Revalidation of the Score for Neonatal Acute Physiology in the Vermont Oxford Network.
Zupancic, John A F; Richardson, Douglas K; Horbar, Jeffrey D; Carpenter, Joseph H; Lee, Shoo K; Escobar, Gabriel J
2007-01-01
Our specific objectives were (1) to document the performance of the revised Score for Neonatal Acute Physiology and the revised Score for Neonatal Acute Physiology Perinatal Extension in predicting death in the Vermont Oxford Network, compared with published normative values; (2) to determine whether this performance could be improved through recalibration of the weights for individual score items; (3) to determine the impact of including congenital anomalies in the predictive model; and (4) to compare performance against that of the Vermont Oxford Network risk adjustment, separately and in combination. Fifty-eight Vermont Oxford Network centers collected data prospectively for the revised Score for Neonatal Acute Physiology in the first 12 hours after admission of infants in 2002. Data were collected for 10,469 infants, and analyses were undertaken for 9897 who met inclusion criteria. The median revised Score for Neonatal Acute Physiology was 5, and the mean birth weight was 1951 g. Recalibration of the revised Score for Neonatal Acute Physiology and revised Score for Neonatal Acute Physiology Perinatal Extension resulted in minimal changes in their discriminatory abilities. The Vermont Oxford Network risk adjustment performed similarly, compared with the revised Score for Neonatal Acute Physiology Perinatal Extension. Current score performance was similar to that observed previously, which suggests that the revised Score for Neonatal Acute Physiology and revised Score for Neonatal Acute Physiology Perinatal Extension have not decalibrated over the 7 years since the first cohort was assembled, despite advances in neonatal care during that period. Addition of congenital anomalies to the revised Score for Neonatal Acute Physiology Perinatal Extension improved discrimination significantly, particularly for infants with birth weights of >1500 g. The Vermont Oxford Network risk adjustment performed similarly, compared with the revised Score for Neonatal Acute Physiology Perinatal Extension.
Kramer, Andrew A; Higgins, Thomas L; Zimmerman, Jack E
2014-03-01
To examine the accuracy of the original Mortality Probability Admission Model III, ICU Outcomes Model/National Quality Forum modification of Mortality Probability Admission Model III, and Acute Physiology and Chronic Health Evaluation IVa models for comparing observed and risk-adjusted hospital mortality predictions. Retrospective paired analyses of day 1 hospital mortality predictions using three prognostic models. Fifty-five ICUs at 38 U.S. hospitals from January 2008 to December 2012. Among 174,001 intensive care admissions, 109,926 met model inclusion criteria and 55,304 had data for mortality prediction using all three models. None. We compared patient exclusions and the discrimination, calibration, and accuracy for each model. Acute Physiology and Chronic Health Evaluation IVa excluded 10.7% of all patients, ICU Outcomes Model/National Quality Forum 20.1%, and Mortality Probability Admission Model III 24.1%. Discrimination of Acute Physiology and Chronic Health Evaluation IVa was superior with area under receiver operating curve (0.88) compared with Mortality Probability Admission Model III (0.81) and ICU Outcomes Model/National Quality Forum (0.80). Acute Physiology and Chronic Health Evaluation IVa was better calibrated (lowest Hosmer-Lemeshow statistic). The accuracy of Acute Physiology and Chronic Health Evaluation IVa was superior (adjusted Brier score = 31.0%) to that for Mortality Probability Admission Model III (16.1%) and ICU Outcomes Model/National Quality Forum (17.8%). Compared with observed mortality, Acute Physiology and Chronic Health Evaluation IVa overpredicted mortality by 1.5% and Mortality Probability Admission Model III by 3.1%; ICU Outcomes Model/National Quality Forum underpredicted mortality by 1.2%. Calibration curves showed that Acute Physiology and Chronic Health Evaluation performed well over the entire risk range, unlike the Mortality Probability Admission Model and ICU Outcomes Model/National Quality Forum models. Acute Physiology and Chronic Health Evaluation IVa had better accuracy within patient subgroups and for specific admission diagnoses. Acute Physiology and Chronic Health Evaluation IVa offered the best discrimination and calibration on a large common dataset and excluded fewer patients than Mortality Probability Admission Model III or ICU Outcomes Model/National Quality Forum. The choice of ICU performance benchmarks should be based on a comparison of model accuracy using data for identical patients.
Martin-Santos, R; Crippa, J A; Batalla, A; Bhattacharyya, S; Atakan, Z; Borgwardt, S; Allen, P; Seal, M; Langohr, K; Farré, M; Zuardi, A W; McGuire, P K
2012-01-01
Animal and humans studies suggest that the two main constituents of cannabis sativa, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) have quite different acute effects. However, to date the two compounds have largely been studied separately. To evaluate and compare the acute pharmacological effects of both THC and CBD in the same human volunteers. A randomised, double-blind, cross-over, placebo controlled trial was conducted in 16 healthy male subjects. Oral THC 10 mg or CBD 600 mg or placebo was administered in three consecutive sessions, at one-month interval. Physiological measures and symptom ratings were assessed before, and at 1, 2 and 3 hours post drug administration. The area under the curve (AUC) between baseline and 3 hours, and the maximum absolute change from baseline at 2 hours were analysed by one-way repeated measures analysis of variance, with drug condition (THC or CBD or placebo) as the factor. Relative to both placebo and CBD, administration of THC was associated with anxiety, dysphoria, positive psychotic symptoms, physical and mental sedation, subjective intoxication (AUC and effect at 2 hours: p < 0.01), an increase in heart rate (p < 0.05). There were no differences between CBD and placebo on any symptomatic, physiological variable. In healthy volunteers, THC has marked acute behavioural and physiological effects, whereas CBD has proven to be safe and well tolerated.
Lindsay, A; Lewis, J G; Scarrott, C; Gill, N; Gieseg, S P; Draper, N
2015-06-01
Rugby union is a sport involving high force and frequency impacts making the likelihood of injury a significant risk. The aim of this study was to measure and report the individual and group acute and cumulative physiological stress response during 3 professional rugby games through non-invasive sampling. 24 professional rugby players volunteered for the study. Urine and saliva samples were collected pre and post 3 matches. Myoglobin, salivary immunoglobulin A, cortisol, neopterin and total neopterin (neopterin+7,8-dihydroneopterin) were analysed by high performance liquid chromatography or enzyme linked immunosorbent assay. Significant increases in cortisol, myoglobin, neopterin and total neopterin when urine volume was corrected with specific gravity were observed (p<0.05). Significant decreases in salivary immunoglobulin A concentration were observed for games 1 and 2 while secretion rate decreased after games 2 and 3. Significant decreases were seen with the percent of 7,8-dihydroneopterin being converted to neopterin following games 2 and 3. The intensity of 3 professional rugby games was sufficient to elicit significant changes in the physiological markers selected for our study. Furthermore, results suggest the selected markers not only provide a means for analysing the stress encountered during a single game of rugby but also highlight the unique pattern of response for each individual player. © Georg Thieme Verlag KG Stuttgart · New York.
Shams, Soaleha; Seguin, Diane; Facciol, Amanda; Chatterjee, Diptendu; Gerlai, Robert
2017-12-01
Social isolation can be used to study behavioral, neural, and hormonal mechanisms that regulate interactions in social animals. Although isolation effects have been reported in social mammals and various fish species, systematic studies with isolated zebrafish are rare. Here, the authors examined behavior (social and nonsocial), physiological stress (whole-body cortisol levels), and neurochemicals (serotonin, dopamine, and their metabolites), following acute and chronic social isolation in adult zebrafish. To observe how isolated fish respond behaviorally to social stimuli, they exposed zebrafish to live conspecifics or animated images after acute (24 hr) or chronic (6 months) social isolation. The authors observed that isolation did not affect locomotor activity, but acute isolation had weak nonsignificant anxiogenic effects in adult zebrafish. They also found that all isolated fish responded to both live and animated social stimuli, and the stress hormone, cortisol was lower in chronically isolated fish. Finally, neurochemical analyses showed that serotonin levels increased when fish were exposed to social stimulus after acute isolation, but its metabolite 5HIAA decreased in response to social stimulus following both acute and chronic isolation. Levels of both dopamine and its metabolite DOPAC were also reduced in fish exposed to social stimulus after acute and chronic isolation. Overall, these results show that isolation in zebrafish is an effective tool to study fundamental mechanisms controlling social interaction at behavioral and physiological levels. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Castellani, John W; Young, Andrew J
2016-04-01
Cold exposure in humans causes specific acute and chronic physiological responses. This paper will review both the acute and long-term physiological responses and external factors that impact these physiological responses. Acute physiological responses to cold exposure include cutaneous vasoconstriction and shivering thermogenesis which, respectively, decrease heat loss and increase metabolic heat production. Vasoconstriction is elicited through reflex and local cooling. In combination, vasoconstriction and shivering operate to maintain thermal balance when the body is losing heat. Factors (anthropometry, sex, race, fitness, thermoregulatory fatigue) that influence the acute physiological responses to cold exposure are also reviewed. The physiological responses to chronic cold exposure, also known as cold acclimation/acclimatization, are also presented. Three primary patterns of cold acclimatization have been observed, a) habituation, b) metabolic adjustment, and c) insulative adjustment. Habituation is characterized by physiological adjustments in which the response is attenuated compared to an unacclimatized state. Metabolic acclimatization is characterized by an increased thermogenesis, whereas insulative acclimatization is characterized by enhancing the mechanisms that conserve body heat. The pattern of acclimatization is dependent on changes in skin and core temperature and the exposure duration. Published by Elsevier B.V.
Li, Xiang; Li, Xu; Li, Yi-Xiang; Zhang, Yuan; Chen, Di; Sun, Ming-Zhu; Zhao, Xin; Chen, Dong-Yan; Feng, Xi-Zeng
2015-01-01
We describe an interdisciplinary comparison of the effects of acute and chronic alcohol exposure in terms of their disturbance of light, dark and color preferences and the occurrence of Parkinson-like behavior in zebrafish through computer visual tracking, data mining, and behavioral and physiological analyses. We found that zebrafish in anxiolytic and anxious states, which are induced by acute and chronic repeated alcohol exposure, respectively, display distinct emotional reactions in light/dark preference tests as well as distinct learning and memory abilities in color-enhanced conditional place preference (CPP) tests. Additionally, compared with the chronic alcohol (1.0%) treatment, acute alcohol exposure had a significant, dose-dependent effect on anxiety, learning and memory (color preference) as well as locomotive activities. Acute exposure doses (0.5%, 1.0%, and 1.5%) generated an "inverted V" dose-dependent pattern in all of the behavioral parameters, with 1.0% having the greatest effect, while the chronic treatment had a moderate effect. Furthermore, by measuring locomotive activity, learning and memory performance, the number of dopaminergic neurons, tyrosine hydroxylase expression, and the change in the photoreceptors in the retina, we found that acute and chronic alcohol exposure induced varying degrees of Parkinson-like symptoms in zebrafish. Taken together, these results illuminated the behavioral and physiological mechanisms underlying the changes associated with learning and memory and the cause of potential Parkinson-like behaviors in zebrafish due to acute and chronic alcohol exposure.
Zhang, Yuan; Chen, Di; Sun, Ming-Zhu; Zhao, Xin; Chen, Dong-Yan; Feng, Xi-Zeng
2015-01-01
We describe an interdisciplinary comparison of the effects of acute and chronic alcohol exposure in terms of their disturbance of light, dark and color preferences and the occurrence of Parkinson-like behavior in zebrafish through computer visual tracking, data mining, and behavioral and physiological analyses. We found that zebrafish in anxiolytic and anxious states, which are induced by acute and chronic repeated alcohol exposure, respectively, display distinct emotional reactions in light/dark preference tests as well as distinct learning and memory abilities in color-enhanced conditional place preference (CPP) tests. Additionally, compared with the chronic alcohol (1.0%) treatment, acute alcohol exposure had a significant, dose-dependent effect on anxiety, learning and memory (color preference) as well as locomotive activities. Acute exposure doses (0.5%, 1.0%, and 1.5%) generated an “inverted V” dose-dependent pattern in all of the behavioral parameters, with 1.0% having the greatest effect, while the chronic treatment had a moderate effect. Furthermore, by measuring locomotive activity, learning and memory performance, the number of dopaminergic neurons, tyrosine hydroxylase expression, and the change in the photoreceptors in the retina, we found that acute and chronic alcohol exposure induced varying degrees of Parkinson-like symptoms in zebrafish. Taken together, these results illuminated the behavioral and physiological mechanisms underlying the changes associated with learning and memory and the cause of potential Parkinson-like behaviors in zebrafish due to acute and chronic alcohol exposure. PMID:26558894
Bernard, Nicola K; Kashy, Deborah A; Levendosky, Alytia A; Bogat, G Anne; Lonstein, Joseph S
2017-03-01
Attunement between mothers and infants in their hypothalamic-pituitary-adrenal (HPA) axis responsiveness to acute stressors is thought to benefit the child's emerging physiological and behavioral self-regulation, as well as their socioemotional development. However, there is no universally accepted definition of attunement in the literature, which appears to have resulted in inconsistent statistical analyses for determining its presence or absence, and contributed to discrepant results. We used a series of data analytic approaches, some previously used in the attunement literature and others not, to evaluate the attunement between 182 women and their 1-year-old infants in their HPA axis responsivity to acute stress. Cortisol was measured in saliva samples taken from mothers and infants before and twice after a naturalistic laboratory stressor (infant arm restraint). The results of the data analytic approaches were mixed, with some analyses suggesting attunement while others did not. The strengths and weaknesses of each statistical approach are discussed, and an analysis using a cross-lagged model that considered both time and interactions between mother and infant appeared the most appropriate. Greater consensus in the field about the conceptualization and analysis of physiological attunement would be valuable in order to advance our understanding of this phenomenon. © 2016 Wiley Periodicals, Inc.
Multiscale Evaluation of Thermal Dependence in the Glucocorticoid Response of Vertebrates.
Jessop, Tim S; Lane, Meagan L; Teasdale, Luisa; Stuart-Fox, Devi; Wilson, Robbie S; Careau, Vincent; Moore, Ignacio T
2016-09-01
Environmental temperature has profound effects on animal physiology, ecology, and evolution. Glucocorticoid (GC) hormones, through effects on phenotypic performance and life history, provide fundamental vertebrate physiological adaptations to environmental variation, yet we lack a comprehensive understanding of how temperature influences GC regulation in vertebrates. Using field studies and meta- and comparative phylogenetic analyses, we investigated how acute change and broadscale variation in temperature correlated with baseline and stress-induced GC levels. Glucocorticoid levels were found to be temperature and taxon dependent, but generally, vertebrates exhibited strong positive correlations with acute changes in temperature. Furthermore, reptile baseline, bird baseline, and capture stress-induced GC levels to some extent covaried with broadscale environmental temperature. Thus, vertebrate GC function appears clearly thermally influenced. However, we caution that lack of detailed knowledge of thermal plasticity, heritability, and the basis for strong phylogenetic signal in GC responses limits our current understanding of the role of GC hormones in species' responses to current and future climate variation.
2015-11-01
addressed in Study 1, was to measure the associations between state and trait anger and biases in anger-related attention and interpretation. This aim was...presented in the recent MOMRP conference, and physiological SCR data are in the last stages of analyses. 15. SUBJECT TERMS anger, aggression, attention ...threat conditions, ranging from safety to acute danger, considerable plasticity in threat-related attention and threat interpretation is required
Leptin Is Associated With Persistence of Hyperglycemia in Acute Pancreatitis
Kennedy, James I.C.; Askelund, Kathryn J.; Premkumar, Rakesh; Phillips, Anthony R.J.; Murphy, Rinki; Windsor, John A.; Petrov, Maxim S.
2016-01-01
Abstract Adipokines have many homeostatic roles, including modulation of glucose metabolism, but their role in the pathophysiology of hyperglycemia associated with acute and critical illnesses in general, and acute pancreatitis (AP) in particular, is largely unknown. This study aimed to investigate the relationship between a panel of adipokines and hyperglycemia in the early course of AP, as well as the role of adipokines as predictors of AP severity. Adiponectin, leptin, omentin, resistin, and visfatin were measured on a daily basis in the first 72 hours after hospital admission. A first set of analyses was undertaken with admission glycemia stratified by severity, and a second set of analyses was undertaken based on persistence of early hyperglycemia. All of the analyses were adjusted for confounders. A total of 32 patients with AP were included in this study. None of the studied adipokines was significantly associated with glucose level on admission. Leptin was significantly (P = 0.003) increased in patients with persistent hyperglycemia. Adiponectin was significantly associated with the Acute Physiology and Chronic Health Evaluation II (APACHE II) score in patients with persistent hyperglycemia (P = 0.015), visfatin with APACHE II score in patients with persistent hyperglycemia (P = 0.014), and omentin with APACHE II score in all of the patients regardless of the presence or absence of hyperglycemia (P = 0.021). Leptin is significantly associated with persistent hyperglycemia in the early course of AP. Omentin has a potential to become an accurate predictor of AP severity. PMID:26871770
Brugnera, A; Zarbo, C; Adorni, R; Gatti, A; Compare, A; Sakatani, K
2017-01-01
Aging is associated with changes in biological functions, such as reduced cardiovascular responses to stressful tasks. However, less is known about the influence of age on the reactivity of the prefrontal cortex (PFC) to acute stressors. Therefore, this study aimed to investigate the effects of a computerized-controlled stress task on the PFC and autonomic system activity in a sample of older and younger adults. We recruited a total of 55 healthy, right-handed persons (26 older adults with mean age 69.5, SD 5.8 years; and 29 younger adults with mean age 23.8, SD 3.3 years); groups were balanced for sex. Tasks included a control and an experimental condition: during both tasks individuals had to solve simple mental arithmetic problems. For the experimental condition, all participants were faced with a time limit that induced significant stress. Physiological indexes were collected continuously during the entire procedure using a 2-channel near infrared spectroscopy (NIRS) and an ECG monitoring system. Repeated measures ANOVA were used to assess changes in hemoglobin concentrations, and changes in both heart rate and performance outcomes. NIRS, ECG and performance data showed a significant interaction between the group and condition. Post-hoc analyses evidenced a significant increase in heart rate and Oxy-Hb concentration in the bilateral PFC between the control and experimental condition only in the younger group. Post-hoc analyses of behavioral data showed lower percentages of correct responses and higher response times in the older group. In summary, these results suggested that cardiovascular and cortical reactivity to stress tasks are a function of age. Older individuals seem to be characterized by blunted physiological reactivity, suggestive of impaired adaptive responses to acute stressors. Therefore, future studies should investigate the underlying physiological mechanisms of prefrontal and cardiovascular changes related to aging.
Economics of Early Warning Scores for identifying clinical deterioration-a systematic review.
Murphy, A; Cronin, J; Whelan, R; Drummond, F J; Savage, E; Hegarty, J
2018-02-01
In 2013, a National Early Warning System (EWS) was implemented in Ireland. Whilst evidence exists to support the clinical effectiveness of EWS in the acute health care setting, there is a paucity of information on their cost and cost effectiveness. The objective of this systematic literature review was to critically evaluate the economic literature on the use of EWS in adult patients in acute health care settings for the timely detection of physiological deterioration. A systematic literature review was conducted to accumulate the economic evidence on the use of EWS in adult patients in acute health care settings. The search yielded one health technology assessment, two budget impact analyses and two cost descriptions. Three of the studies were Irish, and considered the national EWS system. A Dutch study reported financial consequences of a single parameter EWS, as part of a rapid response system, in a surgical ward. The fifth study examined an advanced triage system in a medical emergency admission unit in Wales. The economic evidence on the use of EWS amongst adult patients in acute health care settings for the timely detection of physiological deterioration is limited. Further research is required to investigate the cost effectiveness of EWS, and the appropriateness of using standard methods to do so. The recent implementation of a national EWS in Ireland offers a unique opportunity to bridge this gap in the literature to examine the costs and cost effectiveness of a nationally implemented EWS system.
Dupont, Benoît; Delvincourt, Maxime; Koné, Mamadou; du Cheyron, Damien; Ollivier-Hourmand, Isabelle; Piquet, Marie-Astrid; Terzi, Nicolas; Dao, Thông
2015-08-01
The prognosis of cirrhotic patients in the Intensive Care Unit requires the development of predictive tools for mortality. We aimed to evaluate the ability of different prognostic scores to predict hospital mortality in these patients. A single-centre retrospective analysis was conducted of 281 hospital stays of cirrhotic patients at an Intermediate Care Unit between June 2009 and December 2010. The performance of the Simplified Acute Physiology Score (SOFA), the Simplified Acute Physiology Score (SAPS) II or III, Child-Pugh, Model for End-Stage Liver Disease (MELD), MELD-Na and the Chronic Liver Failure-Consortium Acute-on-Chronic Liver Failure score (CLIF-C ACLF) in predicting hospital mortality were compared. Mean age was 58.2±12.1 years; 77% were male. The main cause of admission was acute gastrointestinal bleeding (47%). The in-hospital mortality rate was 25.3%. Receiver operating characteristic curve analyses demonstrated that SOFA (0.82) MELD-Na (0.82) or MELD (0.81) scores at admission predicted in-hospital mortality better than Child-Pugh (0.76), SAPS II (0.77), SAPS III (0.75) or CLIF-C ACLF (0.75). We then developed the cirrhosis prognostic score (Ci-Pro), which performed better (0.89) than SOFA. SOFA, MELD and especially the Ci-Pro score show the best performance in predicting hospital mortality of cirrhotic patients admitted to an Intermediate Care Unit. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Acute physiology and chronic health evaluation (APACHE II) and Medicare reimbursement
Wagner, Douglas P.; Draper, Elizabeth A.
1984-01-01
This article describes the potential for the acute physiology score (APS) of acute physiology and chronic health evaluation (APACHE) II, to be used as a severity adjustment to diagnosis-related groups (DRG's) or other diagnostic classifications. The APS is defined by a relative value scale applied to 12 objective physiologic variables routinely measured on most hospitalized patients shortly after hospital admission. For intensive care patients, APS at admission is strongly related to subsequent resource costs of intensive care for 5,790 consecutive admissions to 13 large hospitals, across and within diagnoses. The APS could also be used to evaluate quality of care, medical technology, and the response to changing financial incentives. PMID:10311080
Loneliness and acute stress reactivity: A systematic review of psychophysiological studies.
Brown, Eoin G; Gallagher, Stephen; Creaven, Ann-Marie
2018-05-01
Physiological reactivity to acute stress has been proposed as a potential biological mechanism by which loneliness may lead to negative health outcomes such as cardiovascular disease. This review was conducted to investigate the association between loneliness and physiological responses to acute stress. A series of electronic databases were systematically searched (PsycARTICLES, PsycINFO, Medline, CINAHL Plus, EBSCOhost, PubMed, SCOPUS, Web of Science, Science Direct) for relevant studies, published up to October 2016. Eleven studies were included in the review. Overall, the majority of studies reported positive associations between loneliness and acute stress responses, such that higher levels of loneliness were predictive of exaggerated physiological reactions. However, in a few studies, loneliness was also linked with decreased stress responses for particular physiological outcomes, indicating the possible existence of blunted relationships. There was no clear pattern suggesting any sex- or stressor-based differences in these associations. The available evidence supports a link between loneliness and atypical physiological reactivity to acute stress. A key finding of this review was that greater levels of loneliness are associated with exaggerated blood pressure and inflammatory reactivity to acute stress. However, there was some indication that loneliness may also be related to blunted cardiac, cortisol, and immune responses. Overall, this suggests that stress reactivity could be one of the biological mechanisms through which loneliness impacts upon health. © 2017 Society for Psychophysiological Research.
Kramer, Andrew A; Higgins, Thomas L; Zimmerman, Jack E
2015-02-01
To compare ICU performance using standardized mortality ratios generated by the Acute Physiology and Chronic Health Evaluation IVa and a National Quality Forum-endorsed methodology and examine potential reasons for model-based standardized mortality ratio differences. Retrospective analysis of day 1 hospital mortality predictions at the ICU level using Acute Physiology and Chronic Health Evaluation IVa and National Quality Forum models on the same patient cohort. Forty-seven ICUs at 36 U.S. hospitals from January 2008 to May 2013. Eighty-nine thousand three hundred fifty-three consecutive unselected ICU admissions. None. We assessed standardized mortality ratios for each ICU using data for patients eligible for Acute Physiology and Chronic Health Evaluation IVa and National Quality Forum predictions in order to compare unit-level model performance, differences in ICU rankings, and how case-mix adjustment might explain standardized mortality ratio differences. Hospital mortality was 11.5%. Overall standardized mortality ratio was 0.89 using Acute Physiology and Chronic Health Evaluation IVa and 1.07 using National Quality Forum, the latter having a widely dispersed and multimodal standardized mortality ratio distribution. Model exclusion criteria eliminated mortality predictions for 10.6% of patients for Acute Physiology and Chronic Health Evaluation IVa and 27.9% for National Quality Forum. The two models agreed on the significance and direction of standardized mortality ratio only 45% of the time. Four ICUs had standardized mortality ratios significantly less than 1.0 using Acute Physiology and Chronic Health Evaluation IVa, but significantly greater than 1.0 using National Quality Forum. Two ICUs had standardized mortality ratios exceeding 1.75 using National Quality Forum, but nonsignificant performance using Acute Physiology and Chronic Health Evaluation IVa. Stratification by patient and institutional characteristics indicated that units caring for more severely ill patients and those with a higher percentage of patients on mechanical ventilation had the most discordant standardized mortality ratios between the two predictive models. Acute Physiology and Chronic Health Evaluation IVa and National Quality Forum models yield different ICU performance assessments due to differences in case-mix adjustment. Given the growing role of outcomes in driving prospective payment patient referral and public reporting, performance should be assessed by models with fewer exclusions, superior accuracy, and better case-mix adjustment.
Narayan, Edward J; Hero, Jean-Marc
2014-04-01
Extreme environmental temperature could impact the physiology and ecology of animals. The stress endocrine axis provides necessary physiological stress response to acute (day-day) stressors. Presently, there are no empirical evidences showing that exposure to extreme thermal stressor could cause chronic stress in amphibians. This could also modulate the physiological endocrine sensitivity to acute stressors and have serious implications for stress coping in amphibians, particularly those living in fragmented and disease prone environments. We addressed this important question using the cane toad (Rhinella marina) model from its introduced range in Queensland, Australia. We quantified their physiological endocrine sensitivity to a standard acute (capture and handling) stressor after exposing the cane toads to thermal shock at 35°C for 30min daily for 34 days. Corticosterone (CORT) responses to the capture and handling protocol were measured on three sampling intervals (days 14, 24, and 34) to determine whether the physiological endocrine sensitivity was maintained or modulated over-time. Two control groups (C1 for baseline CORT measurement only and C2 acute handled only) and two temperature treatment groups (T1 received daily thermal shock up to day 14 only and a recovery phase of 20 days and T2 received thermal shock daily for 34 days). Results showed that baseline CORT levels remained high on day 14 (combined effect of capture, captivity and thermal stress) for both T1 and T2. Furthermore, baseline CORT levels decreased for T1 once the thermal shock was removed after day 14 and returned to baseline by day 29. On the contrary, baseline CORT levels kept on increasing for T2 over the 34 days of daily thermal shocks. Furthermore, the magnitudes of the acute CORT responses or physiological endocrine sensitivity were consistently high for both C1 and T1. However, acute CORT responses for T2 toads were dramatically reduced between days 24 and 34. These novel findings suggest that repeated exposure to extreme thermal stressor could cause chronic stress and consequently suppress the physiological endocrine sensitivity to acute stressors (e.g. pathogenic diseases) in amphibians. Copyright © 2014 Elsevier Ltd. All rights reserved.
Acute hypoxia in a simulated high-altitude airdrop scenario due to oxygen system failure.
Ottestad, William; Hansen, Tor Are; Pradhan, Gaurav; Stepanek, Jan; Høiseth, Lars Øivind; Kåsin, Jan Ivar
2017-12-01
High-Altitude High Opening (HAHO) is a military operational procedure in which parachute jumps are performed at high altitude requiring supplemental oxygen, putting personnel at risk of acute hypoxia in the event of oxygen equipment failure. This study was initiated by the Norwegian Army to evaluate potential outcomes during failure of oxygen supply, and to explore physiology during acute severe hypobaric hypoxia. A simulated HAHO without supplemental oxygen was carried out in a hypobaric chamber with decompression to 30,000 ft (9,144 m) and then recompression to ground level with a descent rate of 1,000 ft/min (305 m/min). Nine subjects were studied. Repeated arterial blood gas samples were drawn throughout the entire hypoxic exposure. Additionally, pulse oximetry, cerebral oximetry, and hemodynamic variables were monitored. Desaturation evolved rapidly and the arterial oxygen tensions are among the lowest ever reported in volunteers during acute hypoxia. Pa O 2 decreased from baseline 18.4 (17.3-19.1) kPa, 138.0 (133.5-143.3) mmHg, to a minimum value of 3.3 (2.9-3.7) kPa, 24.8 (21.6-27.8) mmHg, after 180 (60-210) s, [median (range)], N = 9. Hyperventilation with ensuing hypocapnia was associated with both increased arterial oxygen saturation and cerebral oximetry values, and potentially improved tolerance to severe hypoxia. One subject had a sharp drop in heart rate and cardiac index and lost consciousness 4 min into the hypoxic exposure. A simulated high-altitude airdrop scenario without supplemental oxygen results in extreme hypoxemia and may result in loss of consciousness in some individuals. NEW & NOTEWORTHY This is the first study to investigate physiology and clinical outcome of oxygen system failure in a simulated HAHO scenario. The acquired knowledge is of great value to make valid risk-benefit analyses during HAHO training or operations. The arterial oxygen tensions reported in this hypobaric chamber study are among the lowest ever reported during acute hypoxia. Copyright © 2017 the American Physiological Society.
2010-09-01
code) 2010 Journal Article-Journal of Applied Physiology Effect of hypohydration and altitude exposure on aerobic exercise performance and acute...1563. Visit our website at http://www.the-aps.org/. Physiological Society, 9650 Rockville Pike, Bethesda MD 20814-3991. Copyright © 2010 by the American... Physiological Society. those papers emphasizing adaptive and integrative mechanisms. It is published 12 times a year (monthly) by the American
Effects of guided breath exercise on complex behaviour of heart rate dynamics.
Tavares, Bruna S; de Paula Vidigal, Giovanna; Garner, David M; Raimundo, Rodrigo D; de Abreu, Luiz Carlos; Valenti, Vitor E
2017-11-01
Cardiac autonomic regulation is influenced by changes in respiratory rate, which has been demonstrated by linear analysis of heart rate variability (HRV). Conversely, the complex behaviour is not well defined for HRV during this physiological state. In this sense, Higuchi Fractal Dimension is applied directly to the time series. It analyses the fractal dimension of discrete time sequences and is simpler and faster than correlation dimension and many other classical measures derived from chaos theory. We investigated chaotic behaviour of heart rate dynamics during guided breath exercises. We investigated 21 healthy male volunteers aged between 18 and 30 years. HRV was analysed 10 min before and 10 min during guided breath exercises. HRV was analysed in the time and frequency domain for linear analysis and through HFD for non-linear analysis. Linear analysis indicated that SDNN, pNN50, RMSSD, LF, HF and LF/HF increased during guided breath exercises. HFD analysis illustrated that between K max 20 to K max 120 intervals, was enhanced during guided breath exercises. Guided breath exercises acutely increased chaotic behaviour of HRV measured by HFD. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Validation of Intensive Care and Mechanical Ventilation Codes in Medicare Data.
Wunsch, Hannah; Kramer, Andrew; Gershengorn, Hayley B
2017-07-01
To assess the reliability of codes relevant to critically ill patients in administrative data. Retrospective cohort study linking data from Acute Physiology and Chronic Health Evaluation Outcomes, a clinical database of ICU patients with data from Medicare Provider Analysis and Review. We linked data based on matching for sex, date of birth, hospital, and date of admission to hospital. Forty-six hospitals in the United States participating in Acute Physiology and Chronic Health Evaluation Outcomes. All patients in Acute Physiology and Chronic Health Evaluation Outcomes greater than or equal to 65 years old who could be linked with hospitalization records in Medicare Provider Analysis and Review from January 1, 2009, through September 30, 2012. Of 62,451 patients in the Acute Physiology and Chronic Health Evaluation Outcomes dataset, 80.1% were matched with data in Medicare Provider Analysis and Review. All but 2.7% of Acute Physiology and Chronic Health Evaluation Outcomes ICU patients had either an ICU or coronary care unit charge in Medicare Provider Analysis and Review. In Acute Physiology and Chronic Health Evaluation Outcomes, 37.0% received mechanical ventilation during the ICU stay versus 24.1% in Medicare Provider Analysis and Review. The Medicare Provider Analysis and Review procedure codes for mechanical ventilation had high specificity (96.0%; 95% CI, 95.8-96.2), but only moderate sensitivity (58.4%; 95% CI, 57.7-59.1), with a positive predictive value of 89.6% (95% CI, 89.1-90.1) and negative predictive value of 79.7% (95% CI, 79.4-80.1). For patients with mechanical ventilation codes, Medicare Provider Analysis and Review overestimated the percentage with a duration greater than 96 hours (36.6% vs 27.3% in Acute Physiology and Chronic Health Evaluation Outcomes). There was discordance in the hospital discharge status (alive or dead) for only 0.47% of all linked records (κ = 1.00). Medicare Provider Analysis and Review data contain robust information on hospital mortality for patients admitted to the ICU but have limited ability to identify all patients who received mechanical ventilation during a critical illness. Estimates of use of mechanical ventilation in the United States should likely be revised upward.
Possible mechanisms of postprandial physiological alterations following flavan 3-ol ingestion.
Osakabe, Naomi; Terao, Junji
2018-03-01
Foods rich in flavan 3-ols are known to prevent cardiovascular diseases by reducing metabolic syndrome risks, such as hypertension, hyperglycemia, and dyslipidemia. However, the mechanisms involved in this reduction are unclear, particularly because of the poor bioavailability of flavan 3-ols. Recent metabolome analyses of feces produced after repeated ingestion of foods rich in flavan 3-ols may provide insight into the chronic physiological changes associated with the intake of flavan 3-ols. Substantial postprandial changes have been reported after flavan 3-ol ingestion, including hemodynamic and metabolic changes as well as autonomic and central nervous alterations. Taken together, the evidence suggests that flavan 3-ols have both postprandial and chronic effects, which could involve different or common mechanisms. In general, the accumulation of acute functional changes induces chronic physiological alteration. Therefore, this review highlights the postprandial action of flavan 3-ols in order to address the yet unknown mechanism(s) for their physiological function. © The Author(s) 2018. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Bahrami, Tahereh; Rejeh, Nahid; Heravi-Karimooi, Majideh; Vaismoradi, Mojtaba; Tadrisi, Seyed Davood; Sieloff, Christina
2017-12-01
This study aimed to investigate the effect of aromatherapy massage on anxiety, depression, and physiologic parameters in older patients with acute coronary syndrome. This randomized controlled trial was conducted on 90 older women with acute coronary syndrome. The participants were randomly assigned into the intervention and control groups (n = 45). The intervention group received reflexology with lavender essential oil, but the control group only received routine care. Physiologic parameters, the levels of anxiety and depression in the hospital were evaluated using a checklist and the Hospital's Anxiety and Depression Scale, respectively, before and immediately after the intervention. Significant differences in the levels of anxiety and depression were reported between the groups after the intervention. The analysis of physiological parameters revealed a statistically significant reduction (P < .05) in systolic blood pressure, diastolic blood pressure, mean arterial pressure, and heart rate. However, no significant difference was observed in the respiratory rate. Aromatherapy massage can be considered by clinical nurses an efficient therapy for alleviating psychological and physiological responses among older women suffering from acute coronary syndrome. © 2017 John Wiley & Sons Australia, Ltd.
Ginty, Annie T; Masters, Nicole A; Nelson, Eliza B; Kaye, Karen T; Conklin, Sarah M
2017-03-01
Extreme cardiovascular reactions to psychological stress have been associated with traumatic life experiences. Previous studies have focused on the occurrence or frequency of abuse rather than type of abuse. We examined how occurrence, frequency, and the type of abuse history are related to cardiovascular reactivity (CVR) to acute psychological stress. The study consisted of between group and continuous analyses to examine the association between occurrence, type, and frequency of abuse with cardiovascular reactions to acute psychological stress. Data from 64 participants were collected. Heart rate, systolic blood pressure, and diastolic blood pressure were measured at baseline and during a standard mental arithmetic stress task. Individuals who experienced abuse showed diminished CVR to acute psychological stress; this was driven specifically by the history of sexual abuse. Frequency of abuse did not relate to stress reactions. These findings accord with previous work suggesting a relationship between traumatic life experience and hypoarousal in physiological reactivity and extend previous findings by suggesting the relationship may be driven by sexual abuse.
Prior Acute Mental Exertion in Exercise and Sport
Silva-Júnior, Fernando Lopes e; Emanuel, Patrick; Sousa, Jordan; Silva, Matheus; Teixeira, Silmar; Pires, Flávio Oliveira; Machado, Sérgio; Arias-Carrion, Oscar
2016-01-01
Introduction: Mental exertion is a psychophysiological state caused by sustained and prolonged cognitive activity. The understanding of the possible effects of acute mental exertion on physical performance, and their physiological and psychological responses are of great importance for the performance of different occupations, such as military, construction workers, athletes (professional or recreational) or simply practicing regular exercise, since these occupations often combine physical and mental tasks while performing their activities. However, the effects of implementation of a cognitive task on responses to aerobic exercise and sports are poorly understood. Our narrative review aims to provide information on the current research related to the effects of prior acute mental fatigue on physical performance and their physiological and psychological responses associated with exercise and sports. Methods: The literature search was conducted using the databases PubMed, ISI Web of Knowledge and PsycInfo using the following terms and their combinations: “mental exertion”, “mental fatigue”, “mental fatigue and performance”, “mental exertion and sports” “mental exertion and exercise”. Results: We concluded that prior acute mental exertion affects effectively the physiological and psychophysiological responses during the cognitive task, and performance in exercise. Conclusion: Additional studies involving prior acute mental exertion, exercise/sports and physical performance still need to be carried out in order to analyze the physiological, psychophysiological and neurophysiological responses subsequently to acute mental exertion in order to identify cardiovascular factors, psychological, neuropsychological associates. PMID:27867415
2013-01-01
et al., 1980); presumably, longer-term moderate-altitude res- idence should reduce AMS symptoms even more, since many physiologic and hematologic...Effect of six days of staging on physiologic adjustments and acute mountain sickness during ascent to 4300 m. High Alt Med Biol 10: 253–260. Beidleman...Brothers MD, Doan BK, Zupan MF, Wile AL, Wilber RL, and Byrnes WC. (2010). Hematological and physiological adap- tations following 46 weeks of moderate
Tyagi, Ritu; Rana, Poonam; Gupta, Mamta; Bhatnagar, Deepak; Srivastava, Shatakshi; Roy, Raja; Khushu, Subash
2014-03-25
Heavy metal tungsten alloys (HMTAs) have been found to be safer alternatives for making military munitions. Recently, some studies demonstrating the toxic potential of HMTAs have raised concern over the safety issues, and further propose that HMTAs exposure may lead to physiological disturbances as well. To look for the systemic effect of acute toxicity of HMTA based metals salt, (1)H nuclear magnetic resonance ((1)H NMR) spectroscopic profiling of rat urine was carried out. Male Sprague Dawley rats were administered (intraperitoneal) low and high dose of mixture of HMTA based metals salt and NMR spectroscopy was carried out in urine samples collected at 8, 24, 72 and 120 h post dosing (p.d.). Serum biochemical parameters and liver histopathology were also conducted. The (1)H NMR spectra were analysed using multivariate analysis techniques to show the time- and dose-dependent biochemical variations in post HMTA based metals salt exposure. Urine metabolomic analysis showed changes associated with energy metabolism, amino acids, N-methyl nicotinamide, membrane and gut flora metabolites. Multivariate analysis showed maximum variation with best classification of control and treated groups at 24h p.d. At the end of the study, for the low dose group most of the changes at metabolite level reverted to control except for the energy metabolites; whereas, in the high dose group some of the changes still persisted. The observations were well correlated with histopathological and serum biochemical parameters. Further, metabolic pathway analysis clarified that amongst all the metabolic pathways analysed, tricarboxylic acid cycle was most affected at all the time points indicating a switchover in energy metabolism from aerobic to anaerobic. These results suggest that exposure of rats to acute doses of HMTA based metals salt disrupts physiological metabolism with moderate injury to the liver, which might indirectly result from heavy metals induced oxidative stress. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Clark, Melody S; Thorne, Michael A S; Amaral, Ana; Vieira, Florbela; Batista, Frederico M; Reis, João; Power, Deborah M
2013-01-01
Understanding the environmental responses of an invasive species is critical in predicting how ecosystem composition may be transformed in the future, especially under climate change. In this study, Crassostrea gigas, a species well adapted to the highly variable intertidal environment, was exposed to the chronic environmental challenges of temperature (19 and 24°C) and pH (ambient seawater and a reduction of 0.4 pH units) in an extended 3-month laboratory-based study. Physiological parameters were measured (condition index, shell growth, respiration, excretion rates, O:N ratios, and ability to repair shell damage) alongside molecular analyses. Temperature was by far the most important stressor, as demonstrated by reduced condition indexes and shell growth at 24°C, with relatively little effect detected for pH. Transcriptional profiling using candidate genes and SOLiD sequencing of mantle tissue revealed that classical “stress” genes, previously reported to be upregulated under acute temperature challenges, were not significantly expressed in any of the treatments, emphasizing the different response between acute and longer term chronic stress. The transcriptional profiling also elaborated on the cellular responses underpinning the physiological results, including the identification of the PI3K/AKT/mTOR pathway as a potentially novel marker for chronic environmental challenge. This study represents a first attempt to understand the energetic consequences of cumulative thermal stress on the intertidal C. gigas which could significantly impact on coastal ecosystem biodiversity and function in the future. PMID:24223268
Analysis of lipid raft molecules in the living brain slices.
Kotani, Norihiro; Nakano, Takanari; Ida, Yui; Ito, Rina; Hashizume, Miki; Yamaguchi, Arisa; Seo, Makoto; Araki, Tomoyuki; Hojo, Yasushi; Honke, Koichi; Murakoshi, Takayuki
2017-08-24
Neuronal plasma membrane has been thought to retain a lot of lipid raft components which play important roles in the neural function. Although the biochemical analyses of lipid raft using brain tissues have been extensively carried out in the past 20 years, many of their experimental conditions do not coincide with those of standard neuroscience researches such as neurophysiology and neuropharmacology. Hence, the physiological methods for lipid raft analysis that can be compatible with general neuroscience have been required. Herein, we developed a system to physiologically analyze ganglioside GM1-enriched lipid rafts in brain tissues using the "Enzyme-Mediated Activation of Radical Sources (EMARS)" method that we reported (Kotani N. et al. Proc. Natl. Acad. Sci. U S A 105, 7405-7409 (2008)). The EMARS method was applied to acute brain slices prepared from mouse brains in aCSF solution using the EMARS probe, HRP-conjugated cholera toxin subunit B, which recognizes ganglioside GM1. The membrane molecules present in the GM1-enriched lipid rafts were then labeled with fluorescein under the physiological condition. The fluorescein-tagged lipid raft molecules called "EMARS products" distributed differentially among various parts of the brain. On the other hand, appreciable differences were not detected among segments along the longitudinal axis of the hippocampus. We further developed a device to label the lipid raft molecules in acute hippocampal slices under two different physiological conditions to detect dynamics of the lipid raft molecules during neural excitation. Using this device, several cell membrane molecules including Thy1, known as a lipid raft resident molecule in neurons, were confirmed by the EMARS method in living hippocampal slices. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
This study examined the effect of feeding OmniGen-AF (OG; Prince Agri Products) on the physiological and acute phase responses (APR) of newly-weaned heifers to an endotoxin (lipopolysaccharide; LPS) challenge. Brahman heifers (n=24; 183±5 kilograms) from the Texas AgriLife Research Center in Overton...
USDA-ARS?s Scientific Manuscript database
This study examined the effect of feeding dried citrus pulp (CP) pellets on the physiological and acute phase responses (APR) of newly-received crossbred heifers to an endotoxin (lipopolysaccharide; LPS) challenge. Heifers (n=24; 218.3±2.4 kg) were obtained from commercial sale barns and transported...
Hemodynamic Instability during Dialysis: The Potential Role of Intradialytic Exercise
Horton, Elizabeth Jane; Renshaw, Derek; Jimenez, Alofonso; Krishnan, Nithya
2018-01-01
Acute haemodynamic instability is a natural consequence of disordered cardiovascular physiology during haemodialysis (HD). Prevalence of intradialytic hypotension (IDH) can be as high as 20–30%, contributing to subclinical, transient myocardial ischemia. In the long term, this results in progressive, maladaptive cardiac remodeling and impairment of left ventricular function. This is thought to be a major contributor to increased cardiovascular mortality in end stage renal disease (ESRD). Medical strategies to acutely attenuate haemodynamic instability during HD are suboptimal. Whilst a programme of intradialytic exercise training appears to facilitate numerous chronic adaptations, little is known of the acute physiological response to this type of exercise. In particular, the potential for intradialytic exercise to acutely stabilise cardiovascular hemodynamics, thus preventing IDH and myocardial ischemia, has not been explored. This narrative review aims to summarise the characteristics and causes of acute haemodynamic instability during HD, with an overview of current medical therapies to treat IDH. Moreover, we discuss the acute physiological response to intradialytic exercise with a view to determining the potential for this nonmedical intervention to stabilise cardiovascular haemodynamics during HD, improve coronary perfusion, and reduce cardiovascular morbidity and mortality in ESRD. PMID:29682559
Engerström, Lars; Nolin, Thomas; Mårdh, Caroline; Sjöberg, Folke; Karlström, Göran; Fredrikson, Mats; Walther, Sten M
2017-12-01
The Simplified Acute Physiology 3 outcome prediction model has a narrow time window for recording physiologic measurements. Our objective was to examine the prevalence and impact of missing physiologic data on the Simplified Acute Physiology 3 model's performance. Retrospective analysis of prospectively collected data. Sixty-three ICUs in the Swedish Intensive Care Registry. Patients admitted during 2011-2014 (n = 107,310). None. Model performance was analyzed using the area under the receiver operating curve, scaled Brier's score, and standardized mortality rate. We used a recalibrated Simplified Acute Physiology 3 model and examined model performance in the original dataset and in a dataset of complete records where missing data were generated (simulated dataset). One or more data were missing in 40.9% of the admissions, more common in survivors and low-risk admissions than in nonsurvivors and high-risk admissions. Discrimination did not decrease with one to two missing variables, but accuracy was highest with no missing data. Calibration was best in the original dataset with a mix of full records and records with some missing values (area under the receiver operating curve was 0.85, scaled Brier 27%, and standardized mortality rate 0.99). With zero, one, and two data missing, the scaled Brier was 31%, 26%, and 21%; area under the receiver operating curve was 0.84, 0.87, and 0.89; and standardized mortality rate was 0.92, 1.05 and 1.10, respectively. Datasets where the missing data were simulated for oxygenation or oxygenation and hydrogen ion concentration together performed worse than datasets with these data originally missing. There is a coupling between missing physiologic data, admission type, low risk, and survival. Increased loss of physiologic data reduced model performance and will deflate mortality risk, resulting in falsely high standardized mortality rates.
Narayan, Edward J; Hero, Jean-Marc
2014-01-01
Climatic warming is a global problem and acute thermal stressor in particular could be considered as a major stressor for wildlife. Cane toads (Rhinella marina) have expanded their range into warmer regions of Australia and they provide a suitable model species to study the sub-lethal impacts of thermal stressor on the endocrine physiology of amphibians. Presently, there is no information to show that exposure to an acute thermal stressor could initiate a physiological stress (glucocorticoid) response and secondly, the possible effects on reproductive hormones and performance. Answering these questions is important for understanding the impacts of extreme temperature on amphibians. In this study, we experimented on cane toads from Queensland, Australia by acclimating them to mildly warm temperature (25°C) and then exposing to acute temperature treatments of 30°, 35° or 40°C (hypothetical acute thermal stressors). We measured acute changes in the stress hormone corticosterone and the reproductive hormone testosterone using standard capture and handling protocol and quantified the metabolites of both hormones non-invasively using urinary enzyme-immunoassays. Furthermore, we measured performance trait (i.e. righting response score) in the control acclimated and the three treatment groups. Corticosterone stress responses increased in all toads during exposure to an acute thermal stressor. Furthermore, exposure to a thermal stressor also decreased testosterone levels in all toads. The duration of the righting response (seconds) was longer for toads that were exposed to 40°C than to 30°, 35° or 25°C. The increased corticosterone stress response with increased intensity of the acute thermal stressor suggests that the toads perceived this treatment as a stressor. Furthermore, the results also highlight a potential trade-off with performance and reproductive hormones. Ultimately, exposure acute thermal stressors due to climatic variability could impact amphibians at multiple eco-physiological levels through impacts on endocrine physiology, performance and potentially fitness traits (e.g. reproductive output).
Narayan, Edward J.; Hero, Jean-Marc
2014-01-01
Climatic warming is a global problem and acute thermal stressor in particular could be considered as a major stressor for wildlife. Cane toads (Rhinella marina) have expanded their range into warmer regions of Australia and they provide a suitable model species to study the sub-lethal impacts of thermal stressor on the endocrine physiology of amphibians. Presently, there is no information to show that exposure to an acute thermal stressor could initiate a physiological stress (glucocorticoid) response and secondly, the possible effects on reproductive hormones and performance. Answering these questions is important for understanding the impacts of extreme temperature on amphibians. In this study, we experimented on cane toads from Queensland, Australia by acclimating them to mildly warm temperature (25°C) and then exposing to acute temperature treatments of 30°, 35° or 40°C (hypothetical acute thermal stressors). We measured acute changes in the stress hormone corticosterone and the reproductive hormone testosterone using standard capture and handling protocol and quantified the metabolites of both hormones non-invasively using urinary enzyme-immunoassays. Furthermore, we measured performance trait (i.e. righting response score) in the control acclimated and the three treatment groups. Corticosterone stress responses increased in all toads during exposure to an acute thermal stressor. Furthermore, exposure to a thermal stressor also decreased testosterone levels in all toads. The duration of the righting response (seconds) was longer for toads that were exposed to 40°C than to 30°, 35° or 25°C. The increased corticosterone stress response with increased intensity of the acute thermal stressor suggests that the toads perceived this treatment as a stressor. Furthermore, the results also highlight a potential trade-off with performance and reproductive hormones. Ultimately, exposure acute thermal stressors due to climatic variability could impact amphibians at multiple eco-physiological levels through impacts on endocrine physiology, performance and potentially fitness traits (e.g. reproductive output). PMID:24643017
Sumner, Jennifer A.; Powers, Abigail; Jovanovic, Tanja; Koenen, Karestan C.
2015-01-01
The NIMH Research Domain Criteria (RDoC) initiative aims to describe key dimensional constructs underlying mental function across multiple units of analysis—from genes to observable behaviors—in order to better understand psychopathology. The acute threat (“fear”) construct of the RDoC Negative Valence System has been studied extensively from a translational perspective, and is highly pertinent to numerous psychiatric conditions, including anxiety and trauma-related disorders. We examined genetic contributions to the construct of acute threat at two units of analysis within the RDoC framework: 1) neural circuits and 2) physiology. Specifically, we focused on genetic influences on activation patterns of frontolimbic neural circuitry and on startle, skin conductance, and heart rate responses. Research on the heritability of activation in threat-related frontolimbic neural circuitry is lacking, but physiological indicators of acute threat have been found to be moderately heritable (35-50%). Genetic studies of the neural circuitry and physiology of acute threat have almost exclusively relied on the candidate gene method and, as in the broader psychiatric genetics literature, most findings have failed to replicate. The most robust support has been demonstrated for associations between variation in the serotonin transporter (SLC6A4) and catechol-O-methyltransferase (COMT) genes with threat-related neural activation and physiological responses. However, unbiased genome-wide approaches using very large samples are needed for gene discovery, and these can be accomplished with collaborative consortium-based research efforts, such as those of the Psychiatric Genomics Consortium (PGC) and Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consortium. PMID:26377804
USDA-ARS?s Scientific Manuscript database
A study was conducted to determine the effect of feeding yeast cell wall (YCW) products on the physiological and acute phase responses of crossbred newly-received heifers to an endotoxin challenge. Heifers (n = 24; 219 ± 2.4 kg) were separated into treatment groups receiving a Control diet (n = 8), ...
USDA-ARS?s Scientific Manuscript database
A study was conducted to determine the effect of feeding yeast cell wall (YCW) products on the physiological and acute phase responses of crossbred newly-received heifers to endotoxin (lipopolysaccharide; LPS) challenge. Heifers (n=24; 218.9+/-2.4 kg) were obtained from commercial sale barns and tra...
Physiological determinants of human acute hypoxia tolerance.
DOT National Transportation Integrated Search
2013-11-01
AbstractIntroduction. We investigated possible physiological determinants of variability in hypoxia tolerance in subjects given a 5-minute normobaric exposure to 25,000 ft equivalent. Physiological tolerance to hypoxia was defined as the magnitude of...
Harte, Christopher B; Meston, Cindy M
2008-05-01
Extensive research suggests that long-term cigarette smoking is an independent risk factor for the introduction of sexual dysfunction in men. However, results of limited data investigating this relationship in women are mixed. No studies have examined the acute effects of tobacco or nicotine on physiological sexual response in women. Controlled experimental studies examining acute effects of isolated nicotine intake on female physiological sexual responses are necessary in order to help elucidate tobacco's potential role in the development and/or maintenance of sexual impairment in women. To examine whether isolated nicotine intake acutely affects sexual arousal responses in nonsmoking women. Twenty-five sexually functional women (mean age = 20 years) each with less than 100 direct exposures to nicotine completed two counterbalanced conditions in which they were randomized to received either nicotine gum (6 mg) or placebo gum, both administered double-blind and matched for appearance, taste, and consistency, approximately 40 minutes prior to viewing an erotic film. Physiological (changes in vaginal pulse amplitude via vaginal photoplethysmography) and subjective (continuous self-report) sexual responses to erotic stimuli were examined, as well as changes in mood. Nicotine significantly reduced genital responses to the erotic films (P = 0.05), corresponding to a 30% attenuation in physiological sexual arousal. This occurred in 11 of 18 women with valid physiological assessments. Nicotine had no significant effect on continuous self-report ratings of sexual arousal (P = 0.45), or on mood (all Ps > 0.05). Acute nicotine intake significantly attenuates physiological sexual arousal in healthy nonsmoking women. Our findings provide support to the hypothesis that nicotine may be the primary pharmacological agent responsible for genital hemodynamic disruption, thereby facilitating a cascade of biochemical and vascular events which may impair normal sexual arousal responses.
Use of concept mapping in an undergraduate introductory exercise physiology course.
Henige, Kim
2012-09-01
Physiology is often considered a challenging course for students. It is up to teachers to structure courses and create learning opportunities that will increase the chance of student success. In an undergraduate exercise physiology course, concept maps are assigned to help students actively process and organize information into manageable and meaningful chunks and to teach them to recognize the patterns and regularities of physiology. Students are first introduced to concept mapping with a commonly relatable nonphysiology concept and are then assigned a series of maps that become more and more complex. Students map the acute response to a drop in blood pressure, the causes of the acute increase in stroke volume during cardiorespiratory exercise, and the factors contributing to an increase in maximal O(2) consumption with cardiorespiratory endurance training. In the process, students draw the integrative nature of physiology, identify causal relationships, and learn about general models and core principles of physiology.
Pietraszek-Grzywaczewska, Iwona; Bernas, Szymon; Łojko, Piotr; Piechota, Anna; Piechota, Mariusz
2016-01-01
Scoring systems in critical care patients are essential for predicting of the patient outcome and evaluating the therapy. In this study, we determined the value of the Acute Physiology and Chronic Health Evaluation II (APACHE II), Simplified Acute Physiology Score II (SAPS II), Sequential Organ Failure Assessment (SOFA) and Glasgow Coma Scale (GCS) scoring systems in the prediction of mortality in adult patients admitted to the intensive care unit (ICU) with severe purulent bacterial meningitis. We retrospectively analysed data from 98 adult patients with severe purulent bacterial meningitis who were admitted to the single ICU between March 2006 and September 2015. Univariate logistic regression identified the following risk factors of death in patients with severe purulent bacterial meningitis: APACHE II, SAPS II, SOFA, and GCS scores, and the lengths of ICU stay and hospital stay. The independent risk factors of patient death in multivariate analysis were the SAPS II score, the length of ICU stay and the length of hospital stay. In the prediction of mortality according to the area under the curve, the SAPS II score had the highest accuracy followed by the APACHE II, GCS and SOFA scores. For the prediction of mortality in a patient with severe purulent bacterial meningitis, SAPS II had the highest accuracy.
Su, Yingying; Wang, Miao; Liu, Yifei; Ye, Hong; Gao, Daiquan; Chen, Weibi; Zhang, Yunzhou; Zhang, Yan
2014-12-01
This study aimed to conduct and assess a module modified acute physiology and chronic health evaluation (MM-APACHE) II model, based on disease categories modified-acute physiology and chronic health evaluation (DCM-APACHE) II model, in predicting mortality more accurately in neuro-intensive care units (N-ICUs). In total, 1686 patients entered into this prospective study. Acute physiology and chronic health evaluation (APACHE) II scores of all patients on admission and worst 24-, 48-, 72-hour scores were obtained. Neurological diagnosis on admission was classified into five categories: cerebral infarction, intracranial hemorrhage, neurological infection, spinal neuromuscular (SNM) disease, and other neurological diseases. The APACHE II scores of cerebral infarction, intracranial hemorrhage, and neurological infection patients were used for building the MM-APACHE II model. There were 1386 cases for cerebral infarction disease, intracranial hemorrhage disease, and neurological infection disease. The logistic linear regression showed that 72-hour APACHE II score (Wals = 173.04, P < 0.001) and disease classification (Wals = 12.51, P = 0.02) were of importance in forecasting hospital mortality. Module modified acute physiology and chronic health evaluation II model, built on the variables of the 72-hour APACHE II score and disease category, had good discrimination (area under the receiver operating characteristic curve (AU-ROC = 0.830)) and calibration (χ2 = 12.518, P = 0.20), and was better than the Knaus APACHE II model (AU-ROC = 0.778). The APACHE II severity of disease classification system cannot provide accurate prognosis for all kinds of the diseases. A MM-APACHE II model can accurately predict hospital mortality for cerebral infarction, intracranial hemorrhage, and neurologic infection patients in N-ICU.
Sex differences in physiological reactivity to acute psychosocial stress in adolescence.
Ordaz, Sarah; Luna, Beatriz
2012-08-01
Females begin to demonstrate greater negative affective responses to stress than males in adolescence. This may reflect the concurrent emergence of underlying differences in physiological response systems, including corticolimbic circuitries, the hypothalamic-pituitary-adrenal axis (HPAA), and the autonomic nervous system (ANS). This review examines when sex differences in physiological reactivity to acute psychosocial stress emerge and the directionality of these differences over development. Indeed, the literature indicates that sex differences emerge during adolescence and persist into adulthood for all three physiological response systems. However, the directionality of the differences varies by system. The emerging corticolimbic reactivity literature suggests greater female reactivity, particularly in limbic regions densely innervated by gonadal hormone receptors. In contrast, males generally show higher levels of HPAA and ANS reactivity. We argue that the contrasting directionality of corticolimbic and peripheral physiological responses may reflect specific effects of gonadal hormones on distinct systems and also sex differences in evolved behavioral responses that demand different levels of peripheral physiological activation. Studies that examine both subjective reports of negative affect and physiological responses indicate that beginning in adolescence, females respond to acute stressors with more intense negative affect than males despite their comparatively lower peripheral physiological responses. This dissociation is not clearly explained by sex differences in the strength of the relationship between physiological and subjective responses. We suggest that females' greater subjective responsivity may instead arise from a greater activity in brain regions that translate stress responses to subjective awareness in adolescence. Future research directions include investigations of the role of pubertal hormones in physiological reactivity across all systems, examining the relationship of corticolimbic reactivity and negative affect, and sex differences in emotion regulation processes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sex differences in physiological reactivity to acute psychosocial stress in adolescence
Ordaz, Sarah; Luna, Beatriz
2012-01-01
Summary Females begin to demonstrate greater negative affective responses to stress than males in adolescence. This may reflect the concurrent emergence of underlying differences in physiological response systems, including corticolimbic circuitries, the hypothalamic—pituitary— adrenal axis (HPAA), and the autonomic nervous system (ANS). This review examines when sex differences in physiological reactivity to acute psychosocial stress emerge and the directionality of these differences over development. Indeed, the literature indicates that sex differences emerge during adolescence and persist into adulthood for all three physiological response systems. However, the directionality of the differences varies by system. The emerging corti-colimbic reactivity literature suggests greater female reactivity, particularly in limbic regions densely innervated by gonadal hormone receptors. In contrast, males generally show higher levels of HPAA and ANS reactivity. We argue that the contrasting directionality of corticolimbic and peripheral physiological responses may reflect specific effects of gonadal hormones on distinct systems and also sex differences in evolved behavioral responses that demand different levels of peripheral physiological activation. Studies that examine both subjective reports of negative affect and physiological responses indicate that beginning in adolescence, females respond to acute stressors with more intense negative affect than males despite their comparatively lower peripheral physiological responses. This dissociation is not clearly explained by sex differences in the strength of the relationship between physiological and subjective responses. We suggest that females' greater subjective responsivity may instead arise from a greater activity in brain regions that translate stress responses to subjective awareness in adolescence. Future research directions include investigations of the role of pubertal hormones in physiological reactivity across all systems, examining the relationship of corticolimbic reactivity and negative affect, and sex differences in emotion regulation processes. PMID:22281210
Cavigelli, Sonia A; Bao, Alexander D; Bourne, Rebecca A; Caruso, Michael J; Caulfield, Jasmine I; Chen, Mary; Smyth, Joshua M
2018-04-12
Chronic mild stress can lead to negative health outcomes. Frequency, duration, and intensity of acute stressors can affect health-related processes. We tested whether the temporal pattern of daily acute stressors (clustered or dispersed across the day) affects depression-related physiology. We used a rodent model to keep stressor frequency, duration, and intensity constant, and experimentally manipulated the temporal pattern of acute stressors delivered during the active phase of the day. Adult male Sprague-Dawley rats were exposed to one of three chronic mild stress groups: Clustered: stressors that occurred within 1 hour of each other (n = 21), Dispersed: stressors that were spread out across the active phase (n = 21), and Control: no stressors presented (n = 21). Acute mild stressors included noise, strobe lights, novel cage, cage tilt, wet bedding, and water immersion. Depression-related outcomes included: sucrose preference, body weight, circulating glucocorticoid (corticosterone) concentration after a novel acute stressor and during basal morning and evening times, and endotoxin-induced circulating interleukin-6 concentrations. Compared to control rats, those in the Clustered group gained less weight, consumed less sucrose, had a blunted acute corticosterone response, and an accentuated acute interleukin-6 response. Rats in the Dispersed group had an attenuated corticosterone decline during the active period and after an acute stressor compared to the Control group. During a chronic mild stress experience, the temporal distribution of daily acute stressors affected health-related physiologic processes. Regular exposure to daily stressors in rapid succession may predict more depression-related symptoms, whereas exposure to stressors dispersed throughout the day may predict diminished glucocorticoid negative feedback.
Hendrawan, Donny; Yamakawa, Kaori; Kimura, Motohiro; Murakami, Hiroki; Ohira, Hideki
2012-06-01
Individual differences in baseline executive functioning (EF) capacities have been shown to predict state anxiety during acute stressor exposure. However, no previous studies have clearly demonstrated the relationship between EF and physiological measures of stress. The present study investigated the efficacy of several well-known EF tests (letter fluency, Stroop test, and Wisconsin Card Sorting Test) in predicting both subjective and physiological stress reactivity during acute psychosocial stress exposure. Our results show that letter fluency served as the best predictor for both types of reactivity. Specifically, the higher the letter fluency score, the lower the acute stress reactivity after controlling for the baseline stress response, as indicated by lower levels of state anxiety, negative mood, salivary cortisol, and skin conductance. Moreover, the predictive power of the letter fluency test remained significant for state anxiety and cortisol indices even after further adjustments for covariates by adding the body mass index (BMI) as a covariate. Thus, good EF performance, as reflected by high letter fluency scores, may dampen acute stress responses, which suggests that EF processes are directly associated with aspects of stress regulation. Copyright © 2012 Elsevier B.V. All rights reserved.
Auer, Brandon J; Calvi, Jessica L; Jordan, Nicolas M; Schrader, David; Byrd-Craven, Jennifer
2018-08-01
Worry or fear related to speaking in front of others, or more broadly, communicating and interacting with others, is common. At elevated levels, however, it may contribute to heightened stress reactivity during acute speaking challenges. The purpose of this study was to examine multi-system physiological stress reactivity in the context of high-stakes public speaking while considering the impact of hypothesized individual difference risk factors. University student participants (n = 95) delivering speeches as a heavily-weighted component of their final grade had saliva samples collected immediately prior to speaking, immediately after, and 20 min after speech completion. Saliva samples were assayed for alpha amylase (sAA), cortisol, and interleukin-1 beta (IL-1β). Self-reported communication anxiety, social interaction anxiety, rejection sensitivity, and sex were assessed as risk factors for heightened stress reactivity. Salivary sAA, cortisol, and IL-1β significantly changed following speech delivery. Multivariate analyses demonstrated that elevated levels of self-reported communication anxiety and social interaction anxiety were independently associated with increased cortisol and IL-1β responses and combined to enhance HPA axis and inflammatory cytokine activity further (i.e., cortisol and IL-1β AUC I ). Sex and rejection sensitivity were unrelated to physiological stress reactivity. These findings suggest that individuals with elevated communication and interaction fears may be at increased risk of heightened neuroendocrine and inflammatory responses following exposure to acute social stressors. Both types of anxiety may combine to increase physiological reactivity further, with unknown, though likely insalubrious, health consequences over time. Copyright © 2018 Elsevier Ltd. All rights reserved.
Verheijen, Marcha; Schrooders, Yannick; Gmuender, Hans; Nudischer, Ramona; Clayton, Olivia; Hynes, James; Niederer, Steven; Cordes, Henrik; Kuepfer, Lars; Kleinjans, Jos; Caiment, Florian
2018-05-24
Doxorubicin (DOX) is a chemotherapeutic agent of which the medical use is limited due to cardiotoxicity. While acute cardiotoxicity is reversible, chronic cardiotoxicity is persistent or progressive, dose-dependent and irreversible. While DOX mechanisms of action are not fully understood yet, 3 toxicity processes are known to occur in vivo: cardiomyocyte dysfunction, mitochondrial dysfunction and cell death. We present an in vitro experimental design aimed at detecting DOX-induced cardiotoxicity by obtaining a global view of the induced molecular mechanisms through RNA-sequencing. To better reflect the in vivo situation, human 3D cardiac microtissues were exposed to physiologically-based pharmacokinetic (PBPK) relevant doses of DOX for 2 weeks. We analysed a therapeutic and a toxic dosing profile. Transcriptomics analysis revealed significant gene expression changes in pathways related to "striated muscle contraction" and "respiratory electron transport", thus suggesting mitochondrial dysfunction as an underlying mechanism for cardiotoxicity. Furthermore, expression changes in mitochondrial processes differed significantly between the doses. Therapeutic dose reflects processes resembling the phenotype of delayed chronic cardiotoxicity, while toxic doses resembled acute cardiotoxicity. Overall, these results demonstrate the capability of our innovative in vitro approach to detect the three known mechanisms of DOX leading to toxicity, thus suggesting its potential relevance for reflecting the patient situation. Our study also demonstrated the importance of applying physiologically relevant doses during toxicological research, since mechanisms of acute and chronic toxicity differ. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Circulating microRNAs as emerging cardiac biomarkers responsive to acute exercise.
de Gonzalo-Calvo, David; Dávalos, Alberto; Fernández-Sanjurjo, Manuel; Amado-Rodríguez, Laura; Díaz-Coto, Susana; Tomás-Zapico, Cristina; Montero, Ana; García-González, Ángela; Llorente-Cortés, Vicenta; Heras, Maria Eugenia; Boraita Pérez, Araceli; Díaz-Martínez, Ángel E; Úbeda, Natalia; Iglesias-Gutiérrez, Eduardo
2018-08-01
Circulating microRNAs (c-miRNAs) are mediators of intercellular communication with great potential as cardiac biomarkers. The analysis of c-miRNAs in response to physiological stress, such as exercise, would provide valuable information for clinical practice and a deeper understanding of the molecular response to physical activity. Here, we analysed for the first time the acute exercise response of c-miRNAs reported as biomarkers of cardiac disease in a well-characterized cohort of healthy active adults. Blood samples were collected immediately before and after (0 h, 24 h, 72 h) a 10-km race, a half-marathon (HM) and a marathon (M). Serum RNA from 10-km and M samples was extracted and a panel of 74 miRNAs analysed using RT-qPCR. c-miRNA response was compared with a panel of nine cardiac biomarkers. Functional enrichment analysis was performed. Pre- and post-M echocardiographic analyses were carried out. Serum levels of all cardiac biomarkers were upregulated in a dose-dependent manner in response to exercise, even in the absence of symptoms or signs of cardiac injury. A deregulation in the profiles of 5 and 19 c-miRNAs was observed for 10-km and M, respectively. Each race induced a specific qualitative and quantitative alteration of c-miRNAs implicated in cardiac adaptions. Supporting their discriminative potential, a number of c-miRNAs previously associated with cardiac disease were undetectable or stable in response to exercise. Conversely, "pseudo-disease" signatures were also observed. c-miRNAs may be useful for the management of cardiac conditions in the context of acute aerobic exercise. Circulating microRNAs could offer incremental diagnostic value to established and emerging cardiac biomarkers, such as hs-cTnT or NT-proBNP, in those patients with cardiac dysfunction symptoms after an acute bout of endurance exercise. Furthermore, circulating miRNAs could also show "pseudo-disease" signatures in response to acute exercise. Clinical practitioners should be aware of the impact caused by exercise in the interpretation of miRNA data. Copyright © 2018 Elsevier B.V. All rights reserved.
Bellan, Steve E.; Dushoff, Jonathan; Galvani, Alison P.; Meyers, Lauren Ancel
2015-01-01
Background The infectivity of the HIV-1 acute phase has been directly measured only once, from a retrospectively identified cohort of serodiscordant heterosexual couples in Rakai, Uganda. Analyses of this cohort underlie the widespread view that the acute phase is highly infectious, even more so than would be predicted from its elevated viral load, and that transmission occurring shortly after infection may therefore compromise interventions that rely on diagnosis and treatment, such as antiretroviral treatment as prevention (TasP). Here, we re-estimate the duration and relative infectivity of the acute phase, while accounting for several possible sources of bias in published estimates, including the retrospective cohort exclusion criteria and unmeasured heterogeneity in risk. Methods and Findings We estimated acute phase infectivity using two approaches. First, we combined viral load trajectories and viral load-infectivity relationships to estimate infectivity trajectories over the course of infection, under the assumption that elevated acute phase infectivity is caused by elevated viral load alone. Second, we estimated the relative hazard of transmission during the acute phase versus the chronic phase (RHacute) and the acute phase duration (d acute) by fitting a couples transmission model to the Rakai retrospective cohort using approximate Bayesian computation. Our model fit the data well and accounted for characteristics overlooked by previous analyses, including individual heterogeneity in infectiousness and susceptibility and the retrospective cohort's exclusion of couples that were recorded as serodiscordant only once before being censored by loss to follow-up, couple dissolution, or study termination. Finally, we replicated two highly cited analyses of the Rakai data on simulated data to identify biases underlying the discrepancies between previous estimates and our own. From the Rakai data, we estimated RHacute = 5.3 (95% credibility interval [95% CrI]: 0.79–57) and d acute = 1.7 mo (95% CrI: 0.55–6.8). The wide credibility intervals reflect an inability to distinguish a long, mildly infectious acute phase from a short, highly infectious acute phase, given the 10-mo Rakai observation intervals. The total additional risk, measured as excess hazard-months attributable to the acute phase (EHMacute) can be estimated more precisely: EHMacute = (RHacute - 1) × d acute, and should be interpreted with respect to the 120 hazard-months generated by a constant untreated chronic phase infectivity over 10 y of infection. From the Rakai data, we estimated that EHMacute = 8.4 (95% CrI: -0.27 to 64). This estimate is considerably lower than previously published estimates, and consistent with our independent estimate from viral load trajectories, 5.6 (95% confidence interval: 3.3–9.1). We found that previous overestimates likely stemmed from failure to account for risk heterogeneity and bias resulting from the retrospective cohort study design. Our results reflect the interaction between the retrospective cohort exclusion criteria and high (47%) rates of censorship amongst incident serodiscordant couples in the Rakai study due to loss to follow-up, couple dissolution, or study termination. We estimated excess physiological infectivity during the acute phase from couples data, but not the proportion of transmission attributable to the acute phase, which would require data on the broader population's sexual network structure. Conclusions Previous EHMacute estimates relying on the Rakai retrospective cohort data range from 31 to 141. Our results indicate that these are substantial overestimates of HIV-1 acute phase infectivity, biased by unmodeled heterogeneity in transmission rates between couples and by inconsistent censoring. Elevated acute phase infectivity is therefore less likely to undermine TasP interventions than previously thought. Heterogeneity in infectiousness and susceptibility may still play an important role in intervention success and deserves attention in future analyses PMID:25781323
Kordonowy, Lauren; Lombardo, Kaelina D; Green, Hannah L; Dawson, Molly D; Bolton, Evice A; LaCourse, Sarah; MacManes, Matthew D
2017-03-01
Characterizing traits critical for adaptation to a given environment is an important first step in understanding how phenotypes evolve. How animals adapt to the extreme heat and aridity commonplace to deserts is an exceptionally interesting example of these processes, and has been the focus of study for decades. In contrast to those studies, where experiments are conducted on either wild animals or captive animals held in non-desert conditions, the study described here leverages a unique environmental chamber that replicates desert conditions for captive Peromyscus eremicus (cactus mouse). Here, we establish baseline values for daily water intake and for serum electrolytes, as well as the response of these variables to acute experimental dehydration. In brief, P eremicus daily water intake is very low. Its serum electrolytes are distinct from many previously studied animals, and its response to acute dehydration is profound, though not suggestive of renal impairment, which is atypical of mammals. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Teaching dental pain with and without underlying oral physiology: learning implications.
Ali, Rahat; O'Sullivan, Dominic J; Gray, Gordon B; Vowles, Richard W; Hooper, Susan M
2009-09-01
This study investigated whether teaching undergraduate dental students the diagnosis and management of acute dental pain alongside the underpinning oral physiology helped them to understand the topic better than teaching them acute dental pain as a separate entity. Each of three clinical years of dental students at the same dental school was taught in two groups. Each group was taught the signs/symptoms of five acute dental pain conditions by the same member of the staff. However, the teaching for one group of students in each year reminded the students about the physiology that underpinned the clinical symptoms. One week later, the students completed an open-ended questionnaire that required them to list signs/symptoms of the five dental pain conditions. For each year of dental students that was examined, the mean student marks were significantly higher (p<0.05) for those who were taught dental pain and the underlying physiology compared with students who were only taught dental pain as a stand-alone subject. This suggests that integrating biomedical science and clinical teaching is beneficial.
Acute Kidney Injury in the Elderly
Abdel-Kader, Khaled; Palevsky, Paul
2009-01-01
Synopsis The aging kidney undergoes a number of important anatomic and physiologic changes that increase the risk of acute kidney injury (formerly acute renal failure) in the elderly. This article reviews these changes and discusses the diagnoses frequently encountered in the elderly patient with acute kidney injury. The incidence, staging, evaluation, management, and prognosis of acute kidney injury are also examined with special focus given to older adults. PMID:19765485
Lynn, Sharon E; Stamplis, Teresa B; Barrington, William T; Weida, Nicholas; Hudak, Casey A
2010-07-01
Stress is thought to be a potent suppressor of reproduction. However, the vast majority of studies focus on the relationship between chronic stress and reproductive suppression, despite the fact that chronic stress is rare in the wild. We investigated the role of fasting in altering acute stress physiology, reproductive physiology, and reproductive behavior of male zebra finches (Taeniopygia guttata) with several goals in mind. First, we wanted to determine if acute fasting could stimulate an increase in plasma corticosterone and a decrease in corticosteroid binding globulin (CBG) and testosterone. We then investigated whether fasting could alter expression of undirected song and courtship behavior. After subjecting males to fasting periods ranging from 1 to 10h, we collected plasma to measure corticosterone, CBG, and testosterone. We found that plasma corticosterone was elevated, and testosterone was decreased after 4, 6, and 10h of fasting periods compared with samples collected from the same males during nonfasted (control) periods. CBG was lower than control levels only after 10h of fasting. We also found that, coincident with these endocrine changes, males sang less and courted females less vigorously following short-term fasting relative to control conditions. Our data demonstrate that acute fasting resulted in rapid changes in endocrine physiology consistent with hypothalamo-pituitary-adrenal axis activation and hypothalamo-pituitary-gonadal axis deactivation. Fasting also inhibited reproductive behavior. We suggest that zebra finches exhibit physiological and behavioral flexibility that makes them an excellent model system for studying interactions of acute stress and reproduction. Copyright 2010 Elsevier Inc. All rights reserved.
[Daily practice and pulp diseases].
Calmein, S; Claisse, A
1990-09-01
Constructive or destructive processes of pulp tissue depend on many factors: anatomic topography, particular physiology, or intensity and duration of infectious, mechanical and chemical aggression. Also irritation of the pulpo-dentinal complex induce histologic and physiologic changes. The positive diagnosis of hyperemia, acute or chronic pulpitis, pulpal necrosis and acute or chronic apical abscess is performed by clinical investigations which allow a differential diagnosis with other dental or extra-dental diseases. These multiple steps lead to an adapted and appropriate treatment.
Exercise-Induced Changes in Glucose Metabolism Promote Physiological Cardiac Growth
Gibb, Andrew A.; Epstein, Paul N.; Uchida, Shizuka; Zheng, Yuting; McNally, Lindsey A.; Obal, Detlef; Katragadda, Kartik; Trainor, Patrick; Conklin, Daniel J.; Brittian, Kenneth R.; Tseng, Michael T.; Wang, Jianxun; Jones, Steven P.; Bhatnagar, Aruni
2017-01-01
Background: Exercise promotes metabolic remodeling in the heart, which is associated with physiological cardiac growth; however, it is not known whether or how physical activity–induced changes in cardiac metabolism cause myocardial remodeling. In this study, we tested whether exercise-mediated changes in cardiomyocyte glucose metabolism are important for physiological cardiac growth. Methods: We used radiometric, immunologic, metabolomic, and biochemical assays to measure changes in myocardial glucose metabolism in mice subjected to acute and chronic treadmill exercise. To assess the relevance of changes in glycolytic activity, we determined how cardiac-specific expression of mutant forms of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase affect cardiac structure, function, metabolism, and gene programs relevant to cardiac remodeling. Metabolomic and transcriptomic screenings were used to identify metabolic pathways and gene sets regulated by glycolytic activity in the heart. Results: Exercise acutely decreased glucose utilization via glycolysis by modulating circulating substrates and reducing phosphofructokinase activity; however, in the recovered state following exercise adaptation, there was an increase in myocardial phosphofructokinase activity and glycolysis. In mice, cardiac-specific expression of a kinase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase transgene (GlycoLo mice) lowered glycolytic rate and regulated the expression of genes known to promote cardiac growth. Hearts of GlycoLo mice had larger myocytes, enhanced cardiac function, and higher capillary-to-myocyte ratios. Expression of phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in the heart (GlycoHi mice) increased glucose utilization and promoted a more pathological form of hypertrophy devoid of transcriptional activation of the physiological cardiac growth program. Modulation of phosphofructokinase activity was sufficient to regulate the glucose–fatty acid cycle in the heart; however, metabolic inflexibility caused by invariantly low or high phosphofructokinase activity caused modest mitochondrial damage. Transcriptomic analyses showed that glycolysis regulates the expression of key genes involved in cardiac metabolism and remodeling. Conclusions: Exercise-induced decreases in glycolytic activity stimulate physiological cardiac remodeling, and metabolic flexibility is important for maintaining mitochondrial health in the heart. PMID:28860122
Flint, Richard; Windsor, John A
2004-04-01
The physiological response to treatment is a better predictor of outcome in acute pancreatitis than are traditional static measures. Retrospective diagnostic test study. The criterion standard was Organ Failure Score (OFS) and Acute Physiology and Chronic Health Evaluation II (APACHE II) score at the time of hospital admission. Intensive care unit of a tertiary referral center, Auckland City Hospital, Auckland, New Zealand. Consecutive sample of 92 patients (60 male, 32 female; median age, 61 years; range, 24-79 years) with severe acute pancreatitis. Twenty patients were not included because of incomplete data. The cause of pancreatitis was gallstones (42%), alcohol use (27%), or other (31%). At hospital admission, the mean +/- SD OFS was 8.1 +/- 6.1, and the mean +/- SD APACHE II score was 19.9 +/- 8.2. All cases were managed according to a standardized protocol. There was no randomization or testing of any individual interventions. Survival and death. There were 32 deaths (pretest probability of dying was 35%). The physiological response to treatment was more accurate in predicting the outcome than was OFS or APACHE II score at hospital admission. For example, 17 patients had an initial OFS of 7-8 (posttest probability of dying was 58%); after 48 hours, 7 had responded to treatment (posttest probability of dying was 28%), and 10 did not respond (posttest probability of dying was 82%). The effect of the change in OFS and APACHE II score was graphically depicted by using a series of logistic regression equations. The resultant sigmoid curve suggests that there is a midrange of scores (the steep portion of the graph) within which the probability of death is most affected by the response to intensive care treatment. Measuring the initial severity of pancreatitis combined with the physiological response to intensive care treatment is a practical and clinically relevant approach to predicting death in patients with severe acute pancreatitis.
