liu, Zhiguo; Liang, Guang
2018-01-01
The purpose of this study was to design and synthesize novel 2-benzylidene-1-indanone derivatives for treatment of acute lung injury. A series of 39 novel 2-benzylidene-indanone structural derivatives were synthesized and evaluated for anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated murine primary macrophages. Most of the obtained compounds effectively inhibited the LPS-induced expression of IL-6 and TNF-α. The most active compound, 8f , was found to significantly reduce LPS-induced pulmonary inflammation, as reflected by reductions in the concentration of total protein, inflammatory cell count, as well as the lung wet/dry ratio in bronchoalveolar lavage (BAL) fluid. Furthermore, 8f effectively inhibited mRNA expression of several inflammatory cytokines after LPS challenge in vitro and in vivo. Administration of 8f also blocked LPS-induced activation of the proinflammatory NF-κB/MAPK signaling pathway. The simple synthetic preparation and biological properties of these derivatives make these 2-benzylidene-indanone scaffolds promising new entities for the development of anti-inflammatory therapeutics for the treatment of acute lung injury.
Zhang, Zhenbiao; Guo, Yingfang; Qiu, Changwei; Deng, Ganzhen; Guo, Mengyao
2017-02-01
Acute alcoholism is a major cause of cirrhosis and liver failure around the world. Selenium (Se) is an essential micronutrient promoting liver health in humans and animals. Selenoprotein P (SelP) is a glycoprotein secreted within the liver, which interacts with cytokines and the growth factor pathway to provide protection for hepatic cells. The present study was conducted to confirm the effect and mechanism of Se and SelP action in livers affected by acute alcoholism. In this study, a mouse model of acute alcoholism, as well as a hepatocyte model, was successfully established. The Se content of the liver was detected by atomic fluorescence spectrophotometry. The expression of messenger RNA (mRNA) was analyzed by quantitative polymerase chain reaction (qPCR). The protein expression of inflammatory factors was detected by ELISA. The other proteins were analyzed by western blotting. The results showed that pathological damage to the liver was gradually weakened by Se-supplementation, which was evaluated by hematoxylin and eosin (H&E) and TUNEL staining. Se-supplementation inhibited expression of pro-inflammatory factors TNF-α and IL-1β and promoted production of anti-inflammatory cytokine IL-10 in the liver with acute alcoholism. Se-supplementation also prevented the apoptosis of hepatocytes by suppressing the cleavage of caspases-9, 3, 6, 7, and poly(ADP-ribose) polymerase (PARP). Through correlational analysis, it was determined that the effects of Se-supplement were closely related to SelP expression, inflammatory cytokines, and apoptosis molecule production. The sienna of SelP further confirmed the protective action of Se-supplementation on the liver and that the mechanism of SelP involves the regulation of inflammatory cytokines and apoptosis molecules in acute alcoholism. These findings provide information regarding a new potential target for the treatment of acute alcoholism.
Antioxidant effect of Morus nigra on Chagas disease progression.
Montenote, Michelly Cristina; Wajsman, Vithor Zuccaro; Konno, Yoichi Takaki; Ferreira, Paulo César; Silva, Regildo Márcio Gonçalves; Therezo, Altino Luiz Silva; Silva, Luciana Pereira; Martins, Luciamáre Perinetti Alves
2017-11-06
Considering the widespread popular use of Morus nigra and the amount of scientific information on its antioxidant and anti-inflammatory activity, the effectiveness of this phytotherapeutic compound in the parasitemia progression during the acute phase of Chagas disease and its role in the development of the inflammatory process as well as its effects on the oxidative damage in the chronic phase of infection were evaluated. Thus, 96 male Swiss mice were randomly divided into eight groups, four groups were uninfected controls, and four groups were intraperitoneally infected with 5.0 x 104 blood trypomastigotes forms of T. cruzi QM2 strain. Four batches composed of one uninfected and one infected group were respectively treated with 70% alcohol solution and 25 μL, 50 μL and 75 μL of the phytotherapeutic compound. Levels of antioxidant elements (TBARS, FRAP, GSH and Sulfhydryl groups) were measured in plasma samples. The phytotherapeutic compound's antioxidant activity was measured by polyphenol and total flavonoid quantification, DPPH, NO, and FRAP method. Our results showed that the vehicle influenced some of the results that may have physiological relevance in Chagas disease. However, an important action of M. nigra tincture was observed in the progression of Chagas disease, since our results demonstrated a reduction in parasitemia of treated groups when compared to controls, especially in the group receiving 25 µL. However, in the chronic phase, the 50-µL dosage presented a better activity on some antioxidant defenses and minimized the tissue inflammatory process. Results indicated an important action of M. nigra tincture on the Chagas disease progression.
Horio, Fumihiko; Kiyama, Keiichiro; Kobayashi, Misato; Kawai, Kaori; Tsuda, Takanori
2006-02-01
ODS rat has a hereditary defect in ascorbic acid biosynthesis and is a useful animal model for elucidating the physiological role of ascorbic acid. We previously demonstrated by using ODS rats that ascorbic acid deficiency changes the hepatic gene expression of acute phase proteins, as seen in acute inflammation. In this study, we investigated the effects of ascorbic acid deficiency on the production of inflammatory chemokine, cytokine-induced neutrophil chemoattractant-1 (CINC-1), in ODS rats. Male ODS rats (6 wk of age) were fed a basal diet containing ascorbic acid (300 mg/kg diet) or a diet without ascorbic acid for 14 d. Obvious symptoms of scurvy were not observed in the ascorbic acid-deficient rats. Ascorbic acid deficiency significantly elevated the serum concentration of CINC-1 on d 14. The liver and spleen CINC-1 concentrations in the ascorbic acid-deficient rats were significantly elevated to 600% and 180% of the respective values in the control rats. However, the lung concentration of CINC-1 was not affected by ascorbic acid deficiency. Ascorbic acid deficiency significantly elevated the hepatic mRNA level of CINC-1 (to 480% of the value in the control rats), but not the lung mRNA level. These results demonstrate that ascorbic acid deficiency elevates the serum, liver and spleen concentrations of CINC-1 as seen in acute inflammation, and suggest that ascorbic acid deficiency stimulate the hepatic CINC-1 gene expression.
Acute pancreatitis at the beginning of the 21st century: The state of the art
Tonsi, Alfredo F; Bacchion, Matilde; Crippa, Stefano; Malleo, Giuseppe; Bassi, Claudio
2009-01-01
Acute pancreatitis is an acute inflammatory disease of the pancreas which can lead to a systemic inflammatory response syndrome with significant morbidity and mortality in 20% of patients. Gallstones and alcohol consumption are the most frequent causes of pancreatitis in adults. The treatment of mild acute pancreatitis is conservative and supportive; however severe episodes characterized by necrosis of the pancreatic tissue may require surgical intervention. Advanced understanding of the pathology, and increased interest in assessment of disease severity are the cornerstones of future management strategies of this complex and heterogeneous disease in the 21st century. PMID:19554647
Tissot, B; Lamy, A; Perraudeau, F; Manouvrier, J L; Imbert, Y
2002-07-13
We report the case of severe colitis occurring during treatment with non-steroid anti-inflammatories (NSAI). A 57 year-old woman was hospitalized for lumbar pain that had not been relieved by AINS, tramadol and then morphine. The patient presented with septic shock and peritonitis by rectal perforation, followed by acute rectorrhagia. The endoscopic aspect evoked Crohn's disease with a recto-vaginal fistula. Progression was further complicated by two episodes of collapse because of acute rectorrhagia, requiring hemostasis colectomy and abdominal-perineal amputation. The diagnosis retained was AINS-induced colitis complicated by acute colectasia on a fecaloma with recto-vaginal fistula.
Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs
Boukhatem, Mohamed Nadjib; Ferhat, Mohamed Amine; Kameli, Abdelkrim; Saidi, Fairouz; Kebir, Hadjer Tchoketch
2014-01-01
Background Volatile oils obtained from lemon grass [Cymbopogon citratus (DC.) Stapf, Poaceae family] are used in traditional medicine as remedies for the treatment of various diseases. Aims In the present study, lemon grass essential oil (LGEO) was evaluated for its in vivo topical and oral anti-inflammatory effects, and for its in vitro antifungal activity using both liquid and vapor phases. Methods The chemical profile of LGEO as determined by gas chromatography–mass spectrometry analysis revealed two major components: geranial (42.2%), and neral (31.5%). The antifungal activity of LGEO was evaluated against several pathogenic yeasts and filamentous fungi using disc diffusion and vapor diffusion methods. Results LGEO exhibited promising antifungal effect against Candida albicans, C. tropicalis, and Aspergillus niger, with different inhibition zone diameters (IZDs) (35–90 mm). IZD increased with increasing oil volume. Significantly, higher anti-Candida activity was observed in the vapor phase. For the evaluation of the anti-inflammatory effect, LGEO (10 mg/kg, administered orally) significantly reduced carrageenan-induced paw edema with a similar effect to that observed for oral diclofenac (50 mg/kg), which was used as the positive control. Oral administration of LGEO showed dose-dependent anti-inflammatory activity. In addition, topical application of LGEO in vivo resulted in a potent anti-inflammatory effect, as demonstrated by using the mouse model of croton oil-induced ear edema. To our knowledge, this is the first such report to be published. The topical application of LGEO at doses of 5 and 10 µL/ear significantly reduced acute ear edema induced by croton oil in 62.5 and 75% of the mice, respectively. In addition, histological analysis clearly confirmed that LGEO inhibits the skin inflammatory response in animal models. Conclusion Results of the present study indicate that LGEO has a noteworthy potential for the development of drugs for the treatment of fungal infections and skin inflammation that should be explored in future studies. PMID:25242268
Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs.
Boukhatem, Mohamed Nadjib; Ferhat, Mohamed Amine; Kameli, Abdelkrim; Saidi, Fairouz; Kebir, Hadjer Tchoketch
2014-01-01
Background Volatile oils obtained from lemon grass [Cymbopogon citratus (DC.) Stapf, Poaceae family] are used in traditional medicine as remedies for the treatment of various diseases. Aims In the present study, lemon grass essential oil (LGEO) was evaluated for its in vivo topical and oral anti-inflammatory effects, and for its in vitro antifungal activity using both liquid and vapor phases. Methods The chemical profile of LGEO as determined by gas chromatography-mass spectrometry analysis revealed two major components: geranial (42.2%), and neral (31.5%). The antifungal activity of LGEO was evaluated against several pathogenic yeasts and filamentous fungi using disc diffusion and vapor diffusion methods. Results LGEO exhibited promising antifungal effect against Candida albicans, C.tropicalis, and Aspergillus niger, with different inhibition zone diameters (IZDs) (35-90 mm). IZD increased with increasing oil volume. Significantly, higher anti-Candida activity was observed in the vapor phase. For the evaluation of the anti-inflammatory effect, LGEO (10 mg/kg, administered orally) significantly reduced carrageenan-induced paw edema with a similar effect to that observed for oral diclofenac (50 mg/kg), which was used as the positive control. Oral administration of LGEO showed dose-dependent anti-inflammatory activity. In addition, topical application of LGEO in vivo resulted in a potent anti-inflammatory effect, as demonstrated by using the mouse model of croton oil-induced ear edema. To our knowledge, this is the first such report to be published. The topical application of LGEO at doses of 5 and 10 µL/ear significantly reduced acute ear edema induced by croton oil in 62.5 and 75% of the mice, respectively. In addition, histological analysis clearly confirmed that LGEO inhibits the skin inflammatory response in animal models. Conclusion Results of the present study indicate that LGEO has a noteworthy potential for the development of drugs for the treatment of fungal infections and skin inflammation that should be explored in future studies.
Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs.
Boukhatem, Mohamed Nadjib; Ferhat, Mohamed Amine; Kameli, Abdelkrim; Saidi, Fairouz; Kebir, Hadjer Tchoketch
2014-01-01
Volatile oils obtained from lemon grass [Cymbopogon citratus (DC.) Stapf, Poaceae family] are used in traditional medicine as remedies for the treatment of various diseases. In the present study, lemon grass essential oil (LGEO) was evaluated for its in vivo topical and oral anti-inflammatory effects, and for its in vitro antifungal activity using both liquid and vapor phases. The chemical profile of LGEO as determined by gas chromatography-mass spectrometry analysis revealed two major components: geranial (42.2%), and neral (31.5%). The antifungal activity of LGEO was evaluated against several pathogenic yeasts and filamentous fungi using disc diffusion and vapor diffusion methods. LGEO exhibited promising antifungal effect against Candida albicans, C. tropicalis, and Aspergillus niger, with different inhibition zone diameters (IZDs) (35-90 mm). IZD increased with increasing oil volume. Significantly, higher anti-Candida activity was observed in the vapor phase. For the evaluation of the anti-inflammatory effect, LGEO (10 mg/kg, administered orally) significantly reduced carrageenan-induced paw edema with a similar effect to that observed for oral diclofenac (50 mg/kg), which was used as the positive control. Oral administration of LGEO showed dose-dependent anti-inflammatory activity. In addition, topical application of LGEO in vivo resulted in a potent anti-inflammatory effect, as demonstrated by using the mouse model of croton oil-induced ear edema. To our knowledge, this is the first such report to be published. The topical application of LGEO at doses of 5 and 10 µL/ear significantly reduced acute ear edema induced by croton oil in 62.5 and 75% of the mice, respectively. In addition, histological analysis clearly confirmed that LGEO inhibits the skin inflammatory response in animal models. RESULTS of the present study indicate that LGEO has a noteworthy potential for the development of drugs for the treatment of fungal infections and skin inflammation that should be explored in future studies.
Leichsenring, Anna; Bäcker, Ingo; Furtmüller, Paul G.; Obinger, Christian; Lange, Franziska; Flemmig, Jörg
2016-01-01
Rheumatoid arthritis (RA)—a widespread chronic inflammatory disease in industrialized countries—is characterized by a persistent and progressive joint destruction. The chronic pro-inflammatory state results from a mutual activation of the innate and the adaptive immune system, while the exact pathogenesis mechanism is still under discussion. New data suggest a role of the innate immune system and especially polymorphonuclear granulocytes (PMNs, neutrophils) not only during onset and the destructive phase of RA but also at the chronification of the disease. Thereby the enzymatic activity of myeloperoxidase (MPO), a peroxidase strongly abundant in neutrophils, may be important: While its peroxidase activity is known to contribute to cartilage destruction at later stages of RA the almost MPO-specific oxidant hypochlorous acid (HOCl) is also discussed for certain anti-inflammatory effects. In this study we used pristane-induced arthritis (PIA) in Dark Agouti rats as a model for the chronic course of RA in man. We were able to shown that a specific detection of the HOCl-producing MPO activity provides a sensitive new marker to evaluate the actual systemic inflammatory status which is only partially detectable by the evaluation of clinical symptoms (joint swelling and redness measurements). Moreover, we evaluated the long-term pharmacological effect of the well-known anti-inflammatory flavonoid epigallocatechin gallate (EGCG). Thereby only upon early and continuous oral application of this polyphenol the arthritic symptoms were considerably diminished both in the acute and in the chronic phase of the disease. The obtained results were comparable to the treatment control (application of methotrexate, MTX). As revealed by stopped-flow kinetic measurements, EGCG may regenerate the HOCl-production of MPO which is known to be impaired at chronic inflammatory diseases like RA. It can be speculated that this MPO activity-promoting effect of EGCG may contribute to the pharmacological mode of action of this polyphenol. PMID:27023113
Gamma-Terpinene Modulates Acute Inflammatory Response in Mice.
Ramalho, Theresa Raquel de Oliveira; Oliveira, Maria Talita Pacheco de; Lima, Ana Luisa de Araujo; Bezerra-Santos, Claudio Roberto; Piuvezam, Marcia Regina
2015-09-01
The monoterpene gamma-terpinene is a natural compound present in essential oils of a wide variety of plants, including the Eucalyptus genus, which has been reported to possess anti-inflammatory activity. The goal of this study was to evaluate the effect of gamma-terpinene on several in vivo experimental models of acute inflammation. Swiss mice were pretreated with gamma-terpinene and subjected to protocols of paw edema with different phlogistic agents such as carrageenan, prostaglandin-E2, histamine, or bradykinin. The microvascular permeability was measured by intraperitoneal injection of acetic acid and measuring the amount of protein extravasation. Carrageenan-induced peritonitis was used to analyze the effect of gamma-terpinene on inflammatory cell migration and cytokine production. We also developed an acute lung injury protocol to define the anti-inflammatory effect of gamma-terpinene. Mice pretreated with gamma-terpinene displayed reduced paw edema induced by carrageenan from 1-24 h after challenge. A similar reduction was observed when gamma-terpinene was administered after stimulation with PGE2, bradykinin, and histamine. Treatment with gamma-terpinene also inhibited fluid extravasation in the acetic acid model of microvascular permeability. In a carrageenan-induced peritonitis model, gamma-terpinene treatment reduced neutrophil migration as well as the production of interleukin-1β and tumor necrosis factor-α when compared to nontreated animals, and in the acute lung injury protocol, gamma-terpinene diminished the neutrophil migration into lung tissue independently of the total protein extravasation in the lung. These data demonstrate that, in different models of inflammation, treatment with gamma-terpinene alleviated inflammatory parameters such as edema and pro-inflammatory cytokine production, as well as cell migration into the inflamed site, and that this monoterpene has anti-inflammatory properties. Georg Thieme Verlag KG Stuttgart · New York.
Heimesaat, Markus M; Dunay, Ildiko R; Schulze, Silvia; Fischer, André; Grundmann, Ursula; Alutis, Marie; Kühl, Anja A; Tamas, Andrea; Toth, Gabor; Dunay, Miklos P; Göbel, Ulf B; Reglodi, Dora; Bereswill, Stefan
2014-01-01
The neuropeptide Pituitary adenylate cyclase-activating polypeptide (PACAP) plays pivotal roles in immunity and inflammation. So far, potential immune-modulatory properties of PACAP have not been investigated in experimental ileitis. Mice were perorally infected with Toxoplasma (T.) gondii to induce acute ileitis (day 0) and treated daily with synthetic PACAP38 from day 1 to 6 post infection (p.i.; prophylaxis) or from day 4 to 6 p.i. (therapy). Whereas placebo-treated control mice suffered from acute ileitis at day 7 p.i. and succumbed to infection, intestinal immunopathology was ameliorated following PACAP prophylaxis. PACAP-treated mice exhibited increased abundance of small intestinal FOXP3+ cells, but lower numbers of ileal T lymphocytes, neutrophils, monocytes and macrophages, which was accompanied by less ileal expression of pro-inflammatory cytokines such as IL-23p19, IL-22, IFN-γ, and MCP-1. Furthermore, PACAP-treated mice displayed higher anti-inflammatory IL-4 concentrations in mesenteric lymph nodes and liver and higher systemic anti-inflammatory IL-10 levels in spleen and serum as compared to control animals at day 7 p.i. Remarkably, PACAP-mediated anti-inflammatory effects could also be observed in extra-intestinal compartments as indicated by reduced pro-inflammatory mediator levels in spleen (TNF-α, nitric oxide) and liver (TNF-α, IFN-γ, MCP-1, IL-6) and less severe histopathological sequelae in lungs and kidneys following prophylactic PACAP treatment. Strikingly, PACAP prolonged survival of T. gondii infected mice in a time-of-treatment dependent manner. Synthetic PACAP ameliorates acute small intestinal inflammation and extra-intestinal sequelae by down-regulating Th1-type immunopathology, reducing oxidative stress and up-regulating anti-inflammatory cytokine responses. These findings provide novel potential treatment options of inflammatory bowel diseases.
Integrating microRNAs into a system biology approach to acute lung injury.
Zhou, Tong; Garcia, Joe G N; Zhang, Wei
2011-04-01
Acute lung injury (ALI), including the ventilator-induced lung injury (VILI) and the more severe acute respiratory distress syndrome (ARDS), are common and complex inflammatory lung diseases potentially affected by various genetic and nongenetic factors. Using the candidate gene approach, genetic variants associated with immune response and inflammatory pathways have been identified and implicated in ALI. Because gene expression is an intermediate phenotype that resides between the DNA sequence variation and the higher level cellular or whole-body phenotypes, the illustration of gene expression regulatory networks potentially could enhance understanding of disease susceptibility and the development of inflammatory lung syndromes. MicroRNAs (miRNAs) have emerged as a novel class of gene regulators that play critical roles in complex diseases including ALI. Comparisons of global miRNA profiles in animal models of ALI and VILI identified several miRNAs (eg, miR-146a and miR-155) previously implicated in immune response and inflammatory pathways. Therefore, via regulation of target genes in these biological processes and pathways, miRNAs potentially contribute to the development of ALI. Although this line of inquiry exists at a nascent stage, miRNAs have the potential to be critical components of a comprehensive model for inflammatory lung disease built by a systems biology approach that integrates genetic, genomic, proteomic, epigenetic as well as environmental stimuli information. Given their particularly recognized role in regulation of immune and inflammatory responses, miRNAs also serve as novel therapeutic targets and biomarkers for ALI/ARDS or VILI, thus facilitating the realization of personalized medicine for individuals with acute inflammatory lung disease. Copyright © 2011 Mosby, Inc. All rights reserved.
Alard, J; Peucelle, V; Boutillier, D; Breton, J; Kuylle, S; Pot, B; Holowacz, S; Grangette, C
2018-02-27
Alterations in the gut microbiota composition play a key role in the development of chronic diseases such as inflammatory bowel disease (IBD). The potential use of probiotics therefore gained attention, although outcomes were sometimes conflicting and results largely strain-dependent. The present study aimed to identify new probiotic strains that have a high potential for the management of this type of pathologies. Strains were selected from a large collection by combining different in vitro and in vivo approaches, addressing both anti-inflammatory potential and ability to improve the gut barrier function. We identified six strains with an interesting anti-inflammatory profile on peripheral blood mononuclear cells and with the ability to restore the gut barrier using a gut permeability model based on Caco-2 cells sensitized with hydrogen peroxide. The in vivo evaluation in two 2,4,6-trinitrobenzene sulfonic acid-induced murine models of colitis highlighted that some of the strains exhibited beneficial activities against acute colitis while others improved chronic colitis. Bifidobacterium bifidum PI22, the strain that exhibited the most protective capacities against acute colitis was only slightly efficacious against chronic colitis, while Bifidobacterium lactis LA804 which was less efficacious in the acute model was the most protective against chronic colitis. Lactobacillus helveticus PI5 was not anti-inflammatory in vitro but the best in strengthening the epithelial barrier and as such able to significantly dampen murine acute colitis. Interestingly, Lactobacillus salivarius LA307 protected mice significantly against both types of colitis. This work provides crucial clues for selecting the best strains for more efficacious therapeutic approaches in the management of chronic inflammatory diseases. The strategy employed allowed us to identify four strains with different characteristics and a high potential for the management of inflammatory diseases, such as IBD.
2016-01-01
We evaluated clinical factors such as age, gender, predisposing diseases and ultrasonographic findings that determine clinical outcome of acute acalculous inflammatory gallbladder diseases in children. The patients were divided into the four age groups. From March 2004 through February 2014, clinical data from 131 children diagnosed as acute acalculous inflammatory gallbladder disease by ultrasonography were retrospectively reviewed. Systemic infectious diseases were the most common etiology of acute inflammatory gallbladder disease in children and were identified in 50 patients (38.2%). Kawasaki disease was the most common predisposing disease (28 patients, 21.4%). The incidence was highest in infancy and lowest in adolescence. The age groups were associated with different predisposing diseases; noninfectious systemic disease was the most common etiology in infancy and early childhood, whereas systemic infectious disease was the most common in middle childhood and adolescence (P = 0.001). Gallbladder wall thickening was more commonly found in malignancy (100%) and systemic infection (94.0%) (P = 0.002), whereas gallbladder distension was more frequent in noninfectious systemic diseases (60%) (P = 0.000). Ascites seen on ultrasonography was associated with a worse clinical course compared with no ascites (77.9% vs. 37.7%, P = 0.030), and the duration of hospitalization was longer in patients with ascites (11.6 ± 10.7 vs. 8.0 ± 6.6 days, P = 0.020). In conclusion, consideration of age and predisposing disease in addition to ultrasonographic gallbladder findings in children suspected of acute acalculous inflammatory gallbladder disease might result in better outcomes. PMID:27550491
Pathogen- and host-directed anti-inflammatory activities of macrolide antibiotics.
Steel, Helen C; Theron, Annette J; Cockeran, Riana; Anderson, Ronald; Feldman, Charles
2012-01-01
Macrolide antibiotics possess several, beneficial, secondary properties which complement their primary antimicrobial activity. In addition to high levels of tissue penetration, which may counteract seemingly macrolide-resistant bacterial pathogens, these agents also possess anti-inflammatory properties, unrelated to their primary antimicrobial activity. Macrolides target cells of both the innate and adaptive immune systems, as well as structural cells, and are beneficial in controlling harmful inflammatory responses during acute and chronic bacterial infection. These secondary anti-inflammatory activities of macrolides appear to be particularly effective in attenuating neutrophil-mediated inflammation. This, in turn, may contribute to the usefulness of these agents in the treatment of acute and chronic inflammatory disorders of both microbial and nonmicrobial origin, predominantly of the airways. This paper is focused on the various mechanisms of macrolide-mediated anti-inflammatory activity which target both microbial pathogens and the cells of the innate and adaptive immune systems, with emphasis on their clinical relevance.
Pathogen- and Host-Directed Anti-Inflammatory Activities of Macrolide Antibiotics
Steel, Helen C.; Theron, Annette J.; Cockeran, Riana; Anderson, Ronald; Feldman, Charles
2012-01-01
Macrolide antibiotics possess several, beneficial, secondary properties which complement their primary antimicrobial activity. In addition to high levels of tissue penetration, which may counteract seemingly macrolide-resistant bacterial pathogens, these agents also possess anti-inflammatory properties, unrelated to their primary antimicrobial activity. Macrolides target cells of both the innate and adaptive immune systems, as well as structural cells, and are beneficial in controlling harmful inflammatory responses during acute and chronic bacterial infection. These secondary anti-inflammatory activities of macrolides appear to be particularly effective in attenuating neutrophil-mediated inflammation. This, in turn, may contribute to the usefulness of these agents in the treatment of acute and chronic inflammatory disorders of both microbial and nonmicrobial origin, predominantly of the airways. This paper is focused on the various mechanisms of macrolide-mediated anti-inflammatory activity which target both microbial pathogens and the cells of the innate and adaptive immune systems, with emphasis on their clinical relevance. PMID:22778497
Javorkova, Eliska; Trosan, Peter; Zajicova, Alena; Krulova, Magdalena; Hajkova, Michaela
2014-01-01
The aim of this study was to investigate the effects of systemically administered bone-marrow-derived mesenchymal stromal cells (MSCs) on the early acute phase of inflammation in the alkali-burned eye. Mice with damaged eyes were either untreated or treated 24 h after the injury with an intravenous administration of fluorescent-dye-labeled MSCs that were unstimulated or pretreated with interleukin-1α (IL-1α), transforming growth factor-β (TGF-β), or interferon-γ (IFN-γ). Analysis of cell suspensions prepared from the eyes of treated mice on day 3 after the alkali burn revealed that MSCs specifically migrated to the damaged eye and that the number of labeled MSCs was more than 30-times higher in damaged eyes compared with control eyes. The study of the composition of the leukocyte populations within the damaged eyes showed that all types of tested MSCs slightly decreased the number of infiltrating lymphoid and myeloid cells, but only MSCs pretreated with IFN-γ significantly decreased the percentage of eye-infiltrating cells with a more profound effect on myeloid cells. Determining cytokine and NO production in the damaged eyes confirmed that the most effective immunomodulation was achieved with MSCs pretreated with IFN-γ, which significantly decreased the levels of the proinflammatory molecules IL-1α, IL-6, and NO. Taken together, the results show that systemically administered MSCs specifically migrate to the damaged eye and that IFN-γ-pretreated MSCs are superior in inhibiting the acute phase of inflammation, decreasing leukocyte infiltration, and attenuating the early inflammatory environment. PMID:24849741
Maicas, Nuria; van der Vlag, Johan; Bublitz, Janin; Florquin, Sandrine; Bakker-van Bebber, Marinka; Dinarello, Charles A.; Verweij, Vivienne; Masereeuw, Roos; Joosten, Leo A.
2017-01-01
Several lines of evidence have demonstrated the anti-inflammatory and cytoprotective effects of alpha-1-antitrypsin (AAT), the major serum serine protease inhibitor. The aim of the present study was to investigate the effects of human AAT (hAAT) monotherapy during the early and recovery phase of ischemia-induced acute kidney injury. Mild renal ischemia-reperfusion (I/R) injury was induced in male C57Bl/6 mice by bilateral clamping of the renal artery and vein for 20 min. hAAT (80 mg/kg, Prolastin®) was administered daily intraperitoneally (i.p.) from day -1 until day 7 after surgery. Control animals received the same amount of human serum albumin (hAlb). Plasma, urine and kidneys were collected at 2h, 1, 2, 3, 8 and 15 days after reperfusion for histological and biochemical analysis. hAAT partially preserved renal function and tubular integrity after induction of bilateral kidney I/R injury, which was accompanied with reduced renal influx of macrophages and a significant decrease of neutrophil gelatinase-associated lipocalin (NGAL) protein levels in urine and plasma. During the recovery phase, hAAT significantly decreased kidney injury molecule-1 (KIM-1) protein levels in urine but showed no significant effect on renal fibrosis. Although the observed effect size of hAAT administration was limited and therefore the clinical relevance of our findings should be evaluated carefully, these data support the potential of this natural protein to ameliorate ischemic and inflammatory conditions. PMID:28235038
Giclas, P. C.; Manthei, U.; Strunk, R. C.
1985-01-01
Concentrations of five serum proteins, C3, C5, ceruloplasmin, C-reactive protein, and albumin, have been measured during the acute phase response in rabbits with turpentine-induced pleurisy. C-reactive protein concentrations in the circulation rose abruptly between 12 and 36 hours to a level greater than 50 times the pretreatment concentration, then returned to undetectable amounts by 96 hours. C3 and ceruloplasmin both showed some increase in concentration by 12 hours and reached their maximum concentrations of two to three times the baseline levels 48-72 hours after the turpentine treatment. Concentrations were still elevated at 120 hours, after which time they gradually returned to normal. C5 and albumin concentrations in the turpentine-treated rabbits did not differ from the baseline concentrations. The same five proteins were measured in the inflammatory exudate. C-reactive protein was not detectable at any of the time points. C3, C5, ceruloplasmin, and albumin were present in normal pleural fluid at roughly half their serum concentrations. The activities of C3, C5, and ceruloplasmin were low in the early exudate, but C3 and C5 activity rose relative to their concentrations in the later samples of pleural fluid. The specific activities of C3 and C5 were higher in the pleural fluid at 72 hours than in plasma, while that of ceruloplasmin remained less in the pleural fluid than in plasma throughout the experiment. The involvement of these proteins and their relation to the inflammatory response are discussed. Images Figure 6 PMID:2409807
The Role of Lymphocytes in Radiotherapy-Induced Adverse Late Effects in the Lung
Wirsdörfer, Florian; Jendrossek, Verena
2016-01-01
Radiation-induced pneumonitis and fibrosis are dose-limiting side effects of thoracic irradiation. Thoracic irradiation triggers acute and chronic environmental lung changes that are shaped by the damage response of resident cells, by the resulting reaction of the immune system, and by repair processes. Although considerable progress has been made during the last decade in defining involved effector cells and soluble mediators, the network of pathophysiological events and the cellular cross talk linking acute tissue damage to chronic inflammation and fibrosis still require further definition. Infiltration of cells from the innate and adaptive immune systems is a common response of normal tissues to ionizing radiation. Herein, lymphocytes represent a versatile and wide-ranged group of cells of the immune system that can react under specific conditions in various ways and participate in modulating the lung environment by adopting pro-inflammatory, anti-inflammatory, or even pro- or anti-fibrotic phenotypes. The present review provides an overview on published data about the role of lymphocytes in radiation-induced lung disease and related damage-associated pulmonary diseases with a focus on T lymphocytes and B lymphocytes. We also discuss the suspected dual role of specific lymphocyte subsets during the pneumonitic phase and fibrotic phase that is shaped by the environmental conditions as well as the interaction and the intercellular cross talk between cells from the innate and adaptive immune systems and (damaged) resident epithelial cells and stromal cells (e.g., endothelial cells, mesenchymal stem cells, and fibroblasts). Finally, we highlight potential therapeutic targets suited to counteract pathological lymphocyte responses to prevent or treat radiation-induced lung disease. PMID:28018357
Goswami, Pooja; Sonika, Ujjwal; Moka, Praneeth; Sreenivas, Vishnubhatla; Saraya, Anoop
Severe acute pancreatitis (AP) is associated with high mortality due to systemic inflammatory response syndrome in the early phase and secondary infection in the later phase. Concomitant intestinal ischemia often results in gut injury. We studied intestinal fatty acid binding protein (IFABP) and citrulline levels as markers of gut injury to predict prognosis in AP. Acute pancreatitis patients at admission and controls were studied. Serum IFABP was measured by enzyme-linked immunosorbent assay and plasma citrulline by high-performance liquid chromatography technique. Ultrastructural changes in duodenal biopsy were also compared between the 2 groups. The IFABP concentration was significantly higher in AP cases (n = 94) compared with controls (n = 100) (mean [standard deviation], 592.5 [753.6] vs 87.8 [67.6] pg/mL; P < 0.001) and in patients with severe AP versus mild AP (738.3 [955.3] vs 404.0 [263.3] pg/ mL, P = 0.03). Citrulline concentration was lower in AP versus controls (29.9 [33.8] vs 83.9 [60.1] μg/L, P < 0.001). We propose a model by which these biomarkers (IFABP >350 pg/mL and citrulline <18 μg/L) are able to predict poor prognosis in 33.9% of patients with AP. The gut injury was also validated via ultrastructural changes. Intestinal fatty acid binding protein is a promising prognostic marker in acute pancreatitis.
