Science.gov

Sample records for acute promyelocytic leukemias

  1. Acute Promyelocytic Leukemia

    PubMed Central

    Kingsley, Edwin C.; Durie, Brian G. M.; Garewal, Harinder S.

    1987-01-01

    Acute promyelocytic leukemia (APL) is a subtype of acute myelogenous leukemia frequently associated with disseminated intravascular coagulation (DIC). Data on 11 patients with APL treated at our institution were analyzed and compared with those of 147 published cases. Most had a bleeding diathesis at presentation and evidence of DIC eventually developed in all. Seven patients (64%) showed the t(15;17)(q22;q21) karyotype or a similar translocation. Using a chemotherapy induction regimen containing an anthracycline, complete remission, requiring a total of 14 courses of treatment, was achieved in six patients (55%). The median duration of response and median survival for complete responders were 10 and 15 months, respectively. Three patients (27%) died of bleeding complications during induction therapy. The tritiated-thymidine labeling index of leukemia cells predicted which patients would achieve a complete remission. Review of six studies of 147 patients with APL from the past 12 years supports the use of a chemotherapy induction regimen containing anthracycline or amsacrine and heparin for the treatment of DIC. PMID:3472414

  2. Genetics Home Reference: acute promyelocytic leukemia

    MedlinePlus

    ... acute myeloid leukemia, a cancer of the blood-forming tissue ( bone marrow ). In normal bone marrow, hematopoietic ... 7186-203. Review. Citation on PubMed de Thé H, Chen Z. Acute promyelocytic leukaemia: novel insights into ...

  3. Gemtuzumab Ozogamicin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Acute Promyelocytic Leukemia

    ClinicalTrials.gov

    2016-07-26

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Childhood Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia

  4. Acute Appendicitis Secondary to Acute Promyelocytic Leukemia

    PubMed Central

    Rodriguez, Eduardo A.; Lopez, Marvin A.; Valluri, Kartik; Wang, Danlu; Fischer, Andrew; Perdomo, Tatiana

    2015-01-01

    Patient: Female, 43 Final Diagnosis: Myeloid sarcoma appendicitis Symptoms: Abdominal pain • chills • fever Medication: — Clinical Procedure: Laparoscopic appendectomy, bone marrow biopsy Specialty: Gastroenterology and Hepatology Objective: Rare disease Background: The gastrointestinal tract is a rare site for extramedullary involvement in acute promyelocytic leukemia (APL). Case Report: A 43-year-old female with no past medical history presented complaining of mild abdominal pain, fever, and chills for the past day. On examination, she was tachycardic and febrile, with mild tenderness of her right lower quadrant and without signs of peritoneal irritation. Laboratory examination revealed pancytopenia and DIC, with a fibrinogen level of 290 mg/dL. CT of the abdomen showed a thickened and hyperemic appendix without perforation or abscess, compatible with acute appendicitis. The patient was given IV broad-spectrum antibiotics and was transfused with packed red blood cells and platelets. She underwent uncomplicated laparoscopic appendectomy and bone marrow biopsy, which revealed neo-plastic cells of 90% of the total bone marrow cellularity. Flow cytometry indicated presence of 92.4% of immature myeloid cells with t (15: 17) and q (22: 12) mutations, and FISH analysis for PML-RARA demonstrated a long-form fusion transcript, positive for APL. Appendix pathology described leukemic infiltration with co-expression of myeloperoxidase and CD68, consistent with myeloid sarcoma of the appendix. The patient completed a course of daunorubicin, cytarabine, and all trans-retinoic acid. Repeat bone marrow biopsy demonstrated complete remission. She will follow up with her primary care physician and hematologist/oncologist. Conclusions: Myeloid sarcoma of the appendix in the setting of APL is very rare and it might play a role in the development of acute appendicitis. Urgent management, including bone marrow biopsy for definitive diagnosis and urgent surgical intervention

  5. Global Characteristics of Childhood Acute Promyelocytic Leukemia

    PubMed Central

    Zhang, L; Samad, A; Pombo-de-Oliveira, MS; Scelo, G; Smith, MT; Feusner, J; Wiemels, JL; Metayer, C

    2014-01-01

    Acute promyelocytic leukemia (APL) comprises approximately 5–10% of childhood acute myeloid leukemia (AML) cases in the US. While variation in this percentage among other populations was noted previously, global patterns of childhood APL have not been thoroughly characterized. In this comprehensive review of childhood APL, we examined its geographic pattern and the potential contribution of environmental factors to observed variation. In 142 studies (spanning >60 countries) identified, variation was apparent—de novo APL represented from 2% (Switzerland) to >50% (Nicaragua) of childhood AML in different geographic regions. Because a limited number of previous studies addressed specific environmental exposures that potentially underlie childhood APL development, we gathered 28 childhood cases of therapy-related APL, which exemplified associations between prior exposures to chemotherapeutic drugs/radiation and APL diagnosis. Future population-based studies examining childhood APL patterns and the potential association with specific environmental exposures and other risk factors are needed. PMID:25445717