Physiological responses to acute cold exposure in young lean men
Martinez-Tellez, Borja; Sanchez-Delgado, Guillermo; A. Alcantara, Juan M.; Acosta-Manzano, Pedro; Morales-Artacho, Antonio J.; R. Ruiz, Jonatan
2018-01-01
The aim of this study was to comprehensively describe the physiological responses to an acute bout of mild cold in young lean men (n = 11, age: 23 ± 2 years, body mass index: 23.1 ± 1.2 kg/m2) to better understand the underlying mechanisms of non-shivering thermogenesis and how it is regulated. Resting energy expenditure, substrate metabolism, skin temperature, thermal comfort perception, superficial muscle activity, hemodynamics of the forearm and abdominal regions, and heart rate variability were measured under warm conditions (22.7 ± 0.2°C) and during an individualized cooling protocol (air-conditioning and water cooling vest) in a cold room (19.4 ± 0.1°C). The temperature of the cooling vest started at 16.6°C and decreased ~ 1.4°C every 10 minutes until participants shivered (93.5 ± 26.3 min). All measurements were analysed across 4 periods: warm period, at 31% and at 64% of individual´s cold exposure time until shivering occurred, and at the shivering threshold. Energy expenditure increased from warm period to 31% of cold exposure by 16.7% (P = 0.078) and to the shivering threshold by 31.7% (P = 0.023). Fat oxidation increased by 72.6% from warm period to 31% of cold exposure (P = 0.004), whereas no changes occurred in carbohydrates oxidation. As shivering came closer, the skin temperature and thermal comfort perception decreased (all P<0.05), except in the supraclavicular skin temperature, which did not change (P>0.05). Furthermore, the superficial muscle activation increased at the shivering threshold. It is noteworthy that the largest physiological changes occurred during the first 30 minutes of cold exposure, when the participants felt less discomfort. PMID:29734360
Porter, Joanne E; Cant, Robyn; Missen, Karen; Raymond, Anita; Churchill, Anne
2018-04-27
Nursing management of physical deterioration of patients within acute mental health settings is observed, recorded, and actively managed with the use of standardized Adult Deterioration Detection System (ADDS) charts. Patient deterioration may require the urgent assistance of a hospital rapid response or Medical Emergency Team. A five-and-a-half-year (2011-2016) audit of hospital-wide Medical Emergency Team attendances was conducted in an acute mental health unit of a single large 250 bed regional hospital in Victoria, Australia. Data were extracted from the hospitals' quality and patient safety program, RISKMan, and entered into a statistical data program for analysis. A total of 140 patient records were analysed, and the 'Worried' category (34%, n = 47) was the principle reason for a Medical Emergency Team call in a mental health ward, followed by hypotension (23%, n = 31) and a low Glasgow Coma Score (16%, n = 22). Upon further investigation of the 'Worried' category, the most common conditions recorded were an altered conscious state (22%, n = 9), low oxygen saturation (20%, n = 8), or chest pain (17%, n = 7). Activation of Medical Emergency Team calls predominantly occurred in the daylight morning hours (6am-12md). When data were compared to the general hospital patients, the context of the physiological deterioration of the mental health patients was strikingly similar. Further research is recommended to ascertain the extent and frequency with which staff working in mental health units are performing vital signs monitoring as an essential component of detection of early signs of physiological deterioration. © 2018 Australian College of Mental Health Nurses Inc.
Larcombe, Alexander N.; Foong, Rachel E.; Boylen, Catherine E.; Zosky, Graeme R.
2012-01-01
Please cite this paper as: Larcombe et al. (2012) Acute diesel exhaust particle exposure increases viral titre and inflammation associated with existing influenza infection, but does not exacerbate deficits in lung function. Influenza and Other Respiratory Viruses DOI:10.1111/irv.12012. Background Exposure to diesel exhaust particles (DEP) is thought to exacerbate many pre‐existing respiratory diseases, including asthma, bronchitis and chronic obstructive pulmonary disease, however, there is a paucity of data on whether DEP exacerbates illness due to respiratory viral infection. Objectives To assess the physiological consequences of an acute DEP exposure during the peak of influenza‐induced illness. Methods We exposed adult female BALB/c mice to 100 μg DEP (or control) 3·75 days after infection with 104·5 plaque forming units of influenza A/Mem71 (or control). Six hours, 24 hours and 7 days after DEP exposure we measured thoracic gas volume and lung function at functional residual capacity. Bronchoalveolar lavage fluid was taken for analyses of cellular inflammation and cytokines, and whole lungs were taken for measurement of viral titre. Results Influenza infection resulted in significantly increased inflammation, cytokine influx and impairment to lung function. DEP exposure alone resulted in less inflammation and cytokine influx, and no impairment to lung function. Mice infected with influenza and exposed to DEP had higher viral titres and neutrophilia compared with infected mice, yet they did not have more impaired lung mechanics than mice infected with influenza alone. Conclusions A single dose of DEP is not sufficient to physiologically exacerbate pre‐existing respiratory disease caused by influenza infection in mice. PMID:22994877
García-Pinillos, Felipe; Soto-Hermoso, Víctor Manuel; Latorre-Román, Pedro Ángel
2015-01-01
This study aimed to describe the acute impact of extended interval training (EIT) on physiological and thermoregulatory levels, as well as to determine the influence of athletic performance and age effect on the aforementioned response in endurance runners. Thirty-one experienced recreational male endurance runners voluntarily participated in this study. Subjects performed EIT on an outdoor running track, which consisted of 12 runs of 400 m. The rate of perceived exertion, physiological response through the peak and recovery heart rate, blood lactate, and thermoregulatory response through tympanic temperature, were controlled. A repeated measures analysis revealed significant differences throughout EIT in examined variables. Cluster analysis grouped according to the average performance in 400 m runs led to distinguish between athletes with a higher and lower sports level. Cluster analysis was also performed according to age, obtaining an older group and a younger group. The one-way analysis of variance between groups revealed no significant differences (p≥0.05) in the response to EIT. The results provide a detailed description of physiological and thermoregulatory responses to EIT in experienced endurance runners. This allows a better understanding of the impact of a common training stimulus on the physiological level inducing greater accuracy in the training prescription. Moreover, despite the differences in athletic performance or age, the acute physiological and thermoregulatory responses in endurance runners were similar, as long as EIT was performed at similar relative intensity. PMID:26839621
Dysphagia Management in Acute and Sub-acute Stroke
Vose, Alicia; Nonnenmacher, Jodi; Singer, Michele L.; González-Fernández, Marlís
2014-01-01
Swallowing dysfunction is common after stroke. More than 50% of the 665 thousand stroke survivors will experience dysphagia acutely of which approximately 80 thousand will experience persistent dysphagia at 6 months. The physiologic impairments that result in post-stroke dysphagia are varied. This review focuses primarily on well-established dysphagia treatments in the context of the physiologic impairments they treat. Traditional dysphagia therapies including volume and texture modifications, strategies such as chin tuck, head tilt, head turn, effortful swallow, supraglottic swallow, super-supraglottic swallow, Mendelsohn maneuver and exercises such as the Shaker exercise and Masako (tongue hold) maneuver are discussed. Other more recent treatment interventions are discussed in the context of the evidence available. PMID:26484001
Bellan, Steve E; Dushoff, Jonathan; Galvani, Alison P; Meyers, Lauren Ancel
2015-03-01
The infectivity of the HIV-1 acute phase has been directly measured only once, from a retrospectively identified cohort of serodiscordant heterosexual couples in Rakai, Uganda. Analyses of this cohort underlie the widespread view that the acute phase is highly infectious, even more so than would be predicted from its elevated viral load, and that transmission occurring shortly after infection may therefore compromise interventions that rely on diagnosis and treatment, such as antiretroviral treatment as prevention (TasP). Here, we re-estimate the duration and relative infectivity of the acute phase, while accounting for several possible sources of bias in published estimates, including the retrospective cohort exclusion criteria and unmeasured heterogeneity in risk. We estimated acute phase infectivity using two approaches. First, we combined viral load trajectories and viral load-infectivity relationships to estimate infectivity trajectories over the course of infection, under the assumption that elevated acute phase infectivity is caused by elevated viral load alone. Second, we estimated the relative hazard of transmission during the acute phase versus the chronic phase (RHacute) and the acute phase duration (dacute) by fitting a couples transmission model to the Rakai retrospective cohort using approximate Bayesian computation. Our model fit the data well and accounted for characteristics overlooked by previous analyses, including individual heterogeneity in infectiousness and susceptibility and the retrospective cohort's exclusion of couples that were recorded as serodiscordant only once before being censored by loss to follow-up, couple dissolution, or study termination. Finally, we replicated two highly cited analyses of the Rakai data on simulated data to identify biases underlying the discrepancies between previous estimates and our own. From the Rakai data, we estimated RHacute = 5.3 (95% credibility interval [95% CrI]: 0.79-57) and dacute = 1.7 mo (95% CrI: 0.55-6.8). The wide credibility intervals reflect an inability to distinguish a long, mildly infectious acute phase from a short, highly infectious acute phase, given the 10-mo Rakai observation intervals. The total additional risk, measured as excess hazard-months attributable to the acute phase (EHMacute) can be estimated more precisely: EHMacute = (RHacute - 1) × dacute, and should be interpreted with respect to the 120 hazard-months generated by a constant untreated chronic phase infectivity over 10 y of infection. From the Rakai data, we estimated that EHMacute = 8.4 (95% CrI: -0.27 to 64). This estimate is considerably lower than previously published estimates, and consistent with our independent estimate from viral load trajectories, 5.6 (95% confidence interval: 3.3-9.1). We found that previous overestimates likely stemmed from failure to account for risk heterogeneity and bias resulting from the retrospective cohort study design. Our results reflect the interaction between the retrospective cohort exclusion criteria and high (47%) rates of censorship amongst incident serodiscordant couples in the Rakai study due to loss to follow-up, couple dissolution, or study termination. We estimated excess physiological infectivity during the acute phase from couples data, but not the proportion of transmission attributable to the acute phase, which would require data on the broader population's sexual network structure. Previous EHMacute estimates relying on the Rakai retrospective cohort data range from 31 to 141. Our results indicate that these are substantial overestimates of HIV-1 acute phase infectivity, biased by unmodeled heterogeneity in transmission rates between couples and by inconsistent censoring. Elevated acute phase infectivity is therefore less likely to undermine TasP interventions than previously thought. Heterogeneity in infectiousness and susceptibility may still play an important role in intervention success and deserves attention in future analyses.
Oswald, Stephen A; Arnold, Jennifer M
2012-06-01
There is now abundant evidence that contemporary climatic change has indirectly affected a wide-range of species by changing trophic interactions, competition, epidemiology and habitat. However, direct physiological impacts of changing climates are rarely reported for endothermic species, despite being commonly reported for ectotherms. We review the evidence for changing physiological constraints on endothermic vertebrates at high temperatures, integrating theoretical and empirical perspectives on the morphology, physiology and behavior of marine birds. Potential for increasing heat stress exposure depends on changes in multiple environmental variables, not just air temperature, as well as organism-specific morphology, physiology and behavior. Endotherms breeding at high latitudes are vulnerable to the forecast, extensive temperature changes because of the adaptations they possess to minimize heat loss. Low-latitude species will also be challenged as they currently live close to their thermal limits and will likely suffer future water shortages. Small, highly-active species, particularly aerial foragers, are acutely vulnerable as they are least able to dissipate heat at high temperatures. Overall, direct physiological impacts of climatic change appear underrepresented in the published literature, but available data suggest they have much potential to shape behavior, morphology and distribution of endothermic species. Coincidence between future heat stress events and other energetic constraints on endotherms remains largely unexplored but will be key in determining the physiological impacts of climatic change. Multi-scale, biophysical modeling, informed by experiments that quantify thermoregulatory responses of endotherms to heat stress, is an essential precursor to urgently-needed analyses at the population or species level. © 2012 ISZS, Blackwell Publishing and IOZ/CAS.
Human Physiological Responses to Acute and Chronic Cold Exposure
NASA Technical Reports Server (NTRS)
Stocks, Jodie M.; Taylor, Nigel A. S.; Tipton, Michael J.; Greenleaf, John E.
2001-01-01
When inadequately protected humans are exposed to acute cold, excessive body heat is lost to the environment and unless heat production is increased and heat loss attenuated, body temperature will decrease. The primary physiological responses to counter the reduction in body temperature include marked cutaneous vasoconstriction and increased metabolism. These responses, and the hazards associated with such exposure, are mediated by a number of factors which contribute to heat production and loss. These include the severity and duration of the cold stimulus; exercise intensity; the magnitude of the metabolic response; and individual characteristics such as body composition, age, and gender. Chronic exposure to a cold environment, both natural and artificial, results in physiological alterations leading to adaptation. Three quite different, but not necessarily exclusive, patterns of human cold adaptation have been reported: metabolic, hypothermic, and insulative. Cold adaptation has also been associated with an habituation response, in which there is a desensitization, or damping, of the normal response to a cold stress. This review provides a comprehensive analysis of the human physiological and pathological responses to cold exposure. Particular attention is directed to the factors contributing to heat production and heat loss during acute cold stress, and the ability of humans to adapt to cold environments.
Social media as a shield: Facebook buffers acute stress.
Rus, Holly M; Tiemensma, Jitske
2018-03-01
Facebook remains the most widely used social media platform. Research suggests that Facebook may both enhance and undermine psychosocial constructs related to well-being, and that it may impair physiological stress recovery. However, little is known about its influence on stress reactivity. Using novel experimental methods, this study examined how Facebook influences reactivity to an acute social stressor. Facebook users (n=104, 53 males, mean age 19.50, SD=1.73) were randomly assigned to use their own Facebook account or sit quietly with the option of reading electronic magazines before experiencing an acute social stressor. All participants showed significant changes in subjective and physiological stress markers in response to the stressor. However, participants who used Facebook experienced lower levels of psychosocial stress, physiological stress, and rated the stressor as less threatening (p's<0.05) when controlling for gender and emotional investment in the website compared to controls. Results suggest that Facebook use may buffer stress-in particular psychosocial stress-if used before experiencing an acute social stressor. This study is among the first to incorporate both objective and subjective measures in investigating the complex relationship between Facebook use and well-being. Copyright © 2017 Elsevier Inc. All rights reserved.
Mallon, Eamonn B; Amarasinghe, Harindra E; Ott, Swidbert R
2016-10-18
Desert locusts (Schistocerca gregaria) show a dramatic form of socially induced phenotypic plasticity known as phase polyphenism. In the absence of conspecifics, locusts occur in a shy and cryptic solitarious phase. Crowding with conspecifics drives a behavioural transformation towards gregariousness that occurs within hours and is followed by changes in physiology, colouration and morphology, resulting in the full gregarious phase syndrome. We analysed methylation-sensitive amplified fragment length polymorphisms (MS-AFLP) to compare the effect of acute and chronic crowding on DNA methylation in the central nervous system. We find that crowd-reared and solitary-reared locusts show markedly different neural MS-AFLP fingerprints. However, crowding for a day resulted in neural MS-AFLP fingerprints that were clearly distinct from both crowd-reared and uncrowded solitary-reared locusts. Our results indicate that changes in DNA methylation associated with behavioural gregarisation proceed through intermediate states that are not simply partial realisations of the endpoint states.
Marks, Katherine R.; Lile, Joshua A.; Stoops, William W.
2014-01-01
Rationale Opioid antagonists (e.g., naltrexone) and positive modulators of γ-aminobutyric-acidA (GABAA) receptors (e.g., alprazolam) modestly attenuate the abuse-related effects of stimulants like amphetamine. The use of higher doses to achieve greater efficacy is precluded by side effects. Combining naltrexone and alprazolam might safely maximize efficacy while avoiding the untoward effects of the constituent compounds. Objectives The present pilot study tested the hypothesis that acute pretreatment with the combination of naltrexone and alprazolam would not produce clinically problematic physiological effects or negative subjective effects and would reduce the positive subjective effects of d-amphetamine to a greater extent than the constituent drugs alone. Methods Eight nontreatment-seeking, stimulant-using individuals completed an outpatient experiment in which oral d-amphetamine (0, 15, and 30 mg) was administered following acute pretreatment with naltrexone (0 and 50 mg) and alprazolam (0 and 0.5 mg). Subjective effects, psychomotor task performance, and physiological measures were collected. Results Oral d-amphetamine produced prototypical physiological and stimulant-like positive subjective effects (e.g., VAS ratings of Active/Alert/Energetic, Good Effect, and High). Pretreatment with naltrexone, alprazolam, and their combination did not produce clinically problematic acute physiological effects or negative subjective effects. Naltrexone and alprazolam each significantly attenuated some of the subjective effects of d-amphetamine. The combination attenuated a greater number of subjective effects than the constituent drugs alone. Conclusions The present results support the continued evaluation of an opioid receptor antagonist combined with a GABAA-positive modulator using more clinically relevant experimental conditions like examining the effect of chronic dosing with these drugs on methamphetamine self-administration. PMID:24464531
Marks, Katherine R; Lile, Joshua A; Stoops, William W; Rush, Craig R
2014-07-01
Opioid antagonists (e.g., naltrexone) and positive modulators of γ-aminobutyric-acidA (GABAA) receptors (e.g., alprazolam) modestly attenuate the abuse-related effects of stimulants like amphetamine. The use of higher doses to achieve greater efficacy is precluded by side effects. Combining naltrexone and alprazolam might safely maximize efficacy while avoiding the untoward effects of the constituent compounds. The present pilot study tested the hypothesis that acute pretreatment with the combination of naltrexone and alprazolam would not produce clinically problematic physiological effects or negative subjective effects and would reduce the positive subjective effects of d-amphetamine to a greater extent than the constituent drugs alone. Eight nontreatment-seeking, stimulant-using individuals completed an outpatient experiment in which oral d-amphetamine (0, 15, and 30 mg) was administered following acute pretreatment with naltrexone (0 and 50 mg) and alprazolam (0 and 0.5 mg). Subjective effects, psychomotor task performance, and physiological measures were collected. Oral d-amphetamine produced prototypical physiological and stimulant-like positive subjective effects (e.g., VAS ratings of Active/Alert/Energetic, Good Effect, and High). Pretreatment with naltrexone, alprazolam, and their combination did not produce clinically problematic acute physiological effects or negative subjective effects. Naltrexone and alprazolam each significantly attenuated some of the subjective effects of d-amphetamine. The combination attenuated a greater number of subjective effects than the constituent drugs alone. The present results support the continued evaluation of an opioid receptor antagonist combined with a GABAA-positive modulator using more clinically relevant experimental conditions like examining the effect of chronic dosing with these drugs on methamphetamine self-administration.
Magozzi, Sarah; Calosi, Piero
2015-01-01
Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increasing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation. Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade-off between acute and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to increasing temperature helps providing more accurate predictions on species vulnerability to warming. © 2014 John Wiley & Sons Ltd.
Mejía-Mejía, Elisa; Torres, Robinson; Restrepo, Diana
2018-06-01
Physiological coherence has been related with a general sense of well-being and improvements in health and physical, social, and cognitive performance. The aim of this study was to evaluate the relationship between acute stress, controlled breathing, and physiological coherence, and the degree of body systems synchronization during a coherence-generation exercise. Thirty-four university employees were evaluated during a 20-min test consisting of four stages of 5-min duration each, during which basal measurements were obtained (Stage 1), acute stress was induced using validated mental stressors (Stroop test and mental arithmetic task, during Stage 2 and 3, respectively), and coherence states were generated using a controlled breathing technique (Stage 4). Physiological coherence and cardiorespiratory synchronization were assessed during each stage from heart rate variability, pulse transit time, and respiration. Coherence measurements derived from the three analyzed variables increased during controlled respiration. Moreover, signals synchronized during the controlled breathing stage, implying a cardiorespiratory synchronization was achieved by most participants. Hence, physiological coherence and cardiopulmonary synchronization, which could lead to improvements in health and better life quality, can be achieved using slow, controlled breathing exercises. Meanwhile, coherence measured during basal state and stressful situations did not show relevant differences using heart rate variability and pulse transit time. More studies are needed to evaluate the ability of coherence ratio to reflect acute stress. © 2017 Society for Psychophysiological Research.
Jayaraman, Shobini; Haupt, Christian; Gursky, Olga
2015-01-01
Serum amyloid A (SAA) is an acute-phase protein that circulates mainly on plasma HDL. SAA interactions with its functional ligands and its pathogenic deposition in reactive amyloidosis depend, in part, on the structural disorder of this protein and its propensity to oligomerize. In vivo, SAA can displace a substantial fraction of the major HDL protein, apoA-I, and thereby influence the structural remodeling and functions of acute-phase HDL in ways that are incompletely understood. We use murine SAA1.1 to report the first structural stability study of human plasma HDL that has been enriched with SAA. Calorimetric and spectroscopic analyses of these and other SAA-lipid systems reveal two surprising findings. First, progressive displacement of the exchangeable fraction of apoA-I by SAA has little effect on the structural stability of HDL and its fusion and release of core lipids. Consequently, the major determinant for HDL stability is the nonexchangeable apoA-I. A structural model explaining this observation is proposed, which is consistent with functional studies in acute-phase HDL. Second, we report an α-helix folding/unfolding transition in SAA in the presence of lipid at near-physiological temperatures. This new transition may have potentially important implications for normal functions of SAA and its pathogenic misfolding. PMID:26022803
Diaz-Manzano, Montaña; Robles-Pérez, José Juan; Herrera-Mendoza, Ketty; Herrera-Tapias, Beliña; Fernández-Lucas, Jesús; Aznar-Lain, Susana; Clemente-Suárez, Vicente Javier
2018-03-24
Caffeine is one of the ergogenic substances most used by warfighters in current operation areas, but the effect on the organic response and operational performed is already poor knowledge. This research aimed to study the acute effect of 400 mg of caffeine monohydrate on the psycho-physiological response and rifle marksmanship of warfighters during a close quarter combat simulation. We analysed parameter of heart rate, blood lactate, cortical arousal, state anxiety and marksmanship of 20 Spanish Army veteran warfighters before and after a close quarter combat simulation in a double-blind procedure, also a correlation analysis was conducted between all the study variables. Marksmanship of warfighters did not improve with the caffeine ingestion, but it produced an increase in blood lactate concentration (caffeine: 1.9 ± 0.5 vs. 9.2 ± 1.1 mmol.l -1 ; placebo: 1.8 ± 0.7 vs. 6.9 ± 2.2 mmol.l -1 ), cortical arousal (% of change: caffeine: 2.51; placebo: -1.96) and heart rate (caffeine: 80.0 ± 7.2 vs. 172.9 ± 28.2 bpm; placebo: 79.3 ± 6.4 vs. 154.0 ± 26.8 bpm). In addition, higher heart rate values correlated negatively with marksmanship in close quarter combat. We concluded that caffeine intake did not improve the warfighters rifle marksmanship in close quarter combat possibly due to the increase in the physiological response.
Abdel-Kader, Khaled; Girard, Timothy D; Brummel, Nathan E; Saunders, Christina T; Blume, Jeffrey D; Clark, Amanda J; Vincz, Andrew J; Ely, E Wesley; Jackson, James C; Bell, Susan P; Archer, Kristin R; Ikizler, T Alp; Pandharipande, Pratik P; Siew, Edward D
2018-05-01
Acute kidney injury frequently complicates critical illness and is associated with high morbidity and mortality. Frailty is common in critical illness survivors, but little is known about the impact of acute kidney injury. We examined the association of acute kidney injury and frailty within a year of hospital discharge in survivors of critical illness. Secondary analysis of a prospective cohort study. Medical/surgical ICU of a U.S. tertiary care medical center. Three hundred seventeen participants with respiratory failure and/or shock. None. Acute kidney injury was determined using Kidney Disease Improving Global Outcomes stages. Clinical frailty status was determined using the Clinical Frailty Scale at 3 and 12 months following discharge. Covariates included mean ICU Sequential Organ Failure Assessment score and Acute Physiology and Chronic Health Evaluation II score as well as baseline comorbidity (i.e., Charlson Comorbidity Index), kidney function, and Clinical Frailty Scale score. Of 317 patients, 243 (77%) had acute kidney injury and one in four patients with acute kidney injury was frail at baseline. In adjusted models, acute kidney injury stages 1, 2, and 3 were associated with higher frailty scores at 3 months (odds ratio, 1.92; 95% CI, 1.14-3.24; odds ratio, 2.40; 95% CI, 1.31-4.42; and odds ratio, 4.41; 95% CI, 2.20-8.82, respectively). At 12 months, a similar association of acute kidney injury stages 1, 2, and 3 and higher Clinical Frailty Scale score was noted (odds ratio, 1.87; 95% CI, 1.11-3.14; odds ratio, 1.81; 95% CI, 0.94-3.48; and odds ratio, 2.76; 95% CI, 1.34-5.66, respectively). In supplemental and sensitivity analyses, analogous patterns of association were observed. Acute kidney injury in survivors of critical illness predicted worse frailty status 3 and 12 months postdischarge. These findings have important implications on clinical decision making among acute kidney injury survivors and underscore the need to understand the drivers of frailty to improve patient-centered outcomes.
A Randomized Crossover Trial on Acute Stress-Related Physiological Responses to Mountain Hiking
Grafetstätter, Carina; Hartl, Arnulf; Kopp, Martin
2017-01-01
Green exercise, defined as physical activity in natural environments, might have positive effects on stress-related physiological measures. Little is known about the acute effects of green exercise bouts lasting longer than 60 min. Therefore, the aim of the present study was to analyze the acute effects of a three-hour green exercise intervention (mountain hiking) on stress-related physiological responses. Using a randomized crossover design, 42 healthy participants were exposed to three different conditions in a field-based experiment: outdoor mountain hiking, indoor treadmill walking, and sedentary control condition (three hours each). At baseline and at follow-up (five minutes after the condition), stress-related physiological responses (salivary cortisol, blood pressure, and heart rate variability) were measured. Salivary cortisol decreased in all conditions, but showed a larger decrease after both mountain hiking and treadmill walking compared to the sedentary control situation (partial η2 = 0.10). No differences were found between mountain hiking and treadmill walking in salivary cortisol. In heart rate variability and blood pressure, changes from baseline to follow-up did not significantly differ between the three conditions. The results indicate that three hours of hiking indoors or outdoors elicits positive effects on salivary cortisol concentration. Environmental effects seem to play a minor role in salivary cortisol, blood pressure, and heart rate variability. PMID:28800067
Measurement of acute pain in infants: a review of behavioral and physiological variables.
Hatfield, Linda A; Ely, Elizabeth A
2015-01-01
The use of non-validated pain measurement tools to assess infant pain represents a serious iatrogenic threat to the developing neonatal nervous system. One partial explanation for this practice may be the contradictory empirical data from studies that use newborn pain management tools constructed for infants of different developmental stages or exposed to different environmental stressors. The purpose of this review is to evaluate the evidence regarding the physiologic and behavioral variables that accurately assess and measure acute pain response in infants. A literature search was conducted using PUBMED and CINAHL and the search terms infant, neonate/neonatal, newborn, pain, assessment, and measurement to identify peer-reviewed studies that examined the validity and reliability of behavioral and physiological variables used for investigation of infant pain. Ten articles were identified for critical review. Strong evidence supports the use of the behavioral variables of facial expressions and body movements and the physiologic variables of heart rate and oxygen saturation to assess acute pain in infants. It is incumbent upon researchers and clinical nurses to ensure the validity, reliability, and feasibility of pain measures, so that the outcomes of their investigations and interventions will be developmentally appropriate and effective pain management therapies. © The Author(s) 2014.
Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish.
Egan, Rupert J; Bergner, Carisa L; Hart, Peter C; Cachat, Jonathan M; Canavello, Peter R; Elegante, Marco F; Elkhayat, Salem I; Bartels, Brett K; Tien, Anna K; Tien, David H; Mohnot, Sopan; Beeson, Esther; Glasgow, Eric; Amri, Hakima; Zukowska, Zofia; Kalueff, Allan V
2009-12-14
The zebrafish (Danio rerio) is emerging as a promising model organism for experimental studies of stress and anxiety. Here we further validate zebrafish models of stress by analyzing how environmental and pharmacological manipulations affect their behavioral and physiological phenotypes. Experimental manipulations included exposure to alarm pheromone, chronic exposure to fluoxetine, acute exposure to caffeine, as well as acute and chronic exposure to ethanol. Acute (but not chronic) alarm pheromone and acute caffeine produced robust anxiogenic effects, including reduced exploration, increased erratic movements and freezing behavior in zebrafish tested in the novel tank diving test. In contrast, ethanol and fluoxetine had robust anxiolytic effects, including increased exploration and reduced erratic movements. The behavior of several zebrafish strains was also quantified to ascertain differences in their behavioral profiles, revealing high-anxiety (leopard, albino) and low-anxiety (wild type) strains. We also used LocoScan (CleverSys Inc.) video-tracking tool to quantify anxiety-related behaviors in zebrafish, and dissect anxiety-related phenotypes from locomotor activity. Finally, we developed a simple and effective method of measuring zebrafish physiological stress responses (based on a human salivary cortisol assay), and showed that alterations in whole-body cortisol levels in zebrafish parallel behavioral indices of anxiety. Collectively, our results confirm zebrafish as a valid, reliable, and high-throughput model of stress and affective disorders.
Peng, Qian-Qian; Basang, Zhuoma; Cui, Chao-Ying; Li, Lei; Qian, Ji; Gesang, Quzhen; Yang, La; La, Zong; De, Yang; Dawa, Puchi; Qu, Ni; Suo, Qu; Dan, Zhen; Xiao, Duoji; Wang, Xiao-Feng; Jin, Li
2013-01-01
High altitude acclimatization is a series of physiological responses taking places when subjects go to altitude. Many factors could influence these processes, such as altitude, ascending speed and individual characteristics. In this study, based on a repeated measurement design of three sequential measurements at baseline, acute phase and chronic phase, we evaluated the effect of BMI, smoking and drinking on a number of physiological responses in high altitude acclimatization by using mixed model and partial least square path model on a sample of 755 Han Chinese young males. We found that subjects with higher BMI responses were reluctant to hypoxia. The effect of smoking was not significant at acute phase. But at chronic phase, red blood cell volume increased less while respiratory function increased more for smoking subjects compared with nonsmokers. For drinking subjects, red blood cell volume increased less than nondrinkers at both acute and chronic phases, while blood pressures increased more than nondrinkers at acute phase and respiratory function, red blood cell volume and oxygen saturation increased more than nondrinkers at chronic phase. The heavy and long-term effect of smoking, drinking and other factors in high altitude acclimatization needed to be further studied.
Cui, Chao-ying; Li, Lei; Qian, Ji; Gesang, Quzhen; Yang, La; La, Zong; De, Yang; Dawa, Puchi; Qu, Ni; Suo, Qu; Dan, Zhen; Xiao, Duoji; Wang, Xiao-feng; Jin, Li
2013-01-01
High altitude acclimatization is a series of physiological responses taking places when subjects go to altitude. Many factors could influence these processes, such as altitude, ascending speed and individual characteristics. In this study, based on a repeated measurement design of three sequential measurements at baseline, acute phase and chronic phase, we evaluated the effect of BMI, smoking and drinking on a number of physiological responses in high altitude acclimatization by using mixed model and partial least square path model on a sample of 755 Han Chinese young males. We found that subjects with higher BMI responses were reluctant to hypoxia. The effect of smoking was not significant at acute phase. But at chronic phase, red blood cell volume increased less while respiratory function increased more for smoking subjects compared with nonsmokers. For drinking subjects, red blood cell volume increased less than nondrinkers at both acute and chronic phases, while blood pressures increased more than nondrinkers at acute phase and respiratory function, red blood cell volume and oxygen saturation increased more than nondrinkers at chronic phase. The heavy and long-term effect of smoking, drinking and other factors in high altitude acclimatization needed to be further studied. PMID:24260204
Organ-specific physiological responses to acute physical exercise and long-term training in humans.
Heinonen, Ilkka; Kalliokoski, Kari K; Hannukainen, Jarna C; Duncker, Dirk J; Nuutila, Pirjo; Knuuti, Juhani
2014-11-01
Virtually all tissues in the human body rely on aerobic metabolism for energy production and are therefore critically dependent on continuous supply of oxygen. Oxygen is provided by blood flow, and, in essence, changes in organ perfusion are also closely associated with alterations in tissue metabolism. In response to acute exercise, blood flow is markedly increased in contracting skeletal muscles and myocardium, but perfusion in other organs (brain and bone) is only slightly enhanced or is even reduced (visceral organs). Despite largely unchanged metabolism and perfusion, repeated exposures to altered hemodynamics and hormonal milieu produced by acute exercise, long-term exercise training appears to be capable of inducing effects also in tissues other than muscles that may yield health benefits. However, the physiological adaptations and driving-force mechanisms in organs such as brain, liver, pancreas, gut, bone, and adipose tissue, remain largely obscure in humans. Along these lines, this review integrates current information on physiological responses to acute exercise and to long-term physical training in major metabolically active human organs. Knowledge is mostly provided based on the state-of-the-art, noninvasive human imaging studies, and directions for future novel research are proposed throughout the review. ©2014 Int. Union Physiol. Sci./Am. Physiol. Soc.
Predictive Models of Acute Mountain Sickness after Rapid Ascent to Various Altitudes
2013-01-01
unclassified relational mountain medicine database containing individ- ual ascent profiles, demographic and physiologic subject descriptors, and...course of AMS, and define the baseline demographics and physiologic descriptors that increase the risk of AMS. In addition, these models provide...substantiated this finding in un- acclimatized women (24). Other physiologic differences between men and women (i.e., differences in endothelial
Wearable physiological sensors and real-time algorithms for detection of acute mountain sickness.
Muza, Stephen R
2018-03-01
This is a minireview of potential wearable physiological sensors and algorithms (process and equations) for detection of acute mountain sickness (AMS). Given the emerging status of this effort, the focus of the review is on the current clinical assessment of AMS, known risk factors (environmental, demographic, and physiological), and current understanding of AMS pathophysiology. Studies that have examined a range of physiological variables to develop AMS prediction and/or detection algorithms are reviewed to provide insight and potential technological roadmaps for future development of real-time physiological sensors and algorithms to detect AMS. Given the lack of signs and nonspecific symptoms associated with AMS, development of wearable physiological sensors and embedded algorithms to predict in the near term or detect established AMS will be challenging. Prior work using [Formula: see text], HR, or HRv has not provided the sensitivity and specificity for useful application to predict or detect AMS. Rather than using spot checks as most prior studies have, wearable systems that continuously measure SpO 2 and HR are commercially available. Employing other statistical modeling approaches such as general linear and logistic mixed models or time series analysis to these continuously measured variables is the most promising approach for developing algorithms that are sensitive and specific for physiological prediction or detection of AMS.
Wormgoor, Shohn G; Dalleck, Lance C; Zinn, Caryn; Harris, Nigel K
2018-01-01
Optimizing exercise-induced physiological responses without increasing the risk of negative exaggerated responses is an important aspect of exercise prescription for people with type 2 diabetes mellitus (T2DM). However, knowledge of acute responses, including exaggerated responses, of different training modalities is limited. The aim of the study was to compare acute physiological responses of moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT) in T2DM. Baseline data were used to randomly assign male participants into supervised training groups for a 12-week intervention. During week 7, participants trialed either a fully progressed MICT (N.=11) or HIIT (N.=11) (combined with resistance training) session. The MICT included 26 minutes at 55% estimated maximum workload (eWLmax) while the HIIT included twelve 1-minute bouts at 95% eWLmax interspersed with 1-minute bouts at 40% eWLmax. While energy expenditure and peak systolic and diastolic blood pressure responses were similar between groups (P=0.47, P=0.71, P=0.56, respectively), peak heart rate, workload and perceived exertion were higher in the HIIT group (P=0.04, P<0.001, and P<0.001, respectively). Acute exaggerated responses were similar (P=0.39) for MICT (64%) and HIIT (36%) participants. While structured MICT and HIIT sessions resulted in comparable acute physiological responses, the individual variations and exaggerated responses, even after preparatory training, necessitated precautionary respite in T2DM men.
Quantitative proteomic analysis of Parkin substrates in Drosophila neurons.
Martinez, Aitor; Lectez, Benoit; Ramirez, Juanma; Popp, Oliver; Sutherland, James D; Urbé, Sylvie; Dittmar, Gunnar; Clague, Michael J; Mayor, Ugo
2017-04-11
Parkin (PARK2) is an E3 ubiquitin ligase that is commonly mutated in Familial Parkinson's Disease (PD). In cell culture models, Parkin is recruited to acutely depolarised mitochondria by PINK1. PINK1 activates Parkin activity leading to ubiquitination of multiple proteins, which in turn promotes clearance of mitochondria by mitophagy. Many substrates have been identified using cell culture models in combination with depolarising drugs or proteasome inhibitors, but not in more physiological settings. Here we utilized the recently introduced BioUb strategy to isolate ubiquitinated proteins in flies. Following Parkin Wild-Type (WT) and Parkin Ligase dead (LD) expression we analysed by mass spectrometry and stringent bioinformatics analysis those proteins differentially ubiquitinated to provide the first survey of steady state Parkin substrates using an in vivo model. We further used an in vivo ubiquitination assay to validate one of those substrates in SH-SY5Y cells. We identified 35 proteins that are more prominently ubiquitinated following Parkin over-expression. These include several mitochondrial proteins and a number of endosomal trafficking regulators such as v-ATPase sub-units, Syx5/STX5, ALiX/PDCD6IP and Vps4. We also identified the retromer component, Vps35, another PD-associated gene that has recently been shown to interact genetically with parkin. Importantly, we validated Parkin-dependent ubiquitination of VPS35 in human neuroblastoma cells. Collectively our results provide new leads to the possible physiological functions of Parkin activity that are not overtly biased by acute mitochondrial depolarisation.
Development of the ACTH and corticosterone response to acute hypoxia in the neonatal rat
Bruder, Eric D.; Taylor, Jennifer K.; Kamer, Kimberli J.; Raff, Hershel
2008-01-01
Acute episodes of severe hypoxia are among the most common stressors in neonates. An understanding of the development of the physiological response to acute hypoxia will help improve clinical interventions. The present study measured ACTH and corticosterone responses to acute, severe hypoxia (8% inspired O2 for 4 h) in neonatal rats at postnatal days (PD) 2, 5, and 8. Expression of specific hypothalamic, anterior pituitary, and adrenocortical mRNAs was assessed by real-time PCR, and expression of specific proteins in isolated adrenal mitochondria from adrenal zona fascisulata/reticularis was assessed by immunoblot analyses. Oxygen saturation, heart rate, and body temperature were also measured. Exposure to 8% O2 for as little as 1 h elicited an increase in plasma corticosterone in all age groups studied, with PD2 pups showing the greatest response (∼3 times greater than PD8 pups). Interestingly, the ACTH response to hypoxia was absent in PD2 pups, while plasma ACTH nearly tripled in PD8 pups. Analysis of adrenal mRNA expression revealed a hypoxia-induced increase in Ldlr mRNA at PD2, while both Ldlr and Star mRNA were increased at PD8. Acute hypoxia decreased arterial O2 saturation (SPo2) to ∼80% and also decreased body temperature by 5–6°C. The hypoxic thermal response may contribute to the ACTH and corticosterone response to decreases in oxygen. The present data describe a developmentally regulated, differential corticosterone response to acute hypoxia, shifting from ACTH independence in early life (PD2) to ACTH dependence less than 1 wk later (PD8). PMID:18703410
Ma, Qing-Bian; Fu, Yuan-Wei; Feng, Lu; Zhai, Qiang-Rong; Liang, Yang; Wu, Meng; Zheng, Ya-An
2017-07-05
Since the 1980s, severity of illness scoring systems has gained increasing popularity in Intensive Care Units (ICUs). Physicians used them for predicting mortality and assessing illness severity in clinical trials. The objective of this study was to assess the performance of Simplified Acute Physiology Score 3 (SAPS 3) and its customized equation for Australasia (Australasia SAPS 3, SAPS 3 [AUS]) in predicting clinical prognosis and hospital mortality in emergency ICU (EICU). A retrospective analysis of the EICU including 463 patients was conducted between January 2013 and December 2015 in the EICU of Peking University Third Hospital. The worst physiological data of enrolled patients were collected within 24 h after admission to calculate SAPS 3 score and predicted mortality by regression equation. Discrimination between survivals and deaths was assessed by the area under the receiver operator characteristic curve (AUC). Calibration was evaluated by Hosmer-Lemeshow goodness-of-fit test through calculating the ratio of observed-to-expected numbers of deaths which is known as the standardized mortality ratio (SMR). A total of 463 patients were enrolled in the study, and the observed hospital mortality was 26.1% (121/463). The patients enrolled were divided into survivors and nonsurvivors. Age, SAPS 3 score, Acute Physiology and Chronic Health Evaluation Score II (APACHE II), and predicted mortality were significantly higher in nonsurvivors than survivors (P < 0.05 or P < 0.01). The AUC (95% confidence intervals [CI s]) for SAPS 3 score was 0.836 (0.796-0.876). The maximum of Youden's index, cutoff, sensitivity, and specificity of SAPS 3 score were 0.526%, 70.5 points, 66.9%, and 85.7%, respectively. The Hosmer-Lemeshow goodness-of-fit test for SAPS 3 demonstrated a Chi-square test score of 10.25, P = 0.33, SMR (95% CI) = 0.63 (0.52-0.76). The Hosmer-Lemeshow goodness-of-fit test for SAPS 3 (AUS) demonstrated a Chi-square test score of 9.55, P = 0.38, SMR (95% CI) = 0.68 (0.57-0.81). Univariate and multivariate analyses were conducted for biochemical variables that were probably correlated to prognosis. Eventually, blood urea nitrogen (BUN), albumin,lactate and free triiodothyronine (FT3) were selected as independent risk factors for predicting prognosis. The SAPS 3 score system exhibited satisfactory performance even superior to APACHE II in discrimination. In predicting hospital mortality, SAPS 3 did not exhibit good calibration and overestimated hospital mortality, which demonstrated that SAPS 3 needs improvement in the future.
Whitley, Elizabeth; Anantharam, Poojya; Kim, Dong‐Suk; Kanthasamy, Arthi
2016-01-01
Hydrogen sulfide (H2S), the gas with the odor of rotten eggs, was formally discovered in 1777, over 239 years ago. For many years, it was considered an environmental pollutant and a health concern only in occupational settings. Recently, however, it was discovered that H2S is produced endogenously and plays critical physiological roles as a gasotransmitter. Although at low physiological concentrations it is physiologically beneficial, exposure to high concentrations of H2S is known to cause brain damage, leading to neurodegeneration and long‐term neurological sequelae or death. Neurological sequelae include motor, behavioral, and cognitive deficits, which are incapacitating. Currently, there are concerns about accidental or malicious acute mass civilian exposure to H2S. There is a major unmet need for an ideal neuroprotective treatment, for use in the field, in the event of mass civilian exposure to high H2S concentrations. This review focuses on the neuropathology of high acute H2S exposure, knowledge gaps, and the challenges associated with development of effective neuroprotective therapy to counteract H2S‐induced neurodegeneration. PMID:27442775
Acute Physiological Responses to Strongman Training Compared to Traditional Strength Training.
Harris, Nigel K; Woulfe, Colm J; Wood, Matthew R; Dulson, Deborah K; Gluchowski, Ashley K; Keogh, Justin B
2016-05-01
Strongman training (ST) has become an increasingly popular modality, but data on physiological responses are limited. This study sought to determine physiological responses to an ST session compared to a traditional strength exercise training (RST) session. Ten healthy men (23.6 ± 27.5 years, 85.8 ± 10.3 kg) volunteered in a crossover design, where all participants performed an ST session, an RST session, and a resting session within 7 days apart. The ST consisted of sled drag, farmer's walk, 1 arm dumbbell clean and press, and tire flip at loads eliciting approximately 30 seconds of near maximal effort per set. The RST consisted of squat, deadlift, bench press, and power clean, progressing to 75% of 1 repetition maximum. Sessions were equated for approximate total set duration. Blood lactate and salivary testosterone were recorded immediately before and after training sessions. Heart rate, caloric expenditure, and substrate utilization were measured throughout the resting session, both training protocols and for 80 minutes after training sessions. Analyses were conducted to determine differences in physiological responses within and between protocols. No significant changes in testosterone occurred at any time point for either session. Lactate increased significantly immediately after both sessions. Heart rate, caloric expenditure, and substrate utilization were all elevated significantly during ST and RST. Heart rate and fat expenditure were significantly elevated compared to resting in both sessions' recovery periods; calorie and carbohydrate expenditures were not. Compared to RST, ST represents an equivalent physiological stimulus on key parameters indicative of potential training-induced adaptive responses. Such adaptations could conceivably include cardiovascular conditioning.
Temporal Profiles Dissociate Regional Extracellular Ethanol versus Dopamine Concentrations
2015-01-01
In vivo monitoring of dopamine via microdialysis has demonstrated that acute, systemic ethanol increases extracellular dopamine in regions innervated by dopaminergic neurons originating in the ventral tegmental area and substantia nigra. Simultaneous measurement of dialysate dopamine and ethanol allows comparison of the time courses of their extracellular concentrations. Early studies demonstrated dissociations between the time courses of brain ethanol concentrations and dopaminergic responses in the nucleus accumbens (NAc) elicited by acute ethanol administration. Both brain ethanol and extracellular dopamine levels peak during the first 5 min following systemic ethanol administration, but the dopamine response returns to baseline while brain ethanol concentrations remain elevated. Post hoc analyses examined ratios of the dopamine response (represented as a percent above baseline) to tissue concentrations of ethanol at different time points within the first 25–30 min in the prefrontal cortex, NAc core and shell, and dorsomedial striatum following a single intravenous infusion of ethanol (1 g/kg). The temporal patterns of these “response ratios” differed across brain regions, possibly due to regional differences in the mechanisms underlying the decline of the dopamine signal associated with acute intravenous ethanol administration and/or to the differential effects of acute ethanol on the properties of subpopulations of midbrain dopamine neurons. This Review draws on neurochemical, physiological, and molecular studies to summarize the effects of acute ethanol administration on dopamine activity in the prefrontal cortex and striatal regions, to explore the potential reasons for the regional differences observed in the decline of ethanol-induced dopamine signals, and to suggest directions for future research. PMID:25537116
Chiang, H; Chang, K-C; Kan, H-W; Wu, S-W; Tseng, M-T; Hsueh, H-W; Lin, Y-H; Chao, C-C; Hsieh, S-T
2018-07-01
The study aimed to investigate the physiology, psychophysics, pathology and their relationship in reversible nociceptive nerve degeneration, and the physiology of acute hyperalgesia. We enrolled 15 normal subjects to investigate intraepidermal nerve fibre (IENF) density, contact heat-evoked potential (CHEP) and thermal thresholds during the capsaicin-induced skin nerve degeneration-regeneration; and CHEP and thermal thresholds at capsaicin-induced acute hyperalgesia. After 2-week capsaicin treatment, IENF density of skin was markedly reduced with reduced amplitude and prolonged latency of CHEP, and increased warm and heat pain thresholds. The time courses of skin nerve regeneration and reversal of physiology and psychophysics were different: IENF density was still lower at 10 weeks after capsaicin treatment than that at baseline, whereas CHEP amplitude and warm threshold became normalized within 3 weeks after capsaicin treatment. Although CHEP amplitude and IENF density were best correlated in a multiple linear regression model, a one-phase exponential association model showed better fit than a simple linear one, that is in the regeneration phase, the slope of the regression line between CHEP amplitude and IENF density was steeper in the subgroup with lower IENF densities than in the one with higher IENF densities. During capsaicin-induced hyperalgesia, recordable rate of CHEP to 43 °C heat stimulation was higher with enhanced CHEP amplitude and pain perception compared to baseline. There were differential restoration of IENF density, CHEP and thermal thresholds, and changed CHEP-IENF relationships during skin reinnervation. CHEP can be a physiological signature of acute hyperalgesia. These observations suggested the relationship between nociceptive nerve terminals and brain responses to thermal stimuli changed during different degree of skin denervation, and CHEP to low-intensity heat stimulus can reflect the physiology of hyperalgesia. © 2018 European Pain Federation - EFIC®.
Greenslade, Jaimi H; Beamish, Daniel; Parsonage, William; Hawkins, Tracey; Schluter, Jessica; Dalton, Emily; Parker, Kate; Than, Martin; Hammett, Christopher; Lamanna, Arvin; Cullen, Louise
2016-01-01
The investigators of this study sought to examine whether abnormal physiological parameters are associated with increased risk for acute coronary syndrome (ACS) in patients presenting to the emergency department (ED) with chest pain. We used prospectively collected data on adult patients presenting with suspected ACS in 2 EDs in Australia and New Zealand. Trained research nurses collected physiological data including temperature, respiratory rate, heart rate, and systolic blood pressure (SBP) on presentation to the ED. The primary endpoint was ACS within 30 days of presentation, as adjudicated by cardiologists using standardized guidelines. The prognostic utility of physiological parameters for ACS was examined using risk ratios. Acute coronary syndrome was diagnosed in 384 of the 1951 patients (20%) recruited. Compared with patients whose SBP was between 100 and 140 mm Hg, patients with an SBP of lower than 100 mm Hg or higher than 140 mm Hg were 1.4 times (95% confidence interval, 1.2-1.7) more likely to have ACS. Similarly, compared with patients whose temperature was between 36.5°C and 37.5°C, patients with temperature of lower than 36.5°C or higher than 37.5°C were 1.4 times (95% confidence interval, 1.1-1.6) more likely to have ACS. Heart rate and respiratory rate were not predictors of ACS. Patients with abnormal temperature or SBP were slightly more likely to have ACS, but such risk was of too small a magnitude to be useful in clinical decision making. Other physiological parameters (heart rate and respiratory rate) had no prognostic value. The use of physiological parameters cannot reliably confirm or rule out ACS.
Bunsawat, Kanokwan; Ranadive, Sushant M; Lane-Cordova, Abbi D; Yan, Huimin; Kappus, Rebecca M; Fernhall, Bo; Baynard, Tracy
2017-04-01
Central arterial stiffness is associated with incident hypertension and negative cardiovascular outcomes. Obese individuals have higher central blood pressure (BP) and central arterial stiffness than their normal-weight counterparts, but it is unclear whether obesity also affects hemodynamics and central arterial stiffness after maximal exercise. We evaluated central hemodynamics and arterial stiffness during recovery from acute maximal aerobic exercise in obese and normal-weight individuals. Forty-six normal-weight and twenty-one obese individuals underwent measurements of central BP and central arterial stiffness at rest and 15 and 30 min following acute maximal exercise. Central BP and normalized augmentation index (AIx@75) were derived from radial artery applanation tonometry, and central arterial stiffness was obtained via carotid-femoral pulse wave velocity (cPWV) and corrected for central mean arterial pressure (cPWV/cMAP). Central arterial stiffness increased in obese individuals but decreased in normal-weight individuals following acute maximal exercise, after adjusting for fitness. Obese individuals also exhibited an overall higher central BP ( P < 0.05), with no exercise effect. The increase in heart rate was greater in obese versus normal-weight individuals following exercise ( P < 0.05), but there was no group differences or exercise effect for AIx@75 In conclusion, obese (but not normal-weight) individuals increased central arterial stiffness following acute maximal exercise. An assessment of arterial stiffness response to acute exercise may serve as a useful detection tool for subclinical vascular dysfunction. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Nolan, Vikki G.; Zhang, Yuqing; Lash, Timothy; Sebastiani, Paola; Steinberg, Martin H.
2015-01-01
Summary The role of the weather as a trigger of sickle cell acute painful episodes has long been debated. To more accurately describe the role of the weather as a trigger of painful events, we conducted a case-crossover study of the association between local weather conditions and the occurrence of painful episodes. From the Cooperative Study of Sickle Cell Disease, we identified 813 patients with sickle cell anaemia who had 3570 acute painful episodes. We found an association between wind speed and the onset of pain, specifically wind speed during the 24-h period preceding the onset of pain. Analysing wind speed as a categorical trait, showed a 13% increase (95% confidence interval: 3%, 24%) in odds of pain, when comparing the high wind speed to lower wind speed (P = 0.007). In addition, the association between wind speed and painful episodes was found to be stronger among men, particularly those in the warmer climate regions of the United States. These results are in agreement with another study that found an association between wind speed and hospital visits for pain in the United Kingdom, and lends support to physiological and clinical studies that have suggested that skin cooling is associated with sickle vasoocclusion and perhaps pain. PMID:18729854
Nolan, Vikki G; Zhang, Yuqing; Lash, Timothy; Sebastiani, Paola; Steinberg, Martin H
2008-11-01
The role of the weather as a trigger of sickle cell acute painful episodes has long been debated. To more accurately describe the role of the weather as a trigger of painful events, we conducted a case-crossover study of the association between local weather conditions and the occurrence of painful episodes. From the Cooperative Study of Sickle Cell Disease, we identified 813 patients with sickle cell anaemia who had 3570 acute painful episodes. We found an association between wind speed and the onset of pain, specifically wind speed during the 24-h period preceding the onset of pain. Analysing wind speed as a categorical trait, showed a 13% increase (95% confidence interval: 3%, 24%) in odds of pain, when comparing the high wind speed to lower wind speed (P = 0.007). In addition, the association between wind speed and painful episodes was found to be stronger among men, particularly those in the warmer climate regions of the United States. These results are in agreement with another study that found an association between wind speed and hospital visits for pain in the United Kingdom, and lends support to physiological and clinical studies that have suggested that skin cooling is associated with sickle vasoocclusion and perhaps pain.
Charalambous, Charalambos C; Alcantara, Carolina C; French, Margaret A; Li, Xin; Matt, Kathleen S; Kim, Hyosub E; Morton, Susanne M; Reisman, Darcy S
2018-05-15
Previous work demonstrated an effect of a single high-intensity exercise bout coupled with motor practice on the retention of a newly acquired skilled arm movement, in both neurologically intact and impaired adults. In the present study, using behavioural and computational analyses we demonstrated that a single exercise bout, regardless of its intensity and timing, did not increase the retention of a novel locomotor task after stroke. Considering both present and previous work, we postulate that the benefits of exercise effect may depend on the type of motor learning (e.g. skill learning, sensorimotor adaptation) and/or task (e.g. arm accuracy-tracking task, walking). Acute high-intensity exercise coupled with motor practice improves the retention of motor learning in neurologically intact adults. However, whether exercise could improve the retention of locomotor learning after stroke is still unknown. Here, we investigated the effect of exercise intensity and timing on the retention of a novel locomotor learning task (i.e. split-belt treadmill walking) after stroke. Thirty-seven people post stroke participated in two sessions, 24 h apart, and were allocated to active control (CON), treadmill walking (TMW), or total body exercise on a cycle ergometer (TBE). In session 1, all groups exercised for a short bout (∼5 min) at low (CON) or high (TMW and TBE) intensity and before (CON and TMW) or after (TBE) the locomotor learning task. In both sessions, the locomotor learning task was to walk on a split-belt treadmill in a 2:1 speed ratio (100% and 50% fast-comfortable walking speed) for 15 min. To test the effect of exercise on 24 h retention, we applied behavioural and computational analyses. Behavioural data showed that neither high-intensity group showed greater 24 h retention compared to CON, and computational data showed that 24 h retention was attributable to a slow learning process for sensorimotor adaptation. Our findings demonstrated that acute exercise coupled with a locomotor adaptation task, regardless of its intensity and timing, does not improve retention of the novel locomotor task after stroke. We postulate that exercise effects on motor learning may be context specific (e.g. type of motor learning and/or task) and interact with the presence of genetic variant (BDNF Val66Met). © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Bedulina, Daria; Meyer, Michael F.; Gurkov, Anton; Kondratjeva, Ekaterina; Baduev, Boris; Gusdorf, Roman
2017-01-01
Acute temperature fluctuations are common in surface waters, and aquatic organisms may manifest physiological responses to punctuated temperature spikes long before behavioral responses. Ectotherms, especially cryophilic stenotherms such as those endemic to Lake Baikal (Siberia), may demonstrate specialized physiological responses to acute temperature increases because their proteomes have evolved to function most efficiently at lower temperatures (e.g., <10 °C). Therefore, our study questioned the nature and degree of variation in physiological response to acute thermal stress in two congenerous, endemic Baikal amphipod species, Eulimnogammarus verrucosus and Eulimnogammarus cyaneus. We hypothesized that because interspecific and intersexual thermosensitivity varies significantly among ectotherms, there would be divergent intersexual and interspecific strategies to withstand acute thermal stress, manifested in different protein compositions and concentrations. We exposed individuals to the species’ respective LT50 for one hour followed by a three-hour recovery period. We then performed 1D-PAGE, Western blotting, 2D-PAGE, and Mass Spectrometry techniques and assessed relative intersexual and interspecific changes in proteomic composition and heat shock protein 70 level. Our results demonstrate that females tend to be more sensitive to an acute thermal stimulus than males, most likely because females allocate significant energy to reproduction and less to heat shock response, evidenced by females’ significantly lower LT50time. Lower level of Hsp70 was found in females of the thermosensitive E. verrucosus compared to males of this species. No intersexual differences were found in Hsp70 level in thermotolerant E. cyaneus. Higher levels of hemocyanin subunits and arginine kinase were found in E. cyaneus females after heat shock and recovery compared to males, which was not found for E. verrucosus, suggesting interspecific mechanisms for E. cyaneus’s higher thermotolerance. These differing responses between species and sexes of Baikal amphipods may reflect more general strategies for maintaining homeostatic conditions during acute thermal stress. As mean surface water temperatures increase worldwide, the net efficiency and efficacy of these strategies could give rise to long term changes in physiology, behavior, and interactions with other species, potentially precipitating population and community level alterations. PMID:28243524
Respiratory physiology and pathological anxiety.
Gorman, J M; Uy, J
1987-11-01
There has been comparatively little attention paid to the respiratory derangements in anxiety disorders. Some authorities contend, however, that indices of respiratory function may be the best objective marker of anxiety state. Furthermore, an understanding of the ventilatory status of patients with anxiety disorder has shed light on the basic pathophysiology of abnormal anxiety. For example, it is now clear that patients with a wide variety of anxiety disorders hyperventilate both chronically and acutely. Therefore, we present an explanation of the physiological changes produced by hyperventilation. In order to further study ventilatory physiology in patients with anxiety disorder, our group and others have used the carbon dioxide challenge test. The data from these experiments suggest that patients with panic disorder are hypersensitive to carbon dioxide and that carbon dioxide inhalation induces panic attacks in susceptible patients. Hyperventilation appears to be a secondary, but pathophysiologically important, event in the generation of acute panic. The implications of work in respiratory physiology for clinical management of patients with anxiety disorder are discussed.
Inhalation of ultrafine carbon particles (ufCP) causes cardiac physiological changes without marked pulmonary injury or inflammation. We hypothesized that acute ufCP exposure of 13 months old Spontaneously Hypertensive (SH) rats will cause differential effects on the lung and hea...
Komoroske, Lisa M; Connon, Richard E; Jeffries, Ken M; Fangue, Nann A
2015-10-01
Forecasting species' responses to climate change requires understanding the underlying mechanisms governing environmental stress tolerance, including acclimation capacity and acute stress responses. Current knowledge of these physiological processes in aquatic ectotherms is largely drawn from eurythermal or extreme stenothermal species. Yet many species of conservation concern exhibit tolerance windows and acclimation capacities in between these extremes. We linked transcriptome profiles to organismal tolerance in a mesothermal endangered fish, the delta smelt (Hypomesus transpacificus), to quantify the cellular processes, sublethal thresholds and effects of thermal acclimation on acute stress responses. Delta smelt initiated rapid molecular changes in line with expectations of theoretical thermal limitation models, but also exhibited diminished capacity to modify the expression of some genes and cellular mechanisms key to coping with acute thermal stress found in eurytherms. Sublethal critical thresholds occurred 4-6 °C below their upper tolerance limits, and thermal acclimation shifted the onset of acute thermal stress and tolerance as predicted. However, we found evidence that delta smelt's limited thermal plasticity may be partially due to an inability of individuals to effectively make physiological adjustments to truly achieve new homoeostasis under heightened temperatures, resulting in chronic thermal stress. These findings provide insight into the physiological basis of the diverse patterns of thermal tolerances observed in nature. Moreover, understanding how underlying molecular mechanisms shape thermal acclimation capacity, acute stress responses and ultimately differential phenotypes contributes to a predictive framework to deduce species' responses in situ to changes in selective pressures due to climate change. © 2015 John Wiley & Sons Ltd.
Sylvia, Kristyn E; Demas, Gregory E
2018-03-01
There is bidirectional communication between the immune system and the gut microbiome, however the precise mechanisms regulating this crosstalk are not well understood. Microbial-associated molecular patterns (MAMPs) within the gut, including lipopolysaccharide (LPS) that produces a quick and robust activation of the immune system, may be one way by which these interactions occur. Endogenous levels of LPS in the gut are low enough that they do not usually cause disease, although, in times of increased LPS loads, they may be capable of increasing vulnerability of the gut to pathogenic bacteria. Furthermore, chronic, low-grade inflammation can have lasting effects on the gut, but the effects of acute inflammation on gut communities have not been thoroughly assessed. In this study, we first investigated whether a single modest dose of LPS administered to adult male and female Siberian hamsters (Phodopus sungorus) activated the immune system by measuring levels of circulating cortisol and the proinflammatory cytokine TNF-α in the liver compared with saline-treated animals. We then investigated whether this same acute dose of LPS altered the microbiome 48 h after treatment. We found that, although LPS increased cortisol and liver cytokine levels, and produced changes in food intake and body mass in both sexes, immunological changes were independent of gut dysbiosis 48 h after LPS injection. These data suggest that an acute immune activation may not be capable of altering the gut microbiome in healthy individuals. It is likely, however, that this type of immune challenge may have other physiological impacts on the gut's vulnerability, and future studies will investigate these relationships further. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Wenner, Joshua B; Norena, Monica; Khan, Nadia; Palepu, Anita; Ayas, Najib T; Wong, Hubert; Dodek, Peter M
2009-09-01
Although reliability of severity of illness and predicted probability of hospital mortality have been assessed, interrater reliability of the abstraction of primary and other intensive care unit (ICU) admitting diagnoses and underlying comorbidities has not been studied. Patient data from one ICU were originally abstracted and entered into an electronic database by an ICU nurse. A research assistant reabstracted patient demographics, ICU admitting diagnoses and underlying comorbidities, and elements of Acute Physiology and Chronic Health Evaluation II (APACHE II) score from 100 random patients of 474 admitted during 2005 using an identical electronic database. Chamberlain's percent positive agreement was used to compare diagnoses and comorbidities between the 2 data abstractors. A kappa statistic was calculated for demographic variables, Glasgow Coma Score, APACHE II chronic health points, and HIV status. Intraclass correlation was calculated for acute physiology points and predicted probability of hospital mortality. Percent positive agreement for ICU primary and other admitting diagnoses ranged from 0% (primary brain injury) to 71% (sepsis), and for underlying comorbidities, from 40% (coronary artery bypass graft) to 100% (HIV). Agreement as measured by kappa statistic was strong for race (0.81) and age points (0.95), moderate for chronic health points (0.50) and HIV (0.66), and poor for Glasgow Coma Score (0.36). Intraclass correlation showed a moderate-high agreement for acute physiology points (0.88) and predicted probability of hospital mortality (0.71). Reliability for ICU diagnoses and elements of the APACHE II score is related to the objectivity of primary data in the medical charts.
Mortality Probability Model III and Simplified Acute Physiology Score II
Vasilevskis, Eduard E.; Kuzniewicz, Michael W.; Cason, Brian A.; Lane, Rondall K.; Dean, Mitzi L.; Clay, Ted; Rennie, Deborah J.; Vittinghoff, Eric; Dudley, R. Adams
2009-01-01
Background: To develop and compare ICU length-of-stay (LOS) risk-adjustment models using three commonly used mortality or LOS prediction models. Methods: Between 2001 and 2004, we performed a retrospective, observational study of 11,295 ICU patients from 35 hospitals in the California Intensive Care Outcomes Project. We compared the accuracy of the following three LOS models: a recalibrated acute physiology and chronic health evaluation (APACHE) IV-LOS model; and models developed using risk factors in the mortality probability model III at zero hours (MPM0) and the simplified acute physiology score (SAPS) II mortality prediction model. We evaluated models by calculating the following: (1) grouped coefficients of determination; (2) differences between observed and predicted LOS across subgroups; and (3) intraclass correlations of observed/expected LOS ratios between models. Results: The grouped coefficients of determination were APACHE IV with coefficients recalibrated to the LOS values of the study cohort (APACHE IVrecal) [R2 = 0.422], mortality probability model III at zero hours (MPM0 III) [R2 = 0.279], and simplified acute physiology score (SAPS II) [R2 = 0.008]. For each decile of predicted ICU LOS, the mean predicted LOS vs the observed LOS was significantly different (p ≤ 0.05) for three, two, and six deciles using APACHE IVrecal, MPM0 III, and SAPS II, respectively. Plots of the predicted vs the observed LOS ratios of the hospitals revealed a threefold variation in LOS among hospitals with high model correlations. Conclusions: APACHE IV and MPM0 III were more accurate than SAPS II for the prediction of ICU LOS. APACHE IV is the most accurate and best calibrated model. Although it is less accurate, MPM0 III may be a reasonable option if the data collection burden or the treatment effect bias is a consideration. PMID:19363210
Buckman, Laura B.; Thompson, Misty M.; Lippert, Rachel N.; Blackwell, Timothy S.; Yull, Fiona E.; Ellacott, Kate L.J.
2014-01-01
Objective Introduction of a high-fat diet to mice results in a period of voracious feeding, known as hyperphagia, before homeostatic mechanisms prevail to restore energy intake to an isocaloric level. Acute high-fat diet hyperphagia induces astrocyte activation in the rodent hypothalamus, suggesting a potential role of these cells in the homeostatic response to the diet. The objective of this study was to determine physiologic role of astrocytes in the acute homeostatic response to high-fat feeding. Methods We bred a transgenic mouse model with doxycycline-inducible inhibition of NFkappaB (NFκB) signaling in astrocytes to determine the effect of loss of NFκB-mediated astrocyte activation on acute high-fat hyperphagia. ELISA was used to measure the levels of markers of astrocyte activation, glial-fibrillary acidic protein (GFAP) and S100B, in the medial basal hypothalamus. Results Inhibition of NFκB signaling in astrocytes prevented acute high-fat diet-induced astrocyte activation and resulted in a 15% increase in caloric intake (P < 0.01) in the first 24 h after introduction of the diet. Conclusions These data reveal a novel homeostatic role for astrocytes in the acute physiologic regulation of food intake in response to high-fat feeding. PMID:25685690
Buckman, Laura B; Thompson, Misty M; Lippert, Rachel N; Blackwell, Timothy S; Yull, Fiona E; Ellacott, Kate L J
2015-01-01
Introduction of a high-fat diet to mice results in a period of voracious feeding, known as hyperphagia, before homeostatic mechanisms prevail to restore energy intake to an isocaloric level. Acute high-fat diet hyperphagia induces astrocyte activation in the rodent hypothalamus, suggesting a potential role of these cells in the homeostatic response to the diet. The objective of this study was to determine physiologic role of astrocytes in the acute homeostatic response to high-fat feeding. We bred a transgenic mouse model with doxycycline-inducible inhibition of NFkappaB (NFκB) signaling in astrocytes to determine the effect of loss of NFκB-mediated astrocyte activation on acute high-fat hyperphagia. ELISA was used to measure the levels of markers of astrocyte activation, glial-fibrillary acidic protein (GFAP) and S100B, in the medial basal hypothalamus. Inhibition of NFκB signaling in astrocytes prevented acute high-fat diet-induced astrocyte activation and resulted in a 15% increase in caloric intake (P < 0.01) in the first 24 h after introduction of the diet. These data reveal a novel homeostatic role for astrocytes in the acute physiologic regulation of food intake in response to high-fat feeding.
Aromatase Blockade Is Associated With Increased Mortality in Acute Illness in Male Mice.
Connerney, Jeannette J; Spratt, Daniel I
2017-09-01
The increase in circulating estrogen levels with acute illness in humans is accompanied by increased aromatase expression in adipose tissue and increased peripheral aromatization of estrogens to androgens. Animal studies indicate that estrogen may be beneficial in acute illness. We hypothesized that blockade of aromatase in acute illness would decrease survival. Prospective sham controlled. Maine Medical Center Research Institute animal facility. Six- to 8-week-old male black 6 mice. Mice underwent cecal ligation and puncture (CLP) to induce acute illness and were administered letrozole to block aromatase or saline. Mice undergoing sham surgery with or without letrozole served as controls. Adipose and cardiovascular tissue was harvested for preliminary evaluation of aromatase expression. Survival was the main outcome measurement. Evidence for aromatase expression in tissue samples was assessed using western blot and/or immunohistochemistry. With aromatase blockade, survival in CLP mice was decreased ( P = 0.04). The presence of aromatase in adipose tissue was observed by western blot in CLP but not control mice. Similarly, the presence of aromatase was observed in cardiac tissue of CLP but not in control mice. The decreased survival during sepsis with aromatase blockade suggests that this response to acute illness may be important both physiologically and clinically. The preliminary observation of aromatase expression in adipose and cardiovascular tissue during acute illness in this mouse model indicates that this model has parallels to human physiology and may be useful for further studying the aromatase response to acute illness.
Acute Responses to Resistance and High-Intensity Interval Training in Early Adolescents.
Harris, Nigel K; Dulson, Deborah K; Logan, Greig R M; Warbrick, Isaac B; Merien, Fabrice L R; Lubans, David R
2017-05-01
Harris, NK, Dulson, DK, Logan, GRM, Warbrick, IB, Merien, FLR, and Lubans, DR. Acute responses to resistance and high-intensity interval training in early adolescents. J Strength Cond Res 31(5): 1177-1186, 2017-The purpose of this study was to compare the acute physiological responses within and between resistance training (RT) and high-intensity interval training (HIIT) matched for time and with comparable effort, in a school setting. Seventeen early adolescents (12.9 ± 0.3 years) performed both RT (2-5 repetitions perceived short of failure at the end of each set) and HIIT (90% of age-predicted maximum heart rate), equated for total work set and recovery period durations comprising of 12 "sets" of 30-second work followed by 30-second recovery (total session time 12 minutes). Variables of interest included oxygen consumption, set and session heart rate (HR), and rate of perceived exertion, and change in salivary cortisol (SC), salivary alpha amylase, and blood lactate (BL) from presession to postsession. Analyses were conducted to determine responses within and between the 2 different protocols. For both RT and HIIT, there were very large increases pretrial to posttrial for SC and BL, and only BL increased greater in HIIT (9.1 ± 2.6 mmol·L) than RT (6.8 ± 3.3 mmol·L). Mean set HR for both RT (170 ± 9.1 b·min) and HIIT (179 ± 5.6 b·min) was at least 85% of HRmax. V[Combining Dot Above]O2 over all 12 sets was greater for HIIT (33.8 ± 5.21 ml·kg·min) than RT (24.9 ± 3.23 ml·kg·min). Brief, repetitive, intermittent forays into high but not supramaximal intensity exercise using RT or HIIT seemed to be a potent physiological stimulus in adolescents.
Impact of acute versus prolonged exercise and dehydration on kidney function and injury.
Bongers, Coen C W G; Alsady, Mohammad; Nijenhuis, Tom; Tulp, Anouk D M; Eijsvogels, Thijs M H; Deen, Peter M T; Hopman, Maria T E
2018-06-01
Exercise and dehydration may be associated with a compromised kidney function and potential signs of kidney injury. However, the kidney responses to exercise of different durations and hypohydration levels are not yet known. Therefore, we aimed to compare the effects of acute versus prolonged exercise and dehydration on estimated glomerular filtration rate (eGFR) and kidney injury biomarkers in healthy male adults. A total of 35 subjects (23 ± 3 years) were included and invited for two study visits. Visit 1 consisted of a maximal cycling test. On Visit 2, subjects performed a submaximal exercise test at 80% of maximal heart rate until 3% hypohydration. Blood and urine samples were taken at baseline, after 30 min of exercise (acute effects; low level of hypohydration) and after 150 min of exercise or when 3% hypohydration was achieved (prolonged effects, high level of hypohydration). Urinary outcome parameters were corrected for urinary cystatin C, creatinine, and osmolality. Subjects dehydrated on average 0.6 ± 0.3% and 2.9 ± 0.7% after acute and prolonged exercise, respectively (P < 0.001). The eGFR cystatin C did not differ between baseline and acute exercise (118 ± 11 vs. 116 ± 12 mL/min/1.73 m 2 , P = 0.12), whereas eGFR cystatin C was significantly lower after prolonged exercise (103 ± 16 mL/min/1.73 m 2 , P < 0.001). We found no difference in osmolality corrected uKIM1 concentrations after acute and prolonged exercise (P > 0.05), and elevated osmolality corrected uNGAL concentrations after acute and prolonged exercise (all P-values < 0.05). In conclusion, acute exercise did barely impact on eGFR cystatin C and kidney injury biomarkers, whereas prolonged exercise is associated with a decline in eGFR cystatin C and increased biomarkers for kidney injury. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Ishibashi, S; Yokota, T; Shiojiri, T; Matunaga, T; Tanaka, H; Nishina, K; Hirota, H; Inaba, A; Yamada, M; Kanda, T; Mizusawa, H
2003-05-01
Acute axonal polyneuropathy and Wernicke-Korsakoff encephalopathy developed simultaneously in three patients. Nerve conduction studies (NCS) detected markedly decreased compound muscle action potentials (CMAPs) and sensory nerve action potentials (SNAPs) with minimal conduction slowing; sympathetic skin responses (SSRs) were also notably decreased. Sural nerve biopsies showed only mild axonal degeneration with scattered myelin ovoid formation. The symptoms of neuropathy lessened within two weeks after an intravenous thiamine infusion. CMAPs, SNAPs, and SSRs also increased considerably. We suggest that this is a new type of peripheral nerve impairment: physiological conduction failure with minimal conduction delay due to thiamine deficiency.
Dehydration Parameters and Standards for Laboratory Mice
Bekkevold, Christine M; Robertson, Kimberly L; Reinhard, Mary K; Battles, August H; Rowland, Neil E
2013-01-01
Water deprivation and restriction are common features of many physiologic and behavioral studies; however, there are no data-driven humane standards regarding mice on water deprivation or restriction studies to guide IACUC, investigators, and veterinarians. Here we acutely deprived outbred CD1 mice of water for as long as 48 h or restricted them to a 75% or 50% water ration; physical and physiologic indicators of dehydration were measured. With acute water deprivation, the appearance and attitude of mice deteriorated after 24 h, and weight loss exceeded 15%. Plasma osmolality was increased, and plasma volume decreased with each time interval. Plasma corticosterone concentration increased with duration of deprivation. There were no differences in any dehydration measures between mice housed in conventional static cages or ventilated racks. Chronic water restriction induced no significant changes compared with ad libitum availability. We conclude that acute water deprivation of as long as 24 h produces robust physiologic changes; however, deprivation in excess of 24 h is not recommended in light of apparent animal distress. Although clearly thirsty, mice adapt to chronic water restriction of as much as 50% of the ad libitum daily ration that is imposed over an interval of as long as 8 d. PMID:23849404
Woody, Alex; Hamilton, Katrina; Livitz, Irina E; Figueroa, Wilson S; Zoccola, Peggy M
2017-05-01
Understanding the relationship between stress and telomere length (a marker of cellular aging) is of great interest for reducing aging-related disease and death. One important aspect of acute stress exposure that may underlie detrimental effects on health is physiological reactivity to the stressor. This study tested the relationship between buccal telomere length and physiological reactivity (salivary cortisol reactivity and total output, heart rate (HR) variability, blood pressure, and HR) to an acute psychosocial stressor in a sample of 77 (53% male) healthy young adults. Consistent with predictions, greater reductions in HR variability (HRV) in response to a stressor and greater cortisol output during the study session were associated with shorter relative buccal telomere length (i.e. greater cellular aging). However, the relationship between cortisol output and buccal telomere length became non-significant when adjusting for medication use. Contrary to past findings and study hypotheses, associations between cortisol, blood pressure, and HR reactivity and relative buccal telomere length were not significant. Overall, these findings may indicate there are limited and mixed associations between stress reactivity and telomere length across physiological systems.
2011-03-04
through negative emotions, behavioral disruptions, and/or physiological reactions (Grunberg & Singer, 1990; Baum, Gatchel, & Krantz, 1997; Park...biological responses that range from activation of the HPA axis to 14 altering the physiology of internal organs and organ systems (Kvetnansky, Weise...Females consistently show greater physiological response to both acute and chronic stressors, which many investigators attribute to sex hormone
Rtibi, Kais; Selmi, Slimen; Grami, Dhekra; Amri, Mohamed; Sebai, Hichem; Marzouki, Lamjed
2018-06-01
The phytochemical composition and the effect of the green and ripe Opuntia ficus-indica juice on some gastrointestinal (GI) physiological parameters such as stomach emptying and small-intestinal motility and permeability were determined in rats administered multiple concentrations of the prickly pear juice (5, 10, and 20 mL kg -1 , b.w., p.o.). Other separate groups of rats were received, respectively; sodium chloride (0.9%, b.w., p.o.), clonidine (α- 2 -adrenergic agonist, 1 mg kg -1 , b.w., i.p.), yohimbine (α- 2 -adrenergic antagonist, 2 mg kg -1 , b.w., i.p.), and loperamide (5 mg kg -1 , b.w., p.o.). In vivo reverse effect of juice on GI physiological parameters was investigated using a charcoal meal test, phenol-red colorimetric method, loperamide-induced acute constipation, and castor oil-caused small-bowel hypersecretion. However, the opposite in vitro influence of juice on intestinal permeability homeostasis was assessed by the Ussing chamber system. Mature prickly pear juice administration stimulated significantly and dose dependently the GI transit (GIT; 8-26%) and gastric emptying (0.9-11%) in a rat model. Conversely, the immature prickly pear juice reduced gastric emptying (7-23%), GIT (10-28%), and diarrhea (59-88%). Moreover, the standard drugs have produced their antagonistic effects on GI physiological functions. The permeability of the isolated perfused rat small-intestine has a paradoxical response flowing prickly pear juices administration at diverse doses and maturity grade. Most importantly, the quantitative phytochemical analyses of both juices showed a different composition depending on the degree of maturity. In conclusion, the prickly pear juice at two distinct phases of maturity has different phytochemical characteristics and opposite effects on GI physiological actions in rat.
Rozenman, Michelle; Sturm, Alexandra; McCracken, James T; Piacentini, John
2017-12-01
Anxiety has been proposed to influence psychophysiological reactivity in children and adolescents. However, the extant empirical literature has not always found physiological reactivity to be associated with anxiety in youth. Further, most investigations have not examined psychophysiological reactivity in real time over the course of acute stress. To test the impact of anxiety disorder status on autonomic arousal in youth, we compared youth with primary anxiety disorders (N = 24) to typically developing (TD) youth (N = 22) on heart rate (HR), heart rate variability (HRV), and respiratory sinus arrhythmia (RSA) during an acute stressor in which youth received error-related feedback. We also conducted exploratory analyses on youth performance during the task. Youth ages 9-17 participated in the arithmetic portion of the Trier Social Stress Test for Children (Buske-Kirschbaum et al., Psychosom 59:419-426, 1997), during which time they received consecutive, standardized feedback that they made calculation errors. Results indicated that, compared to their TD counterparts, the anxious group demonstrated elevated HR and suppressed HRV during initial provision of error feedback and during the recovery period. No group differences were found for RSA. Additionally, overall TD youth made a greater proportion of errors than anxious youth. Clinically, these findings may provide preliminary support for anxious youth exhibiting physiological reactivity in response to receipt of error-related feedback, and may have implications for understanding biological processes during stress. This work underscores the need for further study of when and how anxiety may influence autonomic reactivity over the course of stress.
A Multicomponent Fall Prevention Strategy Reduces Falls at an Academic Medical Center.