[Giant coronary aneurysms in infants with Kawasaki disease].
Sánchez Andrés, Antonio; Salvador Mercader, Inmaculada; Seller Moya, Julia; Carrasco Moreno, José Ignacio
2017-08-01
Kawasaki disease (KD) is an acute vasculitis of unknown origin and predominant in males. The long-term effects of the disease depend on whether there are coronary lesions, particularly aneurysms. The prognosis of patients with giant aneurysms is very poor due to their natural progression to coronary thrombosis or severe obstructive lesions. A series of 8 cases is presented where the epidemiology and diagnostic methods are described. The treatment of the acute and long-term cardiovascular sequelae is also reviewed. A descriptive analysis was conducted on patients admitted to the Paediatric Cardiology Unit of La Fe University Hospital (Valencia) with KD and a coronary lesion. More than one artery was involved in all patients. Although early diagnosis was established in only two cases, none of the patients had severe impairment of ventricular function during the acute phase. Treatment included intravenous gammaglobulin and acetylsalicylic acid at anti-inflammatory doses during the acute phase. A combination of dual antiplatelet therapy and corticosteroids was given in cases of coronary thrombosis. The silent aneurysms continue to persist. KD is the most common cause of acquired heart disease in children. The delay in diagnosis is associated with a greater likelihood of coronary lesions that could increase the risk of cardiovascular events in adulthood. Thus, this subgroup requires close clinical monitoring for a better control of cardiovascular risk factors over time. Copyright © 2016 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.
Changes in Gene Expression and Metabolism in the Testes of the Rat following Spinal Cord Injury
Fortune, Ryan D.; Grill, Raymond J.; Beeton, Christine; Tanner, Mark; Huq, Redwan
2017-01-01
Abstract Spinal cord injury (SCI) results in devastating changes to almost all aspects of a patient's life. In addition to a permanent loss of sensory and motor function, males also will frequently exhibit a profound loss of fertility through poorly understood mechanisms. We demonstrate that SCI causes measureable pathology in the testis both acutely (24 h) and chronically up to 1.5 years post-injury, leading to loss in sperm motility and viability. SCI has been shown in humans and rats to induce leukocytospermia, with the presence of inflammatory cytokines, anti-sperm antibodies, and reactive oxygen species found within the ejaculate. Using messenger RNA and metabolomic assessments, we describe molecular and cellular changes that occur within the testis of adult rats over an acute to chronic time period. From 24 h, 72 h, 28 days, and 90 days post-SCI, the testis reveal a distinct time course of pathological events. The testis show an acute drop in normal sexual organ processes, including testosterone production, and establishment of a pro-inflammatory environment. This is followed by a subacute initiation of an innate immune response and loss of cell cycle regulation, possibly due to apoptosis within the seminiferous tubules. At 1.5 years post-SCI, there is a chronic low level immune response as evidenced by an elevation in T cells. These data suggest that SCI elicits a wide range of pathological processes within the testes, the actions of which are not restricted to the acute phase of injury but rather extend chronically, potentially through the lifetime of the subject. The multiplicity of these pathological events suggest a single therapeutic intervention is unlikely to be successful. PMID:27750479
Plapler, Pérola Grinberg; Scheinberg, Morton Aaron; Ecclissato, Christina da Cunha; Bocchi de Oliveira, Monalisa Fernanda; Amazonas, Roberto Bleuel
2016-01-01
Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most common type of medication used in the treatment of acute pain. Ketorolac trometamol (KT) is a nonnarcotic, peripherally acting nonsteroidal anti-inflammatory drug with analgesic effects comparable to certain opioids. The aim of this study was to compare the efficacy of KT and naproxen (NA) in the treatment of acute low back pain (LBP) of moderate-to-severe intensity. In this 10-day, Phase III, randomized, double-blind, double-dummy, noninferiority trial, participants with acute LBP of moderate-to-severe intensity as determined through a visual analog scale (VAS) were randomly assigned in a 1:1 ratio to receive sublingual KT 10 mg three times daily or oral NA 250 mg three times daily. From the second to the fifth day of treatment, if patient had VAS >40 mm, increased dosage to four times per day was allowed. The primary end point was the reduction in LBP as measured by VAS. We also performed a post hoc superiority analysis. KT was not inferior to NA for the reduction in LBP over 5 days of use as measured by VAS scores (P=0.608 for equality of variance; P=0.321 for equality of means) and by the Roland-Morris Disability Questionnaire (P=0.180 for equality of variance test; P=0.446 for equality of means) using 95% confidence intervals. The percentage of participants with improved pain relief 60 minutes after receiving the first dose was higher in the KT group (24.2%) than in the NA group (6.5%; P=0.049). The most common adverse effects were heartburn, nausea, and vomiting. KT is not inferior in efficacy and delivers faster pain relief than NA.
2002-04-01
hereditary abundance, allergy and frequent airways acute inflammatory diseases in anamnesis and have been made routine clinical examination. 23-3 During...have in anamnesis (during last 2 year) 3-4 times and over acute airway inflammatory diseases: 17 persons (31,5%). 19 persons (36%) from both
Popovic, Ljiljana M; Mitic, Nebojsa R; Miric, Dijana; Bisevac, Boban; Miric, Mirjana; Popovic, Brankica
2015-01-01
Exercise induces a multitude of physiological and biochemical changes in blood affecting its redox status. Tissue damage resulting from exercise induces activation of inflammatory cells followed by the increased activity of myeloperoxidase (MPO) in circulation. Vitamin C readily scavenges free radicals and may thereby prevent oxidative damage of important biological macromolecules. The aim of this study was to examine the effect of vitamin C supplementation on oxidative stress and neutrophil inflammatory response induced by acute and regular exercise. Experiment was conducted on acute exercise group (performing Bruce Treadmill Protocol (BTP)) and regular training group. Markers of lipid peroxidation, malondialdehyde (MDA), MPO activity, and vitamin C status were estimated at rest and after BTP (acute exercise group) and before and after vitamin C supplementation in both groups. Our results showed increased postexercise Asc in serum independently of vitamin supplementation. They also showed that vitamin C can significantly decrease postexercise MDA level in both experimental groups. Increased postexercise MPO activity has been found in both groups and was not affected by vitamin C supplementation. We concluded that vitamin C supplementation can suppress lipid peroxidation process during exercise but cannot affect neutrophil inflammatory response in either exercise group.
Zwetsloot, Kevin A; John, Casey S; Lawrence, Marcus M; Battista, Rebecca A; Shanely, R Andrew
2014-01-01
The purpose of this study was to determine: 1) the extent to which an acute session of high-intensity interval training (HIIT) increases systemic inflammatory cytokines and chemokines, and 2) whether 2 weeks of HIIT training alters the inflammatory response. Eight recreationally active males (aged 22±2 years) performed 2 weeks of HIIT on a cycle ergometer (six HIIT sessions at 8–12 intervals; 60-second intervals, 75-second active rest) at a power output equivalent to 100% of their predetermined peak oxygen uptake (VO2max). Serum samples were collected during the first and sixth HIIT sessions at rest and immediately, 15, 30, and 45 minutes post-exercise. An acute session of HIIT induced significant increases in interleukin (IL)-6, IL-8, IL-10, tumor necrosis factor-α, and monocyte chemotactic protein-1 compared with rest. The concentrations of interferon-γ, granulocyte macrophage-colony-stimulating factor, and IL-1β were unaltered with an acute session of HIIT Two weeks of training did not alter the inflammatory response to an acute bout of HIIT exercise. Maximal power achieved during a VO2max test significantly increased 4.6%, despite no improvements in VO2max after 2 weeks of HIIT. These data suggest that HIIT exercise induces a small inflammatory response in young, recreationally active men; however, 2 weeks of HIIT does not alter this response. PMID:24520199
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wigenstam, Elisabeth; Elfsmark, Linda; Koch, Bo
We investigated acute and delayed respiratory changes after inhalation exposure to chlorine (Cl{sub 2}) with the aim to understand the pathogenesis of the long-term sequelae of Cl{sub 2}-induced lung-injury. In a rat model of nose-only exposure we analyzed changes in airway hyperresponsiveness (AHR), inflammatory responses in airways, expression of pro-inflammatory markers and development of lung fibrosis during a time-course from 5 h up to 90 days after a single inhalation of Cl{sub 2}. A single dose of dexamethasone (10 mg/kg) was administered 1 h following Cl{sub 2}-exposure. A 15-min inhalation of 200 ppm Cl{sub 2} was non-lethal in Sprague-Dawley rats.more » At 24 h post exposure, Cl{sub 2}-exposed rats displayed elevated numbers of leukocytes with an increase of neutrophils and eosinophils in bronchoalveolar lavage (BAL) and edema was shown both in lung tissue and the heart. At 24 h, the inflammasome-associated cytokines IL-1β and IL-18 were detected in BAL. Concomitant with the acute inflammation a significant AHR was detected. At the later time-points, a delayed inflammatory response was observed together with signs of lung fibrosis as indicated by increased pulmonary macrophages, elevated TGF-β expression in BAL and collagen deposition around airways. Dexamethasone reduced the numbers of neutrophils in BAL at 24 h but did not influence the AHR. Inhalation of Cl{sub 2} in rats leads to acute respiratory and cardiac changes as well as pulmonary inflammation involving induction of TGF-β1. The acute inflammatory response was followed by sustained macrophage response and lack of tissue repair. It was also found that pathways apart from the acute inflammatory response contribute to the Cl{sub 2}-induced respiratory dysfunction. - Highlights: • Inhalation of Cl{sub 2} leads to acute lung inflammation and airway hyperreactivity. • Cl{sub 2} activates an inflammasome pathway of TGF-β induction. • Cl{sub 2} leads to a fibrotic respiratory disease. • Treatment with corticosteroids alone is insufficient to counteract acute lung injury.« less
Jeengar, Manish Kumar; Shrivastava, Shweta; Nair, Kala; Singareddy, Sreenivasa Reddy; Putcha, Uday Kumar; Talluri, M V N Kumar; Naidu, V G M; Sistla, Ramakrishna
2014-12-01
The purpose of the present study is to evaluate the effect of emu oil on bioavailability of curcumin when co-administered and to evaluate the property that enhances the anti-inflammatory potential of curcumin. Oral bioavailability of curcumin in combination with emu oil was determined by measuring the plasma concentration of curcumin by HPLC. The anti-inflammatory potential was evaluated in carrageenan-induced paw edema model (acute model) and in Freund's complete adjuvant (FCA)-induced arthritis model (chronic model) in male SD rats. The anti-inflammatory potential of curcumin in combination with emu oil has been significantly increased in both acute and chronic inflammatory models as evident from inhibition of increase in paw volume, arthritic score, and expression of pro-inflammatory cytokines. The increased anti-inflammatory activity in combination therapy is due to enhanced bioavailability (5.2-fold compared to aqueous suspension) of curcumin by emu oil. Finally, it is concluded that the combination of emu oil with curcumin will be a promising approach for the treatment of arthritis.
Williams, Lynda M.; Campbell, Fiona M.; Drew, Janice E.; Koch, Christiane; Hoggard, Nigel; Rees, William D.; Kamolrat, Torkamol; Thi Ngo, Ha; Steffensen, Inger-Lise; Gray, Stuart R.; Tups, Alexander
2014-01-01
High–fat (HF) diet-induced obesity and insulin insensitivity are associated with inflammation, particularly in white adipose tissue (WAT). However, insulin insensitivity is apparent within days of HF feeding when gains in adiposity and changes in markers of inflammation are relatively minor. To investigate further the effects of HF diet, C57Bl/6J mice were fed either a low (LF) or HF diet for 3 days to 16 weeks, or fed the HF-diet matched to the caloric intake of the LF diet (PF) for 3 days or 1 week, with the time course of glucose tolerance and inflammatory gene expression measured in liver, muscle and WAT. HF fed mice gained adiposity and liver lipid steadily over 16 weeks, but developed glucose intolerance, assessed by intraperitoneal glucose tolerance tests (IPGTT), in two phases. The first phase, after 3 days, resulted in a 50% increase in area under the curve (AUC) for HF and PF mice, which improved to 30% after 1 week and remained stable until 12 weeks. Between 12 and 16 weeks the difference in AUC increased to 60%, when gene markers of inflammation appeared in WAT and muscle but not in liver. Plasma proteomics were used to reveal an acute phase response at day 3. Data from PF mice reveals that glucose intolerance and the acute phase response are the result of the HF composition of the diet and increased caloric intake respectively. Thus, the initial increase in glucose intolerance due to a HF diet occurs concurrently with an acute phase response but these effects are caused by different properties of the diet. The second increase in glucose intolerance occurs between 12 - 16 weeks of HF diet and is correlated with WAT and muscle inflammation. Between these times glucose tolerance remains stable and markers of inflammation are undetectable. PMID:25170916
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamdar, Karishma; Khakpour, Samira; Chen, Jingyu
Chronic inflammatory disorders are thought to arise due to an interplay between predisposing host genetics and environmental factors. For example, the onset of inflammatory bowel disease is associated with enteric proteobacterial infection, yet the mechanistic basis for this association is unclear. We have shown previously that genetic defiency in TLR1 promotes acute enteric infection by the proteobacteria Yersinia enterocolitica. Examining that model further, we uncovered an altered cellular immune response that promotes the recruitment of neutrophils which in turn increases metabolism of the respiratory electron acceptor tetrathionate by Yersinia. These events drive permanent alterations in anti-commensal immunity, microbiota composition, andmore » chronic inflammation, which persist long after Yersinia clearence. Deletion of the bacterial genes involved in tetrathionate respiration or treatment using targeted probiotics could prevent microbiota alterations and inflammation. Thus, acute infection can drive long term immune and microbiota alterations leading to chronic inflammatory disease in genetically predisposed individuals.« less
Low level laser therapy reduces acute lung inflammation without impairing lung function.
Cury, Vivian; de Lima, Thais Martins; Prado, Carla Maximo; Pinheiro, Nathalia; Ariga, Suely K K; Barbeiro, Denise F; Moretti, Ana I; Souza, Heraldo P
2016-12-01
Acute lung injury is a condition characterized by exacerbate inflammatory reaction in distal airways and lung dysfunction. Here we investigate the treatment of acute lung injury (ALI) by low level laser therapy (LLLT), an effective therapy used for the treatment of patients with inflammatory disorders or traumatic injuries, due to its ability to reduce inflammation and promote tissue regeneration. However, studies in internal viscera remains unclear. C57BL/6 mice were treated with intratracheal lipopolysaccharide (LPS) (5 mg/kg) or phosphate buffer saline (PBS). Six hours after instillation, two groups were irradiated with laser at 660 nm and radiant exposure of 10 J/cm 2 . Intratracheal LPS inoculation induced a marked increase in the number of inflammatory cells in perivascular and alveolar spaces. There was also an increase in the expression and secretion of cytokines (TNF-α, IL-1β, IL-6,) and chemokine (MCP-1). The LLLT application induced a significant decrease in both inflammatory cells influx and inflammatory mediators secretion. These effects did not affect lung mechanical properties, since no change was observed in tissue resistance or elastance. In conclusion LLLT is able to reduce inflammatory reaction in lungs exposed to LPS without affecting the pulmonary function and recovery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Code of Federal Regulations, 2014 CFR
2014-01-01
...), infectious anemia (swamp fever), dourine, acute influenza, generalized osteoporosis, glanders (farcy), acute... poisoning), infectious anemia (swamp fever), dourine, acute influenza, generalized osteoporosis, glanders... osteoporosis. (13) Glanders (farcy). (14) Acute inflammatory lameness. (15) Extensive fistula. (b) Carcasses of...
Code of Federal Regulations, 2012 CFR
2012-01-01
...), infectious anemia (swamp fever), dourine, acute influenza, generalized osteoporosis, glanders (farcy), acute... poisoning), infectious anemia (swamp fever), dourine, acute influenza, generalized osteoporosis, glanders... osteoporosis. (13) Glanders (farcy). (14) Acute inflammatory lameness. (15) Extensive fistula. (b) Carcasses of...
Code of Federal Regulations, 2010 CFR
2010-01-01
...), infectious anemia (swamp fever), dourine, acute influenza, generalized osteoporosis, glanders (farcy), acute... poisoning), infectious anemia (swamp fever), dourine, acute influenza, generalized osteoporosis, glanders... osteoporosis. (13) Glanders (farcy). (14) Acute inflammatory lameness. (15) Extensive fistula. (b) Carcasses of...
Code of Federal Regulations, 2013 CFR
2013-01-01
...), infectious anemia (swamp fever), dourine, acute influenza, generalized osteoporosis, glanders (farcy), acute... poisoning), infectious anemia (swamp fever), dourine, acute influenza, generalized osteoporosis, glanders... osteoporosis. (13) Glanders (farcy). (14) Acute inflammatory lameness. (15) Extensive fistula. (b) Carcasses of...
Code of Federal Regulations, 2011 CFR
2011-01-01
...), infectious anemia (swamp fever), dourine, acute influenza, generalized osteoporosis, glanders (farcy), acute... poisoning), infectious anemia (swamp fever), dourine, acute influenza, generalized osteoporosis, glanders... osteoporosis. (13) Glanders (farcy). (14) Acute inflammatory lameness. (15) Extensive fistula. (b) Carcasses of...
Blood-Brain Barrier Disruption Induced by Chronic Sleep Loss: Low-Grade Inflammation May Be the Link
Velázquez-Moctezuma, J.
2016-01-01
Sleep is a vital phenomenon related to immunomodulation at the central and peripheral level. Sleep deficient in duration and/or quality is a common problem in the modern society and is considered a risk factor to develop neurodegenerative diseases. Sleep loss in rodents induces blood-brain barrier disruption and the underlying mechanism is still unknown. Several reports indicate that sleep loss induces a systemic low-grade inflammation characterized by the release of several molecules, such as cytokines, chemokines, and acute-phase proteins; all of them may promote changes in cellular components of the blood-brain barrier, particularly on brain endothelial cells. In the present review we discuss the role of inflammatory mediators that increase during sleep loss and their association with general disturbances in peripheral endothelium and epithelium and how those inflammatory mediators may alter the blood-brain barrier. Finally, this manuscript proposes a hypothetical mechanism by which sleep loss may induce blood-brain barrier disruption, emphasizing the regulatory effect of inflammatory molecules on tight junction proteins. PMID:27738642
Experimental evidence of obesity as a risk factor for severe acute pancreatitis.
Frossard, Jean-Louis; Lescuyer, Pierre; Pastor, Catherine M
2009-11-14
The incidence of acute pancreatitis, an inflammation of the pancreas, is increasing worldwide. Pancreatic injury is mild in 80%-90% of patients who recover without complications. The remaining patients may develop a severe disease with local complications such as acinar cell necrosis, abscess and remote organ injury including lung injury. The early prediction of the severity of the disease is an important goal for physicians in management of patients with acute pancreatitis in order to optimize the therapy and to prevent organ dysfunction and local complications. For that purpose, multiple clinical scale scores have been applied to patients with acute pancreatitis. Recently, a new problem has emerged: the increased severity of the disease in obese patients. However, the mechanisms by which obesity increases the severity of acute pancreatitis are unclear. Several hypotheses have been suggested: (1) obese patients have an increased inflammation within the pancreas; (2) obese patients have an increased accumulation of fat within and around the pancreas where necrosis is often located; (3) increase in both peri- and intra-pancreatic fat and inflammatory cells explain the high incidence of pancreatic inflammation and necrosis in obese patients; (4) hepatic dysfunction associated with obesity might enhance the systemic inflammatory response by altering the detoxification of inflammatory mediators; and (5) ventilation/perfusion mismatch leading to hypoxia associated with a low pancreatic flow might reduce the pancreatic oxygenation and further enhance pancreatic injury. Recent experimental investigations also show an increased mortality and morbidity in obese rodents with acute pancreatitis and the implication of the adipokines leptin and adiponectin. Such models are important to investigate whether the inflammatory response of the disease is enhanced by obesity. It is exciting to speculate that manipulation of the adipokine milieu has the potential to influence the severity of acute pancreatitis.
Matsui, Mariko; Roche, Louise; Soupé-Gilbert, Marie-Estelle; Hasan, Milena; Monchy, Didier; Goarant, Cyrille
2017-08-01
Leptospirosis is a severe zoonosis which immunopathogenesis is poorly understood. We evaluated correlation between acute form of the disease and the ratio of the anti-inflammatory cytokine IL-10 to the pro-inflammatory TNF-α and IL-1β expression during the early phase of infection comparing resistant mice and susceptible hamsters infected with two different species of virulent Leptospira. The IL-10/TNF-α and IL-10/IL-1β expression ratios were higher in mouse compared to hamster independently of the Leptospira strain, suggesting a preponderant role of the host response and notably these cytokines in the clinical expression and survival to leptospirosis. Using an IL-10 neutralization strategy in Leptospira-infected mouse model, we also showed evidence of a possible role of this cytokine on host susceptibility, bacterial clearance and on regulation of cytokine gene expression. Copyright © 2017 Elsevier Ltd. All rights reserved.
C-reactive protein as a marker of periodontal disease.
Kanaparthy, Rosaiah; Kanaparthy, Aruna; Mahendra, Muktishree
2012-01-01
Periodontal subgingival pathogens affect local and systemic immune and inflammatory response and cause the release of cytokines; this results in periodontal destruction and initiation of an acute phase systemic inflammatory response characterized by the release of C-reactive proteins (CRP). This study set out to evaluate the serum concentration of CRP that can be used as a marker of periodontal disease as well as a risk indicator for cardiovascular disease. Based on their periodontal status, 45 patients were divided into three groups. The following clinical parameters were recorded: plaque index, gingival index, bleeding index, probing pocket depth, and clinical attachment levels. Scoring was done on six tooth surfaces for all teeth. For the CRP assessment, blood samples were collected from subjects at the time of clinical examination. The results indicated an increase in serum CRP levels in patients with generalized aggressive periodontitis and chronic periodontitis as compared to controls.
The Impact of Liver Graft Injury on Cancer Recurrence Posttransplantation.
Li, Chang-Xian; Man, Kwan; Lo, Chung-Mau
2017-11-01
Liver transplantation is the most effective treatment for selected patients with hepatocellular carcinoma. However, cancer recurrence, posttransplantation, remains to be the critical issue that affects the long-term outcome of hepatocellular carcinoma recipients. In addition to tumor biology itself, increasing evidence demonstrates that acute-phase liver graft injury is a result of hepatic ischemia reperfusion injury (which is an inevitable consequence during liver transplantation) and may promote cancer recurrence at late phase posttransplantation. The liver grafts from living donors, donors after cardiac death, and steatotic donors have been considered as promising sources of organs for liver transplantation and are associated with high incidence of liver graft injury. The acute-phase liver graft injury will trigger a series of inflammatory cascades, which may not only activate the cell signaling pathways regulating the tumor cell invasion and migration but also mobilize the circulating progenitor and immune cells to facilitate tumor recurrence and metastasis. The injured liver graft may also provide the favorable microenvironment for tumor cell growth, migration, and invasion through the disturbance of microcirculatory barrier function, induction of hypoxia and angiogenesis. This review aims to summarize the latest findings about the role and mechanisms of liver graft injury resulted from hepatic ischemia reperfusion injury on tumor recurrence posttransplantation, both in clinical and animal cohorts.
Santos-Júnior, Luciano; Oliveira, Tassia Virgínia de Carvalho; Cândido, Janaína Farias; Santana, Danielle Souza de; Pereira, Rose Nely; Pereyra, Beatriz Benny Sungaila; Gomes, Margarete Zanardo; Lima, Sônia Oliveira; Albuquerque-Júnior, Ricardo Luiz Cavalcanti de; Cândido, Edna Aragão Farias
2017-06-01
To investigate the cellular response to injury, analyzing histopathologic changes associated with increased cellularity, degeneration and disorganization of collagen fibers. Thirty wistar rats were divided in two groups after partial Achilles tenotomy: the right hind paw were treated with the essential oil of Alpinia zerumbet (EOAz), diluted to 33% (0.3 mL kg-1), and the left hind paw received sunflower oil for 3, 14, 30 and 90 days. Statistical significance was determined using a Chi-square and Pearson Correlation qualitative variables test. Moreover, Mann-Whitney U-test test for comparison between different groups of the same cell, one-way ANOVA, and Tukey's test of quantitative measurement. A decrease hyperemia (p < 0.001) was observed in the acute phase of inflammatory cell number (p < 0.001), whereas sub-acute phase was marked by significant correlation with macrophages in fibroblasts (r = 0.17, p = 0.03), with probable induction a dense and modeled tissue. At chronic phase, it was found an increase in the number of fibroblasts and a higher percentage of type I collagen fibers (78%) compared with control collagen fibers (55%). Oil of Alpinia zerumbet stimulated the process of maturation, organization and tissue repair which gave it greater resistance.
[Disturbances of cerebral perfusion in patients with bacterial meningoencephalitis].
Garlicki, Aleksander; Podsiadło-Kleinrok, Beata; Bociaga-Jasik, Monika; Kleinrok, Krzysztof; Tomik, Barbara
2003-01-01
The investigations were done in acute and reconvalescent phase in 34 patients with bacterial meningoencephalitis. Neurologic condition, degree of the brain injury on the basis of Glasgow Coma Scale (GCS), protein level and pleocytosis in cerebrospinal fluid (CSF), and regional cerebral blood flow on dynamic computed tomography (CT) were assessed. The brain blood flow was measured in the white matter of the frontal and occipital horns of lateral ventricles, symmetrically in both hemispheres. Statistically significant reduction of the brain perfusion in acute phase of illness was improved. In reconvalescent phase normalisation of the brain blood supply was observed. 56% of patients had changes of consciousness. There was no significant correlation between these symptoms and parameters describing blood supply. The rest of patients had neurologic abnormalities: seizure, pyramidal syndrome, injury of the central nerves due to the reduction of blood flow in selected regions of the brain. Patients who aggregated low GCS score had high inflow of the blood. In patients who were in better condition, inflow was smaller. High pleocytosis in CSF was associated with small blood inflow and perfusion in investigated regions of the brain. Whereas high protein concentration correlated with higher inflow and increase in regional perfusion. We consider, that the brain blood supply correlate with intensification of inflammatory response in CSF.
[Acute abdomen caused by eosinophilic enteritis: six observations].
Martínez-Ubieto, Fernando; Bueno-Delgado, Alvaro; Jiménez-Bernadó, Teresa; Santero Ramírez, María Pilar; Arribas-Del Amo, Dolores; Martínez-Ubieto, Javier
2013-01-01
Eosinophilic enteritis is a rather rare condition characterized by infiltration of the gastrointestinal tract by eosinophils; as a casue of acute abdomen it is really exceptional. The etiology is unclear and its description in the literature is sparse, but associations have been made with collagen vascular disease, inflammatory bowel disease, food allergy and parasitic infections as it was confirmed in one of our pathologic studies. From 1997 to 2011 six cases of eosinophilic enteritis that involved a small bowel segment were diagnosed. A partial resection by an irreversible necrosis was necessary in three of them; in the other three only a biopsy was necessary due to the inflammatory aspect of the affected loop causing the acute abdomen. Eosinophilic enteritis can originate acute abdomen processes where an urgent surgical treatment is necessary. The intraoperative aspect can be from a segment of small bowel with inflammatory signs up to a completely irrecoverable loop, where removing of the affected segment is the correct treatment, which can be done laparoscopically.
Phase angle is related with inflammatory and oxidative stress biomarkers in older women.
Tomeleri, Crisieli Maria; Cavaglieri, Cláudia Regina; de Souza, Mariana Ferreira; Cavalcante, Edilaine Fungari; Antunes, Melissa; Nabbuco, Hellen Clair Garcez; Venturini, Danielle; Barbosa, Decio Sabbatini; Silva, Analiza Mônica; Cyrino, Edilson Serpeloni
2018-02-01
The aim of this study was to examine the relation between phase angle (PhA) and inflammatory and oxidative stress biomarkers in older women. One hundred and fifty-five physically independent older women participated in this study (67.7±5.7years, 27.0±4.4kg/m 2 ). Inflammatory markers included interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), and acute phase reactive protein (CRP). Oxidative stress biomarkers comprised superoxide dismutase (SOD), catalase (CAT), advanced oxidation protein products (AOPP), and total radical-trapping antioxidant potential (TRAP). A spectral bioelectrical impedance device was used to estimate resistance (R) and reactance (Xc) at frequency 50kHz, and subsequently PhA was calculated as arc-tangent (Xc/R)×180°/π. The covariates appendicular lean soft-tissue (ALST), trunk fat mass, and total body fat were determined by whole-body dual-energy X-ray absorptiometry. Linear regression analysis was conducted to further test if PhA is related with the dependent variables, after adjusting for potential covariates. After controlling for the potential covariates (age, trunk fat mass, ALST, and number of diseases) PhA exhibited a significant inverse relation with IL-6 (β=-0.97; P<0.01), TNF-α (β=-0.84; P<0.01), and CRP (β=-0.58; P<0.01). Conversely, PhA was significantly related to CAT (β=7.27; P<0.01), SOD (β=10.55; P<0.01) and TRAP (β=73.08; P<0.01). The AOPP did not demonstrate a significant correlation with PhA (P>0.05). Our findings show that PhA is a simple and relevant explanatory variable which is related inflammatory and stress oxidative markers in physically independent older women, regardless of age, number of diseases, and body composition. Copyright © 2017 Elsevier Inc. All rights reserved.
Van De Walle, Jacqueline; Hendrickx, Aurélie; Romier, Béatrice; Larondelle, Yvan; Schneider, Yves-Jacques
2010-08-01
Enterocytes regulate gut maintenance and defence by secreting and responding to inflammatory mediators and by modulating the intestinal epithelial permeability. In order to develop an in vitro model of the acute phase of intestinal inflammation, Caco-2 cells were exposed to the inflammatory mediators IL-1beta, TNF-alpha, IFN-gamma and LPS, and the importance of several experimental parameters, i.e. cell differentiation, stimulus nature, concentration and combination on the inflammatory response was assessed by measuring the production of IL-6, IL-8, PGE-2 and NO and by evaluating the monolayer permeability. A maximal increase in IL-8, IL-6 and PGE-2 production and monolayer permeability was observed when using the cytokines simultaneously at their highest level, but this relied mainly on IL-1beta. The effects of TNF-alpha on IL-8 and IL-6 or NO production were stronger upon combination with IL-1beta or IFN-gamma, respectively, whereas cells were unaffected by the presence of LPS. Although NO production, induced by IFN-gamma-containing combinations, was observed only in differentiated cells, general inflammatory response was higher in proliferating cells. The use of a mixture of IL-1beta, TNF-alpha and IFN-gamma thus accurately mimics intestinal inflammatory processes, but cell differentiation and stimuli combination are important parameters to take into account for in vitro studies on intestinal inflammation. Copyright (c) 2010. Published by Elsevier Ltd.
