Science.gov

Sample records for acute physiological responses

  1. Human Physiological Responses to Acute and Chronic Cold Exposure

    NASA Technical Reports Server (NTRS)

    Stocks, Jodie M.; Taylor, Nigel A. S.; Tipton, Michael J.; Greenleaf, John E.

    2001-01-01

    When inadequately protected humans are exposed to acute cold, excessive body heat is lost to the environment and unless heat production is increased and heat loss attenuated, body temperature will decrease. The primary physiological responses to counter the reduction in body temperature include marked cutaneous vasoconstriction and increased metabolism. These responses, and the hazards associated with such exposure, are mediated by a number of factors which contribute to heat production and loss. These include the severity and duration of the cold stimulus; exercise intensity; the magnitude of the metabolic response; and individual characteristics such as body composition, age, and gender. Chronic exposure to a cold environment, both natural and artificial, results in physiological alterations leading to adaptation. Three quite different, but not necessarily exclusive, patterns of human cold adaptation have been reported: metabolic, hypothermic, and insulative. Cold adaptation has also been associated with an habituation response, in which there is a desensitization, or damping, of the normal response to a cold stress. This review provides a comprehensive analysis of the human physiological and pathological responses to cold exposure. Particular attention is directed to the factors contributing to heat production and heat loss during acute cold stress, and the ability of humans to adapt to cold environments.

  2. Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure.

    PubMed

    Castellani, John W; Young, Andrew J

    2016-04-01

    Cold exposure in humans causes specific acute and chronic physiological responses. This paper will review both the acute and long-term physiological responses and external factors that impact these physiological responses. Acute physiological responses to cold exposure include cutaneous vasoconstriction and shivering thermogenesis which, respectively, decrease heat loss and increase metabolic heat production. Vasoconstriction is elicited through reflex and local cooling. In combination, vasoconstriction and shivering operate to maintain thermal balance when the body is losing heat. Factors (anthropometry, sex, race, fitness, thermoregulatory fatigue) that influence the acute physiological responses to cold exposure are also reviewed. The physiological responses to chronic cold exposure, also known as cold acclimation/acclimatization, are also presented. Three primary patterns of cold acclimatization have been observed, a) habituation, b) metabolic adjustment, and c) insulative adjustment. Habituation is characterized by physiological adjustments in which the response is attenuated compared to an unacclimatized state. Metabolic acclimatization is characterized by an increased thermogenesis, whereas insulative acclimatization is characterized by enhancing the mechanisms that conserve body heat. The pattern of acclimatization is dependent on changes in skin and core temperature and the exposure duration. PMID:26924539

  3. Tail docking in pigs: acute physiological and behavioural responses.

    PubMed

    Sutherland, M A; Bryer, P J; Krebs, N; McGlone, J J

    2008-02-01

    Tail docking of piglets is a routine procedure on farms to control tail-biting behaviour; however, docking can cause an acute stress response. The objectives of this research were to determine the stress responses to tail docking in piglets and to compare two methods of tail docking; cautery iron (CAUT) and the more commonly used blunt trauma cutters (BT). At approximately 6 days of age, piglets were tail docked using CAUT (n = 20), BT (n = 20) or sham tail docked with their tails remaining intact (CON; n = 40). Blood samples were taken prior to tail docking and at 30, 60 and 90 min after tail docking to evaluate the effect of tail docking on white blood cell (WBC) measures and cortisol concentrations. The above experiment was repeated to observe behaviour without the periodic blood sampling, so as not to confound the effects of blood sampling on piglet behaviour. Piglet behaviour was recorded in the farrowing crate using 1 min scan-samples via live observations for 60 min prior to and 90 min after tail docking. Total WBC counts were reduced (P > 0.05) among BT and CAUT compared with CON piglets 30 min after tail docking. Cortisol concentrations were higher (P < 0.01) among BT compared with CON and CAUT piglets 60 min after tail docking. Cautery and BT-docked piglets spent more (P < 0.05) time posterior scooting compared with CON piglets between 0 and 15 min, and 31 and 45 min after tail docking. Piglets tail docked using CAUT and BT tended to spend more (P < 0.07) time sitting than CON piglets between 0 and 15 min post tail docking. Elevated blood cortisol can be reduced by the use of the CAUT rather than the BT method of tail docking. Although the tail docking-induced rise in cortisol was prevented by using CAUT, the behavioural response to BT and CAUT docking methods was similar. PMID:22445023

  4. Effects of copper on the acute cortisol response and associated physiology in rainbow trout.

    PubMed

    Tellis, Margaret S; Alsop, Derek; Wood, Chris M

    2012-03-01

    The aim of this study was to determine the effects of chronic waterborne copper (Cu) exposure on the acute stress-induced cortisol response and associated physiological consequences in rainbow trout (Oncorhynchus mykiss). Trout were exposed to 30 μg Cu/L in moderately hard water (120 mg/L as CaCO(3)) for 40 days, following which time the acute cortisol response was examined with a series of stressors. At 40 days, a 65% increase in Cu was observed in the gill, but no accumulation was observed in the liver, brain or head kidney. Stressors such as air exposure or confinement did not elicit an increase in circulating cortisol levels for Cu-exposed fish, in contrast to controls. However, this inhibitory effect on the acute cortisol response appeared to have few implications on the ability of Cu-exposed fish to maintain ion and carbohydrate homeostasis. For example, plasma Na(+), Ca(2+) and glucose levels as well as hepatic glycogen levels were the same post-stress in control and Cu-exposed fish. Trout were also challenged with exposure to 50% seawater for 48 h, where Cu-exposed trout maintained plasma Na(+), glucose and hepatic glycogen levels. However, Cu-exposed fish experienced decreased plasma K(+) levels throughout the Cu exposure and stress tests. In conclusion, chronic Cu exposure resulted in the abolition of an acute cortisol response post-stress. There was no Cu accumulation in the hypothalamus-pituitary-interrenal axis (HPI axis) suggesting this was not a direct toxic effect of Cu on the cortisol regulatory pathway. However, the lack of an acute cortisol response in Cu-exposed fish did not impair the ability of the fish to maintain ion and carbohydrate homeostasis. This effect on cortisol may be a strategy to reduce costs during the chronic stress of Cu exposure, and not endocrine disruption as a result of toxic injury. PMID:21964321

  5. Acute Physiological Responses to Strongman Training Compared to Traditional Strength Training.

    PubMed

    Harris, Nigel K; Woulfe, Colm J; Wood, Matthew R; Dulson, Deborah K; Gluchowski, Ashley K; Keogh, Justin B

    2016-05-01

    Harris, NK, Woulfe, CJ, Wood, MR, Dulson, DK, Gluchowski, AK, and Keogh, JB. Acute physiological responses to strongman training compared to traditional strength training. J Strength Cond Res 30(5): 1397-1408, 2016-Strongman training (ST) has become an increasingly popular modality, but data on physiological responses are limited. This study sought to determine physiological responses to an ST session compared to a traditional strength exercise training (RST) session. Ten healthy men (23.6 ± 27.5 years, 85.8 ± 10.3 kg) volunteered in a crossover design, where all participants performed an ST session, an RST session, and a resting session within 7 days apart. The ST consisted of sled drag, farmer's walk, 1 arm dumbbell clean and press, and tire flip at loads eliciting approximately 30 seconds of near maximal effort per set. The RST consisted of squat, deadlift, bench press, and power clean, progressing to 75% of 1 repetition maximum. Sessions were equated for approximate total set duration. Blood lactate and salivary testosterone were recorded immediately before and after training sessions. Heart rate, caloric expenditure, and substrate utilization were measured throughout the resting session, both training protocols and for 80 minutes after training sessions. Analyses were conducted to determine differences in physiological responses within and between protocols. No significant changes in testosterone occurred at any time point for either session. Lactate increased significantly immediately after both sessions. Heart rate, caloric expenditure, and substrate utilization were all elevated significantly during ST and RST. Heart rate and fat expenditure were significantly elevated compared to resting in both sessions' recovery periods; calorie and carbohydrate expenditures were not. Compared to RST, ST represents an equivalent physiological stimulus on key parameters indicative of potential training-induced adaptive responses. Such adaptations could conceivably

  6. Study of physiological responses to acute carbon monoxide exposure with a human patient simulator.

    PubMed

    Cesari, Whitney A; Caruso, Dominique M; Zyka, Enela L; Schroff, Stuart T; Evans, Charles H; Hyatt, Jon-Philippe K

    2006-12-01

    Human patient simulators are widely used to train health professionals and students in a clinical setting, but they also can be used to enhance physiology education in a laboratory setting. Our course incorporates the human patient simulator for experiential learning in which undergraduate university juniors and seniors are instructed to design, conduct, and present (orally and in written form) their project testing physiological adaptation to an extreme environment. This article is a student report on the physiological response to acute carbon monoxide exposure in a simulated healthy adult male and a coal miner and represents how 1) human patient simulators can be used in a nonclinical way for experiential hypothesis testing; 2) students can transition from traditional textbook learning to practical application of their knowledge; and 3) student-initiated group investigation drives critical thought. While the course instructors remain available for consultation throughout the project, the relatively unstructured framework of the assignment drives the students to create an experiment independently, troubleshoot problems, and interpret the results. The only stipulation of the project is that the students must generate an experiment that is physiologically realistic and that requires them to search out and incorporate appropriate data from primary scientific literature. In this context, the human patient simulator is a viable educational tool for teaching integrative physiology in a laboratory environment by bridging textual information with experiential investigation. PMID:17108253

  7. Acute Physiological and Thermoregulatory Responses to Extended Interval Training in Endurance Runners: Influence of Athletic Performance and Age

    PubMed Central

    García-Pinillos, Felipe; Soto-Hermoso, Víctor Manuel; Latorre-Román, Pedro Ángel

    2015-01-01

    This study aimed to describe the acute impact of extended interval training (EIT) on physiological and thermoregulatory levels, as well as to determine the influence of athletic performance and age effect on the aforementioned response in endurance runners. Thirty-one experienced recreational male endurance runners voluntarily participated in this study. Subjects performed EIT on an outdoor running track, which consisted of 12 runs of 400 m. The rate of perceived exertion, physiological response through the peak and recovery heart rate, blood lactate, and thermoregulatory response through tympanic temperature, were controlled. A repeated measures analysis revealed significant differences throughout EIT in examined variables. Cluster analysis grouped according to the average performance in 400 m runs led to distinguish between athletes with a higher and lower sports level. Cluster analysis was also performed according to age, obtaining an older group and a younger group. The one-way analysis of variance between groups revealed no significant differences (p≥0.05) in the response to EIT. The results provide a detailed description of physiological and thermoregulatory responses to EIT in experienced endurance runners. This allows a better understanding of the impact of a common training stimulus on the physiological level inducing greater accuracy in the training prescription. Moreover, despite the differences in athletic performance or age, the acute physiological and thermoregulatory responses in endurance runners were similar, as long as EIT was performed at similar relative intensity. PMID:26839621

  8. Acute Physiological and Thermoregulatory Responses to Extended Interval Training in Endurance Runners: Influence of Athletic Performance and Age.

    PubMed

    García-Pinillos, Felipe; Soto-Hermoso, Víctor Manuel; Latorre-Román, Pedro Ángel

    2015-12-22

    This study aimed to describe the acute impact of extended interval training (EIT) on physiological and thermoregulatory levels, as well as to determine the influence of athletic performance and age effect on the aforementioned response in endurance runners. Thirty-one experienced recreational male endurance runners voluntarily participated in this study. Subjects performed EIT on an outdoor running track, which consisted of 12 runs of 400 m. The rate of perceived exertion, physiological response through the peak and recovery heart rate, blood lactate, and thermoregulatory response through tympanic temperature, were controlled. A repeated measures analysis revealed significant differences throughout EIT in examined variables. Cluster analysis grouped according to the average performance in 400 m runs led to distinguish between athletes with a higher and lower sports level. Cluster analysis was also performed according to age, obtaining an older group and a younger group. The one-way analysis of variance between groups revealed no significant differences (p≥0.05) in the response to EIT. The results provide a detailed description of physiological and thermoregulatory responses to EIT in experienced endurance runners. This allows a better understanding of the impact of a common training stimulus on the physiological level inducing greater accuracy in the training prescription. Moreover, despite the differences in athletic performance or age, the acute physiological and thermoregulatory responses in endurance runners were similar, as long as EIT was performed at similar relative intensity. PMID:26839621

  9. PHYSIOLOGICAL RESPONSE OF RAINBOW TROUT ('SALMO GAIRDNERI') TO ACUTE FENVALERATE INTOXICATION

    EPA Science Inventory

    The physiological responses of rainbow trout (Salmo gairdneri) to fenvalerate intoxication during aqueous exposure were examined to provide information about the pyrethroid mode of action in fish. Trout (n = 4) were exposed to 412 + or - 50 micro/liter fenvalerate and died in 10....

  10. Responses of calves to acute stress: individual consistency and relations between behavioral and physiological measures.

    PubMed

    Van Reenen, Cornelis G; O'Connell, Niamh E; Van der Werf, Jozef T N; Korte, S Mechiel; Hopster, Hans; Jones, R Bryan; Blokhuis, Harry J

    2005-08-01

    The present study examined the consistency over time of individual differences in behavioral and physiological responsiveness of calves to intuitively alarming test situations as well as the relationships between behavioral and physiological measures. Twenty Holstein Friesian heifer calves were individually subjected to the same series of two behavioral and two hypothalamo-pituitary-adrenocortical (HPA) axis reactivity tests at 3, 13 and 26 weeks of age. Novel environment (open field, OF) and novel object (NO) tests involved measurement of behavioral, plasma cortisol and heart rate responses. Plasma ACTH and/or cortisol response profiles were determined after administration of exogenous CRH and ACTH, respectively, in the HPA axis reactivity tests. Principal component analysis (PCA) was used to condense correlated measures within ages into principal components reflecting independent dimensions underlying the calves' reactivity. Cortisol responses to the OF and NO tests were positively associated with the latency to contact and negatively related to the time spent in contact with the NO. Individual differences in scores of a principal component summarizing this pattern of inter-correlations, as well as differences in separate measures of adrenocortical and behavioral reactivity in the OF and NO tests proved highly consistent over time. The cardiac response to confinement in a start box prior to the OF test was positively associated with the cortisol responses to the OF and NO tests at 26 weeks of age. HPA axis reactivity to ACTH or CRH was unrelated to adrenocortical and behavioral responses to novelty. These findings strongly suggest that the responsiveness of calves was mediated by stable individual characteristics. Correlated adrenocortical and behavioral responses to novelty may reflect underlying fearfulness, defining the individual's susceptibility to the elicitation of fear. Other independent characteristics mediating reactivity may include activity or coping

  11. Hostility and Physiological Responses to Acute Stress in People With Type 2 Diabetes

    PubMed Central

    Hackett, Ruth A.; Lazzarino, Antonio I.; Carvalho, Livia A.; Hamer, Mark; Steptoe, Andrew

    2015-01-01

    ABSTRACT Objective Hostility is associated with cardiovascular mortality and morbidity, and one of the mechanisms may involve heightened reactivity to mental stress. However, little research has been conducted in populations at high risk for cardiovascular disease. The aim of the present study was to assess the relationship between hostility and acute stress responsivity in individuals with Type 2 diabetes. Methods A total of 140 individuals (median age [standard deviation] 63.71 [7.00] years) with Type 2 diabetes took part in laboratory-based experimental stress testing. Systolic blood pressure, diastolic blood pressure, heart rate, plasma interleukin-6 (IL-6), and salivary cortisol were assessed at baseline, during two stress tasks, and 45 and 75 minutes later. Cynical hostility was assessed using the Cook Medley Cynical Hostility Scale. Results Participants with greater hostility scores had heightened increases in IL-6 induced by the acute stress tasks (B = 0.082, p = .002), independent of age, sex, body mass index, smoking, household income, time of testing, medication, and baseline IL-6. Hostility was inversely associated with cortisol output poststress (B = −0.017, p = .002), independent of covariates. No associations between hostility and blood pressure or heart rate responses were observed. Conclusions Hostile individuals with Type 2 diabetes may be susceptible to stress-induced increases in inflammation. Further research is needed to understand if such changes increase the risk of cardiovascular disease in this population. PMID:25886832

  12. Acute effects of heat on neuropsychological changes and physiological responses under noise condition.

    PubMed

    Bhattacharya, S K; Tripathi, S R; Pradhan, C K; Kashyap, S K

    1990-09-01

    To examine the effects of heat and noise individually and jointly on certain physiological responses and cognitive and neuromotor based functions, 12 male participants were tested under 6 experimental conditions which resulted by combining 3 levels of heat (25 degrees, 30 degrees and 35 degrees C) and 2 levels of white noise (70 and 100 dB). The experiment was carried out in a controlled climatic chamber following two 6 x 6 latin square designs. The results indicated elevations in heart rate, oxygen uptake and body temperature due to the independent effect of heat or the combined effects of heat and noise. The independent action of noise was found to be depressive on the first two responses. On the neuropsychological effects, the heat adversely affected the speed in card sorting (by design configuration) and digit symbol tests, and also the accuracy and error rate in the reasoning ability test. The noise caused performance improvements in critical flicker frequency (simultaneous) and in error rates in card sorting (by design configuration). The combined effects of heat and noise indicated higher error rates in card sorting (by face value), decreased accuracy in reasoning ability and improvements in performance in accuracy scores and error rates in digit symbol test. PMID:2279778

  13. Methyl parathion and fenvalerate toxicity in American kestrels: Acute physiological responses and effects of cold

    USGS Publications Warehouse

    Rattner, B.A.; Franson, J.C.

    1984-01-01

    Physiological and toxicological effects of p.o. methyl parathion (0.375-3.0 mg/kg) or fenvalerate (1000-4000 mg/kg) were examined over a 10-h period in American kestrels (Falco sparverius) maintained in thermoneutral (22?C) and cold (-5?C) environments. Methyl parathion was highly toxic (estimated median lethal dose of 3.08 mg/kg, 95% confidence limits of 2.29 -4.14 mg/kg), producing dose-dependent inhibition of brain and plasma cholinesterase activity, hyperglycemia, and elevated plasma corticosterone concentration. Brain and plasma cholinesterase inhibition in excess of 50% was associated with transient but pronounced hypothermia 2 h after intubation, although the magnitude of this response was yariable. Fenvalerate, at doses far exceeding those encountered in the environment, caused mild intoxication and elevated plasma alanine aminotransferase activity. Cold intensified methyl parathion toxicity, but did not affect that of fenvalerate. Thus, it would appear that organophosphorus insecticides pose far greater hazard than pyrethroids to raptorial birds.

  14. Yeast cell wall supplementation alters aspects of the physiological and acute phase responses of crossbred heifers to an endotoxin challenge.

    PubMed

    Burdick Sanchez, Nicole C; Young, Tanner R; Carroll, Jeffery A; Corley, Jimmie R; Rathmann, Ryan J; Johnson, Bradley J

    2013-01-01

    A study was conducted to determine the effect of feeding yeast cell wall (YCW) products on the physiological and acute phase responses of crossbred, newly-received feedlot heifers to an endotoxin challenge. Heifers (n = 24; 219 ± 2.4 kg) were separated into treatment groups receiving either a control diet (n = 8), YCW-A (2.5 g/heifer/d; n = 8) or YCW-C (2.5 g/heifer/d; n = 8) and were fed for 52 d. On d 37 heifers were challenged i.v. with LPS (0.5 µg/kg body mass) and blood samples were collected from -2 h to 8 h and again at 24 h relative to LPS challenge. There was an increase in vaginal temperature in all heifers post-LPS, with YCW-C maintaining a lower vaginal temperature post-LPS than control and YCW-A heifers. Sickness behavior scores increased post-LPS in all heifers, but were not affected by treatment. Cortisol concentrations were greatest in control heifers post-LPS compared with YCW-A or YCW-C heifers. Concentrations of IFN-γ and TNF-α increased post-LPS, but were not affected by treatment. Serum IL-6 concentrations increased post-LPS and were greater in control heifers than YCW-A and YCW-C heifers. These data indicate that YCW supplementation can decrease the physiological and acute phase responses of newly-received heifers following an endotoxin challenge. PMID:23288885

  15. Acute Physiological Responses to Short- and Long-Stage High-Intensity Interval Exercise in Cardiac Rehabilitation: A Pilot Study

    PubMed Central

    Tschakert, Gerhard; Kroepfl, Julia M.; Mueller, Alexander; Harpf, Hanns; Harpf, Leonhard; Traninger, Heimo; Wallner-Liebmann, Sandra; Stojakovic, Tatjana; Scharnagl, Hubert; Meinitzer, Andreas; Pichlhoefer, Patriz; Hofmann, Peter

    2016-01-01

    Despite described benefits of aerobic high-intensity interval exercise (HIIE), the acute responses during different HIIE modes and associated health risks have only been sparsely discovered in heart disease patients. Therefore, the aim of this study was to investigate the acute responses for physiological parameters, cardiovascular and inflammatory biomarkers, and catecholamines yielded by two different aerobic HIIE protocols compared to continuous exercise (CE) in phase III cardiac rehabilitation. Eight cardiac patients (7 with coronary heart disease, 1 with myocarditis; 7 males, 1 female; age: 63.0 ± 9.4 years; height: 1.74 ± 0.05 m; weight: 83.6 ± 8.7 kg), all but one treated with ß-blocking agents, performed a maximal symptom-limited incremental exercise test (IET) and three different exercise tests matched for mean load (Pmean) and total duration: 1) short HIIE with a peak workload duration (tpeak) of 20 s and a peak workload (Ppeak) equal to the maximum power output (Pmax) from IET; 2) long HIIE with a tpeak of 4 min, Ppeak was corresponding to the power output at 85 % of maximal heart rate (HRmax) from IET; 3) CE with a target workload equal to Pmean of both HIIE modes. Acute metabolic and peak cardiorespiratory responses were significantly higher during long HIIE compared to short HIIE and CE (p < 0.05) except HRpeak which tended to be higher in long HIIE than in short HIIE (p = 0.08). Between short HIIE and CE, no significant difference was found for any parameter. Acute responses of cardiovascular and inflammatory biomarkers and catecholamines didn’t show any significant difference between tests (p > 0.05). All health-related variables remained in a normal range in any test except NT-proBNP, which was already elevated at baseline. Despite a high Ppeak particularly in short HIIE, both HIIE modes were as safe and as well tolerated as moderate CE in cardiac patients by using our methodological approach. Key points High-intensity interval exercise (HIIE

  16. Study of Physiological Responses to Acute Carbon Monoxide Exposure with a Human Patient Simulator

    ERIC Educational Resources Information Center

    Cesari, Whitney A.; Caruso, Dominique M.; Zyka, Enela L.; Schroff, Stuart T.; Evans, Charles H., Jr.; Hyatt, Jon-Philippe K.

    2006-01-01

    Human patient simulators are widely used to train health professionals and students in a clinical setting, but they also can be used to enhance physiology education in a laboratory setting. Our course incorporates the human patient simulator for experiential learning in which undergraduate university juniors and seniors are instructed to design,…

  17. Coping with an Acute Psychosocial Challenge: Behavioral and Physiological Responses in Young Women

    PubMed Central

    Villada, Carolina; Hidalgo, Vanesa; Almela, Mercedes; Mastorci, Francesca; Sgoifo, Andrea; Salvador, Alicia

    2014-01-01

    Despite the relevance of behavior in understanding individual differences in the strategies used to cope with stressors, behavioral responses and their relationships with psychobiological changes have received little attention. In this study on young women, we aimed at analyzing the associations among different components of the stress response and behavioral coping using a laboratory psychosocial stressor. The Ethological Coding System for Interviews, as well as neuroendocrine, autonomic and mood parameters, were used to measure the stress response in 34 young women (17 free-cycling women in their early follicular phase and 17 oral contraceptive users) subjected to the Trier Social Stress Test (TSST) and a control condition in a crossover design. No significant differences in cardiac autonomic, negative mood and anxiety responses to the stressor were observed between the two groups of women. However, women in the follicular phase showed a higher cortisol response and a larger decrease in positive mood during the social stress episode, as well as greater anxiety overall. Interestingly, the amount of displacement behavior exhibited during the speaking task of the TSST was positively related to anxiety levels preceding the test, but negatively related to baseline and stress response values of heart rate. Moreover, the amount of submissive behavior was negatively related to basal cortisol levels. Finally, eye contact and low-aggressiveness behaviors were associated with a worsening in mood. Overall, these findings emphasize the close relationship between coping behavior and psychobiological reactions, as well as the role of individual variations in the strategy of coping with a psychosocial stressor. PMID:25489730

  18. Acute Exposure of College Basketball Players to Moderate Altitude: Selected Physiological Responses.

    ERIC Educational Resources Information Center

    Noble, Bruce J.; Maresh, Carl M.

    1979-01-01

    In general, basketball players with moderately high aerobic power who reside at an altitude of 1,000 m do not display the hypoxic response to an altitude of 2,200 m expected of sea level residents and aerobically trained athletes. (JD)

  19. The acute physiological stress response to an emergency alarm and mobilization during the day and at night

    PubMed Central

    Hall, Sarah J; Aisbett, Brad; Tait, Jamie L; Turner, Anne I; Ferguson, Sally A; Main, Luana C

    2016-01-01

    The purpose of this study was to investigate the acute physiological stress response to an emergency alarm and mobilization during the day and at night. Sixteen healthy males aged 25 ± 4 years (mean ± SD) spent four consecutive days and nights in a sleep laboratory. This research used a within-participants design with repeated measures for time, alarm condition (alarm or control), and trial (day or night). When an alarm sounded, participants were required to mobilize immediately. Saliva samples for cortisol analysis were collected 0 min, 15 min, 30 min, 45 min, 60 min, 90 min, and 120 min after mobilization, and at corresponding times in control conditions. Heart rate was measured continuously throughout the study. Heart rate was higher in the day (F20,442 = 9.140, P < 0.001) and night (F23,459 = 8.356, P < 0.001) alarm conditions compared to the respective control conditions. There was no difference in saliva cortisol between day alarm and day control conditions. Cortisol was higher (F6,183 = 2.450, P < 0.001) following the night alarm and mobilization compared to the night control condition. The magnitude of difference in cortisol between night control and night alarm conditions was greater (F6,174 = 4.071, P < 0.001) than the magnitude of difference between the day control and day alarm conditions. The augmented heart rate response to the day and night alarms supports previous observations in field settings. Variations in the cortisol responses between conditions across the day and night may relate to differences in participants’ ability to interpret the alarm when sleeping versus when awake. PMID:27157688

  20. The acute physiological stress response to an emergency alarm and mobilization during the day and at night.

    PubMed

    Hall, Sarah J; Aisbett, Brad; Tait, Jamie L; Turner, Anne I; Ferguson, Sally A; Main, Luana C

    2016-01-01

    The purpose of this study was to investigate the acute physiological stress response to an emergency alarm and mobilization during the day and at night. Sixteen healthy males aged 25 ± 4 years (mean ± SD) spent four consecutive days and nights in a sleep laboratory. This research used a within-participants design with repeated measures for time, alarm condition (alarm or control), and trial (day or night). When an alarm sounded, participants were required to mobilize immediately. Saliva samples for cortisol analysis were collected 0 min, 15 min, 30 min, 45 min, 60 min, 90 min, and 120 min after mobilization, and at corresponding times in control conditions. Heart rate was measured continuously throughout the study. Heart rate was higher in the day (F(20,442) = 9.140, P < 0.001) and night (F(23,459) = 8.356, P < 0.001) alarm conditions compared to the respective control conditions. There was no difference in saliva cortisol between day alarm and day control conditions. Cortisol was higher (F(6,183) = 2.450, P < 0.001) following the night alarm and mobilization compared to the night control condition. The magnitude of difference in cortisol between night control and night alarm conditions was greater (F(6,174) = 4.071, P < 0.001) than the magnitude of difference between the day control and day alarm conditions. The augmented heart rate response to the day and night alarms supports previous observations in field settings. Variations in the cortisol responses between conditions across the day and night may relate to differences in participants' ability to interpret the alarm when sleeping versus when awake. PMID:27157688

  1. Comparative studies of hemolymph physiology response and HIF-1 expression in different strains of Litopenaeus vannamei under acute hypoxia.

    PubMed

    Wei, Lin; Li, Yuhu; Qiu, Liguo; Zhou, Hailong; Han, Qian; Diao, Xiaoping

    2016-06-01

    Litopenaeus vannamei has a high commercial value and is the primary cultured shellfish species globally. In this study, we have compared the hemolymph physiological responses between two L. vannamei strains under acute hypoxia. The results showed that hemocyanin concentration (HC) of strain A6410 was significantly higher than strain Zhengda; Total hemocyte counts (THC) decreased significantly in both strains under hypoxic stress (p < 0.05). We also investigated the temporal and spatial variations of hypoxia inducible factors 1 (HIF-1) by qRT-PCR. The results showed that hypoxia for 12 h increased the expression levels of HIF-1α in tissues of muscle and gill from the two strains (p < 0.05). In the hepatopancreas, the expression levels of HIF-1 increased significantly in strain Zhengda and decreased significantly in strain A6410 (p < 0.05). No significant changes of HIF-1 expression were detected in the same tissues between the two strains under hypoxia for 6 h (p > 0.05), but in the gills and hepatopancreas under hypoxia for 12 h (p < 0.05). Additionally, the expression level of HIF-1 was higher in the strain Zhengda than A6410 in the same tissue under hypoxia for 12 h. It was indicated that the hypoxic tolerance of Litopenaeus vannamei was closely correlated with the expression level of HIF-1, and the higher expression level of HIF-1 to hypoxia, the lower tolerance to hypoxia in the early stage of hypoxia. These results can help to better understand the molecular mechanisms of hypoxic tolerance and speed up the selective breeding process of hypoxia tolerance in L. vannamei. PMID:27016815

  2. Effect of a Six-Week Preparation Period on Acute Physiological Responses to a Simulated Combat in Young National-Level Taekwondo Athletes

    PubMed Central

    Nikolaidis, Pantelis T.; Chtourou, Hamdi; Torres-Luque, Gema; Tasiopoulos, Ioannis G.; Heller, Jan; Padulo, Johnny

    2015-01-01

    The aim of this study was to examine changes in physical attributes, physiological characteristics and responses that occurred in a simulated combat during a six-week preparatory period in young taekwondo athletes. Seven athletes (age 12.17 ± 1.11 years) were examined before (pre-intervention) and after (post-intervention) a preparatory period for physical fitness and physiological responses to a 2×90 s simulated bout with a 30 s rest period. The heart rate (HR) was monitored during the simulated combat, and handgrip muscle strength (HMS) along with the countermovement jump (CMJ) were recorded before and after the combat. When compared with pre-intervention values, in post-intervention we observed a decrease in body mass, body fat percentage, and the HR at rest and during recovery after a 3 min step test, and an increase in maximal velocity of the cycle ergometer force-velocity test, the CMJ and mean power during the 30 s continuous jumping test (p<0.05). Furthermore, HR responses to a simulated combat were lower in the post-intervention session (p<0.05). CMJ values increased after the bout in both pre and post-intervention, with higher absolute values in the latter case (p<0.05), whereas there was no difference in HMS. Based on these findings, it can be concluded that the acute physiological responses to a simulated taekwondo combat vary during a season, which might be explained by changes in physical fitness. PMID:26557196

  3. Effect of a Six-Week Preparation Period on Acute Physiological Responses to a Simulated Combat in Young National-Level Taekwondo Athletes.

    PubMed

    Nikolaidis, Pantelis T; Chtourou, Hamdi; Torres-Luque, Gema; Tasiopoulos, Ioannis G; Heller, Jan; Padulo, Johnny

    2015-09-29

    The aim of this study was to examine changes in physical attributes, physiological characteristics and responses that occurred in a simulated combat during a six-week preparatory period in young taekwondo athletes. Seven athletes (age 12.17 ± 1.11 years) were examined before (pre-intervention) and after (post-intervention) a preparatory period for physical fitness and physiological responses to a 2×90 s simulated bout with a 30 s rest period. The heart rate (HR) was monitored during the simulated combat, and handgrip muscle strength (HMS) along with the countermovement jump (CMJ) were recorded before and after the combat. When compared with pre-intervention values, in post-intervention we observed a decrease in body mass, body fat percentage, and the HR at rest and during recovery after a 3 min step test, and an increase in maximal velocity of the cycle ergometer force-velocity test, the CMJ and mean power during the 30 s continuous jumping test (p<0.05). Furthermore, HR responses to a simulated combat were lower in the post-intervention session (p<0.05). CMJ values increased after the bout in both pre and post-intervention, with higher absolute values in the latter case (p<0.05), whereas there was no difference in HMS. Based on these findings, it can be concluded that the acute physiological responses to a simulated taekwondo combat vary during a season, which might be explained by changes in physical fitness. PMID:26557196

  4. Physiologic imaging in acute stroke: Patient selection

    PubMed Central

    Morgan, Clinton D; Stephens, Marcus; Zuckerman, Scott L; Waitara, Magarya S; Morone, Peter J; Dewan, Michael C

    2015-01-01

    Treatment of acute stroke is changing, as endovascular intervention becomes an important adjunct to tissue plasminogen activator. An increasing number of sophisticated physiologic imaging techniques have unique advantages and applications in the evaluation, diagnosis, and treatment-decision making of acute ischemic stroke. In this review, we first highlight the strengths, weaknesses, and possible indications for various stroke imaging techniques. How acute imaging findings in each modality have been used to predict functional outcome is discussed. Furthermore, there is an increasing emphasis on using these state-of-the-art imaging modalities to offer maximal patient benefit through IV therapy, endovascular thrombolytics, and clot retrieval. We review the burgeoning literature in the determination of stroke treatment based on acute, physiologic imaging findings. PMID:26063695

  5. Eco-physiological response of two marine bivalves to acute exposition to commercial Bt-based pesticide.

    PubMed

    Manachini, B; Arizza, V; Rinaldi, A; Montalto, V; Sarà, G

    2013-02-01

    Microbial products based on the entomopathogenic bacterium Bacillus thuringiensis (Bt) are among the most common biopesticides used worldwide to suppress insect pests in forests, horticulture and agricultural crops. Some of the effects of commercial Bt have been recorded for terrestrial and freshwater non-target organisms but little research is available on marine fauna. Nevertheless, due to the contiguity of agro-ecosystems and coastal habitats, marine fauna may be highly influenced by this control method. We studied the effect of a commercial Bt product on the physiological and ecological responses and the energy budget of two of the most frequent marine intertidal bivalves in the Mediterranean, the native Mytilaster minimus and the invasive Brachidontes pharaonis. To test the effects experimentally, we simulated the worst scenarios possible using the average dose applied to fields and a hypothetical accumulation dose. The results showed the feeding rates of both species were affected detrimentally by the different experimental conditions; higher concentrations led to higher respiration rates, however neither species showed any significant difference in excretion rates. The biopesticide had a significant effect on the energy budget, the values decreasing with doses. In addition, it led to high mortality for the worst treatments and, in both species, induced significantly higher cardiac activity than in the controls. These results indicate a measurable effect of Bt commercial products on marine organisms, and great attention should be paid to biopesticides composed by entomopathogenic bacteria and addictive compounds. In addition, the results highlight the urgent need to study not only the effects of anthropogenic pressures on target organisms but also to extend our view to other ecosystems not expected to be influenced. Gaining data at the organismal level should help increase the sustainability of pest control and reduce the consequences of side-effects. PMID

  6. Characterization of acute ischemia‐related physiological responses associated with remote ischemic preconditioning: a randomized controlled, crossover human study

    PubMed Central

    Sharma, Vikram; Cunniffe, Brian; Verma, Amit P.; Cardinale, Marco; Yellon, Derek

    2014-01-01

    Abstract Remote Ischemic Preconditioning (RIPC) is emerging as a new noninvasive intervention that has the potential to protect a number of organs against ischemia–reperfusion (IR) injury. The standard protocols normally used to deliver RIPC involve a number of cycles of inflation of a blood pressure (BP) cuff on the arm and/or leg to an inflation pressure of 200 mmHg followed by cuff deflation for a short period of time. There is little evidence to support what limb (upper or lower) or cuff inflation pressures are most effective to deliver this intervention without causing undue discomfort/pain in nonanesthetized humans. In this preliminary study, a dose–response assessment was performed using a range of cuff inflation pressures (140, 160, and 180 mmHg) to induce limb ischemia in upper and lower limbs. Physiological changes in the occluded limb and any pain/discomfort associated with RIPC with each cuff inflation pressure were determined. Results showed that ischemia can be induced in the upper limb at much lower cuff inflation pressures compared with the standard 200 mmHg pressure generally used for RIPC, provided the cuff inflation pressure is ~30 mmHg higher than the resting systolic BP. In the lower limb, a higher inflation pressure, (~55 mmHg > resting systolic BP), is required to induce ischemia. Cyclical changes in capillary blood O2, CO2, and lactate levels during the RIPC stimulus were observed. RIPC at higher cuff inflation pressures of 160 and 180 mmHg was better tolerated in the upper limb. In summary, limb ischemia for RIPC can be more easily induced at lower pressures and is much better tolerated in the upper limb in young healthy individuals. However, whether benefits of RIPC can also be derived with protocols delivered to the upper limb using lower cuff inflation pressures and with lesser discomfort compared to the lower limb, remains to be investigated. PMID:25413320

  7. Physiology in Medicine: A physiologic approach to prevention and treatment of acute high-altitude illnesses.

    PubMed

    Luks, Andrew M

    2015-03-01

    With the growing interest in adventure travel and the increasing ease and affordability of air, rail, and road-based transportation, increasing numbers of individuals are traveling to high altitude. The decline in barometric pressure and ambient oxygen tensions in this environment trigger a series of physiologic responses across organ systems and over a varying time frame that help the individual acclimatize to the low oxygen conditions but occasionally lead to maladaptive responses and one or several forms of acute altitude illness. The goal of this Physiology in Medicine article is to provide information that providers can use when counseling patients who present to primary care or travel medicine clinics seeking advice about how to prevent these problems. After discussing the primary physiologic responses to acute hypoxia from the organ to the molecular level in normal individuals, the review describes the main forms of acute altitude illness--acute mountain sickness, high-altitude cerebral edema, and high-altitude pulmonary edema--and the basic approaches to their prevention and treatment of these problems, with an emphasis throughout on the physiologic basis for the development of these illnesses and their management. PMID:25539941

  8. Physiological benefits of being small in a changing world: responses of Coho salmon (Oncorhynchus kisutch) to an acute thermal challenge and a simulated capture event.

    PubMed

    Clark, Timothy D; Donaldson, Michael R; Pieperhoff, Sebastian; Drenner, S Matthew; Lotto, Andrew; Cooke, Steven J; Hinch, Scott G; Patterson, David A; Farrell, Anthony P

    2012-01-01

    Evidence is building to suggest that both chronic and acute warm temperature exposure, as well as other anthropogenic perturbations, may select for small adult fish within a species. To shed light on this phenomenon, we investigated physiological and anatomical attributes associated with size-specific responses to an acute thermal challenge and a fisheries capture simulation (exercise+air exposure) in maturing male coho salmon (Oncorhynchus kisutch). Full-size females were included for a sex-specific comparison. A size-specific response in haematology to an acute thermal challenge (from 7 to 20 °C at 3 °C h(-1)) was apparent only for plasma potassium, whereby full-size males exhibited a significant increase in comparison with smaller males ('jacks'). Full-size females exhibited an elevated blood stress response in comparison with full-size males. Metabolic recovery following exhaustive exercise at 7 °C was size-specific, with jacks regaining resting levels of metabolism at 9.3 ± 0.5 h post-exercise in comparison with 12.3 ± 0.4 h for full-size fish of both sexes. Excess post-exercise oxygen consumption scaled with body mass in male fish with an exponent of b = 1.20 ± 0.08. Jacks appeared to regain osmoregulatory homeostasis faster than full-size males, and they had higher ventilation rates at 1 h post-exercise. Peak metabolic rate during post-exercise recovery scaled with body mass with an exponent of b~1, suggesting that the slower metabolic recovery in large fish was not due to limitations in diffusive or convective oxygen transport, but that large fish simply accumulated a greater 'oxygen debt' that took longer to pay back at the size-independent peak metabolic rate of ~6 mg min(-1) kg(-1). Post-exercise recovery of plasma testosterone was faster in jacks compared with full-size males, suggesting less impairment of the maturation trajectory of smaller fish. Supporting previous studies, these findings suggest that environmental change and non

  9. Identifying Drug (Cocaine) Intake Events from Acute Physiological Response in the Presence of Free-living Physical Activity

    PubMed Central

    Hossain, Syed Monowar; Ali, Amin Ahsan; Rahman, Mahbubur; Ertin, Emre; Epstein, David; Kennedy, Ashley; Preston, Kenzie; Umbricht, Annie; Chen, Yixin; Kumar, Santosh

    2014-01-01

    A variety of health and behavioral states can potentially be inferred from physiological measurements that can now be collected in the natural free-living environment. The major challenge, however, is to develop computational models for automated detection of health events that can work reliably in the natural field environment. In this paper, we develop a physiologically-informed model to automatically detect drug (cocaine) use events in the free-living environment of participants from their electrocardiogram (ECG) measurements. The key to reliably detecting drug use events in the field is to incorporate the knowledge of autonomic nervous system (ANS) behavior in the model development so as to decompose the activation effect of cocaine from the natural recovery behavior of the parasympathetic nervous system (after an episode of physical activity). We collect 89 days of data from 9 active drug users in two residential lab environments and 922 days of data from 42 active drug users in the field environment, for a total of 11,283 hours. We develop a model that tracks the natural recovery by the parasympathetic nervous system and then estimates the dampening caused to the recovery by the activation of the sympathetic nervous system due to cocaine. We develop efficient methods to screen and clean the ECG time series data and extract candidate windows to assess for potential drug use. We then apply our model on the recovery segments from these windows. Our model achieves 100% true positive rate while keeping the false positive rate to 0.87/day over (9+ hours/day of) lab data and to 1.13/day over (11+ hours/day of) field data. PMID:25531010

  10. Physiological response to aerosol propellants.

    PubMed Central

    Stewart, R D; Newton, P E; Baretta, E D; Herrmann, A A; Forster, H V; Soto, R J

    1978-01-01

    Acute exposures to isobutane, propane, F-12, and F-11 in concentrations of 250, 500, or 1000 ppm for periods of 1 min to 8 hr did not produce any untoward physiological effects as determined by the methods employed which included serial EKG's and continuous monitoring of modified V5 by telemetry during exposure. Repetitive exposures to these four propellants were also without measurable untoward physiological effect with the exception of the eight male subjects repetitively exposed to 1000 ppm, F-11, who did show minor decrements in several of the cognitive tests. Of particular importance is the observation that none of the subjects showed any decrement in pulmonary function or alteration in cardiac rhythm as the result of exposure to concentrations of the gases or vapors far greater than encountered in the normal use of aerosol products in the home. PMID:214300

  11. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise.

    PubMed

    Vanhatalo, Anni; Bailey, Stephen J; Blackwell, Jamie R; DiMenna, Fred J; Pavey, Toby G; Wilkerson, Daryl P; Benjamin, Nigel; Winyard, Paul G; Jones, Andrew M

    2010-10-01

    Dietary nitrate (NO(3)(-)) supplementation with beetroot juice (BR) over 4-6 days has been shown to reduce the O(2) cost of submaximal exercise and to improve exercise tolerance. However, it is not known whether shorter (or longer) periods of supplementation have similar (or greater) effects. We therefore investigated the effects of acute and chronic NO(3)(-) supplementation on resting blood pressure (BP) and the physiological responses to moderate-intensity exercise and ramp incremental cycle exercise in eight healthy subjects. Following baseline tests, the subjects were assigned in a balanced crossover design to receive BR (0.5 l/day; 5.2 mmol of NO(3)(-)/day) and placebo (PL; 0.5 l/day low-calorie juice cordial) treatments. The exercise protocol (two moderate-intensity step tests followed by a ramp test) was repeated 2.5 h following first ingestion (0.5 liter) and after 5 and 15 days of BR and PL. Plasma nitrite concentration (baseline: 454 ± 81 nM) was significantly elevated (+39% at 2.5 h postingestion; +25% at 5 days; +46% at 15 days; P < 0.05) and systolic and diastolic BP (baseline: 127 ± 6 and 72 ± 5 mmHg, respectively) were reduced by ∼4% throughout the BR supplementation period (P < 0.05). Compared with PL, the steady-state Vo(2) during moderate exercise was reduced by ∼4% after 2.5 h and remained similarly reduced after 5 and 15 days of BR (P < 0.05). The ramp test peak power and the work rate at the gas exchange threshold (baseline: 322 ± 67 W and 89 ± 15 W, respectively) were elevated after 15 days of BR (331 ± 68 W and 105 ± 28 W; P < 0.05) but not PL (323 ± 68 W and 84 ± 18 W). These results indicate that dietary NO(3)(-) supplementation acutely reduces BP and the O(2) cost of submaximal exercise and that these effects are maintained for at least 15 days if supplementation is continued. PMID:20702806

  12. Chronic Psychosocial Factors and Acute Physiological Responses to Laboratory-Induced Stress in Healthy Populations: A Quantitative Review of 30 Years of Investigations

    ERIC Educational Resources Information Center

    Chida, Yoichi; Hamer, Mark

    2008-01-01

    This meta-analysis included 729 studies from 161 articles investigating how acute stress responsivity (including stress reactivity and recovery of hypothalamic-pituitary-adrenal [HPA] axis, autonomic, and cardiovascular systems) changes with various chronic psychosocial exposures (job stress; general life stress; depression or hopelessness;…

  13. Neuronal responses to physiological stress.

    PubMed

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger

    2012-01-01

    Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner chemistry during normal development. For example, conditions such as intrinsic hypoxia and oxidative stress, due to an increase in tissue mass, have to be confronted by developing embryos in order to complete their development. Finally, organisms face the challenge of stochastic accumulation of molecular damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review the responses of neurons to various physiological stressors at the molecular and cellular level. PMID:23112806

  14. Neuronal Responses to Physiological Stress

    PubMed Central

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger

    2012-01-01

    Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner chemistry during normal development. For example, conditions such as intrinsic hypoxia and oxidative stress, due to an increase in tissue mass, have to be confronted by developing embryos in order to complete their development. Finally, organisms face the challenge of stochastic accumulation of molecular damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review the responses of neurons to various physiological stressors at the molecular and cellular level. PMID:23112806

  15. ACUTE MENTAL STRESS AND HEMOSTASIS: WHEN PHYSIOLOGY BECOMES VASCULAR HARM

    PubMed Central

    von Känel, Roland

    2015-01-01

    Stress-induced activation of the sympathoadrenal medullary system activates both the coagulation and fibrinolysis system resulting in net hypercoagulability. The evolutionary interpretation of this physiology is that stress-hypercoagulability protects a healthy organism from excess bleeding should injury occur in fight-or-flight situations. In turn, acute mental stress, negative emotions and psychological trauma also are triggering factors of atherothrombotic events and possibly of venous thromboembolism. Individuals with pre-existent atherosclerosis and impaired endothelial anticoagulant function are the most vulnerable to experience onset of acute coronary events within two hours of intense emotions. A range of sociodemographic and psychosocial factors (e.g., chronic stress and negative affect) might critically intensify and prolong stress-induced hypercoagulability. In contrast, several pharmacological compounds, dietary flavanoids, and positive affect mitigate the acute prothrombotic stress response. Studies are needed to investigate whether attenuation of stress-hypercoagulability through medications and biobehavioral interventions reduce the risk of thrombotic incidents in at-risk populations. PMID:25861135

  16. The effects of a moisture-wicking fabric shirt on the physiological and perceptual responses during acute exercise in the heat.

    PubMed

    De Sousa, Justin; Cheatham, Christopher; Wittbrodt, Matthew

    2014-11-01

    This study investigated the effects that a form fitted, moisture-wicking fabric shirt, promoted to have improved evaporative and ventilation properties, has on the physiological and perceptual responses during exercise in the heat. Ten healthy male participants completed two heat stress tests consisting of 45 min of exercise (50% VO2peak) in a hot environment (33 °C, 60% RH). One heat stress test was conducted with the participant wearing a 100% cotton short sleeved t-shirt and the other heat stress test was conducted with the participant wearing a short sleeved synthetic shirt (81% polyester and 19% elastane). Rectal temperature was significantly lower (P < 0.05) in the synthetic condition during the last 15 min of exercise. Furthermore, the synthetic polyester shirt retained less sweat (P < 0.05). As exercise duration increases, the ventilation and evaporation properties of the synthetic garment may prove beneficial in the preservation of body temperature during exercise in the heat. PMID:24768089

  17. Physiological responses induced by pleasant stimuli.

    PubMed

    Watanuki, Shigeki; Kim, Yeon-Kyu

    2005-01-01

    The specific physiological responses induced by pleasant stimuli were investigated in this study. Various physiological responses of the brain (encephaloelectrogram; EEG), autonomic nervous system (ANS), immune system and endocrine system were monitored when pleasant stimuli such as odors, emotional pictures and rakugo, a typical Japanese comical story-telling, were presented to subjects. The results revealed that (i) EEG activities of the left frontal brain region were enhanced by a pleasant odor; (ii) emotional pictures related to primitive element such as nudes and erotic couples elevated vasomotor sympathetic nervous activity; and (iii) an increase in secretory immunoglobulin A (s-IgA) and a decrease in salivary cortisol (s-cortisol) were induced by rakugo-derived linguistic pleasant emotion. Pleasant emotion is complicated state. However, by considering the evolutionary history of human being, it is possible to assess and evaluate pleasant emotion from certain physiological responses by appropriately summating various physiological parameters. PMID:15684559

  18. Physiology of the Immune Response

    PubMed Central

    Denburg, J. A.; Bienenstock, J.

    1979-01-01

    The established mechanisms of immune responsiveness to foreign or self components are reviewed, with particular reference to relevant clinical problems and current research. A multitiered immunological system of cellular and subcellular elements are involved when the body deals with perturbations from without or within. The concept exists that a delicate balance between positive ('helper') and negative ('suppressor') forces is essential to maintaining health. Brief discussion is given to diagnosis of immune abnormalities in the light of these facts. PMID:21297689

  19. Autonomic Physiological Response Patterns Related to Intelligence

    ERIC Educational Resources Information Center

    Melis, Cor; van Boxtel, Anton

    2007-01-01

    We examined autonomic physiological responses induced by six different cognitive ability tasks, varying in complexity, that were selected on the basis of on Guilford's Structure of Intellect model. In a group of 52 participants, task performance was measured together with nine different autonomic response measures and respiration rate. Weighted…

  20. Acute physiological responses while wearing various configurations of the MCU-2/P groundcrew chemical defense mask. Final report, 19 January 1990-19 July 1991

    SciTech Connect

    Antunano, M.J.; Chen, Y.T.; Constable, S.H.

    1992-10-01

    Resistance to breathing is a major factor that determines individual tolerance to physical work while wearing a protective mask. This study evaluated some of the acute effects associated with the use of the MCU-2/P mask. Three MCU-2/P mask configurations (MC) were tested: mask + 1 filter (MCU-IF), mask + 2 filters in parallel (MCU-2F), and mask + 1 filter + air blower (MCU-lAB). The air blower provided 65 L min-1 (2.3 cfm) of ambient air through the filter. Five subjects pedaled a cycle ergometer at 2 workloads (60 120 watts). Each MC was tested consecutively for 5 min under each workload, for a total of 30 min per experiment. Each subject repeated the experiment three times while randomizing the mask/workload test order. Variables measured included heart rate, respiratory rate, tidal volume, minute volume, inspiratory and expiratory mask cavity pressures, perceived inspiratory expiratory effort, and overall breathing discomfort. The lowest inspiratory resistance was observed with the MCU1AB, followed by MCU-2F and MCU-IF. Subjects experienced less breathing effort and discomfort with the MCU-IAB, followed by a more modest reduction with the MCU-2F. Heart rates, respiratory rates, tidal volumes, and minute volumes showed no correlation with the three levels of inspiratory resistance, but were related to workload. The best approach to reduce the respiratory burden imposed by the MCU-2/P mask is to provide powered ventilation through the filter. Unfortunately, this approach creates logistical problems. A more practical approach may simply be to attach a second filter canister to the mask. Breathing resistance, M17 Mask, MCU-2/P Mask, Physical exercise, Breathing discomfort, Manikin testing, Human testing.

  1. Physiologic Responses to Treadmill and Water Running.

    ERIC Educational Resources Information Center

    Bishop, Phillip A.; And Others

    1989-01-01

    Presents results of a study of the physiological responses of uninjured runners to running on a treadmill and in water. Water running may lessen an injured athlete's rate of deconditioning, but indications are that the metabolic cost of water running is not significantly greater than that of treadmill running. (SM)

  2. Physiological responses to daily light exposure

    NASA Astrophysics Data System (ADS)

    Yang, Yefeng; Yu, Yonghua; Yang, Bo; Zhou, Hong; Pan, Jinming

    2016-04-01

    Long daylength artificial light exposure associates with disorders, and a potential physiological mechanism has been proposed. However, previous studies have examined no more than three artificial light treatments and limited metabolic parameters, which have been insufficient to demonstrate mechanical responses. Here, comprehensive physiological response curves were established and the physiological mechanism was strengthened. Chicks were illuminated for 12, 14, 16, 18, 20, or 22 h periods each day. A quadratic relationship between abdominal adipose weight (AAW) and light period suggested that long-term or short-term light exposure could decrease the amount of AAW. Quantitative relationships between physiological parameters and daily light period were also established in this study. The relationships between triglycerides (TG), cholesterol (TC), glucose (GLU), phosphorus (P) levels and daily light period could be described by quadratic regression models. TG levels, AAW, and BW positively correlated with each other, suggesting long-term light exposure significantly increased AAW by increasing TG thus resulting in greater BW. A positive correlation between blood triiodothyronine (T3) levels and BW suggested that daily long-term light exposure increased BW by thyroid hormone secretion. Though the molecular pathway remains unknown, these results suggest a comprehensive physiological mechanism through which light exposure affects growth.

  3. Physiological responses to daily light exposure

    PubMed Central

    Yang, Yefeng; Yu, Yonghua; Yang, Bo; Zhou, Hong; Pan, Jinming

    2016-01-01

    Long daylength artificial light exposure associates with disorders, and a potential physiological mechanism has been proposed. However, previous studies have examined no more than three artificial light treatments and limited metabolic parameters, which have been insufficient to demonstrate mechanical responses. Here, comprehensive physiological response curves were established and the physiological mechanism was strengthened. Chicks were illuminated for 12, 14, 16, 18, 20, or 22 h periods each day. A quadratic relationship between abdominal adipose weight (AAW) and light period suggested that long-term or short-term light exposure could decrease the amount of AAW. Quantitative relationships between physiological parameters and daily light period were also established in this study. The relationships between triglycerides (TG), cholesterol (TC), glucose (GLU), phosphorus (P) levels and daily light period could be described by quadratic regression models. TG levels, AAW, and BW positively correlated with each other, suggesting long-term light exposure significantly increased AAW by increasing TG thus resulting in greater BW. A positive correlation between blood triiodothyronine (T3) levels and BW suggested that daily long-term light exposure increased BW by thyroid hormone secretion. Though the molecular pathway remains unknown, these results suggest a comprehensive physiological mechanism through which light exposure affects growth. PMID:27098210

  4. Spatiotemporal hemodynamic response functions derived from physiology.

    PubMed

    Aquino, K M; Robinson, P A; Drysdale, P M

    2014-04-21

    Probing neural activity with functional magnetic resonance imaging (fMRI) relies upon understanding the hemodynamic response to changes in neural activity. Although existing studies have extensively characterized the temporal hemodynamic response, less is understood about the spatial and spatiotemporal hemodynamic responses. This study systematically characterizes the spatiotemporal response by deriving the hemodynamic response due to a short localized neural drive, i.e., the spatiotemporal hemodynamic response function (stHRF) from a physiological model of hemodynamics based on a poroelastic model of cortical tissue. In this study, the model's boundary conditions are clarified and a resulting nonlinear hemodynamic wave equation is derived. From this wave equation, damped linear hemodynamic waves are predicted from the stHRF. The main features of these waves depend on two physiological parameters: wave propagation speed, which depends on mean cortical stiffness, and damping which depends on effective viscosity. Some of these predictions were applied and validated in a companion study (Aquino et al., 2012). The advantages of having such a theory for the stHRF include improving the interpretation of spatiotemporal dynamics in fMRI data; improving estimates of neural activity with fMRI spatiotemporal deconvolution; and enabling wave interactions between hemodynamic waves to be predicted and exploited to improve the signal to noise ratio of fMRI. PMID:24398024

  5. Nutritional implications and physiologic response to pediatric diarrhea.

    PubMed

    Santos, J I

    1986-01-01

    As depicted in Figure 1 acute diarrhea causes the host to undergo a sequence of hormonal, metabolic and immunologic responses, all of which have a nutritional cost. The impact will be more significant in the debilitated or marginally nourished child. From a nutritional point of view this process of nutrient loss and redistribution has the potential for being exploited to the benefit of the host. Two treatment techniques could be used to improve the host response to infection. Nutrients which are essential for optimal immune function and which are rapidly being metabolized may be selectively replaced, while nutrients that the offending organism needs may be withdrawn or temporarily withheld. A better understanding of the physiologic response and nutritional consequences of diarrhea should permit us to further improve the outcome of this and other infectious diseases. PMID:3945585

  6. Acute Physiological and Behavioral Effects of Intranasal Methamphetamine in Humans

    PubMed Central

    Hart, Carl L; Gunderson, Erik W; Perez, Audrey; Kirkpatrick, Matthew G; Thurmond, Andrew; Comer, Sandra D; Foltin, Richard W

    2016-01-01

    Intranasal methamphetamine abuse has increased dramatically in the past decade, yet only one published study has investigated its acute effects under controlled laboratory conditions. Thus, the current study examined the effects of single-dose intranasal methamphetamine administration on a broad range of behavioral and physiological measures. Eleven nontreatment-seeking methamphetamine abusers (two females, nine males) completed this four-session, in-patient, within-participant, double-blind study. During each session, one of four intranasal methamphetamine doses (0, 12, 25, and 50 mg/70 kg) was administered and methamphetamine plasma concentrations, cardiovascular, subjective, and psychomotor/cognitive performance effects were assessed before drug administration and repeatedly thereafter. Following drug administration, methamphetamine plasma concentrations systematically increased for 4 h postdrug administration then declined. Methamphetamine dose dependently increased cardiovascular measures and ‘positive’ subjective effects, with peaks occurring approximately 5–15 min after drug administration, when plasma levels were still ascending. In addition, cognitive performance on less complicated tasks was improved by all active methamphetamine doses, whereas performance on more complicated tasks was improved only by the intermediate doses (12 and 25 mg). These results show that intranasal methamphetamine produced predictable effects on multiple behavioral and physiological measures before peak plasma levels were observed. Of interest is the dissociation between methamphetamine plasma concentrations with cardiovascular measures and positive subjective effects, which might have important implications for potential toxicity after repeated doses. PMID:17851535

  7. Early physiologic responses to hemorrhagic hypotension.

    PubMed

    Torres Filho, Ivo P; Torres, Luciana N; Pittman, Roland N

    2010-02-01

    The identification of early indicators of hemorrhagic hypotension (HH) severity may support early therapeutic approaches and bring insights into possible mechanistic implications. However, few systematic investigations of physiologic variables during early stages of hemorrhage are available. We hypothesized that, in certain subjects, early physiologic responses to blood loss are associated with the ability to survive hemorrhage levels that are lethal to subjects that do not present the same responses. Therefore, we examine the relevance of specific systemic changes during and after the bleeding phase of HH. Stepwise hemorrhage, representing prehospital situations, was performed in 44 rats, and measurements were made after each step. Heart and respiratory rates, arterial and venous blood pressures, gases, acid-base status, glucose, lactate, electrolytes, hemoglobin, O(2) saturation, tidal volume, and minute volume were measured before, during, and after bleeding 40% of the total blood volume. Fifty percent of rats survived 100 min (survivors, S) or longer; others were considered nonsurvivors (NS). Our findings were as follows: (1) S and NS subjected to a similar hemorrhage challenge showed significantly different responses during nonlethal levels of bleeding; (2) survivors showed higher blood pressure and ventilation than NS; (3) although pH was lower in NS at later stages, changes in bicarbonate and base excess occurred already during the hemorrhage phase and were higher in NS; and (4) plasma K(+) levels and glucose extraction were higher in NS. We conclude that cardiorespiratory and metabolic responses, essential for the survival at HH, can differentiate between S and NS even before a lethal bleeding was reached. PMID:20129488

  8. Psychological and Physiological Responses following Repeated Peer Death

    PubMed Central

    Andersen, Judith Pizarro; Silver, Roxane Cohen; Stewart, Brandon; Koperwas, Billie; Kirschbaum, Clemens

    2013-01-01

    Objective Undergraduates at a university in the United States were exposed – directly and indirectly – to 14 peer deaths during one academic year. We examined how individual and social factors were associated with psychological (e.g., anxiety, depression, somatization) and physiological (i.e., cortisol) distress responses following this unexpected and repeated experience with loss. Method Two to three months after the final peer death, respondents (N = 122, 61% female, 18–23 years, M = 20.13, SD = 1.14) reported prior adverse experiences, degree of closeness with the deceased, acute responses to the peer deaths, ongoing distress responses, social support, support seeking, and media viewing. A subset (n = 24) returned hair samples for evaluation of cortisol responses during the previous 3 months. Results Ongoing psychological distress was associated with a) prior interpersonal trauma, b) fewer social supports, and c) media exposure to news of the deaths (p's<.05). Participants who had no prior bereavements showed, on average, high cortisol (>25 p/mg) compared to individuals with one or two prior bereavement experiences (who were, on average, within the normal range, 10 to 25 p/mg) (p<.05). Only 8% of the sample utilized available university psychological or physical health resources and support groups. Conclusions Limited research has examined the psychological and physiological impact of exposure to chronic, repeated peer loss, despite the fact that there are groups of individuals (e.g., police, military soldiers) that routinely face such exposures. Prior adversity appears to play a role in shaping psychological and physiological responses to repeated loss. This topic warrants further research given the health implications of repeated loss for individuals in high-risk occupations and university settings. PMID:24086655

  9. Physiologically based toxicokinetic modeling of secondary acute myelolytic leukemia.

    PubMed

    Mukhopadhyay, Manas Kumar; Nath, Debjani

    2014-01-01

    Benzene, designated as environmental and occupational carcinogen and hematotoxin, has been associated with secondary leukemia. To develop a toxicokinetic model of AML, benzene can be used as leukemogenic agent. The aim of the present study was to optimize the dose, period and time of cumulative benzene exposure of Swiss Albino mice and to analyze survival rate; alteration in cell cycle regulation and other clinical manifestations in mice exposed to benzene vapour at a dose 300 ppm × 6 h/day × 5 days/week for 2 weeks, i.e., 9000(a)ppm cumulative dose. Analyzing physiological parameters like plasma enzyme profile, complete hematology (Hb %, RBC indices and WBC differentials), hematopoietic cells morphology, expression of cell cycle regulatory proteins, tissue histology and analysis of DNA fragmentation, optimum conditions were established. Down regulation of p53 and p21 and up regulation of CDK2, CDK4, CDK6, cyclin D1 and E in this exposed group were marked as the optimum conditions of cellular deregulation for the development of secondary AML. Elevated level of Plasma AST/ALT with corresponding changes in liver histology showing extended sinusoids within the hepatocytic cell cords in optimally exposed animals also confirmed the toxicokinetic relation of benzene with leukemia. It can be concluded from the above observations that the 9000(a)ppm exposed animals can serve as the induced laboratory model of secondary acute myeloid leukemia. PMID:24440606

  10. Physiologic Responsiveness Should Guide Entry into Randomized Controlled Trials.

    PubMed

    Goligher, Ewan C; Kavanagh, Brian P; Rubenfeld, Gordon D; Ferguson, Niall D

    2015-12-15

    Most randomized trials in critical care report no mortality benefit; this may reflect competing pathogenic mechanisms, patient heterogeneity, or true ineffectiveness of interventions. We hypothesize that in acute respiratory distress syndrome (ARDS), randomizing only those patients who show a favorable physiological response to an intervention would help ensure that only those likely to benefit would be entered into the study. If true, this would decrease study "noise" and reduce required sample size, thereby increasing the chances of finding true-positive outcomes. It would also lessen the chances of exposing patients to treatments that are unlikely to help or that could cause harm. We present a reanalysis of randomized clinical trials of positive end-expiratory pressure in ARDS that support this hypothesis. PMID:25580530

  11. Computations of uncertainty mediate acute stress responses in humans

    PubMed Central

    de Berker, Archy O.; Rutledge, Robb B.; Mathys, Christoph; Marshall, Louise; Cross, Gemma F.; Dolan, Raymond J.; Bestmann, Sven

    2016-01-01

    The effects of stress are frequently studied, yet its proximal causes remain unclear. Here we demonstrate that subjective estimates of uncertainty predict the dynamics of subjective and physiological stress responses. Subjects learned a probabilistic mapping between visual stimuli and electric shocks. Salivary cortisol confirmed that our stressor elicited changes in endocrine activity. Using a hierarchical Bayesian learning model, we quantified the relationship between the different forms of subjective task uncertainty and acute stress responses. Subjective stress, pupil diameter and skin conductance all tracked the evolution of irreducible uncertainty. We observed a coupling between emotional and somatic state, with subjective and physiological tuning to uncertainty tightly correlated. Furthermore, the uncertainty tuning of subjective and physiological stress predicted individual task performance, consistent with an adaptive role for stress in learning under uncertain threat. Our finding that stress responses are tuned to environmental uncertainty provides new insight into their generation and likely adaptive function. PMID:27020312

  12. Physiological Responses to Thermal Stress and Exercise

    NASA Astrophysics Data System (ADS)

    Iyota, Hiroyuki; Ohya, Akira; Yamagata, Junko; Suzuki, Takashi; Miyagawa, Toshiaki; Kawabata, Takashi

    The simple and noninvasive measuring methods of bioinstrumentation in humans is required for optimization of air conditioning and management of thermal environments, taking into consideration the individual specificity of the human body as well as the stress conditions affecting each. Changes in human blood circulation were induced with environmental factors such as heat, cold, exercise, mental stress, and so on. In this study, the physiological responses of human body to heat stress and exercise were investigated in the initial phase of the developmental research. We measured the body core and skin temperatures, skin blood flow, and pulse wave as the indices of the adaptation of the cardiovascular system. A laser Doppler skin blood flowmetry using an optical-sensor with a small portable data logger was employed for the measurement. These results reveal the heat-stress and exercise-induced circulatory responses, which are under the control of the sympathetic nerve system. Furthermore, it was suggested that the activity of the sympathetic nervous system could be evaluated from the signals of the pulse wave included in the signals derived from skin blood flow by means of heart rate variability assessments and detecting peak heights of velocity-plethysmogram.

  13. Molecular and physiological responses to long-term sublethal ammonia exposure in Atlantic salmon (Salmo salar)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the underlying physiological and molecular responses to long-term sublethal ammonia exposure in Atlantic salmon (Salmo salar) parr. Previous studies have pre- dominately focused on mechanisms during acute, short-term exposure. For that purpose Atlantic s...

  14. The acute physiological and mood effects of tea and coffee: the role of caffeine level.

    PubMed

    Quinlan, P T; Lane, J; Moore, K L; Aspen, J; Rycroft, J A; O'Brien, D C

    2000-05-01

    The objective of this study was to determine the effect of caffeine level in tea and coffee on acute physiological responses and mood. Randomised full crossover design in subjects after overnight caffeine abstention was studied. In study 1 (n = 17) the caffeine level was manipulated naturalistically by preparing tea and coffee at different strengths (1 or 2 cups equivalent). Caffeine levels were 37.5 and 75 mg in tea, 75 and 150 mg in coffee, with water and no-drink controls. In study 2 (n = 15) caffeine level alone was manipulated (water, decaffeinated tea, plus 0, 25, 50, 100, and 200 mg caffeine). Beverage volume and temperature (55 degrees C) were constant. SBP, DBP, heart rate, skin temperature, skin conductance, and mood were monitored over each 3-h study session. In study 1, tea and coffee produced mild autonomic stimulation and an elevation in mood. There were no effects of tea vs. coffee or caffeine dose, despite a fourfold variation in the latter. Increasing beverage strength was associated with greater increases in DBP and energetic arousal. In study 2, caffeinated beverages increased SBP, DBP, and skin conductance and lowered heart rate and skin temperature compared to water. Significant dose-response relationships to caffeine were seen only for SBP, heart rate, and skin temperature. There were significant effects of caffeine on energetic arousal but no consistent dose-response effects. Caffeinated beverages acutely stimulate the autonomic nervous system and increase alertness. Although caffeine can exert dose-dependent effects on a number of acute autonomic responses, caffeine level is not an important factor. Factors besides caffeine may contribute to these acute effects. PMID:10837840

  15. Physiology responses of Rhesus monkeys to vibration

    NASA Astrophysics Data System (ADS)

    Hajebrahimi, Zahra; Ebrahimi, Mohammad; Alidoust, Leila; Arabian Hosseinabadi, Maedeh

    Vibration is one of the important environmental factors in space vehicles that it can induce severe physiological responses in most of the body systems such as cardiovascular, respiratory, skeletal, endocrine, and etc. This investigation was to assess the effect of different vibration frequencies on heart rate variability (HRV), electrocardiograms (ECG) and respiratory rate in Rhesus monkeys. Methods: two groups of rhesus monkey (n=16 in each group) was selected as control and intervention groups. Monkeys were held in a sitting position within a specific fixture. The animals of this experiment were vibrated on a table which oscillated right and left with sinusoidal motion. Frequency and acceleration for intervention group were between the range of 1 to 2000 Hz and +0.5 to +3 G during 36 weeks (one per week for 15 min), respectively. All of the animals passed the clinical evaluation (echocardiography, sonography, radiography and blood analysis test) before vibration test and were considered healthy and these tests repeated during and at the end of experiments. Results and discussions: Our results showed that heart and respiratory rates increased significantly in response to increased frequency from 1 to 60 Hz (p <0.05) directly with the +G level reaching a maximum (3G) within a seconds compare to controls. There were no significant differences in heart and respiratory rate from 60 t0 2000 Hz among studied groups. All monkeys passed vibration experiment successfully without any arrhythmic symptoms due to electrocardiography analysis. Conclusion: Our results indicate that vibration in low frequency can effect respiratory and cardiovascular function in rhesus monkey. Keywords: Vibration, rhesus monkey, heart rate, respiratory rate

  16. Acute stress affects the physiology and behavior of allergic mice.

    PubMed

    Sutherland, M A; Shome, G P; Hulbert, L E; Krebs, N; Wachtel, M; McGlone, J J

    2009-09-01

    Physical and psychological stressors have been implicated in acute asthma exacerbation. The objective of the current study was to determine the effects of forced swimming stress (FST) on allergic pulmonary inflammation in BALB/c mice. Eighty female mice were allocated to one of four treatments arranged in a 2 x 2 factorial consisting of two levels of allergy and two levels of stress. The effects of stress and allergy were assessed by examination of cytokines and leukocyte differentials in the bronchoalveolar lavage fluid, corticosterone and immunoglobulin (Ig) E in the plasma, leukocyte differentials in the peripheral blood, natural killer cytotoxicity, and histopathology of the lungs. Behavior was recorded during the FST. Stress and allergy increased plasma corticosterone in mice. Allergy increased IgE concentrations and pulmonary inflammation. Interleukin-4 was greater among allergic stressed and non-stressed mice and stressed, non-allergic mice compared with non-stressed, non-allergic mice. Interleukin-5 (IL-5) and 6 (IL-6) were greater among allergic stressed and non-stressed mice compared with non-allergic mice. Interleukin-5 and 6 were reduced among stressed-allergic mice compared with non-stressed, allergic mice. Stress and allergy shifted mice towards a T-helper 2 response as shown by increased interleukin-4. Stress reduced IL-5 and IL-6 in allergic mice but not non-allergic mice. Pulmonary inflammation was not reduced among allergic stressed mice in spite of elevated glucocorticoids. Mice induced to be allergic responded to FST differently than non-allergic mice. Our findings suggest that stress induces a differential response among allergic and non-allergic mice. PMID:19527741

  17. Rapid changes in cell physiology as a result of acute thermal stress house sparrows, Passer domesticus.

    PubMed

    Jimenez, Ana G; Williams, Joseph B

    2014-12-01

    Given that our climate is rapidly changing, Physiological Ecologists have the critical task of identifying characteristics of species that make them either resilient or susceptible to changes in their natural air temperature regime. Because climate change models suggest that heat events will become more common, and in some places more extreme, it is important to consider how extreme heat events might affect the physiology of a species. The implications of more frequent heat wave events for birds have only recently begun to be addressed, however, the impact of these events on the cellular physiology of a species is difficult to assess. We have developed a novel approach using dermal fibroblasts to explore how short-term thermal stress at the whole animal level might affect cellular rates of metabolism. House sparrows, Passer domesticus were separated into a "control group" and a "heat shocked" group, the latter acclimated to 43°C for 24h. We determined the plasticity of cellular thermal responses by assigning a "recovery group" that was heat shocked as above, but then returned to room temperature for 24h. Primary dermal fibroblasts were grown from skin of all treatment groups and the pectoralis muscle was collected. We found that glycolysis (ECAR) and oxygen consumption rates (OCR), measured using a Seahorse XF 96 analyzer, were significantly higher in the fibroblasts from the heat shocked group of House sparrows compared with their control counterparts. Additionally, muscle fiber diameters decreased and, in turn, Na(+)-K(+)-ATPase maximal activity in the muscle significantly increased in heat shocked sparrows compared with birds in the control group. All of these physiological alterations due to short-term heat exposure were reversible within 24h of recovery at room temperature. These results show that acute exposure to heat stress significantly alters the cellular physiology of sparrows, but that this species is plastic enough to recover from such a thermal

  18. Resistance Training: Physiological Responses and Adaptations (Part 3 of 4).

    ERIC Educational Resources Information Center

    Fleck, Steven J.; Kraemer, William J.

    1988-01-01

    The physiological responses and adaptations which occur as a result of resistance training, such as cardiovascular responses, serum lipid count, body composition, and neural adaptations are discussed. Changes in the endocrine system are also described. (JL)

  19. Students' Misconceptions about Perceived Physiological Responses.

    ERIC Educational Resources Information Center

    Michael, Joel A.

    1998-01-01

    Explores faulty models that students have for physiological processes. Undergraduate students (N=393) in three different research universities predicted the changes in heart rate, strength of cardiac contraction, breathing frequency, and depth of breathing under conditions that result in increased cardiac output. Contains 23 references. (DDR)

  20. Comparison of physiological responses to affect eliciting pictures and music.

    PubMed

    Kim, Jongwan; Wedell, Douglas H

    2016-03-01

    Recent investigations of the neural correlates of affect elicited from different modalities have found both modality-general and modality-specific representations (Chikazoe et al., 2014). The implications for how physiological responses to affect differ across stimulus modalities have not been fully investigated. This study examined similarities and differences between physiological signatures of affect derived from two different modes of presentation: visual pictures and auditory music sampled from an affective space defined by valence and arousal. Electromyography recordings for the zygomaticus major (EMGZ) and corrugator supercilii (EMGC) were measured along with heart rate and skin conductance level (SCL). Multidimensional scaling was used to visualize relationships from physiological and behavioral responses, and the observed relationships were statistically evaluated using multivariate and univariate analyses. Results for physiological measures demonstrated that valence was represented in the same general way across modalities, primarily reflected in EMGC responses. Arousal, however, was represented in a modality-specific manner, with SCL and EMGZ sensitive to music-based arousal but not picture-based arousal. Stimulus modality itself was predicted from EMGC. Thus, physiological responses to valence were similar across modalities but physiological responses to arousal differed across modalities. These results support the utility of testing for affective markers across modalities within the same experimental setting to reveal how physiological responses are linked to either affect, stimulus modality or both. PMID:26752207

  1. Physiological responses to environmental factors related to space flight

    NASA Technical Reports Server (NTRS)

    Pace, N.; Grunbaum, B. W.; Kodama, A. M.; Mains, R. C.; Rahlmann, D. F.