France, Dan; Slayton, Jenny; Moore, Sonya; Domenico, Henry; Matthews, Julia; Steaban, Robin L; Choma, Neesha
2017-09-01
While the reduction in fall rates has not kept pace with the reduction of other hospital-acquired conditions, patient safety research and quality improvement (QI) initiatives at the system and hospital levels have achieved positive results and provide insights into potentially effective risk reduction strategies. An academic medical center developed a QI-based multicomponent strategy for fall prevention and pilot tested it for six months in three high-risk units-the Neuroscience Acute Care Unit, the Myelosuppression/Stem Cell Transplant Unit, and the Acute Care for the Elderly Unit-before implementing and evaluating the strategy hospitalwide. The multicomponent fall strategy was evaluated using a pre-post study design. The main outcome measures were falls and falls with harm measured in events per 1,000 patient-days. Fall rates were monitored and compared for three classes of falls: (1) accidental, (2) anticipated physiologic, and (3) unanticipated physiologic. Statistical process control charts showed that the pilot units had achieved significant reductions in falls with harm during the last five months of data collection. Wald test and segmented regression analyses revealed significant improvements in pooled postintervention fall rates, stratified by fall type. The hospitalwide implementation of the program resulted in a 47% overall reduction in falls in the postintervention period. A fall prevention strategy that targeted the spectrum of risk factors produced measurable improvement in fall rates and rates of patient harm. Hospitals must continue developing, rigorously testing, and sharing their results and experiences in implementing and sustaining multicomponent fall prevention strategies. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.
Eicher, John D.; Wakabayashi, Yoshiyuki; Vitseva, Olga; Esa, Nada; Yang, Yanqin; Zhu, Jun; Freedman, Jane E.; McManus, David D.; Johnson, Andrew D.
2016-01-01
Transcripts in platelets are largely produced in precursor megakaryocytes but remain physiologically-active as platelets translate RNAs and regulate protein/RNA levels. Recent studies using transcriptome sequencing (RNA-seq) characterized the platelet transcriptome in limited numbers of non-diseased individuals. Here, we expand upon these RNA-seq studies by completing RNA-seq in platelets from 32 patients with acute myocardial infarction (MI). Our goals were to characterize the platelet transcriptome using a population of patients with acute MI and relate gene expression to platelet aggregation measures and ST-segment elevation MI (STEMI) (n=16) versus non-STEMI (NSTEMI) (n=16) subtypes. Similar to other studies, we detected 9,565 expressed transcripts, including several known platelet-enriched markers (e.g., PPBP, OST4). Our RNA-seq data strongly correlated with independently ascertained platelet expression data and showed enrichment for platelet-related pathways (e.g., wound response, hemostasis, and platelet activation), as well as actin-related and post-transcriptional processes. Several transcripts displayed suggestively higher (FBXL4, ECHDC3, KCNE1, TAOK2, AURKB, ERG, and FKBP5) and lower (MIAT, PVRL3and PZP) expression in STEMI platelets compared to NSTEMI. We also identified transcripts correlated with platelet aggregation to TRAP (ATP6V1G2, SLC2A3), collagen (CEACAM1, ITGA2), and ADP (PDGFB, PDGFC, ST3GAL6). Our study adds to current platelet gene expression resources by providing transcriptome-wide analyses in platelets isolated from patients with acute MI. In concert with prior studies, we identify various genes for further study in regards to platelet function and acute MI. Future platelet RNA-seq studies examining more diverse sets of healthy and diseased samples will add to our understanding of platelet thrombotic and non-thrombotic functions. PMID:26367242
Rivera-Brown, Anita M; Frontera, Walter R
2012-11-01
Physical activity and fitness are associated with a lower prevalence of chronic diseases, such as heart disease, cancer, high blood pressure, and diabetes. This review discusses the body's response to an acute bout of exercise and long-term physiological adaptations to exercise training with an emphasis on endurance exercise. An overview is provided of skeletal muscle actions, muscle fiber types, and the major metabolic pathways involved in energy production. The importance of adequate fluid intake during exercise sessions to prevent impairments induced by dehydration on endurance exercise, muscular power, and strength is discussed. Physiological adaptations that result from regular exercise training such as increases in cardiorespiratory capacity and strength are mentioned. The review emphasizes the cardiovascular and metabolic adaptations that lead to improvements in maximal oxygen capacity. Copyright © 2012 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Social Media under the Skin: Facebook Use after Acute Stress Impairs Cortisol Recovery.
Rus, Holly M; Tiemensma, Jitske
2017-01-01
Social media's influence on stress remains largely unknown. Conflicting research suggests that Facebook use may both enhance and undermine psychosocial constructs related to well-being. Using novel experimental methods, this study examined the impact of social media use on stress recovery. Facebook users ( n = 92, 49 males, mean age 19.55 SD = 1.63) were randomly assigned to use their own Facebook profile or quietly read after experiencing an acute social stressor. All participants showed significant changes in subjective and physiological stress markers during recovery. Participants who used Facebook experienced greater sustained cortisol concentration ( p < 0.05) when controlling for gender and emotional investment in the website compared to controls. Results suggest that social media use may delay or impair recovery after experiencing an acute social stressor. This novel study incorporated objective physiological markers with subjective psychosocial measures to show that Facebook use may negatively impact well-being.
Social Media under the Skin: Facebook Use after Acute Stress Impairs Cortisol Recovery
Rus, Holly M.; Tiemensma, Jitske
2017-01-01
Social media's influence on stress remains largely unknown. Conflicting research suggests that Facebook use may both enhance and undermine psychosocial constructs related to well-being. Using novel experimental methods, this study examined the impact of social media use on stress recovery. Facebook users (n = 92, 49 males, mean age 19.55 SD = 1.63) were randomly assigned to use their own Facebook profile or quietly read after experiencing an acute social stressor. All participants showed significant changes in subjective and physiological stress markers during recovery. Participants who used Facebook experienced greater sustained cortisol concentration (p < 0.05) when controlling for gender and emotional investment in the website compared to controls. Results suggest that social media use may delay or impair recovery after experiencing an acute social stressor. This novel study incorporated objective physiological markers with subjective psychosocial measures to show that Facebook use may negatively impact well-being. PMID:28974938
Cardiovascular anatomy and physiology in the female.
Wingate, S
1997-12-01
Important differences in male and female cardiovascular anatomy and physiology may account for many of the gender differences seen in various cardiac disease states. Predominant influences on female disease manifestations include (1) women's smaller body size, hence smaller hearts and smaller coronary vessels and (2) women's fluctuating levels of estrogen throughout their lifespan. Understanding these critical anatomic and physiologic differences allows the clinician to better predict and plan care for women. For example, knowing that women generally have a smaller body surface area than men allows one to better understand why men have higher creatine kinase (CK) values than do women--an important distinction when interpreting these values in the acute care setting. The fact that women's hearts and coronary vessels are generally smaller than men's also helps one understand why women have a higher in-hospital mortality than men post-coronary artery bypass graft surgery (see article by Allen in this issue for more detailed information on revascularization). These are only a few examples of the many opportunities that acute care nurses have to integrate their knowledge of anatomy and physiology into proactive planning for their female cardiac patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Bo; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Science, Beijing 100101; Xia Jing
Physiological and behavioral studies have demonstrated that a number of visual functions such as visual acuity, contrast sensitivity, and motion perception can be impaired by acute alcohol exposure. The orientation- and direction-selective responses of cells in primary visual cortex are thought to participate in the perception of form and motion. To investigate how orientation selectivity and direction selectivity of neurons are influenced by acute alcohol exposure in vivo, we used the extracellular single-unit recording technique to examine the response properties of neurons in primary visual cortex (A17) of adult cats. We found that alcohol reduces spontaneous activity, visual evoked unitmore » responses, the signal-to-noise ratio, and orientation selectivity of A17 cells. In addition, small but detectable changes in both the preferred orientation/direction and the bandwidth of the orientation tuning curve of strongly orientation-biased A17 cells were observed after acute alcohol administration. Our findings may provide physiological evidence for some alcohol-related deficits in visual function observed in behavioral studies.« less
Mirvis, D M
1988-11-01
Patients with acute inferior myocardial infarction commonly have ST segment depression in the anterior precordial leads. This may reflect either reciprocal changes from the inferior ST elevation or primary ST depression from additional anterior subendocardial ischemia. From a biophysical perspective reciprocal changes should be uniformly anticipated from basic dipole theory. Detection will vary with the size, location, orientation, and electrical intensity of the lesion and with the ECG lead system deployed to register the anterior changes. Alternatively, acute occlusion of the right coronary artery may produce ischemia in the anterior left ventricular wall supplied by a stenotic anterior descending coronary artery. Anterior ischemia may result from the abnormal hemodynamics or the reduced collateral flow produced by acute right coronary artery occlusion. Thus both mechanisms are based on sound physiologic principles. A review of the clinical literature suggests that such patients represent a heterogeneous group. In some instances coexistent anterior ischemia is present, whereas in others the anterior ST depression is the passive reflection of inferior ST elevation augmented in many cases by a large infarct size or more extensive posterobasal or septal involvement.
Tomiyama, A. Janet; O’Donovan, Aoife; Lin, Jue; Puterman, Eli; Lazaro, Alanie; Chan, Jessica; Dhabhar, Firdaus S.; Wolkowitz, Owen; Kirschbaum, Clemens; Blackburn, Elizabeth; Epel, Elissa
2012-01-01
Long-term exposure to stress and its physiological mediators, in particular cortisol, may lead to impaired telomere maintenance. In this study, we examine if greater cortisol responses to an acute stressor and/or dysregulated patterns of daily cortisol secretion are associated with shorter telomere length. Twenty-three post-menopausal women comprising caregivers for dementia partners (n=14) and age- and BMI-matched non-caregivers provided home sampling of cortisol–saliva samples at waking, 30 min after waking, and bedtime, and a 12-hour overnight urine collection. They were also exposed to an acute laboratory stressor throughout which they provided saliva samples. Peripheral blood mononuclear cells were isolated from a fasting blood sample and assayed for telomere length. As hypothesized, greater cortisol responses to the acute stressor were associated with shorter telomeres, as were higher overnight urinary free cortisol levels and flatter daytime cortisol slopes. While robust physiological responses to acute stress serve important functions, the long-term consequences of frequent high stress reactivity may include accelerated telomere shortening. PMID:22138440
Clinical review: Helmet and non-invasive mechanical ventilation in critically ill patients.
Esquinas Rodriguez, Antonio M; Papadakos, Peter J; Carron, Michele; Cosentini, Roberto; Chiumello, Davide
2013-04-25
Non-invasive mechanical ventilation (NIV) has proved to be an excellent technique in selected critically ill patients with different forms of acute respiratory failure. However, NIV can fail on account of the severity of the disease and technical problems, particularly at the interface. The helmet could be an alternative interface compared to face mask to improve NIV success. We performed a clinical review to investigate the main physiological and clinical studies assessing the efficacy and related issues of NIV delivered with a helmet. A computerized search strategy of MEDLINE/PubMed (January 2000 to May 2012) and EMBASE (January 2000 to May 2012) was conducted limiting the search to retrospective, prospective, nonrandomized and randomized trials. We analyzed 152 studies from which 33 were selected, 12 physiological and 21 clinical (879 patients). The physiological studies showed that NIV with helmet could predispose to CO₂ rebreathing and increase the patients' ventilator asynchrony. The main indications for NIV were acute cardiogenic pulmonary edema, hypoxemic acute respiratory failure (community-acquired pneumonia, postoperative and immunocompromised patients) and hypercapnic acute respiratory failure. In 9 of the 21 studies the helmet was compared to a face mask during either continous positive airway pressure or pressure support ventilation. In eight studies oxygenation was similar in the two groups, while the intubation rate was similar in four and lower in three studies for the helmet group compared to face mask group. The outcome was similar in six studies. The tolerance was better with the helmet in six of the studies. Although these data are limited, NIV delivered by helmet could be a safe alternative to the face mask in patients with acute respiratory failure.
Murach, Kevin A; Walton, R Grace; Fry, Christopher S; Michaelis, Sami L; Groshong, Jason S; Finlin, Brian S; Kern, Philip A; Peterson, Charlotte A
2016-09-01
This investigation evaluated whether moderate-intensity cycle ergometer training affects satellite cell and molecular responses to acute maximal concentric/eccentric resistance exercise in middle-aged women. Baseline and 72 h postresistance exercise vastus lateralis biopsies were obtained from seven healthy middle-aged women (56 ± 5 years, BMI 26 ± 1, VO2max 27 ± 4) before and after 12 weeks of cycle training. Myosin heavy chain (MyHC) I- and II-associated satellite cell density and cross-sectional area was determined via immunohistochemistry. Expression of 93 genes representative of the muscle-remodeling environment was also measured via NanoString. Overall fiber size increased ~20% with cycle training (P = 0.052). MyHC I satellite cell density increased 29% in response to acute resistance exercise before endurance training and 50% with endurance training (P < 0.05). Following endurance training, MyHC I satellite cell density decreased by 13% in response to acute resistance exercise (acute resistance × training interaction, P < 0.05). Genes with an interaction effect tracked with satellite cell behavior, increasing in the untrained state and decreasing in the endurance trained state in response to resistance exercise. Similar satellite cell and gene expression response patterns indicate coordinated regulation of the muscle environment to promote adaptation. Moderate-intensity endurance cycle training modulates the response to acute resistance exercise, potentially conditioning the muscle for more intense concentric/eccentric activity. These results suggest that cycle training is an effective endurance exercise modality for promoting growth in middle-aged women, who are susceptible to muscle mass loss with progressing age. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Crowell, Kristen T; Kelleher, Shannon L; Soybel, David I; Lang, Charles H
2016-11-01
Severe zinc deficiency is associated with an increased systemic inflammatory response and mortality after sepsis. However, the impact of mild zinc deficiency, which is more common in populations with chronic illnesses and sepsis, is unknown. In this study, we hypothesized that marginal dietary Zn deprivation (ZM) would amplify tissue inflammation and exacerbate the sepsis-induced decrease in muscle protein synthesis. Adult male C57BL/6 mice were fed a zinc-adequate (ZA) or ZM diet (30 or 10 mg Zn/kg, respectively) over 4 weeks, peritonitis was induced by cecal ligation and puncture (CLP), and mice were examined at either 24 h (acute) or 5 days (chronic) post-CLP Acute sepsis decreased the in vivo rate of skeletal muscle protein synthesis and the phosphorylation of the mTOR substrate 4E-BP1. Acutely, sepsis increased TNF-α and IL-6 mRNA in muscle, and the increase in TNF-α was significantly greater in ZM mice. However, muscle protein synthesis and 4E-BP1 phosphorylation returned to baseline 5 days post-CLP in both ZA and ZM mice. Protein degradation via markers of the ubiquitin proteasome pathway was increased in acute sepsis, yet only MuRF1 mRNA was increased in chronic sepsis and ZM amplified this elevation. Our data suggest that mild zinc deficiency increases TNF-α in muscle acutely after sepsis but does not significantly modulate the rate of muscle protein synthesis. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Morley, Simon A; Hirse, Timo; Thorne, Michael A S; Pörtner, Hans O; Peck, Lloyd S
2012-05-01
To further investigate the previously reported limited acclimation capacities of Antarctic marine stenotherms, the Antarctic mud clam, Laternula elliptica (King and Broderip, 1830-1831), was incubated at 3.0°C for 89days. The thermal windows of a suite of biochemical and physiological metrics that characterise tissue aerobic status, were then measured in response to acute temperature elevation (2-2.5°C increase per week). To test if acclimation had occurred at the higher temperature, results were compared with published data, from the preceding year, for L. elliptica which had been incubated at ambient temperature (0.0°C) and then subjected to the same acute temperature treatments. Incubation to 3.0°C led to a temperature induced increase of tissue aerobic status (reduced intracellular cCO(2) with increased O(2) consumption, PLA (phospho-L-arginine) and ATP). At the highest acute temperature (7.5°C) the increase in anaerobic pathways (summed acetate/succinate and propionate) was less after 3.0°C than 0.0°C incubation. No other metric shifted its reaction norm in response to acute temperature elevation and so whole animal acclimation had not occurred, even after 3months at 3.0°C. Combined with the constant mortality throughout the 3.0°C incubation period, these data suggest that the recorded physiological changes were either the early stages of acclimation or, more likely, time limited resistance mechanisms. Copyright © 2012 Elsevier Inc. All rights reserved.
Narotam, Pradeep K; Morrison, John F; Schmidt, Michael D; Nathoo, Narendra
2014-04-01
Predictive modeling of emergent behavior, inherent to complex physiological systems, requires the analysis of large complex clinical data streams currently being generated in the intensive care unit. Brain tissue oxygen protocols have yielded outcome benefits in traumatic brain injury (TBI), but the critical physiological thresholds for low brain oxygen have not been established for a dynamical patho-physiological system. High frequency, multi-modal clinical data sets from 29 patients with severe TBI who underwent multi-modality neuro-clinical care monitoring and treatment with a brain oxygen protocol were analyzed. The inter-relationship between acute physiological parameters was determined using symbolic regression (SR) as the computational framework. The mean patient age was 44.4±15 with a mean admission GCS of 6.6±3.9. Sixty-three percent sustained motor vehicle accidents and the most common pathology was intra-cerebral hemorrhage (50%). Hospital discharge mortality was 21%, poor outcome occurred in 24% of patients, and good outcome occurred in 56% of patients. Criticality for low brain oxygen was intracranial pressure (ICP) ≥22.8 mm Hg, for mortality at ICP≥37.1 mm Hg. The upper therapeutic threshold for cerebral perfusion pressure (CPP) was 75 mm Hg. Eubaric hyperoxia significantly impacted partial pressure of oxygen in brain tissue (PbtO2) at all ICP levels. Optimal brain temperature (Tbr) was 34-35°C, with an adverse effect when Tbr≥38°C. Survivors clustered at [Formula: see text] Hg vs. non-survivors [Formula: see text] 18 mm Hg. There were two mortality clusters for ICP: High ICP/low PbtO2 and low ICP/low PbtO2. Survivors maintained PbtO2 at all ranges of mean arterial pressure in contrast to non-survivors. The final SR equation for cerebral oxygenation is: [Formula: see text]. The SR-model of acute TBI advances new physiological thresholds or boundary conditions for acute TBI management: PbtO2≥25 mmHg; ICP≤22 mmHg; CPP≈60-75 mmHg; and Tbr≈34-37°C. SR is congruous with the emerging field of complexity science in the modeling of dynamical physiological systems, especially during pathophysiological states. The SR model of TBI is generalizable to known physical laws. This increase in entropy reduces uncertainty and improves predictive capacity. SR is an appropriate computational framework to enable future smart monitoring devices.
Study of physiological responses to acute carbon monoxide exposure with a human patient simulator.
Cesari, Whitney A; Caruso, Dominique M; Zyka, Enela L; Schroff, Stuart T; Evans, Charles H; Hyatt, Jon-Philippe K
2006-12-01
Human patient simulators are widely used to train health professionals and students in a clinical setting, but they also can be used to enhance physiology education in a laboratory setting. Our course incorporates the human patient simulator for experiential learning in which undergraduate university juniors and seniors are instructed to design, conduct, and present (orally and in written form) their project testing physiological adaptation to an extreme environment. This article is a student report on the physiological response to acute carbon monoxide exposure in a simulated healthy adult male and a coal miner and represents how 1) human patient simulators can be used in a nonclinical way for experiential hypothesis testing; 2) students can transition from traditional textbook learning to practical application of their knowledge; and 3) student-initiated group investigation drives critical thought. While the course instructors remain available for consultation throughout the project, the relatively unstructured framework of the assignment drives the students to create an experiment independently, troubleshoot problems, and interpret the results. The only stipulation of the project is that the students must generate an experiment that is physiologically realistic and that requires them to search out and incorporate appropriate data from primary scientific literature. In this context, the human patient simulator is a viable educational tool for teaching integrative physiology in a laboratory environment by bridging textual information with experiential investigation.
NASA Astrophysics Data System (ADS)
Del Raye, G.; Weng, K.
2011-12-01
Ocean acidification affects organisms on a biochemical scale, yet its societal impacts manifest from changes that propagate through entire populations. Successful forecasting of the effects of ocean acidification therefore depends on at least two steps: (1) deducing systemic physiology based on subcellular stresses and (2) scaling individual physiology up to ecosystem processes. Predictions that are based on known biological processes (process-based models) may fare better than purely statistical models in both these steps because the latter are less robust to novel environmental conditions. Here we present a process-based model that uses temperature, pO2, and pCO2 to predict maximal aerobic scope in Atlantic cod. Using this model, we show that (i) experimentally-derived physiological parameters are sufficient to capture the response of cod aerobic scope to temperature and oxygen, and (ii) subcellular pH effects can be used to predict the systemic physiological response of cod to an acidified ocean. We predict that acute pH stress (on a scale of hours) could limit the mobility of Atlantic cod during diel vertical migration across a pCO2 gradient, promoting habitat compression. Finally, we use a global sensitivity analysis to identify opportunities for the improvement of model uncertainty as well as some physiological adaptations that could mitigate climate stresses on cod in the future.
Banis, Stella; Geerligs, Linda; Lorist, Monicque M.
2014-01-01
Sex-specific prevalence rates in mental and physical disorders may be partly explained by sex differences in physiological stress responses. Neural networks that might be involved are those underlying feedback processing. Aim of the present EEG study was to investigate whether acute stress alters feedback processing, and whether stress effects differ between men and women. Male and female participants performed a gambling task, in a control and a stress condition. Stress was induced by exposing participants to a noise stressor. Brain activity was analyzed using both event-related potential and time-frequency analyses, measuring the feedback-related negativity (FRN) and feedback-related changes in theta and beta oscillatory power, respectively. While the FRN and feedback-related theta power were similarly affected by stress induction in both sexes, feedback-related beta power depended on the combination of stress induction condition and sex. FRN amplitude and theta power increases were smaller in the stress relative to the control condition in both sexes, demonstrating that acute noise stress impairs performance monitoring irrespective of sex. However, in the stress but not in the control condition, early lower beta-band power increases were larger for men than women, indicating that stress effects on feedback processing are partly sex-dependent. Our findings suggest that sex-specific effects on feedback processing may comprise a factor underlying sex-specific stress responses. PMID:24755943
Study of prone positioning to reduce ventilator-associated pneumonia in hypoxaemic patients.
Mounier, R; Adrie, C; Français, A; Garrouste-Orgeas, M; Cheval, C; Allaouchiche, B; Jamali, S; Dinh-Xuan, A T; Goldgran-Toledano, D; Cohen, Y; Azoulay, E; Timsit, J-F; Ricard, J-D
2010-04-01
The aim of the present study was to examine whether prone positioning (PP) affects ventilator associated-pneumonia (VAP) and mortality in patients with acute lung injury/adult respiratory distress syndrome. 2,409 prospectively included patients were admitted over 9 yrs (2000-2008) to 12 French intensive care units (ICUs) (OUTCOMEREA). The patients required invasive mechanical ventilation (MV) and had arterial oxygen tension/inspiratory oxygen fraction ratios <300 during the first 48 h. Controls were matched to PP patients on the PP propensity score (+/-10%), MV duration longer than that in PP patients before the first turn prone, and centre. VAP incidence was similar in the PP and control groups (24 versus 13 episodes.1,000 patient-days MV(-1) respectively, p = 0.14). After adjustment, PP did not decrease VAP occurrence (HR 1.64 (95% CI 0.70-3.84); p = 0.25) but significantly delayed hospital mortality (HR 0.56 (95% CI 0.39-0.79); p = 0.001), without decreasing 28-day mortality (37% in both groups). Post hoc analyses indicated that PP did not protect against VAP but, when used for >1 day, might decrease mortality and benefit the sickest patients (Simplified Acute Physiology Score >50). In ICU patients with hypoxaemic acute respiratory failure, PP had no effect on the risk of VAP. PP delayed mortality without decreasing 28-day mortality. PP >1 day might decrease mortality, particularly in the sickest patients.
Kaufman, Milissa L; Kimble, Matthew O; Kaloupek, Danny G; McTeague, Lisa M; Bachrach, Peter; Forti, Allison M; Keane, Terence M
2002-03-01
A recent study found that female rape victims with acute posttraumatic stress disorder (PTSD) who received a high score on the Peritraumatic Dissociative Experiences Questionnaire exhibited suppression of physiological responses during exposure to trauma-related stimuli. The goal of our present study was to test whether the same relationship holds true for male Vietnam combat veterans with chronic PTSD, using secondary analyses applied to data derived from a Veteran's Affairs Cooperative Study. Vietnam combat veterans (N = 1238) completed measures to establish combat-related PTSD diagnostic status, extent of PTSD-related symptomatic distress, and presence of dissociative symptoms during their most stressful combat-related experiences. Extreme subgroups of veterans with current PTSD were classified as either low dissociators (N = 118) or high dissociators (N = 256) based on an abbreviated version of the Peritraumatic Dissociative Experiences Questionnaire. Dependent variables reflected subjective distress along with heart rate, skin conductance, electromyographic, and blood pressure data when responding to neutral and trauma-related audiovisual and imagery presentations. Veterans in the current PTSD group had significantly higher dissociation scores than did veterans in the lifetime and never PTSD groups. Among veterans with current PTSD, high dissociators reported greater PTSD-related symptomatic distress than did low dissociators, but the groups did not differ with respect to physiological reactivity to the trauma-related laboratory presentations. Our results replicate the previously reported relationship between peritraumatic dissociation and PTSD status in Vietnam combat veterans. However, we found no association between peritraumatic dissociation and the extent of physiological responding to trauma-relevant cues in male veterans with chronic combat-related PTSD.
Wilding, Laura A; Hampel, Joe A; Khoury, Basma M; Kang, Stacey; Machado‑Aranda, David; Raghavendran, Krishnan; Nemzek, Jean A
2017-01-01
At research institutions, isoflurane delivered by precision vaporizer to a face mask is the standard for rodent surgery and for procedures with durations that exceed a few minutes. Pure oxygen is often used as the carrier gas for isoflurane anesthesia, despite documented complications from long-term 100% oxygen use in humans and known occupational safety risks. We therefore examined the effect of anesthetic delivery gas on physiologic variables in mice and rats. Rodents were anesthetized for 60 min with isoflurane delivered in either 21% or 100% oxygen by means of a nose cone. We noted no difference between carrier gasses in physiologic variables in mice, including body temperature, respiratory rate, mean arterial pressure, surgical recovery time, pH, or PaCO2.However, blood gas analysis revealed evidence of a ventilation–perfusion mismatch in the 100% oxygen group. Pressure–volume hysteresis and histomorphometric analyses confirmed the presence of increased atelectasis in mice that received 100% oxygen. Unlike mice, rats that received isoflurane in 100% oxygen had acute respiratory acidosis and elevated mean arterial pressure, but atelectasis was similar between carrier gasses. Our data suggest that both 100% and 21% oxygen are acceptable for the delivery of isoflurane to mice. However, mice anesthetized for studies focused on lung physiology or architecture would benefit from the delivery of isoflurane in 21% oxygen to reduce absorption atelectasis and the potential associated downstream inflammatory effects. For rats, delivery of isoflurane in 21% and 100% oxygen both caused perturbations in physiologic variables, and choosing a carrier gas is not straightforward. PMID:28315643
Mutation of von Hippel–Lindau Tumour Suppressor and Human Cardiopulmonary Physiology
Smith, Thomas G; Brooks, Jerome T; Balanos, George M; Lappin, Terence R; Layton, D. Mark; Leedham, Dawn L; Liu, Chun; Maxwell, Patrick H; McMullin, Mary F; McNamara, Christopher J; Percy, Melanie J; Pugh, Christopher W; Ratcliffe, Peter J; Talbot, Nick P; Treacy, Marilyn; Robbins, Peter A
2006-01-01
Background The von Hippel–Lindau tumour suppressor protein–hypoxia-inducible factor (VHL–HIF) pathway has attracted widespread medical interest as a transcriptional system controlling cellular responses to hypoxia, yet insights into its role in systemic human physiology remain limited. Chuvash polycythaemia has recently been defined as a new form of VHL-associated disease, distinct from the classical VHL-associated inherited cancer syndrome, in which germline homozygosity for a hypomorphic VHL allele causes a generalised abnormality in VHL–HIF signalling. Affected individuals thus provide a unique opportunity to explore the integrative physiology of this signalling pathway. This study investigated patients with Chuvash polycythaemia in order to analyse the role of the VHL–HIF pathway in systemic human cardiopulmonary physiology. Methods and Findings Twelve participants, three with Chuvash polycythaemia and nine controls, were studied at baseline and during hypoxia. Participants breathed through a mouthpiece, and pulmonary ventilation was measured while pulmonary vascular tone was assessed echocardiographically. Individuals with Chuvash polycythaemia were found to have striking abnormalities in respiratory and pulmonary vascular regulation. Basal ventilation and pulmonary vascular tone were elevated, and ventilatory, pulmonary vasoconstrictive, and heart rate responses to acute hypoxia were greatly increased. Conclusions The features observed in this small group of patients with Chuvash polycythaemia are highly characteristic of those associated with acclimatisation to the hypoxia of high altitude. More generally, the phenotype associated with Chuvash polycythaemia demonstrates that VHL plays a major role in the underlying calibration and homeostasis of the respiratory and cardiovascular systems, most likely through its central role in the regulation of HIF. PMID:16768548
Recent neuroimaging techniques in mild traumatic brain injury.
Belanger, Heather G; Vanderploeg, Rodney D; Curtiss, Glenn; Warden, Deborah L
2007-01-01
Mild traumatic brain injury (TBI) is characterized by acute physiological changes that result in at least some acute cognitive difficulties and typically resolve by 3 months postinjury. Because the majority of mild TBI patients have normal structural magnetic resonance imaging (MRI)/computed tomography (CT) scans, there is increasing attention directed at finding objective physiological correlates of persistent cognitive and neuropsychiatric symptoms through experimental neuroimaging techniques. The authors review studies utilizing these techniques in patients with mild TBI; these techniques may provide more sensitive assessment of structural and functional abnormalities following mild TBI. Particular promise is evident with fMRI, PET, and SPECT scanning, as demonstrated by associations between brain activation and clinical outcomes.
Fluid management in acute kidney injury.
Perner, Anders; Prowle, John; Joannidis, Michael; Young, Paul; Hjortrup, Peter B; Pettilä, Ville
2017-06-01
Acute kidney injury (AKI) and fluids are closely linked through oliguria, which is a marker of the former and a trigger for administration of the latter. Recent progress in this field has challenged the physiological and clinical rational of using oliguria as a trigger for the administration of fluid and brought attention to the delicate balance between benefits and harms of different aspects of fluid management in critically ill patients, in particular those with AKI. This narrative review addresses various aspects of fluid management in AKI outlining physiological aspects, the effects of crystalloids and colloids on kidney function and the effect of various resuscitation and de-resuscitation strategies on the course and outcome of AKI.
Nursing workload in intensive care unit trauma patients: analysis of associated factors.
Nogueira, Lilia de Souza; Domingues, Cristiane de Alencar; Poggetti, Renato Sérgio; de Sousa, Regina Marcia Cardoso
2014-01-01
From the perspective of nurses, trauma patients in the Intensive Care Unit (ICU) demand a high degree of nursing workload due to hemodynamic instability and the severity of trauma injuries. This study aims to identify the factors related to the high nursing workload required for trauma victims admitted to the ICU. This is a prospective, cross-sectional study using descriptive and correlation analyses, conducted with 200 trauma patients admitted to an ICU in the city of São Paulo, Brazil. The nursing workload was measured using the Nursing Activities Score (NAS). The distribution of the NAS values into tertiles led to the identification of two research groups: medium/low workload and high workload. The Chi-square, Fisher's exact, Mann-Whitney and multiple logistic regression tests were utilized for the analyses. The majority of patients were male (82.0%) and suffered blunt trauma (94.5%), with traffic accidents (57.5%) and falls (31.0%) being prevalent. The mean age was 40.7 years (± 18.6) and the mean NAS was 71.3% (± 16.9). Patient gender, the presence of pulmonary failure, the number of injured body regions and the risk of death according to the Simplified Acute Physiology Score II were factors associated with a high degree of nursing workload in the first 24 hours following admission to the ICU. Workload demand was higher in male patients with physiological instability and multiple severe trauma injuries who developed pulmonary failure.
Human Health Countermeasures - Partial-Gravity Analogs Workshop
NASA Technical Reports Server (NTRS)
Barr, Yael; Clement, Gilles; Norsk, Peter
2016-01-01
The experimental conditions that were deemed the most interesting by the HHC Element lead scientists are those permitting studies of the long-term effects of exposure to (a) chronic rotation when supine or in head down tilt (ground-based); and (b) long-radius centrifugation (space based). It is interesting to note that chronic ground based slow rotation room studies have not been performed since the 1960's, when the USA and USSR were investigating the potential use of AG for long-duration space missions. On the other hand, the other partial gravity analogs, i.e., parabolic flight, HUT, suspension, and short-radius centrifugation, have been regularly used in the last three decades (see review in Clément et al. 2015). Based on the workshop evaluations and the scores by the HHC scientific disciplines indicated in tables 3 and 4, simulation of partial G between 0 and 1 should be prioritized as follows: Priority 1. Chronic space-based partial-G analogs: a. Chronic space-based long-radius centrifugation. The ideal scenario would be chronic long-radius centrifugation of cells, animals and humans in a translational research approach - ideally beyond low earth orbit under deep space environmental effects and at various rotations - to obtain different G-effects. In this scenario, all physiological systems could be evaluated and the relationship between physiological response and G level established. This would be the most integrative way of defining, for the first time ever, G-thresholds for each physiological system. b. Chronic space-based centrifugation of animals. Chronic centrifugation of rodents at various G levels in space would allow for determination of AG thresholds of protection for each physiological system. In this case, all physiological systems will be of interest. Intermittent centrifugation will be of secondary interest. c. Chronic space-based centrifugation of cell cultures (RWV). Bioreactor studies of cells and cell cultures of various tissues at various G levels would allow for intracellular investigations of the effects of partial-G. Priority 2. Acute, intermittent space based partial-G analogs: a. Acute, intermittent space-based short radius human centrifugation. Intermittent centrifugation of humans would allow determination of thresholds of AG for protection of astronaut health in space. Priority 3. Chronic ground-based partial-G analogs: a. Chronic centrifugation of supine or head-down tilted humans. b. Chronic head-up tilt in humans. c. Chronic head-out graded dry immersion in humans. d. Chronic partial suspension of rodents e. Chronic rotating bioreactor cell culture studies (RWV) Priority 4. Acute ground based partial-G analogs. a. Parabolic flights. Very acute and short term effects of G levels between 0 and 1 in humans for fast responding systems like cardiovascular and sensorimotor as well as for acute responses in cell cultures and animals. b. Other acute models as indicated in table 3.
Neubert, D; Gericke, C; Hanke, B; Beckmann, G; Baltes, M M; Kühl, K P; Bochert, G; Hartmann, J
2001-11-15
Data on possible acute effects of today's relevant low-level exposure to toluene are contradictory, and information on possible effects of exposure under occupational conditions is largely lacking. In a controlled, multi-center, blinded field trial, effects possibly associated with acute toluene exposure were evaluated in workers of 12 German rotogravure factories. Medical examinations (inquiries on subjective symptoms, and standard tests of psycho-physiological and psycho-motor functions) were performed on almost 1500 volunteers, of whom 1290 were toluene-exposed (1178 men and 112 women), and about 200 participants served as references (157 men and 37 women), but the main aim of the trial was to reveal dose-response relationships. All volunteers were of the morning work-shift (6 h exposure). Both individual ambient air concentrations (time-weighted average) during the work-shift, as well as blood toluene concentrations after the work-shift were measured. Therefore, the medical data could for the first time be correlated with the actual individual body burden (blood toluene level) at the time of testing. In order to largely exclude confounding by chronic toluene exposure, kinetic measurements as well as the psycho-physiological and psycho-motoric tests were performed before and after the work-shift. Except for minor statistical deviations, neither convincing dose-dependent acute effects could be demonstrated with regression analyses in male volunteers at the exposure levels evaluated, nor were significant differences found when applying group statistics (highly toluene-exposed group versus volunteers with negligible exposure). Due to the rather large number of participants, the predictive power of the study is high, especially when compared with previous publications. In two psycho-physiological tests, a few more female volunteers with quite low toluene body burdens (<340 microg/l blood) showed relatively low scores when compared with participants of the reference group. Although evidence for a medical relevance is meager, the small numbers of participants, in both the exposure and the reference groups, hamper a reliable interpretation of the results concerning exposure levels above 85 microg toluene/l blood, and it is difficult to take confounding factors adequately into account. For the end points evaluated and under occupational conditions, neither blood toluene levels of 850 to 1700 microg/l (in the highest exposure group [EXPO-IV] with 56 participants), as measured 1/2 (+/-1/2) h after the work-shift, nor ambient air concentrations (time-weighted average over 6 h) between 50 and 100 ppm (188-375 mg/m(3)) were convincingly associated with alterations in psycho-physiological and psycho-motoric performances or increased the frequency of subjective complaints in male volunteers. For higher dose ranges of toluene exposure (i.e. >1700 microg toluene/l blood [or >100 ppm in ambient air]), our data set is too small for far reaching conclusions. Our data are insufficient for conclusions on a possibly higher susceptibility to toluene of some female workers. Results of kinetic studies and possible effects of long-term exposure are discussed in two accompanying publications (Neubert et al., 2001; Gericke et al., 2001).
Study of Physiological Responses to Acute Carbon Monoxide Exposure with a Human Patient Simulator
ERIC Educational Resources Information Center
Cesari, Whitney A.; Caruso, Dominique M.; Zyka, Enela L.; Schroff, Stuart T.; Evans, Charles H., Jr.; Hyatt, Jon-Philippe K.
2006-01-01
Human patient simulators are widely used to train health professionals and students in a clinical setting, but they also can be used to enhance physiology education in a laboratory setting. Our course incorporates the human patient simulator for experiential learning in which undergraduate university juniors and seniors are instructed to design,…
Assessment of acute foot and ankle sprains.
Lynam, Louise
2006-07-01
Acute ankle and foot trauma is a regular emergency presentation and prompt strategic assessment skills are required to enable nurses to categorise and prioritise these injuries appropriately. This article provides background information on the anatomy and physiology of the lower limb to help nurses to identify various grades of ankle sprain as well as injuries that are limb threatening
USDA-ARS?s Scientific Manuscript database
Acute hyperthermia can result in mortality if recovery is not appropriately managed. The study objective was to determine the effects of heatstroke recovery methods on the physiological response in pigs. In four repetitions, 36 male pigs (88.7 ± 1.6 kg BW) were exposed to thermoneutral conditions (T...
ERIC Educational Resources Information Center
Chida, Yoichi; Hamer, Mark
2008-01-01
This meta-analysis included 729 studies from 161 articles investigating how acute stress responsivity (including stress reactivity and recovery of hypothalamic-pituitary-adrenal [HPA] axis, autonomic, and cardiovascular systems) changes with various chronic psychosocial exposures (job stress; general life stress; depression or hopelessness;…
An Endocrine Cause of Acute Post-partum Hypertension.
Bretherton, Ingrid; Pattison, David; Pattison, Sarah; Varadarajan, Suresh
2013-03-01
This is a case of acute peri-partum hypertension secondary to Conn's syndrome. The timing of presentation offers a rare insight into the hormonal physiology of pregnancy and its impact on blood pressure regulation. This case highlights the challenges of diagnosing primary hyperaldosteronism in the peripartum period and the high index of suspicion required by the obstetric physician.
Influence of the ambient acceleration field upon acute acceleration tolerance in chickens
NASA Technical Reports Server (NTRS)
Smith, A. H.; Spangler, W. L.; Rhode, E. A.; Burton, R. R.
1979-01-01
The paper measured the acceleration tolerance of domestic fowl (Rhode Island Red cocks), acutely exposed to a 6 Gz field, as the time over which a normal heart rate can be maintained. This period of circulatory adjustment ends abruptly with pronounced bradycardia. For chickens which previously have been physiologically adapted to 2.5 -G field, the acute acceleration tolerance is greatly increased. The influence of the ambient acceleration field on the adjustment of the circulatory system appears to be a general phenomenon.
Hatakeyama, Hiroyasu; Kanzaki, Makoto
2017-08-15
Comprehensive imaging analyses of glucose transporter 4 (GLUT4) behaviour in mouse skeletal muscle was conducted. Quantum dot-based single molecule nanometry revealed that GLUT4 molecules in skeletal myofibres are governed by regulatory systems involving 'static retention' and 'stimulus-dependent liberation'. Vital imaging analyses and super-resolution microscopy-based morphometry demonstrated that insulin liberates the GLUT4 molecule from its static state by triggering acute heterotypic endomembrane fusion arising from the very small GLUT4-containing vesicles in skeletal myofibres. Prior exposure to exercise-mimetic stimuli potentiated this insulin-responsive endomembrane fusion event involving GLUT4-containing vesicles, suggesting that this endomembranous regulation process is a potential site related to the effects of exercise. Skeletal muscle is the major systemic glucose disposal site. Both insulin and exercise facilitate translocation of the glucose transporter glucose transporter 4 (GLUT4) via distinct signalling pathways and exercise also enhances insulin sensitivity. However, the trafficking mechanisms controlling GLUT4 mobilization in skeletal muscle remain poorly understood as a resuly of technical limitations. In the present study, which employs various imaging techniques on isolated skeletal myofibres, we show that one of the initial triggers of insulin-induced GLUT4 translocation is heterotypic endomembrane fusion arising from very small static GLUT4-containing vesicles with a subset of transferrin receptor-containing endosomes. Importantly, pretreatment with exercise-mimetic stimuli potentiated the susceptibility to insulin responsiveness, as indicated by these acute endomembranous activities. We also found that AS160 exhibited stripe-like localization close to sarcomeric α-actinin and that insulin induced a reduction of the stripe-like localization accompanying changes in its detergent solubility. The results of the present study thus provide a conceptual framework indicating that GLUT4 protein trafficking via heterotypic fusion is a critical feature of GLUT4 translocation in skeletal muscles and also suggest that the efficacy of the endomembranous fusion process in response to insulin is involved in the benefits of exercise. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Motosugi, Utaroh; Ichikawa, Tomoaki; Sano, Katsuhiro; Onishi, Hiroshi
2016-11-01
The objective of our study was to determine the effects of dehydration and oral rehydration on the incidence of acute adverse reactions to iodinated contrast media administered during abdominal and pelvic CT in outpatients. For our prospective randomized study performed at a single institution, adult outpatients undergoing contrast-enhanced abdominal CT were randomly divided into a rehydration group (n = 2244 patients [1379 men and 865 women]; mean age, 65.2 years; age range, 18-90 years) and a control group (n = 3715 [2112 male patients and 1603 female patients]; mean age, 65.8 years; age range, 17-96 years), which included an age- and sex-matched subgroup (adjusted control group, n = 2244). The rehydration group received an oral rehydration solution (500 mL of liquid in which osmotic pressure is adjusted to enhance gastrointestinal absorption) before abdominal and pelvic CT. Patients were also divided into subclinically dehydrated (n = 997) and hydrated (n = 4962) groups according to their answers to a questionnaire that they completed before the CT examination. The patients were interviewed about contrast-induced adverse reactions before they left the CT room, and the reactions were categorized as allergiclike or physiologic. The incidence of reactions was compared between the rehydration and control groups and between the subclinical dehydration and hydrated groups. The rehydration and control groups were compared with an unpaired t test or a chi-square or Fisher test. The overall incidence of an acute adverse reaction was 4.3% (254/5959); the acute adverse reactions included 136 allergiclike and 118 physiologic reactions. Fourteen allergiclike and nine physiologic reactions were moderate grade, and none was severe. There was no significant difference between the rehydration group and adjusted control group in the overall incidence of adverse reactions (99/2244 [4.4%] vs 100/2244 [4.5%], respectively; p = 0.9422) or between the subclinically dehydrated group and hydrated group in the incidence of allergiclike reactions (25/997 [2.5%] vs 111/4962 [2.2%], p = 0.6062) and physiologic reactions (22/997 [2.2%] vs 96/4962 [1.9%], p = 0.5793). Younger age was a risk factor for both allergiclike and physiologic reactions (p ≤ 0.0019). Dehydration and oral rehydration did not affect the incidence of acute adverse reactions to iodinated contrast material for abdominal and pelvic CT in our randomized prospective trial.
Lenoir, Magalie; Tang, Jeremy S.; Woods, Amina S.
2013-01-01
Repeated exposure to nicotine and other psychostimulant drugs produces persistent increases in their psychomotor and physiological effects (sensitization), a phenomenon related to the drugs' reinforcing properties and abuse potential. Here we examined the role of peripheral actions of nicotine in nicotine-induced sensitization of centrally mediated physiological parameters (brain, muscle, and skin temperatures), cortical and VTA EEG, neck EMG activity, and locomotion in freely moving rats. Repeated injections of intravenous nicotine (30 μg/kg) induced sensitization of the drug's effects on all these measures. In contrast, repeated injections of the peripherally acting analog of nicotine, nicotine pyrrolidine methiodide (nicotinePM, 30 μg/kg, i.v.) resulted in habituation (tolerance) of the same physiological, neuronal, and behavioral measures. However, after repeated nicotine exposure, acute nicotinePM injections induced nicotine-like physiological responses: powerful cortical and VTA EEG desynchronization, EMG activation, a large brain temperature increase, but weaker hyperlocomotion. Additionally, both the acute locomotor response to nicotine and nicotine-induced locomotor sensitization were attenuated by blockade of peripheral nicotinic receptors by hexamethonium (3 mg/kg, i.v.). These data suggest that the peripheral actions of nicotine, which precede its direct central actions, serve as a conditioned interoceptive cue capable of eliciting nicotine-like physiological and neural responses after repeated nicotine exposure. Thus, by providing a neural signal to the CNS that is repeatedly paired with the direct central effects of nicotine, the drug's peripheral actions play a critical role in the development of nicotine-induced physiological, neural, and behavioral sensitization. PMID:23761889
Lenoir, Magalie; Tang, Jeremy S; Woods, Amina S; Kiyatkin, Eugene A
2013-06-12
Repeated exposure to nicotine and other psychostimulant drugs produces persistent increases in their psychomotor and physiological effects (sensitization), a phenomenon related to the drugs' reinforcing properties and abuse potential. Here we examined the role of peripheral actions of nicotine in nicotine-induced sensitization of centrally mediated physiological parameters (brain, muscle, and skin temperatures), cortical and VTA EEG, neck EMG activity, and locomotion in freely moving rats. Repeated injections of intravenous nicotine (30 μg/kg) induced sensitization of the drug's effects on all these measures. In contrast, repeated injections of the peripherally acting analog of nicotine, nicotine pyrrolidine methiodide (nicotine(PM), 30 μg/kg, i.v.) resulted in habituation (tolerance) of the same physiological, neuronal, and behavioral measures. However, after repeated nicotine exposure, acute nicotine(PM) injections induced nicotine-like physiological responses: powerful cortical and VTA EEG desynchronization, EMG activation, a large brain temperature increase, but weaker hyperlocomotion. Additionally, both the acute locomotor response to nicotine and nicotine-induced locomotor sensitization were attenuated by blockade of peripheral nicotinic receptors by hexamethonium (3 mg/kg, i.v.). These data suggest that the peripheral actions of nicotine, which precede its direct central actions, serve as a conditioned interoceptive cue capable of eliciting nicotine-like physiological and neural responses after repeated nicotine exposure. Thus, by providing a neural signal to the CNS that is repeatedly paired with the direct central effects of nicotine, the drug's peripheral actions play a critical role in the development of nicotine-induced physiological, neural, and behavioral sensitization.
Silva-Urra, Juan A; Núñez-Espinosa, Cristian A; Niño-Mendez, Oscar A; Gaitán-Peñas, Héctor; Altavilla, Cesare; Toro-Salinas, Andrés; Torrella, Joan R; Pagès, Teresa; Javierre, Casimiro F; Behn, Claus; Viscor, Ginés
2015-12-01
The possible effects of blue light during acute hypoxia and the circadian rhythm on several physiological and cognitive parameters were studied. Fifty-seven volunteers were randomly assigned to 2 groups: nocturnal (2200-0230 hours) or diurnal (0900-1330 hours) and exposed to acute hypoxia (4000 m simulated altitude) in a hypobaric chamber. The participants were illuminated by blue LEDs or common artificial light on 2 different days. During each session, arterial oxygen saturation (Spo2), blood pressure, heart rate variability, and cognitive parameters were measured at sea level, after reaching the simulated altitude of 4000 m, and after 3 hours at this altitude. The circadian rhythm caused significant differences in blood pressure and heart rate variability. A 4% to 9% decrease in waking nocturnal Spo2 under acute hypoxia was observed. Acute hypoxia also induced a significant reduction (4%-8%) in systolic pressure, slightly more marked (up to 13%) under blue lighting. Women had significantly increased systolic (4%) and diastolic (12%) pressures under acute hypoxia at night compared with daytime pressure; this was not observed in men. Some tendencies toward better cognitive performance (d2 attention test) were seen under blue illumination, although when considered together with physiological parameters and reaction time, there was no conclusive favorable effect of blue light on cognitive fatigue suppression after 3 hours of acute hypobaric hypoxia. It remains to be seen whether longer exposure to blue light under hypobaric hypoxic conditions would induce favorable effects against fatigue. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
Medical Rapid Response in Psychiatry: Reasons for Activation and Immediate Outcome.
Manu, Peter; Loewenstein, Kristy; Girshman, Yankel J; Bhatia, Padam; Barnes, Maira; Whelan, Joseph; Solderitch, Victoria A; Rogozea, Liliana; McManus, Marybeth
2015-12-01
Rapid response teams are used to improve the recognition of acute deteriorations in medical and surgical settings. They are activated by abnormal physiological parameters, symptoms or clinical concern, and are believed to decrease hospital mortality rates. We evaluated the reasons for activation and the outcome of rapid response interventions in a 222-bed psychiatric hospital in New York City using data obtained at the time of all activations from January through November, 2012. The primary outcome was the admission rate to a medical or surgical unit for each of the main reasons for activation. The 169 activations were initiated by nursing staff (78.7 %) and psychiatrists (13 %) for acute changes in condition (64.5 %), abnormal physiological parameters (27.2 %) and non-specified concern (8.3 %). The most common reasons for activation were chest pain (14.2 %), fluctuating level of consciousness (9.5 %), hypertension (9.5 %), syncope or fall (8.9 %), hypotension (8.3 %), dyspnea (7.7 %) and seizures (5.9 %). The rapid response team transferred 127 (75.2 %) patients to the Emergency Department and 46 (27.2 %) were admitted to a medical or surgical unit. The admission rates were statistically similar for acute changes in condition, abnormal physiological parameters, and clinicians' concern. In conclusion, a majority of rapid response activations in a self-standing psychiatric hospital were initiated by nursing staff for changes in condition, rather than for policy-specified abnormal physiological parameters. The findings suggest that a rapid response system may empower psychiatric nurses to use their clinical skills to identify patients requiring urgent transfer to a general hospital.
Dick, Thomas E.; Molkov, Yaroslav I.; Nieman, Gary; Hsieh, Yee-Hsee; Jacono, Frank J.; Doyle, John; Scheff, Jeremy D.; Calvano, Steve E.; Androulakis, Ioannis P.; An, Gary; Vodovotz, Yoram
2012-01-01
Acute inflammation leads to organ failure by engaging catastrophic feedback loops in which stressed tissue evokes an inflammatory response and, in turn, inflammation damages tissue. Manifestations of this maladaptive inflammatory response include cardio-respiratory dysfunction that may be reflected in reduced heart rate and ventilatory pattern variabilities. We have developed signal-processing algorithms that quantify non-linear deterministic characteristics of variability in biologic signals. Now, coalescing under the aegis of the NIH Computational Biology Program and the Society for Complexity in Acute Illness, two research teams performed iterative experiments and computational modeling on inflammation and cardio-pulmonary dysfunction in sepsis as well as on neural control of respiration and ventilatory pattern variability. These teams, with additional collaborators, have recently formed a multi-institutional, interdisciplinary consortium, whose goal is to delineate the fundamental interrelationship between the inflammatory response and physiologic variability. Multi-scale mathematical modeling and complementary physiological experiments will provide insight into autonomic neural mechanisms that may modulate the inflammatory response to sepsis and simultaneously reduce heart rate and ventilatory pattern variabilities associated with sepsis. This approach integrates computational models of neural control of breathing and cardio-respiratory coupling with models that combine inflammation, cardiovascular function, and heart rate variability. The resulting integrated model will provide mechanistic explanations for the phenomena of respiratory sinus-arrhythmia and cardio-ventilatory coupling observed under normal conditions, and the loss of these properties during sepsis. This approach holds the potential of modeling cross-scale physiological interactions to improve both basic knowledge and clinical management of acute inflammatory diseases such as sepsis and trauma. PMID:22783197
Dick, Thomas E; Molkov, Yaroslav I; Nieman, Gary; Hsieh, Yee-Hsee; Jacono, Frank J; Doyle, John; Scheff, Jeremy D; Calvano, Steve E; Androulakis, Ioannis P; An, Gary; Vodovotz, Yoram
2012-01-01
Acute inflammation leads to organ failure by engaging catastrophic feedback loops in which stressed tissue evokes an inflammatory response and, in turn, inflammation damages tissue. Manifestations of this maladaptive inflammatory response include cardio-respiratory dysfunction that may be reflected in reduced heart rate and ventilatory pattern variabilities. We have developed signal-processing algorithms that quantify non-linear deterministic characteristics of variability in biologic signals. Now, coalescing under the aegis of the NIH Computational Biology Program and the Society for Complexity in Acute Illness, two research teams performed iterative experiments and computational modeling on inflammation and cardio-pulmonary dysfunction in sepsis as well as on neural control of respiration and ventilatory pattern variability. These teams, with additional collaborators, have recently formed a multi-institutional, interdisciplinary consortium, whose goal is to delineate the fundamental interrelationship between the inflammatory response and physiologic variability. Multi-scale mathematical modeling and complementary physiological experiments will provide insight into autonomic neural mechanisms that may modulate the inflammatory response to sepsis and simultaneously reduce heart rate and ventilatory pattern variabilities associated with sepsis. This approach integrates computational models of neural control of breathing and cardio-respiratory coupling with models that combine inflammation, cardiovascular function, and heart rate variability. The resulting integrated model will provide mechanistic explanations for the phenomena of respiratory sinus-arrhythmia and cardio-ventilatory coupling observed under normal conditions, and the loss of these properties during sepsis. This approach holds the potential of modeling cross-scale physiological interactions to improve both basic knowledge and clinical management of acute inflammatory diseases such as sepsis and trauma.
Acute impact of drinking coffee on the cerebral and systemic vasculature.
Washio, Takuro; Sasaki, Hiroyuki; Ogoh, Shigehiko
2017-05-01
Previous studies have suggested that the risk of ischemic stroke increases immediately after drinking coffee. Indeed, drinking coffee, that is, caffeine, acutely increases arterial stiffness as well as blood pressure and peripheral vascular resistance. On the other hand, it has been reported that arterial stiffening is associated with elevation in the pulsatility index (PI) of cerebral blood flow (CBF), which increases the risk of brain disease. However, the effect of drinking coffee on the PI of the CBF and its interaction with arterial stiffness remain unknown. Against this background, we hypothesized that an acute increase in arterial stiffness induced by drinking coffee augments cerebral pulsatile stress. To test this hypothesis, in 10 healthy young men we examined the effects of drinking coffee on the PI of middle cerebral artery blood velocity (MCAv) and brachial-ankle pulse wave velocity (baPWV) as indices of cerebral pulsatile stress and arterial stiffness, respectively. Mean arterial blood pressure and baPWV were higher ( P < 0.01 and P = 0.02), whereas mean MCA V and mean cerebrovascular conductance index were lower upon drinking coffee ( P = 0.02 and P < 0.01) compared with a placebo (decaffeinated coffee). However, there was no difference in the PI of MCAv between drinking coffee and the placebo condition. These findings suggest that drinking coffee does not increase cerebral pulsatile stress acutely despite an elevation in arterial stiffness in the systemic circulation. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Kumble, Sowmya; Zink, Elizabeth K; Burch, Mackenzie; Deluzio, Sandra; Stevens, Robert D; Bahouth, Mona N
2017-08-01
Recent trials have challenged the notion that very early mobility benefits patients with acute stroke. It is unclear how cerebral autoregulatory impairments, prevalent in this population, could be affected by mobilization. The safety of mobilizing patients who have external ventricular drainage (EVD) devices for cerebrospinal fluid diversion and intracranial pressure (ICP) monitoring is another concern due to risk of device dislodgment and potential elevation in ICP. We report hemodynamic and ICP responses during progressive, device-assisted mobility interventions performed in a critically ill patient with intracerebral hemorrhage (ICH) requiring two EVDs. A 55-year-old man was admitted to the Neuroscience Critical Care Unit with an acute thalamic ICH and complex intraventricular hemorrhage requiring placement of two EVDs. Progressive mobilization was achieved using mobility technology devices. Range of motion exercises were performed initially, progressing to supine cycle ergometry followed by incremental verticalization using a tilt table. Physiological parameters were recorded before and after the interventions. All mobility interventions were completed without any adverse event or clinically detectable change in the patient's neurological state. Physiological parameters including hemodynamic variables and ICP remained within prescribed goals throughout. Progressive, device-assisted early mobilization was feasible and safe in this critically ill patient with hemorrhagic stroke when titrated by an interdisciplinary team of skilled healthcare professionals. Studies are needed to gain insight into the hemodynamic and neurophysiological responses associated with early mobility in acute stroke to identify subsets of patients who are most likely to benefit from this intervention.
Cavopulmonary support with a microaxial pump for the failing Fontan physiology.
Zhu, Jiaquan; Kato, Hideyuki; Fu, Yaqin Y; Zhao, Lisa; Foreman, Celeste; Davey, Lisa; Weisel, Richard D; Van Arsdell, Glen S; Honjo, Osami
2015-01-01
The number of patients with the failing Fontan physiology is increasing. We tested a novel in situ microaxial pump (Impella) to support the failing atrio-pulmonary Fontan circulation in an acute pig model. A Fontan model was established in eight juvenile pigs by connecting the right atrium to the main pulmonary artery after tricuspid valve destruction. The Impella pump was inserted retrograde from the distal main pulmonary artery into the right atrium. Hemodynamics, blood gas, and echocardiographic data were compared among baseline, pure Fontan physiology (10 minutes), and mechanically assisted Fontan physiology (up to 12 hours). The Impella system generated a blood flow of 75-85 ml/kg/minute in six animals, and 55-65 ml/kg/minute in two animals. The mechanically assisted Fontan attained a significantly higher mean blood pressure (39.6 ± 7 vs. 24.7 ± 3.3 mm Hg, p < 0.01), lower central venous pressure (5 ± 2.4 vs. 12.8 ± 1.7 mm Hg, p < 0.01), and higher mixed venous saturation (60.4 ± 10.8 vs. 23.4 ± 8.4 mm Hg, p < 0.01) compared with pure Fontan physiology. Cardiac output and stroke volume were similar during baseline and mechanically assisted Fontan (p = not significant). This acute pig study demonstrated the feasibility of mechanical circulatory support in the failing Fontan physiology. The in situ microaxial pump maintained cardiac output while increasing blood pressure and reducing venous pressure.
DiMenichi, Brynne C.; Lempert, Karolina M.; Bejjani, Christina; Tricomi, Elizabeth
2018-01-01
Acute stress can harm performance. Paradoxically, writing about stressful events—such as past failures—has been shown to improve cognitive functioning and performance, especially in tasks that require sustained attention. Yet, there is little physiological evidence for whether writing about past failures or other negative events improves performance by reducing stress. In this experiment, we studied the effects of an acute psychosocial stressor, the Trier Social Stress Test, on attentional performance and salivary cortisol release in humans. Additionally, we investigated whether an expressive writing task could reduce the detrimental effects of stress, both on performance and physiological response. We found that when individuals were asked to write about a past failure before experiencing a stressor, they exhibited attenuated stress responses. Moreover, those who wrote about a past failure before being exposed to stress also exhibited better behavioral performance. Our results suggest that writing about a previous failure may allow an individual to experience a new stressor as less stressful, reducing its physiological and behavioral effects. PMID:29628878
Complexity analysis of human physiological signals based on case studies
NASA Astrophysics Data System (ADS)
Angelova, Maia; Holloway, Philip; Ellis, Jason
2015-04-01
This work focuses on methods for investigation of physiological time series based on complexity analysis. It is a part of a wider programme to determine non-invasive markers for healthy ageing. We consider two case studies investigated with actigraphy: (a) sleep and alternations with insomnia, and (b) ageing effects on mobility patterns. We illustrate, using these case studies, the application of fractal analysis to the investigation of regulation patterns and control, and change of physiological function. In the first case study, fractal analysis techniques were implemented to study the correlations present in sleep actigraphy for individuals suffering from acute insomnia in comparison with healthy controls. The aim was to investigate if complexity analysis can detect the onset of adverse health-related events. The subjects with acute insomnia displayed significantly higher levels of complexity, possibly a result of too much activity in the underlying regulatory systems. The second case study considered mobility patterns during night time and their variations with age. It showed that complexity metrics can identify change in physiological function with ageing. Both studies demonstrated that complexity analysis can be used to investigate markers of health, disease and healthy ageing.
ERIC Educational Resources Information Center
Szabo, Yvette Z.; Chang, Andrew; Chancellor-Freeland, Cheryl
2015-01-01
Previous studies have found that an individual's perception of control in a situation (Locus of Control; LOC) can serve as a protective factor that has physiological and psychological benefits. The present study examines LOC in an acute stress paradigm to examine the relationship between LOC and hypothalamic-pituitary-adrenal axis functioning as…
An Endocrine Cause of Acute Post-partum Hypertension
Bretherton, Ingrid; Pattison, David; Pattison, Sarah; Varadarajan, Suresh
2013-01-01
This is a case of acute peri-partum hypertension secondary to Conn's syndrome. The timing of presentation offers a rare insight into the hormonal physiology of pregnancy and its impact on blood pressure regulation. This case highlights the challenges of diagnosing primary hyperaldosteronism in the peripartum period and the high index of suspicion required by the obstetric physician. PMID:27757150
Srinivasan, M; Shetty, N; Gadekari, S; Thunga, G; Rao, K; Kunhikatta, V
2017-07-01
Severity or mortality prediction of nosocomial pneumonia could aid in the effective triage of patients and assisting physicians. To compare various severity assessment scoring systems for predicting intensive care unit (ICU) mortality in nosocomial pneumonia patients. A prospective cohort study was conducted in a tertiary care university-affiliated hospital in Manipal, India. One hundred patients with nosocomial pneumonia, admitted in the ICUs who developed pneumonia after >48h of admission, were included. The Nosocomial Pneumonia Mortality Prediction (NPMP) model, developed in our hospital, was compared with Acute Physiology and Chronic Health Evaluation II (APACHE II), Mortality Probability Model II (MPM 72 II), Simplified Acute Physiology Score II (SAPS II), Multiple Organ Dysfunction Score (MODS), Sequential Organ Failure Assessment (SOFA), Clinical Pulmonary Infection Score (CPIS), Ventilator-Associated Pneumonia Predisposition, Insult, Response, Organ dysfunction (VAP-PIRO). Data and clinical variables were collected on the day of pneumonia diagnosis. The outcome for the study was ICU mortality. The sensitivity and specificity of the various scoring systems was analysed by plotting receiver operating characteristic (ROC) curves and computing the area under the curve for each of the mortality predicting tools. NPMP, APACHE II, SAPS II, MPM 72 II, SOFA, and VAP-PIRO were found to have similar and acceptable discrimination power as assessed by the area under the ROC curve. The AUC values for the above scores ranged from 0.735 to 0.762. CPIS and MODS showed least discrimination. NPMP is a specific tool to predict mortality in nosocomial pneumonia and is comparable to other standard scores. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Langhammer, Birgitta; Stanghelle, Johan K
2011-06-01
The primary aim of the present study was to investigate, based on data from our study in 2000, whether the Bobath approach enhanced quality of movement better than the Motor Relearning Programme (MRP) during rehabilitation of stroke patients. A randomized controlled stratified trial of acute stroke patients. The patients were treated according to Motor Relearning Programme and Bobath approach and assessed with Motor Assessment Scale, Sødring Motor Evaluation Scale, Nottingham Health Profile and the Barthel Index. A triangulation of the test scores was made in reference to the Movement Quality Model and biomechanical, physiological, psycho-socio-cultural, and existential themes. The items arm (p = 0.02-0.04) sitting (p = 0.04) and hand (p = 0.01-0.03) were significantly better in the Motor Relearning Programme group than in the Bobath group, in both Sødring Motor Evaluation Scale and Motor Assessment Scale. Leg function, balance, transfer, walking and stair climbing did not differ between the groups. The Movement Quality Model and the movement qualities biomechanical, physiological and psycho-socio-cultural showed higher scoring in the Motor Relearning Programme group, indicating better quality of movement in all items. Regression models established the relationship with significant models of motor performance and self reported physical mobility (adjusted R(2) 0.30-0.68, p < 0.0001), energy (adjusted R(2) 0.13-0.14, p = 0.03-0.04, emotion (adjusted R(2) 0.30-0.38, p < 0.0001) and social interaction (arm function, adjusted R(2) 0.25, p = 0.0001). These analyses confirm that task oriented exercises of the Motor Relearning Programme type are preferable regarding quality of movement in the acute rehabilitation of patients with stroke. Copyright © 2010 John Wiley & Sons, Ltd.
Hypothermia-induced acute kidney injury in a diabetic patient with nephropathy and neuropathy.
Yamada, Shunsuke; Shimomura, Yukiko; Ohsaki, Masato; Fujisaki, Akiko; Tsuruya, Kazuhiko; Iida, Mitsuo
2010-01-01
Hypothermia is a life-threatening medical condition defined as an unintentional fall in body temperature below 35 degrees C. Exposure to cold environment stimulates the thermoregulatory system to maintain the body temperature within the physiological range. Patients with malnutrition and/or diabetes mellitus are at high risk for accidental hypothermia, and acute kidney injury, which is mainly caused by pre-renal factors, occurs in relation to hypothermia. However, acute exacerbation of pre-existing chronic kidney disease has been rarely reported. Here, we present a patient with diabetes mellitus and malnutrition who developed two separate episodes of hypothermia followed by acute exacerbation of chronic kidney disease.
Chronobiology of Acute Aortic Syndromes.
Siddiqi, Hasan K; Bossone, Eduardo; Pyeritz, Reed E; Eagle, Kim A
2017-10-01
Acute aortic syndromes are highly morbid conditions that require prompt diagnosis and management. Aortic dissections have rhythmic patterns, with notable peaks at certain points in every 24 hours as well as weekly and seasonal variations. Several retrospective studies have assessed the chronobiology of acute aortic dissections and there seems to be a winter seasonal peak and morning daily peak in incidence. Although the pathophysiology of this chronobiology is unclear, there are several environmental and physiologic possibilities. This article reviews the major studies examining the chronobiology of acute aortic dissection, and summarizes some theories on the pathophysiology of this phenomenon. Copyright © 2017 Elsevier Inc. All rights reserved.
40 CFR 797.1400 - Fish acute toxicity test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... appearance or physiology such as discoloration, excessive mucous production, hyperventilation, opaque eyes... showing signs of stress, such as discoloration, hemorrhaging, disorientation or other unusual behavior...
40 CFR 797.1400 - Fish acute toxicity test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... appearance or physiology such as discoloration, excessive mucous production, hyperventilation, opaque eyes... showing signs of stress, such as discoloration, hemorrhaging, disorientation or other unusual behavior...
40 CFR 797.1400 - Fish acute toxicity test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... appearance or physiology such as discoloration, excessive mucous production, hyperventilation, opaque eyes... showing signs of stress, such as discoloration, hemorrhaging, disorientation or other unusual behavior...
Risk-adjusted scoring systems in colorectal surgery.
Leung, Edmund; McArdle, Kirsten; Wong, Ling S
2011-01-01
Consequent to recent advances in surgical techniques and management, survival rate has increased substantially over the last 25 years, particularly in colorectal cancer patients. However, post-operative morbidity and mortality from colorectal cancer vary widely across the country. Therefore, standardised outcome measures are emphasised not only for professional accountability, but also for comparison between treatment units and regions. In a heterogeneous population, the use of crude mortality as an outcome measure for patients undergoing surgery is simply misleading. Meaningful comparisons, however, require accurate risk stratification of patients being analysed before conclusions can be reached regarding the outcomes recorded. Sub-specialised colorectal surgical units usually dedicated to more complex and high-risk operations. The need for accurate risk prediction is necessary in these units as both mortality and morbidity often are tools to justify the practice of high-risk surgery. The Acute Physiology And Chronic Health Evaluation (APACHE) is a system for classifying patients in the intensive care unit. However, APACHE score was considered too complex for general surgical use. The American Society of Anaesthesiologists (ASA) grade has been considered useful as an adjunct to informed consent and for monitoring surgical performance through time. ASA grade is simple but too subjective. The Physiological & Operative Severity Score for the enUmeration of Mortality and morbidity (POSSUM) and its variant Portsmouth POSSUM (P-POSSUM) were devised to predict outcomes in surgical patients in general, taking into account of the variables in the case-mix. POSSUM has two parts, which include assessment of physiological parameters and operative scores. There are 12 physiological parameters and 6 operative measures. The physiological parameters are taken at the time of surgery. Each physiological parameter or operative variable is sub-divided into three or four levels with an exponentially increasing score. However, POSSUM and P-POSSUM over-predict mortality in patients who have had colorectal surgery. Discrepancies in these models have led to the introduction of a specialty-specific POSSUM: the ColoRectal POSSUM (CR-POSSUM). CR-POSSUM only uses six physiological parameters and four operative measures for prediction of mortality. It is much simplified to allow ease of use. Copyright © 2010 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Vasquez, Daniela N; Das Neves, Andrea V; Vidal, Laura; Moseinco, Miriam; Lapadula, Jorge; Zakalik, Graciela; Santa-Maria, Analía; Gomez, Raúl A; Capalbo, Mónica; Fernandez, Claudia; Agüero-Villareal, Enrique; Vommaro, Santiago; Moretti, Marcelo; Soli, Silvana B; Ballestero, Florencia; Sottile, Juan P; Chapier, Viviana; Lovesio, Carlos; Santos, José; Bertoletti, Fernando; Intile, Alfredo D; Desmery, Pablo M; Estenssoro, Elisa
2015-09-01
To evaluate pregnant/postpartum patients requiring ICUs admission in Argentina, describe characteristics of mothers and outcomes for mothers/babies, evaluate risk factors for maternal-fetal-neonatal mortality; and compare outcomes between patients admitted to public and private health sectors. Multicenter, prospective, national cohort study. Twenty ICUs in Argentina (public, 8 and private, 12). Pregnant/postpartum (< 42 d) patients admitted to ICU. None. Three hundred sixty-two patients were recruited, 51% from the public health sector and 49% from the private. Acute Physiology and Chronic Health Evaluation II was 8 (4-12); predicted/observed mortality, 7.6%/3.6%; hospital length of stay, 7 days (5-13 d); and fetal-neonatal losses, 17%. Public versus private health sector patients: years of education, 9 ± 3 versus 15 ± 3; transferred from another hospital, 43% versus 12%; Acute Physiology and Chronic Health Evaluation II, 9 (5-13.75) versus 7 (4-9); hospital length of stay, 10 days (6-17 d) versus 6 days (4-9 d); prenatal care, 75% versus 99.4%; fetal-neonatal losses, 25% versus 9% (p = 0.000 for all); and mortality, 5.4% versus 1.7% (p = 0.09). Complications in ICU were multiple-organ dysfunction syndrome (34%), shock (28%), renal dysfunction (25%), and acute respiratory distress syndrome (20%); all predominated in the public sector. Sequential Organ Failure Assessment (during first 24 hr of admission) score of at least 6.5 presented the best discriminative power for maternal mortality. Independent predictors of maternal-fetal-neonatal mortality were Acute Physiology and Chronic Health Evaluation II, education level, prenatal care, and admission to tertiary hospitals. Patients spent a median of 7 days in hospital; 3.6% died. Maternal-fetal-neonatal mortality was determined not only by acuteness of illness but to social and healthcare aspects like education, prenatal control, and being cared in specialized hospitals. Sequential Organ Failure Assessment (during first 24 hr of admission), easier to calculate than Acute Physiology and Chronic Health Evaluation II, was a better predictor of maternal outcome. Evident health disparities existed between patients admitted to public versus private hospitals: the former received less prenatal care, were less educated, were more frequently transferred from other hospitals, were sicker at admission, and developed more complications; maternal and fetal-neonatal mortality were higher. These findings point to the need of redesigning healthcare services to account for these inequities.
Shiels, H. A.; Galli, G. L. J.; Block, B. A.
2015-01-01
Understanding the physiology of vertebrate thermal tolerance is critical for predicting how animals respond to climate change. Pacific bluefin tuna experience a wide range of ambient sea temperatures and occupy the largest geographical niche of all tunas. Their capacity to endure thermal challenge is due in part to enhanced expression and activity of key proteins involved in cardiac excitation–contraction coupling, which improve cardiomyocyte function and whole animal performance during temperature change. To define the cellular mechanisms that enable bluefin tuna hearts to function during acute temperature change, we investigated the performance of freshly isolated ventricular myocytes using confocal microscopy and electrophysiology. We demonstrate that acute cooling and warming (between 8 and 28°C) modulates the excitability of the cardiomyocyte by altering the action potential (AP) duration and the amplitude and kinetics of the cellular Ca2+ transient. We then explored the interactions between temperature, adrenergic stimulation and contraction frequency, and show that when these stressors are combined in a physiologically relevant way, they alter AP characteristics to stabilize excitation–contraction coupling across an acute 20°C temperature range. This allows the tuna heart to maintain consistent contraction and relaxation cycles during acute thermal challenges. We hypothesize that this cardiac capacity plays a key role in the bluefin tunas' niche expansion across a broad thermal and geographical range. PMID:25540278
Acute Effects of Cannabis on Breath-Holding Duration
Farris, Samantha G.; Metrik, Jane
2016-01-01
Distress intolerance (an individual’s perceived or actual inability to tolerate distressing psychological or physiological states) is associated with cannabis use. It is unknown whether a bio-behavioral index of distress intolerance, breath-holding duration, is acutely influenced (increased or decreased) by cannabis. Such information may further inform understanding of the expression of psychological or physiological distress post-cannabis use. This within-subjects study examined whether smoked marijuana with 2.7–3.0 % delta-9-tetrahydrocannabinol (THC), relative to placebo, acutely changed duration of breath-holding. Participants (n = 88; 65.9% male) were non-treatment seeking frequent cannabis users who smoked placebo or active THC cigarette on two separate study days and completed breath-holding task. Controlling for baseline breath-holding duration and participant sex, THC produced significantly lower breath-holding durations relative to placebo. There was a significant interaction of drug administration x frequency of cannabis use, such that THC decreased breath-holding time among less frequent but not among more frequent users. Findings indicate that cannabis may be exacerbating distress intolerance (via breath-holding duration). As compared to less frequent cannabis users, frequent users display tolerance to cannabis’ acute effects including increased ability to tolerate respiratory distress when holding breath. Objective measures of distress intolerance are sensitive to contextual factors such as acute drug intoxication, and may inform the link between cannabis use and the expression of psychological distress. PMID:27454678
Nyirenda, Christopher; Zulu, Isaac; Kabagambe, Edmond K; Bagchi, Shashwatee; Potter, Dara; Bosire, Claire; Krishnasami, Zipporah; Heimburger, Douglas C
2009-01-01
High mortality rates have been reported in the first 90 days of antiretroviral therapy in Zambia and other low-income countries. We report a case of acute hypophosphataemia and hypokalaemia in the first week of antiretroviral therapy in a patient with extreme AIDS wasting. Given its occurrence in an extremely wasted patient, it may be physiologically similar to refeeding syndrome but other causes could be relevant as well. Acute hypophosphataemia may contribute to early antiretroviral therapy associated mortality in low-income countries. PMID:21686792
iGAS: A framework for using electronic intraoperative medical records for genomic discovery.
Levin, Matthew A; Joseph, Thomas T; Jeff, Janina M; Nadukuru, Rajiv; Ellis, Stephen B; Bottinger, Erwin P; Kenny, Eimear E
2017-03-01
Design and implement a HIPAA and Integrating the Healthcare Enterprise (IHE) profile compliant automated pipeline, the integrated Genomics Anesthesia System (iGAS), linking genomic data from the Mount Sinai Health System (MSHS) BioMe biobank to electronic anesthesia records, including physiological data collected during the perioperative period. The resulting repository of multi-dimensional data can be used for precision medicine analysis of physiological readouts, acute medical conditions, and adverse events that can occur during surgery. A structured pipeline was developed atop our existing anesthesia data warehouse using open-source tools. The pipeline is automated using scheduled tasks. The pipeline runs weekly, and finds and identifies all new and existing anesthetic records for BioMe participants. The pipeline went live in June 2015 with 49.2% (n=15,673) of BioMe participants linked to 40,947 anesthetics. The pipeline runs weekly in minimal time. After eighteen months, an additional 3671 participants were enrolled in BioMe and the number of matched anesthetic records grew 21% to 49,545. Overall percentage of BioMe patients with anesthetics remained similar at 51.1% (n=18,128). Seven patients opted out during this time. The median number of anesthetics per participant was 2 (range 1-144). Collectively, there were over 35 million physiologic data points and 480,000 medication administrations linked to genomic data. To date, two projects are using the pipeline at MSHS. Automated integration of biobank and anesthetic data sources is feasible and practical. This integration enables large-scale genomic analyses that might inform variable physiological response to anesthetic and surgical stress, and examine genetic factors underlying adverse outcomes during and after surgery. Copyright © 2017 Elsevier Inc. All rights reserved.
A Physiologic-Based Approach to the Treatment of Acute Hyperkalemia
Shingarev, Roman; Allon, Michael
2014-01-01
Hyperkalemia is a common and potentially lethal disorder. Given its variable presentation clinicians should have a high index of suspicion, especially in patients with chronic kidney disease. The present case highlights key physiological mechanisms in the development of hyperkalemia and provides an outline for emergent treatment. In this context, we discuss specific mechanisms of action of available treatments of hyperkalemia. PMID:20570423
Physiological Effects of Positive Pressure Ventilation.
1992-05-01
function in the patient with respiratory failure . In R. R. Kirby, M. J. Banner, & J. B. Downs (Eds.), Clinical Applications of Ventilatory Su2Rort (pp. 301...G., Blehschmidt, N. G., & Linder, W. J. (1990). Positive-pressure ventilation with positive end-expiratory pressure and atrial natriuretic peptide ...Acute Resniratorv Failure . New York: Churchill Livingstone. Ventilation 1 Physiological Effects of Positive Pressure Ventilation Dennis L. Oakes, RN, BSN
Ronn, Jonas; Jensen, Elisa P; Wewer Albrechtsen, Nicolai J; Holst, Jens Juul; Sorensen, Charlotte M
2017-12-01
Glucagon-like peptide-1 (GLP-1) is an incretin hormone increasing postprandial insulin release. GLP-1 also induces diuresis and natriuresis in humans and rodents. The GLP-1 receptor is extensively expressed in the renal vascular tree in normotensive rats where acute GLP-1 treatment leads to increased mean arterial pressure (MAP) and increased renal blood flow (RBF). In hypertensive animal models, GLP-1 has been reported both to increase and decrease MAP. The aim of this study was to examine expression of renal GLP-1 receptors in spontaneously hypertensive rats (SHR) and to assess the effect of acute intrarenal infusion of GLP-1. We hypothesized that GLP-1 would increase diuresis and natriuresis and reduce MAP in SHR. Immunohistochemical staining and in situ hybridization for the GLP-1 receptor were used to localize GLP-1 receptors in the kidney. Sevoflurane-anesthetized normotensive Sprague-Dawley rats and SHR received a 20 min intrarenal infusion of GLP-1 and changes in MAP, RBF, heart rate, dieresis, and natriuresis were measured. The vasodilatory effect of GLP-1 was assessed in isolated interlobar arteries from normo- and hypertensive rats. We found no expression of GLP-1 receptors in the kidney from SHR. However, acute intrarenal infusion of GLP-1 increased MAP, RBF, dieresis, and natriuresis without affecting heart rate in both rat strains. These results suggest that the acute renal effects of GLP-1 in SHR are caused either by extrarenal GLP-1 receptors activating other mechanisms (e.g., insulin) to induce the renal changes observed or possibly by an alternative renal GLP-1 receptor. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Pourteymour, Shirin; Hjorth, Marit; Lee, Sindre; Holen, Torgeir; Langleite, Torgrim M; Jensen, Jørgen; Birkeland, Kåre I; Drevon, Christian A; Eckardt, Kristin
2017-10-01
Physical activity promotes specific adaptations in most tissues including skeletal muscle. Acute exercise activates numerous signaling cascades including pathways involving mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK)1/2, which returns to pre-exercise level after exercise. The expression of MAPK phosphatases (MKPs) in human skeletal muscle and their regulation by exercise have not been investigated before. In this study, we used mRNA sequencing to monitor regulation of MKPs in human skeletal muscle after acute cycling. In addition, primary human myotubes were used to gain more insights into the regulation of MKPs. The two ERK1/2-specific MKPs, dual specificity phosphatase 5 (DUSP5) and DUSP6, were the most regulated MKPs in skeletal muscle after acute exercise. DUSP5 expression was ninefold higher immediately after exercise and returned to pre-exercise level within 2 h, whereas DUSP6 expression was reduced by 43% just after exercise and remained below pre-exercise level after 2 h recovery. Cultured myotubes express both MKPs, and incubation with dexamethasone (Dex) mimicked the in vivo expression pattern of DUSP5 and DUSP6 caused by exercise. Using a MAPK kinase inhibitor, we showed that stimulation of ERK1/2 activity by Dex was required for induction of DUSP5 However, maintaining basal ERK1/2 activity was required for basal DUSP6 expression suggesting that the effect of Dex on DUSP6 might involve an ERK1/2-independent mechanism. We conclude that the altered expression of DUSP5 and DUSP6 in skeletal muscle after acute endurance exercise might affect ERK1/2 signaling of importance for adaptations in skeletal muscle during exercise. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Physical and Physiological Demands of Recreational Team Handball for Adult Untrained Men.