Urbano, Ana Paula Signori; Sassaki, Ligia Yukie; Dorna, Mariana de Souza; Presti, Paula Torres; Carvalhaes, Maria Antonieta de Barros Leite; Martini, Ligia Araújo; Ferreira, Ana Lucia Anjos
2018-02-01
The aim of our study was to assess body composition status and its association with inflammatory profile and extent of intestinal damage in ulcerative colitis patients during clinical remission. This is a cross-sectional study in which body composition data (phase angle [PhA], fat mass [FM], triceps skin fold thickness [TSFt], mid-arm circumference [MAC], mid-arm muscle circumference [MAMC], adductor pollicis muscle thickness [APMt]), inflammatory profile (C-reactive protein [CRP], a1-acid glycoprotein, erythrocyte sedimentation rate [ESR]) and disease extent were recorded. The mean age of the 59 patients was 48.1 years; 53.3% were women. Most patients were in clinical remission (94.9%) and 3.4% was malnourished according to body mass index. PhA was inversely correlated with inflammatory markers such as CRP (R=-0.59; p<0.001) and ESR (R=-0.46; p<0.001) and directly correlated with lean mass: MAMC (R=0.31; p=0.01) and APMt (R=0.47; p<0.001). Lean mass was inversely correlated with non-specific inflammation marker (APMt vs. ESR) and directly correlated with hemoglobin values (MAMC vs. hemoglobin). Logistic regression analysis revealed that body cell mass was associated with disease extent (OR 0.92; 95CI 0.87-0.97; p<0.01). PhA was inversely correlated with inflammatory markers and directly correlated with lean mass. Acute inflammatory markers were correlated with disease extent. Body cell mass was associated with disease extent.
Cortelazzo, Alessio; de Felice, Claudio; Leoncini, Silvia; Signorini, Cinzia; Guerranti, Roberto; Leoncini, Roberto; Armini, Alessandro; Bini, Luca; Ciccoli, Lucia; Hayek, Joussef
2017-03-01
Mutations in the cyclin-dependent kinase-like 5 gene cause a clinical variant of Rett syndrome (CDKL5-RTT). A role for the acute-phase response (APR) is emerging in typical RTT caused by methyl-CpG-binding protein 2 gene mutations (MECP2-RTT). No information is, to date, available on the inflammatory protein response in CDKL5-RTT. We evaluated, for the first time, the APR protein response in CDKL5-RTT. Protein patterns in albumin- and IgG-depleted plasma proteome from CDKL5-RTT patients were evaluated by two-dimensional gel electrophoresis/mass spectrometry. The resulting data were related to circulating cytokines and compared to healthy controls or MECP2-RTT patients. The effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) were evaluated. CDKL5-RTT mutations resulted in a subclinical attenuated inflammation, specifically characterized by an overexpression of the complement component C3 and CD5 antigen-like, both strictly related to the inflammatory response. Cytokine dysregulation featuring a bulk increase of anti-inflammatory cytokines, predominantly IL-10, could explain the unchanged erythrocyte sedimentation rate and atypical features of inflammation in CDKL5-RTT. Omega-3 PUFAs were able to counterbalance the pro-inflammatory status. For the first time, we revealed a subclinical smouldering inflammation pattern in CDKL5-RTT consisting in the coexistence of an atypical APR coupled with a dysregulated cytokine response.
Bonaterra, Gabriel A; Driscoll, David; Schwarzbach, Hans; Kinscherf, Ralf
2017-03-15
Parenteral nutrition is often a mandatory therapeutic strategy for cases of septicemia. Likewise, therapeutic application of anti-oxidants, anti-inflammatory therapy, and endotoxin lowering, by removal or inactivation, might be beneficial to ameliorate the systemic inflammatory response during the acute phases of critical illness. Concerning anti-inflammatory properties in this setting, omega-3 fatty acids of marine origin have been frequently described. This study investigated the anti-inflammatory and LPS-inactivating properties of krill oil (KO)-in-water emulsion in human macrophages in vitro. Differentiated THP-1 macrophages were activated using specific ultrapure-LPS that binds only on the toll-like receptor 4 (TLR4) in order to determine the inhibitory properties of the KO emulsion on the LPS-binding capacity, and the subsequent release of TNF-α. KO emulsion inhibited the macrophage binding of LPS to the TLR4 by 50% (at 12.5 µg/mL) and 75% (at 25 µg/mL), whereas, at 50 µg/mL, completely abolished the LPS binding. Moreover, KO (12.5 µg/mL, 25 µg/mL, or 50 µg/mL) also inhibited (30%, 40%, or 75%, respectively) the TNF-α release after activation with 0.01 µg/mL LPS in comparison with LPS treatment alone. KO emulsion influences the LPS-induced pro-inflammatory activation of macrophages, possibly due to inactivation of the LPS binding capacity.
Chen, Hongjin; Fang, Bo; Qiu, Yinda; Chen, Xianxin; Chen, Lingfeng; Shu, Sheng; Zhang, Yali; Zhao, Yunjie; Liu, Zhiguo; Liang, Guang
2018-01-01
Purpose The purpose of this study was to design and synthesize novel 2-benzylidene-1-indanone derivatives for treatment of acute lung injury. Methods A series of 39 novel 2-benzylidene-indanone structural derivatives were synthesized and evaluated for anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated murine primary macrophages. Results Most of the obtained compounds effectively inhibited the LPS-induced expression of IL-6 and TNF-α. The most active compound, 8f, was found to significantly reduce LPS-induced pulmonary inflammation, as reflected by reductions in the concentration of total protein, inflammatory cell count, as well as the lung wet/dry ratio in bronchoalveolar lavage (BAL) fluid. Furthermore, 8f effectively inhibited mRNA expression of several inflammatory cytokines after LPS challenge in vitro and in vivo. Administration of 8f also blocked LPS-induced activation of the proinflammatory NF-κB/MAPK signaling pathway. Conclusion The simple synthetic preparation and biological properties of these derivatives make these 2-benzylidene-indanone scaffolds promising new entities for the development of anti-inflammatory therapeutics for the treatment of acute lung injury. PMID:29719375
Oropharyngeal Dysphagia in children: mechanism, source, and management.
Durvasula, Venkata S P B; O'Neill, Ashley C; Richter, Gresham T
2014-10-01
Oropharyngeal dysphagia (OPD) is a challenging and relatively common condition in children. Both developmentally normal and delayed children may be affected. The etiology of OPD is frequently multifactorial with neurologic, inflammatory, and anatomic conditions contributing to discoordination of the pharyngeal phase of swallowing. Depending on the severity and source, OPD may persist for several years with significant burden to a patient's health and family. This article details current understanding of the mechanism and potential sources of OPD in children while providing an algorithm for managing it in the acute and chronic setting. Copyright © 2014 Elsevier Inc. All rights reserved.
Diabetic retinopathy: could the alpha-1 antitrypsin be a therapeutic option?
Ortiz, Gustavo; Salica, Juan P; Chuluyan, Eduardo H; Gallo, Juan E
2014-11-18
Diabetic retinopathy is one of the most important causes of blindness. The underlying mechanisms of this disease include inflammatory changes and remodeling processes of the extracellular-matrix (ECM) leading to pericyte and vascular endothelial cell damage that affects the retinal circulation. In turn, this causes hypoxia leading to release of vascular endothelial growth factor (VEGF) to induce the angiogenesis process. Alpha-1 antitrypsin (AAT) is the most important circulating inhibitor of serine proteases (SERPIN). Its targets include elastase, plasmin, thrombin, trypsin, chymotrypsin, proteinase 3 (PR-3) and plasminogen activator (PAI). AAT modulates the effect of protease-activated receptors (PARs) during inflammatory responses. Plasma levels of AAT can increase 4-fold during acute inflammation then is so-called acute phase protein (APPs). Individuals with low serum levels of AAT could develop disease in lung, liver and pancreas. AAT is involved in extracellular matrix remodeling and inflammation, particularly migration and chemotaxis of neutrophils. It can also suppress nitric oxide (NO) by nitric oxide sintase (NOS) inhibition. AAT binds their targets in an irreversible way resulting in product degradation. The aim of this review is to focus on the points of contact between multiple factors involved in diabetic retinopathy and AAT resembling pleiotropic effects that might be beneficial.
Substance P promotes wound healing in diabetes by modulating inflammation and macrophage phenotype.
Leal, Ermelindo C; Carvalho, Eugénia; Tellechea, Ana; Kafanas, Antonios; Tecilazich, Francesco; Kearney, Cathal; Kuchibhotla, Sarada; Auster, Michael E; Kokkotou, Efi; Mooney, David J; LoGerfo, Frank W; Pradhan-Nabzdyk, Leena; Veves, Aristidis
2015-06-01
Diabetic foot ulceration is a major complication of diabetes. Substance P (SP) is involved in wound healing, but its effect in diabetic skin wounds is unclear. We examined the effect of exogenous SP delivery on diabetic mouse and rabbit wounds. We also studied the impact of deficiency in SP or its receptor, neurokinin-1 receptor, on wound healing in mouse models. SP treatment improved wound healing in mice and rabbits, whereas the absence of SP or its receptor impaired wound progression in mice. Moreover, SP bioavailability in diabetic skin was reduced as SP gene expression was decreased, whereas the gene expression and protein levels of the enzyme that degrades SP, neutral endopeptidase, were increased. Diabetes and SP deficiency were associated with absence of an acute inflammatory response important for wound healing progression and instead revealed a persistent inflammation throughout the healing process. SP treatment induced an acute inflammatory response, which enabled the progression to the proliferative phase and modulated macrophage activation toward the M2 phenotype that promotes wound healing. In conclusion, SP treatment reverses the chronic proinflammatory state in diabetic skin and promotes healing of diabetic wounds. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Wu, Zhongping; Kong, Xiangliang; Zhang, Tong; Ye, Jin; Fang, Zhaoqin; Yang, Xuejun
2014-02-05
The anti-inflammatory effects of pseudoephedrine/ephedrine were investigated using the experimental model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (D-GalN)-sensitised male rats in order to elucidate effects other than sympathomimetic effects. Rats were intraperitoneally injected with D-GalN (400 mg/kg) and LPS (40 μg/kg) to induce acute liver failure. The treatment groups were then intraperitoneally administered pseudoephedrine/ephedrine at 0 h and 4 h after induction and the activation induced by treatment with pseudoephedrine and/or LPS on the primary Kupffer cells (KCs) was monitored. Compared with controls induced by GalN/LPS alone, pseudoephedrine dramatically reduced the infiltration of inflammatory cells and bile ductular hyperplasia and hepatic necrosis observed in liver sections. It inhibited both hepatocellular apoptosis and the expression of monocyte chemotactic protein-1. It lowered the production of tumour necrosis factor-α (TNF-α) in the beginning of acute liver failure induced by D-GalN/LPS. Correspondingly, levels of alanine aminotransferase (ALT), total bilirubin (TBIL) and malondialdehyde were attenuated. Ephedrine demonstrated all these identical protective effects as well. In addition, pseudoephedrine significantly suppressed the production of p-IκB-α, reducing the degradation of sequestered nuclear factor kappa B (NF-κB) in the cytoplasm, and inhibited the translocation of NF-κB/p65 to the nucleus, the transcription of TNF-α mRNA and the production of TNF-α in primary KCs. These results suggest that pseudoephedrine and ephedrine have a potent anti-inflammatory activity against D-GalN/LPS-induced acute liver failure in rats, and this comprehensive anti-inflammatory effect may result from the inhibition of TNF-α production. Copyright © 2013 Elsevier B.V. All rights reserved.
Appendiceal Enterobius vermicularis infestation in adults.
Isik, Burak; Yilmaz, Mehmet; Karadag, Nese; Kahraman, Latif; Sogutlu, Gokhan; Yilmaz, Sezai; Kirimlioglu, Vedat
2007-01-01
The objective of this study is to evaluate the incidence of Enterobius vermicularis in the appendices of the adult population and a possible relationship between E. vermicularis and acute appendicitis. E. vermicularis was identified in 18 (2%) of 890 patients. Six hundred sixty-five operations were performed for presumptive diagnosis of acute appendicitis, and E. vermicularis was found in 12 (2%) patients. The histopathological examination revealed acute inflammatory cells in four cases (33%). Three of these four specimens included luminal ova and one E. vermicularis. Histopathological examination of six cases revealed E. vermicularis in 225 incidental appendectomies with no evidence of either acute or chronic inflammatory cells. This study suggests a relationship between the presence of E. vermicularis ova and acute inflammation, but the presence of the pinworm in the lumen of the appendix is coincidental. On the other hand E. vermicularis in the appendix lumen can cause symptoms of acute appendicitis.
Nizamutdinova, Irina Tsoy; Dusio, Giuseppina F.; Gasheva, Olga Yu.; Skoog, Hunter; Tobin, Richard; Peddaboina, Chander; Meininger, Cynthia J.; Zawieja, David C.; Newell-Rogers, M. Karen; Gashev, Anatoliy A.
2016-01-01
This study aimed to establish mechanistic links between the aging-associated changes in the functional status of mast cells and the altered responses of mesenteric tissue and mesenteric lymphatic vessels (MLVs) to acute inflammation. We used an in vivo model of acute peritoneal inflammation induced by lipopolysaccharide treatment of adult (9-month) and aged (24-month) F-344 rats. We analyzed contractility of isolated MLVs, mast cell activation, activation of nuclear factor-κB (NF-κB) without and with stabilization of mast cells by cromolyn or blockade of all types of histamine receptors and production of 27 major pro-inflammatory cytokines in adult and aged perilymphatic mesenteric tissues and blood. We found that the reactivity of aged contracting lymphatic vessels to LPS-induced acute inflammation was abolished and that activated mast cells trigger NF-κB signaling in the mesentery through release of histamine. The aging-associated basal activation of mesenteric mast cells limits acute inflammatory NF-κB activation in aged mesentery. We conclude that proper functioning of the mast cell/histamine/NF-κB axis is necessary for reactions of the lymphatic vessels to acute inflammatory stimuli as well as for interaction and trafficking of immune cells near and within the collecting lymphatics. PMID:27875806
Acute severe neck pain and dysphagia following cervical maneuver: diagnostic approach.
Trendel, D; Bonfort, G; Lapierre-Combes, M; Salf, E; Barberot, J-P
2014-04-01
Overlooking an etiologic hypothesis in acute neck pain with dysphagia may lead to misdiagnosis. A 51-year-old man who had received cervical manipulation came to the emergency unit with evolutive acute neck pain, cervical spine stiffness and odynophagia, without fever or other signs of identified pathology. Cervical X-ray and CT angiography of the supra-aortic vessels ruled out traumatic etiology (fracture or arterial dissection) and revealed an accessory bone, orienting diagnosis toward retropharyngeal abscess, which was, however, belied by endoscopy performed under general anesthesia. A second CT scan with contrast injection and tissue phase ruled out infection, revealing a retropharyngeal calcification inducing retropharyngeal edema. Evolution under analgesics was favorable within 13 days. Given a clinical triad associating acute neck pain, cervical spine stiffness and odynophagia, traumatic or infectious etiology was initially suspected. Cervical CT diagnosed calcific tendinitis of the longus colli, revealing a pathognomic retropharyngeal calcification. Secondary to hydroxyapatite deposits anterior to the odontoid process of the axis, this is a rare form of tendinopathy, usually showing favorable evolution in 10-15 days under analgesic and anti-inflammatory treatment. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Osaka, Toshifumi; Moriyama, Eri; Arai, Shunichi; Date, Yasuhiro; Yagi, Junji; Kikuchi, Jun; Tsuneda, Satoshi
2017-12-06
The imbalance of gut microbiota is known to be associated with inflammatory bowel disease, but it remains unknown whether dysbiosis is a cause or consequence of chronic gut inflammation. In order to investigate the effects of gut inflammation on microbiota and metabolome, the sequential changes in gut microbiota and metabolites from the onset of colitis to the recovery in dextran sulfate sodium-induced colitic mice were characterized by using meta 16S rRNA sequencing and proton nuclear magnetic resonance (¹H-NMR) analysis. Mice in the colitis progression phase showed the transient expansions of two bacterial families including Bacteroidaceae and Enterobacteriaceae and the depletion of major gut commensal bacteria belonging to the uncultured Bacteroidales family S24-7, Rikenellaceae, Lachnospiraceae, and Ruminococcaceae. After the initiation of the recovery, commensal Lactobacillus members promptly predominated in gut while other normally abundant bacteria excluding the Erysipelotrichaceae remained diminished. Furthermore, ¹H-NMR analysis revealed characteristic fluctuations in fecal levels of organic acids (lactate and succinate) associated with the disease states. In conclusion, acute intestinal inflammation is a perturbation factor of gut microbiota but alters the intestinal environments suitable for Lactobacillus members.
Russo, Matthew V; Latour, Lawrence L; McGavern, Dorian B
2018-05-01
Mild traumatic brain injury (mTBI) can cause meningeal vascular injury and cell death that spreads into the brain parenchyma and triggers local inflammation and recruitment of peripheral immune cells. The factors that dictate meningeal recovery after mTBI are unknown at present. Here we demonstrated that most patients who had experienced mTBI resolved meningeal vascular damage within 2-3 weeks, although injury persisted for months in a subset of patients. To understand the recovery process, we studied a mouse model of mTBI and found extensive meningeal remodeling that was temporally reliant on infiltrating myeloid cells with divergent functions. Inflammatory myelomonocytic cells scavenged dead cells in the lesion core, whereas wound-healing macrophages proliferated along the lesion perimeter and promoted angiogenesis through the clearance of fibrin and production of the matrix metalloproteinase MMP-2. Notably, a secondary injury experienced during the acute inflammatory phase aborted this repair program and enhanced inflammation, but a secondary injury experienced during the wound-healing phase did not. Our findings demonstrate that meningeal vasculature can undergo regeneration after mTBI that is dependent on distinct myeloid cell subsets.
Zhao, Xinghua; He, Xin; Zhong, Xiuhui
2016-12-05
Qingdaisan (Formulated Indigo powder, QDS) are widely used for treatment of aphtha, sore throat and bleeding gums in China. The aim of the study is to evaluate the anti-inflammatory, antibacterial and dental ulcer therapeutic effects of QDS. Dimethylbenzene-induced ear edema test and cotton pellet-induced granuloma test were used to evaluate anti-inflammatory activities of QDS on acute and chronic inflammatory. The healing time and local pathologic changes were used to assess the therapeutic effects of QDS on dental ulcer. The antibacterial activities of each component and the whole formulation of QDS were determined by agar well diffusion assay. High-dose and low-dose QDS were tested in this experiment and Gui Lin Watermelon Frost Powder (GLWFP) was used as positive control. Oral treatment with QDS significantly accelerated the healing of ulcerative lesions induced by phenol injury. The dental ulcers of high-dose QDS group were all healed within 6 days. It was shorter than those of low-dose QDS group and GLWFP group. Less quantity of inflammatory cells and plenty fibroblasts were observed in pathological section of QDS groups. QDS also exhibited significant anti-inflammatory activity both in acute and chronic animal models. Although some of the components exhibited antibacterial activities, the whole formulation of QDS didn't show any significant antibacterial activity in vitro. The study showed that QDS has obviously anti-inflammatory activity for both acute and chronic inflammatory, also has a remarkable effect for healing dental ulcer caused by phenol. QDS didn't have antibacterial activity to selected strains in vitro.
Effect of acute moderate exercise on induced inflammation and arterial function in older adults.
Ranadive, Sushant Mohan; Kappus, Rebecca Marie; Cook, Marc D; Yan, Huimin; Lane, Abbi Danielle; Woods, Jeffrey A; Wilund, Kenneth R; Iwamoto, Gary; Vanar, Vishwas; Tandon, Rudhir; Fernhall, Bo
2014-04-01
Acute inflammation reduces flow-mediated vasodilatation and increases arterial stiffness in young healthy individuals. However, this response has not been studied in older adults. The aim of this study, therefore, was to evaluate the effect of acute induced systemic inflammation on endothelial function and wave reflection in older adults. Furthermore, an acute bout of moderate-intensity aerobic exercise can be anti-inflammatory. Taken together, we tested the hypothesis that acute moderate-intensity endurance exercise, immediately preceding induced inflammation, would be protective against the negative effects of acute systemic inflammation on vascular function. Fifty-nine healthy volunteers between 55 and 75 years of age were randomized to an exercise or a control group. Both groups received a vaccine (induced inflammation) and sham (saline) injection in a counterbalanced crossover design. Inflammatory markers, endothelial function (flow-mediated vasodilatation) and measures of wave reflection and arterial stiffness were evaluated at baseline and at 24 and 48 h after injections. There were no significant differences in endothelial function and arterial stiffness between the exercise and control group after induced inflammation. The groups were then analysed together, and we found significant differences in the inflammatory markers 24 and 48 h after induction of acute inflammation compared with sham injection. However, flow-mediated vasodilatation, augmentation index normalized for heart rate (AIx75) and β-stiffness did not change significantly. Our results suggest that acute inflammation induced by influenza vaccination did not affect endothelial function in older adults.
Bresnahan, Kara A.; Tanumihardjo, Sherry A.
2014-01-01
Infection and undernutrition are prevalent in developing countries and demonstrate a synergistic relation. Undernutrition increases infection-related morbidity and mortality. The acute phase response (APR) is an innate, systemic inflammatory reaction to a wide array of disruptions in a host’s homeostasis, including infection. Released from immune cells in response to deleterious stimuli, proinflammatory cytokines act on distant tissues to induce behavioral (e.g., anorexia, weakness, and fatigue) and systemic effects of the APR. Cytokines act to increase energy and protein requirements to manifest fever and support hepatic acute phase protein (APP) production. Blood concentrations of glucose and lipid are augmented to provide energy to immune cells in response to cytokines. Additionally, infection decreases intestinal absorption of nutrients and can cause direct loss of micronutrients. Traditional indicators of iron, zinc, and vitamin A status are altered during the APR, leading to inaccurate estimations of deficiency in populations with a high or unknown prevalence of infection. Blood concentrations of APPs can be measured in nutrition interventions to assess the time stage and severity of infection and correct for the APR; however, standardized cutoffs for nutrition applications are needed. Protein-energy malnutrition leads to increased gut permeability to pathogens, abnormal immune cell populations, and impaired APP response. Micronutrient deficiencies cause specific immune impairments that affect both innate and adaptive responses. This review describes the antagonistic interaction between the APR and nutritional status and emphasizes the need for integrated interventions to address undernutrition and to reduce disease burden in developing countries. PMID:25398733
Mythilypriya, Rajendran; Sachdanandam, Palanivelu Shanthi; Sachdanandam, Panchanadam
2009-05-15
As disease initiation and propagation still represents a research question in rheumatoid arthritis (RA), the cytokines play a central role in the inflammatory articular process including the synovial proliferation and cartilage destruction in RA and understanding the role of these cytokines in turn exploits them as therapeutic targets in RA. The present study illustrates the beneficial outcome of the Siddha drug Kalpaamruthaa (KA) in reducing the pathological lesions caused by the proinflammatory cytokines in adjuvant induced arthritis (AIA) in rats. KA consists of Semecarpus anacardium nut milk extract (SA), dried powder of Emblica officinalis fruit and honey. Both SA and KA were administered at dose of 150 mg/kg b.wt. for 14 days after 14 days of adjuvant injection in rats. The protein expressions of tumour necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta), the levels of acute phase proteins, immunoglobulins and the radiological, histopathological and electron microscopical changes in control and experimental animals were analyzed. Both SA and KA significantly regulated the inflammation in arthritic joints by reducing extracellular matrix degradation and cartilage and bone destruction via down regulating the levels of TNF-alpha and IL-1beta, as well the levels of acute phase proteins with appreciable increase in the levels of immunoglobulins in arthritic rats. Of both the drugs KA exhibited a profound effect than sole treatment of SA and the enhanced effect of KA might be attributed to the combined effect of the flavonoids, tannins, vitamin C and other phytoconstituents present in the drug.
Calder, P C; Ahluwalia, N; Albers, R; Bosco, N; Bourdet-Sicard, R; Haller, D; Holgate, S T; Jönsson, L S; Latulippe, M E; Marcos, A; Moreines, J; M'Rini, C; Müller, M; Pawelec, G; van Neerven, R J J; Watzl, B; Zhao, J
2013-01-01
To monitor inflammation in a meaningful way, the markers used must be valid: they must reflect the inflammatory process under study and they must be predictive of future health status. In 2009, the Nutrition and Immunity Task Force of the International Life Sciences Institute, European Branch, organized an expert group to attempt to identify robust and predictive markers, or patterns or clusters of markers, which can be used to assess inflammation in human nutrition studies in the general population. Inflammation is a normal process and there are a number of cells and mediators involved. These markers are involved in, or are produced as a result of, the inflammatory process irrespective of its trigger and its location and are common to all inflammatory situations. Currently, there is no consensus as to which markers of inflammation best represent low-grade inflammation or differentiate between acute and chronic inflammation or between the various phases of inflammatory responses. There are a number of modifying factors that affect the concentration of an inflammatory marker at a given time, including age, diet and body fatness, among others. Measuring the concentration of inflammatory markers in the bloodstream under basal conditions is probably less informative compared with data related to the concentration change in response to a challenge. A number of inflammatory challenges have been described. However, many of these challenges are poorly standardised. Patterns and clusters may be important as robust biomarkers of inflammation. Therefore, it is likely that a combination of multiple inflammatory markers and integrated readouts based upon kinetic analysis following defined challenges will be the most informative biomarker of inflammation.
Hofmann, R; Tornvall, P; Witt, N; Alfredsson, J; Svensson, L; Jonasson, L; Nilsson, L
2018-04-01
Oxygen therapy has been used routinely in normoxemic patients with suspected acute myocardial infarction (AMI) despite limited evidence supporting a beneficial effect. AMI is associated with a systemic inflammation. Here, we hypothesized that the inflammatory response to AMI is potentiated by oxygen therapy. The DETermination of the role of Oxygen in suspected Acute Myocardial Infarction (DETO2X-AMI) multicentre trial randomized patients with suspected AMI to receive oxygen at 6 L min -1 for 6-12 h or ambient air. For this prespecified subgroup analysis, we recruited patients with confirmed AMI from two sites for evaluation of inflammatory biomarkers at randomization and 5-7 h later. Ninety-two inflammatory biomarkers were analysed using proximity extension assay technology, to evaluate the effect of oxygen on the systemic inflammatory response to AMI. Plasma from 144 AMI patients was analysed whereof 76 (53%) were randomized to oxygen and 68 (47%) to air. Eight biomarkers showed a significant increase, whereas 13 were decreased 5-7 h after randomization. The inflammatory response did not differ between the two treatment groups neither did plasma troponin T levels. After adjustment for increase in troponin T over time, age and sex, the release of inflammation-related biomarkers was still similar in the groups. In a randomized controlled setting of normoxemic patients with AMI, the use of supplemental oxygen did not have any significant impact on the early release of systemic inflammatory markers. © 2017 The Association for the Publication of the Journal of Internal Medicine.
Pulmonary Remodeling in Equine Asthma: What Do We Know about Mediators of Inflammation in the Horse?
Gehlen, Heidrun
2016-01-01
Equine inflammatory airway disease (IAD) and recurrent airway obstruction (RAO) represent a spectrum of chronic inflammatory disease of the airways in horses resembling human asthma in many aspects. Therefore, both are now described as severity grades of equine asthma. Increasing evidence in horses and humans suggests that local pulmonary inflammation is influenced by systemic inflammatory processes and the other way around. Inflammation, coagulation, and fibrinolysis as well as extracellular remodeling show close interactions. Cytology of bronchoalveolar lavage fluid and tracheal wash is commonly used to evaluate the severity of local inflammation in the lung. Other mediators of inflammation, like interleukins involved in the chemotaxis of neutrophils, have been studied. Chronic obstructive pneumopathies lead to remodeling of bronchial walls and lung parenchyma, ultimately causing fibrosis. Matrix metalloproteinases (MMPs) are discussed as the most important proteolytic enzymes during remodeling in human medicine and increasing evidence exists for the horse as well. A systemic involvement has been shown for severe equine asthma by increased acute phase proteins like serum amyloid A and haptoglobin in peripheral blood during exacerbation. Studies focusing on these and further possible inflammatory markers for chronic respiratory disease in the horse are discussed in this review of the literature. PMID:28053371
A review of the application of inflammatory biomarkers in epidemiologic cancer research
Brenner, Darren R.; Scherer, Dominique; Muir, Kenneth; Schildkraut, Joellen; Boffetta, Paolo; Spitz, Margaret R.; LeMarchand, Loic; Chan, Andrew T.; Goode, Ellen L.; Ulrich, Cornelia M.; Hung, Rayjean J.
2014-01-01
Inflammation is a facilitating process for multiple cancer types. It is believed to affect cancer development and progression through several etiologic pathways including increased levels of DNA adduct formation, increased angiogenesis and altered anti-apoptotic signaling. This review highlights the application of inflammatory biomarkers in epidemiologic studies and discusses the various cellular mediators of inflammation characterizing the innate immune system response to infection and chronic insult from environmental factors. Included is a review of six classes of inflammation-related biomarkers: cytokines/chemokines, immune-related effectors, acute phase proteins, reactive oxygen and nitrogen species, prostaglandins and cyclooxygenase-related factors, and mediators such as transcription factors and growth factors. For each of these biomarkers we provide a brief overview of the etiologic role in the inflammation response and how they have been related to cancer etiology and progression within the literature. We provide a discussion of the common techniques available for quantification of each marker including strengths, weaknesses and potential pitfalls. Subsequently, we highlight a few under-studied measures to characterize the inflammatory response and their potential utility in epidemiologic studies of cancer. Finally, we suggest integrative methods for future studies to apply multi-faceted approaches to examine the relationship between inflammatory markers and their roles in cancer development. PMID:24962838
A new look on brain mechanisms of acute illness anorexia.
Asarian, Lori; Langhans, Wolfgang
2010-07-14
Bacterial lipopolysaccharide (LPS) and other microbial substances trigger the organism's acute phase response and cause acute illness anorexia. Pro-inflammatory cytokines are major endogenous mediators of acute illness anorexia, but how LPS or cytokines stimulate the brain to inhibit eating is not fully resolved. One emerging mechanism involves the activation of the enzyme cyclooxygenase-2 (COX-2) in blood-brain barrier endothelial cells and the subsequent release of prostaglandin E2 (PGE2). Serotonin neurons in the midbrain raphe are targets of PGE2, and serotonergic projections from the midbrain raphe to the hypothalamus appear to be crucial for LPS anorexia. That is, raphe projections activate (1) the corticotrophin-releasing hormone neurons in the paraventricular nucleus which then elicit the stress response and (2) the pro-opiomelanocortin neurons in the arcuate nucleus which then release alphaMSH and elicit anorexia. Here we review available data to support a role for this brain mechanism in acute illness anorexia by center staging PGE2 signaling pathways that converge on central neural circuits that control normal eating. In addition, we review interactions between gonadal hormones and immune function that lead to sex differences in acute illness anorexia. The paper represents an invited review by a symposium, award winner or keynote speaker at the Society for the Study of Ingestive Behavior [SSIB] Annual Meeting in Portland, July 2009. 2010 Elsevier Inc. All rights reserved.