    1975-01-01

    Physiological procedures and instrumentation developed for the measurement of hemodynamic and metabolic parameters during prolonged periods of weightlessness are described along with the physiological response of monkeys to weightlessness. Specific areas examined include: cardiovascular studies; thyroid function; blood oxygen transport; growth and reproduction; excreta analysis for metabolic balance studies; and electrophoretic separation of creatine phosphokinase isoenzymes in human blood.

  2. Relationship between mitochondrial haplogroup and physiological responses to hypobaric hypoxia.

    PubMed

    Motoi, Midori; Nishimura, Takayuki; Egashira, Yuka; Kishida, Fumi; Watanuki, Shigeki

    2016-01-01

    We aimed to investigate the relationship between mtDNA polymorphism and physiological responses to hypobaric hypoxia. The study included 28 healthy male students, consisting of 18 students in haplogroup D and 10 in haplogroup M7+G. Measurement sensors were attached to the participants for approximately 30 min in an environment with a temperature of 28 °C. After resting for 15 min, the programmed operation of the hypobaric chamber decreased the atmospheric pressure by 11.9 Torr every minute to simulate an increase in altitude of 150 m until 9.7 Torr (equivalent to 2500 m) and then decreased 9.7 Torr every minute until 465 Torr (equivalent to 4000 m). At each altitude, the pressure was maintained for 15 min and various measurements were taken. Haplogroup D showed higher SpO2 (p < 0.05) and significantly higher SpO2 during the pressure recovery period when compared with haplogroup M7+G. The distal skin temperature was higher in haplogroup D when compared with M7+G. These results suggested that haplogroup D maintained SpO2 at a higher level with higher peripheral blood flow during acute hypobaric exposure. PMID:27130215

  3. [Physiological responses of tubificidae to heavy metal chromium stress].

    PubMed

    Lou, Ju-Qing; Yang, Dong-Ye; Cao, Yong-Qing; Sun, Pei-De; Zheng, Ping

    2014-11-01

    Tubificidae is now used in the wastewater treatment systems to successfully minimize the sludge production, which has been proved an effective, economical and sustainable technology. But the excess sludge inevitably contains a variety of heavy metals, especially the sludge from industrial wastewater treatment plant. In order to apply tubificidae to these systems, Chromium was selected as pollutant object and the physiological responses of tubificidae to Chromium were studied in this paper. Acute toxicity was analyzed and Median lethal concentrations (LC50) were determined over 96 h periods for Cr. Results indicated that 24 h LC50 and 96 h LC50 were 7.94 mg x L(-1) and 0.49 mg x L(-1), respectively. The duration f tubificidae in Cr solution decreased with increasing Cr concentration. Under the Cr stress, a highest respiration rate was obtained when the concentration of Cr(VI), temperature, pH and DO was 2.50 mg x L(-1), 26 degrees C, 6.0 and 6.0 mg x L(-1), respectively. The order of these factors was the concerntration of Cr(VI), temperature, DO and pH. The respiration experiments demonstrated that low concentration (< 2.50 mg x L(-1)) of Cr could promote the respiration rate of tubificidaes. On the other hand, when the concentration of Cr was 8.00 mg x L(-1), it could remarkably inhibit the respiratory rates of tubificidae. PMID:25639096

  4. Genetic influences on the neural and physiological bases of acute threat: A research domain criteria (RDoC) perspective.

    PubMed

    Sumner, Jennifer A; Powers, Abigail; Jovanovic, Tanja; Koenen, Karestan C

    2016-01-01

    The NIMH Research Domain Criteria (RDoC) initiative aims to describe key dimensional constructs underlying mental function across multiple units of analysis-from genes to observable behaviors-in order to better understand psychopathology. The acute threat ("fear") construct of the RDoC Negative Valence System has been studied extensively from a translational perspective, and is highly pertinent to numerous psychiatric conditions, including anxiety and trauma-related disorders. We examined genetic contributions to the construct of acute threat at two units of analysis within the RDoC framework: (1) neural circuits and (2) physiology. Specifically, we focused on genetic influences on activation patterns of frontolimbic neural circuitry and on startle, skin conductance, and heart rate responses. Research on the heritability of activation in threat-related frontolimbic neural circuitry is lacking, but physiological indicators of acute threat have been found to be moderately heritable (35-50%). Genetic studies of the neural circuitry and physiology of acute threat have almost exclusively relied on the candidate gene method and, as in the broader psychiatric genetics literature, most findings have failed to replicate. The most robust support has been demonstrated for associations between variation in the serotonin transporter (SLC6A4) and catechol-O-methyltransferase (COMT) genes with threat-related neural activation and physiological responses. However, unbiased genome-wide approaches using very large samples are needed for gene discovery, and these can be accomplished with collaborative consortium-based research efforts, such as those of the Psychiatric Genomics Consortium (PGC) and Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consortium. PMID:26377804

  5. The physiological response of the Caribbean reef shark (Carcharhinus perezi) to longline capture.

    PubMed

    Brooks, Edward J; Mandelman, John W; Sloman, Katherine A; Liss, Stephanie; Danylchuk, Andy J; Cooke, Steven J; Skomal, Gregory B; Philipp, David P; Sims, David W; Suski, Cory D

    2012-06-01

    Longline fishing is the most common elasmobranch capture method around the world, yet the physiological consequences of this technique are poorly understood. To quantify the sub-lethal effects of longline capture in the commonly exploited Caribbean reef shark (Carcharhinus perezi), 37 individuals were captured using standard, mid-water longlines. Hook timers provided hooking duration to the nearest minute. Once sharks were landed, blood samples were taken and used to measure a suite of physiological parameters. Control data were obtained by sampling an additional three unrestrained Caribbean reef sharks underwater at an established shark feeding site. The greatest level of physiological disruption occurred after 120-180min of hooking, whereas sharks exposed to minimal and maximal hook durations exhibited the least disturbed blood chemistry. Significant relationships were established between hooking duration and blood pH, pCO(2), lactate, glucose, plasma calcium and plasma potassium. Longline capture appears more benign than other methods assessed to date, causing a shift in the stress response from acute at the onset of capture to a sub-acute regime as the capture event progresses, apparently facilitating a degree of physiological recovery. Continued investigation into the physiological response of elasmobranchs to longline capture is vital for the effective management of such fisheries. PMID:21601646

  6. A perfusion chamber for physiological studies with acutely dissociated neurons.

    PubMed

    Wonderlin, W F; Weinreich, D

    1987-11-01

    We describe a recording chamber that immobilizes acutely dissociated neurons on an ultra-fine mesh grid positioned above a moving stream of perfusate. This chamber is easily fabricated and has two attributes for single-electrode voltage-clamp or patch-clamp recording: (1) shallow immersion (less than 20 micron) of the neurons, and (2) stable recording with rapid perfusion rates. PMID:3695568

  7. Long-term physiologic outcome after acute farmer's lung

    SciTech Connect

    Cormier, Y.; Belanger, J.

    1985-06-01

    We performed a follow-up study of 61 patients who had an acute episode of farmer's lung (54 men and seven women). Twenty-four subjects had ceased all contact with the barn, while 37 had continued farming. Pulmonary function tests for all subjects showed an initial improvement after the acute episode: 92.4 percent of predicted for carbon monoxide diffusing capacity (Dco) after one year, compared to 61.5 percent at diagnosis; and 6.01 L for total lung capacity (TLC) after three years, compared to 5.35 L. Subsequently, pulmonary function decreased over time. Five years or more after the acute episode, pulmonary function tests in subjects who had continued farm work were not worse than those of subjects who had ceased contact for Dco (68.1 of predicted vs 80.6 percent, respectively and for TLC (5.55 L vs 5.90 L. This study shows that during a long-term follow-up, subjects with farmer's lung who stayed on the farm have subnormal values for pulmonary function but comparable values to those who left their farm.

  8. Effect of ICAM-1 blockade on lung inflammation and physiology during acute viral bronchiolitis in rats.

    PubMed

    Sorkness, R L; Mehta, H; Kaplan, M R; Miyasaka, M; Hefle, S L; Lemanske, R F

    2000-06-01

    Viral respiratory infections cause acute bronchiolitis and physiologic dysfunction in human infants and in animals. It is possible that the pulmonary dysfunction is a consequence of the inflammatory cells that are recruited during viral illness. We hypothesized that blockade of intercellular adhesion molecule-1 (ICAM-1), a major cell adhesion molecule, would impede the ingress of leukocytes during viral infection and attenuate virus-induced pulmonary dysfunction. Adult male rats were inoculated with parainfluenza type 1 (Sendai) virus or sterile vehicle, and treated with blocking or nonblocking MAb specific for rat ICAM-1. Respiratory system resistance, oxygenation (PaO2), methacholine responsiveness, and bronchoalveolar lavage (BAL) leukocyte counts were measured in anesthetized, paralyzed, ventilated rats. Treatment with the blocking ICAM-1 antibody reduced virus-induced increases in BAL neutrophils and lymphocytes by 70% (p < 0.001), but did not affect BAL monocytes/macrophages. Peripheral blood leukocyte counts were elevated in anti-ICAM-1 blocking antibody-treated rats (p = 0.0003). Although virus-induced increases in resistance and decreases in PaO2 were not affected by anti-ICAM-1 treatment, there was a small but significant attenuation of virus-induced methacholine hyperresponsiveness (p = 0.02). We conclude that ICAM-1 has an important role in neutrophil and lymphocyte infiltration during respiratory viral illness, and that virus-induced changes in pulmonary physiology are not related directly to the numbers of neutrophils and lymphocytes that migrate to the air spaces during infection. PMID:10832744

  9. Personality traits modulate emotional and physiological responses to stress

    PubMed Central

    Childs, Emma; White, Tara L.; de Wit, Harriet

    2014-01-01

    An individual’s susceptibility to psychological and physical disorders associated with chronic stress exposure e.g., cardiovascular and infectious disease, may also be predicted by their reactivity to acute stress. One factor associated with both stress resilience and health outcomes is personality. An understanding of how personality influences responses to acute stress may shed light upon individual differences in susceptibility to chronic stress-linked disease. This study examined relationships between personality and acute responses to stress in 125 healthy adults, using hierarchical linear regression. We assessed personality traits using the Multidimensional Personality Questionnaire (MPQ-BF), and responses to acute stress (cortisol, heart rate, blood pressure, mood) using a standardised laboratory psychosocial stress task, the Trier Social Stress Test (TSST). Individuals with high Negative Emotionality exhibited greater emotional distress and lower blood pressure responses to the TSST. Individuals with high Agentic Positive Emotionality exhibited prolonged heart rate responses to stress, whereas those with high Communal Positive Emotionality exhibited smaller cortisol and blood pressure responses. Separate personality traits differentially predicted emotional, cardiovascular, and cortisol responses to a psychosocial stressor in healthy volunteers. Future research investigating the association of personality with chronic stress-related disease may provide further clues to the relationship between acute stress reactivity and susceptibility to disease. PMID:25036730

  10. Anger Management Style Moderates Effects of Attention Strategy During Acute Pain Induction on Physiological Responses to Subsequent Mental Stress and Recovery: A Comparison of Chronic Pain Patients and Healthy Nonpatients

    PubMed Central

    BURNS, JOHN W.; QUARTANA, PHILLIP J.; BRUEHL, STEPHEN

    2014-01-01

    Objectives: To examine whether high trait anger-out chronic low back (CLBP) patients would show exceptionally large symptom-specific lower paraspinal (LP) responses, compared with healthy nonpatients, during pain induction, a subsequent mental stressor, and recovery when they were urged to suppress awareness of pain and suffering. Methods: CLBP patients (n = 93) and nonpatients (n = 105) were assigned randomly to one of four attention strategy conditions for use during pain induction: sensory-focus, distraction, suppression, or control. All participants underwent a cold pressor, and then performed mental arithmetic. They completed the anger-out (AOS) and anger-in (AIS) subscales of the Anger Expression Inventory. Results: General Linear Model procedures were used to test Attention Strategy Condition X Patient/Nonpatient Status × AOS (or AIS) × Period interactions for physiological indices. Significant interactions were found such that: a) high trait anger-out patients in the Suppression condition seemed to show the greatest LP reactivity during the mental arithmetic followed by the slowest recovery compared with other conditions; b) high trait anger-out patients and nonpatients in the Suppression condition seemed to show the slowest systolic blood pressure recoveries compared with other conditions. Conclusions: Results extend previous work by suggesting that an anger-out style moderates effects of how attention is allocated during pain on responses to and recovery from a subsequent mental stressor. Results provide further evidence that trait anger-out and trait anger-in among CLBP patients are associated with increased LP muscle tension during and after pain and mental stress. PMID:19251875

  11. Hormonal, cardiovascular, and subjective responses to acute stress in smokers

    PubMed Central

    de Wit, Harriet

    2009-01-01

    Rationale There are complex relationships between stress and smoking; smoking may reduce the emotional discomfort of stress, yet nicotine activates stress systems and may alter responses to acute stress. It is important to understand how smoking affects physiological and psychological outcomes after stress and how these may interact to motivate smoking. Objectives This study aimed to examine the magnitude and time course of hormonal, cardiovascular, and psychological responses to acute psychosocial stress in smokers and non-smokers to investigate whether responses to acute stress are altered in smokers. Materials and methods Healthy male non-smokers (n=20) and smokers (n=15) participated in two experimental sessions involving a standardized public speaking stress procedure and a control non-stressful task. The outcome measures included self-reported mood, cardiovascular measures (heart rate and blood pressure), and plasma hormone levels (noradrenaline, cortisol, progesterone, and allopregnanolone). Results Smokers exhibited blunted increases in cortisol after the Trier Social Stress Test, and they reported greater and more prolonged subjective agitation than non-smokers. Stress-induced changes in progesterone were similar between smokers and non-smokers, although responses overall were smaller among smokers. Stress did not significantly alter levels of allopregnanolone, but smokers exhibited lower plasma concentrations of this neurosteroid. Conclusions These findings suggest that smoking dampens hormonal responses to stress and prolongs subjective discomfort. Dysregulated stress responses may represent a breakdown in the body’s ability to cope efficiently and effectively with stress and may contribute to smokers’ susceptibility to acute stress, especially during abstinence. PMID:18936915

  12. Physiological Response to Physical Activity in Children.

    ERIC Educational Resources Information Center

    Gilliam, Thomas B.

    This is a report on research in the field of physical responses of children to strenuous activity. The paper is divided into three subtopics: (1) peak performance measure in children; (2) training effects on children; and (3) importance of physical activity for children. Measurements used are oxygen consumption, ventilation, heart rate, cardiac…

  13. MEASUREMENT AND ANALYSIS OF PHYSIOLOGICAL RESPONSE TO FILM.

    ERIC Educational Resources Information Center

    CASE, HARRY W.; LEVONIAN, EDWARD

    THE PRIMARY OBJECTIVE OF THIS STUDY WAS THE DEVELOPMENT OF A SYSTEM WHICH WOULD ALLOW THE MEASUREMENT AND ANALYSIS OF PHYSIOLOGICAL RESPONSE OF STUDENTS VIEWING FILM MATERIAL UNDER CONVENTIONAL CLASSROOM CONDITIONS. THE GALVANIC SKIN RESPONSE (GSR) WAS MEASURED BY SENSORS AND USED AS AN INDICATOR OF STUDENT INTERACTION WITH THE FILM MATERIAL. IN…

  14. Measuring Physiological Stress Responses in Children: Lessons from a Novice

    ERIC Educational Resources Information Center

    Quas, Jodi A.

    2011-01-01

    In this article the author describes challenges associated with integrating physiological measures of stress into developmental research, especially in the domains of memory and cognition. An initial critical challenge concerns how to define stress, which can refer to one or a series of events, a response, the consequence of that response, an…

  15. Pathobiochemical mechanisms during the acute phase response.

    PubMed

    Kleesiek, K; Greiling, H

    1984-01-01

    The acute phase response is characterised by the following sequence of principle phenomena: (1) an early local inflammatory reaction, (2) formation of inflammatory humoral factors inducing a systemic reaction, (3) stimulation of glycoprotein synthesis predominantly in the hepatocytes, and (4) an increase in the plasma concentration of acute phase proteins, when the rate of biosynthesis exceeds the degradation rate. Inflammatory mediators (lysosomal enzymes, oxygen derived radicals, prostaglandins) are mainly released during phagocytosis by granulocytes and macrophages. The signal reaching the hepatocytes is not yet clearly identified. A leukocyte endogenous mediator (LEM) released by macrophages is described. There is evidence that prostaglandins and probably proteinase alpha 2-macroglobulin complexes are also involved. The hepatic acute phase protein synthesis is modulated by hormones (insulin, cortisol, somatotropin). The biochemical events in the hepatocyte include an increase in protein synthesis and the regulatory control of the glycosylation of polypeptide precursors. The secreted glycoproteins serve variously as inhibitors or mediators of the inflammatory processes. PMID:6208159

  16. Environmental cadmium exposure impacts physiological responses in Manila clams.

    PubMed

    Zhao, Liqiang; Zhang, Yu; Liang, Jian; Xu, Xian; Wang, Hua; Yang, Feng; Yan, Xiwu

    2014-06-01

    The physiological responses of marine bivalves to chronic cadmium (Cd) exposure at sub-lethal concentrations have been well documented. As of now, few studies have examined the effect of Cd exposure and subsequent recovery period at environmentally realistic concentrations. In this study, environmentally, Cd exposures were performed to assess the physiological responses of the Manila clam Ruditapes philippinarum. The clams were exposed to waterborne Cd at two environmentally realistic concentrations (4 and 40 μg L(-1)) for 35 days and then allowed to recover for another 35 days. The accumulation and elimination of Cd in R. philippinarum were tissue-specific and dose- and time-dependent. Cd accumulation increased sharply in the digestive gland, and Cd elimination was rapid in the gill. Major physiological responses, including clearance rate, absorption efficiency, respiration rate, excretion rate, oxygen to nitrogen ratio, and scope for growth, were significantly affected by Cd exposure. Yet, the clams exposed to 4-μg L(-1) Cd were able to quickly recover their normal physiological processes and clearly exhibited catch-up growth once they were transferred to clean seawater. Hence, R. philippinarum can exhibit good physiological plasticity when confronted with moderately environmental Cd exposure. All physiological responses measured exhibited a highly significant and generally predictable correlation with tissue Cd concentration, which in turn, reflected environmentally realistic exposure conditions. Our results further confirm that the measurement of physiological responses is a sensitive method for assessing stress at environmentally realistic metal concentrations. PMID:24771311

  17. Reversible acute axonal polyneuropathy associated with Wernicke-Korsakoff syndrome: impaired physiological nerve conduction due to thiamine deficiency?

    PubMed

    Ishibashi, S; Yokota, T; Shiojiri, T; Matunaga, T; Tanaka, H; Nishina, K; Hirota, H; Inaba, A; Yamada, M; Kanda, T; Mizusawa, H

    2003-05-01

    Acute axonal polyneuropathy and Wernicke-Korsakoff encephalopathy developed simultaneously in three patients. Nerve conduction studies (NCS) detected markedly decreased compound muscle action potentials (CMAPs) and sensory nerve action potentials (SNAPs) with minimal conduction slowing; sympathetic skin responses (SSRs) were also notably decreased. Sural nerve biopsies showed only mild axonal degeneration with scattered myelin ovoid formation. The symptoms of neuropathy lessened within two weeks after an intravenous thiamine infusion. CMAPs, SNAPs, and SSRs also increased considerably. We suggest that this is a new type of peripheral nerve impairment: physiological conduction failure with minimal conduction delay due to thiamine deficiency. PMID:12700319

  18. Video methods for evaluating physiologic monitor alarms and alarm responses.

    PubMed

    Bonafide, Christopher P; Zander, Miriam; Graham, Christian Sarkis; Weirich Paine, Christine M; Rock, Whitney; Rich, Andrew; Roberts, Kathryn E; Fortino, Margaret; Nadkarni, Vinay M; Lin, Richard; Keren, Ron

    2014-01-01

    False physiologic monitor alarms are extremely common in the hospital environment. High false alarm rates have the potential to lead to alarm fatigue, leading nurses to delay their responses to alarms, ignore alarms, or disable them entirely. Recent evidence from the U.S. Food and Drug Administration (FDA) and The Joint Commission has demonstrated a link between alarm fatigue and patient deaths. Yet, very little scientific effort has focused on the rigorous quantitative measurement of alarms and responses in the hospital setting. We developed a system using multiple temporarily mounted, minimally obtrusive video cameras in hospitalized patients' rooms to characterize physiologic monitor alarms and nurse responses as a proxy for alarm fatigue. This allowed us to efficiently categorize each alarm's cause, technical validity, actionable characteristics, and determine the nurse's response time. We describe and illustrate the methods we used to acquire the video, synchronize and process the video, manage the large digital files, integrate the video with data from the physiologic monitor alarm network, archive the video to secure servers, and perform expert review and annotation using alarm "bookmarks." We discuss the technical and logistical challenges we encountered, including the root causes of hardware failures as well as issues with consent, confidentiality, protection of the video from litigation, and Hawthorne-like effects. The description of this video method may be useful to multidisciplinary teams interested in evaluating physiologic monitor alarms and alarm responses to better characterize alarm fatigue and other patient safety issues in clinical settings. PMID:24847936

  19. Acute anoxic changes in peripheral nerve: anatomic and physiologic correlations

    PubMed Central

    Punsoni, Michael; Drexler, Steven; Palaia, Thomas; Stevenson, Matthew; Stecker, Mark M

    2015-01-01

    Introduction The response of the peripheral nerve to anoxia is modulated by many factors including glucose and temperature. The purposes of this article are to demonstrate the effects of these factors on the pathological changes induced by anoxia and to compare the electrophysiologic changes and pathological changes in the same nerves. Methods Sciatic nerves were harvested from rats and placed in a perfusion apparatus where neurophysiologic responses could be recorded continuously during a 16 h experiment. After the experiment, light microscopy and electron microscopy were performed. Results Light microscopic images showed mild changes from anoxia at normoglycemia. Hypoglycemic anoxia produced massive axonal swelling while hyperglycemic anoxia produced apparent changes in the myelin. Anoxic changes were not uniform in all axons. Electron microscopy showed only minor disruptions of the cytoskeleton with anoxia during normoglycemia. At the extremes of glucose concentration especially with hyperglycemia, there was a more severe disruption of intermediate filaments and loss of axonal structure with anoxia. Hypothermia protected axons from the effect of anoxia and produced peak axonal swelling in the 17–30°C range. Conclusions The combination of hyperglycemia or hypoglycemia and anoxia produces extremely severe axonal disruption. Changes in axonal diameter are complex and are influenced by many factors. PMID:26221572

  20. Lymphatic Vascular Response to Acute Inflammation

    PubMed Central

    Lachance, Pier-Anne; Hazen, Amy; Sevick-Muraca, Eva M.

    2013-01-01

    During acute inflammation, functioning lymphatics are believed to reduce edema and to provide a transiting route for immune cells, but the extent at which the dermal lymphatic remodeling impacts lymphatic transport or the factors regulating these changes remains unclear. Herein we quantify the increase in lymphatic endothelial cells (LECs) and examine the expression of pro-angiogenenic and lymphangiogenic factors during acute cutaneous hypersensitivity (CHS). We found that LECs actively proliferate during CHS but that this proliferation does not affect the lymphatic vessel density. Instead, lymphatic remodeling is accompanied by lymphatic vessel leakiness and lower ejection of lymph fluid, which is observed only in the proximal lymphatic vessel draining the inflamed area. LECs and the immune cells release growth factors and cytokines during inflammation, which impact the lymphatic microenvironment and function. We identified that FGF-2, PLGF-2, HGF, EGF, and KC/CXCL17 are differentially expressed within tissues during acute CHS, but both VEGF-C and VEGF-D levels do not significantly change. Our results indicate that VEGF-C and VEGF-D are not the only players and other factors may be responsible for the LECs proliferation and altered lymphatic function in acute CHS. PMID:24086691

  1. An integrated physiology model to study regional lung damage effects and the physiologic response

    PubMed Central

    2014-01-01

    Background This work expands upon a previously developed exercise dynamic physiology model (DPM) with the addition of an anatomic pulmonary system in order to quantify the impact of lung damage on oxygen transport and physical performance decrement. Methods A pulmonary model is derived with an anatomic structure based on morphometric measurements, accounting for heterogeneous ventilation and perfusion observed experimentally. The model is incorporated into an existing exercise physiology model; the combined system is validated using human exercise data. Pulmonary damage from blast, blunt trauma, and chemical injury is quantified in the model based on lung fluid infiltration (edema) which reduces oxygen delivery to the blood. The pulmonary damage component is derived and calibrated based on published animal experiments; scaling laws are used to predict the human response to lung injury in terms of physical performance decrement. Results The augmented dynamic physiology model (DPM) accurately predicted the human response to hypoxia, altitude, and exercise observed experimentally. The pulmonary damage parameters (shunt and diffusing capacity reduction) were fit to experimental animal data obtained in blast, blunt trauma, and chemical damage studies which link lung damage to lung weight change; the model is able to predict the reduced oxygen delivery in damage conditions. The model accurately estimates physical performance reduction with pulmonary damage. Conclusions We have developed a physiologically-based mathematical model to predict performance decrement endpoints in the presence of thoracic damage; simulations can be extended to estimate human performance and escape in extreme situations. PMID:25044032

  2. Physiological responses to repeated transportation of gestating Brahman cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transportation process acts as a stressor with adverse effects on animal health and performance. The purpose of this study was to examine physiological responses to repeated transportation of gestating Brahman cows, previously classified as mature cows, into temperament groups of calm, moderate,...

  3. Physiological Responses of Sugarcane to Orange Rust Infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane orange rust, caused by Puccinia kuehnii, is a relatively new disease in the United States that substantially reduces yields in susceptible sugarcane cultivars in Florida. The objective of this study was to determine physiological responses of sugarcane to orange rust infection by quantifyi...

  4. Coupling of metabolism and cardiovascular response represents normal physiology.

    PubMed

    Steinberg, Helmut O

    2003-12-01

    In this issue of Clinical Science, Fugmann and co-workers demonstrate a highly integrated cardiovascular response to changes in plasma concentrations of glucose, triacylglycerols (triglycerides), fatty acids and insulin. Since the different substrates, alone and combined, evoked these changes, this response is likely to be a physiological one and directed towards minimizing the extent and duration of substrate elevations that could cause vascular dysfunction. PMID:12917009

  5. Physiological responses to prolonged bed rest and fluid immersion in humans

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1984-01-01

    For many centuries, physicians have used prolonged rest in bed and immersion in water in the treatment of ailments and disease. Both treatments have positive remedial effects. However, adverse physiological responses become evident when patients return to their normal daily activities. The present investigation is concerned with an analysis of the physiological changes during bed rest and the effects produced by water immersion. It is found that abrupt changes in body position related to bed rest cause acute changes in fluid compartment volumes. Attention is given to fluid shifts and body composition, renal function and diuresis, calcium and phosphorus metabolism, and orthostatic tolerance. In a discussion of water immersion, fluid shifts are considered along with cardiovascular-respiratory responses, renal function, and natriuretic and diuretic factors.

  6. Control of the Acute Phase Response

    PubMed Central

    Kushner, Irving; Broder, Martin L.; Karp, David

    1978-01-01

    In order to investigate the magnitude and kinetics of the C-reactive protein (CRP) response after differing degrees of tissue injury, we studied changes in serum concentration of this acute phase protein in 19 patients after mild or extensive acute myocardial infarction. An increase in serum CRP concentration was seen in all patients. The rate of increase in concentration was found to be exponential, with a mean hourly rate constant for the entire group of patients of 0.085 (doubling time, 8.2 h). Patients with extensive infarction attained mean serum CRP levels about 4 times as great as did patients with mild infarction. No difference could be shown in the mean rate constant between these groups, the greater CRP response in the former group resulting principally from a more protracted period of rise in serum CRP concentration. A lag period before serum CRP levels began to rise was noted in only 4 of the 13 patients in whom this could be assessed. 7 of 10 patients with presumed unstable angina (coronary insufficiency) showed no rise in CRP concentration, while a small increase as noted in 3 patients. The data suggest that acute tissue injury, such as myocardial infarction, rapidly leads to acceleration in synthesis of CRP, and that the duration of this period of acceleration is related to the extent of tissue injury. PMID:621273

  7. Physiological responses to simulated firefighter exercise protocols in varying environments.

    PubMed

    Horn, Gavin P; Kesler, Richard M; Motl, Robert W; Hsiao-Wecksler, Elizabeth T; Klaren, Rachel E; Ensari, Ipek; Petrucci, Matthew N; Fernhall, Bo; Rosengren, Karl S

    2015-01-01

    For decades, research to quantify the effects of firefighting activities and personal protective equipment on physiology and biomechanics has been conducted in a variety of testing environments. It is unknown if these different environments provide similar information and comparable responses. A novel Firefighting Activities Station, which simulates four common fireground tasks, is presented for use with an environmental chamber in a controlled laboratory setting. Nineteen firefighters completed three different exercise protocols following common research practices. Simulated firefighting activities conducted in an environmental chamber or live-fire structures elicited similar physiological responses (max heart rate: 190.1 vs 188.0 bpm, core temperature response: 0.047°C/min vs 0.043°C/min) and accelerometry counts. However, the response to a treadmill protocol commonly used in laboratory settings resulted in significantly lower heart rate (178.4 vs 188.0 bpm), core temperature response (0.037°C/min vs 0.043°C/min) and physical activity counts compared with firefighting activities in the burn building. Practitioner Summary: We introduce a new approach for simulating realistic firefighting activities in a controlled laboratory environment for ergonomics assessment of fire service equipment and personnel. Physiological responses to this proposed protocol more closely replicate those from live-fire activities than a traditional treadmill protocol and are simple to replicate and standardise. PMID:25597759

  8. Repeated thermal stressor causes chronic elevation of baseline corticosterone and suppresses the physiological endocrine sensitivity to acute stressor in the cane toad (Rhinella marina).

    PubMed

    Narayan, Edward J; Hero, Jean-Marc

    2014-04-01

    Extreme environmental temperature could impact the physiology and ecology of animals. The stress endocrine axis provides necessary physiological stress response to acute (day-day) stressors. Presently, there are no empirical evidences showing that exposure to extreme thermal stressor could cause chronic stress in amphibians. This could also modulate the physiological endocrine sensitivity to acute stressors and have serious implications for stress coping in amphibians, particularly those living in fragmented and disease prone environments. We addressed this important question using the cane toad (Rhinella marina) model from its introduced range in Queensland, Australia. We quantified their physiological endocrine sensitivity to a standard acute (capture and handling) stressor after exposing the cane toads to thermal shock at 35°C for 30min daily for 34 days. Corticosterone (CORT) responses to the capture and handling protocol were measured on three sampling intervals (days 14, 24, and 34) to determine whether the physiological endocrine sensitivity was maintained or modulated over-time. Two control groups (C1 for baseline CORT measurement only and C2 acute handled only) and two temperature treatment groups (T1 received daily thermal shock up to day 14 only and a recovery phase of 20 days and T2 received thermal shock daily for 34 days). Results showed that baseline CORT levels remained high on day 14 (combined effect of capture, captivity and thermal stress) for both T1 and T2. Furthermore, baseline CORT levels decreased for T1 once the thermal shock was removed after day 14 and returned to baseline by day 29. On the contrary, baseline CORT levels kept on increasing for T2 over the 34 days of daily thermal shocks. Furthermore, the magnitudes of the acute CORT responses or physiological endocrine sensitivity were consistently high for both C1 and T1. However, acute CORT responses for T2 toads were dramatically reduced between days 24 and 34. These novel findings

  9. Physiological responses to simulated and on-road driving.

    PubMed

    Johnson, Michel J; Chahal, Tammem; Stinchcombe, Arne; Mullen, Nadia; Weaver, Bruce; Bédard, Michel

    2011-09-01

    Driving simulators have become an increasingly popular tool to study and assess drivers. Physiological measurements not only provide an important index of an individual's presence in the virtual environment, but they also permit us to compare simulated and on-road experiences. However, at this point, few studies examining the ecological validity of simulated driving have included physiological variables. In a first study, we embedded three surprising events into a typical simulated road circuit. The first event consisted of a car pulling out suddenly from the shoulder of the road, while the remaining two events consisted of a green traffic light changing to amber as the driver approached the intersection. We noted statistically significant elevations in the mean heart rate (MHR) response to virtual events of about 4beats per minute (bpm) during the 15s immediately following the events. In a second study, we directly compared heart rate, oxygen consumption (VO(2)), and mean ventilation (MV(E)) responses to similar simulated and on-road drives. The change in physiological variables from baseline to driving was similar between simulated and on-road conditions, and a very strong correlation between simulated and on-road driving values for MV(E) (r=0.90) was observed. MHR and maximum heart rate (HR(max)) were nonetheless significantly higher during on-road drives. These studies suggest that the level of immersion of a fixed base simulator is great enough to elicit presence, and achieve both relative and absolute validity for certain physiological parameters. Nonetheless, the absolute responses between virtual and real world experiences remain different. For both research and evaluation purposes, it is critical that we better understand the impact of the driver's perceived level of risk or difficulty during simulation on their driving behaviour and physiological responses. PMID:21726587

  10. Physiological responses induced by emotion-eliciting films.

    PubMed

    Fernández, Cristina; Pascual, Juan C; Soler, Joaquim; Elices, Matilde; Portella, Maria J; Fernández-Abascal, Enrique

    2012-06-01

    Emotion-eliciting films are commonly used to evoke subjective emotional responses in experimental settings. The main aim of the present study was to investigate whether a set of film clips with discrete emotions were capable to elicit measurable objective physiological responses. The convergence between subjective and objective measures was evaluated. Finally, the effect of gender on emotional responses was investigated. A sample of 123 subjects participated in the study. Individuals were asked to view a set of emotional film clips capable to induce seven emotions: anger, fear, sadness, disgust, amusement, tenderness and neutral state. Skin conductance level (SCL), heart rate (HR) and subjective emotional responses were measured for each film clip. In comparison with neutral films, SCL was significantly increased after viewing fear films, and HR was also significantly incremented for anger and fear films. Physiological variations were associated with arousal measures indicating a convergence between subjective and objective reactions. Women appeared to display significantly greater SCL and HR responses for films inducing sadness. The findings suggest that physiological activation would be more easily induced by emotion-eliciting films that tap into emotions with higher subjective arousal such as anger and fear. PMID:22311202

  11. The acute phase response in panic disorder.

    PubMed

    Herrán, Andrés; Sierra-Biddle, Deirdre; García-Unzueta, Maria Teresa; Puente, Jesús; Vázquez-Barquero, José Luis; Antonio Amado, José

    2005-12-01

    An acute-phase response (APR), manifested as an increase of acute-phase proteins has been shown in major depression. Panic disorder (PD) may share some aetiopathogenic mechanisms with depression, but APR has not been studied in this disorder. Forty-one panic patients in the first stages of their illness were compared with 32 healthy subjects of comparable sex, age, and body mass index. Clinical diagnosis was established with the mini international neuropsychiatric interview, and severity with the panic disorder severity scale and the CGI scale. Laboratory determinations included four acute phase proteins (APPs) [albumin, gammaglobulins, fibrinogen, C-reactive-protein (CRP)] and basal cortisol level. Patients were studied after 8-wk follow-up taking selective serotonin reuptake inhibitors (SSRIs) to assess the evolution of the APPs. Gammaglobulin levels were lower, and both cortisol and CRP levels were higher in PD patients than in controls. APP did not differ between patients with or without agoraphobia. At follow-up, patients who responded to SSRIs presented a decrease in albumin levels, and a trend towards a decrease in cortisol and CRP compared with levels at intake. The conclusions of this study are that there is an APR in patients suffering from PD, and this APR tends to diminish after a successful treatment with SSRIs. PMID:15927091

  12. Acute response and chronic stimulus for cardiac structural and functional adaptation in a professional boxer.

    PubMed

    Oxborough, David; George, Keith; Utomi, Victor; Lord, Rachel; Morton, James; Jones, Nigel; Somauroo, John

    2014-06-01

    The individual response to acute and chronic changes in cardiac structure and function to intense exercise training is not fully understood and therefore evidence in this setting may help to improve the timing and interpretation of pre-participation cardiac screening. The following case report highlights an acute increase in right ventricular (RV) size and a reduction in left ventricular (LV) basal radial function with concomitant increase at the mid-level in response to a week's increase in training volume in a professional boxer. These adaptations settle by the second week; however, chronic physiological adaptation occurs over a 12-week period. Electrocardiographic findings demonstrate an acute lateral T-wave inversion at 1 week, which revert to baseline for the duration of training. It appears that a change in training intensity and volume generates an acute response within the RV that acts as a stimulus for chronic adaptation in this professional boxer. PMID:25988031

  13. Applications of Flow Cytometry to Characterize Bacterial Physiological Responses

    PubMed Central

    Contreras-Garduño, Jorge A.; Pedraza-Reyes, Mario

    2014-01-01

    Although reports of flow cytometry (FCM) applied to bacterial analysis are increasing, studies of FCM related to human cells still vastly outnumber other reports. However, current advances in FCM combined with a new generation of cellular reporter probes have made this technique suitable for analyzing physiological responses in bacteria. We review how FCM has been applied to characterize distinct physiological conditions in bacteria including responses to antibiotics and other cytotoxic chemicals and physical factors, pathogen-host interactions, cell differentiation during biofilm formation, and the mechanisms governing development pathways such as sporulation. Since FCM is suitable for performing studies at the single-cell level, we describe how this powerful technique has yielded invaluable information about the heterogeneous distribution of differently and even specialized responding cells and how it may help to provide insights about how cell interaction takes place in complex structures, such as those that prevail in bacterial biofilms. PMID:25276788

  14. Effects of picture content and intensity on affective physiological response

    PubMed Central

    BERNAT, EDWARD; PATRICK, CHRISTOPHER J.; BENNING, STEPHEN D.; TELLEGEN, AUKE

    2008-01-01

    This study evaluated the effects of affective intensity and thematic content of foreground photographic stimuli on various physiological response systems. This was accomplished by assessing responses to pictures that varied systematically in these parameters. Along with overall effects of picture valence reported in previous work, we found effects of thematic content (i.e., specific nature of objects/events depicted) for all measures except heart rate. In addition, we found that the magnitude of startle blink, skin conductance, and corrugator muscle reactions increased with increasing affective intensity of pictures. Additionally, for these three measures, intensity effects also interacted with effects of picture content. These results indicate that stimulus parameters of intensity and thematic content exert separate—and in some cases interactive—modulatory effects on physiological reactions to emotional pictures. PMID:16629689

  15. Physiological responses of estuarine animals to cadmium pollution

    NASA Astrophysics Data System (ADS)

    Theede, H.

    1980-03-01

    Toxic effects of cadmium contamination may be observed at all levels of organismic organization. In estuarine areas the sensitivity of euryhaline species to acute Cd toxicity is strongly modified by various abiotic factors, whereas long-term threshold values are less dependent on environmental parameters. Experiments with larval stages of the mollusc Mytilus edulis reveal that Cd effects on life functions such as development and growth are differentially modified by temperature and salinity. High Cd concentrations can be accumulated by adult bivalves of coastal areas without signs of physiological damage. Mechanisms of heavy-metal detoxication in these molluscs seem to be quite different from those known to exist in vertebrates. Among decapod crustaceans, stenoecous species tend to exhibit higher rates of Cd uptake than euryoecous ones. Rates of Cd uptake and of accumulation depend on external and internal factors. In adult Nereis succinea individuals sublethal Cd effects have been recorded on growth and food conversion (in terms of energy content).

  16. Fight-flight or freeze-hide? Personality and metabolic phenotype mediate physiological defence responses in flatfish.

    PubMed

    Rupia, Emmanuel J; Binning, Sandra A; Roche, Dominique G; Lu, Weiqun

    2016-07-01

    Survival depends on appropriate behavioural and physiological responses to danger. In addition to active 'fight-flight' defence responses, a passive 'freeze-hide' response is adaptive in some contexts. However, the physiological mechanisms determining which individuals choose a given defence response remain poorly understood. We examined the relationships among personality, metabolic performance and physiological stress responses across an environmental gradient in the olive flounder, Paralichthys olivaceus. We employed four behavioural assays to document the existence of two distinct behavioural types ('bold' and 'shy') in this species. We found consistent metabolic differences between individuals of a given behavioural type across an environmental gradient: shy individuals had overall lower aerobic scope, maximum metabolic rate and standard metabolic rate than bold individuals in both high (25 ppt) and low (3 ppt) salinity. These behavioural and metabolic differences translated into divergent physiological responses during acute stress: shy individuals adopted a passive 'freeze-hide' response by reducing their oxygen consumption rates (akin to shallow breathing) whereas bold individuals adopted an active 'fight-flight' response by increasing their rates of respiration. These distinct defence strategies were repeatable within individuals between salinity treatments. Although it has been suggested theoretically, this is the first empirical evidence that the metabolic response to stressful situations differs between bold and shy individuals. Our results emphasize the importance of incorporating physiological measures to understand the mechanisms driving persistent inter-individual differences in animals. PMID:27044558

  17. Bordetella bronchiseptica responses to physiological reactive nitrogen and oxygen stresses

    PubMed Central

    Omsland, Anders; Miranda, Katrina M.; Friedman, Richard L.; Boitano, Scott

    2008-01-01

    Bordetella bronchiseptica can establish prolonged airway infection consistent with a highly developed ability to evade mammalian host immune responses. Upon initial interaction with the host upper respiratory tract mucosa, B. bronchiseptica are subjected to antimicrobial reactive nitrogen species (RNS) and reactive oxygen species (ROS), effector molecules of the innate immune system. However, the responses of B. bronchiseptica to redox species at physiologically relevant concentrations (nM-µM) have not been investigated. Using predicted physiological concentrations of nitric oxide (NO), superoxide (O2.−) and hydrogen peroxide (H2O2) on low numbers of colony forming units (CFU) of B. bronchiseptica, all redox active species displayed dose-dependent antimicrobial activity. Susceptibility to individual redox active species was significantly increased upon introduction of a second species at sub-antimicrobial concentrations. An increased bacteriostatic activity of NO was observed relative to H2O2. The understanding of Bordetella responses to physiologically relevant levels of exogenous RNS and ROS will aid in defining the role of endogenous production of these molecules in host innate immunity against Bordetella and other respiratory pathogens. PMID:18462394

  18. Interpreting physiological responses to environmental change through gene expression profiling.

    PubMed

    Gracey, Andrew Y

    2007-05-01

    Identification of differentially expressed genes in response to environmental change offers insights into the roles of the transcriptome in the regulation of physiological responses. A variety of methods are now available to implement large-scale gene expression screens, and each method has specific advantages and disadvantages. Construction of custom cDNA microarrays remains the most popular route to implement expression screens in the non-model organisms favored by comparative physiologists, and we highlight some factors that should be considered when embarking along this path. Using a carp cDNA microarray, we have undertaken a broad, system-wide gene expression screen to investigate the physiological mechanisms underlying cold and hypoxia acclimation. This dataset provides a starting point from which to explore a range of specific mechanistic hypotheses at all levels of organization, from individual biochemical pathways to the level of the whole organism. We demonstrate the utility of two data analysis methods, Gene Ontology profiling and rank-based statistical methods, to summarize the probable physiological function of acclimation-induced gene expression changes, and to prioritize specific genes as candidates for further study. PMID:17449823

  19. Sexual dimorphism in lung function responses to acute influenza A infection

    PubMed Central

    Larcombe, Alexander N.; Foong, Rachel E.; Bozanich, Elizabeth M.; Berry, Luke J.; Garratt, Luke W.; Gualano, Rosa C.; Jones, Jessica E.; Dousha, Lovisa F.; Zosky, Graeme R.; Sly, Peter D.

    2011-01-01

    Please cite this paper as: Larcombe et al. (2011) Sexual dimorphism in lung function responses to acute influenza A infection. Influenza and Other Respiratory Viruses 5(5), 334–342. Background  Males are generally more susceptible to respiratory infections; however, there are few data on the physiological responses to such infections in males and females. Objectives  To determine whether sexual dimorphism exists in the physiological/inflammatory responses of weanling and adult BALB/c mice to influenza. Methods  Weanling and adult mice of both sexes were inoculated with influenza A or appropriate control solution. Respiratory mechanics, responsiveness to methacholine (MCh), viral titre and bronchoalveolar lavage (BAL) cellular inflammation/cytokines were measured 4 (acute) and 21 (resolution) days post‐inoculation. Results  Acute infection impaired lung function and induced hyperresponsiveness and cellular inflammation in both sexes at both ages. Males and females responded differently with female mice developing greater abnormalities in tissue damping and elastance and greater MCh responsiveness at both ages. BAL inflammation, cytokines and lung viral titres were similar between the sexes. At resolution, all parameters had returned to baseline levels in adults and weanling males; however, female weanlings had persisting hyperresponsiveness. Conclusions  We identified significant differences in the physiological responses of male and female mice to infection with influenza A, which occurred in the absence of variation in viral titre and cellular inflammation. PMID:21668688

  20. Dynamics of food availability, body condition and physiological stress response in breeding Black-legged Kittiwakes

    USGS Publications Warehouse

    Kitaysky, A.S.; Wingfield, J.C.; Piatt, J.F.

    1999-01-01

    1. The seasonal dynamics of body condition (BC), circulating corticosterone levels (baseline, BL) and the adrenocortical response to acute stress (SR) were examined in long-lived Black-legged Kittiwakes, Rissa tridactyla, breeding at Duck (food-poor colony) and Gull (food-rich colony) Islands in lower Cook Inlet, Alaska. It was tested whether the dynamics of corticosterone levels reflect a seasonal change in bird physiological condition due to reproduction and/or variation in foraging conditions. 2. BC declined seasonally, and the decline was more pronounced in birds at the food-poor colony. BL and SR levels of corticosterone rose steadily through the reproductive season, and BL levels were significantly higher in birds on Duck island compared with those on Gull Island. During the egg-laying and chick-rearing stages, birds had lower SR on Duck Island than on Gull Island. 3. The results suggest that, in addition to a seasonal change in bird physiology during reproduction, local ecological factors such as food availability affect circulating levels of corticosterone and adrenal response to acute stress.

  1. Acute psychological stress induces short-term variable immune response.

    PubMed

    Breen, Michael S; Beliakova-Bethell, Nadejda; Mujica-Parodi, Lilianne R; Carlson, Joshua M; Ensign, Wayne Y; Woelk, Christopher H; Rana, Brinda K

    2016-03-01

    In spite of advances in understanding the cross-talk between the peripheral immune system and the brain, the molecular mechanisms underlying the rapid adaptation of the immune system to an acute psychological stressor remain largely unknown. Conventional approaches to classify molecular factors mediating these responses have targeted relatively few biological measurements or explored cross-sectional study designs, and therefore have restricted characterization of stress-immune interactions. This exploratory study analyzed transcriptional profiles and flow cytometric data of peripheral blood leukocytes with physiological (endocrine, autonomic) measurements collected throughout the sequence of events leading up to, during, and after short-term exposure to physical danger in humans. Immediate immunomodulation to acute psychological stress was defined as a short-term selective up-regulation of natural killer (NK) cell-associated cytotoxic and IL-12 mediated signaling genes that correlated with increased cortisol, catecholamines and NK cells into the periphery. In parallel, we observed down-regulation of innate immune toll-like receptor genes and genes of the MyD88-dependent signaling pathway. Correcting gene expression for an influx of NK cells revealed a molecular signature specific to the adrenal cortex. Subsequently, focusing analyses on discrete groups of coordinately expressed genes (modules) throughout the time-series revealed immune stress responses in modules associated to immune/defense response, response to wounding, cytokine production, TCR signaling and NK cell cytotoxicity which differed between males and females. These results offer a spring-board for future research towards improved treatment of stress-related disease including the impact of stress on cardiovascular and autoimmune disorders, and identifies an immune mechanism by which vulnerabilities to these diseases may be gender-specific. PMID:26476140

  2. Acute phase proteins response to feed deprivation in broiler chickens.

    PubMed

    Najafi, P; Zulkifli, I; Soleimani, A F; Goh, Y M

    2016-04-01

    Feed deprivation in poultry farming imposes some degree of stress to the birds, and adversely affects their well -being. Serum levels of acute phase proteins (APP) are potential physiological indicators of stress attributed to feed deprivation. However, it has not been determined how long it takes for a measurable APP response to stressors to occur in avian species. An experiment was designed to delineate the APP and circulating levels of corticosterone responses in commercial broiler chickens to feed deprivation for 30 h. It was hypothesized that feed deprivation would elicit both APP and corticosterone (CORT) reactions within 30 h that is probably associated with stress of hunger. Twenty-one day old birds were subjected to one of 5 feed deprivation periods: 0 (ad libitum, AL), 6, 12, 18, 24, and 30 h. Upon completion of the deprivation period, blood samples were collected to determine serum CORT, ovotransferrin (OVT), α1-acid glycoprotein (AGP), and ceruloplasmin (CP) concentrations. Results showed that feed deprivation for 24 h or more caused a marked elevation in CORT (P=0.002 and P<0.0001, respectively) when compared to AL. However, increases in AGP (P=0.0005), CP (P=0.0002), and OVT (P=0.0003) were only noted following 30 h of feed deprivation. It is concluded that elicitation of AGP, CP, and OVT response may represent a more chronic stressful condition than CORT response in assessing the well-being of broiler chickens. PMID:26908886

  3. Physiology

    ERIC Educational Resources Information Center

    Kay, Ian

    2008-01-01

    Underlying recent developments in health care and new treatments for disease are advances in basic medical sciences. This edition of "Webwatch" focuses on sites dealing with basic medical sciences, with particular attention given to physiology. There is a vast amount of information on the web related to physiology. The sites that are included here…

  4. Acute Myocardial Response to Stretch: What We (don't) Know

    PubMed Central

    Neves, João S.; Leite-Moreira, André M.; Neiva-Sousa, Manuel; Almeida-Coelho, João; Castro-Ferreira, Ricardo; Leite-Moreira, Adelino F.

    2016-01-01

    Myocardial stretch, as result of acute hemodynamic overload, is one of the most frequent challenges to the heart and the ability of the heart to intrinsically adapt to it is essential to prevent circulatory congestion. In this review, we highlight the historical background, the currently known mechanisms, as well as the gaps in the understanding of this physiological response. The systolic adaptation to stretch is well-known for over 100 years, being dependent on an immediate increase in contractility—known as the Frank-Starling mechanism—and a further progressive increase—the slow force response. On the other hand, its diastolic counterpart remains largely unstudied. Mechanosensors are structures capable of perceiving mechanical signals and activating pathways that allow their transduction into biochemical responses. Although the connection between these structures and stretch activated pathways remains elusive, we emphasize those most likely responsible for the initiation of the acute response. Calcium-dependent pathways, including angiotensin- and endothelin-related pathways; and cGMP-dependent pathways, comprising the effects of nitric oxide and cardiac natriuretic hormones, embody downstream signaling. The ischemic setting, a paradigmatic situation of acute hemodynamic overload, is also touched upon. Despite the relevant knowledge accumulated, there is much that we still do not know. The quest for further understanding the myocardial response to acute stretch may provide new insights, not only in its physiological importance, but also in the prevention and treatment of cardiovascular diseases. PMID:26779036

  5. Dynamics of changes in physiological parameters of mice with different radiosensitivity after acute γ-irradiation.

    PubMed

    Alchinova, I B; Arkhipova, E N; Medvedeva, Yu S; Cherepov, A B; Karganov, M Yu

    2014-06-01

    We studied radiosensitivity of 101/Hf, C3H/Sn, and C57Bl mice exposed to sublethal doses of γ-radiation. C57Bl mice responded to radiation much later than 101/Hf and C3H/Sn mice, while their adaptability was high enough. 101/Hf and C3H/Sn mice developed acute radiation sickness in a similar way. However, C3H/Sn mice showed better physiological indicators after radiation crisis. There was no noticeable improvement after the development of radiation sickness in 101/Hf mice. To assess individual radiosensitivity, integrated approach should be applied using the data obtained by different methods on several physiological levels. PMID:24958371

  6. Validation of a novel, physiologic model of experimental acute pancreatitis in the mouse

    PubMed Central

    Ziegler, Kathryn M; Wade, Terence E; Wang, Sue; Swartz-Basile, Deborah A; Pitt, Henry A; Zyromski, Nicholas J

    2011-01-01

    Background: Many experimental models of acute pancreatitis suffer from lack of clinical relevance. We sought to validate a recently reported murine model of acute pancreatitis that more closely represents the physiology of human biliary pancreatitis. Methods: Mice (C57BL/6J n=6 and CF-1 n=8) underwent infusion of 50μl of 5% sodium taurocholate (NaT) or 50μl of normal saline (NaCl) directly into the pancreatic duct. Twenty-four hours later, pancreatitis severity was graded histologically by three independent observers, and pancreatic tissue concentration of interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) were determined by ELISA. Results: Twenty four hours after retrograde injection, the total pancreatitis score was significantly greater in mice infused with NaT than in those infused with NaCl (6.3 ± 1.2 vs. 1.2 ± 0.4, p<0.05). In addition, the inflammatory mediators IL-6 and MCP-1 were increased in the NaT group relative to the NaCl group. Discussion: Retrograde pancreatic duct infusion of sodium taurocholate induces acute pancreatitis in the mouse. This model is likely representative of human biliary pancreatitis pathophysiology, and therefore provides a powerful tool with which to elucidate basic mechanisms underlying the pathogenesis of acute pancreatitis. PMID:21416058

  7. Perceptual and Physiological Responses to Jackson Pollock's Fractals.

    PubMed

    Taylor, Richard P; Spehar, Branka; Van Donkelaar, Paul; Hagerhall, Caroline M

    2011-01-01

    Fractals have been very successful in quantifying the visual complexity exhibited by many natural patterns, and have captured the imagination of scientists and artists alike. Our research has shown that the poured patterns of the American abstract painter Jackson Pollock are also fractal. This discovery raises an intriguing possibility - are the visual characteristics of fractals responsible for the long-term appeal of Pollock's work? To address this question, we have conducted 10 years of scientific investigation of human response to fractals and here we present, for the first time, a review of this research that examines the inter-relationship between the various results. The investigations include eye tracking, visual preference, skin conductance, and EEG measurement techniques. We discuss the artistic implications of the positive perceptual and physiological responses to fractal patterns. PMID:21734876

  8. USE OF RESPIRATORY-CARDIOVASCULAR RESPONSES OF RAINBOW TROUT (SALMO GAIRDNERI) IN IDENTIFYING ACUTE TOXICITY SYNDROMES IN FISH: PART 3. POLAR NARCOTICS

    EPA Science Inventory

    The physiological responses of rainbow trout to acutely lethal aqueous concentrations of the suspected polar narcotics phenol, 2,4,-dimethylphenol, aniline, 2-chloroaniline and 4-chloroaniline were examined. Visible signs of intoxication included tremors that progressed to whole-...

  9. Physiological responses to exercise at altitude : an update.

    PubMed

    Mazzeo, Robert S

    2008-01-01

    Studies performed over the past decade have yielded new information related to the physiological and metabolic adjustments made in response to both short- and long-term high-altitude exposure. These investigations have examined the potential mechanisms responsible for the alterations observed in such key variables as heart rate, stroke volume, cardiac output, muscle blood flow, substrate utilization and mitochondrial function, both at rest and during exercise of varying intensities. Additionally, the occurrence and mechanisms related to the 'lactate paradox' continues to intrigue investigators. It is apparent that exposure to high altitude is an environmental stressor that elicits a robust sympathoadrenal response that contributes to many of the critical adjustments and adaptations mentioned above. Furthermore, as some of these important physiological adaptations are known to enhance performance, it has become popular to incorporate an aspect of altitude living/training into the training regimens of endurance athletes (e.g. 'live high-train low'). Finally, it is important to note that many factors influence the extent to which individuals adjust and adapt to the stress imposed by exposure to high altitude. Included among these are (i) the degree of hypoxia; (ii) the duration of exposure to hypoxic conditions; (iii) the exercise intensity (absolute vs relative workload); and (iv) the inter-individual variability in adapting to hypoxic environments ('responders' vs 'non-responders'). PMID:18081363

  10. Contributions of Socialization of Coping to Physiological Responses to Stress

    PubMed Central

    Monti, Jennifer D.; Abaied, Jamie L.; Rudolph, Karen D.

    2015-01-01

    The messages mothers communicate to their children about coping may play an important role in children’s emotional development by shaping children’s responses to stress. Building on prior research demonstrating associations between maternal socialization of coping (SOC) and children’s self-reported coping and emotional functioning (Abaied & Rudolph, 2010; 2011), we examined the contribution of SOC to children’s physiological responses to stress. Mothers completed a measure of SOC with peer victimization. Children (N = 118; M age = 9.46 years, SD = 0.33) completed a measure of peer victimization and participated in a laboratory social challenge task. Saliva samples were collected prior to and following the task and were assayed for alpha-amylase (sAA), a marker of autonomic nervous system (ANS) activation. Hierarchical linear modeling analyses revealed that SOC contributed to sAA reactivity. Peer victimization predicted greater sAA reactivity when mothers made few engagement suggestions (orienting toward stress and associated emotions and cognitions) but not when mothers made many engagement suggestions. Mothers’ distress responses predicted greater sAA reactivity. These findings provide novel evidence that the messages parents communicate about coping have implications for children’s physiological reactivity to stress during middle childhood. PMID:26973351

  11. Ethnic Differences in Physiological Responses to Fear Conditioned Stimuli

    PubMed Central

    Martínez, Karen G.; Franco-Chaves, José A.; Milad, Mohammed R.; Quirk, Gregory J.

    2014-01-01

    The idea that emotional expression varies with ethnicity is based largely on questionnaires and behavioral observations rather than physiological measures. We therefore compared the skin conductance responses (SCR) of Hispanic (Puerto Rican) and White non-Hispanic subjects in a fear conditioning and fear extinction task. Subjects were recruited from two sites: San Juan, Puerto Rico (PR), and Boston, Massachusetts (MA), using identical methods. A total of 78 healthy subjects (39 from PR, 39 from MA) were divided by sex and matched for age and educational level. Females from the two sites did not differ in their SCRs during any experimental phase of fear conditioning (habituation, conditioning, or extinction). In contrast, PR males responded significantly to the conditioned stimulus than MA males or PR females. Subtracting ethnic differences observed during the habituation phase (prior to conditioning) eliminated differences from subsequent phases, suggesting that PR males are elevated in their response to novelty rather than fear learning. Our findings suggest that, in addition to sex differences, there are ethnic differences in physiological responses to novel stimuli at least in males, which could be relevant for the assessment and treatment of anxiety disorders. PMID:25501365

  12. Ethnic differences in physiological responses to fear conditioned stimuli.

    PubMed

    Martínez, Karen G; Franco-Chaves, José A; Milad, Mohammed R; Quirk, Gregory J

    2014-01-01

    The idea that emotional expression varies with ethnicity is based largely on questionnaires and behavioral observations rather than physiological measures. We therefore compared the skin conductance responses (SCR) of Hispanic (Puerto Rican) and White non-Hispanic subjects in a fear conditioning and fear extinction task. Subjects were recruited from two sites: San Juan, Puerto Rico (PR), and Boston, Massachusetts (MA), using identical methods. A total of 78 healthy subjects (39 from PR, 39 from MA) were divided by sex and matched for age and educational level. Females from the two sites did not differ in their SCRs during any experimental phase of fear conditioning (habituation, conditioning, or extinction). In contrast, PR males responded significantly to the conditioned stimulus than MA males or PR females. Subtracting ethnic differences observed during the habituation phase (prior to conditioning) eliminated differences from subsequent phases, suggesting that PR males are elevated in their response to novelty rather than fear learning. Our findings suggest that, in addition to sex differences, there are ethnic differences in physiological responses to novel stimuli at least in males, which could be relevant for the assessment and treatment of anxiety disorders. PMID:25501365

  13. Physiological responses to food intake throughout the day.

    PubMed

    Johnston, Jonathan D

    2014-06-01

    Circadian rhythms act to optimise many aspects of our biology and thereby ensure that physiological processes are occurring at the most appropriate time. The importance of this temporal control is demonstrated by the strong associations between circadian disruption, morbidity and disease pathology. There is now a wealth of evidence linking the circadian timing system to metabolic physiology and nutrition. Relationships between these processes are often reciprocal, such that the circadian system drives temporal changes in metabolic pathways and changes in metabolic/nutritional status alter core molecular components of circadian rhythms. Examples of metabolic rhythms include daily changes in glucose homeostasis, insulin sensitivity and postprandial response. Time of day alters lipid and glucose profiles following individual meals whereas, over a longer time scale, meal timing regulates adiposity and body weight; these changes may occur via the ability of timed feeding to synchronise local circadian rhythms in metabolically active tissues. Much of the work in this research field has utilised animal and cellular model systems. Although these studies are highly informative and persuasive, there is a largely unmet need to translate basic biological data to humans. The results of such translational studies may open up possibilities for using timed dietary manipulations to help restore circadian synchrony and downstream physiology. Given the large number of individuals with disrupted rhythms due to, for example, shift work, jet-lag, sleep disorders and blindness, such dietary manipulations could provide widespread improvements in health and also economic performance. PMID:24666537

  14. Physiological imaging of electrical trauma and therapeutic responses

    NASA Astrophysics Data System (ADS)

    Chen, Chin-Tu; Matthews, K.; Aarsvold, John N.; Mintzer, Robert A.; Yasillo, Nicholas J.; Hannig, Jurgen; Capelli-Schellpfefer, M.; Cooper, Malcolm; Lee, Raphael C.

    2000-04-01

    In victims of electrical trauma, electroporation of cell membrane, in which lipid bilayer is permeabilized by thermal and electrical forces, is thought to be a substantial cause of tissue damage. It has been suggested that certain mild surfactant in low concentration could induce sealing of permeabilized lipid bilayers, thus repairing cell membranes that had not been extensively damaged. With an animal model of electrically injured hind limb of rats, we have demonstrated and validated the use of radiotracer imaging technique to assess the physiology of the damaged tissues after electrical shock and of their repairs after applying surfactant as a therapeutic strategy. For example, using Tc-99m labeled pyrophosphate (PYP), which follows calcium in cellular function and is known to accumulate in damaged tissues, we have established a physiological imaging approach for assessment of the extent of tissue injury for diagnosis and surgical planning, as well as for evaluation of responses to therapy. With the use of a small, hand-held, miniature gamma camera, this physiological imaging method can be employed at patient's bedside and even in the field, for example, at accident site or during transfer for emergency care, rapid diagnosis, and prompt treatment in order to maximize the chance for tissue survival.

  15. Circadian rhythms of visual accommodation responses and physiological correlations.

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.; Randle, R. J.; Williams, B. A.

    1972-01-01

    Use of a recently developed servocontrolled infrared optometer to continuously record the state of monocular focus while subjects viewed a visual target for which the stimulus to focus was systematically varied. Calculated parameters form recorded data - e.g., speeds of accommodation to approaching and receding targets, magnitude of accommodation to step changes in target distance, and amplitude and phase lag of response to sinusoidally varying stimuli were submitted to periodicity analyses. Ear canal temperature (ECT) and heart rate (HR) rhythms were also recorded for physiological correlation with accommodation rhythms. HR demonstrated a 24-hr rhythm, but ECT data did not.

  16. Acute Effects of Nicotine on Physiological and Subjective Sexual Arousal in Nonsmoking Men: A Randomized, Double-Blind, Placebo-Controlled Trial

    PubMed Central

    Harte, Christopher B.; Meston, Cindy M.

    2010-01-01

    Introduction Chronic nicotine treatment has deleterious effects on vascular functioning and catecholamine modulation, which may compromise erectile functioning. Evidence that long-term cigarette smoking is an independent risk factor for introducing impotence is robust. However, limited studies have focused on the acute effects of smoking on physiological sexual response, and none have investigated the deleterious effects of isolated nicotine on human sexual arousal. Consequently, pathophysiological underpinnings of tobacco-induced—and particularly, nicotine-induced—erectile dysfunction are not well understood. Aim To provide the first empirical examination of the acute effects of isolated nicotine on sexual arousal in nonsmoking men. Methods Twenty-eight sexually functional heterosexual men (mean age 21 years), each with less than 100 direct exposures to nicotine, participated in a double-blind, randomized, placebo-controlled, crossover trial. Participants received either Nicorette polacrilex gum (SmithKline Beecham Consumer Healthcare, Pittsburgh, PA, USA) (6 mg; approximately equivalent to smoking one high-yield cigarette) or placebo gum, matched for appearance, taste, and consistency, approximately 40 minutes prior to viewing an erotic film. Main Outcome Measures Physiological (circumferential change via penile plethysmography) and subjective (continuous self-report) sexual responses to erotic stimuli were examined, as well as changes in mood. Results Nicotine significantly reduced erectile responses to the erotic films (P = 0.02), corresponding to a 23% reduction in physiological sexual arousal. This occurred in 16 of 20 men with valid physiological recordings. Nicotine had no significant effect on continuous subjective ratings of sexual arousal (P = 0.70) or on mood (all Ps > 0.05). Conclusions Isolated nicotine can significantly attenuate physiological sexual arousal in healthy nonsmoking men. These findings have implications for elucidating physiological

  17. Physiological responses of three marine microalgae exposed to cypermethrin.

    PubMed

    Wang, Zhao-Hui; Nie, Xiang-Ping; Yue, Wen-Jie; Li, Xin

    2012-10-01

    The effects of cypermethrin on physiological responses of three typical marine microalgal species Skeletonema costatum (Bacillariophyceae), Scrippsiella trochoidea (Dinophyceae), and Chattonella marina (Raphidophyceae), were investigated by 96-h growth tests in a batch-culture system. The 96-h median inhibition concentrations (IC(50)) were 71.4, 205, and 191 μg L(-1) for S. costatum, S. trochoidea, and C. marina, respectively. Quick and significant physiological responses occurred when algal cells were exposed to cypermethrin, and all biochemical parameters varied significantly within 6- or 12-h exposure. Cypermethrin affected algal growth, protein content, and superoxide dismutase (SOD) activity by stimulation at low concentrations (1, 5 μg L(-1)) and inhibition at high concentrations (>50 μg L(-1)). A general increase in malondialdehyde (MDA) level was observed in all test groups, which suggested that the toxic effects of cypermethrin were probably exerted through free radical generation. These results suggest that the activation of SOD and promotion of protein at early exposure are important to counteract the oxidative stress induced by cypermethrin, and the inactivation of SOD may be crucial to the growth inhibition of microalgae by cypermethrin. PMID:21374785

  18. Influence of Ergometer Design on Physiological Responses during Rowing.

    PubMed

    Rossi, J; Piponnier, E; Vincent, L; Samozino, P; Messonnier, L

    2015-11-01

    The aim of this study was to compare the physiological responses and rowing efficiency on 2 different rowing ergometers: stationary vs. dynamic ergometers manufactured by Concept2. 11 oarswomen and oarsmen rowed 4 min at 60% and 70% of peak power output on both ergometers (randomized order). Power output, stroke rate, heart rate, oxygen uptake, carbon dioxide production, lactate accumulation and rating of perceived exertion were recorded at each stage on the 2 ergometers. Gross and net efficiencies were computed. Exercise intensity was associated with increases in all parameters. Rowing on dynamic ergometer was associated with higher heart rate, oxygen uptake, carbon dioxide production and stroke rate, concomitantly to lower blood lactate accumulation but also to lower gross and net efficiencies. The present study showed that rowing efficiency and blood lactate accumulation were lower on the Concept2 dynamic ergometer than on its stationary counterpart. If the use of the Concept2 dynamic ergometer may provide some advantages (reduced risk of injuries), its utilization requires a specific evaluation of physiological responses during an incremental exercise for an adapted management of training. PMID:26212249

  19. Acute metabolic and physiologic response of goats to narcosis

    NASA Technical Reports Server (NTRS)

    Schatte, C. L.; Bennett, P. B.

    1973-01-01

    Assessment of the metabolic consequences of exposure to elevated partial pressures of nitrogen and helium under normobaric and hyperbaric conditions in goats. The results include the finding that hyperbaric nitrogen causes and increase in metabolic rate and a general decrease in blood constituent levels which is interpreted as reflecting a shift toward fatty acid metabolism at the expense of carbohydrates. A similar but more pronounced pattern was observed with hyperbaric helium.

  20. Condition-dependent physiological and behavioural responses to anthropogenic noise.

    PubMed

    Purser, Julia; Bruintjes, Rick; Simpson, Stephen D; Radford, Andrew N

    2016-03-01

    Anthropogenic (man-made) noise, a global pollutant of international concern, is known to affect the physiology and behaviour of a range of organisms. However, experimental studies have tended to focus on trait means; intra-population variation in responses are likely, but have rarely been explored. Here we use established experimental methods to demonstrate a condition-dependent effect of additional noise. We show that juvenile European eels (Anguilla anguilla) in good condition do not respond differently to playbacks of ambient coastal noise and coastal noise with passing ships. By contrast, the additional noise of ship passes caused an increase in ventilation rate and a decrease in startling to a looming predatory stimulus in poor condition eels. Intra-population variation in responses to noise has important implications both for population dynamics and the planning of mitigation measures. PMID:26686756

  1. Modeling physiological responses of soil microbes to drought (Invited)

    NASA Astrophysics Data System (ADS)

    Manzoni, S.; Katul, G. G.; Porporato, A. M.; Schaeffer, S. M.; Schimel, J.

    2013-12-01

    Biogeochemical models predict soil carbon (C) under varying environmental conditions, aiming to disentangle the effects of predicted changes in temperature and moisture regimes on C storage. While much work focuses on temperature sensitivity of decomposition, relatively less is known about decomposer responses to changes in soil moisture. Heterotrophic respiration is known to decline as soils become drier, but the underlying physiological mechanisms are not clear and rarely accounted for in models. In particular, we ask: what are the effects of different drought response strategies on C storage potential and the shape of the respiration-moisture relation? We have developed a process-based model to address these questions, including the main physiological responses thought to play a role under varying moisture conditions: i) dormancy, ii) patterns of extra-cellular enzyme production, and iii) osmoregulation. We show that these different drought response strategies play a major role in the long-term partitioning of soil C among stable and labile pools. In very dry conditions, microbes shifting to dormant state tend to favor long-term (steady state) accumulation of stable C at the expenses of microbial biomass, while increasing investment in enzymes leads to accumulation of dissolved organic C, which in turn may partly overcome the diffusion limitations imposed by dry soils. In contrast, entering a dormant state early during a dry down allows microbes to save C by respiring less (due to lowered active biomass), avoid C starvation when substrate diffusion breaks down, and use available C for growth and maintenance rather than osmoregulation. Hence, this strategy explains why little osmolytes are found in microbial biomass subjected to experimental drought. We conclude by highlighting how our results can be implemented in Earth System Models without excessively increasing their complexity.

  2. Non-invasive cortisol measurements as indicators of physiological stress responses in guinea pigs.

    PubMed

    Nemeth, Matthias; Pschernig, Elisabeth; Wallner, Bernard; Millesi, Eva

    2016-01-01

    Non-invasive measurements of glucocorticoid (GC) concentrations, including cortisol and corticosterone, serve as reliable indicators of adrenocortical activities and physiological stress loads in a variety of species. As an alternative to invasive analyses based on plasma, GC concentrations in saliva still represent single-point-of-time measurements, suitable for studying short-term or acute stress responses, whereas fecal GC metabolites (FGMs) reflect overall stress loads and stress responses after a species-specific time frame in the long-term. In our study species, the domestic guinea pig, GC measurements are commonly used to indicate stress responses to different environmental conditions, but the biological relevance of non-invasive measurements is widely unknown. We therefore established an experimental protocol based on the animals' natural stress responses to different environmental conditions and compared GC levels in plasma, saliva, and fecal samples during non-stressful social isolations and stressful two-hour social confrontations with unfamiliar individuals. Plasma and saliva cortisol concentrations were significantly increased directly after the social confrontations, and plasma and saliva cortisol levels were strongly correlated. This demonstrates a high biological relevance of GC measurements in saliva. FGM levels measured 20 h afterwards, representing the reported mean gut passage time based on physiological validations, revealed that the overall stress load was not affected by the confrontations, but also no relations to plasma cortisol levels were detected. We therefore measured FGMs in two-hour intervals for 24 h after another social confrontation and detected significantly increased levels after four to twelve hours, reaching peak concentrations already after six hours. Our findings confirm that non-invasive GC measurements in guinea pigs are highly biologically relevant in indicating physiological stress responses compared to circulating levels

  3. Non-invasive cortisol measurements as indicators of physiological stress responses in guinea pigs

    PubMed Central

    Pschernig, Elisabeth; Wallner, Bernard; Millesi, Eva

    2016-01-01

    Non-invasive measurements of glucocorticoid (GC) concentrations, including cortisol and corticosterone, serve as reliable indicators of adrenocortical activities and physiological stress loads in a variety of species. As an alternative to invasive analyses based on plasma, GC concentrations in saliva still represent single-point-of-time measurements, suitable for studying short-term or acute stress responses, whereas fecal GC metabolites (FGMs) reflect overall stress loads and stress responses after a species-specific time frame in the long-term. In our study species, the domestic guinea pig, GC measurements are commonly used to indicate stress responses to different environmental conditions, but the biological relevance of non-invasive measurements is widely unknown. We therefore established an experimental protocol based on the animals’ natural stress responses to different environmental conditions and compared GC levels in plasma, saliva, and fecal samples during non-stressful social isolations and stressful two-hour social confrontations with unfamiliar individuals. Plasma and saliva cortisol concentrations were significantly increased directly after the social confrontations, and plasma and saliva cortisol levels were strongly correlated. This demonstrates a high biological relevance of GC measurements in saliva. FGM levels measured 20 h afterwards, representing the reported mean gut passage time based on physiological validations, revealed that the overall stress load was not affected by the confrontations, but also no relations to plasma cortisol levels were detected. We therefore measured FGMs in two-hour intervals for 24 h after another social confrontation and detected significantly increased levels after four to twelve hours, reaching peak concentrations already after six hours. Our findings confirm that non-invasive GC measurements in guinea pigs are highly biologically relevant in indicating physiological stress responses compared to circulating

  4. The fetal brain sparing response to hypoxia: physiological mechanisms.

    PubMed

    Giussani, Dino A

    2016-03-01

    How the fetus withstands an environment of reduced oxygenation during life in the womb has been a vibrant area of research since this field was introduced by Joseph Barcroft, a century ago. Studies spanning five decades have since used the chronically instrumented fetal sheep preparation to investigate the fetal compensatory responses to hypoxia. This defence is contingent on the fetal cardiovascular system, which in late gestation adopts strategies to decrease oxygen consumption and redistribute the cardiac output away from peripheral vascular beds and towards essential circulations, such as those perfusing the brain. The introduction of simultaneous measurement of blood flow in the fetal carotid and femoral circulations by ultrasonic transducers has permitted investigation of the dynamics of the fetal brain sparing response for the first time. Now we know that major components of fetal brain sparing during acute hypoxia are triggered exclusively by a carotid chemoreflex and that they are modified by endocrine agents and the recently discovered vascular oxidant tone. The latter is determined by the interaction between nitric oxide and reactive oxygen species. The fetal brain sparing response matures as the fetus approaches term, in association with the prepartum increase in fetal plasma cortisol, and treatment of the preterm fetus with clinically relevant doses of synthetic steroids mimics this maturation. Despite intense interest into how the fetal brain sparing response may be affected by adverse intrauterine conditions, this area of research has been comparatively scant, but it is likely to take centre stage in the near future. PMID:26496004

  5. Proteomic and Physiological Responses of Kineococcus radiotolerans to Copper

    PubMed Central

    Bagwell, Christopher E.; Hixson, Kim K.; Milliken, Charles E.; Lopez-Ferrer, Daniel; Weitz, Karl K.