Póvoas, Susana C A; Castagna, Carlo; Resende, Carlos; Coelho, Eduardo Filipe; Silva, Pedro; Santos, Rute; Seabra, André; Tamames, Juan; Lopes, Mariana; Randers, Morten Bredsgaard; Krustrup, Peter
2017-01-01
Lack of motivation to exercise was reported as a major cause of sedentary behavior in adulthood. This descriptive study examines the acute physical and physiological demands of recreational team handball and evaluates whether it could be suggested as an exercise mode for fitness and health enhancement in 33-55-year-old untrained men. Time-motion, heart rate (HR), and blood lactate analyses were obtained from 4 recreational matches. Mean distance covered during the 60 min matches was 6012 ± 428 m. The players changed match activity 386 ± 70 times, of which high-intensity runs and unorthodox movements amounted to 59 ± 18 and 26 ± 26 per match, respectively. The most frequent highly demanding playing actions were jumps and throws. Match average and peak HR were 82 ± 6% and 93 ± 5% HR max , respectively. Players exercised at intensities between 81 and 90% HR max for 47% (28 ± 14 min) and >90% HR max for 24% (14 ± 15 min) of total match time. Match average and peak blood lactate values were 3.6 ± 1.3 and 4.2 ± 1.2 mM, respectively. Recreational team handball is an intermittent high-intensity exercise mode with physical and physiological demands in the range of those found to have a positive effect on aerobic, anaerobic, and musculoskeletal fitness in adult individuals. Training studies considering recreational team handball as a health enhancing intervention are warranted.
Physical and Physiological Demands of Recreational Team Handball for Adult Untrained Men
Castagna, Carlo; Resende, Carlos; Coelho, Eduardo Filipe; Santos, Rute; Seabra, André; Tamames, Juan; Lopes, Mariana; Randers, Morten Bredsgaard
2017-01-01
Lack of motivation to exercise was reported as a major cause of sedentary behavior in adulthood. This descriptive study examines the acute physical and physiological demands of recreational team handball and evaluates whether it could be suggested as an exercise mode for fitness and health enhancement in 33–55-year-old untrained men. Time-motion, heart rate (HR), and blood lactate analyses were obtained from 4 recreational matches. Mean distance covered during the 60 min matches was 6012 ± 428 m. The players changed match activity 386 ± 70 times, of which high-intensity runs and unorthodox movements amounted to 59 ± 18 and 26 ± 26 per match, respectively. The most frequent highly demanding playing actions were jumps and throws. Match average and peak HR were 82 ± 6% and 93 ± 5% HRmax, respectively. Players exercised at intensities between 81 and 90% HRmax for 47% (28 ± 14 min) and >90% HRmax for 24% (14 ± 15 min) of total match time. Match average and peak blood lactate values were 3.6 ± 1.3 and 4.2 ± 1.2 mM, respectively. Recreational team handball is an intermittent high-intensity exercise mode with physical and physiological demands in the range of those found to have a positive effect on aerobic, anaerobic, and musculoskeletal fitness in adult individuals. Training studies considering recreational team handball as a health enhancing intervention are warranted. PMID:28466014
Profiling of ARDS pulmonary edema fluid identifies a metabolically distinct subset.
Rogers, Angela J; Contrepois, Kévin; Wu, Manhong; Zheng, Ming; Peltz, Gary; Ware, Lorraine B; Matthay, Michael A
2017-05-01
There is considerable biological and physiological heterogeneity among patients who meet standard clinical criteria for acute respiratory distress syndrome (ARDS). In this study, we tested the hypothesis that there exists a subgroup of ARDS patients who exhibit a metabolically distinct profile. We examined undiluted pulmonary edema fluid obtained at the time of endotracheal intubation from 16 clinically phenotyped ARDS patients and 13 control patients with hydrostatic pulmonary edema. Nontargeted metabolic profiling was carried out on the undiluted edema fluid. Univariate and multivariate statistical analyses including principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were conducted to find discriminant metabolites. Seven-hundred and sixty unique metabolites were identified in the pulmonary edema fluid of these 29 patients. We found that a subset of ARDS patients (6/16, 38%) presented a distinct metabolic profile with the overrepresentation of 235 metabolites compared with edema fluid from the other 10 ARDS patients, whose edema fluid metabolic profile was indistinguishable from those of the 13 control patients with hydrostatic edema. This "high metabolite" endotype was characterized by higher concentrations of metabolites belonging to all of the main metabolic classes including lipids, amino acids, and carbohydrates. This distinct group with high metabolite levels in the edema fluid was also associated with a higher mortality rate. Thus metabolic profiling of the edema fluid of ARDS patients supports the hypothesis that there is considerable biological heterogeneity among ARDS patients who meet standard clinical and physiological criteria for ARDS. Copyright © 2017 the American Physiological Society.
Risk factors and outcome of intra-abdominal hypertension in patients with severe acute pancreatitis.
Ke, Lu; Ni, Hai-Bin; Sun, Jia-Kui; Tong, Zhi-Hui; Li, Wei-Qin; Li, Ning; Li, Jie-Shou
2012-01-01
Intra-abdominal hypertension (IAH) is common in patients with severe acute pancreatitis (SAP). The aim of the present study was to investigate the risk factors of IAH in SAP patients and assess the prognosis of SAP combined with IAH. To analyze the data from patients with SAP, both univariate and multivariate logistic regression analyses were applied, using 16 indices, including age, gender, Acute Physiology and Chronic Health Evaluation II scores (APACHE II), 24 h fluid balance, hematocrit, serum calcium level, and so on. Clinical prognosis such as mortality, hospital duration, of SAP patients with or without IAH was also compared. First 24 h fluid balance (Odds Ratio [OR], 1.003; 95% Confidence Interval [CI], 1.001-1.006), number of fluid collections (OR, 1.652; 95% CI, 1.023-2.956), and serum calcium level (OR, 0.132; 95% CI, 0.012-0.775) were found to be independent risk factors for IAH in patients with SAP. Moreover, patients with SAP and IAH had significantly longer average length of stay, both in the hospital and in the intensive care unit, higher rates of systemic and local complications, and more invasive treatments. The significant risk factors for IAH in patients with SAP include 24 h fluid balance (first day), number of fluid collections, and serum calcium level. Additionally, IAH is associated with extremely poor prognosis, evidenced by high rates of mortality, morbidity, and the need for invasive interventions.
Yazgan, Ü C; Elbey, B; Kuş, S; Baykal, B; Keskin, I; Yılmaz, A; Şahin, A
2017-05-01
Methanol toxicity is one of the major public health problems because it can cause severe morbidity and mortality. Methanol intoxication causes changes in the balance between the production of free radicals and antioxidant capacity. We aimed to investigate the effects of caffeic acid phenethyl ester (CAPE) on the total oxidant status, total antioxidant status (TAS), and oxidative stress index (OSI) parameters of the liver and the serum in a rat model of acute methanol intoxication. Rats were treated with intraperitoneal (i.p.) Methotrexate (MTX) for 7 days. On the 8th day, i.p. Methanol was administered in the methanol, ethanol and CAPE groups. Four hours after methanol treatment, ethanol was injected i.p. in the ethanol group; CAPE (i.p.) in the CAPE group; serum physiologic i.p. in other groups. After 8 hours, rats were killed and the serum and the liver samples were obtained for biochemical analyses. The OSI value was significantly higher in the methanol group compared to the ethanol and CAPE groups. Serum TAS levels of the methanol group were significantly different compared to the control group, but not compared to the MTX group. The amelioration of oxidative stress was greater in the CAPE group compared to the ethanol group but was not statistically significant. This study demonstrates that CAPE treatment ameliorates oxidative stress in the serum and liver in a rat model of acute methanol intoxication.
Meyer, Brigitte; Huelsmann, Martin; Wexberg, Paul; Delle Karth, Georg; Berger, Rudolf; Moertl, Deddo; Szekeres, Thomas; Pacher, Richard; Heinz, Gottfried
2007-10-01
Natriuretic peptides emerged during recent years as potent prognostic markers in patients with heart failure and acute myocardial infarction. In addition, natriuretic peptides show strong predictive value in patients with pulmonary embolism, sepsis, renal failure, and shock. The present study tests the prognostic information of N-terminal pro-B-type natriuretic peptide (NT-pro-BNP) in an unselected cohort of critically ill patients. Prospective, observational study. A tertiary intensive care unit in a university hospital. A total of 289 consecutive patients admitted to the intensive care unit during a 16-month period with the following data: age 64 +/- 14 yrs, male n = 191, Simplified Acute Physiology Score II of 52 +/- 24, mechanical ventilation n = 180 (62%), vasopressors n = 179 (62%), renal failure n = 24 (8%). None. Plasma NT-pro-BNP samples (Roche Diagnostics) were obtained on intensive care unit admission. Data are given as median [range]. Intensive care unit survivors had significantly lower NT-pro-BNP values compared with intensive care unit nonsurvivors (3394 [24-35,000] vs. 6776 [303-35,000] pg/mL, survivors vs. nonsurvivors, respectively, p = .001). Hospital survivors were characterized by significantly lower NT-pro-BNP values (2656 [24-35,000] vs. 8390 [303-35,000] pg/mL, survivors vs. nonsurvivors, respectively, p = .001). NT-pro-BNP levels were not significantly different in patients with primary cardiac diagnosis compared with those with a noncardiac admission diagnosis (4794 [26-35,000], n = 202 vs. 3349 [24-35,000], n = 87, cardiac vs. noncardiac, respectively, p = .28). In a logistic regression model, Simplified Acute Physiology Score II and NT-pro-BNP were independently associated with hospital survival (chi = 35.6, p = .0001 and chi = 11.3, p = .0008, Simplified Acute Physiology Score II and NT-pro-BNP, respectively). Areas under the receiver operating characteristic curves of NT-pro-BNP and Simplified Acute Physiology Score II were not statistically significant different regarding the prediction of outcome. NT-pro-BNP on admission is an independent prognostic marker of outcome in an unselected cohort of critically ill patients. A single measurement of NT-pro-BNP might facilitate triage of emergency and intensive care unit patients.
Meléndez, D M; Marti, S; Pajor, E A; Moya, D; Heuston, C E M; Gellatly, D; Janzen, E D; Schwartzkopf-Genswein, K S
2017-10-01
Three experiments evaluated the effect of band and knife castration on acute pain for the first 7 d after the procedure on 1-wk-, 2-mo-, and 4-mo-old calves. All calves were blocked by age and weight and randomly assigned to 1 of 3 treatments: sham castration (control, CT), band castration (BA), and knife castration (KN). Experiment 1 evaluated 1-wk-old Angus bull calves ( = 34; 43.0 ± 6.61 kg BW), Exp. 2 evaluated 2-mo-old Angus bull calves ( = 34; 91.5 ± 11.93 kg BW), and Exp. 3 evaluated 4-mo-old Angus bull calves ( = 35; 157.6 ± 22.52 kg BW). For all experiments, physiological and behavioral parameters were collected before (d -1 and immediately before castration [T0]) and after (60 and 120 min and on d 7) castration to assess acute pain. Physiological measures included complete blood cell count, cortisol, substance P, and scrotal temperature. Behavioral measures consisted of a visual analog scale, stride length, and time and frequency budgets for walking, standing, lying, tail flicking, foot stamping, and head turning. Performance parameters included initial and final BW and ADG. In Exp. 1, tail flicking was greater ( = 0.02) in KN calves compared to BA calves 2 to 4 h after castration, although no differences were seen between BA and KN compared to CT calves. In Exp. 2, a treatment × time interaction ( = 0.02) was observed for cortisol, where KN calves had greater cortisol concentrations 120 min after castration compared to BA and CT calves; KN calves also lay down and ate less ( < 0.01; = 0.02) and stood and walked more ( < 0.01; = 0.05) compared to BA and CT calves 2 to 4 h after castration. In Exp. 3, a treatment × time interaction ( < 0.01) was observed for cortisol concentrations in which all treatments were different from one another at 60 and 120 min, with BA calves having the greatest concentrations, KN calves being intermediate, and CT having the lowest concentrations. Overall, KN and BA castrated calves presented physiological and behavioral changes associated with acute pain; however, 2-mo-old BA calves presented the fewest behavioral changes and no physiological changes associated with acute pain compared to CT calves.
Differences in swallow physiology in patients with left and right hemispheric strokes.
Wilmskoetter, Janina; Martin-Harris, Bonnie; Pearson, William G; Bonilha, Leonardo; Elm, Jordan J; Horn, Janet; Bonilha, Heather S
2018-05-11
We sought to determine the impact of lesion lateralization and lesion volume on swallow impairment on group-level by comparing patients with left and right hemisphere strokes and on patient-level by analyzing patients individually. We performed a retrospective, observational, cross-sectional study of 46 patients with unilateral (22 left, 24 right), acute, first-ever, ischemic strokes who received a diffusion weighted MRI (DW-MRI) and modified barium swallow study (MBSS) during their acute hospital stay. We determined lesion side on the DW-MRI and measured swallow physiology using the Modified Barium Swallow Impairment Profile (MBSImP™©), Penetration-Aspiration Scale (PAS), swallow timing, distance, area, and speed measures. We performed Pearson's Chi-Square and Wilcoxon Rank-Sum tests to compare patients with left and right hemisphere strokes, and Pearson or Spearman correlation, simple logistic regression, linear, and logistic multivariable regression modeling to assess the relationship between variables. At the group-level, there were no differences in MBSImP oral swallow impairment scores between patients with left and right hemisphere stroke. In adjusted analyses, patients with right hemisphere strokes showed significantly worse MBSImP pharyngeal total scores (p = 0.02), worse MBSImP component specific scores for laryngeal vestibular closure (Bonferroni adjusted alpha p ≤ 0.0029), and worse PAS scores (p = 0.03). Patients with right hemisphere strokes showed worse timing, distance, area, and speed measures. Lesion volume was significantly associated with MBSImP pharyngeal residue (p = 0.03) and pharyngeal total scores (p = 0.04). At the patient-level, 24% of patients (4 left, 7 right) showed opposite patterns of MBSImP oral and pharyngeal swallow impairment than seen at group-level. Our study showed differences in swallow physiology between patients with right and left unilateral strokes with patients with right hemisphere strokes showing worse pharyngeal impairment. Lesion lateralization seems to be a valuable marker for the severity of swallowing impairment at the group-level but less informative at the patient-level. Copyright © 2018 Elsevier Inc. All rights reserved.
Tongyoo, Surat; Permpikul, Chairat; Mongkolpun, Wasineenart; Vattanavanit, Veerapong; Udompanturak, Suthipol; Kocak, Mehmet; Meduri, G Umberto
2016-10-15
Authors of recent meta-analyses have reported that prolonged glucocorticoid treatment is associated with significant improvements in patients with severe pneumonia or acute respiratory distress syndrome (ARDS) of multifactorial etiology. A prospective randomized trial limited to patients with sepsis-associated ARDS is lacking. The objective of our study was to evaluate the efficacy of hydrocortisone treatment in sepsis-associated ARDS. In this double-blind, single-center (Siriraj Hospital, Bangkok), randomized, placebo-controlled trial, we recruited adult patients with severe sepsis within 12 h of their meeting ARDS criteria. Patients were randomly assigned (1:1 ratio) to receive either hydrocortisone 50 mg every 6 h or placebo. The primary endpoint was 28-day all-cause mortality; secondary endpoints included survival without organ support on day 28. Over the course of 4 years, 197 patients were randomized to either hydrocortisone (n = 98) or placebo (n = 99) and were included in this intention-to-treat analysis. The treatment group had significant improvement in the ratio of partial pressure of oxygen in arterial blood to fraction of inspired oxygen and lung injury score (p = 0.01), and similar timing to removal of vital organ support (HR 0.74, 95 % CI 0.51-1.07; p = 0.107). After adjustment for significant covariates, day 28 survival was similar for the whole group (HR 0.80, 95 % CI 0.46-1.41; p = 0.44) and for the larger subgroup (n = 126) with Acute Physiology and Chronic Health Evaluation II score <25 (HR 0.57, 95 % CI 0.24-1.36; p = 0.20). With the exception of hyperglycemia (80.6 % vs. 67.7 %; p = 0.04), the rate of adverse events was similar. Hyperglycemia had no impact on outcome. In sepsis-associated ARDS, hydrocortisone treatment was associated with a significant improvement in pulmonary physiology, but without a significant survival benefit. ClinicalTrials.gov identifier NCT01284452 . Registered on 18 January 2011.
Repetitive cryotherapy attenuates the in vitro and in vivo mononuclear cell activation response.
Lindsay, Angus; Othman, Mohd Izani; Prebble, Hannah; Davies, Sian; Gieseg, Steven P
2016-07-01
What is the central question of this study? Acute and repetitive cryotherapy are routinely used to accelerate postexercise recovery, although the effect on resident immune cells and repetitive exposure has largely been unexplored and neglected. What is the main finding and its importance? Using blood-derived mononuclear cells and semi-professional mixed martial artists, we show that acute and repetitive cryotherapy reduces the in vitro and in vivo T-cell and monocyte activation response whilst remaining independent of the physical performance of elite athletes. We investigated the effect of repetitive cryotherapy on the in vitro (cold exposure) and in vivo (cold water immersion) activation of blood-derived mononuclear cells following high-intensity exercise. Single and repeated cold exposure (5°C) of a mixed cell culture (T cells and monocytes) was investigated using in vitro tissue culture experimentation for total neopterin production (neopterin plus 7,8-dihydroneopterin). Fourteen elite mixed martial art fighters were also randomly assigned to either a cold water immersion (15 min at 10°C) or passive recovery protocol, which they completed three times per week during a 6 week training camp. Urine was collected and analysed for neopterin and total neopterin three times per week, and perceived soreness, fatigue, physical performance (broad jump, push-ups and pull-ups) and training performance were also assessed. Single and repetitive cold exposure significantly (P < 0.001) reduced total neopterin production from the mixed cell culture, whereas cold water immersion significantly (P < 0.05) attenuated urinary neopterin and total neopterin during the training camp without having any effect on physical performance parameters. Soreness and fatigue showed little variation between the groups, whereas training session performance was significantly (P < 0.05) elevated in the cold water immersion group. The data suggest that acute and repetitive cryotherapy attenuates in vitro T-cell and monocyte activation. This may explain the disparity in in vivo neopterin and total neopterin between cold water immersion and passive recovery following repetitive exposure during a high-intensity physical impact sport that remains independent of physical performance. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Lihua; Cui, Jingkun; Tang, Fengjiao
Purpose: Studies of the association between ataxia telangiectasia–mutated (ATM) gene polymorphisms and acute radiation injuries are often small in sample size, and the results are inconsistent. We conducted the first meta-analysis to provide a systematic review of published findings. Methods and Materials: Publications were identified by searching PubMed up to April 25, 2014. Primary meta-analysis was performed for all acute radiation injuries, and subgroup meta-analyses were based on clinical endpoint. The influence of sample size and radiation injury incidence on genetic effects was estimated in sensitivity analyses. Power calculations were also conducted. Results: The meta-analysis was conducted on the ATMmore » polymorphism rs1801516, including 5 studies with 1588 participants. For all studies, the cut-off for differentiating cases from controls was grade 2 acute radiation injuries. The primary meta-analysis showed a significant association with overall acute radiation injuries (allelic model: odds ratio = 1.33, 95% confidence interval: 1.04-1.71). Subgroup analyses detected an association between the rs1801516 polymorphism and a significant increase in urinary and lower gastrointestinal injuries and an increase in skin injury that was not statistically significant. There was no between-study heterogeneity in any meta-analyses. In the sensitivity analyses, small studies did not show larger effects than large studies. In addition, studies with high incidence of acute radiation injuries showed larger effects than studies with low incidence. Power calculations revealed that the statistical power of the primary meta-analysis was borderline, whereas there was adequate power for the subgroup analysis of studies with high incidence of acute radiation injuries. Conclusions: Our meta-analysis showed a consistency of the results from the overall and subgroup analyses. We also showed that the genetic effect of the rs1801516 polymorphism on acute radiation injuries was dependent on the incidence of the injury. These support the evidence of an association between the rs1801516 polymorphism and acute radiation injuries, encouraging further research of this topic.« less
The acute effect of moderate intensity aquatic exercise on coagulation factors in haemophiliacs.
Beltrame, Luis Gustavo Normanton; Abreu, Laurinda; Almeida, Jussara; Boullosa, Daniel Alexandre
2015-05-01
The objective of this cross-sectional study was to analyse the acute effect of aquatic exercise on haemostasis in persons with haemophilia. Ten adult haemophiliacs (8 type A, 2 type B) familiarized with aquatic training performed a 20-min exercise session in a swimming pool at an intensity of ~70% maximum heart rate (HR). Blood samples were collected immediately after the training session. The haemostatic parameters selected for analyses were factor VIII (FVIII), prothrombin time (PT), activated partial thromboplastin time (APTT) and fibrinogen. There were unclear effects of the exercise bout on FVIII and APTT, with a possibly beneficial effect on PT (-11·4%; 90% confidence interval: -26·1;3·3%), and a trivial change on fibrinogen levels. It was found an association between the mean rise in HR during exercise and the decrement in PT after exercise (r = 0·729; P = 0·026). The greater changes were observed in the patients diagnosed with a moderate level of haemophilia. It is concluded that a short bout of moderate intensity of aquatic exercise may have a positive influence on PT in adults with haemophilia with greater changes in those individuals exhibiting a greater rise in HR during exercise. This may be an important issue to the haemostatic control of haemophiliacs in clinical settings. Further studies are warranted for testing the influence of different aquatic exercise intensities on haemostasis. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Sud, Sachin; Friedrich, Jan O; Adhikari, Neill K J; Taccone, Paolo; Mancebo, Jordi; Polli, Federico; Latini, Roberto; Pesenti, Antonio; Curley, Martha A Q; Fernandez, Rafael; Chan, Ming-Cheng; Beuret, Pascal; Voggenreiter, Gregor; Sud, Maneesh; Tognoni, Gianni; Gattinoni, Luciano; Guérin, Claude
2014-07-08
Mechanical ventilation in the prone position is used to improve oxygenation and to mitigate the harmful effects of mechanical ventilation in patients with acute respiratory distress syndrome (ARDS). We sought to determine the effect of prone positioning on mortality among patients with ARDS receiving protective lung ventilation. We searched electronic databases and conference proceedings to identify relevant randomized controlled trials (RCTs) published through August 2013. We included RCTs that compared prone and supine positioning during mechanical ventilation in patients with ARDS. We assessed risk of bias and obtained data on all-cause mortality (determined at hospital discharge or, if unavailable, after longest follow-up period). We used random-effects models for the pooled analyses. We identified 11 RCTs (n=2341) that met our inclusion criteria. In the 6 trials (n=1016) that used a protective ventilation strategy with reduced tidal volumes, prone positioning significantly reduced mortality (risk ratio 0.74, 95% confidence interval 0.59-0.95; I2=29%) compared with supine positioning. The mortality benefit remained in several sensitivity analyses. The overall quality of evidence was high. The risk of bias was low in all of the trials except one, which was small. Statistical heterogeneity was low (I2<50%) for most of the clinical and physiologic outcomes. Our analysis of high-quality evidence showed that use of the prone position during mechanical ventilation improved survival among patients with ARDS who received protective lung ventilation. © 2014 Canadian Medical Association or its licensors.
Sud, Sachin; Friedrich, Jan O.; Adhikari, Neill K. J.; Taccone, Paolo; Mancebo, Jordi; Polli, Federico; Latini, Roberto; Pesenti, Antonio; Curley, Martha A.Q.; Fernandez, Rafael; Chan, Ming-Cheng; Beuret, Pascal; Voggenreiter, Gregor; Sud, Maneesh; Tognoni, Gianni; Gattinoni, Luciano; Guérin, Claude
2014-01-01
Background: Mechanical ventilation in the prone position is used to improve oxygenation and to mitigate the harmful effects of mechanical ventilation in patients with acute respiratory distress syndrome (ARDS). We sought to determine the effect of prone positioning on mortality among patients with ARDS receiving protective lung ventilation. Methods: We searched electronic databases and conference proceedings to identify relevant randomized controlled trials (RCTs) published through August 2013. We included RCTs that compared prone and supine positioning during mechanical ventilation in patients with ARDS. We assessed risk of bias and obtained data on all-cause mortality (determined at hospital discharge or, if unavailable, after longest follow-up period). We used random-effects models for the pooled analyses. Results: We identified 11 RCTs (n = 2341) that met our inclusion criteria. In the 6 trials (n = 1016) that used a protective ventilation strategy with reduced tidal volumes, prone positioning significantly reduced mortality (risk ratio 0.74, 95% confidence interval 0.59–0.95; I2 = 29%) compared with supine positioning. The mortality benefit remained in several sensitivity analyses. The overall quality of evidence was high. The risk of bias was low in all of the trials except one, which was small. Statistical heterogeneity was low (I2 < 50%) for most of the clinical and physiologic outcomes. Interpretation: Our analysis of high-quality evidence showed that use of the prone position during mechanical ventilation improved survival among patients with ARDS who received protective lung ventilation. PMID:24863923
Weight Bias and Psychosocial Implications for Acute Care of Patients With Obesity.
Smigelski-Theiss, Rachel; Gampong, Malisa; Kurasaki, Jill
2017-01-01
Obesity is a complex medical condition that has psychosocial and physiological implications for those suffering from the disease. Factors contributing to obesity such as depression, childhood experiences, and the physical environment should be recognized and addressed. Weight bias and stigmatization by health care providers and bedside clinicians negatively affect patients with obesity, hindering those patients from receiving appropriate care. To provide optimal care of patients with obesity or adiposity, health care providers must understand the physiological needs and requirements of this population while recognizing and addressing their own biases. The authors describe psychosocial and environmental factors that contribute to obesity, discuss health care providers' weight biases, and highlight implications for acute care of patients suffering from obesity. ©2017 American Association of Critical-Care Nurses.
A single bout of resistance exercise can enhance episodic memory performance.
Weinberg, Lisa; Hasni, Anita; Shinohara, Minoru; Duarte, Audrey
2014-11-01
Acute aerobic exercise can be beneficial to episodic memory. This benefit may occur because exercise produces a similar physiological response as physical stressors. When administered during consolidation, acute stress, both physical and psychological, consistently enhances episodic memory, particularly memory for emotional materials. Here we investigated whether a single bout of resistance exercise performed during consolidation can produce episodic memory benefits 48 h later. We used a one-leg knee extension/flexion task for the resistance exercise. To assess the physiological response to the exercise, we measured salivary alpha amylase (a biomarker of central norepinephrine), heart rate, and blood pressure. To test emotional episodic memory, we used a remember-know recognition memory paradigm with equal numbers of positive, negative, and neutral IAPS images as stimuli. The group that performed the exercise, the active group, had higher overall recognition accuracy than the group that did not exercise, the passive group. We found a robust effect of valence across groups, with better performance on emotional items as compared to neutral items and no difference between positive and negative items. This effect changed based on the physiological response to the exercise. Within the active group, participants with a high physiological response to the exercise were impaired for neutral items as compared to participants with a low physiological response to the exercise. Our results demonstrate that a single bout of resistance exercise performed during consolidation can enhance episodic memory and that the effect of valence on memory depends on the physiological response to the exercise. Copyright © 2014 Elsevier B.V. All rights reserved.
Carboxyhemoglobin and methemoglobin levels as prognostic markers in acute pulmonary embolism.
Kakavas, Sotirios; Papanikolaou, Aggeliki; Ballis, Evangelos; Tatsis, Nikolaos; Goga, Christina; Tatsis, Georgios
2015-04-01
Carboxyhemoglobin (COHb) and methemoglobin (MetHb) levels have been associated with a poor outcome in patients with various pathological conditions including cardiovascular diseases. Our aim was to retrospectively assess the prognostic value of arterial COHb and MetHb in patients with acute pulmonary embolism (PE). We conducted a retrospective study of 156 patients admitted in a pulmonary clinic due to acute PE. Measured variables during emergency department evaluation that were retrospectively analyzed included the ratio of the partial pressure of oxygen in arterial blood to the fraction of oxygen in inspired gas, Acute Physiology and Chronic Health Evaluation II score, risk stratification indices, and arterial blood gases. The association between arterial COHb and MetHb levels and disease severity or mortality was evaluated using bivariate tests and logistic regression analysis. Arterial COHb and MetHb levels correlated with Acute Physiology and Chronic Health Evaluation II and pulmonary severity index scores. Furthermore, arterial COHb and MetHb levels were associated with troponin T and N-terminal pro-B-type natriuretic peptide levels. In univariate logistic regression analysis, COHb and MetHb levels were both significantly associated with an increased risk of death. However, in multivariate analysis, only COHb remained significant as an independent predictor of in-hospital mortality. Our preliminary data suggest that arterial COHb and MetHb levels reflect the severity of acute PE, whereas COHb levels are independent predictors of in hospital death in patients in this clinical setting. These findings require further prospective validation. Copyright © 2015 Elsevier Inc. All rights reserved.
Stress and translocation: alterations in the stress physiology of translocated birds
Dickens, Molly J.; Delehanty, David J.; Romero, L. Michael
2009-01-01
Translocation and reintroduction have become major conservation actions in attempts to create self-sustaining wild populations of threatened species. However, avian translocations have a high failure rate and causes for failure are poorly understood. While ‘stress’ is often cited as an important factor in translocation failure, empirical evidence of physiological stress is lacking. Here we show that experimental translocation leads to changes in the physiological stress response in chukar partridge, Alectoris chukar. We found that capture alone significantly decreased the acute glucocorticoid (corticosterone, CORT) response, but adding exposure to captivity and transport further altered the stress response axis (the hypothalamic–pituitary–adrenal axis) as evident from a decreased sensitivity of the negative feedback system. Animals that were exposed to the entire translocation procedure, in addition to the reduced acute stress response and disrupted negative feedback, had significantly lower baseline CORT concentrations and significantly reduced body weight. These data indicate that translocation alters stress physiology and that chronic stress is potentially a major factor in translocation failure. Under current practices, the restoration of threatened species through translocation may unwittingly depend on the success of chronically stressed individuals. This conclusion emphasizes the need for understanding and alleviating translocation-induced chronic stress in order to use most effectively this important conservation tool. PMID:19324794
Sheard, Michael A; Ghent, Matthew V; Cabral, Daniel J; Lee, Joanne C; Khankaldyyan, Vazgen; Ji, Lingyun; Wu, Samuel Q; Kang, Min H; Sposto, Richard; Asgharzadeh, Shahab; Reynolds, C Patrick
2015-05-15
Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. Copyright © 2015. Published by Elsevier Inc.
Resilience, work engagement and stress reactivity in a middle-aged manual worker population.
Black, Julie K; Balanos, George M; Whittaker Previously Phillips, Anna C
2017-06-01
Work stress is a growing problem in Europe. Together, the negative physiological effect of stress on health, and increasing age increases the risk of developing cardiovascular disease in those aged over 50years. Therefore, identifying older workers who may be at risk of work-related stress, and its physiological effects, is key to promoting their health and wellbeing in the workforce. The present study examined the relationship between perceived psychological resilience and work-related factors (work engagement and presenteeism) and the physiological response to acute psychological stress in older manual workers in the UK. Thirty-one participants, mean (SD) age 54.9 (3.78)years reported perceived levels of resilience, work engagement, and presenteeism using standardized questionnaires. Cardiovascular measurements (heart rate (HR) and blood pressure (BP) and salivary cortisol were used to assess their physiological response to an acute psychological stress task. Resilience was not associated with work-related factors or reactivity. However, workers with higher work engagement showed lower SBP (p=0.02) and HR (p=0.001) reactivity than those with lower work engagement. Further, those with higher sickness presenteeism also had higher HR reactivity (p=0.03). This suggests a potential pathway by which higher work stress might contribute to the risk of future cardiovascular disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Stress-induced sensitization: the hypothalamic-pituitary-adrenal axis and beyond.
Belda, Xavier; Fuentes, Silvia; Daviu, Nuria; Nadal, Roser; Armario, Antonio
2015-01-01
Exposure to certain acute and chronic stressors results in an immediate behavioral and physiological response to the situation followed by a period of days when cross-sensitization to further novel stressors is observed. Cross-sensitization affects to different behavioral and physiological systems, more particularly to the hypothalamus-pituitary-adrenal (HPA) axis. It appears that the nature of the initial (triggering) stressor plays a major role, HPA cross-sensitization being more widely observed with systemic or high-intensity emotional stressors. Less important appears to be the nature of the novel (challenging) stressor, although HPA cross-sensitization is better observed with short duration (5-15 min) challenging stressors. In some studies with acute immune stressors, HPA sensitization appears to develop over time (incubation), but most results indicate a strong initial sensitization that progressively declines over the days. Sensitization can affect other physiological system (i.e. plasma catecholamines, brain monoamines), but it is not a general phenomenon. When studied concurrently, behavioral sensitization appears to persist longer than that of the HPA axis, a finding of interest regarding long-term consequences of traumatic stress. In many cases, behavioral and physiological consequences of prior stress can only be observed following imposition of a new stressor, suggesting long-term latent effects of the initial exposure.
1993-09-14
follicular phase of their menstrual cycle as defined as 1 to 11 days post menses . Experimental Protocol Each subject was screened by telephone to...studies exist regarding possible gender differences in plasma volume changes during acute psychological stress. Menstrual cycle effects on physiologic...the different phases of the menstrual cycle (Strauss, Schultheiss, & Cohen, 1983; Carroll , ’I\\lrner I Lee I & Stephenson, 1984). Conflicting
Sedation and Analgesia in Transportation of Acutely and Critically Ill Patients.
Johnston, Dawn; Franklin, Kevin; Rigby, Paul; Bergman, Karen; Davidson, Scott B
2016-06-01
Transportation of acutely or critically ill patients is a challenge for health care providers. Among the difficulties that providers face is the balance between adequate sedation and analgesia for the transportation event and maintaining acceptable respiratory and physiologic parameters of the patient. This article describes common challenges in providing sedation and analgesia during various phases of transport. Copyright © 2016 Elsevier Inc. All rights reserved.
Ahmad, Shakil; Moriconi, Federico; Naz, Naila; Sultan, Sadaf; Sheikh, Nadeem; Ramadori, Giuliano; Malik, Ihtzaz Ahmed
2013-01-01
Ferritin L (FTL) and Ferritin H (FTH) subunits are responsible for intercellular iron storage. We previously reported increasing amounts of liver cytoplasmic and nuclear iron content during acute phase response (APR). Aim of the present study is to demonstrate intracellular localization of ferritin subunits in liver compared with extra hepatic organs of rat under physiological and acute phase conditions. Rats were administered turpentine-oil (TO) intramuscularly to induce a sterile abscess (acute-phase-model) and sacrificed at different time points. Immunohistochemistry was performed utilizing horse-reddish-peroxidise conjugated secondary antibody on 4μm thick section. Liver cytoplasmic and nuclear protein were used for Western blot analysis. By means of immunohistology, FTL was detected in cytoplasm while a strong nuclear positivity for FTH was evident in the liver. Similarly, in heart, spleen and brain FTL was detected mainly in the cytoplasm while FTH demonstrated intense nuclear and a weak cytoplasmic expression. Western blot analysis of cytoplasmic and nuclear fractions from liver, heart, spleen and brain further confirmed mainly cytoplasmic expression of FTL in contrast to the nuclear and cytoplasmic expression of FTH. The data presented demonstrate the differential localization of FTL and FTH within hepatic and extra hepatic organs being FTL predominantly in the cytoplasm while FTH predominantly in nucleus.
Kitaysky, A.S.; Wingfield, J.C.; Piatt, John F.
1999-01-01
1. The seasonal dynamics of body condition (BC), circulating corticosterone levels (baseline, BL) and the adrenocortical response to acute stress (SR) were examined in long-lived Black-legged Kittiwakes, Rissa tridactyla, breeding at Duck (food-poor colony) and Gull (food-rich colony) Islands in lower Cook Inlet, Alaska. It was tested whether the dynamics of corticosterone levels reflect a seasonal change in bird physiological condition due to reproduction and/or variation in foraging conditions. 2. BC declined seasonally, and the decline was more pronounced in birds at the food-poor colony. BL and SR levels of corticosterone rose steadily through the reproductive season, and BL levels were significantly higher in birds on Duck island compared with those on Gull Island. During the egg-laying and chick-rearing stages, birds had lower SR on Duck Island than on Gull Island. 3. The results suggest that, in addition to a seasonal change in bird physiology during reproduction, local ecological factors such as food availability affect circulating levels of corticosterone and adrenal response to acute stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerra, C.R.; DelMonaco, J.L.; Singletary, J.H.
1979-01-01
The biological evaluation program incorporates three types of experimental tests: acute (96 hour) toxicity studies; behavioral (avoidance) response studies; and physiological (cough) response studies. In addition, specimens used in testing are examined for physical damage resulting from exposure to chlorine or ozoen. The objective of the acute (96 hour) toxicity study is to determine the respective lethal levels (LC/sub 50/) of chlorinated and ozonated waters. The objective of the behavioral (avoidance) response study is to determine what (if any) concentrations of ozone and of chlorine will be avoided. The objective of physiological (cough) response study is to determine what concentrationsmore » of ozone and of chlorine are physiologically detected. Ozonated and chlorinated waters were evaluated in all studies for both the addition of increased temperature and without it. Results indicate that ozone is less toxic than chlorine under the test conditions used. The lethal levels vary according to species of water quality measurements at Bergen Generating Station, New York are tabulated. (JBG)« less
Dasuri, Kalavathi; Ebenezer, Philip; Fernandez-Kim, Sun Ok; Zhang, Le; Gao, Zhanguo; Bruce-Keller, Annadora J; Freeman, Linnea R; Keller, Jeffrey N
2013-01-01
Lipid peroxidation products such as 4-hydroxynonenal (HNE) are known to be increased in response to oxidative stress, and are known to cause dysfunction and pathology in a variety of tissues during periods of oxidative stress. The aim of the current study was to determine the chronic (repeated HNE exposure) and acute effects of physiological concentrations of HNE toward multiple aspects of adipocyte biology using differentiated 3T3-L1 adipocytes. Our studies demonstrate that acute and repeated exposure of adipocytes to physiological concentrations of HNE is sufficient to promote subsequent oxidative stress, impaired adipogenesis, alter the expression of adipokines, and increase lipolytic gene expression and subsequent increase in free fatty acid (FFA) release. These results provide an insight in to the role of HNE-induced oxidative stress in regulation of adipocyte differentiation and adipose dysfunction. Taken together, these data indicate a potential role for HNE promoting diverse effects toward adipocyte homeostasis and adipocyte differentiation, which may be important to the pathogenesis observed in obesity and metabolic syndrome.
Mechanisms of alveolar fibrosis after acute lung injury.
Marinelli, W A; Henke, C A; Harmon, K R; Hertz, M I; Bitterman, P B
1990-12-01
In patients who die after severe acute lung injury, a dramatic fibroproliferative response occurs within the alveolar air space, interstitium, and microvessels. Profound shunt physiology, dead space ventilation, and pulmonary hypertension are the physiologic consequences of this fibroproliferative response. The anatomic pattern of the response is unique within each alveolar compartment. For example, the air space is obliterated by granulation tissue, with replicating mesenchymal cells, their connective tissue products, and an expanding network of intra-alveolar capillaries. In contrast, the vascular fibroproliferative response is dominated by mesenchymal cell replication and connective tissue deposition within the walls of microvessels. Despite the unique anatomic features of these fibroproliferative processes, the regulatory signals involved are likely to be similar. Although our current understanding of the signals regulating the fibroproliferative response to acute lung injury is limited, inferences can be made from in vitro studies of mesenchymal cell behavior and several better understood fibroproliferative processes, including wound healing and chronic fibrotic lung diseases. As clinicians, our future ability to enhance effective lung repair will likely utilize therapeutic strategies specifically targeted to the signals that regulate the fibroproliferative process within the alveolar microenvironment.
Treatment of acute lung injury by targeting MG53-mediated cell membrane repair
Lieber, Gissela; Nishi, Miyuki; Yan, Rosalie; Wang, Zhen; Yao, Yonggang; Li, Yu; Whitson, Bryan A.; Duann, Pu; Li, Haichang; Zhou, Xinyu; Zhu, Hua; Takeshima, Hiroshi; Hunter, John C.; McLeod, Robbie L.; Weisleder, Noah; Zeng, Chunyu; Ma, Jianjie
2014-01-01
Injury to lung epithelial cells has a role in multiple lung diseases. We previously identified mitsugumin 53 (MG53) as a component of the cell membrane repair machinery in striated muscle cells. Here we show that MG53 also has a physiological role in the lung and may be used as a treatment in animal models of acute lung injury. Mice lacking MG53 show increased susceptibility to ischemia-reperfusion and over-ventilation induced injury to the lung when compared with wild type mice. Extracellular application of recombinant human MG53 (rhMG53) protein protects cultured lung epithelial cells against anoxia/reoxygenation-induced injuries. Intravenous delivery or inhalation of rhMG53 reduces symptoms in rodent models of acute lung injury and emphysema. Repetitive administration of rhMG53 improves pulmonary structure associated with chronic lung injury in mice. Our data indicate a physiological function for MG53 in the lung and suggest that targeting membrane repair may be an effective means for treatment or prevention of lung diseases. PMID:25034454
NASA Astrophysics Data System (ADS)
Khotiaintsev, Sergei N.; Doger-Guerrero, E.; Glebova, L.; Svirid, V.; Sirenko, Yuri
1996-11-01
This paper treats electro-physiological effects of the low- level laser irradiation of blood (LBI). The data presented here are based on the observation of almost 200 patients suffering from the acute disruption of coronary blood circulation, unstable angina pectoris and myocardial infarction. Statistically significant changes of the electro-physiological characteristics were observed in the group of 65 patients, treated by the LBI. In particular, the significant 6 percent extension of the effective refractory period was observed. The electrical situation threshold has increased by 20.6 percent. The significant changes of some other important electro-physiological characteristics were within the range of 5-15 percent. In this paper, the data obtained on the LBI effectiveness are compared also with the results obtained on 94 patients who in addition to the standard anti-angina therapy were treated by the autohaemo- transfusion performed simultaneously with the UV-light irradiation of the transfused blood. The results obtained demonstrate the significant positive effect of the low energy LBI. The electrophysiological data obtained have good correlation with observed anti-arrhythmic effect of the LBI. This is proved by the data obtained on the electro- physiological characteristics of the cardiovascular system and by other clinical data on the experimental and control group of patients. In the course of this research the exact effect of the low level LBI was established. LBI led to the pronounced positive changes in electro-physiological characteristics of the cardiovascular system of the patients, it also led to the pronounced anti-arrhythmic effect.
Radman, Ivan; Wessner, Barbara; Bachl, Norbert; Ruzic, Lana; Hackl, Markus; Prpic, Tomislav; Markovic, Goran
2016-02-01
The aim of the present study was to examine the acute effects of graded physiological strain on soccer kicking performance. Twenty-eight semi-professional soccer players completed both experimental and control procedure. The experimental protocol incorporated repeated shooting trials combined with a progressive discontinuous maximal shuttle-run intervention. The initial running velocity was 8 km/h and increasing for 1 km/h every 3 min until exhaustion. The control protocol comprised only eight subsequent shooting trials. The soccer-specific kicking accuracy (KA; average distance from the ball-entry point to the goal center), kicking velocity (KV), and kicking quality (KQ; kicking accuracy divided by the time elapsed from hitting the ball to the point of entry) were evaluated via reproducible and valid test over five individually determined exercise intensity zones. Compared with baseline or exercise at intensities below the second lactate threshold (LT2), physiological exertion above the LT2 (blood lactate > 4 mmol/L) resulted in meaningful decrease in KA (11-13%; p < 0.05), KV (3-4%; p < 0.05), and overall KQ (13-15%; p < 0.01). The light and moderate-intensity exercise below the LT2 had no significant effect on soccer kicking performance. The results suggest that high-intensity physiological exertion above the player's LT2 impairs soccer kicking performance. In contrast, light to moderate physiological stress appears to be neither harmful nor beneficial for kicking performance.
Impact of acute psychological stress on cardiovascular risk factors in face of insulin resistance.
Jones, Kristian T; Shelton, Richard C; Wan, Jun; Li, Li
2016-11-01
Individuals with insulin resistance (IR) are at greater risk for cardiovascular disease (CVD). Psychological stress may contribute to develop CVD in IR, although mechanisms are poorly understood. Our aim was to test the hypothesis that individuals with IR have enhanced emotional and physiological responses to acute psychological stress, leading to increased CVD risk. Sixty participants were enrolled into the study, and classified into IR group (n = 31) and insulin sensitive group (n = 29) according to the Quantitative insulin sensitivity check index, which was calculated based on an oral glucose tolerance test. The Trier social stress test, a standardized experimental stress paradigm, was performed on each participant, and emotional and physiological responses were examined. Blood was collected from each subject for insulin, cytokines, and cortisol measurements. Compared with the insulin-sensitive group, individuals with IR had significantly lower ratings of energy and calm, but higher fatigue levels in response to acute stressors. Individuals with IR also showed blunted heart rate reactivity following stress. In addition, the IR status was worsened by acute psychological stress as demonstrated by further increased insulin secretion. Furthermore, individuals with IR showed significantly increased levels of leptin and interleukin-6, but decreased levels of adiponectin, at baseline, stress test, and post-stress period. Our findings in individuals with IR under acute stress would allow a better understanding of the risks for developing CVD and to tailor the interventions for better outcomes.
Impact of Acute Psychological Stress on Cardiovascular Risk Factors in Face of Insulin Resistance
Jones, Kristian T.; Shelton, Richard C.; Wan, Jun; Li, Li
2016-01-01
Individuals with insulin resistance (IR) are at greater risk for cardiovascular disease (CVD). Psychological stress may contribute to develop CVD in IR although mechanisms are poorly understood. Our aim was to test the hypothesis that individuals with IR have enhanced emotional and physiological responses to acute psychological stress, leading to increased CVD risk. Sixty participants were enrolled into the study, and classified into IR group (n=31) and insulin sensitive group (n=29) according to the Quantitative insulin sensitivity check index, which was calculated based on an oral glucose tolerance test. The Trier social stress test, a standardized experimental stress paradigm, was performed on each participant, and emotional and physiological responses were examined. Blood was collected from each subject for insulin, cytokines and cortisol measurements. Compared with insulin sensitive group, individuals with IR had significantly lower ratings of energy and calm, but higher fatigue levels in response to acute stressors. Individuals with IR also showed blunted heart rate reactivity following stress. In addition, the IR status was worsened by acute psychological stress as demonstrated by further increased insulin secretion. Furthermore, individuals with IR showed significantly increased levels of leptin and interleukin-6, but decreased levels of adiponectin, at baseline, stress test and post-stress period. Our findings in individuals with IR under acute stress would allow a better understanding of the risks for developing CVD and to tailor the interventions for better outcomes. PMID:27588343
Characteristics of critically ill patients in ICUs in mainland China.
Du, Bin; An, Youzhong; Kang, Yan; Yu, Xiangyou; Zhao, Mingyan; Ma, Xiaochun; Ai, Yuhang; Xu, Yuan; Wang, Yushan; Qian, Chuanyun; Wu, Dawei; Sun, Renhua; Li, Shusheng; Hu, Zhenjie; Cao, Xiangyuan; Zhou, Fachun; Jiang, Li; Lin, Jiandong; Chen, Erzhen; Qin, Tiehe; He, Zhenyang; Zhou, Lihua
2013-01-01
We sought to describe the demographics, case mix, interventions, and clinical outcome of critically ill patients admitted to ICUs in Mainland China. A 2-month (July 1, 2009, to August 31, 2009) prospective, observational cohort study. Twenty-two ICUs in Mainland China. Adult patients admitted to participating ICUs during the study period with an ICU length of stay >24 hrs. None. Patient characteristics, including demographics, underlying diseases, severity of illness, admission status, complications, intervention and treatment during ICU stay, and clinical outcome were recorded in case report form. The primary outcome measure was all-cause hospital mortality. Independent predictors for hospital mortality were determined with multivariate logistic regression analysis. One thousand two hundred ninety-seven patients met the inclusion criteria for the study, 821 (63.3%) were male, and mean age was 58.5 ± 19.2 yrs. Mean Acute Physiology and Chronic Health Evaluation II score was 18.0 ± 8.1, and mean Sequential Organ Failure Assessment score was 6.5 ± 3.8. One third of the patients were postoperative ICU admissions. Seven hundred sixty-five patients (59.0%) developed infections, followed by severe sepsis or septic shock (484, 37.3%), acute kidney injury (398, 30.7%), and acute lung injury/acute respiratory distress syndrome (351, 27.1%). Mechanical ventilation was used in almost three fourths of the patients, whereas any type of renal replacement therapy was used in 173 patients (13.3%). Hospital mortality was 20.3%. Multivariate logistic regression analysis found that Acute Physiology and Chronic Health Evaluation II score, solid tumor, severe sepsis/septic shock, acute lung injury/acute respiratory distress syndrome, and acute kidney injury were independent risk factors for hospital mortality. Critically ill patients in ICUs in Mainland China exhibited a case mix similar to those of Western countries, although there are significant differences in intensive care unit admission rates and disease severity between Western and Chinese ICUs.
Bai, Jinwei; Shen, Li; Sun, Huimin; Shen, Bairong
2017-01-01
Physiological data from wearable sensors and smartphone are accumulating rapidly, and this provides us the chance to collect dynamic and personalized information as phenotype to be integrated to genotype for the holistic understanding of complex diseases. This integration can be applied to early prediction and prevention of disease, therefore promoting the shifting of disease care tradition to the healthcare paradigm. In this chapter, we summarize the physiological signals which can be detected by wearable sensors, the sharing of the physiological big data, and the mining methods for the discovery of disease-associated patterns for personalized diagnosis and treatment. We discuss the challenges of physiological informatics about the storage, the standardization, the analyses, and the applications of the physiological data from the wearable sensors and smartphone. At last, we present our perspectives on the models for disentangling the complex relationship between early disease prediction and the mining of physiological phenotype data.
Experimental trauma of occipital impacts.
DOT National Transportation Integrated Search
1974-03-01
The paper presents clinical observations, physiological data and pathological findings that have been collected on a series of baboons exposed to controlled occipital impacts under local anesthesia. This acute experimental trauma study was accomplish...
Arnold, Donald H; Wang, Li; Hartert, Tina V
2016-03-01
Pulsus paradoxus is one of the few objective bedside measures of acute asthma exacerbation severity but is difficult to measure in tachypneic and tachycardic patients and in noisy clinical environments. Our primary objective was to examine whether pulse oximeter plethysmograph estimate of pulsus paradoxus (PEP) is associated with physiologic and symptom measures of acute exacerbation severity (airway resistance by impulse oscillometry [%IOS] and the Acute Asthma Intensity Research Score [AAIRS]). Secondary objectives were to validate the previous association of PEP with percent predicted forced expiratory volume in 1 second (%FEV1 ) and to examine associations of change of PEP with change of these outcomes after 2 hours of treatment. This was a secondary analysis of data from a prospective observational study of patients aged 5-17 years with acute asthma exacerbations. The predictor variable, PEP, was measured using a dedicated pulse oximeter and waveform analysis program. Outcome measures included the AAIRS, %IOS, and %FEV1 at baseline and after 2 hours of treatment. We examined associations of PEP with %IOS and the AAIRS at baseline using multiple linear regression models adjusted for age, sex, and race. As secondary analyses we similarly examined the association of PEP with %FEV1 at baseline and change of PEP with change of %IOS, the AAIRS, and %FEV1 after 2 hours of treatment using multiple linear regression models adjusted for the baseline value of the outcome measure and the AAIRS. Among 684 participants (61% males; 61% African American) there were associations of baseline PEP with %IOS, the AAIRS, and %FEV1 (p < 0.001). Change of PEP after 2 hours of treatment was associated with change of %FEV1 (p < 0.001) and change of the AAIRS (p = 0.01) but not with change of %IOS (p = 0.60). PEP demonstrates criterion validity in predicting baseline %IOS, the AAIRS, and %FEV1 , and responsiveness to change of the AAIRS and %FEV1 . Data contained in the oximeter plethysmograph waveform might be utilized as a continuous, objective measure of acute asthma exacerbation severity and real-time response to treatment. © 2016 by the Society for Academic Emergency Medicine.
Gryshchenko, Oleksiy; Gerasimenko, Julia V; Peng, Shuang; Gerasimenko, Oleg V; Petersen, Ole H
2018-02-09
Ca 2+ signalling in different cell types in exocrine pancreatic lobules was monitored simultaneously and signalling responses to various stimuli were directly compared. Ca 2+ signals evoked by K + -induced depolarization were recorded from pancreatic nerve cells. Nerve cell stimulation evoked Ca 2+ signals in acinar but not in stellate cells. Stellate cells are not electrically excitable as they, like acinar cells, did not generate Ca 2+ signals in response to membrane depolarization. The responsiveness of the stellate cells to bradykinin was markedly reduced in experimental alcohol-related acute pancreatitis, but they became sensitive to stimulation with trypsin. Our results provide fresh evidence for an important role of stellate cells in acute pancreatitis. They seem to be a critical element in a vicious circle promoting necrotic acinar cell death. Initial trypsin release from a few dying acinar cells generates Ca 2+ signals in the stellate cells, which then in turn damage more acinar cells causing further trypsin liberation. Physiological Ca 2+ signals in pancreatic acinar cells control fluid and enzyme secretion, whereas excessive Ca 2+ signals induced by pathological agents induce destructive processes leading to acute pancreatitis. Ca 2+ signals in the peri-acinar stellate cells may also play a role in the development of acute pancreatitis. In this study, we explored Ca 2+ signalling in the different cell types in the acinar environment of the pancreatic tissue. We have, for the first time, recorded depolarization-evoked Ca 2+ signals in pancreatic nerves and shown that whereas acinar cells receive a functional cholinergic innervation, there is no evidence for functional innervation of the stellate cells. The stellate, like the acinar, cells are not electrically excitable as they do not generate Ca 2+ signals in response to membrane depolarization. The principal agent evoking Ca 2+ signals in the stellate cells is bradykinin, but in experimental alcohol-related acute pancreatitis, these cells become much less responsive to bradykinin and then acquire sensitivity to trypsin. Our new findings have implications for our understanding of the development of acute pancreatitis and we propose a scheme in which Ca 2+ signals in stellate cells provide an amplification loop promoting acinar cell death. Initial release of the proteases kallikrein and trypsin from dying acinar cells can, via bradykinin generation and protease-activated receptors, induce Ca 2+ signals in stellate cells which can then, possibly via nitric oxide generation, damage more acinar cells and thereby cause additional release of proteases, generating a vicious circle. © 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Stress cardiomyopathy syndrome: a contemporary review.
Kapoor, Divya; Bybee, Kevin A
2009-12-01
Stress cardiomyopathy (SC) syndrome represents a reversible form of cardiomyopathy that commonly presents proximate to an acute emotional or physiologic stressor. The clinical presentation is similar to an acute coronary syndrome in the absence of obstructive coronary artery disease to explain the unusual distribution of associated transient wall motion abnormalities. Postmenopausal women seem particularly prone to SC for unclear reasons. The pathophysiology of the syndrome is unknown but may involve pathologic sympathetic myocardial stimulation.
Quantifying risk and benchmarking performance in the adult intensive care unit.
Higgins, Thomas L
2007-01-01
Morbidity, mortality, and length-of-stay outcomes in patients receiving critical care are difficult to interpret unless they are risk-stratified for diagnosis, presenting severity of illness, and other patient characteristics. Acuity adjustment systems for adults include the Acute Physiology And Chronic Health Evaluation (APACHE), the Mortality Probability Model (MPM), and the Simplified Acute Physiology Score (SAPS). All have recently been updated and recalibrated to reflect contemporary results. Specialized scores are also available for patient subpopulations where general acuity scores have drawbacks. Demand for outcomes data is likely to grow with pay-for-performance initiatives as well as for routine clinical, prognostic, administrative, and research applications. It is important for clinicians to understand how these scores are derived and how they are properly applied to quantify patient severity of illness and benchmark intensive care unit performance.
Crossley, Dane A; Altimiras, Jordi
2005-01-01
Chronic hypoxic incubation is a common tool used to address the plasticity of morphological and physiological characteristics during vertebrate development. In this study chronic hypoxic incubation of embryonic American alligators resulted in both morphological (mass) and physiological changes. During normoxic incubation embryonic mass, liver mass and heart mass increased throughout the period of study, while yolk mass fell. Chronic hypoxia (10%O2) resulted in a reduced embryonic mass at 80% and 90% of incubation. This reduction in embryonic mass was accompanied by a relative enlargement of the heart at 80% and 90% of incubation, while relative embryonic liver mass was similar to the normoxic group. Normoxic incubated alligators maintained a constant heart rate during the period of study, while mean arterial pressure rose continuously. Both levels of hypoxic incubation (15% and 10%O2) resulted in a lower mean arterial pressure at 90% of incubation, while heart rate was lower in the 10%O2 group only. Acute (5 min) exposure to 10%O2 in the normoxic group resulted in a biphasic response, with a normotensive bradycardia occurring during the period of exposure and a hypertensive tachycardic response occurring during recovery. The embryos incubated under hypoxia also showed a blunted response to acute hypoxic stress. In conclusion, the main responses elicited by chronic hypoxic incubation, namely, cardiac enlargement, blunted hypoxic response and systemic vasodilation, may provide chronically hypoxic embryos with a new physiological repertoire for responding to hypoxia.
NH4+ triggers the release of astrocytic lactate via mitochondrial pyruvate shunting
Lerchundi, Rodrigo; Fernández-Moncada, Ignacio; Contreras-Baeza, Yasna; Sotelo-Hitschfeld, Tamara; Mächler, Philipp; Wyss, Matthias T.; Stobart, Jillian; Baeza-Lehnert, Felipe; Alegría, Karin; Weber, Bruno; Barros, L. Felipe
2015-01-01
Neural activity is accompanied by a transient mismatch between local glucose and oxygen metabolism, a phenomenon of physiological and pathophysiological importance termed aerobic glycolysis. Previous studies have proposed glutamate and K+ as the neuronal signals that trigger aerobic glycolysis in astrocytes. Here we used a panel of genetically encoded FRET sensors in vitro and in vivo to investigate the participation of NH4+, a by-product of catabolism that is also released by active neurons. Astrocytes in mixed cortical cultures responded to physiological levels of NH4+ with an acute rise in cytosolic lactate followed by lactate release into the extracellular space, as detected by a lactate-sniffer. An acute increase in astrocytic lactate was also observed in acute hippocampal slices exposed to NH4+ and in the somatosensory cortex of anesthetized mice in response to i.v. NH4+. Unexpectedly, NH4+ had no effect on astrocytic glucose consumption. Parallel measurements showed simultaneous cytosolic pyruvate accumulation and NADH depletion, suggesting the involvement of mitochondria. An inhibitor-stop technique confirmed a strong inhibition of mitochondrial pyruvate uptake that can be explained by mitochondrial matrix acidification. These results show that physiological NH4+ diverts the flux of pyruvate from mitochondria to lactate production and release. Considering that NH4+ is produced stoichiometrically with glutamate during excitatory neurotransmission, we propose that NH4+ behaves as an intercellular signal and that pyruvate shunting contributes to aerobic lactate production by astrocytes. PMID:26286989
NH4(+) triggers the release of astrocytic lactate via mitochondrial pyruvate shunting.
Lerchundi, Rodrigo; Fernández-Moncada, Ignacio; Contreras-Baeza, Yasna; Sotelo-Hitschfeld, Tamara; Mächler, Philipp; Wyss, Matthias T; Stobart, Jillian; Baeza-Lehnert, Felipe; Alegría, Karin; Weber, Bruno; Barros, L Felipe
2015-09-01
Neural activity is accompanied by a transient mismatch between local glucose and oxygen metabolism, a phenomenon of physiological and pathophysiological importance termed aerobic glycolysis. Previous studies have proposed glutamate and K(+) as the neuronal signals that trigger aerobic glycolysis in astrocytes. Here we used a panel of genetically encoded FRET sensors in vitro and in vivo to investigate the participation of NH4(+), a by-product of catabolism that is also released by active neurons. Astrocytes in mixed cortical cultures responded to physiological levels of NH4(+) with an acute rise in cytosolic lactate followed by lactate release into the extracellular space, as detected by a lactate-sniffer. An acute increase in astrocytic lactate was also observed in acute hippocampal slices exposed to NH4(+) and in the somatosensory cortex of anesthetized mice in response to i.v. NH4(+). Unexpectedly, NH4(+) had no effect on astrocytic glucose consumption. Parallel measurements showed simultaneous cytosolic pyruvate accumulation and NADH depletion, suggesting the involvement of mitochondria. An inhibitor-stop technique confirmed a strong inhibition of mitochondrial pyruvate uptake that can be explained by mitochondrial matrix acidification. These results show that physiological NH4(+) diverts the flux of pyruvate from mitochondria to lactate production and release. Considering that NH4(+) is produced stoichiometrically with glutamate during excitatory neurotransmission, we propose that NH4(+) behaves as an intercellular signal and that pyruvate shunting contributes to aerobic lactate production by astrocytes.
Soluble CD163 is increased in patients with acute pancreatitis independent of disease severity.
Karrasch, Thomas; Brünnler, Tanja; Hamer, Okka W; Schmid, Karin; Voelk, Markus; Herfarth, Hans; Buechler, Christa
2015-10-01
Macrophages are crucially involved in the pathophysiology of acute pancreatitis. Soluble CD163 (sCD163) is specifically released from macrophages and systemic levels are increased in inflammatory diseases. Here, sCD163 was measured in serum of 50 patients with acute pancreatitis to find out possible associations with disease activity. Admission levels of systemic sCD163 were nearly three-fold higher in patients with acute pancreatitis compared to controls. In patients sCD163 did not correlate with C-reactive protein and leukocyte count as established markers of inflammation. Levels were not associated with disease severity assessed by the Schroeder score, Balthazar score, Acute Physiology, Age, and Chronic Health Evaluation (Apache) II score and peripancreatic necrosis score. Soluble CD163 was not related to complications of acute pancreatitis. These data show that serum sCD163 is increased in acute pancreatitis indicating activation of macrophages but is not associated with disease severity and outcome. Copyright © 2015 Elsevier Inc. All rights reserved.
Vyas, Nimish B.; Rattner, Barnett A.
2012-01-01
Avian risk assessments for rodenticides are often driven by the results of standardized acute oral toxicity tests without regards to a toxicant's mode of action and time course of adverse effects. First generation anticoagulant rodenticides (FGARs) generally require multiple feedings over several days to achieve a threshold concentration in tissue and cause adverse effects. This exposure regimen is much different than that used in the standardized acute oral toxicity test methodology. Median lethal dose values derived from standardized acute oral toxicity tests underestimate the environmental hazard and risk of FGARs. Caution is warranted when FGAR toxicity, physiological effects, and pharmacokinetics derived from standardized acute oral toxicity testing are used for forensic confirmation of the cause of death in avian mortality incidents and when characterizing FGARs' risks to free-ranging birds.
Panasevich, Matthew R; Morris, E M; Chintapalli, S V; Wankhade, U D; Shankar, K; Britton, S L; Koch, L G; Thyfault, J P; Rector, R S
2016-07-01
Poor aerobic fitness is linked to nonalcoholic fatty liver disease and increased all-cause mortality. We previously found that rats with a low capacity for running (LCR) that were fed an acute high-fat diet (HFD; 45% kcal from fat) for 3 days resulted in positive energy balance and increased hepatic steatosis compared with rats that were highly aerobically fit with a high capacity for running (HCR). Here, we tested the hypothesis that poor physiological outcomes in LCR rats following acute HFD feeding are associated with alterations in cecal microbiota. LCR rats exhibited greater body weight, feeding efficiency, 3 days of body weight change, and liver triglycerides after acute HFD feeding compared with HCR rats. Furthermore, compared with HCR rats, LCR rats exhibited reduced expression of intestinal tight junction proteins. Cecal bacterial 16S rDNA revealed that LCR rats had reduced cecal Proteobacteria compared with HCR rats. Microbiota of HCR rats consisted of greater relative abundance of Desulfovibrionaceae and unassigned genera within this family, suggesting increased reduction of endogenous mucins and proteins. Although feeding rats an acute HFD led to reduced Firmicutes in both strains, short-chain fatty acid-producing Phascolarctobacterium was reduced in LCR rats. In addition, Ruminococcae and Ruminococcus were negatively correlated with energy intake in the LCR/HFD rats. Predicted metagenomic function suggested that LCR rats had a greater capacity to metabolize carbohydrate and energy compared with HCR rats. Overall, these data suggest that the populations and metabolic capacity of the microbiota in low-aerobically fit LCR rats may contribute to their susceptibility to acute HFD-induced hepatic steatosis and poor physiologic outcomes.
Panasevich, Matthew R.; Morris, E. M.; Chintapalli, S. V.; Wankhade, U. D.; Shankar, K.; Britton, S. L.; Koch, L. G.; Thyfault, J. P.
2016-01-01
Poor aerobic fitness is linked to nonalcoholic fatty liver disease and increased all-cause mortality. We previously found that rats with a low capacity for running (LCR) that were fed an acute high-fat diet (HFD; 45% kcal from fat) for 3 days resulted in positive energy balance and increased hepatic steatosis compared with rats that were highly aerobically fit with a high capacity for running (HCR). Here, we tested the hypothesis that poor physiological outcomes in LCR rats following acute HFD feeding are associated with alterations in cecal microbiota. LCR rats exhibited greater body weight, feeding efficiency, 3 days of body weight change, and liver triglycerides after acute HFD feeding compared with HCR rats. Furthermore, compared with HCR rats, LCR rats exhibited reduced expression of intestinal tight junction proteins. Cecal bacterial 16S rDNA revealed that LCR rats had reduced cecal Proteobacteria compared with HCR rats. Microbiota of HCR rats consisted of greater relative abundance of Desulfovibrionaceae and unassigned genera within this family, suggesting increased reduction of endogenous mucins and proteins. Although feeding rats an acute HFD led to reduced Firmicutes in both strains, short-chain fatty acid-producing Phascolarctobacterium was reduced in LCR rats. In addition, Ruminococcae and Ruminococcus were negatively correlated with energy intake in the LCR/HFD rats. Predicted metagenomic function suggested that LCR rats had a greater capacity to metabolize carbohydrate and energy compared with HCR rats. Overall, these data suggest that the populations and metabolic capacity of the microbiota in low-aerobically fit LCR rats may contribute to their susceptibility to acute HFD-induced hepatic steatosis and poor physiologic outcomes. PMID:27288420
Bell, Genevieve A.; Fadool, Debra Ann
2017-01-01
Intranasal insulin delivery is currently being used in clinical trials to test for improvement in human memory and cognition, and in particular, for lessening memory loss attributed to neurodegenerative diseases. Studies have reported the effects of short-term intranasal insulin treatment on various behaviors, but less have examined long-term effects. The olfactory bulb contains the highest density of insulin receptors in conjunction with the highest level of insulin transport within the brain. Previous research from our laboratory has demonstrated that acute insulin intranasal delivery (IND) enhanced both short- and long-term memory as well as increased two-odor discrimination in a two-choice paradigm. Herein, we investigated the behavioral and physiological effects of chronic insulin IND. Adult, male C57BL6/J mice were intranasally treated with 5 μg/μl of insulin twice daily for 30 and 60 days. Metabolic assessment indicated no change in body weight, caloric intake, or energy expenditure following chronic insulin IND, but an increase in the frequency of meal bouts selectively in the dark cycle. Unlike acute insulin IND, which has been shown to cause enhanced performance in odor habituation/dishabituation and two-odor discrimination tasks in mice, chronic insulin IND did not enhance olfactometry-based odorant discrimination or olfactory reversal learning. In an object memory recognition task, insulin IND-treated mice performed no different from controls regardless of task duration. Biochemical analyses of the olfactory bulb revealed a modest 1.3X increase in IR kinase phosphorylation but no significant increase in Kv1.3 phosphorylation. Substrate phosphorylation of IR Kinase downstream effectors (MAPK/ERK and Akt signaling) proved to be highly variable. These data indicate that chronic administration of insulin IND in mice fails to enhance olfactory ability, object memory recognition, or a majority of systems physiology metabolic factors – as reported to elicit a modulatory effect with acute administration. This leads to two alternative interpretations regarding long-term insulin IND in mice: 1) It causes an initial stage of insulin resistance to dampen the behaviors that would normally be modulated under acute insulin IND, but ability to clear a glucose challenge is still retained, or 2) There is a lack of behavioral modulation at high concentration of insulin attributed to the twice daily intervals of hyperinsulinemia caused by insulin IND administration without any insulin resistance, per se. PMID:28259806
Can creatine supplementation form carcinogenic heterocyclic amines in humans?
Pereira, Renato Tavares dos Santos; Dörr, Felipe Augusto; Pinto, Ernani; Solis, Marina Yazigi; Artioli, Guilherme Giannini; Fernandes, Alan Lins; Murai, Igor Hisashi; Dantas, Wagner Silva; Seguro, Antônio Carlos; Santinho, Mirela Aparecida Rodrigues; Roschel, Hamilton; Carpentier, Alain; Poortmans, Jacques Remi; Gualano, Bruno
2015-09-01
There is a long-standing concern that creatine supplementation could be associated with cancer, possibly by facilitating the formation of carcinogenic heterocyclic amines (HCAs). This study provides compelling evidence that both low and high doses of creatine supplementation, given either acutely or chronically, does not cause a significant increase in HCA formation. HCAs detection was unrelated to creatine supplementation. Diet was likely to be the main factor responsible for HCAs formation after either placebo (n = 6) or creatine supplementation (n = 3). These results directly challenge the recently suggested biological plausibility for the association between creatine use and risk of testicular germ cell cancer. Creatine supplementation has been associated with increased cancer risk. In fact, there is evidence indicating that creatine and/or creatinine are important precursors of carcinogenic heterocyclic amines (HCAs). The present study aimed to investigate the acute and chronic effects of low- and high-dose creatine supplementation on the production of HCAs in healthy humans (i.e. 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (8-MeIQx), 2-amino-(1,6-dimethylfuro[3,2-e]imidazo[4,5-b])pyridine (IFP) and 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx)). This was a non-counterbalanced single-blind crossover study divided into two phases, in which low- and high-dose creatine protocols were tested. After acute (1 day) and chronic supplementation (30 days), the HCAs PhIP, 8-MeIQx, IFP and 4,8-DiMeIQx were assessed through a newly developed HPLC-MS/MS method. Dietary HCA intake and blood and urinary creatinine were also evaluated. Out of 576 assessments performed (from 149 urine samples), only nine (3 from creatine and 6 from placebo) showed quantifiable levels of HCAs (8-MeIQx: n = 3; 4,8-DiMeIQx: n = 2; PhIP: n = 4). Individual analyses revealed that diet rather than creatine supplementation was the main responsible factor for HCA formation in these cases. This study provides compelling evidence that both low and high doses of creatine supplementation, given either acutely or chronically, did not cause increases in the carcinogenic HCAs PhIP, 8-MeIQx, IFP and 4,8-DiMeIQx in healthy subjects. These findings challenge the long-existing notion that creatine supplementation could potentially increase the risk of cancer by stimulating the formation of these mutagens. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Bell, Genevieve A; Fadool, Debra Ann
2017-05-15
Intranasal insulin delivery is currently being used in clinical trials to test for improvement in human memory and cognition, and in particular, for lessening memory loss attributed to neurodegenerative diseases. Studies have reported the effects of short-term intranasal insulin treatment on various behaviors, but less have examined long-term effects. The olfactory bulb contains the highest density of insulin receptors in conjunction with the highest level of insulin transport within the brain. Previous research from our laboratory has demonstrated that acute insulin intranasal delivery (IND) enhanced both short- and long-term memory as well as increased two-odor discrimination in a two-choice paradigm. Herein, we investigated the behavioral and physiological effects of chronic insulin IND. Adult, male C57BL6/J mice were intranasally treated with 5μg/μl of insulin twice daily for 30 and 60days. Metabolic assessment indicated no change in body weight, caloric intake, or energy expenditure following chronic insulin IND, but an increase in the frequency of meal bouts selectively in the dark cycle. Unlike acute insulin IND, which has been shown to cause enhanced performance in odor habituation/dishabituation and two-odor discrimination tasks in mice, chronic insulin IND did not enhance olfactometry-based odorant discrimination or olfactory reversal learning. In an object memory recognition task, insulin IND-treated mice did not perform differently than controls, regardless of task duration. Biochemical analyses of the olfactory bulb revealed a modest 1.3 fold increase in IR kinase phosphorylation but no significant increase in Kv1.3 phosphorylation. Substrate phosphorylation of IR kinase downstream effectors (MAPK/ERK and Akt signaling) proved to be highly variable. These data indicate that chronic administration of insulin IND in mice fails to enhance olfactory ability, object memory recognition, or a majority of systems physiology metabolic factors - as reported to elicit a modulatory effect with acute administration. This leads to two alternative interpretations regarding long-term insulin IND in mice: 1) It causes an initial stage of insulin resistance to dampen the behaviors that would normally be modulated under acute insulin IND, but ability to clear a glucose challenge is still retained, or 2) There is a lack of behavioral modulation at high concentration of insulin attributed to the twice daily intervals of hyperinsulinemia caused by insulin IND administration without any insulin resistance, per se. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Hao; Tang, Hao; He, Qianyun; Wei, Qiang; Tong, Dake; Wang, Chuangfeng; Wu, Dajiang; Wang, Guangchao; Zhang, Xin; Ding, Wenbin; Li, Di; Ding, Chen; Liu, Kang; Ji, Fang
2015-11-01
Although many meta-analyses comparing surgical intervention with conservative treatment have been conducted for acute Achilles tendon rupture, discordant conclusions are shown. This study systematically reviewed the overlapping meta-analyses relating to surgical versus conservative intervention of acute Achilles tendon rupture to assist decision makers select among conflicting meta-analyses, and to offer intervention recommendations based on the currently best evidence.Multiple databases were comprehensively searched for meta-analyses comparing surgical with conservative treatment of acute Achilles tendon rupture. Meta-analyses only comprising randomized controlled trials (RCTs) were included. Two authors independently evaluated the meta-analysis quality and extracted data. The Jadad decision algorithm was applied to ascertain which meta-analysis offered the best evidence.A total of 9 meta-analyses were included. Only RCTs were determined as Level-II evidence. The scores of Assessment of Multiple Systematic Reviews (AMSTAR) ranged from 5 to 10 (median 7). A high-quality meta-analysis with more RCTs was selected according to the Jadad decision algorithm. This study found that when functional rehabilitation was used, conservative intervention was equal to surgical treatment regarding the incidence of rerupture, range of motion, calf circumference, and functional outcomes, while reducing the incidence of other complications. Where functional rehabilitation was not performed, conservative intervention could significantly increase rerupture rate.Conservative intervention may be preferred for acute Achilles tendon rupture at centers offering functional rehabilitation, because it shows a similar rerupture rate with a lower risk of other complications when compared with surgical treatment. However, surgical treatment should be considered at centers without functional rehabilitation as this can reduce the incidence of rerupture.
The dynamics of acute inflammation
NASA Astrophysics Data System (ADS)
Kumar, Rukmini
The acute inflammatory response is the non-specific and immediate reaction of the body to pathogenic organisms, tissue trauma and unregulated cell growth. An imbalance in this response could lead to a condition commonly known as "shock" or "sepsis". This thesis is an attempt to elucidate the dynamics of acute inflammatory response to infection and contribute to its systemic understanding through mathematical modeling and analysis. The models of immunity discussed use Ordinary Differential Equations (ODEs) to model the variation of concentration in time of the various interacting species. Chapter 2 discusses three such models of increasing complexity. Sections 2.1 and 2.2 discuss smaller models that capture the core features of inflammation and offer general predictions concerning the design of the system. Phase-space and bifurcation analyses have been used to examine the behavior at various parameter regimes. Section 2.3 discusses a global physiological model that includes several equations modeling the concentration (or numbers) of cells, cytokines and other mediators. The conclusions drawn from the reduced and detailed models about the qualitative effects of the parameters are very similar and these similarities have also been discussed. In Chapter 3, the specific applications of the biologically detailed model are discussed in greater detail. These include a simulation of anthrax infection and an in silico simulation of a clinical trial. Such simulations are very useful to biologists and could prove to be invaluable tools in drug design. Finally, Chapter 4 discusses the general problem of extinction of populations modeled as continuous variables in ODES is discussed. The average time to extinction and threshold are estimated based on analyzing the equivalent stochastic processes.
Park, H-J; Jeon, B T; Kim, H C; Roh, G S; Shin, J-H; Sung, N-J; Han, J; Kang, D
2012-05-01
It is known that garlic has antioxidative and anti-inflammatory properties. Aged red garlic (ARG), a novel aged garlic formulation, has higher antioxidant effects than fresh raw garlic. This study was performed to examine the anti-inflammatory effects of ARG extract (ARGE). The anti-inflammatory effects of ARGE were evaluated in the lipopolysaccharide (LPS)-treated Raw 264.7 macrophages and acute lung inflammatory mice. NO production was determined by the Griess method, and iNOS, HO-1 and COX-2 expressions were measured using Western blot analysis. Histology and inflammation extent of lung were analysed using haematoxylin-eosin staining and immunohistochemistry. ARGE treatment markedly reduced LPS-induced nitrite production in RAW 264.7 macrophages and reduced inducible nitric oxide synthase (iNOS) expression. Treatment of cells with ARGE led to a significant increase in haeme oxygenase-1 (HO-1) protein expression, which was mediated by stimulating the expression of nuclear factor erythroid 2-related factor 2 (Nrf2). Treatment with zinc protoporphyrin, a selective inhibitor of HO-1, significantly reversed the ARGE-mediated inhibition of nitrite production (P < 0.05). In LPS-induced inflammatory mice, ARGE treatment down-regulated iNOS and COX-2 expressions, while it up-regulated HO-1 expression. These results show that ARGE reduces LPS-induced nitric oxide production in RAW 264.7 macrophages through HO-1 induction and suggest that ARGE may have potential effects on prevention and treatment of acute inflammatory lung injury. © 2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.
Independent Prognostic Factors for Acute Organophosphorus Pesticide Poisoning.
Tang, Weidong; Ruan, Feng; Chen, Qi; Chen, Suping; Shao, Xuebo; Gao, Jianbo; Zhang, Mao
2016-07-01
Acute organophosphorus pesticide poisoning (AOPP) is becoming a significant problem and a potential cause of human mortality because of the abuse of organophosphate compounds. This study aims to determine the independent prognostic factors of AOPP by using multivariate logistic regression analysis. The clinical data for 71 subjects with AOPP admitted to our hospital were retrospectively analyzed. This information included the Acute Physiology and Chronic Health Evaluation II (APACHE II) scores, 6-h post-admission blood lactate levels, post-admission 6-h lactate clearance rates, admission blood cholinesterase levels, 6-h post-admission blood cholinesterase levels, cholinesterase activity, blood pH, and other factors. Univariate analysis and multivariate logistic regression analyses were conducted to identify all prognostic factors and independent prognostic factors, respectively. A receiver operating characteristic curve was plotted to analyze the testing power of independent prognostic factors. Twelve of 71 subjects died. Admission blood lactate levels, 6-h post-admission blood lactate levels, post-admission 6-h lactate clearance rates, blood pH, and APACHE II scores were identified as prognostic factors for AOPP according to the univariate analysis, whereas only 6-h post-admission blood lactate levels, post-admission 6-h lactate clearance rates, and blood pH were independent prognostic factors identified by multivariate logistic regression analysis. The receiver operating characteristic analysis suggested that post-admission 6-h lactate clearance rates were of moderate diagnostic value. High 6-h post-admission blood lactate levels, low blood pH, and low post-admission 6-h lactate clearance rates were independent prognostic factors identified by multivariate logistic regression analysis. Copyright © 2016 by Daedalus Enterprises.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Heung M.; Reed, Jason; Greeley, George H.