Warzecha, Zygmunt; Sendur, Paweł; Ceranowicz, Piotr; Cieszkowski, Jakub; Dembiński, Marcin; Sendur, Ryszard; Bonior, Joanna; Jaworek, Jolanta; Ambroży, Tadeusz; Olszanecki, Rafał; Kuśnierz-Cabala, Beata; Tomasz, Kaczmarzyk; Tomaszewska, Romana; Dembiński, Artur
2017-01-01
Intravascular activation of coagulation is observed in acute pancreatitis and is related to the severity of this inflammation. The aim of our study was to evaluate the impact of acenocoumarol therapy on the course of acute pancreatitis induced in male rats by pancreatic ischemia followed by reperfusion. Acenocoumarol at a dose of 50, 100, or 150 µg/kg/dose was administered intragastrically once a day, starting the first dose 24 h after the initiation of pancreatic reperfusion. Results: Histological examination showed that treatment with acenocoumarol reduces pancreatic edema, necrosis, and hemorrhages in rats with pancreatitis. Moreover, the administration of acenocoumarol decreased pancreatic inflammatory infiltration and vacuolization of pancreatic acinar cells. These findings were accompanied with a reduction in the serum activity of lipase and amylase, concentration of interleukin-1β, and plasma d-Dimer concentration. Moreover, the administration of acenocoumarol improved pancreatic blood flow and pancreatic DNA synthesis. Acenocoumarol given at a dose of 150 µg/kg/dose was the most effective in the treatment of early phase acute pancreatitis. However later, acenocoumarol given at the highest dose failed to exhibit any therapeutic effect; whereas lower doses of acenocoumarol were still effective in the treatment of acute pancreatitis. Conclusion: Treatment with acenocoumarol accelerates the recovery of ischemia/reperfusion-induced acute pancreatitis in rats. PMID:28430136
1989-10-11
presence of diverticular disease does not preclude development of acute appendicitis concxitantly. The initial medical treatment is the same as for...appendicitis see APPENDICITIS. c. Pelvic inflammatory disease see PID. d. Diverticulitis most commonly involves the descending (left) colon . Symptoms...Five additional categories are included for female patients. These are: pelvic inflammatory disease (PID), urinary tract infection (UTI), ovarian cyst
Acute Exacerbation of Chronic Obstructive Pulmonary Disease: Cardiovascular Links
Laratta, Cheryl R.; van Eeden, Stephan
2014-01-01
Chronic obstructive pulmonary disease (COPD) is a chronic, progressive lung disease resulting from exposure to cigarette smoke, noxious gases, particulate matter, and air pollutants. COPD is exacerbated by acute inflammatory insults such as lung infections (viral and bacterial) and air pollutants which further accelerate the steady decline in lung function. The chronic inflammatory process in the lung contributes to the extrapulmonary manifestations of COPD which are predominantly cardiovascular in nature. Here we review the significant burden of cardiovascular disease in COPD and discuss the clinical and pathological links between acute exacerbations of COPD and cardiovascular disease. PMID:24724085
Simpson, R M; Prancan, A; Izzi, J M; Fiedel, B A
1982-01-01
The classical acute phase reactant, C-reactive protein (CRP), appears in markedly elevated concentration in the sera of individuals undergoing reactions of acute inflammation and tissue degradation. We previously demonstrated that like IgG, appropriately purified CRP could be thermally modified (H-CRP) such that it enhanced platelet activation in plasma and initiated platelet responses in isolated systems. We now report that this direct platelet activation by modified CRP results in the secretion of both platelet dense body and alpha-granule constituents, and is sensitive to non-steroidal anti-inflammatory drugs as well as the adenosine diphosphate (ADP)-removing enzyme system creatine phosphate/creatine phosphokinase. Thin-layer chromatographic (TLC) analysis of prostanoate endproducts following platelet activation with H-CRP revealed the formation of thromboxane B2 (the hydrated endproduct of thromboxane A2), an important endogenous platelet activator and contractor of vascular tissue; bioassay on rabbit aorta strips of supernatants obtained from platelets undergoing challenge with H-CRP supported the TLC analysis. Complexes formed between CRP and one major ligand, the polycation, were found to share certain platelet activating properties with H-CRP, as does latex-aggregated CRP. These data imply a potential agonist role for this acute phase reactant in platelet physiology and suggest that the interaction of modified forms of CRP with the platelet at sites of vascular damage could have pathological significance. PMID:7118160
Famakin, Bolanle M.
2014-01-01
It is currently well established that the immune system is activated in response to transient or focal cerebral ischemia. This acute immune activation occurs in response to damage, and injury, to components of the neurovascular unit and is mediated by the innate and adaptive arms of the immune response. The initial immune activation is rapid, occurs via the innate immune response and leads to inflammation. The inflammatory mediators produced during the innate immune response in turn lead to recruitment of inflammatory cells and the production of more inflammatory mediators that result in activation of the adaptive immune response. Under ideal conditions, this inflammation gives way to tissue repair and attempts at regeneration. However, for reasons that are just being understood, immunosuppression occurs following acute stroke leading to post-stroke immunodepression. This review focuses on the current state of knowledge regarding innate and adaptive immune activation in response to focal cerebral ischemia as well as the immunodepression that can occur following stroke. A better understanding of the intricate and complex events that take place following immune response activation, to acute cerebral ischemia, is imperative for the development of effective novel immunomodulatory therapies for the treatment of acute stroke. PMID:25276490
Therapeutic Potential of Intravenous Immunoglobulin in Acute Brain Injury
Thom, Vivien; Arumugam, Thiruma V.; Magnus, Tim; Gelderblom, Mathias
2017-01-01
Acute ischemic and traumatic injury of the central nervous system (CNS) is known to induce a cascade of inflammatory events that lead to secondary tissue damage. In particular, the sterile inflammatory response in stroke has been intensively investigated in the last decade, and numerous experimental studies demonstrated the neuroprotective potential of a targeted modulation of the immune system. Among the investigated immunomodulatory agents, intravenous immunoglobulin (IVIg) stand out due to their beneficial therapeutic potential in experimental stroke as well as several other experimental models of acute brain injuries, which are characterized by a rapidly evolving sterile inflammatory response, e.g., trauma, subarachnoid hemorrhage. IVIg are therapeutic preparations of polyclonal immunoglobulin G, extracted from the plasma of thousands of donors. In clinical practice, IVIg are the treatment of choice for diverse autoimmune diseases and various mechanisms of action have been proposed. Only recently, several experimental studies implicated a therapeutic potential of IVIg even in models of acute CNS injury, and suggested that the immune system as well as neuronal cells can directly be targeted by IVIg. This review gives further insight into the role of secondary inflammation in acute brain injury with an emphasis on stroke and investigates the therapeutic potential of IVIg. PMID:28824617
Treating acute cystitis with biodegradable micelle-encapsulated quercetin
Wang, Bi Lan; Gao, Xiang; Men, Ke; Qiu, Jinfeng; Yang, Bowen; Gou, Ma Ling; Huang, Mei Juan; Huang, Ning; Qian, Zhi Yong; Zhao, Xia; Wei, Yu Quan
2012-01-01
Intravesical application of an anti-inflammatory drug is an efficient strategy for acute cystitis therapy. Quercetin (QU) is a potent anti-inflammatory agent; however, its poor water solubility restricts its clinical application. In an attempt to improve water solubility of QU, biodegradable monomethoxy poly(ethylene glycol)-poly(ɛ-caprolactone) (MPEG-PCL) micelles were used to encapsulate QU by self-assembly methods, creating QU/MPEG-PCL micelles. These QU/MPEG-PCL micelles with DL of 7% had a mean particle size of <34 nm, and could release QU for an extended period in vitro. The in vivo study indicated that intravesical application of MPEG-PCL micelles did not induce any toxicity to the bladder, and could efficiently deliver cargo to the bladder. Moreover, the therapeutic efficiency of intravesical administration of QU/MPEG-PCL micelles on acute cystitis was evaluated in vivo. Results indicated that QU/MPEG-PCL micelle treatment efficiently reduced the edema and inflammatory cell infiltration of the bladder in an Escherichia coli-induced acute cystitis model. These data suggested that MPEG-PCL micelle was a candidate intravesical drug carrier, and QU/MPEG-PCL micelles may have potential application in acute cystitis therapy. PMID:22661886
Lockwood, Kimberly G.; Marsland, Anna L.; Cohen, Sheldon; Gianaros, Peter J.
2016-01-01
Individuals differ consistently in the magnitude of their inflammatory responses to acute stressors, with females often showing larger responses than males. While the clinical significance of these individual differences remains unclear, it may be that greater inflammatory responses relate to increased systemic inflammation and thereby risk for chronic inflammatory disease. Here, we examined whether acute stressor-evoked interleukin (IL)-6 responses associate with resting levels of C-reactive protein (CRP), a marker of systemic inflammation, and whether this association differs by sex. Subjects were 57 healthy midlife adults (30–51 years; 33% female; 68% white). Blood was drawn before and 30-min after two mental stress tasks: a multisource interference task and a Stroop color word task. Hierarchical regressions controlling for age, sex, race, and BMI tested whether stressor-evoked IL-6 responses were associated with resting CRP and whether this association differed by sex. Results indicated that sex and stressor-evoked IL-6 responses interacted to predict CRP (ΔR2 = .08, B = −1.33, β = −.39, p = .02). In males, larger stressor-evoked IL-6 responses associated with higher CRP, whereas in females, stressor-evoked IL-6 responses showed a non-significant negative association with CRP. These findings indicate that inflammatory responses to acute stressors associate with resting levels of CRP; however, this association differs by sex. Previous literature suggests that there are sex differences in stressor-evoked IL-6 responses, but this is the first study to show sex differences in the relationship between acute inflammatory responses and systemic inflammation. The contribution of these sex differences to inflammatory disease risk warrants further investigation. PMID:27377561
Wandji, Bibiane Aimée; Bomba, Francis Desire Tatsinkou; Nkeng-Efouet, Pepin Alango; Piegang, Basile Nganmegne; Kamanyi, Albert; Nguelefack, Télesphore Benoît
2018-02-01
Previous study showed that aqueous (AEPM) and methanol (MEPM) extracts from the leaves of Pittosporum mannii have analgesic effects in acute pain models. The present study evaluates the acute and chronic anti-hypernociceptive and anti-inflammatory effects of AEPM and MEPM in a model of persistent inflammatory pain. The third day after induction of inflammatory pain by subplantar injection of 100 µL of CFA in Wistar rats, AEPM and MEPM were administered orally (75, 150 and 300 mg/kg/day) and their anti-hyperalgesic and anti-inflammatory effects were follow in acute (1-24 h) and chronic (for 14 days) treatments. At the end of the chronic treatment, oxidative stress and liver parameters were assessed. Effects of plant extracts were also evaluated on nociception induced by Phorbol 12-Myristate 13-Acetate (PMA) and 8-bromo 3',5'-cAMP (8-Br-cAMP) in mice. AEPM and MEPM significantly reversed the mechanical hyperalgesia caused by CFA in acute and chronic treatment. Moreover, AEPM and MEPM also significantly reduced the nociception caused by PMA (60%) and 8-Br-cAMP (87%). Nevertheless, AEPM and MEPM failed to inhibit the paw edema caused by CFA. Plant extracts significantly reduced the nitric oxide content in the spinal cord and the plasmatic concentration of alanine aminotransferase. MEPM also significantly increased the glutathione content in the spinal cord. AEPM and MEPM given orally are effective in inhibiting mechanical hyperalgesia in persistent inflammatory pain caused by CFA. Their mechanisms of action seem to involve an interaction with PKC, PKA and nitric oxide pathways. These extracts might be devoid of hepatotoxic effects.
Pinto, N B; Morais, T C; Carvalho, K M B; Silva, C R; Andrade, G M; Brito, G A C; Veras, M L; Pessoa, O D L; Rao, V S; Santos, F A
2010-08-01
The anti-inflammatory effect of physalin E, a seco-steroid isolated from Physalis angulata L. was evaluated on acute and chronic models of dermatitis induced by 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and oxazolone, respectively, in mouse ear. The changes in ear edema/thickness, production of pro-inflammatory cytokines (TNF-alpha and IFN-gamma), myeloperoxidase (MPO) activity, and histological and immunohistochemical findings were analysed, as indicators of dermal inflammation. Similar to dexamethasone, topically applied Physalin E (0.125; 0.25 and 0.5 mg/ear) potently inhibited the TPA and oxazolone-induced dermatitis, leading to substantial reductions in ear edema/thickness, pro-inflammatory cytokines, and MPO activity. These effects were reversed by mifepristone, a steroid antagonist and confirmed by immunohistochemical and histopathological analysis. The data suggest that physalin E may be a potent and topically effective anti-inflammatory agent useful to treat the acute and chronic skin inflammatory conditions. 2010 Elsevier GmbH. All rights reserved.
A metabolomics and mouse models approach to study inflammatory and immune responses to radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fornace, Albert J.; Li, Henghong
2013-12-02
The three-year project entitled "A Metabolomics and Mouse Models Approach to Study Inflammatory and Immune Responses to Radiation" was initiated in September 2009. The overall objectives of this project were to investigate the acute and persistent effects of low dose radiation on T cell lymphocyte function and physiology, as well the contributions of these cells to radiation-induced inflammatory responses. Inflammation after ionizing radiation (IR), even at low doses, may impact a variety of disease processes, including infectious disease, cardiovascular disease, cancer, and other potentially inflammatory disorders. There were three overall specific aims: 1. To investigate acute and persistent effects ofmore » low dose radiation on T cell subsets and function; 2. A genetic approach with mouse models to investigate p38 MAPK pathways that are involved in radiation-induced inflammatory signaling; 3. To investigate the effect of radiation quality on the inflammatory response. We have completed the work proposed in these aims.« less
Translation Control: A Multifaceted Regulator of Inflammatory Response
Mazumder, Barsanjit; Li, Xiaoxia; Barik, Sailen
2010-01-01
A robust innate immune response is essential to the protection of all vertebrates from infection, but it often comes with the price tag of acute inflammation. If unchecked, a runaway inflammatory response can cause significant tissue damage, resulting in myriad disorders, such as dermatitis, toxicshock, cardiovascular disease, acute pelvic and arthritic inflammatory diseases, and various infections. To prevent such pathologies, cells have evolved mechanisms to rapidly and specifically shut off these beneficial inflammatory activities before they become detrimental. Our review of recent literature, including our own work, reveals that the most dominant and common mechanism is translational silencing, in which specific regulatory proteins or complexes are recruited to cis-acting RNA structures in the untranslated regions of single or multiple mRNAs that code for the inflammatory protein(s). Enhancement of the silencing function may constitute a novel pharmacological approach to prevent immunity-related inflammation. PMID:20304832
Translation control: a multifaceted regulator of inflammatory response.
Mazumder, Barsanjit; Li, Xiaoxia; Barik, Sailen
2010-04-01
A robust innate immune response is essential to the protection of all vertebrates from infection, but it often comes with the price tag of acute inflammation. If unchecked, a runaway inflammatory response can cause significant tissue damage, resulting in myriad disorders, such as dermatitis, toxic shock, cardiovascular disease, acute pelvic and arthritic inflammatory diseases, and various infections. To prevent such pathologies, cells have evolved mechanisms to rapidly and specifically shut off these beneficial inflammatory activities before they become detrimental. Our review of recent literature, including our own work, reveals that the most dominant and common mechanism is translational silencing, in which specific regulatory proteins or complexes are recruited to cis-acting RNA structures in the untranslated regions of single or multiple mRNAs that code for the inflammatory protein(s). Enhancement of the silencing function may constitute a novel pharmacological approach to prevent immunity-related inflammation.
STRETCHING IMPACTS INFLAMMATION RESOLUTION IN CONNECTIVE TISSUE
Berrueta, Lisbeth; Muskaj, Igla; Olenich, Sara; Butler, Taylor; Badger, Gary J.; Colas, Romain A.; Spite, Matthew; Serhan, Charles N.; Langevin, Helene M.
2016-01-01
Acute inflammation is accompanied from its outset by the release of specialized pro-resolving mediators (SPMs), including resolvins, that orchestrate the resolution of local inflammation. We showed earlier that, in rats with subcutaneous inflammation of the back induced by carrageenan, stretching for 10 minutes twice daily reduced inflammation and improved pain, two weeks after carrageenan injection. In this study, we hypothesized that stretching of connective tissue activates local pro-resolving mechanisms within the tissue in the acute phase of inflammation. In rats injected with carrageenan and randomized to stretch vs. no stretch for 48 hours, stretching reduced inflammatory lesion thickness and neutrophil count, and increased resolvin (RvD1) concentrations within lesions. Furthermore, subcutaneous resolvin injection mimicked the effect of stretching. In ex vivo experiments, stretching of connective tissue reduced the migration of neutrophils and increased tissue RvD1 concentration. These results demonstrate a direct mechanical impact of stretching on inflammation-regulation mechanisms within connective tissue. PMID:26588184
Noveck, Robert; Stroes, Erik S. G.; Flaim, JoAnn D.; Baker, Brenda F.; Hughes, Steve; Graham, Mark J.; Crooke, Rosanne M.; Ridker, Paul M
2014-01-01
Background C‐reactive protein (CRP) binds to damaged cells, activates the classical complement pathway, is elevated in multiple inflammatory conditions, and provides prognostic information on risk of future atherosclerotic events. It is controversial, however, as to whether inhibiting CRP synthesis would have any direct anti‐inflammatory effects in humans. Methods and Results A placebo‐controlled study was used to evaluate the effects of ISIS 329993 (ISIS‐CRPRx) on the acute‐phase response after endotoxin challenge in 30 evaluable subjects. Healthy adult males were randomly allocated to receive 6 injections over a 22‐day period of placebo or active therapy with ISIS 329993 at 400‐ or 600‐mg doses. Eligible subjects were subsequently challenged with a bolus of endotoxin (2 ng/kg). Inflammatory and hematological biomarkers were measured before and serially after the challenge. ISIS‐CRPRx was well tolerated with no serious adverse events. Median CRP levels increased more than 50‐fold from baseline 24 hours after endotoxin challenge in the placebo group. In contrast, the median increase in CRP levels was attenuated by 37% (400 mg) and 69% (600 mg) in subjects pretreated with ISIS‐CRPRx (P<0.05 vs. placebo). All other aspects of the acute inflammatory response were similar between treatment groups. Conclusion Pretreatment of subjects with ISIS‐CRPRx selectively reduced the endotoxin‐induced increase in CRP levels in a dose‐dependent manner, without affecting other components of the acute‐phase response. These data demonstrate the specificity of antisense oligonucleotides and provide an investigative tool to further define the role of CRP in human pathological conditions. PMID:25012289
Pires, Débora; Xavier, Murilo; Araújo, Tiago; Silva, José Antônio; Aimbire, Flavio; Albertini, Regiane
2011-01-01
Low-level laser therapy (LLLT) has been found to produce anti-inflammatory effects in a variety of disorders. Tendinopathies are directly related to unbalance in expression of pro- and anti-inflammatory cytokines which are responsible by degeneration process of tendinocytes. In the current study, we decided to investigate if LLLT could reduce mRNA expression for TNF-α, IL-1β, IL-6, TGF-β cytokines, and COX-2 enzyme. Forty-two male Wistar rats were divided randomly in seven groups, and tendinitis was induced with a collagenase intratendinea injection. The mRNA expression was evaluated by real-time PCR in 7th and 14th days after tendinitis. LLLT irradiation with wavelength of 780 nm required for 75 s with a dose of 7.7 J/cm(2) was administered in distinct moments: 12 h and 7 days post tendinitis. At the 12 h after tendinitis, the animals were irradiated once in intercalate days until the 7th or 14th day in and them the animals were killed, respectively. In other series, 7 days after tendinitis, the animals were irradiated once in intercalated days until the 14th day and then the animals were killed. LLLT in both acute and chronic phases decreased IL-6, COX-2, and TGF-β expression after tendinitis, respectively, when compared to tendinitis groups: IL-6, COX-2, and TGF-β. The LLLT not altered IL-1β expression in any time, but reduced the TNF-α expression; however, only at chronic phase. We conclude that LLLT administered with this protocol reduces one of features of tendinopathies that is mRNA expression for pro-inflammatory mediators.
Anti-inflammatory effects of theophylline, cromolyn and salbutamol in a murine model of pleurisy.
Saleh, T. S.; Calixto, J. B.; Medeiros, Y. S.
1996-01-01
1. The aim of this study was to examine the effect of theophylline, cromolyn and salbutamol, three well-known anti-asthmatic drugs, on the early (4 h) and late (48 h) phases of cell migration and fluid leakage induced by carrageenin in the pleural cavity of mice. 2. In the first set of experiments, animals were pretreated (30 min) with different doses of theophylline (0.5-50 mg kg-1, i.p.), cromolyn (0.02-0.2 mg per pleural cavity) or salbutamol (0.05-50 mg kg-1, i.p.); the total and differential cell content, and also the exudate were analysed 4 h after carrageenin (1%) administration. Afterwards, in order to evaluate the time course effects of these drugs on both phases of the inflammatory reaction, one dose employed in the above protocol was chosen, to pretreat (0.5-24 h) different groups of animals. The studied parameters were evaluated 4 and 48 h after pleurisy induction. 3. Acute administration of theophylline (1-50 mg kg-1, i.p.) cromolyn (0.02-0.2 mg per pleural cavity) and salbutamol (0.5-50 mg kg-1, i.p.), 30 min prior to carrageenin, caused significant inhibition of total cell and fluid leakage in the pleural cavity at 4 h (P < 0.01). All drugs exerted a long-lasting inhibitory effect on both exudation and cell migration (P < 0.01) when administered 0.5-8 h before pleurisy induction. However, the temporal profile of the inhibitory effect induced by these drugs on the first phase of the inflammatory reaction was clearly different. Thus, the inhibitory effect induced by theophylline and cromolyn on exudation was significantly longer (up to 24 h) in comparison to their effects on cell migration (only up to 8 h). In contrast, although salbutamol when administered 30 min before pleurisy induction abolished fluid leakage (P < 0.01), this effect was not sustained in the groups pretreated for 4-8 h. In these latter groups, a significant but much smaller reduction of exudation was observed (P < 0.01), whereas the magnitude of cell migration inhibition did not vary. 4. The second phase (48 h) of the inflammatory reaction induced by carrageenin (1%) was significantly inhibited by cromolyn (0.02 mg per pleural cavity) when this drug was administered 0.5-24 h before pleurisy induction (P < 0.01). Similar results were observed when theophylline (50 mg kg-1, i.p.) was administered 0.5-4 h before the injection of the phlogistic agent (P < 0.01). Treatment of the animals with salbutamol (5 mg kg-1, i.p.), 0.5-24 h before pleurisy induction, did not inhibit either cell migration or fluid leakage. In this condition, a significant increase of these parameters was observed in the group pretreated with salbutamol 8-24 h before pleurisy induction (P < 0.01). 5. These results indicate that theophylline and cromolyn were able to inhibit the early (4 h) and late (48 h) phases of the inflammatory reaction induced by carrageenin in a murine model of pleurisy. Salbutamol was effective only against the early phase. The inhibitory effects of theophylline, cromolyn and salbutamol on the early phase of this inflammatory reaction were long-lasting, although a distinct profile of inhibition was observed among them. These findings confirm and extend previous results described in other models of asthma and support both clinical and experimental evidence suggesting that these anti-asthmatic agents exhibit marked anti-inflammatory properties. PMID:8762112
The dynamics of acute inflammation
NASA Astrophysics Data System (ADS)
Kumar, Rukmini
The acute inflammatory response is the non-specific and immediate reaction of the body to pathogenic organisms, tissue trauma and unregulated cell growth. An imbalance in this response could lead to a condition commonly known as "shock" or "sepsis". This thesis is an attempt to elucidate the dynamics of acute inflammatory response to infection and contribute to its systemic understanding through mathematical modeling and analysis. The models of immunity discussed use Ordinary Differential Equations (ODEs) to model the variation of concentration in time of the various interacting species. Chapter 2 discusses three such models of increasing complexity. Sections 2.1 and 2.2 discuss smaller models that capture the core features of inflammation and offer general predictions concerning the design of the system. Phase-space and bifurcation analyses have been used to examine the behavior at various parameter regimes. Section 2.3 discusses a global physiological model that includes several equations modeling the concentration (or numbers) of cells, cytokines and other mediators. The conclusions drawn from the reduced and detailed models about the qualitative effects of the parameters are very similar and these similarities have also been discussed. In Chapter 3, the specific applications of the biologically detailed model are discussed in greater detail. These include a simulation of anthrax infection and an in silico simulation of a clinical trial. Such simulations are very useful to biologists and could prove to be invaluable tools in drug design. Finally, Chapter 4 discusses the general problem of extinction of populations modeled as continuous variables in ODES is discussed. The average time to extinction and threshold are estimated based on analyzing the equivalent stochastic processes.
Batistel, Fernanda; Osorio, Johan S.; Ferrari, Annarita; Trevisi, Erminio; Socha, Michael T.; Loor, Juan J.
2016-01-01
The peripartum (or transition) period is the most-critical phase in the productive life of lactating dairy cows and optimal supply of trace minerals through more bioavailable forms could minimize the negative effects associated with this phase. Twenty Holstein cows received a common prepartal diet and postpartal diet. Both diets were partially supplemented with an inorganic (INO) mix of Zn, Mn, and Cu to supply 35, 45, and 6 ppm, respectively, of the diet dry matter (DM). Cows were assigned to treatments in a randomized completed block design, receiving an daily oral bolus with INO or organic trace minerals (AAC) Zn, Mn, Cu, and Co to achieve 75, 65, 11, and 1 ppm supplemental, respectively, in the diet DM. Liver tissue and blood samples were collected throughout the experiment. The lower glutamic-oxaloacetic transaminase concentration after 15 days in milk in AAC cows indicate lower hepatic cell damage. The concentration of cholesterol and albumin increased, while IL-6 decreased over time in AAC cows compared with INO indicating a lower degree of inflammation and better liver function. Although the acute-phase protein ceruloplasmin tended to be lower in AAC cows and corresponded with the reduction in the inflammatory status, the tendency for greater serum amyloid A concentration in AAC indicated an inconsistent response on acute-phase proteins. Oxygen radical absorbance capacity increased over time in AAC cows. Furthermore, the concentrations of nitric oxide, nitrite, nitrate, and the ferric reducing ability of plasma decreased with AAC indicating a lower oxidative stress status. The expression of IL10 and ALB in liver tissue was greater overall in AAC cows reinforcing the anti-inflammatory response detected in plasma. The greater overall expression of PCK1 in AAC cows indicated a greater gluconeogenic capacity, and partly explained the greater milk production response over time. Overall, feeding organic trace minerals as complexed with amino acids during the transition period improved liver function and decreased inflammation and oxidative stress. PMID:27243218
Whittaker, Anne; Sofi, Francesco; Luisi, Maria Luisa Eliana; Rafanelli, Elena; Fiorillo, Claudia; Becatti, Matteo; Abbate, Rosanna; Casini, Alessandro; Gensini, Gian Franco; Benedettelli, Stefano
2015-05-11
Khorasan wheat is an ancient grain with previously reported health benefits in clinically healthy subjects. The aim of this study was to examine whether a replacement diet, thereby substituting all other cereal grains, with products made with organic khorasan wheat could provide additive protective effects in reducing lipid, oxidative and inflammatory risk factors, in patients with Acute Coronary Syndromes (ACS) in comparison to a similar replacement diet using products made from organic modern wheat. A randomized double-blinded crossover trial with two intervention phases was conducted on 22 ACS patients (9 F; 13 M). The patients were assigned to consume products (bread, pasta, biscuits and crackers) made either from organic semi-whole khorasan wheat or organic semi-whole control wheat for eight weeks in a random order. On average, patients ingested 62.0 g dry weight (DW) day-1 khorasan or control semolina; and 140.5 g DW day-1 khorasan or control flour, respectively. An eight-week washout period was implemented between the respective interventions. Blood analyses were performed both at the beginning and end of each intervention phase; thereby permitting a comparison of both the khorasan and control intervention phases, respectively, on circulatory risk factors for the same patient. Consumption of products made with khorasan wheat resulted in a significant amelioration in total cholesterol (-6.8%), low-density lipoprotein cholesterol (LDL-C) (-8.1%) glucose (-8%) and insulin (-24.6%) from baseline levels, independently of age, sex, traditional risk factors, medication and diet quality. Moreover, there was a significant reduction in reactive oxygen species (ROS), lipoperoxidation of circulating monocytes and lymphocytes, as well as in the levels of Tumor Necrosis Factor-alpha. No significant differences from baseline in the same patients were observed after the conventional control wheat intervention phase. The present results suggest that a replacement diet with cereal products made from organic khorasan wheat provides additional protection in patients with ACS. Circulating cardiovascular risk factors, including lipid parameters, and markers of both oxidative stress and inflammatory status, were reduced, irrespective of the number and combination of medicinal therapies with proven efficacy in secondary prevention.
Jacobsen, Elizabeth A.; LeSuer, William E.; Willetts, Lian; Zellner, Katie R.; Mazzolini, Kirea; Antonios, Nathalie; Beck, Brandon; Protheroe, Cheryl; Ochkur, Sergei I.; Colbert, Dana; Lacy, Paige; Moqbel, Redwan; Appleton, Judith; Lee, Nancy A.; Lee, James J.
2014-01-01
Background The importance and specific role(s) of eosinophils in modulating the immune/inflammatory phenotype of allergic pulmonary disease remain to be defined. Established animals models assessing the role(s) of eosinophils as contributors and/or causative agents of disease have relied on congenitally deficient mice where the developmental consequences of eosinophil depletion are unknown. Methods We developed a novel conditional eosinophil-deficient strain of mice (iPHIL) through a gene knock-in strategy inserting the human diphtheria toxin (DT) receptor (DTR) into the endogenous eosinophil peroxidase genomic locus. Results Expression of DTR rendered resistant mouse eosinophil progenitors sensitive to DT without affecting any other cell types. The presence of eosinophils was shown to be unnecessary during the sensitization phase of either ovalbumin (OVA) or house dust mite (HDM) acute asthma models. However, eosinophil ablation during airway challenge led to a predominantly neutrophilic phenotype (>15% neutrophils) accompanied by allergen-induced histopathologies and airway hyperresponsiveness in response to methacholine indistinguishable from eosinophilic wild type mice. Moreover, the iPHIL neutrophilic airway phenotype was shown to be a steroid-resistant allergic respiratory variant that was reversible upon restoration of peripheral eosinophils. Conclusions Eosinophil contributions to allergic immune/inflammatory responses appear to be limited to the airway challenge and not the sensitization phase of allergen provocation models. The reversible steroid-resistant character of the iPHIL neutrophilic airway variant suggests underappreciated mechanisms by which eosinophils shape the character of allergic respiratory responses. PMID:24266710
Dong, Yanying; Shi, Dongsha; Li, Man; Dai, Pengfei; Wang, Xiangling; Xie, Ming
2015-08-01
Hemorrhagic fever with renal syndrome (HFRS) is an acute viral infectious disease characterized by fever, hemorrhage and renal failure. HFRS has become a serious public health problem in China. Unfortunately, the pathogenesis of HFRS has not been completely clarified. The aim of this study is to investigate the changes of decoy receptor 3 (DcR3) and to further explore its potential roles in HFRS. The levels of serum DcR3 were measured by sandwich ELISA. We found serum DcR3 levels increased significantly, which reached peak value during the oliguric phase and in the critical group. Moreover, serum DcR3 levels were closely related to the levels of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and parameters reflecting kidney injury including BUN, creatinine (Cr) and proteinuria. This study indicates that high levels of serum DcR3 have associations with the disease stages, severity and degree of kidney damage. Meanwhile, our results suggest that DcR3 may play a dual role in HFRS pathogenesis. First, DcR3 is involved in the inflammatory cascade response resulting in capillary permeability and kidney injury in the early stage. Secondly, HTNV infection induced DcR3 expression at the convalescent phase may act as a feed-back mechanism in anti-inflammatory response. Thus, a study of DcR3 is essential for a better understanding of HFRS pathogenesis.