    2010-01-01

    Copper is a highly reactive, toxic metal; consequently, transport of this metal within the cell is tightly regulated. Intriguingly, the actinobacterium Kineococcus radiotolerans has been shown to not only accumulate soluble copper to high levels within the cytoplasm, but the phenotype also correlated with enhanced cell growth during chronic exposure to ionizing radiation. This study offers a first glimpse into the physiological and proteomic responses of K. radiotolerans to copper at increasing concentration and distinct growth phases. Aerobic growth rates and biomass yields were similar over a range of Cu(II) concentrations (0–1.5 mM) in complex medium. Copper uptake coincided with active cell growth and intracellular accumulation was positively correlated with Cu(II) concentration in the growth medium (R2 = 0.7). Approximately 40% of protein coding ORFs on the K. radiotolerans genome were differentially expressed in response to the copper treatments imposed. Copper accumulation coincided with increased abundance of proteins involved in oxidative stress and defense, DNA stabilization and repair, and protein turnover. Interestingly, the specific activity of superoxide dismutase was repressed by low to moderate concentrations of copper during exponential growth, and activity was unresponsive to perturbation with paraquot. The biochemical response pathways invoked by sub-lethal copper concentrations are exceptionally complex; though integral cellular functions are preserved, in part, through the coordination of defense enzymes, chaperones, antioxidants and protective osmolytes that likely help maintain cellular redox. This study extends our understanding of the ecology and physiology of this unique actinobacterium that could potentially inspire new biotechnologies in metal recovery and sequestration, and environmental restoration. PMID:20865147

  6. Proteomic and physiological responses of Kineococcus radiotolerans to copper.

    PubMed

    Bagwell, Christopher E; Hixson, Kim K; Milliken, Charles E; Lopez-Ferrer, Daniel; Weitz, Karl K

    2010-01-01

    Copper is a highly reactive, toxic metal; consequently, transport of this metal within the cell is tightly regulated. Intriguingly, the actinobacterium Kineococcus radiotolerans has been shown to not only accumulate soluble copper to high levels within the cytoplasm, but the phenotype also correlated with enhanced cell growth during chronic exposure to ionizing radiation. This study offers a first glimpse into the physiological and proteomic responses of K. radiotolerans to copper at increasing concentration and distinct growth phases. Aerobic growth rates and biomass yields were similar over a range of Cu(II) concentrations (0-1.5 mM) in complex medium. Copper uptake coincided with active cell growth and intracellular accumulation was positively correlated with Cu(II) concentration in the growth medium (R(2)=0.7). Approximately 40% of protein coding ORFs on the K. radiotolerans genome were differentially expressed in response to the copper treatments imposed. Copper accumulation coincided with increased abundance of proteins involved in oxidative stress and defense, DNA stabilization and repair, and protein turnover. Interestingly, the specific activity of superoxide dismutase was repressed by low to moderate concentrations of copper during exponential growth, and activity was unresponsive to perturbation with paraquot. The biochemical response pathways invoked by sub-lethal copper concentrations are exceptionally complex; though integral cellular functions are preserved, in part, through the coordination of defense enzymes, chaperones, antioxidants and protective osmolytes that likely help maintain cellular redox. This study extends our understanding of the ecology and physiology of this unique actinobacterium that could potentially inspire new biotechnologies in metal recovery and sequestration, and environmental restoration. PMID:20865147

  7. Physiological and Pathological Responses to Head Rotations in Toddler Piglets

    PubMed Central

    Ibrahim, Nicole G.; Ralston, Jill; Smith, Colin

    2010-01-01

    Abstract Closed head injury is the leading cause of death in children less than 4 years of age, and is thought to be caused in part by rotational inertial motion of the brain. Injury patterns associated with inertial rotations are not well understood in the pediatric population. To characterize the physiological and pathological responses of the immature brain to inertial forces and their relationship to neurological development, toddler-age (4-week-old) piglets were subjected to a single non-impact head rotation at either low (31.6 ± 4.7 rad/sec2, n = 4) or moderate (61.0 ± 7.5 rad/sec2, n = 6) angular acceleration in the axial direction. Graded outcomes were observed for both physiological and histopathological responses such that increasing angular acceleration and velocity produced more severe responses. Unlike low-acceleration rotations, moderate-acceleration rotations produced marked EEG amplitude suppression immediately post-injury, which remained suppressed for the 6-h survival period. In addition, significantly more severe subarachnoid hemorrhage, ischemia, and axonal injury by β-amyloid precursor protein (β-APP) were observed in moderate-acceleration animals than low-acceleration animals. When compared to infant-age (5-day-old) animals subjected to similar (54.1 ± 9.6 rad/sec2) acceleration rotations, 4-week-old moderate-acceleration animals sustained similar severities of subarachnoid hemorrhage and axonal injury at 6 h post-injury, despite the larger, softer brain in the older piglets. We conclude that the traditional mechanical engineering approach of scaling by brain mass and stiffness cannot explain the vulnerability of the infant brain to acceleration-deceleration movements, compared with the toddler. PMID:20560753

  8. Differential physiological responses to environmental change promote woody shrub expansion.

    PubMed

    Heskel, Mary; Greaves, Heather; Kornfeld, Ari; Gough, Laura; Atkin, Owen K; Turnbull, Matthew H; Shaver, Gaius; Griffin, Kevin L

    2013-05-01

    Direct and indirect effects of warming are increasingly modifying the carbon-rich vegetation and soils of the Arctic tundra, with important implications for the terrestrial carbon cycle. Understanding the biological and environmental influences on the processes that regulate foliar carbon cycling in tundra species is essential for predicting the future terrestrial carbon balance in this region. To determine the effect of climate change impacts on gas exchange in tundra, we quantified foliar photosynthesis (A net), respiration in the dark and light (R D and R L, determined using the Kok method), photorespiration (PR), carbon gain efficiency (CGE, the ratio of photosynthetic CO2 uptake to total CO2 exchange of photosynthesis, PR, and respiration), and leaf traits of three dominant species - Betula nana, a woody shrub; Eriophorum vaginatum, a graminoid; and Rubus chamaemorus, a forb - grown under long-term warming and fertilization treatments since 1989 at Toolik Lake, Alaska. Under warming, B. nana exhibited the highest rates of A net and strongest light inhibition of respiration, increasing CGE nearly 50% compared with leaves grown in ambient conditions, which corresponded to a 52% increase in relative abundance. Gas exchange did not shift under fertilization in B. nana despite increases in leaf N and P and near-complete dominance at the community scale, suggesting a morphological rather than physiological response. Rubus chamaemorus, exhibited minimal shifts in foliar gas exchange, and responded similarly to B. nana under treatment conditions. By contrast, E. vaginatum, did not significantly alter its gas exchange physiology under treatments and exhibited dramatic decreases in relative cover (warming: -19.7%; fertilization: -79.7%; warming with fertilization: -91.1%). Our findings suggest a foliar physiological advantage in the woody shrub B. nana that is further mediated by warming and increased soil nutrient availability, which may facilitate shrub expansion and

  9. Differential physiological responses to environmental change promote woody shrub expansion

    PubMed Central

    Heskel, Mary; Greaves, Heather; Kornfeld, Ari; Gough, Laura; Atkin, Owen K; Turnbull, Matthew H; Shaver, Gaius; Griffin, Kevin L

    2013-01-01

    Direct and indirect effects of warming are increasingly modifying the carbon-rich vegetation and soils of the Arctic tundra, with important implications for the terrestrial carbon cycle. Understanding the biological and environmental influences on the processes that regulate foliar carbon cycling in tundra species is essential for predicting the future terrestrial carbon balance in this region. To determine the effect of climate change impacts on gas exchange in tundra, we quantified foliar photosynthesis (Anet), respiration in the dark and light (RD and RL, determined using the Kok method), photorespiration (PR), carbon gain efficiency (CGE, the ratio of photosynthetic CO2 uptake to total CO2 exchange of photosynthesis, PR, and respiration), and leaf traits of three dominant species – Betula nana, a woody shrub; Eriophorum vaginatum, a graminoid; and Rubus chamaemorus, a forb – grown under long-term warming and fertilization treatments since 1989 at Toolik Lake, Alaska. Under warming, B. nana exhibited the highest rates of Anet and strongest light inhibition of respiration, increasing CGE nearly 50% compared with leaves grown in ambient conditions, which corresponded to a 52% increase in relative abundance. Gas exchange did not shift under fertilization in B. nana despite increases in leaf N and P and near-complete dominance at the community scale, suggesting a morphological rather than physiological response. Rubus chamaemorus, exhibited minimal shifts in foliar gas exchange, and responded similarly to B. nana under treatment conditions. By contrast, E. vaginatum, did not significantly alter its gas exchange physiology under treatments and exhibited dramatic decreases in relative cover (warming: −19.7%; fertilization: −79.7%; warming with fertilization: −91.1%). Our findings suggest a foliar physiological advantage in the woody shrub B. nana that is further mediated by warming and increased soil nutrient availability, which may facilitate shrub

  10. Physiological responses of Houbara bustards to high ambient temperatures.

    PubMed

    Tieleman, B Irene; Williams, Joseph B; LaCroix, Frédéric; Paillat, Patrick

    2002-02-01

    Desert birds often experience a scarcity of drinking water and food and must survive episodes of high ambient temperature (T(a)). The physiological mechanisms that promote survival during extended periods of high T(a) have received little attention. We investigated the physiological responses of wild-caught and captive-reared Houbara bustards, Chlamydotis macqueenii, to T(a) values ranging from below 0 degrees C to 55 degrees C, well above those in most previous studies of birds. Captive-reared Houbara bustards (mass 1245+/-242 g, N=7, mean +/- S.D.) in summer have a resting metabolic rate (RMR) of 261.4 kJ day(-1), 26 % below allometric predictions, and a total evaporative water loss (TEWL) at 25 degrees C of 25.8 g day(-1), 31 % below predictions. When T(a) exceeded body temperature (T(b)), the dry heat transfer coefficient decreased, a finding supporting the prediction that birds should minimize dry heat gain from the environment at high T(a) values. Houbara bustards withstand high T(a) values without becoming hyperthermic; at 45 degrees C, T(b) was on average 0.9 degrees C higher than at 25 degrees C. RMR and TEWL of captive-bred Houbara bustards were 23 % and 46 % higher in winter than in summer, respectively. Captive-reared Houbara bustards had a 17 % lower RMR and a 28 % lower TEWL than wild-born birds with similar genetic backgrounds. Differences in body composition between wild-caught and captive-reared birds were correlated with differences in physiological performance. PMID:11893764

  11. Physiological and behavioural responses of young horses to hot iron branding and microchip implantation.

    PubMed

    Erber, R; Wulf, M; Becker-Birck, M; Kaps, S; Aurich, J E; Möstl, E; Aurich, C

    2012-02-01

    Branding is the traditional and well-established method used to mark horses, but recently microchip transponders for implantation have become available. In this study, behaviour, physiological stress variables and skin temperature in foals were determined in response to hot-iron branding (n=7) and microchip implantation (n=7). Salivary cortisol concentrations increased in response to branding (1.8 ± 0.2 ng/mL) and microchip implantation (1.4 ± 0.1ng/mL), but cortisol release over time did not differ. In response to both manipulations there was a transient increase in heart rate (P<0.001) and heart rate variability (P<0.01). Branding and microchip implantation induced a comparable aversive behaviour (branding, score 3.86 ± 0.85; microchip, score 4.00 ± 0.82). Both techniques thus caused similar physiological and behavioural changes indicative of stress. Acutely, implantation of a microchip was as stressful as branding in foals. Branding caused a necrotising skin burn lasting at least 7 days. Moreover branding, but not microchip implantation (P<0.001), was accompanied by a generalized increase in skin temperature which was comparable to low degree post-burn hypermetabolism in humans. PMID:21917490

  12. Acute hemodynamic responses to weightlessness in humans

    NASA Technical Reports Server (NTRS)

    Lathers, C. M.; Charles, J. B.; Elton, K. F.; Holt, T. A.; Mukai, C.; Bennett, B. S.; Bungo, M. W.

    1989-01-01

    As NASA designs space flights requiring prolonged periods of weightlessness for a broader segment of the population, it will be important to know the acute and sustained effects of weightlessness on the cardiovascular system since this information will contribute to understanding of the clinical pharmacology of drugs administered in space. Due to operational constraints on space flights, earliest effects of weightlessness have not been documented. We examined hemodynamic responses of humans to transitions from acceleration to weightlessness during parabolic flight on NASA's KC-135 aircraft. Impedance cardiography data were collected over four sets of 8-10 parabolas, with a brief rest period between sets. Each parabola included a period of 1.8 Gz, then approximately 20 seconds of weightlessness, and finally a period of 1.6 Gz; the cycle repeated almost immediately for the remainder of the set. Subjects were semi-supine (Shuttle launch posture) for the first set, then randomly supine, sitting and standing for each subsequent set. Transition to weightlessness while standing produced decreased heart rate, increased thoracic fluid content, and increased stroke index. Surprisingly, the onset of weightlessness in the semi-supine posture produced little evidence of a headward fluid shift. Heart rate, stroke index, and cardiac index are virtually unchanged after 20 seconds of weightlessness, and thoracic fluid content is slightly decreased. Semi-supine responses run counter to Shuttle crewmember reports of noticeable fluid shift after minutes to hours in orbit. Apparently, the headward fluid shift commences in the semi-supine posture before launch. is augmented by launch acceleration, but briefly interrupted immediately in orbit, then resumes and is completed over the next hours.

  13. Acute hemodynamic responses to weightlessness in humans.

    PubMed

    Lathers, C M; Charles, J B; Elton, K F; Holt, T A; Mukai, C; Bennett, B S; Bungo, M W

    1989-07-01

    As NASA designs space flights requiring prolonged periods of weightlessness for a broader segment of the population, it will be important to know the acute and sustained effects of weightlessness on the cardiovascular system since this information will contribute to understanding of the clinical pharmacology of drugs administered in space. Due to operational constraints on space flights, earliest effects of weightlessness have not been documented. We examined hemodynamic responses of humans to transitions from acceleration to weightlessness during parabolic flight on NASA's KC-135 aircraft. Impedance cardiography data were collected over four sets of 8-10 parabolas, with a brief rest period between sets. Each parabola included a period of 1.8 Gz, then approximately 20 seconds of weightlessness, and finally a period of 1.6 Gz; the cycle repeated almost immediately for the remainder of the set. Subjects were semi-supine (Shuttle launch posture) for the first set, then randomly supine, sitting and standing for each subsequent set. Transition to weightlessness while standing produced decreased heart rate, increased thoracic fluid content, and increased stroke index. Surprisingly, the onset of weightlessness in the semi-supine posture produced little evidence of a headward fluid shift. Heart rate, stroke index, and cardiac index are virtually unchanged after 20 seconds of weightlessness, and thoracic fluid content is slightly decreased. Semi-supine responses run counter to Shuttle crewmember reports of noticeable fluid shift after minutes to hours in orbit. Apparently, the headward fluid shift commences in the semi-supine posture before launch. is augmented by launch acceleration, but briefly interrupted immediately in orbit, then resumes and is completed over the next hours. PMID:2760255

  14. Cardiac Physiologic and Genetic Predictors of Hyperoxia-Induced Acute Lung Injury in Mice

    PubMed Central

    Cho, Hye-Youn; Miller-DeGraff, Laura; Walker, Christopher; Clark, James A.; Myers, Page H.; Rouse, D. Clay; Kleeberger, Steven R.

    2012-01-01

    Exposure of mice to hyperoxia produces pulmonary toxicity similar to acute lung injury/acute respiratory distress syndrome, but little is known about the interactions within the cardiopulmonary system. This study was designed to characterize the cardiopulmonary response to hyperoxia, and to identify candidate susceptibility genes in mice. Electrocardiogram and ventilatory data were recorded continuously from 4 inbred and 29 recombinant inbred strains during 96 hours of hyperoxia (100% oxygen). Genome-wide linkage analysis was performed in 27 recombinant inbred strains against response time indices (TIs) calculated from each cardiac phenotype. Reductions in minute ventilation, heart rate (HR), low-frequency (LF) HR variability (HRV), high-frequency HRV, and total power HRV were found in all mice during hyperoxia exposure, but the lag time before these changes began was strain dependent. Significant (chromosome 9) or suggestive (chromosomes 3 and 5) quantitative trait loci were identified for the HRTI and LFTI. Functional polymorphisms in several candidate susceptibility genes were identified within the quantitative trait loci and were associated with hyperoxia susceptibility. This is the first study to report highly significant interstrain variation in hyperoxia-induced changes in minute ventilation, HR, and HRV, and to identify polymorphisms in candidate susceptibility genes that associate with cardiac responses. Results indicate that changes in HR and LF HRV could be important predictors of subsequent adverse outcome during hyperoxia exposure, specifically the pathogenesis of acute lung injury. Understanding the genetic mechanisms of these responses may have significant diagnostic clinical value. PMID:22052878

  15. Personality Correlates of Physiological Response to Stress Among Incarcerated Juveniles

    PubMed Central

    Karnik, Niranjan S.; Popma, Arne; Blair, Robert James Richard; Khanzode, Leena; Miller, Samantha P.; Steiner, Hans

    2011-01-01

    Background To examine the relationship between personality type and physiological response to stress among juvenile delinquents. Methods Delinquent males (N=42, mean age 16.5, SD=1) recruited from a convenience sample at local juvenile detention facility were compared to a male control sample from a local high school (N=79; mean age 16.1, SD=0.8). All participants completed the Weinberger Adjustment Inventory and a Stress Inducing Speech Task while having heart rate measured. Results Delinquent youths showed significantly lower heart rates under both free association and stress conditions than controls (p<0.05) and a lower rate of increase during stressful stimuli (p<0.05). Among delinquents, those with a non-reactive personality type appeared to show consistently lower levels of physiological arousal as measured by heart rate. Conclusions Delinquents consistently had lower overall levels of arousal as measured by heart rate. In delinquent boys, we found a persistently low arousal group with a non-reactive psychological pattern. This combination may be a forerunner of future psychopathy or a product of the developmental trajectory that leads to and results from psychopathic behavior. PMID:18622978

  16. [Physiological responses of Gracilaria lemaneiformis to copper stress].

    PubMed

    Zhu, Xi-Feng; Zou, Ding-Hui; Jian, Jian-Bo; Chen, Wei-Zhou; Liu, Hui-Hui; Du, Hong

    2009-06-01

    Gracilaria lemaneiformis was exposed to 0, 25, 50, 100, 250 and 500 microg x L(-1) of Cu2+ to study its physiological responses to Cu2+ stress. When the Cu2+ concentration was > or = 50 microg x L(-1), the relative growth rate (RGR) of G. lemaneiformis decreased significantly, and the optimal quantum yield (Fv/Fm), the maximum relative electron transfer rate (rETRmax), and the relative electron transfer efficiency (alpha) exhibited the same variation trend, compared with the control. With the increase of Cu2+ concentration, the maximum net photosynthetic rate (Pmax) and light saturation point (LSP) decreased significantly, light compensation point (LCP) had a significant increase, while chlorophyll a, carotenoid, and phycobiliprotein contents decreased after an initial increase. When the Cu2+ concentration reached 500 microg x L(-1), the chlorophyll a, carotenoid, and phycobiliprotein contents decreased significantly. It was suggested that G. lemaneiformis could tolerate low concentration Cu2+ stress, but its physiological activities were inhibited markedly when exposed to > or =50 microg x L(-1) of Cu2+. PMID:19795656

  17. Molecular and physiological responses of trees to waterlogging stress.

    PubMed

    Kreuzwieser, Jürgen; Rennenberg, Heinz

    2014-10-01

    One major effect of global climate change will be altered precipitation patterns in many regions of the world. This will cause a higher probability of long-term waterlogging in winter/spring and flash floods in summer because of extreme rainfall events. Particularly, trees not adapted at their natural site to such waterlogging stress can be impaired. Despite the enormous economic, ecological and social importance of forest ecosystems, the effect of waterlogging on trees is far less understood than the effect on many crops or the model plant Arabidopsis. There is only a handful of studies available investigating the transcriptome and metabolome of waterlogged trees. Main physiological responses of trees to waterlogging include the stimulation of fermentative pathways and an accelerated glycolytic flux. Many energy-consuming, anabolic processes are slowed down to overcome the energy crisis mediated by waterlogging. A crucial feature of waterlogging tolerance is the steady supply of glycolysis with carbohydrates, particularly in the roots; stress-sensitive trees fail to maintain sufficient carbohydrate availability resulting in the dieback of the stressed tissues. The present review summarizes physiological and molecular features of waterlogging tolerance of trees; the focus is on carbon metabolism in both, leaves and roots of trees. PMID:24611781

  18. Comparison of acute physiology and chronic health evaluation II and acute physiology and chronic health evaluation IV to predict intensive care unit mortality

    PubMed Central

    Parajuli, Bashu Dev; Shrestha, Gentle S.; Pradhan, Bishwas; Amatya, Roshana

    2015-01-01

    Context: Clinical assessment of severity of illness is an essential component of medical practice to predict the outcome of critically ill-patient. Acute Physiology and Chronic Health Evaluation (APACHE) model is one of the widely used scoring systems. Aims: This study was designed to evaluate the Performance of APACHE II and IV scoring systems in our Intensive Care Unit (ICU). Settings and Design: A prospective study in 6 bedded ICU, including 76 patients all above 15 years. Subjects and Methods: APACHE II and APACHE IV scores were calculated based on the worst values in the first 24 h of admission. All enrolled patients were followed, and outcome was recorded as survivors or nonsurvivors. Statistical Analysis Used: SPSS version 17. Results: The mean APACHE score was significantly higher among nonsurvivors than survivors (P < 0.005). Discrimination for APACHE II and APACHE IV was fair with area under receiver operating characteristic curve of 0.73 and 0.79 respectively. The cut-off point with best Youden index for APACHE II was 17 and for APACHE IV was 85. Above cut-off point, mortality was higher for both models (P < 0.005). Hosmer–Lemeshow Chi-square coefficient test showed better calibration for APACHE II than APACHE IV. A positive correlation was seen between the models with Spearman's correlation coefficient of 0.748 (P < 0.01). Conclusions: Discrimination was better for APACHE IV than APACHE II model however Calibration was better for APACHE II than APACHE IV model in our study. There was good correlation between the two models observed in our study. PMID:25722550

  19. Effects of acute thermal stress on the survival, predator avoidance, and physiology of juvenile fall Chinook salmon

    USGS Publications Warehouse

    Mesa, M.G.; Weiland, L.K.; Wagner, P.

    2002-01-01

    We subjected juvenile fall chinook salmon from the Hanford Reach of the Columbia River to acute thermal stressors in the laboratory that were derived from field data. We assessed the effects of thermal stress on: (1) the extent of direct mortality; (2) the vulnerability of fish to predation by smallmouth bass; and (3) some general physiological stress responses and synthesis of heat shock protein 70 (hsp70). Thermally-stressed fish showed little direct mortality and no increases in vulnerability to predation. However, these fish showed transient increases in plasma concentrations of cortisol, glucose, and lactate, and a dramatic (25-fold higher than controls) and persistent (lasting 2 wk) increase in levels of liver hsp70. Our results indicate that exposure of Hanford Reach juvenile fall chinook salmon to such stressors did not lead to significant increases in direct mortality or vulnerability to predation, but did alter physiological homeostasis, which should be of concern to those managing this resource. Because our fish received only a single exposure to one of the stressors we examined, we are also concerned about the consequences of exposing fish to multiple, cumulative stressors - a likely scenario for fish in the wild.

  20. Physiological and genetic responses of bacteria to osmotic stress.

    PubMed Central

    Csonka, L N

    1989-01-01

    The capacity of organisms to respond to fluctuations in their osmotic environments is an important physiological process that determines their abilities to thrive in a variety of habitats. The primary response of bacteria to exposure to a high osmotic environment is the accumulation of certain solutes, K+, glutamate, trehalose, proline, and glycinebetaine, at concentrations that are proportional to the osmolarity of the medium. The supposed function of these solutes is to maintain the osmolarity of the cytoplasm at a value greater than the osmolarity of the medium and thus provide turgor pressure within the cells. Accumulation of these metabolites is accomplished by de novo synthesis or by uptake from the medium. Production of proteins that mediate accumulation or uptake of these metabolites is under osmotic control. This review is an account of the processes that mediate adaptation of bacteria to changes in their osmotic environment. PMID:2651863

  1. Management of Acute Hypertensive Response in Patients With Ischemic Stroke.

    PubMed

    AlSibai, Ahmad; Qureshi, Adnan I

    2016-07-01

    High blood pressure (BP) >140/90 mm Hg is seen in 75% of patients with acute ischemic stroke and in 80% of patients with acute intracerebral hemorrhages and is independently associated with poor functional outcome. While BP reduction in patients with chronic hypertension remains one of the most important factors in primary and secondary stroke prevention, the proper management strategy for acute hypertensive response within the first 72 hours of acute ischemic stroke has been a matter of debate. Recent guidelines recommend clinical trials to ascertain whether antihypertensive therapy in the acute phase of stroke is beneficial. This review summarizes the current data on acute hypertensive response or elevated BP management during the first 72 hours after an acute ischemic stroke. Based on the potential deleterious effect of lowering BP observed in some clinical trials in patients with acute ischemic stroke and because of the lack of convincing evidence to support acute BP lowering in those situations, aggressive BP reduction in patients presenting with acute ischemic stroke is currently not recommended. While the early use of angiotensin receptor antagonists may help reduce cardiovascular events, this benefit is not necessarily related to BP reduction. PMID:27366297

  2. Psycho-physiological responses to expressive piano performance.

    PubMed

    Nakahara, Hidehiro; Furuya, Shinichi; Francis, Peter R; Kinoshita, Hiroshi

    2010-03-01

    The present study examined selected autonomic and cardio-respiratory responses of nine elite pianists during solo performances of the same single musical piece. The subjects performed the piece with and without self-perceived emotional expression, and with and without free ancillary body movements during expressive performance. Autonomic nervous system and cardio-respiratory parameters were continuously monitored during all experimental conditions. These parameters were heart rate (HR), sweating rate, the root mean square of successive difference (RMSSD) of heart rate variability and respiratory measurements such as oxygen consumption (VO(2)), minute ventilation, tidal volume and respiratory rate. Kinematics of the trunk and arms were recorded during all conditions. The subjects also provided subjective rating of the emotions that they experienced during their performances for each experimental condition. Analysis revealed that expressive performance clearly produced higher levels of valence and arousal than the non-expressive condition. This observation is consistent with current embodiment theory. The expressive condition also had significantly higher levels of HR, sweating rate, minute ventilation, and tidal volume, and lower levels of RMSSD and respiratory rate than the non-expressive condition. No difference was found for VO(2) between these conditions. The expressive condition with ancillary body movements did not significantly differentiate any of the physiological measures except for respiratory rate from those observed without such body movements. These findings suggested that expressive musical performance could modulate the emotion-related autonomic and cardio-respiratory responses that are independent of the effect of physiological load due to expressive ancillary body movements in playing the selected music on the piano. PMID:20025907

  3. Proteomic and Physiological Responses of Kineococcus radiotolerans to Copper

    SciTech Connect

    Bagwell, Christopher E.; Hixson, Kim K.; Milliken, Charles E.; Lopez-Ferrer, Daniel; Weitz, Karl K.

    2010-08-26

    Copper is a highly reactive, toxic metal whose transport into the cell is tightly regulated. Kineococcus radiotolerans was previously shown to specifically accumulate soluble copper in the cytoplasm and cell growth was significantly enhanced by copper during chronic irradiation. This study provides a systematic investigation of copper accumulation, toxicity, and homeostasis in K. radiotolerans through combined physiological experimentation and quantitative shot-gun proteomics. Aerobic growth rates and biomass yields were similar over a range of Cu(II) concentrations, though intracellular metal accumulation was positively correlated with Cu(II) concentration in the growth medium (R2 = 0.7). Global proteomics analysis revealed a significant positive correlation between the total number of response proteins and their abundance with copper concentration and culture age. Approximately 40% of the K. radiotolerans genome was differentially expressed in response to the copper treatments imposed. Copper accumulation coincided with increased abundance of proteins involved in oxidative stress and defense, DNA stabilization and repair, and protein turnover. Concomitant production of antioxidants and protective osmolytes signifies an important adaptation for maintenance of cellular redox; few known metal binding proteins were detected. This study offers a first glimpse into the complexity of coordinated biochemical response pathways in K. radiotolerans invoked by sub-lethal copper concentrations that may be pertinent for new biotechnologies in metal recovery and sequestration, and environmental restoration.

  4. Thermal stress and the physiological response to environmental toxicants.

    PubMed

    Gordon, Christopher J; Leon, Lisa R

    2005-01-01

    Most toxicological and pharmacological studies are performed in laboratory animals maintained under comfortable environmental conditions. Yet, the exposure to environmental toxicants as well as many drugs can occur under stressful environmental conditions during rest or while exercising. The intake and biological efficacy of many toxicants is exacerbated by exposure to heat stress, which can occur in several ways. The increase in pulmonary ventilation during exposure to hot environments results in an increase in the uptake of airborne toxicants. Furthermore, the transcutaneous absorption of pesticides on the skin as well as drugs delivered by skin patches is increased during heat stress because of the combined elevation in skin blood flow coupled with moist skin from sweat. The thermoregulatory response to toxicant exposure, such as hypothermia in relatively small rodents and fever in humans, also modulates the physiological response to most chemical agents. This paper endeavors to review the issue of environmental heat stress and exercise and how they influence thermoregulatory and related pathophysiological responses to environmental toxicants, as well as exposure to drugs. PMID:16422347

  5. Characterization of the physiological stress response in lingcod

    USGS Publications Warehouse

    Milston, R.H.; Davis, M.W.; Parker, S.J.; Olla, B.L.; Clements, S.; Schreck, C.B.

    2006-01-01

    The goal of this study was to describe the duration and magnitude of the physiological stress response in lingcod Ophiodon elongatus after exposure to brief handling and sublethal air stressors. The response to these stressors was determined during a 24-h recovery period by measuring concentrations of plasma cortisol, lactate, glucose, sodium, and potassium. Lingcod were subjected to brief handling followed by either a 15-min or a 45-min air stressor in the laboratory. After the 15-min stressor, an increase in cortisol or glucose could not be detected until after 5 min of recovery. Peak concentrations were measured after 30 min for cortisol and after 60 min for glucose and lactate. Glucose and lactate had returned to basal levels after 12 h, whereas cortisol did not return to basal levels until after 24 h of recovery. Immediately following a 45-min air stressor, all measured parameters were significantly elevated over levels in prestressor control fish. Cortisol concentrations tended to increase and reached a measured peak after 8 h of recovery, whereas glucose and lactate reached a measured peak after 1 h of recovery. Cortisol and lactate returned to basal levels within 24 h. Glucose, however, remained elevated even after 24 h of recovery. Plasma ions initially increased during the first hour of recovery, and the concentrations then declined to a level below that measured in control fish for the remainder of the 24-h recovery period. In addition, we evaluated the effect of fish size on the stress response. There was no significant difference between the stress response of smaller (41-49-cm [total length] and larger (50-67-cm) lingcod after 45 min air exposure. In general, both the magnitude and duration of the primary and secondary stress responses in lingcod are comparable to those of salmonids. ?? Copyright by the American Fisheries Society 2006.

  6. Acute transient non-physiological over-sensing in the ventricle with a DF4 lead

    PubMed Central

    Ng, Kevin Kit; Gould, Paul A.

    2015-01-01

    The DF-4 is a new defibrillator lead technology. We present two cases of non-physiological transient ventricular over-sensing in patients who underwent implantation of an ICD for secondary prevention. Case 1 had ventricular over-sensing during pacing threshold evaluation post defibrillation testing while Case 2 had the lead integrity alert triggered immediately post discharge with transient over-sensing. No lead-connector issues were found. Case 1 was likely due to improper venting of the header and trapped air. Case 2 was hypothesized to be due to intermittent header pin non-contact secondary to blood in the header. These cases reveal that DF-4 leads are subject to both reported and potentially novel causes of transient acute ventricular over-sensing. PMID:26937124

  7. Physiological responses of mules on prolonged exposure to high altitude (3 650 m)

    NASA Astrophysics Data System (ADS)

    Riar, S. S.; Shankar Bhat, K.; Sen Gupta, J.

    1982-06-01

    Eight healthy male animals were inducted and kept for 2 1/2 years at 3 650 m altitude and subjected to normal work schedules. Physiological measurements viz. heart rate, blood pressure, minute ventilation, oxygen consumption, respiration rate, hemoglobin, packed cell haematocrit volume and eosinophil count were made on these animals at periodic intervals. On acute induction to an altitude of 3 650 m these animals demonstrated a sudden increase in tidal volume, a decrease in Rf and no change in VE, suggesting a decreased dead space/tidal volume ratio at altitude. However, all these changes stabilised within 3 weeks but on prolongation of stay, the physical state of these animals was adversely affected. The respiratory adjustments occurring on return to sea level appear to be a response to thermal stress. The initial increase in heart rate and blood pressure stabilised by the 2nd week.

  8. Oral administration of Cimicifuga racemosa extract attenuates psychological and physiological stress responses.

    PubMed

    Nadaoka, Isao; Yasue, Masaaki; Kitagawa, Yasushi; Koga, Yoshihiko

    2012-06-01

    Dried rhizomes of Cimicifuga racemosa (CR), which are known as black cohosh, have been widely used as herbal dietary supplements to treat menopausal symptoms. The present study examined the effect of CR extracts on human psychological and physiological responses to acute stress induced by mental arithmetic tests, by measuring the subjective stress intensity, the brain-wave patterns according to electroencephalography, and the concentrations of salivary chromogranin-A and cortisol. The experiments were performed double-blind and their order was counterbalanced. Treatment with CR significantly attenuated the elevated subjective perception of stress and the increased salivary chromogranin-A levels compared with placebo treatment. CR extract also rapidly recovered the decrease in alpha waveband induced by performing the mental arithmetic task. We therefore propose that CR extracts might be suitable for the prevention and treatment of stress-related disorders. PMID:22790213

  9. Physiological limitation at alpine treeline: relationships of threshold responses of conifers to their establishment patterns

    NASA Astrophysics Data System (ADS)

    Germino, M. J.; Lazarus, B.; Castanha, C.; Moyes, A. B.; Kueppers, L. M.

    2014-12-01

    An understanding of physiological limitations to tree establishment at alpine treeline form the basis for predicting how this climate-driven boundary will respond to climate shifts. Most research on this topic has focused on limitations related to carbon balance and growth of trees. Carbon balance could limit survival and establishment primarily through slow-acting, chronic means. We asked whether tree survival and thus establishment patterns reflect control by chronic effects in comparison to acute, threshold responses, such as survival of frost events. Seedling survivorship patterns were compared to thresholds in freezing (temperature causing leaf freezing, or freezing point, FP; and physiological response to freezing) and water status (turgor loss point, TLP; and related physiological adjustments). Subject seedlings were from forest, treeline, and alpine sites in the Alpine Treeline Warming Experiment in Colorado, and included limber and lodgepole pine (a low-elevation species), and Engelmann Spruce. Preliminary results show survival increases with seedling age, but the only corresponding increase in stress acclimation was photosynthetic resistance to freezing and TLP, not FP. Differences in survivorship among the species were not consistent with variation in FP but they generally agreed with variation in photosynthetic resistance to deep freezing and to early-season drought avoidance. Mortality of limber pine increased 35% when minimum temperatures decreased below -9C, which compares with FPs of >-8.6C, and about 1/3 of its mortality occurred during cold/wet events, particularly in the alpine. The other major correlate of mortality is midsummer drying events, as previously reported. Also in limber pine, the TLP for year-old seedlings (-2.5 MPa) corresponded with seasonal-drought mortality. In summary, we show several examples of correspondence in physiological thresholds to mortality events within a species, although the relationships are not strong. Across

  10. Energy expenditure and physiological responses during indoor rock climbing.

    PubMed Central

    Mermier, C M; Robergs, R A; McMinn, S M; Heyward, V H

    1997-01-01

    OBJECTIVES: To report the physiological responses of indoor rock climbing. METHODS: Fourteen experienced climbers (nine men, five women) performed three climbing trials on an indoor climbing wall. Subjects performed three trials of increasing difficulty: (a) an easy 90 degrees vertical wall, (b) a moderately difficult negatively angled wall (106 degrees), and (c) a difficult horizontal overhang (151 degrees). At least 15 minutes separated each trial. Expired air was collected in a Douglas bag after four minutes of climbing and heart rate (HR) was recorded continuously using a telemetry unit. Arterialised blood samples were obtained from a hyperaemised ear lobe at rest and one or two minutes after each trial for measurement of blood lactate. RESULTS: Significant differences were found between trials for HR, lactate, oxygen consumption (VO2), and energy expenditure, but not for respiratory exchange ratio. Analysis of the HR and VO2 responses indicated that rock climbing does not elicit the traditional linear HR-VO2 relationship characteristic of treadmill and cycle ergometry exercise. During the three trials, HR increased to 74-85% of predicted maximal values and energy expenditure was similar to that reported for running at a moderate pace (8-11 minutes per mile). CONCLUSIONS: These data indicate that indoor rock climbing is a good activity to increase cardiorespiratory fitness and muscular endurance. In addition, the traditional HR-VO2 relationship should not be used in the analysis of this sport, or for prescribing exercise intensity for climbing. PMID:9298558

  11. Physiological and perceptual responses to Latin partnered social dance.

    PubMed

    Domene, Pablo A; Moir, Hannah J; Pummell, Elizabeth; Easton, Chris

    2014-10-01

    The purpose of this study was to investigate the physiological and perceptual responses to Latin partnered social dance to salsa music when performed as a self-selected activity within an ecologically valid setting. Eighteen non-professional adult Latin dancers undertook a laboratory-based graded exercise test for determination of maximal oxygen uptake and maximal heart rate. The dancers then attended two Latin partnered social dance sessions in established salsa venues in London, UK over a 2 wk period. Physiological data were collected using a wrist-worn ActiGraph wGT3X+ accelerometer with accompanying heart rate monitor. Perceived benefits of dance were assessed via the Exercise Benefits/Barriers Scale, and measurement of state intrinsic motivation during dance was undertaken using the Intrinsic Motivation Inventory. Total step count during 2h of dance was not different (t16 = -.39, p = .71) between females and males (9643 ± 1735 step); however, women expended a significantly lower (t16 = -2.57, p < .05) total energy expenditure when compared to men (479 ± 125 versus 651 ± 159 kcal). Dancers of both genders considered interest-enjoyment to be the motivator of primary importance. The highest rated perceived benefit of dance was psychological outlook. Latin partnered social dance to salsa music demands moderate to vigorous physical activity intensity levels, and further, fosters interest, enjoyment, and a positive psychological outlook among novice to advanced adult Latin dancers taking part primarily for leisure purposes. These findings may be of use for those interested in the efficacy of Latin social dancing as an expressive medium for the promotion of community health. PMID:25058624

  12. Ethephon induced abscission in mango: physiological fruitlet responses.

    PubMed

    Hagemann, Michael H; Winterhagen, Patrick; Hegele, Martin; Wünsche, Jens N

    2015-01-01

    Fruitlet abscission of mango is typically very severe, causing considerable production losses worldwide. Consequently, a detailed physiological and molecular characterization of fruitlet abscission in mango is required to describe the onset and time-dependent course of this process. To identify the underlying key mechanisms of abscission, ethephon, an ethylene releasing substance, was applied at two concentrations (600 and 7200 ppm) during the midseason drop stage of mango. The abscission process is triggered by ethylene diffusing to the abscission zone where it binds to specific receptors and thereby activating several key physiological responses at the cellular level. The treatments reduced significantly the capacity of polar auxin transport through the pedicel at 1 day after treatment and thereafter when compared to untreated pedicels. The transcript levels of the ethylene receptor genes MiETR1 and MiERS1 were significantly upregulated in the pedicel and pericarp at 1, 2, and 3 days after the ethephon application with 7200 ppm, except for MiETR1 in the pedicel, when compared to untreated fruitlet. In contrast, ethephon applications with 600 ppm did not affect expression levels of MiETR1 in the pedicel and of MiERS1 in the pericarp; however, MiETR1 in the pericarp at day 2 and MiERS1 in the pedicel at days 2 and 3 were significantly upregulated over the controls. Moreover, two novel short versions of the MiERS1 were identified and detected more often in the pedicel of treated than untreated fruitlets at all sampling times. Sucrose concentration in the fruitlet pericarp was significantly reduced to the control at 2 days after both ethephon treatments. In conclusion, it is postulated that the ethephon-induced abscission process commences with a reduction of the polar auxin transport capacity in the pedicel, followed by an upregulation of ethylene receptors and finally a decrease of the sucrose concentration in the fruitlets. PMID:26442021

  13. Ethephon induced abscission in mango: physiological fruitlet responses

    PubMed Central

    Hagemann, Michael H.; Winterhagen, Patrick; Hegele, Martin; Wünsche, Jens N.

    2015-01-01

    Fruitlet abscission of mango is typically very severe, causing considerable production losses worldwide. Consequently, a detailed physiological and molecular characterization of fruitlet abscission in mango is required to describe the onset and time-dependent course of this process. To identify the underlying key mechanisms of abscission, ethephon, an ethylene releasing substance, was applied at two concentrations (600 and 7200 ppm) during the midseason drop stage of mango. The abscission process is triggered by ethylene diffusing to the abscission zone where it binds to specific receptors and thereby activating several key physiological responses at the cellular level. The treatments reduced significantly the capacity of polar auxin transport through the pedicel at 1 day after treatment and thereafter when compared to untreated pedicels. The transcript levels of the ethylene receptor genes MiETR1 and MiERS1 were significantly upregulated in the pedicel and pericarp at 1, 2, and 3 days after the ethephon application with 7200 ppm, except for MiETR1 in the pedicel, when compared to untreated fruitlet. In contrast, ethephon applications with 600 ppm did not affect expression levels of MiETR1 in the pedicel and of MiERS1 in the pericarp; however, MiETR1 in the pericarp at day 2 and MiERS1 in the pedicel at days 2 and 3 were significantly upregulated over the controls. Moreover, two novel short versions of the MiERS1 were identified and detected more often in the pedicel of treated than untreated fruitlets at all sampling times. Sucrose concentration in the fruitlet pericarp was significantly reduced to the control at 2 days after both ethephon treatments. In conclusion, it is postulated that the ethephon-induced abscission process commences with a reduction of the polar auxin transport capacity in the pedicel, followed by an upregulation of ethylene receptors and finally a decrease of the sucrose concentration in the fruitlets. PMID:26442021

  14. Acute salivary hormone responses to complex exercise bouts.

    PubMed

    Beaven, C Martyn; Gill, Nicholas D; Ingram, John R; Hopkins, Will G

    2011-04-01

    The combination of resistance and plyometric training, or complex training, may yield greater functional gains than either method alone. As steroid hormones respond to exercise stimuli and modulate the functional outcomes, it is possible that complex training creates an enhanced anabolic physiological milieu for adaptation. We investigated acute responses of salivary testosterone and cortisol to complex exercise bouts. After a standardized warm-up, 16 semiprofessional rugby players performed 1 of 4 exercise bouts in a cross-over manner: power-power; power-strength; strength-power; or strength-strength. Each player completed each of the 4 bouts twice over a 4-week period in a balanced random order such that each player performed a total of 8 bouts. The power block consisted of 3 sets of 3 repetitions of jump squat exercise at 50% of 1-repetition maximum load. The strength block consisted of three sets of three repetitions of box squat exercise at a 3-repetition maximum load. There were 3-minute rest periods between sets and 4-minute rest periods between exercise blocks. Saliva was sampled before, during, and immediately after the exercise bout. The greatest overall hormonal responses were a small increase in testosterone (13%; 90% confidence limits ± 7%) and a trivial increase in cortisol (27%; ± 30%) after the strength-power bout. A clear difference was observed between the strength-power and the power-power bouts immediately after exercise for testosterone (10%; ± 8%) and cortisol (29%; ± 17%). The preceding exercise block had little effect on subsequent strength and power performance. The hormonal response after the strength-power bout suggests that this exercise sequence provides an enhanced anabolic milieu for adaptation. PMID:20703172

  15. The effect of feeding endophyte-infected fescue on the acute phase response to lipopolysaccharide in beef heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Angus heifers (n = 22; 292 ± 9.0 kg body weight) were paired by body weight and randomly placed on either an endophyte-infected (E+) or endophyte-free (E-) diet for 10 days to determine the influence of feeding endophyte-infected fescue on the physiological and acute phase responses of beef heifers ...

  16. Rapid cooling after acute hyperthermia alters intestinal tissue morphology and increases the systemic inflammatory response in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acute hyperthermia can result in mortality if recovery is not appropriately managed. The study objective was to determine the effects of heatstroke recovery methods on the physiological response in pigs. In four repetitions, 36 male pigs (88.7 ± 1.6 kg BW) were exposed to thermoneutral conditions (T...

  17. Inhalation of diethylamine--acute nasal effects and subjective response

    SciTech Connect

    Lundqvist, G.R.; Yamagiwa, M.; Pedersen, O.F.; Nielsen, G.D. )

    1992-03-01

    Adult volunteers were exposed to 25 ppm (75 mg/m3) diethylamine in a climate chamber for 15 min in order to study the acute nasal reactions to an exposure equivalent to the present threshold limit value-short-term exposure limit. Changes in nasal volume and nasal resistance were measured by acoustic rhinometry and by rhinomanometry. Acute change in nasal volume, usually seen as acute nasal mucosa response to thermal stimuli, was not observed, nor was an acute change in nasal airway resistance. In a subsequent experiment, the aim was to measure acute sensory effects. Exposure to a concentration increasing from 0 to 12 ppm took place for 60 min, equal to an average concentration of 10 ppm (30 mg/m3). A moderate to strong olfactory response and distinct nasal and eye irritation were observed. In spite of considerable individual variation, the results were in agreement with sensory effect estimates obtained from animal studies.

  18. The central role of hypothalamic inflammation in the acute illness response and cachexia.

    PubMed

    Burfeind, Kevin G; Michaelis, Katherine A; Marks, Daniel L

    2016-06-01

    When challenged with a variety of inflammatory threats, multiple systems across the body undergo physiological responses to promote defense and survival. The constellation of fever, anorexia, and fatigue is known as the acute illness response, and represents an adaptive behavioral and physiological reaction to stimuli such as infection. On the other end of the spectrum, cachexia is a deadly and clinically challenging syndrome involving anorexia, fatigue, and muscle wasting. Both of these processes are governed by inflammatory mediators including cytokines, chemokines, and immune cells. Though the effects of cachexia can be partially explained by direct effects of disease processes on wasting tissues, a growing body of evidence shows the central nervous system (CNS) also plays an essential mechanistic role in cachexia. In the context of inflammatory stress, the hypothalamus integrates signals from peripheral systems, which it translates into neuroendocrine perturbations, altered neuronal signaling, and global metabolic derangements. Therefore, we will discuss how hypothalamic inflammation is an essential driver of both the acute illness response and cachexia, and why this organ is uniquely equipped to generate and maintain chronic inflammation. First, we will focus on the role of the hypothalamus in acute responses to dietary and infectious stimuli. Next, we will discuss the role of cytokines in driving homeostatic disequilibrium, resulting in muscle wasting, anorexia, and weight loss. Finally, we will address mechanisms and mediators of chronic hypothalamic inflammation, including endothelial cells, chemokines, and peripheral leukocytes. PMID:26541482

  19. Influence of acute normobaric hypoxia on physiological variables and lactate turn point determination in trained men.

    PubMed

    Ofner, Michael; Wonisch, Manfred; Frei, Mario; Tschakert, Gerhard; Domej, Wolfgang; Kröpfl, Julia M; Hofmann, Peter

    2014-12-01

    The goal of this study is to evaluate the response of physiological variables to acute normobaric hypoxia compared to normoxia and its influence on the lactate turn point determination according to the three-phase model of energy supply (Phase I: metabolically balanced at muscular level; Phase II: metabolically balanced at systemic level; Phase III: not metabolically balanced) during maximal incremental exercise. Ten physically active (VO2max 3.9 [0.49] l·min(-1)), healthy men (mean age [SD]: 25.3 [4.6] yrs.), participated in the study. All participants performed two maximal cycle ergometric exercise tests under normoxic as well as hypoxic conditions (FiO2 = 14%). Blood lactate concentration, heart rate, gas exchange data, and power output at maximum and the first and the second lactate turn point (LTP1, LTP2), the heart rate turn point (HRTP) and the first and the second ventilatory turn point (VETP1, VETP2) were determined. Since in normobaric hypoxia absolute power output (P) was reduced at all reference points (max: 314 / 274 W; LTP2: 218 / 184 W; LTP1: 110 / 96 W), as well as VO2max (max: 3.90 / 3.23 l·min(-1); LTP2: 2.90 / 2.43 l·min(-1); LTP1: 1.66 / 1.52 l·min(-1)), percentages of Pmax at LTP1, LTP2, HRTP and VETP1, VETP2 were almost identical for hypoxic as well as normoxic conditions. Heart rate was significantly reduced at Pmax in hypoxia (max: 190 / 185 bpm), but no significant differences were found at submaximal control points. Blood lactate concentration was not different at maximum, and all reference points in both conditions. Respiratory exchange ratio (RER) (max: 1.28 / 1.08; LTP2: 1.13 / 0.98) and ventilatory equivalents for O2 (max: 43.4 / 34.0; LTP2: 32.1 / 25.4) and CO2 (max: 34.1 / 31.6; LTP2: 29.1 / 26.1) were significantly higher at some reference points in hypoxia. Significant correlations were found between LTP1 and VETP1 (r = 0.778; p < 0.01), LTP2 and HRTP (r = 0.828; p < 0.01) and VETP2 (r = 0.948; p < 0.01) for power output for

  20. Acute Glucose Response Properties Beyond Feeding.

    PubMed

    Burnett, C Joseph; Krashes, Michael J

    2016-05-01

    Hypothalamic AgRP neurons potently coordinate feeding behavior to ensure an organism's viability. However, their acute role in glucose-regulatory function remains to be addressed. Steculorum et al. now report that activation of a specific set of AgRP neurons results in an impairment of insulin-stimulated glucose uptake in brown fat through a myogenic signature program. PMID:27052261

  1. Physiological responses in potato plants under continuous irradiation

    NASA Technical Reports Server (NTRS)

    Cao, W.; Tibbitts, T. W.

    1991-01-01

    The physiological responses of four potato (Solanum tuberosum L.) cultivars to continuous irradiation were determined in a controlled environment. Under a constant 18C and a constant photoperiod of 470 micromoles s-1 m-2 of photosynthetic photon flux, 'Denali' and 'Haig' grew well and produced large plant and tuber dry weights when harvested 56 days after transplanting. 'Kennebec' and 'Superior' were severely stunted, producing only 10% of the plant dry matter produced by 'Denali' and 'Haig'. The differences in leaf chlorophyll concentration and stomatal conductance were not consistent between these two groups of cultivars. The leaf net CO2 assimilation rates in 'Kennebec' and 'Superior' were lower, and intercellular CO2 partial pressures were higher than in 'Denali' and 'Haig'. These results indicate that inhibition of net CO2 assimilation in 'Kennebec' and 'Superior' was not due to a limiting amount of chlorophyll or to CO2 in the leaf tissues. Concentrations of starch in leaflets of 'Kennebec' and 'Superior' plants were only 10% of those in 'Denali' and 'Haig' plants, although soluble sugar concentrations were similar in the four cultivars. Therefore, the lower net CO2 assimilation rates in stunted 'Kennebec' and 'Superior' plants were not associated with an excess carbohydrate accumulation in the leaves.

  2. Effect of pedalling rates on physiological response during endurance cycling.

    PubMed

    Lepers, R; Millet, G Y; Maffiuletti, N A; Hausswirth, C; Brisswalter, J

    2001-08-01

    This study was undertaken to examine the effect of different pedalling cadences upon various physiological responses during endurance cycling exercise. Eight well-trained triathletes cycled three times for 30 min each at an intensity corresponding to 80% of their maximal aerobic power output. The first test was performed at a freely chosen cadence (FCC); two others at FCC - 20% and FCC + 20%, which corresponded approximately to the range of cadences habitually used by road racing cyclists. The mean (SD) FCC, FCC - 20% and FCC + 20% were equal to 86 (4), 69 (3) and 103 (5) rpm respectively. Heart rate (HR), oxygen uptake (VO2), minute ventilation (VE) and respiratory exchange ratio (R) were analysed during three periods: between the 4th and 5th, 14th and 15th, and 29th and 30th min. A significant effect of time (P < 0.01) was found at the three cadences for HR, VO2. The VE and R were significantly (P < 0.05) greater at FCC + 20% compared to FCC - 20% at the 5th and 15th min but not at the 30th min. Nevertheless, no significant effect of cadence was observed in HR and VO2. These results suggest that, during high intensity exercise such as that encountered during a time-trial race, well-trained triathletes can easily adapt to the changes in cadence allowed by the classical gear ratios used in practice. PMID:11560096

  3. Melatonin modulates the fetal cardiovascular defense response to acute hypoxia.

    PubMed

    Thakor, Avnesh S; Allison, Beth J; Niu, Youguo; Botting, Kimberley J; Serón-Ferré, Maria; Herrera, Emilio A; Giussani, Dino A

    2015-08-01

    Experimental studies in animal models supporting protective effects on the fetus of melatonin in adverse pregnancy have prompted clinical trials in human pregnancy complicated by fetal growth restriction. However, the effects of melatonin on the fetal defense to acute hypoxia, such as that which may occur during labor, remain unknown. This translational study tested the hypothesis, in vivo, that melatonin modulates the fetal cardiometabolic defense responses to acute hypoxia in chronically instrumented late gestation fetal sheep via alterations in fetal nitric oxide (NO) bioavailability. Under anesthesia, 6 fetal sheep at 0.85 gestation were instrumented with vascular catheters and a Transonic flow probe around a femoral artery. Five days later, fetuses were exposed to acute hypoxia with or without melatonin treatment. Fetal blood was taken to determine blood gas and metabolic status and plasma catecholamine concentrations. Hypoxia during melatonin treatment was repeated during in vivo NO blockade with the NO clamp. This technique permits blockade of de novo synthesis of NO while compensating for the tonic production of the gas, thereby maintaining basal cardiovascular function. Melatonin suppressed the redistribution of blood flow away from peripheral circulations and the glycemic and plasma catecholamine responses to acute hypoxia. These are important components of the fetal brain sparing response to acute hypoxia. The effects of melatonin involved NO-dependent mechanisms as the responses were reverted by fetal treatment with the NO clamp. Melatonin modulates the in vivo fetal cardiometabolic responses to acute hypoxia by increasing NO bioavailability. PMID:25908097

  4. Melatonin modulates the fetal cardiovascular defense response to acute hypoxia

    PubMed Central

    Thakor, Avnesh S; Allison, Beth J; Niu, Youguo; Botting, Kimberley J; Serón-Ferré, Maria; Herrera, Emilio A; Giussani, Dino A

    2015-01-01

    Experimental studies in animal models supporting protective effects on the fetus of melatonin in adverse pregnancy have prompted clinical trials in human pregnancy complicated by fetal growth restriction. However, the effects of melatonin on the fetal defense to acute hypoxia, such as that which may occur during labor, remain unknown. This translational study tested the hypothesis, in vivo, that melatonin modulates the fetal cardiometabolic defense responses to acute hypoxia in chronically instrumented late gestation fetal sheep via alterations in fetal nitric oxide (NO) bioavailability. Under anesthesia, 6 fetal sheep at 0.85 gestation were instrumented with vascular catheters and a Transonic flow probe around a femoral artery. Five days later, fetuses were exposed to acute hypoxia with or without melatonin treatment. Fetal blood was taken to determine blood gas and metabolic status and plasma catecholamine concentrations. Hypoxia during melatonin treatment was repeated during in vivo NO blockade with the NO clamp. This technique permits blockade of de novo synthesis of NO while compensating for the tonic production of the gas, thereby maintaining basal cardiovascular function. Melatonin suppressed the redistribution of blood flow away from peripheral circulations and the glycemic and plasma catecholamine responses to acute hypoxia. These are important components of the fetal brain sparing response to acute hypoxia. The effects of melatonin involved NO-dependent mechanisms as the responses were reverted by fetal treatment with the NO clamp. Melatonin modulates the in vivo fetal cardiometabolic responses to acute hypoxia by increasing NO bioavailability. PMID:25908097

  5. Physiological and Perceived Exertion Responses during International Karate Kumite Competition

    PubMed Central

    Tabben, Montassar; Sioud, Rim; Haddad, Monoem; Franchini, Emerson; Chaouachi, Anis; Coquart, Jeremy; Chaabane, Helmi; Chamari, Karim; Tourny-Chollet, Claire

    2013-01-01

    Purpose Investigate the physiological responses and rating of perceived exertion (RPE) in elite karate athletes and examine the relationship between a subjective method (Session-RPE) and two objective heart-rate (HR)-based methods to quantify training-load (TL) during international karate competition. Methods Eleven karatekas took part in this study, but only data from seven athletes who completed three matches in an international tournament were used (four men and three women). The duration of combat was 3 min for men and 2 min for women, with 33.6±7.6 min for the first interval period (match 1–2) and 14.5±3.1 min for the second interval period (match 2–3). HR was continuously recorded during each combat. Blood lactate [La-] and (RPE) were measured just before the first match and immediately after each match. Results Means total fights time, HR, %HRmax, [La-], and session-RPE were 4.7±1.6 min, 182±9 bpm, 91±3%, 9.02±2.12 mmol.L-1 and 4.2±1.2, respectively. No significant differences in %HRmax, [La-], and RPE were noticed across combats. Significant correlations were observed between RPE and both resting HR (r=0.60; P=0.004) and mean HR (r=0.64; P=0.02), session-RPE and Banister training-impulse (TRIMP) (r=0.84; P<0.001) and Edwards TL (r=0.77; P<0.01). Conclusion International karate competition elicited near-maximal cardiovascular responses and high [La-]. Training should therefore include exercise bouts that sufficiently stimulate the zone between 90 and 100% HRmax. Karate coaches could use the RPE-method to follow competitor's competition loads and consider it in their technical and tactical training. PMID:24800001

  6. Human thermal physiological and psychological responses under different heating environments.

    PubMed

    Wang, Zhaojun; Ning, Haoran; Ji, Yuchen; Hou, Juan; He, Yanan

    2015-08-01

    Anecdotal evidence suggests that many residents of severely cold areas of China who use floor heating (FH) systems feel warmer but drier compared to those using radiant heating (RH) systems. However, this phenomenon has not been verified experimentally. In order to validate the empirical hypothesis, and research the differences of human physiological and psychological responses in these two asymmetrical heating environments, an experiment was designed to mimic FH and RH systems. The subjects participating in the experiment were volunteer college-students. During the experiment, the indoor air temperature, air speed, relative humidity, globe temperature, and inner surface temperatures were measured, and subjects' heart rate, blood pressure and skin temperatures were recorded. The subjects were required to fill in questionnaires about their thermal responses during testing. The results showed that the subjects' skin temperatures, heart rate and blood pressure were significantly affected by the type of heating environment. Ankle temperature had greatest impact on overall thermal comfort relative to other body parts, and a slightly cool FH condition was the most pleasurable environment for sedentary subjects. The overall thermal sensation, comfort and acceptability of FH were higher than that of RH. However, the subjects of FH felt drier than that of RH, although the relative humidity in FH environments was higher than that of the RH environment. In future environmental design, the thermal comfort of the ankles should be scrutinized, and a FH cool condition is recommended as the most comfortable thermal environment for office workers. Consequently, large amounts of heating energy could be saved in this area in the winter. The results of this study may lead to more efficient energy use for office or home heating systems. PMID:26267512

  7. Physiological response to submaximal isometric contractions of the paravertebral muscles

    NASA Technical Reports Server (NTRS)

    Jensen, B. R.; Jorgensen, K.; Hargens, A. R.; Nielsen, P. K.; Nicolaisen, T.

    1999-01-01

    STUDY DESIGN: Brief (30-second) isometric trunk extensions at 5%, 20%, 40%, 60%, and 80% of maximal voluntary contraction (MVC) and 3 minutes of prolonged trunk extension (20% MVC) in erect position were studied in nine healthy male subjects. OBJECTIVES: To investigate the intercorrelation between intramuscular pressure and tissue oxygenation of the paravertebral muscles during submaximal isometric contractions and further, to evaluate paravertebral electromyogram and intramuscular pressure as indicators of force development. SUMMARY OF BACKGROUND DATA: Local physiologic responses to muscle contraction are incompletely understood. METHODS: Relative oxygenation was monitored with noninvasive near-infrared spectroscopy, intramuscular pressure was measured with a transducer-tipped catheter, and surface electromyogram was monitored at three recording sites. RESULTS: The root mean square amplitudes of the paravertebral electromyogram (L4, left and right; T12, right) and intramuscular pressure measured in the lumbar multifidus muscle at L4 increased with greater force development in a curvilinear manner. A significant decrease in the oxygenation of the lumbar paravertebral muscle in response to muscle contraction was found at an initial contraction level of 20% MVC. This corresponded to a paravertebral intramuscular pressure of 30-40 mm Hg. However, during prolonged trunk extension, no further decrease in tissue oxygenation was found compared with the tissue oxygenation level at the end of the brief contractions, indicating that homeostatic adjustments (mean blood pressure and heart rate) over time were sufficient to maintain paravertebral muscle oxygen levels. CONCLUSION: At a threshold intramuscular pressure of 30-40 mm Hg during muscle contraction, oxygenation in the paravertebral muscles is significantly reduced. The effect of further increase in intramuscular pressure on tissue oxygenation over time may be compensated for by an increase in blood pressure and heart

  8. Physiologic Responses Produced by Active and Passive Personal Cooling Vests

    NASA Technical Reports Server (NTRS)

    Ku, Yu-Tsuan E.; Lee, Hank C.; Montgomery, Leslie D.; Luna, Bernadette

    2000-01-01

    Personal thermoregulatory systems which provide chest cooling are used in the industrial and aerospace environments to alleviate thermal stress. However, little information is available regarding the physiologic and circulatory changes produced by routine operation of these systems. The objectives of this study were to document and compare the subjects' response to three cooling vests in their recommended configurations. The Life Enhancement Tech (LET) lightweight active cooling vest with cap, the MicroClimate Systems Change of Phase garment (MCS), and the Steele Vest were each used to cool the chest regions of 12 male and 8 female Healthy subjects (21 to 69 yr.) in this study. The subjects, seated in an upright position at normal room temperature (approx. 22 C), were tested for 60 min. with one of the cooling garments. The LET active garment had an initial coolant fluid inlet temperature of 60 F, and was ramped down to 50 F. Oral, right and left ear canal temperatures were logged manually every 5 min. Arm, leg, chest and rectal temperatures; heart rate; and respiration were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. For men, all three vests had similar, significant cooling effects. Decreases in the average rectal temperature, oral temperature, and ear canal temperatures were approximately 0.2 C, 0.2 C and 0.1 C, respectively. In contrast to the men, the female subjects wearing the MCS and Steel vests had similar cooling responses in which the core temperature remained elevated and oral and ear canal temperatures did not drop. The LET active garment cooled most of the female subjects in this study; rectal, oral and ear temperature decreased about 0.2 C, 0.3 C and 0.3 C, respectively. These results show that the garment configurations tested do not elicit a similar thermal response in all subjects. A gender difference is evident. The LET active garment configuration was most effective in decreasing temperatures of the female subjects; the MCS

  9. Physiological responses to environmental factors related to space flight

    NASA Technical Reports Server (NTRS)

    Pace, N.

    1972-01-01

    The research is reported for establishing physiological base line data, and for developing procedures and instrumentation necessary for the automatic measurement of hemodynamic and metabolic parameters. The work in the following areas is discussed: biochemistry, bioinstrumentation, nutrition, physiology, experimental surgery, and animal colony.

  10. The Circulatory and Metabolic Responses to Hypoxia in Humans - With Special Reference to Adipose Tissue Physiology and Obesity.

    PubMed

    Heinonen, Ilkka H A; Boushel, Robert; Kalliokoski, Kari K

    2016-01-01

    Adipose tissue metabolism and circulation play an important role in human health. It is well-known that adipose tissue mass is increased in response to excess caloric intake leading to obesity and further to local hypoxia and inflammatory signaling. Acute exercise increases blood supply to adipose tissue and mobilization of fat stores for energy. However, acute exercise during systemic hypoxia reduces subcutaneous blood flow in healthy young subjects, but the response in overweight or obese subjects remains to be investigated. Emerging evidence also indicates that exercise training during hypoxic exposure may provide additive benefits with respect to many traditional cardiovascular risk factors as compared to exercise performed in normoxia, but unfavorable effects of hypoxia have also been documented. These topics will be covered in this brief review dealing with hypoxia and adipose tissue physiology. PMID:27621722

  11. The Circulatory and Metabolic Responses to Hypoxia in Humans – With Special Reference to Adipose Tissue Physiology and Obesity

    PubMed Central

    Heinonen, Ilkka H. A.; Boushel, Robert; Kalliokoski, Kari K.

    2016-01-01

    Adipose tissue metabolism and circulation play an important role in human health. It is well-known that adipose tissue mass is increased in response to excess caloric intake leading to obesity and further to local hypoxia and inflammatory signaling. Acute exercise increases blood supply to adipose tissue and mobilization of fat stores for energy. However, acute exercise during systemic hypoxia reduces subcutaneous blood flow in healthy young subjects, but the response in overweight or obese subjects remains to be investigated. Emerging evidence also indicates that exercise training during hypoxic exposure may provide additive benefits with respect to many traditional cardiovascular risk factors as compared to exercise performed in normoxia, but unfavorable effects of hypoxia have also been documented. These topics will be covered in this brief review dealing with hypoxia and adipose tissue physiology. PMID:27621722

  12. Stressed out? Associations between perceived and physiological stress responses in adolescents: the TRAILS study.

    PubMed

    Oldehinkel, Albertine J; Ormel, Johan; Bosch, Nienke M; Bouma, Esther M C; Van Roon, Arie M; Rosmalen, Judith G M; Riese, Harriëtte

    2011-04-01

    Studies regarding the interrelation of perceived and physiological stress indices have shown diverging results. Using a population sample of adolescents (N=715, 50.9% girls, mean age 16.11 years, SD=0.59), we tested three hypotheses: (1) perceived responses during social stress covary with concurrent physiological stress responses; (2) high pretest levels of perceived stress predict large physiological responses; and (3) large physiological responses to social stress predict low posttest perceived stress levels. Perceived arousal, unpleasantness, and dominance were related to heart rate, respiratory sinus arrhythmia, and cortisol responses to a laboratory social stress test. Although effect sizes were small, the results suggest covariation of perceived stress and concurrent physiological stress responses in both the ANS and the HPA axis, as well as inverse associations between heart rate responsiveness and the subsequent appraisal of stress. PMID:21361964

  13. Physiological and behavioral responses of horses during police training.

    PubMed

    Munsters, C C B M; Visser, E K; van den Broek, J; Sloet van Oldruitenborgh-Oosterbaan, M M

    2013-05-01

    Mounted police horses have to cope with challenging, unpredictable situations when on duty and it is essential to gain insight into how these horses handle stress to warrant their welfare. The aim of the study was to evaluate physiological and behavioral responses of 12 (six experienced and six inexperienced) police horses during police training. Horses were evaluated during four test settings at three time points over a 7-week period: outdoor track test, street track test, indoor arena test and smoke machine test. Heart rate (HR; beats/min), HR variability (HRV; root means square of successive differences; ms), behavior score (BS; scores 0 to 5) and standard police performance score (PPS; scores 1 to 0) were obtained per test. All data were statistically evaluated using a linear mixed model (Akaike's Information criterium; t > 2.00) or logistic regression (P < 0.05). HR of horses was increased at indoor arena test (98 ± 26) and smoke machine test (107 ± 25) compared with outdoor track (80 ± 12, t = 2.83 and t = 3.91, respectively) and street track tests (81 ± 14, t = 2.48 and t = 3.52, respectively). HRV of horses at the indoor arena test (42.4 ± 50.2) was significantly lower compared with street track test (85.7 ± 94.3 and t = 2.78). BS did not show significant differences between tests and HR of horses was not always correlated with the observed moderate behavioral responses. HR, HRV, PPS and BS did not differ between repetition of tests and there were no significant differences in any of the four tests between experienced and inexperienced horses. No habituation occurred during the test weeks, and experience as a police horse does not seem to be a key factor in how these horses handle stress. All horses showed only modest behavioral responses, and HR may provide complimentary information for individual evaluation and welfare assessment of these horses. Overall, little evidence of stress was observed during these police training tests. As three of these

  14. Physiological and psychological responses to outdoor vs. laboratory cycling.

    PubMed

    Mieras, Molly E; Heesch, Matthew W S; Slivka, Dustin R

    2014-08-01

    The purpose of this study was to determine the physiological and psychological responses to laboratory vs. outdoor cycling. Twelve recreationally trained male cyclists participated in an initial descriptive testing session and 2 experimental trials consisting of 1 laboratory and 1 outdoor session, in a randomized order. Participants were given a standardized statement instructing them to give the same perceived effort for both the laboratory and outdoor 40-km trials. Variables measured include power output, heart rate (HR), core temperature, skin temperature, body weight, urine specific gravity (USG), Rating of Perceived Exertion (RPE), attentional focus, and environmental conditions. Wind speed was higher in the outdoor trial than in the laboratory trial (2.5 ± 0.6 vs. 0.0 ± 0.0 m·s-1, p = 0.02) whereas all other environmental conditions were similar. Power output (208.1 ± 10.2 vs. 163.4 ± 11.8 W, respectively, p < 0.001) and HR (152 ± 4 and 143 ± 6 b·min-1, respectively, p = 0.04) were higher in the outdoor trial than in the laboratory trial. Core temperature was similar, whereas skin temperature was cooler during the outdoor trial than during the laboratory trial (31.4 ± 0.3 vs. 33.0 ± 0.2° C, respectively, p < 0.001), thus creating a larger thermal gradient between the core and skin outdoors. No significant differences in body weight, USG, RPE, or attentional focus were observed between trials. These data indicate that outdoor cycling allows cyclists to exercise at a higher intensity than in laboratory cycling, despite similar environmental conditions and perceived exertion. In light of this, cyclists may want to ride at a higher perceived exertion in indoor settings to acquire the same benefit as they would from an outdoor ride. PMID:24476776

  15. Evolution of physiological responses to salt stress in hexaploid wheat

    PubMed Central

    Yang, Chunwu; Zhao, Long; Zhang, Huakun; Yang, Zongze; Wang, Huan; Wen, Shanshan; Zhang, Chunyu; Rustgi, Sachin; von Wettstein, Diter; Liu, Bao

    2014-01-01

    Hexaploid bread wheat (Triticum aestivum L., genome BBAADD) is generally more salt tolerant than its tetraploid wheat progenitor (Triticum turgidum L.). However, little is known about the physiological basis of this trait or about the relative contributions of allohexaploidization and subsequent evolutionary genetic changes on the trait development. Here, we compared the salt tolerance of a synthetic allohexaploid wheat (neo-6x) with its tetraploid (T. turgidum; BBAA) and diploid (Aegilops tauschii; DD) parents, as well as a natural hexaploid bread wheat (nat-6x). We studied 92 morphophysiological traits and analyzed homeologous gene expression of a major salt-tolerance gene High-Affinity K+ Transporter 1;5 (HKT1;5). We observed that under salt stress, neo-6x exhibited higher fitness than both of its parental genotypes due to inheritance of favorable traits like higher germination rate from the 4x parent and the stronger root Na+ retention capacity from the 2x parent. Moreover, expression of the D-subgenome HKT1;5 homeolog, which is responsible for Na+ removal from the xylem vessels, showed an immediate transcriptional reprogramming following allohexaploidization, i.e., from constitutive high basal expression in Ae. tauschii (2x) to salt-induced expression in neo-6x. This phenomenon was also witnessed in the nat-6x. An integrated analysis of 92 traits showed that, under salt-stress conditions, neo-6x resembled more closely the 2x than the 4x parent, suggesting that the salt stress induces enhanced expressivity of the D-subgenome homeologs in the synthetic hexaploid wheat. Collectively, the results suggest that condition-dependent functionalization of the subgenomes might have contributed to the wide-ranging adaptability of natural hexaploid wheat. PMID:25074914

  16. Physiological responses of heat-stressed broilers fed nicarbazin.

    PubMed

    Beers, K W; Raup, T J; Bottje, W G; Odom, T W

    1989-03-01

    Two experiments were conducted to determine physiological responses in heat-stressed broilers fed a control diet or one containing 125 ppm Nicarbazin. Male birds were surgically implanted with a carotid catheter and fitted with a chest movement transducer and rectal probe. In Experiment 1, birds were exposed to an abrupt change from thermoneutral (22.5 C, 70% relative humidity [RH]) to heat stress (37 C and 40 to 50% RH) conditions within 10 min and maintained in this environment for 120 min. In Experiment 2, birds were exposed to a gradual change from thermoneutral to heat stress (38 C, 68% RH) conditions over 4 h and maintained in this environment for an additional 1 h. Heart rate (HR), respiration rate (RR), and body temperature (Tb) were monitored throughout each experiment, and arterial samples were obtained for determination of acid-base balance and lactate. Birds fed Nicarbazin had higher (P less than .05) Tb and lower (P less than .05) blood PCO2 and bicarbonate during heat stress than controls in both experiments. Thermal polypnea was observed in both experiments, but, although there were no treatment differences in Experiment 1, RR was lower (P less than .05) in the last hour of heat stress for Nicarbazin-fed birds in Experiment 2. In the second experiment, birds fed Nicarbazin exhibited higher (P less than .05) HR and blood lactate during heat stress than control-fed birds. The results of this study indicate that Nicarbazin, by an as yet unidentified mechanism, increases Tb in heat-stressed birds, which results in greater deviations in blood acid-base balance, blood lactate, and HR than in control-fed birds. PMID:2704700

  17. Physiological and psychological responses to a university fitness session.

    PubMed Central

    Grant, S; Armstrong, G; Sutherland, R; Wilson, J; Aitchison, T; Paul, E; Henderson, S

    1993-01-01

    The purpose of this study was to examine the physiological and psychological responses to a university fitness session entitled 'popmobility'. A popmobility session consists of 20 min of aerobic activities, 5 min of local muscular endurance exercises and 5 min of flexibility exercises. Ten regular participants of these sessions, women of mean(s.d.) age 21.2(1.5) years, took part in the study. A maximal oxygen uptake (VO2max) treadmill test was performed by each subject to obtain VO2max and maximum heart rate values. In a laboratory, heart rate and VO2 were measured throughout a popmobility session for each subject. Rate of perceived exertion (RPE) was measured every 5 min throughout the session. The mean intensity of the aerobic part of the session ranged from 67.7-82.6% of the subject's VO2max (mean of 76.4% VO2max). The mean heart rate reserve for the aerobic section was 75.6%. While the relative oxygen consumption remained fairly static during the aerobic section, the RPE score rose. The mean(s.d.) total energy expenditure was 236.6(28.4) kcal (range 203-288). The popmobility session is of adequate intensity to improve the aerobic fitness of its participants. Heart rate, as used as a measure of intensity during a popmobility session, would appear to be a fairly accurate indicator of intensity. However, the use of RPE for exercise prescription in popmobility sessions is inappropriate. Popmobility could also be useful in a weight-reduction programme. PMID:8242271

  18. Evolution of physiological responses to salt stress in hexaploid wheat.

    PubMed

    Yang, Chunwu; Zhao, Long; Zhang, Huakun; Yang, Zongze; Wang, Huan; Wen, Shanshan; Zhang, Chunyu; Rustgi, Sachin; von Wettstein, Diter; Liu, Bao

    2014-08-12

    Hexaploid bread wheat (Triticum aestivum L., genome BBAADD) is generally more salt tolerant than its tetraploid wheat progenitor (Triticum turgidum L.). However, little is known about the physiological basis of this trait or about the relative contributions of allohexaploidization and subsequent evolutionary genetic changes on the trait development. Here, we compared the salt tolerance of a synthetic allohexaploid wheat (neo-6x) with its tetraploid (T. turgidum; BBAA) and diploid (Aegilops tauschii; DD) parents, as well as a natural hexaploid bread wheat (nat-6x). We studied 92 morphophysiological traits and analyzed homeologous gene expression of a major salt-tolerance gene High-Affinity K(+) Transporter 1;5 (HKT1;5). We observed that under salt stress, neo-6x exhibited higher fitness than both of its parental genotypes due to inheritance of favorable traits like higher germination rate from the 4x parent and the stronger root Na(+) retention capacity from the 2x parent. Moreover, expression of the D-subgenome HKT1;5 homeolog, which is responsible for Na(+) removal from the xylem vessels, showed an immediate transcriptional reprogramming following allohexaploidization, i.e., from constitutive high basal expression in Ae. tauschii (2x) to salt-induced expression in neo-6x. This phenomenon was also witnessed in the nat-6x. An integrated analysis of 92 traits showed that, under salt-stress conditions, neo-6x resembled more closely the 2x than the 4x parent, suggesting that the salt stress induces enhanced expressivity of the D-subgenome homeologs in the synthetic hexaploid wheat. Collectively, the results suggest that condition-dependent functionalization of the subgenomes might have contributed to the wide-ranging adaptability of natural hexaploid wheat. PMID:25074914

  19. Physiological and psychological responses to a university fitness session.

    PubMed

    Grant, S; Armstrong, G; Sutherland, R; Wilson, J; Aitchison, T; Paul, E; Henderson, S

    1993-09-01

    The purpose of this study was to examine the physiological and psychological responses to a university fitness session entitled 'popmobility'. A popmobility session consists of 20 min of aerobic activities, 5 min of local muscular endurance exercises and 5 min of flexibility exercises. Ten regular participants of these sessions, women of mean(s.d.) age 21.2(1.5) years, took part in the study. A maximal oxygen uptake (VO2max) treadmill test was performed by each subject to obtain VO2max and maximum heart rate values. In a laboratory, heart rate and VO2 were measured throughout a popmobility session for each subject. Rate of perceived exertion (RPE) was measured every 5 min throughout the session. The mean intensity of the aerobic part of the session ranged from 67.7-82.6% of the subject's VO2max (mean of 76.4% VO2max). The mean heart rate reserve for the aerobic section was 75.6%. While the relative oxygen consumption remained fairly static during the aerobic section, the RPE score rose. The mean(s.d.) total energy expenditure was 236.6(28.4) kcal (range 203-288). The popmobility session is of adequate intensity to improve the aerobic fitness of its participants. Heart rate, as used as a measure of intensity during a popmobility session, would appear to be a fairly accurate indicator of intensity. However, the use of RPE for exercise prescription in popmobility sessions is inappropriate. Popmobility could also be useful in a weight-reduction programme. PMID:8242271

  20. Resistance Training: Physiological Responses and Adaptations (Part 2 of 4).

    ERIC Educational Resources Information Center

    Fleck, Stephen J.; Kraerner, William J.