Survivors of massive inhalation of combustion smoke endure critical injuries, including lasting neurological complications. We have previously reported that acute inhalation of combustion smoke disrupts the nitric oxide homeostasis in the rat brain. In this study, we extend our findings and report that a 30-minute exposure of awake rats to ambient wood combustion smoke induces protein nitration in the rat hippocampus and that mitochondrial proteins are a sensitive nitration target in this setting. Mitochondria are central to energy metabolism and cellular signaling and are critical to proper cell function. Here, analyses of the mitochondrial proteome showed elevated protein nitration inmore » the course of a 24-hour recovery following exposure to smoke. Mass spectrometry identification of several significantly nitrated mitochondrial proteins revealed diverse functions and involvement in central aspects of mitochondrial physiology. The nitrated proteins include the ubiquitous mitochondrial creatine kinase, F1-ATP synthase {alpha} subunit, dihydrolipoamide dehydrogenase (E3), succinate dehydrogenase Fp subunit, and voltage-dependent anion channel (VDAC1) protein. Furthermore, acute exposure to combustion smoke significantly compromised the respiratory capacity of hippocampal mitochondria. Importantly, elevated protein nitration and reduced mitochondrial respiration in the hippocampus persisted beyond the time required for restoration of normal oxygen and carboxyhemoglobin blood levels after the cessation of exposure to smoke. Thus, the time frame for intensification of the various smoke-induced effects differs between blood and brain tissues. Taken together, our findings suggest that nitration of essential mitochondrial proteins may contribute to the reduction in mitochondrial respiratory capacity and underlie, in part, the brain pathophysiology after acute inhalation of combustion smoke.« less
Lee, Christine M; Cadigan, Jennifer M; Patrick, Megan E
2017-11-01
Although there are serious negative harms associated with simultaneous alcohol and marijuana (SAM) use, little is known about the self-reported acute effects of SAM use and how they may be similar to or different than effects experienced when using alcohol or marijuana only. The current study examines the perceived acute effects of SAM use, compared to using alcohol or marijuana only, as well as demographic and substance use predictors of overall SAM effects. Participants were a community sample of young adults ages 18-23 participating in a longitudinal study on social role transitions and substance use during young adulthood. Young adults who reported SAM use at least once in their lifetime were selected for the present analyses (N=315; mean age=21.42; 58% female) and reported the effects they experienced from typical alcohol use, marijuana use, and SAM use. There were significant differences in the extent to which young adults perceived the effects depending on the substances used. Most effects (i.e., clumsy, confused, dizzy, difficulty concentrating) were rated strongest when engaging in SAM use, compared to typical alcohol or marijuana use alone. Feeling high and feeling marijuana effects were rated strongest when engaging in marijuana use alone compared to SAM use, but feeling drunk was greater during SAM use compared to alcohol use alone. Greater alcohol use and increased time spent high during typical SAM use were associated with greater overall SAM effects. When young adults engage in SAM use they report experiencing greater negative physiological and cognitive effects. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of experimental stress in 2 different pain conditions affecting the facial muscles.
Woda, Alain; L'heveder, Gildas; Ouchchane, Lemlih; Bodéré, Céline
2013-05-01
Chronic facial muscle pain is a common feature in both fibromyalgia (FM) and myofascial (MF) pain conditions. In this controlled study, a possible difference in the mode of deregulation of the physiological response to a stressing stimulus was explored by applying an acute mental stress to FM and MF patients and to controls. The effects of the stress test were observed on pain, sympathetic variables, and both tonic and reflex electromyographic activities of masseteric and temporal muscles. The statistical analyses were performed through a generalized linear model including mixed effects. Painful reaction to the stressor was stronger (P < .001) and longer (P = .011) in FM than in MF independently of a higher pain level at baseline. The stress-induced autonomic changes only seen in FM patients did not reach significance. The electromyographic responses to the stress test were strongest for controls and weakest for FM. The stress test had no effect on reflex activity (area under the curve [AUC]) or latency, although AUC was high in FM and latencies were low in both pain groups. It is suggested that FM is characterized by a lower ability to adapt to acute stress than MF. This study showed that an acute psychosocial stress triggered several changes in 2 pain conditions including an increase in pain of larger amplitude in FM than in MF pain. Similar stress-induced changes should be explored as possible mechanisms for differentiation between dysfunctional pain conditions. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.
Variceal bleeding in cirrhotic patients: What is the best prognostic score?
Mohammad, Asmaa N; Morsy, Khairy H; Ali, Moustafa A
2016-09-01
To find the most accurate, suitable, and applicable scoring system for the prediction of outcome in cirrhotic patients with bleeding varices. A prospective study was conducted comprising 120 cirrhotic patients with acute variceal bleeding who were admitted to Tropical Medicine and Gastroenterology Department in Sohag University Hospital, over a 1-year period (1/2015 to 1/2016). The clinical, laboratory, and endoscopic parameters were studied. Child-Turcotte-Pugh (CTP) classification score, Model for end-stage liver disease (MELD) score, acute physiology and chronic health evaluation II (APACHE II) score, sequential organ failure assessment (SOFA) score, and AIMS65 score were calculated for all patients. Univariate and multivariate analyses were performed for all the measured parameters and scores. Of the 120 patients (92 male) admitted during the study period, eight patients (6.67%) died in the hospital. Advanced age, the presence of encephalopathy, rebleeding, and higher serum bilirubin were independent factors associated with higher hospital mortality. The largest area under the receiver operator curve (AUROC) was obtained for the AIMS65 score and SOFA score, followed by the MELD score and APACHEII score, then CTP score, all of which achieved very good performance (AUROC>0.8). AIMS65 score showed the best sensitivity, specificity, and negative and positive predictive values. Although the AIMS65 score was not significantly different from the MELD, SOFA, and APACHEII scores, it was the optimum among them in terms of the prediction of mortality. AIMS65 score is the best simple and applicable scoring system for independently predicting mortality in cirrhotic patients with acute variceal bleeding.
Gibson, Oliver R; Turner, Gareth; Tuttle, James A; Taylor, Lee; Watt, Peter W; Maxwell, Neil S
2015-10-15
Heat acclimation (HA) attenuates physiological strain in hot conditions via phenotypic and cellular adaptation. The aim of this study was to determine whether HA reduced physiological strain, and heat shock protein (HSP) 72 and HSP90α mRNA responses in acute normobaric hypoxia. Sixteen male participants completed ten 90-min sessions of isothermic HA (40°C/40% relative humidity) or exercise training [control (CON); 20°C/40% relative humidity]. HA or CON were preceded (HYP1) and proceeded (HYP2) by a 30-min normobaric hypoxic exposure [inspired O2 fraction = 0.12; 10-min rest, 10-min cycling at 40% peak O2 uptake (V̇O2 peak), 10-min cycling at 65% V̇O2 peak]. HA induced greater rectal temperatures, sweat rate, and heart rates (HR) than CON during the training sessions. HA, but not CON, reduced resting rectal temperatures and resting HR and increased sweat rate and plasma volume. Hemoglobin mass did not change following HA nor CON. HSP72 and HSP90α mRNA increased in response to each HA session, but did not change with CON. HR during HYP2 was lower and O2 saturation higher at 65% V̇O2 peak following HA, but not CON. O2 uptake/HR was greater at rest and 65% V̇O2 peak in HYP2 following HA, but was unchanged after CON. At rest, the respiratory exchange ratio was reduced during HYP2 following HA, but not CON. The increase in HSP72 mRNA during HYP1 did not occur in HYP2 following HA. In CON, HSP72 mRNA expression was unchanged during HYP1 and HYP2. In HA and CON, increases in HSP90α mRNA during HYP1 were maintained in HYP2. HA reduces physiological strain, and the transcription of HSP72, but not HSP90α mRNA in acute normobaric hypoxia. Copyright © 2015 the American Physiological Society.
A Futile Redox Cycle Involving Neuroglobin Observed at Physiological Temperature.
Liu, Anyang; Brittain, Thomas
2015-08-24
Previous studies identifying the potential anti-apoptotic role of neuroglobin raise the question as to how cells might employ neuroglobin to avoid the apoptotic impact of acute hypoxia whilst also avoiding chronic enhancement of tumour formation. We show that under likely physiological conditions neuroglobin can take part in a futile redox cycle. Determination of the rate constants for each of the steps in the cycle allows us to mathematically model the steady state concentration of the active anti-apoptotic ferrous form of neuroglobin under various conditions. Under likely normal physiological conditions neuroglobin is shown to be present in the ferrous state at approximately 30% of its total cellular concentration. Under hypoxic conditions this rapidly rises to approximately 80%. Temporal analysis of this model indicates that the transition from low concentrations to high concentration of ferrous neuroglobin occurs on the seconds time scale. These findings indicate a potential control model for the anti-apoptotic activity of neuroglobin, under likely physiological conditions, whereby, in normoxic conditions, the anti-apoptotic activity of neuroglobin is maintained at a low level, whilst immediately a transition occurs to a hypoxic situation, as might arise during stroke, the anti-apoptotic activity is drastically increased. In this way the cell avoids unwanted increased oncogenic potential under normal conditions, but the rapid activation of neuroglobin provides anti-apoptotic protection in times of acute hypoxia.
Evaluation of a patient with suspected chronic demyelinating polyneuropathy.
Jani-Acsadi, Agnes; Lewis, Richard A
2013-01-01
Demyelinating neuropathies are typically characterized by physiological slowing of conduction velocity and pathologically by segmental loss of myelin and in some instances, evidence of remyelination. Clinically, patients with demyelinating neuropathy can be seen with inherited disorders (Charcot-Marie-Tooth disease) or acquired disorders, typically immune-mediated or inflammatory. The acquired disorders can be either acute or subacute as seen in the acute inflammatory demyelinating polyneuropathy (AIDP) form of Guillain-Barré syndrome or chronic progressive or relapsing disorders such as chronic inflammatory demyelinating polyneuropathy. It is important to develop a logical approach to diagnosing these disorders. This requires an understanding of the clinical, genetic, physiological, and pathological features of these neuropathies. Clinically, important features to consider are the temporal progression, degree of symmetry, and involvement of proximal as well as distal muscles. Genetically, recognizing the different inheritance patterns and age of onset allow for a coordinated approach to determining a specific genotype. Physiologically, besides nerve conduction slowing, other physiological hallmarks of demyelination include temporal dispersion of compound motor action potentials (CMAP) on proximal stimulation, conduction block, and distal CMAP duration prolongation with certain patterns of involvement pointing to specific disorders. This chapter focuses on these various aspects of the evaluation of patients with chronic acquired demyelinating neuropathies to develop a comprehensive and thoughtful diagnostic concept. Copyright © 2013 Elsevier B.V. All rights reserved.
Physiological Limits along an Elevational Gradient in a Radiation of Montane Ground Beetles
Slatyer, Rachel A.; Schoville, Sean D.
2016-01-01
A central challenge in ecology and biogeography is to determine the extent to which physiological constraints govern the geographic ranges of species along environmental gradients. This study tests the hypothesis that temperature and desiccation tolerance are associated with the elevational ranges of 12 ground beetle species (genus Nebria) occurring on Mt. Rainier, Washington, U.S.A. Species from higher elevations did not have greater cold tolerance limits than lower-elevation species (all species ranged from -3.5 to -4.1°C), despite a steep decline in minimum temperature with elevation. Although heat tolerance limits varied among species (from 32.0 to 37.0°C), this variation was not generally associated with the relative elevational range of a species. Temperature gradients and acute thermal tolerance do not support the hypothesis that physiological constraints drive species turnover with elevation. Measurements of intraspecific variation in thermal tolerance limits were not significant for individuals taken at different elevations on Mt. Rainier, or from other mountains in Washington and Oregon. Desiccation resistance was also not associated with a species’ elevational distribution. Our combined results contrast with previously-detected latitudinal gradients in acute physiological limits among insects and suggest that other processes such as chronic thermal stress or biotic interactions might be more important in constraining elevational distributions in this system. PMID:27043311
Cicia, Angela M; Schlenker, Lela S; Sulikowski, James A; Mandelman, John W
2012-06-01
Aerial exposure and acute thermal stress have been shown to elicit profound physiological disruptions in obligate water-breathing teleosts. However, no study has investigated these responses in an elasmobranch. To address this, venous blood samples were collected and evaluated from little skates (Leucoraja erinacea) subjected to discrete aerial exposure durations (0, 15, and 50 min) coupled with differing abrupt thermal changes (gradient between seawater and air; winter: ΔT=-3 °C; summer: ΔT=+9 °C) in two distinct laboratory studies. In general, blood acid-base properties (e.g. decline in pH; elevation in PCO(2)) and select metabolites (elevated whole-blood lactate) and electrolytes (elevated plasma K(+)) were significantly disrupted by aerial exposure, and were most disturbed after skates were exposed to air for 50 min. However, the magnitude of the blood acid-base perturbations, metabolic contribution to the resulting blood acidosis, elevations to ionic and metabolic parameters, and delayed mortality were more extreme during the summer study, suggesting that acute thermal stress exacerbates the physiological impairments associated with aerial exposure in little skates. Conversely, a reduced thermal gradient (from seawater to air) may attenuate the magnitude of metabolic and ionic perturbations, resulting in a high physiological threshold for coping with extended aerial exposure. Copyright © 2011 Elsevier Inc. All rights reserved.
Physiological responses to an acute bout of sprint interval cycling.
Freese, Eric C; Gist, Nicholas H; Cureton, Kirk J
2013-10-01
Sprint interval training has been shown to improve skeletal muscle oxidative capacity, V[Combining Dot Above]O2max, and health outcomes. However, the acute physiological responses to 4-7 maximal effort intervals have not been determined. To determine the V[Combining Dot Above]O2, cardiorespiratory responses, and energy expenditure during an acute bout of sprint interval cycling (SIC), health, college-aged subjects, 6 men and 6 women, completed 2 SIC sessions with at least 7 days between trials. Sprint interval cycling was performed on a cycle ergometer and involved a 5-minute warm-up followed by four 30-second all-out sprints with 4-minute active recovery. Peak oxygen uptake (ml·kg·min) during the 4 sprints were 35.3 ± 8.2, 38.8 ± 10.1, 38.8 ± 10.6, and 36.8 ± 9.3, and peak heart rate (b·min) were 164 ± 17, 172 ± 10, 177 ± 12, and 175 ± 22. We conclude that an acute bout of SIC elicits submaximal V[Combining Dot Above]O2 and cardiorespiratory responses during each interval that are above 80% of estimated maximal values. Although the duration of exercise in SIC is very short, the high level of V[Combining Dot Above]O2 and cardiorespiratory responses are sufficient to potentially elicit adaptations to training associated with elevated aerobic energy demand.
The role of nitric oxide in the physiology and pathophysiology of the exocrine pancreas.
Hegyi, Péter; Rakonczay, Zoltán
2011-11-15
Nitric oxide (NO), a ubiquitous gaseous signaling molecule, contributes to both pancreatic physiology and pathophysiology. The present review provides a general overview of NO synthesis, signaling, and function. Further, it specifically discusses NO metabolism and its effects in the exocrine pancreas and focuses on the role of NO in the pathogenesis of acute pancreatitis and pancreatic ischemia/reperfusion injury. Unfortunately, the role of NO in pancreatic physiology and pathophysiology remains controversial in numerous areas. Many questions regarding the messenger molecule still remain unanswered. Probably the least is known about the downstream targets of NO, which need to be identified, especially at the molecular level.
The Trier Social Stress Test and the Trier Social Stress Test for groups: Qualitative investigations
Marqueste, Tanguy; Mascret, Nicolas
2018-01-01
The Trier Social Stress Test (TSST) and its version for groups (TSST-G) are the gold standard for inducing acute psychosocial stress in human experimental settings and have been used in numerous studies since the early 1990s. The TSST and the TSST-G lead to effects on different physiological and psychological markers, such as salivary cortisol, anxiety, and emotional states. These effects were assessed with quantitative methods comparing pre-test and post-test measures with statistical analyses. But to date, no qualitative analyses have been conducted to examine the meaningful experience of participants during the TSST and the TSST-G. This study is the first to conduct qualitative investigations to further clarify the stressful experience of participants confronted with these procedures. Preliminary results showed as expected that the TSST and the TSST-G effectively induced psychosocial stress, with cortisol levels, cognitive anxiety, somatic anxiety, and arousal increases, and with pleasure and dominance decreases. At the qualitative level, the results evidenced that the two theoretically stressful components of the TSST and the TSST-G, namely social-evaluative threat and uncontrollability, were experienced as stress-inducing by the participants. Two case studies confirmed these findings. But the results also showed on one hand that psychosocial stress is a dynamic phenomenon, with important fluctuations throughout the tasks (mainly for the TSST-G); and on the other hand that despite the similar physiological and psychological responses between the TSST and the TSST-G evidenced by the literature, the experience of the participants was both similar and specific. Use of a qualitative method allowed us to provide a complementary point of view to understand the meaningful experience of participants during these stressful procedures, apprehending the dynamic of the subjective stress experience without disrupting it. PMID:29641572
Vors, Olivier; Marqueste, Tanguy; Mascret, Nicolas
2018-01-01
The Trier Social Stress Test (TSST) and its version for groups (TSST-G) are the gold standard for inducing acute psychosocial stress in human experimental settings and have been used in numerous studies since the early 1990s. The TSST and the TSST-G lead to effects on different physiological and psychological markers, such as salivary cortisol, anxiety, and emotional states. These effects were assessed with quantitative methods comparing pre-test and post-test measures with statistical analyses. But to date, no qualitative analyses have been conducted to examine the meaningful experience of participants during the TSST and the TSST-G. This study is the first to conduct qualitative investigations to further clarify the stressful experience of participants confronted with these procedures. Preliminary results showed as expected that the TSST and the TSST-G effectively induced psychosocial stress, with cortisol levels, cognitive anxiety, somatic anxiety, and arousal increases, and with pleasure and dominance decreases. At the qualitative level, the results evidenced that the two theoretically stressful components of the TSST and the TSST-G, namely social-evaluative threat and uncontrollability, were experienced as stress-inducing by the participants. Two case studies confirmed these findings. But the results also showed on one hand that psychosocial stress is a dynamic phenomenon, with important fluctuations throughout the tasks (mainly for the TSST-G); and on the other hand that despite the similar physiological and psychological responses between the TSST and the TSST-G evidenced by the literature, the experience of the participants was both similar and specific. Use of a qualitative method allowed us to provide a complementary point of view to understand the meaningful experience of participants during these stressful procedures, apprehending the dynamic of the subjective stress experience without disrupting it.
Physiological effects of waterborne lead exposure in spiny dogfish (Squalus acanthias).
Eyckmans, Marleen; Lardon, Isabelle; Wood, Chris M; De Boeck, Gudrun
2013-01-15
To broaden our knowledge about the toxicity of metals in marine elasmobranchs, cannulated spiny dogfish (Squalus acanthias) were exposed to 20 μM and 100 μM lead (Pb). Since we wanted to focus on sub lethal ion-osmoregulatory and respiratory disturbances, arterial blood samples were analysed for pH(a), PaO(2), haematocrit and total CO(2) values at several time points. Plasma was used to determine urea, TMAO, lactate and ion concentrations. After 96 h, Pb concentrations were determined in a number of tissues, such as gill, rectal gland, skin and liver. To further investigate ion and osmoregulation, Na(+)/K(+)-ATPase activities in gill and rectal gland were analysed as well as rates of ammonia and urea excretion. Additionally, we studied the energy reserves in muscle and liver. Pb strongly accumulated in gills and especially in skin. Lower accumulation rates occurred in gut, kidney and rectal gland. A clear disturbance in acid-base status was observed after one day of exposure indicating a transient period of hyperventilation. The increase in pH(a) was temporary at 20 μM, but persisted at 100 μM. After 2 days, plasma Na and Cl concentrations were reduced compared to controls at 100 μM Pb and urea excretion rates were elevated. Pb caused impaired Na(+)/K(+)-ATPase activity in gills, but not in rectal gland. We conclude that spiny dogfish experienced relatively low ion-osmoregulatory and respiratory distress when exposed to lead, particularly when compared to effects of other metals such as silver. These elasmobranchs appear to be able to minimize the disturbance and maintain physiological homeostasis during an acute Pb exposure. Copyright © 2012 Elsevier B.V. All rights reserved.
DE LA Vega, G J; Schilman, P E
2018-03-01
In order to assess how triatomines (Hemiptera, Reduviidae), Chagas disease vectors, are distributed through Latin America, we analysed the relationship between the ecological niche and the limits of the physiological thermal niche in seven species of triatomines. We combined two methodological approaches: species distribution models, and physiological tolerances. First, we modelled the ecological niche and identified the most important abiotic factor for their distribution. Then, thermal tolerance limits were analysed by measuring maximum and minimum critical temperatures, upper lethal temperature, and 'chill-coma recovery time'. Finally, we used phylogenetic independent contrasts to analyse the link between limiting factors and the thermal tolerance range for the assessment of ecological hypotheses that provide a different outlook for the geo-epidemiology of Chagas disease. In triatomines, thermo-tolerance range increases with increasing latitude mainly due to better cold tolerances, suggesting an effect of thermal selection. In turn, physiological analyses show that species reaching southernmost areas have a higher thermo-tolerance than those with tropical distributions, denoting that thermo-tolerance is limiting the southern distribution. Understanding the latitudinal range along its physiological limits of disease vectors may prove useful to test ecological hypotheses and improve strategies and efficiency of vector control at the local and regional levels. © 2017 The Royal Entomological Society.
Nuche-Berenguer, Bernardo; Ramos-Álvarez, Irene; Jensen, R T
2016-06-01
In pancreatic acinar cells, the Src family of kinases (SFK) is involved in the activation of several signaling cascades that are implicated in mediating cellular processes (growth, cytoskeletal changes, apoptosis). However, the role of SFKs in various physiological responses such as enzyme secretion or in pathophysiological processes such as acute pancreatitis is either controversial, unknown, or incompletely understood. To address this, in this study, we investigated the role/mechanisms of SFKs in acute pancreatitis and enzyme release. Enzyme secretion was studied in rat dispersed pancreatic acini, in vitro acute-pancreatitis-like changes induced by supramaximal COOH-terminal octapeptide of cholecystokinin (CCK). SFK involvement assessed using the chemical SFK inhibitor (PP2) with its inactive control, 4-amino-7-phenylpyrazol[3,4-d]pyrimidine (PP3), under experimental conditions, markedly inhibiting SFK activation. In CCK-stimulated pancreatic acinar cells, activation occurred of trypsinogen, various MAP kinases (p42/44, JNK), transcription factors (signal transducer and activator of transcription-3, nuclear factor-κB, activator protein-1), caspases (3, 8, and 9) inducing apoptosis, LDH release reflective of necrosis, and various chemokines secreted (monocyte chemotactic protein-1, macrophage inflammatory protein-1α, regulated on activation, normal T cell expressed and secreted). All were inhibited by PP2, not by PP3, except caspase activation leading to apoptosis, which was increased, and trypsin activation, which was unaffected, as was CCK-induced amylase release. These results demonstrate SFK activation is playing a dual role in acute pancreatitis, inhibiting apoptosis and promoting necrosis as well as chemokine/cytokine release inducing inflammation, leading to more severe disease, as well as not affecting secretion. Thus, our studies indicate that SFK is a key mediator of inflammation and pancreatic acinar cell death in acute pancreatitis, suggesting it could be a potential therapeutic target in acute pancreatitis. Copyright © 2016 the American Physiological Society.
The tell-tale heart: physiological reactivity during resolution of ambiguity in youth anxiety.
Rozenman, Michelle; Vreeland, Allison; Iglesias, Marisela; Mendez, Melissa; Piacentini, John
2018-03-01
In the past decade, cognitive biases and physiological arousal have each been proposed as mechanisms through which paediatric anxiety develops and is maintained over time. Preliminary studies have found associations between anxious interpretations of ambiguity, physiological arousal, and avoidance, supporting theories that link cognition, psychophysiology, and behaviour. However, little is known about the relationship between youths' resolutions of ambiguity and physiological arousal during acute stress. Such information may have important clinical implications for use of verbal self-regulation strategies and cognitive restructuring during treatments for paediatric anxiety. In this brief report, we present findings suggesting that anxious, but not typically developing, youth select avoidant goals via non-threatening resolution of ambiguity during a stressor, and that this resolution of ambiguity is accompanied by physiological reactivity (heart rate, heart rate variability, and respiratory sinus arrhythmia). We propose future empirical research on the interplay between interpretation bias, psychophysiology, and child anxiety, as well as clinical implications.
Marini, John J
2011-02-01
To present an updated discussion of those aspects of controlled positive pressure breathing and retained spontaneous regulation of breathing that impact the management of patients whose tissue oxygenation is compromised by acute lung injury. The recent introduction of ventilation techniques geared toward integrating natural breathing rhythms into even the earliest phase of acute respiratory distress syndrome support (e.g., airway pressure release, proportional assist ventilation, and neurally adjusted ventilatory assist), has stimulated a burst of new investigations. Optimizing gas exchange, avoiding lung injury, and preserving respiratory muscle strength and endurance are vital therapeutic objectives for managing acute lung injury. Accordingly, comparing the physiology and consequences of breathing patterns that preserve and eliminate breathing effort has been a theme of persisting investigative interest throughout the several decades over which it has been possible to sustain cardiopulmonary life support outside the operating theater.
Fluid therapy for children: facts, fashions and questions
Holliday, Malcolm A; Ray, Patricio E; Friedman, Aaron L
2007-01-01
Fluid therapy restores circulation by expanding extracellular fluid. However, a dispute has arisen regarding the nature of intravenous therapy for acutely ill children following the development of acute hyponatraemia from overuse of hypotonic saline. The foundation on which correct maintenance fluid therapy is built is examined and the difference between maintenance fluid therapy and restoration or replenishment fluid therapy for reduction in extracellular fluid volume is delineated. Changing practices and the basic physiology of extracellular fluid are discussed. Some propose changing the definition of “maintenance therapy” and recommend isotonic saline be used as maintenance and restoration therapy in undefined amounts leading to excess intravenous sodium chloride intake. Intravenous fluid therapy for children with volume depletion should first restore extracellular volume with measured infusions of isotonic saline followed by defined, appropriate maintenance therapy to replace physiological losses according to principles established 50 years ago. PMID:17175577
Exosomes: an emerging factor in stress-induced immunomodulation.
Beninson, Lida A; Fleshner, Monika
2014-10-01
Cells constitutively release small (40-100 nm) vesicles known as exosomes, but their composition and function changes in response to a variety of physiological challenges, such as injury, infection, and disease. Advances in our understanding of the immunological relevance of exosomes have been made, however, few studies have explored their role in stress physiology. Exposure to a variety of acute stressors facilitates the efficacy of innate immune responses, but the mechanisms for these effects are not fully understood. Since exosomes are emerging as important inflammatory mediators, they likely exhibit a similar role when an organism is exposed to an acute stressor. Here, we review our current knowledge of the basic properties and immunological functions of exosomes and provide emerging data supporting the role of stress-modified exosomes in regulating the innate immune response, potentially enabling long-distance cellular communication and obviating the need for direct cell-to-cell contact. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ultrasonographic evaluation of acute pelvic pain in pregnant and postpartum period.
Park, Sung Bin; Han, Byoung Hee; Lee, Young Ho
2017-04-22
Acute pelvic pain in pregnant and postpartum patients presents diagnostic and therapeutic challenges. The interpretation of imaging findings in these patients is influenced by the knowledge of the physiological changes that occur during the pregnant and postpartum period, as well as by the clinical history. Ultrasonography remains the primary imaging investigation of the pregnant and postpartum women. This article describes the causes and imaging features of acute pelvic pain in pregnant and postpartum period and suggests characteristics to such diseases, focusing on the ultrasonography features that allow one to arrive at the corrective diagnosis. Knowledge of the clinical settings and imaging features of acute pelvic pain in pregnant and postpartum period can lead to accurate diagnosis and appropriate management of the condition.
CO2-O2 interactions in extension of tolerance to acute hypoxia
NASA Technical Reports Server (NTRS)
Lambertsen, C. J.
1995-01-01
Objectives and results of experimental projects a re summarized. The scope of information desired included (1) physiological and performance consequences of exposures to simulated microgravity, in rest and graded physical activity, (2) separate influences of graded degrees of atmospheric hypercapnia and hypoxia, and (3) composite effects of hypoxia and hypercapnia. The research objectives were selected for close relevance to existing quantitative information concerning interactions of hypercapnia and hypoxia on respiratory and brain circulatory control. They include: (1) to determine influences of normoxic immersion on interrelations of pulmonary ventilation, arterial PCO2 and PO2, and brain blood flow, in rest and physical work; (2) to determine influence of normoxic immersion on respiratory reactivity to atmospheric hypercapnia at rest; (3) to determine influence of atmospheric hypoxia on respiratory reactivity to hypercapnia at rest and in work; and (4) to provide physiological baselines of data concerning adaptations in acute exposures to aid in investigation of rates of adaptation or deteriorations in physiological or performance capability during subsequent multi-day exposures. A list of publications related to the present grant period is included along with an appendix describing the Performance Measurement System (human perceptual, cognitive and psychomotor functions).
Mesa, M.G.; Weiland, L.K.; Wagner, P.
2002-01-01
We subjected juvenile fall chinook salmon from the Hanford Reach of the Columbia River to acute thermal stressors in the laboratory that were derived from field data. We assessed the effects of thermal stress on: (1) the extent of direct mortality; (2) the vulnerability of fish to predation by smallmouth bass; and (3) some general physiological stress responses and synthesis of heat shock protein 70 (hsp70). Thermally-stressed fish showed little direct mortality and no increases in vulnerability to predation. However, these fish showed transient increases in plasma concentrations of cortisol, glucose, and lactate, and a dramatic (25-fold higher than controls) and persistent (lasting 2 wk) increase in levels of liver hsp70. Our results indicate that exposure of Hanford Reach juvenile fall chinook salmon to such stressors did not lead to significant increases in direct mortality or vulnerability to predation, but did alter physiological homeostasis, which should be of concern to those managing this resource. Because our fish received only a single exposure to one of the stressors we examined, we are also concerned about the consequences of exposing fish to multiple, cumulative stressors - a likely scenario for fish in the wild.
Bell, Lynne; Lamport, Daniel J; Butler, Laurie T; Williams, Claire M
2015-12-09
Flavonoids are polyphenolic compounds found in varying concentrations in many plant-based foods. Recent studies suggest that flavonoids can be beneficial to both cognitive and physiological health. Long term flavonoid supplementation over a period of weeks or months has been extensively investigated and reviewed, particularly with respect to cognitive ageing and neurodegenerative disease. Significantly less focus has been directed towards the short term effects of single doses of flavonoids on cognition. Here, we review 21 such studies with particular emphasis on the subclass and dose of flavonoids administered, the cognitive domains affected by flavonoid supplementation, and the effect size of the response. The emerging evidence suggests that flavonoids may be beneficial to attention, working memory, and psychomotor processing speed in a general population. Episodic memory effects are less well defined and may be restricted to child or older adult populations. The evidence also points towards a dose-dependent effect of flavonoids, but the physiological mechanisms of action remain unclear. Overall, there is encouraging evidence that flavonoid supplementation can benefit cognitive outcomes within an acute time frame of 0-6 h. But larger studies, combining cognitive and physiological measures, are needed to strengthen the evidence base.
Moser, Othmar; Yardley, Jane E.; Bracken, Richard M.
2018-01-01
Continuous and flash glucose monitoring systems measure interstitial fluid glucose concentrations within a body compartment that is dramatically altered by posture and is responsive to the physiological and metabolic changes that enable exercise performance in individuals with type 1 diabetes. Body fluid redistribution within the interstitial compartment, alterations in interstitial fluid volume, changes in rate and direction of fluid flow between the vasculature, interstitium and lymphatics, as well as alterations in the rate of glucose production and uptake by exercising tissues, make for caution when interpreting device read-outs in a rapidly changing internal environment during acute exercise. We present an understanding of the physiological and metabolic changes taking place with acute exercise and detail the blood and interstitial glucose responses with different forms of exercise, namely sustained endurance, high-intensity, and strength exercises in individuals with type 1 diabetes. Further, we detail novel technical information on currently available patient devices. As more health services and insurance companies advocate their use, understanding continuous and flash glucose monitoring for its strengths and limitations may offer more confidence for patients aiming to manage glycemia around exercise. PMID:29342932
Physiological effects on fishes in a high-CO2 world
NASA Astrophysics Data System (ADS)
Ishimatsu, Atsushi; Hayashi, Masahiro; Lee, Kyoung-Seon; Kikkawa, Takashi; Kita, Jun
2005-09-01
Fish are important members of both freshwater and marine ecosystems and constitute a major protein source in many countries. Thus potential reduction of fish resources by high-CO2 conditions due to the diffusion of atmospheric CO2 into the surface waters or direct CO2 injection into the deep sea can be considered as another potential threat to the future world population. Fish, and other water-breathing animals, are more susceptible to a rise in environmental CO2 than terrestrial animals because the difference in CO2 partial pressure (PCO2) of the body fluid of water-breathing animals and ambient medium is much smaller (only a few torr (1 torr = 0.1333 kPa = 1316 μatm)) than in terrestrial animals (typically 30-40 torr). A survey of the literature revealed that hypercapnia acutely affects vital physiological functions such as respiration, circulation, and metabolism, and changes in these functions are likely to reduce growth rate and population size through reproduction failure and change the distribution pattern due to avoidance of high-CO2 waters or reduced swimming activities. This paper reviews the acute and chronic effects of CO2 on fish physiology and tries to clarify necessary areas of future research.
Post-ICU psychological morbidity in very long ICU stay patients with ARDS and delirium.
Bashar, Farshid R; Vahedian-Azimi, Amir; Hajiesmaeili, Mohammadreza; Salesi, Mahmood; Farzanegan, Behrooz; Shojaei, Seyedpouzhia; Goharani, Reza; Madani, Seyed J; Moghaddam, Kivan G; Hatamian, Sevak; Moghaddam, Hosseinali J; Mosavinasab, Seyed M M; Elamin, Elamin M; Miller, Andrew C
2018-02-01
We investigated the impact of delirium on illness severity, psychological state, and memory in acute respiratory distress syndrome patients with very long ICU stay. Prospective cohort study in the medical-surgical ICUs of 2 teaching hospitals. Very long ICU stay (>75days) and prolonged delirium (≥40days) thresholds were determined by ROC analysis. Subjects were ≥18years, full-code, and provided informed consent. Illness severity was assessed using Acute Physiology and Chronic Health Evaluation IV, Simplified Acute Physiology Score-3, and Sequential Organ Failure Assessment scores. Psychological impact was assessed using the Hospital Anxiety and Depression Scale, Impact of Event Scale-Revised, and the 14-question Post-Traumatic Stress Syndrome (PTSS-14). Memory was assessed using the ICU Memory Tool survey. 181 subjects were included. Illness severity did not correlate with delirium duration. On logistic regression, only PTSS-14<49 correlated with delirium (p=0.001; 95% CI 1.011, 1.041). 49% remembered their ICU stay clearly. 47% had delusional memories, 50% reported intrusive memories, and 44% reported unexplained feelings of panic or apprehension. Delirium was associated with memory impairment and PTSS-14 scores suggestive of PTSD, but not illness severity. Copyright © 2017. Published by Elsevier Inc.
Enrico, P; Migliore, M; Spiga, S; Mulas, G; Caboni, F; Diana, M
2016-05-13
Dopamine (DA) neurons of the ventral tegmental area (VTA) play a key role in the neurobiological basis of goal-directed behaviors and addiction. Morphine (MOR) withdrawal induces acute and long-term changes in the morphology and physiology of VTA DA cells, but the mechanisms underlying these modifications are poorly understood. Because of their predictive value, computational models are a powerful tool in neurobiological research, and are often used to gain further insights and deeper understanding on the molecular and physiological mechanisms underlying the development of various psychiatric disorders. Here we present a biophysical model of a DA VTA neuron based on 3D morphological reconstruction and electrophysiological data, showing how opiates withdrawal-driven morphological and electrophysiological changes could affect the firing rate and discharge pattern. The model findings suggest how and to what extent a change in the balance of GABA/GLU inputs can take into account the experimentally observed hypofunction of VTA DA neurons during acute and prolonged withdrawal, whereas morphological changes may play a role in the increased excitability of VTA DA cell to opiate administration observed during opiate withdrawal. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Gelatin tannate and tyndallized probiotics: a novel approach for treatment of diarrhea.
Lopetuso, L; Graziani, C; Guarino, A; Lamborghini, A; Masi, S; Stanghellini, V
2017-02-01
Intestinal permeability impairment is implicated in many gastrointestinal (GI) diseases. Chronic diarrhea, defined as the presence of diarrhea for more than 3 weeks in adults and 2 weeks in children, requires a different diagnostic and therapeutic work-up than acute diarrhea. Gelatin tannate, by reducing the clinical activity of acute colitis and the proinflammatory effects of lipopolysaccharide (LPS), is emerging as a mucosal barrier protector. New therapeutic strategies focusing on the physiological function of the intestinal barrier, may offer an innovative approach for the clinical improvement of highly debilitating chronic GI diseases. We review the available data on the role of gelatin tannate and tyndallized probiotics in the treatment of diarrhea. Gelatin tannate and tyndallized probiotics can be used to re-establish the physiological functions of the gut barrier, as well as for preventing dysbiosis. There is evidence that due to their particular properties, gelatin tannate and tyndallized probiotics are highly effective in the treatment of acute gastroenteritis and may be especially indicated in the management of moderate and prolonged diarrhea. Gelatin tannate and tyndallized probiotics may be effective in the management of chronic diarrhea. Further clinical trials are necessary to further explore their effects in clinical practice.
Dickens, M.J.; Balthazart, J.; Cornil, C. A.
2012-01-01
Neural production of 17β-oestradiol via aromatisation of testosterone may play a critical role in rapid, non-genomic regulation of physiological and behavioural processes. In brain nuclei implicated in the control of sexual behaviour, sexual or stressfull stimuli induce respectively a rapid inhibition or increase in preoptic aromatase activity (AA). Here, we tested quail that were either non-stressed or acutely stressed (15 min restraint) immediately prior to sexual interaction (5 min) with stressed or non-stressed partners. We measured nuclei-specific AA changes, corresponding behavioural output, fertilisation rates and corticosterone (CORT) concentrations. In males, sexual interaction rapidly reversed stress-induced increases of AA in the medial preoptic nucleus (POM). This time scale (<5min) highlights the dynamic potential of the aromatase system to integrate input from stimuli that drive AA in opposing directions. Moreover, acute stress had minimal effects on male behaviour suggesting that the input from the sexual stimuli on POM AA may actively preserve sexual behaviour despite stress exposure. We also found distinct sex differences in contextual physiological responses: while males did not show any effect of partner status, females responded to both their stress exposure and the male partner’s stress exposure at the level of circulating CORT and AA. In addition, fertilisation rates and female CORT correlated with the male partner’s exhibition of sexually aggressive behaviour suggesting that female perception of the male can affect their physiology as much as direct stress. Overall, male reproduction appears relatively simple – sexual stimuli, irrespective of stress, drives major neural changes including rapid reversal of stress-induced changes of AA. In contrast, female reproduction appears more nuanced and context specific, with subjects responding physiologically and behaviourally to stress, the male partner’s stress exposure, and female-directed male behaviour. PMID:22612582
Dickens, M J; Balthazart, J; Cornil, C A
2012-10-01
Neural production of 17β-oestradiol via aromatisation of testosterone may play a critical role in rapid, nongenomic regulation of physiological and behavioural processes. In brain nuclei implicated in the control of sexual behaviour, sexual or stressfull stimuli induce, respectively, a rapid inhibition or increase in preoptic aromatase activity (AA). In the present study, we tested quail that were either nonstressed or acutely stressed (15 min of restraint) immediately before sexual interaction (5 min) with stressed or nonstressed partners. We measured nuclei-specific AA changes, corresponding behavioural output, fertilisation rates and corticosterone (CORT) concentrations. In males, sexual interaction rapidly reversed stress-induced increases of AA in the medial preoptic nucleus (POM). This time scale (< 5 min) highlights the dynamic potential of the aromatase system to integrate input from stimuli that drive AA in opposing directions. Moreover, acute stress had minimal effects on male behaviour, suggesting that the input from the sexual stimuli on POM AA may actively preserve sexual behaviour despite stress exposure. We also found distinct sex differences in contextual physiological responses: males did not show any effect of partner status, whereas females responded to both their stress exposure and the male partner's stress exposure at the level of circulating CORT and AA. In addition, fertilisation rates and female CORT correlated with the male partner's exhibition of sexually aggressive behaviour, suggesting that female perception of the male can affect their physiology as much as direct stress. Overall, male reproduction appears relatively simple: sexual stimuli, irrespective of stress, drives major neural changes including rapid reversal of stress-induced changes of AA. By contrast, female reproduction appears more nuanced and context specific, with subjects responding physiologically and behaviourally to stress, the male partner's stress exposure, and female-directed male behaviour. © 2012 The Authors. Journal of Neuroendocrinology © 2012 British Society for Neuroendocrinology.
Leary, Alison; Cook, Rob; Jones, Sarahjane; Smith, Judith; Gough, Malcolm; Maxwell, Elaine; Punshon, Geoffrey; Radford, Mark
2016-12-16
Nursing is a safety critical activity but not easily quantified. This makes the building of predictive staffing models a challenge. The aim of this study was to determine if relationships between registered and non-registered nurse staffing levels and clinical outcomes could be discovered through the mining of routinely collected clinical data. The secondary aim was to examine the feasibility and develop the use of 'big data' techniques commonly used in industry for this area of healthcare and examine future uses. The data were obtained from 1 large acute National Health Service hospital trust in England. Routinely collected physiological, signs and symptom data from a clinical database were extracted, imported and mined alongside a bespoke staffing and outcomes database using Mathmatica V.10. The physiological data consisted of 120 million patient entries over 6 years, the bespoke database consisted of 9 years of daily data on staffing levels and safety factors such as falls. To discover patterns in these data or non-linear relationships that would contribute to modelling. To examine feasibility of this technique in this field. After mining, 40 correlations (p<0.00005) emerged between safety factors, physiological data (such as the presence or absence of nausea) and staffing factors. Several inter-related factors demonstrated step changes where registered nurse availability appeared to relate to physiological parameters or outcomes such as falls and the management of symptoms. Data extraction proved challenging as some commercial databases were not built for extraction of the massive data sets they contain. The relationship between staffing and outcomes appears to exist. It appears to be non-linear but calculable and a data-driven model appears possible. These findings could be used to build an initial mathematical model for acute staffing which could be further tested. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Acute vascular effects of carbonated warm water lower leg immersion in healthy young adults.
Ogoh, Shigehiko; Nagaoka, Ryohei; Mizuno, Takamasa; Kimura, Shohei; Shidahara, Yasuhiro; Ishii, Tomomi; Kudoh, Michinari; Iwamoto, Erika
2016-12-01
Endothelial dysfunction is associated with increased cardiovascular mortality and morbidity; however, this dysfunction may be ameliorated by several therapies. For example, it has been reported that heat-induced increases in blood flow and shear stress enhance endothelium-mediated vasodilator function. Under these backgrounds, we expect that carbon dioxide (CO 2 )-rich water-induced increase in skin blood flow improves endothelium-mediated vasodilation with less heat stress. To test our hypothesis, we measured flow-mediated dilation (FMD) before and after acute immersion of the lower legs and feet in mild warm (38°C) normal or CO 2 -rich tap water (1000 ppm) for 20 min in 12 subjects. Acute immersion of the lower legs and feet in mild warm CO 2 -rich water increased FMD (P < 0.01) despite the lack of change in this parameter upon mild warm normal water immersion. In addition, FMD was positively correlated with change in skin blood flow regardless of conditions (P < 0.01), indicating that an increase in skin blood flow improves endothelial-mediated vasodilator function. Importantly, the temperature of normal tap water must reach approximately 43°C to achieve the same skin blood flow level as that obtained during mild warm CO 2 -rich water immersion (38°C). These findings suggest that CO 2 -rich water-induced large increases in skin blood flow may improve endothelial-mediated vasodilator function while causing less heat stress. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Gajic, Ognjen; Afessa, Bekele
2012-01-01
Background: There are few comparisons among the most recent versions of the major adult ICU prognostic systems (APACHE [Acute Physiology and Chronic Health Evaluation] IV, Simplified Acute Physiology Score [SAPS] 3, Mortality Probability Model [MPM]0III). Only MPM0III includes resuscitation status as a predictor. Methods: We assessed the discrimination, calibration, and overall performance of the models in 2,596 patients in three ICUs at our tertiary referral center in 2006. For APACHE and SAPS, the analyses were repeated with and without inclusion of resuscitation status as a predictor variable. Results: Of the 2,596 patients studied, 283 (10.9%) died before hospital discharge. The areas under the curve (95% CI) of the models for prediction of hospital mortality were 0.868 (0.854-0.880), 0.861 (0.847-0.874), 0.801 (0.785-0.816), and 0.721 (0.704-0.738) for APACHE III, APACHE IV, SAPS 3, and MPM0III, respectively. The Hosmer-Lemeshow statistics for the models were 33.7, 31.0, 36.6, and 21.8 for APACHE III, APACHE IV, SAPS 3, and MPM0III, respectively. Each of the Hosmer-Lemeshow statistics generated P values < .05, indicating poor calibration. Brier scores for the models were 0.0771, 0.0749, 0.0890, and 0.0932, respectively. There were no significant differences between the discriminative ability or the calibration of APACHE or SAPS with and without “do not resuscitate” status. Conclusions: APACHE III and IV had similar discriminatory capability and both were better than SAPS 3, which was better than MPM0III. The calibrations of the models studied were poor. Overall, models with more predictor variables performed better than those with fewer. The addition of resuscitation status did not improve APACHE III or IV or SAPS 3 prediction. PMID:22499827
Peigh, Graham; Cavarocchi, Nicholas; Keith, Scott W; Hirose, Hitoshi
2015-10-01
Although the use of cardiac extracorporeal membrane oxygenation (ECMO) is increasing in adult patients, the field lacks understanding of associated risk factors. While standard intensive care unit risk scores such as SAPS II (simplified acute physiology score II), SOFA (sequential organ failure assessment), and APACHE II (acute physiology and chronic health evaluation II), or disease-specific scores such as MELD (model for end-stage liver disease) and RIFLE (kidney risk, injury, failure, loss of function, ESRD) exist, they may not apply to adult cardiac ECMO patients as their risk factors differ from variables used in these scores. Between 2010 and 2014, 73 ECMOs were performed for cardiac support at our institution. Patient demographics and survival were retrospectively analyzed. A new easily calculated score for predicting ECMO mortality was created using identified risk factors from univariate and multivariate analyses, and model discrimination was compared with other scoring systems. Cardiac ECMO was performed on 73 patients (47 males and 26 females) with a mean age of 48 ± 14 y. Sixty-four percent of patients (47/73) survived ECMO support. Pre-ECMO SAPS II, SOFA, APACHE II, MELD, RIFLE, PRESERVE, and ECMOnet scores, were not correlated with survival. Univariate analysis of pre-ECMO risk factors demonstrated that increased lactate, renal dysfunction, and postcardiotomy cardiogenic shock were risk factors for death. Applying these data into a new simplified cardiac ECMO score (minimal risk = 0, maximal = 5) predicted patient survival. Survivors had a lower risk score (1.8 ± 1.2) versus the nonsurvivors (3.0 ± 0.99), P < 0.0001. Common intensive care unit or disease-specific risk scores calculated for cardiac ECMO patients did not correlate with ECMO survival, whereas a new simplified cardiac ECMO score provides survival predictability. Copyright © 2015 Elsevier Inc. All rights reserved.
PD-1 Modulates Radiation-Induced Cardiac Toxicity through Cytotoxic T Lymphocytes.
Du, Shisuo; Zhou, Lin; Alexander, Gregory S; Park, Kyewon; Yang, Lifeng; Wang, Nadan; Zaorsky, Nicholas G; Ma, Xinliang; Wang, Yajing; Dicker, Adam P; Lu, Bo
2018-04-01
Combined immune checkpoint blockade has led to rare autoimmune complications, such as fatal myocarditis. Recent approvals of several anti-programmed death 1 (anti-PD-1) drugs for lung cancer treatment prompted ongoing clinical trials that directly combine PD-1 inhibitors with thoracic radiotherapy for locally advanced lung cancer. Overlapping toxicities from either modality have the potential to increase the risk for radiation-induced cardiotoxicity (RICT), which is well documented among patients with Hodgkin's disease and breast cancer. To investigate cardiotoxicity without the compounding pulmonary toxicity from thoracic radiotherapy, we developed a technique to deliver cardiac irradiation (CIR) in a mouse model concurrently with PD-1 blockade to determine the presence of cardiac toxicity by using physiological testing and mortality as end points along with histological analysis. We observed an acute mortality of 30% within 2 weeks after CIR plus anti-PD-1 antibody compared with 0% from CIR plus immunoglobulin G (p = 0.023). Physiological testing demonstrated a reduced left ventricular ejection fraction (p < 0.01) by echocardiogram. Tissue analyses revealed increased immune cell infiltrates within cardiac tissue. Depletion of CD8-positive lymphocytes with anti-CD8 antibody reversed the acute mortality, suggesting that the toxicity is CD8-positive cell-mediated. To validate these findings using a clinically relevant fractionated radiotherapy regimen, we repeated the study by delivering five daily fractions of 6 Gy. Similar mortality, cardiac dysfunction, and histological changes were observed in mice receiving fractionated radiotherapy with concurrent anti-PD-1 therapy. This study provides strong preclinical evidence that radiation-induced cardiotoxicity is modulated by the PD-1 axis and that PD-1 blockade should be administered with careful radiotherapy planning with an effort of reducing cardiac dose. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Harman, Rebecca M.; Bussche, Leen; Ledbetter, Eric C.
2014-01-01
ABSTRACT Despite the clinical importance of herpes simplex virus (HSV)-induced ocular disease, the underlying pathophysiology of the disease remains poorly understood, in part due to the lack of adequate virus–natural-host models in which to study the cellular and viral factors involved in acute corneal infection. We developed an air-liquid canine corneal organ culture model and evaluated its susceptibility to canine herpesvirus type 1 (CHV-1) in order to study ocular herpes in a physiologically relevant natural host model. Canine corneas were maintained in culture at an air-liquid interface for up to 25 days, and no degenerative changes were observed in the corneal epithelium during cultivation using histology for morphometric analyses, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assays, and transmission electron microscopy (TEM). Next, canine corneas were inoculated with CHV-1 for 48 h, and at that time point postinfection, viral plaques could be visualized in the corneal epithelium and viral DNA copies were detected in both the infected corneas and culture supernatants. In addition, we found that canine corneas produced proinflammatory cytokines in response to CHV-1 infection similarly to what has been described for HSV-1. This emphasizes the value of our model as a virus–natural-host model to study ocular herpesvirus infections. IMPORTANCE This study is the first to describe the establishment of an air-liquid canine corneal organ culture model as a useful model to study ocular herpesvirus infections. The advantages of this physiologically relevant model include the fact that (i) it provides a system in which ocular herpes can be studied in a virus–natural-host setting and (ii) it reduces the number of experimental animals needed. In addition, this long-term explant culture model may also facilitate research in other fields where noninfectious and infectious ocular diseases of dogs and humans are being studied. PMID:25231295
Single swim sessions in C. elegans induce key features of mammalian exercise.
Laranjeiro, Ricardo; Harinath, Girish; Burke, Daniel; Braeckman, Bart P; Driscoll, Monica
2017-04-10
Exercise exerts remarkably powerful effects on metabolism and health, with anti-disease and anti-aging outcomes. Pharmacological manipulation of exercise benefit circuits might improve the health of the sedentary and the aging populations. Still, how exercised muscle signals to induce system-wide health improvement remains poorly understood. With a long-term interest in interventions that promote animal-wide health improvement, we sought to define exercise options for Caenorhabditis elegans. Here, we report on the impact of single swim sessions on C. elegans physiology. We used microcalorimetry to show that C. elegans swimming has a greater energy cost than crawling. Animals that swam continuously for 90 min specifically consumed muscle fat supplies and exhibited post-swim locomotory fatigue, with both muscle fat depletion and fatigue indicators recovering within 1 hour of exercise cessation. Quantitative polymerase chain reaction (qPCR) transcript analyses also suggested an increase in fat metabolism during the swim, followed by the downregulation of specific carbohydrate metabolism transcripts in the hours post-exercise. During a 90 min swim, muscle mitochondria matrix environments became more oxidized, as visualized by a localized mitochondrial reduction-oxidation-sensitive green fluorescent protein reporter. qPCR data supported specific transcriptional changes in oxidative stress defense genes during and immediately after a swim. Consistent with potential antioxidant defense induction, we found that a single swim session sufficed to confer protection against juglone-induced oxidative stress inflicted 4 hours post-exercise. In addition to showing that even a single swim exercise bout confers physiological changes that increase robustness, our data reveal that acute swimming-induced changes share common features with some acute exercise responses reported in humans. Overall, our data validate an easily implemented swim experience as C. elegans exercise, setting the foundation for exploiting the experimental advantages of this model to genetically or pharmacologically identify the exercise-associated molecules and signaling pathways that confer system-wide health benefits.
Effects of weightlessness on human fluid and electrolyte physiology
NASA Technical Reports Server (NTRS)
Leach, Carolyn S.; Johnson, Philip C., Jr.
1991-01-01
Skylab and Spacelab data on changes occurring in human fluid and electrolyte physiology during the acute and adaptive phases of adaptation to spaceflight are summarized. The combined results for all three Spacelab studies show that hyponatremia developed within 20 h after the onset of weightlessness and continued throughout the flights, and hypokalemia developed by 40 h. Antidiuretic hormone was increased in plasma throughout the flights. Aldosterone decreased by 40 h, but after 7 days it had reached preflight levels.
2011-01-01
physiological adjustments that compensate for hypoxemia, with augmented ventilation being one of the most important and consistently reported (17, 18, 22, 28... physiological outcomes were affected favorably relative to no treatment utilized HH treatment prior to HH residence (2–4, 18) or NH treatment prior to NH...erythropoietin (EPO; Quantikine IVD ELISA, R & D Systems, Minneapolis, MN), epinephrine and norepinephine (HPLC; Bio-Rad), and cortisol and aldosterone
Personalizing mechanical ventilation for acute respiratory distress syndrome.
Berngard, S Clark; Beitler, Jeremy R; Malhotra, Atul
2016-03-01
Lung-protective ventilation with low tidal volumes remains the cornerstone for treating patient with acute respiratory distress syndrome (ARDS). Personalizing such an approach to each patient's unique physiology may improve outcomes further. Many factors should be considered when mechanically ventilating a critically ill patient with ARDS. Estimations of transpulmonary pressures as well as individual's hemodynamics and respiratory mechanics should influence PEEP decisions as well as response to therapy (recruitability). This summary will emphasize the potential role of personalized therapy in mechanical ventilation.
Complex degree of mutual anisotropy in diagnostics of biological tissues physiological changes
NASA Astrophysics Data System (ADS)
Ushenko, Yu. A.; Dubolazov, O. V.; Karachevtcev, A. O.; Zabolotna, N. I.
2011-05-01
To characterize the degree of consistency of parameters of the optically uniaxial birefringent protein nets of blood plasma a new parameter - complex degree of mutual anisotropy is suggested. The technique of polarization measuring the coordinate distributions of the complex degree of mutual anisotropy of blood plasma is developed. It is shown that statistic approach to the analysis of complex degree of mutual anisotropy distributions of blood plasma is effective in the diagnosis and differentiation of acute inflammation - acute and gangrenous appendicitis.
Complex degree of mutual anisotropy in diagnostics of biological tissues physiological changes
NASA Astrophysics Data System (ADS)
Ushenko, Yu. A.; Dubolazov, A. V.; Karachevtcev, A. O.; Zabolotna, N. I.
2011-09-01
To characterize the degree of consistency of parameters of the optically uniaxial birefringent protein nets of blood plasma a new parameter - complex degree of mutual anisotropy is suggested. The technique of polarization measuring the coordinate distributions of the complex degree of mutual anisotropy of blood plasma is developed. It is shown that statistic approach to the analysis of complex degree of mutual anisotropy distributions of blood plasma is effective in the diagnosis and differentiation of acute inflammation - acute and gangrenous appendicitis.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... For treatment of physiological parturient edema of the mammary gland and associated structures. (iii...) Indications for use—(A) For treatment of edema (pulmonary congestion, ascites) associated with cardiac insufficiency and acute noninflammatory tissue edema. (B) For treatment of edema (pulmonary congestion, ascites...
Code of Federal Regulations, 2010 CFR
2010-04-01
.... For treatment of physiological parturient edema of the mammary gland and associated structures. (iii...) Indications for use—(A) For treatment of edema (pulmonary congestion, ascites) associated with cardiac insufficiency and acute noninflammatory tissue edema. (B) For treatment of edema (pulmonary congestion, ascites...
Non-invasive cortisol measurements as indicators of physiological stress responses in guinea pigs
Pschernig, Elisabeth; Wallner, Bernard; Millesi, Eva
2016-01-01
Non-invasive measurements of glucocorticoid (GC) concentrations, including cortisol and corticosterone, serve as reliable indicators of adrenocortical activities and physiological stress loads in a variety of species. As an alternative to invasive analyses based on plasma, GC concentrations in saliva still represent single-point-of-time measurements, suitable for studying short-term or acute stress responses, whereas fecal GC metabolites (FGMs) reflect overall stress loads and stress responses after a species-specific time frame in the long-term. In our study species, the domestic guinea pig, GC measurements are commonly used to indicate stress responses to different environmental conditions, but the biological relevance of non-invasive measurements is widely unknown. We therefore established an experimental protocol based on the animals’ natural stress responses to different environmental conditions and compared GC levels in plasma, saliva, and fecal samples during non-stressful social isolations and stressful two-hour social confrontations with unfamiliar individuals. Plasma and saliva cortisol concentrations were significantly increased directly after the social confrontations, and plasma and saliva cortisol levels were strongly correlated. This demonstrates a high biological relevance of GC measurements in saliva. FGM levels measured 20 h afterwards, representing the reported mean gut passage time based on physiological validations, revealed that the overall stress load was not affected by the confrontations, but also no relations to plasma cortisol levels were detected. We therefore measured FGMs in two-hour intervals for 24 h after another social confrontation and detected significantly increased levels after four to twelve hours, reaching peak concentrations already after six hours. Our findings confirm that non-invasive GC measurements in guinea pigs are highly biologically relevant in indicating physiological stress responses compared to circulating levels in plasma in the short- and long-term. Our approach also underlines the importance of detailed investigations on how to use and interpret non-invasive measurements, including the determination of appropriate time points for sample collections. PMID:26839750
Kaihara, Kelly A.; Dickson, Lorna M.; Jacobson, David A.; Tamarina, Natalia; Roe, Michael W.; Philipson, Louis H.; Wicksteed, Barton
2013-01-01
Acute insulin secretion determines the efficiency of glucose clearance. Moreover, impaired acute insulin release is characteristic of reduced glucose control in the prediabetic state. Incretin hormones, which increase β-cell cAMP, restore acute-phase insulin secretion and improve glucose control. To determine the physiological role of the cAMP-dependent protein kinase (PKA), a mouse model was developed to increase PKA activity specifically in the pancreatic β-cells. In response to sustained hyperglycemia, PKA activity potentiated both acute and sustained insulin release. In contrast, a glucose bolus enhanced acute-phase insulin secretion alone. Acute-phase insulin secretion was increased 3.5-fold, reducing circulating glucose to 58% of levels in controls. Exendin-4 increased acute-phase insulin release to a similar degree as PKA activation. However, incretins did not augment the effects of PKA on acute-phase insulin secretion, consistent with incretins acting primarily via PKA to potentiate acute-phase insulin secretion. Intracellular calcium signaling was unaffected by PKA activation, suggesting that the effects of PKA on acute-phase insulin secretion are mediated by the phosphorylation of proteins involved in β-cell exocytosis. Thus, β-cell PKA activity transduces the cAMP signal to dramatically increase acute-phase insulin secretion, thereby enhancing the efficiency of insulin to control circulating glucose. PMID:23349500
Zhou, Jing; Ke, Lu; Tong, Zhihui; Li, Gang; Li, Weiqin; Li, Ning; Li, Jieshou
2015-01-01
Splanchnic venous thrombosis (SVT) is considered a rare but important complication in patients with acute pancreatitis (AP) and literatures regarding this topic were sparse. The aim of the present study was to investigate the risk factors of SVT in necrotizing acute pancreatitis (NAP) and assess the prognosis of these patients. Both univariate and multivariate logistic regression analyses were applied using 15 indices including age, gender, Acute Physiology and Chronic Health Evaluation II scores (APACHE II), CRP (C - reactive protein) levels, etc to explore potential risk factors for the development of SVT in NAP patients. Moreover, clinical outcome measures such as mortality, organ failure and length of hospital and ICU stay were also compared between NAP patients with or without SVT. According to the statistical results, only intra-abdominal pressure (IAP) was proved to be an independent risk factor for SVT (OR, 1.283; 95% CI, 1.091-1.509,P=0.003). In addition, Balthazar's CT score and occurrence of IPN (infected pancreatic necrosis) also reached statistical significance (P=0.040 and 0.047, respectively), but the 95% confidence interval shown in the multivariate logistic regression suggested that the observed ORs are not significant (1.326;95% CI 0.984-1.787 and 2.61;95 CI 0.972-7.352, respectively), which indicates weaker association between the two parameters and SVT. Regarding the clinical outcomes, patients with SVT showed higher mortality, longer hospital and intensive care unit duration, higher rates of a variety of complications and more utilization of invasive interventions. IAP is an independent risk factor for the development of SVT in patients with NAP, while Balthazar's CT score and occurrence of IPN are also associated with SVT, although not as strong as IAP. Moreover, occurrence of SVT relates with extremely poor prognosis in NAP patients, evidenced by increased mortality, morbidity and need for invasive interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.
van der Vaart, Andrew D.; Wolstenholme, Jennifer T.; Smith, Maren L.; Harris, Guy M.; Lopez, Marcelo F.; Wolen, Aaron R.; Becker, Howard C.; Williams, Robert W.; Miles, Michael F.
2016-01-01
The transition from acute to chronic ethanol exposure leads to lasting behavioral and physiological changes such as increased consumption, dependence, and withdrawal. Changes in brain gene expression are hypothesized to underlie these adaptive responses to ethanol. Previous studies on acute ethanol identified genetic variation in brain gene expression networks and behavioral responses to ethanol across the BXD panel of recombinant inbred mice. In this work, we have performed the first joint genetic and genomic analysis of transcriptome shifts in response to chronic intermittent ethanol (CIE) by vapor chamber exposure in a BXD cohort. CIE treatment is known to produce significant and sustained changes in ethanol consumption with repeated cycles of ethanol vapor. Using Affymetrix microarray analysis of prefrontal cortex (PFC) and nucleus accumbens (NAC) RNA, we compared CIE expression responses to those seen following acute ethanol treatment, and to voluntary ethanol consumption. Gene expression changes in PFC and NAC after CIE overlapped significantly across brain regions and with previously published expression following acute ethanol. Genes highly modulated by CIE were enriched for specific biological processes including synaptic transmission, neuron ensheathment, intracellular signaling, and neuronal projection development. Expression quantitative trait locus (eQTL) analyses identified genomic loci associated with ethanol-induced transcriptional changes with largely distinct loci identified between brain regions. Correlating CIE-regulated genes to ethanol consumption data identified specific genes highly associated with variation in the increase in drinking seen with repeated cycles of CIE. In particular, multiple myelin-related genes were identified. Furthermore, genetic variance in or near dynamin3 (Dnm3) on Chr1 at ~164 Mb may have a major regulatory role in CIE-responsive gene expression. Dnm3 expression correlates significantly with ethanol consumption, is contained in a highly ranked functional group of CIE-regulated genes in the NAC, and has a cis-eQTL within a genomic region linked with multiple CIE-responsive genes. PMID:27838001
The effect of exercise mode on the acute response of satellite cells in old men.
Nederveen, J P; Joanisse, S; Séguin, C M L; Bell, K E; Baker, S K; Phillips, S M; Parise, G
2015-12-01
A dysregulation of satellite cells may contribute to the progressive loss of muscle mass that occurs with age; however, older adults retain the ability to activate and expand their satellite cell pool in response to exercise. The modality of exercise capable of inducing the greatest acute response is unknown. We sought to characterize the acute satellite cell response following different modes of exercise in older adults. Sedentary older men (n = 22; 67 ± 4 years; 27 ± 2.6 kg*m(-2) ) were randomly assigned to complete an acute bout of either resistance exercise, high-intensity interval exercise on a cycle ergometer or moderate-intensity aerobic exercise. Muscle biopsies were obtained before, 24 and 48 h following each exercise bout. The satellite cell response was analysed using immunofluorescent microscopy of muscle cross sections. Satellite cell expansion associated with type I fibres was observed 24 and 48 h following resistance exercise only (P ˂ 0.05), while no expansion of type II-associated satellite cells was observed in any group. There was a greater number of activated satellite cells 24 h following resistance exercise (pre: 1.3 ± 0.1, 24 h: 4.8 ± 0.5 Pax7 + /MyoD+cells/100 fibres) and high-intensity interval exercise (pre: 0.7 ± 0.3, 24 h: 3.1 ± 0.3 Pax7 + /MyoD+cells/100 fibres) (P ˂ 0.05). The percentage of type I-associated SC co-expressing MSTN was reduced only in the RE group 24 h following exercise (pre: 87 ± 4, 24 h: 57 ± 5%MSTN+ type I SC) (P < 0.001). Although resistance exercise is the most potent exercise type to induce satellite cell pool expansion, high-intensity interval exercise was also more potent than moderate-intensity aerobic exercise in inducing satellite cell activity. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Bybee, Kevin A; Prasad, Abhiram; Barsness, Greg W; Lerman, Amir; Jaffe, Allan S; Murphy, Joseph G; Wright, R Scott; Rihal, Charanjit S
2004-08-01
The characteristics of 16 women with transient left ventricular (LV) apical ballooning syndrome in a United States population are presented. Additionally, Thrombolysis In Myocardial Infarction (TIMI) frame counts were evaluated during the acute period. Patients generally presented with anterior ST-elevation acute coronary syndrome in the absence of obstructive coronary disease. All patients had LV apical wall motion abnormalities. An acute emotional or physiologic stressor preceded most cases. TIMI frame counts were abnormal in all patients and often abnormal in all 3 major coronary vessels, suggesting that the diffuse impairment of coronary microcirculatory function may play a role in the pathogenesis of the syndrome.
Transcutaneous electrical neurostimulation in musculoskeletal pain of acute spinal cord injuries.
Richardson, R R; Meyer, P R; Cerullo, L J
1980-01-01
Cervical, thoracic, thoracolumbar, and lumbar fractures associated with physiologic complete or incomplete spinal cord injuries frequently have severe soft-tissue injury as well as severe pain associated with the site or area of injury. Transcutaneous electrical neurostimulation has proved effective in the treatment of various causes of severe acute and chronic intractable pains. We applied this modality to a group of 20 patients who had acute spinal cord injuries and pain associated with severe, extensive soft-tissue injury. Its advantages include ease of application, lack of major complications, increased intestinal peristalsis, and avoidance of narcotic analgesic medications. It also produced significant (greater than 50%) pain relief in 75% of patients treated by transcutaneous electrical neurostimulation.
[Cardiovascular clearance for competitive sport in aging people].
Carré, François
2013-06-01
The regular sport practice slows the physiological deleterious effects of aging. However, during intense exercise, the hazard of acute cardiovascular event is significantly increased. Whatever their cardiovascular risk factors are, aging people are more prone to coronary acute event during intense exertion than a young one. Cardiovascular exam, with resting ECG and maximal exercise test, is needed to give clearance for competitive sport in aging people (>65 y.o.). The limited value to evaluate the individual risk of acute cardiac event during intense exercise must be clearly explained to Master athletes. They must be aware to the necessity to consult their physician in case of abnormal symptom during exercise. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Changing interdigestive migrating motor complex in rats under acute liver injury.
Liu, Mei; Zheng, Su-Jun; Xu, Weihong; Zhang, Jianying; Chen, Yu; Duan, Zhongping
2014-01-01
Gastrointestinal motility disorder is a major clinical manifestation of acute liver injury, and interdigestive migrating motor complex (MMC) is an important indicator. We investigated the changes and characteristics of MMC in rats with acute liver injury. Acute liver injury was created by d-galactosamine, and we recorded the interdigestive MMC using a multichannel physiological recorder and compared the indexes of interdigestive MMC. Compared with normal controls, antral MMC Phase I duration was significantly prolonged and MMC Phase III duration was significantly shortened in the rats with acute liver injury. The duodenal MMC cycle and MMC Phases I and IV duration were significantly prolonged and MMC Phase III duration was significantly shortened in the rats with acute liver injury. The jejunal MMC cycle and MMC Phases I and IV duration were significantly prolonged and MMC Phase III duration was significantly shortened in the rats with acute liver injury compared with normal controls. Compared with the normal controls, rats with acute liver injury had a significantly prolonged interdigestive MMC cycle, related mainly to longer MMC Phases I and IV, shortened MMC Phase III, and MMC Phase II characterized by increased migrating clustered contractions, which were probably major contributors to the gastrointestinal motility disorders.
Hughes, M; MacKirdy, F N; Ross, J; Norrie, J; Grant, I S
2003-09-01
This prospective audit of incidence and outcome of the acute respiratory distress syndrome was conducted as part of the national audit of intensive care practice in Scotland. All patients with acute respiratory distress syndrome in 23 adult intensive care units were identified using the diagnostic criteria defined by the American-European Consensus Conference. Daily data collection was continued until death or intensive care unit discharge. Three hundred and sixty-nine patients were diagnosed with acute respiratory distress syndrome over the 8-month study period. The frequency of acute respiratory distress syndrome in the intensive care unit population was 8.1%; the incidence in the Scottish population was estimated at 16.0 cases.100,000(-1).year(-1). Intensive care unit mortality for acute respiratory distress syndrome was 53.1%, with a hospital mortality of 60.9%. In our national unselected population of critically ill patients, the overall outcome is comparable with published series (Acute Physiology and Chronic Health Evaluation II standardised mortality ratio = 0.99). However, mortality from acute respiratory distress syndrome in Scotland is substantially higher than in recent other series suggesting an improvement in outcome in this condition.
A method for the measurement of physiologic evaporative water loss.
DOT National Transportation Integrated Search
1963-10-01
The precise measurement of evaporative water loss is essential to an accurate evaluation of this avenue of heat loss in acute and chronic exposures to heat. In psychological studies, the quantitative measurement of palmar sweating plays an equally im...
Queiroz, R W; Silva, V L; Rocha, D R; Costa, D S; Turco, S H N; Silva, M T B; Santos, A A; Oliveira, M B L; Pereira, A S R; Palheta-Junior, R C
2018-02-01
Changes in physiological parameters that are induced by acute exercise on a treadmill in healthy military dogs have not been thoroughly investigated, especially with regard to age. This study investigated the effects of acute exercise on a treadmill on cardiovascular function, biochemical parameters and gastric antral motility in military dogs. Thermography was used to assess variations in superficial hindlimb muscle temperature. Nine healthy dogs were distributed into three groups according to their age (Group I: 25 ± 7 months; Group II: 51 ± 12 months; Group III: 95 ± 10 months) and sequentially subjected to running exercise on a treadmill for 12 min (3.2 km/h at 0° incline for 4 min, 6.4 km/h at 0° incline for 4 min and 6.4 km/h at 10° incline for 4 min). Heart rate, systolic and diastolic arterial pressure (DAP), gastric motility, haematocrit and biochemical analyses were performed at rest and after each session of treadmill exercise. Infrared thermographic images of muscles in the pelvic member were taken. Exercise decreased DAP in Group I, increased systolic arterial pressure in Groups II and III and increased mean arterial pressure in Group III (all p < 0.05). After the exercise protocol, plasma creatine kinase and aspartate aminotransferase levels increased only in Group I (p < 0.05). Exercise increased heart rate and decreased the gastric motility of a solid meal at 180 min in all groups (all p < 0.05). Exercise also elevated temperature in the femoral biceps muscles in Group I compared with the older dogs. The results indicate that acute exercise decreased gastric motility in dogs, regardless of age, and caused more pronounced cardiovascular changes in older dogs than in younger dogs. Acute exercise also altered biochemical parameters and superficial hindlimb muscle temperature in younger military dogs. © 2016 Blackwell Verlag GmbH.
Why tropical forest lizards are vulnerable to climate warming
Huey, Raymond B.; Deutsch, Curtis A.; Tewksbury, Joshua J.; Vitt, Laurie J.; Hertz, Paul E.; Álvarez Pérez, Héctor J.; Garland, Theodore
2009-01-01
Biological impacts of climate warming are predicted to increase with latitude, paralleling increases in warming. However, the magnitude of impacts depends not only on the degree of warming but also on the number of species at risk, their physiological sensitivity to warming and their options for behavioural and physiological compensation. Lizards are useful for evaluating risks of warming because their thermal biology is well studied. We conducted macrophysiological analyses of diurnal lizards from diverse latitudes plus focal species analyses of Puerto Rican Anolis and Sphaerodactyus. Although tropical lowland lizards live in environments that are warm all year, macrophysiological analyses indicate that some tropical lineages (thermoconformers that live in forests) are active at low body temperature and are intolerant of warm temperatures. Focal species analyses show that some tropical forest lizards were already experiencing stressful body temperatures in summer when studied several decades ago. Simulations suggest that warming will not only further depress their physiological performance in summer, but will also enable warm-adapted, open-habitat competitors and predators to invade forests. Forest lizards are key components of tropical ecosystems, but appear vulnerable to the cascading physiological and ecological effects of climate warming, even though rates of tropical warming may be relatively low. PMID:19324762
Why tropical forest lizards are vulnerable to climate warming.
Huey, Raymond B; Deutsch, Curtis A; Tewksbury, Joshua J; Vitt, Laurie J; Hertz, Paul E; Alvarez Pérez, Héctor J; Garland, Theodore
2009-06-07
Biological impacts of climate warming are predicted to increase with latitude, paralleling increases in warming. However, the magnitude of impacts depends not only on the degree of warming but also on the number of species at risk, their physiological sensitivity to warming and their options for behavioural and physiological compensation. Lizards are useful for evaluating risks of warming because their thermal biology is well studied. We conducted macrophysiological analyses of diurnal lizards from diverse latitudes plus focal species analyses of Puerto Rican Anolis and Sphaerodactyus. Although tropical lowland lizards live in environments that are warm all year, macrophysiological analyses indicate that some tropical lineages (thermoconformers that live in forests) are active at low body temperature and are intolerant of warm temperatures. Focal species analyses show that some tropical forest lizards were already experiencing stressful body temperatures in summer when studied several decades ago. Simulations suggest that warming will not only further depress their physiological performance in summer, but will also enable warm-adapted, open-habitat competitors and predators to invade forests. Forest lizards are key components of tropical ecosystems, but appear vulnerable to the cascading physiological and ecological effects of climate warming, even though rates of tropical warming may be relatively low.
Risk factors for acute surgical site infections after lumbar surgery: a retrospective study.
Lai, Qi; Song, Quanwei; Guo, Runsheng; Bi, Haidi; Liu, Xuqiang; Yu, Xiaolong; Zhu, Jianghao; Dai, Min; Zhang, Bin
2017-07-19
Currently, many scholars are concerned about the treatment of postoperative infection; however, few have completed multivariate analyses to determine factors that contribute to the risk of infection. Therefore, we conducted a multivariate analysis of a retrospectively collected database to analyze the risk factors for acute surgical site infection following lumbar surgery, including fracture fixation, lumbar fusion, and minimally invasive lumbar surgery. We retrospectively reviewed data from patients who underwent lumbar surgery between 2014 and 2016, including lumbar fusion, internal fracture fixation, and minimally invasive surgery in our hospital's spinal surgery unit. Patient demographics, procedures, and wound infection rates were analyzed using descriptive statistics, and risk factors were analyzed using logistic regression analyses. Twenty-six patients (2.81%) experienced acute surgical site infection following lumbar surgery in our study. The patients' mean body mass index, smoking history, operative time, blood loss, draining time, and drainage volume in the acute surgical site infection group were significantly different from those in the non-acute surgical site infection group (p < 0.05). Additionally, diabetes mellitus, chronic obstructive pulmonary disease, osteoporosis, preoperative antibiotics, type of disease, and operative type in the acute surgical site infection group were significantly different than those in the non-acute surgical site infection group (p < 0.05). Using binary logistic regression analyses, body mass index, smoking, diabetes mellitus, osteoporosis, preoperative antibiotics, fracture, operative type, operative time, blood loss, and drainage time were independent predictors of acute surgical site infection following lumbar surgery. In order to reduce the risk of infection following lumbar surgery, patients should be evaluated for the risk factors noted above.
Environmental Physiology at the Johnson Space Center: Past, Present, and Future
NASA Technical Reports Server (NTRS)
Conkin, Johnny
2007-01-01
This viewgraph presentation reviews the work in environmental physiology done at Johnson Space Center (JSC). The work is aimed at keeping astronauts healthy. This is a different approach than treating the sick, and is more of an occupational health model. The reduction of risks is the main emphasis for this work. They emphasis is to reduce the risk of decompression sickness (DCS) and acute mountain sickness (AMS). The work in environmental physiology encompasses the following areas: (1) Pressure: hypobaric and hyperbaric (2) Gases: hypoxia and hyperoxia, hypercapnia--closed space issues, inert gas physiology / respiration (3) Temperature: hypothermia and hyperthermia, thermal comfort, Protective clothing diving, aviation, mountaineering, and space (4) Acceleration (5) Noise and Vibration (6) Exercise / Performance (6) Acclimatization / Adaptation: engineering solutions when necessary. This presentation reviews the work done at JSC in the areas of DCS and AMS.
Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne
2014-08-01
When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.
Nikolaidis, Pantelis T; Chtourou, Hamdi; Torres-Luque, Gema; Tasiopoulos, Ioannis G; Heller, Jan; Padulo, Johnny
2015-09-29
The aim of this study was to examine changes in physical attributes, physiological characteristics and responses that occurred in a simulated combat during a six-week preparatory period in young taekwondo athletes. Seven athletes (age 12.17 ± 1.11 years) were examined before (pre-intervention) and after (post-intervention) a preparatory period for physical fitness and physiological responses to a 2×90 s simulated bout with a 30 s rest period. The heart rate (HR) was monitored during the simulated combat, and handgrip muscle strength (HMS) along with the countermovement jump (CMJ) were recorded before and after the combat. When compared with pre-intervention values, in post-intervention we observed a decrease in body mass, body fat percentage, and the HR at rest and during recovery after a 3 min step test, and an increase in maximal velocity of the cycle ergometer force-velocity test, the CMJ and mean power during the 30 s continuous jumping test (p<0.05). Furthermore, HR responses to a simulated combat were lower in the post-intervention session (p<0.05). CMJ values increased after the bout in both pre and post-intervention, with higher absolute values in the latter case (p<0.05), whereas there was no difference in HMS. Based on these findings, it can be concluded that the acute physiological responses to a simulated taekwondo combat vary during a season, which might be explained by changes in physical fitness.
Nikolaidis, Pantelis T.; Chtourou, Hamdi; Torres-Luque, Gema; Tasiopoulos, Ioannis G.; Heller, Jan; Padulo, Johnny
2015-01-01
The aim of this study was to examine changes in physical attributes, physiological characteristics and responses that occurred in a simulated combat during a six-week preparatory period in young taekwondo athletes. Seven athletes (age 12.17 ± 1.11 years) were examined before (pre-intervention) and after (post-intervention) a preparatory period for physical fitness and physiological responses to a 2×90 s simulated bout with a 30 s rest period. The heart rate (HR) was monitored during the simulated combat, and handgrip muscle strength (HMS) along with the countermovement jump (CMJ) were recorded before and after the combat. When compared with pre-intervention values, in post-intervention we observed a decrease in body mass, body fat percentage, and the HR at rest and during recovery after a 3 min step test, and an increase in maximal velocity of the cycle ergometer force-velocity test, the CMJ and mean power during the 30 s continuous jumping test (p<0.05). Furthermore, HR responses to a simulated combat were lower in the post-intervention session (p<0.05). CMJ values increased after the bout in both pre and post-intervention, with higher absolute values in the latter case (p<0.05), whereas there was no difference in HMS. Based on these findings, it can be concluded that the acute physiological responses to a simulated taekwondo combat vary during a season, which might be explained by changes in physical fitness. PMID:26557196
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheard, Michael A., E-mail: msheard@chla.usc.edu; Ghent, Matthew V., E-mail: mattghent@gmail.com; Cabral, Daniel J., E-mail: dcabral14@gmail.com
2015-05-15
Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival,more » expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent.« less
Berghmans, T; Paesmans, M; Sculier, J P
2004-04-01
To evaluate the effectiveness of a specific oncologic scoring system-the ICU Cancer Mortality model (ICM)-in predicting hospital mortality in comparison to two general severity scores-the Acute Physiology and Chronic Health Evaluation (APACHE II) and the Simplified Acute Physiology Score (SAPS II). All 247 patients admitted for a medical acute complication over an 18-month period in an oncological medical intensive care unit were prospectively registered. Their data, including type of complication, vital status at discharge and cancer characteristics as well as other variables necessary to calculate the three scoring systems were retrospectively assessed. Observed in-hospital mortality was 34%. The predicted in-hospital mortality rate for APACHE II was 32%; SAPS II, 24%; and ICM, 28%. The goodness of fit was inadequate except for the ICM score. Comparison of the area under the ROC curves revealed a better fit for ICM (area 0.79). The maximum correct classification rate was 72% for APACHE II, 74% for SAPS II and 77% for ICM. APACHE II and SAPS II were better at predicting outcome for survivors to hospital discharge, although ICM was better for non-survivors. Two variables were independently predicting the risk of death during hospitalisation: ICM (OR=2.31) and SAPS II (OR=1.05). Gravity scores were the single independent predictors for hospital mortality, and ICM was equivalent to APACHE II and SAPS II.
The central role of hypothalamic inflammation in the acute illness response and cachexia.