1987-01-01
Lethally irradiated mice were injected with semiallogeneic, T-depleted bone marrow cells and an amount of peripheral T lymphocytes sufficient to induce graft-vs.-host disease (GVHD) becoming apparent on the second week after the graft and leading to an increasing mortality rate within the following weeks (greater than 90% mortality within 80 d). Mice receiving bone marrow cells alone had no GVHD and were used as controls. Beginning on day 8, mice with GVHD were injected weekly with 2 mg of either rabbit anti-mouse recombinant tumor necrosis factor/cachectin (TNF-alpha) IgG, or normal rabbit IgG. On the 16-18th d, mice were killed to examine the skin and intestinal lesions of the acute phase of GVHD. The anti-TNF treatment resulted in an almost complete prevention of the severe lesions seen in the mice treated with normal rabbit IgG, i.e., the skin epidermal cell necrosis, foci of lichenoid hyperplastic reactions, and loss of the hypodermic fat; in the gut dilatation with marked flattening of the villi and elevation of the crypts, with increased numbers of mitoses and isolated crypt cell necrosis. In addition to preventing these acute lesions, anti-TNF treatment resulted in a significantly decreased mortality (approximately 70% survival at 80 d). These results suggest that during acute GVHD, the activation of grafted lymphocytes leads to a local release of TNF in the cutaneous and intestinal mucosae, which induces epithelial cell alterations and increases the inflammatory reaction. PMID:3316469
Edsberg, Laura E.; Wyffels, Jennifer T.; Ogrin, Rajna; Craven, B. Catharine; Houghton, Pamela
2015-01-01
Objective To determine whether the biochemistry of chronic pressure ulcers differs between patients with and without chronic spinal cord injury (SCI) through measurement and comparison of the concentration of wound fluid inflammatory mediators, growth factors, cytokines, acute phase proteins, and proteases. Design Survey. Setting Tertiary spinal cord rehabilitation center and skilled nursing facilities. Participants Twenty-nine subjects with SCI and nine subjects without SCI (>18 years) with at least one chronic pressure ulcer Stage II, III, or IV were enrolled. Outcome measures Total protein and 22 target analyte concentrations including inflammatory mediators, growth factors, cytokines, acute phase proteins, and proteases were quantified in the wound fluid and blood serum samples. Blood samples were tested for complete blood count, albumin, hemoglobin A1c, total iron binding capacity, iron, percent (%) saturation, C-reactive protein, and erythrocyte sedimentation rate. Results Wound fluid concentrations were significantly different between subjects with SCI and subjects without SCI for total protein concentration and nine analytes, MMP-9, S100A12, S100A8, S100A9, FGF2, IL-1b, TIMP-1, TIMP-2, and TGF-b1. Subjects without SCI had higher values for all significantly different analytes measured in wound fluid except FGF2, TGF-b1, and wound fluid total protein. Subject-matched circulating levels of analytes and the standardized local concentration of the same proteins in the wound fluid were weakly or not correlated. Conclusions The biochemical profile of chronic pressure ulcers is different between SCI and non-SCI populations. These differences should be considered when selecting treatment options. Systemic blood serum properties may not represent the local wound environment. PMID:24968005
Nishimon, Shohei; Ohnuma, Tohru; Takebayashi, Yuto; Katsuta, Narimasa; Takeda, Mayu; Nakamura, Toru; Sannohe, Takahiro; Higashiyama, Ryoko; Kimoto, Ayako; Shibata, Nobuto; Gohda, Tomohito; Suzuki, Yusuke; Yamagishi, Sho-Ichi; Tomino, Yasuhiko; Arai, Heii
2017-06-02
Inflammation may be involved in the pathophysiology of schizophrenia. However, few cross-sectional or longitudinal studies have examined changes in biomarker expression to evaluate diagnostic and prognostic efficacy in acute-stage schizophrenia. We compared serum inflammatory biomarker concentrations in 87 patients with acute-stage schizophrenia on admission to 105 age-, sex-, and body mass index (BMI)-matched healthy controls. The measured biomarkers were soluble tumor necrosis factor receptor 1 (sTNFR1) and adiponectin, which are associated with inflammatory responses, and pigment epithelium-derived factor (PEDF), which has anti-inflammatory properties. We then investigated biomarker concentrations and associations with clinical factors in 213 patients (including 42 medication-free patients) and 110 unmatched healthy controls to model conditions typical of clinical practice. Clinical symptoms were assessed using the Brief Psychiatric Rating Scale and Global Assessment of Function. In 121 patients, biomarker levels and clinical status were evaluated at both admission and discharge. Serum sTNFR1 was significantly higher in patients with acute-stage schizophrenia compared to matched controls while no significant group differences were observed for the other markers. Serum sTNFR1 was also significantly higher in the 213 patients compared to unmatched controls. The 42 unmedicated patients had significantly lower PEDF levels compared to controls. Between admission and discharge, sTNFR1 levels decreased significantly; however, biomarker changes did not correlate with clinical symptoms. The discriminant accuracy of sTNFR1 was 93.2% between controls and patients, showing no symptom improvement during care. Inflammation and a low-level anti-inflammatory state may be involved in both schizophrenia pathogenesis and acute-stage onset. High serum sTNFR1 in the acute stage could be a useful prognostic biomarker for treatment response in clinical practice. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Xiao-Min; Hamza, May; Wu, Tai-Xia; Dionne, Raymond A.
2012-01-01
Tissue injury initiates a cascade of inflammatory mediators and hyperalgesic substances including prostaglandins, cytokines and chemokines. Using microarray and qRT-PCR gene expression analyses, the present study evaluated changes in gene expression of a cascade of cytokines following acute inflammation and the correlation between the changes in the gene expression level and pain intensity in the oral surgery clinical model of acute inflammation. Tissue injury resulted in a significant up-regulation in the gene expression of Interleukin-6 (IL-6; 63.3-fold), IL-8 (8.1-fold), chemokine (C-C motif) ligand 2 (CCL2; 8.9-fold), chemokine (C-X-C motif) ligand 1 (CXCL1; 30.5-fold), chemokine (C-X-C motif) ligand 2 (CXCL2; 26-fold) and annexin A1 (ANXA1; 12-fold). The up-regulation of IL-6 gene expression was significantly correlated to the up-regulation on the gene expression of IL-8, CCL2, CXCL1 and CXCL2. Interestingly, the tissue injury induced up-regulation of IL-6 gene expression, IL-8 and CCL2 were positively correlated to pain intensity at 3 hours post-surgery, the onset of acute inflammatory pain. However, ketorolac treatment did not have a significant effect on the gene expression of IL-6, IL-8, CCL2, CXCL2 and ANXA1 at the same time point of acute inflammation. These results demonstrate that up-regulation of IL-6, IL-8 and CCL2 gene expression contributes to the development of acute inflammation and inflammatory pain. The lack of effect for ketorolac on the expression of these gene products may be related to the ceiling analgesic effects of non-steroidal anti-inflammatory drugs. PMID:19233564
Lal, Bikrant B; Alam, Seema; Sood, Vikrant; Rawat, Dinesh; Khanna, Rajeev
2018-01-11
There are no studies on acute kidney injury in paediatric acute-on-chronic liver failure. This study was planned with aim to describe the clinical presentation and outcome of acute kidney injury among paediatric acute-on-chronic liver failure patients. Data of all children 1-18 years of age presenting with acute chronic liver failure (Asia pacific association for the study of the liver definition) was reviewed. Acute kidney injury was defined as per Kidney Diseases-Improving Global Outcomes guidelines. Poor outcome was defined as death or need for liver transplant within 3 months of development of acute kidney injury. A total of 84 children with acute-on-chronic liver failure were presented to us in the study period. Acute kidney injury developed in 22.6% of patients with acute-on-chronic liver failure. The median duration from acute-on-chronic liver failure to development of acute kidney injury was 4 weeks (Range: 2-10 weeks). The causes of acute kidney injury were hepatorenal syndrome (31.6%), sepsis (31.6%), nephrotoxic drugs (21%), dehydration (10.5%) and bile pigment related acute tubular necrosis in one patient. On univariate analysis, higher baseline bilirubin, higher international normalized ratio, higher paediatric end stage liver disease, presence of systemic inflammatory response syndrome and presence of spontaneous bacterial peritonitis had significant association with presence of acute kidney injury. On logistic regression analysis, presence of systemic inflammatory response syndrome (adjusted OR: 8.659, 95% CI: 2.18-34.37, P = .002) and higher baseline bilirubin (adjusted OR: 1.07, 95% CI: 1.008-1.135, P = .025) were independently associated with presence of acute kidney injury. Of the patients with acute kidney injury, 5(26.3%) survived with native liver, 10(52.6%) died and 4 (21.1%) underwent liver transplantation. Acute kidney injury developed in 22.6% of children with acute-on-chronic liver failure. Bilirubin more than 17.7 mg/dL and presence of systemic inflammatory response syndrome were high risk factors for acute kidney injury. Development of acute kidney injury in a child with acute-on-chronic liver failure suggests poor outcome and need for early intervention. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Neutrophils: Beneficial and Harmful Cells in Septic Arthritis
Boff, Daiane; Crijns, Helena; Teixeira, Mauro M.
2018-01-01
Septic arthritis is an inflammatory joint disease that is induced by pathogens such as Staphylococcus aureus. Infection of the joint triggers an acute inflammatory response directed by inflammatory mediators including microbial danger signals and cytokines and is accompanied by an influx of leukocytes. The recruitment of these inflammatory cells depends on gradients of chemoattractants including formylated peptides from the infectious agent or dying cells, host-derived leukotrienes, complement proteins and chemokines. Neutrophils are of major importance and play a dual role in the pathogenesis of septic arthritis. On the one hand, these leukocytes are indispensable in the first-line defense to kill invading pathogens in the early stage of disease. However, on the other hand, neutrophils act as mediators of tissue destruction. Since the elimination of inflammatory neutrophils from the site of inflammation is a prerequisite for resolution of the acute inflammatory response, the prolonged stay of these leukocytes at the inflammatory site can lead to irreversible damage to the infected joint, which is known as an important complication in septic arthritis patients. Thus, timely reduction of the recruitment of inflammatory neutrophils to infected joints may be an efficient therapy to reduce tissue damage in septic arthritis. PMID:29401737
Kanzawa, Noriyuki; Nishigaki, Kazuo; Hayashi, Takaya; Ishii, Yuichi; Furukawa, Souichi; Niiro, Ayako; Yasui, Fumihiko; Kohara, Michinori; Morita, Kouichi; Matsushima, Kouji; Le, Mai Quynh; Masuda, Takao; Kannagi, Mari
2006-12-22
Severe acute respiratory syndrome (SARS) is characterized by rapidly progressing respiratory failure resembling acute/adult respiratory distress syndrome (ARDS) associated with uncontrolled inflammatory responses. Here, we demonstrated that, among five accessory proteins of SARS coronavirus (SARS-CoV) tested, 3a/X1 and 7a/X4 were capable of activating nuclear factor kappa B (NF-kappaB) and c-Jun N-terminal kinase (JNK), and significantly enhanced interleukin 8 (IL-8) promoter activity. Furthermore, 3a/X1 and 7a/X4 expression in A549 cells enhanced production of inflammatory chemokines that were known to be up-regulated in SARS-CoV infection. Our results suggest potential involvement of 3a/X1 and 7a/X4 proteins in the pathological inflammatory responses in SARS.
Quantitative analysis of blood cells and inflammatory factors in wounds.
Cerveró-Ferragut, S; López-Riquelme, N; Martín-Tomás, E; Massa-Domínguez, B; Pomares-Vicente, J; Soler-Pérez, M; Sánchez-Hernández, J F
2017-03-02
The aim of this study was to quantify blood cells and inflammatory markers, involved in the healing process, in exudates from wounds in different healing phases, to assess these markers in order to identify the inflammatory phase of the wounds. Patients who presented with postsurgical wounds, which closed by first and second intention, and those who presented with pressure ulcers (PUs), which were closed by second intention, were included in the study. We examined wounds from 37 patients and collected samples from 52 wounds in the inflammatory phase, 30 in the proliferative phase and 29 in the maturation phase. The number of neutrophils and platelets in the exudate collected from wounds in the inflammatory phase was significantly higher (p<0.001), while the number of lymphocytes, was significantly lower in exudate from wounds in the inflammatory phase (p<0.001). Wound c-reactive protein (CRP) and immunoglobulin G (IgG) levels were higher in the inflammatory group (p<0.001). We found a significantly positive correlation between CRP levels and the percentage of neutrophils and monocytes (r=0.346, p=0.004; r=0.293, p=0.015), and a significantly negative correlation between CRP levels and the percentage of lymphocytes (r=-0.503, p<0.001). A stepwise logistic regression analysis was used to identify an optimal combination of these biomarkers. The optimal biomarker combinations were neutrophils + monocytes + platelets + IgG + CRP, with an area under the curve (AUC) of 0.981 [confidence interval (CI) 95%: 0.955-1.000, p<0.001] for the diagnosis of wounds in the inflammatory phase. The optimal cutpoint yielded 96.9 % sensitivity and 94.6 % specificity. The biomarker combination predicted the inflammatory phase and was superior to individual biomarkers. Our findings suggest that the combination of the markers, percentage of neutrophils and monocytes, platelets, CRP and IgG levels could be useful prognostic indicators of the inflammatory phase.
Straub, Rainer H; Cutolo, Maurizio; Pacifici, Roberto
2015-10-01
Bone loss is typical in chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, pemphigus vulgaris, and others. It is also typical in transplantation-related inflammation and during the process of aging. While we recognized that bone loss is tightly linked to immune system activation or inflamm-aging in the form of acute, chronic active, or chronic smoldering inflammation, bone loss is typically discussed to be an "accident of inflammation." Extensive literature search in PubMed central. Using elements of evolutionary medicine, energy regulation, and neuroendocrine regulation of homeostasis and immune function, we work out that bone waste is an adaptive, evolutionarily positively selected program that is absolutely necessary during acute inflammation. However, when acute inflammation enters a chronic state due to the inability to terminate inflammation (e.g., in autoimmunity or in continuous immunity against microbes), the acute program of bone loss is a misguided adaptive program. The article highlights the complexity of interwoven pathways of osteopenia. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Straub, Rainer H.; Cutolo, Maurizio; Pacifici, Roberto
2015-01-01
Objective Bone loss is typical in chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, pemphigus vulgaris, and others. It is also typical in transplantation-related inflammation and during the process of aging. While we recognized that bone loss is tightly linked to immune system activation or inflammaging in the form of acute, chronic active, or chronic smoldering inflammation, bone loss is typically discussed to be an “accident of inflammation”. Methods Extensive literature search in PubMed central. Results Using elements of evolutionary medicine, energy regulation, and neuroendocrine regulation of homeostasis and immune function, we work out that bone waste is an adaptive, evolutionarily positively selected program that is absolutely necessary during acute inflammation. However, when acute inflammation enters a chronic state due to the inability to terminate inflammation (e.g., in autoimmunity or in continuous immunity against microbes), the acute program of bone loss is a misguided adaptive program. Conclusions The article highlights the complexity of interwoven pathways of osteopenia. PMID:26044543
Kim, Ki Rim; Jeong, Chan-Kwon; Park, Kwang-Kyun; Choi, Jong-Hoon; Park, Jung Han Yoon; Lim, Soon Sung; Chung, Won-Yoon
2010-01-01
The anti-inflammatory activity of licorice (LE) and roated licorice (rLE) extracts determined in the murine phorbol ester-induced acute inflammation model and collagen-induced arthritis (CIA) model of human rheumatoid arthritis. rLE possessed greater activity than LE in inhibiting phorbol ester-induced ear edema. Oral administration of LE or rLE reduced clinical arthritis score, paw swelling, and histopathological changes in a murine CIA. LE and rLE decreased the levels of proinflammatory cytokines in serum and matrix metalloproteinase-3 expression in the joints. Cell proliferation and cytokine secretion in response to type II collagen or lipopolysaccharide stimulation were suppressed in spleen cells from LE or rLE-treated CIA mice. Furthermore, LE and rLE treatment prevented oxidative damages in liver and kidney tissues of CIA mice. Taken together, LE and rLE have benefits in protecting against both acute inflammation and chronic inflammatory conditions including rheumatoid arthritis. rLE may inhibit the acute inflammation more potently than LE. PMID:20300198
Llorens-Martín, María; Jurado-Arjona, Jerónimo; Bolós, Marta; Pallas-Bazarra, Noemí; Ávila, Jesús
2016-03-01
Recent experimental data suggest that mood disorders are related to inflammatory phenomena and have led to the "inflammatory hypothesis of depression". Given that the hippocampus is one of the most affected areas in these disorders, we used a model of acute stress (the Porsolt test) to evaluate the consequences of forced swimming on two crucial events related to the pathophysiology of major depression: the functional maturation of newborn granule neurons; and the hippocampal inflammatory milieu. Using PSD95:GFP-expressing retroviruses, we found that forced swimming selectively alters the dendritic morphology of newborn neurons and impairs their connectivity by reducing the number and volume of their postsynaptic densities. In addition, acute stress triggered a series of morphological changes in microglial cells, together with an increase in microglial CD68 expression, thus suggesting the functional and morphological activation of this cell population. Furthermore, we observed an intriguing change in the hippocampal inflammatory milieu in response to forced swimming. Importantly, the levels of several molecules affected by acute stress (such as Interleukin-6 and eotaxin) have been described to also be altered in patients with depression and other mood disorders. Copyright © 2015 Elsevier Inc. All rights reserved.
Preventative oral methylthioadenosine is anti-inflammatory and reduces DSS-induced colitis in mice
USDA-ARS?s Scientific Manuscript database
Methylthioadenosine (MTA) is a precursor of the methionine salvage pathway and has been shown to have anti-inflammatory properties in various models of acute and chronic inflammation. However, the anti-inflammatory properties of MTA in models of intestinal inflammation are not defined. We hypothesiz...
New directions for pharmacotherapy in the treatment of acute coronary syndrome.
Adamski, Piotr; Adamska, Urszula; Ostrowska, Małgorzata; Koziński, Marek; Kubica, Jacek
2016-12-01
Acute coronary syndromes (ACS) are one of the leading causes of death worldwide. Several landmark trials, followed by a widespread introduction of new agents, have significantly improved ACS outcomes in recent years. However, despite the use of contemporary therapy, a substantial number of ACS patients continue to suffer from cardiovascular events. Areas covered: The aim of this review was to summarize available data on innovative drugs and pharmacological strategies that have potential to amend the current ACS therapy. We present the results of recent large clinical trials, as well as insights from ongoing phase III and phase IV studies, exploring the value of new strategies for the improvement of outcomes in ACS. Expert opinion: More potent platelet inhibition, more profound lipid reduction and possibly anti-inflammatory action are considered to have potential to further reduce the rates of adverse cardiovascular and thrombotic events in ACS patients. 'Hit fast, hit hard' approach regarding novel antiplatelet and lipid-lowering therapy seems attractive, but it has to be considered that these strategies may be associated with increased adverse events rate. Introduction of cangrelor and ezetimibe, and potentially future recognition of proprotein convertase subtilisin/kexin type 9 antibodies, are likely to alter the landscape of ACS pharmacotherapy.
Otálora-Ardila, Aída; Herrera M., L. Gerardo; Flores-Martínez, José Juan; Welch, Kenneth C.
2016-01-01
Inflammation and activation of the acute phase response (APR) are energetically demanding processes that protect against pathogens. Phytohaemagglutinin (PHA) and lipopolysaccharide (LPS) are antigens commonly used to stimulate inflammation and the APR, respectively. We tested the hypothesis that the APR after an LPS challenge was energetically more costly than the inflammatory response after a PHA challenge in the fish-eating Myotis bat (Myotis vivesi). We measured resting metabolic rate (RMR) after bats were administered PHA and LPS. We also measured skin temperature (Tskin) after the LPS challenge and skin swelling after the PHA challenge. Injection of PHA elicited swelling that lasted for several days but changes in RMR and body mass were not significant. LPS injection produced a significant increase in Tskin and in RMR, and significant body mass loss. RMR after LPS injection increased by 140–185% and the total cost of the response was 6.50 kJ. Inflammation was an energetically low-cost process but the APR entailed a significant energetic investment. Examination of APR in other bats suggests that the way in which bats deal with infections might not be uniform. PMID:27792729
Otálora-Ardila, Aída; Herrera M, L Gerardo; Flores-Martínez, José Juan; Welch, Kenneth C
2016-01-01
Inflammation and activation of the acute phase response (APR) are energetically demanding processes that protect against pathogens. Phytohaemagglutinin (PHA) and lipopolysaccharide (LPS) are antigens commonly used to stimulate inflammation and the APR, respectively. We tested the hypothesis that the APR after an LPS challenge was energetically more costly than the inflammatory response after a PHA challenge in the fish-eating Myotis bat (Myotis vivesi). We measured resting metabolic rate (RMR) after bats were administered PHA and LPS. We also measured skin temperature (Tskin) after the LPS challenge and skin swelling after the PHA challenge. Injection of PHA elicited swelling that lasted for several days but changes in RMR and body mass were not significant. LPS injection produced a significant increase in Tskin and in RMR, and significant body mass loss. RMR after LPS injection increased by 140-185% and the total cost of the response was 6.50 kJ. Inflammation was an energetically low-cost process but the APR entailed a significant energetic investment. Examination of APR in other bats suggests that the way in which bats deal with infections might not be uniform.
Acute asthma during pregnancy.
Stenius-Aarniala, B. S.; Hedman, J.; Teramo, K. A.
1996-01-01
BACKGROUND: Acute asthma during pregnancy is potentially dangerous to the fetus. The aim of this study was to investigate the effect of an acute attack of asthma during pregnancy on the course of pregnancy or delivery, or the health of the newborn infant, and to identify undertreatment as a possible cause of the exacerbations. METHODS: Five hundred and four pregnant asthmatic subjects were prospectively followed and treated. The data on 47 patients with an attack of asthma during pregnancy were compared with those of 457 asthmatics with no recorded acute exacerbation and with 237 healthy parturients. RESULTS: Of 504 asthmatics, 177 patients were not initially treated with inhaled corticosteroids. Of these, 17% had an acute attack compared with only 4% of the 257 patients who had been on inhaled anti-inflammatory treatment from the start of pregnancy. There were no differences between the groups as to length of gestation, length of the third stage of labour, or amount of haemorrhage after delivery. No differences were observed between pregnancies with and without an exacerbation with regard to relative birth weight, incidence of malformations, hypoglycaemia, or need for phototherapy for jaundice during the neonatal period. CONCLUSIONS: Patients with inadequate inhaled anti-inflammatory treatment during pregnancy run a higher risk of suffering an acute attack of asthma than those treated with an anti-inflammatory agent. However, if the acute attack of asthma is relatively mild and promptly treated, it does not have a serious effect on the pregnancy, delivery, or the health of the newborn infant. PMID:8733495
Shah, Dilip; Romero, Freddy; Stafstrom, William; Duong, Michelle; Summer, Ross
2014-01-01
Acute lung injury (ALI) is a severe inflammatory condition whose pathogenesis is irrevocably linked to neutrophil emigration to the lung. Activation and recruitment of neutrophils to the lung is mostly attributable to local production of the chemokines. However, much of our understanding of neutrophil recruitment to the lung is based on studies focusing on early time points after initiation of injury. In this study, we sought to evaluate the extended temporal relationship between neutrophil chemotactic factor expression and influx of neutrophils into the lung after intratracheal administration of either LPS or bleomycin. In both models, results demonstrated two phases of neutrophil chemotactic factor expression; first, an early phase characterized by high levels of CXCL1/keratinocyte-derived chemokine, CXCL2/monocyte-inhibitory protein-2, and CXCL5/LPS-induced chemokine expression, and second, a late phase distinguished by increases in extracellular ATP. Furthermore, we show that strategies aimed at either enhancing ATP catabolism (ip ecto-5'-nucleotidase administration) or inhibiting glycolytic ATP production (ip 2-deoxy-d-glucose treatment) reduce extracellular ATP accumulation, limit vascular leakage, and effectively block the late, but not the early, stages of neutrophil recruitment to the lung after LPS instillation. In conclusion, this study illustrates that neutrophil recruitment to the lung is mediated by the time-dependent expression of chemotactic factors and suggests that novel strategies, which reduce extracellular ATP accumulation, may attenuate late neutrophil recruitment and limit lung injury during ALI.
Shah, Dilip; Romero, Freddy; Stafstrom, William; Duong, Michelle
2013-01-01
Acute lung injury (ALI) is a severe inflammatory condition whose pathogenesis is irrevocably linked to neutrophil emigration to the lung. Activation and recruitment of neutrophils to the lung is mostly attributable to local production of the chemokines. However, much of our understanding of neutrophil recruitment to the lung is based on studies focusing on early time points after initiation of injury. In this study, we sought to evaluate the extended temporal relationship between neutrophil chemotactic factor expression and influx of neutrophils into the lung after intratracheal administration of either LPS or bleomycin. In both models, results demonstrated two phases of neutrophil chemotactic factor expression; first, an early phase characterized by high levels of CXCL1/keratinocyte-derived chemokine, CXCL2/monocyte-inhibitory protein-2, and CXCL5/LPS-induced chemokine expression, and second, a late phase distinguished by increases in extracellular ATP. Furthermore, we show that strategies aimed at either enhancing ATP catabolism (ip ecto-5′-nucleotidase administration) or inhibiting glycolytic ATP production (ip 2-deoxy-d-glucose treatment) reduce extracellular ATP accumulation, limit vascular leakage, and effectively block the late, but not the early, stages of neutrophil recruitment to the lung after LPS instillation. In conclusion, this study illustrates that neutrophil recruitment to the lung is mediated by the time-dependent expression of chemotactic factors and suggests that novel strategies, which reduce extracellular ATP accumulation, may attenuate late neutrophil recruitment and limit lung injury during ALI. PMID:24285266
The potential of alkaline phosphatase as a treatment for sepsis-associated acute kidney injury.
Peters, Esther; Masereeuw, Rosalinde; Pickkers, Peter
2014-01-01
Sepsis-associated acute kidney injury (AKI) is associated with a high attributable mortality and an increased risk of developing chronic kidney failure in survivors. As a successful therapy is, as yet, unavailable, a pharmacological treatment option is clearly warranted. Recently, two small phase II clinical trials demonstrated beneficial renal effects of bovine-derived alkaline phosphatase administration in critically ill patients with sepsis-associated AKI. The rationale behind the renal protective effects remains to be fully elucidated, but is likely to be related to dephosphorylation and thereby detoxification of detrimental molecules involved in the pathogenesis of sepsis-associated AKI. A potent candidate target molecule might be endotoxin (lipopolysaccharide) from the cell wall of Gram-negative bacteria, which is associated with the development of sepsis and becomes nontoxic after being dephosphorylated by alkaline phosphatase. Another target of alkaline phosphatase could be adenosine triphosphate, a proinflammatory mediator released during cellular stress, which can be converted by alkaline phosphatase into the tissue-protective and anti-inflammatory molecule adenosine. Human recombinant alkaline phosphatase, a recently developed replacement for bovine-derived alkaline phosphatase, has shown promising results in the preclinical phase. As its safety and tolerability were recently confirmed in a phase I clinical trial, the renal protective effect of human recombinant alkaline phosphatase in sepsis-associated AKI shall be investigated in a multicenter phase II clinical trial starting at the end of this year. 2014 S. Karger AG, Basel.
Dick, Thomas E.; Molkov, Yaroslav I.; Nieman, Gary; Hsieh, Yee-Hsee; Jacono, Frank J.; Doyle, John; Scheff, Jeremy D.; Calvano, Steve E.; Androulakis, Ioannis P.; An, Gary; Vodovotz, Yoram
2012-01-01
Acute inflammation leads to organ failure by engaging catastrophic feedback loops in which stressed tissue evokes an inflammatory response and, in turn, inflammation damages tissue. Manifestations of this maladaptive inflammatory response include cardio-respiratory dysfunction that may be reflected in reduced heart rate and ventilatory pattern variabilities. We have developed signal-processing algorithms that quantify non-linear deterministic characteristics of variability in biologic signals. Now, coalescing under the aegis of the NIH Computational Biology Program and the Society for Complexity in Acute Illness, two research teams performed iterative experiments and computational modeling on inflammation and cardio-pulmonary dysfunction in sepsis as well as on neural control of respiration and ventilatory pattern variability. These teams, with additional collaborators, have recently formed a multi-institutional, interdisciplinary consortium, whose goal is to delineate the fundamental interrelationship between the inflammatory response and physiologic variability. Multi-scale mathematical modeling and complementary physiological experiments will provide insight into autonomic neural mechanisms that may modulate the inflammatory response to sepsis and simultaneously reduce heart rate and ventilatory pattern variabilities associated with sepsis. This approach integrates computational models of neural control of breathing and cardio-respiratory coupling with models that combine inflammation, cardiovascular function, and heart rate variability. The resulting integrated model will provide mechanistic explanations for the phenomena of respiratory sinus-arrhythmia and cardio-ventilatory coupling observed under normal conditions, and the loss of these properties during sepsis. This approach holds the potential of modeling cross-scale physiological interactions to improve both basic knowledge and clinical management of acute inflammatory diseases such as sepsis and trauma. PMID:22783197
Dick, Thomas E; Molkov, Yaroslav I; Nieman, Gary; Hsieh, Yee-Hsee; Jacono, Frank J; Doyle, John; Scheff, Jeremy D; Calvano, Steve E; Androulakis, Ioannis P; An, Gary; Vodovotz, Yoram
2012-01-01
Acute inflammation leads to organ failure by engaging catastrophic feedback loops in which stressed tissue evokes an inflammatory response and, in turn, inflammation damages tissue. Manifestations of this maladaptive inflammatory response include cardio-respiratory dysfunction that may be reflected in reduced heart rate and ventilatory pattern variabilities. We have developed signal-processing algorithms that quantify non-linear deterministic characteristics of variability in biologic signals. Now, coalescing under the aegis of the NIH Computational Biology Program and the Society for Complexity in Acute Illness, two research teams performed iterative experiments and computational modeling on inflammation and cardio-pulmonary dysfunction in sepsis as well as on neural control of respiration and ventilatory pattern variability. These teams, with additional collaborators, have recently formed a multi-institutional, interdisciplinary consortium, whose goal is to delineate the fundamental interrelationship between the inflammatory response and physiologic variability. Multi-scale mathematical modeling and complementary physiological experiments will provide insight into autonomic neural mechanisms that may modulate the inflammatory response to sepsis and simultaneously reduce heart rate and ventilatory pattern variabilities associated with sepsis. This approach integrates computational models of neural control of breathing and cardio-respiratory coupling with models that combine inflammation, cardiovascular function, and heart rate variability. The resulting integrated model will provide mechanistic explanations for the phenomena of respiratory sinus-arrhythmia and cardio-ventilatory coupling observed under normal conditions, and the loss of these properties during sepsis. This approach holds the potential of modeling cross-scale physiological interactions to improve both basic knowledge and clinical management of acute inflammatory diseases such as sepsis and trauma.
Repeated, but Not Acute, Stress Suppresses Inflammatory Plasma Extravasation
NASA Astrophysics Data System (ADS)
Strausbaugh, Holly J.; Dallman, Mary F.; Levine, Jon D.
1999-12-01
Clinical findings suggest that inflammatory disease symptoms are aggravated by ongoing, repeated stress, but not by acute stress. We hypothesized that, compared with single acute stressors, chronic repeated stress may engage different physiological mechanisms that exert qualitatively different effects on the inflammatory response. Because inhibition of plasma extravasation, a critical component of the inflammatory response, has been associated with increased disease severity in experimental arthritis, we tested for a potential repeated stress-induced inhibition of plasma extravasation. Repeated, but not single, exposures to restraint stress produced a profound inhibition of bradykinin-induced synovial plasma extravasation in the rat. Experiments examining the mechanism of inhibition showed that the effect of repeated stress was blocked by adrenalectomy, but not by adrenal medullae denervation, suggesting that the adrenal cortex mediates this effect. Consistent with known effects of stress and with mediation by the adrenal cortex, restraint stress evoked repeated transient elevations of plasma corticosterone levels. This elevated corticosterone was necessary and sufficient to produce inhibition of plasma extravasation because the stress-induced inhibition was blocked by preventing corticosterone synthesis and, conversely, induction of repeated transient elevations in plasma corticosterone levels mimicked the effects of repeated stress. These data suggest that repetition of a mild stressor can induce changes in the physiological state of the animal that enable a previously innocuous stressor to inhibit the inflammatory response. These findings provide a potential explanation for the clinical association between repeated stress and aggravation of inflammatory disease symptoms and provide a model for study of the biological mechanisms underlying the stress-induced aggravation of chronic inflammatory diseases.