    1988-01-01

    Resistance training causes a variety of physiological reactions, including changes in muscle size, connective tissue size, and bone mineral content. This article summarizes data from a variety of studies and research. (JL)

  1. Opioid activity in behavioral and heart rate responses of tethered pigs to acute stress.

    PubMed

    Loijens, L W S; Janssens, C J J G; Schouten, W G P; Wiegant, V M

    2002-04-15

    In a longitudinal experiment, effects of long-term tether housing on heart rate and behavioral responses to an acute stressor (a 15-min challenge with a nosesling) were investigated in pigs. The animals were challenged during loose housing and again after 10-11 weeks of tether housing. To detect possible changes in endogenous opioid systems modifying these responses, the pigs were pretreated with the opioid receptor antagonist naloxone (0.5 mg/kg body weight, iv). In response to the nosesling challenge, the animals showed pronounced resistance behavior and a sharp rise in heart rate. Following this initial phase of resistance, the heart rate dropped to prechallenge levels or below this line, and the pigs seemed to become sedated. Pretreatment with naloxone increased the heart rate response in animals that were long-term tether housed (n=12). No such effect was found in the control group (n=5) that was loose-housed during the entire experiment, indicating that the impact of endogenous opioid systems mitigating heart rate responses to acute stress had increased as a result of long-term tether housing. Changes in the effect of naloxone on the behavioral response were not found. Adaptive changes in opioid systems may prevent excessive physiological reactions to acute stress and, thus, may serve as a coping mechanism. PMID:12020727

  2. Examining the Attitudes and Physiological Responses Preservice Learners Have towards Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Gouvousis, Aphroditi; Heilmann, John; Golden, Jeanne; Kalinowski, Joseph; Hudson, Suzanne; Hough, Monica Strauss

    2010-01-01

    This study investigated attitudes and physiological responses demonstrated by preservice learners towards young children with autism spectrum disorders (ASD). The Self-Assessment Manikin (SAM) and two physiological measures (skin conductance and heart rate responses) were obtained. Four behaviors (two control and two problematic) depicting…

  3. Personality, emotion, and individual differences in physiological responses.

    PubMed

    Stemmler, Gerhard; Wacker, Jan

    2010-07-01

    A dominant paradigm in biopsychological personality research seeks to establish links between emotional and motivational traits and habitual, transsituationally consistent individual differences in measures of physiological activity. An alternative approach conceptualizes traits as dispositions that are only operative in certain situational contexts and consequently predicts associations between emotional and motivational traits and physiological activity only for trait-relevant situational contexts in which the physiological systems underlying the traits in question are engaged. In the present paper we first examine and contrast these personistic and interactionistic conceptualizations of personality and personality-physiology associations and then present data from several large studies (N>100) in which electrocortical (e.g., frontal alpha asymmetry) and somatovisceral parameters were measured in various situational contexts (e.g., after the induction of either anger, or fear, or anxiety). As predicted by the interactionistic conceptualization of traits as dispositions the situational context and its subjective representation by the participants moderated the personality-physiology relationships for measures of both central and peripheral nervous system activity. We conclude by outlining the implications of the interactionistic approach for biopsychological personality research. PMID:19800934

  4. Adaptive response of vascular endothelial cells to an acute increase in shear stress magnitude.

    PubMed

    Zhang, Ji; Friedman, Morton H

    2012-02-15

    The adaptation of vascular endothelial cells to shear stress alteration induced by global hemodynamic changes, such as those accompanying exercise or digestion, is an essential component of normal endothelial physiology in vivo. An understanding of the transient regulation of endothelial phenotype during adaptation to changes in mural shear will advance our understanding of endothelial biology and may yield new insights into the mechanism of atherogenesis. In this study, we characterized the adaptive response of arterial endothelial cells to an acute increase in shear stress magnitude in well-defined in vitro settings. Porcine endothelial cells were preconditioned by a basal level shear stress of 15 ± 15 dyn/cm(2) at 1 Hz for 24 h, after which an acute increase in shear stress to 30 ± 15 dyn/cm(2) was applied. Endothelial permeability nearly doubled after 40-min exposure to the elevated shear stress and then decreased gradually. Transcriptomics studies using microarray techniques identified 86 genes that were sensitive to the elevated shear. The acute increase in shear stress promoted the expression of a group of anti-inflammatory and antioxidative genes. The adaptive response of the global gene expression profile is triphasic, consisting of an induction period, an early adaptive response (ca. 45 min) and a late remodeling response. Our results suggest that endothelial cells exhibit a specific phenotype during the adaptive response to changes in shear stress; this phenotype is different than that of fully adapted endothelial cells. PMID:22140046

  5. Identification of molecular and physiological responses to chronic environmental challenge in an invasive species: the Pacific oyster, Crassostrea gigas

    PubMed Central

    Clark, Melody S; Thorne, Michael A S; Amaral, Ana; Vieira, Florbela; Batista, Frederico M; Reis, João; Power, Deborah M

    2013-01-01

    Understanding the environmental responses of an invasive species is critical in predicting how ecosystem composition may be transformed in the future, especially under climate change. In this study, Crassostrea gigas, a species well adapted to the highly variable intertidal environment, was exposed to the chronic environmental challenges of temperature (19 and 24°C) and pH (ambient seawater and a reduction of 0.4 pH units) in an extended 3-month laboratory-based study. Physiological parameters were measured (condition index, shell growth, respiration, excretion rates, O:N ratios, and ability to repair shell damage) alongside molecular analyses. Temperature was by far the most important stressor, as demonstrated by reduced condition indexes and shell growth at 24°C, with relatively little effect detected for pH. Transcriptional profiling using candidate genes and SOLiD sequencing of mantle tissue revealed that classical “stress” genes, previously reported to be upregulated under acute temperature challenges, were not significantly expressed in any of the treatments, emphasizing the different response between acute and longer term chronic stress. The transcriptional profiling also elaborated on the cellular responses underpinning the physiological results, including the identification of the PI3K/AKT/mTOR pathway as a potentially novel marker for chronic environmental challenge. This study represents a first attempt to understand the energetic consequences of cumulative thermal stress on the intertidal C. gigas which could significantly impact on coastal ecosystem biodiversity and function in the future. PMID:24223268

  6. INTERSUBJECT VARIABILITY IN HUMAN ACUTE OZONE RESPONSIVENESS

    EPA Science Inventory

    Individuals exposed to ozone experience a wide range in the magnitudes of lung function decrements and symptoms produced. hese intersubject differences in response are reproducible over periods of time of at least one year, suggesting that responsiveness to ozone is a characteris...

  7. Physiological genomics of abiotic stress responses in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) accessions from the U.S. mini-core collection were independently evaluated for heat and water-deficit stress tolerance using a battery of physiological assays including leaf-level gas exchange, chlorophyll fluorescence yield, membrane thermostability, leaf sugar content,...

  8. Mineral nutrition influences physiological responses of pear in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physiological disorders such as callus, shoot tip necrosis and hyperhydricity are some of the most difficult challenges in micropropagation and their causes are not well understood. A comprehensive medium optimization study to improve the growth of pear shoot cultures was also designed to determine ...

  9. Dissociable Behavioral, Physiological and Neural Effects of Acute Glucose and Fructose Ingestion: A Pilot Study

    PubMed Central

    Schmidt, André; Zimak, Nina; Peterli, Ralph; Beglinger, Christoph; Borgwardt, Stefan

    2015-01-01

    Previous research has revealed that glucose and fructose ingestion differentially modulate release of satiation hormones. Recent studies have begun to elucidate brain-gut interactions with neuroimaging approaches such as magnetic resonance imaging (MRI), but the neural mechanism underlying different behavioral and physiological effects of glucose and fructose are unclear. In this paper, we have used resting state functional MRI to explore whether acute glucose and fructose ingestion also induced dissociable effects in the neural system. Using a cross-over, double-blind, placebo-controlled design, we compared resting state functional connectivity (rsFC) strengths within the basal ganglia/limbic network in 12 healthy lean males. Each subject was administered fructose, glucose and placebo on three separate occasions. Subsequent correlation analysis was used to examine relations between rsFC findings and plasma concentrations of satiation hormones and subjective feelings of appetite. Glucose ingestion induced significantly greater elevations in plasma glucose, insulin, GLP-1 and GIP, while feelings of fullness increased and prospective food consumption decreased relative to fructose. Furthermore, glucose increased rsFC of the left caudatus and putamen, precuneus and lingual gyrus more than fructose, whereas within the basal ganglia/limbic network, fructose increased rsFC of the left amygdala, left hippocampus, right parahippocampus, orbitofrontal cortex and precentral gyrus more than glucose. Moreover, compared to fructose, the increased rsFC after glucose positively correlated with the glucose-induced increase in insulin. Our findings suggest that glucose and fructose induce dissociable effects on rsFC within the basal ganglia/limbic network, which are probably mediated by different insulin levels. A larger study would be recommended in order to confirm these findings. PMID:26107810

  10. Physiology of acute silver toxicity in the starry flounder (Platichthys stellatus) in seawater.

    PubMed

    Hogstrand, C; Ferguson, E A; Galvez, F; Shaw, J R; Webb, N A; Wood, C M

    1999-10-01

    Physiological effects of exposure to silver (AgClnn-1; 250 micrograms Ag l-1 or 1000 micrograms Ag l-1) in seawater fish were investigated using adult starry flounders. While all fish survived up to 10 days in 250 micrograms Ag l-1, flounders started to die after day 4 in 1000 micrograms l-1. Dose-dependent increases in plasma and hepatic silver concentrations showed that silver was available for uptake. There were minimal negative effects on hematological parameters, acid-base status, and blood gases. Plasma ammonia showed a pronounced (three- to four-fold), but transient increase in flounders exposed to either 250 micrograms Ag l-1 or 1000 micrograms Ag l-1. Whole body ammonia and acid equivalent efflux measurements indicated that ammonia retention was due to a combination of stimulated production and inhibited excretion. In the 1000-microgram Ag l-1 group there was a similar transient increase in plasma [magnesium], which was restored by day 4. In contrast, plasma chloride and sodium levels increased gradually towards the point when fish began to die. At 250 micrograms Ag l-1, the Na+/K(+)-ATPase activity of the intestine was unaffected but there was a two-fold increase in branchial Na+/K(+)-ATPase activity. The latter effect was interpreted as compensation for an elevated chloride and sodium load. The increases in plasma chloride and sodium concentrations were accompanied by a marked suppression of drinking, thereby indicating that acute silver toxicity was likely caused by a combination of elevated electrolyte concentrations and dehydration. PMID:10595315

  11. [Enteroviruses responsible for acute hemorrhagic conjunctivitis].

    PubMed

    Lévêque, N; Huguet, P; Norder, H; Chomel, J-J

    2010-04-01

    Acute hemorrhagic conjunctivitis (AHC) is an epidemic form of highly contagious conjunctivitis, characterized by conjunctival hemorrhages. The first AHC outbreak was described in 1969 in Ghana, West Africa, and was called Apollo disease, from the Apollo landing on the moon. This outbreak was caused by Enterovirus 70 (EV70) together with a Coxsackievirus A24 (CVA24v) variant, which are the major etiological agents involved in AHC outbreaks worldwide. AHC is known to be directly transmitted by close person-to-person contact or indirectly through soiled ophthalmological materials or unsafe recreational water. Recently, a possible airborne virus spread was suggested which could explain the high transmission rate of the disease. In the absence of a specific antiviral therapy, a rapid diagnosis of the causative agent is required to distinguish AHC due to enteroviruses from other ocular infectious diseases, for there are active drugs, or to quickly implement proper public health measures to limit the extension of the outbreak. However, virus identification remains difficult and time-consuming. Moreover, virological diagnosis is difficult to implement in developing countries where AHC has recently become a major problem for public health. PMID:19836177

  12. Psychological and physiological responses during an exam and their relation to personality characteristics.

    PubMed

    Spangler, G

    1997-08-01

    The aim of the study was to compare emotional and physiological responses to real and control examinations and to assess their relation to personality characteristics. Emotional responses were assessed by state anxiety and perceived stress. The assessment of physiological responses included the activity of the cardiac system (heart periods, vagal tone), the adrenocortical system (cortisol) and the immune system (immune globulin A, sIgA). Emotional and physiological responses of 23 students (12 males, 11 females) were assessed during an oral exam at the end of a basic course in psychology which was a prerequisite for the students' final exams. For the control condition physiological responses were assessed one week before the examination during a memory test. The findings of the study demonstrate different emotional and physiological response patterns to examinations as compared to the control condition. Heightened anxiety was observed only before the exam. Whereas within-situation physiological responses (higher heart periods, cortisol, and sIgA; lower vagal tone) were observed both under the exam and control condition, responses to exam condition indicated pre-exam anticipatory activation and post-exam restricted recovery responses. With regard to personality characteristics subjects with high ego-resiliency showed more flexible adaptation than subjects with low ego-resiliency both on the emotional level (anxiety down-regulation after exam) and on the physiological level (situation-specific responses, quick recovery). Subjects with high ego-control exhibited a lower physiological reactivity under both conditions, i.e. they seemed to maintain longer their control also on a physiological level independent of the type of situation. PMID:9364621

  13. Cognitive and physiological responses in humans exposed to a TETRA base station signal in relation to perceived electromagnetic hypersensitivity.

    PubMed

    Wallace, Denise; Eltiti, Stacy; Ridgewell, Anna; Garner, Kelly; Russo, Riccardo; Sepulveda, Francisco; Walker, Stuart; Quinlan, Terence; Dudley, Sandra; Maung, Sithu; Deeble, Roger; Fox, Elaine

    2012-01-01

    Terrestrial Trunked Radio (TETRA) technology ("Airwave") has led to public concern because of its potential interference with electrical activity in the brain. The present study is the first to examine whether acute exposure to a TETRA base station signal has an impact on cognitive functioning and physiological responses. Participants were exposed to a 420 MHz TETRA signal at a power flux density of 10 mW/m(2) as well as sham (no signal) under double-blind conditions. Fifty-one people who reported a perceived sensitivity to electromagnetic fields as well as 132 controls participated in a double-blind provocation study. Forty-eight sensitive and 132 control participants completed all three sessions. Measures of short-term memory, working memory, and attention were administered while physiological responses (blood volume pulse, heart rate, skin conductance) were monitored. After applying exclusion criteria based on task performance for each aforementioned cognitive measure, data were analyzed for 36, 43, and 48 sensitive participants for these respective tasks and, likewise, 107,125, and 129 controls. We observed no differences in cognitive performance between sham and TETRA exposure in either group; physiological response also did not differ between the exposure conditions. These findings are similar to previous double-blind studies with other mobile phone signals (900-2100 MHz), which could not establish any clear evidence that mobile phone signals affect health or cognitive function. PMID:21647932

  14. Ape Conservation Physiology: Fecal Glucocorticoid Responses in Wild Pongo pygmaeus morio following Human Visitation

    PubMed Central

    Muehlenbein, Michael P.; Ancrenaz, Marc; Sakong, Rosman; Ambu, Laurentius; Prall, Sean; Fuller, Grace; Raghanti, Mary Ann

    2012-01-01

    Nature-based tourism can generate important revenue to support conservation of biodiversity. However, constant exposure to tourists and subsequent chronic activation of stress responses can produce pathological effects, including impaired cognition, growth, reproduction, and immunity in the same animals we are interested in protecting. Utilizing fecal samples (N = 53) from 2 wild habituated orangutans (Pongo pygmaeus morio) (in addition to 26 fecal samples from 4 wild unhabituated orangutans) in the Lower Kinabatangan Wildlife Sanctuary of Sabah, Malaysian Borneo, we predicted that i) fecal glucocorticoid metabolite concentrations would be elevated on the day after tourist visitation (indicative of normal stress response to exposure to tourists on the previous day) compared to samples taken before or during tourist visitation in wild, habituated orangutans, and ii) that samples collected from habituated animals would have lower fecal glucocorticoid metabolites than unhabituated animals not used for tourism. Among the habituated animals used for tourism, fecal glucocorticoid metabolite levels were significantly elevated in samples collected the day after tourist visitation (indicative of elevated cortisol production on the previous day during tourist visitation). Fecal glucocorticoid metabolite levels were also lower in the habituated animals compared to their age-matched unhabituated counterparts. We conclude that the habituated animals used for this singular ecotourism project are not chronically stressed, unlike other species/populations with documented permanent alterations in stress responses. Animal temperament, species, the presence of coping/escape mechanisms, social confounders, and variation in amount of tourism may explain differences among previous experiments. Acute alterations in glucocorticoid measures in wildlife exposed to tourism must be interpreted conservatively. While permanently altered stress responses can be detrimental, preliminary

  15. Ape conservation physiology: fecal glucocorticoid responses in wild Pongo pygmaeus morio following human visitation.

    PubMed

    Muehlenbein, Michael P; Ancrenaz, Marc; Sakong, Rosman; Ambu, Laurentius; Prall, Sean; Fuller, Grace; Raghanti, Mary Ann

    2012-01-01

    Nature-based tourism can generate important revenue to support conservation of biodiversity. However, constant exposure to tourists and subsequent chronic activation of stress responses can produce pathological effects, including impaired cognition, growth, reproduction, and immunity in the same animals we are interested in protecting. Utilizing fecal samples (N = 53) from 2 wild habituated orangutans (Pongo pygmaeus morio) (in addition to 26 fecal samples from 4 wild unhabituated orangutans) in the Lower Kinabatangan Wildlife Sanctuary of Sabah, Malaysian Borneo, we predicted that i) fecal glucocorticoid metabolite concentrations would be elevated on the day after tourist visitation (indicative of normal stress response to exposure to tourists on the previous day) compared to samples taken before or during tourist visitation in wild, habituated orangutans, and ii) that samples collected from habituated animals would have lower fecal glucocorticoid metabolites than unhabituated animals not used for tourism. Among the habituated animals used for tourism, fecal glucocorticoid metabolite levels were significantly elevated in samples collected the day after tourist visitation (indicative of elevated cortisol production on the previous day during tourist visitation). Fecal glucocorticoid metabolite levels were also lower in the habituated animals compared to their age-matched unhabituated counterparts. We conclude that the habituated animals used for this singular ecotourism project are not chronically stressed, unlike other species/populations with documented permanent alterations in stress responses. Animal temperament, species, the presence of coping/escape mechanisms, social confounders, and variation in amount of tourism may explain differences among previous experiments. Acute alterations in glucocorticoid measures in wildlife exposed to tourism must be interpreted conservatively. While permanently altered stress responses can be detrimental, preliminary results

  16. Molecular call and response: the physiology of bacterial small RNAs

    PubMed Central

    Richards, Gregory R.; Vanderpool, Carin K.

    2011-01-01

    The vital role of bacterial small RNAs (sRNAs) in cellular regulation is now well-established. Although many diverse mechanisms by which sRNAs effect changes in gene expression have been thoroughly described, comparatively less is known about their biological roles and effects on cell physiology. Nevertheless, for some sRNAs, insight has been gained into the intricate regulatory interplay that is required to sense external environmental and internal metabolic cues and turn them into physiological outcomes. Here, we review examples of regulation by selected sRNAs, emphasizing signals and regulators required for sRNA expression, sRNA regulatory targets, and the resulting consequences for the cell. We highlight sRNAs involved in regulation of the processes of iron homeostasis (RyhB, PrrF, and FsrA) and carbon metabolism (Spot 42, CyaR, and SgrS). PMID:21843668

  17. Molecular call and response: the physiology of bacterial small RNAs.

    PubMed

    Richards, Gregory R; Vanderpool, Carin K

    2011-10-01

    The vital role of bacterial small RNAs (sRNAs) in cellular regulation is now well-established. Although many diverse mechanisms by which sRNAs bring about changes in gene expression have been thoroughly described, comparatively less is known about their biological roles and effects on cell physiology. Nevertheless, for some sRNAs, insight has been gained into the intricate regulatory interplay that is required to sense external environmental and internal metabolic cues and turn them into physiological outcomes. Here, we review examples of regulation by selected sRNAs, emphasizing signals and regulators required for sRNA expression, sRNA regulatory targets, and the resulting consequences for the cell. We highlight sRNAs involved in regulation of the processes of iron homeostasis (RyhB, PrrF, and FsrA) and carbon metabolism (Spot 42, CyaR, and SgrS). PMID:21843668

  18. Acute khat use reduces response conflict in habitual users

    PubMed Central

    Colzato, Lorenza S.; Sellaro, Roberta; Ruiz, Manuel J.; Sikora, Katarzyna; Hommel, Bernhard

    2013-01-01

    Khat consumption has become a worldwide phenomenon broadening from Eastern Africa and the south west of the Arabian Peninsula to ethnic communities in the rest of the world. So far, the cognitive effects of khat use are poorly understood and no studies have looked into the relation between acute khat use and cognitive control functions, the way we control our thoughts and goal directed behavior. We studied how acute khat use affects the emergence and the resolution of response conflict, a central cognitive control function. Khat users (n = 11) and khat-free controls (n = 18) were matched in terms of education, sex, alcohol, and cannabis consumption. Groups were tested on response conflict, as measured by the Simon task. In one single session, participants worked through two task blocks: the khat group chewed exclusively khat whereas the khat-free group chewed solely a gum. Results showed that in the second block, which reflects the acute impact of khat, the khat group was better than controls in resolving stimulus-induced response conflict as indexed by a smaller Simon effect. These results suggest that the acute intake of khat may improve participants' ability of handling response conflict. PMID:23801952

  19. THE ACUTE PHASE RESPONSE INDUCED BY BRONCHOSCOPY WITH LAVAGE

    EPA Science Inventory

    Bronchoscopy has been used to evaluate the inflammatory responses in vitro and in vivo. The procedure may affect acute inflammation in the lower respiratory tract. We reviewed consecutive bronchoscopies done in normal healthy non-smokers between April, 1998 and April, 2004. The...

  20. PREDICTORS OF INDIVIDUAL DIFFERENCES IN ACUTE RESPONSE TO OZONE EXPOSURE

    EPA Science Inventory

    The purposes of this study were to identify personal characteristics which predict individual differences in acute response to ozone exposure and to develop a predictive model for decrements in FEV1 as a function of ozone concentration and individual predictors. esponse and predi...

  1. Physiological responses to rock climbing in young climbers

    PubMed Central

    Morrison, Audry Birute; Schöffl, Volker Rainer

    2007-01-01

    Key questions regarding the training and physiological qualities required to produce an elite rock climber remain inadequately defined. Little research has been done on young climbers. The aim of this paper was to review literature on climbing alongside relevant literature characterising physiological adaptations in young athletes. Evidence‐based recommendations were sought to inform the training of young climbers. Of 200 studies on climbing, 50 were selected as being appropriate to this review, and were interpreted alongside physiological studies highlighting specific common development growth variables in young climbers. Based on injury data, climbers younger than 16 years should not participate in international bouldering competitions and intensive finger strength training is not recommended. The majority of climbing foot injuries result from wearing too small or unnaturally shaped climbing shoes. Isometric and explosive strength improvements are strongly associated with the latter stages of sexual maturation and specific ontogenetic development, while improvement in motor abilities declines. Somatotyping that might identify common physical attributes in elite climbers of any age is incomplete. Accomplished adolescent climbers can now climb identical grades and compete against elite adult climbers aged up to and >40 years. High‐intensity sports training requiring leanness in a youngster can result in altered and delayed pubertal and skeletal development, metabolic and neuroendocrine aberrations and trigger eating disorders. This should be sensitively and regularly monitored. Training should reflect efficacious exercises for a given sex and biological age. PMID:18037632

  2. Complement and cytokine response in acute Thrombotic Thrombocytopenic Purpura

    PubMed Central

    Westwood, John-Paul; Langley, Kathryn; Heelas, Edward; Machin, Samuel J; Scully, Marie

    2014-01-01

    Complement dysregulation is key in the pathogenesis of atypical Haemolytic Uraemic Syndrome (aHUS), but no clear role for complement has been identified in Thrombotic Thrombocytopenic Purpura (TTP). We aimed to assess complement activation and cytokine response in acute antibody-mediated TTP. Complement C3a and C5a and cytokines (interleukin (IL)-2, IL-4, IL-6, IL-10, tumour necrosis factor, interferon-γ and IL-17a) were measured in 20 acute TTP patients and 49 remission cases. Anti-ADAMTS13 immunoglobulin G (IgG) subtypes were measured in acute patients in order to study the association with complement activation. In acute TTP, median C3a and C5a were significantly elevated compared to remission, C3a 63·9 ng/ml vs. 38·2 ng/ml (P < 0·001) and C5a 16·4 ng/ml vs. 9·29 ng/ml (P < 0·001), respectively. Median IL-6 and IL-10 levels were significantly higher in the acute vs. remission groups, IL-6: 8 pg/ml vs. 2 pg/ml (P = 0·003), IL-10: 6 pg/ml vs. 2 pg/ml (P < 0·001). C3a levels correlated with both anti-ADAMTS13 IgG (rs = 0·604, P = 0·017) and IL-10 (rs = 0·692, P = 0·006). No anti-ADAMTS13 IgG subtype was associated with higher complement activation, but patients with the highest C3a levels had 3 or 4 IgG subtypes present. These results suggest complement anaphylatoxin levels are higher in acute TTP cases than in remission, and the complement response seen acutely may relate to anti-ADAMTS13 IgG antibody and IL-10 levels. PMID:24372446

  3. Physiological responses to environmental factors related to space flight. [hemodynamic and metabolic responses to weightlessness

    NASA Technical Reports Server (NTRS)

    Pace, N.

    1973-01-01

    Physiological base line data are established, and physiological procedures and instrumentation necessary for the automatic measurement of hemodynamic and metabolic parameters during prolonged periods of weightlessness are developed.

  4. EATING BEHAVIOR IN RESPONSE TO ACUTE STRESS.

    PubMed

    Mocanu, Veronica; Bontea, Amalia; Anton-Păduraru, Dana-teodora

    2016-01-01

    Obesity is a medical and social problem with a dramatically increasing prevalence. It is important to take action since childhood to prevent and treat obesity and metabolic syndrome. Infantile obesity affects all body systems starting in childhood and continuing to adulthood. Understanding the impact of stressors on weight status may be especially important for preventing obesity. The relationship between stress, eating behavior and obesity is not fully understood. However, there is evidence that stress causes disorders in hypothalamic-pituitary-adrenal (HPA) axis, system that regulates both stress and feeding responses. Also, the response is different depending on the type of stressors. Chronic stress, especially when people live in a palatable food environment, induces HPA stimulation, excess glucocorticoids, insulin resistance, which lead to inhibition of lipid mobilization, accumulation of triglyceride and retention of abdominal fat. PMID:27483696

  5. Cardiocirculatory responses to exercise - Physiologic study by noninvasive techniques.

    NASA Technical Reports Server (NTRS)

    Pigott, V. M.; Spodick, D. H.; Rectra, E. H.; Khan , A. H.

    1971-01-01

    The changes from rest to exercise were determined for certain phases of the cardiac cycle in ten healthy male subjects who underwent submaximal, physiologically paced bicycle ergometry. ECGs, phonocardiograms, and carotid pu lse tracings were recorded. The preejection period and isovolumic contraction time decreased with exercise. Changes in left ventricular ejection time appeared to depend on the severity or the duration of stress. Pulse transmission time did not change significantly. The data obtained in the study and comparison of these results to those obtained by invasive methods indicate that noninvasive techniques, when used in the manner suggested, are appropriate means for detecting a variety of cardiocirculatory changes during exercise.

  6. Automated system for integration and display of physiological response data

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The system analysis approach was applied in a study of physiological systems in both 1-g and weightlessness, for short and long term experiments. A whole body, algorithm developed as the first step in the construction of a total body simulation system is described and an advanced biomedical computer system concept including interactive display/command consoles is discussed. The documentation of the design specifications, design and development studies, and user's instructions (which include program listings) for these delivered end-terms; the reports on the results of many research and feasibility studies; and many subcontract reports are cited in the bibliography.

  7. Dysregulated Hypothalamic–Pituitary–Adrenal Axis Function Contributes to Altered Endocrine and Neurobehavioral Responses to Acute Stress

    PubMed Central

    Kinlein, Scott A.; Wilson, Christopher D.; Karatsoreos, Ilia N.

    2015-01-01

    Organisms react to environmental challenges by activating a coordinated set of brain–body responses known as the stress response. These physiological and behavioral countermeasures are, in large part, regulated by the neuroendocrine hypothalamic–pituitary–adrenal (HPA) axis. Normal functioning of the HPA axis ensures that an organism responds appropriately to altered environmental demands, representing an essential system to promote survival. Over the past several decades, increasing evidence supports the hypothesis that disruption of the HPA axis can lead to dysregulated stress response phenotypes, exacting a physiological cost on the organism commonly referred to as allostatic load. Furthermore, it has been recognized that high allostatic load can contribute to increased vulnerability of the organism to further challenges. This observation leads to the notion that disrupted HPA function and resulting inappropriate responses to stressors may underlie many neuropsychiatric disorders, including depression and anxiety. In the present set of studies, we investigate the role of both the normally functioning and disrupted HPA axis in the endocrine, neural, and behavioral responses to acute stress. Using a model of non-invasive chronic corticosterone treatment in mice, we show that dysregulating the normal function of the HPA leads to a mismatch between the hormonal and neural response to acute stress, resulting in abnormal behavioral coping strategies. We believe this model can be leveraged to tease apart the mechanisms by which altered HPA function contributes to neurobehavioral dysregulation in response to acute stress. PMID:25821436

  8. Physiology in medicine: acute altitude exposure in patients with pulmonary and cardiovascular disease.

    PubMed

    Seccombe, Leigh M; Peters, Matthew J

    2014-03-01

    Travel is more affordable and improved high-altitude airports, railways, and roads allow rapid access to altitude destinations without acclimatization. The physiology of exposure to altitude has been extensively described in healthy individuals; however, there is a paucity of data pertaining to those who have reduced reserve. This Physiology in Medicine article discusses the physiological considerations relevant to the safe travel to altitude and by commercial aircraft in patients with pulmonary and/or cardiac disease. PMID:24371015

  9. Physiological responses of plant leaves to atmospheric ammonia and ammonium

    NASA Astrophysics Data System (ADS)

    Pearson, J.; Soares, A.

    Misting of leaves of several plant species with 3 mM aqueous NH +4 at pH 5, or fumigation with 3000 μg m -3 gaseous NH 3 for 1 h, elicits similar biochemical and physiological changes in the species tested. The enzyme glutamine synthetase (GS) was shown to increase its activity in all species, while that of nitrate reductase (NR) was inhibited, at least in those species which possessed the ability to induce foliar NR. At the same time there were marked changes in organic anion concentrations, with malate and citrate in particular being reduced in concentration, following either NH +4 or NH 3 application to leaves. The changes in organic anions are also discussed in the light of pH regulation by the cell. A stimulation of photosynthesis was also evident when leaves were treated with either NH 3 or NH +4. It is argued that, because of the differences in solution chemistry of the two ammonia forms, the aqueous form applied at pH 5 and the gaseous form being an alkali in solution, these changes can only have occurred through the ability of the leaves to readily assimilate both forms of the ammonia. The biochemical changes might have potential as markers for the onset of physiological perturbation by atmospheric ammonia pollution, particularly changes in organic acid concentration; their use in an index of pollution stress is briefly discussed.

  10. Behavioral and physiological responses in felids to exhibit construction.

    PubMed

    Chosy, Julia; Wilson, Megan; Santymire, Rachel

    2014-01-01

    Despite the growing body of literature examining the welfare of zoo-housed animals, little standardized work has been published on the effect of construction and environmental disruption on the physiology and behavior of affected animals. When Lincoln Park Zoo (Chicago, IL), embarked on a renovation project for its Kovler Lion House, the opportunity was taken to perform a scientific study of behavioral and physiological markers in the resident felids to determine the effect of construction and environmental disruption. Fecal samples and behavioral observations were collected on four felid species (five individuals) before, during, and after the period of construction. As a group, the average z-score for fecal glucocorticoid metabolite concentration increased during construction relative to baseline. Levels remained elevated after construction, but trended toward baseline. All individuals demonstrated a significant decrease in the frequency of pacing and time spent visible during construction. Overall activity levels also showed a significant decrease relative to baseline measures. As zoological institutions continue to recognize the importance of habitat design, construction and renovation become inevitable. It is important to be aware of the potential consequences this can have on animals in the vicinity and to work toward minimizing negative effects. One recommendation is the availability of ample retreat and hiding space for felids during disruption to their environment. PMID:25042703

  11. Physiologically responsive, mechanically adaptive bio-nanocomposites for biomedical applications.

    PubMed

    Jorfi, Mehdi; Roberts, Matthew N; Foster, E Johan; Weder, Christoph

    2013-02-01

    We report mechanically adaptive bionanocomposites based on poly(vinyl alcohol) (PVOH) and cellulose nanocrystals (CNCs), whose mechanical properties change significantly upon exposure to simulated physiological conditions. These nanocomposites were made using CNCs derived from tunicates (t-CNCs) and cotton (c-CNCs) to explore how aspect ratio, surface charge density, and filler content influence the mechanical properties. Dynamic mechanical analysis data reveal a significant enhancement of the tensile storage modulus (E') upon introduction of CNCs, which scaled with the CNC type and content. For example, in the dry, glassy state at 25 °C, E' increased up to 23% (for c-CNCs) and 88% (for t-CNCs) compared to the neat polymer. Exposing the materials to simulated physiological conditions caused a drastic softening of the materials, from 9.0 GPa to 1 MPa for c-CNCs and from 13.7 GPa to 160 MPa for t-CNCs. The data show that the swelling characteristics of the nanocomposites and the extent of mechanical switching could be influenced via the amount and type of CNCs and also the processing conditions. The high stiffness in the dry state and the ability to tailor the mechanical contrast via composition and processing makes the new materials particularly useful as basis for adaptive biomedical implants. PMID:23379302

  12. Cigarette smoke inhalation and the acute airway response.

    PubMed Central

    Higenbottam, T; Feyeraband, C; Clark, T J

    1980-01-01

    The acute airway response to smoking varying numbers (one to four) of identical cigarettes in rapid succession and smoking single cigarettes of differing tar/nicotine yields was assessed repeatedly in 13 healthy smokers. The airway response was variable, indicating airway narrowing consistently in only three subjects. There appeared no difference between forced spirometry and measurement of airway resistance in detecting the airway response. No relationship was observed between the airway response and amount of smoke inhaled into the lungs as measured either by changes in venous blood nicotine or percentage carboxyhaemoglobin. When five smokers inhaled smoke directly from a cigarette acute airway narrowing was consistently observed. A normal smoking pattern consisting of an initial drag of smoke into the mouth, followed after a pause by inhalation of smoke diluted with air, did not consistently cause airway narrowing although similar amounts of smoke as the direct drag were inhaled as assessed by changes in venous blood nicotine. The manner of smoke inhalation affects the relative concentrations of the different constituents of smoke reaching the lungs and also appears to be the main determinant of the acute airway response to smoking, which was unrelated to the number of cigarettes smoked or the tar content of the smoke. This suggests that patterns of smoke inhalation may influence the pathogenesis of bronchial disease associated with smoking. PMID:7434266

  13. Physiological responses of Daphnia pulex to acid stress

    PubMed Central

    Weber, Anna K; Pirow, Ralph

    2009-01-01

    Background Acidity exerts a determining influence on the composition and diversity of freshwater faunas. While the physiological implications of freshwater acidification have been intensively studied in teleost fish and crayfish, much less is known about the acid-stress physiology of ecologically important groups such as cladoceran zooplankton. This study analyzed the extracellular acid-base state and CO2 partial pressure (PCO2), circulation and ventilation, as well as the respiration rate of Daphnia pulex acclimated to acidic (pH 5.5 and 6.0) and circumneutral (pH 7.8) conditions. Results D. pulex had a remarkably high extracellular pH of 8.33 and extracellular PCO2 of 0.56 kPa under normal ambient conditions (pH 7.8 and normocapnia). The hemolymph had a high bicarbonate concentration of 20.9 mM and a total buffer value of 51.5 meq L-1 pH-1. Bicarbonate covered 93% of the total buffer value. Acidic conditions induced a slight acidosis (ΔpH = 0.16–0.23), a 30–65% bicarbonate loss, and elevated systemic activities (tachycardia, hyperventilation, hypermetabolism). pH 6.0 animals partly compensated the bicarbonate loss by increasing the non-bicarbonate buffer value from 2.0 to 5.1 meq L-1 pH-1. The extracellular PCO2 of pH 5.5 animals was significantly reduced to 0.33 kPa, and these animals showed the highest tolerance to a short-term exposure to severe acid stress. Conclusion Chronic exposure to acidic conditions had a pervasive impact on Daphnia's physiology including acid-base balance, extracellular PCO2, circulation and ventilation, and energy metabolism. Compensatory changes in extracellular non-bicarbonate buffering capacity and the improved tolerance to severe acid stress indicated the activation of defense mechanisms which may result from gene-expression mediated adjustments in hemolymph buffer proteins and in epithelial properties. Mechanistic analyses of the interdependence between extracellular acid-base balance and CO2 transport raised the question of

  14. Physiological and Neuromuscular Response to a Simulated Sprint-Distance Triathlon: Effect of Age Differences and Ability Level.

    PubMed

    García-Pinillos, Felipe; Cámara-Pérez, José C; González-Fernández, Francisco T; Párraga-Montilla, Juan A; Muñoz-Jiménez, Marcos; Latorre-Román, Pedro Á

    2016-04-01

    García-Pinillos, F, Cámara-Pérez, JC, González-Fernández, FT, Párraga-Montilla, JA, Muñoz-Jiménez, M, and Latorre-Román, PÁ. Physiological and neuromuscular response to a simulated sprint-distance triathlon: effect of age differences and ability level. J Strength Cond Res 30(4): 1077-1084, 2016-This study aimed to describe the acute impact of a simulated sprint-distance triathlon at physiological and neuromuscular levels and to determine whether age and athletic performance influenced the response in triathletes. Nineteen triathletes performed a sprint-distance triathlon under simulated conditions. Cardiovascular response was monitored during the race. Rate of perceived exertion along with muscular performance parameters (countermovement jump [CMJ], squat jump [SJ], and handgrip strength test [HS]) were tested at pre- and posttest and during every transition, while a 20-m sprint test (S20m) was performed before and after the race. Blood lactate was recorded postrace. A repeated measures analysis of variance showed that the neuromuscular response-in terms of CMJ, SJ, and HS-was unchanged (p ≥ 0.05), while S20m performance was impaired at posttest (p < 0.001). A linear regression analysis showed that ΔCMJ predicted the overall race time (R = 0.226; p = 0.046). In addition, 2 cluster analyses (k-means) were performed by grouping according to athletic performance and age. Between-group comparison showed no significant differences in the impact of the race at either the physiological or the neuromuscular level. The results showed that muscular performance parameters were not impaired throughout the race despite high levels of fatigue reported. However, despite maintaining initial levels of muscle force after the race, the fatigue-induced changes in S20m were significant, which could reinforce the need to train sprint ability in endurance athletes. Finally, despite the differences in ability level or in age, the acute physiological and neuromuscular

  15. Coping With Adults' Angry Behavior: Behavioral, Physiological, and Verbal Responses in Preschoolers.

    ERIC Educational Resources Information Center

    El-Sheikh, Mona; And Others

    1989-01-01

    Investigated 34 4- and 5-year-olds and their parents to determine the children's behavioral, physiological, and verbal responses to adults' angry behavior. Findings indicate behavioral and verbal responses of distress and an increase in systolic blood pressure in response to anger. (RJC)

  16. Physiological responses of Chinese longsnout catfish to water temperature

    NASA Astrophysics Data System (ADS)

    Han, Dong; Xie, Shouqi; Zhu, Xiaoming; Yang, Yunxia

    2011-05-01

    We evaluated the effect of water temperature on the growth and physiology of the Chinese longsnout catfish ( Leiocassis longirostris Günther). The fish were reared at four temperatures (20, 25, 30, and 35°C) and sampled on days 7, 20, and 30. We measured plasma levels of insulin, free thyroxine (FT4), free 3,5,3'-triiodothyronine (FT3), lysozyme and leukocyte phagocytic activity. The optimum water temperature for growth was 27.7°C. The plasma levels of insulin and FT4 declined significantly ( P<0.05) on day 30 at temperatures above 20°C. Lysozyme activity was significantly ( P<0.05) lower at 25°C than at other temperatures. We conclude that final weight, insulin, FT4, and lysozyme were significantly affected by water temperature.

  17. Acute phase protein and antioxidant responses in dogs with experimental acute monocytic ehrlichiosis treated with rifampicin.

    PubMed

    Karnezi, Dimitra; Ceron, Jose J; Theodorou, Konstantina; Leontides, Leonidas; Siarkou, Victoria I; Martinez, Silvia; Tvarijonaviciute, Asta; Harrus, Shimon; Koutinas, Christos K; Pardali, Dimitra; Mylonakis, Mathios E

    2016-02-29

    There is currently lack of information on the changes of acute phase proteins (APP) and antioxidant markers and their clinical relevance as treatment response indicators in canine monocytic ehrlichiosis (CME). The objective of this study was to investigate the patterns of C-reactive protein (CRP), haptoglobin (Hp), ferritin and paraoxonase-1 (PON-1) during treatment of dogs with acute CME with rifampicin. Blood serum samples from ten Beagle dogs with experimental acute CME were retrospectively examined. Five dogs (Group A) were treated with rifampicin (10mg/Kg/24h), per os, for 3 weeks and 5 dogs (Group B) received no treatment (infected controls). Two Beagle dogs served as uninfected controls. Blood serum samples were serially examined prior to Ehrlichia canis inoculation and on post-inoculation days 14, 21, 28, 35 and 42. Significant changes of CRP, Hp, ferritin and PON-1 values were found in the majority of infected dogs. However, their concentrations did not differ between the two groups during the treatment observation period. The results of this study indicate that although several APP and PON-1 tend to significantly change in the majority of dogs with acute CME, they were of limited clinical relevance as treatment response indicators in this experimental setting. PMID:26854345

  18. Physiological responses to Tai Chi in stable patients with COPD.

    PubMed

    Qiu, Zhi-Hui; Guo, Hong-Xi; Lu, Gan; Zhang, Ning; He, Bai-Ting; Zhou, Lian; Luo, Y M; Polkey, M I

    2016-01-15

    We compared the physiological work, judged by oxygen uptake, esophageal pressure swing and diaphragm electromyography, elicited by Tai Chi compared with that elicited by constant rate treadmill walking at 60% of maximal load in eleven patients with COPD (Mean FEV1 61% predicted, FEV1/FVC 47%). Dynamic hyperinflation was assessed by inspiratory capacity and twitch quadriceps tension (TwQ) elicited by supramaximal magnetic stimulation of the femoral nerve was also measured before and after both exercises. The EMGdi and esophageal pressure at the end of exercise were similar for both treadmill exercise and Tai Chi (0.109±0.047 mV vs 0.118±0.061 mV for EMGdi and 22.3±7.1 cmH2O vs 21.9±8.1 cmH2O for esophageal pressure). Moreover the mean values of oxygen uptake during Tai Chi and treadmill exercise did not differ significantly: 11.3 ml/kg/min (51.1% of maximal oxygen uptake derived from incremental exercise) and 13.4 ml/kg/min (52.5%) respectively, p>0.05. Respiratory rate during Tai Chi was significantly lower than that during treadmill exercise. Both Tai Chi and treadmill exercise elicited a fall in IC at end exercise, indicating dynamic hyperinflation, but this was statistically significant only after treadmill exercise. TwQ decreased significantly after Tai Chi but not after treadmill. We conclude that Tai Chi constitutes a physiologically similar stimulus to treadmill exercise and may therefore be an acceptable modality for pulmonary rehabilitation which may be culturally more acceptable in some parts of the world. PMID:26549554

  19. Acute Pelvic Inflammatory Disease and Clinical Response to Parenteral Doxycycline

    PubMed Central

    Chow, Anthony W.; Malkasian, Kay L.; Marshall, John R.; Guze, Lucien B.

    1975-01-01

    The bacteriology of acute pelvic inflammatory disease (PID) and clinical response to parenteral doxycycline were evaluated in 30 patients. Only 3 of 21 cul-de-sac cultures from PID patients were sterile, whereas all 8 normal control subjects yielded negative results (P< 0.005). Poor correlation was observed between cervical and cul-de-sac cultures. Neisseria gonorrhoeae, isolated from the cervix in 17 patients (57%), was recovered from the cul-de-sac only once. Streptococcus, Peptococcus, Peptostreptococcus, coliforms, and other organisms normally present in the vagina were the predominant isolates recovered from the cul-de-sac. Parenteral doxycycline resulted in rapid resolution of signs and symptoms (within 48 h) in 20 of 27 evaluable patients (74%). In five others, signs and symptoms of infection abated within 4 days. The remaining two patients failed to respond; in both cases, adnexal masses developed during doxycycline therapy. Gonococci were eradicated from the cervix in all but one patient who, nevertheless, had a rapid defervescence of symptoms. There was no clear-cut correlation between the clinical response and in vitro susceptibility of cul-de-sac isolates to doxycycline. These data confirm the usefulness of broad-spectrum antibiotics in acute PID. Culdocentesis is a reliable means of obtaining material for the bacteriological diagnosis of acute PID; however, the pathogenetic role and relative importance of gonococci and various other bacteria in acute PID need to be clarified further. PMID:1169908

  20. Freeze, flight, fight, fright, faint: adaptationist perspectives on the acute stress response spectrum.

    PubMed

    Bracha, H Stefan

    2004-09-01

    This article reviews the existing evolutionary perspectives on the acute stress response habitual faintness and blood-injection-injury type-specific phobia (BIITS phobia). In this article, an alternative evolutionary perspective, based on recent advances in evolutionary psychology, is proposed. Specifically, that fear-induced faintness (eg, fainting following the sight of a syringe, blood, or following a trivial skin injury) is a distinct Homo sapiens-specific extreme-stress survival response to an inescapable threat. The article suggests that faintness evolved in response to middle paleolithic intra-group and inter-group violence (of con-specifics) rather than as a pan-mammalian defense response, as is presently assumed. Based on recent literature, freeze, flight, fight, fright, faint provides a more complete description of the human acute stress response sequence than current descriptions. Faintness, one of three primary physiological reactions involved in BIITS phobia, is extremely rare in other phobias. Since heritability estimates are higher for faintness than for fears or phobias, the author suggests that trait-faintness may be a useful complement to trait-anxiety as an endophenotype in research on the human fear circuitry. Some implications for the forthcoming Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition as well as for clinical, health services, and transcriptomic research are briefly discussed. PMID:15337864

  1. Involvement of the TRPV1 channel in the modulation of spontaneous locomotor activity, physical performance and physical exercise-induced physiological responses.

    PubMed

    Hudson, A S R; Kunstetter, A C; Damasceno, W C; Wanner, S P

    2016-01-01

    Physical exercise triggers coordinated physiological responses to meet the augmented metabolic demand of contracting muscles. To provide adequate responses, the brain must receive sensory information about the physiological status of peripheral tissues and organs, such as changes in osmolality, temperature and pH. Most of the receptors involved in these afferent pathways express ion channels, including transient receptor potential (TRP) channels, which are usually activated by more than one type of stimulus and are therefore considered polymodal receptors. Among these TRP channels, the TRPV1 channel (transient receptor potential vanilloid type 1 or capsaicin receptor) has well-documented functions in the modulation of pain sensation and thermoregulatory responses. However, the TRPV1 channel is also expressed in non-neural tissues, suggesting that this channel may perform a broad range of functions. In this review, we first present a brief overview of the available tools for studying the physiological roles of the TRPV1 channel. Then, we present the relationship between the TRPV1 channel and spontaneous locomotor activity, physical performance, and modulation of several physiological responses, including water and electrolyte balance, muscle hypertrophy, and metabolic, cardiovascular, gastrointestinal, and inflammatory responses. Altogether, the data presented herein indicate that the TPRV1 channel modulates many physiological functions other than nociception and thermoregulation. In addition, these data open new possibilities for investigating the role of this channel in the acute effects induced by a single bout of physical exercise and in the chronic effects induced by physical training. PMID:27191606

  2. Involvement of the TRPV1 channel in the modulation of spontaneous locomotor activity, physical performance and physical exercise-induced physiological responses

    PubMed Central

    Hudson, A.S.R.; Kunstetter, A.C.; Damasceno, W.C.; Wanner, S.P.

    2016-01-01

    Physical exercise triggers coordinated physiological responses to meet the augmented metabolic demand of contracting muscles. To provide adequate responses, the brain must receive sensory information about the physiological status of peripheral tissues and organs, such as changes in osmolality, temperature and pH. Most of the receptors involved in these afferent pathways express ion channels, including transient receptor potential (TRP) channels, which are usually activated by more than one type of stimulus and are therefore considered polymodal receptors. Among these TRP channels, the TRPV1 channel (transient receptor potential vanilloid type 1 or capsaicin receptor) has well-documented functions in the modulation of pain sensation and thermoregulatory responses. However, the TRPV1 channel is also expressed in non-neural tissues, suggesting that this channel may perform a broad range of functions. In this review, we first present a brief overview of the available tools for studying the physiological roles of the TRPV1 channel. Then, we present the relationship between the TRPV1 channel and spontaneous locomotor activity, physical performance, and modulation of several physiological responses, including water and electrolyte balance, muscle hypertrophy, and metabolic, cardiovascular, gastrointestinal, and inflammatory responses. Altogether, the data presented herein indicate that the TPRV1 channel modulates many physiological functions other than nociception and thermoregulation. In addition, these data open new possibilities for investigating the role of this channel in the acute effects induced by a single bout of physical exercise and in the chronic effects induced by physical training. PMID:27191606

  3. Fully optimized discrimination of physiological responses to auditory stimuli

    PubMed Central

    Kruglikov, Stepan Y; Chari, Sharmila; Rapp, Paul E; Weinstein, Steven L; Given, Barbara K; Schiff, Steven J

    2008-01-01

    The use of multivariate measurements to characterize brain activity (electrical, magnetic, optical) is widespread. The most common approaches to reduce the complexity of such observations include principal and independent component analyses (PCA and ICA), which are not well suited for discrimination tasks. We addressed two questions: first, how do the neurophysiological responses to elongated phonemes relate to tone and phoneme responses in normal children, and, second, how discriminable are these responses. We employed fully optimized linear discrimination analysis to maximally separate the multi-electrode responses to tones and phonemes, and classified the response to elongated phonemes. We find that discrimination between tones and phonemes is dependent upon responses from associative regions of the brain apparently distinct from the primary sensory cortices typically emphasized by PCA or ICA, and that the neuronal correlates corresponding to elongated phonemes are highly variable in normal children (about half respond with neural correlates of tones and half as phonemes). Our approach is made feasible by the increase in computational power of ordinary personal computers and has significant advantages for a wide range of neuronal imaging modalities. PMID:18430975

  4. Physiological responses to a tap dance choreography: comparisons with graded exercise test and prescription recommendations.

    PubMed

    Oliveira, Samantha M L; Simões, Herbert G; Moreira, Sergio R; Lima, Ricardo M; Almeida, Jeeser A; Ribeiro, Fabiana M R; Puga, Guilherme M; Campbell, Carmen S G

    2010-07-01

    The aim of this study was to analyze the physiological responses to a tap dance choreography and to compare with those observed during a maximal treadmill exercise test, in tap dancers. Eight women (19.6 +/- 2.4 years; 162.3 +/- 4.4 cm; 54.0 +/- 2.3 kg; 20.5 +/- 1.4 kg.m; and 5.1 +/- 2.6 years of tap dance training) were submitted to the following procedures: (a) graded exercise test (GXT) on a treadmill until volitional exhaustion with 0.8 km.h of increment at each 3 and 1 minute of interval between stages and (b) tap dance choreography (TAP)-"The Shim Sham Shimmy"-consisting of 9 stages of 3 minutes with 1-minute rest between stages. Expired gas analyses were performed in all experimental sessions, providing breath-by-breath values for respiratory exchange rate (RER), oxygen uptake (VO(2)), and carbon dioxide production (CO2). Heart rate (HR) and rate of perceived exertion (RPE) were also measured. During the rest period between stages, blood samples (25 microl) were collected from the ear lobe for lactate threshold (LT) determination. It was observed that at the end of the TAP, subjects achieved an average of 83.8 +/- 6.2% of the HRmax and 68.9 +/- 11.3% of the VO(2)max, both previously identified in the GXT. The choreography demanded 204.7 +/- 31.3 kcal, an average RER of 0.88 +/- 0.05 and mean RPE of 13 +/- 2. The VO(2), HR, and RPE values did not significantly differ from those at the LT intensity identified during the GTX. Based on the present results, it was concluded that the TAP performance in the "The Shim Sham Shimmy" choreography elicited acute physiologic responses similar to those observed at the LT intensity, thus suggesting that Tap Dance constitutes a useful exercise modality for aerobic fitness and cardiovascular health improvements. PMID:20555280

  5. Assessing physiological tipping points in response to ocean acidification

    NASA Astrophysics Data System (ADS)

    Dupont, S. T.; Dorey, N.; Lançon, P.; Thorndyke, M. S.

    2011-12-01

    Impact of near-future ocean acidification on marine invertebrates was mostly assessed in single-species perturbation experiment. Moreover, most of these experiments are short-term, only consider one life-history stage and one or few parameters. They do not take into account important processes such as natural variability and acclimation and evolutionary processes. In many studies published so far, there is a clear lack between the observed effects and individual fitness, most of the deviation from the control being considered as potentially negative for the tested species. However, individuals are living in a fluctuating world and changes can also be interpreted as phenotypic plasticity and may not translate into negative impact on fitness. For example, a vent mussel can survive for decades in very acidic waters despite a significantly reduced calcification compare to control (Tunnicliffe et al. 2009). This is possible thanks to the absence of predatory crabs as a result of acidic conditions that may also inhibit carapace formation. This illustrates the importance to take into account ecological interactions when interpreting single-species experiments and to consider the relative fitness between interacting species. To understand the potential consequence of ocean acidification on any given ecosystem, it is then critical to consider the relative impact on fitness for every interactive species and taking into account the natural fluctuation in environment (e.g. pH, temperature, food concentration, abundance) and discriminate between plasticity with no direct impact on fitness and teratology with direct consequence on survival. In this presentation, we will introduce the concept of "physiological tipping point" in the context of ocean acidification. This will be illustrated by some work done on sea urchin development. Embryos and larvae of the sea urchin Strongylocentrotus droebachiensis were exposed to a range of pH from 8.1 to 6.5. When exposed to low pH, growth

  6. Physiological Responses of Kosteletzkya virginica to Coastal Wetland Soil

    PubMed Central

    Wang, Hongyan; Tang, Xiaoli; Wang, Honglei; Shao, Hongbo

    2015-01-01

    Effects of salinity on growth and physiological indices of Kosteletzkya virginica seedlings were studied. Plant height, fresh weight (FW), dry weight (DW), and net photosynthetic rate (Pn) increased at 100 mM NaCl and slightly declined at 200 mM, but higher salinity induced a significant reduction. Chlorophyll content, stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (E) were not affected under moderate salinities, while markedly decreased at severe salinities except for the increased Ci at 400 mM NaCl. Furthermore, no significant differences of Fv/Fm and ΦPSII were found at lower than 200 mM NaCl, whereas higher salinity caused the declines of Fv/Fm, ΦPSII, and qP similar to Pn, accompanied with higher NPQ. Besides, salt stress reduced the leaf RWC, but caused the accumulation of proline to alleviate osmotic pressure. The increased activities of antioxidant enzymes maintained the normal levels of MDA and relative membrane permeability. To sum up, Kosteletzkya virginica seedlings have good salt tolerance and this may be partly attributed to its osmotic regulation and antioxidant capacity which help to maintain water balance and normal ROS level to ensure the efficient photosynthesis. These results provided important implications for Kosteletzkya virginica acting as a promising multiuse species for reclaiming coastal soil. PMID:25853144

  7. Physiological responses of Yellowstone bison to winter nutritional deprivation

    USGS Publications Warehouse

    DelGiudice, Glenn D.; Singer, Francis J.; Seal, Ulysses S.; Bowser, Gillian

    1994-01-01

    Because nutrition is critically related to other aspects of bison (Bison bison) ecology, and the winter ranges inhabited by bison in Yellowstone National Park (YNP) are ecologically diverse, it was important to determine if nutritional deprivation differences occurred among winter ranges. We used chemistry profiles of urine suspended in snow to compare nutritional deprivation of bison from January to April 1988 on 4 sampling areas of 3 winter ranges in YNP. Declining (P < 0.001) trends of urinary potassium: creatinine ratios in bison on all 4 sampling areas indicated progressive nutritional deprivation through late March. Concurrent increases (P ≤ 0.001) in mean urea nitrogen: creatinine ratios from late February through late march in 3 of 4 areas suggested that increased net catabolism was occurring. Diminished creatinine ratios of sodium and phosphorus reflected low dietary intake of these minerals throughout winter. Mean values and trends of urinary characteristics indicated nutritional deprivation varied among 3 winter ranges in YNP. Continued physiological monitoring of nutritional deprivation, along with detailed examination of other aspects of the bison's ecology, will provide greater insight into the role of ungulate nutrition in the dynamics of such a complex system and improve management.

  8. Physiological responses of Kosteletzkya virginica to coastal wetland soil.

    PubMed

    Wang, Hongyan; Tang, Xiaoli; Wang, Honglei; Shao, Hongbo

    2015-01-01

    Effects of salinity on growth and physiological indices of Kosteletzkya virginica seedlings were studied. Plant height, fresh weight (FW), dry weight (DW), and net photosynthetic rate (Pn) increased at 100 mM NaCl and slightly declined at 200 mM, but higher salinity induced a significant reduction. Chlorophyll content, stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (E) were not affected under moderate salinities, while markedly decreased at severe salinities except for the increased Ci at 400 mM NaCl. Furthermore, no significant differences of Fv/Fm and ΦPSII were found at lower than 200 mM NaCl, whereas higher salinity caused the declines of Fv/Fm, ΦPSII, and qP similar to Pn, accompanied with higher NPQ. Besides, salt stress reduced the leaf RWC, but caused the accumulation of proline to alleviate osmotic pressure. The increased activities of antioxidant enzymes maintained the normal levels of MDA and relative membrane permeability. To sum up, Kosteletzkya virginica seedlings have good salt tolerance and this may be partly attributed to its osmotic regulation and antioxidant capacity which help to maintain water balance and normal ROS level to ensure the efficient photosynthesis. These results provided important implications for Kosteletzkya virginica acting as a promising multiuse species for reclaiming coastal soil. PMID:25853144

  9. Physiological responses of two soybean cultivars to cadmium

    SciTech Connect

    Marchiol, L.; Leita, L.; Martin, M.; Peressotti, A.

    1996-05-01

    Anthropogenic activities are increasing cadmium (Cd) concentrations in soils. Cadmium can be absorbed by plant roots and modify the physiology of the plant. Carbon exchange rate (CER) and leaf of two soybean (Glycine max [L.]Merr.) cultivars (Illini insensitive and Richland sensitive) for 6 consecutive days; Cd(NO{sub 3}){sub 2} was added to the hydroponic solution to achieve a final concentration of 50 {mu}mol. At the end of the experiment, stomata length and width, mesophyll limitation to photosynthesis, root hydraulic conductance, relative water content (RWC), and Cd concentration in leaves, stems, and roots were measured on treated and control plants. Cadmium progressively reduced CER and g{sub s} to about 50% after 6 d of treatment. This was more evident in Richland than in Illini and was not linked with leaf RWC and mesophyll limitation to photosynthesis. After 6 d, the apparent root hydraulic water conductivity was 67% lower in the Cd-treated plants than in controls. The primary mechanism affected by Cd-induced stress in soybean is root water uptake, and this reduction is consistent with the decrease in stomatal opening and conductance, and therefore, in photosynthesis. 20 refs., 3 figs., 2 tabs.

  10. Empathic behavioral and physiological responses to dynamic stimuli in depression.

    PubMed

    Schneider, Daniel; Regenbogen, Christina; Kellermann, Thilo; Finkelmeyer, Andreas; Kohn, Nils; Derntl, Birgit; Schneider, Frank; Habel, Ute

    2012-12-30

    Major depressive disorder (MDD) is strongly linked to social withdrawal and interpersonal problems which characterize the disorder and further aggravate symptoms. Investigating the nature of impaired emotional-social functioning as a basis of interpersonal functioning in MDD has been widely restricted to static stimuli and behavioral emotion recognition accuracy. The present study aimed at examining higher order emotional processes, namely empathic responses and its components, emotion recognition accuracy and affective responses in 28 MDD patients and 28 healthy control participants. The dynamic stimulus material included 96 short video clips depicting actors expressing basic emotions by face, voice prosody, and sentence content. Galvanic skin conductance measurements revealed implicit processes in the multimethod assessment of empathy. Overall, patients displayed lower empathy, emotion accuracy, and affective response rates than controls. Autonomous arousal was higher in patients. A generalized emotion processing deficit is in line with the "emotional context insensitivity" (ECI) theory which proposes decreased overall responsiveness to emotional stimuli. The dissociation between hypo-reactivity in explicit and hyper-reactivity in implicit measures of emotion processing can be related to the "limbic-cortical dysregulation" model of depression. Our findings support the dissociation of autonomic and subjective emotional responses which may account for interpersonal as well as emotional deficits in depression. PMID:22560057

  11. Physiological and subjective effects of acute intranasal methamphetamine during extended-release alprazolam maintenance

    PubMed Central

    Lile, Joshua A.; Stoops, William W.; Glaser, Paul E.A.; Hays, Lon R.; Rush, Craig R.

    2015-01-01

    Background Medications development for methamphetamine dependence is ongoing, but no widely accepted, effective pharmacotherapy has been identified. Previous studies have demonstrated neurobiological perturbations to central GABAA activity following chronic stimulant use, and that positive modulation of GABAA receptors attenuates the neurochemical and behavioral response to stimulant drugs such as methamphetamine. Therefore, GABAA modulators could be useful as pharmacotherapies for stimulant-use disorders. Methods This study tested the hypothesis that intranasal methamphetamine would be safe and well tolerated during maintenance on extended-release alprazolam (XR), and that the effects of methamphetamine would be attenuated. Eight non-treatment-seeking, stimulant-dependent individuals completed an inpatient experiment in which ascending doses of intranasal methamphetamine (0, 5, 10, 20 and 30 mg) were administered after four days of alprazolam XR maintenance (0 and 1 mg/day). Results Intranasal methamphetamine produced prototypical effects (e.g., increased positive subjective ratings and elevated cardiovascular signs). The combination of intranasal methamphetamine and alprazolam XR was safe and well tolerated. Alprazolam XR produced small, but orderly, reductions in some of the subjective effects of methamphetamine, and performance impairment. Conclusions The present results demonstrate that methamphetamine use during alprazolam XR treatment would not pose a significant safety risk. Given the potential of GABAA positive modulators to manage certain aspects of stimulant abuse and dependence (i.e., drug-induced seizures, anxiety and stress), but the relatively small impact on the acute abuse-related effects of methamphetamine observed here, additional research with GABAA positive modulators is warranted, but should consider their use as an adjunct component of combination behavioral and/or drug treatment. PMID:21737214

  12. Normal Caloric Responses during Acute Phase of Vestibular Neuritis

    PubMed Central

    Lee, Sun-Uk; Park, Seong-Ho; Kim, Hyo-Jung; Koo, Ja-Won

    2016-01-01

    Background and Purpose We report a novel finding of caloric conversion from normal responses into unilateral paresis during the acute phase of vestibular neuritis (VN). Methods We recruited 893 patients with a diagnosis of VN at Dizziness Clinic of Seoul National University Bundang Hospital from 2003 to 2014 after excluding 28 patients with isolated inferior divisional VN (n=14) and those without follow-up tests despite normal caloric responses initially (n=14). We retrospectively analyzed the neurotological findings in four (0.5%) of the patients who showed a conversion from initially normal caloric responses into unilateral paresis during the acute phase. Results In those four patients, the initial caloric tests were performed within 2 days of symptom onset, and conversion into unilateral caloric paresis was documented 1–4 days later. The clinical and laboratory findings during the initial evaluation were consistent with VN in all four patients except for normal findings in bedside head impulse tests in one of them. Conclusions Normal findings in caloric tests should be interpreted with caution during the acute phase of suspected VN. Follow-up evaluation should be considered when the findings of the initial caloric test are normal, but VN remains the most plausible diagnosis. PMID:26932259

  13. Physiological responses during whole body suspension of adult rats

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Fell, R. D.; Musacchia, X. J.

    1987-01-01

    The objective of this study was to characterize responses of adult rats to one and two weeks of whole body suspension. Body weights and food and water intakes were initially reduced during suspension, but, while intake of food and water returned to presuspension levels, body weight remained depressed. Diuresis was evident, but only during week two. Hindlimb muscle responses were differential, with the soleus exhibiting the greatest atrophy and the EDL a relative hypertrophy. These findings suggest that adult rats respond qualitatively in a manner similar to juveniles during suspension.

  14. Early Responsivity to Moral Events: Physiological and Behavioral Correlates?

    ERIC Educational Resources Information Center

    Lamb, Sharon; And Others

    This study investigated toddlers' reactions to morally related events to determine whether age was a factor in emotional reaction, whether the middle of the second year was a salient time for the emergence of emotional reactions to such events, and whether heart rate change could be used as a new measure of moral responsivity. While their heart…

  15. Emotional Responses to Music: Experience, Expression, and Physiology

    ERIC Educational Resources Information Center

    Lundqvist, Lars-Olov; Carlsson, Fredrik; Hilmersson, Per; Juslin, Patrik N.

    2009-01-01

    A crucial issue in research on music and emotion is whether music evokes genuine emotional responses in listeners (the emotivist position) or whether listeners merely perceive emotions expressed by the music (the cognitivist position). To investigate this issue, we measured self-reported emotion, facial muscle activity, and autonomic activity in…

  16. Physiological Response to Drought Stress at Different Stages in Peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought is a major factor in reducing productivity in peanut (Arachis hypogaea L.). The objectives of this study were to: 1) investigate the response patterns of relative water content (RWC), specific leaf area (SLA), and leaf dry mater content (LDMC) to drought stress at three stages of 30 60, and ...

  17. Physiological environment induces quick response - slow exhaustion reactions.

    PubMed

    Hiroi, Noriko; Lu, James; Iba, Keisuke; Tabira, Akito; Yamashita, Shuji; Okada, Yasunori; Flamm, Christoph; Oka, Kotaro; Köhler, Gottfried; Funahashi, Akira

    2011-01-01

    In vivo environments are highly crowded and inhomogeneous, which may affect reaction processes in cells. In this study we examined the effects of intracellular crowding and an inhomogeneity on the behavior of in vivo reactions by calculating the spectral dimension (d(s)), which can be translated into the reaction rate function. We compared estimates of anomaly parameters obtained from fluorescence correlation spectroscopy (FCS) data with fractal dimensions derived from transmission electron microscopy (TEM) image analysis. FCS analysis indicated that the anomalous property was linked to physiological structure. Subsequent TEM analysis provided an in vivo illustration; soluble molecules likely percolate between intracellular clusters, which are constructed in a self-organizing manner. We estimated a cytoplasmic spectral dimension d(s) to be 1.39 ± 0.084. This result suggests that in vivo reactions initially run faster than the same reactions in a homogeneous space; this conclusion is consistent with the anomalous character indicated by FCS analysis. We further showed that these results were compatible with our Monte-Carlo simulation in which the anomalous behavior of mobile molecules correlates with the intracellular environment, leading to description as a percolation cluster, as demonstrated using TEM analysis. We confirmed by the simulation that the above-mentioned in vivo like properties are different from those of homogeneously concentrated environments. Additionally, simulation results indicated that crowding level of an environment might affect diffusion rate of reactant. Such knowledge of the spatial information enables us to construct realistic models for in vivo diffusion and reaction systems. PMID:21960972

  18. Physiological Environment Induces Quick Response – Slow Exhaustion Reactions

    PubMed Central

    Hiroi, Noriko; Lu, James; Iba, Keisuke; Tabira, Akito; Yamashita, Shuji; Okada, Yasunori; Flamm, Christoph; Oka, Kotaro; Köhler, Gottfried; Funahashi, Akira

    2011-01-01

    In vivo environments are highly crowded and inhomogeneous, which may affect reaction processes in cells. In this study we examined the effects of intracellular crowding and an inhomogeneity on the behavior of in vivo reactions by calculating the spectral dimension (ds), which can be translated into the reaction rate function. We compared estimates of anomaly parameters obtained from fluorescence correlation spectroscopy (FCS) data with fractal dimensions derived from transmission electron microscopy (TEM) image analysis. FCS analysis indicated that the anomalous property was linked to physiological structure. Subsequent TEM analysis provided an in vivo illustration; soluble molecules likely percolate between intracellular clusters, which are constructed in a self-organizing manner. We estimated a cytoplasmic spectral dimension ds to be 1.39 ± 0.084. This result suggests that in vivo reactions initially run faster than the same reactions in a homogeneous space; this conclusion is consistent with the anomalous character indicated by FCS analysis. We further showed that these results were compatible with our Monte-Carlo simulation in which the anomalous behavior of mobile molecules correlates with the intracellular environment, leading to description as a percolation cluster, as demonstrated using TEM analysis. We confirmed by the simulation that the above-mentioned in vivo like properties are different from those of homogeneously concentrated environments. Additionally, simulation results indicated that crowding level of an environment might affect diffusion rate of reactant. Such knowledge of the spatial information enables us to construct realistic models for in vivo diffusion and reaction systems. PMID:21960972

  19. Genetic Influences on Physiological and Subjective Responses to an Aerobic Exercise Session among Sedentary Adults

    PubMed Central

    Karoly, Hollis C.; Stevens, Courtney J.; Magnan, Renee E.; Harlaar, Nicole; Hutchison, Kent E.; Bryan, Angela D.