Burfeind, Kevin G; Michaelis, Katherine A; Marks, Daniel L
2016-06-01
When challenged with a variety of inflammatory threats, multiple systems across the body undergo physiological responses to promote defense and survival. The constellation of fever, anorexia, and fatigue is known as the acute illness response, and represents an adaptive behavioral and physiological reaction to stimuli such as infection. On the other end of the spectrum, cachexia is a deadly and clinically challenging syndrome involving anorexia, fatigue, and muscle wasting. Both of these processes are governed by inflammatory mediators including cytokines, chemokines, and immune cells. Though the effects of cachexia can be partially explained by direct effects of disease processes on wasting tissues, a growing body of evidence shows the central nervous system (CNS) also plays an essential mechanistic role in cachexia. In the context of inflammatory stress, the hypothalamus integrates signals from peripheral systems, which it translates into neuroendocrine perturbations, altered neuronal signaling, and global metabolic derangements. Therefore, we will discuss how hypothalamic inflammation is an essential driver of both the acute illness response and cachexia, and why this organ is uniquely equipped to generate and maintain chronic inflammation. First, we will focus on the role of the hypothalamus in acute responses to dietary and infectious stimuli. Next, we will discuss the role of cytokines in driving homeostatic disequilibrium, resulting in muscle wasting, anorexia, and weight loss. Finally, we will address mechanisms and mediators of chronic hypothalamic inflammation, including endothelial cells, chemokines, and peripheral leukocytes. Copyright © 2015 Elsevier Ltd. All rights reserved.
The study of dynamic response to acute hemorrhage by pulse spectrum analysis.
Chang, Yu Hsin; Tsai, Chia I; Lin, Jaung Geng; Lin, Yue Der; Li, Tsai Chung; Su, Yi Chang
2006-01-01
Traditional Chinese Medicine (TCM) holds that blood and qi are fundamental substances in the human body for sustaining normal vital activity. The theory of qi, blood and zang-fu contribute the most important theoretical basis of human physiology in TCM. An animal model using conscious rats was employed in this study to further comprehend how organisms survive during acute hemorrhage by maintaining the functionalities of qi and blood through dynamically regulating visceral physiological conditions. Pulse waves of arterial blood pressure before and after the hemorrhage were taken in parallel to pulse spectrum analysis. Percentage differences of mean arterial blood pressure and harmonics were recorded in subsequent 5-minute intervals following the hemorrhage. Data were analyzed using a one-way analysis of variance (ANOVA) with Duncan's test for pairwise comparisons. Results showed that, within 30 minutes following the onset of acute hemorrhage,the reduction of mean arterial blood pressure was improved from 62% to 20%. Throughout the process, changes to the pulse spectrum appeared to result in a new balance over time. The percentage differences of the second and third harmonics, which were related to kidney and spleen, both increased significantly than baseline and towards another steady state. Apart from the steady state resulting from the previous stage, the percentage difference of the 4th harmonic decreased significantly to another steady state. The observed change could be attributed to the induction of functional qi, and is a result of qi-blood balancing activity that organisms hold to survive against acute bleeding.
Biological markers of stress in pediatric acute burn injury.
Brown, Nadia J; Kimble, Roy M; Rodger, Sylvia; Ware, Robert S; McWhinney, Brett C; Ungerer, Jacobus P J; Cuttle, Leila
2014-08-01
Burns and their associated wound care procedures evoke significant stress and anxiety, particularly for children. Little is known about the body's physiological stress reactions throughout the stages of re-epithelialization following an acute burn injury. Previously, serum and urinary cortisol have been used to measure stress in burn patients, however these measures are not suitable for a pediatric burn outpatient setting. To assess the sensitivity of salivary cortisol and sAA in detecting stress during acute burn wound care procedures and to investigate the body's physiological stress reactions throughout burn re-epithelialization. Seventy-seven participants aged four to thirteen years who presented with an acute burn injury to the burn center at the Royal Children's Hospital, Brisbane, Australia, were recruited between August 2011 and August 2012. Both biomarkers were responsive to the stress of burn wound care procedures. sAA levels were on average 50.2 U/ml higher (p<0.001) at 10 min post-dressing removal compared to baseline levels. Salivary cortisol levels showed a blunted effect with average levels at ten minutes post dressing removal decreasing by 0.54 nmol/L (p<0.001) compared to baseline levels. sAA levels were associated with pain (p=0.021), no medication (p=0.047) and Child Trauma Screening Questionnaire scores at three months post re-epithelialization (p=0.008). Similarly, salivary cortisol was associated with no medication (p<0.001), pain scores (p=0.045) and total body surface area of the burn (p=0.010). Factors which support the use of sAA over salivary cortisol to assess stress during morning acute burn wound care procedures include; sensitivity, morning clinic times relative to cortisol's diurnal peaks, and relative cost. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.
Plasma cytokines can help to identify the development of severe acute pancreatitis on admission
Deng, Li-Hui; Hu, Cheng; Cai, Wen-Hao; Chen, Wei-Wei; Zhang, Xiao-Xin; Shi, Na; Huang, Wei; Ma, Yun; Jin, Tao; Lin, Zi-Qi; Jiang, Kun; Guo, Jia; Yang, Xiao-Nan; Xia, Qing
2017-01-01
Abstract Severe acute pancreatitis (AP) is associated with high morbidity and mortality. Early severity stratification remains a challenging issue to overcome to improve outcomes. We aim to find novel plasma cytokines for the early identification of severe AP according to the revised Atlanta criteria. In this prospective observational study, 30 cytokines, screened semiquantitatively with a human multicytokine array, were submitted to quantitative determination using either microparticle-based multiplex immunoassays analyzed on a Luminex 100 platform or enzyme-linked immunosorbent assay kits. The cytokine profiles of patients and the discriminative value of cytokines for severe AP were analyzed. Plasma samples of 70 patients with AP (20 mild, 30 moderately severe, and 20 severe) were selected in this study if they were admitted within 48 hours of the onset of symptoms. Plasma from healthy volunteers was collected as the healthy control. Growth differentiation factor-15 (GDF-15) and pentraxin 3 (PTX3) on admission were independent prognostic markers for the development of severe AP and had higher discriminative powers than conventional markers (GDF-15 vs hematocrit, P = .003; GDF-15 vs C-reactive protein, P = .037; GDF-15 vs creatinine, P = .048; GDF-15 vs Acute Physiology and Chronic Health Evaluation II, P = .007; PTX3 vs hematocrit, P = .006; PTX3 vs C-reactive protein, P = .047; PTX3 vs Acute Physiology and Chronic Health Evaluation II, P = .011; PTX3 vs Bedside Index for Severity in Acute Pancreatitis, P = .048). Plasma GDF-15 and PTX3 can help to identify the development of severe AP on admission. Future work should validate their accuracy in a larger, multicenter patient cohort. PMID:28700471
Dyavanapalli, Jhansi; Jameson, Heather; Dergacheva, Olga; Jain, Vivek; Alhusayyen, Mona; Mendelowitz, David
2014-07-01
Patients with obstructive sleep apnoea experience chronic intermittent hypoxia-hypercapnia (CIHH) during sleep that elicit sympathetic overactivity and diminished parasympathetic activity to the heart, leading to hypertension and depressed baroreflex sensitivity. The parasympathetic control of heart rate arises from pre-motor cardiac vagal neurons (CVNs) located in nucleus ambiguus (NA) and dorsal motor nucleus of the vagus (DMNX). The mechanisms underlying diminished vagal control of heart rate were investigated by studying the changes in blood pressure, heart rate, and neurotransmission to CVNs evoked by acute hypoxia-hypercapnia (H-H) and CIHH. In vivo telemetry recordings of blood pressure and heart rate were obtained in adult rats during 4 weeks of CIHH exposure. Retrogradely labelled CVNs were identified in an in vitro brainstem slice preparation obtained from adult rats exposed either to air or CIHH for 4 weeks. Postsynaptic inhibitory or excitatory currents were recorded using whole cell voltage clamp techniques. Rats exposed to CIHH had increases in blood pressure, leading to hypertension, and blunted heart rate responses to acute H-H. CIHH induced an increase in GABAergic and glycinergic neurotransmission to CVNs in NA and DMNX, respectively; and a reduction in glutamatergic neurotransmission to CVNs in both nuclei. CIHH blunted the bradycardia evoked by acute H-H and abolished the acute H-H evoked inhibition of GABAergic transmission while enhancing glycinergic neurotransmission to CVNs in NA. These changes with CIHH inhibit CVNs and vagal outflow to the heart, both in acute and chronic exposures to H-H, resulting in diminished levels of cardioprotective parasympathetic activity to the heart as seen in OSA patients. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
LaPlante, Kimberly A; Huremovic, Enida; Tomaszycki, Michelle L
2014-04-01
Stress alters physiology and behavior across species. Most research on the effects of stress on behavior uses chronic stressors, and most are correlational. The effects of acute stressors on physiology and behavior have been mixed. Here, we use zebra finches, a highly gregarious species that forms long-term pair bonds, to test the effects of an acute corticosterone (CORT) on opposite-sex partner preferences over a same-sex individual or a group (the latter is a highly appealing option). We had two competing hypotheses. First, we predicted that acute CORT would alter preferences for the opposite sex bird in both conditions in both sexes. However, since there is a sex difference in the effects of CORT on partner preferences in voles, these effects may be more pronounced in males than in females. To test our hypotheses, we administered 2 doses of CORT (10μg and 20μg) or vehicle (control) using a repeated measures design. In the male vs. female test, there was a significant Sex by Treatment interaction, such that in males, 10μg CORT increased preferences for a female over the male compared to when these same males were treated with saline at baseline. There were no effects of treatment in females. In the opposite-sex vs. group condition, there was an overall effect of Treatment, such that the 10μg dose increased preference for the opposite-sex individual over both saline treatments, regardless of sex. These findings further our understanding of the effects of an acute stressor on sexual partner preferences. Copyright © 2014 Elsevier Inc. All rights reserved.
Que, Loretta G; Stiles, Jane V; Sundy, John S; Foster, W Michael
2011-09-01
Effect of laboratory exposure to O₃ (220 ppb) and filtered air (FA) on respiratory physiology were evaluated at two time points (acute and 1 day postexposure) in healthy cohort (n = 138, 18-35 yr, 40% women) comprised mainly of Caucasian (60%) and African American (33.3%) subjects. Randomized exposures had a crossover design and durations of 2.25 h that included rest and treadmill walking. Airway responsiveness (AHR) to methacholine (Mch) and permeability of respiratory epithelium (EI) to hydrophilic radiomarker ((99m)Tc-DTPA, MW = 492), were measured at 1-day postexposure. O₃ significantly affected FEV₁ and FVC indices acutely with mean decrements from pre-exposure values on the order of 7.7 to 8.8% and 1.8 to 2.3% at 1-day post. Acute FEV₁ and FVC decreases were most robust in African American male subjects. At 1-day post, O₃ induced significant changes in AHR (slope of Mch dose response curve) and EI (Tc(99m)-DTPA clearance half-time). Based on conventional thresholds of response and dichotomous classification of subjects as responders and nonresponders, sensitivity to O₃ was shown to be nonuniform. Acute decrements ≥ 15% in FEV₁, a doubling of Mch slope, or ≥ 15% increase in EI developed in 20.3%, 23.1%, and 25.9%, respectively, of subjects evaluated. Results demonstrate a diffuse sensitivity to O₃ and physiological responses, either acutely (decreases in FEV₁) or 1 day post (development of AHR or change in EI) occur differentially in healthy young adults. Random overlap among subjects classified as responsive for respective FEV₁, AHR, and EI endpoints suggests these are separate and independent phenotypes of O₃ exposure.
Que, Loretta G.; Stiles, Jane V.; Sundy, John S.
2011-01-01
Effect of laboratory exposure to O3 (220 ppb) and filtered air (FA) on respiratory physiology were evaluated at two time points (acute and 1 day postexposure) in healthy cohort (n = 138, 18–35 yr, 40% women) comprised mainly of Caucasian (60%) and African American (33.3%) subjects. Randomized exposures had a crossover design and durations of 2.25 h that included rest and treadmill walking. Airway responsiveness (AHR) to methacholine (Mch) and permeability of respiratory epithelium (EI) to hydrophilic radiomarker (99mTc-DTPA, MW = 492), were measured at 1-day postexposure. O3 significantly affected FEV1 and FVC indices acutely with mean decrements from pre-exposure values on the order of 7.7 to 8.8% and 1.8 to 2.3% at 1-day post. Acute FEV1 and FVC decreases were most robust in African American male subjects. At 1-day post, O3 induced significant changes in AHR (slope of Mch dose response curve) and EI (Tc99m-DTPA clearance half-time). Based on conventional thresholds of response and dichotomous classification of subjects as responders and nonresponders, sensitivity to O3 was shown to be nonuniform. Acute decrements ≥15% in FEV1, a doubling of Mch slope, or ≥15% increase in EI developed in 20.3%, 23.1%, and 25.9%, respectively, of subjects evaluated. Results demonstrate a diffuse sensitivity to O3 and physiological responses, either acutely (decreases in FEV1) or 1 day post (development of AHR or change in EI) occur differentially in healthy young adults. Random overlap among subjects classified as responsive for respective FEV1, AHR, and EI endpoints suggests these are separate and independent phenotypes of O3 exposure. PMID:21700892
The acute physiological and mood effects of tea and coffee: the role of caffeine level.
Quinlan, P T; Lane, J; Moore, K L; Aspen, J; Rycroft, J A; O'Brien, D C
2000-05-01
The objective of this study was to determine the effect of caffeine level in tea and coffee on acute physiological responses and mood. Randomised full crossover design in subjects after overnight caffeine abstention was studied. In study 1 (n = 17) the caffeine level was manipulated naturalistically by preparing tea and coffee at different strengths (1 or 2 cups equivalent). Caffeine levels were 37.5 and 75 mg in tea, 75 and 150 mg in coffee, with water and no-drink controls. In study 2 (n = 15) caffeine level alone was manipulated (water, decaffeinated tea, plus 0, 25, 50, 100, and 200 mg caffeine). Beverage volume and temperature (55 degrees C) were constant. SBP, DBP, heart rate, skin temperature, skin conductance, and mood were monitored over each 3-h study session. In study 1, tea and coffee produced mild autonomic stimulation and an elevation in mood. There were no effects of tea vs. coffee or caffeine dose, despite a fourfold variation in the latter. Increasing beverage strength was associated with greater increases in DBP and energetic arousal. In study 2, caffeinated beverages increased SBP, DBP, and skin conductance and lowered heart rate and skin temperature compared to water. Significant dose-response relationships to caffeine were seen only for SBP, heart rate, and skin temperature. There were significant effects of caffeine on energetic arousal but no consistent dose-response effects. Caffeinated beverages acutely stimulate the autonomic nervous system and increase alertness. Although caffeine can exert dose-dependent effects on a number of acute autonomic responses, caffeine level is not an important factor. Factors besides caffeine may contribute to these acute effects.
Transesophageal echocardiography in the management of burn patients.
Maybauer, Marc O; Asmussen, Sven; Platts, David G; Fraser, John F; Sanfilippo, Filippo; Maybauer, Dirk M
2014-06-01
A systematic review was conducted to assess the level of evidence for the use of transesophageal echocardiography (TEE) in the management of burn patients. We searched any article published before and including June 30, 2013. Our search yielded 118 total publications, 11 met the inclusion criteria of burn injury and TEE. Available studies published in any language were rated and included. At the present time, there are no available systematic reviews/meta-analyses published that met our search criteria. Only a small number of clinical trials, all with a limited number of patients were available. Therefore, a meta-analysis on outcome parameters was not performed. However, the major pathologic findings in burn patients were reduced left ventricular (LV) systolic and diastolic function, mitral valve vegetation, pulmonary hypertension, pericardial effusion, fluid overload, and right heart failure. The advantages of TEE include offering direct assessment of cardiac valve competency, myocardial contractility, and most importantly real time assessment of adequacy of hemodynamic resuscitation and preload in the acute phase of resuscitation, with minimal additional risk. TEE serves multiple diagnostic purposes and is being used to better understand the fluid status and cardiac physiology of the critically ill burn patient. Randomized controlled trials especially on fluid resuscitation and cardiac performance in acute burns are warranted to potentially further improve outcome. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.
McClure, Kimberly D; Heberlein, Ulrike
2013-02-27
In the fruit fly Drosophila melanogaster, as in mammals, acute exposure to a high dose of ethanol leads to stereotypical behavioral changes beginning with increased activity, followed by incoordination, loss of postural control, and eventually, sedation. The mechanism(s) by which ethanol impacts the CNS leading to ethanol-induced sedation and the genes required for normal sedation sensitivity remain largely unknown. Here we identify the gene apontic (apt), an Myb/SANT-containing transcription factor that is required in the nervous system for normal sensitivity to ethanol sedation. Using genetic and behavioral analyses, we show that apt mediates sensitivity to ethanol sedation by acting in a small set of neurons that express Corazonin (Crz), a neuropeptide likely involved in the physiological response to stress. The activity of Crz neurons regulates the behavioral response to ethanol, as silencing and activating these neurons affects sedation sensitivity in opposite ways. Furthermore, this effect is mediated by Crz, as flies with reduced crz expression show reduced sensitivity to ethanol sedation. Finally, we find that both apt and crz are rapidly upregulated by acute ethanol exposure. Thus, we have identified two genes and a small set of peptidergic neurons that regulate sensitivity to ethanol-induced sedation. We propose that Apt regulates the activity of Crz neurons and/or release of the neuropeptide during ethanol exposure.
2013-01-01
In the fruit fly Drosophila melanogaster, as in mammals, acute exposure to a high dose of ethanol leads to stereotypical behavioral changes beginning with increased activity, followed by incoordination, loss of postural control, and eventually, sedation. The mechanism(s) by which ethanol impacts the CNS leading to ethanol-induced sedation and the genes required for normal sedation sensitivity remain largely unknown. Here we identify the gene apontic (apt), an Myb/SANT-containing transcription factor that is required in the nervous system for normal sensitivity to ethanol sedation. Using genetic and behavioral analyses, we show that apt mediates sensitivity to ethanol sedation by acting in a small set of neurons that express Corazonin (Crz), a neuropeptide likely involved in the physiological response to stress. The activity of Crz neurons regulates the behavioral response to ethanol, as silencing and activating these neurons affects sedation sensitivity in opposite ways. Furthermore, this effect is mediated by Crz, as flies with reduced crz expression show reduced sensitivity to ethanol sedation. Finally, we find that both apt and crz are rapidly upregulated by acute ethanol exposure. Thus, we have identified two genes and a small set of peptidergic neurons that regulate sensitivity to ethanol-induced sedation. We propose that Apt regulates the activity of Crz neurons and/or release of the neuropeptide during ethanol exposure. PMID:23447613
Fang, Boye; Yan, Elsie; Chan, Ko Ling; Ip, Partick
2018-05-04
Elder abuse poses a major public health threat considering the ongoing rapid aging of the global population. This study investigates the association between elder abuse by family caregivers and medical outcomes among older Chinese patients with cognitive and physical impairments in the People's Republic of China. Using cross-sectional design, 1002 older patients (aged 55 y and older) and their family caregivers were recruited from 3 grade A hospitals in Guangdong Province. The major independent variable is caregiver-reported elder abuse, while outcome variables include cardiovascular disease, cerebrovascular disease, chronic obstructive pulmonary disease, peptic ulcer, digestive disorder, chronic hepatic disease, chronic renal disease, metabolic disease, acute inflammation, joint disease, tumor, and general injury. The prevalence of these medical conditions among patients who were abused and those who were not were compared using descriptive analyses and chi-square tests, and logistic regression was used to establish the relevant independent associations. A total of 429 (42.8%) older persons have experienced physical or psychological abuse over the past 12 months. After adjusting for potential confounders, abused older persons were more susceptible to cardiovascular disease, chronic obstructive pulmonary disease, peptic ulcer, digestive disorder, metabolic disease, acute inflammation, tumor, and injuries. Elder abuse is associated with various major medical morbidities. Interdisciplinary cooperation is necessary to identify and reduce the adverse physiological consequences in victims. Copyright © 2018 John Wiley & Sons, Ltd.
Crothers, Kristina; Petrache, Irina; Wongtrakool, Cherry; Lee, Patty J; Schnapp, Lynn M; Gharib, Sina A
2016-04-01
HIV infection is associated with impaired lung gas transfer as indicated by a low diffusing capacity (DLCO), but the mechanisms are not well understood. We hypothesized that HIV-associated gas exchange impairment is indicative of system-wide perturbations that could be reflected by alterations in peripheral blood leukocyte (PBL) gene expression. Forty HIV-infected (HIV(+)) and uninfected (HIV(-)) men with preserved versus low DLCO were enrolled. All subjects were current smokers and those with acute illness, lung diseases other than COPD or asthma were excluded. Total RNA was extracted from PBLs and hybridized to whole-genome microarrays. Gene set enrichment analysis (GSEA) was performed between HIV(+) versus HIV(-) subjects with preserved DLCO and those with low DLCO to identify differentially activated pathways. Using pathway-based analyses, we found that in subjects with preserved DLCO, HIV infection is associated with activation of processes involved in immunity, cell cycle, and apoptosis. Applying a similar analysis to subjects with low DLCO, we identified a much broader repertoire of pro-inflammatory and immune-related pathways in HIV(+) patients relative to HIV(-) subjects, with up-regulation of multiple interleukin pathways, interferon signaling, and toll-like receptor signaling. We confirmed elevated circulating levels of IL-6 in HIV(+) patients with low DLCO relative to the other groups. Our findings reveal that PBLs of subjects with HIV infection and low DLCO are distinguished by widespread enrichment of immuno-inflammatory programs. Activation of these pathways may alter the biology of circulating leukocytes and play a role in the pathogenesis of HIV-associated gas exchange impairment. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Gibson, Oliver R; Dennis, Alex; Parfitt, Tony; Taylor, Lee; Watt, Peter W; Maxwell, Neil S
2014-05-01
Extracellular heat shock protein 72 (eHsp72) concentration increases during exercise-heat stress when conditions elicit physiological strain. Differences in severity of environmental and exercise stimuli have elicited varied response to stress. The present study aimed to quantify the extent of increased eHsp72 with increased exogenous heat stress, and determine related endogenous markers of strain in an exercise-heat model. Ten males cycled for 90 min at 50 % [Formula: see text] in three conditions (TEMP, 20 °C/63 % RH; HOT, 30.2 °C/51%RH; VHOT, 40.0 °C/37%RH). Plasma was analysed for eHsp72 pre, immediately post and 24-h post each trial utilising a commercially available ELISA. Increased eHsp72 concentration was observed post VHOT trial (+172.4 %) (p < 0.05), but not TEMP (-1.9 %) or HOT (+25.7 %) conditions. eHsp72 returned to baseline values within 24 h in all conditions. Changes were observed in rectal temperature (Trec), rate of Trec increase, area under the curve for Trec of 38.5 and 39.0 °C, duration Trec ≥38.5 and ≥39.0 °C, and change in muscle temperature, between VHOT, and TEMP and HOT, but not between TEMP and HOT. Each condition also elicited significantly increasing physiological strain, described by sweat rate, heart rate, physiological strain index, rating of perceived exertion and thermal sensation. Stepwise multiple regression reported rate of Trec increase and change in Trec to be predictors of increased eHsp72 concentration. Data suggests eHsp72 concentration increases once systemic temperature and sympathetic activity exceeds a minimum endogenous criteria elicited during VHOT conditions and is likely to be modulated by large, rapid changes in core temperature.
Santry, Heena P; Janjua, Sumbal; Chang, Yuchiao; Petrovick, Laurie; Velmahos, George C
2011-12-01
Patients with major nontraumatic surgical emergencies (NTSEs) are commonly transferred from small hospitals to tertiary care centers. We hypothesized that transferred patients (TRANS) have worse outcomes than patients with similar diagnoses admitted directly to a tertiary center (DIRECT). We reviewed all patients admitted to the acute care surgery service of our tertiary center (September 1, 2006-October 31, 2009) with one of eight diagnoses indicating a major NTSE. Patients transferred for reasons other than the severity of illness were excluded. Univariate and multivariable analyses compared TRANS and DIRECT patients. Of 319 patients eligible for analysis, 103 (34%) were TRANS and averaged 3.8 days in the referring hospital before transfer. Compared to DIRECT patients, TRANS patients were more likely to be obese (18.5 vs. 8.0%, P = 0.006) and have cardiac (24 vs. 14%, P = 0.022) or pulmonary (25 vs. 12%, P = 0.003) co-morbidities. TRANS patients were also more likely to present to the tertiary center with hypotension (9 vs. 2%, P = 0.021), tachycardia (20 vs. 13%, P = 0.036), anemia (83 vs. 58%, P < 0.001), and hypoalbuminemia (50 vs. 14%, P < 0.001). TRANS patients had higher mortality (4.9 vs. 0.9%, P = 0.038) and longer hospital stay (8 with 5-13 days vs. 5 with 3-8 days, P < 0.001). TRANS patients comprised a significant portion of the population with major NTSEs admitted to the acute care surgery service of our tertiary center. They presented with greater physiologic derangement and had worse outcomes than DIRECT patients. As is currently established for trauma care, regionalization of care for NTSEs should be considered.
The stress-buffering effect of acute exercise: Evidence for HPA axis negative feedback.
Zschucke, Elisabeth; Renneberg, Babette; Dimeo, Fernando; Wüstenberg, Torsten; Ströhle, Andreas
2015-01-01
According to the cross-stressor adaptation hypothesis, physically trained individuals show lower physiological and psychological responses to stressors other than exercise, e.g. psychosocial stress. Reduced stress reactivity may constitute a mechanism of action for the beneficial effects of exercise in maintaining mental health. With regard to neural and psychoneuroendocrine stress responses, the acute stress-buffering effects of exercise have not been investigated yet. A sample of highly trained (HT) and sedentary (SED) young men was randomized to either exercise on a treadmill at moderate intensity (60-70% VO2max; AER) for 30 min, or to perform 30 min of "placebo" exercise (PLAC). 90 min later, an fMRI experiment was conducted using an adapted version of the Montreal Imaging Stress Task (MIST). The subjective and psychoneuroendocrine (cortisol and α-amylase) changes induced by the exercise intervention and the MIST were assessed, as well as neural activations during the MIST. Finally, associations between the different stress responses were analysed. Participants of the AER group showed a significantly reduced cortisol response to the MIST, which was inversely related to the previous exercise-induced α-amylase and cortisol fluctuations. With regard to the sustained BOLD signal, we found higher bilateral hippocampus (Hipp) activity and lower prefrontal cortex (PFC) activity in the AER group. Participants with a higher aerobic fitness showed lower cortisol responses to the MIST. As the Hipp and PFC are brain structures prominently involved in the regulation of the hypothalamus-pituitary-adrenal (HPA) axis, these findings indicate that the acute stress-buffering effect of exercise relies on negative feedback mechanisms. Positive affective changes after exercise appear as important moderators largely accounting for the effects related to physical fitness. Copyright © 2014 Elsevier Ltd. All rights reserved.
1998-01-01
Although a considerable body of scientific data is now available on neuroprotection in acute ischaemic stroke, this field is not yet established in clinical practice. At its third meeting, the European Ad Hoc Consensus Group considered the potential for neuroprotection in acute stroke and the practical problems attendant on the existence of a very limited therapeutic window before irreversible brain damage occurs, and came to the following conclusions. NEUROPROTECTANTS IN CLINICAL DEVELOPMENT: Convincing clinical evidence for an efficacious neuroprotective treatment in acute stroke is still required. Caution should be exercised in interpreting and extrapolating experimental results to stroke patients, who are a very heterogeneous group. The limitations of the time windows and the outcome measures chosen in trials of acute stroke therapy have an important influence on the results. The overall distribution of functional outcomes provides more statistical information than the proportion above a threshold outcome value. Neurological outcome should also be assessed. Neuroprotectants should not be tested clinically in phase II or phase III trials in a time window that exceeds those determined in experimental studies. The harmful effects of a drug in humans may override its neuroprotective potential determined in animals. Agents that act at several different levels in the ischaemic cascade may be more effective than those with a single mechanism of action. CURRENT IN-HOSPITAL MANAGEMENT OF ACUTE STROKE: The four major physiological variables that must be monitored and managed are blood pressure, arterial blood gas levels, body temperature, and glycaemia. The effects of controlling these physiological variables have not been studied in prospective trials, though they may all contribute to the outcome of acute ischaemic stroke and affect the duration of the therapeutic window. Optimal physiological parameters are inherently neuroprotective. Trials of new agents for the treatment of acute stroke should aim to maintain these physiological variables as close to normal as possible, and certainly within strictly defined limits. THE PLACE OF NEUROPROTECTANTS IN ACUTE STROKE MANAGEMENT: Stroke patients are a very heterogeneous group with respect to stroke mechanisms and severity, general condition, age and co-morbidities. At the present time, the only firm guideline than can be proposed for patient selection is the need for early admission to enable neuroprotectant and/or thrombolytic treatment to be started as soon as possible within the therapeutic window. The severity of potential side-effects will largely determine who should assess a patient with suspected stroke and initiate treatment. There is little information on which to base the duration of neuroprotectant therapy, and more experimental data are needed. Even if prehospital treatment proves to be feasible, it should not replace comprehensive stroke management in a specialist hospital unit. Clinical trials of neuroprotectants should only be performed in stroke units. The combined approach of restoring blood flow and providing neuroprotection may be the most productive in human stroke, but current clinical trial design will have to change in order to test combination therapy. Important side-effects are those that interfere with any possible benefit or increase mortality. PHARMACO-ECONOMIC ASPECTS OF NEUROPROTECTANTS: The early increase in hospital cost associated with neuroprotectant therapy may be balanced by the shorter length of hospital stay and lesser degree of disability of the surviving patients. The overall direct financial cost is highly dependent on the number of patients eligible for neuroprotectant therapy, which is itself dependent on the length of the therapeutic window and the severity of potential side-effects. A treatment that achieves a good functional outcome is the most cost-effective approach.
Jimenez, Ana G; Williams, Joseph B
2014-12-01
Given that our climate is rapidly changing, Physiological Ecologists have the critical task of identifying characteristics of species that make them either resilient or susceptible to changes in their natural air temperature regime. Because climate change models suggest that heat events will become more common, and in some places more extreme, it is important to consider how extreme heat events might affect the physiology of a species. The implications of more frequent heat wave events for birds have only recently begun to be addressed, however, the impact of these events on the cellular physiology of a species is difficult to assess. We have developed a novel approach using dermal fibroblasts to explore how short-term thermal stress at the whole animal level might affect cellular rates of metabolism. House sparrows, Passer domesticus were separated into a "control group" and a "heat shocked" group, the latter acclimated to 43°C for 24h. We determined the plasticity of cellular thermal responses by assigning a "recovery group" that was heat shocked as above, but then returned to room temperature for 24h. Primary dermal fibroblasts were grown from skin of all treatment groups and the pectoralis muscle was collected. We found that glycolysis (ECAR) and oxygen consumption rates (OCR), measured using a Seahorse XF 96 analyzer, were significantly higher in the fibroblasts from the heat shocked group of House sparrows compared with their control counterparts. Additionally, muscle fiber diameters decreased and, in turn, Na(+)-K(+)-ATPase maximal activity in the muscle significantly increased in heat shocked sparrows compared with birds in the control group. All of these physiological alterations due to short-term heat exposure were reversible within 24h of recovery at room temperature. These results show that acute exposure to heat stress significantly alters the cellular physiology of sparrows, but that this species is plastic enough to recover from such a thermal insult within 24h. Copyright © 2014. Published by Elsevier Ltd.
Diagnosis and treatment of severely malnourished children with diarrhea
USDA-ARS?s Scientific Manuscript database
Children with severe acute malnutrition complicated by diarrhoea require special care due to their unique physiological vulnerability and increased mortality risks. A systematic literature review (1950-2013) was conducted to identify the most effective diagnostic and therapeutic measures for the com...
Anthocyanins are bioavailable in humans following an acute dose of cranberry juice
USDA-ARS?s Scientific Manuscript database
Research suggests that anthocyanins from berry fruit may affect a variety of physiological responses, including endothelial function, but little information is available regarding the pharmacokinetics of these flavonoids in humans. To determine the pharmacokinetics of cranberry anthocyanins a study ...
These experiments sought to establish a dose-effect relationship between the concentration of perchloroethylene (PCE) in brain tissue and concurrent changes in visual function. A physiologically-based pharmacokinetic (PBPK) model was implemented to predict concentrations of PCE ...
Sarkies, Mitchell N; White, Jennifer; Henderson, Kate; Haas, Romi; Bowles, John
2018-06-18
Are additional weekend allied health services effective and cost-effective for acute general medical and surgical wards, and subacute rehabilitation hospital wards? Systematic review and meta-analysis of studies published between January 2000 and May 2017. Two reviewers independently screened studies for inclusion, extracted data, and assessed methodological quality. Meta-analyses were conducted for relative measures of effect estimates. Patients admitted to acute general medical and surgical wards, and subacute rehabilitation wards. All services delivered by allied health professionals during weekends (Saturday and/or Sunday). This study limited allied health professions to: occupational therapy, physiotherapy, social work, speech pathology, dietetics, art therapy, chiropractic, exercise physiology, music therapy, oral health (not dentistry), osteopathy, podiatry, psychology, and allied health assistants. Hospital length of stay, hospital re-admission, adverse events, discharge destination, functional independence, health-related quality of life, and cost of hospital care. Nineteen articles (20 studies) were identified, comprising 10 randomised and 10 non-randomised trials. Physiotherapy was the most commonly investigated profession. A meta-analysis of randomised, controlled trials showed that providing additional weekend allied health services in subacute rehabilitation wards reduced hospital length of stay by 2.35days (95% CI 0.45 to 4.24, I 2 =0%), and may be a cost-effective way to improve function (SMD 0.09, 95% CI -0.01 to 0.19, I 2 =0%), and health-related quality of life (SMD 0.10, 95% CI -0.01 to 0.20, I 2 =0%). For acute general medical and surgical hospital wards, it was unclear whether the weekend allied health service model provided in the two identified randomised trials led to significant changes in measured outcomes. The benefit of providing additional allied health services is clearer in subacute rehabilitation settings than for acute general medical and surgical wards in hospitals. PROSPERO CRD76771. [Sarkies MN, White J, Henderson K, Haas R, Bowles J, Evidence Translation in Allied Health (EviTAH) Group (2018) Additional weekend allied health services reduce length of stay in subacute rehabilitation wards but their effectiveness and cost-effectiveness are unclear in acute general medical and surgical hospital wards: a systematic review. Journal of Physiotherapy XX: XX-XX]. Copyright © 2018 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakami, Kentaro; Minami, Naoki; Matsuura, Minoru
Background and aims: Acute graft-versus-host disease (GVHD) is a major complication after allogeneic hematopoietic stem cell transplantation, which often targets gastrointestinal (GI) tract. Osteopontin (OPN) plays an important physiological role in the efficient development of Th1 immune responses and cell survival by inhibiting apoptosis. The role of OPN in acute GI-GVHD is poorly understood. In the present study, we investigated the role of OPN in donor T cells in the pathogenicity of acute GI-GVHD. Methods: OPN knockout (KO) mice and C57BL/6 (B6) mice were used as donors, and (C57BL/6 × DBA/2) F1 (BDF1) mice were used as allograft recipients. Mice with acutemore » GI-GVHD were divided into three groups: the control group (BDF1→BDF1), B6 group (B6→BDF1), and OPN-KO group (OPN-KO→BDF1). Bone marrow cells and spleen cells from donors were transplanted to lethally irradiated recipients. Clinical GVHD scores were assessed daily. Recipients were euthanized on day 7 after transplantation, and colons and small intestines were collected for various analyses. Results: The clinical GVHD score in the OPN-KO group was significantly increased compared with the B6 and control groups. We observed a difference in the severity of colonic GVHD between the OPN-KO group and B6 group, but not small intestinal-GVHD between these groups. Interferon-γ, Tumor necrosis factor-α, Interleukin-17A, and Interleukin-18 gene expression in the OPN-KO group was differed between the colon and small intestine. Flow cytometric analysis revealed that the fluorescence intensity of splenic and colonic CD8 T cells expressing Fas Ligand was increased in the OPN-KO group compared with the B6 group. Conclusion: We demonstrated that the importance of OPN in T cells in the onset of acute GI-GVHD involves regulating apoptosis of the intestinal cell via the Fas-Fas Ligand pathway. - Highlights: • A lack of osteopontin in donor cells exacerbated clinical gastrointestinal GVHD. • Donor cells lacking osteopontin affected intestinal inflammation of GVHD. • Donor cells lacking osteopontin increased apoptotic epithelial cells in GVHD. • Osteopontin plays an anti-inflammatory role in acute gastrointestinal GVHD.« less
Time series models on analysing mortality rates and acute childhood lymphoid leukaemia.
Kis, Maria
2005-01-01
In this paper we demonstrate applying time series models on medical research. The Hungarian mortality rates were analysed by autoregressive integrated moving average models and seasonal time series models examined the data of acute childhood lymphoid leukaemia.The mortality data may be analysed by time series methods such as autoregressive integrated moving average (ARIMA) modelling. This method is demonstrated by two examples: analysis of the mortality rates of ischemic heart diseases and analysis of the mortality rates of cancer of digestive system. Mathematical expressions are given for the results of analysis. The relationships between time series of mortality rates were studied with ARIMA models. Calculations of confidence intervals for autoregressive parameters by tree methods: standard normal distribution as estimation and estimation of the White's theory and the continuous time case estimation. Analysing the confidence intervals of the first order autoregressive parameters we may conclude that the confidence intervals were much smaller than other estimations by applying the continuous time estimation model.We present a new approach to analysing the occurrence of acute childhood lymphoid leukaemia. We decompose time series into components. The periodicity of acute childhood lymphoid leukaemia in Hungary was examined using seasonal decomposition time series method. The cyclic trend of the dates of diagnosis revealed that a higher percent of the peaks fell within the winter months than in the other seasons. This proves the seasonal occurrence of the childhood leukaemia in Hungary.
Venkataraman, Ramesh; Gopichandran, Vijayaprasad; Ranganathan, Lakshmi; Rajagopal, Senthilkumar; Abraham, Babu K; Ramakrishnan, Nagarajan
2018-01-01
Background: Mortality prediction in the Intensive Care Unit (ICU) setting is complex, and there are several scoring systems utilized for this process. The Acute Physiology and Chronic Health Evaluation (APACHE) II has been the most widely used scoring system; although, the more recent APACHE IV is considered an updated and advanced prediction model. However, these two systems may not give similar mortality predictions. Objectives: The aim of this study is to compare the mortality prediction ability of APACHE II and APACHE IV scoring systems among patients admitted to a tertiary care ICU. Methods: In this prospective longitudinal observational study, APACHE II and APACHE IV scores of ICU patients were computed using an online calculator. The outcome of the ICU admissions for all the patients was collected as discharged or deceased. The data were analyzed to compare the discrimination and calibration of the mortality prediction ability of the two scores. Results: Out of the 1670 patients' data analyzed, the area under the receiver operating characteristic of APACHE II score was 0.906 (95% confidence interval [CI] – 0.890–0.992), and APACHE IV score was 0.881 (95% CI – 0.862–0.890). The mean predicted mortality rate of the study population as given by the APACHE II scoring system was 44.8 ± 26.7 and as given by APACHE IV scoring system was 29.1 ± 28.5. The observed mortality rate was 22.4%. Conclusions: The APACHE II and IV scoring systems have comparable discrimination ability, but the calibration of APACHE IV seems to be better than that of APACHE II. There is a need to recalibrate the scales with weights derived from the Indian population. PMID:29910542
Venkataraman, Ramesh; Gopichandran, Vijayaprasad; Ranganathan, Lakshmi; Rajagopal, Senthilkumar; Abraham, Babu K; Ramakrishnan, Nagarajan
2018-05-01
Mortality prediction in the Intensive Care Unit (ICU) setting is complex, and there are several scoring systems utilized for this process. The Acute Physiology and Chronic Health Evaluation (APACHE) II has been the most widely used scoring system; although, the more recent APACHE IV is considered an updated and advanced prediction model. However, these two systems may not give similar mortality predictions. The aim of this study is to compare the mortality prediction ability of APACHE II and APACHE IV scoring systems among patients admitted to a tertiary care ICU. In this prospective longitudinal observational study, APACHE II and APACHE IV scores of ICU patients were computed using an online calculator. The outcome of the ICU admissions for all the patients was collected as discharged or deceased. The data were analyzed to compare the discrimination and calibration of the mortality prediction ability of the two scores. Out of the 1670 patients' data analyzed, the area under the receiver operating characteristic of APACHE II score was 0.906 (95% confidence interval [CI] - 0.890-0.992), and APACHE IV score was 0.881 (95% CI - 0.862-0.890). The mean predicted mortality rate of the study population as given by the APACHE II scoring system was 44.8 ± 26.7 and as given by APACHE IV scoring system was 29.1 ± 28.5. The observed mortality rate was 22.4%. The APACHE II and IV scoring systems have comparable discrimination ability, but the calibration of APACHE IV seems to be better than that of APACHE II. There is a need to recalibrate the scales with weights derived from the Indian population.
A three-dimensional virtual environment for modeling mechanical cardiopulmonary interactions.
Kaye, J M; Primiano, F P; Metaxas, D N
1998-06-01
We have developed a real-time computer system for modeling mechanical physiological behavior in an interactive, 3-D virtual environment. Such an environment can be used to facilitate exploration of cardiopulmonary physiology, particularly in situations that are difficult to reproduce clinically. We integrate 3-D deformable body dynamics with new, formal models of (scalar) cardiorespiratory physiology, associating the scalar physiological variables and parameters with the corresponding 3-D anatomy. Our framework enables us to drive a high-dimensional system (the 3-D anatomical models) from one with fewer parameters (the scalar physiological models) because of the nature of the domain and our intended application. Our approach is amenable to modeling patient-specific circumstances in two ways. First, using CT scan data, we apply semi-automatic methods for extracting and reconstructing the anatomy to use in our simulations. Second, our scalar physiological models are defined in terms of clinically measurable, patient-specific parameters. This paper describes our approach, problems we have encountered and a sample of results showing normal breathing and acute effects of pneumothoraces.
Steagall, Paulo V M; Monteiro, Beatriz P; Lavoie, Anne-Marie; Frank, Diane; Troncy, Eric; Luna, Stelio P L; Brondani, Juliana T
2017-01-01
Validation of the French version of the UNESP-Botucatu multidimensional composite pain scale for assessing postoperative pain in cats. The aim of this study was to validate the French version of the UNESP-Botucatu multidimensional composite pain scale (MCPS-Fr) to assess postoperative pain in cats. Two veterinarians and one DVM student identified three domains of behavior based on video analyses: "psychomotor change", "protection of the painful area" and "physiological variables". Internal consistency was excellent (Cronbach's alpha coefficient of 0.94, 0.90 and 0.61, respectively). Criterion validity was good to very good when evaluations from the three observers were compared with a "gold standard". Inter- and intra-rater reliability for each scale item were good to very good. The optimal cut-off point identified with a ROC curve was > 7 (scale range 0-30 points), with a sensitivity of 97.8% and specificity of 99.1%. The MCPS-Fr is a valid, reliable and responsive instrument for assessing acute pain in cats undergoing ovariohysterectomy.(Translated by Dr. Beatriz Monteiro).
Therapeutic application of extracellular vesicles in acute and chronic renal injury.
Rovira, Jordi; Diekmann, Fritz; Campistol, Josep M; Ramírez-Bajo, María José
A new cell-to-cell communication system was discovered in the 1990s, which involves the release of vesicles into the extracellular space. These vesicles shuttle bioactive particles, including proteins, mRNA, miRNA, metabolites, etc. This particular communication has been conserved throughout evolution, which explains why most cell types are capable of producing vesicles. Extracellular vesicles (EVs) are involved in the regulation of different physiological processes, as well as in the development and progression of several diseases. EVs have been widely studied over recent years, especially those produced by embryonic and adult stem cells, blood cells, immune system and nervous system cells, as well as tumour cells. EV analysis from bodily fluids has been used as a diagnostic tool for cancer and recently for different renal diseases. However, this review analyses the importance of EVs generated by stem cells, their function and possible clinical application in renal diseases and kidney transplantation. Copyright © 2016. Published by Elsevier España, S.L.U.
The management of neonatal acute and chronic renal failure: A review.
Coulthard, Malcolm G
2016-11-01
Most babies with chronic renal failure are identified antenatally, and over half that are treated with peritoneal dialysis receive kidney transplants before school age. Most infants that develop acute renal failure have hypotension following cardiac surgery, or multiple organ failure. Sometimes the falls in glomerular filtration and urine output are physiological and reversible, and sometimes due to kidney injury, but (illogically) it is now common to define them all as having 'acute kidney injury'. Contrary to widespread opinion, careful interpretation of the plasma creatinine concentrations can provide sensitive evidence of early acute renal failure. Conservative management frequently leads to under-nutrition or fluid overload. Acute peritoneal dialysis is often technically fraught in very small patients, and haemotherapies have been limited by vascular access and anticoagulation requirements, the need to blood-prime circuits, and serious limitations in regulating fluid removal. Newer devices, including the Nidus, have been specifically designed to reduce these difficulties. Crown Copyright © 2016. Published by Elsevier Ireland Ltd. All rights reserved.
Prolonged Effects of Acute Stress on Decision-Making under Risk: A Human Psychophysiological Study
Yamakawa, Kaori; Ohira, Hideki; Matsunaga, Masahiro; Isowa, Tokiko
2016-01-01
This study investigates the prolonged effects of physiological responses induced by acute stress on risk-taking in decision-making. Participants were divided into a Stress group (N = 14) and a Control group (N = 12). The Trier Social Stress Test was administered as an acute stressor, and reading was administered as a control task; thereafter, participants performed a decision-making task in which they needed to choose a sure option or a gamble option in Gain and Loss frame trials 2 h after (non-) exposure to the stressor. Increased cortisol, adrenaline, heart rate (HR), and subjective stress levels validated acute stress manipulation. Stressed participants made fewer risky choices only in the Gain domain, whereas no effect of stress was shown in the Loss domain. Deceleration of HR reflecting attention was greater for Gains compared with Losses only in the Stress group. Risk avoidance was determined by increased levels of cortisol caused by acute stress. These results suggest that processes regarding glucocorticoid might be involved in the prolonged effects of acute stress on the evaluation of risks and the monitoring of outcomes in decision-making. PMID:27679566
Parker, Laura M; Scanes, Elliot; O'Connor, Wayne A; Coleman, Ross A; Byrne, Maria; Pörtner, Hans-O; Ross, Pauline M
2017-09-15
Coastal and estuarine environments are characterised by acute changes in temperature and salinity. Organisms living within these environments are adapted to withstand such changes, yet near-future ocean acidification (OA) may challenge their physiological capacity to respond. We tested the impact of CO 2 -induced OA on the acute thermal and salinity tolerance, energy metabolism and acid-base regulation capacity of the oyster Saccostrea glomerata. Adult S. glomerata were acclimated to three CO 2 levels (ambient 380μatm, moderate 856μatm, high 1500μatm) for 5weeks (24°C, salinity 34.6) before being exposed to a series of acute temperature (15-33°C) and salinity (34.2-20) treatments. Oysters acclimated to elevated CO 2 showed a significant metabolic depression and extracellular acidosis with acute exposure to elevated temperature and reduced salinity, especially at the highest CO 2 of 1500μatm. Our results suggest that the acute thermal and salinity tolerance of S. glomerata and thus its distribution will reduce as OA continues to worsen. Copyright © 2017 Elsevier Ltd. All rights reserved.
Begen, Fiona M; Turner-Cobb, Julie M
2015-01-01
Acute changes in social belonging are important triggers for alterations in health and well-being, yet research has emphasised the negative effects of 'exclusion' at the expense of evaluating the potentially positive effects of 'inclusion'. This study examined the impact of acute belonging on physiological and psychological outcomes. A healthy population (N = 138) were randomly allocated to 'included' or 'excluded' conditions. Condition-dependent differences in pre/during-task heart rate and pre/post-task self-reports of negative/positive mood, and social self-esteem, were assessed. Included participants showed decreased heart rate and negative mood, and increased social self-esteem. No inclusion-related change in positive mood was shown. An increase in heart rate was observed in excluded participants though no changes in negative/positive mood or social self-esteem were shown. Shifts in social self-esteem acted as a mechanism through which inclusion/exclusion impacted upon negative and positive mood alterations. Results remained significant in presence of covariates (sex, global self-esteem, rumination and social anxiety). Findings suggest that acting to enhance belonging through 'inclusion' resulted in adaptive physiological and psychological outcomes. Neutral and potentially protective responses were observed in the immediate aftermath of 'exclusion'. Self-esteem served as one route through which these effects were transmitted.
Bell, Lynne; Lamport, Daniel J.; Butler, Laurie T.; Williams, Claire M.
2015-01-01
Flavonoids are polyphenolic compounds found in varying concentrations in many plant-based foods. Recent studies suggest that flavonoids can be beneficial to both cognitive and physiological health. Long term flavonoid supplementation over a period of weeks or months has been extensively investigated and reviewed, particularly with respect to cognitive ageing and neurodegenerative disease. Significantly less focus has been directed towards the short term effects of single doses of flavonoids on cognition. Here, we review 21 such studies with particular emphasis on the subclass and dose of flavonoids administered, the cognitive domains affected by flavonoid supplementation, and the effect size of the response. The emerging evidence suggests that flavonoids may be beneficial to attention, working memory, and psychomotor processing speed in a general population. Episodic memory effects are less well defined and may be restricted to child or older adult populations. The evidence also points towards a dose-dependent effect of flavonoids, but the physiological mechanisms of action remain unclear. Overall, there is encouraging evidence that flavonoid supplementation can benefit cognitive outcomes within an acute time frame of 0–6 h. But larger studies, combining cognitive and physiological measures, are needed to strengthen the evidence base. PMID:26690214
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellison, M.D.B.
The blood-brain barrier (BBB) selectively restricts the blood-to-brain passage of many solutes owing to unique properties of cerebrovascular endothelial cell membranes. To date, experimental study of the BBB has been accomplished primarily through the use of two different methodological approaches. Morphological studies have mostly employed large molecular weight (MW) tracers to detect morphological alterations underlying increased permeability. Physiological studies, employing smaller, more physiologic tracers have successfully described, quantitatively, certain functional aspects of blood-to-brain transfer. The current work attempts to merge these two approaches and to consider barrier function/dysfunction from both a morphological and a functional perspective. Specifically, the study comparesmore » in rats, following acute hypertension, the cerebrovascular passage of /sup 14/C-alpha-aminoisobutyric acid (AIB) and that of horseradish peroxidase (HRP). The blood-to-brain passage of AIB and HRP were compared following acute hypertension, with regard to both the distributions of the tracer extravasation patterns and the magnitude of tracer extravasation. The results of this study suggest that traditional morphological barrier studies alone do not reveal all aspects of altered barrier status and that multiple mechanisms underlying increased BBB permeability may operate simultaneously during BBB dysfunction.« less
Oxidative stress adaptation with acute, chronic, and repeated stress.
Pickering, Andrew M; Vojtovich, Lesya; Tower, John; A Davies, Kelvin J
2013-02-01
Oxidative stress adaptation, or hormesis, is an important mechanism by which cells and organisms respond to, and cope with, environmental and physiological shifts in the level of oxidative stress. Most studies of oxidative stress adaption have been limited to adaptation induced by acute stress. In contrast, many if not most environmental and physiological stresses are either repeated or chronic. In this study we find that both cultured mammalian cells and the fruit fly Drosophila melanogaster are capable of adapting to chronic or repeated stress by upregulating protective systems, such as their proteasomal proteolytic capacity to remove oxidized proteins. Repeated stress adaptation resulted in significant extension of adaptive responses. Repeated stresses must occur at sufficiently long intervals, however (12-h or more for MEF cells and 7 days or more for flies), for adaptation to be successful, and the levels of both repeated and chronic stress must be lower than is optimal for adaptation to acute stress. Regrettably, regimens of adaptation to both repeated and chronic stress that were successful for short-term survival in Drosophila nevertheless also caused significant reductions in life span for the flies. Thus, although both repeated and chronic stress can be tolerated, they may result in a shorter life. Copyright © 2012 Elsevier Inc. All rights reserved.
Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus.
García-Betancur, Juan-Carlos; Goñi-Moreno, Angel; Horger, Thomas; Schott, Melanie; Sharan, Malvika; Eikmeier, Julian; Wohlmuth, Barbara; Zernecke, Alma; Ohlsen, Knut; Kuttler, Christina; Lopez, Daniel
2017-09-12
A central question to biology is how pathogenic bacteria initiate acute or chronic infections. Here we describe a genetic program for cell-fate decision in the opportunistic human pathogen Staphylococcus aureus , which generates the phenotypic bifurcation of the cells into two genetically identical but different cell types during the course of an infection. Whereas one cell type promotes the formation of biofilms that contribute to chronic infections, the second type is planktonic and produces the toxins that contribute to acute bacteremia. We identified a bimodal switch in the agr quorum sensing system that antagonistically regulates the differentiation of these two physiologically distinct cell types. We found that extracellular signals affect the behavior of the agr bimodal switch and modify the size of the specialized subpopulations in specific colonization niches. For instance, magnesium-enriched colonization niches causes magnesium binding to S. aureus teichoic acids and increases bacterial cell wall rigidity. This signal triggers a genetic program that ultimately downregulates the agr bimodal switch. Colonization niches with different magnesium concentrations influence the bimodal system activity, which defines a distinct ratio between these subpopulations; this in turn leads to distinct infection outcomes in vitro and in an in vivo murine infection model. Cell differentiation generates physiological heterogeneity in clonal bacterial infections and helps to determine the distinct infection types.
Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus
García-Betancur, Juan-Carlos; Goñi-Moreno, Angel; Horger, Thomas; Schott, Melanie; Sharan, Malvika; Eikmeier, Julian; Wohlmuth, Barbara; Zernecke, Alma; Ohlsen, Knut; Kuttler, Christina
2017-01-01
A central question to biology is how pathogenic bacteria initiate acute or chronic infections. Here we describe a genetic program for cell-fate decision in the opportunistic human pathogen Staphylococcus aureus, which generates the phenotypic bifurcation of the cells into two genetically identical but different cell types during the course of an infection. Whereas one cell type promotes the formation of biofilms that contribute to chronic infections, the second type is planktonic and produces the toxins that contribute to acute bacteremia. We identified a bimodal switch in the agr quorum sensing system that antagonistically regulates the differentiation of these two physiologically distinct cell types. We found that extracellular signals affect the behavior of the agr bimodal switch and modify the size of the specialized subpopulations in specific colonization niches. For instance, magnesium-enriched colonization niches causes magnesium binding to S. aureusteichoic acids and increases bacterial cell wall rigidity. This signal triggers a genetic program that ultimately downregulates the agr bimodal switch. Colonization niches with different magnesium concentrations influence the bimodal system activity, which defines a distinct ratio between these subpopulations; this in turn leads to distinct infection outcomes in vitro and in an in vivo murine infection model. Cell differentiation generates physiological heterogeneity in clonal bacterial infections and helps to determine the distinct infection types. PMID:28893374
Assessment, management and treatment of acute fingertip injuries.
Kearney, Anthony; Canty, Louise
2016-06-01
Fingertip injuries with nail bed trauma can require specialist hand surgery, depending on severity. However, most of these injuries can be managed in well-equipped emergency departments by emergency nurses with an in-depth knowledge and understanding of the anatomy and physiology of the fingernail and surrounding structures, assessment and examination, pain management and treatment. This article describes the surface and underlying anatomy and physiology of the nail, the most common mechanisms of injury, relevant diagnostic investigations, and initial assessment and management. It also discusses treatment options, referral pathways, and patient discharge advice.
The pragmatics of feeding the pediatric patient with acute respiratory distress syndrome.
Verger, Judy T; Bradshaw, Darla J; Henry, Elizabeth; Roberts, Kathryn E
2004-09-01
Acute respiratory distress syndrome (ARDS) represents the ultimate pulmonary response to a wide range of injuries, from septicemia to trauma. Optimal nutrition is vital to enhancing oxygen delivery, supporting adequate cardiac contractility and respiratory musculature, eliminating fluid and electrolyte imbalances, and supporting the proinflammatory response. Research is providing a better understanding of nutrients that specifically address the complex physiologic changes in ARDS. This article highlights the pathophysiology of ARDS as it relates to nutrition, relevant nutritional assessment, and important enteral and parenteral considerations for the pediatric patient who has ARDS.
NASA Technical Reports Server (NTRS)
Lushbaugh, C. C.
1974-01-01
The acute radiation syndrome in man is clinically bounded by death at high dose levels and by the prodromal syndrome of untoward physiological effects at minimal levels of clinically effective exposure. As in lower animals, man experiences principally three acute modes of death from radiation exposure (Bond et al., 1965). These are known collectively as the lethal radiation syndromes: central nervous system death, gastrointestinal death, and hematopoietic death. The effect of multiple exposure on lethality, the effect of multiple exposure on hematopoietic recovery, and quantitative aspects of cell and tissue repair are discussed.
2017-05-04
course data for blood were available for both high and low doses (Sanzgiri et al., 1995), while tissue data were available only for high doses...Naval Medical Research Unit Dayton AVAILABILITY OF ACUTE AND/OR SUBACUTE TOXICOKI- NETIC DATA FOR SELECT COMPOUNDS FOR THE RAT AND...provides that ‘Copyright protection under this title is not available for any work of the United States Government.’ Title 17 U.S.C. §101 defines a
Richard, Jean-Christophe M; Lefebvre, Jean-Claude
2011-01-01
Positional strategies have been proposed for mechanically ventilated patients with acute respiratory distress syndrome. Despite different physiological mechanisms involved, oxygenation improvement has been demonstrated with both prone and upright positions. In the previous issue of Critical Care, Robak and colleagues reported the first study evaluating the short-term effects of combining prone and upright positioning. The combined positioning enhanced the response rate in terms of oxygenation. Other benefits, such as a reduction in ventilator-associated pneumonia and better enteral feeding tolerance, can potentially be expected.
In Sync: The Effect of Physiology Feedback on the Match between Heart Rate and Self-Reported Stress.
van Dijk, Elisabeth T; Westerink, Joyce H D M; Beute, Femke; IJsselsteijn, Wijnand A
2015-01-01
Over the past years self-tracking of physiological parameters has become increasingly common: more and more people are keeping track of aspects of their physiological state (e.g., heart rate, blood sugar, and blood pressure). To shed light on the possible effects of self-tracking of physiology, a study was conducted to test whether physiology feedback has acute effects on self-reported stress and the extent to which self-reported stress corresponds to physiological stress. In this study, participants executed several short tasks, while they were either shown visual feedback about their heart rate or not. Results show that self-reported stress is more in sync with heart rate for participants who received physiology feedback. Interactions between two personality factors (neuroticism and anxiety sensitivity) and feedback on the level of self-reported stress were found, indicating that while physiology feedback may be beneficial for individuals high in neuroticism, it may be detrimental for those high in anxiety sensitivity. Additional work is needed to establish how the results of this study may extend beyond immediate effects in a controlled lab setting, but our results do provide a first indication of how self-tracking of physiology may lead to better body awareness and how personality characteristics can help us predict which individuals are most likely to benefit from self-tracking of physiology.
In Sync: The Effect of Physiology Feedback on the Match between Heart Rate and Self-Reported Stress
van Dijk, Elisabeth T.; Westerink, Joyce H. D. M.; Beute, Femke; IJsselsteijn, Wijnand A.
2015-01-01
Over the past years self-tracking of physiological parameters has become increasingly common: more and more people are keeping track of aspects of their physiological state (e.g., heart rate, blood sugar, and blood pressure). To shed light on the possible effects of self-tracking of physiology, a study was conducted to test whether physiology feedback has acute effects on self-reported stress and the extent to which self-reported stress corresponds to physiological stress. In this study, participants executed several short tasks, while they were either shown visual feedback about their heart rate or not. Results show that self-reported stress is more in sync with heart rate for participants who received physiology feedback. Interactions between two personality factors (neuroticism and anxiety sensitivity) and feedback on the level of self-reported stress were found, indicating that while physiology feedback may be beneficial for individuals high in neuroticism, it may be detrimental for those high in anxiety sensitivity. Additional work is needed to establish how the results of this study may extend beyond immediate effects in a controlled lab setting, but our results do provide a first indication of how self-tracking of physiology may lead to better body awareness and how personality characteristics can help us predict which individuals are most likely to benefit from self-tracking of physiology. PMID:26146611
Wolkow, Alexander; Ferguson, Sally; Aisbett, Brad; Main, Luana
2015-01-01
Emergency work can expose personnel to sleep restriction. Inadequate amounts of sleep can negatively affect physiological and psychological stress responses. This review critiqued the emergency service literature (e.g., firefighting, police/law enforcement, defense forces, ambulance/paramedic personnel) that has investigated the effect of sleep restriction on hormonal, inflammatory and psychological responses. Furthermore, it investigated if a psycho-physiological approach can help contextualize the significance of such responses to assist emergency service agencies monitor the health of their personnel. The available literature suggests that sleep restriction across multiple work days can disrupt cytokine and cortisol levels, deteriorate mood and elicit simultaneous physiological and psychological responses. However, research concerning the interaction between such responses is limited and inconclusive. Therefore, it is unknown if a psycho-physiological relationship exists and as a result, it is currently not feasible for agencies to monitor sleep restriction related stress based on psycho- physiological interactions. Sleep restriction does however, appear to be a major stressor contributing to physiological and psychological responses and thus, warrants further investigation. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
The Lifetime Surveillance of Astronaut Health (LSAH) Project
NASA Technical Reports Server (NTRS)
Bopp, Eugenia; Wear, Mary L.; Lee, Lesley R.; VanBaalen, Mary
2013-01-01
From 1989-2010 NASA conducted a research study, the Longitudinal Study of Astronaut Health, to investigate the incidence of acute and chronic morbidity and mortality in astronauts and to determine whether their occupational exposures were associated with increased risk of death or disability. In 2004, the Institute of Medicine recommended that NASA convert the longitudinal study into an occupational health surveillance program and in 2010, NASA initiated the Lifetime Surveillance of Astronaut Health project. The new program collects data on astronaut workplace exposures, especially those occurring in the training and space flight environments, and conducts operational and health care analyses to look for trends in exposure and health outcomes. Astronaut selection and retention medical standards are rigorous, requiring an extensive clinical testing regimen. As a result, this employee population has contributed to a large set of health data available for analyses. Astronauts represent a special population with occupational exposures not typically experienced by other employee populations. Additionally, astronauts are different from the general population in terms of demographic and physiologic characteristics. The challenges and benefits of conducting health surveillance for an employee population with unique occupational exposures will be discussed. Several occupational surveillance projects currently underway to examine associations between astronaut workplace exposures and medical outcomes will be described.
Acute Exposure of College Basketball Players to Moderate Altitude: Selected Physiological Responses.
ERIC Educational Resources Information Center
Noble, Bruce J.; Maresh, Carl M.
1979-01-01
In general, basketball players with moderately high aerobic power who reside at an altitude of 1,000 m do not display the hypoxic response to an altitude of 2,200 m expected of sea level residents and aerobically trained athletes. (JD)
ERIC Educational Resources Information Center
Blount, Ronald L.; Piira, Tiina; Cohen, Lindsey L.; Cheng, Patricia S.
2006-01-01
This article reviews the various settings in which infants, children, and adolescents experience pain during acute medical procedures and issues related to referral of children to pain management teams. In addition, self-report, reports by others, physiological monitoring, and direct observation methods of assessment of pain and related constructs…
Between strain and tissue differences exist in global hydroxymethylation after acute ozone exposure.
Epigenetics have been increasingly recognized as a mechanism linking environment and gene expression with both normal physiologic function as well as disease states. Demethylation of cysteine residues, generally leading to gene activation, is an oxygen-dependent reaction and crea...
ALTERED PHOSPHORYLATION OF MAP KINASE AFTER ACUTE EXPOSURE TO PCB153.
Long-term potentiation (LTP) is a model of synaptic plasticity believed to encompass the physiological substrate of memory. The mitogen-activated protein kinase (ERK1/2) signalling cascade contributes to synaptic plasticity and to long-term memory formation. Learning and LTP st...
Physiological responses of men during sleep deprivation.
DOT National Transportation Integrated Search
1970-05-01
The effects of 84 hours of sleep deprivation were examined in a group of six young men and compared with a group of six controls. Subjects were studied in pairs, one sleep-deprived and one control. Primary attention was given to the responses to acut...
Effects of 7.5% Carbon Dioxide Inhalation on Anxiety and Mood in Cigarette Smokers
Attwood, Angela S.; Ataya, Alia F.; Bailey, Jayne E.; Lightman, Stafford L.; Munafò, Marcus R.
2016-01-01
Cigarette smoking is associated with elevated risk of anxiety and mood disorder. Using the 7.5% carbon dioxide (CO2) inhalation model of anxiety induction, we examined the effects of smoking status and abstinence from smoking on anxiety responses. Physiological and subjective responses to CO2 and medical air were compared in smokers and non-smokers (Experiment One) and in overnight abstinent and non-abstinent smokers (Experiment Two). CO2 induced greater increases in blood pressure in non-smokers compared with smokers (ps < 0.043), and greater increases in anxiety (p = 0.005) and negative affect (p = 0.054) in non-abstinent compared with abstinent smokers. CO2 increased physiological and subjective indices of anxiety. There were differences across smoking groups indicating that the CO2 inhalation model is a useful tool for examining the relationship between smoking and anxiety. The findings suggested that both acute smoking and acute abstinence may protect against anxious responding. Further investigation is needed in long-term heavy smokers. PMID:24763184
Effects of 7.5% carbon dioxide inhalation on anxiety and mood in cigarette smokers.
Attwood, Angela S; Ataya, Alia F; Bailey, Jayne E; Lightman, Stafford L; Munafò, Marcus R
2014-08-01
Cigarette smoking is associated with elevated risk of anxiety and mood disorder. Using the 7.5% carbon dioxide (CO2) inhalation model of anxiety induction, we examined the effects of smoking status and abstinence from smoking on anxiety responses. Physiological and subjective responses to CO2 and medical air were compared in smokers and non-smokers (Experiment One) and in overnight abstinent and non-abstinent smokers (Experiment Two). CO2 induced greater increases in blood pressure in non-smokers compared with smokers (ps < 0.043), and greater increases in anxiety (p = 0.005) and negative affect (p = 0.054) in non-abstinent compared with abstinent smokers. CO2 increased physiological and subjective indices of anxiety. There were differences across smoking groups indicating that the CO2 inhalation model is a useful tool for examining the relationship between smoking and anxiety. The findings suggested that both acute smoking and acute abstinence may protect against anxious responding. Further investigation is needed in long-term heavy smokers. © The Author(s) 2014.
Simons, Jeffrey S.; Maisto, Stephen A.; Wray, Tyler B.; Emery, Noah N.
2015-01-01
This study tested the effects of alcohol intoxication and physiological arousal on cognitive biases toward erotic stimuli and condoms. Ninety-seven heterosexual men were randomized to 1 of 6 independent conditions in a 2 (high arousal or control) × 3 (alcohol target BAC = 0.08), placebo, or juice control) design and then completed a variant of the Approach Avoidance Task (AAT). The AAT assessed reaction times toward approaching and avoiding erotic stimuli and condoms with a joystick. Consistent with hypotheses, the alcohol condition exhibited an approach bias toward erotic stimuli, whereas the control and placebo groups exhibited an approach bias toward condom stimuli. Similarly, the participants in the high arousal condition exhibited an approach bias toward erotic stimuli and the low arousal control condition exhibited an approach bias toward condoms. The results suggest that acute changes in intoxication and physiological arousal independently foster biased responding towards sexual stimuli and these biases are associated with sexual risk intentions. PMID:25808719
Behavioral and Metabolic Phenotype Indicate Personality in Zebrafish (Danio rerio).
Yuan, Mingzhe; Chen, Yan; Huang, Yingying; Lu, Weiqun
2018-01-01
Consistency of individual differences of animal behavior and personality in reactions to various environmental stresses among their life stages could reflect basic divergences in coping style which may affect survival, social rank, and reproductive success in the wild. However, the physiological mechanisms determining personality remain poorly understood. In order to study whether behavior, metabolism and physiological stress responses relate to the personality, we employed post-stress recovery assays to separate zebrafish into two behavioral types (proactive and reactive). The results demonstrated consistent difference among personality, behavior and metabolism in which proactive individuals were more aggressive, had higher standard metabolic rates and showed lower shuttled frequencies between dark and light compartments than the reactive ones. The behavioral variations were also linked to divergent acute salinity stress responses: proactive individuals adopted a swift locomotion behavior in response to acute salinity challenge while reactive individuals remain unchanged. Our results provide useful insight into how personality acts on correlated traits and the importance of a holistic approach to understanding the mechanisms driving persistent inter-individual differences.
Acute Modulation of Mycobacterial Cell Envelope Biogenesis by Front-Line Tuberculosis Drugs.
Rodriguez-Rivera, Frances P; Zhou, Xiaoxue; Theriot, Julie A; Bertozzi, Carolyn R
2018-05-04
Front-line tuberculosis (TB) drugs have been characterized extensively in vitro and in vivo with respect to gene expression and cell viability. However, little work has been devoted to understanding their effects on the physiology of the cell envelope, one of the main targets of this clinical regimen. Herein, we use metabolic labeling methods to visualize the effects of TB drugs on cell envelope dynamics in mycobacterial species. We developed a new fluorophore-trehalose conjugate to visualize trehalose monomycolates of the mycomembrane using super-resolution microscopy. We also probed the relationship between mycomembrane and peptidoglycan dynamics using a dual metabolic labeling strategy. Finally, we found that metabolic labeling of both cell envelope structures reports on drug effects on cell physiology in two hours, far faster than a genetic sensor of cell envelope stress. Our work provides insight into acute drug effects on cell envelope biogenesis in live mycobacteria. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sleep Deprivation and Neurobehavioral Dynamics
Basner, Mathias; Rao, Hengyi; Goel, Namni; Dinges, David F.
2013-01-01
Lifestyles involving sleep deprivation are common, despite mounting evidence that both acute total sleep deprivation and chronically restricted sleep degrade neurobehavioral functions associated with arousal, attention, memory and state stability. Current research suggests dynamic differences in the way the central nervous system responds to acute versus chronic sleep restriction, which is reflected in new models of sleep-wake regulation. Chronic sleep restriction likely induces long-term neuromodulatory changes in brain physiology that could explain why recovery from it may require more time than from acute sleep loss. High intraclass correlations in neurobehavioral responses to sleep loss suggest that these trait-like differences are phenotypic and may include genetic components. Sleep deprivation induces changes in brain metabolism and neural activation that involve distributed networks and connectivity. PMID:23523374
Intermittent Noise Induces Physiological Stress in a Coastal Marine Fish
Nichols, Tye A.; Anderson, Todd W.; Širović, Ana
2015-01-01
Anthropogenic noise in the ocean has increased substantially in recent decades, and motorized vessels produce what is likely the most common form of underwater noise pollution. Noise has the potential to induce physiological stress in marine fishes, which may have negative ecological consequences. In this study, physiological effects of increased noise (playback of boat noise recorded in the field) on a coastal marine fish (the giant kelpfish, Heterostichus rostratus) were investigated by measuring the stress responses (cortisol concentration) of fish to increased noise of various temporal dynamics and noise levels. Giant kelpfish exhibited acute stress responses when exposed to intermittent noise, but not to continuous noise or control conditions (playback of recorded natural ambient sound). These results suggest that variability in the acoustic environment may be more important than the period of noise exposure for inducing stress in a marine fish, and provide information regarding noise levels at which physiological responses occur. PMID:26402068
Gene Expression Analysis to Assess the Relevance of Rodent Models to Human Lung Injury.
Sweeney, Timothy E; Lofgren, Shane; Khatri, Purvesh; Rogers, Angela J
2017-08-01
The relevance of animal models to human diseases is an area of intense scientific debate. The degree to which mouse models of lung injury recapitulate human lung injury has never been assessed. Integrating data from both human and animal expression studies allows for increased statistical power and identification of conserved differential gene expression across organisms and conditions. We sought comprehensive integration of gene expression data in experimental acute lung injury (ALI) in rodents compared with humans. We performed two separate gene expression multicohort analyses to determine differential gene expression in experimental animal and human lung injury. We used correlational and pathway analyses combined with external in vitro gene expression data to identify both potential drivers of underlying inflammation and therapeutic drug candidates. We identified 21 animal lung tissue datasets and three human lung injury bronchoalveolar lavage datasets. We show that the metasignatures of animal and human experimental ALI are significantly correlated despite these widely varying experimental conditions. The gene expression changes among mice and rats across diverse injury models (ozone, ventilator-induced lung injury, LPS) are significantly correlated with human models of lung injury (Pearson r = 0.33-0.45, P < 1E -16 ). Neutrophil signatures are enriched in both animal and human lung injury. Predicted therapeutic targets, peptide ligand signatures, and pathway analyses are also all highly overlapping. Gene expression changes are similar in animal and human experimental ALI, and provide several physiologic and therapeutic insights to the disease.
Gibson, Carolyn; Matthews, Karen; Thurston, Rebecca
2014-01-01
Objective To examine the role of physical activity in menopausal hot flashes. Competing models conceptualize physical activity as a risk or protective factor for hot flashes. Few studies have examined this relationship prospectively using physiologic measures of hot flashes and physical activity. Design Over two 48 hour-periods, 51 participants wore a physiologic hot flash monitor and activity monitor, and reported their hot flashes in an electronic diary. Physiologic hot flashes, reported hot flashes and reported hot flashes without physiological corroboration were related to activity changes using hierarchical generalized linear modeling, adjusting for potential confounders. Setting Community. Patients Midlife women. Interventions None. Main Outcome Measures Physiologically-detected hot flashes and reported hot flashes with and without physiologic corroboration. Results Hot flash reports without physiologic corroboration were more likely after activity increases (OR 1.04, 95% CI: 1.00-1.10, p=.01), particularly among women with higher levels of depressive symptoms (interaction p=.02). No other types of hot flashes were related to physical activity. Conclusion Acute increases in physical activity were associated with increased reporting of hot flashes lacking physiologic corroboration, particularly among women with depressive symptoms. Clinicians should consider the role of symptom perception and reporting in relations between physical activity and hot flashes. PMID:24491454
Placebo and Nocebo Effects: The Advantage of Measuring Expectations and Psychological Factors
Corsi, Nicole; Colloca, Luana
2017-01-01
Several studies have explored the predictability of placebo and nocebo individual responses by investigating personality factors and expectations of pain decreases and increases. Psychological factors such as optimism, suggestibility, empathy and neuroticism have been linked to placebo effects, while pessimism, anxiety and catastrophizing have been associated to nocebo effects. We aimed to investigate the interplay between psychological factors, expectations of low and high pain and placebo hypoalgesia and nocebo hyperalgesia. We studied 46 healthy participants using a well-validated conditioning paradigm with contact heat thermal stimulations. Visual cues were presented to alert participants about the level of intensity of an upcoming thermal pain. We delivered high, medium and low levels of pain associated with red, yellow and green cues, respectively, during the conditioning phase. During the testing phase, the level of painful stimulations was surreptitiously set at the medium control level with all the three cues to measure placebo and nocebo effects. We found both robust placebo hypolagesic and nocebo hyperalgesic responses that were highly correlated with expectancy of low and high pain. Simple linear regression analyses showed that placebo responses were negatively correlated with anxiety severity and different aspects of fear of pain (e.g., medical pain, severe pain). Nocebo responses were positively correlated with anxiety sensitivity and physiological suggestibility with a trend toward catastrophizing. Step-wise regression analyses indicated that an aggregate score of motivation (value/utility and pressure/tense subscales) and suggestibility (physiological reactivity and persuadability subscales), accounted for the 51% of the variance in the placebo responsiveness. When considered together, anxiety severity, NEO openness-extraversion and depression accounted for the 49.1% of the variance of the nocebo responses. Psychological factors per se did not influence expectations. In fact, mediation analyses including expectations, personality factors and placebo and nocebo responses, revealed that expectations were not influenced by personality factors. These findings highlight the potential advantage of considering batteries of personality factors and measurements of expectation in predicting placebo and nocebo effects related to experimental acute pain. PMID:28321201
Overview of FEED, the feeding experiments end-user database.
Wall, Christine E; Vinyard, Christopher J; Williams, Susan H; Gapeyev, Vladimir; Liu, Xianhua; Lapp, Hilmar; German, Rebecca Z
2011-08-01
The Feeding Experiments End-user Database (FEED) is a research tool developed by the Mammalian Feeding Working Group at the National Evolutionary Synthesis Center that permits synthetic, evolutionary analyses of the physiology of mammalian feeding. The tasks of the Working Group are to compile physiologic data sets into a uniform digital format stored at a central source, develop a standardized terminology for describing and organizing the data, and carry out a set of novel analyses using FEED. FEED contains raw physiologic data linked to extensive metadata. It serves as an archive for a large number of existing data sets and a repository for future data sets. The metadata are stored as text and images that describe experimental protocols, research subjects, and anatomical information. The metadata incorporate controlled vocabularies to allow consistent use of the terms used to describe and organize the physiologic data. The planned analyses address long-standing questions concerning the phylogenetic distribution of phenotypes involving muscle anatomy and feeding physiology among mammals, the presence and nature of motor pattern conservation in the mammalian feeding muscles, and the extent to which suckling constrains the evolution of feeding behavior in adult mammals. We expect FEED to be a growing digital archive that will facilitate new research into understanding the evolution of feeding anatomy.
Acute and Chronic Low Back Pain: Cognitive, Affective, and Behavioral Dimensions.
ERIC Educational Resources Information Center
Hadjistavropoulos, Heather D.; Craig, Kenneth D.
1994-01-01
Divided 90 chronic low back pain patients into those who demonstrated signs that were congruent or incongruent with underlying anatomical and physiological principles. Low socioeconomic status, compensation claims, use of opiate analgesics, greater disability, catastrophizing cognitions, stronger emotionality, and passive coping were more…
A DOSIMETRIC ANALYSIS OF THE ACUTE BEHAVIORAL EFFECTS OF INHALED TOLUENE IN RATS
Knowledge of the appropriate metric of dose for a toxic chemical facilitates quantitative extrapolation of toxicity observed in the laboratory to the risk of adverse effects in the human population. Here we utilize a physiologically-based toxicokinetic (PBTK) model for toluene, a...
Genetic associations with micronutrient levels identified in immune and gastrointestinal networks
USDA-ARS?s Scientific Manuscript database
The discovery of vitamins and clarification of their role in preventing frank essential nutrient deficiencies occurred in the early 1900s. Much vitamin research has understandably focused on public health and the effects of single nutrients to alleviate acute conditions. The physiological processes ...
Toua, Rene Elaine; de Kock, Jacques Erasmus; Welzel, Tyson
2016-02-01
Direct comparison of mortality rates has limited value because most deaths are due to the disease process. Predicting the risk of death accurately remains a challenge. A cross-sectional study compared the expected mortality rate as calculated with an administrative model to a physiological model, Acute Physiology and Chronic Health Evaluation IV. The combined cohort and stratified samples (<0.1, 0.1-0.5, or >0.5 predicted mortality) were considered. A total of 47,982 patients were scored from 1 July 2013 to 30 June 2014, and 46,061 records were included in the analysis. A moderate correlation was shown for the combined cohort (Pearson correlation index, 0.618; 95% confidence interval [CI], 0.380-0.779; R(2) = 0.38). A very good correlation for the less than 10% stratum (Pearson correlation index, 0.884; R(2) = 0.78; 95% CI, 0.79-0.937) and a moderate correlation for 0.1 to 0.5 predicted mortality rates (Pearson correlation index, 0.782; R(2) = 0.61; 95% CI, 0.623-0.879). There was no significant positive correlation for the greater than 50% predicted mortality stratum (Pearson correlation index, 0.087; R(2) = 0.007; 95% CI, -0.23 to 0.387). At less than 0.1, the models are interchangeable, but in spite of a moderate correlation, greater than 0.1 hospital standardized mortality ratio cannot be used to predict mortality. Copyright © 2015 Elsevier Inc. All rights reserved.
Harrison-Bernard, Lisa M; Naljayan, Mihran V; Eason, Jane M; Mercante, Donald E; Gunaldo, Tina P
2017-12-01
The primary purpose of conducting an interprofessional education (IPE) experience during the renal physiology block of a graduate-level course was to provide basic science, physical therapy, and physician assistant graduate students with an opportunity to work as a team in the diagnosis, treatment, and collaborative care of a patient with acute kidney injury. The secondary purpose was to enhance the understanding of basic renal physiology principles with a patient case presentation of renal pathophysiology. The overall purpose was to assess the value of IPE integration within a basic science course by examining student perceptions and program evaluation. Graduate-level students operated in interprofessional teams while working through an acute kidney injury patient case. The following Interprofessional Education Collaborative subcompetencies were targeted: Roles/Responsibilities (RR) Behavioral Expectations (RR1, RR4) and Interprofessional Communication (CC) Behavioral Expectations (CC4). Clinical and IPE stimulus questions were discussed both within and between teams with assistance provided by faculty facilitators. Students were given a pre- and postsurvey to determine their knowledge of IPE. There were statistically significant increases from pre- to postsurvey scores for all six IPE questions for all students. Physical therapy and physician assistant students had a statistically significant increase in pre- to postsurvey scores, indicating a more favorable perception of their interprofessional competence for RR1, RR4, and CC4. No changes were noted in pre- to postsurvey scores for basic science graduate students. Incorporating planned IPE experiences into multidisciplinary health science courses represents an appropriate venue to have students learn and apply interprofessional competencies. Copyright © 2017 the American Physiological Society.