Gasparotto, Juciano; Somensi, Nauana; Caregnato, Fernanda F; Rabelo, Thallita K; DaBoit, Kátia; Oliveira, Marcos L S; Moreira, José C F; Gelain, Daniel P
2013-10-01
Ultra-fine and nano-particulate materials resulting from mixtures of coal and non-coal fuels combustion for power generation release to the air components with toxic potential. We evaluated toxicological and inflammatory effects at cellular level that could be induced by ultrafine/nanoparticles-containing ashes from burning mixtures of coal and tires from an American power plant. Coal fly ashes (CFA) samples from the combustion of high-S coal and tire-derived fuel, the latter about 2-3% of the total fuel feed, in a 100-MW cyclone utility boiler, were suspended in the cell culture medium of RAW 264.7 macrophages. Cell viability, assessed by MTT reduction, SRB incorporation and contrast-phase microscopy analysis demonstrated that CFA did not induce acute toxicity. However, CFA at 1mg/mL induced an increase of approximately 338% in intracellular TNF-α, while release of this proinflammatory cytokine was increased by 1.6-fold. The expression of the inflammatory mediator CD40 receptor was enhanced by 2-fold, the receptor for advanced glycation endproducts (RAGE) had a 5.7-fold increase and the stress response protein HSP70 was increased nearly 12-fold by CFA at 1mg/mL. Although CFA did not induce cell death, parameters of oxidative stress and reactive species production were found to be altered at several degrees, such as nitrite accumulation (22% increase), DCFH oxidation (3.5-fold increase), catalase (5-fold increase) and superoxide dismutase (35% inhibition) activities, lipoperoxidation (4.2 fold-increase) and sulfhydryl oxidation (40% decrease in free SH groups). The present results suggest that CFA containing ultra-fine and nano-particulate materials from coal and tire combustion may induce sub-chronic cell damage, as they alter inflammatory and oxidative stress parameters at the molecular and cellular levels, but do not induce acute cell death. © 2013.
Restoration of energy level in the early phase of acute pediatric pancreatitis.
Mosztbacher, Dóra; Farkas, Nelli; Solymár, Margit; Pár, Gabriella; Bajor, Judit; Szűcs, Ákos; Czimmer, József; Márta, Katalin; Mikó, Alexandra; Rumbus, Zoltán; Varjú, Péter; Hegyi, Péter; Párniczky, Andrea
2017-02-14
Acute pancreatitis (AP) is a serious inflammatory disease with rising incidence both in the adult and pediatric populations. It has been shown that mitochondrial injury and energy depletion are the earliest intracellular events in the early phase of AP. Moreover, it has been revealed that restoration of intracellular ATP level restores cellular functions and defends the cells from death. We have recently shown in a systematic review and meta-analysis that early enteral feeding is beneficial in adults; however, no reviews are available concerning the effect of early enteral feeding in pediatric AP. In this minireview, our aim was to systematically analyse the literature on the treatment of acute pediatric pancreatitis. The preferred reporting items for systematic review (PRISMA-P) were followed, and the question was drafted based on participants, intervention, comparison and outcomes: P: patients under the age of twenty-one suffering from acute pancreatitis; I: early enteral nutrition (per os and nasogastric- or nasojejunal tube started within 48 h); C: nil per os therapy; O: length of hospitalization, need for treatment at an intensive care unit, development of severe AP, lung injury (including lung oedema and pleural effusion), white blood cell count and pain score on admission. Altogether, 632 articles (PubMed: 131; EMBASE: 501) were found. After detailed screening of eligible papers, five of them met inclusion criteria. Only retrospective clinical trials were available. Due to insufficient information from the authors, it was only possible to address length of hospitalization as an outcome of the study. Our mini-meta-analysis showed that early enteral nutrition significantly (SD = 0.806, P = 0.034) decreases length of hospitalization compared with nil per os diet in acute pediatric pancreatitis. In this minireview, we clearly show that early enteral nutrition, started within 24-48 h, is beneficial in acute pediatric pancreatitis. Prospective studies and better presentation of research are crucially needed to achieve a higher level of evidence.
Restoration of energy level in the early phase of acute pediatric pancreatitis
Mosztbacher, Dóra; Farkas, Nelli; Solymár, Margit; Pár, Gabriella; Bajor, Judit; Szűcs, Ákos; Czimmer, József; Márta, Katalin; Mikó, Alexandra; Rumbus, Zoltán; Varjú, Péter; Hegyi, Péter; Párniczky, Andrea
2017-01-01
Acute pancreatitis (AP) is a serious inflammatory disease with rising incidence both in the adult and pediatric populations. It has been shown that mitochondrial injury and energy depletion are the earliest intracellular events in the early phase of AP. Moreover, it has been revealed that restoration of intracellular ATP level restores cellular functions and defends the cells from death. We have recently shown in a systematic review and meta-analysis that early enteral feeding is beneficial in adults; however, no reviews are available concerning the effect of early enteral feeding in pediatric AP. In this minireview, our aim was to systematically analyse the literature on the treatment of acute pediatric pancreatitis. The preferred reporting items for systematic review (PRISMA-P) were followed, and the question was drafted based on participants, intervention, comparison and outcomes: P: patients under the age of twenty-one suffering from acute pancreatitis; I: early enteral nutrition (per os and nasogastric- or nasojejunal tube started within 48 h); C: nil per os therapy; O: length of hospitalization, need for treatment at an intensive care unit, development of severe AP, lung injury (including lung oedema and pleural effusion), white blood cell count and pain score on admission. Altogether, 632 articles (PubMed: 131; EMBASE: 501) were found. After detailed screening of eligible papers, five of them met inclusion criteria. Only retrospective clinical trials were available. Due to insufficient information from the authors, it was only possible to address length of hospitalization as an outcome of the study. Our mini-meta-analysis showed that early enteral nutrition significantly (SD = 0.806, P = 0.034) decreases length of hospitalization compared with nil per os diet in acute pediatric pancreatitis. In this minireview, we clearly show that early enteral nutrition, started within 24-48 h, is beneficial in acute pediatric pancreatitis. Prospective studies and better presentation of research are crucially needed to achieve a higher level of evidence. PMID:28246469
Haroon, Ebrahim; Raison, Charles L; Miller, Andrew H
2012-01-01
The potential contribution of chronic inflammation to the development of neuropsychiatric disorders such as major depression has received increasing attention. Elevated biomarkers of inflammation, including inflammatory cytokines and acute-phase proteins, have been found in depressed patients, and administration of inflammatory stimuli has been associated with the development of depressive symptoms. Data also have demonstrated that inflammatory cytokines can interact with multiple pathways known to be involved in the development of depression, including monoamine metabolism, neuroendocrine function, synaptic plasticity, and neurocircuits relevant to mood regulation. Further understanding of mechanisms by which cytokines alter behavior have revealed a host of pharmacologic targets that may be unique to the impact of inflammation on behavior and may be especially relevant to the treatment and prevention of depression in patients with evidence of increased inflammation. Such targets include the inflammatory signaling pathways cyclooxygenase, p38 mitogen-activated protein kinase, and nuclear factor-κB, as well as the metabolic enzyme, indoleamine-2,3-dioxygenase, which breaks down tryptophan into kynurenine. Other targets include the cytokines themselves in addition to chemokines, which attract inflammatory cells from the periphery to the brain. Psychosocial stress, diet, obesity, a leaky gut, and an imbalance between regulatory and pro-inflammatory T cells also contribute to inflammation and may serve as a focus for preventative strategies relevant to both the development of depression and its recurrence. Taken together, identification of mechanisms by which cytokines influence behavior may reveal a panoply of personalized treatment options that target the unique contributions of the immune system to depression.
Wei, Hans H; Lu, Xi-Chun M; Shear, Deborah A; Waghray, Anu; Yao, Changping; Tortella, Frank C; Dave, Jitendra R
2009-01-01
Background Inflammatory cytokines play a crucial role in the pathophysiology of traumatic brain injury (TBI), exerting either deleterious effects on the progression of tissue damage or beneficial roles during recovery and repair. NNZ-2566, a synthetic analogue of the neuroprotective tripeptide Glypromate®, has been shown to be neuroprotective in animal models of brain injury. The goal of this study was to determine the effects of NNZ-2566 on inflammatory cytokine expression and neuroinflammation induced by penetrating ballistic-like brain injury (PBBI) in rats. Methods NNZ-2566 or vehicle (saline) was administered intravenously as a bolus injection (10 mg/kg) at 30 min post-injury, immediately followed by a continuous infusion of NNZ-2566 (3 mg/kg/h), or equal volume of vehicle, for various durations. Inflammatory cytokine gene expression from the brain tissue of rats exposed to PBBI was evaluated using microarray, quantitative real time PCR (QRT-PCR), and enzyme-linked immunosorbent assay (ELISA) array. Histopathology of the injured brains was examined using hematoxylin and eosin (H&E) and immunocytochemistry of inflammatory cytokine IL-1β. Results NNZ-2566 treatment significantly reduced injury-mediated up-regulation of IL-1β, TNF-α, E-selectin and IL-6 mRNA during the acute injury phase. ELISA cytokine array showed that NZ-2566 treatment significantly reduced levels of the pro-inflammatory cytokines IL-1β, TNF-α and IFN-γ in the injured brain, but did not affect anti-inflammatory cytokine IL-6 levels. Conclusion Collectively, these results suggest that the neuroprotective effects of NNZ-2566 may, in part, be functionally attributed to the compound's ability to modulate expression of multiple neuroinflammatory mediators in the injured brain. PMID:19656406
Maes, Michael; Nowak, Gabriel; Caso, Javier R; Leza, Juan Carlos; Song, Cai; Kubera, Marta; Klein, Hans; Galecki, Piotr; Noto, Cristiano; Glaab, Enrico; Balling, Rudi; Berk, Michael
2016-07-01
Meta-analyses confirm that depression is accompanied by signs of inflammation including increased levels of acute phase proteins, e.g., C-reactive protein, and pro-inflammatory cytokines, e.g., interleukin-6. Supporting the translational significance of this, a meta-analysis showed that anti-inflammatory drugs may have antidepressant effects. Here, we argue that inflammation and depression research needs to get onto a new track. Firstly, the choice of inflammatory biomarkers in depression research was often too selective and did not consider the broader pathways. Secondly, although mild inflammatory responses are present in depression, other immune-related pathways cannot be disregarded as new drug targets, e.g., activation of cell-mediated immunity, oxidative and nitrosative stress (O&NS) pathways, autoimmune responses, bacterial translocation, and activation of the toll-like receptor and neuroprogressive pathways. Thirdly, anti-inflammatory treatments are sometimes used without full understanding of their effects on the broader pathways underpinning depression. Since many of the activated immune-inflammatory pathways in depression actually confer protection against an overzealous inflammatory response, targeting these pathways may result in unpredictable and unwanted results. Furthermore, this paper discusses the required improvements in research strategy, i.e., path and drug discovery processes, omics-based techniques, and systems biomedicine methodologies. Firstly, novel methods should be employed to examine the intracellular networks that control and modulate the immune, O&NS and neuroprogressive pathways using omics-based assays, including genomics, transcriptomics, proteomics, metabolomics, epigenomics, immunoproteomics and metagenomics. Secondly, systems biomedicine analyses are essential to unravel the complex interactions between these cellular networks, pathways, and the multifactorial trigger factors and to delineate new drug targets in the cellular networks or pathways. Drug discovery processes should delineate new drugs targeting the intracellular networks and immune-related pathways.
Passey, Samantha L; Bozinovski, Steven; Vlahos, Ross; Anderson, Gary P; Hansen, Michelle J
2016-01-01
Skeletal muscle wasting is an important comorbidity of Chronic Obstructive Pulmonary Disease (COPD) and is strongly correlated with morbidity and mortality. Patients who experience frequent acute exacerbations of COPD (AECOPD) have more severe muscle wasting and reduced recovery of muscle mass and function after each exacerbation. Serum levels of the pro-inflammatory acute phase protein Serum Amyloid A (SAA) can rise more than 1000-fold in AECOPD and are predictively correlated with exacerbation severity. The direct effects of SAA on skeletal muscle are poorly understood. Here we have examined SAA effects on pro-inflammatory cachectic cytokine expression (IL-6 and TNFα) and atrophy in C2C12 myotubes. SAA increased IL-6 (31-fold) and TNFα (6.5-fold) mRNA levels compared to control untreated cells after 3h of SAA treatment, and increased secreted IL-6 protein at 24h. OxPAPC, a dual TLR2 and TLR4 inhibitor, reduced the response to SAA by approximately 84% compared to SAA alone, and the TLR2 neutralising antibody T2.5 abolished SAA-induced expression of IL-6, indicating that SAA signalling in C2C12 myotubes is primarily via TLR2. SAA also reduced myotube width by 10-13% and induced a 2.5-fold increase in the expression of the muscle atrophy gene Atrogin-1, suggesting direct effects of SAA on muscle wasting. Blocking of TLR2 inhibited the SAA-induced decrease in myotube width and Atrogin-1 gene expression, indicating that SAA induces atrophy through TLR2. These data demonstrate that SAA stimulates a robust pro-inflammatory response in skeletal muscle myotubes via the TLR2-dependent release of IL-6 and TNFα. Furthermore, the observed atrophy effects indicate that SAA could also be directly contributing to the wasting and poor recovery of muscle mass. Therapeutic strategies targeting this SAA-TLR2 axis may therefore ameliorate muscle wasting in AECOPD and a range of other inflammatory conditions associated with loss of muscle mass.
Inflammation in acute and chronic pancreatitis.
Habtezion, Aida
2015-09-01
This report reviews recent animal model and human studies associated with inflammatory responses in acute and chronic pancreatitis. Animal model and limited human acute and chronic pancreatitis studies unravel the dynamic nature of the inflammatory processes and the ability of the immune cells to sense danger and environmental signals. In acute pancreatitis, such molecules include pathogen-associated molecular pattern recognition receptors such as toll-like receptors, and the more recently appreciated damage-associated molecular pattern molecules or 'alarmin' high mobility group box 1 and IL-33. In chronic pancreatitis, a recent understanding of a critical role for macrophage-pancreatic stellate cell interaction offers a potential targetable pathway that can alter fibrogenesis. Microbiome research in pancreatitis is a new field gaining interest but will require further investigation. Immune cell contribution to the pathogenesis of acute and chronic pancreatitis is gaining more appreciation and further understanding in immune signaling presents potential therapeutic targets that can alter disease progression.
[Puncture scrotostomy--a treatment method in acute inflammatory diseases of the scrotal organs].
Shapoval, V I; Asimov, D A; Lesovoĭ, V N
1989-01-01
A method for the treatment of acute inflammatory diseases of the scrotal organs by means of puncture scrotostomy, which consists in passing the indwelling micro-irrigator into a cavity of the serous sheath of the testis and epididymis and administration via this route of antibacterial and resolving preparations for 4-5 days, is suggested. A method approved in treatment of 45 patients permits to avoid surgical intervention, and is highly effective.
S, Latha; Chaudhary, Sheetal; R S, Ray
2017-11-01
Oxidative stress and hepatic inflammatory response is primarily implicated in the pathogenesis of LPS induced acute liver injury. Stevioside, a diterpenoidal glycoside isolated from the Stevia rebaudiana leaves, exerts potent anti-oxidant, anti-inflammatory and immunomodulatory activities. The present study was aimed to investigate the hepatoprotective effect of hydroalcoholic extract of Stevia rebaudiana leaves (STE EXT) and its major phytochemical constituent, stevioside (STE) in LPS induced acute liver injury. The hepatoprotective activity of STE EXT (500mg/kg p.o) and STE (250mg/kg p.o) was investigated in lipopolysaccharide (LPS 5mg/kg i.p.) induced acute liver injury in male wistar rats. Our results revealed that both STE EXT and STE treatment ameliorated LPS induced hepatic oxidative stress, evident from altered levels of reduced SOD, Catalase, GSH, MDA, NO. Histopathological observations revealed that both STE EXT and STE attenuated LPS induced structural changes and hepatocellular apoptosis providing additional evidence for its hepatoprotective effect. Further, STE EXT and STE significantly restored the elevated serum and tissue levels of AST and ALT in LPS treated rats. Furthermore, both STE EXT and STE rescued hepatocellular dysfunctions to normal by altering the level of proinflammatory cytokines such as TNF-α, IL-1β and IL-6 exhibiting its anti-inflammatory potential. In conclusion, both STE EXT and STE demonstrated excellent hepatoprotective effects against endotoxemia induced acute liver injury possibly through suppression of hepatic inflammatory response and oxidative stress, attributing to its medicinal importance in treating various liver ailments. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Barcelos, Rômulo Pillon; Bresciani, Guilherme; Cuevas, Maria José; Martínez-Flórez, Susana; Soares, Félix Alexandre Antunes; González-Gallego, Javier
2017-07-01
Nonsteroidal anti-inflammatory drugs, such as diclofenac, are widely used to treat inflammation and pain in several conditions, including sports injuries. This study analyzes the influence of diclofenac on the toll-like receptor-nuclear factor kappa B (TLR-NF-κB) pathway in skeletal muscle of rats submitted to acute eccentric exercise. Twenty male Wistar rats were divided into 4 groups: control-saline, control-diclofenac, exercise-saline, and exercise-diclofenac. Diclofenac or saline were administered for 7 days prior to an acute eccentric exercise bout. The inflammatory status was evaluated through mRNA levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNF-α), and protein content of COX-2, IL-6, and TNF-α in vastus lateralis muscle. Data obtained showed that a single bout of eccentric exercise significantly increased COX-2 gene expression. Similarly, mRNA expression and protein content of other inflammation-related genes also increased after the acute exercise. However, these effects were attenuated in the exercise + diclofenac group. TLR4, myeloid differentiation primary response gene 88 (MyD88), and p65 were also upregulated after the acute eccentric bout and the effect was blunted by the anti-inflammatory drug. These findings suggest that pretreatment with diclofenac may represent an effective tool to ameliorate the pro-inflammatory status induced by acute exercise in rat skeletal muscle possibly through an attenuation of the TLR4-NF-κB signaling pathway.
Silveira, Ana Letícia Malheiros; Ferreira, Adaliene Versiani Matos; de Oliveira, Marina Chaves; Rachid, Milene Alvarenga; da Cunha Sousa, Larissa Fonseca; Dos Santos Martins, Flaviano; Gomes-Santos, Ana Cristina; Vieira, Angelica Thomaz; Teixeira, Mauro Martins
2017-02-01
Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders with important impact on global health. Prebiotic and probiotic strategies are thought to be useful in the context of experimental IBD. Here, we compared the effects of preventive versus therapeutic treatment with a high fiber diet (prebiotic) in combination or not with Bifidobacterium longum (probiotic) in a murine model of chronic colitis. Colitis was induced by adding dextran sulfate sodium (DSS) to drinking water for 6 days (acute colitis) or for 5 cycles of DSS (chronic colitis). Administration of the high fiber diet protected from acute colitis. Protection was optimal when diet was started 20 days prior to DSS. A 5-day pretreatment with acetate, a short-chain fatty acid, provided partial protection against acute colitis. In chronic colitis, pretreatment with the high fiber diet attenuated clinical and inflammatory parameters of disease. However, when the treatment with the high fiber diet started after disease had been established, overall protection was minimal. Similarly, delayed treatment with acetate or B. longum did not provide any protection even when the probiotic was associated with the high fiber diet. Preventive use of a high fiber diet or acetate clearly protects mice against acute and chronic damage induced by DSS in mice. However, protection is lost when therapies are initiated after disease has been established. These results suggest that any therapy aimed at modifying the gut environment (e.g., prebiotic or probiotic strategies) should be given early in the course of disease.
Synthesis and Study of Analgesic and Anti-inflammatory Activities of Amide Derivatives of Ibuprofen.
Ahmadi, Abbas; Khalili, Mohsen; Olama, Zahra; Karami, Shirin; Nahri-Niknafs, Babak
2017-01-01
Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most widely used drugs worldwide and represent a mainstay in the therapy of acute and chronic pain and inflammation. The traditional NSAIDs like ibuprofen (I) contain free carboxylic acid group which can produce gastrointestinal (GI) damage for long-term use. In order to obtain the novel NSAIDs with less side effects; carboxylic acid moiety has been modified into various amide groups which is the most active area of research in this family. In this research, synthesis of various pharmacological heterocyclic amides of ibuprofen is described. All the new compounds were tested for their analgesic and anti-inflammatory activities in mice and compared with standard (Ibuprofen) and control (saline) groups. The results revealed that all the synthesized compounds (III-VI) exhibited more analgesic and anti-inflammatory activities in tail immersion (as a model of acute thermal pain), formalin (as a model of acute chemical and chronic pain) and paw edema (as a model of acute inflammation) tests when compared with standard and control animals. These pharmacological activities were significant for VI compared to other new compounds (III-V) which may be concern to more effective role of morpholin for the reduction of pain and inflammation compared to other used heterocyclic amines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Toxicological analysis and anti-inflammatory effects of essential oil from Piper vicosanum leaves.
Hoff Brait, Débora Regina; Mattos Vaz, Márcia Soares; da Silva Arrigo, Jucicléia; Borges de Carvalho, Luciana Noia; Souza de Araújo, Flávio Henrique; Vani, Juliana Miron; da Silva Mota, Jonas; Cardoso, Claudia Andrea Lima; Oliveira, Rodrigo Juliano; Negrão, Fábio Juliano; Kassuya, Cândida Aparecida Leite; Arena, Arielle Cristina
2015-12-01
This study assessed the anti-inflammatory effects of the essential oil from Piper vicosanum leaves (OPV) and evaluated the toxicological potential of this oil through acute toxicity, genotoxicity and mutagenicity tests. The acute toxicity of OPV was evaluated following oral administration to female rats at a single dose of 2 g/kg b.w. To evaluate the genotoxic and mutagenic potential, male mice were divided into five groups: I: negative control; II: positive control; III: 500 mg/kg of OPV; IV: 1000 mg/kg of OPV; V: 2000 mg/kg of OPV. The anti-inflammatory activity of OPV was evaluated in carrageenan-induced pleurisy and paw edema models in rats. No signs of acute toxicity were observed, indicating that the LD50 of this oil is greater than 2000 mg/kg. In the comet assay, OPV did not increase the frequency or rate of DNA damage in groups treated with any of the doses assessed compared to that in the negative control group. In the micronucleus test, the animals treated did not exhibit any cytotoxic or genotoxic changes in peripheral blood erythrocytes. OPV (100 and 300 mg/kg) significantly reduced edema formation and inhibited leukocyte migration analyzed in the carrageenan-induced edema and pleurisy models. These results show that OPV has anti-inflammatory potential without causing acute toxicity or genotoxicity. Copyright © 2015 Elsevier Inc. All rights reserved.
Effects of LPS-induced immune activation prior to trauma exposure on PTSD-like symptoms in mice.
Deslauriers, Jessica; van Wijngaarde, Myrthe; Geyer, Mark A; Powell, Susan; Risbrough, Victoria B
2017-04-14
The prevalence of posttraumatic stress disorder (PTSD) is high in the armed services, with a rate up to 20%. Multiple studies have associated markers of inflammatory signaling prior to trauma with increased risk of PTSD, suggesting a potential role of the immune system in the development of this psychiatric disorder. One question that arises is if "priming" the immune system before acute trauma alters the stress response and increases enduring effects of trauma. We investigated the time course of inflammatory response to predator stress, a robust stressor that induces enduring PTSD-like behaviors, and the modulation of these effects via prior immune activation with the bacterial endotoxin, lipopolysaccharide (LPS), a Toll-like receptor 4 (TLR4) agonist. Mice exposed to predator stress exhibited decreased pro-/anti-inflammatory balance in the brain 6h after stress, suggesting that predator exposure acutely suppressed the immune system by increasing anti-inflammatory cytokines levels. Acute immune activation with LPS before a single predator stress did not alter the enduring avoidance behavior in stressed mice. Our findings suggest that acute inflammation, at least via TLR4 activation, is not sufficient to increase susceptibility for PTSD-like behaviors in this model. Future studies will examine if chronic inflammation is required to induce similar immune changes to those observed in PTSD patients in this model. Published by Elsevier B.V.
Bonaterra, Gabriel A.; Driscoll, David; Schwarzbach, Hans; Kinscherf, Ralf
2017-01-01
Background: Parenteral nutrition is often a mandatory therapeutic strategy for cases of septicemia. Likewise, therapeutic application of anti-oxidants, anti-inflammatory therapy, and endotoxin lowering, by removal or inactivation, might be beneficial to ameliorate the systemic inflammatory response during the acute phases of critical illness. Concerning anti-inflammatory properties in this setting, omega-3 fatty acids of marine origin have been frequently described. This study investigated the anti-inflammatory and LPS-inactivating properties of krill oil (KO)-in-water emulsion in human macrophages in vitro. Materials and Methods: Differentiated THP-1 macrophages were activated using specific ultrapure-LPS that binds only on the toll-like receptor 4 (TLR4) in order to determine the inhibitory properties of the KO emulsion on the LPS-binding capacity, and the subsequent release of TNF-α. Results: KO emulsion inhibited the macrophage binding of LPS to the TLR4 by 50% (at 12.5 µg/mL) and 75% (at 25 µg/mL), whereas, at 50 µg/mL, completely abolished the LPS binding. Moreover, KO (12.5 µg/mL, 25 µg/mL, or 50 µg/mL) also inhibited (30%, 40%, or 75%, respectively) the TNF-α release after activation with 0.01 µg/mL LPS in comparison with LPS treatment alone. Conclusion: KO emulsion influences the LPS-induced pro-inflammatory activation of macrophages, possibly due to inactivation of the LPS binding capacity. PMID:28294970
Cannabinoids, inflammation, and fibrosis.
Zurier, Robert B; Burstein, Sumner H
2016-11-01
Cannabinoids apparently act on inflammation through mechanisms different from those of agents such as nonsteroidal anti-inflammatory drugs (NSAIDs). As a class, the cannabinoids are generally free from the adverse effects associated with NSAIDs. Their clinical development thus provides a new approach to treatment of diseases characterized by acute and chronic inflammation and fibrosis. A concise survey of the anti-inflammatory actions of the phytocannabinoids Δ 9 -tetrahydrocannabinol (THC), cannabidiol, cannabichromene, and cannabinol is presented. Mention is also made of the noncannabinoid plant components and pyrolysis products, followed by a discussion of 3 synthetic preparations-Cesamet (nabilone; Meda Pharmaceuticals, Somerset, NJ, USA), Marinol (dronabinol; THC; AbbVie, Inc., North Chicago, IL, USA), and Sativex (Cannabis extract; GW Pharmaceuticals, Cambridge United Kingdom)-that have anti-inflammatory effects. A fourth synthetic cannabinoid, ajulemic acid (AJA; CT-3; Resunab; Corbus Pharmaceuticals, Norwood, MA, USA), is discussed in greater detail because it represents the most recent advance in this area and is currently undergoing 3 phase 2 clinical trials by Corbus Pharmaceuticals. The endogenous cannabinoids, including the closely related lipoamino acids, are then discussed. The review concludes with a presentation of a possible mechanism for the anti-inflammatory and antifibrotic actions of these substances. Thus, several cannabinoids may be considered candidates for development as anti-inflammatory and antifibrotic agents. Of special interest is their possible use for treatment of chronic inflammation, a major unmet medical need.-Zurier, R. B., Burstein, S. H. Cannabinoids, inflammation, and fibrosis. © FASEB.
Treatment of Acute Pelvic Inflammatory Disease
Sweet, Richard L.
2011-01-01
Pelvic inflammatory disease (PID), one of the most common infections in nonpregnant women of reproductive age, remains an important public health problem. It is associated with major long-term sequelae, including tubal factor infertility, ectopic pregnancy, and chronic pelvic pain. In addition, treatment of acute PID and its complications incurs substantial health care costs. Prevention of these long-term sequelae is dependent upon development of treatment strategies based on knowledge of the microbiologic etiology of acute PID. It is well accepted that acute PID is a polymicrobic infection. The sexually transmitted organisms, Neisseria gonorrhoeae and Chlamydia trachomatis, are present in many cases, and microorganisms comprising the endogenous vaginal and cervical flora are frequently associated with PID. This includes anaerobic and facultative bacteria, similar to those associated with bacterial vaginosis. Genital tract mycoplasmas, most importantly Mycoplasma genitalium, have recently also been implicated as a cause of acute PID. As a consequence, treatment regimens for acute PID should provide broad spectrum coverage that is effective against these microorganisms. PMID:22228985
Molecular Mechanisms Modulating the Phenotype of Macrophages and Microglia
Amici, Stephanie A.; Dong, Joycelyn; Guerau-de-Arellano, Mireia
2017-01-01
Macrophages and microglia play crucial roles during central nervous system development, homeostasis and acute events such as infection or injury. The diverse functions of tissue macrophages and microglia are mirrored by equally diverse phenotypes. A model of inflammatory/M1 versus a resolution phase/M2 macrophages has been widely used. However, the complexity of macrophage function can only be achieved by the existence of varied, plastic and tridimensional macrophage phenotypes. Understanding how tissue macrophages integrate environmental signals via molecular programs to define pathogen/injury inflammatory responses provides an opportunity to better understand the multilayered nature of macrophages, as well as target and modulate cellular programs to control excessive inflammation. This is particularly important in MS and other neuroinflammatory diseases, where chronic inflammatory macrophage and microglial responses may contribute to pathology. Here, we perform a comprehensive review of our current understanding of how molecular pathways modulate tissue macrophage phenotype, covering both classic pathways and the emerging role of microRNAs, receptor-tyrosine kinases and metabolism in macrophage phenotype. In addition, we discuss pathway parallels in microglia, novel markers helpful in the identification of peripheral macrophages versus microglia and markers linked to their phenotype. PMID:29176977
Effects of ethanol and water extracts of propolis (bee glue) on acute inflammatory animal models.
Hu, Fuliang; Hepburn, H R; Li, Yinghua; Chen, M; Radloff, S E; Daya, S
2005-09-14
The anti-inflammatory effects of ethanol (EEP) and water (WSD) extracts in ICR mice and Wistar rats were analyzed. Both WSD and EEP exhibited significant anti-inflammatory effects in animal models with respect to thoracic capillary vessel leakage in mice, carrageenan-induced oedema, carrageenan-induced pleurisy, acute lung damage in rats. The mechanisms for the anti-inflammatory effects probably involve decreasing prostaglandin-E(2) (PGE(2)) and nitric oxide (NO) levels. In rats with Freund's complete adjuvant (FCA) induced arthritis, propolis extracts significantly inhibited the increase of interleukin-6 (IL-6) in inflamed tissues, but had no significant effect on levels of interleukin-2 (IL-2) and interferon-gamma (IFN-gamma). The results are consistent with the interpretation that EEP and WSD may exert these effects by inhibiting the activation and differentiation of mononuclear macrophages.
Contributions of Neutrophils to Resolution of Mucosal Inflammation
Colgan, Sean P.; Ehrentraut, Stefan F.; Glover, Louise E.; Kominsky, Douglas J.; Campbell, Eric L.
2014-01-01
Neutrophil (PMN) recruitment from the blood stream into surrounding tissues involves a regulated series of events central to acute responses in host defense. Accumulation of PMN within mucosal tissues have historically been considered pathognomonic features of both acute and chronic inflammatory conditions. Historically PMNs have been deemed necessary but detrimental when recruited, given the potential for tissue damage that results from a variety of mechanisms. Recent work, however, has altered our preconcieved notions of PMN contributions to inflammatory processes. In particular, significant evidence implicates a central role for the PMN in triggering inflammatory resolution. Such mechanisms involve both metabolic and biochemical crosstalk pathways during the intimate interactions of PMN with other cell types at inflammatory sites. Here, we highlight several recent examples of how PMN coordinate the resolution of ongoing inflammation, with a particular focus on the gastrointestinal mucosa. PMID:22968707
Equine respiratory pharmacology.
Foreman, J H
1999-12-01
Differentiation of diseases of the equine respiratory tract is based on history, clinical signs, auscultation, endoscopy, imaging, and sampling of airway exudate. Upper respiratory therapies include surgical correction of airway obstructions; flushing of localized abscesses (strangles), guttural pouch disease, or sinusitis; and oral or parenteral antibiotic and anti-inflammatory therapy if deemed necessary. Pneumonia usually is treated with antimicrobials, anti-inflammatories, and bronchodilators. Pleural drainage is indicated if significant pleural effusion is present. The most commonly used therapies for early inflammatory and chronic allergic obstructive conditions include bronchodilators and anti-inflammatories. Acute respiratory distress, particularly acute pulmonary edema, is treated with diuretics (usually furosemide), intranasal oxygen, bronchodilators, corticosteroids, and alleviation of the underlying cause. Furosemide also had been used in North America as a race-day preventative for exercise-induced pulmonary hemorrhage (EIPH), but recent data have shown that furosemide may be a performance-enhancing agent itself.
Modeling human gastrointestinal inflammatory diseases using microphysiological culture systems.