    2012-01-01

    Objective. To determine whether genetic variants suggested by the literature to be associated with physiology and fitness phenotypes predicted differential physiological and subjective responses to a bout of aerobic exercise among inactive but otherwise healthy adults. Method. Participants completed a 30-minute submaximal aerobic exercise session. Measures of physiological and subjective responding were taken before, during, and after exercise. 14 single nucleotide polymorphisms (SNPs) that have been previously associated with various exercise phenotypes were tested for associations with physiological and subjective response to exercise phenotypes. Results. We found that two SNPs in the FTO gene (rs8044769 and rs3751812) were related to positive affect change during exercise. Two SNPs in the CREB1 gene (rs2253206 and 2360969) were related to change in temperature during exercise and with maximal oxygen capacity (VO2 max). The SLIT2 SNP rs1379659 and the FAM5C SNP rs1935881 were associated with norepinephrine change during exercise. Finally, the OPRM1 SNP rs1799971 was related to changes in norepinephrine, lactate, and rate of perceived exertion (RPE) during exercise. Conclusion. Genetic factors influence both physiological and subjective responses to exercise. A better understanding of genetic factors underlying physiological and subjective responses to aerobic exercise has implications for development and potential tailoring of exercise interventions. PMID:22899923

  20. Thermoregulatory responses in exercising rats: methodological aspects and relevance to human physiology

    PubMed Central

    Wanner, Samuel Penna; Prímola-Gomes, Thales Nicolau; Pires, Washington; Guimarães, Juliana Bohnen; Hudson, Alexandre Sérvulo Ribeiro; Kunstetter, Ana Cançado; Fonseca, Cletiana Gonçalves; Drummond, Lucas Rios; Damasceno, William Coutinho; Teixeira-Coelho, Francisco

    2015-01-01

    Rats are used worldwide in experiments that aim to investigate the physiological responses induced by a physical exercise session. Changes in body temperature regulation, which may affect both the performance and the health of exercising rats, are evident among these physiological responses. Despite the universal use of rats in biomedical research involving exercise, investigators often overlook important methodological issues that hamper the accurate measurement of clear thermoregulatory responses. Moreover, much debate exists regarding whether the outcome of rat experiments can be extrapolated to human physiology, including thermal physiology. Herein, we described the impact of different exercise intensities, durations and protocols and environmental conditions on running-induced thermoregulatory changes. We focused on treadmill running because this type of exercise allows for precise control of the exercise intensity and the measurement of autonomic thermoeffectors associated with heat production and loss. Some methodological issues regarding rat experiments, such as the sites for body temperature measurements and the time of day at which experiments are performed, were also discussed. In addition, we analyzed the influence of a high body surface area-to-mass ratio and limited evaporative cooling on the exercise-induced thermoregulatory responses of running rats and then compared these responses in rats to those observed in humans. Collectively, the data presented in this review represent a reference source for investigators interested in studying exercise thermoregulation in rats. In addition, the present data indicate that the thermoregulatory responses of exercising rats can be extrapolated, with some important limitations, to human thermal physiology. PMID:27227066

  1. Thermoregulatory responses in exercising rats: methodological aspects and relevance to human physiology.

    PubMed

    Wanner, Samuel Penna; Prímola-Gomes, Thales Nicolau; Pires, Washington; Guimarães, Juliana Bohnen; Hudson, Alexandre Sérvulo Ribeiro; Kunstetter, Ana Cançado; Fonseca, Cletiana Gonçalves; Drummond, Lucas Rios; Damasceno, William Coutinho; Teixeira-Coelho, Francisco

    2015-01-01

    Rats are used worldwide in experiments that aim to investigate the physiological responses induced by a physical exercise session. Changes in body temperature regulation, which may affect both the performance and the health of exercising rats, are evident among these physiological responses. Despite the universal use of rats in biomedical research involving exercise, investigators often overlook important methodological issues that hamper the accurate measurement of clear thermoregulatory responses. Moreover, much debate exists regarding whether the outcome of rat experiments can be extrapolated to human physiology, including thermal physiology. Herein, we described the impact of different exercise intensities, durations and protocols and environmental conditions on running-induced thermoregulatory changes. We focused on treadmill running because this type of exercise allows for precise control of the exercise intensity and the measurement of autonomic thermoeffectors associated with heat production and loss. Some methodological issues regarding rat experiments, such as the sites for body temperature measurements and the time of day at which experiments are performed, were also discussed. In addition, we analyzed the influence of a high body surface area-to-mass ratio and limited evaporative cooling on the exercise-induced thermoregulatory responses of running rats and then compared these responses in rats to those observed in humans. Collectively, the data presented in this review represent a reference source for investigators interested in studying exercise thermoregulation in rats. In addition, the present data indicate that the thermoregulatory responses of exercising rats can be extrapolated, with some important limitations, to human thermal physiology. PMID:27227066

  2. Sympathoadrenal responses to acute and chronic hypoxia in the rat.

    PubMed Central

    Johnson, T S; Young, J B; Landsberg, L

    1983-01-01

    The sympathoadrenal responses to acute and chronic hypoxic exposure at 10.5 and 7.5% oxygen were determined in the rat. Cardiac norepinephrine (NE) turnover was used to assess sympathetic nervous system (SNS) activity, and urinary excretion of epinephrine (E) was measured as an index of adrenal medullary activity. The responses of the adrenal medulla and SNS were distinct and dependent upon the degree and duration of hypoxic exposure. Chronic hypoxia at 10.5% oxygen increased cardiac NE turnover by 130% after 3, 7, and 14 d of hypoxic exposure. Urinary excretion of NE was similarly increased over this time interval, while urinary E excretion was marginally elevated. In contrast, acute exposure to moderate hypoxia at 10.5% oxygen was not associated with an increase in SNS activity; in fact, decreased SNS activity was suggested by diminished cardiac NE turnover and urinary NE excretion over the first 12 h of hypoxic exposure, and by a rebound increase in NE turnover after reexposure to normal oxygen tension. Adrenal medullary activity, on the other hand, increased substantially during acute exposure to moderate hypoxia (2-fold increase in urinary E excretion) and severe hypoxia (greater than 10-fold). In distinction to the lack of effect of acute hypoxic exposure (10.5% oxygen), the SNS was markedly stimulated during the first day of hypoxia exposure at 7.5% oxygen, an increase that was sustained throughout at least 7 d at 7.5% oxygen. These results demonstrate that chronic exposure to moderate and severe hypoxia increases the activity of the SNS and adrenal medulla, the effect being greater in severe hypoxic exposure. The response to acute hypoxic exposure is more complicated; during the first 12 h of exposure at 10.5% oxygen, the SNS is not stimulated and appears to be restrained, while adrenal medullary activity is enhanced. Acute exposure to a more severe degree of hypoxia (7.5% oxygen), however, is associated with stimulation of both the SNS and adrenal medulla

  3. Excluded and behaving unethically: social exclusion, physiological responses, and unethical behavior.

    PubMed

    Kouchaki, Maryam; Wareham, Justin

    2015-03-01

    Across 2 studies, we investigated the ethical consequences of physiological responses to social exclusion. In Study 1, participants who were socially excluded were more likely to engage in unethical behavior to make money and the level of physiological arousal experienced during exclusion--measured using galvanic skin response--mediated the effects of exclusion on unethical behavior. Likewise, in Study 2, results from a sample of supervisor-subordinate dyads revealed a positive relationship between experience of workplace ostracism and unethical behaviors as rated by the immediate supervisors. This relationship was mediated by employees' reports of experienced physiological arousal. Together, the results of these studies demonstrate that physiological arousal accompanies social exclusion and provides an explanatory mechanism for the increased unethical behavior in both samples. Theoretical implications of these findings for research on ethical behavior and social exclusion in the workplace are discussed. PMID:25314369

  4. Physiological response of BSC phototrophic community to EPS removal

    NASA Astrophysics Data System (ADS)

    Adessi, Alessandra; Cruz de Carvalho, Ricardo; Silvestre, Susana; Rossi, Federico; Mugnai, Gianmarco; Marques da Silva, Jorge; Branquinho, Cristina; De Philippis, Roberto

    2015-04-01

    Biological Soil Crusts (BSCs) are associations between soil particles and varying proportions of cyanobacteria, heterotrophic bacteria, algae, fungi, lichens and mosses. BSCs play a major role in soil stabilization, and in drylands have been well acknowledged for mitigating desertification effects. Amongst the wide diversity of organisms that compose BSCs, cyanobacteria are the first primary producers: they colonize nutrient-limited soils, modifying the micro-environment through the excretion of large amounts of extracellular polymeric substances (EPSs). EPSs represent a huge carbon and nitrogen source for other inhabitants of the crust, are three-dimensionally spread through the first millimeters of the soil, and have a recognized role in influencing the hydrological behavior of the crust. The aim of this study was to investigate the possible role that EPSs play in the physiology of the phototrophic community residing on a light crust (without mosses or lichens, thus mainly inhabited by cyanobacteria and algae). In particular it was investigated whether the three-dimensional matrix in which EPSs are organized allowed light distribution and diffusion inside the crust, thus influencing photosynthesis. Non-invasive techniques were used to extract the polymeric matrix and to analyze photosynthetic performances in native and extracted BSC samples. Preliminary results suggested that the mild extraction protocol allowed to remove a portion of the matrix, and that this treatment revealed highly significant differences in the optical properties of the crusts comparing native and extracted samples. The extraction did not affect cell viability, as samples after the extraction were still photosynthetically active. However, chlorophyll variable fluorescence was significantly lower in the extracted samples than in native ones, and susceptibility to photoinhibition was significantly modified. Evaluating the role of the EPSs in the community is essential to further understand the

  5. Mast cells mediate acute inflammatory responses to implanted biomaterials

    PubMed Central

    Tang, Liping; Jennings, Timothy A.; Eaton, John W.

    1998-01-01

    Implanted biomaterials trigger acute and chronic inflammatory responses. The mechanisms involved in such acute inflammatory responses can be arbitrarily divided into phagocyte transmigration, chemotaxis, and adhesion to implant surfaces. We earlier observed that two chemokines—macrophage inflammatory protein 1α/monocyte chemoattractant protein 1—and the phagocyte integrin Mac-1 (CD11b/CD18)/surface fibrinogen interaction are, respectively, required for phagocyte chemotaxis and adherence to biomaterial surfaces. However, it is still not clear how the initial transmigration of phagocytes through the endothelial barrier into the area of the implant is triggered. Because implanted biomaterials elicit histaminic responses in the surrounding tissue, and histamine release is known to promote rapid diapedesis of inflammatory cells, we evaluated the possible role of histamine and mast cells in the recruitment of phagocytes to biomaterial implants. Using i.p. and s.c. implantation of polyethylene terephthalate disks in mice we find: (i) Extensive degranulation of mast cells, accompanied by histamine release, occurs adjacent to short-term i.p. implants. (ii) Simultaneous administration of H1 and H2 histamine receptor antagonists (pyrilamine and famotidine, respectively) greatly diminishes recruitment and adhesion of both neutrophils (<20% of control) and monocytes/macrophages (<30% of control) to implants. (iii) Congenitally mast cell-deficient mice also exhibit markedly reduced accumulation of phagocytes on both i.p. and s.c implants. (iv) Finally, mast cell reconstitution of mast cell-deficient mice restores “normal” inflammatory responses to biomaterial implants. We conclude that mast cells and their granular products, especially histamine, are important in recruitment of inflammatory cells to biomaterial implants. Improved knowledge of such responses may permit purposeful modulation of both acute and chronic inflammation affecting implanted biomaterials. PMID

  6. Abnormal physiological conditions in acute schizophrenic patients on emergency admission: dehydration, hypokalemia, leukocytosis and elevated serum muscle enzymes.

    PubMed

    Hatta, K; Takahashi, T; Nakamura, H; Yamashiro, H; Endo, H; Fujii, S; Fukami, G; Masui, K; Asukai, N; Yonezawa, Y

    1998-01-01

    This study investigated varieties and incidence of abnormal physiological conditions in acute schizophrenic patients on emergency. Laboratory data obtained prior to treatment from patients, admitted on an emergency basis during an 18-month period, were evaluated retrospectively, as well as demographics and clinical characteristics. Of 259 male acute schizophrenic patients (ICD-10: F2), 6.9% revealed dehydration, a third had hypokalemia and leukocytosis, and two thirds showed elevated serum muscle enzymes. These percentages were statistically significant compared with those of outpatients. In addition, the former three of these conditions in the F2 group were as frequent as those in alcohol and/or psychoactive substance abusers (ICD-10: F1) on emergency admission, although elevated serum muscle enzymes in the F2 group was less frequent than that in the F1 group. In order to prevent these abnormal physiological conditions from worsening and becoming life-threatening, one fourth of the F2 group [dehydration, 6.9%, severe hypokalemia (< 3.0 mEq/l), 2.3%, and markedly elevated serum muscle enzymes (creatine phosphokinase > 1000 IU/l), 16.5%] required medical management such as fluid therapy and various types of monitoring. In cases of a behavioral emergency, laboratory screening and monitoring of urinary output were essential. Due to their lack of cooperation, case history, physical examination, and initial vital signs did not contribute to detection of their medical condition. PMID:9810481

  7. Physiological-Cognitive-Emotional Responses to Defense-Arousing Communication: Overview and Sex Differences.

    ERIC Educational Resources Information Center

    Gordon, Ronald D.

    A 328-item checklist, suitable for the self-reporting of responses to any stimulus event, was administered to 107 upper division college students in an attempt to investigate the physiological-cognitive-emotional responses to defense arousing communication and to discover a greater range of the key features of the phenomena of "defensiveness."…

  8. Student Response (Clicker) Systems: Preferences of Biomedical Physiology Students in Asian Classes

    ERIC Educational Resources Information Center

    Hwang, Isabel; Wong, Kevin; Lam, Shun Leung; Lam, Paul

    2015-01-01

    Student response systems (commonly called "clickers") are valuable tools for engaging students in classroom interactions. In this study, we investigated the use of two types of response systems (a traditional clicker and a mobile device) by students in human physiology courses. Our results showed high student satisfaction with the use of…

  9. The Role of Emotional Responses and Physiological Reactivity in the Marital Conflict-Child Functioning Link

    ERIC Educational Resources Information Center

    El-Sheikh, Mona

    2005-01-01

    Background: Children's emotional responses and physiological reactivity to conflict were examined as mediators and moderators in the associations between exposure to parental marital conflict and child adjustment and cognitive problems. Method: One hundred and eighty elementary school children participated. In response to a simulated argument,…

  10. Study of physiological and behavioral response to transitions between rotating and nonrotating environments

    NASA Technical Reports Server (NTRS)

    Brady, J. F.

    1972-01-01

    Future manned space missions may require transition between artificial gravity and weightlessness environments. The frequency and rate of such transition will influence the psychophysiological responses of man. Abrupt transfers are examined between such rotating and nonrotating environments to determine the physiological and behavioral responses of man. Five subjects were tested using rates of rotation up to 5 rpm.

  11. Cardiovascular responses to glucagon - Physiologic measurement by external recordings.

    NASA Technical Reports Server (NTRS)

    Byrne, M. J.; Pigott, V.; Spodick, D. H.

    1972-01-01

    Assessment by noninvasive polygraphic techniques of the cardiovascular responses of normal subjects to intravenous injections of glucagon and glucagon diluent. A blinding procedure which eliminated observer bias was used during the reading of tracings. Analysis of group results showed that glucagon provoked uniformly significant changes, including increase in heart rate, blood pressure, pressure-rate product, and ejection time index, and decrease in prejection period, mechanical and electromechanical systole, left ventricular ejection time, and the ratio PEP/LVET. The principal results correlated well with those of previous studies of the hemodynamic effects of glucagon.

  12. Acute and subacute effects of the ultrasonic blade and electrosurgery on nerve physiology

    PubMed Central

    Chen, Chaoyang; Kallakuri, Srinivasu; Cavanaugh, John M.; Broughton, Duan; Clymer, Jeffrey W.

    2015-01-01

    Abstract Ultrasonic blades have been shown to cause less acute electrophysiological damage when applied near nerves than monopolar electrosurgery (ES). This study was performed to determine whether the acute nerve damage observed for ES, as well as the relative lack of damage observed for ultrasonic dissection, extends through a subacute timeframe. Muscle incisions were made in rat with the Harmonic® Blade (HB) and ES at a distance of 2 mm from the sciatic nerve. Sham surgery was also performed which consisted of similar exposure of the sciatic nerve without use of an energized device. Electrophysiological function was assessed acutely over a 3-h period, and subacutely after a 7-day survival, by monitoring the sciatic nerve compound action potential (CAP), conduction velocity (CV), von Frey hair (VFH) stimulation force, leukocyte infiltration, and impaired axonal transport via β-amyloid precursor protein (β-APP) immunocytochemistry. During the acute period, ES produced significantly lower CAP and CV, and higher levels of leukocytes and β-APP than sham, whereas the ultrasonic blade was not significantly different from sham, and had significantly lower VFH force than ES. After the subacute survival, ES continued to display significantly lower CAP and CV, and higher levels of leukocytes and β-APP than sham, whereas ultrasonic blade had higher CAP and CV than sham, and lower VFH than ES. This study confirms that incisions made with an ultrasonic blade cause less acute nerve damage than monopolar ES, and are comparable to sham surgery at a distance of 2 mm from the sciatic nerve. The negative effects of electrosurgery extend through at least a 7-day survival period, whereas subacute recovery after application of the ultrasonic blade was comparable to that of sham surgery. For surgical procedures in the vicinity of vital nerves, use of the ultrasonic blade represents a lower risk than ES for both acute and subacute neural trauma. PMID:25812024

  13. Acute hypoxemia in humans enhances the neutrophil inflammatory response.

    PubMed

    Tamura, Douglas Y; Moore, Ernest E; Partrick, David A; Johnson, Jeffrey L; Offner, Patrick J; Silliman, Christopher C

    2002-04-01

    The neutrophil (PMN) is regarded as a key component in the hyperinflammatory response known as the systemic inflammatory response syndrome. Acute respiratory distress syndrome (ARDS) and subsequent multiple organ failure (MOF) are related to the severity of this hyperinflammation. ICU patients who are at highest risk of developing MOF may have acute hypoxic events that complicate their hospital course. This study was undertaken to evaluate the effects of acute hypoxia and subsequent hypoxemia on circulating PMNs in human volunteers. Healthy subjects were exposed to a changing O2/N2 mixture until their O2 saturation (SaO2) reached a level of 68% saturation. These subjects were then exposed to room air and then returned to their baseline SaO2. PMNs were isolated from pre- and post-hypoxemic arterial blood samples and were then either stimulated with N-formyl-methionyl-leucyl-phenylalanine (fMLP) or PMA alone, or they were primed with L-alpha-phosphatidylcholine, beta-acetyl-gamma-O-alkyl (PAF) followed by fMLP activation. Reactive oxygen species generation as measured by superoxide anion production was enhanced in primed PMNs after hypoxemia. Protease degranulation as measured by elastase release was enhanced in both quiescent PMNs and primed PMNs after fMLP activation following the hypoxemic event. Adhesion molecule upregulation as measured by CD11b/CD18, however, was not significantly changed after hypoxemia. Apoptosis of quiescent PMNs was delayed after the hypoxemic event. TNFalpha, IL-1, IL-6, and IL-8 cytokine levels were unchanged following hypoxemia. These results indicate that relevant acute hypoxemic events observed in the clinical setting enhance several PMN cytotoxic functions and suggest that a transient hypoxemic insult may promote hyperinflammation. PMID:11954825

  14. Dynamics of telomerase activity in response to acute psychological stress

    PubMed Central

    Epel, Elissa S.; Lin, Jue; Dhabhar, Firdaus S.; Wolkowitz, Owen M.; Puterman, E; Karan, Lori; Blackburn, Elizabeth H.

    2010-01-01

    Telomerase activity plays an essential role in cel0l survival, by lengthening telomeres and promoting cell growth and longevity. It is now possible to quantify the low levels of telomerase activity in human leukocytes. Low basal telomerase activity has been related to chronic stress in people and to chronic glucocorticoid exposure in vitro. Here we test whether leukocyte telomerase activity changes under acute psychological stress. We exposed 44 elderly women, including 22 high stress dementia caregivers and 22 matched low stress controls, to a brief laboratory psychological stressor, while examining changes in telomerase activity of peripheral blood mononuclear cells (PBMC). At baseline, caregivers had lower telomerase activity levels than controls, but during stress telomerase activity increased similarly in both groups. Across the entire sample, subsequent telomerase activity increased by 18% one hour after the end of the stressor (p<0.01). The increase in telomerase activity was independent of changes in numbers or percentages of monocytes, lymphocytes, and specific T cell types, although we cannot fully rule out some potential contribution from immune cell redistribution in the change in telomerase activity. Telomerase activity increases were associated with greater cortisol increases in response to the stressor. Lastly, psychological response to the tasks (greater threat perception) was also related to greater telomerase activity increases in controls. These findings uncover novel relationships of dynamic telomerase activity with exposure to an acute stressor, and with two classic aspects of the stress response -- perceived psychological stress and neuroendocrine (cortisol) responses to the stressor. PMID:20018236

  15. Effects of age on hemorheological responses to acute endurance exercise.

    PubMed

    Ahmadizad, Sajad; Moradi, Akram; Nikookheslat, Saeed; Ebrahimi, Hadi; Rahbaran, Adel; Connes, Philippe

    2011-01-01

    The purpose of this investigation was to examine the effects of age on the acute responses of hemorheological variables and biochemical parameters to a single bout of sub-maximal endurance exercise. Fifteen young (20-30 years), 15 middle-aged (40-50 years) and 12 old (60-70 years) male subjects participated in the study. All subjects performed one single bout of endurance exercise encompassed 30-min cycling at 70-75% of maximal heart rate which was followed by 30-min recovery. Three blood samples were taken before, immediately after exercise and after 30-min recovery. Resting levels of hematocrit, red blood cells count, plasma albumin and fibrinogen concentrations, plasma viscosity and whole blood viscosity were significantly different among the three groups (P < 0.01). Thirty minutes of cycling resulted in significant increases (P < 0.05) in all parameters; while these changes were temporary and returned to pre-exercise level at the end of recovery. Responses of all parameters to exercise and recovery were not significantly different among the three groups (P > 0.05). Fibrinogen changes during exercise and recovery were corrected for exercise- and recovery-induced changes in plasma volume. Data analysis showed effects of exercise and recovery only for raw data (P > 0.05). In addition, raw and corrected fibrinogen data in response to exercise and recovery were not age-related. Our results demonstrate that age does not affect the hemorheological responses to an acute endurance exercise in healthy men. PMID:22214687

  16. Serum Profiling of Rat Dermal Exposure to JP-8 Fuel Reveals an Acute-Phase Response.

    PubMed

    Larabee, Jason L; Hocker, James R; Cheung, John Y; Gallucci, Randle M; Hanas, Jay S

    2008-01-01

    ABSTRACT Dermal exposure to JP-8 petroleum jet fuel leads to toxicological responses in humans and rodents. Serum profiling is a molecular analysis of changes in the levels of serum proteins and other molecules in response to changes in physiology. This present study utilizes serum profiling approaches to examine biomolecular changes in the sera of rats exposed to dermal applications of JP-8 (jet propulsion fuel-8). Using gel electrophoresis and electrospray ionization (ESI) mass spectrometry (MS), levels of serum proteins as well as low-mass constituents were found to change after dermal exposures to JP-8. The serum protein levels altered included the acute-phase response proteins haptoglobin, ceruloplasmin, alpha(1)-inhibitor III, and apolipoprotein A-IV. Haptoglobin levels increased after a 1-day JP-8 dermal exposure and continued to increase through 7 days of exposure. Ceruloplasmin levels increased after 5 days of exposure. Serum alpha(1)-inhibitor III was reduced after a 1-day exposure and the depletion continued after 7 days of exposure. Apolipoprotein A-IV increased after a 1-day exposure and then returned to basal levels after 3- and 5-day exposures of JP-8. Levels of the acute-phase protein alpha(2)-macroglobulin were found to not vary over these time course studies. Using ESI-MS analysis directly on the sera from rats exposed to dermal JP-8, low-mass sera constituents were found to correlate with control (acetone) or JP-8 exposure. PMID:20020890

  17. Salivary Markers of Inflammation in Response to Acute Stress

    PubMed Central

    Slavish, Danica C.; Graham-Engeland, Jennifer E.; Smyth, Joshua M.; Engeland, Christopher G.

    2014-01-01

    There is burgeoning interest in the ability to detect inflammatory markers in response to stress within naturally occurring social contexts and/or across multiple time points per day within individuals. Salivary collection is a less invasive process than current methods of blood collection and enables intensive naturalistic methodologies, such as those involving extensive repeated measures per day over time. Yet the reliability and validity of saliva-based to blood-based inflammatory biomarkers in response to stress remains unclear. We review and synthesize the published studies that have examined salivary markers of inflammation following exposure to an acute laboratory stressor. Results from each study are reviewed by analyte (IL-1β, TNF-α, IL-6, IL-2, IL-4, IL-10, IL-12, CRP) and stress type (social-cognitive and exercise-physical), after which methodological issues and limitations are addressed. Although the literature is limited, several inflammatory markers (including IL-1β, TNF-α, and IL-6) have been reliably determined from saliva and have increased significantly in response to stress across multiple studies, with effect sizes ranging from very small to very large. Although CRP from saliva has been associated with CRP in circulating blood more consistently than other biomarkers have been associated with their counterparts in blood, evidence demonstrating it reliably responds to acute stress is absent. Although the current literature is presently too limited to allow broad assertion that inflammatory biomarkers determined from saliva are valuable for examining acute stress responses, this review suggests that specific targets may be valid and highlights specific areas of need for future research. PMID:25205395

  18. Plamsa leptin response to acute fasting and refeeding in untreated women with bulimia nervosa.

    PubMed

    Monteleone, P; Bortolotti, F; Fabrazzo, M; La Rocca, A; Fuschino, A; Maj, M

    2000-07-01

    Leptin is known to regulate body weight, energy balance, and reproduction. Therefore, investigation of its physiology is of obvious interest in bulimia nervosa (BN), an eating disorder characterized by body weight-related psychopathology, acute changes in the energy balance, and reproductive alterations. To date, the few studies that have assessed leptin production in BN have had several limitations, including the measurement of blood leptin levels in treated patients and the lack of normal weight healthy controls, so that the information they provide is not conclusive. As the investigation of leptin dynamics is likely to be more informative, we decided to assess leptin response to acute fasting and refeeding in both untreated patients with BN and healthy controls. Twelve women meeting the diagnostic criteria for BN of the Diagnostic and Statistical Manual of Mental Disorders, and 10 healthy women of the same age range participated in a 3-day study. At 1800 h on day 1, they received a meal of 1088 Cal, with 53% carbohydrates, 17% protein, and 30% fat. Then, they fasted until 1800 h on day 2, when they received the same meal. On day 3, they received a standard hospital diet of 2600 Cal, divided into 3 meals, with the same percentages of nutrients as described above. Blood samples were collected at different time points for plasma leptin, glucose, and insulin measurements. In bulimic patients, plasma leptin values were significantly lower than in healthy women (P < 0.0001) and were positively related to body weight, expressed as body mass index (r = 0.86; P < 0.0001). The leptin response to the fasting/refeeding paradigm significantly differed between patients and controls (time x group interaction, P < 0.0001). In fact, in healthy subjects, acute fasting induced a 58% decline in the plasma leptin concentration, whereas such a decrease was only 7% in bulimic women (P < 0.001). After acute refeeding, plasma leptin increased in both groups, although in the patients it

  19. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration

    SciTech Connect

    Sheard, Michael A.; Ghent, Matthew V.; Cabral, Daniel J.; Lee, Joanne C.; Khankaldyyan, Vazgen; Ji, Lingyun; Wu, Samuel Q.; Kang, Min H.; and others

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent.

  20. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration.

    PubMed

    Sheard, Michael A; Ghent, Matthew V; Cabral, Daniel J; Lee, Joanne C; Khankaldyyan, Vazgen; Ji, Lingyun; Wu, Samuel Q; Kang, Min H; Sposto, Richard; Asgharzadeh, Shahab; Reynolds, C Patrick

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. PMID:25845499

  1. Physiological responses at five estimates of critical velocity.

    PubMed

    Bull, Anthony J; Housh, Terry J; Johnson, Glen O; Rana, Sharon R

    2008-04-01

    The purpose of this study was to compare critical velocity (CV) estimates from five mathematical models, and to examine the oxygen uptake (VO(2)) and heart rate (HR) responses during treadmill runs at the five estimates of CV. Ten subjects (six males and four females) performed one incremental test to determine maximal oxygen consumption (VO(2max)) and four or five randomly ordered constant-velocity trials on a treadmill for the estimation of CV. Five mathematical models were used to estimate CV for each subject including two linear, two nonlinear, and an exponential model. Up to five randomly ordered runs to exhaustion were performed by each subject at treadmill velocities that corresponded to the five CV estimates, and VO(2) and HR responses were monitored throughout each trial. The 3-parameter, nonlinear (Non-3) model produced CV estimates that were significantly (P < 0.05) less than the other four models. During runs at CV estimates, five subjects did not complete 60 min at the their estimate from the Non-3 model, nine did not complete 60 min at their estimate from the Non-2 model, and no subjects completed 60 min at any estimate from the other three models. The mean HR value (179 +/- 18 beats min(-1), HR(peak)) at the end of runs at CV using the Non-3 model was significantly less than the maximal HR (195 +/- 7 beats min(-1), HR(max)) achieved during the incremental trial to exhaustion. However, mean HR(peak) values from runs at all other CV estimates were not significantly different from HR(max). Furthermore, data indicated that mean HR(peak) values increased during runs at CV estimates from the third minute to the end of exercise for all models, and that these increases in VO(2) (range = 367-458 ml min(-1)) were significantly greater than that typically associated with O(2) drift ( approximately 200 ml min(-1)) for all but the exponential model, indicating a VO(2) slow component associated with CV estimates from four of the five models. However, the mean VO(2

  2. Cognitive and physiological effects of an acute physical activity intervention in elementary school children

    PubMed Central

    Jäger, Katja; Schmidt, Mirko; Conzelmann, Achim; Roebers, Claudia M.

    2014-01-01

    The aim of the present study was to investigate the effects of an acute physical activity intervention that included cognitive engagement on executive functions and on cortisol level in young elementary school children. Half of the 104 participating children (6–8 years old) attended a 20-min sport sequence, which included cognitively engaging and playful forms of physical activity. The other half was assigned to a resting control condition. Individual differences in children's updating, inhibition, and shifting performance as well as salivary cortisol were assessed before (pre-test), immediately after (post-test), and 40 min after (follow-up) the intervention or control condition, respectively. Results revealed a significantly stronger improvement in inhibition in the experimental group compared to the control group, while it appeared that acute physical activity had no specific effect on updating and shifting. The intervention effect on inhibition leveled out 40 min after physical activity. Salivary cortisol increased significantly more in the experimental compared to the control group between post-test and follow-up and results support partly the assumed inverted U-shaped relationship between cortisol level and cognitive performance. In conclusion, results indicate that acute physical activity that includes cognitive engagement may have immediate positive effects on inhibition, but not necessarily on updating and shifting in elementary school children. This positive effect may partly be explained through cortisol elevation after acute physical activity. PMID:25566148

  3. The mitochondrial unfolded protein response in mammalian physiology

    PubMed Central

    Mottis, Adrienne; Jovaisaite, Virginija; Auwerx, Johan

    2014-01-01

    Mitochondria, the main site of cellular energy harvesting, are derived from proteobacteria that evolved within our cells in endosymbiosis. Mitochondria retained vestiges of their proteobacterial genome, the circular mitochondrial DNA (mtDNA), which encodes 13 subunits of the oxidative phosphorylation (OXPHOS) multiprotein complexes in the electron transport chain (ETC), while the remaining ~80 ETC components are encoded in the nuclear DNA (nDNA). A further ~1,400 proteins, which are essential for mitochondrial function are also encoded in nDNA. Thus the majority of mitochondrial proteins are translated in the cytoplasm, then imported, processed, and assembled in the mitochondria. An intricate protein quality control (PQC) network, constituted of chaperones and proteases that refold or degrade defective proteins, maintains mitochondrial proteostasis and ensures the cell and organism health. The mitochondrial unfolded protein response (UPRmt) is a relatively recently discovered PQC pathway, which senses the proteostatic disturbances specifically in the mitochondria and resolves the stress by retrograde signaling to the nucleus and consequent transcriptional activation of protective genes. This PQC system does not only transiently resolves the local stress, but can have long lasting effects on whole body metabolism, fitness and longevity. A delicate tuning of its activation levels might constitute a treatment of various diseases, such as metabolic diseases, cancer and neurodegenerative disorders. PMID:24898297

  4. Physiological and biochemical response to high temperature stress in Okra (Abelmoschus esculentus L. Moench)

    NASA Astrophysics Data System (ADS)

    Hayamanesh, Shahnoosh; Keitel, Claudia; Ahmad, Nabil; Trethowan, Richard

    2016-04-01

    High temperature has been shown to lower the growth and yield of Okra, an important summer vegetable crop grown in Asia, Africa, the Middle East and Australia. We aimed to characterise the physiological and biochemical response of Okra to heat stress. 150 genotypes from Pakistan and the AVRDC (The World Vegetable Centre) were screened for their physiological response (fluorescence, electrolyte leakage and yield) to heat in a greenhouse. Four genotypes (including heat tolerant and sensitive) were selected and subsequently grown in control and hot greenhouses. Daytime temperatures were on average 10°C warmer in the hot greenhouse, whereas nighttime temperatures were similar between the two temperature treatments. During a 12 week period, the physiological (assimilation rate, transpiration rate, stomatal conductance, fluorescence, electrolyte leakage, water potential) and biochemical (carbohydrates, sugar alcohols, C content) response of the four genotypes to heat stress was assessed. The effect of heat stress on the C allocation patterns and yield in Okra will be discussed.

  5. Effects of coping and cooperative instructions on guilty and informed innocents' physiological responses to concealed information.

    PubMed

    Zvi, Liza; Nachson, Israel; Elaad, Eitan

    2012-05-01

    Previous research on the Concealed Information Test indicates that knowledge of the critical information of a given event is sufficient for the elicitation of strong physiological reactions, thus facilitating detection by the test. Other factors that affect the test's efficacy are deceptive verbal responses to the test's questions and motivation of guilty examinees to avoid detection. In the present study effects of coping and cooperative instructions - delivered to guilty and innocent participants - on detection were examined. In a mock-theft experiment guilty participants who actually committed a mock-crime, and informed innocent participants who handled the critical items of the crime in an innocent context, were instructed to adopt either a coping or a cooperative attitude toward the polygraph test. Results indicated that both, guilt and coping behavior, were associated with enhanced physiological responses to the critical information, whereas innocence and cooperative behavior attenuated physiological responses. Theoretical and applied implications of the results are discussed. PMID:22330977

  6. Growth, physiological and biochemical response of ponderosa pine pinus ponderosa' to ozone. Final report

    SciTech Connect

    Temple, P.J.; Bytnerowicz, A.

    1993-11-01

    In 1989 and 1990, the effects of multi-year ozone exposures on growth, foliar injury and physiological responses in ponderosa pine were examined. Two-year old seedlings were exposed to four ozone treatments in open-top chambers: clean air (subambient levels of oxidants and particles); ambient ozone; twice-ambient ozone; or ambient air. The study was performed at Shirley Meadow in the southern Sierra Nevada. In both years, ambient ozone levels were representative of other forests in the region. While ozone is the most phytotoxic air pollutant, seedlings also experienced elevated concentrations of nitric acid and ammonia. In 1990, ambient ozone significantly increased injury to previous year needles. Premature senescence and alterations in physiological responses were also noted. Exposure to twice-ambient ozone reduced seedling biomass, increased injury and caused decreases in a variety of physiological responses.

  7. Physiological effects of acute and ordinary bed rest conditions on endurance trained volunteers.

    NASA Astrophysics Data System (ADS)

    Zorbas, Y. G.; Ivanov, A. A.; Madvedev, S. N.; Kakurin, A. G.

    1999-12-01

    The aim of this study was to carry out a comparative study of water balance and water protein composition of the blood during exposure to acute (abrupt restriction of motor activity) and ordinary rigorous bed rest of 7 days. The studies were performed on 30 long distance runners aged 22-25 years old who had a VO 2 max of 66 ml kg -1·min -1 on the average. The volunteers were divided into three equal groups: the volunteers in the 1st group were under a normal ambulatory life conditions (control subjects), the volunteers of the 2nd group subjected to an acute bed rest (abrupt restriction of motor activity) regime (acute bed rested subjects) and the volunteers of the 3rd group were submitted to ordinary and rigorous bed rest (rigorous bed rested subjects). All volunteers were on an average of 13.8 km/day before taking part in this investigation. The 2nd and 3rd groups of volunteers were kept under a rigorous bed rest regime for 7 days. During the prebed rest period and actual bed rest period plasma volume (PV), total protein and protein fractions (albumins and globulins) and hematocrit were measured. Exposure to acute bed rest conditions induced a significant increase in hematocrit, hemoglobin concentration, protein fractions and marked decrease in (PV) and water balance which were significantly more pronounced than during exposure to ordinary rigorous bed rest. It was concluded that exposure to acute bed rest conditions induces significantly greater changes in water balance and water-protein concentration of the blood of endurance trained volunteers than exposure to ordinary rigorous bed rest conditions.

  8. Physiological responses to water stress and waterlogging in Nothofagus species.

    PubMed

    Sun, O J; Sweet, G B; Whitehead, D; Buchan, G D

    1995-10-01

    Gas exchange and water relations were investigated in Nothofagus solandri var. cliffortioides (Hook. f.) Poole (mountain beech) and Nothofagus menziesii (Hook. f.) Oerst (silver beech) seedlings in response to water stress and waterlogging. At soil matric potentials (Psi(soil)) above -0.005 MPa, N. solandri had significantly higher photosynthetic rates (A), and stomatal and residual conductances (g(sw) and g(rc)), and lower predawn xylem water potentials (Psi(predawn)) than N. menziesii. The relative tolerance of plants to water stress was defined in terms of critical soil matric potential (Psi(cri)) and lethal xylem water potential (Psi(lethal)). The estimated values of Psi(cri) and Psi(lethal) were -1.2 and -7 MPa, respectively, for N. solandri, and -0.7 and -4 MPa, respectively, for N. menziesii. Photosynthesis was sustained to a xylem water potential (Psi(xylem)) of -7 MPa in N. solandri compared with -4 MPa in N. menziesii. Following rewatering, both A and Psi(xylem) recovered quickly in N. solandri, whereas the two variables recovered more slowly in N. menziesii. During the development of water stress, nonstomatal inhibition significantly affected A in both N. solandri and N. menziesii. Nothofagus menziesii was more susceptible to inhibition of A by waterlogging than N. solandri. However, the tolerance of N. solandri to severe waterlogging was also limited as a result of a failure to form adventitious roots, suggesting a lack of adaptation to these conditions. The differences in tolerance to water stress and waterlogging between the two species are consistent with the distribution patterns of N. solandri and N. menziesii in New Zealand. PMID:14965996

  9. Reduced Acute Inflammatory Responses to Microgel Conformal Coatings

    PubMed Central

    Bridges, Amanda W.; Singh, Neetu; Burns, Kellie L.; Babensee, Julia E.; Lyon, L. Andrew; García, Andrés J.

    2008-01-01

    Implantation of synthetic materials into the body elicits inflammatory host responses that limit medical device integration and biological performance. This inflammatory cascade involves protein adsorption, leukocyte recruitment and activation, cytokine release, and fibrous encapsulation of the implant. We present a coating strategy based on thin films of poly(N-isopropylacrylamide) hydrogel microparticles (i.e. microgels) cross-linked with poly(ethylene glycol) diacrylate. These particles were grafted onto a clinically relevant polymeric material to generate conformal coatings that significantly reduced in vitro fibrinogen adsorption and primary human monocytes/macrophage adhesion and spreading. These microgel coatings also reduced leukocyte adhesion and expression of pro-inflammatory cytokines (TNF-α, IL-1β, MCP-1) in response to materials implanted acutely in the murine intraperitoneal space. These microgel coatings can be applied to biomedical implants as a protective coating to attenuate biofouling, leukocyte adhesion and activation, and adverse host responses for biomedical and biotechnological applications. PMID:18804859

  10. Acute phase protein response in the capybara (Hydrochoerus hydrochaeris).

    PubMed

    Bernal, Luis; Feser, Mariane; Martínez-Subiela, Silvia; García-Martínez, Juan D; Cerón, José J; Tecles, Fernando

    2011-10-01

    We evaluated the acute phase protein response in capybaras (Hydrochoerus hydrochaeris). Three animal groups were used: 1) healthy animals (n=30), 2) a group in which experimental inflammation with turpentine was induced (n=6), and 3) a group affected with sarcoptic scabies (n=14) in which 10 animals were treated with ivermectin. Haptoglobin (Hp), acid-soluble glycoprotein (ASG) and albumin were analyzed in all animals. In those treated with turpentine, Hp reached its maximum value at 2 wk with a 2.7-fold increase, whereas ASG increased 1.75-fold and albumin decreased 0.87-fold 1 wk after the induction of inflammation. Capybaras affected with sarcoptic scabies presented increases in Hp and ASG of 4.98- and 3.18-fold, respectively, and a 0.87-fold decrease in albumin, compared with healthy animals. Haptoglobin and ASG can be considered as moderate, positive acute phase proteins in capybaras because they showed less than 10-fold increases after an inflammatory process and reached their peak concentrations 1 wk after the induction of inflammation. Conversely, albumin can be considered a negative acute phase protein in capybaras because it showed a reduction in concentration after inflammatory stimulus. PMID:22102653

  11. Assessing cross-partner associations in physiological responses via coupled oscillator models.

    PubMed

    Helm, Jonathan L; Sbarra, David; Ferrer, Emilio

    2012-08-01

    A host of theoretical frameworks suggest associations of physiological signals between two individuals within a romantic relationship. However, few studies have provided empirical evidence of such associations using physiological reactivity from both partners in the dyad. In this study we use measures of respiration and heart rate from romantic partners recorded across three laboratory tasks. We examine the interrelations of each measure between both dyad members using coupled linear oscillators (Boker & Nesselroade, 2002). These models were used to capture oscillations in respiration and heart rate, and to examine interdependence in the physiological signals between both partners. Results show that associations were detectable within all three tasks, with different patterns of coupling within each task. Discussion centers on ways to investigate the synchrony of physiological responses across within relationships, including the promises of and obstacles for doing so. PMID:21910541

  12. [Physiological and growth responses of Sabina vulgaris to disturbance of leaf removal].

    PubMed

    He, W

    2001-04-01

    To examine the physiological and growth responses to Sabina vulgaris to natural disturbance, a field experiment to simulate the grazing and pest disturbance was conducted in Maowusu sandy land through artificially removing leaves. The disturbance of leaf removal could modify the species' diurnal physiological dynamics through changing the timing of extreme values, and moreover, change the average daily values of physiological indexes significantly. Leaf removal could affect the growth traits, but not biomass allocation significantly. The consequences of the disturbance were confined by its means and intensity, and there existed significant differences in sensitivity of different physiological and growth characteristics e.g., net photosynthesis rate and transpiration rate to leaf removal. The disturbance of leaf removal, especially that of old leaf removal, had compensation effects. Therefore, moderately removing the leaves on the shoots with less than 2 years old could enhance the growth and the biomass accumulation of current-year shoots. PMID:11757356

  13. The effects of acute alcohol exposure on the response properties of neurons in visual cortex area 17 of cats

    SciTech Connect

    Chen Bo; Xia Jing; Li Guangxing; Zhou Yifeng

    2010-03-15

    Physiological and behavioral studies have demonstrated that a number of visual functions such as visual acuity, contrast sensitivity, and motion perception can be impaired by acute alcohol exposure. The orientation- and direction-selective responses of cells in primary visual cortex are thought to participate in the perception of form and motion. To investigate how orientation selectivity and direction selectivity of neurons are influenced by acute alcohol exposure in vivo, we used the extracellular single-unit recording technique to examine the response properties of neurons in primary visual cortex (A17) of adult cats. We found that alcohol reduces spontaneous activity, visual evoked unit responses, the signal-to-noise ratio, and orientation selectivity of A17 cells. In addition, small but detectable changes in both the preferred orientation/direction and the bandwidth of the orientation tuning curve of strongly orientation-biased A17 cells were observed after acute alcohol administration. Our findings may provide physiological evidence for some alcohol-related deficits in visual function observed in behavioral studies.

  14. Physiological Responses to Salinity Vary with Proximity to the Ocean in a Coastal Amphibian.

    PubMed

    Hopkins, Gareth R; Brodie, Edmund D; Neuman-Lee, Lorin A; Mohammadi, Shabnam; Brusch, George A; Hopkins, Zoë M; French, Susannah S

    2016-01-01

    Freshwater organisms are increasingly exposed to elevated salinity in their habitats, presenting physiological challenges to homeostasis. Amphibians are particularly vulnerable to osmotic stress and yet are often subject to high salinity in a variety of inland and coastal environments around the world. Here, we examine the physiological responses to elevated salinity of rough-skinned newts (Taricha granulosa) inhabiting a coastal stream on the Pacific coast of North America and compare the physiological responses to salinity stress of newts living in close proximity to the ocean with those of newts living farther upstream. Although elevated salinity significantly affected the osmotic (body weight, plasma osmolality), stress (corticosterone), and immune (bactericidal ability) responses of newts, animals found closer to the ocean were generally less reactive to salt stress than those found farther upstream. Our results provide possible evidence for some physiological tolerance in this species to elevated salinity in coastal environments. As freshwater environments become increasingly saline and more stressful, understanding the physiological tolerances of vulnerable groups such as amphibians will become increasingly important to our understanding of their abilities to respond, to adapt, and, ultimately, to survive. PMID:27327182

  15. Subjective and Physiological Responses to Music Stimuli Controlled Over Activity and Preference.

    PubMed

    Iwanaga; Moroki

    1999-01-01

    Results of physiological responses to music are inconclusive considering results of several studies, probably due to the insufficient control of the musical stimuli. The present study aimed to examine the effects of music type and preference on subjective and physiological responses using controlled stimuli by subjects' evaluations for music activity and preference. Subjects were 47 undergraduate students selected from a pool of 145 undergraduates. Results of evaluations of music activity and music preference for musical stimuli in preliminary research determined participation in the study. The music used in this study included the 4th movement of Tchaikovsky's Symphony No. 4 as an excitative piece and the 3rd movement of Mahler's Symphony No. 6 as a sedative one. The excitative music aroused feelings of vigor and tension more than did the sedative one, while sedative music eased tension. Favorite music, regardless of music type, lowered subjective tension. Physiological responses (heart rate, respiration, and blood pressure) were greater during excitative music than during sedative music. Music preference did not, however, affect physiological responses. These results indicate that the dominant factor affecting emotional response was music type but not preference. PMID:10519843

  16. Physiological correlates of the big 5: autonomic responses to video presentations.

    PubMed

    Brumbaugh, Claudia Chloe; Kothuri, Ravi; Marci, Carl; Siefert, Caleb; Pfaff, Donald D

    2013-12-01

    Personality's link to emotional experience has been demonstrated, but specific biological responses to emotion as a function of personality have not been well-established. Here, the association between personality and physiological responses (heart rate, skin conductance, and respiration) to emotional videos was assessed. One-hundred sixty-nine participants self-reported on their Big 5 personality traits and underwent ambulatory monitoring as they watched four brief video clips from primetime television content showing scenes containing violence, fear, sadness, and tension. Generally, the negatively-toned emotional scenes provoked increases in skin conductance response and declines in heart rate. We found that physiological outcomes depended on the particular emotional scene and on personality, most notably Extraversion and Neuroticism. Extraversion, and to a lesser degree, Neuroticism, were associated with increases in autonomic arousal responses to the scenes. Gender also interacted with personality to predict responses, such that women who scored higher on measures of Extraversion, Neuroticism, and Conscientious tended to show more physiological arousal than men. Overall, the emotional scenes evoked increases in arousal and more controlled attention. The findings are discussed in context of the limited capacity model and shed light on how personality and gender affect physiological reactions to emotional experiences in everyday life. PMID:24129901

  17. Baroreflex Responses to Acute Changes in Blood Volume in Humans

    NASA Technical Reports Server (NTRS)

    Thompson, Cynthia A.; Tatro, Dana L.; Ludwig, David A.; Convertino, Victor A.

    1990-01-01

    To test the hypothesis that acute changes in plasma volume affect the stimulus-response relations of high- and low- pressure baroreflexes, eight men (27-44 yr old) underwent measurements for carotid-cardiac and cardiopulmonary baro- reflex responses under the following three volemic conditions: hypovolemic, normovolemic, and hypervolemic. The stimulus- response relation of the carotid-cardiac response curve was generated using a neck cuff device, which delivered pressure changes between +40 and -65 mmHg in continuous steps of 15 mmHg. The stimulus-response relationships of the cardiopulmonary baroreflex were studied by measurements of Forearm Vascular Resistance (FVR) and Peripheral Venotis Pressure (PVP) during low levels of lower body negative pressure (O to -20 mmHg). Altered vascular volume had no effect on response relations of the carotid-cardiac baroreflex but did alter the gain of the cardiopulmonary baroreflex (-7.93 q 1.71, -4.36 q 1.38, and -2.56 q 1.59 peripheral resistance units/mmHg for hypovolemic, normovolemic, and hypervolemic, respectively) independent of shifts in baseline FVR and PVP. These results indicate greater demand for vasoconstriction for equal reductions in venous pressure during progressive hypovolemia; this condition may compromise the capacity to provide adequate peripheral resistance during severe orthostatic stress. Fluid loading before reentry after spaceflight may act to restore vasoconstrictive capacity of the cardiopulnionary baroreflex but may not be an effective countermeasure against potential post- flight impairment of the carotid-cardiac baroreflex.

  18. Acute caffeine administration affects zebrafish response to a robotic stimulus.

    PubMed

    Ladu, Fabrizio; Mwaffo, Violet; Li, Jasmine; Macrì, Simone; Porfiri, Maurizio

    2015-08-01

    Zebrafish has been recently proposed as a valid animal model to investigate the fundamental mechanisms regulating emotional behavior and evaluate the modulatory effects exerted by psychoactive compounds. In this study, we propose a novel methodological framework based on robotics and information theory to investigate the behavioral response of zebrafish exposed to acute caffeine treatment. In a binary preference test, we studied the response of caffeine-treated zebrafish to a replica of a shoal of conspecifics moving in the tank. A purely data-driven information theoretic approach was used to infer the influence of the replica on zebrafish behavior as a function of caffeine concentration. Our results demonstrate that acute caffeine administration modulates both the average speed and the interaction with the replica. Specifically, zebrafish exposed to elevated doses of caffeine show reduced locomotion and increased sensitivity to the motion of the replica. The methodology developed in this study may complement traditional experimental paradigms developed in the field of behavioral pharmacology. PMID:25907748

  19. Polyphasic innate immune responses to acute and chronic LCMV infection

    PubMed Central

    Norris, Brian A.; Uebelhoer, Luke S.; Nakaya, Helder I.; Price, Aryn A.; Grakoui, Arash; Pulendran, Bali

    2013-01-01

    Summary Resolution of acute and chronic viral infections requires activation of innate cells to initiate and maintain adaptive immune responses. Here we report that infection with acute Armstrong (ARM) or chronic Clone 13 (C13) strains of lymphocytic choriomeningitis virus (LCMV) led to two distinct phases of innate immune response. During the first 72hr of infection, dendritic cells upregulated activation markers, and stimulated anti-viral CD8+ T cells, independent of viral strain. Seven days after infection, there was an increase in Ly6Chi monocytic and Gr-1hi neutrophilic cells in lymphoid organs and blood. This expansion in cell numbers was enhanced and sustained in C13 infection, whereas it occurred only transiently with ARM infection. These cells resembled myeloid-derived suppressor cells, and potently suppressed T cell proliferation. The reduction of monocytic cells in Ccr2−/− mice or after Gr-1 antibody depletion enhanced anti-viral T cell function. Thus, innate cells have an important immunomodulatory role throughout chronic infection. PMID:23438822

  20. FDG-PET imaging for the assessment of physiologic volume response during radiotherapy in cervix cancer

    SciTech Connect

    Lin, Lilie L.; Yang Zhiyun; Mutic, Sasa; Miller, Tom R.; Grigsby, Perry W. . E-mail: pgrigsby@wustl.edu

    2006-05-01

    Purpose: To evaluate the physiologic tumor volume response during treatment in cervical cancer using 18F-fluorodeoxyglucose positron emission tomography (FDG-PET). Patients and Methods: This was a prospective study of 32 patients. Physiologic tumor volume in cubic centimeters was determined from the FDG-PET images using the 40% threshold method. Results: The mean pretreatment tumor volume was 102 cm{sup 3}. The mean volume by clinical Stages I, II, and III were 54, 79, and 176 cm{sup 3}, respectively. After 19.8 Gy external irradiation to the pelvis, the reduction in tumor volume was 29% (72 cm{sup 3}). An additional 13 Gy from high-dose-rate (HDR) brachytherapy reduced the mean volume to 15.4 cm{sup 3}, and this was subsequently reduced to 8.6 cm{sup 3} with 13 Gy additional HDR brachytherapy (26 Gy, HDR). Four patients had physiologic FDG uptake in the cervix at 3 months after the completion of therapy. The mean time to the 50% reduction in physiologic tumor volume was 19.9 days and after combined external irradiation and HDR to 24.9 Gy. Conclusion: These results indicate that physiologic tumor volume determination by FDG-PET is feasible and that a 50% physiologic tumor volume reduction occurs within 20 days of starting therapy.

  1. Sugarcane growth and physiological responses to water deficit stress on organic and sand soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane (Saccharum spp.) genotype selection has been more successful for organic (muck) than sand soils in Florida, perhaps due to differences in water availability. A greenhouse study was conducted at Canal Point, Florida to compare sugarcane physiological responses to water deficit stress during...

  2. Integrated analysis of the genomic, biochemical, and physiological responses of a model ecosystem to global change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our aim is to understand and integrate the molecular, biochemical, physiological and ecological responses of plants in the field to factors of global climate change. This research used Free Air-gas Concentration Enrichment (FACE) technology to enrich [CO2] and [O3] to levels predicted for 2050, in a...

  3. Renal Response to Volume Expansion: Learning the Experimental Approach in the Context of Integrative Physiology.

    ERIC Educational Resources Information Center

    Kline, Robert L.; Dukacz, Stephen A. W.; Stavraky, Thomas

    2000-01-01

    Describes a laboratory experience for upper-level science students that provides a hands-on approach to understanding the basics of experimental physiology. Students design an experiment to determine the relative importance of dilution of plasma proteins in the overall renal excretory response following volume expansion with intravenous saline.…

  4. PLANT CULTURAL SYSTEM FOR MONITORING EVAPOTRANSPIRATION AND PHYSIOLOGICAL RESPONSES UNDER FIELD CONDITIONS

    EPA Science Inventory

    A plant culture system incorporating the water-table root-screen method for controlling plant water status was adapted for use in open-top field exposure chambers for studying the effects of drought stress on physiological responses. The daily transpiration rates of the plants we...

  5. The Physiologic Response to Stress and its Effects on Swine Reproduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When exposed to a stressor, swine invoke behavioral and physiologic responses which are designed to enable the individual to cope with the negative effects of the stressor. The activity of the hypothalamic-pituitary-adrenal axis is increased resulting in elevated corticotropic releasing factor (CRF)...

  6. PHYSIOLOGY OF ECOTYPIC PLANT RESPONSE TO SULFUR DIOXIDE IN 'GERANIUM CAROLINIANUM' L

    EPA Science Inventory

    Populations of Geranium carolinianum, winter annual plant common in disturbed habitats vary in their folair response to sulfur dioxide and pollution resistance is characteristic of populations sampled from areas in which SO2 has been a prominent stress. The physiological basis of...

  7. Different Behavioral and Physiological Response in two Genetic Lines of Laying Hens Following Transportation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physiological and behavioral response to transportation stress were examined in chickens selected for high group productivity and survivability (HGPS) resulting from reduced cannibalism and flightiness in colony cages and in chickens from Dekalb XL (DXL) commercial strain. At 13 wks of age, 96 pulle...

  8. Physiologic Responses of Able-Bodied and Paraplegic Males to Maximal Arm Ergometry.

    ERIC Educational Resources Information Center

    Israel, Richard G.; And Others

    A study compared physiologic responses of healthy paraplegic males to those of healthy, able-bodied males during maximal arm ergometry. Fifteen able-bodied, healthy adult males and 13 healthy adult male paraplegics followed an exercise program involving heart rate, increased exercise loads, and oxygen uptake. Results from an analysis of the data…

  9. Physiological and metabolic responses of gestating Brahaman cows to repeated transportation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to examine physiological and metabolic responses to repeated transportation of gestating Brahman cows, previously classified as mature cows into temperament groups of Calm, Intermediate, or Temperamental. Brahman cows (n = 48) were subjected to 2 hours of transport (TRA...

  10. Physiological responses of hard red winter wheat to infection by wheat streak mosaic virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat streak mosaic virus (WSMV) causes significant yield loss in hard red winter wheat in the U.S. Southern High Plains. Despite the prevalence of this pathogen, little is known about the physiological response of wheat to WSMV infection. A 2-year study was initiated to (i) investigate the effect o...

  11. Physiological Response and Childhood Anxiety: Association With Symptoms of Anxiety Disorders and Cognitive Bias

    ERIC Educational Resources Information Center

    Weems, Carl F.; Zakem, Alan H.; Costa, Natalie M.; Cannon, Melinda F.; Watts, Sarah E.

    2005-01-01

    This study examined the physiological response (skin conductance and heart rate [HR]) of youth exposed to a mildly phobic stimulus (video of a large dog) and its relation to child- and parent-reported anxiety symptoms and cognitive bias in a community-recruited sample of youth (n = 49). The results of this study indicated that HR and…

  12. PHYSIOLOGICAL AND GROWTH RESPONSES OF DIFFERENTIALLY IRRIGATED COTTON TO OZONE (JOURNAL VERSION)

    EPA Science Inventory

    The study was conducted to determine the physiological and growth responses of cotton (Gossypium hirsutum L.) to the interaction of ozone (O3) and drought stress. Cotton (cv SJ-2) was grown in open-top chambers in the field at three levels of soil water and exposed to charcoal-fi...

  13. Plant physiological response of strawberry fruit to chlorine dioxide gas treatment during postharvest storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorine dioxide, a strong oxidizing and sanitizing agent, is used as a postharvest sanitizer for fruits and vegetables and generally applied on a packing line using a chlorine dioxide generator. The objective of this research was to study the physiological responses of strawberries to ClO2 when app...

  14. Effects of camelina meal supplementation on ruminal forage degradability, performance, and physiological responses of beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three experiments compared ruminal, physiological, and performance responses of beef steers consuming hay ad libitum and receiving grain-based supplements without (CO) or with (CAM) the inclusion of camelina meal. In Exp. 1, 9 steers fitted with ruminal cannulas received CAM (2.04 kg of DM/d; n = 5)...

  15. Body Composition and Physiological Responses of Masters Female Swimmers 20 to 70 Years of Age.

    ERIC Educational Resources Information Center

    Vaccaro, Paul; And Others

    1984-01-01

    Female masters swimmers ranging in age from 20 to 69 were chosen for a study of their body composition and physiological responses at rest and during exercise. Two training groups were formed that differed on the basis of frequency, duration, and intensity of swimming workouts. Results are discussed. (Author/DF)

  16. Physiological Responses to Child Stimuli in Mothers with and without a Childhood History of Physical Abuse.

    ERIC Educational Resources Information Center

    Casanova, Gisele M.; And Others

    1994-01-01

    This study investigated the physiological responses of 13 mothers with and 17 mothers without a childhood history of physical abuse to videotape presentations of an infant smiling or crying. Mothers who had been abused showed increased skin conductance while viewing the smiling infant, whereas mothers without a history of abuse showed increased…

  17. The effects of autism and alexithymia on physiological and verbal responsiveness to music.

    PubMed

    Allen, Rory; Davis, Rob; Hill, Elisabeth

    2013-02-01

    It has been suggested that individuals with autism will be less responsive to the emotional content of music than typical individuals. With the aim of testing this hypothesis, a group of high-functioning adults on the autism spectrum was compared with a group of matched controls on two measures of emotional responsiveness to music, comprising physiological and verbal measures. Impairment in participants ability to verbalize their emotions (type-II alexithymia) was also assessed. The groups did not differ significantly on physiological responsiveness, but the autism group was significantly lower on the verbal measure. However, inclusion of the alexithymia score as a mediator variable nullified this group difference, suggesting that the difference was due not to absence of underlying emotional responsiveness to music in autism, but to a reduced ability to articulate it. PMID:22752845

  18. Baroreflex Responses to Acute Changes in Blood Volume in Humans

    NASA Technical Reports Server (NTRS)

    Thompson, Cynthia A.; Tatro, Dana L.; Ludwig, David A.; Convertino, Victor A.

    1990-01-01

    To test the hypothesis that acute changes in plasma volume affect the stimulus-response relations of high- and low- pressure baroreflexes, eight men (27-44 yr old) underwent measurements for carotid-cardiac and cardiopulmonary baro-reflex responses under the following three volemic conditions: hypovolemic, normovolemic, and hypervolemic. The stimulus- response relation of the carotid-cardiac response curve was generated using a neck cuff device, which delivered pressure changes between +40 and -65 mmHg in continuous steps of 15 mmHg. The stimulus-response relationship, of the cardio-pulmonary baroreflex were studied by measurements of Forearm Vascular Resistance (FVR) and Peripheral Venous Pressure (PVP) during low levels of lower body negative pressure (O to -20 mmHg). The results indicate greater demand for vasoconstriction for equal reductions in venous pressure during progressive hypovolemia; this condition may compromise the capacity to provide adequate peripheral resistance during severe orthostatic stress. Fluid loading before reentry after spaceflight may act to restore vasoconstrictive capacity of the cardiopulmonary baroreflex but may not be an effective countermeasure against potential post- flight impairment of the carotid-cardiac baroreflex.

  19. Enhanced vagal baroreflex response during 24 h after acute exercise

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Adams, W. C.

    1991-01-01

    We evaluated carotid-cardiac baroreflex responses in eight normotensive men (25-41 yr) on two different test days, each separated by at least 1 wk. On one day, baroreflex response was tested before and at 3, 6, 12, 18, and 24 h after graded supine cycle exercise to volitional exhaustion. On another day, this 24-h protocol was repeated with no exercise (control). Beat-to-beat R-R intervals were measured during external application of graded pressures to the carotid sinuses from 40 to -65 mmHg; changes of R-R intervals were plotted against carotid pressure (systolic pressure minus neck chamber pressure). The maximum slope of the response relationship increased (P less than 0.05) from preexercise to 12 h (3.7 +/- 0.4 to 7.1 +/- 0.7 ms/mmHg) and remained significantly elevated through 24 h. The range of the R-R response was also increased from 217 +/- 24 to 274 +/- 32 ms (P less than 0.05). No significant differences were observed during the control 24-h period. An acute bout of graded exercise designed to elicit exhaustion increases the sensitivity and range of the carotid-cardiac baroreflex response for 24 h and enhances its capacity to buffer against hypotension by increasing heart rate. These results may represent an underlying mechanism that contributes to blood pressure stability after intense exercise.

  20. A Puzzle of Vestibular Physiology in a Meniere's Disease Acute Attack

    PubMed Central

    Martinez-Lopez, Marta; Manrique-Huarte, Raquel; Perez-Fernandez, Nicolas

    2015-01-01

    The aim of this paper is to present for the first time the functional evaluation of each of the vestibular receptors in the six semicircular canals in a patient diagnosed with Meniere's disease during an acute attack. A 54-year-old lady was diagnosed with left Meniere's disease who during her regular clinic review suffers an acute attack of vertigo, with fullness and an increase of tinnitus in her left ear. Spontaneous nystagmus and the results in the video head-impulse test (vHIT) are shown before, during, and after the attack. Nystagmus was initially left beating and a few minutes later an upbeat component was added. No skew deviation was observed. A decrease in the gain of the vestibuloocular reflex (VOR) and the presence of overt saccades were observed when the stimuli were in the plane of the left superior semicircular canal. At the end of the crisis nystagmus decreased and vestibuloocular reflex returned to almost normal. A review of the different possibilities to explain these findings points to a hypothetical utricular damage. PMID:26167320

  1. How Attributional Ambiguity Shapes Physiological and Emotional Responses to Social Rejection and Acceptance

    PubMed Central

    Mendes, Wendy Berry; McCoy, Shannon; Major, Brenda; Blascovich, Jim

    2008-01-01

    The authors examined White and Black participants’ emotional, physiological, and behavioral responses to same-race or different-race evaluators, following rejecting social feedback or accepting social feedback. As expected, in ingroup interactions, the authors observed deleterious responses to social rejection and benign responses to social acceptance. Deleterious responses included cardiovascular (CV) reactivity consistent with threat states and poorer performance, whereas benign responses included CV reactivity consistent with challenge states and better performance. In intergroup interactions, however, a more complex pattern of responses emerged. Social rejection from different-race evaluators engendered more anger and activational responses, regardless of participants’ race. In contrast, social acceptance produced an asymmetrical race pattern—White participants responded more positively than did Black participants. The latter appeared vigilant and exhibited threat responses. Discussion centers on implications for attributional ambiguity theory and potential pathways from discrimination to health outcomes. PMID:18211177

  2. Mechanosignaling in the vasculature: emerging concepts in sensing, transduction and physiological responses

    PubMed Central

    Fujiwara, Keigi; Pérez, Néstor Gustavo; Ushio-Fukai, Masuko; Fisher, Aron B.

    2015-01-01

    Cells are constantly exposed to mechanical forces that play a role in modulating cellular structure and function. The cardiovascular system experiences physical forces in the form of shear stress and stretch associated with blood flow and contraction, respectively. These forces are sensed by endothelial cells and cardiomyocytes and lead to responses that control vascular and cardiac homeostasis. This was highlighted at the Pan American Physiological Society meeting at Iguassu Falls, Brazil, in a symposium titled “Mechanosignaling in the Vasculature.” This symposium presented recent research that showed the existence of a vital link between mechanosensing and downstream redox sensitive signaling cascades. This link helps to transduce and transmit the physical force into an observable physiological response. The speakers showcased how mechanosensors such as ion channels, membrane receptor kinases, adhesion molecules, and other cellular components transduce the force via redox signals (such as reactive oxygen species and nitric oxide) to receptors (transcription factors, growth factors, etc.). Receptor activated pathways then lead to cellular responses including cellular proliferation, contraction, and remodeling. These responses have major relevance to the physiology and pathophysiology of various cardiovascular diseases. Thus an understanding of the complex series of events, from the initial sensing through the final response, is essential for progress in this field. Overall, this symposium addressed some important emerging concepts in the field of mechanosignaling and the eventual pathophysiological responses. PMID:25862828

  3. The dopaminergic response to acute stress in health and psychopathology: A systematic review.

    PubMed

    Vaessen, Thomas; Hernaus, Dennis; Myin-Germeys, Inez; van Amelsvoort, Thérèse

    2015-09-01

    Previous work in animals has shown that dopamine (DA) in cortex and striatum plays an essential role in stress processing. For the first time, we systematically reviewed the in vivo evidence for DAergic stress processing in health and psychopathology in humans. All studies included (n studies=25, n observations=324) utilized DA D2/3 positron emission tomography and measured DAergic activity during an acute stress challenge. The evidence in healthy volunteers (HV) suggests that physiological, but not psychological, stress consistently increases striatal DA release. Instead, increased medial prefrontal cortex (mPFC) DAergic activity in HV was observed during psychological stress. Across brain regions, stress-related DAergic activity was correlated with the physiological and psychological intensity of the stressor. The magnitude of stress-induced DA release was dependent on rearing conditions, personality traits and genetic variations in several SNPs. In psychopathology, preliminary evidence was found for stress-related dorsal striatal DAergic hyperactivity in psychosis spectrum and a blunted response in chronic cannabis use and pain-related disorders, but results were inconsistent. Physiological stress-induced DAergic activity in striatum in HV may reflect somatosensory properties of the stressor and readiness for active fight-or-flight behavior. DAergic activity in HV in the ventral striatum and mPFC may be more related to expectations about the stressor and threat evaluation, respectively. Future studies with increased sample size in HV and psychopathology assessing the functional relevance of stress-induced DAergic activity, the association between cortical and subcortical DAergic activity and the direct comparison of different stressors are necessary to conclusively elucidate the role of the DA system in the stress response. PMID:26196459

  4. Metabolomics of Ramadan fasting: an opportunity for the controlled study of physiological responses to food intake

    PubMed Central

    2014-01-01

    High-throughput screening techniques that analyze the metabolic endpoints of biological processes can identify the contributions of genetic predisposition and environmental factors to the development of common diseases. Studies applying controlled physiological challenges can reveal dysregulation in metabolic responses that may be predictive for or associated with these diseases. However, large-scale epidemiological studies with well controlled physiological challenge conditions, such as extended fasting periods and defined food intake, pose logistic challenges. Culturally and religiously motivated behavioral patterns of life style changes provide a natural setting that can be used to enroll a large number of study volunteers. Here we report a proof of principle study conducted within a Muslim community, showing that a metabolomics study during the Holy Month of Ramadan can provide a unique opportunity to explore the pre-prandial and postprandial response of human metabolism to nutritional challenges. Up to five blood samples were obtained from eleven healthy male volunteers, taken directly before and two hours after consumption of a controlled meal in the evening on days 7 and 26 of Ramadan, and after an over-night fast several weeks after Ramadan. The observed increases in glucose, insulin and lactate levels at the postprandial time point confirm the expected physiological response to food intake. Targeted metabolomics further revealed significant and physiologically plausible responses to food intake by an increase in bile acid and amino acid levels and a decrease in long-chain acyl-carnitine and polyamine levels. A decrease in the concentrations of a number of phospholipids between samples taken on days 7 and 26 of Ramadan shows that the long-term response to extended fasting may differ from the response to short-term fasting. The present study design is scalable to larger populations and may be extended to the study of the metabolic response in defined patient

  5. Metabolomics of Ramadan fasting: an opportunity for the controlled study of physiological responses to food intake.

    PubMed

    Mathew, Sweety; Krug, Susanne; Skurk, Thomas; Halama, Anna; Stank, Antonia; Artati, Anna; Prehn, Cornelia; Malek, Joel A; Kastenmüller, Gabi; Römisch-Margl, Werner; Adamski, Jerzy; Hauner, Hans; Suhre, Karsten

    2014-01-01

    High-throughput screening techniques that analyze the metabolic endpoints of biological processes can identify the contributions of genetic predisposition and environmental factors to the development of common diseases. Studies applying controlled physiological challenges can reveal dysregulation in metabolic responses that may be predictive for or associated with these diseases. However, large-scale epidemiological studies with well controlled physiological challenge conditions, such as extended fasting periods and defined food intake, pose logistic challenges. Culturally and religiously motivated behavioral patterns of life style changes provide a natural setting that can be used to enroll a large number of study volunteers. Here we report a proof of principle study conducted within a Muslim community, showing that a metabolomics study during the Holy Month of Ramadan can provide a unique opportunity to explore the pre-prandial and postprandial response of human metabolism to nutritional challenges. Up to five blood samples were obtained from eleven healthy male volunteers, taken directly before and two hours after consumption of a controlled meal in the evening on days 7 and 26 of Ramadan, and after an over-night fast several weeks after Ramadan. The observed increases in glucose, insulin and lactate levels at the postprandial time point confirm the expected physiological response to food intake. Targeted metabolomics further revealed significant and physiologically plausible responses to food intake by an increase in bile acid and amino acid levels and a decrease in long-chain acyl-carnitine and polyamine levels. A decrease in the concentrations of a number of phospholipids between samples taken on days 7 and 26 of Ramadan shows that the long-term response to extended fasting may differ from the response to short-term fasting. The present study design is scalable to larger populations and may be extended to the study of the metabolic response in defined patient

  6. Physiological responses of the European cockle Cerastoderma edule (Bivalvia: Cardidae) as indicators of coastal lagoon pollution.

    PubMed

    Nilin, Jeamylle; Pestana, João Luís Teixeira; Ferreira, Nuno Gonçalo; Loureiro, Susana; Costa-Lotufo, Letícia Veras; Soares, Amadeu M V M

    2012-10-01

    Physiological responses can be used as effective parameters to identify environmentally stressful conditions. In this study, physiology changes such as oxygen consumption, clearance rate, survival in air, condition index and energy reserves were measured on natural populations of cockles collected from different sites at Ria de Aveiro, Portugal. At those sites, sediment samples were collected for Hg concentration analysis. Cockles were used for the evaluation of both the Hg concentration and physiological response. Mercury was detected in the cockle tissue and in the sediment collected from the sampling points both nearby and distant from the main mercury contamination source. The energy content was negatively correlated with both Hg concentration in cockle tissues and survival in air. Nonetheless, the energy content was positively correlated with the condition index, and there was a positive correlation between the survival in air test and the tissue mercury concentration. A PCA-factor analysis explained 86.8% of the total variance. The principal factor (62.7%) consisted of the air survival, the Hg in soft tissues (positive) and the condition index (negative). The second factor (24.1%) consisted of a negative correlation between the oxygen consumption and the clearance rate. Due to their sensitivity to environmental conditions, the physiological responses of cockles can be used to assess the ecological status of aquatic environments. More effort should be invested in investigating the effects of environmental perturbations on cockle health once they are a good reporter organism. PMID:22846762

  7. Interaction of infection with Renibacterium salmoninarum and physical stress in juvenile chinook salmon: Physiological responses, disease progression, and mortality

    USGS Publications Warehouse

    Mesa, M.G.; Maule, A.G.; Schreck, C.B.

    2000-01-01

    We experimentally infected juvenile spring chinook salmon Oncorhynchus tshawytscha with Renibacterium salmoninarum (Rs), the causative agent of bacterial kidney disease (BKD), in order to compare the physiological responses of Rs-infected and Rs-noninfected fish to a series of multiple, acute stressors and to determine whether exposure to these stressors worsens the infection and leads to increased mortality. After subjecting groups of fish to a waterborne challenge of Rs, we sampled them biweekly to monitor infection levels, mortality, and some stress-related physiological changes. As infections worsened, fish developed decreased hematocrits and blood glucose levels and increased levels of cortisol and lactate, indicating that BKD is stressful, particularly during the later stages. Eight weeks after the challenge, when fish had moderate to high infection levels, we subjected them, along with unchallenged control fish, to three 60-s bouts of hypoxia, struggling, and mild agitation that were separated by 48-72 h. Our results indicate that the imposition of these stressors on Rs-infected fish did not lead to higher infection levels or increased mortality when compared with diseased fish that did not receive the stressors. Furthermore, the kinetics of plasma cortisol, glucose, and lactate over a 24-h period following each application of the stressor were similar between fish with moderate to high Rs infections and those that had low or no detectable infection. Some differences in the stress responses of these two groups did exist, however. Most notably, fish with moderate to high Rs infections had higher titers of cortisol and lactate prior to each application of the stressor and also were unable to consistently elicit a significant hyperglycemia in response to the stressors. Collectively, our results should be important in understanding the impact that BKD has on the survival of juvenile salmonids, but we caution that our results represent the combined effects of one

  8. Autonomous system for cross-organ investigation of ethanol-induced acute response in behaving larval zebrafish.

    PubMed

    Lin, Xudong; Li, Vincent W T; Chen, Siya; Chan, Chung-Yuen; Cheng, Shuk-Han; Shi, Peng

    2016-03-01

    Ethanol is widely consumed and has been associated with various diseases in different organs. It is therefore important to study ethanol-induced responses in living organisms with the capability to address specific organs in an integrative manner. Here, we developed an autonomous system based on a series of microfluidic chips for cross-organ investigation of ethanol-induced acute response in behaving larval zebrafish. This system enabled high-throughput, gel-free, and anesthetic-free manipulation of larvae, and thus allowed real-time observation of behavioral responses, and associated physiological changes at cellular resolution within specific organs in response to acute ethanol stimuli, which would otherwise be impossible by using traditional methods for larva immobilization and orientation. Specifically, three types of chips ("motion," "lateral," and "dorsal"), based on a simple hydrodynamic design, were used to perform analysis in animal behavior, cardiac, and brain physiology, respectively. We found that ethanol affected larval zebrafish in a dose-dependent manner. The motor function of different body parts was significantly modulated by ethanol treatment, especially at a high dose of 3%. These behavioral changes were temporally associated with a slow-down of heart-beating and a stereotyped activation of certain brain regions. As we demonstrated in this proof-of-concept study, this versatile Fish-on-Chip platform could potentially be adopted for systematic cross-organ investigations involving chemical or genetic manipulations in zebrafish model. PMID:27158291

  9. Physiological Responses and Partisan Bias: Beyond Self-Reported Measures of Party Identification

    PubMed Central

    Petersen, Michael Bang; Giessing, Ann; Nielsen, Jesper

    2015-01-01

    People are biased partisans: they tend to agree with policies from political parties they identify with, independent of policy content. Here, we investigate how physiological reactions to political parties shape bias. Using changes in galvanic skin conductance responses to the visual presentation of party logos, we obtained an implicit and physiological measure of the affective arousal associated with political parties. Subsequently, we exposed subjects to classical party cue experiments where the party sponsors of specific policies were experimentally varied. We found that partisan bias only obtains among those exhibiting a strong physiological reaction to the party source; being a self-reported party identifier is not sufficient on its own. This suggests that partisan bias is rooted in implicit, affective reactions. PMID:26010527

  10. Summer and fall ants have different physiological responses to food macronutrient content.

    PubMed

    Cook, Steven C; Eubanks, Micky D; Gold, Roger E; Behmer, Spencer T

    2016-04-01

    Seasonally, long-lived animals exhibit changes in behavior and physiology in response to shifts in environmental conditions, including food abundance and nutritional quality. Ants are long-lived arthropods that, at the colony level, experience such seasonal shifts in their food resources. Previously we reported summer- and fall-collected ants practiced distinct food collection behavior and nutrient intake regulation strategies in response to variable food protein and carbohydrate content, despite being reared in the lab under identical environmental conditions and dietary regimes. Seasonally distinct responses were observed for both no-choice and choice dietary experiments. Using data from these same experiments, our objective here is to examine colony and individual-level physiological traits, colony mortality and growth, food processing, and worker lipid mass, and how these traits change in response to variable food protein-carbohydrate content. For both experiments we found that seasonality per se exerted strong effects on colony and individual level traits. Colonies collected in the summer maintained total worker mass despite high mortality. In contrast, colonies collected in the fall lived longer, and accumulated lipids, including when reared on protein-biased diets. Food macronutrient content had mainly transient effects on physiological responses. Extremes in food carbohydrate content however, elicited a compensatory response in summer worker ants, which processed more protein-biased foods and contained elevated lipid levels. Our study, combined with our previously published work, strongly suggests that underlying physiological phenotypes driving behaviors of summer and fall ants are likely fixed seasonally, and change circannually. PMID:26860359

  11. Detecting variable responses in time-series using repeated measures ANOVA: Application to physiologic challenges.

    PubMed

    Macey, Paul M; Schluter, Philip J; Macey, Katherine E; Harper, Ronald M

    2016-01-01

    We present an approach to analyzing physiologic timetrends recorded during a stimulus by comparing means at each time point using repeated measures analysis of variance (RMANOVA). The approach allows temporal patterns to be examined without an a priori model of expected timing or pattern of response. The approach was originally applied to signals recorded from functional magnetic resonance imaging (fMRI) volumes-of-interest (VOI) during a physiologic challenge, but we have used the same technique to analyze continuous recordings of other physiological signals such as heart rate, breathing rate, and pulse oximetry. For fMRI, the method serves as a complement to whole-brain voxel-based analyses, and is useful for detecting complex responses within pre-determined brain regions, or as a post-hoc analysis of regions of interest identified by whole-brain assessments. We illustrate an implementation of the technique in the statistical software packages R and SAS. VOI timetrends are extracted from conventionally preprocessed fMRI images. A timetrend of average signal intensity across the VOI during the scanning period is calculated for each subject. The values are scaled relative to baseline periods, and time points are binned. In SAS, the procedure PROC MIXED implements the RMANOVA in a single step. In R, we present one option for implementing RMANOVA with the mixed model function "lme". Model diagnostics, and predicted means and differences are best performed with additional libraries and commands in R; we present one example. The ensuing results allow determination of significant overall effects, and time-point specific within- and between-group responses relative to baseline. We illustrate the technique using fMRI data from two groups of subjects who underwent a respiratory challenge. RMANOVA allows insight into the timing of responses and response differences between groups, and so is suited to physiologic testing paradigms eliciting complex response patterns. PMID

  12. Detecting variable responses in time-series using repeated measures ANOVA: Application to physiologic challenges

    PubMed Central

    Macey, Paul M.; Schluter, Philip J.; Macey, Katherine E.; Harper, Ronald M.