Matson, Kevin D; Horrocks, Nicholas P C; Tieleman, B Irene; Haase, Eberhard
2012-11-01
Most birds rely on flight for survival. Yet as an energetically taxing and physiologically integrative process, flight has many repercussions. Studying pigeons (Columba livia) and employing physiological and immunological indices that are relevant to ecologists working with wild birds, we determined what, if any, acute immune-like responses result from bouts of intense, non-migratory flight. We compared the effects of flight with the effects of a simulated bacterial infection. We also investigated indices in terms of their post-flight changes within individuals and their relationship with flight speed among individuals. Compared to un-flown controls, flown birds exhibited significant elevations in numbers of heterophils relative to numbers of lymphocytes and significant reductions in numbers of eosinophils and monocytes. Furthermore, within-individual changes in concentrations of an acute phase protein were greater in flown birds than in controls. However, none of the flight-affected indices showed any evidence of being related to flight speed. While some of the effects of flight were comparable to the effects of the simulated bacterial infection, other effects were observed only after one of these two physiological challenges. Our study suggests that flight by pigeons yields immune-like responses, and these responses have the potential to complicate the conclusions drawn by ecologists regarding immune function in free-living birds. Still, a better understanding of the repercussions of flight can help clarify the ties between the physiology of exercise and the disease ecology of migration and will ultimately assist in the broader goal of accounting for immunological variation within and among species.
A computational analysis of the long-term regulation of arterial pressure
Beard, Daniel A.
2013-01-01
The asserted dominant role of the kidneys in the chronic regulation of blood pressure and in the etiology of hypertension has been debated since the 1970s. At the center of the theory is the observation that the acute relationships between arterial pressure and urine production—the acute pressure-diuresis and pressure-natriuresis curves—physiologically adapt to perturbations in pressure and/or changes in the rate of salt and volume intake. These adaptations, modulated by various interacting neurohumoral mechanisms, result in chronic relationships between water and salt excretion and pressure that are much steeper than the acute relationships. While the view that renal function is the dominant controller of arterial pressure has been supported by computer models of the cardiovascular system known as the “Guyton-Coleman model”, no unambiguous description of a computer model capturing chronic adaptation of acute renal function in blood pressure control has been presented. Here, such a model is developed with the goals of: 1. representing the relevant mechanisms in an identifiable mathematical model; 2. identifying model parameters using appropriate data; 3. validating model predictions in comparison to data; and 4. probing hypotheses regarding the long-term control of arterial pressure and the etiology of primary hypertension. The developed model reveals: long-term control of arterial blood pressure is primarily through the baroreflex arc and the renin-angiotensin system; and arterial stiffening provides a sufficient explanation for the etiology of primary hypertension associated with ageing. Furthermore, the model provides the first consistent explanation of the physiological response to chronic stimulation of the baroreflex. PMID:24555102
Zhang, Zhongheng; Hong, Yucai
2017-07-25
There are several disease severity scores being used for the prediction of mortality in critically ill patients. However, none of them was developed and validated specifically for patients with severe sepsis. The present study aimed to develop a novel prediction score for severe sepsis. A total of 3206 patients with severe sepsis were enrolled, including 1054 non-survivors and 2152 survivors. The LASSO score showed the best discrimination (area under curve: 0.772; 95% confidence interval: 0.735-0.810) in the validation cohort as compared with other scores such as simplified acute physiology score II, acute physiological score III, Logistic organ dysfunction system, sequential organ failure assessment score, and Oxford Acute Severity of Illness Score. The calibration slope was 0.889 and Brier value was 0.173. The study employed a single center database called Medical Information Mart for Intensive Care-III) MIMIC-III for analysis. Severe sepsis was defined as infection and acute organ dysfunction. Clinical and laboratory variables used in clinical routines were included for screening. Subjects without missing values were included, and the whole dataset was split into training and validation cohorts. The score was coined LASSO score because variable selection was performed using the least absolute shrinkage and selection operator (LASSO) technique. Finally, the LASSO score was evaluated for its discrimination and calibration in the validation cohort. The study developed the LASSO score for mortality prediction in patients with severe sepsis. Although the score had good discrimination and calibration in a randomly selected subsample, external validations are still required.
Katzberg, R W; Morris, T W; Lasser, E C; DiMarco, P L; Merguerian, P A; Ventura, J A; Pabico, R C; McKenna, B A
1986-10-01
We examined the acute systemic and renal hemodynamic effects of intravenous meglumine/sodium diatrizoate-76% and iopamidol in euvolemic and dehydrated dogs. The physiologic responses were compared with acute changes in the level of an endogenous heparin-like material (EHM). One of eight dehydrated dogs receiving diatrizoate (2 ml/kg) had an immediate vomiting reflex associated with a very significant decline in all measured renal hemodynamic parameters; none of eight dehydrated dogs receiving iopamidol experienced a similar reaction. EHM levels did not correspond to the magnitude of the physiologic responses following either iopamidol or diatrizoate. Significant differences between iopamidol and diatrizoate were noted when comparing the magnitude of the decrease in systemic pressure (- delta 3.8 +/- 3.02, iopamidol, n = 8; vs. - delta 19.4 +/- 7.3 mm Hg, diatrizoate, n = 8; P less than .03), increased renal plasma flow (+ delta 6.2 +/- 4.9, iopamidol, n = 8; vs. + delta 33.7 +/- 8.0 ml/min, diatrizoate, n = 8; P less than .05), and decreased filtration fraction (- delta 0.09 +/- 0.01, iopamidol, n = 8; vs. - delta 0.14 +/- 0.02, diatrizoate, n = 8; P less than .03). There was no significant difference in the decrease in glomerular filtration rate (- delta 7.4 +/- 1.0, iopamidol, n = 8; vs. - delta 9.3 +/- 1.3, diatrizoate, n = 8; P greater than .05), since the marked drop in filtration fraction occurring with diatrizoate was counterbalanced by the marked increase in renal plasma flow. Acute systemic and renal hemodynamic effects are significantly lessened when comparing iopamidol with diatrizoate.
Acute and Chronic Noradrenergic Effects on Cortical Excitability in Healthy Humans
Kuo, Hsiao-I; Paulus, Walter; Batsikadze, Giorgi; Jamil, Asif; Kuo, Min-Fang
2017-01-01
Abstract Background Noradrenaline is a major neuromodulator in the central nervous system, and it is involved in the pathophysiology of diverse neuropsychiatric diseases. Previous transcranial magnetic stimulation studies suggested that acute application of selective noradrenaline reuptake inhibitors enhances cortical excitability in the human brain. However, other, such like clinical effects, usually require prolonged noradrenaline reuptake inhibitor treatment, which might go along with different physiological effects. Methods The purpose of this study was to investigate the acute and chronic effects of the selective noradrenaline reuptake inhibitor reboxetine on cortical excitability in healthy humans in a double-blind, placebo-controlled, randomized crossover study. Sixteen subjects were assessed with different transcranial magnetic stimulation measurements: motor thresholds, input-output curve, short-latency intracortical inhibition and intracortical facilitation, I-wave facilitation, and short-interval afferent inhibition before and after placebo or reboxetine (8 mg) single-dose administration. Afterwards, the same subjects took reboxetine (8 mg/d) consecutively for 21 days. During this period (subjects underwent 2 experimental sessions with identical transcranial magnetic stimulation measures under placebo or reboxetine), transcranial magnetic stimulation measurements were assessed before and after drug intake. Results Both single-dose and chronic administration of reboxetine increased cortical excitability; increased the slope of the input-output curve, intracortical facilitation, and I-wave facilitation; but decreased short-latency intracortical inhibition and short-interval afferent inhibition. Moreover, chronic reboxetine showed a larger enhancement of intracortical facilitation and I-wave facilitation compared with single-dose application. Conclusions The results show physiological mechanisms of noradrenergic enhancement possibly underlying the functional effects of reboxetine regarding acute and chronic application. PMID:28430976
NASA Technical Reports Server (NTRS)
Fogarty, Jennifer A.; Polk, James D.; Tarver, William J.; Gibson, Charles R.; Sargsyan, Ashot E.; Taddeo, Terrance A.; Alexander, David J.; Otto, Christian A.
2010-01-01
A. CO2 - Acute: Given the history of uneven removal of CO2 from spacecraft areas, there is a history of acute illness that impacts short-term health and performance. 1) Acute CO2 symptoms occur in space flight due to a combination of CO2 scrubbing limitations, microgravity-related lack of convection, and possibly interaction with microgravity-related physiological changes. 2) Reported symptoms mainly include headaches, malaise, and lethargy. Symptoms are treatable with analgesics, rest, temporarily increasing scrubbing capability, and breathing oxygen. This does not treat the underlying pathology. 3)ld prevent occurrence of symptoms. B. CO2 - Chronic: Given prolonged exposure to elevated CO2 levels, there is a history that the long-term health of the crew is impacted. 1) Chronic CO2 exposures occur in space flight due to a combination of CO2 scrubbing limitations and microgravity-related lack of convection, with possible contribution from microgravity-related physiological changes. 2) Since acute symptoms are experienced at levels significantly lower than expected, there are unidentified long-term effects from prolonged exposure to elevated CO2 levels on orbit. There have been long term effects seen terrestrially and research needed to further elucidate long term effects on orbit. 3) Recommended disposition: Research required to further elucidate long term effects. In particular, elucidation of the role of elevated CO2 on various levels of CO2 vasodilatation of intracranial blood vessels and its potential contribution to elevation of intracranial pressure.
A computational analysis of the long-term regulation of arterial pressure.
Beard, Daniel A; Pettersen, Klas H; Carlson, Brian E; Omholt, Stig W; Bugenhagen, Scott M
2013-01-01
The asserted dominant role of the kidneys in the chronic regulation of blood pressure and in the etiology of hypertension has been debated since the 1970s. At the center of the theory is the observation that the acute relationships between arterial pressure and urine production-the acute pressure-diuresis and pressure-natriuresis curves-physiologically adapt to perturbations in pressure and/or changes in the rate of salt and volume intake. These adaptations, modulated by various interacting neurohumoral mechanisms, result in chronic relationships between water and salt excretion and pressure that are much steeper than the acute relationships. While the view that renal function is the dominant controller of arterial pressure has been supported by computer models of the cardiovascular system known as the "Guyton-Coleman model", no unambiguous description of a computer model capturing chronic adaptation of acute renal function in blood pressure control has been presented. Here, such a model is developed with the goals of: 1. representing the relevant mechanisms in an identifiable mathematical model; 2. identifying model parameters using appropriate data; 3. validating model predictions in comparison to data; and 4. probing hypotheses regarding the long-term control of arterial pressure and the etiology of primary hypertension. The developed model reveals: long-term control of arterial blood pressure is primarily through the baroreflex arc and the renin-angiotensin system; and arterial stiffening provides a sufficient explanation for the etiology of primary hypertension associated with ageing. Furthermore, the model provides the first consistent explanation of the physiological response to chronic stimulation of the baroreflex.
Cai, Wen-Peng; Pan, Yu; Zhang, Shui-Miao; Wei, Cun; Dong, Wei; Deng, Guang-Hui
2017-10-01
The current study aimed to explore the association of cognitive emotion regulation, social support, resilience and acute stress responses in Chinese soldiers and to understand the multiple mediation effects of social support and resilience on the relationship between cognitive emotion regulation and acute stress responses. A total of 1477 male soldiers completed mental scales, including the cognitive emotion regulation questionnaire-Chinese version, the perceived social support scale, the Chinese version of the Connor-Davidson resilience scale, and the military acute stress scale. As hypothesized, physiological responses, psychological responses, and acute stress were associated with negative-focused cognitive emotion regulation, and negatively associated with positive-focused cognitive emotion regulation, social supports and resilience. Besides, positive-focused cognitive emotion regulation, social support, and resilience were significantly associated with one another, and negative-focused cognitive emotion regulation was negatively associated with social support. Regression analysis and bootstrap analysis showed that social support and resilience had partly mediating effects on negative strategies and acute stress, and fully mediating effects on positive strategies and acute stress. These results thus indicate that military acute stress is significantly associated with cognitive emotion regulation, social support, and resilience, and that social support and resilience have multiple mediation effects on the relationship between cognitive emotion regulation and acute stress responses. Copyright © 2017 Elsevier B.V. All rights reserved.
Pensgaard, Anne Marte; Ivarsson, Andreas; Nilstad, Agnethe; Solstad, Bård Erlend; Steffen, Kathrin
2018-01-01
The relationship between specific types of stressors (eg, teammates, coach) and acute versus overuse injuries is not well understood. To examine the roles of different types of stressors as well as the effect of motivational climate on the occurrence of acute and overuse injuries. Players in the Norwegian elite female football league (n=193 players from 12 teams) participated in baseline screening tests prior to the 2009 competitive football season. As part of the screening, we included the Life Event Survey for Collegiate Athletes and the Perceived Motivational Climate in Sport Questionnaire (Norwegian short version). Acute and overuse time-loss injuries and exposure to training and matches were recorded prospectively in the football season using weekly text messaging. Data were analysed with Bayesian logistic regression analyses. Using Bayesian logistic regression analyses, we showed that perceived negative life event stress from teammates was associated with an increased risk of acute injuries (OR=1.23, 95% credibility interval (1.01 to 1.48)). There was a credible positive association between perceived negative life event stress from the coach and the risk of overuse injuries (OR=1.21, 95% credibility interval (1.01 to 1.45)). Players who report teammates as a source of stress have a greater risk of sustaining an acute injury, while players reporting the coach as a source of stress are at greater risk of sustaining an overuse injury. Motivational climate did not relate to increased injury occurrence.
Sport Physiology Research and Governing Gender in Sport--A Power-Knowledge Relation?
ERIC Educational Resources Information Center
Larsson, Hakan
2013-01-01
This article sets out to show how physiological knowledge about sex/gender relates to power issues within sport. The sport physiology research at the Swedish School of Sport and Health Sciences (Swedish acronym: GIH) during the twentieth century is analysed in relation to the political rationality concerning gender at GIH and within the Swedish…
The Biochemistry of Bereavement: Possible Basis for Chemotherapy?
ERIC Educational Resources Information Center
Fredrick, Jerome F.
1982-01-01
Reviews the physiological effect of acute grief and explores the increased susceptibility to infectious disease agents in terms of the altered biochemistry of the bereaved individual. Until basic reactions of grief are defined and the altered biochemistry established, psychological methods appear to offer the best therapy. (Author/JAC)
Early-life effects on adult physical activity: Concepts, relevance, and experimental approaches
USDA-ARS?s Scientific Manuscript database
Locomotion is a defining characteristic of animal life and plays a crucial role in most behaviors. Locomotion involves physical activity, which can have far-reaching effects on physiology and neurobiology, both acutely and chronically. In human populations and in laboratory rodents, higher levels of...
The Stress Response and Adolescents' Adjustment: The Impact of Child Maltreatment
ERIC Educational Resources Information Center
Cook, Emily C.; Chaplin, Tara M.; Sinha, Rajita; Tebes, Jacob K.; Mayes, Linda C.
2012-01-01
Experience with and management of stress has implications for adolescents' behavioral and socioemotional development. This study examined the relationship between adolescents' physiological response to an acute laboratory stressor (i.e., Trier Social Stress Test; TSST) and anger regulation and interpersonal competence in a sample of 175 low-income…
Decreased reproductive rates in sheep fed a high selenium diet
USDA-ARS?s Scientific Manuscript database
High Se-containing forages grow on seleniferous soils in many parts of the United States and throughout the world. Selenium is an essential trace element that is required for many physiological processes but can also be either acutely or chronically toxic to livestock. Anecdotal reports of decrease...
Pyrethroids are neurotoxic pesticides that interact with membrane bound ion channels in neurons. The physiological result is disruption of nerve membrane excitability. A current focus of pyrethroid research is examination of the molecular mechanisms-of-action of pyrethroids, in...
Long Term Synaptic Plasticity and Learning in Neuronal Networks
1989-01-14
Videomicroscopy and synaptic physiology of cultured hippocampal slices. Soc, Neurosci. Abstr. 14:246, 1988. Griffith, W.H., Brown, T.H. and Johnston, D...Chapman, P.F., Chang, V., and Brown, T.H. . Videomicroscopy of acute brain slices from hippocampus and amygdala. Brain Res. Bull, 21: 373-383, 1988
Severity variation of clinical E.coli mastitis in cows: where do we stand?
USDA-ARS?s Scientific Manuscript database
Neutrophils are key effector cells that underpin both defence and severity of clinical coliform mastitis. Increased turnover and viability of neutrophils in the lumen of the bovine mammary gland facilitate the physiological response and acute inflammation that fuel this effective mammary defence mec...
ABSTRACT
Rodents often demonstrate a profound depression in physiological function following acute exposure to toxic xenobiotic agents. This effect, termed the hypothermic response, is primarily characterized by significant decreases in core temperature and heart rate, and is...
Human exposure to ambient PM from fossil-fuel emissions is linked to cardiovascular disease and death. This association strengthens in people with preexisting cardiopulmonary diseases—especially heart failure (HF). We previously examined the effects of PM on HF by exposing Sponta...
USDA-ARS?s Scientific Manuscript database
As organisms intimately associated with their environment, fish are sensitive to numerous environmental insults which can negatively affect their cellular physiology. For our purposes, fish subject to intensive farming practices can experience a host of acute and chronic stressors such as changes in...
USDA-ARS?s Scientific Manuscript database
As organisms intimately associated with their environment, fish are sensitive to numerous environmental insults which can negatively affect their cellular physiology. For our purposes, fish subject to intensive farming practices can experience a host of acute and chronic stressors such as changes in...
Separation of rat neonates from their dam has been shown to evoke acutely a variety of biochemical and physiological responses. n the current study, we examined whether these responses were extended to pups who were subject to daily episodes of maternal deprivation, and whether t...
Hunt, Kathleen E.; Moore, Michael J.; Rolland, Rosalind M.; Kellar, Nicholas M.; Hall, Ailsa J.; Kershaw, Joanna; Raverty, Stephen A.; Davis, Cristina E.; Yeates, Laura C.; Fauquier, Deborah A.; Rowles, Teresa K.; Kraus, Scott D.
2013-01-01
Large whales are subjected to a variety of conservation pressures that could be better monitored and managed if physiological information could be gathered readily from free-swimming whales. However, traditional approaches to studying physiology have been impractical for large whales, because there is no routine method for capture of the largest species and there is presently no practical method of obtaining blood samples from free-swimming whales. We review the currently available techniques for gathering physiological information on large whales using a variety of non-lethal and minimally invasive (or non-invasive) sample matrices. We focus on methods that should produce information relevant to conservation physiology, e.g. measures relevant to stress physiology, reproductive status, nutritional status, immune response, health, and disease. The following four types of samples are discussed: faecal samples, respiratory samples (‘blow’), skin/blubber samples, and photographs. Faecal samples have historically been used for diet analysis but increasingly are also used for hormonal analyses, as well as for assessment of exposure to toxins, pollutants, and parasites. Blow samples contain many hormones as well as respiratory microbes, a diverse array of metabolites, and a variety of immune-related substances. Biopsy dart samples are widely used for genetic, contaminant, and fatty-acid analyses and are now being used for endocrine studies along with proteomic and transcriptomic approaches. Photographic analyses have benefited from recently developed quantitative techniques allowing assessment of skin condition, ectoparasite load, and nutritional status, along with wounds and scars from ship strikes and fishing gear entanglement. Field application of these techniques has the potential to improve our understanding of the physiology of large whales greatly, better enabling assessment of the relative impacts of many anthropogenic and ecological pressures. PMID:27293590
Physiological responses to prolonged bed rest and fluid immersion in humans
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.
1984-01-01
For many centuries, physicians have used prolonged rest in bed and immersion in water in the treatment of ailments and disease. Both treatments have positive remedial effects. However, adverse physiological responses become evident when patients return to their normal daily activities. The present investigation is concerned with an analysis of the physiological changes during bed rest and the effects produced by water immersion. It is found that abrupt changes in body position related to bed rest cause acute changes in fluid compartment volumes. Attention is given to fluid shifts and body composition, renal function and diuresis, calcium and phosphorus metabolism, and orthostatic tolerance. In a discussion of water immersion, fluid shifts are considered along with cardiovascular-respiratory responses, renal function, and natriuretic and diuretic factors.
Lipes, Jed; Bojmehrani, Azadeh; Lellouche, Francois
2012-01-01
Protective ventilation with low tidal volume has been shown to reduce morbidity and mortality in patients suffering from acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Low tidal volume ventilation is associated with particular clinical challenges and is therefore often underutilized as a therapeutic option in clinical practice. Despite some potential difficulties, data have been published examining the application of protective ventilation in patients without lung injury. We will briefly review the physiologic rationale for low tidal volume ventilation and explore the current evidence for protective ventilation in patients without lung injury. In addition, we will explore some of the potential reasons for its underuse and provide strategies to overcome some of the associated clinical challenges. PMID:22536499
Prone positioning in the patient who has acute respiratory distress syndrome: the art and science.
Vollman, Kathleen M
2004-09-01
Acute respiratory distress syndrome (ARDS) remains a significant contributor to the morbidity and mortality of patients in the ICU. A variety of treatments are used to support the lung of the patient who has ARDS and improve gas exchange during the acute injury phase. It seems, however, that the simple, safe, and noninvasive act of prone positioning of the critically ill patient who has ARDS may improve gas exchange while preventing potential complications of high positive end-expiratory pressure, volutrauma, and oxygen toxicity. This article provides the critical care nurse with the physiologic rationale for use of the prone position, indications and contraindications for use, safe strategies for prone positioning, and care techniques and monitoring methods of the patient who is in the prone position.
Caffeine and headache: specific remarks.
Espinosa Jovel, C A; Sobrino Mejía, F E
Caffeine is the most widely used psychostimulant worldwide. Excessive caffeine consumption induces a series of both acute and chronic biological and physiological changes that may give rise to cognitive decline, depression, fatigue, insomnia, cardiovascular changes, and headache. Chronic consumption of caffeine promotes a pro-nociceptive state of cortical hyperexcitability that can intensify a primary headache or trigger a headache due to excessive analgesic use. This review offers an in-depth analysis of the physiological mechanisms of caffeine and its relationship with headache. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Resilience Training Program Reduces Physiological and Psychological Stress in Police Officers
Atkinson, Mike
2012-01-01
Research suggests that police work is among the most stressful occupations in the world and officers typically suffer a variety of physiological, psychological, and behavioral effects and symptoms. Officers operating under severe or chronic stress are likely to be at greater risk of error, accidents, and overreactions that can compromise their performance, jeopardize public safety, and pose significant liability costs to the organization. Therefore, this study explored the nature and degree of physiological activation typically experienced of officers on the job and the impact of the Coherence Advantage resilience and performance enhancement training on a group of police officers from Santa Clara County, California. Areas assessed included vitality, emotional well-being, stress coping and interpersonal skills, work performance, workplace effectiveness and climate, family relationships, and physiological recalibration following acute stressors. Physiological measurements were obtained to determine the real-time cardiovascular impact of acutely stressful situations encountered in highly realistic simulated police calls used in police training and to identify officers at increased risk of future health challenges. The resilience-building training improved officers' capacity to recognize and self-regulate their responses to stressors in both work and personal contexts. Officers experienced reductions in stress, negative emotions, depression, and increased peacefulness and vitality as compared to a control group. Improvements in family relationships, more effective communication and cooperation within work teams, and enhanced work performance also were noted. Heart rate and blood pressure measurements taken during simulated police call scenarios showed that acutely stressful circumstances typically encountered on the job result in a tremendous degree of physiological activation, from which it takes a considerable amount of time to recover. Autonomic nervous system assessment based on heart rate variability (HRV) analysis of 24-hour electrocardiogram (ECG) recordings revealed that 11% of the officers were at higher risk for sudden cardiac death and other serious health challenges. This is more than twice the percentage typically found in the general population and is consistent with epidemiological data indicating that police officers have more than twice the average incidence of cardiovascular-related disease. The data suggest that training in resilience building and self-regulation skills could significantly benefit police organizations by improving judgment and decision making and decreasing the frequency of onthe-job driving accidents and the use of excessive force in high-stress situations. Potential outcomes include fewer citizens' complaints, fewer lawsuits, decreased organizational liabilities, and increased community safety. Finally, this study highlights the value of 24-hour HRV analysis as a useful screening tool to identify officers who are at increased risk, so that efforts can be made to reverse or prevent the onset of disease in these individuals. PMID:27257532
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naik, Bhiken, E-mail: bin4n@virginia.edu; Matsumoto, Alan H.
2013-10-15
Ethanol is an effective ablative agent used for the treatment of certain solid organ tumors and vascular malformations (VMs). The egress of ethanol beyond the target tissue can be associated with significant changes to the cardiopulmonary system that can lead to cardiac arrest. This article reviews the contemporary role of ethanol in tumor and VM treatment and discusses the physiological mechanisms of acute pulmonary hypertension and cardiovascular collapse. The importance of periprocedural recognition of the hemodynamic changes that can occur with the use of ethanol and the treatment of this condition are discussed.
Immune and Inflammatory Role in Renal Disease
Ryan, Michael J.
2013-01-01
Chronic and acute renal diseases, irrespective of the initiating cause, have inflammation and immune system activation as a common underlying mechanism. The purpose of this review is to provide a broad overview of immune cells and inflammatory proteins that contribute to the pathogenesis of renal disease, and to discuss some of the physiological changes that occur in the kidney as a result of immune system activation. An overview of common forms of acute and chronic renal disease is provided, followed by a discussion of common therapies that have antiinflammatory or immunosuppressive effects in the treatment of renal disease. PMID:23720336
Gut hormones in acute diarrhoea.
Besterman, H S; Christofides, N D; Welsby, P D; Adrian, T E; Sarson, D L; Bloom, S R
1983-01-01
The gut hormone response to a breakfast meal was studied in 12 subjects hospitalised for an episode of acute diarrhoea (presumed infective) who were otherwise well and in 13 healthy control subjects. Fasting blood glucose concentrations were low but basal insulin concentrations were raised. Basal concentrations of pancreatic polypeptide and both basal and postprandial responses of motilin, enteroglucagon, and vasoactive intestinal polypeptide (VIP) were also significantly greater than controls. No abnormalities in plasma concentrations of gastrin, gastric inhibitory polypeptide (GIP) or pancreatic glucagon were found. The suggested physiological actions of the raised hormones may be relevant to the pathophysiology of diarrhoea. PMID:6345284
Gut hormones in acute diarrhoea.
Besterman, H S; Christofides, N D; Welsby, P D; Adrian, T E; Sarson, D L; Bloom, S R
1983-07-01
The gut hormone response to a breakfast meal was studied in 12 subjects hospitalised for an episode of acute diarrhoea (presumed infective) who were otherwise well and in 13 healthy control subjects. Fasting blood glucose concentrations were low but basal insulin concentrations were raised. Basal concentrations of pancreatic polypeptide and both basal and postprandial responses of motilin, enteroglucagon, and vasoactive intestinal polypeptide (VIP) were also significantly greater than controls. No abnormalities in plasma concentrations of gastrin, gastric inhibitory polypeptide (GIP) or pancreatic glucagon were found. The suggested physiological actions of the raised hormones may be relevant to the pathophysiology of diarrhoea.
Physiology of fish endocrine pancreas.
Plisetskaya, E M
1989-06-01
From the very beginning of physiological studies on the endocine pancreas, fish have been used as experimental subjects. Fish insulin was one of the first vertebrate insulins isolated and one of the first insulins whose primary and then tertiary structures were reported. Before a second pancreatic hormone, glucagon, was characterized, a physiologically active 'impurity', similar to that in mammalian insulin preparations, was found in fish insulins.Fish have become the most widely used model for studies of biosynthesis and processing of the pancreatic hormones. It seems inconceivable, therefore, that until the recent past cod and tuna insulins have been the only purified piscine islet hormones available for physiological experiments. The situation has changed remarkably during the last decade.In this review the contemporary status of physiological studies on the fish pancreas is outlined with an emphasis on the following topics: 1) contents of pancreatic peptides in plasma and in islet tissue; 2) actions of piscine pancreatic hormones in fish; 3) specific metabolic consequences of an acute insufficiency of pancreatic peptides; 4) functional interrelations among pancreatic peptides which differ from those of mammals. The pitfalls, lacunae and the perspectives of contemporary physiological studies on fish endocrine pancreas are outlined.
Dynamic systems approaches and levels of analysis in the nervous system
Parker, David; Srivastava, Vipin
2013-01-01
Various analyses are applied to physiological signals. While epistemological diversity is necessary to address effects at different levels, there is often a sense of competition between analyses rather than integration. This is evidenced by the differences in the criteria needed to claim understanding in different approaches. In the nervous system, neuronal analyses that attempt to explain network outputs in cellular and synaptic terms are rightly criticized as being insufficient to explain global effects, emergent or otherwise, while higher-level statistical and mathematical analyses can provide quantitative descriptions of outputs but can only hypothesize on their underlying mechanisms. The major gap in neuroscience is arguably our inability to translate what should be seen as complementary effects between levels. We thus ultimately need approaches that allow us to bridge between different spatial and temporal levels. Analytical approaches derived from critical phenomena in the physical sciences are increasingly being applied to physiological systems, including the nervous system, and claim to provide novel insight into physiological mechanisms and opportunities for their control. Analyses of criticality have suggested several important insights that should be considered in cellular analyses. However, there is a mismatch between lower-level neurophysiological approaches and statistical phenomenological analyses that assume that lower-level effects can be abstracted away, which means that these effects are unknown or inaccessible to experimentalists. As a result experimental designs often generate data that is insufficient for analyses of criticality. This review considers the relevance of insights from analyses of criticality to neuronal network analyses, and highlights that to move the analyses forward and close the gap between the theoretical and neurobiological levels, it is necessary to consider that effects at each level are complementary rather than in competition. PMID:23386835
Cardiorespiratory responses in an Antarctic fish suggest limited capacity for thermal acclimation.
Egginton, Stuart; Campbell, Hamish A
2016-05-01
Polar fishes are at high risk from increasing seawater temperatures. Characterising the physiological responses to such changes may both clarify mechanisms that permit life under extreme conditions and identify limitations in the response to continued global warming. We hypothesised that Notothenia coriiceps would show physiological compensation after an acute exposure to 5°C, and following 6 weeks warm acclimation, compared with ambient temperature (0°C). However, initial tachycardia (22.4±2.8 versus 12.8±1.1 min(-1); P<0.01) was not reversed by acclimation (21.0±1.9 min(-1)). Hyperventilation (45.5±3.1 versus 21.4±2.4 breaths min(-1); P<0.001) showed a modest reduction following acclimation (38.0±2.9 min(-1); P<0.05), while resting oxygen consumption (0.52±0.08 mmol kg(-1) h(-1)) was acutely increased at 5°C (1.07±0.10 mmol kg(-1) h(-1); P<0.001) but unchanged with acclimation. Autonomic blockade showed initial responses were mainly of vagal origin, with little subsequent withdrawal or recovery in long-term heart rate variability after 6 weeks. Given the limited cardiorespiratory capacity to withstand sustained warming, effective physiological compensation probably requires a more prolonged acclimation period. © 2016. Published by The Company of Biologists Ltd.
Stressor-Specific Alterations in Corticosterone and Immune Responses in Mice
Bowers, Stephanie L.; Bilbo, Staci D.; Dhabhar, Firdaus S.; Nelson, Randy J.
2007-01-01
Different stressors likely elicit different physiological and behavioral responses. Previously reported differences in the effects of stressors on immune function may reflect qualitatively different physiological responses to stressors; alternatively, both large and subtle differences in testing protocols and methods among laboratories may make direct comparisons among studies difficult. Here we examine the effects of chronic stressors on plasma corticosterone concentrations, leukocyte redistribution, and skin delayed-type hypersensitivity (DTH) and the effects of acute stressors on plasma corticosterone and leukocyte redistribution. The effects of several commonly used laboratory stressors including restraint, forced swim, isolation, and low ambient temperatures (4°C) were examined. Exposure to each stressor elevated corticosterone concentrations, with restraint (a putative psychological stressor) evoking a significantly higher glucocorticoid response than other stressors. Chronic restraint and forced swim enhanced the DTH response compared to the handled, low temperature, or isolation conditions. Restraint, low temperature, and isolation significantly increased trafficking of lymphocytes and monocytes compared to forced swim or handling. Generally, acute restraint, low temperature, isolation, and handling increased trafficking of lymphocytes and monocytes. Considered together, our results suggest that the different stressors commonly used in psychoneuroimmunology research may not activate the physiological stress response to the same extent. The variation observed in the measured immune responses may reflect differential glucocorticoid activation, differential metabolic adjustments, or both processes in response to specific stressors. PMID:17890050
Impairments of spatial working memory and attention following acute psychosocial stress.
Olver, James S; Pinney, Myra; Maruff, Paul; Norman, Trevor R
2015-04-01
Few studies have investigated the effect of an acute psychosocial stress paradigm on impaired attention and working memory in humans. Further, the duration of any stress-related cognitive impairment remains unclear. The aim of this study was to examine the effect of an acute psychosocial stress paradigm, the Trier Social Stress, on cognitive function in healthy volunteers. Twenty-three healthy male and female subjects were exposed to an acute psychosocial stress task. Physiological measures (salivary cortisol, heart rate and blood pressure) and subjective stress ratings were measured at baseline, in anticipation of stress, immediately post-stress and after a period of rest. A neuropsychological test battery including spatial working memory and verbal memory was administered at each time point. Acute psychosocial stress produced significant increases in cardiovascular and subjective measures in the anticipatory and post-stress period, which recovered to baseline after rest. Salivary cortisol steadily declined over the testing period. Acute psychosocial stress impaired delayed verbal recall, attention and spatial working memory. Attention remained impaired, and delayed verbal recall continued to decline after rest. Acute psychosocial stress is associated with an impairment of a broad range of cognitive functions in humans and with prolonged abnormalities in attention and memory. Copyright © 2014 John Wiley & Sons, Ltd.
Dziubińska-Parol, Izabella; Gasowska, Urszula; Rzymowska, Jolanta; Kwaśniewska, Anna
2003-09-01
Many recent studies indicate that long term use of contraceptives is a strong risk factor in the development of cervical cancer. Steroid hormones, in persistent papilloma virus infection act on various levels, one of them is enhancing transforming activity of the virus. The aim of the study was to estimate if physiological concentrations of 17 beta-estradiol could influence expression of viral transforming genes. HeLa cell lines were incubated with three different physiological concentrations and and on the third day of incubation the level of E6 gene expression was determined. Results show no differences in expression between the control culter, and cultures incubated with physiological concentrations. It indicates that normal levels of 17 beta-estradiol don't play role in transforming process but it also shows need to analyse higher levels of hormones by quantitative analyses in prospective studies.
Profiling of ARDS pulmonary edema fluid identifies a metabolically distinct subset
Contrepois, Kévin; Wu, Manhong; Zheng, Ming; Peltz, Gary; Ware, Lorraine B.; Matthay, Michael A.
2017-01-01
There is considerable biological and physiological heterogeneity among patients who meet standard clinical criteria for acute respiratory distress syndrome (ARDS). In this study, we tested the hypothesis that there exists a subgroup of ARDS patients who exhibit a metabolically distinct profile. We examined undiluted pulmonary edema fluid obtained at the time of endotracheal intubation from 16 clinically phenotyped ARDS patients and 13 control patients with hydrostatic pulmonary edema. Nontargeted metabolic profiling was carried out on the undiluted edema fluid. Univariate and multivariate statistical analyses including principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were conducted to find discriminant metabolites. Seven-hundred and sixty unique metabolites were identified in the pulmonary edema fluid of these 29 patients. We found that a subset of ARDS patients (6/16, 38%) presented a distinct metabolic profile with the overrepresentation of 235 metabolites compared with edema fluid from the other 10 ARDS patients, whose edema fluid metabolic profile was indistinguishable from those of the 13 control patients with hydrostatic edema. This “high metabolite” endotype was characterized by higher concentrations of metabolites belonging to all of the main metabolic classes including lipids, amino acids, and carbohydrates. This distinct group with high metabolite levels in the edema fluid was also associated with a higher mortality rate. Thus metabolic profiling of the edema fluid of ARDS patients supports the hypothesis that there is considerable biological heterogeneity among ARDS patients who meet standard clinical and physiological criteria for ARDS. PMID:28258106
Cirrhotic cardiomyopathy: Implications for the perioperative management of liver transplant patients
Rahman, Suehana; Mallett, Susan V
2015-01-01
Cirrhotic cardiomyopathy is a disease that has only recently been recognised as a definitive clinical entity. In the setting of liver cirrhosis, it is characterized by a blunted inotropic and chronotropic response to stress, impaired diastolic relaxation of the myocardium and prolongation of the QT interval in the absence of other known cardiac disease. A key pathological feature is the persistent over-activation of the sympathetic nervous system in cirrhosis, which leads to down-regulation and dysfunction of the β-adrenergic receptor. Diagnosis can be made using a combination of echocardiography (resting and stress), tissue Doppler imaging, cardiac magnetic resonance imaging, 12-lead electrocardiogram and measurement of biomarkers. There are significant implications of cirrhotic cardiomyopathy in a number of clinical situations in which there is an increased physiological demand, which can lead to acute cardiac decompensation and heart failure. Prior to transplantation there is an increased risk of hepatorenal syndrome, cardiac failure following transjugular intrahepatic portosystemic shunt insertion and increased risk of arrhythmias during acute gastrointestinal bleeding. Liver transplantation presents the greatest physiological challenge with a further risk of acute cardiac decompensation. Peri-operative management should involve appropriate choice of graft and minimization of large fluctuations in preload and afterload. The avoidance of cardiac failure during this period has important prognostic implications, as there is evidence to suggest a long-term resolution of the abnormalities in cirrhotic cardiomyopathy. PMID:25848474
Abdominal emergencies during pregnancy.
Bouyou, J; Gaujoux, S; Marcellin, L; Leconte, M; Goffinet, F; Chapron, C; Dousset, B
2015-12-01
Abdominal emergencies during pregnancy (excluding obstetrical emergencies) occur in one out of 500-700 pregnancies and may involve gastrointestinal, gynecologic, urologic, vascular and traumatic etiologies; surgery is necessary in 0.2-2% of cases. Since these emergencies are relatively rare, patients should be referred to specialized centers where surgical, obstetrical and neonatal cares are available, particularly because surgical intervention increases the risk of premature labor. Clinical presentations may be atypical and misleading because of pregnancy-associated anatomical and physiologic alterations, which often result in diagnostic uncertainty and therapeutic delay with increased risks of maternal and infant morbidity. The most common abdominal emergencies are acute appendicitis (best treated by laparoscopic appendectomy), acute calculous cholecystitis (best treated by laparoscopic cholecystectomy from the first trimester through the early part of the third trimester) and intestinal obstruction (where medical treatment is the first-line approach, just as in the non-pregnant patient). Acute pancreatitis is rare, usually resulting from trans-ampullary passage of gallstones; it usually resolves with medical treatment but an elevated risk of recurrent episodes justifies laparoscopic cholecystectomy in the 2nd trimester and endoscopic sphincterotomy in the 3rd trimester. The aim of the present work is to review pregnancy-induced anatomical and physiological modifications, to describe the main abdominal emergencies during pregnancy, their specific features and their diagnostic and therapeutic management. Copyright © 2015. Published by Elsevier Masson SAS.
Hsu, Chia-Lin; Chen, Kuan-Yu; Yeh, Pu-Sheng; Hsu, Yeong-Long; Chang, Hou-Tai; Shau, Wen-Yi; Yu, Chia-Li; Yang, Pan-Chyr
2005-06-01
Systemic lupus erythematosus (SLE) is an archetypal autoimmune disease, involving multiple organ systems with varying course and prognosis. However, there is a paucity of clinical data regarding prognostic factors in SLE patients admitted to the intensive care unit (ICU). From January 1992 to December 2000, all patients admitted to the ICU with a diagnosis of SLE were included. Patients were excluded if the diagnosis of SLE was established at or after ICU admission. A multivariate logistic regression model was applied using Acute Physiology and Chronic Health Evaluation II scores and variables that were at least moderately associated (P < 0.2) with survival in the univariate analysis. A total of 51 patients meeting the criteria were included. The mortality rate was 47%. The most common cause of admission was pneumonia with acute respiratory distress syndrome. Multivariate logistic regression analysis showed that intracranial haemorrhage occurring while the patient was in the ICU (relative risk = 18.68), complicating gastrointestinal bleeding (relative risk = 6.97) and concurrent septic shock (relative risk = 77.06) were associated with greater risk of dying, whereas causes of ICU admission and Acute Physiology and Chronic Health Evaluation II score were not significantly associated with death. The mortality rate in critically ill SLE patients was high. Gastrointestinal bleeding, intracranial haemorrhage and septic shock were significant prognostic factors in SLE patients admitted to the ICU.
Chagnon, Frédéric; Bourgouin, Alexandra; Lebel, Réjean; Bonin, Marc-André; Marsault, Eric; Lepage, Martin; Lesur, Olivier
2015-09-15
The pathophysiology of acute lung injury (ALI) is well characterized, but its real-time assessment at bedside remains a challenge. When patients do not improve after 1 wk despite supportive therapies, physicians have to consider open lung biopsy (OLB) to identify the process(es) at play. Sustained inflammation and inadequate repair are often observed in this context. OLB is neither easy to perform in a critical setting nor exempt from complications. Herein, we explore intravital endoscopic confocal fluorescence microscopy (ECFM) of the lung in vivo combined with the use of fluorescent smart probe(s) activated by myeloperoxidase (MPO). MPO is a granular enzyme expressed by polymorphonuclear neutrophils (PMNs) and alveolar macrophages (AMs), catalyzing the synthesis of hypoclorous acid, a by-product of hydrogen peroxide. Activation of these probes was first validated in vitro in relevant cells (i.e., AMs and PMNs) and on MPO-non-expressing cells (as negative controls) and then tested in vivo using three rat models of ALI and real-time intravital imaging with ECFM. Semiquantitative image analyses revealed that in vivo probe-related cellular/background fluorescence was associated with corresponding enhanced lung enzymatic activity and was partly prevented by specific MPO inhibition. Additional ex vivo phenotyping was performed, confirming that fluorescent cells were neutrophil elastase(+) (PMNs) or CD68(+) (AMs). This work is a first step toward "virtual biopsy" of ALI without OLB. Copyright © 2015 the American Physiological Society.
Excess mortality in winter in Finnish intensive care.
Reinikainen, M; Uusaro, A; Ruokonen, E; Niskanen, M
2006-07-01
In the general population, mortality from acute myocardial infarctions, strokes and respiratory causes is increased in winter. The winter climate in Finland is harsh. The aim of this study was to find out whether there are seasonal variations in mortality rates in Finnish intensive care units (ICUs). We analysed data on 31,040 patients treated in 18 Finnish ICUs. We measured severity of illness with acute physiology and chronic health evaluation II (APACHE II) scores and intensity of care with therapeutic intervention scoring system (TISS) scores. We assessed mortality rates in different months and seasons and used logistic regression analysis to test the independent effect of various seasons on hospital mortality. We defined 'winter' as the period from December to February, inclusive. The crude hospital mortality rate was 17.9% in winter and 16.4% in non-winter, P = 0.003. Even after adjustment for case mix, winter season was an independent risk factor for increased hospital mortality (adjusted odds ratio 1.13, 95% confidence interval 1.04-1.22, P = 0.005). In particular, the risk of respiratory failure was increased in winter. Crude hospital mortality was increased during the main holiday season in July. However, the severity of illness-adjusted risk of death was not higher in July than in other months. An increase in the mean daily TISS score was an independent predictor of increased hospital mortality. Severity of illness-adjusted hospital mortality for Finnish ICU patients is higher in winter than in other seasons.
Endogenous extra-cellular heat shock protein 72: releasing signal(s) and function.
Fleshner, M; Johnson, J D
2005-08-01
Exposure to acute physical and/or psychological stressors induces a cascade of physiological changes collectively termed the stress response. The stress response is demonstrable at the behavioural, neural, endocrine and cellular levels. Stimulation of the stress response functions to improve an organism's chance of survival during acute stressor challenge. The current review focuses on one ubiquitous cellular stress response, up-regulation of heat shock protein 72 (Hsp72). Although a great deal is known about the function of intra-cellular Hsp72 during exposure to acute stressors, little is understood about the potential function of endogenous extra-cellular Hsp72 (eHsp72). The current review will develop the hypothesis that eHsp72 release may be a previously unrecognized feature of the acute stress response and may function as an endogenous 'danger signal' for the immune system. Specifically, it is proposed that exposure to physical or psychological acute stressors stimulate the release of endogenous eHsp72 into the blood via an alpha1-adrenergic receptor-mediated mechanism and that elevated eHsp72 functions to facilitate innate immunity in the presence of bacterial challenge.
2009-01-01
Introduction Patients with haematological malignancy admitted to intensive care have a high mortality. Adverse prognostic factors include the number of organ failures, invasive mechanical ventilation and previous bone marrow transplantation. Severity-of-illness scores may underestimate the mortality of critically ill patients with haematological malignancy. This study investigates the relationship between admission characteristics and outcome in patients with haematological malignancies admitted to intensive care units (ICUs) in England, Wales and Northern Ireland, and assesses the performance of three severity-of-illness scores in this population. Methods A secondary analysis of the Intensive Care National Audit and Research Centre (ICNARC) Case Mix Programme Database was conducted on admissions to 178 adult, general ICUs in England, Wales and Northern Ireland between 1995 and 2007. Multivariate logistic regression analysis was used to identify factors associated with hospital mortality. The Acute Physiology and Chronic Health Evaluation (APACHE) II score, Simplified Acute Physiology Score (SAPS) II and ICNARC score were evaluated for discrimination (the ability to distinguish survivors from nonsurvivors); and the APACHE II, SAPS II and ICNARC mortality probabilities were evaluated for calibration (the accuracy of the estimated probability of survival). Results There were 7,689 eligible admissions. ICU mortality was 43.1% (3,312 deaths) and acute hospital mortality was 59.2% (4,239 deaths). ICU and hospital mortality increased with the number of organ failures on admission. Admission factors associated with an increased risk of death were bone marrow transplant, Hodgkin's lymphoma, severe sepsis, age, length of hospital stay prior to intensive care admission, tachycardia, low systolic blood pressure, tachypnoea, low Glasgow Coma Score, sedation, PaO2:FiO2, acidaemia, alkalaemia, oliguria, hyponatraemia, hypernatraemia, low haematocrit, and uraemia. The ICNARC model had the best discrimination of the three scores analysed, as assessed by the area under the receiver operating characteristic curve of 0.78, but all scores were poorly calibrated. APACHE II had the highest accuracy at predicting hospital mortality, with a standardised mortality ratio of 1.01. SAPS II and the ICNARC score both underestimated hospital mortality. Conclusions Increased hospital mortality is associated with the length of hospital stay prior to ICU admission and with severe sepsis, suggesting that, if appropriate, such patients should be treated aggressively with early ICU admission. A low haematocrit was associated with higher mortality and this relationship requires further investigation. The severity-of-illness scores assessed in this study had reasonable discriminative power, but none showed good calibration. PMID:19706163
Hampshire, Peter A; Welch, Catherine A; McCrossan, Lawrence A; Francis, Katharine; Harrison, David A
2009-01-01
Patients with haematological malignancy admitted to intensive care have a high mortality. Adverse prognostic factors include the number of organ failures, invasive mechanical ventilation and previous bone marrow transplantation. Severity-of-illness scores may underestimate the mortality of critically ill patients with haematological malignancy. This study investigates the relationship between admission characteristics and outcome in patients with haematological malignancies admitted to intensive care units (ICUs) in England, Wales and Northern Ireland, and assesses the performance of three severity-of-illness scores in this population. A secondary analysis of the Intensive Care National Audit and Research Centre (ICNARC) Case Mix Programme Database was conducted on admissions to 178 adult, general ICUs in England, Wales and Northern Ireland between 1995 and 2007. Multivariate logistic regression analysis was used to identify factors associated with hospital mortality. The Acute Physiology and Chronic Health Evaluation (APACHE) II score, Simplified Acute Physiology Score (SAPS) II and ICNARC score were evaluated for discrimination (the ability to distinguish survivors from nonsurvivors); and the APACHE II, SAPS II and ICNARC mortality probabilities were evaluated for calibration (the accuracy of the estimated probability of survival). There were 7,689 eligible admissions. ICU mortality was 43.1% (3,312 deaths) and acute hospital mortality was 59.2% (4,239 deaths). ICU and hospital mortality increased with the number of organ failures on admission. Admission factors associated with an increased risk of death were bone marrow transplant, Hodgkin's lymphoma, severe sepsis, age, length of hospital stay prior to intensive care admission, tachycardia, low systolic blood pressure, tachypnoea, low Glasgow Coma Score, sedation, PaO2:FiO2, acidaemia, alkalaemia, oliguria, hyponatraemia, hypernatraemia, low haematocrit, and uraemia. The ICNARC model had the best discrimination of the three scores analysed, as assessed by the area under the receiver operating characteristic curve of 0.78, but all scores were poorly calibrated. APACHE II had the highest accuracy at predicting hospital mortality, with a standardised mortality ratio of 1.01. SAPS II and the ICNARC score both underestimated hospital mortality. Increased hospital mortality is associated with the length of hospital stay prior to ICU admission and with severe sepsis, suggesting that, if appropriate, such patients should be treated aggressively with early ICU admission. A low haematocrit was associated with higher mortality and this relationship requires further investigation. The severity-of-illness scores assessed in this study had reasonable discriminative power, but none showed good calibration.
Genetic approaches in comparative and evolutionary physiology.
Storz, Jay F; Bridgham, Jamie T; Kelly, Scott A; Garland, Theodore
2015-08-01
Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology. Copyright © 2015 the American Physiological Society.
Schmidt, John E; Carlson, Charles R
2009-01-01
To investigate (1) differences in heart rate variability (HRV) indices between masticatory muscle pain (MMP) patients and pain-free controls at rest, during a stressor condition, and during a post-stressor recovery period, and (2) factors including psychological distress, social environment, and family-of-origin characteristics in the MMP sample compared to a pain-free matched control sample. Physiological activation and emotional reactivity were assessed in 22 MMP patients and 23 controls during baseline, stressor, and recovery periods. Physiological activity was assessed with frequency domain HRV indices. Emotional reactivity was assessed with the Emotional Assessment Scale. Analytic strategy began with overall 2 x 3 multivariate analyses of variance on physiological data followed by focused contrasts to test specific hypotheses regarding physiological and emotional status. Hypothesized differences between study groups on psychological and social-environmental variables were compared with univariate analyses of variance. The MMP patients showed physiological activation during the baseline period and significantly more physiological activation during the recovery period compared to the controls. This pattern was also present in emotional reactivity between the groups. The emotional and physiological differences between the groups across study periods were more pronounced in pain patients reporting a traumatic stressor. These results provide further evidence of physiological activation and emotional responding in MMP patients that differentiates them from matched pain-free controls. The use of HRV indices to measure physiological functioning quantifies the degree of sympathetic and parasympathetic activation. Study results suggest the use of these HRV indices may improve understanding of the role of excitatory and inhibitory mechanisms in patients with MMP conditions.
Rago, Vincenzo; Silva, João R; Brito, João; Barreira, Daniel; Mohr, Magni; Krustrup, Peter; Rebelo, António N
2018-04-04
Soccer training and completion is conventionally practiced on natural grass (NG) or artificial turf (AT). Recently, AT pitches for training / competition, and of unstable surfaces for injury prevention training has increased. Therefore, soccer players are frequently exposed to variations in pitch surface during either training or competition. These ground changes may impact physical and physiological responses, adaptations as well as the injury. The aim of this review was to summarize the acute physical and physiological responses, chronic adaptations, and injury risk associated with exercising on different pitch surfaces in soccer. Eligible studies were published in English, had pitch surface as an independent variable, and had physical, physiological or epidemiological information as outcome variables. Specific data extracted from the articles included the training response, training adaptations or injury outcomes according to different pitch surfaces. A total of 224 studies were retrieved from a literature search. Twenty articles met the inclusion criteria: 9 for acute physical and physiological responses, 2 for training adaptations and 9 for injury assessment. The literature lacks consistent evidence regarding the effects of pitch surface on performance and health outcomes in soccer players. However, it seems that occasionally switching training surfaces seems a valuable strategy for focusing on specific musculoskeletal queries and enhancing players' fitness. For instance, sand training may be occasionally proposed as complementary training strategy, given the recruitment of additional musculature probably not involved on firmer surfaces, but the possible training-induced adaptations of non-conventional soccer surfaces (e.g., sand) might potentially result into a negative transfer on AT or NG. Since the specific physical demands of soccer can differ between surfaces, coaches should resort to the use of non-traditional surfaces with parsimony, emphasizing the specific surface-related motor tasks, normally observed on natural grass or artificial turf. Further studies are required to better understand the physiological effects induced by systematic surface-specific training, or switching between pitch surfaces.
Bajrami, Besnik; Zhu, Haiyan; Zhang, Yu C.
2016-01-01
Cytokine-induced neutrophil mobilization from the bone marrow to circulation is a critical event in acute inflammation, but how it is accurately controlled remains poorly understood. In this study, we report that CXCR2 ligands are responsible for rapid neutrophil mobilization during early-stage acute inflammation. Nevertheless, although serum CXCR2 ligand concentrations increased during inflammation, neutrophil mobilization slowed after an initial acute fast phase, suggesting a suppression of neutrophil response to CXCR2 ligands after the acute phase. We demonstrate that granulocyte colony-stimulating factor (G-CSF), usually considered a prototypical neutrophil-mobilizing cytokine, was expressed later in the acute inflammatory response and unexpectedly impeded CXCR2-induced neutrophil mobilization by negatively regulating CXCR2-mediated intracellular signaling. Blocking G-CSF in vivo paradoxically elevated peripheral blood neutrophil counts in mice injected intraperitoneally with Escherichia coli and sequestered large numbers of neutrophils in the lungs, leading to sterile pulmonary inflammation. In a lipopolysaccharide-induced acute lung injury model, the homeostatic imbalance caused by G-CSF blockade enhanced neutrophil accumulation, edema, and inflammation in the lungs and ultimately led to significant lung damage. Thus, physiologically produced G-CSF not only acts as a neutrophil mobilizer at the relatively late stage of acute inflammation, but also prevents exaggerated neutrophil mobilization and the associated inflammation-induced tissue damage during early-phase infection and inflammation. PMID:27551153
Piirilä, Päivi; Laiho, Mia; Mustonen, Pirjo; Graner, Marit; Piilonen, Anneli; Raade, Merja; Sarna, Seppo; Harjola, Veli-Pekka; Sovijärvi, Anssi
2011-05-01
Acute pulmonary embolism (PE) often decreases pulmonary diffusing capacity for carbon monoxide (DL,CO), but data on the mechanisms involved are inconsistent. We wanted to investigate whether reduction in diffusing capacity of alveolo-capillary membrane (DM) and pulmonary capillary blood volume (Vc) is associated with the extent of PE or the presence and severity of right ventricular dysfunction (RVD) induced by PE and how the possible changes are corrected after 7-month follow-up. Forty-seven patients with acute non-massive PE in spiral computed tomography (CT) were included. The extent of PE was assessed by scoring mass of embolism. DL,CO, Vc, DM and alveolar volume (VA) were measured by using a single breath method with carbon monoxide and oxygen both at the acute phase and 7 months later. RVD was evaluated with transthoracic echocardiography and electrocardiogram. Fifteen healthy subjects were included as controls. DL,CO, DL, CO/VA, DM, vital capacity (VC) and VA were significantly lower in the patients with acute PE than in healthy controls (P < 0.001). DM/Vc relation was significantly lower in patients with RVD than in healthy controls (P = 0.004). DM correlated inversely with central mass of embolism (r = -0.312; P = 0.047) whereas Vc did not. DM, DL,CO, VC and VA improved significantly within 7 months. In all patients (P = 0.001, P = 0.001) and persistent RVD (P = 0.020, P = 0.012), DM and DL,CO remained significantly lower than in healthy controls in the follow-up. DM was inversely related to central mass of embolism. Reduction in DM mainly explains the sustained decrease in DL,CO in PE after 7 months despite modern treatment of PE. © 2010 The Authors. Clinical Physiology and Functional Imaging © 2010 Scandinavian Society of Clinical Physiology and Nuclear Medicine.
Raicevich, Saša; Minute, Fabrizio; Finoia, Maria Grazia; Caranfa, Francesca; Di Muro, Paolo; Scapolan, Lucia; Beltramini, Mariano
2014-01-01
This study is aimed at assessing the effects of multiple stressors (thermal shock, fishing capture, and exposure to air) on the benthic stomatopod Squilla mantis, a burrowing crustacean quite widespread in the Mediterranean Sea. Laboratory analyses were carried out to explore the physiological impairment onset over time, based on emersion and thermal shocks, on farmed individuals. Parallel field-based studies were carried out to also investigate the role of fishing (i.e., otter trawling) in inducing physiological imbalance in different seasonal conditions. The dynamics of physiological recovery from physiological disruption were also studied. Physiological stress was assessed by analysing hemolymph metabolites (L-Lactate, D-glucose, ammonia, and H+), as well as glycogen concentration in muscle tissues. The experiments were carried out according to a factorial scheme considering the three factors (thermal shock, fishing capture, and exposure to air) at two fixed levels in order to explore possible synergistic, additive, or antagonistic effects among factors. Additive effects on physiological parameters were mainly detected when the three factors interacted together while synergistic effects were found as effect of the combination of two factors. This finding highlights that the physiological adaptive and maladaptive processes induced by the stressors result in a dynamic response that may encounter physiological limits when high stress levels are sustained. Thus, a further increase in the physiological parameters due to synergies cannot be reached. Moreover, when critical limits are encountered, mortality occurs and physiological parameters reflect the response of the last survivors. In the light of our mortality studies, thermal shock and exposure to air have the main effect on the survival of S. mantis only on trawled individuals, while lab-farmed individuals did not show any mortality during exposure to air until after 2 hours. PMID:25133593
Clarke, D L; Kong, V Y; Naidoo, L C; Furlong, H; Aldous, C
2013-01-01
Acute surgical patients are particularly vulnerable to human error. The Acute Physiological Support Team (APST) was created with the twin objectives of identifying high-risk acute surgical patients in the general wards and reducing both the incidence of error and impact of error on these patients. A number of error taxonomies were used to understand the causes of human error and a simple risk stratification system was adopted to identify patients who are particularly at risk of error. During the period November 2012-January 2013 a total of 101 surgical patients were cared for by the APST at Edendale Hospital. The average age was forty years. There were 36 females and 65 males. There were 66 general surgical patients and 35 trauma patients. Fifty-six patients were referred on the day of their admission. The average length of stay in the APST was four days. Eleven patients were haemo-dynamically unstable on presentation and twelve were clinically septic. The reasons for referral were sepsis,(4) respiratory distress,(3) acute kidney injury AKI (38), post-operative monitoring (39), pancreatitis,(3) ICU down-referral,(7) hypoxia,(5) low GCS,(1) coagulopathy.(1) The mortality rate was 13%. A total of thirty-six patients experienced 56 errors. A total of 143 interventions were initiated by the APST. These included institution or adjustment of intravenous fluids (101), blood transfusion,(12) antibiotics,(9) the management of neutropenic sepsis,(1) central line insertion,(3) optimization of oxygen therapy,(7) correction of electrolyte abnormality,(8) correction of coagulopathy.(2) CONCLUSION: Our intervention combined current taxonomies of error with a simple risk stratification system and is a variant of the defence in depth strategy of error reduction. We effectively identified and corrected a significant number of human errors in high-risk acute surgical patients. This audit has helped understand the common sources of error in the general surgical wards and will inform on-going error reduction initiatives. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Patsalos, Andreas; Pap, Attila; Varga, Tamas; Trencsenyi, Gyorgy; Contreras, Gerardo Alvarado; Garai, Ildiko; Papp, Zoltan; Dezso, Balazs; Pintye, Eva; Nagy, Laszlo
2017-09-01
The in situ phenotypic switch of macrophages is delayed in acute injury following irradiation. The combination of bone marrow transplantation and local muscle radiation protection allows for the identification of a myeloid cell contribution to tissue repair. PET-MRI allows monitoring of myeloid cell invasion and metabolism. Altered cellular composition prior to acute sterile injury affects the in situ phenotypic transition of invading myeloid cells to repair macrophages. There is reciprocal intercellular communication between local muscle cell compartments, such as PAX7 positive cells, and recruited macrophages during skeletal muscle regeneration. Skeletal muscle regeneration is a complex interplay between various cell types including invading macrophages. Their recruitment to damaged tissues upon acute sterile injuries is necessary for clearance of necrotic debris and for coordination of tissue regeneration. This highly dynamic process is characterized by an in situ transition of infiltrating monocytes from an inflammatory (Ly6C high ) to a repair (Ly6C low ) macrophage phenotype. The importance of the macrophage phenotypic shift and the cross-talk of the local muscle tissue with the infiltrating macrophages during tissue regeneration upon injury are not fully understood and their study lacks adequate methodology. Here, using an acute sterile skeletal muscle injury model combined with irradiation, bone marrow transplantation and in vivo imaging, we show that preserved muscle integrity and cell composition prior to the injury is necessary for the repair macrophage phenotypic transition and subsequently for proper and complete tissue regeneration. Importantly, by using a model of in vivo ablation of PAX7 positive cells, we show that this radiosensitive skeletal muscle progenitor pool contributes to macrophage phenotypic transition following acute sterile muscle injury. In addition, local muscle tissue radioprotection by lead shielding during irradiation preserves normal macrophage transition dynamics and subsequently muscle tissue regeneration. Taken together, our data suggest the existence of a more extensive and reciprocal cross-talk between muscle tissue compartments, including satellite cells, and infiltrating myeloid cells upon tissue damage. These interactions shape the macrophage in situ phenotypic shift, which is indispensable for normal muscle tissue repair dynamics. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Cárceles-Álvarez, Alberto; Ortega-García, Juan A; López-Hernández, Fernando A; Orozco-Llamas, Mayra; Espinosa-López, Blanca; Tobarra-Sánchez, Esther; Alvarez, Lizbeth
2017-07-01
Leukaemia remains the most common type of paediatric cancer and its aetiology remains unknown, but considered to be multifactorial. It is suggested that the initiation in utero by relevant exposures and/or inherited genetic variants and, other promotional postnatal exposures are probably required to develop leukaemia. This study aimed to map the incidence and analyse possible clusters in the geographical distribution of childhood acute leukaemia during the critical periods and to evaluate the factors that may be involved in the aetiology by conducting community and individual risk assessments. We analysed all incident cases of acute childhood leukaemia (<15 years) diagnosed in a Spanish region during the period 1998-2013. At diagnosis, the addresses during pregnancy, early childhood and diagnosis were collected and codified to analyse the spatial distribution of acute leukaemia. Scan statistical test methodology was used for the identification of high-incidence spatial clusters. Once identified, individual and community risk assessments were conducted using the Paediatric Environmental History. A total of 158 cases of acute leukaemia were analysed. The crude rate for the period was 42.7 cases per million children. Among subtypes, acute lymphoblastic leukaemia had the highest incidence (31.9 per million children). A spatial cluster of acute lymphoblastic leukaemia was detected using the pregnancy address (p<0.05). The most common environmental risk factors related with the aetiology of acute lymphoblastic leukaemia, identified by the Paediatric Environmental History were: prenatal exposure to tobacco (75%) and alcohol (50%); residential and community exposure to pesticides (62.5%); prenatal or neonatal ionizing radiation (42.8%); and parental workplace exposure (37.5%) CONCLUSIONS: Our study suggests that environmental exposures in utero may be important in the development of childhood leukaemia. Due to the presence of high-incidence clusters using pregnancy address, it is necessary to introduce this address into the childhood cancer registers. The Paediatric Environmental History which includes pregnancy address and a careful and comprehensive evaluation of the environmental exposures will allow us to build the knowledge of the causes of childhood leukaemia. Copyright © 2017 Elsevier Inc. All rights reserved.
Gryshchenko, Oleksiy; Gerasimenko, Julia V; Gerasimenko, Oleg V; Petersen, Ole H
2016-01-15
Bradykinin may play a role in the autodigestive disease acute pancreatitis, but little is known about its pancreatic actions. In this study, we have investigated bradykinin-elicited Ca(2+) signal generation in normal mouse pancreatic lobules. We found complete separation of Ca(2+) signalling between pancreatic acinar (PACs) and stellate cells (PSCs). Pathophysiologically relevant bradykinin concentrations consistently evoked Ca(2+) signals, via B2 receptors, in PSCs but never in neighbouring PACs, whereas cholecystokinin, consistently evoking Ca(2+) signals in PACs, never elicited Ca(2+) signals in PSCs. The bradykinin-elicited Ca(2+) signals were due to initial Ca(2+) release from inositol trisphosphate-sensitive stores followed by Ca(2+) entry through Ca(2+) release-activated channels (CRACs). The Ca(2+) entry phase was effectively inhibited by a CRAC blocker. B2 receptor blockade reduced the extent of PAC necrosis evoked by pancreatitis-promoting agents and we therefore conclude that bradykinin plays a role in acute pancreatitis via specific actions on PSCs. Normal pancreatic stellate cells (PSCs) are regarded as quiescent, only to become activated in chronic pancreatitis and pancreatic cancer. However, we now report that these cells in their normal microenvironment are far from quiescent, but are capable of generating substantial Ca(2+) signals. We have compared Ca(2+) signalling in PSCs and their better studied neighbouring acinar cells (PACs) and found complete separation of Ca(2+) signalling in even closely neighbouring PACs and PSCs. Bradykinin (BK), at concentrations corresponding to the slightly elevated plasma BK levels that have been shown to occur in the auto-digestive disease acute pancreatitis in vivo, consistently elicited substantial Ca(2+) signals in PSCs, but never in neighbouring PACs, whereas the physiological PAC stimulant cholecystokinin failed to evoke Ca(2+) signals in PSCs. The BK-induced Ca(2+) signals were mediated by B2 receptors and B2 receptor blockade protected against PAC necrosis evoked by agents causing acute pancreatitis. The initial Ca(2+) rise in PSCs was due to inositol trisphosphate receptor-mediated release from internal stores, whereas the sustained phase depended on external Ca(2+) entry through Ca(2+) release-activated Ca(2+) (CRAC) channels. CRAC channel inhibitors, which have been shown to protect PACs against damage caused by agents inducing pancreatitis, therefore also inhibit Ca(2+) signal generation in PSCs and this may be helpful in treating acute pancreatitis. © 2015 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Pensgaard, Anne Marte; Ivarsson, Andreas; Nilstad, Agnethe; Solstad, Bård Erlend; Steffen, Kathrin
2018-01-01
Background The relationship between specific types of stressors (eg, teammates, coach) and acute versus overuse injuries is not well understood. Objective To examine the roles of different types of stressors as well as the effect of motivational climate on the occurrence of acute and overuse injuries. Methods Players in the Norwegian elite female football league (n=193 players from 12 teams) participated in baseline screening tests prior to the 2009 competitive football season. As part of the screening, we included the Life Event Survey for Collegiate Athletes and the Perceived Motivational Climate in Sport Questionnaire (Norwegian short version). Acute and overuse time-loss injuries and exposure to training and matches were recorded prospectively in the football season using weekly text messaging. Data were analysed with Bayesian logistic regression analyses. Results Using Bayesian logistic regression analyses, we showed that perceived negative life event stress from teammates was associated with an increased risk of acute injuries (OR=1.23, 95% credibility interval (1.01 to 1.48)). There was a credible positive association between perceived negative life event stress from the coach and the risk of overuse injuries (OR=1.21, 95% credibility interval (1.01 to 1.45)). Conclusions Players who report teammates as a source of stress have a greater risk of sustaining an acute injury, while players reporting the coach as a source of stress are at greater risk of sustaining an overuse injury. Motivational climate did not relate to increased injury occurrence. PMID:29629182
Circulating cell-free DNA: an up-coming molecular marker in exercise physiology.
Breitbach, Sarah; Tug, Suzan; Simon, Perikles
2012-07-01
The phenomenon of circulating cell-free DNA (cfDNA) concentrations is of importance for many biomedical disciplines including the field of exercise physiology. Increases of cfDNA due to exercise are described to be a potential hallmark for the overtraining syndrome and might be related to, or trigger adaptations of, immune function induced by strenuous exercise. At the same time, exercise provides a practicable model for studying the phenomenon of cfDNA that is described to be of pathophysiological relevance for different topics in clinical medicine like autoimmune diseases and cancer. In this review, we are summarizing the current knowledge of exercise-based acute and chronic alterations in cfDNA levels and their physiological significance. The effects of acute exercise on cfDNA concentrations have been investigated in resistance exercises and in continuous, stepwise and interval endurance exercises of different durations. cfDNA concentrations peaked immediately after acute exercise and showed a rapid return to baseline levels. Typical markers of skeletal muscle damage (creatine kinase, uric acid, C-reactive protein) show delayed kinetics compared with the cfDNA peak response. Exercise parameters such as intensity, duration or average energy expenditure do not explain the extent of increasing cfDNA concentrations after strenuous exercise. This could be due to complex processes inside the human organism during and after physical activity. Therefore, we hypothesize composite effects of different physiological stress parameters that come along with exercise to be responsible for increasing cfDNA concentrations. We suggest that due to acute stress, cfDNA levels increase rapidly by a spontaneous active or passive release mechanism that is not yet known. As a result of the rapid and parallel increase of cfDNA and lactate in an incremental treadmill test leading to exhaustion within 15-20 minutes, it is unlikely that cfDNA is released into the plasma by typical necrosis or apoptosis of cells in acute exercise settings. Recently, rapid DNA release mechanisms of activated immune-competent cells like NETosis (pathogen-induced cell death including the release of neutrophil extracellular traps [NETs]) have been discovered. cfDNA accumulations might comprise a similar kind of cell death including trap formation or an active release of cfDNA. Just like chronic diseases, chronic high-intensity resistance training protocols induced persistent increases of cfDNA levels. Chronic, strenuous exercise protocols, either long-duration endurance exercise or regular high-intensity workouts, induce chronic inflammation that might lead to a slow, constant release of DNA. This could be due to mechanisms of cell death like apoptosis or necrosis. Yet, it has neither been implicated nor proven sufficiently whether cfDNA can serve as a marker for overtraining. The relevance of cfDNA with regard to overtraining status, performance level, and the degree of physical exhaustion still remains unclear. Longitudinal studies are required that take into account standardized and controlled exercise, serial blood sampling, and large and homogeneous cohorts of different athletic achievement. Furthermore, it is important to establish standardized laboratory procedures for the measurement of genomic cfDNA concentrations by quantitative real-time polymerase chain reaction (PCR). We introduce a new hypothesis based on acute exercise and chronic exposure to stress, and rapid active and passive chronic release of cfDNA fragments into the circulation.
Smith, Jason W; Neal Garrison, R; Matheson, Paul J; Harbrecht, Brian G; Benns, Matthew V; Franklin, Glen A; Miller, Keith R; Bozeman, Matthew C; David Richardson, J
2014-09-01
The success of damage-control surgery (DCS) for the treatment of trauma has led to its use in other surgical problems such as abdominal sepsis. Previous studies using direct peritoneal resuscitation (DPR) for the treatment of trauma have yielded promising results. We present the results of the application of this technique to patients experiencing abdominal sepsis. We enrolled 88 DCS patients during a 5 year-period (January 2008 to December 2012) into a propensity-matched study to evaluate the utility of using DPR in addition to standard resuscitation. DPR consisted of peritoneal lavage with 2.5% DELFLEX, and abdominal closure was standardized across both groups. Patients were matched using Acute Physiology and Chronic Health Evaluation II (APACHE II) variables. Univariate and multivariate analyses were performed. There were no differences between the control and experimental groups with regard to age, sex, ethnicity, or APACHE II at 24 hours. Indications for damage control included pancreatitis, perforated hollow viscous, bowel obstruction, and ischemic enterocolitis. Patients undergoing DPR had both a higher rate of (68% vs. 43%, p < 0.03) and a shorter time to definitive fascial closure (5.9 [3.2] days vs. 7.7 [4.1] days, p < 0.02). DPR patients had a decreased APACHE II and Sequential Organ Failure Assessment (SOFA) score compared with the controls at 48 hours. In addition, DPR patients had fewer abdominal complications compared with the controls (RR, 0.57; 95% confidence interval, 0.32-1.01; p = 0.038). Ventilator days and intensive care unit length of stay were both significantly reduced in the DPR group. The DPR group showed a lower overall mortality at 30 days (16% vs. 27%, p = 0.15). DPR reduces time to definitive abdominal closure, increases primary fascial closure, and reduces intra-abdominal complications following DCS. DPR may also attenuate progressive physiologic injury as demonstrated by a reduction in 48-hour intensive care unit severity scores. As a result, DPR following DCS may afford better outcomes to patients experiencing shock. Therapeutic study, level III.
Chu, Zhiguo; Andrade, Josefa; Shupnik, Margaret A.; Moenter, Suzanne M.
2009-01-01
GnRH neurons are critical to controlling fertility. In vivo, estradiol can inhibit or stimulate GnRH release depending on concentration and physiological state. We examined rapid, non-genomic effects of estradiol. Whole-cell recordings were made of GnRH neurons in brain slices from ovariectomized mice with ionotropic GABA and glutamate receptors blocked. Estradiol was bath-applied and measurements completed within 15 min. Estradiol from high physiological (preovulatory) concentrations (100pM) to 100nM enhanced action potential firing, reduced afterhyperpolarizing potential (AHP) and increased slow afterdepolarization (sADP) amplitudes, and reduced IAHP and enhanced IADP. The reduction of IAHP was occluded by prior blockade of calcium-activated potassium channels. These effects were mimicked by an estrogen receptor (ER) β-specific agonist and were blocked by the classical receptor antagonist ICI182780. ERα or GPR30 agonists had no effect. The acute stimulatory effect of high physiological estradiol on firing rate was dependent on signaling via protein kinase A. In contrast, low physiological levels of estradiol (10pM) did not affect intrinsic properties. Without blockade of ionotropic GABA and glutamate receptors, however, 10pM estradiol reduced firing of GnRH neurons; this was mimicked by an ERα agonist. ERα agonists reduced the frequency of GABA transmission to GnRH neurons; GABA can excite to these cells. In contrast, ERβ agonists increased GABA transmission and postsynaptic response. These data suggest rapid intrinsic and network modulation of GnRH neurons by estradiol is dependent upon both dose and receptor subtype. In cooperation with genomic actions, non-genomic effects may play a role in feedback regulation of GnRH secretion. PMID:19403828
Chen, Samuel L; Kuo, Isabella J; Kabutey, Nii-Kabu; Fujitani, Roy M
2017-07-01
Certain critically ill patients with advanced acute limb ischemia with a nonviable extremity may be unsuitable for transport to the operating room to undergo definitive amputation. In these unstable patients, rapid regional cryotherapy allows for prompt infectious source control and correction of hemodynamic and metabolic abnormalities, thereby lessening the risk associated with definitive surgical amputation. We describe our refined technique for lower extremity physiologic cryoamputation and review our institutional experience. After adequate analgesia is administered to the patient, a heating pad is secured circumferentially at the proximal amputation margin and the affected extremity is placed in a customized Styrofoam cooler. A circumferential seal is secured at the proximal chill zone without use of a tourniquet and dry ice is placed into the cooler to surround the entire affected leg. Delayed definitive lower extremity amputation is later performed when hemodynamic and metabolic derangements are corrected. We reviewed 5 patients who underwent lower extremity cryoamputation with this technique identified at our institution between 2005 and 2015. Age ranged from 31 to 79 years old. All presented with severe foot infection and septic shock requiring vasopressor support. All 5 patients stabilized hemodynamically following the initial cryoamputation and later underwent definitive lower extremity amputation, with a median time of 3 days following initial cryoamputation. Lower extremity physiologic cryoamputation is an effective, immediate bedside procedure that can provide local source control and the opportunity for correction of metabolic derangements in initially unstable patients to lessen the risk for definitive major lower extremity amputation. Refinement of the cryoamputation technique, as described in this report, allows for a predictable and reproducible physiologic amputation. Copyright © 2017 Elsevier Inc. All rights reserved.
A brain slice bath for physiology and compound microscopy, with dual-sided perifusion.
Heyward, P M
2010-12-01
Contemporary in vitro brain slice studies can employ compound microscopes to identify individual neurons or their processes for physiological recording or imaging. This requires that the bath used to maintain the tissue fits within the working distances of a water-dipping objective and microscope condenser. A common means of achieving this is to maintain thin tissue slices on the glass floor of a recording bath, exposing only one surface of the tissue to oxygenated bathing medium. Emerging evidence suggests that physiology can be compromised by this approach. Flowing medium past both sides of submerged brain slices is optimal, but recording baths utilizing this principle are not readily available for use on compound microscopes. This paper describes a tissue bath designed specifically for microscopy and physiological recording, in which temperature-controlled medium flows past both sides of the slices. A particular feature of this design is the use of concentric mesh rings to support and transport the live tissue without mechanical disturbance. The design is also easily adapted for use with thin acute slices, cultured slices, and acutely dispersed or cultured cells maintained either on cover slips or placed directly on the floor of the bath. The low profile of the bath provides a low angle of approach for electrodes, and allows use of standard condensers, nosepieces and water-dipping objective lenses. If visualization of individual neurons is not required, the bath can be mounted on a simple stand and used with a dissecting microscope. Heating is integral to the bath, and any temperature controller capable of driving a resistive load can be used. The bath is robust, readily constructed and requires minimal maintenance. Full construction and operation details are given. © 2010 The Author Journal of Microscopy © 2010 The Royal Microscopical Society.
Veen, Cato; Myint, Aye Mu; Burgerhout, Karin M; Schwarz, Markus J; Schütze, Gregor; Kushner, Steven A; Hoogendijk, Witte J; Drexhage, Hemmo A; Bergink, Veerle
2016-01-01
Women are at very high risk for the first onset of acute and severe mood disorders the first weeks after delivery. Tryptophan breakdown is increased as a physiological phenomenon of the postpartum period and might lead to vulnerability for affective psychosis (PP) and severe depression (PD). The aim of the current study was to investigate alterations in tryptophan breakdown in the physiological postpartum period compared to patients with severe postpartum mood disorders. We included 52 patients (29 with PP, 23 with PD), 52 matched healthy postpartum women and 29 healthy non-postpartum women. Analyzes of serum tryptophan metabolites were performed using LC-MS/MS system for tryptophan, kynurenine, 3-hydroxykynurenine, kynurenic acid and 5-hydroxyindoleacetic acid. The first two months of the physiological postpartum period were characterized by low tryptophan levels, increased breakdown towards kynurenine and a downstream shift toward the 3-OH-kynurenine arm, away from the kynurenic acid arm. Kynurenine was significantly lower in patients with PP and PD as compared to healthy postpartum women (p=0.011 and p=0.001); the remaining tryptophan metabolites demonstrated few differences between patients and healthy postpartum women. Low prevalence of the investigated disorders and strict exclusion criteria to obtain homogenous groups, resulted in relatively small sample sizes. The high kynurenine levels and increased tryptophan breakdown as a phenomenon of the physiological postpartum period was not present in patients with severe postpartum mood disorders. No differences were observed in the levels of the 'neurotoxic' 3-OH-kynurenine and the 'neuroprotective' kynurenic acid arms between patients and healthy postpartum women. Copyright © 2015 Elsevier B.V. All rights reserved.
Pisapia, Chiara; Anderson, Kristen; Pratchett, Morgan S.
2014-01-01
Even in the absence of major disturbances (e.g., cyclones, bleaching), corals are subject to high levels of partial or whole-colony mortality, often caused by chronic and small-scale disturbances. Depending on levels of background mortality, these chronic disturbances may undermine individual fitness and have significant consequences on the ability of colonies to withstand subsequent acute disturbances or environmental change. This study quantified intraspecific variations in physiological condition (measured based on total lipid content and zooxanthellae density) through time in adult colonies of two common and widespread coral species (Acropora spathulata and Pocillopora damicornis), subject to different levels of biological and physical disturbances along the most disturbed reef habitat, the crest. Marked intraspecific variation in the physiological condition of A. spathulata was clearly linked to differences in local disturbance regimes and habitat. Specifically, zooxanthellae density decreased (r2 = 26, df = 5,42, p<0.02, B = −121255, p = 0.03) and total lipid content increased (r2 = 14, df = 5,42, p = 0.01, B = 0.9, p = 0.01) with increasing distance from exposed crests. Moreover, zooxanthellae density was strongly and negatively correlated with the individual level of partial mortality (r2 = 26, df = 5,42, p<0.02, B = −7386077, p = 0.01). Conversely, P. damicornis exhibited very limited intraspecific variation in physiological condition, despite marked differences in levels of partial mortality. This is the first study to relate intraspecific variation in the condition of corals to localized differences in chronic disturbance regimes. The next step is to ascertain whether these differences have further ramifications for susceptibility to periodic acute disturbances, such as climate-induced coral bleaching. PMID:24626395
Pisapia, Chiara; Anderson, Kristen; Pratchett, Morgan S
2014-01-01
Even in the absence of major disturbances (e.g., cyclones, bleaching), corals are subject to high levels of partial or whole-colony mortality, often caused by chronic and small-scale disturbances. Depending on levels of background mortality, these chronic disturbances may undermine individual fitness and have significant consequences on the ability of colonies to withstand subsequent acute disturbances or environmental change. This study quantified intraspecific variations in physiological condition (measured based on total lipid content and zooxanthellae density) through time in adult colonies of two common and widespread coral species (Acropora spathulata and Pocillopora damicornis), subject to different levels of biological and physical disturbances along the most disturbed reef habitat, the crest. Marked intraspecific variation in the physiological condition of A. spathulata was clearly linked to differences in local disturbance regimes and habitat. Specifically, zooxanthellae density decreased (r2 = 26, df = 5,42, p<0.02, B = -121255, p = 0.03) and total lipid content increased (r2 = 14, df = 5,42, p = 0.01, B = 0.9, p = 0.01) with increasing distance from exposed crests. Moreover, zooxanthellae density was strongly and negatively correlated with the individual level of partial mortality (r2 = 26, df = 5,42, p<0.02, B = -7386077, p = 0.01). Conversely, P. damicornis exhibited very limited intraspecific variation in physiological condition, despite marked differences in levels of partial mortality. This is the first study to relate intraspecific variation in the condition of corals to localized differences in chronic disturbance regimes. The next step is to ascertain whether these differences have further ramifications for susceptibility to periodic acute disturbances, such as climate-induced coral bleaching.