Hartman, Kira G; Bortner, James D; Falk, Gary W; Ginsberg, Gregory G; Jhala, Nirag; Yu, Jian; Martín, Martín G; Rustgi, Anil K; Lynch, John P
2014-09-01
Gastrointestinal illnesses are a significant health burden for the US population, with 40 million office visits each year for gastrointestinal complaints and nearly 250,000 deaths. Acute and chronic inflammations are a common element of many gastrointestinal diseases. Inflammatory processes may be initiated by a chemical injury (acid reflux in the esophagus), an infectious agent (Helicobacter pylori infection in the stomach), autoimmune processes (graft versus host disease after bone marrow transplantation), or idiopathic (as in the case of inflammatory bowel diseases). Inflammation in these settings can contribute to acute complaints (pain, bleeding, obstruction, and diarrhea) as well as chronic sequelae including strictures and cancer. Research into the pathophysiology of these conditions has been limited by the availability of primary human tissues or appropriate animal models that attempt to physiologically model the human disease. With the many recent advances in tissue engineering and primary human cell culture systems, it is conceivable that these approaches can be adapted to develop novel human ex vivo systems that incorporate many human cell types to recapitulate in vivo growth and differentiation in inflammatory microphysiological environments. Such an advance in technology would improve our understanding of human disease progression and enhance our ability to test for disease prevention strategies and novel therapeutics. We will review current models for the inflammatory and immunological aspects of Barrett's esophagus, acute graft versus host disease, and inflammatory bowel disease and explore recent advances in culture methodologies that make these novel microphysiological research systems possible. © 2014 by the Society for Experimental Biology and Medicine.
Pinkston, P; Vijayan, V K; Nutman, T B; Rom, W N; O'Donnell, K M; Cornelius, M J; Kumaraswami, V; Ferrans, V J; Takemura, T; Yenokida, G
1987-01-01
Although acute tropical pulmonary eosinophilia (TPE) is well recognized as a manifestation of filarial infection, the processes that mediate the abnormalities of the lung in TPE are unknown. To evaluate the hypothesis that the derangements of the lower respiratory tract in this disorder are mediated by inflammatory cells in the local milieu, we utilized bronchoalveolar lavage to evaluate affected individuals before and after therapy. Inflammatory cells recovered from the lower respiratory tract of individuals with acute, untreated TPE (n = 8) revealed a striking eosinophilic alveolitis, with marked elevations in both the proportion of eosinophils (TPE 54 +/- 5%; normal 2 +/- 5%; P less than 0.001) and the concentration of eosinophils in the recovered epithelial lining fluid (ELF) (TPE 63 +/- 20 X 10(3)/microliter; normal 0.3 +/- 0.1 X 10(3)/microliter; P less than 0.01). Importantly, when individuals (n = 5) with acute TPE were treated with diethylcarbamazine (DEC), there was a marked decrease of the lung eosinophils and concomitant increase in lung function. These observations are consistent with the concept that at least some of the abnormalities found in the lung in acute TPE are mediated by an eosinophil-dominated inflammatory process in the lower respiratory tract. Images PMID:3298321
Effects of ACL Reconstructive Surgery on Temporal Variations of Cytokine Levels in Synovial Fluid
Bigoni, Marco; Gandolla, Marta; Sacerdote, Paola; Piatti, Massimiliano; Castelnuovo, Alberto; Franchi, Silvia; Gorla, Massimo; Munegato, Daniele; Gaddi, Diego; Pedrocchi, Alessandra; Omeljaniuk, Robert J.; Locatelli, Vittorio; Torsello, Antonio
2016-01-01
Anterior cruciate ligament (ACL) reconstruction restores knee stability but does not reduce the incidence of posttraumatic osteoarthritis induced by inflammatory cytokines. The aim of this research was to longitudinally measure IL-1β, IL-6, IL-8, IL-10, and TNF-α levels in patients subjected to ACL reconstruction using bone-patellar tendon-bone graft. Synovial fluid was collected within 24–72 hours of ACL rupture (acute), 1 month after injury immediately prior to surgery (presurgery), and 1 month thereafter (postsurgery). For comparison, a “control” group consisted of individuals presenting chronic ACL tears. Our results indicate that levels of IL-6, IL-8, and IL-10 vary significantly over time in reconstruction patients. In the acute phase, the levels of these cytokines in reconstruction patients were significantly greater than those in controls. In the presurgery phase, cytokine levels in reconstruction patients were reduced and comparable with those in controls. Finally, cytokine levels increased again with respect to control group in the postsurgery phase. The levels of IL-1β and TNF-α showed no temporal variation. Our data show that the history of an ACL injury, including trauma and reconstruction, has a significant impact on levels of IL-6, IL-8, and IL-10 in synovial fluid but does not affect levels of TNF-α and IL-1β. PMID:27313403
Effects of ACL Reconstructive Surgery on Temporal Variations of Cytokine Levels in Synovial Fluid.
Bigoni, Marco; Turati, Marco; Gandolla, Marta; Sacerdote, Paola; Piatti, Massimiliano; Castelnuovo, Alberto; Franchi, Silvia; Gorla, Massimo; Munegato, Daniele; Gaddi, Diego; Pedrocchi, Alessandra; Omeljaniuk, Robert J; Locatelli, Vittorio; Torsello, Antonio
2016-01-01
Anterior cruciate ligament (ACL) reconstruction restores knee stability but does not reduce the incidence of posttraumatic osteoarthritis induced by inflammatory cytokines. The aim of this research was to longitudinally measure IL-1β, IL-6, IL-8, IL-10, and TNF-α levels in patients subjected to ACL reconstruction using bone-patellar tendon-bone graft. Synovial fluid was collected within 24-72 hours of ACL rupture (acute), 1 month after injury immediately prior to surgery (presurgery), and 1 month thereafter (postsurgery). For comparison, a "control" group consisted of individuals presenting chronic ACL tears. Our results indicate that levels of IL-6, IL-8, and IL-10 vary significantly over time in reconstruction patients. In the acute phase, the levels of these cytokines in reconstruction patients were significantly greater than those in controls. In the presurgery phase, cytokine levels in reconstruction patients were reduced and comparable with those in controls. Finally, cytokine levels increased again with respect to control group in the postsurgery phase. The levels of IL-1β and TNF-α showed no temporal variation. Our data show that the history of an ACL injury, including trauma and reconstruction, has a significant impact on levels of IL-6, IL-8, and IL-10 in synovial fluid but does not affect levels of TNF-α and IL-1β.
Shalia, Kavita; Saranath, Dhananjaya; Rayar, Jaipreet; Shah, Vinod K.; Mashru, Manoj R.; Soneji, Surendra L.
2017-01-01
Background & objectives: Acute myocardial infarction (AMI) is a major health concern in India. The aim of the study was to identify single nucleotide polymorphisms (SNPs) associated with AMI in patients using dedicated chip and validating the identified SNPs on custom-designed chips using high-throughput microarray analysis. Methods: In pilot phase, 48 AMI patients and 48 healthy controls were screened for SNPs using human CVD55K BeadChip with 48,472 SNP probes on Illumina high-throughput microarray platform. The identified SNPs were validated by genotyping additional 160 patients and 179 controls using custom-made Illumina VeraCode GoldenGate Genotyping Assay. Analysis was carried out using PLINK software. Results: From the pilot phase, 98 SNPs present on 94 genes were identified with increased risk of AMI (odds ratio of 1.84-8.85, P=0.04861-0.003337). Five of these SNPs demonstrated association with AMI in the validation phase (P<0.05). Among these, one SNP rs9978223 on interferon gamma receptor 2 [IFNGR2, interferon (IFN)-gamma transducer 1] gene showed a significant association (P=0.00021) with AMI below Bonferroni corrected P value (P=0.00061). IFNGR2 is the second subunit of the receptor for IFN-gamma, an important cytokine in inflammatory reactions. Interpretation & conclusions: The study identified an SNP rs9978223 on IFNGR2 gene, associated with increased risk in AMI patient from India. PMID:29434065
A Case of Familial Mediterranean Fever Having Intermittent Leukopenia.
Beyitler, Ilke; Kavukcu, Salih
2018-03-01
Familial Mediterranean fever (FMF) is a genetically inherited autoinflammatory disorder characterized by inflammatory attacks and may result in amyloidosis as a severe complication. Elevation of acute phase reactants, including leukocytosis, is seen during attack periods. Here we describe a 13-year-old female patient with a very rare clinical presentation of FMF, who would experience FMF attacks when she did not regularly take her colchicine. During these attacks she had leukopenia and neutropenia instead of leukocytosis. The leukocyte count returned to normal when she continued the medication and avoided attacks. Ethnicity and clinical signs are important in leukopenic patientsand should be investigated for FMF to avoid unnecessary procedures and complications.
Inflammation in sickle cell disease.
Conran, Nicola; Belcher, John D
2018-01-01
The primary β-globin gene mutation that causes sickle cell disease (SCD) has significant pathophysiological consequences that result in hemolytic events and the induction of the inflammatory processes that ultimately lead to vaso-occlusion. In addition to their role in the initiation of the acute painful vaso-occlusive episodes that are characteristic of SCD, inflammatory processes are also key components of many of the complications of the disease including autosplenectomy, acute chest syndrome, pulmonary hypertension, leg ulcers, nephropathy and stroke. We, herein, discuss the events that trigger inflammation in the disease, as well as the mechanisms, inflammatory molecules and cells that propagate these inflammatory processes. Given the central role that inflammation plays in SCD pathophysiology, many of the therapeutic approaches currently under pre-clinical and clinical development for the treatment of SCD endeavor to counter aspects or specific molecules of these inflammatory processes and it is possible that, in the future, we will see anti-inflammatory drugs being used either together with, or in place of, hydroxyurea in those SCD patients for whom hematopoietic stem cell transplants and evolving gene therapies are not a viable option.
De Rojas, M Victoria; Dart, John K G; Saw, Valerie P J
2007-01-01
Objective To characterize patterns of chronic ocular disease in patients with Stevens–Johnson syndrome (SJS) and its variant toxic epidermal necrolysis (TEN), and to describe their response to treatment. Methods Retrospective case series. A review of hospital records of 30 patients (60 eyes) with ocular manifestations of SJS or TEN was carried out. The principal outcome measure was to identify and classify the patterns of chronic ocular disease in SJS and TEN. The secondary outcome measure was the response to treatment. Results Patterns of chronic ocular disease observed after the acute episode included: mild/moderate SJS, severe SJS, ocular surface failure (SJS‐OSF), recurrent episodic inflammation (SJS‐RI), scleritis (SJS‐S) and progressive conjunctival cicatrisation resembling mucous membrane pemphigoid (SJS‐MMP). The median follow‐up was 5 years (range 0–29). 19 patients (29 eyes (48%)) developed SJS‐OSF, SJS‐RI, SJS‐S or SJS‐MMP during follow‐up. SJS‐OSF was present in 12 patients (18 eyes (30%)). In 5 patients (eight eyes) this developed 1 year after the acute illness, without any further inflammatory episodes; it was associated with SJS‐RI in 1 patient (2 eyes), with SJS‐RI and SJS‐S in 1 patient (1 eye), with SJS‐S in 1 patient (1 eye) and with SJS‐MMP in 4 patients (6 eyes). Episodes of SJS‐RI occurred in 4 patients (7 eyes (12%)). The median time from acute disease to the first episode of SJS‐RI was 8.5 years (range 5–63). SJS‐S developed in 2 patients (4 eyes (7%)), of which 2 eyes subsequently developed SJS‐OSF. SJS‐MMP developed in 5 patients (10 eyes (16.6%)). The median duration from the acute stage to the diagnosis of SJS‐MMP was 2 years (range 1–14). Immunosuppressive therapy successfully controlled inflammation in 10/10 patients with SJS‐MMP, SJS‐RI or SJS‐S. Conclusion Ocular disease in SJS/TEN is not limited solely to the sequelae of the acute phase illness. Patients and physicians need to know that ocular disease progression, due to surface failure and/or acute inflammatory conditions, may occur at variable periods following the acute disease episode. Recognition of this, and prompt access to specialist services, may optimise management of these uncommon patterns of disease in SJS. PMID:17314145
Magnesium deficiency and metabolic syndrome: stress and inflammation may reflect calcium activation.
Rayssiguier, Yves; Libako, Patrycja; Nowacki, Wojciech; Rock, Edmond
2010-06-01
Magnesium (Mg) intake is inadequate in the western diet and metabolic syndrome is highly prevalent in populations around the world. Epidemiological studies suggest that high Mg intake may reduce the risk but the possibility of confounding factors exists, given the strong association between Mg and other beneficial nutriments (vegetables, fibers, cereals). The concept that metabolic syndrome is an inflammatory condition may explain the role of Mg.Mg deficiency results in a stress effect and increased susceptibility to physiological damage produced by stress. Stress activates the hypothalamic-pituitary-adrenal axis (HPA) axis and the sympathetic nervous system. The activation of the renin-angiotensin-aldosterone system is a factor in the development of insulin resistance by increasing oxidative stress. In both humans and rats, aldosteronism results in an immunostimulatory state and leads to an inflammatory phenotype. Stress response induces the release of large quantities of excitatory amino acids and activates the nuclear factor NFkappaB, promoting translation of molecules involved in cell regulation, metabolism and apoptosis. The rise in neuropeptides is also well documented. Stress-induced HPA activation has been identified to play an important role in the preferential body fat accumulation but evidence that Mg is involved in body weight regulation is lacking. One of the earliest events in the acute response to stress is endothelial dysfunction. Endothelial cells actively contribute to inflammation by elaborating cytokines, synthesizing chemical mediators and expressing adhesion molecules. Experimental Mg deficiency in rats induces a clinical inflammatory syndrome characterized by leukocyte and macrophage activation, synthesis of inflammatory cytokines and acute phase proteins, extensive production of free radicals. An increase in extracellular Mg concentration decreases inflammatory effects, while reduction in extracellular Mg results in cell activation. The effect of Mg deficiency in the development of insulin resistance in the rat model is well documented. Inflammation occurring during experimental Mg deficiency is the mechanism that induces hypertriglyceridemia and pro-atherogenic changes in lipoprotein metabolism. The presence of endothelial dysfunction and dyslipidemia triggers platelet aggregability, thus increasing the risk of thrombotic events. Oxidative stress contributes to the elevation of blood pressure. The inflammatory syndrome induces activation of several factors, which are dependent on cytosolic Ca activation. Recent findings support the hypothesis that the Mg effect on intracellular Ca2+ homeostasis may be a common link between stress, inflammation and a possible relationship to metabolic syndrome.
2012-01-01
Background The 2009 pandemic H1N1 influenza virus emerged in swine and quickly became a major global health threat. In mouse, non human primate, and swine infection models, the pH1N1 virus efficiently replicates in the lung and induces pro-inflammatory host responses; however, whether similar or different cellular pathways were impacted by pH1N1 virus across independent infection models remains to be further defined. To address this we have performed a comparative transcriptomic analysis of acute phase responses to a single pH1N1 influenza virus, A/California/04/2009 (CA04), in the lung of mice, macaques and swine. Results Despite similarities in the clinical course, we observed differences in inflammatory molecules elicited, and the kinetics of their gene expression changes across all three species. We found genes associated with the retinoid X receptor (RXR) signaling pathway known to control pro-inflammatory and metabolic processes that were differentially regulated during infection in each species, though the heterodimeric RXR partner, pathway associated signaling molecules, and gene expression patterns varied among the three species. Conclusions By comparing transcriptional changes in the context of clinical and virological measures, we identified differences in the host transcriptional response to pH1N1 virus across independent models of acute infection. Antiviral resistance and the emergence of new influenza viruses have placed more focus on developing drugs that target the immune system. Underlying overt clinical disease are molecular events that suggest therapeutic targets identified in one host may not be appropriate in another. PMID:23153050
Jones, Mark B.; Nasirikenari, Mehrab; Lugade, Amit A.; Thanavala, Yasmin; Lau, Joseph T. Y.
2012-01-01
The anti-inflammatory properties associated with intravenous immunoglobulin therapy require the sialic acid modification of the N-glycan of the Fc domain of IgG. Sialylation of the Fc fragment is mediated by β-galactoside α2,6-sialyltransferase 1 (ST6Gal-1), acting on the Gal(β4)GlcNAc terminal structure of the biantennary N-glycans on the Fc domain. However, little is known regarding the in vivo regulation of Fc sialylation and its role in the progression of inflammatory processes. Here, we report that decreased Fc sialylation of circulatory IgG accompanies the acute phase response elicited by turpentine exposure or upon acute exposure to either nontypeable Haemophilus influenzae or ovalbumin. However, Fc sialylation was increased 3-fold from the base line upon transition to chronic inflammation by repeated exposure to challenge. The P1 promoter of the ST6Gal-1 gene is critical for Fc sialylation, but P1 does not drive ST6Gal-1 expression in B cells. The Siat1ΔP1 mouse, with a dysfunctional P1 promoter, was unable to produce sialylated Fc in the systemic circulation, despite the presence of Gal(β4)GlcNAc termini on the Fc glycans. The major contribution of P1 action is to synthesize ST6Gal-1 enzymes that are deposited into the systemic circulation. The data strongly indicate that this pool of extracellular ST6Gal-1 in the blood impacts the sialylation of IgG Fc and that defective Fc sialylation is likely a major contributing mechanism for the proinflammatory tendencies previously noted in Siat1ΔP1 animals. PMID:22427662
Inhibition of endotoxin-induced airway epithelial cell injury by a novel family of pyrrol derivates.
Cabrera-Benítez, Nuria E; Pérez-Roth, Eduardo; Ramos-Nuez, Ángela; Sologuren, Ithaisa; Padrón, José M; Slutsky, Arthur S; Villar, Jesús
2016-06-01
Inflammation and apoptosis are crucial mechanisms for the development of the acute respiratory distress syndrome (ARDS). Currently, there is no specific pharmacological therapy for ARDS. We have evaluated the ability of a new family of 1,2,3,5-tetrasubstituted pyrrol compounds for attenuating lipopolysaccharide (LPS)-induced inflammation and apoptosis in an in vitro LPS-induced airway epithelial cell injury model based on the first steps of the development of sepsis-induced ARDS. Human alveolar A549 and human bronchial BEAS-2B cells were exposed to LPS, either alone or in combination with the pyrrol derivatives. Rhein and emodin, two representative compounds with proven activity against the effects of LPS, were used as reference compounds. The pyrrol compound that was termed DTA0118 had the strongest inhibitory activity and was selected as the lead compound to further explore its properties. Exposure to LPS caused an intense inflammatory response and apoptosis in both A549 and BEAS-2B cells. DTA0118 treatment downregulated Toll-like receptor-4 expression and upregulated nuclear factor-κB inhibitor-α expression in cells exposed to LPS. These anti-inflammatory effects were accompanied by a significantly lower secretion of interleukin-6 (IL-6), IL-8, and IL-1β. The observed antiapoptotic effect of DTA0118 was associated with the upregulation of antiapoptotic Bcl-2 and downregulation of proapoptotic Bax and active caspase-3 protein levels. Our findings demonstrate the potent anti-inflammatory and antiapoptotic properties of the pyrrol DTA0118 compound and suggest that it could be considered as a potential drug therapy for the acute phase of sepsis and septic ARDS. Further investigations are needed to examine and validate these mechanisms and effects in a clinically relevant animal model of sepsis and sepsis-induced ARDS.
Nakamura, Taichi; Ito, Tetsuhide; Uchida, Masahiko; Hijioka, Masayuki; Igarashi, Hisato; Oono, Takamasa; Kato, Masaki; Nakamura, Kazuhiko; Suzuki, Koichi; Jensen, Robert T.; Takayanagi, Ryoichi
2013-01-01
Background and Aims There is increasing concern about the development of pancreatitis in patients with diabetes mellitus who received long-term GLP-1 analog treatment. Its pathogenesis is unknown. The effects of GLP-1 agonists on pancreatic endocrine cells is well studied, however there is little information on effects on other pancreatic tissues that might be involved in inflammatory processes. Pancreatic stellate cells (PSCs) can play an important role in pancreatitis, secreting various inflammatory cytokines/chemokines, as well as collagen. In this study, we investigated GLP-1R occurrence in normal pancreas, acute/chronic pancreatitis, and the effects of GLP-1 analog on normal PSCs, their ability to stimulate inflammatory mediator secretion or proliferation. Methods GLP-1R expression/localization in normal pancreas and pancreatitis (acute/chronic) tissues were evaluated with histological/immunohistochemical analysis. PSCs were isolated from male Wistar rats. GLP1R expression and effects of GLP-1 analog on activated PSCs was examined with realtime PCR, MTS assays and Western Blotting. Results In normal pancreas, pancreatic β cells expressed GLP-1R, with only low expression in acinar cells, whereas in acute or chronic pancreatitis, acinar cells, ductal cells and activated PSCs expressed GLP-1R. With activation of normal PSCs, GLP-1R is markedly increased, as is multiple other incretin-related receptors. The GLP-1 analog, liraglutide, did not induce inflammatory genes expression in activated PSCs, but induced proliferation. Liraglutide activated multiple signaling cascades in PSCs, and the ERK pathway mediated the PSCs proliferation. Conclusions GLP-1Rs are expressed in normal pancreas and there is marked enhanced expression in acute/chronic pancreatitis. GLP-1-agonist induced cell proliferation of activated PSCs without increasing release of inflammatory mediators. These results suggest chronic treatment with GLP-1R agonists could lead to proliferation/chronic activation of PSCs, which may lead to important effects in the pancreas. PMID:24217090
[Organ-protection therapy. A new therapeutic approach for acute heart failure?].
Chivite, David; Formiga, Francesc; Corbella, Xavier
2014-03-01
Unlike the prolonged benefit produced by the treatment of chronic heart failure, newer drugs tested for the treatment of acute heart failure in the last decade have failed to provide evidence of clinical benefit beyond some improvement in symptom relief. In particular, no drug has shown the ability to reduce the higher medium- and long-term risk of morbidity and mortality in these patients after an episode of decompensation. Current understanding of the pathophysiology of acute heart failure and its consequences has led to the hypothesis that, beyond symptom control, effective therapies for this syndrome should target not only the hemodynamic changes of the initial phase of the syndrome but should also "protect" the organism from the activation of neurohumoral and inflammatory pathways triggered by the decompensation episode, which persist in time and confer a risk of deleterious effects in several organs and tissues. Serelaxin, a new drug related to the peptidic endogenous hormones of the relaxin family, has recently been shown to provide multiple beneficial effects in terms of "organ protection" - not only in the cardiovascular and renal systems - from these acute heart failure-related deleterious changes. This drug has already been tested in acute heart failure patients with encouraging results in terms of medium-term clinical benefit, rendering serelaxin as a serious candidate for first-line, prognosis-modifying therapy in this syndrome. Copyright © 2014 Elsevier España, S.L. All rights reserved.
Williams, Erin J; Fischer, Deborah P; Pfeiffer, Dirk U; England, Gary C W; Noakes, David E; Dobson, Hilary; Sheldon, I Martin
2005-01-01
Bacteria contaminate the uterus of most dairy cattle after parturition and endometritis causes infertility. An endometritis score can be ascribed based on the vaginal mucus character and odour but it is not clear if the clinical score reflects the number of uterine bacteria or the inflammatory response. The present study tested the hypothesis that clinical evaluation of endometritis reflects the number of bacteria present in the uterus, and the acute phase protein response. Swabs (n = 328) were collected from the uterine lumen of dairy cattle, 21 and 28 days postpartum, vaginal mucus was scored for character and odour, and blood samples collected for acute phase protein measurement. Bacteria were identified following aerobic and anaerobic culture, and the bacterial growth density was scored semi-quantitatively. When bacteria were categorised by their expected pathogenic potential in the uterus, purulent or fetid odour vaginal mucus was associated with the growth density of pathogenic bacteria but not opportunist contaminants. When bacteria were analysed independently, Arcanobacterium pyogenes, Proteus and Fusobacterium necrophorum growth densities were associated with mucopurulent or purulent vaginal mucus. The bacterial growth densities for A. pyogenes, Escherichia coli, non-hemolytic Streptococci, and Mannheimia haemolytica were associated with a fetid mucus odour. Peripheral plasma concentrations of alpha(1)-acid glycoprotein were higher if there was a fetid compared with a normal vaginal mucus odour (1.50 +/- 0.09 mg/mL versus 1.05 +/- 0.02 mg/mL, P < 0.001), but did not differ significantly between vaginal mucus character scores. The evaluation of the character and odour of vaginal mucus reflects the number of bacteria in the uterus, and the acute phase protein response.
Dashdorj, Amarjargal; Jyothi, K R; Lim, Sangbin; Jo, Ara; Nguyen, Minh Nam; Ha, Joohun; Yoon, Kyung-Sik; Kim, Hyo Jong; Park, Jae-Hoon; Murphy, Michael P; Kim, Sung Soo
2013-08-06
MitoQ is a mitochondria-targeted derivative of the antioxidant ubiquinone, with antioxidant and anti-apoptotic functions. Reactive oxygen species are involved in many inflammatory diseases including inflammatory bowel disease. In this study, we assessed the therapeutic effects of MitoQ in a mouse model of experimental colitis and investigated the possible mechanisms underlying its effects on intestinal inflammation. Reactive oxygen species levels and mitochondrial function were measured in blood mononuclear cells of patients with inflammatory bowel disease. The effects of MitoQ were evaluated in a dextran sulfate sodium-induced colitis mouse model. Clinical and pathological markers of disease severity and oxidative injury, and levels of inflammatory cytokines in mouse colonic tissue were measured. The effect of MitoQ on inflammatory cytokines released in the human macrophage-like cell line THP-1 was also analyzed. Cellular and mitochondrial reactive oxygen species levels in mononuclear cells were significantly higher in patients with inflammatory bowel disease (P <0.003, cellular reactive oxygen species; P <0.001, mitochondrial reactive oxygen species). MitoQ significantly ameliorated colitis in the dextran sulfate sodium-induced mouse model in vivo, reduced the increased oxidative stress response (malondialdehyde and 3-nitrotyrosine formation), and suppressed mitochondrial and histopathological injury by decreasing levels of inflammatory cytokines IL-1 beta and IL-18 (P <0.001 and P <0.01 respectively). By decreasing mitochondrial reactive oxygen species, MitoQ also suppressed activation of the NLRP3 inflammasome that was responsible for maturation of IL-1 beta and IL-18. In vitro studies demonstrated that MitoQ decreases IL-1 beta and IL-18 production in human THP-1 cells. Taken together, our results suggest that MitoQ may have potential as a novel therapeutic agent for the treatment of acute phases of inflammatory bowel disease.
2013-01-01
Background MitoQ is a mitochondria-targeted derivative of the antioxidant ubiquinone, with antioxidant and anti-apoptotic functions. Reactive oxygen species are involved in many inflammatory diseases including inflammatory bowel disease. In this study, we assessed the therapeutic effects of MitoQ in a mouse model of experimental colitis and investigated the possible mechanisms underlying its effects on intestinal inflammation. Methods Reactive oxygen species levels and mitochondrial function were measured in blood mononuclear cells of patients with inflammatory bowel disease. The effects of MitoQ were evaluated in a dextran sulfate sodium-induced colitis mouse model. Clinical and pathological markers of disease severity and oxidative injury, and levels of inflammatory cytokines in mouse colonic tissue were measured. The effect of MitoQ on inflammatory cytokines released in the human macrophage-like cell line THP-1 was also analyzed. Results Cellular and mitochondrial reactive oxygen species levels in mononuclear cells were significantly higher in patients with inflammatory bowel disease (P <0.003, cellular reactive oxygen species; P <0.001, mitochondrial reactive oxygen species). MitoQ significantly ameliorated colitis in the dextran sulfate sodium-induced mouse model in vivo, reduced the increased oxidative stress response (malondialdehyde and 3-nitrotyrosine formation), and suppressed mitochondrial and histopathological injury by decreasing levels of inflammatory cytokines IL-1 beta and IL-18 (P <0.001 and P <0.01 respectively). By decreasing mitochondrial reactive oxygen species, MitoQ also suppressed activation of the NLRP3 inflammasome that was responsible for maturation of IL-1 beta and IL-18. In vitro studies demonstrated that MitoQ decreases IL-1 beta and IL-18 production in human THP-1 cells. Conclusion Taken together, our results suggest that MitoQ may have potential as a novel therapeutic agent for the treatment of acute phases of inflammatory bowel disease. PMID:23915129
Kuebler, Ulrike; Arpagaus, Angela; Meister, Rebecca E; von Känel, Roland; Huber, Susanne; Ehlert, Ulrike; Wirtz, Petra H
2016-10-01
Flavanol-rich dark chocolate consumption relates to lower risk of cardiovascular mortality, but underlying mechanisms are elusive. We investigated the effect of acute dark chocolate consumption on inflammatory measures before and after stress. Healthy men, aged 20-50years, were randomly assigned to a single intake of either 50g of flavanol-rich dark chocolate (n=31) or 50g of optically identical flavanol-free placebo-chocolate (n=34). Two hours after chocolate intake, both groups underwent the 15-min Trier Social Stress Test. We measured DNA-binding-activity of the pro-inflammatory transcription factor NF-κB (NF-κB-BA) in peripheral blood mononuclear cells, as well as plasma and whole blood mRNA levels of the pro-inflammatory cytokines IL-1β and IL-6, and the anti-inflammatory cytokine IL-10, prior to chocolate intake as well as before and several times after stress. We also repeatedly measured the flavanol epicatechin and the stress hormones epinephrine and cortisol in plasma and saliva, respectively. Compared to the placebo-chocolate-group, the dark-chocolate-group revealed a marginal increase in IL-10 mRNA prior to stress (p=0.065), and a significantly blunted stress reactivity of NF-κB-BA, IL-1β mRNA, and IL-6 mRNA (p's⩽0.036) with higher epicatechin levels relating to lower pro-inflammatory stress reactivity (p's⩽0.033). Stress hormone changes to stress were controlled. None of the other measures showed a significant chocolate effect (p's⩾0.19). Our findings indicate that acute flavanol-rich dark chocolate exerts anti-inflammatory effects both by increasing mRNA expression of the anti-inflammatory cytokine IL-10 and by attenuating the intracellular pro-inflammatory stress response. This mechanism may add to beneficial effects of dark chocolate on cardiovascular health. Copyright © 2016 Elsevier Inc. All rights reserved.
Terreri, Maria Teresa R A; Bernardo, Wanderley Marques; Len, Claudio Arnaldo; da Silva, Clovis Artur Almeida; de Magalhães, Cristina Medeiros Ribeiro; Sacchetti, Silvana B; Ferriani, Virgínia Paes Leme; Piotto, Daniela Gerent Petry; de Souza Cavalcanti, André; de Moraes, Ana Júlia Pantoja; Sztajnbok, Flavio Roberto; de Oliveira, Sheila Knupp Feitosa; Campos, Lucia Maria Arruda; Bandeira, Marcia; Santos, Flávia Patricia Sena Teixeira; Magalhães, Claudia Saad
2016-01-01
To establish guidelines based on scientific evidence for the management of familial Mediterranean fever. The Guideline was prepared from 5 clinical questions that were structured through PICO (Patient, Intervention or indicator, Comparison and Outcome), to search key primary scientific information databases. After defining the potential studies to support the recommendations, these were graduated considering their strength of evidence and grade of recommendation. 10,341 articles were retrieved and evaluated by title and abstract; from these, 46 articles were selected to support the recommendations. 1. The diagnosis of FMF is based on clinical manifestations, characterized by recurrent febrile episodes associated with abdominal pain, chest or arthritis of large joints. 2. FMF is a genetic disease presenting an autosomal recessive trait, caused by mutation in the MEFV gene. 3. Laboratory tests are not specific, demonstrating high serum levels of inflammatory proteins in the acute phase of the disease, but also often showing high levels even between attacks. SAA serum levels may be especially useful in monitoring the effectiveness of treatment. 4. The therapy of choice is colchicine; this drug has proven its effectiveness in preventing acute inflammatory episodes and progression toward amyloidosis in adults. 5. Based on the available information, the use of biological drugs appears to be an alternative for patients with FMF who do not respond or are intolerant to therapy with colchicine. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.