    2016-01-01

    We present an approach to analyzing physiologic timetrends recorded during a stimulus by comparing means at each time point using repeated measures analysis of variance (RMANOVA). The approach allows temporal patterns to be examined without an a priori model of expected timing or pattern of response. The approach was originally applied to signals recorded from functional magnetic resonance imaging (fMRI) volumes-of-interest (VOI) during a physiologic challenge, but we have used the same technique to analyze continuous recordings of other physiological signals such as heart rate, breathing rate, and pulse oximetry. For fMRI, the method serves as a complement to whole-brain voxel-based analyses, and is useful for detecting complex responses within pre-determined brain regions, or as a post-hoc analysis of regions of interest identified by whole-brain assessments. We illustrate an implementation of the technique in the statistical software packages R and SAS. VOI timetrends are extracted from conventionally preprocessed fMRI images. A timetrend of average signal intensity across the VOI during the scanning period is calculated for each subject. The values are scaled relative to baseline periods, and time points are binned. In SAS, the procedure PROC MIXED implements the RMANOVA in a single step. In R, we present one option for implementing RMANOVA with the mixed model function “lme”. Model diagnostics, and predicted means and differences are best performed with additional libraries and commands in R; we present one example. The ensuing results allow determination of significant overall effects, and time-point specific within- and between-group responses relative to baseline. We illustrate the technique using fMRI data from two groups of subjects who underwent a respiratory challenge. RMANOVA allows insight into the timing of responses and response differences between groups, and so is suited to physiologic testing paradigms eliciting complex response patterns

  13. Physiological changes in response to apnea impact the timing of motor representations: a preliminary study

    PubMed Central

    2014-01-01

    Background Reduced physiological arousal in response to breath-holding affects internal clock processes, leading swimmers to underestimate the time spent under apnea. We investigated whether reduced physiological arousal during static apnea was likely to affect the temporal organization of motor imagery (MI). Methods Fourteen inter-regional to national breath-holding athletes mentally and physically performed two 15 m swimming tasks of identical durations. They performed the two sequences in a counterbalanced order, the first while breathing normally using a scuba, the second under apnea. We assessed MI duration immediately after completion of the corresponding task. Athletes performed MI with and without holding breath. Results MI durations (26.1 s ± 8.22) were significantly shorter than actual durations (29.7 s ± 7.6) without holding breath. Apnea increased MI durations by 10% (± 5%). Heart rate decrease in response to breath-holding correlated with MI durations increase (p < .01). Under apnea, participants achieved temporal congruence between MI and PP only when performing MI of the apnea swimming task. Self-report data indicated greater ease when MI was performed in a physiological arousal state congruent with that of the corresponding motor task. Conclusions Physiological arousal affected the durations of MI through its effects on internal clock processes and by impacting the congruency in physiological body states between overt and covert motor performance. Present findings have potential implications with regards to the possibility of preventing underestimation of durations spent under a state of reduced physiological arousal. PMID:24773625

  14. Physiological and behavioral responses in Drosophila melanogaster to odorants present at different plant maturation stages.

    PubMed

    Versace, Elisabetta; Eriksson, Anna; Rocchi, Federico; Castellan, Irene; Sgadò, Paola; Haase, Albrecht

    2016-09-01

    The fruit fly Drosophila melanogaster feeds and oviposits on fermented fruit, hence its physiological and behavioral responses are expected to be tuned to odorants abundant during later stages of fruit maturation. We used a population of about two-hundred isogenic lines of D. melanogaster to assay physiological responses (electroantennograms (EAG)) and behavioral correlates (preferences and choice ratio) to odorants found at different stages of fruit maturation. We quantified electrophysiological and behavioral responses of D. melanogaster for the leaf compound β-cyclocitral, as well as responses to odorants mainly associated with later fruit maturation stages. Electrophysiological and behavioral responses were modulated by the odorant dose. For the leaf compound we observed a steep dose-response curve in both EAG and behavioral data and shallower curves for odorants associated with later stages of maturation. Our data show the connection between sensory and behavioral responses and are consistent with the specialization of D. melanogaster on fermented fruit and avoidance of high doses of compounds associated with earlier stages of maturation. Odor preferences were modulated in a non-additive way when flies were presented with two alternative odorants, and combinations of odorants elicited higher responses than single compounds. PMID:27195459

  15. Vagolytic atropine attenuates cerebral vasodilation response during acute orthostatic hypotension

    PubMed Central

    Choi, Woo-Jong; Lee, Kichang; Kim, Young-Kug; Song, Kyo-Joon; Jeong, Sung-Moon

    2015-01-01

    Background Atropine is an anticholinergic drug which is commonly used in clinical practice. The effect of parasympathetic block with atropine on dynamic cerebrovascular regulation remains unclear. This study was aimed to identify effects of vagolytic atropine on cerebrovascular response during acute orthostatic hypotension in humans. Methods Continuous middle cerebral blood flow velocity (CBFV, transcranial Doppler) and arterial blood pressure (ABP, Finometer) were measured during a sit-to-stand procedure in 10 healthy subjects with placebo and vagolytic (10 µg/kg) doses of atropine. Cerebral vascular tone was assessed by cerebrovascular resistance (CVR = ABP / CBFV). Dynamic cerebral autoregulation was also assessed by transfer function analysis of ABP and CBFV. Results During the standing session, ABP fell to a similar extent in both groups by an average of 23 to 25 mmHg (26% to 29%). CBFV also fell in all subjects but significantly more in vagolytic atropine (-15.0 ± 7.0 cm/s) compared with placebo (-12.0 ± 5.8 cm/s, P < 0.05). CVR was decreased significantly in the placebo group during posture change (1.56 ± 0.44 vs. 1.38 ± 0.38, P < 0.05), in contrast, lesser decreased in the atropine group (1.60 ± 0.50 vs. 1.53 ± 0.42, P = 0.193). Transfer function coherence in the very-low-frequency range was significantly increased in the atropine group during the standing session (0.55 ± 0.14), compared with the sitting session (0.45 ± 0.14, P = 0.006). Conclusions These data present that vagolytic atropine attenuates cerebral vasodilation response to acute orthostatic hypotension, suggesting the use of atropine may need care in patients with cerebrovascular disease with vagal impairment. PMID:26634084

  16. Physiological ecology of overwintering in the hatchling painted turtle: multiple-scale variation in response to environmental stress.

    PubMed

    Costanzo, Jon P; Dinkelacker, Stephen A; Iverson, John B; Lee, Richard E

    2004-01-01

    We integrated field and laboratory studies in an investigation of water balance, energy use, and mechanisms of cold-hardiness in hatchling painted turtles (Chrysemys picta) indigenous to west-central Nebraska (Chrysemys picta bellii) and northern Indiana (Chrysemys picta marginata) during the winters of 1999-2000 and 2000-2001. We examined 184 nests, 80 of which provided the hatchlings (n=580) and/or samples of soil used in laboratory analyses. Whereas winter 1999-2000 was relatively dry and mild, the following winter was wet and cold; serendipitously, the contrast illuminated a marked plasticity in physiological response to environmental stress. Physiological and cold-hardiness responses of turtles also varied between study locales, largely owing to differences in precipitation and edaphics and the lower prevailing and minimum nest temperatures (to -13.2 degrees C) encountered by Nebraska turtles. In Nebraska, winter mortality occurred within 12.5% (1999-2000) and 42.3% (2000-2001) of the sampled nests; no turtles died in the Indiana nests. Laboratory studies of the mechanisms of cold-hardiness used by hatchling C. picta showed that resistance to inoculative freezing and capacity for freeze tolerance increased as winter approached. However, the level of inoculation resistance strongly depended on the physical characteristics of nest soil, as well as its moisture content, which varied seasonally. Risk of inoculative freezing (and mortality) was greatest in midwinter when nest temperatures were lowest and soil moisture and activity of constituent organic ice nuclei were highest. Water balance in overwintering hatchlings was closely linked to dynamics of precipitation and soil moisture, whereas energy use and the size of the energy reserve available to hatchlings in spring depended on the winter thermal regime. Acute chilling resulted in hyperglycemia and hyperlactemia, which persisted throughout winter; this response may be cryoprotective. Some physiological

  17. Innate immune inflammatory response in the acutely ischemic myocardium.

    PubMed

    Deftereos, Spyridon; Angelidis, Christos; Bouras, Georgios; Raisakis, Konstantinos; Gerckens, Ulrich; Cleman, Michael W; Giannopoulos, Georgios

    2014-01-01

    The "holy grail" of modern interventional cardiology is the salvage of viable myocardial tissue in the distribution of an acutely occluded coronary artery. Thrombolysis and percutaneous coronary interventions, provided they can be delivered on time, can interrupt the occlusion and save tissue. At the same time restoring the patency of the coronary vessels and providing the ischemic myocardium with blood can cause additional tissue damage. A key element of ischemic and reperfusion injury and major determinant of the evolution of damage in the injured myocardium is the inflammatory response. The innate immune system initiates and directs this response which is a prerequisite for subsequent healing. The complement cascade is set in motion following the release of subcellular membrane constituents. Endogenous 'danger' signals known as danger-associated molecular patterns (DAMPs) released from ischemic and dying cells alert the innate immune system and activate several signal transduction pathways through interactions with the highly conserved Toll like receptors (TLRs). Reactive oxygen species (ROS) generation directly induces pro-inflammatory cascades and triggers formation of the inflammasome. The challenge lies into designing strategies that specifically block the inflammatory cascades responsible for tissue damage without affecting those concerned with tissue healing. PMID:25102201

  18. Uncontrolled immune response in acute myocardial infarction: unraveling the thread.

    PubMed

    Bodi, Vicente; Sanchis, Juan; Nunez, Julio; Mainar, Luis; Minana, Gema; Benet, Isabel; Solano, Carlos; Chorro, Francisco J; Llacer, Angel

    2008-12-01

    Recently, the theory that hyperinflammation is the body's primary response to potent stimulus has been challenged. Indeed, a deregulation of the immune system could be the cause of multiple organ failure. So far, clinicians have focused on the last steps of the inflammatory cascade. However, little attention has been paid to lymphocytes, which play an important role as strategists of the inflammatory response. Experimental evidence suggests a crucial role of T lymphocytes in the pathophysiology of atherosclerosis and acute myocardial infarction (AMI). In summary, from the bottom of an imaginary inverted pyramid, a few regulatory T-cells control the upper parts represented by the wide spectrum of the inflammatory cascade. In AMI, a loss of regulation of the inflammatory system occurs in patients with a decreased activity of regulatory T-cells. As a consequence, aggressive T-cells boost and anti-inflammatory T-cells drop. A pleiotropic proinflammatory imbalance with damaging effects in terms of left ventricular performance and patient outcome is the result of this uncontrolled immune response. It is needed to unravel the thread of the inflammatory cells to better understand the pathophysiology as well as to open innovative therapeutic options in AMI. PMID:19033000

  19. Acute Cardiovascular Response to Sign Chi Do Exercise

    PubMed Central

    Rogers, Carol E.; Carlson, John; Garver, Kayla

    2015-01-01

    Safe and gentle exercise may be important for older adults overcoming a sedentary lifestyle. Sign Chi Do (SCD), a novel form of low impact exercise, has shown improved balance and endurance in healthy older adults, and there have been no SCD-related injuries reported. Sedentary older adults are known to have a greater cardiovascular (CV) response to physical activity than those who regularly exercise. However their CV response to SCD is unknown. This study explored the acute CV response of older adults to SCD. Cross-sectional study of 34 sedentary and moderately active adults over age 55 with no previous experience practicing SCD. Participants completed a 10 min session of SCD. CV outcomes of heart rate, blood pressure, rate pressure product were recorded at 0, 5, 10 min of SCD performance, and after 10 min of rest. HR was recorded every minute. There was no difference in CV scores of sedentary and moderately active older adults after a session of SCD-related activity. All CV scores increased at 5 min, were maintained at 10 min, and returned to baseline within 10 min post SCD (p < 0.05). SCD may be a safe way to increase participation in regular exercise by sedentary older adults.

  20. Biomechanical and Physiological Response to a Contemporary Soccer Match-Play Simulation.

    PubMed

    Page, Richard M; Marrin, Kelly; Brogden, Chris M; Greig, Matt

    2015-10-01

    The intermittent activity profile of soccer match play increases the complexity of the physical demands. Laboratory models of soccer match play have value in controlled intervention studies, developed around manipulations of the activity profile to elicit a desired physiological or biomechanical response. Contemporary notational analyses suggest a profile comprising clusters of repeat sprint efforts, with implications for both biomechanical and physiological load. Eighteen male soccer players completed a 90-minute treadmill protocol based on clusters of repeat sprint efforts. Each 15-minute bout of exercise was quantified for uniaxial (medial-lateral [PLML], anterior-posterior [PLAP], and vertical [PLV]) and triaxial PlayerLoad (PLTotal). The relative contributions of the uniaxial PlayerLoad vectors (PLML%, PLAP%, and PLV%) were also examined. In addition to rating of perceived exertion, the physiological response comprised heart rate, blood lactate concentration, and both peak and average oxygen consumption. Triaxial PlayerLoad increased (p = 0.02) with exercise duration (T0-15 = 206.26 ± 14.37 a.u. and T45-60 = 214.51 ± 14.97 a.u.) and remained elevated throughout the second half. This fatigue effect was evident in both the PLML and PLAP movement planes. The mean relative contributions of PLV%:PLAP%:PLML% were consistent at ∼48:28:23. The physiological response was comparable with match play, and a similar magnitude of increase at ∼5% was observed in physiological parameters. Changes in PlayerLoad might reflect a change in movement quality with fatigue, with implications for both performance and injury risk, reflecting observations of match play. The high frequency of speed change elicits a 23% contribution from mediolateral load, negating the criticism of treadmill protocols as "linear." PMID:25875368

  1. Social anxiety and response to touch: incongruence between self-evaluative and physiological reactions.

    PubMed

    Wilhelm, F H; Kochar, A S; Roth, W T; Gross, J J

    2001-12-01

    Touch is an important form of social interaction, and one that can have powerful emotional consequences. Appropriate touch can be calming, while inappropriate touch can be anxiety provoking. To examine the impact of social touching, this study compared socially high-anxious (N=48) and low-anxious (N=47) women's attitudes concerning social touch, as well as their affective and physiological responses to a wrist touch by a male experimenter. Compared to low-anxious participants, high-anxious participants reported greater anxiety to a variety of social situations involving touch. Consistent with these reports, socially anxious participants reacted to the experimenter's touch with markedly greater increases in self-reported anxiety, self-consciousness, and embarrassment. Physiologically, low-anxious and high-anxious participants showed a distinct pattern of sympathetic-parasympathetic coactivation, as reflected by decreased heart rate and tidal volume, and increased respiratory sinus arrhythmia, skin conductance, systolic/diastolic blood pressure, stroke volume, and respiratory rate. Interestingly, physiological responses were comparable in low and high-anxious groups. These findings indicate that social anxiety is accompanied by heightened aversion towards social situations that involve touch, but this enhanced aversion and negative-emotion report is not reflected in differential physiological responding. PMID:11698114

  2. Physiological and cognitive responses when riding an electrically assisted bicycle versus a classical bicycle.

    PubMed

    Theurel, J; Theurel, A; Lepers, R

    2012-01-01

    The present study compared the physiological responses and the subsequent cognitive performance when riding an electrically assisted (EB) versus a classical (CB) bicycle. Oxygen uptake, heart rate and leg extensor muscles electromyographic (EMG) activity were recorded in 10 subjects during a 30-min intermittent cycling exercise performed with EB versus CB. Cognitive performance was evaluated by a mail sorting test, performed at rest and after each cycling session. Averaged oxygen uptake and heat rate were significantly (P < 0.05) lower during EB cycling than during CB cycling. The EMG activities of the vastus lateralis, rectus femoris and gastrocnemius medialis muscles were significantly (P < 0.001) greater during CB cycling than during EB cycling. The time to complete the mail sorting test was significantly (P < 0.05) shorter after EB cycling than after CB cycling. Because EB cycling reduced muscle strains and physiological stress, it might offer benefits for those using bicycles in their work, such as postal workers and police officers. STATEMENT OF RELEVANCE: This study compared physiological and cognitive responses when riding an electrically assisted versus a classical bicycle. The results showed that the electrically assisted bicycle led to reduced muscle strains and physiological stress and, therefore, might offer benefits for those using bicycles in their work, such as postal workers and police officers. PMID:22506555

  3. The association between supra-physiological levels of estradiol and response patterns to experimental pain.

    PubMed

    Nisenblat, Vicki; Engel-Yeger, Batya; Ohel, Gonen; Aronson, Doron; Granot, Michal

    2010-09-01

    The precise mechanism by which gonadal hormones influence pain perception is still obscure. However, no studies have examined experimental pain responses at supra-physiological hormone levels. This study explored the influence of pharmacological estradiol (E2) levels on the stability of pain perception obtained via quantitative sensory testing. A repeated measures design was used with 31 women, treated by a same In Vitro Fertilization (IVF) protocol. Patterns of experimental pain response were assessed in three different sessions (baseline, down regulation, maximal ovarian stimulation). Correlations between hormonal levels (E2, progesterone, luteinizing hormone (LH)) and pain perceptions were assessed at each session. While in the entire sample the pattern of response to pain stimulations remained unchanged regardless of hormonal manipulations, a greater pain sensitivity was associated with supra-physiological levels of E2 during the maximal ovarian stimulation session (for 47 degrees C stimulation: r=.383, p=0.044). Mixed model repeated measures ANOVA indicated that participants who over-responded to the ovarian stimulation session (E2 > 10,500 pmol/l) showed significant enhanced pain responses under this condition (p=0.004). No correlations between progesterone, LH and experimental pain perception were found in any of the study sessions. Although pain perceptions at different E2 levels remained constant, the enhancement of pain scoring at supra-physiological E2 levels, underscore the possible role of sex hormones in pain modulation and experience. PMID:20194038

  4. Activation of physiological stress responses by a natural reward: Novel vs. repeated sucrose intake.

    PubMed

    Egan, Ann E; Ulrich-Lai, Yvonne M

    2015-10-15

    Pharmacological rewards, such as drugs of abuse, evoke physiological stress responses, including increased heart rate and blood pressure, and activation of the hypothalamic-pituitary-adrenal (HPA) axis. It is not clear to what extent the natural reward of palatable foods elicits similar physiological responses. In order to address this question, HPA axis hormones, heart rate, blood pressure and brain pCREB immunolabeling were assessed following novel and repeated sucrose exposure. Briefly, adult, male rats with ad libitum food and water were given either a single (day 1) or repeated (twice-daily for 14 days) brief (up to 30 min) exposure to a second drink bottle containing 4 ml of 30% sucrose drink vs. water (as a control for bottle presentation). Sucrose-fed rats drank more than water-fed on all days of exposure, as expected. On day 1 of exposure, heart rate, blood pressure, plasma corticosterone, and locomotion were markedly increased by presentation of the second drink bottle regardless of drink type. After repeated exposure (day 14), these responses habituated to similar extents regardless of drink type and pCREB immunolabeling in the hypothalamic paraventricular nucleus (PVN) also did not vary with drink type, whereas basolateral amygdala pCREB was increased by sucrose intake. Taken together, these data suggest that while sucrose is highly palatable, physiological stress responses were evoked principally by the drink presentation itself (e.g., an unfamiliar intervention by the investigators), as opposed to the palatability of the offered drink. PMID:25747321

  5. Physiological Responses During Matches and Profile of Elite Pencak Silat Exponents

    PubMed Central

    Aziz, Abdul Rashid; Tan, Benedict; Teh, Kong Chuan

    2002-01-01

    This is a descriptive, cross-sectional study describing the physiological responses during competitive matches and profile of elite exponents of an emerging martial art sport, pencak silat. Thirty exponents (21 males and 9 females) were involved in the study. Match responses (i.e. heart rate (HR) throughout match and capillary blood lactate concentration, [La], at pre-match and at the end of every round) were obtained during actual competitive duels. Elite silat exponents’ physiological attributes were assessed via anthropometry, vertical jump, isometric grip strength, maximal oxygen uptake, and the Wingate 30 s anaerobic test of the upper and lower body, in the laboratory. The match response data showed that silat competitors’ mean HR was > 84% of estimated HR maximum and levels of [La] ranged from 6.7 - 18.7 mMol-1 during matches. This suggests that competitive silat matches are characterised by high aerobic and anaerobic responses. In comparison to elite taekwondo and judo athletes’ physiological characteristics, elite silat exponents have lower aerobic fitness and grip strength, but greater explosive leg power (vertical jump). Generally, they also possessed a similar anaerobic capability in the lower but markedly inferior anaerobic capability in the upper body. PMID:24748847

  6. Physiological and gene expression responses of sunflower (Helianthus annuus L.) plants differ according to irrigation placement.

    PubMed

    Aguado, Ana; Capote, Nieves; Romero, Fernando; Dodd, Ian C; Colmenero-Flores, José M

    2014-10-01

    To investigate effects of soil moisture heterogeneity on plant physiology and gene expression in roots and leaves, three treatments were implemented in sunflower plants growing with roots split between two compartments: a control (C) treatment supplying 100% of plant evapotranspiration, and two treatments receiving 50% of plant evapotranspiration, either evenly distributed to both compartments (deficit irrigation - DI) or unevenly distributed to ensure distinct wet and dry compartments (partial rootzone drying - PRD). Plants receiving the same amount of water responded differently under the two irrigation systems. After 3 days, evapotranspiration was similar in C and DI, but 20% less in PRD, concomitant with decreased leaf water potential (Ψleaf) and increased leaf xylem ABA concentration. Six water-stress responsive genes were highly induced in roots growing in the drying soil compartment of PRD plants, and their expression was best correlated with local soil water content. On the other hand, foliar gene expression differed significantly from that of the root and correlated better with xylem ABA concentration and Ψleaf. While the PRD irrigation strategy triggered stronger physiological and molecular responses, suggesting a more intense and systemic stress reaction due to local dehydration of the dry compartment of PRD plants, the DI strategy resulted in similar water savings without strongly inducing these responses. Correlating physiological and molecular responses in PRD/DI plants may provide insights into the severity and location of water deficits and may enable a better understanding of long-distance signalling mechanisms. PMID:25219304

  7. Physiologic Reelin does not play a strong role in protection against acute stroke.

    PubMed

    Lane-Donovan, Courtney; Desai, Charisma; Pohlkamp, Theresa; Plautz, Erik J; Herz, Joachim; Stowe, Ann M

    2016-07-01

    Stroke and Alzheimer's disease, two diseases that disproportionately affect the aging population, share a subset of pathological findings and risk factors. The primary genetic risk factor after age for late-onset Alzheimer's disease, ApoE4, has also been shown to increase stroke risk and the incidence of post-stroke dementia. One mechanism by which ApoE4 contributes to disease is by inducing in neurons a resistance to Reelin, a neuromodulator that enhances synaptic function. Previous studies in Reelin knockout mice suggest a role for Reelin in protection against stroke; however, these studies were limited by the developmental requirement for Reelin in neuronal migration. To address the question of the effect of Reelin loss on stroke susceptibility in an architecturally normal brain, we utilized a novel mouse with induced genetic reduction of Reelin. We found that after transient middle cerebral artery occlusion, mice with complete adult loss of Reelin exhibited a similar level of functional deficit and extent of infarct as control mice. Together, these results suggest that physiological Reelin does not play a strong role in protection against stroke pathology. PMID:27146512

  8. Exertional rhabdomyolysis in an acutely detrained athlete/exercise physiology professor.

    PubMed

    Pearcey, Gregory E P; Bradbury-Squires, David J; Power, Kevin E; Behm, David G; Button, Duane C

    2013-11-01

    The authors report a case of exercise-induced (exertional) rhabdomyolysis in a male athlete/exercise physiology professor who started a high-intensity resistance training program after a period of detraining. The subject performed 1 high-intensity resistance training session that consisted of 48 total sets of push-ups (24) and chin-ups (24) with no rest between the sets. Two days after the exercise session, the subject reported "Cola colored" urine. On arriving at the hospital, test results indicated elevated myoglobin and creatine kinase (CK) levels (59 159 U/L; normal is 20-200 U/L). Treatment included intravenous hydration with sodium bicarbonate to reduce myoglobin, blood work to monitor CK levels, and acupuncture from the shoulder to hand. Three weeks posttreatment, the subject started to exercise again. This case study illustrates that unaccustomed exercise in the form of high-intensity resistance training may be harmful (ie, severe delayed onset muscle soreness or even worse, as reported in this case, rhabdomyolysis) to detrained athletes. PMID:23727696

  9. Prior exposure to capture heightens the corticosterone and behavioural responses of little penguins (Eudyptula minor) to acute stress

    PubMed Central

    Carroll, Gemma; Turner, Emma; Dann, Peter; Harcourt, Rob

    2016-01-01

    Studies of physiology can provide important insight into how animals are coping with challenges in their environment and can signal the potential effects of exposure to human activity in both the short and long term. In this study, we measured the physiological and behavioural response of little penguins (Eudyptula minor) that were naïve to human activity over 30 min of capture and handling. We assessed relationships between corticosterone secretion, behaviour, sex and time of day in order to characterize the determinants of the natural stress response. We then compared the response of these naïve penguins with the responses of female little penguins that had been exposed to research activity (bimonthly nest check and weighing) and to both research activity (monthly nest check and weighing) and evening viewing by tourists. We found that corticosterone concentrations increased significantly over 30 min of capture, with naïve penguins demonstrating a more acute stress response during the day than at night. Penguins that had previously been exposed to handling at the research and research/visitor sites showed elevated corticosterone concentrations and consistently more aggressive behaviour after 30 min compared with naïve birds, although there were no significant differences in baseline corticosterone concentrations. Our findings demonstrate that these little penguins have not habituated to routine capture, but rather mount a heightened physiological and behavioural response to handling by humans. Less invasive research monitoring techniques, such as individual identification with PIT tags and automatic recording and weighing, and a reduction in handling during the day should be considered to mitigate some of the potentially negative effects of disturbance. Given the paucity of data on the long-term consequences of heightened stress on animal physiology, our study highlights the need for further investigation of the relationship between the corticosterone

  10. Prior exposure to capture heightens the corticosterone and behavioural responses of little penguins (Eudyptula minor) to acute stress.

    PubMed

    Carroll, Gemma; Turner, Emma; Dann, Peter; Harcourt, Rob

    2016-01-01

    Studies of physiology can provide important insight into how animals are coping with challenges in their environment and can signal the potential effects of exposure to human activity in both the short and long term. In this study, we measured the physiological and behavioural response of little penguins (Eudyptula minor) that were naïve to human activity over 30 min of capture and handling. We assessed relationships between corticosterone secretion, behaviour, sex and time of day in order to characterize the determinants of the natural stress response. We then compared the response of these naïve penguins with the responses of female little penguins that had been exposed to research activity (bimonthly nest check and weighing) and to both research activity (monthly nest check and weighing) and evening viewing by tourists. We found that corticosterone concentrations increased significantly over 30 min of capture, with naïve penguins demonstrating a more acute stress response during the day than at night. Penguins that had previously been exposed to handling at the research and research/visitor sites showed elevated corticosterone concentrations and consistently more aggressive behaviour after 30 min compared with naïve birds, although there were no significant differences in baseline corticosterone concentrations. Our findings demonstrate that these little penguins have not habituated to routine capture, but rather mount a heightened physiological and behavioural response to handling by humans. Less invasive research monitoring techniques, such as individual identification with PIT tags and automatic recording and weighing, and a reduction in handling during the day should be considered to mitigate some of the potentially negative effects of disturbance. Given the paucity of data on the long-term consequences of heightened stress on animal physiology, our study highlights the need for further investigation of the relationship between the corticosterone

  11. Physiological controversies and methods used to determine fluid responsiveness: a qualitative systematic review.

    PubMed

    Ansari, B M; Zochios, V; Falter, F; Klein, A A

    2016-01-01

    Accurate assessment of intravascular fluid status and measurement of fluid responsiveness have become increasingly important in peri-operative medicine and critical care. The objectives of this systematic review and narrative synthesis were to discuss current controversies surrounding fluid responsiveness and describe the merits and limitations of the major cardiac output monitors in clinical use today in terms of usefulness in measuring fluid responsiveness. We searched the MEDLINE and EMBASE databases (2002-2015); inclusion criteria included comparison with an established reference standard such as pulmonary artery catheter, transthoracic echocardiography and transoesophageal echocardiography. Examples of clinical measures include static (such as central venous pressure) and dynamic (such as stroke volume variation and pulse pressure variation) parameters. The static parameters measured were described as having little value; however, the dynamic parameters were shown to be good physiological determinants of fluid responsiveness. Due to heterogeneity of the methods and patient characteristics, we did not perform a meta-analysis. In most studies, precision and limits of agreement (bias ±1.96SD) between determinants of fluid responsiveness measured by different devices were not evaluated, and the definition of fluid responsiveness varied across studies. Future research should focus on the physiological principles that underlie the measurement of fluid responsiveness and the effect of different volume expansion strategies on outcomes. PMID:26459299

  12. Behavioral Avoidance - Will Physiological Insecticide Resistance Level of Insect Strains Affect Their Oviposition and Movement Responses?

    PubMed Central

    Nansen, Christian; Baissac, Olivier; Nansen, Maria; Powis, Kevin; Baker, Greg

    2016-01-01

    Agricultural organisms, such as insect herbivores, provide unique opportunities for studies of adaptive evolutionary processes, including effects of insecticides on movement and oviposition behavior. In this study, Brassica leaves were treated with one of two non-systemic insecticides and exposed to two individual strains (referred to as single or double resistance) of diamondback moth (Plutella xylostella) (DBM) exhibiting physiological resistance. Behavioral responses by these two strains were compared as part of characterizing the relative effect of levels of physiological resistance on the likelihood of insects showing signs of behavioral avoidance. For each DBM strain, we used choice bioassays to quantify two possible types of behavioral avoidance: 1) females ovipositing predominantly on leaf surfaces without insecticides, and 2) larvae avoiding insecticide-treated leaf surfaces. In three-choice bioassays (leaves with no pesticide, 50% coverage with pesticide, or 100% coverage with pesticide), females from the single resistance DBM strain laid significantly more eggs on water treated leaves compared to leaves with 100% insecticide coverage (both gamma-cyhalothrin and spinetoram). Females from the double resistance DBM strain also laid significantly more eggs on water treated leaves compared to leaves with 100% gamma-cyhalothrin, while moths did not adjust their oviposition behavior in response to spinetoram. Larvae from the single resistance DBM strain showed a significant increase in mobility in response to both insecticides and avoided insecticide-treated portions of leaves when given a choice. On the other hand, DBM larvae from the double resistance strain showed a significant decrease in mobility in response to insecticides, and they did not avoid insecticide-treated portions of leaves when given a choice. Our results suggest that pest populations with physiological resistance may show behavioral avoidance, as resistant females avoided oviposition on

  13. Anabolic responses to acute and chronic resistance exercise are enhanced when combined with aquatic treadmill exercise.

    PubMed

    Lambert, Brad S; Shimkus, Kevin L; Fluckey, James D; Riechman, Steven E; Greene, Nicholas P; Cardin, Jessica M; Crouse, Stephen F

    2015-02-01

    Aquatic treadmill (ATM) running may simultaneously promote aerobic fitness and enhance muscle growth when combined with resistance training (RT) compared with land-treadmill (LTM) running. Therefore, we examined acute and chronic physiological responses to RT, concurrent RT-LTM, and concurrent RT-ATM. Forty-seven untrained volunteers (men: n = 23, 37 ± 11 yr, 29.6 ± 4.6 kg/m(2); women: n = 24, 38 ± 12 yr, 27.53 ± 6.4 kg/m(2)) from the general population were tested for V̇o2max, body composition, and strength before and after training. All groups performed 12 wk of RT (2 wk, 3 × 8-12 sets at 60 to approximately 80% 1-repetition maximum). The RT-LTM and RT-ATM groups also performed 12 wk of LTM or ATM training (2 wk immediately post-RT and 1 wk in isolation, 60-85% V̇o2max, 250-500 kcal/session). Additionally, 25 subjects volunteered for muscle biopsy prior to and 24 h post-acute exercise before and after training. Stable isotope labeling (70% (2)H2O, 3 ml/kg) was utilized to quantify 24 h post-exercise myofibrillar fractional synthesis rates (myoFSR). Mixed-model ANOVA revealed that RT-ATM but not RT-LTM training produced greater chronic increases in lean mass than RT alone (P < 0.05). RT-LTM training was found to elicit the greatest decreases in percent body fat (-2.79%, P < 0.05). In the untrained state, acute RT-ATM exercise elicited higher 24-h myoFSRs compared with RT (+5.68%/day, P < 0.01) and RT-LTM (+4.08%/day, P < 0.05). Concurrent RT-ATM exercise and training elicit greater skeletal muscle anabolism than RT alone or RT-LTM. PMID:25425002

  14. Evidence for a novel functional role of astrocytes in the acute homeostatic response to high-fat diet intake in mice

    PubMed Central

    Buckman, Laura B.; Thompson, Misty M.; Lippert, Rachel N.; Blackwell, Timothy S.; Yull, Fiona E.; Ellacott, Kate L.J.

    2014-01-01

    Objective Introduction of a high-fat diet to mice results in a period of voracious feeding, known as hyperphagia, before homeostatic mechanisms prevail to restore energy intake to an isocaloric level. Acute high-fat diet hyperphagia induces astrocyte activation in the rodent hypothalamus, suggesting a potential role of these cells in the homeostatic response to the diet. The objective of this study was to determine physiologic role of astrocytes in the acute homeostatic response to high-fat feeding. Methods We bred a transgenic mouse model with doxycycline-inducible inhibition of NFkappaB (NFκB) signaling in astrocytes to determine the effect of loss of NFκB-mediated astrocyte activation on acute high-fat hyperphagia. ELISA was used to measure the levels of markers of astrocyte activation, glial-fibrillary acidic protein (GFAP) and S100B, in the medial basal hypothalamus. Results Inhibition of NFκB signaling in astrocytes prevented acute high-fat diet-induced astrocyte activation and resulted in a 15% increase in caloric intake (P < 0.01) in the first 24 h after introduction of the diet. Conclusions These data reveal a novel homeostatic role for astrocytes in the acute physiologic regulation of food intake in response to high-fat feeding. PMID:25685690

  15. The effects of cadence, impact, and step on physiological responses to aerobic dance exercise.

    PubMed

    Darby, L A; Browder, K D; Reeves, B D

    1995-09-01

    The physiological responses to aerobic dance exercise of varied impact (high, low), step (less arm movement vs. more arm movement), and cadence (124 vs. 138 beats.min-1) were investigated. Experienced, female aerobic dancers (N = 16) performed activities that combined the levels of impact and step for 3 trials of 8-min each. Dependent variables included heart rate, percentage of maximal heart rate, oxygen consumption, percentage of maximal oxygen consumption, and respiratory exchange ratio. Repeated measures analyses of variance indicated a significant Impact x Step interaction whereby oxygen consumption was greater for the high impact-less arm movement activity (jog), while the low impact-more arm movement activity (power jack) was greater for heart rate. The interaction of aerobic dance characteristics (e.g., impact, arm movement) that may alter physiological responses to aerobic dance exercise should be identified in future aerobic dance routines and studies. PMID:7481084

  16. Relationship between Aflatoxin Contamination and Physiological Responses of Corn Plants under Drought and Heat Stress

    PubMed Central

    Kebede, Hirut; Abbas, Hamed K.; Fisher, Daniel K.; Bellaloui, Nacer

    2012-01-01

    Increased aflatoxin contamination in corn by the fungus Aspergillus flavus is associated with frequent periods of drought and heat stress during the reproductive stages of the plants. The objective of this study was to evaluate the relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress. The study was conducted in Stoneville, MS, USA under irrigated and non-irrigated conditions. Five commercial hybrids, P31G70, P33F87, P32B34, P31B13 and DKC63-42 and two inbred germplasm lines, PI 639055 and PI 489361, were evaluated. The plants were inoculated with Aspergillus flavus (K-54) at mid-silk stage, and aflatoxin contamination was determined on the kernels at harvest. Several physiological measurements which are indicators of stress response were determined. The results suggested that PI 639055, PI 489361 and hybrid DKC63-42 were more sensitive to drought and high temperature stress in the non-irrigated plots and P31G70 was the most tolerant among all the genotypes. Aflatoxin contamination was the highest in DKC63-42 and PI 489361 but significantly lower in P31G70. However, PI 639055, which is an aflatoxin resistant germplasm, had the lowest aflatoxin contamination, even though it was one of the most stressed genotypes. Possible reasons for these differences are discussed. These results suggested that the physiological responses were associated with the level of aflatoxin contamination in all the genotypes, except PI 639055. These and other physiological responses related to stress may help examine differences among corn genotypes in aflatoxin contamination. PMID:23202322

  17. Physiological and growth responses to water deficit in the bioenergy crop Miscanthus x giganteus

    PubMed Central

    Ings, Jennifer; Mur, Luis A. J.; Robson, Paul R. H.; Bosch, Maurice

    2013-01-01

    High yielding perennial biomass crops of the species Miscanthus are widely recognized as one of the most promising lignocellulosic feedstocks for the production of bioenergy and bioproducts. Miscanthus is a C4 grass and thus has relatively high water use efficiency. Cultivated Miscanthus comprises primarily of a single clone, Miscanthus x giganteus, a sterile hybrid between M. sacchariflorus and M. sinensis. M. x giganteus is high yielding and expresses desirable combinations of many traits present in the two parental species types; however, it responds poorly to low water availability. To identify the physiological basis of the response to water stress in M. x giganteus and to identify potential targets for breeding improvements we characterized the physiological responses to water-deficit stress in a pot experiment. The experiment has provided valuable insights into the temporal aspects of drought-induced responses of M. x giganteus. Withholding water resulted in marked changes in plant physiology with growth-associated traits among the first affected, the most rapid response being a decline in the rate of stem elongation. A reduction in photosynthetic performance was among the second set of changes observed; indicated by a decrease in stomatal conductance followed by decreases in chlorophyll fluorescence and chlorophyll content. Measures reflecting the plant water status were among the last affected by the drought treatment. Metabolite analysis indicated that proline was a drought stress marker in M. x giganteus, metabolites in the proline synthesis pathway were more abundant when stomatal conductance decreased and dry weight accumulation ceased. The outcomes of this study in terms of drought-induced physiological changes, accompanied by a proof-of-concept metabolomics investigation, provide a platform for identifying targets for improved drought-tolerance of the Miscanthus bioenergy crop. PMID:24324474

  18. Similarity in physiological and perceived exertion responses to exercise at continuous and intermittent critical power.

    PubMed

    Soares-Caldeira, Lúcio Flávio; Okuno, Nilo Massaru; Magalhães Sales, Marcelo; Campbell, Carmen Sílvia Grubert; Simões, Herbert Gustavo; Nakamura, Fábio Yuzo

    2012-05-01

    The purpose of this study was to compare the physiological responses [oxygen uptake (VO(2)), heart rate (HR) and blood lactate concentrations ([BLa])] and the rating of perceived exertion (RPE) response until exhaustion (TTE) at the continuous (CP(c)) and intermittent (CP(i)) critical power workloads. Ten moderately active men (25.5 ± 4.2 years, 74.1 ± 8.0 kg, 177.6 ± 4.9 cm) participated in this study. The incremental test was applied to determine the highest values of oxygen uptake (VO(2max)), heart rate (HR(max)), blood lactate concentrations ([BLa(max)]), and maximal aerobic power (MAP). Continuous and intermittent exhaustive predictive trials were performed randomly. The hyperbolic relation between power and time was used to estimate CP(c) and CP(i). CP(i) was derived from predictive trial results at an effort and recovery ratio of 30:30 s. Exercise at CP(c) and CP(i) as well as the physiological and RPE responses were measured until exhaustion. The values of physiological variables during CP(c) and CP(i) did not differ in either TTE test and were lower than the VO(2max), HR(max) and [BLa(max)] values. RPE was maximal at the end of exercise at CP(c) and CP(i). There was a high correlation between VO(2max) (L min(-1)) and CP(c) and CP(i) intensities (r ≥ 0.90) and between MAP, CP(c) and CP(i) (r ≥ 0.95). Similar physiological and RPE responses were found at CP(c) and CP(i) for the times analyzed. PMID:21874553

  19. The effect of melody on the physiological responses of heel sticks pain in neonates

    PubMed Central

    Marofi, Maryam; Nikobakht, Farzaneh; Badiee, Zohreh; Golchin, Mehri

    2015-01-01

    Background: During health care in the neonatal intensive care unit (NICU), infants undergo extremely painful procedures, which may cause problems, if not controlled, such as changes in the pattern of respiratory rate, heart rate, and blood oxygen saturation. The present study aimed to find the effect of melody on the physiological responses of neonates’ heel stick pain. Materials and Methods: This quasi-experimental study was conducted in Alzahra Hospital (Isfahan, Iran) for 5 months. Fifty infants were selected through convenient sampling method and were randomly assigned in equal numbers to two groups (n = 25). In the melody group (intervention), a selected melody was played for the infants at a distance of 1 m from them, with a sound intensity of 65 dB, from 3 minutes before, during, and after the heel stick procedure, respectively, and their physiological responses were observed with a monitoring system and recorded at the afore-mentioned time periods. Physiological responses were also recorded in the control group (no intervention) 3 min before, during, and after the heel stick procedure, respectively. Results: Means of respiratory and pulse rates in the melody and control groups showed a significant difference at different time points. But the mean blood oxygen saturation in the melody group showed no significant difference at different time points, although the difference was significant in the control group. Conclusions: The results showed that melody could maintain more balance in some physiological responses of infants, such as the respiratory rate and pulse rate during the Guthrie test. Therefore, melody is recommended to be used to prevent the destructive effects of pain in infants during painful procedures. PMID:26120343

  20. Physiologic responses to water immersion in man: A compendium of research

    NASA Technical Reports Server (NTRS)

    Kollias, J.; Vanderveer, D.; Dorchak, K. J.; Greenleaf, J. E.

    1976-01-01

    A total of 221 reports published through December 1973 in the area of physiologic responses to water immersion in man were summarized. The author's abstract or summary was used whenever possible. Otherwise, a detailed annotation was provided under the subheadings: (1) purpose, (2) procedures and methods, (3) results, and (4) conclusions. The annotations are in alphabetical order by first author; author and subject indexes are included. Additional references are provided in the selected bibliography.

  1. Acute phase proteins in salmonids: evolutionary analyses and acute phase response.

    PubMed

    Jensen, L E; Hiney, M P; Shields, D C; Uhlar, C M; Lindsay, A J; Whitehead, A S

    1997-01-01

    Inflammation induces dramatic changes in the biosynthetic profile of the liver, leading to increased serum concentrations of positive acute phase (AP) proteins and decreased concentrations of negative AP proteins. Serum amyloid A (SAA) and the pentraxins C-reactive protein (CRP) and serum amyloid P component (SAP) are major AP proteins: their serum levels can rise by 1000-fold, indicating that they play a critical role in defense and/or the restoration of homeostasis. We have cloned SAA and a SAP-like pentraxin from salmonid fish species. The salmonid SAA shares approximately 70% amino acid identity with mammalian AP SAA. When salmonids are challenged with an AP stimulus, i.e., Aeromonas salmonicida, SAA responds dramatically as a major AP reactant. The salmonid pentraxin shows approximately 40% amino acid identity to both mammalian SAP and CRP. Evolutionary analysis suggests the presence of only a single such protein in teleosts and lower animal species. Surprisingly, the salmonid pentraxin behaves as a negative AP reactant, reminiscent of the SAP-like Syrian hamster female protein, in that hepatic mRNA concentrations decline to 50% of prestimulus levels. This study reinforces the hypothesis that SAA induction is an essential and universal feature of the vertebrate AP response and that it represents part of an ancient host defense system. Conversely, the species-dependent heterogeneity of pentraxin expression during the vertebrate AP response supports the possibility that its most important ancestral (and perhaps present) function is not related to its AP behavior. PMID:8977214

  2. Psychoneurometric operationalization of threat sensitivity: Relations with clinical symptom and physiological response criteria.

    PubMed

    Yancey, James R; Venables, Noah C; Patrick, Christopher J

    2016-03-01

    The National Institute of Mental Health's Research Domain Criteria (RDoC) initiative calls for the incorporation of neurobiological approaches and findings into conceptions of mental health problems through a focus on biobehavioral constructs investigated across multiple domains of measurement (units of analysis). Although the constructs in the RDoC system are characterized in "process terms" (i.e., as functional concepts with brain and behavioral referents), these constructs can also be framed as dispositions (i.e., as dimensions of variation in biobehavioral functioning across individuals). Focusing on one key RDoC construct, acute threat or "fear," the current article illustrates a construct-oriented psychoneurometric strategy for operationalizing this construct in individual difference terms-as threat sensitivity (THT+). Utilizing data from 454 adult participants, we demonstrate empirically that (a) a scale measure of THT+ designed to tap general fear/fearlessness predicts effectively to relevant clinical problems (i.e., fear disorder symptoms), (b) this scale measure shows reliable associations with physiological indices of acute reactivity to aversive visual stimuli, and (c) a cross-domain factor reflecting the intersection of scale and physiological indicators of THT+ predicts effectively to both clinical and neurophysiological criterion measures. Results illustrate how the psychoneurometric approach can be used to create a dimensional index of a biobehavioral trait construct, in this case THT+, which can serve as a bridge between phenomena in domains of psychopathology and neurobiology. Implications and future directions are discussed with reference to the RDoC initiative and existing report-based conceptions of psychological traits. PMID:26877132

  3. Serum Response Factor Mediated Gene Activity in Physiological and Pathological Processes of Neuronal Motility

    PubMed Central

    Knöll, Bernd

    2011-01-01

    In recent years, the transcription factor serum response factor (SRF) was shown to contribute to various physiological processes linked to neuronal motility. The latter include cell migration, axon guidance, and, e.g., synapse function relying on cytoskeletal dynamics, neurite outgrowth, axonal and dendritic differentiation, growth cone motility, and neurite branching. SRF teams up with myocardin related transcription factors (MRTFs) and ternary complex factors (TCFs) to mediate cellular actin cytoskeletal dynamics and the immediate-early gene (IEG) response, a bona fide indicator of neuronal activation. Herein, I will discuss how SRF and cofactors might modulate physiological processes of neuronal motility. Further, potential mechanisms engaged by neurite growth promoting molecules and axon guidance cues to target SRF’s transcriptional machinery in physiological neuronal motility will be presented. Of note, altered cytoskeletal dynamics and rapid initiation of an IEG response are a hallmark of injured neurons in various neurological disorders. Thus, SRF and its MRTF and TCF cofactors might emerge as a novel trio modulating peripheral and central axon regeneration. PMID:22164132

  4. Adaptive Physiological Response to Perceived Scarcity as a Mechanism of Sensory Modulation of Life Span.

    PubMed

    Waterson, Michael J; Chan, Tammy P; Pletcher, Scott D

    2015-09-01

    Chemosensation is a potent modulator of organismal physiology and longevity. In Drosophila, loss of recognition of diverse tastants has significant and bidirectional life-span effects. Recently published results revealed that when flies were unable to taste water, they increased its internal generation, which may have subsequently altered life span. To determine whether similar adaptive responses occur in other contexts, we explored the impact of sensory deficiency of other metabolically important molecules. Trehalose is a major circulating carbohydrate in the fly that is recognized by the gustatory receptor Gr5a. Gr5a mutant flies are short lived, and we found that they specifically increased whole-body and circulating levels of trehalose, but not other carbohydrates, likely through upregulation of de novo synthesis. dILP2 transcript levels were increased in Gr5a mutants, a possible response intended to reduce hypertrehalosemia, and likely a contributing factor to their reduced life span. Together, these data suggest that compensatory physiological responses to perceived environmental scarcity, which are designed to alleviate the ostensive shortage, may be a common outcome of sensory manipulation. We suggest that future investigations into the mechanisms underlying sensory modulation of aging may benefit by focusing on direct or indirect consequences of physiological changes that are designed to correct perceived disparity with the environment. PMID:25878032

  5. The Power of an Infant's Smile: Maternal Physiological Responses to Infant Emotional Expressions

    PubMed Central

    Mizugaki, Sanae; Maehara, Yukio; Okanoya, Kazuo; Myowa-Yamakoshi, Masako

    2015-01-01

    Infant emotional expressions, such as distress cries, evoke maternal physiological reactions. Most of which involve accelerated sympathetic nervous activity. Comparatively little is known about effects of positive infant expressions, such as happy smiles, on maternal physiological responses. This study investigated how physiological and psychological maternal states change in response to infants’ emotional expressions. Thirty first-time mothers viewed films of their own 6- to 7-month-old infants’ affective behavior. Each observed a video of a distress cry followed by a video showing one of two expressions (randomly assigned): a happy smiling face (smile condition) or a calm neutral face (neutral condition). Both before and after the session, participants completed a self-report inventory assessing their emotional states. The results of the self-report inventory revealed no effects of exposure to the infant videos. However, the mothers in the smile condition, but not in the neutral condition, showed deceleration of skin conductance. These findings demonstrate that the mothers who observed their infants smiling showed decreased sympathetic activity. We propose that an infant’s positive emotional expression may affect the branch of the maternal stress-response system that modulates the homeostatic balance of the sympathetic and parasympathetic nervous systems. PMID:26065903

  6. Rain influences the physiological and metabolic responses to exercise in hot conditions.

    PubMed

    Ito, Ryo; Yamashita, Naoyuki; Suzuki, Eiko; Matsumoto, Takaaki

    2015-01-01

    Outdoor exercise often proceeds in rainy conditions. However, the cooling effects of rain on human physiological responses have not been systematically studied in hot conditions. The present study determined physiological and metabolic responses using a climatic chamber that can precisely simulate hot, rainy conditions. Eleven healthy men ran on a treadmill at an intensity of 70% VO2max for 30 min in the climatic chamber at an ambient temperature of 33°C in the presence (RAIN) or absence (CON) of 30 mm · h(-1) of precipitation and a headwind equal to the running velocity of 3.15 ± 0.19 m · s(-1). Oesophageal temperature, mean skin temperature, heart rate, rating of perceived exertion, blood parameters, volume of expired air and sweat loss were measured. Oesophageal and mean skin temperatures were significantly lower from 5 to 30 min, and heart rate was significantly lower from 20 to 30 min in RAIN than in CON (P < 0.05 for all). Plasma lactate and epinephrine concentrations (30 min) and sweat loss were significantly lower (P < 0.05) in RAIN compared with CON. Rain appears to influence physiological and metabolic responses to exercise in heat such that heat-induced strain might be reduced. PMID:25555077

  7. The acute hormonal response to the kettlebell swing exercise.

    PubMed

    Budnar, Ronald G; Duplanty, Anthony A; Hill, David W; McFarlin, Brian K; Vingren, Jakob L

    2014-10-01

    The purpose of this investigation was to examine the acute hormonal response to the kettlebell swing exercise. Ten recreationally resistance trained men (age, 24 ± 4 years; height, 175 ± 6 cm; body mass, 78.7 ± 9.9 kg) performed 12 rounds of 30 seconds of 16 kg kettlebell swings alternated with 30 seconds of rest. Blood samples were collected before (PRE), immediately after (IP), and 15 (P15) and 30 minutes after exercise (P30) and analyzed for testosterone (T), immunoreactive growth hormone, cortisol (C), and lactate concentrations. Heart rate and rating of perceived exertion were measured at the end of each round. Testosterone was significantly higher (p ≤ 0.05) at IP than at PRE, P15, or P30 (PRE: 28 ± 3; IP: 32 ± 4; P15: 29 ± 3; P30: 27 ± 3 nmol·L). Growth hormone was higher at IP, P15, and P30 than at PRE (PRE: 0.1 ± 0.1; IP: 1.8 ± 1.2; P15: 2.1 ± 1.1; P30: 1.6 ± 1.3 μg·L). Cortisol was higher at IP and P15 than at PRE and P30 (PRE: 617 ± 266; IP: 894 ± 354; P15: 875 ± 243; P30: 645 ± 285 nmol·L). Lactate was higher at IP, P15, and P30 than at PRE (PRE: 1.1 ± 0.5; IP: 7.0 ± 3.0; P15: 4.0 ± 2.7; P30: 2.5 ± 1.8 mmol·L). Heart rate increased progressively from 57 ± 12 at PRE to 170 ± 10 at IP. The exercise protocol produced an acute increase in hormones involved in muscle adaptations. Thus, the kettlebell swing exercise might provide a good supplement to resistance training programs. PMID:24714543

  8. Acute and delayed thermoregulatory response of mice exposed to brevetoxin.

    PubMed

    Gordon, C J; Kimm-Brinson, K L; Padnos, B; Ramsdell, J S

    2001-09-01

    Thermal dysthesia, characterized by a painful sensation of warm and cool surfaces, is one of many ailments in humans exposed to various marine algal toxins such as brevetoxin (PbTx). There is no animal model to study thermal dysthesia and little is known of the mechanism of action. There is also little known on the acute and delayed thermoregulatory effects of PbTx. In this study, we developed a behavioral system to assess the possible development of thermal dysthesia in mice exposed to PbTx. Female mice were implanted with radiotransmitters to monitor core temperature (Tc) and motor activity (MA). In one experiment, mice were dosed with the control vehicle or 180 microg/kg PbTx and placed on a floor temperature gradient to measure the selected foot temperature (SFT) while air temperature was kept constant. PbTx-treated mice underwent a 10 degrees C reduction in SFT concomitant with a 3 degrees C reduction in Tc within 30 min after exposure. In another study, Tc and MA were monitored in mice maintained in their home cages after dosing with 180 microg/kg PbTx. Tc but not MA increased for 2-5 days after exposure. SFT was unaffected by PbTx when tested 1-12 days after exposure. However, PbTx-treated mice underwent an increase in Tc when placed in the temperature gradient for up to 12 days after exposure. This suggests that PbTx augments the stress-induced hyperthermia from being placed in a novel environment. Overall, acute PbTx exposure leads to a regulated reduction in Tc as characterized by a preference for cooler SFTs and a reduced Tc. Thermal dysthesia was not apparent, but the exaggerated hyperthermic response with a normal SFT in the temperature gradient may suggest an altered processing of thermal stimuli in mice treated with PbTx. PMID:11384725

  9. Physiological Imaging-Defined, Response-Driven Subvolumes of a Tumor

    SciTech Connect

    Farjam, Reza; Tsien, Christina I.; Feng, Felix Y.; Gomez-Hassan, Diana; Hayman, James A.; Lawrence, Theodore S.; Cao, Yue

    2013-04-01

    Purpose: To develop an image analysis framework to delineate the physiological imaging-defined subvolumes of a tumor in relating to treatment response and outcome. Methods and Materials: Our proposed approach delineates the subvolumes of a tumor based on its heterogeneous distributions of physiological imaging parameters. The method assigns each voxel a probabilistic membership function belonging to the physiological parameter classes defined in a sample of tumors, and then calculates the related subvolumes in each tumor. We applied our approach to regional cerebral blood volume (rCBV) and Gd-DTPA transfer constant (K{sup trans}) images of patients who had brain metastases and were treated by whole-brain radiation therapy (WBRT). A total of 45 lesions were included in the analysis. Changes in the rCBV (or K{sup trans})–defined subvolumes of the tumors from pre-RT to 2 weeks after the start of WBRT (2W) were evaluated for differentiation of responsive, stable, and progressive tumors using the Mann-Whitney U test. Performance of the newly developed metrics for predicting tumor response to WBRT was evaluated by receiver operating characteristic (ROC) curve analysis. Results: The percentage decrease in the high-CBV-defined subvolumes of the tumors from pre-RT to 2W was significantly greater in the group of responsive tumors than in the group of stable and progressive tumors (P<.007). The change in the high-CBV-defined subvolumes of the tumors from pre-RT to 2W was a predictor for post-RT response significantly better than change in the gross tumor volume observed during the same time interval (P=.012), suggesting that the physiological change occurs before the volumetric change. Also, K{sup trans} did not add significant discriminatory information for assessing response with respect to rCBV. Conclusion: The physiological imaging-defined subvolumes of the tumors delineated by our method could be candidates for boost target, for which further development and evaluation

  10. Changes of pathological and physiological indicators affecting drug metabolism in rats after acute exposure to high altitude

    PubMed Central

    LI, WENBIN; WANG, RONG; XIE, HUA; ZHANG, JUANHONG; JIA, ZHENGPING

    2015-01-01

    High altitude environments cause the human body to undergo a series of pathological, physiological and biochemical changes, which have a certain effect on drug pharmacokinetics. The objective of the present study was to observe changes in factors affecting pharmacokinetics in rats following acute exposure to high altitude and return to low altitude. A total of 21 male Wistar rats were randomly assigned to three groups. The rats in group A were maintained at low altitude in Shanghai, 55 m above sea level; those in group B were acutely exposed to high altitude in Maqu, Gansu, 4,010 m above sea level; and those in group C were acutely exposed to high altitude and then returned to low altitude. Blood was collected from the orbit for the analysis of significant biochemical indicators and from the abdominal aorta for blood gas analysis. Brain, lung and kidney tissues were removed to observe pathological changes. In group B, the pH, buffer base (BB), base excess (BE), total carbon dioxide content (ctCO2), oxygen saturation of arterial blood (sO2), oxygen tension of arterial blood (pO2), serum sodium (Na+) concentration, lactate dehydrogenase (LDH) activity and total protein (TP) level were significantly reduced, and the carbon dioxide tension of arterial blood (pCO2), serum chloride (Cl−) concentration, serum total bilirubin (TBIL) level and alkaline phosphatase (ALP) activity were significantly increased compared with those in group A (P<0.05). In group C, the pH, BB, BE, sO2, pO2, hemoglobin (Hb) level, serum Na+ concentration, LDH activity and TP level were significantly reduced, and the pCO2, serum Cl− concentration, alanine transaminase activity, TBIL and urea levels were significantly increased (P<0.05) compared with those in group A. The Hb and ALP levels in group C were significantly lower than those in group B (P<0.05); and the TP, TBIL and urea levels in group C were significantly higher than those in group B (P<0.05). Pathological observation revealed that

  11. The effect of an acute increase in central blood volume on the response of cerebral blood flow to acute hypotension.

    PubMed

    Ogoh, Shigehiko; Hirasawa, Ai; Sugawara, Jun; Nakahara, Hidehiro; Ueda, Shinya; Shoemaker, J Kevin; Miyamoto, Tadayoshi

    2015-09-01

    The purpose of the present study was to examine whether the response of cerebral blood flow to an acute change in perfusion pressure is modified by an acute increase in central blood volume. Nine young, healthy subjects voluntarily participated in this study. To measure dynamic cerebral autoregulation during normocapnic and hypercapnic (5%) conditions, the change in middle cerebral artery mean blood flow velocity was analyzed during acute hypotension caused by two methods: 1) thigh-cuff occlusion release (without change in central blood volume); and 2) during the recovery phase immediately following release of lower body negative pressure (LBNP; -50 mmHg) that initiated an acute increase in central blood volume. In the thigh-cuff occlusion release protocol, as expected, hypercapnia decreased the rate of regulation, as an index of dynamic cerebral autoregulation (0.236 ± 0.018 and 0.167 ± 0.025 s(-1), P = 0.024). Compared with the cuff-occlusion release, the acute increase in central blood volume (relative to the LBNP condition) with LBNP release attenuated dynamic cerebral autoregulation (P = 0.009). Therefore, the hypercapnia-induced attenuation of dynamic cerebral autoregulation was not observed in the LBNP release protocol (P = 0.574). These findings suggest that an acute change in systemic blood distribution modifies dynamic cerebral autoregulation during acute hypotension. PMID:26159757

  12. Analysis of physiological response to two virtual environments: driving and flying simulation.

    PubMed

    Jang, Dong P; Kim, In Y; Nam, Sang W; Wiederhold, Brenda K; Wiederhold, Mark D; Kim, Sun I

    2002-02-01

    As virtual reality technology continues to attract significant attention in clinical psychology, especially in the treatment of phobias, physiological monitoring is increasingly considered as an objective measurement tool for studying participants. There are few studies, however, of the normal physiological response to virtual environments or reactions to different virtual environments. The goal of this study is to analyze nonphobic participants' physiological reactions to two virtual environments: driving and flying. Eleven nonphobic participants were exposed to each virtual environment for 15 min. Heart rate, skin resistance, and skin temperature were measured during physiological monitoring, and the Presence and Simulator Sickness Questionnaire scores were obtained after each exposure. This study found that skin resistance and heart rate variability can be used to show arousal of participants exposed to the virtual environment experience and that such measures generally returned to normal over time. The data suggest that skin resistance and heart rate can be used as objective measures in monitoring the reaction of non-phobic participants to virtual environments. We also noted that heart rate variability could be useful for assessing the emotional states of participants. PMID:11990971

  13. Growth and physiological responses of neotropical mangrove seedlings to root zone hypoxia.

    PubMed

    McKee, Karen L.

    1996-01-01

    Seedlings of Rhizophora mangle L., Avicennia germinans (L.) Stearn., and Laguncularia racemosa (L.) Gaertn. f. were cultured in aerated or N(2)-purged solution for 12 weeks to assess their relative responses to low oxygen tensions. All three species responded to low oxygen treatment by modifying physiological and morphological patterns to decrease carbon loss by root respiration. However, the extent to which seedling physiology and morphology were altered by low oxygen treatment differed among species. Maintenance of root oxygen concentrations, root respiration rates and root extension rates by R. mangle demonstrated an ability to avoid low oxygen stress with minimal changes in root morphology and physiology. In contrast, oxygen concentrations in A. germinans and L. racemosa roots declined from 16 to 5% or lower within 6 h of treatment. Root hypoxia led to significant decreases in respiration rates of intact root systems (31 and 53% below controls) and root extension rates (38 and 76% below controls) by A. germinans and L. racemosa, respectively, indicating a greater vulnerability of these species to low oxygen tensions in the root zone compared with R. mangle. I conclude that the relative performance of mangrove seedlings growing in anaerobic soils is influenced by interspecific differences in root aeration and concomitant effects on root morphology and physiology. PMID:14871780

  14. Morpho-Physiological and Proteome Level Responses to Cadmium Stress in Sorghum

    PubMed Central

    Kamal, Abu Hena Mostafa; Kim, Sang-Woo; Oh, Myeong-Won; Lee, Moon-Soon; Chung, Keun-Yook; Xin, Zhanguo; Woo, Sun-Hee

    2016-01-01

    Cadmium (Cd) stress may cause serious morphological and physiological abnormalities in addition to altering the proteome in plants. The present study was performed to explore Cd-induced morpho-physiological alterations and their potential associated mechanisms in Sorghum bicolor leaves at the protein level. Ten-day-old sorghum seedlings were exposed to different concentrations (0, 100, and 150 μM) of CdCl2, and different morpho-physiological responses were recorded. The effects of Cd exposure on protein expression patterns in S. bicolor were investigated using two-dimensional gel electrophoresis (2-DE) in samples derived from the leaves of both control and Cd-treated seedlings. The observed morphological changes revealed that the plants treated with Cd displayed dramatically altered shoot lengths, fresh weights and relative water content. In addition, the concentration of Cd was markedly increased by treatment with Cd, and the amount of Cd taken up by the shoots was significantly and directly correlated with the applied concentration of Cd. Using the 2-DE method, a total of 33 differentially expressed protein spots were analyzed using MALDI-TOF/TOF MS. Of these, treatment with Cd resulted in significant increases in 15 proteins and decreases in 18 proteins. Major changes were absorbed in the levels of proteins known to be involved in carbohydrate metabolism, transcriptional regulation, translation and stress responses. Proteomic results revealed that Cd stress had an inhibitory effect on carbon fixation, ATP production and the regulation of protein synthesis. Our study provides insights into the integrated molecular mechanisms involved in responses to Cd and the effects of Cd on the growth and physiological characteristics of sorghum seedlings. We have aimed to provide a reference describing the mechanisms involved in heavy metal damage to plants. PMID:26919231

  15. Ocean warming and acidification: Unifying physiological principles linking organism response to ecosystem change?

    NASA Astrophysics Data System (ADS)

    Pörtner, H. O.; Bock, C.; Lannig, G.; Lucassen, M.; Mark, F. C.; Stark, A.; Walther, K.; Wittmann, A.

    2011-12-01

    The effects of ocean warming and acidification on individual species of marine ectothermic animals may be based on some common denominators, i.e. physiological responses that can be assumed to reflect unifying principles, common to all marine animal phyla. Identification of these principles requires studies, which reach beyond the species-specific response, and consider multiple stressors, for example temperature, CO2 or extreme hypoxia. Analyses of response and acclimation include functional traits of physiological performance on various levels of biological organisation, from changes in the transcriptome to patterns of acid-base regulation and whole animal thermal tolerance. Conclusions are substantiated by comparisons of species and phyla from temperate, Arctic and Antarctic ecosystems and also benefit from the interpretation of paleo-patterns based on the use of a unifying physiological concept, suitable to integrate relevant environmental factors into a more comprehensive picture. Studying the differential specialization of animals on climate regimes and their sensitivity to climate leads to improved understanding of ongoing and past ecosystem change and should then support more reliable projections of future scenarios. For example, accumulating CO2 causes disturbances in acid-base status. Resilience to ocean acidification may be reflected in the capacity to compensate for these disturbances or their secondary effects. Ion and pH regulation comprise thermally sensitive active and passive transfer processes across membranes. Specific responses of ion transporter genes and their products to temperature and CO2 were found in fish, crustaceans and bivalves. However, compensation may cause unfavourable shifts in energy budget and beyond that hamper cellular and mitochondrial metabolism, which are directly linked to the animal's aerobic performance window. In crabs, oysters and, possibly, fishes, a narrowing of the thermal window is caused by moderate increases in

  16. Effect of fluid ingestion on orthostatic responses following acute exercise

    NASA Technical Reports Server (NTRS)

    Davis, J. E.; Fortney, S. M.

    1997-01-01

    Orthostatic tolerance is impaired following an acute bout of exercise. This study examined the effect of fluid ingestion following treadmill exercise in restoring the cardiovascular responses to an orthostatic stress. Five men (age, 29.6 +/- 3.4 yrs) were exposed to a graded lower body negative (LBNP) pressure protocol (0 to -50 mmHg) during euhydration without exercise (C), 20 minutes after exercise dehydration (D), 20 minutes after exercise and fluid ingestion (FI20), and 60 minutes after exercise and fluid ingestion (FI60). Fluid ingestion (mean +/- SE) consisted of water-ingestion equivalent to 50% of the body weight lost during exercise (520 +/- 15 ml). Exercise dehydration resulted in significantly higher heart rates (119 +/- 8 vs 82 +/- 7 bpm), lower systolic blood pressures (95 +/- 1.7 vs 108 +/- 2.3 mmHg), a smaller increase in leg circumference (3.7 +/- 4 vs 6.9 +/- 1.0 mm), and an attenuated increase in total peripheral resistance (2.58 +/- 1.2 vs 4.28 +/- 0.9 mmHg/L/min) at -50 mmHg LBNP compared to the C condition. Fluid ingestion (both 20 and 60), partially restored the heart rate, systolic blood pressure, and total peripheral resistance responses to LBNP, but did not influence the change in leg circumference during LBNP (4 +/- 0.3 for R20 and 2.8 +/- 0.4 mm for R60). These data illustrate the effectiveness of fluid ingestion on improving orthostatic responses following exercise, and suggest that dehydration is a contributing factor to orthostatic intolerance following exercise.

  17. ECO-physiological response of S. vulgaris to CR(VI): Influence of concentration and genotype.

    PubMed

    Pradas Del Real, Ana E; García-Gonzalo, Pilar; Gil-Díaz, M Mar; González-Rodríguez, Águeda; Lobo, Carmen; Pérez-Sanz, Araceli

    2016-06-01

    The objective of this work is to study the response of Silene vulgaris to a range of environmentally relevant concentrations of Cr(VI) in order to evaluate its potential use in the phytomanagement of Cr polluted sites. Cuttings of six homogenous genotypes from Madrid (Spain) have been used as plant material. The eco-physiological response of S. vulgaris to Cr(VI) changed with the genotype. The yield dose-response curve was characterized by stimulation at low doses of Cr(VI). The effects of metal concentration were quantified on root dry weight, water content and chlorophyll content, determined by SPAD index. The response was not homogeneous for all studied genotypes. At high doses of Cr(VI), plants increased micronutrient concentration in dry tissues which suggested that nutrient balance could be implicated in the alleviation of Cr toxicity. This work highlights the importance of studying the eco-physiological response of metallophytes under a range of pollutant concentrations to determine the most favorable traits to be employed in the phytomanagement process. PMID:26375321

  18. Bears Show a Physiological but Limited Behavioral Response to Unmanned Aerial Vehicles.

    PubMed

    Ditmer, Mark A; Vincent, John B; Werden, Leland K; Tanner, Jessie C; Laske, Timothy G; Iaizzo, Paul A; Garshelis, David L; Fieberg, John R

    2015-08-31

    Unmanned aerial vehicles (UAVs) have the potential to revolutionize the way research is conducted in many scientific fields. UAVs can access remote or difficult terrain, collect large amounts of data for lower cost than traditional aerial methods, and facilitate observations of species that are wary of human presence. Currently, despite large regulatory hurdles, UAVs are being deployed by researchers and conservationists to monitor threats to biodiversity, collect frequent aerial imagery, estimate population abundance, and deter poaching. Studies have examined the behavioral responses of wildlife to aircraft (including UAVs), but with the widespread increase in UAV flights, it is critical to understand whether UAVs act as stressors to wildlife and to quantify that impact. Biologger technology allows for the remote monitoring of stress responses in free-roaming individuals, and when linked to locational information, it can be used to determine events or components of an animal's environment that elicit a physiological response not apparent based on behavior alone. We assessed effects of UAV flights on movements and heart rate responses of free-roaming American black bears. We observed consistently strong physiological responses but infrequent behavioral changes. All bears, including an individual denned for hibernation, responded to UAV flights with elevated heart rates, rising as much as 123 beats per minute above the pre-flight baseline. It is important to consider the additional stress on wildlife from UAV flights when developing regulations and best scientific practices. PMID:26279232

  19. Relationship between histamine and physiological changes during the early response to nasal antigen provocation.

    PubMed

    Baroody, F M; Ford, S; Proud, D; Kagey-Sobotka, A; Lichtenstein, L; Naclerio, R M

    1999-02-01

    To investigate the temporal relationships of mediator release and physiological changes during the early response to allergen, we challenged allergic individuals intranasally with antigen and followed their responses. This was done by using small filter paper disks to challenge one nostril and collect secretions from both the challenged and the contralateral nostril, thus enabling us to evaluate the nasonasal reflex. There was a significant increase in sneezing after allergen challenge that peaked within 2 min and returned to baseline. The weights of nasal secretions as well as nasal symptoms increased immediately and remained significantly elevated for 20 min in both nostrils. Nasal airway resistance increased slowly, reaching its peak at approximately 6 min after challenge on the ipsilateral side, but it did not change on the contralateral side. Histamine levels peaked 30 s after removal of the allergen disk on the side of challenge, whereas albumin levels peaked after those of histamine. Lactoferrin paralleled the increase in secretion weights and occurred in both nostrils. Increasing doses of antigen produced dose-dependent increases in all parameters, whereas control challenges produced no response. These studies describe a human model for the evaluation of the allergic response that is capable of simultaneously measuring mediator release and the physiological response, including the nasonasal reflex. This model should prove useful in studying the mechanism of allergic rhinitis in humans. PMID:9931205

  20. Divergent mucosal and systemic responses in children in response to acute otitis media.

    PubMed

    Verhoeven, D; Pichichero, M E

    2014-10-01

    Acute otitis media (AOM), induced by respiratory bacteria, is a significant cause of children seeking medical attention worldwide. Some children are highly prone to AOMs, suffering three to four recurrent infections per year (prone). We previously determined that this population of children could have diminished anti-bacterial immune responses in peripheral blood that could fail to limit bacterial colonization in the nasopharynx (NP). Here, we examined local NP and middle ear (ME) responses and compared them to peripheral blood to examine whether the mucosa responses were similar to the peripheral blood responses. Moreover, we examined differences in effector cytokine responses between these two populations in the NP, ME and blood compartments at the onset of an AOM caused by either Streptococcus pneumoniae or non-typeable Haemophilus influenzae. We found that plasma effector cytokines patterned antigen-recall responses of CD4 T cells, with lower responses detected in prone children. ME cytokine levels did not mirror blood, but were more similar to the NP. Interferon (IFN)-γ and interleukin (IL)-17 in the NP were similar in prone and non-prone children, while IL-2 production was higher in prone children. The immune responses diverged in the mucosal and blood compartments at the onset of a bacterial ME infection, thus highlighting differences between local and systemic immune responses that could co-ordinate anti-bacterial immune responses in young children. PMID:24889648

  1. Greater Heart Rate Responses to Acute Stress Are Associated with Better Post-Error Adjustment in Special Police Cadets.