Weiner, Juliane; Rohde, Kerstin; Krause, Kerstin; Zieger, Konstanze; Klöting, Nora; Kralisch, Susan; Kovacs, Peter; Stumvoll, Michael; Blüher, Matthias; Böttcher, Yvonne; Heiker, John T
2017-06-01
Several studies have demonstrated anti-diabetic and anti-obesogenic properties of visceral adipose tissue-derived serine protease inhibitor (vaspin) and so evoked its potential use for treatment of obesity-related diseases. The aim of the study was to unravel physiological regulators of vaspin expression and secretion with a particular focus on its role in brown adipose tissue (BAT) biology. We analyzed the effects of obesogenic diets and cold exposure on vaspin expression in liver and white and brown adipose tissue (AT) and plasma levels. Vaspin expression was analyzed in isolated white and brown adipocytes during adipogenesis and in response to adrenergic stimuli. DNA-methylation within the vaspin promoter was analyzed to investigate acute epigenetic changes after cold-exposure in BAT. Our results demonstrate a strong induction of vaspin mRNA and protein expression specifically in BAT of both cold-exposed and high-fat (HF) or high-sugar (HS) fed mice. While obesogenic diets also upregulated hepatic vaspin mRNA levels, cold exposure tended to increase vaspin gene expression of inguinal white adipose tissue (iWAT) depots. Concomitantly, vaspin plasma levels were decreased upon obesogenic or thermogenic triggers. Vaspin expression was increased during adipogenesis but unaffected by sympathetic activation in brown adipocytes. Analysis of vaspin promoter methylation in AT revealed lowest methylation levels in BAT, which were acutely reduced after cold exposure. Our data demonstrate a novel BAT-specific regulation of vaspin gene expression upon physiological stimuli in vivo with acute epigenetic changes that may contribute to cold-induced expression in BAT. We conclude that these findings indicate functional relevance and potentially beneficial effects of vaspin in BAT function.
Gandolfi, Marialuisa; Geroin, Christian; Tomelleri, Christopher; Maddalena, Isacco; Kirilova Dimitrova, Eleonora; Picelli, Alessandro; Smania, Nicola; Waldner, Andreas
2017-12-01
So far, the development of robotic devices for the early lower limb mobilization in the sub-acute phase after stroke has received limited attention. To explore the feasibility of a newly robotic-stationary gait training in sub-acute stroke patients. To report the training effects on lower limb function and muscle activation. A pilot study. Rehabilitation ward. Two sub-acute stroke inpatients and ten age-matched healthy controls were enrolled. Healthy controls served as normative data. Patients underwent 10 robot-assisted training sessions (20 minutes, 5 days/week) in alternating stepping movements (500 repetitions/session) on a hospital bed in addition to conventional rehabilitation. Feasibility outcome measures were compliance, physiotherapist time, and responses to self-report questionnaires. Efficacy outcomes were bilateral lower limb muscle activation pattern as measured by surface electromyography (sEMG), Motricity Index (MI), Medical Research Council (MRC) grade, and Ashworth Scale (AS) scores before and after training. No adverse events occurred. No significant differences in sEMG activity between patients and healthy controls were observed. Post-training improvement in MI and MRC scores, but no significant changes in AS scores, were recorded. Post-treatment sEMG analysis of muscle activation patterns showed a significant delay in rectus femoris offset (P=0.02) and prolonged duration of biceps femoris (P=0.04) compared to pretreatment. The robot-assisted training with our device was feasible and safe. It induced physiological muscle activations pattern in both stroke patients and healthy controls. Full-scale studies are needed to explore its potential role in post-stroke recovery. This robotic device may enrich early rehabilitation in subacute stroke patients by inducing physiological muscle activation patterns. Future studies are warranted to evaluate its effects on promoting restorative mechanisms involved in lower limb recovery after stroke.
Carbon Dioxide Physiological Training at NASA.
Law, Jennifer; Young, Millennia; Alexander, David; Mason, Sara S; Wear, Mary L; Méndez, Claudia M; Stanley, David; Ryder, Valerie Meyers; Van Baalen, Mary
2017-10-01
Astronauts undergo CO2 exposure training to recognize their symptoms that can arise acutely both on the ground and in spaceflight. This article describes acute CO2 exposure training at NASA and examines the symptoms reported by astronauts during training. In a controlled training environment, astronauts are exposed to up to 8% CO2 (60 mmHg) by a rebreathing apparatus. Symptoms are reported using a standard form. Symptom documentation forms between April 1994 and February 2012 were obtained for 130 astronauts. The number of symptoms reported per session out of the possible 24 was related to age and sex, with those older slightly more likely to report symptoms. Women reported more symptoms on average than men (men: 3.7, women: 4.7). Respiratory symptoms (90%), flushing sensation/sweating (56%), and dizziness/feeling faint/lightheadedness (43%) were the top symptoms. Only headache reached statistical significance in differences between men (13%) and women (37%) after adjustment for multiple testing. Among those with multiple training sessions, respiratory symptoms were the most consistently reported. CO2 exposure training is an important tool to educate astronauts about their potential acute CO2 symptoms. Wide interindividual and temporal variations were observed in symptoms reported during astronaut CO2 exposure training. Headache could not be relied on as a marker of acute exposure during testing since fewer than half the subjects reported it. Our results support periodic refresher training since symptoms may change over time. Further study is needed to determine the optimal interval of training to maximize symptom recognition and inform operational decisions.Law J, Young M, Alexander D, Mason SS, Wear ML, Méndez CM, Stanley D, Meyers Ryder V, Van Baalen M. Carbon dioxide physiological training at NASA. Aerosp Med Hum Perform. 2017; 88(10):897-902.
Cipryan, Lukas; Tschakert, Gerhard; Hofmann, Peter
2017-06-01
The purpose of the presented study was to compare acute and post-exercise differences in cardiorespiratory, metabolic, cardiac autonomic, inflammatory and muscle damage responses to high-intensity interval exercise (HIIT) between endurance and sprint athletes. The study group consisted of sixteen highly-trained males (age 22.1 ± 2.5 years) participating in endurance (n = 8) or sprint (n = 8) sporting events. All the participants underwent three exercise sessions: short HIIT (work interval duration 30s), long HIIT (3min) and constant load exercise (CE). The exercise interventions were matched for mean power, total time and in case of HIIT interventions also for work-to-relief ratio. The acute cardiorespiratory (HR, V̇ O 2 , RER) and metabolic (lactate) variables as well as the post-exercise changes (up to 3 h) in the heart rate variability, inflammation (interleukin-6, leucocytes) and muscle damage (creatine kinase, myoglobin) were monitored. Endurance athletes performed exercise interventions with moderately (CE) or largely (both HIIT modes) higher mean V̇ O 2 . These differences were trivial/small when V̇ O 2 was expressed as a percentage of V̇ O 2max . Moderately to largely lower RER and lactate values were found in endurance athletes. Markers of cardiac autonomic regulation, inflammation and muscle damage did not reveal any considerable differences between endurance and sprint athletes. In conclusions, endurance athletes were able to perform both HIIT formats with increased reliance on aerobic metabolic pathways although exercise intensity was identical in relative terms for all the participants. However, other markers of the acute and early post-exercise physiological response to these HIIT interventions indicated similarities between endurance and sprint athletes.
Chronic and Acute Stress Promote Overexploitation in Serial Decision Making
Lenow, Jennifer K.; Constantino, Sara M.
2017-01-01
Many decisions that humans make resemble foraging problems in which a currently available, known option must be weighed against an unknown alternative option. In such foraging decisions, the quality of the overall environment can be used as a proxy for estimating the value of future unknown options against which current prospects are compared. We hypothesized that such foraging-like decisions would be characteristically sensitive to stress, a physiological response that tracks biologically relevant changes in environmental context. Specifically, we hypothesized that stress would lead to more exploitative foraging behavior. To test this, we investigated how acute and chronic stress, as measured by changes in cortisol in response to an acute stress manipulation and subjective scores on a questionnaire assessing recent chronic stress, relate to performance in a virtual sequential foraging task. We found that both types of stress bias human decision makers toward overexploiting current options relative to an optimal policy. These findings suggest a possible computational role of stress in decision making in which stress biases judgments of environmental quality. SIGNIFICANCE STATEMENT Many of the most biologically relevant decisions that we make are foraging-like decisions about whether to stay with a current option or search the environment for a potentially better one. In the current study, we found that both acute physiological and chronic subjective stress are associated with greater overexploitation or staying at current options for longer than is optimal. These results suggest a domain-general way in which stress might bias foraging decisions through changing one's appraisal of the overall quality of the environment. These novel findings not only have implications for understanding how this important class of foraging decisions might be biologically implemented, but also for understanding the computational role of stress in behavior and cognition more broadly. PMID:28483979
Acute spinal cord injury changes the disposition of some, but not all drugs given intravenously.
García-López, P; Martínez-Cruz, A; Guízar-Sahagún, G; Castañeda-Hernández, G
2007-09-01
Experimental laboratory investigations in paraplegic rats. In order to understand why acute spinal cord injury (SCI) changes the disposition of some, but not all drugs given intravenously (i.v.), pharmacokinetic parameters of drugs with different pharmacological properties were evaluated to determine the influence of SCI on physiological processes such as distribution, metabolism and excretion. Mexico City, Mexico. Rats were subjected to severe SCI (contusion) at T-9 level; pharmacokinetic studies of phenacetin, naproxen or gentamicin were performed 24 h after. These drugs were not chosen as markers because of their therapeutic properties, but because of their pharmacokinetic characteristics. Additional studies including plasma proteins, liver and renal function tests, and micro-vascular hepatic blood flow, were also performed at the same time after injury. Acute SCI significantly reduced distribution of drugs with intermediate and low binding to plasma proteins (phenacetin 30% and gentamicin 10%, respectively), but distribution did not change when naproxen - a drug highly bound to plasma proteins (99%) - was used, in absence of changes in plasma proteins. Metabolism was significantly altered only for a drug with liver blood flow - limited clearance (phenacetin) and not for a drug with liver capacity-limited clearance (naproxen). The liver function test did not change, whereas the hepatic micro-vascular blood flow significantly decreased after SCI. Renal excretion, evaluated by gentamicin clearance, was significantly reduced as a consequence of SCI, without significant changes in serum creatinine. Changes in drug disposition associated to acute SCI are complex and generalization is not possible. They are highly dependent on each drug properties as well as on the altered physiological processes. Results motivate the quest for strategies to improve disposition of selective i.v. drugs during spinal shock, in an effort to avoid therapeutic failure.
NASA Astrophysics Data System (ADS)
Aljbour, Samir M.; Zimmer, Martin; Kunzmann, Andreas
2017-10-01
Pelagic jellyfish blooms are increasing worldwide as a potential response to climate-change. However, virtually nothing is known about physiological responses of jellyfish to e.g. sudden changes in water temperature due to extreme weather events. When confronted with a sudden decrease or increase in water temperature by 6 °C, medusae of Cassiopea sp. exhibited a strong response in locomotor activity (i.e., bell pulsation increased and decreased by ca. 37 and 46% in hot and cold acute (2 h) treatments, respectively) relative to control. Although medusae significantly gained in body mass (wet weight) upon chronic (2 weeks) heat treatment, their body size (e.g., bell diameter) did not change over this time interval. In contrast, chronic cold treatment resulted in both significant shrinking (reduced diameter) and mass loss. Measurements of mitochondrial electron transport system (ETS) activities and rate of respiratory oxygen uptake (MO2) are good estimates of energy consumption and the potential aerobic metabolic rates of an organism. While both acute treatments significantly increased ETS-activities, acclimation over two weeks resulted in a drop in activities to the control levels. Whereas acute heat treatment significantly increased MO2, chronic exposure resulted in significant MO2 decrease compared to control; however no changes in MO2 could be observed in both acute and chronic cold treatments. Overall these results suggest an enhanced growth in response to global warming, whereas low temperatures may set the limits for successful invasion of Cassiopea into colder water bodies. Our results provide a framework for understanding the physiological tolerance of Cassiopea under possible future climate changes.
Modeling mechanical cardiopulmonary interactions for virtual environments.
Kaye, J M
1997-01-01
We have developed a computer system for modeling mechanical cardiopulmonary behavior in an interactive, 3D virtual environment. The system consists of a compact, scalar description of cardiopulmonary mechanics, with an emphasis on respiratory mechanics, that drives deformable 3D anatomy to simulate mechanical behaviors of and interactions between physiological systems. Such an environment can be used to facilitate exploration of cardiopulmonary physiology, particularly in situations that are difficult to reproduce clinically. We integrate 3D deformable body dynamics with new, formal models of (scalar) cardiorespiratory physiology, associating the scalar physiological variables and parameters with corresponding 3D anatomy. Our approach is amenable to modeling patient-specific circumstances in two ways. First, using CT scan data, we apply semi-automatic methods for extracting and reconstructing the anatomy to use in our simulations. Second, our scalar models are defined in terms of clinically-measurable, patient-specific parameters. This paper describes our approach and presents a sample of results showing normal breathing and acute effects of pneumothoraces.
Rohan, Vinayak S; Taber, David J; Moussa, Omar; Pilch, Nicole A; Denmark, Signe; Meadows, Holly B; McGillicuddy, John W; Chavin, Kenneth D; Baliga, Prabhakar K; Bratton, Charles F
2017-02-01
Elevated panel reactive antibody levels have been traditionally associated with increased acute rejection rate and decreased long-term graft survival after kidney transplant. In this study, our objective was to determine patient and allograft outcomes in sensitized kidney transplant recipients with advanced HLA antibody detection and stringent protein sequence epitope analyses. This was a subanalysis of a prospective, risk-stratified randomized controlled trial that compared interleukin 2 receptor antagonist to rabbit antithymocyte globulin induction in 200 kidney transplant recipients, examining outcomes based on panel reactive antibody levels of < 20% (low) versus ≥ 20% (high, sensitized). The study was conducted between February 2009 and July 2011. All patients underwent solid-phase single antigen bead assays to detect HLA antibodies and stringent HLA epitope analyses with protein sequence alignment for virtual crossmatching. Delayed graft function, acute rejection rates, and graft loss were the main outcomes measured. Both the low (134 patients) and high (66 patients) panel reactive antibody level cohorts had equivalent induction and maintenance immunosuppression. Patients in the high-level group were more likely to be female (P < .001), African American (P < .001), and received a kidney from a deceased donor (P = .004). Acute rejection rates were similar between the low (rate of 8%) and high (rate of 9%) panel reactive antibody groups (P = .783). Delayed graft function, borderline rejection, graft loss, and death were not different between groups. Multivariate analyses demonstrated delayed graft function to be the strongest predictor of acute rejection (odds ratio, 5.7; P = .005); panel reactive antibody level, as a continuous variable, had no significant correlation with acute rejection (C statistic, 0.48; P = .771). Appropriate biologic matching with single antigen bead assays and stringent epitope analyses provided excellent outcomes in sensitized patients regardless of the induction therapy choice.
USDA-ARS?s Scientific Manuscript database
Circulating microRNA (c-miRNA) have the potential to function as novel noninvasive markers of the underlying physiological state of skeletal muscle. This investigation sought to determine the influence of aging on c-miRNA expression at rest and following resistance exercise in male volunteers (Young...
Integrated Services for Frail Elders (SIPA): A Trial of a Model for Canada
ERIC Educational Resources Information Center
Beland, Francois; Bergman, Howard; Lebel, Paule; Dallaire, Luc; Fletcher, John; Contandriopoulos, Andre-Pierre; Solidage, Tousignant Pierre
2006-01-01
The complex formed by chronic illness, episodes of acute illness, physiological disabilities, functional limitations, and cognitive problems is prevalent among frail elderly persons. These individuals rely on assistance from social and health care programs, which in Canada are still fragmented. SIPA is an integrated service model based on…
Schopenhauer on Sense Perception and Aesthetic Cognition
ERIC Educational Resources Information Center
Vandenabeele, Bart
2011-01-01
Schopenhauer's account of sense perception contains an acute critique of Kant's theory of cognition. His analysis of the role of the understanding in perception may be closer to Kant's than he conceded, but his physiological analysis of the role of the senses nonetheless proffers a more plausible account than Kant's transcendental conception of…
2001-03-01
repeated food restriction and refeeding (a mixed diet , with caloric content divided into approximately 50% carbohydrate, 35% fat, 15% protein) in the...partially adaptive in the hypocaloric setting (14) and with increased risk of infection (15). Other aspects of thyroid function responded as expected in
Neonatal Pressure Ulcer Prevention.
Scheans, Patricia
2015-01-01
The incidence of pressure ulcers in acutely ill infants and children ranges up to 27 percent in intensive care units, with a range of 16-19 percent in NICUs. Anatomic, physiologic, and developmental factors place ill and preterm newborns at risk for skin breakdown. Two case studies illustrate these factors, and best practices for pressure ulcer prevention are described.
The potential human health risk(s) from exposure to chemicals under conditions for which adequate human or animal data are not available must frequently be assessed. Exposure scenario is particularly important for the acute neurotoxic effects of volatile organic compounds (VOCs)...
2005-01-01
in surrogate avian species, and (3) acute effects on behavior, reproductive success, and observable physiological processes (e.g., thermoregulation ... reptiles , and birds at Fort Leonard Wood, Missouri. Report submitted to U.S. Army Corps of Engineers, Kansas City, MO. Aiken, J.L., and C.L
Zhou, Hongzhen; Zhu, Yafang; Zhang, Xiaomei
2017-01-01
This study aimed to validate the Chinese version of the Functional Oral Intake Scale (FOIS) score in acute stroke patients with dysphagia. A sample of 128 consecutive patients with acute stroke, admitted to Department of Neurology from April to October in 2016, completed the FOIS. The interrater reliability, criterion validity, discriminant validity, cross validation, and the sensitivity of FOIS scale were evaluated. Results showed that rater agreements were excellent for FOIS (Kw = 0.881, p < 0.001). A highly negative correlation between FOIS and WST (water swallow test) was detected (r = -0.937, p < 0.001). There was significant difference for FOIS level of patients with different evaluation outcomes (χ2 = 126.551, p < 0.001). The FOIS evaluation results were significantly correlated with two physiological measures of swallowing. The Chinese version of the FOIS score is a reliable scale for evaluating the level of oral feeding function in patients with acute stroke.
Acute and Chronic Regulation of Aldosterone Production
Hattangady, Namita; Olala, Lawrence; Bollag, Wendy B.; Rainey, William E.
2011-01-01
Aldosterone is the major mineralocorticoid synthesized by the adrenal. Secretion of aldosterone is regulated tightly by the adrenocortical glomerulosa cells due to the selective expression of CYP11B2 in the outermost zone, the zona glomerulosa. Aldosterone is largely responsible for regulation of systemic blood pressure through the absorption of electrolytes and water under the regulation of certain specific agonists. Angiotensin II (Ang II), potassium (K+) and adrenocorticotropin (ACTH) are the main physiological agonists which regulate aldosterone secretion. The mechanisms involved in this process may be regulated minutes after a stimulus (acutely) through increased expression and phosphorylation of the steroidogenic acute regulatory (StAR) protein, over hours to days (chronically) by increased expression of the enzymes involved in the synthesis of aldosterone, particularly aldosterone synthase (CYP11B2). Imbalance in any of these processes may lead to several aldosterone excess disorders. In this review we attempt to summarize the key molecular events involved in and specifically attributed to the acute and chronic phases of aldosterone secretion. PMID:21839803
Mitochondrial function and malfunction in the pathophysiology of pancreatitis.
Gerasimenko, Oleg V; Gerasimenko, Julia V
2012-07-01
As a primary energy producer, mitochondria play a fundamental role in pancreatic exocrine physiology and pathology. The most frequent aetiology of acute pancreatitis is either gallstones or heavy alcohol consumption. Repeated episodes of acute pancreatitis can result in the development of chronic pancreatitis and increase the lifetime risk of pancreatic cancer 100-fold. Pancreatic cancer is one of the most common causes of cancer mortality with only about 3-4 % of patients surviving beyond 5 years. It has been shown that acute pancreatitis involves Ca²⁺ overload and overproduction of reactive oxygen species in pancreatic acinar cells. Both factors significantly affect mitochondria and lead to cell death. The pathogenesis of inflammation in acute and chronic pancreatitis is tightly linked to the induction of necrosis and apoptosis. There is currently no specific therapy for pancreatitis, but recent findings of an endogenous protective mechanism against Ca²⁺ overload--and particularly the potential to boost this protection--bring hope of new therapeutic approaches.
Indications for Thrombolytic Therapy in Acute Pulmonary Embolism
Dieck, John A.; Ferguson, James J.
1989-01-01
Pulmonary thromboembolism is commonly misdiagnosed and is associated with significant morbidity and mortality both in the early and late stages. A major cause of late morbidity is chronic pulmonary hypertension. Although the incidence of chronic thromboembolic pulmonary hypertension is unknown, there is anatomic and physiologic evidence that it is responsible for a significant degree of the late morbidity and mortality following acute pulmonary embolism. In the absence of underlying cardiopulmonary disease, pulmonary artery pressure is a useful indicator of the severity of acute pulmonary embolism and of the patient's prognosis. Thrombolytic agents accelerate the lysis of the thromboemboli, offer an excellent alternative to emergency embolectomy, and are likely to decrease the incidence of chronic pulmonary hypertension. All currently available agents have been shown to be effective and have similar bleeding-complication profiles. In this review, we discuss the natural history and pathophysiology of pulmonary thromboembolic disease, as well as applications of thrombolytic therapy in the treatment of acute pulmonary embolism. (Texas Heart Institute Journal 1989;16:19-26) PMID:15227232
Murray, Patrick T; Mehta, Ravindra L; Shaw, Andrew; Ronco, Claudio; Endre, Zoltan; Kellum, John A; Chawla, Lakhmir S; Cruz, Dinna; Ince, Can; Okusa, Mark D
2014-03-01
Over the last decade there has been considerable progress in the discovery and development of biomarkers of kidney disease, and several have now been evaluated in different clinical settings. Although there is a growing literature on the performance of various biomarkers in clinical studies, there is limited information on how these biomarkers would be utilized by clinicians to manage patients with acute kidney injury (AKI). Recognizing this gap in knowledge, we convened the 10th Acute Dialysis Quality Initiative meeting to review the literature on biomarkers in AKI and their application in clinical practice. We asked an international group of experts to assess four broad areas for biomarker utilization for AKI: risk assessment, diagnosis, and staging; differential diagnosis; prognosis and management; and novel physiological techniques including imaging. This article provides a summary of the key findings and recommendations of the group, to equip clinicians to effectively use biomarkers in AKI.
Neo-Darwinism, the Modern Synthesis and selfish genes: are they of use in physiology?
Noble, Denis
2011-01-01
This article argues that the gene-centric interpretations of evolution, and more particularly the selfish gene expression of those interpretations, form barriers to the integration of physiological science with evolutionary theory. A gene-centred approach analyses the relationships between genotypes and phenotypes in terms of differences (change the genotype and observe changes in phenotype). We now know that, most frequently, this does not correctly reveal the relationships because of extensive buffering by robust networks of interactions. By contrast, understanding biological function through physiological analysis requires an integrative approach in which the activity of the proteins and RNAs formed from each DNA template is analysed in networks of interactions. These networks also include components that are not specified by nuclear DNA. Inheritance is not through DNA sequences alone. The selfish gene idea is not useful in the physiological sciences, since selfishness cannot be defined as an intrinsic property of nucleotide sequences independently of gene frequency, i.e. the ‘success’ in the gene pool that is supposed to be attributable to the ‘selfish’ property. It is not a physiologically testable hypothesis. PMID:21135048
Neo-Darwinism, the modern synthesis and selfish genes: are they of use in physiology?
Noble, Denis
2011-03-01
This article argues that the gene-centric interpretations of evolution, and more particularly the selfish gene expression of those interpretations, form barriers to the integration of physiological science with evolutionary theory. A gene-centred approach analyses the relationships between genotypes and phenotypes in terms of differences (change the genotype and observe changes in phenotype). We now know that, most frequently, this does not correctly reveal the relationships because of extensive buffering by robust networks of interactions. By contrast, understanding biological function through physiological analysis requires an integrative approach in which the activity of the proteins and RNAs formed from each DNA template is analysed in networks of interactions. These networks also include components that are not specified by nuclear DNA. Inheritance is not through DNA sequences alone. The selfish gene idea is not useful in the physiological sciences, since selfishness cannot be defined as an intrinsic property of nucleotide sequences independently of gene frequency, i.e. the 'success' in the gene pool that is supposed to be attributable to the 'selfish' property. It is not a physiologically testable hypothesis.
Zhou, Jing; Ke, Lu; Yang, Dongliang; Chen, Yizhe; Li, Gang; Tong, Zhihui; Li, Weiqin; Li, Jieshou
Splanchnic venous thrombosis (SVT) is a relatively rare but important complication of necrotizing acute pancreatitis (NAP). Clinical manifestations and severity of this complication in different patients vary greatly, ranging from mild abdominal discomfort even asymptomatic to lethal gastrorrhagia or hepatic failure. The aim of the present study was to develop a model to predict the clinical manifestations of SVT in NAP patients. This retrospective cohort study was conducted in the surgical intensive care unit (SICU) of Jinling Hospital. Patients with the presence of both pancreatic necrosis and SVT were selected for possible inclusion. Both univariate and multivariate logistic regression analyses were applied using 12 indices including age, gender, Acute Physiology and Chronic Health Evaluation II scores (APACHE II), CRP(C - reactive protein) levels, etc to assess potential predictors for symptomatic pancreatic splanchnic venous thrombosis (PSVT) in this cohort. A prognostic nomogram was also applied to develop an easy-to-use prediction model. A total of 104 patients with necrotizing acute pancreatitis (NAP) and splanchnic vein thrombosis (SVT) from January 2012 to December 2013 were enrolled for analysis. A quarter of study subjects (26 of 104, 25%) developed variable symptomatic manifestations including variceal bleeding, persistent ascites and enteral nutrition (EN) intolerance during the disease course. In the multivariable regression model, the following factors were found to be associated with the occurrence of symptomatic SVT: Balthazar's computed tomography (CT) score (OR = 1.818; 95% CI: 1.251-2.641; P = 0.002), intra-abdominal pressure (IAP) (OR = 1.172; 95% CI: 1.001-1.251; P = 0.043 and presence of SMVT (OR = 6.946; 95% CI: 2.290-21.074; P = 0.001). A prediction model incorporating these factors demonstrated an area under the receiver operating characteristic curve of 0.842. Balthazar's CT score, IAP and SMVT are predictors of symptomatic SVT in NAP patients. The nomogram we conducted can be used as an easy-to-use risk stratification tool in either clinical practice or future studies. Copyright © 2016 IAP and EPC. Published by Elsevier B.V. All rights reserved.
The Role of Stress Regulation on Neural Plasticity in Pain Chronification.
Li, Xiaoyun; Hu, Li
2016-01-01
Pain, especially chronic pain, is one of the most common clinical symptoms and has been considered as a worldwide healthcare problem. The transition from acute to chronic pain is accompanied by a chain of alterations in physiology, pathology, and psychology. Increasing clinical studies and complementary animal models have elucidated effects of stress regulation on the pain chronification via investigating activations of the hypothalamic-pituitary-adrenal (HPA) axis and changes in some crucial brain regions, including the amygdala, prefrontal cortex, and hippocampus. Although individuals suffer from acute pain benefit from such physiological alterations, chronic pain is commonly associated with maladaptive responses, like the HPA dysfunction and abnormal brain plasticity. However, the causal relationship among pain chronification, stress regulation, and brain alterations is rarely discussed. To call for more attention on this issue, we review recent findings obtained from clinical populations and animal models, propose an integrated stress model of pain chronification based on the existing models in perspectives of environmental influences and genetic predispositions, and discuss the significance of investigating the role of stress regulation on brain alteration in pain chronification for various clinical applications.
The Role of Stress Regulation on Neural Plasticity in Pain Chronification
Li, Xiaoyun
2016-01-01
Pain, especially chronic pain, is one of the most common clinical symptoms and has been considered as a worldwide healthcare problem. The transition from acute to chronic pain is accompanied by a chain of alterations in physiology, pathology, and psychology. Increasing clinical studies and complementary animal models have elucidated effects of stress regulation on the pain chronification via investigating activations of the hypothalamic-pituitary-adrenal (HPA) axis and changes in some crucial brain regions, including the amygdala, prefrontal cortex, and hippocampus. Although individuals suffer from acute pain benefit from such physiological alterations, chronic pain is commonly associated with maladaptive responses, like the HPA dysfunction and abnormal brain plasticity. However, the causal relationship among pain chronification, stress regulation, and brain alterations is rarely discussed. To call for more attention on this issue, we review recent findings obtained from clinical populations and animal models, propose an integrated stress model of pain chronification based on the existing models in perspectives of environmental influences and genetic predispositions, and discuss the significance of investigating the role of stress regulation on brain alteration in pain chronification for various clinical applications. PMID:28053788
Behavioral and Metabolic Phenotype Indicate Personality in Zebrafish (Danio rerio)
Yuan, Mingzhe; Chen, Yan; Huang, Yingying; Lu, Weiqun
2018-01-01
Consistency of individual differences of animal behavior and personality in reactions to various environmental stresses among their life stages could reflect basic divergences in coping style which may affect survival, social rank, and reproductive success in the wild. However, the physiological mechanisms determining personality remain poorly understood. In order to study whether behavior, metabolism and physiological stress responses relate to the personality, we employed post-stress recovery assays to separate zebrafish into two behavioral types (proactive and reactive). The results demonstrated consistent difference among personality, behavior and metabolism in which proactive individuals were more aggressive, had higher standard metabolic rates and showed lower shuttled frequencies between dark and light compartments than the reactive ones. The behavioral variations were also linked to divergent acute salinity stress responses: proactive individuals adopted a swift locomotion behavior in response to acute salinity challenge while reactive individuals remain unchanged. Our results provide useful insight into how personality acts on correlated traits and the importance of a holistic approach to understanding the mechanisms driving persistent inter-individual differences. PMID:29899710
Tsuchiya, T; Horii, I
1995-01-01
Time-course variations in plasma testosterone levels after various periods of immobilization stress (10 min, 30 min, 2 h, 6 h) were examined in male Syrian hamsters. The immobilization stress consisted of placing the animals in a prone position and wrapping them with flexible steel wire gauze. This was done at room temperature. Testosterone levels were determined in blood samples taken after the hamsters were decapitated. Chronic (2 h, 6 h) immobilization stress produced a drastic and enduring fall in plasma testosterone levels. Reduction of plasma testosterone following the 6-h immobilization stress was observed even 18 h after the stress had been relieved. However, acute (10 min, 30 min) immobilization stress did not influence plasma testosterone. These findings indicated that the effect of immobilization stress on plasma testosterone in hamsters was not biphasic, which it is in rats. Further, these results suggest that immobilization stress in hamsters would be a valuable technique with which to investigate the effects of physiological ranges of testosterone on physiological and psychological functions.
Acute effects of different light spectra on simulated night-shift work without circadian alignment.
Canazei, Markus; Pohl, Wilfried; Bliem, Harald R; Weiss, Elisabeth M
2017-01-01
Short-wavelength and short-wavelength-enhanced light have a strong impact on night-time working performance, subjective feelings of alertness and circadian physiology. In the present study, we investigated acute effects of white light sources with varied reduced portions of short wavelengths on cognitive and visual performance, mood and cardiac output.Thirty-one healthy subjects were investigated in a balanced cross-over design under three light spectra in a simulated night-shift paradigm without circadian adaptation.Exposure to the light spectrum with the largest attenuation of short wavelengths reduced heart rate and increased vagal cardiac parameters during the night compared to the other two light spectra without deleterious effects on sustained attention, working memory and subjective alertness. In addition, colour discrimination capability was significantly decreased under this light source.To our knowledge, the present study for the first time demonstrates that polychromatic white light with reduced short wavelengths, fulfilling current lighting standards for indoor illumination, may have a positive impact on cardiac physiology of night-shift workers without detrimental consequences for cognitive performance and alertness.
Fueglistaler, Philipp; Amsler, Felix; Schüepp, Marcel; Fueglistaler-Montali, Ida; Attenberger, Corinna; Pargger, Hans; Jacob, Augustinus Ludwig; Gross, Thomas
2010-08-01
Prospective data regarding the prognostic value of the Sequential Organ Failure Assessment (SOFA) score in comparison with the Simplified Acute Physiology Score (SAPS II) and trauma scores on the outcome of multiple-trauma patients are lacking. Single-center evaluation (n = 237, Injury Severity Score [ISS] >16; mean ISS = 29). Uni- and multivariate analysis of SAPS II, SOFA, revised trauma, polytrauma, and trauma and ISS scores (TRISS) was performed. The 30-day mortality was 22.8% (n = 54). SOFA day 1 was significantly higher in nonsurvivors compared with survivors (P < .001) and correlated well with the length of intensive care unit stay (r = .50, P < .001). Logistic regression revealed SAPS II to have the best predictive value of 30-day mortality (area under the receiver operating characteristic = .86 +/- .03). The SOFA score significantly added prognostic information with regard to mortality to both SAPS II and TRISS. The combination of critically ill and trauma scores may increase the accuracy of mortality prediction in multiple-trauma patients. 2010 Elsevier Inc. All rights reserved.
Kordonowy, Lauren; MacManes, Matthew
2017-06-23
The understanding of genomic and physiological mechanisms related to how organisms living in extreme environments survive and reproduce is an outstanding question facing evolutionary and organismal biologists. One interesting example of adaptation is related to the survival of mammals in deserts, where extreme water limitation is common. Research on desert rodent adaptations has focused predominantly on adaptations related to surviving dehydration, while potential reproductive physiology adaptations for acute and chronic dehydration have been relatively neglected. This study aims to explore the reproductive consequences of acute dehydration by utilizing RNAseq data in the desert-specialized cactus mouse (Peromyscus eremicus). We exposed 22 male cactus mice to either acute dehydration or control (fully hydrated) treatment conditions, quasimapped testes-derived reads to a cactus mouse testes transcriptome, and then evaluated patterns of differential transcript and gene expression. Following statistical evaluation with multiple analytical pipelines, nine genes were consistently differentially expressed between the hydrated and dehydrated mice. We hypothesized that male cactus mice would exhibit minimal reproductive responses to dehydration; therefore, this low number of differentially expressed genes between treatments aligns with current perceptions of this species' extreme desert specialization. However, these differentially expressed genes include Insulin-like 3 (Insl3), a regulator of male fertility and testes descent, as well as the solute carriers Slc45a3 and Slc38a5, which are membrane transport proteins that may facilitate osmoregulation. These results suggest that in male cactus mice, acute dehydration may be linked to reproductive modulation via Insl3, but not through gene expression differences in the subset of other a priori tested reproductive hormones. Although water availability is a reproductive cue in desert-rodents exposed to chronic drought, potential reproductive modification via Insl3 in response to acute water-limitation is a result which is unexpected in an animal capable of surviving and successfully reproducing year-round without available external water sources. Indeed, this work highlights the critical need for integrative research that examines every facet of organismal adaptation, particularly in light of global climate change, which is predicted, amongst other things, to increase climate variability, thereby exposing desert animals more frequently to the acute drought conditions explored here.
Histological and morphometric analyses for rat carotid balloon injury model.
Tulis, David A
2007-01-01
Experiments aimed at analyzing the response of blood vessels to mechanical injury and ensuing remodeling responses often employ the highly characterized carotid artery balloon injury model in laboratory rats. This approach utilizes luminal insertion of a balloon embolectomy catheter into the common carotid artery with inflation and withdrawal resulting in an injury characterized by vascular endothelial cell (EC) denudation and medial wall distension. The adaptive response to this injury is typified by robust vascular smooth muscle cell (SMC) replication and migration, SMC apoptosis and necrosis, enhanced synthesis and deposition of extracellular matrix (ECM) components, partial vascular EC regeneration from the border zones, luminal narrowing, and establishment of a neointima in time-dependent fashion. Evaluation of these adaptive responses to blood vessel injury can include acute and longer term qualitative and quantitative measures including expression analyses, activity assays, immunostaining for a plethora of factors and signals, and morphometry of neointima formation and gross mural remodeling. This chapter presents a logical continuation of Chapter 1 that offers details for performing the rat carotid artery balloon injury model in a standard laboratory setting by providing commonly used protocols for performing histological and morphometric analyses in such studies. Moreover, procedures, caveats, and considerations included in this chapter are highly relevant for alternative animal vascular physiology/pathophysiology studies and in particular those related to mechanisms of vascular injury and repair. Included in this chapter are specifics for in situ perfusion-fixation, tissue harvesting and processing for both snap-frozen and paraffin-embedded protocols, specimen embedding and sectioning, slide preparation, several standard histological staining steps, and routine morphological assessment.
Helander, Elina; Korhonen, Ilkka; Myllymäki, Tero; Kujala, Urho M; Lindholm, Harri
2018-01-01
Background Sleep is fundamental for good health, and poor sleep has been associated with negative health outcomes. Alcohol consumption is a universal health behavior associated with poor sleep. In controlled laboratory studies, alcohol intake has been shown to alter physiology and disturb sleep homeostasis and architecture. The association between acute alcohol intake and physiological changes has not yet been studied in noncontrolled real-world settings. Objective The aim of this study was to assess the effects of alcohol intake on the autonomic nervous system (ANS) during sleep in a large noncontrolled sample of Finnish employees. Methods From a larger cohort, this study included 4098 subjects (55.81%, 2287/4098 females; mean age 45.1 years) who had continuous beat-to-beat R-R interval recordings of good quality for at least 1 day with and for at least 1 day without alcohol intake. The participants underwent continuous beat-to-beat R-R interval recording during their normal everyday life and self-reported their alcohol intake as doses for each day. Heart rate (HR), HR variability (HRV), and HRV-derived indices of physiological state from the first 3 hours of sleep were used as outcomes. Within-subject analyses were conducted in a repeated measures manner by studying the differences in the outcomes between each participant’s days with and without alcohol intake. For repeated measures two-way analysis of variance, the participants were divided into three groups: low (≤0.25 g/kg), moderate (>0.25-0.75 g/kg), and high (>0.75 g/kg) intake of pure alcohol. Moreover, linear models studied the differences in outcomes with respect to the amount of alcohol intake and the participant’s background parameters (age; gender; body mass index, BMI; physical activity, PA; and baseline sleep HR). Results Alcohol intake was dose-dependently associated with increased sympathetic regulation, decreased parasympathetic regulation, and insufficient recovery. In addition to moderate and high alcohol doses, the intraindividual effects of alcohol intake on the ANS regulation were observed also with low alcohol intake (all P<.001). For example, HRV-derived physiological recovery state decreased on average by 9.3, 24.0, and 39.2 percentage units with low, moderate, and high alcohol intake, respectively. The effects of alcohol in suppressing recovery were similar for both genders and for physically active and sedentary subjects but stronger among young than older subjects and for participants with lower baseline sleep HR than with higher baseline sleep HR. Conclusions Alcohol intake disturbs cardiovascular relaxation during sleep in a dose-dependent manner in both genders. Regular PA or young age do not protect from these effects of alcohol. In health promotion, wearable HR monitoring and HRV-based analysis of recovery might be used to demonstrate the effects of alcohol on sleep on an individual level. PMID:29549064
An update on pancreatic pathophysiology (do we have to rewrite pancreatic pathophysiology?).
Hammer, Heinz F
2014-02-01
This review focuses on seven aspects of physiology and pathophysiology of the exocrine pancreas that have been intensively discussed and studied within the past few years: (1) the role of neurohormonal mechanisms like melatonin, leptin, or ghrelin in the stimulation of pancreatic enzyme secretion; (2) the initiation processes of acute pancreatitis, like fusion of zymogen granules with lysosomes leading to intracellular activation of trypsinogen by the lysosomal enzyme cathepsin B, or autoactivation of trypsinogen; (3) the role of genes in the pathogenesis of acute pancreatitis; (4) the role of alcohol and constituents of alcoholic beverages in the pathogenesis of acute pancreatitis; (5) the role of pancreatic hypertension, neuropathy, and central mechanisms for the pathogenesis of pain in chronic pancreatitis; (6) the relation between exocrine pancreatic function and diabetes mellitus; and (7) pathophysiology, diagnosis and treatment of pancreatic steatorrhea.
Genetic approaches in comparative and evolutionary physiology
Bridgham, Jamie T.; Kelly, Scott A.; Garland, Theodore
2015-01-01
Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology. PMID:26041111
Borner, Anastasiya; Murray, Kyle; Trotter, Claire; Pearson, James
2017-07-01
Cold environmental temperatures increase sympathetic nerve activity and blood pressure, and increase the risk of acute cardiovascular events in aged individuals. The acute risk of cardiovascular events increases with aortic pulse wave velocity as well as elevated central and peripheral pulse pressures. The aim of this study was to examine the independent influence of aortic pulse wave velocity upon central and peripheral pressor responses to sympathetic activation via the cold pressor test (CPT). Twenty-two healthy subjects (age: 18-73 years) completed a CPT with the left hand immersed in 2-4°C water for 3 min. During the CPT, central (from: 36 ± 7 to: 51 ± 12 mmHg) and peripheral pulse pressure increased (from: 54 ± 7 to: 66 ± 11; both P < 0.05). In all subjects the increase in central pulse pressure during the CPT was independently associated with baseline aortic pulse wave velocity ( r 2 = 0.221, P = 0.027) but not age ( P > 0.05). In a subset of subjects with higher arterial stiffness, the increase in peripheral pulse pressure during the CPT was independently associated with baseline aortic pulse wave velocity ( r 2 = 0.415, P = 0.032) but not age ( P > 0.05). These data indicate that central and peripheral pulse pressure responses during sympathetic activation are positively and independently associated with aortic pulse wave velocity through a wide age range. Decreasing aortic pulse wave velocity in aged individuals with elevated arterial stiffness may help reduce the incidence of acute cardiovascular events upon exposure to cold environmental temperatures. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Granger, Jill I.; Ratti, Pietro-Luca; Datta, Subhash C.; Raymond, Richard M.; Opp, Mark R.
2012-01-01
Infection negatively impacts mental health, as evidenced by the lethargy, malaise, and cognitive deficits experienced during illness. These changes in central nervous system processes, collectively termed sickness behavior, have been shown in animal models to be mediated primarily by the actions of cytokines in brain. Most studies of sickness behavior to date have used bolus injection of bacterial lipopolysaccharide (LPS) or selective administration of the proinflammatory cytokines interleukin-1β (IL-1β) or IL-6 as the immune challenge. Such models, although useful for determining mechanisms responsible for acute changes in physiology and behavior, do not adequately represent the more complex effects on central nervous system (CNS) processes of a true infection with replicating pathogens. In the present study, we used the cecal ligation and puncture (CLP) model to quantify sepsis-induced alterations in several facets of physiology and behavior of mice. We determined the impact of sepsis on cage activity, body temperature, food and water consumption and body weights of mice. Because cytokines are critical mediators of changes in behavior and temperature regulation during immune challenge, we also quantified sepsis-induced alterations in cytokine mRNA and protein in brain during the acute period of sepsis onset. We now report that cage activity and temperature regulation in mice that survive are altered for up to 23 days after sepsis induction. Food and water consumption are transiently reduced, and body weight is lost during sepsis. Furthermore, sepsis decreases social interactions for 24 – 48 hours. Finally, mRNA and protein for IL-1β, IL-6, and tumor necrosis factor-α (TNFα) are upregulated in the hypothalamus, hippocampus, and brain stem during sepsis onset, from 6–72 hour post sepsis induction. Collectively, these data indicate that sepsis not only acutely alters physiology, behavior and cytokine profiles in brain, but that some brain functions are impaired for long periods in animals that survive. PMID:23146654
Kraljic, Snjezana; Zuvic, Marta; Desa, Kristian; Blagaic, Ana; Sotosek, Vlatka; Antoncic, Dragana; Likic, Robert
2017-11-01
Costs of intensive care reach up to 30% of the hospital budget with workforce expenses being substantial. Determining proper nurse-patient ratio is necessary for optimizing patients' health related outcomes and hospitals' cost effective functioning. To evaluate nurses' workload using Nine Equivalents of Nursing Manpower Use Score and Nursing Activities Score scoring systems while assessing correlation between both scores and the severity of illness measured by Simplified Acute Physiology Score II. A Prospective study SETTINGS: Cardiac Surgery Intensive Care Unit of the Clinical Hospital Centre Rijeka, Croatia, from October 2014 to February 2015. This Intensive Care Unit has 3 beds that can be expanded upon need. The study included 99 patients treated at this Unit during the study's period. The scores were obtained by 6 nurses, working in 12h shifts. Measurements were obtained for each patient 24h after admission and subsequently twice a day, at the end of the day shift (7pm) and at the end of the night shift (7 am). The necessary data were obtained from the patient's medical records. Nursing Activities Score showed significantly higher number of nurses are required for one 12h shift (Z=3.76, p<0.001). Higher scores were obtained on day shifts vs. night shifts. (Nursing Manpower Use Score, z=3.25, p<0.001; Nursing Activities Score, z=4.16, p<0.001). When comparing Nursing Activities Score and Nursing Manpower Use Score during the week, we calculated higher required number of nurses on weekdays than on weekends and holidays, (Nursing Manpower Use Score, p<0.001; Nursing Activities Score, p<0.001). Correlation analysis of Nursing Activities Score and Nursing Manpower Use Score with Simplified Acute Physiology Score II has shown that Nursing Manpower Use Score positively associated with severity of disease, while Nursing Activities Score shows no association. Both scores can be used to estimate required number of nurses in 12-h shifts, although Nursing Activities Score seems more suitable for units with prolonged length of stay, while Nursing Manpower Use Score appears better for units with shorter duration of stay (up to four days). Higher workload measured by Nursing Manpower Use Score scale can be predicted with higher Simplified Acute Physiology Score II. However, with low Simplified Acute Physiology Score II scores it cannot be assumed that the nursing workload will also be low. Further research is needed to determine the best tool to asses nursing workload in intensive care units. Copyright © 2017 Elsevier Ltd. All rights reserved.
Physiological Response and Habituation of Endangered Species to Military Training Activities
2009-11-01
Wasser. 2008. Long-term impacts of poaching on relatedness, stress physiology, and reproductive output of adult female African elephants . Conservation...Statistical analyses................................................................................................................ 19 Study 6: Impact of...Study 6: Impact of radio transmitters on northern cardinal parental investment and productivity
Nonoxidative Glucose Consumption during Focal Physiologic Neural Activity
NASA Astrophysics Data System (ADS)
Fox, Peter T.; Raichle, Marcus E.; Mintun, Mark A.; Dence, Carmen
1988-07-01
Brain glucose uptake, oxygen metabolism, and blood flow in humans were measured with positron emission tomography, and a resting-state molar ratio of oxygen to glucose consumption of 4.1:1 was obtained. Physiological neural activity, however, increased glucose uptake and blood flow much more (51 and 50 percent, respectively) than oxygen consumption (5 percent) and produced a molar ratio for the increases of 0.4:1. Transient increases in neural activity cause a tissue uptake of glucose in excess of that consumed by oxidative metabolism, acutely consume much less energy than previously believed, and regulate local blood flow for purposes other than oxidative metabolism.
Excitatory amino acid neurotoxicity and neurodegenerative disease.
Meldrum, B; Garthwaite, J
1990-09-01
The progress over the last 30 years in defining the role of excitatory amino acids in normal physiological function and in the abnormal neuronal activity of epilepsy has been reviewed in earlier articles in this series. In the last five years it has become clear that excitatory amino acids also play a role in a wide range of neurodegenerative processes. The evidence is clearest where the degenerative process is acute, but is more controversial for slow degenerative processes. In this article Brian Meldrum and John Garthwaite review in vivo and in vitro studies of the cytotoxicity of amino acids and summarize the contribution of such toxicity to acute and chronic neurodegenerative disorders.
Target of Rapamycin Complex 2 Regulates Actin Polarization and Endocytosis via Multiple Pathways*
Rispal, Delphine; Eltschinger, Sandra; Stahl, Michael; Vaga, Stefania; Bodenmiller, Bernd; Abraham, Yann; Filipuzzi, Ireos; Movva, N. Rao; Aebersold, Ruedi; Helliwell, Stephen B.; Loewith, Robbie
2015-01-01
Target of rapamycin is a Ser/Thr kinase that operates in two conserved multiprotein complexes, TORC1 and TORC2. Unlike TORC1, TORC2 is insensitive to rapamycin, and its functional characterization is less advanced. Previous genetic studies demonstrated that TORC2 depletion leads to loss of actin polarization and loss of endocytosis. To determine how TORC2 regulates these readouts, we engineered a yeast strain in which TORC2 can be specifically and acutely inhibited by the imidazoquinoline NVP-BHS345. Kinetic analyses following inhibition of TORC2, supported with quantitative phosphoproteomics, revealed that TORC2 regulates these readouts via distinct pathways as follows: rapidly through direct protein phosphorylation cascades and slowly through indirect changes in the tensile properties of the plasma membrane. The rapid signaling events are mediated in large part through the phospholipid flippase kinases Fpk1 and Fpk2, whereas the slow signaling pathway involves increased plasma membrane tension resulting from a gradual depletion of sphingolipids. Additional hits in our phosphoproteomic screens highlight the intricate control TORC2 exerts over diverse aspects of eukaryote cell physiology. PMID:25882841
Use of Biotechnology Devices to Analyse Fatigue Process in Swimming Training.
Clemente-Suárez, V J; Arroyo-Toledo, J J
2017-06-01
The aim of the present research was to analyze the acute psycho-physiological response during a high intensity interval training (HIIT) session of trained swimmers. We analyzed blood lactate concentration, heart rate, heart rate variability (HRV), arms isometric strength, rating of perceived exertion (RPE) and cortical arousal before and after a HIIT session in 14 trained swimmers (16.2 ± 2.6 years 169.1 ± 10.2 cm 61.3 ± 9.9 kg). HIIT session consisted in: 4 × 10 m tethered swimming resting 90 s between sets, 3 min rest, 16 × 25 m maximum speed swimming resting 30 s between sets. Blood lactate concentration, cortical arousal, and rating of perceived exertion significantly increased (p < 0.05) after HIIT. HRV parameters significantly decreased after HIIT, showing an increase in sympathetic nervous system modulation. Results obtained showed the high impact of HIIT sessions on the swimmer's organism, which may be the cause of adaptation in this low volume training sessions.
Zhang, Meixiang; Ahmed Rajput, Nasir; Shen, Danyu; Sun, Peng; Zeng, Wentao; Liu, Tingli; Juma Mafurah, Joseph; Dou, Daolong
2015-06-03
Each oomycete pathogen encodes a large number of effectors. Some effectors can be used in crop disease resistance breeding, such as to accelerate R gene cloning and utilisation. Since cytoplasmic effectors may cause acute physiological changes in host cells at very low concentrations, we assume that some of these effectors can serve as functional genes for transgenic plants. Here, we generated transgenic Nicotiana benthamiana plants that express a Phytophthora sojae CRN (crinkling and necrosis) effector, PsCRN115. We showed that its expression did not significantly affect the growth and development of N. benthamiana, but significantly improved disease resistance and tolerance to salt and drought stresses. Furthermore, we found that expression of heat-shock-protein and cytochrome-P450 encoding genes were unregulated in PsCRN115-transgenic N. benthamiana based on digital gene expression profiling analyses, suggesting the increased plant defence may be achieved by upregulation of these stress-related genes in transgenic plants. Thus, PsCRN115 may be used to improve plant tolerance to biotic and abiotic stresses.
Dumas, Pierre-Yves; Bertoli, Sarah; Bérard, Emilie; Médiavilla, Clémence; Yon, Edwige; Tavitian, Suzanne; Leguay, Thibaut; Huguet, Françoise; Forcade, Edouard; Milpied, Noël; Sarry, Audrey; Sauvezie, Mathieu; Bories, Pierre; Pigneux, Arnaud; Récher, Christian
2017-01-01
The treatment of older patients with acute myeloid leukemia that is secondary to previous myelodysplastic syndrome, myeloproliferative neoplasm, or prior cytotoxic exposure remains unsatisfactory. We compared 92 and 107 patients treated, respectively, with intensive chemotherapy or azacitidine within two centres. Diagnoses were 37.5% post-myelodysplastic syndrome, 17.4% post-myeloproliferative neoplasia, and 45.1% therapy-related acute myeloid leukemia. Patients treated by chemotherapy had less adverse cytogenetics, higher white blood-cell counts, and were younger: the latter two being independent factors entered into the multivariate analyses. Median overall-survival times with chemotherapy and azacitidine were 9.6 (IQR: 3.6−22.8) and 10.8 months (IQR: 4.8−26.4), respectively (p = 0.899). Adjusted time-dependent analyses showed that, before 1.6 years post-treatment, there were no differences in survival times between chemotherapy and azacitidine treatments whereas, after this time-point, patients that received chemotherapy had a lower risk of death compared to those that received azacitidine (adjusted HR 0.61, 95%CI: 0.38−0.99 at 1.6 years). There were no interactions between treatment arms and secondary acute myeloid leukemia subtypes in all multivariate analyses, indicating that the treatments had similar effects in all three subtypes. Although a comparison between chemotherapy and azacitidine remains challenging, azacitidine represents a valuable alternative to chemotherapy in older patients that have secondary acute myeloid leukemia because it provides similar midterm outcomes with less toxicity. PMID:29108292
Li, Shao-Hua; Tian, Hong-Bo; Zhao, Hong-Jin; Chen, Liang-Hua; Cui, Lian-Qun
2013-01-01
The acute effects of grape polyphenols on endothelial function in adults are inconsistent. Here, we performed meta-analyses to determine these acute effects as measured by flow-mediated dilation (FMD). Trials were searched in PubMed, Embase and the Cochrane Library database. Summary estimates of weighted mean differences (WMDs) and 95% CIs were obtained by using random-effects models. Meta-regression and subgroup analyses were performed to identify the source of heterogeneity. The protocol details of our meta-analysis have been submitted to the PROSPERO register and our registration number is CRD42013004157. Nine studies were included in the present meta-analyses. The results showed that the FMD level was significantly increased in the initial 120 min after intake of grape polyphenols as compared with controls. Meta-regression and subgroup analyses were performed and showed that a health status was the main effect modifier of the significant heterogeneity. Subgroups indicated that intake of grape polyphenols could significantly increase FMD in healthy subjects, and the increased FMD appeared to be more obviously in subjects with high cardiovascular risk factors. Moreover, the peak effect of grape polyphenols on FMD in healthy subjects was found 30 min after ingestion, which was different from the effect in subjects with high cardiovascular risk factors, in whom the peak effect was found 60 min after ingestion. Endothelial function can be significantly improved in healthy adults in the initial 2 h after intake of grape polyphenols. The acute effect of grape polyphenols on endothelial function may be more significant but the peak effect is delayed in subjects with a smoking history or coronary heart disease as compared with the healthy subjects.
Li, Shao-Hua; Tian, Hong-Bo; Zhao, Hong-Jin; Chen, Liang-Hua; Cui, Lian-Qun
2013-01-01
Background The acute effects of grape polyphenols on endothelial function in adults are inconsistent. Here, we performed meta-analyses to determine these acute effects as measured by flow-mediated dilation (FMD). Methods Trials were searched in PubMed, Embase and the Cochrane Library database. Summary estimates of weighted mean differences (WMDs) and 95% CIs were obtained by using random-effects models. Meta-regression and subgroup analyses were performed to identify the source of heterogeneity. The protocol details of our meta-analysis have been submitted to the PROSPERO register and our registration number is CRD42013004157. Results Nine studies were included in the present meta-analyses. The results showed that the FMD level was significantly increased in the initial 120 min after intake of grape polyphenols as compared with controls. Meta-regression and subgroup analyses were performed and showed that a health status was the main effect modifier of the significant heterogeneity. Subgroups indicated that intake of grape polyphenols could significantly increase FMD in healthy subjects, and the increased FMD appeared to be more obviously in subjects with high cardiovascular risk factors. Moreover, the peak effect of grape polyphenols on FMD in healthy subjects was found 30 min after ingestion, which was different from the effect in subjects with high cardiovascular risk factors, in whom the peak effect was found 60 min after ingestion. Conclusions Endothelial function can be significantly improved in healthy adults in the initial 2 h after intake of grape polyphenols. The acute effect of grape polyphenols on endothelial function may be more significant but the peak effect is delayed in subjects with a smoking history or coronary heart disease as compared with the healthy subjects. PMID:23894543
Treccani, Giulia; Liebenberg, Nico; Chen, Fenghua; Popoli, Maurizio; Wegener, Gregers; Nyengaard, Jens Randel
2015-01-01
Background: Although a clear negative influence of chronic exposure to stressful experiences has been repeatedly demonstrated, the outcome of acute stress on key brain regions has only just started to be elucidated. Although it has been proposed that acute stress may produce enhancement of brain plasticity and that antidepressants may prevent such changes, we still lack ultrastructural evidence that acute stress-induced changes in neurotransmitter physiology are coupled with structural synaptic modifications. Methods: Rats were pretreated chronically (14 days) with desipramine (10mg/kg) and then subjected to acute foot-shock stress. By means of serial section electron microscopy, the structural remodeling of medial prefrontal cortex glutamate synapses was assessed soon after acute stressor cessation and stress hormone levels were measured. Results: Foot-shock stress induced a remarkable increase in the number of docked vesicles and small excitatory synapses, partially and strongly prevented by desipramine pretreatment, respectively. Acute stress-induced corticosterone elevation was not affected by drug treatment. Conclusions: Since desipramine pretreatment prevented the stress-induced structural plasticity but not the hormone level increase, we hypothesize that the preventing action of desipramine is located on pathways downstream of this process and/or other pathways. Moreover, because enhancement of glutamate system remodeling may contribute to overexcitation dysfunctions, this aspect could represent a crucial component in the pathophysiology of stress-related disorders. PMID:25522419
White, Barry A B; Dea, Nicolas; Street, John T; Cheng, Christiana L; Rivers, Carly S; Attabib, Najmedden; Kwon, Brian K; Fisher, Charles G; Dvorak, Marcel F
2017-10-15
Secondary complications of spinal cord injury (SCI) are a burden to affected individuals and the rest of society. There is limited evidence of the economic burden or cost of complications in SCI populations in Canada, however, which is necessary for comparative economic analyses and decision analytic modeling of possible solutions to these common health problems. Comparative economic analyses can inform resource allocation decisions, but the outputs are only as good as the inputs. In this article, new evidence of the excess or incremental costs of urinary tract infection (UTI) and pressure ulceration (PU) in acute traumatic SCI from an exploratory case series analysis of admissions to a Level I specialized Canadian spine facility (2008-2013) is presented. Participants in a national SCI registry were case-control matched (1:1) on the predicted probability of experiencing UTI or PU during initial acute SCI admission. The excess costs of UTI and PU are estimated as the mean of the differences in total direct acute SCI admission costs (length of stay, accommodation, nursing, pharmacy) from the perspective of the admitting facility between participants matched or paired on demographic and SCI characteristics. Even relatively minor UTI and PU, respectively, added an average of $7,790 (standard deviation [SD] $6,267) and $18,758 (SD $27,574) to the direct cost of acute SCI admission in 2013 Canadian dollars (CAD). This case series analysis established evidence of the excess costs of UTI and PU in acute SCI admissions, which will support decision-informing analyses in SCI.
Keene, Claire M; Kong, Victor Y; Clarke, Damian L; Brysiewicz, Petra
2017-10-01
Recording vital signs is important in the hospital setting and the quality of this documentation influences clinical decision making. The Modified Early Warning Score (MEWS) uses vital signs to categorise the severity of a patient's physiological derangement and illustrates the clinical impact of vital signs in detecting patient deterioration and making management decisions. This descriptive study measured the quality of vital sign recordings in an acute care trauma setting, and used the MEWS to determine the impact the documentation quality had on the detection of physiological derangements and thus, clinical decision making. Vital signs recorded by the nursing staff of all trauma patients in the acute care trauma wards at a regional hospital in South Africa were collected from January 2013 to February 2013. Investigator-measured values taken within 2 hours of the routine observations and baseline patient information were also recorded. A MEWS for each patient was calculated from the routine and investigator-measured observations. Basic descriptive statistics were performed using EXCEL. The details of 181 newly admitted patients were collected. Completion of recordings was 81% for heart rate, 88% for respiratory rate, 98% for blood pressure, 92% for temperature and 41% for GCS. The recorded heart rate was positively correlated with the investigator's measurement (Pearson's correlation coefficient of 0.76); while the respiratory rate did not correlate (Pearson's correlation coefficient of 0.02). In 59% of patients the recorded respiratory rate (RR) was exactly 20 breaths per minute and 27% had a recorded RR of exactly 15. Seven percent of patients had aberrant Glasgow Coma Scale readings above the maximum value of 15. The average MEWS was 2 for both the recorded (MEWS(R)) and investigator (MEWS(I)) vitals, with the range of MEWS(R) 0-7 and MEWS(I) 0-9. Analysis showed 59% of the MEWS(R) underestimated the physiological derangement (scores were lower than the MEWS(I)); 80% of patients had a MEWS(R) requiring 4 hourly checks which was only completed in 2%; 86% of patients had a MEWS(R) of less than three (i.e. not necessitating escalation of care), but 33% of these showed a MEWS(I) greater than three (i.e. actually necessitating escalation of care). Documentation of vital signs aids management decisions, indicating the physiological derangement of a patient and dictating treatment. This study showed that there was a poor quality of vital sign recording in this acute care trauma setting, which led to underestimation of patients' physiological derangement and an inability to detect deteriorating patients. The MEWS could be a powerful tool to empower nurses to become involved in the diagnosis and detection of deteriorating patients, as well as providing a framework to communicate the severity of derangement between health workers. However, it requires a number of strategies to improve the quality of vital sign recording, including continuing education, increasing the numbers of competent staff and administrative changes in vital sign charts. Copyright © 2017. Production and hosting by Elsevier B.V.
The Role of Infected Cell Proliferation in the Clearance of Acute HBV Infection in Humans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goyal, Ashish; Ribeiro, Ruy Miguel; Perelson, Alan S.
Around 90–95% of hepatitis B virus (HBV) infected adults do not progress to the chronic phase and, instead, recover naturally. The strengths of the cytolytic and non-cytolytic immune responses are key players that decide the fate of acute HBV infection. In addition, it has been hypothesized that proliferation of infected cells resulting in uninfected progeny and/or cytokine-mediated degradation of covalently closed circular DNA (cccDNA) leading to the cure of infected cells are two major mechanisms assisting the adaptive immune response in the clearance of acute HBV infection in humans. We employed fitting of mathematical models to human acute infection datamore » together with physiological constraints to investigate the role of these hypothesized mechanisms in the clearance of infection. Results suggest that cellular proliferation of infected cells resulting in two uninfected cells is required to minimize the destruction of the liver during the clearance of acute HBV infection. In contrast, we find that a cytokine-mediated cure of infected cells alone is insufficient to clear acute HBV infection. Lastly, our modeling indicates that HBV clearance without lethal loss of liver mass is associated with the production of two uninfected cells upon proliferation of an infected cell.« less
The Role of Infected Cell Proliferation in the Clearance of Acute HBV Infection in Humans
Goyal, Ashish; Ribeiro, Ruy Miguel; Perelson, Alan S.
2017-11-18
Around 90–95% of hepatitis B virus (HBV) infected adults do not progress to the chronic phase and, instead, recover naturally. The strengths of the cytolytic and non-cytolytic immune responses are key players that decide the fate of acute HBV infection. In addition, it has been hypothesized that proliferation of infected cells resulting in uninfected progeny and/or cytokine-mediated degradation of covalently closed circular DNA (cccDNA) leading to the cure of infected cells are two major mechanisms assisting the adaptive immune response in the clearance of acute HBV infection in humans. We employed fitting of mathematical models to human acute infection datamore » together with physiological constraints to investigate the role of these hypothesized mechanisms in the clearance of infection. Results suggest that cellular proliferation of infected cells resulting in two uninfected cells is required to minimize the destruction of the liver during the clearance of acute HBV infection. In contrast, we find that a cytokine-mediated cure of infected cells alone is insufficient to clear acute HBV infection. Lastly, our modeling indicates that HBV clearance without lethal loss of liver mass is associated with the production of two uninfected cells upon proliferation of an infected cell.« less
Over 8 years experience on severe acute poisoning requiring intensive care in Hong Kong, China.
Lam, Sin-Man; Lau, Arthur Chun-Wing; Yan, Wing-Wa
2010-09-01
In order to obtain up-to-date information on the pattern of severe acute poisoning and the characteristics and outcomes of these patients, 265 consecutive patients admitted to an intensive care unit in Hong Kong for acute poisoning from January 2000 to May 2008 were studied retrospectively. Benzodiazepine (25.3%), alcohol (23%), tricyclic antidepressant (17.4%), and carbon monoxide (15.1%) were the four commonest poisons encountered. Impaired consciousness was common and intubation was required in 67.9% of admissions, with a median duration of mechanical ventilation of less than 1 day. The overall mortality was 3.0%. Among the 257 survivors, the median lengths of stay in the intensive care unit and acute hospital (excluding days spent in psychiatric ward and convalescent hospital) were less than 1 day and 3 days, respectively. Factors associated with a longer length of stay included age of 65 or older, presence of comorbidity, Acute Physiology and Chronic Health Evaluation II score of 25 or greater, and development of shock, rhabdomyolysis, and aspiration pneumonia, while alcohol intoxication was associated with a shorter stay. This is the largest study of its kind in the Chinese population and provided information on the pattern of severe acute poisoning requiring intensive care admission and the outcomes of the patients concerned.
van Helmond, Noud; Johnson, Blair D; Holbein, Walter W; Petersen-Jones, Humphrey G; Harvey, Ronée E; Ranadive, Sushant M; Barnes, Jill N; Curry, Timothy B; Convertino, Victor A; Joyner, Michael J
2018-02-01
The ability to maintain adequate cerebral blood flow and oxygenation determines tolerance to central hypovolemia. We tested the hypothesis that acute hypoxemia during simulated blood loss in humans would cause impairments in cerebral blood flow control. Ten healthy subjects (32 ± 6 years, BMI 27 ± 2 kg·m -2 ) were exposed to stepwise lower body negative pressure (LBNP, 5 min at 0, -15, -30, and -45 mmHg) during both normoxia and hypoxia (F i O 2 = 0.12-0.15 O 2 titrated to an SaO 2 of ~85%). Physiological responses during both protocols were expressed as absolute changes from baseline, one subject was excluded from analysis due to presyncope during the first stage of LBNP during hypoxia. LBNP induced greater reductions in mean arterial pressure during hypoxia versus normoxia (MAP, at -45 mmHg: -20 ± 3 vs. -5 ± 3 mmHg, P < 0.01). Despite differences in MAP, middle cerebral artery velocity responses (MCAv) were similar between protocols (P = 0.41) due to increased cerebrovascular conductance index (CVCi) during hypoxia (main effect, P = 0.04). Low frequency MAP (at -45 mmHg: 17 ± 5 vs. 0 ± 5 mmHg 2 , P = 0.01) and MCAv (at -45 mmHg: 4 ± 2 vs. -1 ± 1 cm·s -2 , P = 0.04) spectral power density, as well as low frequency MAP-mean MCAv transfer function gain (at -30 mmHg: 0.09 ± 0.06 vs. -0.07 ± 0.06 cm·s -1 ·mmHg -1 , P = 0.04) increased more during hypoxia versus normoxia. Contrary to our hypothesis, these findings support the notion that cerebral blood flow control is not impaired during exposure to acute hypoxia and progressive central hypovolemia despite lower MAP as a result of compensated increases in cerebral conductance and flow variability. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Acute myeloid leukemia in a patient with constitutional 47,XXY karyotype.
Jalbut, Marla M; Sohani, Aliyah R; Dal Cin, Paola; Hasserjian, Robert P; Moran, Jenna A; Brunner, Andrew M; Fathi, Amir T
2015-01-01
Klinefelter syndrome (KS), a 47,XXY chromosomal abnormality, has been shown to be associated with a number of malignancies, but has not been linked to acute leukemias to date. We present a case of a 54-year-old male diagnosed with acute myeloid leukemia (AML) with monocytic differentiation, whose cytogenetic and subsequent FISH analyses revealed a constitutional 47,XXY karyotype. We also review and discuss relevant prior literature.
Clinical classification of 103 Japanese patients with Guillain-Barré syndrome.
Wakerley, Benjamin R; Kokubun, N; Funakoshi, K; Nagashima, T; Hirata, K; Yuki, N
2016-10-15
Guillain-Barré syndrome (GBS) is the commonest cause of flaccid paralysis worldwide. Miller Fisher syndrome (MFS) is a variant of GBS characterized by ophthalmoplegia and ataxia. Together GBS and MFS form a continuum of discrete and overlapping subtypes, the frequency of which remains unknown. We retrospectively analysed the clinical features (antecedent symptoms, pattern of neurological weakness or ataxia, presence of hypersomnolence) of 103 patients at a single hospital in Japan. Patients were then classified according to new diagnostic criteria (Wakerley et al., 2014). Laboratory data (neurophysiology and anti-ganglioside antibody profiles) were also analysed. According to the new diagnostic criteria, the 103 patients could be classified as follows: classic GBS 73 (71%), pharyngeal-cervical-brachial weakness 2 (2%), acute pharyngeal weakness 0 (0%), paraparetic GBS 1 (1%), bifacial weakness with paraesthesias 1 (1%), polyneuritis cranialis 0 (0%), classic MFS 18 (17%), acute ophthalmoparesis 1 (1%), acute ptosis 0 (0%), acute mydriasis 0 (0%), acute ataxic neuropathy 1 (1%), Bickerstaff brainstem encephalitis 3 (3%), acute ataxic hypersomnolence 0 (0%), GBS and MFS overlap 1 (1%), GBS and Bickerstaff brainstem encephalitis overlap 1 (1%), MFS and pharyngeal-cervical-brachial weakness overlap 1 (1%). Application of the new clinical diagnostic criteria allowed accurate retrospective diagnosis and classification of GBS and MFS subtypes. Copyright © 2016. Published by Elsevier B.V.
Isobe, Satoshi; Takada, Yasuo; Ando, Akitada; Ohshima, Satoru; Yamada, Kiyoyasu; Nanasato, Mamoru; Unno, Kazumasa; Ogawa, Takuo; Kondo, Takahisa; Izawa, Hideo; Inden, Yasuya; Hirai, Makoto; Murohara, Toyoaki
2006-11-01
The physiological mechanism of the increase in the electrocardiographic (ECG) R-wave voltage after revascularization in patients with acute myocardial infarction (MI) needs to be elucidated. One hundred and thirty-eight MI patients (83: anterior MI, 45: inferior MI, 10: lateral MI) underwent ECG and echocardiography in both the acute and subacute phases after emergency revascularization, as well as a resting thallium-201/iodine-123 15-p-iodophenyl-3-(R,S)-methyl pentadecanoic acid myocardial scintigraphy in the acute phase. The total sum of the R-wave voltage (SigmaR) was calculated over multiple leads on ECG for each infarcted lesion. Scintigraphic defect on each tracer was expressed as the percentage (%) defect of the total left ventricular (LV) myocardium. The % defect-discordance on both images in the acute phase and the % increase in SigmaR and the absolute increase in LV ejection fraction from the acute to the subacute phase (DeltaEF) were also calculated. The SigmaR in the subacute phase was significantly greater than that in the acute phase (p<0.0001). The % increase in SigmaR significantly correlated with the DeltaEF (r=0.57, p<0.0001). The % increase in SigmaR also correlated with the % defect-discordance (r=0.68, p<0.0001). The increase in the ECG R-wave voltage reflects not only the improvement in myocardial perfusion but also the presence of salvaged myocardium after revascularization in acute MI patients.
Gururani, Mayank Anand; Venkatesh, Jelli; Ganesan, Markkandan; Strasser, Reto Jörg; Han, Yunjeong; Kim, Jeong-Il; Lee, Hyo-Yeon; Song, Pill-Soon
2015-01-01
Chlorophyll-a fluorescence analysis provides relevant information about the physiology of plants growing under abiotic stress. In this study, we evaluated the influence of cold stress on the photosynthetic machinery of transgenic turfgrass, Zoysia japonica, expressing oat phytochrome A (PhyA) or a hyperactive mutant phytochrome A (S599A) with post-translational phosphorylation blocked. Biochemical analysis of zoysiagrass subjected to cold stress revealed reduced levels of hydrogen peroxide, increased proline accumulation, and enhanced specific activities of antioxidant enzymes compared to those of control plants. Detailed analyses of the chlorophyll-a fluorescence data through the so-called OJIP test exhibited a marked difference in the physiological status among transgenic and control plants. Overall, these findings suggest an enhanced level of cold tolerance in S599A zoysiagrass cultivars as reflected in the biochemical and physiological analyses. Further, we propose that chlorophyll-a fluorescence analysis using OJIP test is an efficient tool in determining the physiological status of plants under cold stress conditions. PMID:26010864
[Chronic obstructive pulmonary disease: 2. Short-term prognostic scores for acute exacerbations].
Junod, Alain F
2014-01-22
The chronic obstructive pulmonary disease or COPD is a slowly progressive disease whose course is frequently the subject of acute episodes, of variable severity, although, in general, reversible, called acute exacerbations. In the past five years (between 2008 and 2013), seven prognostic scores have been published to try to assess the short-term risk of these acute exacerbations. Their components and characteristics are analysed and commented upon. An Internet program with a detailed compilation of the main features of these scores (www.medhyg.ch/scoredoc) supplements this review.
Lee, C Y
2015-04-01
This study investigated the effect of repeated acute restraint stress and high-fat diet (HFD) on intestinal expression of nutrient transporters, concomitant to intestinal inflammation. The ability of adenosine to reverse any change was examined. Six-week-old male Sprague Dawley rats were divided into eight groups: control or non-stressed (C), rats exposed to restraint stress for 6 h per day for 14 days (S), control rats fed with HFD (CHF) and restraint-stressed rats fed with HFD (SHF); four additional groups received the same treatments and were also given 50 mg/l adenosine dissolved in drinking water. Fasting blood glucose, plasma insulin, adiponectin and corticosterone were measured. Intestinal expression of SLC5A1, SLC2A2, NPC1L1 and TNF-α was analysed. Histological evaluation was conducted to observe for morphological and anatomical changes in the intestinal tissues. Results showed that HFD feeding increased glucose and insulin levels, and repeated acute restraint stress raised the corticosterone level by 22%. Exposure to both stress and HFD caused a further increase in corticosterone to 41%, while decreasing plasma adiponectin level. Restraint stress altered intestinal expression of SLC5A1, SLC2A2 and NPC1L1. These changes were enhanced in SHF rats. Adenosine was found to alleviate HFD-induced increase in glucose and insulin levels, suppress elevation of corticosterone in S rats and improve the altered nutrient transporters expression profiles. It also prevented upregulation of TNF-α in the intestine of SHF rats. In summary, a combination of stress and HFD exaggerated stress- and HFD-induced pathophysiological changes in the intestine, and biochemical parameters related to obesity. Adenosine attenuated the elevation of corticosterone and altered expression of SLC5A1, NPC1L1 and TNF-α. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.
Roberts, Michael D; Holland, A Maleah; Kephart, Wesley C; Mobley, C Brooks; Mumford, Petey W; Lowery, Ryan P; Fox, Carlton D; McCloskey, Anna E; Shake, Joshua J; Mesquita, Paulo; Patel, Romil K; Martin, Jeffrey S; Young, Kaelin C; Kavazis, Andreas N; Wilson, Jacob M
2016-05-15
We examined whether acute and/or chronic skeletal muscle anabolism is impaired with a low-carbohydrate diet formulated to elicit ketosis (LCKD) vs. a mixed macronutrient Western diet (WD). Male Sprague-Dawley rats (9-10 wk of age, 300-325 g) were provided isoenergetic amounts of a LCKD or a WD for 6 wk. In AIM 1, basal serum and gastrocnemius assessments were performed. In AIM 2, rats were resistance exercised for one bout and were euthanized 90-270 min following exercise for gastrocnemius analyses. In AIM 3, rats voluntarily exercised daily with resistance-loaded running wheels, and hind limb muscles were analyzed for hypertrophy markers at the end of the 6-wk protocol. In AIM 1, basal levels of gastrocnemius phosphorylated (p)-rps6, p-4EBP1, and p-AMPKα were similar between diets, although serum insulin (P < 0.01), serum glucose (P < 0.001), and several essential amino acid levels (P < 0.05) were lower in LCKD-fed rats. In AIM 2, LCKD- and WD-fed rats exhibited increased postexercise muscle protein synthesis levels (P < 0.0125), but no diet effect was observed (P = 0.59). In AIM 3, chronically exercise-trained LCKD- and WD-fed rats presented similar increases in relative hind limb muscle masses compared with their sedentary counterparts (12-24%, P < 0.05), but there was no between-diet effects. Importantly, the LCKD induced "mild" nutritional ketosis, as the LCKD-fed rats in AIM 2 exhibited ∼1.5-fold greater serum β-hydroxybutyrate levels relative to WD-fed rats (diet effect P = 0.003). This study demonstrates that the tested LCKD in rodents, while only eliciting mild nutritional ketosis, does not impair the acute or chronic skeletal muscle hypertrophic responses to resistance exercise. Copyright © 2016 the American Physiological Society.
Wu, Junsong; Sheng, Lei; Wang, Shenhua; Li, Qiang; Zhang, Mao; Xu, Shaowen; Gan, Jianxin
2012-09-01
Several clinical risk factors have been reported to be associated with the prognosis of acute lung injury (ALI). However, these studies have included a general trauma patient population, without singling out the severely injured multiple-trauma patient population. To identify the potential risk factors that could affect the prognosis of ALI in multiple-trauma patients and investigate the prognostic effects of certain risk factors among different patient subpopulations. In this retrospective cohort study, severely injured multiple-trauma patients with early onset of ALI from several trauma centers were studied. Potential risk factors affecting the prognosis of ALI were examined by univariate and multivariate logistic analyses. There were 609 multiple-trauma patients with ALI admitted to the emergency department and emergency intensive care unit during the study period. The nine risk factors that affected prognosis, as indicated by the unadjusted odds ratios with 95% confidence intervals, were the APACHE II (Acute Physiology and Chronic Health Evaluation II) score, duration of trauma, age, gastrointestinal hemorrhage, pulmonary contusion, disseminated intravascular coagulation (DIC), multiple blood transfusions in 6 h, Injury Severity Score (ISS), and aspiration of gastric contents. Specific risk factors also affected different patient subpopulations in different ways. Patients older than 65 years and with multiple (> 10 units) blood transfusions in the early stage after multiple trauma were found to be independent risk factors associated with deterioration of ALI. The other factors studied, including pulmonary contusion, APACHE II score ≥ 20, ISS ≥ 16, gastrointestinal hemorrhage, and aspiration of gastric contents, may predict the unfavorable prognosis of ALI in the early stage of trauma, with their effects attenuating in the later stage. Duration of trauma ≥ 1 h and the presence of DIC may also indicate unfavorable prognosis during the entire treatment period. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
The ions Na+, K+, Ca2+, Mg2+, Cl-, SO42-, and HCO3-/CO32- (referred to as “major ions”) are present in all fresh waters and are physiologically required by aquatic organisms, but can be increased to harmful levels by a variety of anthropogenic activities that speed ge...
Vantage point - Early warning flaws.
Swinden, Donna
2014-08-28
USING AN EARLY warning score (EWS) system should improve the detection of acutely deteriorating patients. Under such a system, a score is allocated to each of six physiological measurements including respiratory rate and oxygen saturations, which are aggregated to produce an overall score. An aggregated score of seven or higher prompts nursing staff to refer a patient for emergency assessment.
2014-12-01
rates vary dramatically, the physiological effect of hypobaric high-altitude hypoxia ( HHH ) is ubiquitous.1,2 Symptoms of less severe cases of HHH ...nausea, headache, and peripheral edema.3-6 More severe cases of HHH may result in acute mountain sickness (AMS), high-altitude pulmonary edema