Immunomodulatory therapies for acute pancreatitis
Li, Jing; Yang, Wen-Juan; Huang, Lu-Ming; Tang, Cheng-Wei
2014-01-01
It is currently difficult for conventional treatments of acute pancreatitis (AP), which primarily consist of anti-inflammatory therapies, to prevent the progression of AP or to improve its outcome. This may be because the occurrence and progression of AP, which involves various inflammatory cells and cytokines, includes a series of complex immune events. Considering the complex immune system alterations during the course of AP, it is necessary to monitor the indicators related to immune cells and inflammatory mediators and to develop more individualized interventions for AP patients using immunomodulatory therapy. This review discusses the recent advances in immunomodulatory therapies. It has been suggested that overactive inflammatory responses should be inhibited and excessive immunosuppression should be avoided in the early stages of AP. The optimal duration of anti-inflammatory therapy may be shorter than previously expected (< 24 h), and appropriate immunostimulatory therapies should be administered during the period from the 3rd d to the 14th d in the course of AP. A combination therapy of anti-inflammatory and immune-stimulating drugs would hopefully constitute an alternative to anti-inflammatory drug monotherapy. Additionally, the detection of the genotypes of critical inflammatory mediators may be useful for screening populations of AP patients at high risk of severe infections to enable the administration of early interventions to improve their prognosis. PMID:25493006
Laidlaw, Brian J; Cui, Weiguo; Amezquita, Robert A; Gray, Simon M; Guan, Tianxia; Lu, Yisi; Kobayashi, Yasushi; Flavell, Richard A; Kleinstein, Steven H; Craft, Joe; Kaech, Susan M
2016-01-01
Memory CD8+ T cells are critical for host defense upon reexposure to intracellular pathogens. We found that interleukin 10 (IL-10) derived from CD4+ regulatory T cells (Treg cells) was necessary for the maturation of memory CD8+ T cells following acute infection with lymphocytic choriomeningitis virus (LCMV). Treg cell–derived IL-10 was most important during the resolution phase, calming inflammation and the activation state of dendritic cells. Adoptive transfer of IL-10-sufficient Treg cells during the resolution phase ‘restored’ the maturation of memory CD8+ T cells in IL-10-deficient mice. Our data indicate that Treg cell–derived IL-10 is needed to insulate CD8+ T cells from inflammatory signals, and reveal that the resolution phase of infection is a critical period that influences the quality and function of developing memory CD8+ T cells. PMID:26147684
Hernandez-Baldomero, Idaira F.; Bosa-Ojeda, Francisco
2014-01-01
Among the numerous emerging biomarkers, high-sensitivity C-reactive protein (hsCRP) and growth-differentiation factor-15 (GDF-15) have received widespread interest, with their potential role as predictors of cardiovascular risk. The concentrations of inflammatory biomarkers, however, are influenced, among others, by physiological variations, which are the natural, within-individual variation occurring over time. The aims of our study are: (a) to describe the changes in hsCRP and GDF-15 levels over a period of time and after an episode of non-ST-segment elevation acute coronary syndrome (NSTE-ACS) and (b) to examine whether the rate of change in hsCRP and GDF-15 after the acute event is associated with long-term major cardiovascular adverse events (MACE). Two hundred and Fifty five NSTE-ACS patients were included in the study. We measured hsCRP and GDF-15 concentrations, at admission and again 36 months after admission (end of the follow-up period). The present study shows that the change of hsCRP levels, measured after 36 months, does not predict MACE in NSTEACS-patients. However, the level of GDF-15 measured, after 36 months, was a stronger predictor of MACE, in comparison to the acute unstable phase. PMID:24839357
Slusher, Aaron L; Huang, Chun-Jung; Acevedo, Edmund O
2017-01-01
Obesity is defined as the excess accumulation of intra-abdominal body fat, resulting in a state of chronic, low-grade proinflammation that can directly contribute to the development of insulin resistance. Pentraxin 3 (PTX3) is an acute-phase protein that is expressed by a variety of tissue and cell sources and provides an anti-inflammatory property to downregulate the production of proinflammatory cytokines, in particular interleukin-1 beta and tumor necrosis factor alpha. Although PTX3 may therapeutically aid in altering the proinflammatory milieu in obese individuals, and despite elevated expression of PTX3 mRNA observed in adipose tissue, the circulating level of PTX3 is reduced with obesity. Interestingly, aerobic activity has been demonstrated to elevate PTX3 levels. Therefore, the purpose of this review is to discuss the therapeutic potential of PTX3 to positively regulate obesity-related inflammation and discuss the proposition for utilizing aerobic exercise as a nonpharmacological anti-inflammatory treatment strategy to enhance circulating PTX3 concentrations in obese individuals.
Escribano, Damián; Tvarijonaviciute, Asta; Tecles, Fernando; Cerón, José J
2015-02-15
Paraoxonase 1 (PON1) is a serum enzyme synthesised and secreted primarily by the liver. It possesses anti-inflammatory properties limiting the production of pro-inflammatory mediators. The objectives of this study were to validate three spectrophotometric assays for the quantification of PON1 activity in pig serum, and to determine if PON1 activity in porcine behaves as a negative acute phase protein (APP), decreasing in inflammatory conditions. An analytical validation using three different substrates - 5-thiobutil butyrolactone (TBBL), phenylacetate (PA) and 4-(p)-nitrophenyl acetate (pNA) - was performed. In addition, inflammation was experimentally induced in five pigs by subcutaneous injection of turpentine oil, while five control pigs were left untreated. The treated pigs showed significant increases in CRP and decreases in albumin, indicating an inflammatory condition. The three substrates used would be suitable for PON1 activity measurements in serum samples, since they offer adequate precision (coefficients of variation<10%), sensitivity (0.01, 0.15, 0.02 U/mL for TBBL, pNA and PA respectively) and accuracy (r=0.99). In addition, PON1 behaves as a negative APP in pigs since a significant decrease (P<0.05) in its activity after 72 h of the induction of the inflammation was observed with all substrates. Copyright © 2015 Elsevier B.V. All rights reserved.
Soler, Laura; Miller, Ingrid; Hummel, Karin; Razzazi-Fazeli, Ebrahim; Jessen, Flemming; Escribano, Damian; Niewold, Theo
2016-05-01
The growth promoting effect of supplementing animal feed with antibiotics like tetracycline has traditionally been attributed to their antibiotic character. However, more evidence has been accumulated on their direct anti-inflammatory effect during the last two decades. Here we used a pig model to explore the systemic molecular effect of feed supplementation with sub therapeutic levels of oxytetracycline (OTC) by analysis of serum proteome changes. Results showed that OTC promoted growth, coinciding with a significant down regulation of different serum proteins related to inflammation, oxidation and lipid metabolism, confirming the anti-inflammatory mechanism of OTC. Interestingly, apart from the classic acute phase reactants also down regulation was seen of a hibernation associated plasma protein (HP-27), which is to our knowledge the first description in pigs. Although the exact function in non-hibernators is unclear, down regulation of HP-27 could be consistent with increased appetite, which is possibly linked to the anti-inflammatory action of OTC. Given that pigs are good models for human medicine due to their genetic and physiologic resemblance, the present results might also be used for rational intervention in human diseases in which inflammation plays an important role such as obesity, type 2 diabetes and cardiovascular diseases. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Interferon-β Modulates Inflammatory Response in Cerebral Ischemia.
Kuo, Ping-Chang; Scofield, Barbara A; Yu, I-Chen; Chang, Fen-Lei; Ganea, Doina; Yen, Jui-Hung
2016-01-08
Stroke is a leading cause of death in the world. In >80% of strokes, the initial acute phase of ischemic injury is due to the occlusion of a blood vessel resulting in severe focal hypoperfusion, excitotoxicity, and oxidative damage. Interferon-β (IFNβ), a cytokine with immunomodulatory properties, was approved by the US Food and Drug Administration for the treatment of relapsing-remitting multiple sclerosis for more than a decade. Its anti-inflammatory properties and well-characterized safety profile suggest that IFNβ has therapeutic potential for the treatment of ischemic stroke. We investigated the therapeutic effect of IFNβ in the mouse model of transient middle cerebral artery occlusion/reperfusion. We found that IFNβ not only reduced infarct size in ischemic brains but also lessened neurological deficits in ischemic stroke animals. Further, multiple molecular mechanisms by which IFNβ modulates ischemic brain inflammation were identified. IFNβ reduced central nervous system infiltration of monocytes/macrophages, neutrophils, CD4(+) T cells, and γδ T cells; inhibited the production of inflammatory mediators; suppressed the expression of adhesion molecules on brain endothelial cells; and repressed microglia activation in the ischemic brain. Our results demonstrate that IFNβ exerts a protective effect against ischemic stroke through its anti-inflammatory properties and suggest that IFNβ is a potential therapeutic agent, targeting the reperfusion damage subsequent to the treatment with tissue plasminogen activator. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Kankuri, Esko; Mervaala, Elina E; Storvik, Markus; Ahola, Aija M J; Levijoki, Jouko; Müller, Dominik N; Finckenberg, Piet; Mervaala, Eero M
2015-06-01
Hypertension and persistent activation of the renin-angiotensin system (RAS) are predisposing factors for the development of acute kidney injury (AKI). Although bone-marrow-derived stromal cells (BMSCs) have shown therapeutic promise in treatment of AKI, the impact of pathological RAS on BMSC functionality has remained unresolved. RAS and its local components in the bone marrow are involved in several key steps of cell maturation processes. This may also render the BMSC population vulnerable to alterations even in the early phases of RAS pathology. We isolated transgenic BMSCs (TG-BMSCs) from young end-organ-disease-free rats with increased RAS activation [human angiotensinogen/renin double transgenic rats (dTGRs)] that eventually develop hypertension and die of end-organ damage and kidney failure at 8 weeks of age. Control cells (SD-BMSCs) were isolated from wild-type Sprague-Dawley rats. Cell phenotype, mitochondrial reactive oxygen species (ROS) production and respiration were assessed, and gene expression profiling was carried out using microarrays. Cells' therapeutic efficacy was evaluated in a rat model of acute ischaemia/reperfusion-induced AKI. Serum urea and creatinine were measured at 24 h and 48 h. Acute tubular damage was scored and immunohistochemistry was used for evaluation for markers of inflammation [monocyte chemoattractant protein (MCP-1), ED-1], and kidney injury [kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL)]. TG-BMSCs showed distinct mitochondrial morphology, decreased cell respiration and increased production of ROS. Gene expression profiling revealed a pronounced pro-inflammatory phenotype. In contrast with the therapeutic effect of SD-BMSCs, administration of TG-BMSCs in the AKI model resulted in exacerbation of kidney injury and high mortality. Our results demonstrate that early persistent RAS activation can dramatically compromise therapeutic potential of BMSCs by causing a shift into a pro-inflammatory phenotype with mitochondrial dysfunction.
Plapler, Pérola Grinberg; Scheinberg, Morton Aaron; Ecclissato, Christina da Cunha; Bocchi de Oliveira, Monalisa Fernanda; Amazonas, Roberto Bleuel
2016-01-01
Background Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most common type of medication used in the treatment of acute pain. Ketorolac trometamol (KT) is a nonnarcotic, peripherally acting nonsteroidal anti-inflammatory drug with analgesic effects comparable to certain opioids. Objective The aim of this study was to compare the efficacy of KT and naproxen (NA) in the treatment of acute low back pain (LBP) of moderate-to-severe intensity. Patients and methods In this 10-day, Phase III, randomized, double-blind, double-dummy, noninferiority trial, participants with acute LBP of moderate-to-severe intensity as determined through a visual analog scale (VAS) were randomly assigned in a 1:1 ratio to receive sublingual KT 10 mg three times daily or oral NA 250 mg three times daily. From the second to the fifth day of treatment, if patient had VAS >40 mm, increased dosage to four times per day was allowed. The primary end point was the reduction in LBP as measured by VAS. We also performed a post hoc superiority analysis. Results KT was not inferior to NA for the reduction in LBP over 5 days of use as measured by VAS scores (P=0.608 for equality of variance; P=0.321 for equality of means) and by the Roland–Morris Disability Questionnaire (P=0.180 for equality of variance test; P=0.446 for equality of means) using 95% confidence intervals. The percentage of participants with improved pain relief 60 minutes after receiving the first dose was higher in the KT group (24.2%) than in the NA group (6.5%; P=0.049). The most common adverse effects were heartburn, nausea, and vomiting. Conclusion KT is not inferior in efficacy and delivers faster pain relief than NA. PMID:27382251
Acute phase proteins in healthy goats: establishment of reference intervals.
Heller, Meera C; Johns, Jennifer L
2015-03-01
Acute inflammatory processes can trigger increased production of acute phase proteins (APPs) that can be useful biomarkers of inflammation. APPs are diverse and include proteins involved in coagulation, opsonization, iron regulation, and limitation of tissue injury. Haptoglobin, serum amyloid A, and alpha-1 acid glycoprotein have been proposed as useful APPs in goats. APPs can differ markedly by species, therefore species-specific reference intervals and studies are necessary. The objective of this study was to determine species-specific reference intervals for 4 APPs in goats. Haptoglobin, serum amyloid A, lipopolysaccharide binding protein, and alpha-1 acid glycoprotein were measured in in 54 clinically normal adult goats. APPs were measured using goat-specific commercial enzyme-linked immunosorbent assay kits. Results were analyzed by 1-way analysis of variance to compare sexes and breeding status. Reference Value Advisor was used to calculate reference limits according to the IFCC-CLSI guidelines. Only 1 APP was found to vary in healthy animals; serum haptoglobin was increased in lactating animals and decreased in pregnant does in their second trimester when compared with open, nonlactating does. No sex-based differences were seen for any of the APPs measured. We report normal reference intervals for 4 serum APPs that may be useful as disease markers. Haptoglobin should be interpreted with caution in animals with unknown pregnancy status. Further studies are needed to determine whether these APPs are useful biomarkers in goat disease states. © 2015 The Author(s).
[Antioxidant and anti-inflammatory activities of Moroccan Erica arborea L].
Amezouar, F; Badri, W; Hsaine, M; Bourhim, N; Fougrach, H
2013-12-01
The present study was carried out to evaluate the antioxidant and anti-inflammatory capacity, and acute toxicity of Moroccan Erica arborea leaves. Antioxidant capacity was assessed by diphenyle-picryl-hydrazyl (DPPH), phosphomolybdate (PPM) and ferric reducing antioxidant power (FRAP) tests and anti-inflammatory capacity was evaluated by hind paw oedema model using carrageenan-induced inflammation in rat. The acute toxicity was evaluated using mice. Acute toxicity of ethanolic extract of E. arborea showed no sign of toxicity at dose of 5 g/kg B.W. Our extracts have important antioxidant properties. The efficient concentration of the ethanolic extract (10.22 μg/ml) required for decreasing initial DPPH concentration by 50% was comparable to that of standard solution butyl-hydroxy-toluene (BHT) (8.87 μg/ml). The administration of ethanolic extract at doses of 200 and 400mg/kg B.W. was able to prevent plantar oedema and exhibited a significant inhibition against carrageenan-induced inflammation when compared to the control group (NaCl 0.9%) but comparable to those of diclofenac (reference drug). Our results show that the leaves of E. arborea may contain some bioactive compounds which are responsible for the antioxidant and anti-inflammatory activities observed here. Our finding may indicate the possibility of using the extracts of this plant to prevent the antioxidant and inflammatory processes. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Docosahexaenoic Acid Inhibits Cerulein-Induced Acute Pancreatitis in Rats
Jeong, Yoo Kyung; Lee, Sle; Lim, Joo Weon
2017-01-01
Oxidative stress is an important regulator in the pathogenesis of acute pancreatitis (AP). Reactive oxygen species induce activation of inflammatory cascades, inflammatory cell recruitment, and tissue damage. NF-κB regulates inflammatory cytokine gene expression, which induces an acute, edematous form of pancreatitis. Protein kinase C δ (PKCδ) activates NF-κB as shown in a mouse model of cerulein-induced AP. Docosahexaenoic acid (DHA), an ω-3 fatty acid, exerts anti-inflammatory and antioxidant effects in various cells and tissues. This study investigated whether DHA inhibits cerulein-induced AP in rats by assessing pancreatic edema, myeloperoxidase activity, levels of lipid peroxide and IL-6, activation of NF-κB and PKCδ, and by histologic observation. AP was induced by intraperitoneal injection (i.p.) of cerulein (50 μg/kg) every hour for 7 h. DHA (13 mg/kg) was administered i.p. for three days before AP induction. Pretreatment with DHA reduced cerulein-induced activation of NF-κB, PKCδ, and IL-6 in pancreatic tissues of rats. DHA suppressed pancreatic edema and decreased the abundance of lipid peroxide, myeloperoxidase activity, and inflammatory cell infiltration into the pancreatic tissues of cerulein-stimulated rats. Therefore, DHA may help prevent the development of pancreatitis by suppressing the activation of NF-κB and PKCδ, expression of IL-6, and oxidative damage to the pancreas. PMID:28704954
Fujiwara, Norio; Som, Angel T.; Pham, Loc-Duyen D.; Lee, Brian J.; Mandeville, Emiri T.; Lo, Eng H.; Arai, Ken
2017-01-01
A free radical scavenger edaravone is clinically used in Japan for acute stroke, and several basic researches have carefully examined the mechanisms of edaravone's protective effects. However, its actions on pro-inflammatory responses under stroke are still understudied. In this study, we subjected adult male Sprague-Dawley rats to 90-min middle cerebral artery (MCA) occlusion followed by reperfusion. Edaravone was treated twice via tail vein; after MCA occlusion and after reperfusion. As expected, edaravone-treated group showed less infarct volume and edema formation compared with control group at 24-hour after ischemic onset. Furthermore, edaravone reduced the levels of plasma interleukin (IL)-1β and matrix metalloproteinase-9 at 3-hour after ischemic onset. Several molecules besides IL-1β and MMP-9 are involved in inflammatory responses under stroke conditions. Therefore, we also examined whether edaravone treatment could decrease a wide range of pro-inflammatory cytokines/chemokines by testing rat plasma samples with a rat cytokine array. MCAO rats showed elevations in plasma levels of CINC-1, Fractalkine, IL-1α, IL-1ra, IL-6, IL-10, IP-10, MIG, MIP-1α, and MIP-3α, and all these increases were reduced by edaravone treatment. These data suggest that free radical scavengers may reduce systemic inflammatory responses under acute stroke conditions, and therefore, oxidative stress can be still a viable target for acute stroke therapy. PMID:27589890
Acute lymphocytic cholangitis and liver failure in an Amur tiger (Panthera tigris altaica).
Crook, Erika K; Carpenter, Nancy A
2014-03-01
An adult male Amur tiger (Panthera tigris altaica) with confirmed inflammatory bowel disease developed acute severe icterus, bilirubinuria, bilirubinemia, and elevated bile acids after a diet change. Liver biopsies showed moderate lymphoplasmacytic cholangiohepatitis (lymphocytic cholangitis). The tiger developed neurologic signs including ataxia, tremors, and seizures, as well as epistaxis. Therapy consisted of antibiotics, a steroid anti-inflammatory, vitamins, pro-coagulants, and liver-supportive medicines. The tiger improved from acute liver failure within 3 wk, while the epistaxis began at 3.5 wk and did not resolve until 10.5 wk. The long-term maintenance plan consists of oral prednisolone, metronidazole, ursodiol, and an all muscle-meat beef diet.
Evidence for Anti-Inflammatory Effects of Exercise in CKD
Kosmadakis, George C.; Watson, Emma L.; Bevington, Alan; Feehally, John; Bishop, Nicolette C.; Smith, Alice C.
2014-01-01
CKD is associated with a complex state of immune dysfunction characterized by immune depression, predisposing patients to infections, and immune activation, resulting in inflammation that associates with higher risk of cardiovascular disease. Physical exercise may enhance immune function and exert anti-inflammatory effects, but such effects are unclear in CKD. We investigated the separate effects of acute and regular moderate-intensity aerobic exercise on neutrophil degranulation (elastase release), activation of T lymphocytes (CD69 expression) and monocytes (CD86 and HLA-DR expression), and plasma inflammatory markers (IL-6, IL-10, soluble TNF-receptors, and C-reactive protein) in patients with predialysis CKD. A single 30-minute (acute) bout of walking induced a normal pattern of leukocyte mobilization and had no effect on T-lymphocyte and monocyte activation but improved neutrophil responsiveness to a bacterial challenge in the postexercise period. Furthermore, acute exercise induced a systemic anti-inflammatory environment, evidenced by a marked increase in plasma IL-10 levels (peaked at 1 hour postexercise), that was most likely mediated by increased plasma IL-6 levels (peaked immediately postexercise). Six months of regular walking exercise (30 min/d for 5 times/wk) exerted anti-inflammatory effects (reduction in the ratio of plasma IL-6 to IL-10 levels) and a downregulation of T-lymphocyte and monocyte activation, but it had no effect on circulating immune cell numbers or neutrophil degranulation responses. Renal function, proteinuria, and BP were also unaffected. These findings provide compelling evidence that walking exercise is safe with regard to immune and inflammatory responses and has the potential to be an effective anti-inflammatory therapy in predialysis CKD. PMID:24700875
Psychoneuroimmunology-developments in stress research.
Straub, Rainer H; Cutolo, Maurizio
2018-03-01
Links between the central nervous stress system and peripheral immune cells in lymphoid organs have been detailed through 50 years of intensive research. The brain can interfere with the immune system, where chronic psychological stress inhibits many functions of the immune system. On the other hand, chronic peripheral inflammation-whether mild (during aging and psychological stress) or severe (chronic inflammatory diseases)-clearly interferes with brain function, leading to disease sequelae like fatigue but also to overt psychiatric illness. In recent years, it has been observed that psychological stress can be disease permissive, as in chronic inflammatory diseases, cancer, cardiovascular diseases, acute and chronic viral infections, sepsis, asthma, and others. We recognized that stress reactivity is programmed for a lifetime during a critical period between fetal life and early childhood, which then influences stress behavior and stress responses in adulthood. First phase II clinical studies, e.g., on cognitive behavioral therapy and mind-body therapies (e. g., mindfulness-based stress reduction), are available that show some benefits in stressful human diseases such as breast cancer and others. The field of psychoneuroimmunology has reached a firm ground and invites therapeutic approaches based on Good Clinical Practice phase III multicenter randomized controlled trials to influence stress responses and outcome in chronic illness.
The "continuum" of a unified theory of diseases.
Vithoulkas, George; Carlino, Stefano
2010-02-01
This essay's theme was inspired by a question asked by a child: 'Why do I get ill?' The question is very interesting, but has no easy answer. This paper discusses a few possible answers to this difficult question. Through the life of a person, from birth to death, there is a "continuum" in the pathological conditions a person may experience. The body, as a whole, suffers deeply any time there is an acute or a chronic condition that is either maltreated or neglected. Chronic and acute diseases in the medical history of a person constitute a rigidly related chain of immune responses in the form of a real "continuum" that at every point in time indicates the end result of this continuum. The idea promoted here is that suppression of diseases, through excess of chemical drugs or other means, many times overwhelms the body's natural defenses and forces the immune system to compromise and start a deeper line of defense, which then constitute the beginning of a new chronic condition. Thus, the original inflammation of an acute condition may continue as a sub-acute inflammatory process on a deeper level. Acute inflammatory conditions must therefore be treated very carefully from their beginnings in childhood in order not to force the immune system to compromise. It is also suggested here that all chronic degenerative conditions have a sub-acute inflammatory character, and that "inflammation" constitutes the main common parameter of all diseases.
Vilar-Pereira, Glaucia; Silva, Andrea Alice da; Pereira, Isabela Resende; Silva, Rafael Rodrigues; Moreira, Otacílio Cruz; de Almeida, Luciana Rodrigues; de Souza, Amanda Santos; Rocha, Monica Santos; Lannes-Vieira, Joseli
2012-10-01
Inflammatory cytokines and microbe-borne immunostimulators have emerged as triggers of depressive behavior. Behavioral alterations affect patients chronically infected by the parasite Trypanosoma cruzi. We have previously shown that C3H/He mice present acute phase-restricted meningoencephalitis with persistent central nervous system (CNS) parasitism, whereas C57BL/6 mice are resistant to T. cruzi-induced CNS inflammation. In the present study, we investigated whether depression is a long-term consequence of acute CNS inflammation and a contribution of the parasite strain that infects the host. C3H/He and C57BL/6 mice were infected with the Colombian (type I) and Y (type II) T. cruzi strains. Forced-swim and tail-suspension tests were used to assess depressive-like behavior. Independent of the mouse lineage, the Colombian-infected mice showed significant increases in immobility times during the acute and chronic phases of infection. Therefore, T. cruzi-induced depression is independent of active or prior CNS inflammation. Furthermore, chronic depressive-like behavior was triggered only by the type I Colombian T. cruzi strain. Acute and chronic T. cruzi infection increased indoleamine 2,3-dioxygenase (IDO) expression in the CNS. Treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine abrogated the T. cruzi-induced depressive-like behavior. Moreover, treatment with the parasiticide drug benznidazole abrogated depression. Chronic T. cruzi infection of C57BL/6 mice increased tumor necrosis factor (TNF) expression systemically but not in the CNS. Importantly, TNF modulators (anti-TNF and pentoxifylline) reduced immobility. Therefore, direct or indirect parasite-induced immune dysregulation may contribute to chronic depressive disorder in T. cruzi infection, which opens a new therapeutic pathway to be explored. Copyright © 2012 Elsevier Inc. All rights reserved.
Kim, Hyun Jung; Ahn, Hyeong Sik; Lee, Jae Young; Choi, Seong Soo; Cheong, Yu Seon; Kwon, Koo; Yoon, Syn Hae
2017-01-01
Background Postherpetic neuralgia (PHN) is a common and painful complication of acute herpes zoster. In some cases, it is refractory to medical treatment. Preventing its occurrence is an important issue. We hypothesized that applying nerve blocks during the acute phase of herpes zoster could reduce PHN incidence by attenuating central sensitization and minimizing nerve damage and the anti-inflammatory effects of local anesthetics and steroids. Methods This systematic review and meta-analysis evaluates the efficacy of using nerve blocks to prevent PHN. We searched the MEDLINE, EMBASE, Cochrane Library, ClinicalTrials.gov and KoreaMed databases without language restrictions on April, 30 2014. We included all randomized controlled trials performed within 3 weeks after the onset of herpes zoster in order to compare nerve blocks vs active placebo and standard therapy. Results Nine trials were included in this systematic review and meta-analysis. Nerve blocks reduced the duration of herpes zoster-related pain and PHN incidence of at 3, 6, and 12 months after final intervention. Stellate ganglion block and single epidural injection did not achieve positive outcomes, but administering paravertebral blockage and continuous/repeated epidural blocks reduced PHN incidence at 3 months. None of the included trials reported clinically meaningful serious adverse events. Conclusions Applying nerve blocks during the acute phase of the herpes zoster shortens the duration of zoster-related pain, and somatic blocks (including paravertebral and repeated/continuous epidural blocks) are recommended to prevent PHN. In future studies, consensus-based PHN definitions, clinical cutoff points that define successful treatment outcomes and standardized outcome-assessment tools will be needed. PMID:28119767
Statin withdrawal: clinical implications and molecular mechanisms.
Cubeddu, Luigi X; Seamon, Matthew J
2006-09-01
Retrospective analyses of data from the Platelet Receptor Inhibition in Ischemic Syndrome Management (PRISM), the National Registry of Myocardial Infarction 4, and the Global Registry of Acute Coronary Events (GRACE) trials revealed that the benefits of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) on acute coronary outcomes are rapidly lost and outcomes worsened if statins are discontinued during a patient's hospitalization for an acute coronary syndrome. Withdrawal of statin therapy in the first 24 hours of hospitalization for non-ST-elevation myocardial infarction increased the hospital morbidity and mortality rate versus continued therapy (11.9% vs 5.7%, p<0.01). Data from the Treating New Targets (TNT) study, however, suggested that short-term discontinuation of statin therapy in patients with stable cardiac conditions may not substantially increase the risk of acute coronary syndromes. In patients with acute coronary syndromes who discontinue statins, the rapid increase in risk of an event may result not only from the lost benefits from the therapy, but also from rebound inhibition of vascular protective substances and activation of vascular deleterious substances. Statins inhibit cholesterol synthesis in vascular cells. By reducing levels of isoprenoid intermediates, statins increase the production of nitric oxide and downregulate angiotensin II AT(1) receptors, endothelin-1, vascular inflammatory adhesion molecules, and inflammatory cytokines. These benefits are rapidly lost and often transiently reversed when statins are acutely discontinued. Acute removal of pleiotropic effects and rebound vascular dysfunction may be more important in an acute coronary event, where inflammation promotes rupture of atherosclerotic plaques and inflammatory and prothrombosis markers are present in high concentration, than in stable chronic vascular disease. In the absence of data from randomized controlled trials, current information suggests that statin therapy should be continued, and possibly boosted, during hospitalization for an acute coronary syndrome. Because statins are discontinued during the early hospitalization of many patients, practitioners must ensure that statins are not omitted, unless contraindicated, from the treatment of patients with acute coronary syndromes.
Zager, Richard A
2013-08-01
Following the induction of ischemic or toxin-mediated acute kidney injury (AKI), cellular adaptations occur that 're-program' how the kidney responds to future superimposed insults. This re-programming is not simply a short-lived phenomenon; rather it can persist for many weeks, implying that a state of 'biologic memory' has emerged. These changes can be both adaptive and maladaptive in nature and they can co-exist in time. A beneficial adaptation is the emergence of acquired cytoresistance, whereby a number of physiologic responses develop that serve to protect the kidney against further ischemic or nephrotoxic attack. Conversely, some changes are maladaptive, such as a predisposition to Gram-negative or Gram-positive bacteremia due to a renal tubular up-regulation of toll-like receptor responses. This latter change culminates in exaggerated cytokine production, and with efflux into the systemic circulation, extra-renal tissue injury can result (so-called 'organ cross talk'). Another maladaptive response is a persistent up-regulation of pro-inflammatory, pro-fibrotic and vasoconstrictive genes, culminating in progressive renal injury and ultimately end-stage renal failure. The mechanisms by which this biologic re-programming, or biologic memory, is imparted remain subjects for considerable debate. However, injury-induced, and stable, epigenetic remodeling at pro-inflammatory/pro-fibrotic genes seems likely to be involved. The goal of this editorial is to highlight that the so-called 'maintenance phase' of acute renal failure is not a static one, somewhere between injury induction and the onset of repair. Rather, this period is one in which the induction of 'biologic memory' can ultimately impact renal functional recovery, extra-renal injury and the possible transition of AKI into chronic, progressive renal disease.
Neil, Christopher; Nguyen, Thanh Ha; Kucia, Angela; Crouch, Benjamin; Sverdlov, Aaron; Chirkov, Yuliy; Mahadavan, Gnanadevan; Selvanayagam, Joseph; Dawson, Dana; Beltrame, John; Zeitz, Christopher; Unger, Steven; Redpath, Thomas; Frenneaux, Michael; Horowitz, John
2012-09-01
Tako-Tsubo cardiomyopathy (TTC) is associated with regional left ventricular dysfunction, independent of the presence of fixed coronary artery disease. Previous studies have used T2-weighted cardiac MRI to demonstrate the presence of periapical oedema. The authors sought to determine the distribution, resolution and correlates of oedema in TTC. 32 patients with TTC were evaluated at a median of 2 days after presentation, along with 10 age-matched female controls. Extent of oedema was quantified both regionally and globally; scanning was repeated in patients with TTC after 3 months. Correlations were sought between oedema and the extent of hypokinesis, catecholamine release, release of N-terminal prohormone of B-type natriuretic peptide (NT-proBNP), and markers of systemic inflammatory activation (high-sensitivity C-reactive protein and platelet response to nitric oxide). In the acute phase of TTC, T2-weighted signal intensity was greater at the apex than at the base (p<0.0001) but was nevertheless significantly elevated at the base (p<0.0001), relative to control values. Over 3 months, T2-weighted signal decreased substantially, but remained abnormally elevated (p<0.02). The regional extent of oedema correlated inversely with radial myocardial strain (except at the apex). There were also direct correlations between global T2-weighted signal and (1) plasma normetanephrine (r=0.39, p=0.04) and (2) peak NT-proBNP (r=0.39, p=0.03), but not with systemic inflammatory markers. TTC is associated with slowly resolving global myocardial oedema, the acute extent of which correlates with regional contractile disturbance and acute release of both catecholamines and NT-proBNP.