    PubMed

    Yao, Zhuxi; Yuan, Yi; Buchanan, Tony W; Zhang, Kan; Zhang, Liang; Wu, Jianhui

    2016-01-01

    High-stress jobs require both appropriate physiological regulation and behavioral adjustment to meet the demands of emergencies. Here, we investigated the relationship between the autonomic stress response and behavioral adjustment after errors in special police cadets. Sixty-eight healthy male special police cadets were randomly assigned to perform a first-time walk on an aerial rope bridge to induce stress responses or a walk on a cushion on the ground serving as a control condition. Subsequently, the participants completed a Go/No-go task to assess behavioral adjustment after false alarm responses. Heart rate measurements and subjective reports confirmed that stress responses were successfully elicited by the aerial rope bridge task in the stress group. In addition, greater heart rate increases during the rope bridge task were positively correlated with post-error slowing and had a trend of negative correlation with post-error miss rate increase in the subsequent Go/No-go task. These results suggested that stronger autonomic stress responses are related to better post-error adjustment under acute stress in this highly selected population and demonstrate that, under certain conditions, individuals with high-stress jobs might show cognitive benefits from a stronger physiological stress response. PMID:27428280

  2. Greater Heart Rate Responses to Acute Stress Are Associated with Better Post-Error Adjustment in Special Police Cadets

    PubMed Central

    Yao, Zhuxi; Yuan, Yi; Buchanan, Tony W.; Zhang, Kan; Zhang, Liang; Wu, Jianhui

    2016-01-01

    High-stress jobs require both appropriate physiological regulation and behavioral adjustment to meet the demands of emergencies. Here, we investigated the relationship between the autonomic stress response and behavioral adjustment after errors in special police cadets. Sixty-eight healthy male special police cadets were randomly assigned to perform a first-time walk on an aerial rope bridge to induce stress responses or a walk on a cushion on the ground serving as a control condition. Subsequently, the participants completed a Go/No-go task to assess behavioral adjustment after false alarm responses. Heart rate measurements and subjective reports confirmed that stress responses were successfully elicited by the aerial rope bridge task in the stress group. In addition, greater heart rate increases during the rope bridge task were positively correlated with post-error slowing and had a trend of negative correlation with post-error miss rate increase in the subsequent Go/No-go task. These results suggested that stronger autonomic stress responses are related to better post-error adjustment under acute stress in this highly selected population and demonstrate that, under certain conditions, individuals with high-stress jobs might show cognitive benefits from a stronger physiological stress response. PMID:27428280

  3. Genotypic differences in architectural and physiological responses to water restriction in rose bush

    PubMed Central

    Li-Marchetti, Camille; Le Bras, Camille; Relion, Daniel; Citerne, Sylvie; Huché-Thélier, Lydie; Sakr, Soulaiman; Morel, Philippe; Crespel, Laurent

    2015-01-01

    The shape and, therefore, the architecture of the plant are dependent on genetic and environmental factors such as water supply. The architecture determines the visual quality, a key criterion underlying the decision to purchase an ornamental potted plant. The aim of this study was to analyze genotypic responses of eight rose bush cultivars to alternation of water restriction and re-watering periods, with soil water potential of -20 and -10 kPa respectively. Responses were evaluated at the architectural level through 3D digitalization using six architectural variables and at the physiological level by measuring stomatal conductance, water content, hormones [abscisic acid (ABA), auxin, cytokinins, jasmonic acid, and salicylic acid (SA)], sugars (sucrose, fructose, and glucose), and proline. Highly significant genotype and watering effects were revealed for all the architectural variables measured, as well as genotype × watering interaction, with three distinct genotypic architectural responses to water restriction – weak, moderate and strong – represented by Hw336, ‘Baipome’ and ‘The Fairy,’ respectively. The physiological analysis explained, at least in part, the more moderate architectural response of ‘Baipome’ compared to ‘The Fairy,’ but not that of Hw336 which is an interspecific hybrid. Such physiological responses in ‘Baipome’ could be related to: (i) the maintenance of the stimulation of budbreak and photosynthetic activity during water restriction periods due to a higher concentration in conjugated cytokinins (cCK) and to a lower concentration in SA; (ii) a better resumption of budbreak during the re-watering periods due to a lower concentration in ABA during this period. When associated with the six architectural descriptors, cCK, SA and ABA, which explained the genotypic differences in this study, could be used as selection criteria for breeding programs aimed at improving plant shape and tolerance to water restriction. PMID

  4. Genotypic differences in architectural and physiological responses to water restriction in rose bush.

    PubMed

    Li-Marchetti, Camille; Le Bras, Camille; Relion, Daniel; Citerne, Sylvie; Huché-Thélier, Lydie; Sakr, Soulaiman; Morel, Philippe; Crespel, Laurent

    2015-01-01

    The shape and, therefore, the architecture of the plant are dependent on genetic and environmental factors such as water supply. The architecture determines the visual quality, a key criterion underlying the decision to purchase an ornamental potted plant. The aim of this study was to analyze genotypic responses of eight rose bush cultivars to alternation of water restriction and re-watering periods, with soil water potential of -20 and -10 kPa respectively. Responses were evaluated at the architectural level through 3D digitalization using six architectural variables and at the physiological level by measuring stomatal conductance, water content, hormones [abscisic acid (ABA), auxin, cytokinins, jasmonic acid, and salicylic acid (SA)], sugars (sucrose, fructose, and glucose), and proline. Highly significant genotype and watering effects were revealed for all the architectural variables measured, as well as genotype × watering interaction, with three distinct genotypic architectural responses to water restriction - weak, moderate and strong - represented by Hw336, 'Baipome' and 'The Fairy,' respectively. The physiological analysis explained, at least in part, the more moderate architectural response of 'Baipome' compared to 'The Fairy,' but not that of Hw336 which is an interspecific hybrid. Such physiological responses in 'Baipome' could be related to: (i) the maintenance of the stimulation of budbreak and photosynthetic activity during water restriction periods due to a higher concentration in conjugated cytokinins (cCK) and to a lower concentration in SA; (ii) a better resumption of budbreak during the re-watering periods due to a lower concentration in ABA during this period. When associated with the six architectural descriptors, cCK, SA and ABA, which explained the genotypic differences in this study, could be used as selection criteria for breeding programs aimed at improving plant shape and tolerance to water restriction. PMID:26074929

  5. Domestication effects on behavioural and hormonal responses to acute stress in chickens.

    PubMed

    Ericsson, Maria; Fallahsharoudi, Amir; Bergquist, Jonas; Kushnir, Mark M; Jensen, Per

    2014-06-22

    Comparative studies have shown that alterations in physiology, morphology and behaviour have arisen due to the domestication. A driving factor behind many of the changes could be a shift in stress responses, with modified endocrine and behavioural profiles. In the present study we compared two breeds of chicken (Gallus gallus), the domestic White Leghorn (WL) egg laying breed and its ancestor, the Red Junglefowl (RJF). Birds were exposed to an acute stress event, invoked by 3 or 10 min of physical restraint. They were then continuously monitored for the effects on a wide range of behaviours during a 60 min recovery phase. Blood samples were collected from the chicken at baseline, and after 10 and 60 min following a similar restraint stress, and the samples were analyzed for nine endogenous steroids of the HPA and HPG axes. Concentration of the steroids was determined using validated liquid chromatography tandem mass spectrometry methods. In RJF, an immediate behavioural response was observed after release from restraint in several behaviours, with a relatively fast return to baseline within 1h. In WL, some behaviours were affected for a longer period of time, and others not at all. Concentrations of corticosterone increased more in RJF, but returned faster to baseline compared to WL. A range of baseline levels for HPG-related steroids differed between the breeds, and they were generally more affected by the stress in WL than in RJF. In conclusion, RJF reacted stronger both behaviourally and physiologically to the restraint stress, but also recovered faster. This would appear to be adaptive under natural conditions, whereas the stress recovery of domesticated birds has been altered by domestication and breeding for increased reproductive output. PMID:24878317

  6. Transcriptome profiles link environmental variation and physiological response of Mytilus californianus between Pacific tides

    PubMed Central

    Place, Sean P.; Menge, Bruce A.; Hofmann, Gretchen E.

    2011-01-01

    Summary The marine intertidal zone is characterized by large variation in temperature, pH, dissolved oxygen and the supply of nutrients and food on seasonal and daily time scales. These oceanic fluctuations drive of ecological processes such as recruitment, competition and consumer-prey interactions largely via physiological mehcanisms. Thus, to understand coastal ecosystem dynamics and responses to climate change, it is crucial to understand these mechanisms. Here we utilize transcriptome analysis of the physiological response of the mussel Mytilus californianus at different spatial scales to gain insight into these mechanisms. We used mussels inhabiting different vertical locations within Strawberry Hill on Cape Perpetua, OR and Boiler Bay on Cape Foulweather, OR to study inter- and intra-site variation of gene expression. The results highlight two distinct gene expression signatures related to the cycling of metabolic activity and perturbations to cellular homeostasis. Intermediate spatial scales show a strong influence of oceanographic differences in food and stress environments between sites separated by ~65 km. Together, these new insights into environmental control of gene expression may allow understanding of important physiological drivers within and across populations. PMID:22563136

  7. Psycho-Physiological Responses by Listening to Some Sounds from Our Daily Life

    NASA Astrophysics Data System (ADS)

    Sakamoto, H.; Hayashi, F.; Tsujikawa, M.; Sugiura, S.

    1997-08-01

    This study was made to clarify the relationship between mode of identification, mode of emotion and physiological response to noise. Twenty-six subjects, young females, listened to six different daily sounds for 150 s through head phones. The level of sound was 60-61LAcq. The pulse wave and blood pressure were observed, and pulse wave interval, wave height and maximum and minimum blood pressures were measured. Measurements were taken twice once 30 s before listening and again during the final 30 s of listening. The ratio of the latter value to the former value was used as the index for the evaluation of change. Immediately after the listening session, identification of the sound source and emotional response were surveyed via a questionnaire and the sounds were judged as related to comfort or discomfort. In the case of incorrect identification, physiological functions were not seen to change significantly. However, in the case of correct identification, maximum and minimum blood pressures were significantly increased form the pre-listening values. The physiological functions of the discomfort group did not change significantly. In the comfort group, wave height was decreased and blood pressure was significantly elevated.

  8. Growth and Physiological Responses to Water Depths in Carex schmidtii Meinsh

    PubMed Central

    Yan, Hong; Liu, Ruiquan; Liu, Zinan; Wang, Xue; Luo, Wenbo; Sheng, Lianxi

    2015-01-01

    A greenhouse experiment was performed to investigate growth and physiological responses to water depth in completely submerged condition of a wetland plant Carex schmidtii Meinsh., one of the dominant species in the Longwan Crater Lake wetlands (China). Growth and physiological responses of C. schmidtii were investigated by growing under control (non-submerged) and three submerged conditions (5 cm, 15 cm and 25 cm water level). Total biomass was highest in control, intermediate in 5 cm treatment and lowest in the other two submerged treatments. Water depth prominently affected the first-order lateral root to main root mass ratio. Alcohol dehydrogenase (ADH) activity decreased but malondialdehyde (MDA) content increased as water depth increased. The starch contents showed no differences among the various treatments at the end of the experiment. However, soluble sugar contents were highest in control, intermediate in 5 cm and 15 cm treatments and lowest in 25 cm treatment. Our data suggest that submergence depth affected some aspects of growth and physiology of C. schmidtii, which can reduce anoxia damage not only through maintaining the non-elongation strategy in shoot part but also by adjusting biomass allocation to different root orders rather than adjusting root-shoot biomass allocation. PMID:26009895

  9. Meta-analysis of digital game and study characteristics eliciting physiological stress responses.

    PubMed

    van der Vijgh, Benny; Beun, Robbert-Jan; Van Rood, Maarten; Werkhoven, Peter

    2015-08-01

    Digital games have been used as stressors in a range of disciplines for decades. Nonetheless, the underlying characteristics of these stressors and the study in which the stressor was applied are generally not recognized for their moderating effect on the measured physiological stress responses. We have therefore conducted a meta-analysis that analyzes the effects of characteristics of digital game stressors and study design on heart rate, systolic and diastolic blood pressure, in studies carried out from 1976 to 2012. In order to assess the differing quality between study designs, a new scale is developed and presented, coined reliability of effect size. The results show specific and consistent moderating functions of both game and study characteristics, on average accounting for around 43%, and in certain cases up to 57% of the variance found in physiological stress responses. Possible cognitive and physiological processes underlying these moderating functions are discussed, and a new model integrating these processes with the moderating functions is presented. These findings indicate that a digital game stressor does not act as a stressor by virtue of being a game, but rather derives its stressor function from its characteristics and the methodology in which it is used. This finding, together with the size of the associated moderations, indicates the need for a standardization of digital game stressors. PMID:25950613

  10. Detecting plant metabolic responses induced by ground shock using hyperspectral remote sensing and physiological contact measurements

    SciTech Connect

    Pickles, W.L.; Cater, G.A.

    1996-12-03

    A series of field experiments were done to determine if ground shock could have induced physiological responses in plants and if the level of the response could be observed. The observation techniques were remote sensing techniques and direct contact physiological measurements developed by Carter for detecting pre-visual plant stress. The remote sensing technique was similar to that used by Pickles to detect what appeared to be ground shock induced plant stress above the 1993 Non Proliferation Experiment`s underground chemical explosion. The experiment was designed to provide direct plant physiological measurements and remote sensing ratio images and from the same plants at the same time. The simultaneous direct and remote sensing measurements were done to establish a ground truth dataset to compare to the results of the hyperspectral remote sensing measurements. In addition, the experiment was designed to include data on what was thought to be the most probable interfering effect, dehydration. The experimental design included investigating the relative magnitude of the shock induced stress effects compared to dehydration effects.

  11. Physiological response in pilot/back-seat man during aerial combat maneuvers in F-4E aircraft.

    NASA Technical Reports Server (NTRS)

    Leverett, S. D., Jr.; Davis, H. M., Jr.; Winter, W. R.

    1972-01-01

    Comparison of objective/subjective physiological data between the pilot and the back-seat man during training within the G maneuvering envelope. It appears that the psychological requirements for the pilot to be mentally alert and physiologically adapted to a continually changing environment places additional responsibility on him to the extent the physiological signs monitored are indicative of a high stress condition and are increased by a significant amount over the back-seat man who is, in most instances, riding passively.

  12. Traces of unconscious mental processes in introspective reports and physiological responses.

    PubMed

    Ivonin, Leonid; Chang, Huang-Ming; Diaz, Marta; Catala, Andreu; Chen, Wei; Rauterberg, Matthias

    2015-01-01

    Unconscious mental processes have recently started gaining attention in a number of scientific disciplines. One of the theoretical frameworks for describing unconscious processes was introduced by Jung as a part of his model of the psyche. This framework uses the concept of archetypes that represent prototypical experiences associated with objects, people, and situations. Although the validity of Jungian model remains an open question, this framework is convenient from the practical point of view. Moreover, archetypes found numerous applications in the areas of psychology and marketing. Therefore, observation of both conscious and unconscious traces related to archetypal experiences seems to be an interesting research endeavor. In a study with 36 subjects, we examined the effects of experiencing conglomerations of unconscious emotions associated with various archetypes on the participants' introspective reports and patterns of physiological activations. Our hypothesis for this experiment was that physiological data may predict archetypes more precisely than introspective reports due to the implicit nature of archetypal experiences. Introspective reports were collected using the Self-Assessment Manikin (SAM) technique. Physiological measures included cardiovascular, electrodermal, respiratory responses and skin temperature of the subjects. The subjects were stimulated to feel four archetypal experiences and four explicit emotions by means of film clips. The data related to the explicit emotions served as a reference in analysis of archetypal experiences. Our findings indicated that while prediction models trained on the collected physiological data could recognize the archetypal experiences with accuracy of 55 percent, similar models built based on the SAM data demonstrated performance of only 33 percent. Statistical tests enabled us to confirm that physiological observations are better suited for observation of implicit psychological constructs like archetypes than

  13. Traces of Unconscious Mental Processes in Introspective Reports and Physiological Responses

    PubMed Central

    Ivonin, Leonid; Chang, Huang-Ming; Diaz, Marta; Catala, Andreu; Chen, Wei; Rauterberg, Matthias

    2015-01-01

    Unconscious mental processes have recently started gaining attention in a number of scientific disciplines. One of the theoretical frameworks for describing unconscious processes was introduced by Jung as a part of his model of the psyche. This framework uses the concept of archetypes that represent prototypical experiences associated with objects, people, and situations. Although the validity of Jungian model remains an open question, this framework is convenient from the practical point of view. Moreover, archetypes found numerous applications in the areas of psychology and marketing. Therefore, observation of both conscious and unconscious traces related to archetypal experiences seems to be an interesting research endeavor. In a study with 36 subjects, we examined the effects of experiencing conglomerations of unconscious emotions associated with various archetypes on the participants’ introspective reports and patterns of physiological activations. Our hypothesis for this experiment was that physiological data may predict archetypes more precisely than introspective reports due to the implicit nature of archetypal experiences. Introspective reports were collected using the Self-Assessment Manikin (SAM) technique. Physiological measures included cardiovascular, electrodermal, respiratory responses and skin temperature of the subjects. The subjects were stimulated to feel four archetypal experiences and four explicit emotions by means of film clips. The data related to the explicit emotions served as a reference in analysis of archetypal experiences. Our findings indicated that while prediction models trained on the collected physiological data could recognize the archetypal experiences with accuracy of 55 percent, similar models built based on the SAM data demonstrated performance of only 33 percent. Statistical tests enabled us to confirm that physiological observations are better suited for observation of implicit psychological constructs like archetypes

  14. Physiological stress response to loss of social influence and threats to masculinity.

    PubMed

    Taylor, Catherine J

    2014-02-01

    Social influence is an important component of contemporary conceptualizations of masculinity in the U.S. Men who fail to achieve masculinity by maintaining social influence in the presence of other men may be at risk of stigmatization. As such, men should be especially likely to exhibit a stress response to loss of social influence in the presence of other men. This study assesses whether men who lose social influence exhibit more of a stress response than men who gain social influence, using data collected in a laboratory setting where participants were randomly assigned into four-person groups of varying sex compositions. The groups were videotaped working on two problem-solving tasks. Independent raters assessed change in social influence using a well-validated measure borrowed from experimental work in the Status Characteristics Theory tradition. Cortisol is used as a measure of stress response because it is known to increase in response to loss of social esteem. Results show that young men who lose social influence while working with other young men exhibit cortisol response. In contrast women do not exhibit cortisol response to loss of social influence, nor do men working with women. Results are consistent with the hypothesis that loss of social influence in men may be associated with a physiological stress response because maintaining social influence is very important to men while in the presence of other men. This physiological response to loss of social influence underscores the importance to men of achieving masculinity through gaining and maintaining social influence, and avoiding the stigma associated with the failure to do so. PMID:24507910

  15. Multiple biomarkers responses in juvenile rainbow trout, Oncorhynchus mykiss, after acute exposure to a fungicide propiconazole.

    PubMed

    Li, Zhi-Hua; Zlabek, Vladimir; Velisek, Josef; Grabic, Roman; Machova, Jana; Kolarova, Jitka; Li, Ping; Randak, Tomas

    2013-03-01

    In this study, the toxic effects of propiconazole (PCZ), a triazole fungicide present in aquatic environment, were studied in juvenile rainbow trout, Oncorhynchus mykiss, by acute toxicity test with the concentration of 5.04 mg/L (96 h LC50). Morphological indices, hematological parameters, liver xenobiotic-metabolizing response, and tissue antioxidant status were evaluated. Compared with the control group, fish exposed to PCZ showed significantly higher Leuko, PCV, MCHC, and hepatic EROD, and significantly lower MCV. CF and HSI were not significantly different among groups. SOD, CAT, GPx, and GR activities increased significantly in liver of experimental groups, but decreased significantly in gill. In general, antioxidant enzyme activity in intestine was less evident than in liver. Oxidative stress indices (levels of LPO and CP) were significantly higher in gill. Additionally, through chemometrics of all parameters measured in this study, two groups with 67.29% of total accumulated variance were distinguished. In short, the physiological and biochemical responses in different tissues of fish indicated that PCZ-induced the stressful environmental conditions. But according to PCZ residual status in the natural environment, more long-term experiments at lower concentrations will be necessary in the future. © 2011 Wiley Periodicals, Inc. Environ Toxicol, 2013. PMID:21384499

  16. Hormonal and electrolyte responses to acute isohemic volume expansion in unanesthetized rats

    NASA Technical Reports Server (NTRS)

    Chenault, V. M.; Morris, M.; Lynch, C. D.; Maultsby, S. J.; Hutchins, P. M.

    1993-01-01

    This study was undertaken to explore the time course of the metabolic response to isohemic blood volume expansion (30%) in normotensive, unanesthetized Sprague-Dawley rats. Whole blood, drawn from a femoral artery catheter of conscious donor rats, was infused into the jugular vein of recipient rats. Blood samples were drawn from a carotid artery of recipient rats at time points beginning immediately post-volume expansion (IPVE) up through 5 days post-volume expansion (PVE). To characterize the attendant compensatory mechanisms, the plasma concentrations of electrolytes and fluid regulatory hormones were determined. Hematocrit began to raise IPVE and was significantly elevated above control IPVE 20, 30, 40, 60, and 90 min, and 2, 4, 6, 8, 12, and 24 hr PVE. Consistent with our current understanding of the hormonal response to excess volume, atrial natriuretic factor was significantly increased above the prevolume expansion (control) values 0-30 min PVE. Surprisingly, plasma aldosterone levels were significantly increased above control at 20 and 30 min and 6 hr PVE, whereas plasma renin activity was significantly decreased 30-40 min PVE. Plasma sodium was not changed from control values except for a significant increase at 6 hr post-volume expansion. Plasma potassium, osmolality, and arginine vasopressin levels were not altered by the volume expansion. These studies delineate the physiologic time scheme operative in the regulation of fluid volume during acute ischemic volume expansion.

  17. [THE STATUS OF CERTAIN PHYSIOLOGICAL ADRENERGIC RESPONSES IN ALBINO RATS DURING DEVELOPMENT OF EXPERIMENTAL HYPERTHYROIDISM].

    PubMed

    Osman, Nizar Salim; Ismail, Mohsen

    2015-01-01

    In this paper we investigated the effects of thyroid hormones on the expression of physiological reactions during adrenergic stimulation (20 min at a dose of 2.0 mg x kg(-1) x min(-1)) during the development of experimental hyperthyroidism. Rats were divided into two groups. The animals in Group 1 were injected woth triiodothyronine. The duration of injection ranged from 1 to 12 days. Consequently, 12 subgroups were formed. The second group was the control group. It is shown that in the process of development of experimental hyperthyroidism all physiological responses vary in accordance with the law, which can be described by a parabola of general form with the value of the degree in the equation equal to three. PMID:26387161

  18. The effects of social context and defensiveness on the physiological responses of repressive copers.

    PubMed

    Barger, S D; Kircher, J C; Croyle, R T

    1997-11-01

    In previous research (T.L. Newton & R.J. Contrada, 1992), social context was found to moderate exaggerated physiological reactivity among individuals identified as using a repressive coping style. In this experiment, 119 undergraduates were classified into low-anxious, high-anxious, repressor, and defensive high-anxious coping categories. All participants completed a stressful speech task under either a public or private social context condition. The experimental social context was related to physiological reactivity and self-reported affect but did not moderate reactivity among repressive copers. Additionally, reactivity among repressive copers was not attributable to high defensiveness alone. Consistent with a theory of emotional inhibition, nonspecific skin conductance responses, but not heart rate, discriminated between repressors and nonrepressors. PMID:9417480

  19. Mitigating Physiological Responses to Layoff Threat: An Experimental Test of the Efficacy of Two Coping Interventions

    PubMed Central

    Probst, Tahira M.; Jiang, Lixin

    2016-01-01

    The purpose of the current study was to assess real-time physiological reactions to the threat of layoffs and to determine whether the use of an emotion-focused vs. problem-focused coping intervention would be more efficacious in attenuating these physiological reactions. A 2 (coping intervention) × 4 (within-subjects time points) mixed experimental design was used to test the hypotheses. Eighty-four undergraduates participated in this laboratory experiment during which their galvanic skin response (GSR) and heart rate (HR) were continuously monitored. Analyses indicate that individuals instructed to utilize an emotion-focused coping strategy experienced a significantly greater decline in their GSR compared to those utilizing the problem-focused coping method. Results suggest organizations conducting layoffs might focus first on dealing with the emotional aftermath of downsizing before focusing on problem-solving tasks, such as resume writing and other traditional outplacement activities. PMID:26999186

  20. Mitigating Physiological Responses to Layoff Threat: An Experimental Test of the Efficacy of Two Coping Interventions.

    PubMed

    Probst, Tahira M; Jiang, Lixin

    2016-03-01

    The purpose of the current study was to assess real-time physiological reactions to the threat of layoffs and to determine whether the use of an emotion-focused vs. problem-focused coping intervention would be more efficacious in attenuating these physiological reactions. A 2 (coping intervention) × 4 (within-subjects time points) mixed experimental design was used to test the hypotheses. Eighty-four undergraduates participated in this laboratory experiment during which their galvanic skin response (GSR) and heart rate (HR) were continuously monitored. Analyses indicate that individuals instructed to utilize an emotion-focused coping strategy experienced a significantly greater decline in their GSR compared to those utilizing the problem-focused coping method. Results suggest organizations conducting layoffs might focus first on dealing with the emotional aftermath of downsizing before focusing on problem-solving tasks, such as resume writing and other traditional outplacement activities. PMID:26999186

  1. Early morphofunctional plasticity of microglia in response to acute lipopolysaccharide.

    PubMed

    Madore, C; Joffre, C; Delpech, J C; De Smedt-Peyrusse, V; Aubert, A; Coste, L; Layé, S; Nadjar, A

    2013-11-01

    Within the central nervous system (CNS) the traditional role of microglia has been in brain infection and disease, phagocytosing debris and secreting factors to modify disease progression. This led to the concept of "resting" versus "activated" microglia. However, this is misleading because multiple phenotypic and morphological stages of microglia can influence neuronal structure and function in any condition and recent evidence extends their role to healthy brain homeostasis. The present work was thus aimed at reappraising the concept of morphofunctional activity of microglia in a context of peripheral acute immune challenge, where microglial activity is known to be modified, using the new state-of-the-art techniques available. To do so, mice were injected peripherally with lipopolysaccharide, a potent inducer of cerebral inflammation, and we assessed early cytokines production, phenotype, motility and morphology of microglial cells. Our results showed that LPS induced a widespread inflammatory response both peripherally and centrally, as revealed by the quantification of cytokines levels. We also found an alteration of microglial motility that was confirmed by in vivo studies showing an overall reduction of microglial processes length in the hippocampus of LPS-treated animals. Finally, analysis of various surface receptors expression revealed that LPS did not significantly impact microglial phenotype 2h after the injection but rather induced an increase of CD11b(+)/CD45(high) cells. These latter may be at the vasculature, at the CNS vicinity, or may have invaded the CNS. PMID:23994463

  2. BCL6 modulation of acute lymphoblastic leukemia response to chemotherapy.

    PubMed

    Slone, William L; Moses, Blake S; Hare, Ian; Evans, Rebecca; Piktel, Debbie; Gibson, Laura F

    2016-04-26

    The bone marrow niche has a significant impact on acute lymphoblastic leukemia (ALL) cell phenotype. Of clinical relevance is the frequency with which quiescent leukemic cells, in this niche, survive treatment and contribute to relapse. This study suggests that marrow microenvironment regulation of BCL6 in ALL is one factor that may be involved in the transition between proliferative and quiescent states of ALL cells. Utilizing ALL cell lines, and primary patient tumor cells we observed that tumor cell BCL6 protein abundance is decreased in the presence of primary human bone marrow stromal cells (BMSC) and osteoblasts (HOB). Chemical inhibition, or shRNA knockdown, of BCL6 in ALL cells resulted in diminished ALL proliferation. As many chemotherapy regimens require tumor cell proliferation for optimal efficacy, we investigated the consequences of constitutive BCL6 expression in leukemic cells during co-culture with BMSC or HOB. Forced chronic expression of BCL6 during co-culture with BMSC or HOB sensitized the tumor to chemotherapy induced cell death. Combination treatment of caffeine, which increases BCL6 expression in ALL cells, with chemotherapy extended the event free survival of mice. These data suggest that BCL6 is one factor, modulated by microenvironment derived cues that may contribute to regulation of ALL therapeutic response. PMID:27015556

  3. Size-dependent physiological responses of shore crabs to single and repeated playback of ship noise

    PubMed Central

    Wale, Matthew A.; Simpson, Stephen D.; Radford, Andrew N.

    2013-01-01

    Anthropogenic noise has fundamentally changed the acoustics of terrestrial and aquatic environments, and there is growing empirical evidence that even a single noise exposure can affect behaviour in a variety of vertebrate organisms. Here, we use controlled experiments to investigate how the physiology of a marine invertebrate, the shore crab (Carcinus maenas), is affected by both single and repeated exposure to ship-noise playback. Crabs experiencing ship-noise playback consumed more oxygen, indicating a higher metabolic rate and potentially greater stress, than those exposed to ambient-noise playback. The response to single ship-noise playback was size-dependent, with heavier crabs showing a stronger response than lighter individuals. Repeated exposure to ambient-noise playback led to increased oxygen consumption (probably due to handling stress), whereas repeated exposure to ship-noise playback produced no change in physiological response; explanations include the possibility that crabs exhibited a maximal response on first exposure to ship-noise playback, or that they habituated or become tolerant to it. These results highlight that invertebrates, like vertebrates, may also be susceptible to the detrimental impacts of anthropogenic noise and demonstrate the tractability for more detailed investigations into the effects of this pervasive global pollutant. PMID:23445945

  4. Does physiologic response to loud tones change following cognitive-behavioral treatment for posttraumatic stress disorder?

    PubMed

    Griffin, Michael G; Resick, Patricia A; Galovski, Tara E

    2012-02-01

    This study examined responses to loud tones before and after cognitive-behavioral treatment for posttraumatic stress disorder (PTSD). Seventy-four women in a PTSD treatment outcome study for rape-related (n = 54) or physical assault-related PTSD (n = 20) were assessed in an auditory loud tone paradigm. Assessments were conducted before and after a 6-week period of cognitive-behavioral therapy. Physiologic responses to loud tones included heart rate (HR), skin conductance (SC), and eye-blink electromyogram (EMG). Groups were formed based upon treatment outcome and included a treatment responder group (no PTSD at posttreatment) and a nonresponder group (PTSD-positive at posttreatment). Treatment was successful for 53 of 74 women (72%) and unsuccessful for 21 women (28%). Responders and nonresponders were not significantly different from each other at pretreatment on the main outcome variables. Treatment responders showed a significant reduction in loud tone-related EMG, HR, and SC responses from pre- to posttreatment (partial η(2) = .24, .31, and .36, respectively; all p < .001) and the EMG and HR responses were significantly smaller than nonresponders at posttreatment (partial η(2) = .11, p = .004 and .19, p < .001, respectively). Successful cognitive-behavioral treatment of PTSD is associated with a quantifiable reduction in physiological responding to loud tones. PMID:22354505

  5. Size-dependent physiological responses of shore crabs to single and repeated playback of ship noise.

    PubMed

    Wale, Matthew A; Simpson, Stephen D; Radford, Andrew N

    2013-04-23

    Anthropogenic noise has fundamentally changed the acoustics of terrestrial and aquatic environments, and there is growing empirical evidence that even a single noise exposure can affect behaviour in a variety of vertebrate organisms. Here, we use controlled experiments to investigate how the physiology of a marine invertebrate, the shore crab (Carcinus maenas), is affected by both single and repeated exposure to ship-noise playback. Crabs experiencing ship-noise playback consumed more oxygen, indicating a higher metabolic rate and potentially greater stress, than those exposed to ambient-noise playback. The response to single ship-noise playback was size-dependent, with heavier crabs showing a stronger response than lighter individuals. Repeated exposure to ambient-noise playback led to increased oxygen consumption (probably due to handling stress), whereas repeated exposure to ship-noise playback produced no change in physiological response; explanations include the possibility that crabs exhibited a maximal response on first exposure to ship-noise playback, or that they habituated or become tolerant to it. These results highlight that invertebrates, like vertebrates, may also be susceptible to the detrimental impacts of anthropogenic noise and demonstrate the tractability for more detailed investigations into the effects of this pervasive global pollutant. PMID:23445945

  6. Does Physiologic Response to Loud Tones Change Following Cognitive–Behavioral Treatment for Posttraumatic Stress Disorder?

    PubMed Central

    Griffin, Michael G.; Resick, Patricia A.; Galovski, Tara E.

    2012-01-01

    This study examined responses to loud tones before and after cognitive–behavioral treatment for posttraumatic stress disorder (PTSD). Seventy-four women in a PTSD treatment outcome study for rape-related (n = 54) or physical assault-related PTSD (n = 20) were assessed in an auditory loud tone paradigm. Assessments were conducted before and after a 6-week period of cognitive–behavioral therapy. Physiologic responses to loud tones included heart rate (HR), skin conductance (SC), and eye-blink electromyogram (EMG). Groups were formed based upon treatment outcome and included a treatment responder group (no PTSD at posttreatment) and a nonresponder group (PTSD-positive at posttreatment). Treatment was successful for 53 of 74 women (72%) and unsuccessful for 21 women (28%). Responders and nonresponders were not significantly different from each other at pretreatment on the main outcome variables. Treatment responders showed a significant reduction in loud tone-related EMG, HR, and SC responses from pre- to posttreatment (partial η2 = .243, .308, and .365, respectively; all p < .001) and the EMG and HR responses were significantly smaller than nonresponders at posttreatment (partial η22 = .107, p = .004 and .193, p < .001, respectively). Successful cognitive–behavioral treatment of PTSD is associated with a quantifiable reduction in physiological responding to loud tones. PMID:22354505

  7. Subjective, Physiological, and Cognitive Responses to Intravenous Nicotine: Effects of Sex and Menstrual Cycle Phase

    PubMed Central

    DeVito, Elise E; Herman, Aryeh I; Waters, Andrew J; Valentine, Gerald W; Sofuoglu, Mehmet

    2014-01-01

    Nicotine dependence is a serious public health concern. Optimal treatment of nicotine dependence will require greater understanding of the mechanisms that contribute to the maintenance of smoking behaviors. A growing literature indicates sex and menstrual phase differences in responses to nicotine. The aim of this study was to assess sex and menstrual phase influences on a broad range of measures of nicotine response including subjective drug effects, cognition, physiological responses, and symptoms of withdrawal, craving, and affect. Using a well-established intravenous nicotine paradigm and biochemical confirmation of overnight abstinence and menstrual cycle phase, analyses were performed to compare sex (age 18–50 years; 115 male and 45 female) and menstrual cycle phase (29 follicular and 16 luteal) effects. Females had diminished subjective drug effects of, but greater physiological responses to, nicotine administration. Luteal-phase females showed diminished subjective drug effects and better cognition relative to follicular-phase women. These findings offer candidate mechanisms through which the luteal phase, wherein progesterone is dominant relative to estradiol, may be protective against vulnerability to smoking. PMID:24345818

  8. Swimming performance and physiological responses to exhaustive exercise in radio-tagged and untagged Pacific lampreys

    USGS Publications Warehouse

    Mesa, M.G.; Bayer, J.M.; Seelye, J.G.

    2003-01-01

    Populations of Pacific lamprey Lampetra tridentata have declined in the Columbia River basin. One factor that may have contributed to this reduction in population size is an excessive use of energy by adult lampreys as they negotiate fishways at dams during spawning migrations. To gain an understanding of the performance capacity of Pacific lampreys, we estimated the critical swimming speed (Ucrit) and documented physiological responses of radio-tagged and untagged adult lampreys exercised to exhaustion. The mean (??SD) Ucrit of untagged lampreys was 86.2 ?? 7.5 cm/s at 15??C, whereas the Ucrit for radio-tagged lampreys was 81.5 ?? 7.0 cm/s, a speed that was significantly lower than that of untagged fish. The physiological responses of tagged and untagged lampreys subjected to exhaustive exercise included decreases in blood pH of 0.3-0.5 units, a 40% decrease in muscle glycogen levels, a 22% increase in hematocrit for untagged fish only, and a 4- to 5-fold increase in muscle and a 40- to 100-fold increase in plasma lactate concentrations. These physiological changes were significant compared with resting control fish and usually returned to resting levels by 1-4 h after fatigue. Our estimates of Ucrit for Pacific lampreys are the first quantitative measures of their swimming performance and suggest that these fish may have difficulty negotiating fishways at dams on the Columbia River, which can have water velocities approaching 2 m/s. Our physiological results indicate that tagged and untagged Pacific lampreys show similar metabolic dysfunction after exhaustive exercise but recover quickly from a single exposure to such a stressor.

  9. Contrasting physiological plasticity in response to environmental stress within different cnidarians and their respective symbionts

    NASA Astrophysics Data System (ADS)

    Hoadley, Kenneth D.; Pettay, Daniel. T.; Dodge, Danielle; Warner, Mark E.

    2016-06-01

    Given concerns surrounding coral bleaching and ocean acidification, there is renewed interest in characterizing the physiological differences across the multiple host-algal symbiont combinations commonly found on coral reefs. Elevated temperature and CO2 were used to compare physiological responses within the scleractinian corals Montipora hirsuta ( Symbiodinium C15) and Pocillopora damicornis ( Symbiodinium D1), as well as the corallimorph (a non-calcifying anthozoan closely related to scleractinians) Discosoma nummiforme ( Symbiodinium C3). Several physiological proxies were affected more by temperature than CO2, including photochemistry, algal number and cellular chlorophyll a. Marked differences in symbiont number, chlorophyll and volume contributed to distinctive patterns of chlorophyll absorption among these animals. In contrast, carbon fixation either did not change or increased under elevated temperature. Also, the rate of photosynthetically fixed carbon translocated to each host did not change, and the percent of carbon translocated to the host increased in the corallimorph. Comparing all data revealed a significant negative correlation between photosynthetic rate and symbiont density that corroborates previous hypotheses about carbon limitation in these symbioses. The ratio of symbiont-normalized photosynthetic rate relative to the rate of symbiont-normalized carbon translocation (P:T) was compared in these organisms as well as the anemone, Exaiptasia pallida hosting Symbiodinium minutum, and revealed a P:T close to unity ( D. nummiforme) to a range of 2.0-4.5, with the lowest carbon translocation in the sea anemone. Major differences in the thermal responses across these organisms provide further evidence of a range of acclimation potential and physiological plasticity that highlights the need for continued study of these symbioses across a larger group of host taxa.

  10. Sex Differences in Human Fatigability: Mechanisms and Insight to Physiological Responses

    PubMed Central

    Hunter, Sandra K.

    2014-01-01

    Sex-related differences in physiology and anatomy are responsible for profound differences in neuromuscular performance and fatigability between men and women. Women are usually less fatigable than men for similar intensity isometric fatiguing contractions. This sex difference in fatigability, however, is task specific because different neuromuscular sites will be stressed when the requirements of the task are altered, and the stress on these sites can differ for men and women. Task variables that can alter the sex difference in fatigue include the type, intensity and speed of contraction, the muscle group assessed, and the environmental conditions. Physiological mechanisms that are responsible for sex-based differences in fatigability may include activation of the motor neuron pool from cortical and subcortical regions, synaptic inputs to the motor neuron pool via activation of metabolically-sensitive small afferent fibres in the muscle, muscle perfusion, and skeletal muscle metabolism and fibre type properties. Non-physiological factors such as the sex bias of studying more males than females in human and animal experiments can also mask a true understanding of the magnitude and mechanisms of sex-based differences in physiology and fatigability. Despite recent developments, there is a tremendous lack of understanding of sex differences in neuromuscular function and fatigability, the prevailing mechanisms and the functional consequences. This review emphasises the need to understand sex-based differences in fatigability in order to shed light on the benefits and limitations that fatigability can exert for men and women during daily tasks, exercise performance, training and rehabilitation in both health and disease. PMID:24433272

  11. Physiological and psychological responses of young males during spring-time walks in urban parks

    PubMed Central

    2014-01-01

    Background It is widely believed that contact with the natural environment can improve physical and mental health. Urban green spaces may provide city residents with these benefits; however, there is a lack of empirical field research on the health benefits of urban parks. Methods This field experiment was performed in May. Seventeen males aged 21.2 ± 1.7 years (mean ± standard deviation) were instructed to walk predetermined 15-minute courses in an urban park and a nearby city area (control). Heart rate and heart rate variability (HRV) were measured to assess physiological responses. The semantic differential (SD) method, Profile of Mood States (POMS), and State-Trait Anxiety Inventory (STAI) were used to measure psychological responses. Results Heart rate was significantly lower while walking in the urban park than while walking in the city street. Furthermore, the urban park walk led to higher parasympathetic nervous activity and lower sympathetic nervous activity compared with the walk through the city street. Subjective evaluations were generally in accordance with physiological reactions, and significantly higher scores were observed for the ‘comfortable’, ‘natural’, and ‘relaxed’ parameters following the urban park walk. After the urban park walk, the score for the ‘vigor’ subscale of the POMS was significantly higher, whereas that for negative feelings such as ‘tension-anxiety’ and ‘fatigue’ was significantly lower. The score for the anxiety dimension of the STAI was also significantly lower after the urban park walk. Conclusions Physiological and psychological results from this field experiment provide evidence for the physiological and psychological benefits of urban green spaces. A brief spring-time walk in an urban park shifted sympathetic/parasympathetic balance and improved mood state. PMID:24887352

  12. Glutathione is involved in physiological response of Candida utilis to acid stress.

    PubMed

    Wang, Da-Hui; Zhang, Jun-Li; Dong, Ying-Ying; Wei, Gong-Yuan; Qi, Bin

    2015-12-01

    Candida utilis often encounters an acid stress environment when hexose and pentose are metabolized to produce acidic bio-based materials. In order to reveal the physiological role of glutathione (GSH) in the response of cells of this industrial yeast to acid stress, an efficient GSH-producing strain of C. utilis CCTCC M 209298 and its mutants deficient in GSH biosynthesis, C. utilis Δgsh1 and Δgsh2, were used in this study. A long-term mild acid challenge (pH 3.5 for 6 h) and a short-term severe acid challenge (pH 1.5 for 2 h) were conducted at 18 h during batch culture of the yeast to generate acid stress conditions. Differences in the physiological performances among the three strains under acid stress were analyzed in terms of GSH biosynthesis and distribution; intracellular pH; activities of γ-glutamylcysteine synthetase, catalase, and superoxide dismutase; intracellular ATP level; and ATP/ADP ratio. The intracellular GSH content of the yeast was found to be correlated with changes in physiological data, and a higher intracellular GSH content led to greater relief of cells to the acid stress, suggesting that GSH may be involved in protecting C. utilis against acid stress. Results presented in this manuscript not only increase our understanding of the impact of GSH on the physiology of C. utilis but also help us to comprehend the mechanism underlying the response to acid stress of eukaryotic microorganisms. PMID:26346268

  13. Stress and adaptation responses to repeated acute acceleration.

    NASA Technical Reports Server (NTRS)

    Burton, R. R.; Smith, A. H.

    1972-01-01

    Study in which groups of adult male chickens (single-comb white leghorn) were exposed daily to acceleration (centrifugation) of 2 or 3 G for 10 min, 1, 4, 8, 12, 16, and 24 hr (continuously), or 0 time (controls). After approximately five months of this intermittent treatment (training), the birds were exposed to continuous accelerations of the same G force (intensity). The degree of stress and adaptation of each bird was determined by survival and relative lymphocyte count criteria. Intermittent training exposures of 2 G developed levels of adaptation in birds directly proportional to the duration of their daily exposure. Intermittent training periods at 3 G, however, produced a physiological deterioration in birds receiving daily exposures of 8 hr or more. Adaptive benefits were found only in the 1- and 4-hr-daily intermittent 3-G exposure groups. Exposure to 3 G produced an immediate stress response as indicated by a low relative lymphocyte count which returned to control (preexposed) values prior to the next daily acceleration period in the 10-min, 1-hr, and 4-hr groups. This daily recovery period from stress appeared to be necessary for adaptation as opposed to deterioration for the more severe environmental (3 G) alteration.

  14. Acute responses of American kestrels to methyl parathion and fenvalerate

    USGS Publications Warehouse

    Rattner, B.A.; Franson, J.C.

    1984-01-01

    Physiological and toxicological effects of p.o, methyl parathion (0.375-3.0 mg/kg) or fenvalerate (1000-4000 mg/kg) were examined over a 10 h period in American kestrels (Falco sparverius) maintained in thermoneutral (22?.C) and cold (-5?.C) environments. Methyl parathion was highly toxic (LD50=3.08 mg/kg, 95% confidence limits=2.29-4.l4 mg/kg, producing overt intoxication (abnormal posture, ataxia, paresis), dose-dependent inhibition (26-67%) of brain acetylcholinesterase activity, hyperglycemia, and elevated plasma corticosterone concentration. Transient but pronounced hypothermia was associated with plasma cholinesterase inhibition in excess of 50% (2 h after intubation), although this response was highly variable (plasma ChE inhibition vs. A cloacal temperature, r=-0.60). Fenvalerate, at doses far exceeding those encountered in the environment, caused mild intoxication (irregular head movement) and elevated plasma alanine aminotransferase activity, but did not alter cloacal temperature, plasma activities of CK, U-HBDH, and LDK, or concentrations of corticosterone, glucose, triiodothyronine, and uric acid. Cold exposure intensified methyl parathion toxicity, but did not affect that of fenvalerate. It would thus appear that the organophosphorus insecticide methyl parathion poses far greater hazard than the pyrethroid fenvalerate to raptorial birds.

  15. Acute electrophysiological responses of bradykinin-stimulated human fibroblasts.

    PubMed

    Estacion, M

    1991-05-01

    1. Acute responses to bradykinin in human dermal fibroblasts were studied at 20-24 degrees C using both the patch-clamp technique to monitor ion currents and Fura-2 fluorescence to monitor [Ca2+]i. 2. During subconfluent culture, human dermal fibroblasts can express a diversity of ion channels as described in the preceding paper. 3. When GTP (1 mM) was included in the pipette solution, two additional ion channel populations were transiently augmented in response to bradykinin stimulation. 4. The first is a component of outwardly rectifying current which reached maximal induction within 10-15 s after bradykinin addition (1 microM) and then decayed back to near baseline over 60 s. 5. Ion substitution experiments combined with tail current analysis indicate that the outward current is carried predominantly by K+. 6. Video imaging of single-cell Fura-2 fluorescence from both intact cells and patch-clamped cells showed temporal correlation of the K+ current modulation and the Ca2+ transients in response to bradykinin stimulation. 7. The calcium ionophore, ionomycin, caused both an increase in intracellular calcium and the augmentation of the outward K+ current. The amount of additional K+ current was correlated with [Ca2+]i levels and could be elicited even without the presence of GTP in the pipette. 8. Apamin, a blocker of Ca(2+)-activated K+ channels, inhibited (at 1 microM) the ionomycin-induced modulation of K+ current. 9. In addition, an inward current was transiently induced in response to bradykinin. This current was strictly dependent on the presence of GTP in the pipette solution. This current showed little voltage dependence, as evidenced by a linear current vs. voltage relation, and a reversal potential near but measurably more positive than 0 mV. 10. This current could be decoupled from the Ca2+ transient and be irreversibly induced by including GTP gamma S (100 microM) in the pipette solution. 11. Ion substitution experiments show that this is a non

  16. Effects of Posture and Stimulus Spectral Composition on Peripheral Physiological Responses to Loud Sounds.

    PubMed

    Koch, Jennifer; Flemming, Jan; Zeffiro, Thomas; Rufer, Michael; Orr, Scott P; Mueller-Pfeiffer, Christoph

    2016-01-01

    In the "loud-tone" procedure, a series of brief, loud, pure-tone stimuli are presented in a task-free situation. It is an established paradigm for measuring autonomic sensitization in posttraumatic stress disorder (PTSD). Successful use of this procedure during fMRI requires elicitation of brain responses that have sufficient signal-noise ratios when recorded in a supine, rather than sitting, position. We investigated the modulating effects of posture and stimulus spectral composition on peripheral psychophysiological responses to loud sounds. Healthy subjects (N = 24) weekly engaged in a loud-tone-like procedure that presented 500 msec, 95 dB sound pressure level, pure-tone or white-noise stimuli, either while sitting or supine and while peripheral physiological responses were recorded. Heart rate, skin conductance, and eye blink electromyographic responses were larger to white-noise than pure-tone stimuli (p's < 0.001, generalized eta squared 0.073-0.076). Psychophysiological responses to the stimuli were similar in the sitting and supine position (p's ≥ 0.082). Presenting white noise, rather than pure-tone, stimuli may improve the detection sensitivity of the neural concomitants of heightened autonomic responses by generating larger responses. Recording in the supine position appears to have little or no impact on psychophysiological response magnitudes to the auditory stimuli. PMID:27583659

  17. Effect of six days of staging on physiologic adjustments and acute mountain sickness during ascent to 4300 meters.

    PubMed

    Beidleman, Beth A; Fulco, Charles S; Muza, Stephen R; Rock, Paul B; Staab, Janet E; Forte, Vincent A; Brothers, Michael D; Cymerman, Allen

    2009-01-01

    This study determined the effectiveness of 6 days (d) of staging at 2200 m on physiologic adjustments and acute mountain sickness (AMS) during rapid, high-risk ascent to 4300 m. Eleven sea-level (SL) resident men (means +/- SD; 21 +/- 3 yr; 78 +/- 13 kg) completed resting measures of end-tidal CO(2) (Petco(2)), arterial oxygen saturation (Sao(2)), heart rate (HR), and mean arterial pressure (MAP) at SL and within 1 h of exposure to 4300 m in a hypobaric chamber prior to 6 d of staging at 2200 m (preSTG) and on the summit of Pikes Peak following 6 d of staging at 2200 m (postSTG). Immediately following resting ventilation measures, all performed submaximal exercise ( approximately 55% of altitude-specific maximal oxygen uptake) for approximately 2 h on a bicycle ergometer to induce higher levels of AMS. AMS-C, calculated from the Environmental Symptoms Questionnaire, was measured following 4 h and 8 h of exposure at preSTG and postSTG, and the mean was calculated. Resting Petco(2) (mmHg) was unchanged from SL (39.8 +/- 2.6) to preSTG (39.3 +/- 3.0), but decreased (p < 0.05) from preSTG to postSTG (32.8 +/- 2.6). Resting Sao(2) (%) decreased (p < 0.05) from SL (97 +/- 2) to preSTG (80 +/- 4) and increased (p < 0.05) from preSTG to postSTG (83 +/- 3). Resting HR (bpm) and MAP (mmHg) did not change in any of the test conditions. The incidence and severity of AMS-C decreased (p < 0.05) from preSTG (91 +/- 30%; 1.05 +/- 0.56) to postSTG (45 +/- 53%; 0.59 +/- 0.43), respectively. These results suggest that modest physiologic adjustments induced by staging for 6 d at 2200 m reduced the incidence and severity of AMS during rapid, high-risk ascent to 4300 m. PMID:19775215

  18. Physiological reactivity to responsive and unresponsive children as moderated by perceived control.

    PubMed

    Bugental, D B; Cortez, V L

    1988-06-01

    80 undergraduate women, pretested on the Parent Attribution Test (PAT), watched videotapes of responsive and unresponsive children in anticipation of subsequent interaction with them. Physiological measures (heart rate, skin temperature, and skin conductance) were monitored as subjects viewed videotapes and during a postinterview. Subjects who perceived caregiving failure as uncontrollable (on the PAT) were significantly more reactive to variations in child responsiveness than were those who perceived failure as controllable. The highest level of arousal (elevated heart rate and skin conductance) was manifested by "low-control" women anticipating interaction with unresponsive children. The increased arousal level shown in reaction to unresponsive children was accompanied by decreased skin temperature--suggesting the presence of fear or anxiety. Results were interpreted as indicating the importance of social cognitions as moderators of caregiver response to child behavior. PMID:3383677

  19. Young Children’s Affective Responses to Another’s Distress: Dynamic and Physiological Features

    PubMed Central

    Fink, Elian; Heathers, James A. J.; de Rosnay, Marc

    2015-01-01

    Two descriptive studies set out a new approach for exploring the dynamic features of children’s affective responses (sadness and interest-worry) to another’s distress. In two samples (Nstudy1 = 75; Nstudy2 = 114), Kindergarten children were shown a video-vignette depicting another child in distress and the temporal pattern of spontaneous expressions were examined across the unfolding vignette. Results showed, in both study 1 and 2, that sadness and interest-worry had distinct patterns of elicitation across the events of the vignette narrative and there was little co-occurrence of these affects within a given child. Temporal heart rate changes (study 2) were closely aligned to the events of the vignette and, furthermore, affective responses corresponded to distinctive physiological response profiles. The implications of distinct temporal patterns of elicitation for the meaning of sadness and interest-worry are discussed within the framework of emotion regulation and empathy. PMID:25874952

  20. Young children's affective responses to another's distress: dynamic and physiological features.

    PubMed

    Fink, Elian; Heathers, James A J; de Rosnay, Marc

    2015-01-01

    Two descriptive studies set out a new approach for exploring the dynamic features of children's affective responses (sadness and interest-worry) to another's distress. In two samples (N(study1) = 75; N(study2) = 114), Kindergarten children were shown a video-vignette depicting another child in distress and the temporal pattern of spontaneous expressions were examined across the unfolding vignette. Results showed, in both study 1 and 2, that sadness and interest-worry had distinct patterns of elicitation across the events of the vignette narrative and there was little co-occurrence of these affects within a given child. Temporal heart rate changes (study 2) were closely aligned to the events of the vignette and, furthermore, affective responses corresponded to distinctive physiological response profiles. The implications of distinct temporal patterns of elicitation for the meaning of sadness and interest-worry are discussed within the framework of emotion regulation and empathy. PMID:25874952

  1. Influence of Vitamin C Supplementation on Oxidative Stress and Neutrophil Inflammatory Response in Acute and Regular Exercise

    PubMed Central

    Popovic, Ljiljana M.; Mitic, Nebojsa R.; Bisevac, Boban; Miric, Mirjana; Popovic, Brankica

    2015-01-01

    Exercise induces a multitude of physiological and biochemical changes in blood affecting its redox status. Tissue damage resulting from exercise induces activation of inflammatory cells followed by the increased activity of myeloperoxidase (MPO) in circulation. Vitamin C readily scavenges free radicals and may thereby prevent oxidative damage of important biological macromolecules. The aim of this study was to examine the effect of vitamin C supplementation on oxidative stress and neutrophil inflammatory response induced by acute and regular exercise. Experiment was conducted on acute exercise group (performing Bruce Treadmill Protocol (BTP)) and regular training group. Markers of lipid peroxidation, malondialdehyde (MDA), MPO activity, and vitamin C status were estimated at rest and after BTP (acute exercise group) and before and after vitamin C supplementation in both groups. Our results showed increased postexercise Asc in serum independently of vitamin supplementation. They also showed that vitamin C can significantly decrease postexercise MDA level in both experimental groups. Increased postexercise MPO activity has been found in both groups and was not affected by vitamin C supplementation. We concluded that vitamin C supplementation can suppress lipid peroxidation process during exercise but cannot affect neutrophil inflammatory response in either exercise group. PMID:25802681

  2. Influence of vitamin C supplementation on oxidative stress and neutrophil inflammatory response in acute and regular exercise.

    PubMed

    Popovic, Ljiljana M; Mitic, Nebojsa R; Miric, Dijana; Bisevac, Boban; Miric, Mirjana; Popovic, Brankica

    2015-01-01

    Exercise induces a multitude of physiological and biochemical changes in blood affecting its redox status. Tissue damage resulting from exercise induces activation of inflammatory cells followed by the increased activity of myeloperoxidase (MPO) in circulation. Vitamin C readily scavenges free radicals and may thereby prevent oxidative damage of important biological macromolecules. The aim of this study was to examine the effect of vitamin C supplementation on oxidative stress and neutrophil inflammatory response induced by acute and regular exercise. Experiment was conducted on acute exercise group (performing Bruce Treadmill Protocol (BTP)) and regular training group. Markers of lipid peroxidation, malondialdehyde (MDA), MPO activity, and vitamin C status were estimated at rest and after BTP (acute exercise group) and before and after vitamin C supplementation in both groups. Our results showed increased postexercise Asc in serum independently of vitamin supplementation. They also showed that vitamin C can significantly decrease postexercise MDA level in both experimental groups. Increased postexercise MPO activity has been found in both groups and was not affected by vitamin C supplementation. We concluded that vitamin C supplementation can suppress lipid peroxidation process during exercise but cannot affect neutrophil inflammatory response in either exercise group. PMID:25802681

  3. Physiological and Proteomic Investigations to Study the Response of Tomato Graft Unions under Temperature Stress

    PubMed Central

    Muneer, Sowbiya; Ko, Chung Ho; Wei, Hao; Chen, Yuze; Jeong, Byoung Ryong

    2016-01-01

    Background Grafting is an established practice for asexual propagation in horticultural and agricultural crops. The study on graft unions has become of interest for horticulturists using proteomic and genomic techniques to observe transfer of genetic material and signal transduction pathways from root to shoot and shoot to root. Another reason to study the graft unions was potentially to observe resistance against abiotic stresses. Using physiological and proteomic analyses, we investigated graft unions (rootstock and scions) of tomato genotypes exposed to standard-normal (23/23 and 25/18°C day/night) and high-low temperatures (30/15°C day/night). Results Graft unions had varied responses to the diverse temperatures. High-low temperature, but not standard-normal temperature, induced the production of reactive oxygen species (ROS) in the form of H2O2 and O2-1 in rootstock and scions. However, the expression of many cell protection molecules was also induced, including antioxidant enzymes and their immunoblots, which also show an increase in their activities such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The graft interfaces thus actively defend against stress by modifying their physiological and proteomic responses to establish a new cellular homeostasis. As a result, many proteins for cellular defense were regulated in graft unions under diverse temperature, in addition to the regulation of photosynthetic proteins, ion binding/transport proteins, and protein synthesis. Moreover, biomass, hardness, and vascular transport activity were evaluated to investigate the basic connectivity between rootstock and scions. Conclusions Our study provides physiological evidence of the grafted plants’ response to diverse temperature. Most notably, our study provides novel insight into the mechanisms used to adapt the diverse temperature in graft unions (rootstock/scion). PMID:27310261

  4. Premature infant responses to noise reduction by earmuffs: effects on behavioral and physiologic measures.

    PubMed

    Zahr, L K; de Traversay, J

    1995-01-01

    The continuous high-intensity noise in the neonatal intensive care unit (NICU) is both stressful and harmful for the premature infant. Although some researchers have found evidence that loud noise can cause hearing loss and alter physiologic and behavioral responses, no study to date has investigated the benefits of noise reduction by the use of earmuffs. In this study earmuffs were placed over the premature infants' ears to reduce noise intensity in the NICU while physiologic and behavioral responses were measured. Two sites were used to collect data: in the first setting, 17 low birth weight infants were randomly assigned to an experimental and a control group, whereas 13 infants from a second hospital acted as their own controls and were tested with and without earmuffs. Earmuffs that reduced the intensity of noise by 7 to 12 dB were worn by infants in the experimental group only during the observation periods. Infants in the control group were exposed to the usual noise in the NICU. The infant's physiologic and behavioral responses were observed for four 2-hour intervals, morning and evening, on two consecutive days. Most of the significant results were from the site at which infants acted as their own controls. When infants wore the earmuffs, they had significantly higher mean oxygen saturation levels and less fluctuation in oxygen saturation. Furthermore, these infants had less frequent behavioral state changes, spent more time in the quiet sleep state, and had longer bouts in the sleep state. It is imperative that NICUs develop aggressive antinoise policies to substantially and consistently reduce noise. PMID:8648453

  5. Physiological and behavioural responses of a small heterothermic mammal to fire stimuli.

    PubMed

    Stawski, Clare; Matthews, Jaya K; Körtner, Gerhard; Geiser, Fritz

    2015-11-01

    The predicted increase of the frequency and intensity of wildfires as a result of climate change could have a devastating impact on many species and ecosystems. However, the particular physiological and behavioural adaptions of animals to survive fires are poorly understood. We aimed to provide the first quantitative data on physiological and behavioural mechanisms used by a small heterothermic marsupial mammal, the fat-tailed dunnart (Sminthopsis crassicaudata), that may be crucial for survival during and immediately after a fire. Specifically, we aimed to determine (i) whether captive torpid animals are able to respond to fire stimuli and (ii) which energy saving mechanisms are used in response to fires. The initial response of torpid dunnarts to smoke exposure was to arouse immediately and therefore express shorter and shallower torpor bouts. Dunnarts also increased activity after smoke exposure when food was provided, but not when food was withheld. A charcoal/ash substrate, imitating post-fire conditions, resulted in a decrease in torpor use and activity, but only when food was available. Our novel data suggests that heterothermic mammals are able to respond to fire stimuli, such as smoke, to arouse from torpor as an initial response to fire and adjust torpor use and activity levels according to food availability modulated by fire cues. PMID:26343772

  6. Competitive active video games: Physiological and psychological responses in children and adolescents

    PubMed Central

    Lisón, Juan F; Cebolla, Ausias; Guixeres, Jaime; Álvarez-Pitti, Julio; Escobar, Patricia; Bruñó, Alejandro; Lurbe, Empar; Alcañiz, Mariano; Baños, Rosa

    2015-01-01

    BACKGROUND: Recent strategies to reduce sedentary behaviour in children include replacing sedentary screen time for active video games. Active video game studies have focused principally on the metabolic consumption of a single player, with physiological and psychological responses of opponent-based multiplayer games to be further evaluated. OBJECTIVE: To determine whether adding a competitive component to playing active video games impacts physiological and psychological responses in players. METHODS: Sixty-two healthy Caucasian children and adolescents, nine to 14 years years of age, completed three conditions (8 min each) in random order: treadmill walking, and single and opponent-based Kinect active video games. Affect, arousal, rate of perceived exertion, heart rate and percentage of heart rate reserve were measured for each participant and condition. RESULTS: Kinect conditions revealed significantly higher heart rate, percentage of heart rate reserve, rate of perceived exertion and arousal when compared with treadmill walking (P<0.001). Opponent-based condition revealed lower values for the rate of perceived exertion (P=0.02) and higher affect (P=0.022) when compared with single play. CONCLUSION: Competitive active video games improved children’s psychological responses (affect and rate of perceived exertion) compared with single play, providing a solution that may contribute toward improved adherence to physical activity. PMID:26526217

  7. Physiological and self-assessed emotional responses to emotion-eliciting films in borderline personality disorder.

    PubMed

    Elices, Matilde; Soler, Joaquim; Fernández, Cristina; Martín-Blanco, Ana; Jesús Portella, María; Pérez, Víctor; Alvarez, Enrique; Carlos Pascual, Juan

    2012-12-30

    According to Linehan's biosocial model, the core characteristic of borderline personality disorder (BPD) is emotional dysregulation. In the present study, we investigated two components of this model: baseline emotional intensity and emotional reactivity. A total of 60 women, 30 with BPD diagnosis and 30 age and sex-matched healthy subjects (HCs), participated in two experiments. In the first experiment, we evaluated emotional responses to six films designed to elicit discrete emotions (anger, fear, sadness, disgust, amusement and neutral). The second experiment evaluated emotional reactions to three emotion-eliciting films containing BPD-specific content (sexual abuse, emotional dependence and abandonment/separation). Skin conductance level, heart rate, and subjective emotional response were recorded for each film. Although self-reported data indicated that negative emotions at baseline were stronger in the BPD group, physiological measures showed no differences between the groups. Physiological results should be interpreted with caution since most BPD participants were under pharmacological treatment. BPD subjects presented no subjective heightened reactivity to most of the discrete emotion-eliciting films. Subjective responses to amusement and "BPD-specific content" films revealed significant between-group differences. These findings suggest that the main characteristic of BPD might be negative emotional intensity rather than heightened emotional reactivity. PMID:22884218

  8. Interaction between intra-oral cinnamaldehyde and nicotine assessed by psychophysical and physiological responses.

    PubMed

    Jensen, Tanja K; Andersen, Michelle V; Nielsen, Kent A; Arendt-Nielsen, Lars; Boudreau, Shellie A

    2016-08-01

    Cinnamaldehyde and nicotine activate the transient receptor potential subtype A1 (TRPA1) channel, which may cause burning sensations. This study investigated whether cinnamaldehyde modulates nicotine-induced psychophysical and physiological responses in oral tissues. Healthy non-smokers (n = 22) received, in a randomized, double-blind, crossover design, three different gums containing 4 mg of nicotine, 20 mg of cinnamaldehyde, or a combination thereof. Assessments of orofacial temperature and blood flow, blood pressure, heart rate, taste experience, and intra-oral pain/irritation area and intensity were performed before, during, and after a 10-min chewing regime. Cinnamaldehyde increased the temperature of the tongue and blood flow of the lip, and was associated with pain/irritation, especially in the mouth. Nicotine increased the temperature of the tongue and blood flow of the cheek, and produced pain/irritation in the mouth and throat. The combination of cinnamaldehyde and nicotine did not overtly change the psychophysical or physiological responses. Interestingly, half of the subjects responded to cinnamaldehyde as an irritant, and these cinnamaldehyde responders reported greater nicotine-induced pain/irritation areas in the throat. Whether sensitivity to cinnamaldehyde can predict the response to nicotine-induced oral irritation remains to be determined. A better understanding of the sensory properties of nicotine in the oral mucosa has important therapeutic implications because pain and irritation represent compliance issues for nicotine replacement products. PMID:27282133

  9. Physiological and transcriptional responses and cross protection of Lactobacillus plantarum ZDY2013 under acid stress.

    PubMed

    Huang, Renhui; Pan, Mingfang; Wan, Cuixiang; Shah, Nagendra P; Tao, Xueying; Wei, Hua

    2016-02-01

    Acid tolerance responses (ATR) in Lactobacillus plantarum ZDY2013 were investigated at physiological and molecular levels. A comparison of composition of cell membrane fatty acids (CMFA) between acid-challenged and unchallenged cells showed that acid adaptation evoked a significantly higher percentage of saturated fatty acids and cyclopropane fatty acids in acid-challenged than in unchallenged cells. In addition, reverse transcription-quantitative PCR analysis in acid-adapted cells at different pH values (ranging from 3.0 to 4.0) indicated that several genes were differently regulated, including those related to proton pumps, amino acid metabolism, sugar metabolism, and class I and class III stress response pathways. Expression of genes involved in fatty acid synthesis and production of alkali was significantly upregulated. Upon exposure to pH 4.5 for 2 h, a higher survival rate (higher viable cell count) of Lactobacillus plantarum ZDY2013 was achieved following an additional challenge to 40 mM hydrogen peroxide for 60 min, but no difference in survival rate of cells was found with further challenge to heat, ethanol, or salt. Therefore, we concluded that the physiological and metabolic changes of acid-treated cells of Lactobacillus plantarum ZDY2013 help the cells resist damage caused by acid, and further initiated global response signals to bring the whole cell into a state of defense to other stress factors, especially hydrogen peroxide. PMID:26627851

  10. Transcriptomic Changes Drive Physiological Responses to Progressive Drought Stress and Rehydration in Tomato

    PubMed Central

    Iovieno, Paolo; Punzo, Paola; Guida, Gianpiero; Mistretta, Carmela; Van Oosten, Michael J.; Nurcato, Roberta; Bostan, Hamed; Colantuono, Chiara; Costa, Antonello; Bagnaresi, Paolo; Chiusano, Maria L.; Albrizio, Rossella; Giorio, Pasquale; Batelli, Giorgia; Grillo, Stefania

    2016-01-01

    Tomato is a major crop in the Mediterranean basin, where the cultivation in the open field is often vulnerable to drought. In order to adapt and survive to naturally occurring cycles of drought stress and recovery, plants employ a coordinated array of physiological, biochemical, and molecular responses. Transcriptomic studies on tomato responses to drought and subsequent recovery are few in number. As the search for novel traits to improve the genetic tolerance to drought increases, a better understanding of these responses is required. To address this need we designed a study in which we induced two cycles of prolonged drought stress and a single recovery by rewatering in tomato. In order to dissect the complexity of plant responses to drought, we analyzed the physiological responses (stomatal conductance, CO2 assimilation, and chlorophyll fluorescence), abscisic acid (ABA), and proline contents. In addition to the physiological and metabolite assays, we generated transcriptomes for multiple points during the stress and recovery cycles. Cluster analysis of differentially expressed genes (DEGs) between the conditions has revealed potential novel components in stress response. The observed reduction in leaf gas exchanges and efficiency of the photosystem PSII was concomitant with a general down-regulation of genes belonging to the photosynthesis, light harvesting, and photosystem I and II category induced by drought stress. Gene ontology (GO) categories such as cell proliferation and cell cycle were also significantly enriched in the down-regulated fraction of genes upon drought stress, which may contribute to explain the observed growth reduction. Several histone variants were also repressed during drought stress, indicating that chromatin associated processes are also affected by drought. As expected, ABA accumulated after prolonged water deficit, driving the observed enrichment of stress related GOs in the up-regulated gene fractions, which included transcripts

  11. Physiological and behavioural responses to weaning conflict in free-ranging primate infants

    PubMed Central

    Mandalaywala, Tara M.; Higham, James P.; Heistermann, Michael; Parker, Karen J.; Maestripieri, Dario

    2014-01-01

    Weaning, characterized by maternal reduction of resources, is both psychologically and energetically stressful to mammalian offspring. Despite the importance of physiology in this process, previous studies have reported only indirect measures of weaning stress from infants, because of the difficulties of collecting physiological measures from free-ranging mammalian infants. Here we present some of the first data on the relationship between weaning and energetic and psychological stress in infant mammals. We collected data on 47 free-ranging rhesus macaque infants on Cayo Santiago, Puerto Rico, showing that faecal glucocorticoid metabolite (fGCM) concentrations were directly related to the frequency of maternal rejection, with fGCM concentrations increasing as rates of rejection increased. Infants with higher fGCM concentrations also engaged in higher rates of mother following, and mother following was associated with increased time on the nipple, suggesting that infants that experienced greater weaning-related stress increased their efforts to maintain proximity and contact with their mothers. Infants experiencing more frequent rejection uttered more distress vocalizations when being rejected; however, there was no relationship between rates of distress vocalizations and fGCM concentrations, suggesting a disassociation between behavioural and physiological stress responses to weaning. Elevated glucocorticoid concentrations during weaning may function to mobilize energy reserves and prepare the infant for continued maternal rejection and shortage of energetic resources. PMID:25431499

  12. Responses of corn physiology and yield to six agricultural practices over three years in middle Tennessee

    PubMed Central

    Yu, Chih-Li; Hui, Dafeng; Deng, Qi; Wang, Junming; Reddy, K. Chandra; Dennis, Sam

    2016-01-01

    Different agricultural practices may have substantial impacts on crop physiology and yield. However, it is still not entirely clear how multiple agricultural practices such as tillage, biochar and different nutrient applications could influence corn physiology and yield. We conducted a three-year field experiment to study the responses of corn physiology, yield, and soil respiration to six different agricultural practices. The six treatments included conventional tillage (CT) or no tillage (NT), in combination with nitrogen type (URAN or chicken litter) and application method, biochar, or denitrification inhibitor. A randomized complete block design was applied with six replications. Leaf photosynthetic rate, transpiration, plant height, leaf area index (LAI), biomass, and yield were measured. Results showed that different agricultural practices had significant effects on plant leaf photosynthesis, transpiration, soil respiration, height, and yield, but not on LAI and biomass. The average corn yield in the NT-URAN was 10.03 ton/ha, 28.9% more than in the CT-URAN. Compared to the NT-URAN, the NT-biochar had lower soil respiration and similar yield. All variables measured showed remarkable variations among the three years. Our results indicated that no tillage treatment substantially increased corn yield, probably due to the preservation of soil moisture during drought periods. PMID:27272142

  13. Ambient temperature: a factor affecting performance and physiological response of broiler chickens

    NASA Astrophysics Data System (ADS)

    Donkoh, A.

    1989-12-01

    An experiment was conducted to elucidate the influence of four constant ambient temperatures (20°, 25°, 30° and 35°C) on the performance and physiological reactions of male commercial broiler chicks from 3 to 7 weeks of age. A 12 h light-dark cycle was operated, while relative humidity and air circulation were not controlled. Exposure of broiler chickens to the 20°, 25°, 30° and 35°C treatments showed highly significant ( P<0.0001) depression in growth rate, food intake and efficiency of food utilization, and a significant increase in water consumption for the 30° and 35°C groups. Mortality was, however, not affected by the temperature treatments. Changes in physiological status, such as increased rectal temperatures, decreased concentration of red blood cells, haemoglobin, haematocrit, and total plasma protein were observed in birds housed in the higher temperature (30° and 35°C) environments. Moreover, in these broiler chickens, there was an increased blood glucose concentration and a decreased thyroid gland weight. These results indicate that continuous exposure of broiler chickens to high ambient temperatures markedly affects their performance and physiological response.

  14. Physiological and biochemical responses of the Polychaete Diopatra neapolitana to organic matter enrichment.

    PubMed

    Carregosa, Vanessa; Velez, Cátia; Pires, Adília; Soares, Amadeu M V M; Figueira, Etelvina; Freitas, Rosa

    2014-10-01

    Several studies have demonstrated that organic matter enrichment may be associated to aquaculture, leading to impoverished benthic communities and species succession with loss of biodiversity, but very few studies have investigated biochemical and physiological alterations that species affected by aquaculture activities undergo. Thus, in the present study, the effects of the organic enrichment originating from an oyster culture were studied in the Polychaete Diopatra neapolitana, a species already shown to be sensitive to inorganic contamination. For this, physiological responses and biochemical alterations were evaluated. The results obtained revealed that individuals from highly organically enriched areas presented lower capacity to regenerate their body but higher glycogen and protein levels. Furthermore, with increasing organic matter D. neapolitana increased the lipid peroxidation (LPO), the oxidized glutathione content (GSSG) and Glutathione S-transferase activity (GSTs) content, and the activity of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD). This study evidenced that organic matter enrichment induced biochemical and physiological alterations in D. neapolitana. Thus, this species was shown to be a good sentinel species to monitor organic contamination. PMID:24973779

  15. Near-UV radiation acts as a beneficial factor for physiological responses in cucumber plants.

    PubMed

    Mitani-Sano, Makiko; Tezuka, Takafumi

    2013-11-01

    Effects of near-UV radiation on the growth and physiological activity of cucumber plants were investigated morphologically, physiologically and biochemically using 3-week-old seedlings grown under polyvinyl chloride films featuring transmission either above 290 nm or above 400 nm in growth chambers. The hypocotyl length and leaf area of cucumber seedlings were reduced but the thickness of leaves was enhanced by near-UV radiation, due to increased upper/lower epidermis thickness, palisade parenchyma thickness and volume of palisade parenchyma cells. Photosynthetic and respiratory activities were also promoted by near-UV radiation, associated with general enhancement of physiological/biochemical responses. Particularly, metabolic activities in the photosynthetic system of chloroplasts and the respiratory system of mitochondria were analyzed under the conditions of visible light with and without near-UV radiation. For example, the activities of NAD(P)-dependent enzymes such as glyceraldehyde-3-phosphate dehydrogenase (G3PDH) in chloroplasts and isocitrate dehydrogenase (ICDH) in mitochondria were elevated, along with levels of pyridine nucleotides (nicotinamide coenzymes) [NAD(H) and NADP(H)] and activity of NAD kinase (NADP forming enzyme). Taken together, these data suggest that promotion of cucumber plant growth by near-UV radiation involves activation of carbon and nitrogen metabolism in plants. The findings of this research showed that near-UV radiation reaching the Earth's surface is a beneficial factor for plant growth. PMID:24013482

  16. Seasonal variations and aeration effects on water quality improvements and physiological responses of Nymphaea tetragona Georgi.

    PubMed

    Lu, Xiao-Ming; Lu, Peng-Zhen; Huang, Min-Sheng; Dai, Ling-Peng

    2013-01-01

    Seasonal variations and aeration effects on water quality improvements and the physiological responses of Nymphaea tetragona Georgi were investigated with mesocosm experiments. Plants were hydroponically cultivated in six purifying tanks (aerated, non-aerated) and the characteristics of the plants were measured. Water quality improvements in purifying tanks were evaluated by comparing to the control tanks. The results showed that continuous aeration affected the plant morphology and physiology. The lengths of the roots, petioles and leaf limbs in aeration conditions were shorter than in non-aeration conditions. Chlorophyll and soluble protein contents of the leaf limbs in aerated tanks decreased, while peroxidase and catalase activities of roots tissues increased. In spring and summer, effects of aeration on the plants were less than in autumn. Total nitrogen (TN) and ammonia nitrogen (NH4(+)-N) in aerated tanks were lower than in non-aerated tanks, while total phosphorus (TP) and dissolved phosphorus (DP) increased in spring and summer. In autumn, effects of aeration on the plants became more significant. TN, NH4(+)-N, TP and DP became higher in aerated tanks than in non-aerated tanks in autumn. This work provided evidences for regulating aeration techniques based on seasonal variations of the plant physiology in restoring polluted stagnant water. PMID:23819294

  17. Psychotherapy participants show increased physiological responsiveness to a lab stressor relative to matched controls

    PubMed Central

    Steffen, Patrick R.; Fidalgo, Louise; Schmuck, Dominic; Tsui, Yoko; Brown, Tracy

    2014-01-01

    Accumulating evidence indicates that psychotherapy participants show increased physiological responsiveness to stress. The purpose of the present study was to examine differences between individuals participating in outpatient psychotherapy and matched controls using an experimental design. Forty-two psychotherapy participants and 48 matched controls were assessed on cardiovascular and cortisol functioning at baseline, during the Trier Social Stress Test (TSST), and during a 20-min recovery period. Psychotherapy participants and matched controls did not differ at baseline or during the TSST on the physiological measures but psychotherapy participants had higher cortisol and heart rate (HR) during the recovery period. In regards to reactivity, cortisol increased during the recovery period for the psychotherapy participants but decreased for those in the matched control group. Psychotherapy participants experiencing clinically significant levels of distress displayed elevated systolic and diastolic blood pressure and HR during the TSST when compared to psychotherapy participants not experiencing clinically significant levels of distress. Overall, physiological reactivity to stress appears to be an important issue for those in psychotherapy and directly addressing this issue may help improve psychotherapy outcomes. PMID:25120511

  18. Physiological and Emotional Responses of Disabled Children to Therapeutic Clowns: A Pilot Study

    PubMed Central

    Kingsnorth, Shauna; Blain, Stefanie; McKeever, Patricia

    2011-01-01

    This pilot study examined the effects of Therapeutic Clowning on inpatients in a pediatric rehabilitation hospital. Ten disabled children with varied physical and verbal expressive abilities participated in all or portions of the data collection protocol. Employing a mixed-method, single-subject ABAB study design, measures of physiological arousal, emotion and behavior were obtained from eight children under two conditions—television exposure and therapeutic clown interventions. Four peripheral autonomic nervous system (ANS) signals were recorded as measures of physiological arousal; these signals were analyzed with respect to measures of emotion (verbal self reports of mood) and behavior (facial expressions and vocalizations). Semistructured interviews were completed with verbally expressive children (n = 7) and nurses of participating children (n = 13). Significant differences among children were found in response to the clown intervention relative to television exposure. Physiologically, changes in ANS signals occurred either more frequently or in different patterns. Emotionally, children's (self) and nurses' (observed) reports of mood were elevated positively. Behaviorally, children exhibited more positive and fewer negative facial expressions and vocalizations of emotion during the clown intervention. Content and themes extracted from the interviews corroborated these findings. The results suggest that this popular psychosocial intervention has a direct and positive impact on hospitalized children. This pilot study contributes to the current understanding of the importance of alternative approaches in promoting well-being within healthcare settings. PMID:21799690

  19. Stochastic optimization for modeling physiological time series: application to the heart rate response to exercise

    NASA Astrophysics Data System (ADS)

    Zakynthinaki, M. S.; Stirling, J. R.

    2007-01-01

    Stochastic optimization is applied to the problem of optimizing the fit of a model to the time series of raw physiological (heart rate) data. The physiological response to exercise has been recently modeled as a dynamical system. Fitting the model to a set of raw physiological time series data is, however, not a trivial task. For this reason and in order to calculate the optimal values of the parameters of the model, the present study implements the powerful stochastic optimization method ALOPEX IV, an algorithm that has been proven to be fast, effective and easy to implement. The optimal parameters of the model, calculated by the optimization method for the particular athlete, are very important as they characterize the athlete's current condition. The present study applies the ALOPEX IV stochastic optimization to the modeling of a set of heart rate time series data corresponding to different exercises of constant intensity. An analysis of the optimization algorithm, together with an analytic proof of its convergence (in the absence of noise), is also presented.

  20. Comparison of physiological responses to hypoxia at high altitudes between highlanders and lowlanders.

    PubMed

    Zhongyuan, S; Xuehan, N; Pengguo, H; Shoucheng, Z; Deming, Z; Shengyue, Y; Yan, W; Zhaoshen, D

    1979-12-01

    This report deals with the differences and changes of physiological functions of the highlanders and the lowlanders at different altitudes during the period when the Chinese Mountaineering Team was climbing up and reached the peak of Qomolangma Feng. In a period of relaxation, there are no significant changes in ventilatory responsiveness to hypercapnia, electrocardiogram and electroencephalogram between highlanders and lowlanders with the changes at different altitudes. At 5,000 m a.s.l., however, electrocardiogram and the result of cardiac ventricular functional test show significant differences after the subjects are physically loaded. Those whose electrocardiogram readings show unusual changes, and whose cardiac ventricular functional tests show their physiological functions at low degree after physical activities at the altitude of 5,000 m, have a climbing ability hardly below 6,500 m, while those who have reached the altitudes above 8,200 m have no unusual changes in electrocardiogram, and the results of cardiac ventricular functional tests show that their physiological functions are at high degree. PMID:534322

  1. NMR-Based Metabonomic Analysis of Physiological Responses to Starvation and Refeeding in the Rat.

    PubMed

    Serrano-Contreras, José I; García-Pérez, Isabel; Meléndez-Camargo, María E; Zepeda, L Gerardo

    2016-09-01

    Starvation is a postabsorptive condition derived from a limitation on food resources by external factors. Energy homeostasis is maintained under this condition by using sources other than glucose via adaptive mechanisms. After refeeding, when food is available, other adaptive processes are linked to energy balance. However, less has been reported about the physiological mechanisms present as a result of these conditions, considering the rat as a supraorganism. Metabolic profiling using (1)H nuclear magnetic resonance spectroscopy was used to characterize the physiological metabolic differences in urine specimens collected under starved, refed, and recovered conditions. In addition, because starvation induced lack of faecal production and not all animals produced faeces during refeeding, 24 h pooled faecal water samples were also analyzed. Urinary metabolites upregulated by starvation included 2-butanamidoacetate, 3-hydroxyisovalerate, ketoleucine, methylmalonate, p-cresyl glucuronide, p-cresyl sulfate, phenylacetylglycine, pseudouridine, creatinine, taurine, and N-acetyl glycoprotein, which were related to renal and skeletal muscle function, β-oxidation, turnover of proteins and RNA, and host-microbial interactions. Food-derived metabolites, including gut microbial cometabolites, and tricarboxylic acid cycle intermediates were upregulated under refed and recovered conditions, which characterized anabolic urinary metabotypes. The upregulation of creatine and pantothenate indicated an absorptive state after refeeding. Fecal short chain fatty acids, 3-(3-hydroxyphenyl)propionate, lactate, and acetoin provided additional information about the combinatorial metabolism between the host and gut microbiota. This investigation contributes to allow a deeper understanding of physiological responses associated with starvation and refeeding. PMID:27518853

  2. Physiological responses of Tunisian grapevine varieties to bicarbonate-induced iron deficiency.

    PubMed

    Ksouri, Riadh; Gharsalli, Mohamed; Lachaal, Mokhtar

    2005-03-01

    Plants are frequently submitted to iron deficiency when growing on calcareous soils, which contain high concentrations of bicarbonate. The purpose of this study was to investigate the variability of physiological responses of Tunisian grapevine varieties to bicarbonate-induced iron chlorosis. Vine woodcuttings of seven autochthonous Tunisian varieties (Khamri, Mahdaoui, Blan3, Saouadi, Arich Dressé, Beldi and Balta4), two rootstocks (140Ru and S.O.4), and an introduced table variety (Cardinal) were cultivated on inert sand for 2 months using a complete nutrient solution (20 microM Fe) that was either well supplied or not supplied with 10 mM HCO3-. Young leaves of plants cultivated on bicarbonate-enriched medium showed characteristic symptoms of iron chlorosis, although the intensity of the symptoms depended on the variety and the rootstock. Chlorosis score confirmed these observations since the most sensitive varieties showed the highest values. This variability in tolerance to iron deficiency was also displayed when analysing the physiological parameters (shoot length, plant dry weight, and chlorophyll concentration) and the iron contents in the 4th leaf. Analysis of morphological and physiological parameters showed three behaviour groups. The first one corresponded to tolerant varieties (Khamri, Mahdaoui, and the root-stock: 140Ru), the second included moderately tolerant vines (Saouadi, Arich Dressé, Blanc3, and the rootstock: S.O.4) and the third represented the sensitive ones (Balta4, Beldi, and Cardinal). PMID:15832686

  3. Responses of corn physiology and yield to six agricultural practices over three years in middle Tennessee.

    PubMed

    Yu, Chih-Li; Hui, Dafeng; Deng, Qi; Wang, Junming; Reddy, K Chandra; Dennis, Sam

    2016-01-01

    Different agricultural practices may have substantial impacts on crop physiology and yield. However, it is still not entirely clear how multiple agricultural practices such as tillage, biochar and different nutrient applications could influence corn physiology and yield. We conducted a three-year field experiment to study the responses of corn physiology, yield, and soil respiration to six different agricultural practices. The six treatments included conventional tillage (CT) or no tillage (NT), in combination with nitrogen type (URAN or chicken litter) and application method, biochar, or denitrification inhibitor. A randomized complete block design was applied with six replications. Leaf photosynthetic rate, transpiration, plant height, leaf area index (LAI), biomass, and yield were measured. Results showed that different agricultural practices had significant effects on plant leaf photosynthesis, transpiration, soil respiration, height, and yield, but not on LAI and biomass. The average corn yield in the NT-URAN was 10.03 ton/ha, 28.9% more than in the CT-URAN. Compared to the NT-URAN, the NT-biochar had lower soil respiration and similar yield. All variables measured showed remarkable variations among the three years. Our results indicated that no tillage treatment substantially increased corn yield, probably due to the preservation of soil moisture during drought periods. PMID:27272142

  4. Adaptive response of vascular endothelial cells to an acute increase in shear stress frequency.

    PubMed

    Zhang, Ji; Friedman, Morton H

    2013-09-15

    Local shear stress sensed by arterial endothelial cells is occasionally altered by changes in global hemodynamic parameters, e.g., heart rate and blood flow rate, as a result of normal physiological events, such as exercise. In a recently study (41), we demonstrated that during the adaptive response to increased shear magnitude, porcine endothelial cells exhibited an unique phenotype featuring a transient increase in permeability and the upregulation of a set of anti-inflammatory and antioxidative genes. In the present study, we characterize the adaptive response of these cells to an increase in shear frequency, another important hemodynamic parameter with implications in atherogenesis. Endothelial cells were preconditioned by a basal-level sinusoidal shear stress of 15 ± 15 dyn/cm(2) at 1 Hz, and the frequency was then elevated to 2 Hz. Endothelial permeability increased slowly after the frequency step-up, but the increase was relatively small. Using microarrays, we identified 37 genes that are sensitive to the frequency step-up. The acute increase in shear frequency upregulates a set of cell-cycle regulation and angiogenesis-related genes. The overall adaptive response to the increased frequency is distinctly different from that to a magnitude step-up. However, consistent with the previous study, our data support the notion that endothelial function during an adaptive response is different than that of fully adapted endothelial cells. Our studies may also provide insights into the beneficial effects of exercise on vascular health: transient increases in frequency may facilitate endothelial repair, whereas similar increases in shear magnitude may keep excessive inflammation and oxidative stress at bay. PMID:23851277

  5. Adaptive response of vascular endothelial cells to an acute increase in shear stress frequency

    PubMed Central

    Zhang, Ji

    2013-01-01

    Local shear stress sensed by arterial endothelial cells is occasionally altered by changes in global hemodynamic parameters, e.g., heart rate and blood flow rate, as a result of normal physiological events, such as exercise. In a recently study (41), we demonstrated that during the adaptive response to increased shear magnitude, porcine endothelial cells exhibited an unique phenotype featuring a transient increase in permeability and the upregulation of a set of anti-inflammatory and antioxidative genes. In the present study, we characterize the adaptive response of these cells to an increase in shear frequency, another important hemodynamic parameter with implications in atherogenesis. Endothelial cells were preconditioned by a basal-level sinusoidal shear stress of 15 ± 15 dyn/cm2 at 1 Hz, and the frequency was then elevated to 2 Hz. Endothelial permeability increased slowly after the frequency step-up, but the increase was relatively small. Using microarrays, we identified 37 genes that are sensitive to the frequency step-up. The acute increase in shear frequency upregulates a set of cell-cycle regulation and angiogenesis-related genes. The overall adaptive response to the increased frequency is distinctly different from that to a magnitude step-up. However, consistent with the previous study, our data support the notion that endothelial function during an adaptive response is different than that of fully adapted endothelial cells. Our studies may also provide insights into the beneficial effects of exercise on vascular health: transient increases in frequency may facilitate endothelial repair, whereas similar increases in shear magnitude may keep excessive inflammation and oxidative stress at bay. PMID:23851277

  6. Regulation of serum amyloid A protein expression during the acute-phase response.

    PubMed Central

    Jensen, L E; Whitehead, A S

    1998-01-01

    The acute-phase (AP) serum amyloid A proteins (A-SAA) are multifunctional apolipoproteins which are involved in cholesterol transport and metabolism, and in modulating numerous immunological responses during inflammation and the AP response to infection, trauma or stress. During the AP response the hepatic biosynthesis of A-SAA is up-regulated by pro-inflammatory cytokines, and circulating concentrations can increase by up to 1000-fold. Chronically elevated A-SAA concentrations are a prerequisite for the pathogenesis of secondary amyloidosis, a progressive and fatal disease characterized by the deposition in major organs of insoluble plaques composed principally of proteolytically cleaved A-SAA, and may also contribute to physiological processes that lead to atherosclerosis. There is therefore a requirement for both positive and negative control mechanisms that permit the rapid induction of A-SAA expression until it has fulfilled its host-protective function(s) and subsequently ensure that its expression can be rapidly returned to baseline. These mechanisms include modulation of promoter activity involving, for example, the inducer nuclear factor kappaB (NF-kappaB) and its inhibitor IkappaB, up-regulatory transcription factors of the nuclear factor for interleukin-6 (NF-IL6) family and transcriptional repressors such as yin and yang 1 (YY1). Post-transcriptional modulation involving changes in mRNA stability and translation efficiency permit further up- and down-regulatory control of A-SAA protein synthesis to be achieved. In the later stages of the AP response, A-SAA expression is effectively down-regulated via the increased production of cytokine antagonists such as the interleukin-1 receptor antagonist (IL-1Ra) and of soluble cytokine receptors, resulting in less signal transduction driven by pro-inflammatory cytokines. PMID:9729453

  7. Validation of acute physiologic and chronic health evaluation II scoring system software developed at The Aga Khan University, Pakistan

    PubMed Central

    Hashmi, M; Asghar, A; Shamim, F; Khan, FH

    2016-01-01

    Objective: To assess the predictive performance of Acute Physiologic and Chronic Health Evaluation II (APACHE II) software available on the hospital intranet and analyze interrater reliability of calculating the APACHE II score by the gold standard manual method or automatically using the software. Materials and Methods: An expert scorer not involved in the data collection had calculated APACHE II score of 213 patients admitted to surgical Intensive Care Unit using the gold standard manual method for a previous study performed in the department. The same data were entered into the computer software available on the hospital intranet (http://intranet/apacheii) to recalculate the APACHE II score automatically along with the predicted mortality. Receiver operating characteristic curve (ROC), Hosmer-Lemeshow goodness-of-fit statistical test and Pearson's correlation coefficient was computed. Results: The 213 patients had an average APACHE II score of 17.20 ± 8.24, the overall mortality rate was 32.8% and standardized mortality ratio was 1.00. The area under the ROC curve of 0.827 was significantly >0.5 (P < 0.01) and had confidence interval of 0.77-0.88. The goodness-of-fit test showed a good calibration (H = 5.46, P = 0.71). Interrater reliability using Pearson's product moment correlations demonstrated a strong positive relationship between the computer and the manual expert scorer (r = 0.98, P = 0.0005). Conclusion: APACHE II software available on the hospital's intranet has satisfactory calibration and discrimination and interrater reliability is good when compared with the gold standard manual method. PMID:26955310

  8. Short-term physiological responses of wild and hatchery-produced red drum during angling

    USGS Publications Warehouse

    Gallman, E.A.; Isely, J.J.; Tomasso, J.R.; Smith, T.I.J.

    1999-01-01

    Serum cortisol concentrations, plasma glucose concentrations, plasma lactate concentrations, and plasma osmolalities increased in red drum Sciaenops ocellatus (26.0-65.5 cm total length) during angling in estuarine waters (17-33 g/L salinity, 21-31??C). Angling time varied from as fast as possible (10 s) to the point when fish ceased resisting (up to 350 s). The increases in the physiological characteristics were similar in wild and hatchery-produced fish. This study indicates that hatchery-produced red drum may be used in catch-and-release studies to simulate the responses of wild fish.

  9. The Effects of Caffeine Supplementation on Physiological Responses to Submaximal Exercise in Endurance-Trained Men

    PubMed Central

    2016-01-01

    Objectives The aim of this study was to evaluate the effects of caffeine on physiological responses to submaximal exercise, with a focus on blood lactate concentration ([BLa]). Methods Using a randomised, single-blind, crossover design; 16 endurance-trained, male cyclists (age: 38 ± 8 years; height: 1.80 ± 0.05 m; body mass: 76.6 ± 7.8 kg; V˙O2max: 4.3 ± 0.6 L∙min-1) completed four trials on an electromagnetically-braked cycle ergometer. Each trial consisted of a six-stage incremental test (3 minute stages) followed by 30 minutes of passive recovery. One hour before trials 2–4, participants ingested a capsule containing 5 mg∙kg-1 of either caffeine or placebo (maltodextrin). Trials 2 and 3 were designed to evaluate the effects of caffeine on various physiological responses during exercise and recovery. In contrast, Trial 4 was designed to evaluate the effects of caffeine on [BLa] during passive recovery from an end-exercise concentration of 4 mmol∙L-1. Results Relative to placebo, caffeine increased [BLa] during exercise, independent of exercise intensity (mean difference: 0.33 ± 0.41 mmol∙L-1; 95% likely range: 0.11 to 0.55 mmol∙L-1), but did not affect the time-course of [BLa] during recovery (p = 0.604). Caffeine reduced ratings of perceived exertion (mean difference: 0.5 ± 0.7; 95% likely range: 0.1 to 0.9) and heart rate (mean difference: 3.6 ± 4.2 b∙min-1; 95% likely range: 1.3 to 5.8 b∙min-1) during exercise, with the effect on the latter dissipating as exercise intensity increased. Supplement × exercise intensity interactions were observed for respiratory exchange ratio (p = 0.004) and minute ventilation (p = 0.034). Conclusions The results of the present study illustrate the clear, though often subtle, effects of caffeine on physiological responses to submaximal exercise. Researchers should be aware of these responses, particularly when evaluating the physiological effects of various experimental interventions. PMID:27532605

  10. Physiologic response of human brain death and the use of vasopressin for successful organ transplantation.

    PubMed

    Nakagawa, Kazuma; Tang, Julin F

    2011-03-01

    The dynamic physiologic response of human brain death and the impact of vasopressin on successful organ transplantation is reported. A 60-year-old woman was admitted to the intensive care unit after severe traumatic brain injury resulting in brain death. Initial Cushing reflex was followed by a precipitous decrease in systemic blood pressure that was refractory to the alpha-agonist phenylephrine. After intravenous vasopressin was given, hemodynamic stability was restored and maintained until successful organ transplantation. Vasopressin, a catecholamine-sparing vasopressor and antidiuretic agent, may be an effective agent in the treatment of refractory hypotension after brain death prior to organ transplantation. PMID:21377081

  11. Human Physiological Responses to Cycle Ergometer Leg Exercise During +Gz Acceleration

    NASA Technical Reports Server (NTRS)

    Chou, J. L.; Stad, N. J.; Barnes, P. R.; Leftheriotis, G. P. N.; Arndt, N. F.; Simonson, S.; Greenleaf, J. E.

    1998-01-01

    Spaceflight and bed-rest deconditioning decrease maximal oxygen uptake (aerobic power), strength, endurance capacity, and orthostatic tolerance. In addition to extensive use of muscular exercise conditioning as a countermeasure for the reduction in aerobic power (VO(sub 2max)), stimuli from some form of +Gz acceleration conditioning may be necessary to attenuate the orthostatic intolerance component of this deconditioning. Hypothesis: There will be no significant difference in the physiological responses (oxygen uptake, heart rate, ventilation, or respiratory exchange ratio) during supine exercise with moderate +Gz acceleration.

  12. Dissimilar Physiological and Perceptual Responses Between Sprint Interval Training and High-Intensity Interval Training.

    PubMed

    Wood, Kimberly M; Olive, Brittany; LaValle, Kaylyn; Thompson, Heather; Greer, Kevin; Astorino, Todd A

    2016-01-01

    High-intensity interval training (HIIT) and sprint interval training (SIT) elicit similar cardiovascular and metabolic adaptations vs. endurance training. No study, however, has investigated acute physiological changes during HIIT vs. SIT. This study compared acute changes in heart rate (HR), blood lactate concentration (BLa), oxygen uptake (VO2), affect, and rating of perceived exertion (RPE) during HIIT and SIT. Active adults (4 women and 8 men, age = 24.2 ± 6.2 years) initially performed a VO2max test to determine workload for both sessions on the cycle ergometer, whose order was randomized. Sprint interval training consisted of 8 bouts of 30 seconds of all-out cycling at 130% of maximum Watts (Wmax). High-intensity interval training consisted of eight 60-second bouts at 85% Wmax. Heart rate, VO2, BLa, affect, and RPE were continuously assessed throughout exercise. Repeated-measures analysis of variance revealed a significant difference between HIIT and SIT for VO2 (p < 0.001), HR (p < 0.001), RPE (p = 0.03), and BLa (p = 0.049). Conversely, there was no significant difference between regimens for affect (p = 0.12). Energy expenditure was significantly higher (p = 0.02) in HIIT (209.3 ± 40.3 kcal) vs. SIT (193.5 ± 39.6 kcal). During HIIT, subjects burned significantly more calories and reported lower perceived exertion than SIT. The higher VO2 and lower BLa in HIIT vs. SIT reflected dissimilar metabolic perturbation between regimens, which may elicit unique long-term adaptations. If an individual is seeking to burn slightly more calories, maintain a higher oxygen uptake, and perceive less exertion during exercise, HIIT is the recommended routine. PMID:26691413

  13. Pathophysiological role of the acute inflammatory response during acetaminophen hepatotoxicity

    SciTech Connect

    Cover, Cathleen; Liu Jie; Farhood, Anwar; Malle, Ernst; Waalkes, Michael P.; Bajt, Mary Lynn; Jaeschke, Hartmut . E-mail: jaeschke@email.arizona.edu

    2006-10-01

    Neutrophils are recruited into the liver after acetaminophen (AAP) overdose but the pathophysiological relevance of this acute inflammatory response remains unclear. To address this question, we compared the time course of liver injury, hepatic neutrophil accumulation and inflammatory gene mRNA expression for up to 24 h after treatment with 300 mg/kg AAP in C3Heb/FeJ and C57BL/6 mice. Although there was no relevant difference in liver injury (assessed by the increase of plasma alanine aminotransferase activities and the areas of necrosis), the number of neutrophils and the expression of several pro-inflammatory genes (e.g., tumor necrosis factor-{alpha}, interleukin-1{beta} and macrophage inflammatory protein-2) was higher in C3Heb/FeJ than in C57BL/6 mice. In contrast, the expression of the anti-inflammatory genes interleukin-10 and heme oxygenase-1 was higher in C57BL/6 mice. Despite substantial hepatic neutrophil accumulation, none of the liver sections from both strains stained positive for hypochlorite-modified proteins, a specific marker for a neutrophil-induced oxidant stress. In addition, treatment with the NADPH oxidase inhibitors diphenyleneiodonium chloride or apocynin or the anti-neutrophil antibody Gr-1 did not protect against AAP hepatotoxicity. Furthermore, although intercellular adhesion molecule-1 (ICAM-1) was previously shown to be important for neutrophil extravasation and tissue injury in several models, ICAM-1-deficient mice were not protected against AAP-mediated liver injury. Together, these data do not support the hypothesis that neutrophils aggravate liver injury induced by AAP overdose.

  14. Pathophysiological role of the acute inflammatory response during acetaminophen hepatotoxicity.

    PubMed

    Cover, Cathleen; Liu, Jie; Farhood, Anwar; Malle, Ernst; Waalkes, Michael P; Bajt, Mary Lynn; Jaeschke, Hartmut

    2006-10-01

    Neutrophils are recruited into the liver after acetaminophen (AAP) overdose but the pathophysiological relevance of this acute inflammatory response remains unclear. To address this question, we compared the time course of liver injury, hepatic neutrophil accumulation and inflammatory gene mRNA expression for up to 24 h after treatment with 300 mg/kg AAP in C3Heb/FeJ and C57BL/6 mice. Although there was no relevant difference in liver injury (assessed by the increase of plasma alanine aminotransferase activities and the areas of necrosis), the number of neutrophils and the expression of several pro-inflammatory genes (e.g., tumor necrosis factor-alpha, interleukin-1beta and macrophage inflammatory protein-2) was higher in C3Heb/FeJ than in C57BL/6 mice. In contrast, the expression of the anti-inflammatory genes interleukin-10 and heme oxygenase-1 was higher in C57BL/6 mice. Despite substantial hepatic neutrophil accumulation, none of the liver sections from both strains stained positive for hypochlorite-modified proteins, a specific marker for a neutrophil-induced oxidant stress. In addition, treatment with the NADPH oxidase inhibitors diphenyleneiodonium chloride or apocynin or the anti-neutrophil antibody Gr-1 did not protect against AAP hepatotoxicity. Furthermore, although intercellular adhesion molecule-1 (ICAM-1) was previously shown to be important for neutrophil extravasation and tissue injury in several models, ICAM-1-deficient mice were not protected against AAP-mediated liver injury. Together, these data do not support the hypothesis that neutrophils aggravate liver injury induced by AAP overdose. PMID:16781746

  15. Rapid and widely disseminated acute phase protein response after experimental bacterial infection of pigs

    PubMed Central

    Skovgaard, Kerstin; Mortensen, Shila; Boye, Mette; Poulsen, Karin T.; Campbell, Fiona M.; Eckersall, P. David; Heegaard, Peter M.H.

    2009-01-01

    The acute phase protein response is a well-described generalized early host response to tissue injury, inflammation and infection, observed as pronounced changes in the concentrations of a number of circulating serum proteins. The biological function of this response and its interplay with other parts of innate host defence reactions remain somewhat elusive. In order to gain new insight into this early host defence response in the context of bacterial infection we studied gene expression changes in peripheral lymphoid tissues as compared to hepatic expression changes, 14–18 h after lung infection in pigs. The lung infection was established with the pig specific respiratory pathogen Actinobacillus pleuropneumoniae. Quantitative real-time PCR based expression analysis were performed on samples from liver, tracheobronchial lymph node, tonsils, spleen and on blood leukocytes, supplemented with measurements of interleukin-6 and selected acute phase proteins in serum. C-reactive protein and serum amyloid A were clearly induced 14–18 h after infection. Extrahepatic expression of acute phase proteins was found to be dramatically altered as a result of the lung infection with an extrahepatic acute phase protein response occurring concomitantly with the hepatic response. This suggests that the acute phase protein response is a more disseminated systemic response than previously thought. The current study provides to our knowledge the first example of porcine extrahepatic expression and regulation of C-reactive protein, haptoglobin, fibrinogen, pig major acute phase protein, and transferrin in peripheral lymphoid tissues. PMID:19236838

  16. Physiological and transcriptional responses to high temperature in Arthrospira (Spirulina) platensis C1.

    PubMed

    Panyakampol, Jaruta; Cheevadhanarak, Supapon; Sutheeworapong, Sawannee; Chaijaruwanich, Jeerayut; Senachak, Jittisak; Siangdung, Wipawan; Jeamton, Wattana; Tanticharoen, Morakot; Paithoonrangsarid, Kalyanee

    2015-03-01

    Arthrospira (Spirulina) platensis is a well-known commercial cyanobacterium that is used as a food and in feed supplements. In this study, we examined the physiological changes and whole-genome expression in A. platensis C1 exposed to high temperature. We found that photosynthetic activity was significantly decreased after the temperature was shifted from 35°C to 42°C for 2 h. A reduction in biomass production and protein content, concomitant with the accumulation of carbohydrate content, was observed after prolonged exposure to high temperatures for 24 h. Moreover, the results of the expression profiling in response to high temperature at the designated time points (8 h) revealed two distinct phases of the responses. The first was the immediate response phase, in which the transcript levels of genes involved in different mechanisms, including genes for heat shock proteins; genes involved in signal transduction and carbon and nitrogen metabolism; and genes encoding inorganic ion transporters for magnesium, nitrite and nitrate, were either transiently induced or repressed by the high temperature. In the second phase, the long-term response phase, both the induction and repression of the expression of genes with important roles in translation and photosynthesis were observed. Taken together, the results of our physiological and transcriptional studies suggest that dynamic changes in the transcriptional profiles of these thermal-responsive genes might play a role in maintaining cell homeostasis under high temperatures, as reflected in the growth and biochemical composition, particularly the protein and carbohydrate content, of A. platensis C1. PMID:25524069

  17. Comparative proteomics and physiological characterization of Arabidopsis thaliana seedlings in responses to Ochratoxin A.

    PubMed

    Wang, Yan; Hao, Junran; Zhao, Weiwei; Yang, Zhuojun; Wu, Weihong; Zhang, Yu; Xu, Wentao; Luo, YunBo; Huang, Kunlun

    2013-07-01

    Ochratoxin A (OTA) is a mycotoxin that is primarily produced by Aspergillus ochraceus and Penicillium verrucosum. This mycotoxin is a contaminant of food and feedstock worldwide and may induce cell death in plants. To investigate the dynamic growth process of Arabidopsis seedlings in response to OTA stress and to obtain a better understanding of the mechanism of OTA toxicity towards Arabidopsis, a comparative proteomics study using 2-DE and MALDI-TOF/TOF MS/MS was performed. Mass spectrometry analysis identified 59 and 51 differentially expressed proteins in seedlings exposed to 25 and 45 μM OTA for 7 days, respectively. OTA treatment decreased root elongation and leaf area, increased anthocyanin accumulation, damaged the photosynthetic apparatus and inhibited photosynthesis. Treatment of the seedlings with 25 μM OTA enhanced energy metabolism, whereas higher concentration of OTA (45 μM) inhibited energy metabolism in the seedlings. OTA treatment caused an increase of ROS, an enhancement of antioxidant enzyme defense responses, disturbance of redox homeostasis and activation of lipid oxidation. Glutamine and S-adenosylmethionine metabolism may also play important roles in the response to OTA. In conclusion, our study provided novel insights regarding the response of Arabidopsis to OTA at the level of the proteome. These results are expected to be highly useful for understanding the physiological responses and dissecting the OTA response pathways in higher plants. PMID:23625346

  18. A Review of Cardiac Autonomic Measures: Considerations for Examination of Physiological Response in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Benevides, Teal W.; Lane, Shelly J.

    2015-01-01

    The autonomic nervous system (ANS) is responsible for multiple physiological responses, and dysfunction of this system is often hypothesized as contributing to cognitive, affective, and behavioral responses in children. Research suggests that examination of ANS activity may provide insight into behavioral dysregulation in children with autism…

  19. Emotional Responses during Reading: Physiological Responses Predict Real-Time Reading Comprehension

    ERIC Educational Resources Information Center

    Daley, Samantha G.; Willett, John B.; Fischer, Kurt W.

    2014-01-01

    This study investigated the relationship between emotional responses and reading performance in middle-school students. Although a large number of prior studies have investigated the relationship between emotion and reading, those studies have concentrated primarily on relatively static and distal measures of emotion. In this research, we measured…

  20. The physiological consequences of crib-biting in horses in response to an ACTH challenge test.

    PubMed

    Briefer Freymond, S; Bardou, D; Briefer, E F; Bruckmaier, R; Fouché, N; Fleury, J; Maigrot, A-L; Ramseyer, A; Zuberbühler, K; Bachmann, I

    2015-11-01

    Stereotypies are repetitive and relatively invariant patterns of behavior, which are observed in a wide range of species in captivity. Stereotypic behavior occurs when environmental demands produce a physiological response that, if sustained for an extended period, exceeds the natural physiological regulatory capacity of the organism, particularly in situations that include unpredictability and uncontrollability. One hypothesis is that stereotypic behavior functions to cope with stressful environments, but the existing evidence is contradictory. To address the coping hypothesis of stereotypies, we triggered physiological reactions in 22 horses affected by stereotypic behavior (crib-biters) and 21 non-crib-biters (controls), using an ACTH challenge test. Following administration of an ACTH injection, we measured saliva cortisol every 30 min and heart rate (HR) continuously for a period of 3h. We did not find any differences in HR or HR variability between the two groups, but crib-biters (Group CB) had significantly higher cortisol responses than controls (Group C; mean ± SD: CB, 5.84 ± 2.62 ng/ml, C, 4.76 ± 3.04 ng/ml). Moreover, crib-biters that did not perform the stereotypic behavior during the 3-hour test period (Group B) had significantly higher cortisol levels than controls, which was not the case of crib-biters showing stereotypic behavior (Group A) (B, 6.44 ± 2.38 ng/ml A, 5.58 ± 2.69 ng/ml). Our results suggest that crib-biting is a coping strategy that helps stereotypic individuals to reduce cortisol levels caused by stressful situations. We conclude that preventing stereotypic horses from crib-biting could be an inappropriate strategy to control this abnormal behavior, as it prevents individuals from coping with situations that they perceive as stressful. PMID:26187578

  1. Physiological Responses During Multiplay Exergaming in Young Adult Males are Game-Dependent

    PubMed Central

    McGuire, Stephen; Willems, Mark ET

    2015-01-01

    Regular moderate-intensity exercise provides health benefits. The aim of this study was to examine whether the selected exercise intensity and physiological responses during exergaming in a single and multiplayer mode in the same physical space were game-dependent. Ten males (mean ±SD, age: 23 ±5 years, body mass: 84.2 ±15.6 kg, body height: 180 ±7 cm, body mass index: 26.0 ±4.0 kg·m−2) played the games Kinect football, boxing and track & field (3 × ∼10 min, ∼ 2 min rest periods) in similar time sequence in two sessions. Physiological responses were measured with the portable Cosmed K4b2 pulmonary gas exchange system. Single play demands were used to match with a competitive opponent in a multiplay mode. A within-subjects crossover design was used with one-way ANOVA and a post-hoc t-test for analysis (p<0.05). Minute ventilation, oxygen uptake and the heart rate were at least 18% higher during a multiplayer mode for Kinect football and boxing but not for track & field. Energy expenditure was 21% higher during multiplay football. Single play track & field had higher metabolic equivalent than single play football (5.7 ±1.6, range: 3.2–8.6 vs 4.1 ±1.0, range: 3.0–6.1, p<0.05). Exergaming in a multiplayer mode can provide higher physiological demands but the effects are game-dependent. It seems that exergaming with low intensity in a multiplayer mode may provide a greater physical challenge for participants than in a single play mode but may not consistently provide sufficient intensity to acquire health benefits when played regularly as part of a programme to promote and maintain health in young adults. PMID:26240669

  2. Complexity of physiological responses decreases in high-stress musical performance

    PubMed Central

    Williamon, Aaron; Aufegger, Lisa; Wasley, David; Looney, David; Mandic, Danilo P.

    2013-01-01

    For musicians, performing in front of an audience can cause considerable apprehension; indeed, performance anxiety is felt throughout the profession, with wide ranging symptoms arising irrespective of age, skill level and amount of practice. A key indicator of stress is frequency-specific fluctuations in the dynamics of heart rate known as heart rate variability (HRV). Recent developments in sensor technology have made possible the measurement of physiological parameters reflecting HRV non-invasively and outside of the laboratory, opening research avenues for real-time performer feedback to help improve stress management. However, the study of stress using standard algorithms has led to conflicting and inconsistent results. Here, we present an innovative and rigorous approach which combines: (i) a controlled and repeatable experiment in which the physiological response of an expert musician was evaluated in a low-stress performance and a high-stress recital for an audience of 400 people, (ii) a piece of music with varying physical and cognitive demands, and (iii) dynamic stress level assessment with standard and state-of-the-art HRV analysis algorithms such as those within the domain of complexity science which account for higher order stress signatures. We show that this offers new scope for interpreting the autonomic nervous system response to stress in real-world scenarios, with the evolution of stress levels being consistent with the difficulty of the music being played, superimposed on the stress caused by performing in front of an audience. For an emerging class of algorithms that can analyse HRV independent of absolute data scaling, it is shown that complexity science performs a more accurate assessment of average stress levels, thus providing greater insight into the degree of physiological change experienced by musicians when performing in public. PMID:24068177

  3. Complexity of physiological responses decreases in high-stress musical performance.

    PubMed

    Williamon, Aaron; Aufegger, Lisa; Wasley, David; Looney, David; Mandic, Danilo P

    2013-12-01

    For musicians, performing in front of an audience can cause considerable apprehension; indeed, performance anxiety is felt throughout the profession, with wide ranging symptoms arising irrespective of age, skill level and amount of practice. A key indicator of stress is frequency-specific fluctuations in the dynamics of heart rate known as heart rate variability (HRV). Recent developments in sensor technology have made possible the measurement of physiological parameters reflecting HRV non-invasively and outside of the laboratory, opening research avenues for real-time performer feedback to help improve stress management. However, the study of stress using standard algorithms has led to conflicting and inconsistent results. Here, we present an innovative and rigorous approach which combines: (i) a controlled and repeatable experiment in which the physiological response of an expert musician was evaluated in a low-stress performance and a high-stress recital for an audience of 400 people, (ii) a piece of music with varying physical and cognitive demands, and (iii) dynamic stress level assessment with standard and state-of-the-art HRV analysis algorithms such as those within the domain of complexity science which account for higher order stress signatures. We show that this offers new scope for interpreting the autonomic nervous system response to stress in real-world scenarios, with the evolution of stress levels being consistent with the difficulty of the music being played, superimposed on the stress caused by performing in front of an audience. For an emerging class of algorithms that can analyse HRV independent of absolute data scaling, it is shown that complexity science performs a more accurate assessment of average stress levels, thus providing greater insight into the degree of physiological change experienced by musicians when performing in public. PMID:24068177

  4. Physiological Responses During Multiplay Exergaming in Young Adult Males are Game-Dependent.

    PubMed

    McGuire, Stephen; Willems, Mark Et

    2015-06-27

    Regular moderate-intensity exercise provides health benefits. The aim of this study was to examine whether the selected exercise intensity and physiological responses during exergaming in a single and multiplayer mode in the same physical space were game-dependent. Ten males (mean ±SD, age: 23 ±5 years, body mass: 84.2 ±15.6 kg, body height: 180 ±7 cm, body mass index: 26.0 ±4.0 kg·m(-2)) played the games Kinect football, boxing and track & field (3 × ∼10 min, ∼ 2 min rest periods) in similar time sequence in two sessions. Physiological responses were measured with the portable Cosmed K4b(2) pulmonary gas exchange system. Single play demands were used to match with a competitive opponent in a multiplay mode. A within-subjects crossover design was used with one-way ANOVA and a post-hoc t-test for analysis (p<0.05). Minute ventilation, oxygen uptake and the heart rate were at least 18% higher during a multiplayer mode for Kinect football and boxing but not for track & field. Energy expenditure was 21% higher during multiplay football. Single play track & field had higher metabolic equivalent than single play football (5.7 ±1.6, range: 3.2-8.6 vs 4.1 ±1.0, range: 3.0-6.1, p<0.05). Exergaming in a multiplayer mode can provide higher physiological demands but the effects are game-dependent. It seems that exergaming with low intensity in a multiplayer mode may provide a greater physical challenge for participants than in a single play mode but may not consistently provide sufficient intensity to acquire health benefits when played regularly as part of a programme to promote and maintain health in young adults. PMID:26240669

  5. Mitochondrial fission is an acute and adaptive response in injured motor neurons.

    PubMed

    Kiryu-Seo, Sumiko; Tamada, Hiromi; Kato, Yukina; Yasuda, Katsura; Ishihara, Naotada; Nomura, Masatoshi; Mihara, Katsuyoshi; Kiyama, Hiroshi

    2016-01-01

    Successful recovery from neuronal damage requires a huge energy supply, which is provided by mitochondria. However, the physiological relevance of mitochondrial dynamics in damaged neurons in vivo is poorly understood. To address this issue, we established unique bacterial artificial chromosome transgenic (BAC Tg) mice, which develop and function normally, but in which neuronal injury induces labelling of mitochondria with green fluorescent protein (GFP) and expression of cre recombinase. GFP-labelled mitochondria in BAC Tg mice appear shorter in regenerating motor axons soon after nerve injury compared with mitochondria in non-injured axons, suggesting the importance of increased mitochondrial fission during the early phase of nerve regeneration. Crossing the BAC Tg mice with mice carrying a floxed dynamin-related protein 1 gene (Drp1), which is necessary for mitochondrial fission, ablates mitochondrial fission specifically in injured neurons. Injury-induced Drp1-deficient motor neurons show elongated or abnormally gigantic mitochondria, which have impaired membrane potential and axonal transport velocity during the early phase after injury, and eventually promote neuronal death. Our in vivo data suggest that acute and prominent mitochondrial fission during the early stage after nerve injury is an adaptive response and is involved in the maintenance of mitochondrial and neuronal integrity to prevent neurodegeneration. PMID:27319806

  6. Mitochondrial fission is an acute and adaptive response in injured motor neurons

    PubMed Central

    Kiryu-Seo, Sumiko; Tamada, Hiromi; Kato, Yukina; Yasuda, Katsura; Ishihara, Naotada; Nomura, Masatoshi; Mihara, Katsuyoshi; Kiyama, Hiroshi

    2016-01-01

    Successful recovery from neuronal damage requires a huge energy supply, which is provided by mitochondria. However, the physiological relevance of mitochondrial dynamics in damaged neurons in vivo is poorly understood. To address this issue, we established unique bacterial artificial chromosome transgenic (BAC Tg) mice, which develop and function normally, but in which neuronal injury induces labelling of mitochondria with green fluorescent protein (GFP) and expression of cre recombinase. GFP-labelled mitochondria in BAC Tg mice appear shorter in regenerating motor axons soon after nerve injury compared with mitochondria in non-injured axons, suggesting the importance of increased mitochondrial fission during the early phase of nerve regeneration. Crossing the BAC Tg mice with mice carrying a floxed dynamin-related protein 1 gene (Drp1), which is necessary for mitochondrial fission, ablates mitochondrial fission specifically in injured neurons. Injury-induced Drp1-deficient motor neurons show elongated or abnormally gigantic mitochondria, which have impaired membrane potential and axonal transport velocity during the early phase after injury, and eventually promote neuronal death. Our in vivo data suggest that acute and prominent mitochondrial fission during the early stage after nerve injury is an adaptive response and is involved in the maintenance of mitochondrial and neuronal integrity to prevent neurodegeneration. PMID:27319806

  7. Effects of modified multistage field test on performance and physiological responses in wheelchair basketball players.

    PubMed

    Weissland, Thierry; Faupin, Arnaud; Borel, Benoit; Berthoin, Serge; Leprêtre, Pierre-Marie

    2015-01-01

    A bioenergetical analysis of manoeuvrability and agility performance for wheelchair players is inexistent. It was aimed at comparing the physiological responses and performance obtained from the octagon multistage field test (MFT) and the modified condition in "8 form" (MFT-8). Sixteen trained wheelchair basketball players performed both tests in randomized condition. The levels performed (end-test score), peak values of oxygen uptake (VO2peak), minute ventilation (VEpeak), heart rate (HRpeak), peak and relative blood lactate (Δ[Lact(-)] = peak--rest values), and the perceived rating exertion (RPE) were measured. MFT-8 induced higher VO2peak and VEpeak values compared to MFT (VO2peak: 2.5 ± 0.6 versus 2.3 ± 0.6 L · min(-1) and VEpeak: 96.3 ± 29.1 versus 86.6 ± 23.4 L · min(-1); P < 0.05) with no difference in other parameters. Significant relations between VEpeak and end-test score were correlated for both field tests (P < 0.05). At exhaustion, MFT attained incompletely VO2peak and VEpeak. Among experienced wheelchair players, MFT-8 had no effect on test performance but generates higher physiological responses than MFT. It could be explained by demands of wheelchair skills occurring in 8 form during the modified condition. PMID:25802841

  8. Physiological short-term response to sudden salinity change in the Senegalese sole (Solea senegalensis).

    PubMed

    Herrera, Marcelino; Aragão, Cláudia; Hachero, Ismael; Ruiz-Jarabo, Ignacio; Vargas-Chacoff, Luis; Mancera, Juan Miguel; Conceição, Luis E C

    2012-12-01

    The physiological responses of Senegalese sole to a sudden salinity change were investigated. The fish were first acclimated to an initial salinity of 37.5 ppt for 4 h. Then, one group was subjected to increased salinity (55 ppt) while another group was subjected to decreased salinity (5 ppt). The third group (control group) remained at 37.5 ppt. We measured the oxygen consumption rate, osmoregulatory (plasma osmolality, gill and kidney Na(+),K(+)-ATPase activities) and stress (plasma cortisol and metabolites) parameters 0.5 and 3 h after transfer. Oxygen consumption at both salinities was higher than for the control at both sampling times. Gill Na(+),K(+)-ATPase activity was significantly higher for the 55 ppt salinity at 0.5 h. Plasma osmolality decreased in the fish exposed to 5 ppt at the two sampling times but no changes were detected for high salinities. Plasma cortisol levels significantly increased at both salinities, although these values declined in the low-salinity group 3 h after transfer. Plasma glucose at 5 ppt salinity did not vary significantly at 0.5 h but decreased at 3 h, while lactate increased for both treatments at the first sampling time and returned to the control levels at 3 h. Overall, the physiological response of S. senegalensis was immediate and involved a rise in oxygen consumption and plasma cortisol values as well as greater metabolite mobilization at both salinities. PMID:22678707

  9. Does including physiology improve species distribution model predictions of responses to recent climate change?

    PubMed

    Buckley, Lauren B; Waaser, Stephanie A; MacLean, Heidi J; Fox, Richard

    2011-12-01

    Thermal constraints on development are often invoked to predict insect distributions. These constraints tend to be characterized in species distribution models (SDMs) by calculating development time based on a constant lower development temperature (LDT). Here, we assessed whether species-specific estimates of LDT based on laboratory experiments can improve the ability of SDMs to predict the distribution shifts of six U.K. butterflies in response to recent climate warming. We find that species-specific and constant (5 degrees C) LDT degree-day models perform similarly at predicting distributions during the period of 1970-1982. However, when the models for the 1970-1982 period are projected to predict distributions in 1995-1999 and 2000-2004, species-specific LDT degree-day models modestly outperform constant LDT degree-day models. Our results suggest that, while including species-specific physiology in correlative models may enhance predictions of species' distribution responses to climate change, more detailed models may be needed to adequately account for interspecific physiological differences. PMID:22352161

  10. Physiological responses of Brazilian amphibians to an enzootic infection of the chytrid fungus Batrachochytrium dendrobatidis.

    PubMed

    Bovo, Rafael P; Andrade, Denis V; Toledo, Luís Felipe; Longo, Ana V; Rodriguez, David; Haddad, Célio F B; Zamudio, Kelly R; Becker, C Guilherme

    2016-01-13

    Pathophysiological effects of clinical chytridiomycosis in amphibians include disorders of cutaneous osmoregulation and disruption of the ability to rehydrate, which can lead to decreased host fitness or mortality. Less attention has been given to physiological responses of hosts where enzootic infections of Batrachochytrium dendrobatidis (Bd) do not cause apparent population declines in the wild. Here, we experimentally tested whether an enzootic strain of Bd causes significant mortality and alters host water balance (evaporative water loss, EWL; skin resistance, R(s); and water uptake, WU) in individuals of 3 Brazilian amphibian species (Dendropsophus minutus, n = 19; Ischnocnema parva, n = 17; Brachycephalus pitanga, n = 15). Infections with enzootic Bd caused no significant mortality, but we found an increase in R(s) in 1 host species concomitant with a reduction in EWL. These results suggest that enzootic Bd infections can indeed cause sub-lethal effects that could lead to reduction of host fitness in Brazilian frogs and that these effects vary among species. Thus, our findings underscore the need for further assessment of physiological responses to Bd infections in different host species, even in cases of sub-clinical chytridiomycosis and long-term enzootic infections in natural populations. PMID:26758658

  11. Sexually different physiological responses of Populus cathayana to nitrogen and phosphorus deficiencies.

    PubMed

    Zhang, Sheng; Jiang, Hao; Zhao, Hongxia; Korpelainen, Helena; Li, Chunyang

    2014-04-01

    Previous studies have shown that there are significant sexual differences in the morphological and physiological responses of Populus cathayana Rehder under stressful conditions. However, little is known about sex-specific differences in responses to nutrient deficiencies. In this study, the effects of nitrogen (N) and phosphorus (P) deficiencies on the morphological, physiological and chloroplast ultrastructural traits of P. cathayana males and females were investigated. The results showed that N and P deficiencies significantly decreased plant growth, foliar N and P contents, chlorophyll content, photosynthesis, and instantaneous photosynthetic N- and P-use efficiencies (PNUE and PPUE) in both sexes. Males had higher photosynthesis, higher PNUE and PPUE rates, and a lower accumulation of plastoglobules in chloroplasts than did females when exposed to N- and P-deficiency conditions. Nitrogen-deficient males had higher glutamate dehydrogenase and peroxidase activities, and a more intact chloroplast ultrastructure, but less starch accumulation than did N-deficient females. Phosphorus-deficient males had higher nitrate reductase, glutamine synthetase and acid phosphatase activities, but a lower foliar N : P ratio and less PSII damage than did P-deficient females. These results suggest that N and P deficiencies cause greater negative effects on females than on males, and that the different sexes of P. cathayana may employ different strategies to cope with N and P deficiencies. PMID:24739232

  12. Physiological responses of food neophobics and food neophilics to food and non-food stimuli.

    PubMed

    Raudenbush, Bryan; Capiola, August

    2012-06-01

    Individual differences in human food neophobia (the reluctance to try novel foods) and food neophilia (the overt willingness to try novel foods) influence the evaluation of tastes and odors, as well as the sampling of such stimuli. Past research also notes an association of food neophobia to PTC sensitivity, body weight, and cephalic phase salivary response. The present study assessed physiological reactions of food neophobics and neophilics to pictures of food and non-food stimuli. Stimuli pictures were presented in random order on a computer screen for a period of 5 min. No significant differences were found between the groups in relation to non-food stimuli. However, pulse, GSR, and respirations were significantly increased in food neophobics when presented pictures of food stimuli. Thus, further evidence is provided to support a physiological component at least partially responsible for differences noted between neophobics and neophilics in sensitivity, psychophysical ratings, and "willingness to try" personality. Such a component may also lead to differences in weight, nutrition, and overall health. PMID:22369957

  13. Effects of Modified Multistage Field Test on Performance and Physiological Responses in Wheelchair Basketball Players

    PubMed Central

    Weissland, Thierry; Faupin, Arnaud; Borel, Benoit; Berthoin, Serge; Leprêtre, Pierre-Marie

    2015-01-01

    A bioenergetical analysis of manoeuvrability and agility performance for wheelchair players is inexistent. It was aimed at comparing the physiological responses and performance obtained from the octagon multistage field test (MFT) and the modified condition in “8 form” (MFT-8). Sixteen trained wheelchair basketball players performed both tests in randomized condition. The levels performed (end-test score), peak values of oxygen uptake (VO2peak), minute ventilation (VEpeak), heart rate (HRpeak), peak and relative blood lactate (Δ[Lact−] = peak – rest values), and the perceived rating exertion (RPE) were measured. MFT-8 induced higher VO2peak and VEpeak values compared to MFT (VO2peak: 2.5 ± 0.6 versus 2.3 ± 0.6 L·min−1 and VEpeak: 96.3 ± 29.1 versus 86.6 ± 23.4 L·min−1; P < 0.05) with no difference in other parameters. Significant relations between VEpeak and end-test score were correlated for both field tests (P < 0.05). At exhaustion, MFT attained incompletely VO2peak and VEpeak. Among experienced wheelchair players, MFT-8 had no effect on test performance but generates higher physiological responses than MFT. It could be explained by demands of wheelchair skills occurring in 8 form during the modified condition. PMID:25802841

  14. Physiological and biochemical responses of rice seeds to phosphine exposure during germination.

    PubMed

    Niu, Xiaojun; Mi, Lina; Li, Yadong; Wei, Aishu; Yang, Zhiquan; Wu, Jiandong; Zhang, Di; Song, Xiaofei

    2013-11-01

    Rice seeds (Tianyou, 3618) were used to examine the physiological and biochemical responses to phosphine exposure during germination. A control (0 mg m(-3)) and four concentrations of phosphine (1.4 mg m(-3), 4.2 mg m(-3), 7.0 mg m(-3) and 13.9 mg m(-3)) were used to treat the rice seeds. Each treatment was applied for 90 min once per day for five days. The germination rate (GR); germination potential (GP); germination index (GI); antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT); and lipid peroxidation measured through via malondialdehyde (MDA) were determined as indicators of the physiological and biochemical responses of the rice seeds to phosphine exposure. These indicators were determined once per day for five days. The results indicated that the GR, GP and GI of the rice seeds markedly decreased after phosphine exposure. The changes in the activities of the antioxidant enzymes due to the phosphine exposure were also significant. The exposure lowered the CAT and SOD activities and increased POD activity in the treated rice seeds compared with controls. The MDA content exhibited a slow increase trend with the increase of phosphine concentration. These results suggest that phosphine has inhibitory effects on seed germination. In addition, phosphine exposure caused oxidative stress in the seeds. The antioxidant enzymes could play a pivotal role against oxidative injury. Overall, the effect of phosphine on rice seeds is different from what has been reported previously for insects and mammals. PMID:23992639

  15. Physiological and biochemical responses of resistant and susceptible wheat to injury by Russian wheat aphid.

    PubMed

    Franzen, Lisa D; Gutsche, Andrea R; Heng-Moss, Tiffany M; Higley, Leon G; Sarath, Gautam; Burd, John D

    2007-10-01

    We examined the physiological and biochemical responses of resistant ('Halt' and 'Prairie Red') and susceptible ('TAM 107') wheat, Triticum aestivum L., to injury by the Russian wheat aphid, Diuraphis noxia (Mordvilko). Photosynthetic capacity was evaluated by measuring assimilation/internal CO2 (A/Ci) curves, chlorophyll fluorescence, chlorophyll, and nonstructural carbohydrate content. Total protein and peroxidase specific activity also were determined. No significant differences were detected in chlorophyll concentration between aphid-infested and control TAM 107 plants. The aphid-infested resistant cultivars had similar or significantly higher chlorophyll concentrations compared with their respective control plants. Measurements over time showed that infested Halt plants had delays in photosynthetic senescence, Prairie Red plants had photosynthetic rate changes that were similar to control plants, and TAM 107 plants displayed accelerated photosynthetic senescence patterns. The photochemical and nonphotochemical quenching coefficients were significantly higher in infested Halt plants compared with their respective control plants on day 3. Infested TAM 107 plants had significantly higher photochemical quenching compared with control plants at all times evaluated, and they had significantly higher nonphotochemical quenching on day 3. Throughout the experiment, infested Prairie Red plants exhibited photochemical and nonphotochemical quenching coefficient values that were not significantly different from control plants. Total protein content was not significantly different between aphid-infested and control plants for all cultivars. Differences between physiological responses of infested susceptible and resistant cultivars, particularly temporal changes in photosynthetic activity, imply that resistant Halt and Prairie Red wheat tolerate some impacts of aphid injury on photosynthetic integrity. PMID:17972650

  16. Growth, metabolism and physiological response of the sea cucumber, Apostichopus japonicus Selenka during periods of inactivity

    NASA Astrophysics Data System (ADS)

    Du, Rongbin; Zang, Yuanqi; Tian, Xiangli; Dong, Shuanglin

    2013-03-01

    The growth, metabolism and physiological response of the sea cucumber, Apostichopus japonicus, were investigated during periods of inactivity. The body weight, oxygen consumption rate (OCR), activities of acidic phosphatase (ACP), alkaline phosphatase (AKP), catalase (CAT) and superoxide dismutase (SOD), and content of heat shock protein 70 (Hsp70) in the body wall and coelomic fluid of A. japonicus were measured during starvation, experimental aestivation and aestivation. The results showed that the body weight of sea cucumber in the three treatments decreased significantly during the experimental period ( P < 0.05). The OCR of sea cucumber reduced in starvation and experimental aestivation treatments, but increased gradually in natural aestivation treatment. The activities of ACP and AKP of sea cucumber decreased gradually in all treatments, whereas those of SOD and CAT as well as Hsp70 content decreased in the starvation and experimental aestivation treatments and increased in natural aestivation treatment. The sea cucumber entered a state of aestivation at 24°C. To some extent, the animals in experimental aestivation were different from those in natural aestivation in metabolism and physiological response. These findings suggested that the aestivation mechanism of A. japonicus is complex and may not be attributed to the elevated temperature only.

  17. A novel approach to monitor stress-induced physiological responses in immobilized microorganisms.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2015-04-01

    Microbial cell immobilization has long been considered as a potential bioprocessing strategy to increase both microorganisms' tolerance and fitness in fermentation systems. To date, little emphasis has been put on how the entrapped cells respond to the bioprocessing stresses encountered during the cultivation. The present work presents for the first time a methodology to decipher the real health status of the entrapped microorganisms by combining multiparameter flow cytometry with confocal fluorescence microscopy as monitoring tools. Comparison between resting free and immobilized cell-based systems enabled to characterize the spatial-temporal physiological response of entrapped Pseudomonas taetrolens cells during lactobionic acid production in submerged cultivation. Whereas cellular leakage from beads led to planktonic cells that faced a progressive loss of membrane integrity, immobilized cells underwent a prompt stress-induced physiological response featured by the predominance of cellular damaging. Moreover, visualization without matrix de-entrapment through confocal fluorescence microscopy revealed the overtime formation of cellular micro-colonies inside the beads. These micro-colonies comprised a shell made of dead cells, whereas the inward cells remained metabolically active. The proposed approach herein raises the possibility of using flow cytometry and confocal fluorescence microscopy as indicators of microbial cell immobilization, providing further key information on the health status and robustness of entrapped microorganisms. PMID:25776062

  18. Seasonal variations of physiological responses to heat of subtropical and temperate natives

    NASA Astrophysics Data System (ADS)

    Ihzuka, H.; Hori, S.; Akamatsu, T.

    1986-06-01

    In an attempt to compare the physiological responses of subtropical natives to heat with those of temperate natives, seasonal variations in physiological responses to heat were observed in young male residents of Okinawa who were born and raised in Okinawa, subtropical zone (group O) and young male residents of Okinawa who were born and raised on the Japan mainland, temperate zone, but moved to Okinawa in less than two years (group M). In both seasons, group O showed less sweat loss, lower Na concentration in sweat, lower rise in rectal temperature and less increase in heart rate during heat exposure than group M. In both groups, greater sweat loss, lower Na concentration in sweat and lower rise in rectal temperature in summer than in winter were observed. Seasonal differences in Na concentration in sweat, rise in rectal temperature and increase in heart rate for group O were smaller than those for group M. It was assumed the efficiency of sweat for cooling the body for group O was better than that for group M, and heat tolerance for group O was superior to that for group M.

  19. Cloudwater and O[sub 3] effects on red spruce at Whitetop Mt. , VA: Physiological response

    SciTech Connect

    Pier, P.A.; Thornton, F.C.; Neufeld, H.; Seiler, J.R.; Hutcherson, J.D.

    1994-06-01

    Results of studies on red spruce (Picea rubens Sarg.) at Whitetop Mountain (elevation 1689 m) were assessed to evaluate whether acidic cloudwater deposition and O[sub 3] contribute to reported high elevation red spruce ecosystem decline. Studies were conducted using seedling exclusion chambers, mature tree branch exclusion chambers, and field experiments with seedlings, saplings, and mature trees. Ozone had minimal effects on the measured parameters. Photosynthetic response to cloudwater varied, dependent on tree age. Seedling respiration tended to decrease with cloudwater removal, although biomass accumulation was not affected. A 3[degrees] to 5[degrees]C increase in cold tolerance was measured in seedlings with cloudwater excluded. Chlorophyll and epicuticular wax concentrations were not significantly affected. Physiological responses to cloudwater may be caused by the observed depletion of needle cations, particularly Ca, which appear to be due to foliar leaching and to increased soil Al concentrations, which can interfere with cation uptake by roots.

  20. Physiological responses of mild pulmonary impaired subjects while using a demand respirator during rest and work

    SciTech Connect

    Raven, P.B.; Jackson, A.W.; Page, K.; Moss, R.F.; Bradley, O.; Skaggs, B.

    1981-04-01

    This investigation determined the cardiorespiratory responses of subjects with normal lung function and exercise tolerance and compared them with subjects with moderate and severe impairment of lung function and exercise tolerance. Comparisons were made during work while wearing an industrial respirator. Physiologically and subjectively the response of the normal and moderately impaired subjects to respirator wear during rest, 35%, 50% and 63% of their maximal workloads were not different. However, when the moderately impaired worked at 63% of their maximum the workload was equivalent to 50% of maximum of the normal subject. Significant differences in the peak flow/pressure ratio of the severely impaired compred to the normals and moderately impaired were found. By relating work performance to the dyspnea index it was suggested that the relationship between maximal lung function and maximal work performance needs to be identified both with and without respirators. This relationship may prove suitable in predicting performance during respirator wear.

  1. Tibetans living at sea level have a hyporesponsive hypoxia-inducible factor system and blunted physiological responses to hypoxia

    PubMed Central

    Petousi, Nayia; Croft, Quentin P. P.; Cavalleri, Gianpiero L.; Cheng, Hung-Yuan; Formenti, Federico; Ishida, Koji; Lunn, Daniel; McCormack, Mark; Shianna, Kevin V.; Talbot, Nick P.; Ratcliffe, Peter J.

    2013-01-01

    Tibetan natives have lived on the Tibetan plateau (altitude ∼4,000 m) for at least 25,000 years, and as such they are adapted to life and reproduction in a hypoxic environment. Recent studies have identified two genetic loci, EGLN1 and EPAS1, that have undergone natural selection in Tibetans, and further demonstrated an association of EGLN1/EPAS1 genotype with hemoglobin concentration. Both genes encode major components of the hypoxia-inducible factor (HIF) transcriptional pathway, which coordinates an organism's response to hypoxia. Patients living at sea level with genetic disease of the HIF pathway have characteristic phenotypes at both the integrative-physiology and cellular level. We sought to test the hypothesis that natural selection to hypoxia within Tibetans results in related phenotypic differences. We compared Tibetans living at sea level with Han Chinese, who are Tibetans' most closely related major ethnic group. We found that Tibetans had a lower hemoglobin concentration, a higher pulmonary ventilation relative to metabolism, and blunted pulmonary vascular responses to both acute (minutes) and sustained (8 h) hypoxia. At the cellular level, the relative expression and hypoxic induction of HIF-regulated genes were significantly lower in peripheral blood lymphocytes from Tibetans compared with Han Chinese. Within the Tibetans, we found a significant correlation between both EPAS1 and EGLN1 genotype and the induction of erythropoietin by hypoxia. In conclusion, this study provides further evidence that Tibetans respond less vigorously to hypoxic challenge. This is evident at sea level and, at least in part, appears to arise from a hyporesponsive HIF transcriptional system. PMID:24030663

  2. Characterization of the Psychological, Physiological and EEG Profile of Acute Betel Quid Intoxication in Naïve Subjects

    PubMed Central

    Osborne, Peter G.; Chou, Tung-Shan; Shen, Tsu-Wang

    2011-01-01

    Betel quid use and abuse is wide spread in Asia but the physiological basis of intoxication and addiction are unknown. In subjects naïve to the habit of betel quid intoxication, the psychological and physiological profile of intoxication has never been reported. We compared the effect of chewing gum or chewing betel quid, and subsequent betel quid intoxication, on psychological assessment, prospective time interval estimation, numerical and character digit span, computerized 2 choice tests and mental tasks such as reading and mathematics with concurrent monitoring of ECG, EEG and face temperature in healthy, non-sleep deprived, male subjects naïve to the habit of chewing betel quid. Betel quid intoxication, dose dependently induced tachycardia (max 30 bpm) and elevated face temperature (0.7°C) (P<0.001) above the effects observed in response to chewing gum (max 12 bpm and 0.3°C) in 12 subjects. Gross behavioral indices of working memory such as numerical or character digit span in 8 subjects, or simple visual-motor performance such as reaction speed or accuracy in a two choice scenario in 8 subjects were not affected by betel quid intoxication. Betel quid intoxication strongly influenced the psychological aspects of perception such as slowing of the prospective perception of passage of a 1 minute time interval in 8 subjects (P<0.05) and perceived increased arousal (P<0.01) and perceived decreased ability to think (P<0.05) in 31 subjects. The EEG spectral profile recorded from mental states associated with open and closed eyes, and mental tasks such as reading and eyes closed mental arithmetic were significantly modified (P<0.05) relative to chewing gum by betel quid intoxication in 10 subjects. The prevalence of betel quid consumption across a range of social and work settings warrants greater investigation of this widespread but largely under researched drug. PMID:21909371

  3. Hyper-responsiveness to acute stress, emotional problems and poorer memory in former preterm children.

    PubMed

    Quesada, Andrea A; Tristão, Rosana M; Pratesi, Riccardo; Wolf, Oliver T

    2014-09-01

    The prevalence of preterm birth (PTB) is high worldwide, especially in developing countries like Brazil. PTB is marked by a stressful environment in intra- as well as extrauterine life, which can affect neurodevelopment and hormonal and physiological systems and lead to long-term negative outcomes. Nevertheless, little is known about PTB and related outcomes later on in childhood. Thus, the goals of the current study were threefold: (1) comparing cortisol and alpha-amylase (sAA) profiles, including cortisol awakening response (CAR), between preterm and full-term children; (2) evaluating whether preterm children are more responsive to acute stress and (3) assessing their memory skills and emotional and behavioral profiles. Basal cortisol and sAA profiles, including CAR of 30 preterm children, aged 6 to 10 years, were evaluated. Further, we assessed memory functions using the Wide Range Assessment of Memory and Learning, and we screened behavior/emotion using the Strengths and Difficulties Questionnaire. The results of preterm children were compared to an age- and sex-matched control group. One week later, participants were exposed to a standardized laboratory stressor [Trier Social Stress Test for Children (TSST-C)], in which cortisol and sAA were measured at baseline, 1, 10 and 25 min after stressor exposure. Preterm children had higher cortisol concentrations at awakening, a flattened CAR and an exaggerated response to TSST-C compared to full-term children. These alterations were more pronounced in girls. In addition, preterm children were characterized by more emotional problems and poorer memory performance. Our findings illustrate the long-lasting and in part sex-dependent effects of PTB on the hypothalamic-pituitary-adrenal (HPA) axis, internalizing behavior and memory. The findings are in line with the idea that early adversity alters the set-point of the HPA axis, thereby creating a more vulnerable phenotype. PMID:25089937

  4. Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress.

    PubMed

    Arndt, S K; Clifford, S C; Wanek, W; Jones, H G; Popp, M

    2001-07-01

    The physiological basis of drought resistance in Ziziphus rotundifolia Lamk., which is an important, multipurpose fruit tree of the northwest Indian arid zone, was investigated in a greenhouse experiment. Three irrigation regimes were imposed over a 34-day period: an irrigation treatment, a gradual drought stress treatment (50% of water supplied in the irrigation treatment) and a rapid drought stress treatment (no irrigation). Changes in gas exchange, water relations, carbon isotope composition and solute concentrations of leaves, stems and roots were determined. The differential rate of stress development in the two drought treatments did not result in markedly different physiological responses, but merely affected the time at which they were expressed. The initial response to decreasing soil water content was reduced stomatal conductance, effectively maintaining predawn leaf water potential (Psi(leaf)), controlling water loss and increasing intrinsic water-use efficiency, while optimizing carbon gain during drought. Carbon isotope composition (delta13C) of leaf tissue sap provided a more sensitive indicator of changes in short-term water-use efficiency than delta13C of bulk leaf tissue. As drought developed, osmotic potential at full turgor decreased and total solute concentrations increased in leaves, indicating osmotic adjustment. Decreases in leaf starch concentrations and concomitant increases in hexose sugars and sucrose suggested a shift in carbon partitioning in favor of soluble carbohydrates. In severely drought-stressed leaves, high leaf nitrate reductase activities were paralleled by increases in proline concentration, suggesting an osmoprotective role for proline. As water deficit increased, carbon was remobilized from leaves and preferentially redistributed to stems and roots, and leaves were shed, resulting in reduced whole-plant transpiration and enforced dormancy. Thus, Z. rotundifolia showed a range of responses to different drought intensities

  5. Distinct physiologic and neuronal responses to decreased leptin and mild hyperleptinemia.

    PubMed

    Ahima, R S; Kelly, J; Elmquist, J K; Flier, J S

    1999-11-01

    Leptin acts on specific populations of hypothalamic neurons to regulate feeding behavior, energy expenditure, and neuroendocrine function. It is not known, however, whether the same neural circuits mediate leptin action across its full biologic dose-response curve, which extends over a broad range, from low levels seen during starvation to high levels characteristic of obesity. Here, we show that the characteristic fall in leptin with fasting causes a rise in neuropeptide Y (NPY) messenger RNA (mRNA), as well as a fall in POMC and cocaine and amphetamine-regulated transcript (CART) mRNAs. Sc infusion of leptin sufficient to maintain plasma levels within the physiologic range during the fast prevents changes in the expression of these peptides, as well as changes in neuroendocrine function, demonstrating that multiple neural circuits are highly sensitive to small changes in leptin within its low physiologic range. In contrast, a modest elevation of plasma leptin above the normal fed range by constant sc infusion, which produced marked reduction in food intake and body weight, decreased NPY mRNA in the arcuate hypothalamic nucleus but did not affect the levels of mRNAs encoding the anorexigenic peptides alpha-MSH, CART or CRH. These results suggest that the dose response characteristics of leptin on hypothalamic target neurons at the level of mRNA expression are variable, with some neurons (e.g. NPY) responding across a broad dose range and others (e.g. POMC and CART) showing a limited response within the low range. These results further suggest that the central targets of leptin that mediate the transition from starvation to the fed state may be distinct from those that mediate the response to overfeeding and obesity. PMID:10537115

  6. Pros and Cons of Using Water Immersion to Simulate Physiological Responses to Microgravity

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Tomko, David L. (Technical Monitor)

    1995-01-01

    Head-out water immersion (HOI) has been employed as a remedial treatment for various ills and ailments for many millennia, and total body immersion even longer as protective encapsulation for the mammalian fetus. Two discrete differences between stimuli induced by true microgravity (10(exp -4) g) and HOI are readily apparent. External water pressure on the skin and accompanying negative pressure breathing cause blood to shift headward. Secondly, the gravitational force is ever present during immersion and microgravity, but its effect is essentially neutralized during Earth orbital flight. Thus, the physiological responses to immersion should not be expected to match those during microgravity. Immersion has been used mainly to study and understand kidney function and associated cardiovascular responses for control of body fluid volume and osmotic content, with some application to and simulation of microgravity responses. There is a plethora of data from human HOI studies, but relatively few controlled data from microgravity studies. In general, it appears that physiological responses occur more quickly with water immersion than in microgravity, but this may be due to less rigorous control (voluntary and involuntary) of the preflight state of crew members. The central venous pressure-vasopressin (Gauer-Henry) reflex control for fluid balance may not be of prime importance in microgravity. Gross functions such as reduced body weight and water, level of hypovolemia, decreased isokinetic strength, and lower nitrogen balance found during immersion are qualitatively similar in microgravity, but the mechanisms controlling these and other functions are, for the most part, unclear. Only acquisition of data from well-controlled microgravity experiments will resolve this discrepancy.

  7. Behavioral and physiological response of Musca domestica to colored visual targets.

    PubMed

    Diclaro, J W; Cohnstaedt, L W; Pereira, R M; Allan, S A; Koehler, P G

    2012-01-01

    A better understanding of the visual attraction of house flies to colors and patterns is needed to improve fly trap performance. This study combined physiological responses measured with electroretinogram studies of the house fly's compound eyes and ocelli with behavioral attraction of flies to reflective colors and patterns in light tunnel assays. Compound eye and ocellar electroretinogram responses to reflected light were similar, with the largest responses to white and blue followed by yellow, red, green, and black. However, data from light tunnel behavioral assays showed that flies were attracted to white and blue light but were repelled by yellow. The addition of a black line pattern enhanced the attractiveness of blue visual targets, whereas yellow lines decreased attractiveness. Sensory input from the compound eye and the ocellus seems to be integrated to direct fly behavior. There is a direct correlation of house fly attractiveness to visual targets and the intensity of electrophysiological response, except for the yellow targets, which repel flies despite of intense electrophysiological response. PMID:22308776

  8. Characterization of the Physiological Response following In Vivo Administration of Astragalus membranaceus.

    PubMed

    Denzler, Karen; Moore, Jessica; Harrington, Heather; Morrill, Kira; Huynh, Trung; Jacobs, Bertram; Waters, Robert; Langland, Jeffrey

    2016-01-01

    The botanical, Astragalus membranaceus, is a therapeutic in traditional Chinese medicine. Limited literature exists on the overall in vivo effects of A. membranaceus on the human body. This study evaluates the physiological responses to A. membranaceus by measuring leukocyte, platelet, and cytokine responses as well as body temperature and blood pressure in healthy individuals after the in vivo administration of A. membranaceus. A dose-dependent increase in monocytes, neutrophils, and lymp