  6. Minimal residual disease in acute promyelocytic leukemia.

    PubMed

    Weil, S C

    2000-03-01

    In the last decade our understanding of acute promyelocytic leukemia (APL) has advanced tremendously. The recognition of all-trans retinoic acid (ATRA) as a powerful therapeutic agent paralleled the cloning of the t(15;17) breakpoint. RtPCR for the PML-RARA hybrid mRNA has become the hallmark of molecular diagnosis and molecular monitoring in APL. Current techniques are useful in predicting complete remission and a possible cure in many patients who repeatedly test negative by PCR. Standardizing techniques and improving the sensitivity of the assay are important. Doing this in a way so that clinically relevant minimal residual disease can be distinguished from "indolent disease" remains among the future challenges in APL. PMID:10702899

  7. Targeting of leukemia-initiating cells in acute promyelocytic leukemia

    PubMed Central

    Lo-Coco, Francesco

    2015-01-01

    Acute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia (AML) with peculiar molecular, phenotypic and clinical features and unique therapeutic response to specific treatments. The disease is characterized by a single, pathognomonic molecular event, consisting of the translocation t(15;17) which gives rise to the PML/retinoic acid receptor α (RARα) hybrid protein. The development of this leukemia is mainly related to the fusion oncoprotein PML/RARα, acting as an altered RAR mediating abnormal signalling and repression of myeloid differentiation, with consequent accumulation of undifferentiated promyelocytes. The prognosis of APL has dramatically been improved with the introduction in therapy of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). The main effect of these two drugs is linked to the targeting of either RAR moiety of the PML/RARα molecule and induction of cell differentiation (ATRA) or of the PML moiety of the fusion protein and induction of leukemic cell apoptosis, including leukemic progenitors (mostly induced by ATO). These two drugs exhibited excellent synergism and determine a very high rate of durable remissions in low/intermediate-risk APLs, when administered in the absence of any chemotherapeutic drug. The strong synergism and the marked clinical efficacy of these two agents when administered together seem to be related to their capacity to induce PML/RARα degradation and complete eradication of leukemia stem cells. PMID:27358876

  8. Activation of a promyelocytic leukemia-tumor protein 53 axis underlies acute promyelocytic leukemia cure.

    PubMed

    Ablain, Julien; Rice, Kim; Soilihi, Hassane; de Reynies, Aurélien; Minucci, Saverio; de Thé, Hugues

    2014-02-01

    Acute promyelocytic leukemia (APL) is driven by the promyelocytic leukemia (PML)-retinoic acid receptor-α (PML-RARA) fusion protein, which interferes with nuclear receptor signaling and PML nuclear body (NB) assembly. APL is the only malignancy definitively cured by targeted therapies: retinoic acid (RA) and/or arsenic trioxide, which both trigger PML-RARA degradation through nonoverlapping pathways. Yet, the cellular and molecular determinants of treatment efficacy remain disputed. We demonstrate that a functional Pml-transformation-related protein 53 (Trp53) axis is required to eradicate leukemia-initiating cells in a mouse model of APL. Upon RA-induced PML-RARA degradation, normal Pml elicits NB reformation and induces a Trp53 response exhibiting features of senescence but not apoptosis, ultimately abrogating APL-initiating activity. Apart from triggering PML-RARA degradation, arsenic trioxide also targets normal PML to enhance NB reformation, which may explain its clinical potency, alone or with RA. This Pml-Trp53 checkpoint initiated by therapy-triggered NB restoration is specific for PML-RARA-driven APL, but not the RA-resistant promyelocytic leukemia zinc finger (PLZF)-RARA variant. Yet, as NB biogenesis is druggable, it could be therapeutically exploited in non-APL malignancies.

  9. Acute promyelocytic leukemia: a curable disease.

    PubMed

    Lo Coco, F; Nervi, C; Avvisati, G; Mandelli, F

    1998-12-01

    The Second International Symposium on Acute Promyelocytic Leukemia (APL) was held in Rome in 12-14 November 1997. Clinical and basic investigators had the opportunity to discuss in this meeting the important advances in the biology and treatment of this disease achieved in the last 4 years, since the First Roman Symposium was held in 1993. The first part of the meeting was dedicated to relevant aspects of laboratory research, and included the following topics: molecular mechanisms of leukemogenesis and of response/resistance to retinoids, biologic and therapeutic effects of new agents such as arsenicals and novel synthetic retinoids; characterization of APL heterogeneity at the morphological, cytogenetic and immunophenotypic level. The updated results of large cooperative clinical trials using variable combinations of all-trans retinoic acid (ATRA) and chemotherapy were presented by the respective group chairmen, and formed the 'core' part of the meeting. These studies, which in most cases integrated the molecular assessment of response to treatment, provided a stimulating framework for an intense debate on the most appropriate frontline treatment options to be adopted in the future. The last day was dedicated to special entities such as APL in the elderly and in the child, as well as the role of bone marrow transplantation. The prognostic value of molecular monitoring studies was also discussed in the final session of the meeting. In this article, we review the major advances and controversial issues in APL biology and treatment discussed in this symposium and emerging from very recent publications. We would like to credit the successful outcome of this meeting to the active and generous input of all invited speakers and to participants from all over the world who provided constructive and fruitful discussions.

  10. Tretinoin, Cytarabine, and Daunorubicin Hydrochloride With or Without Arsenic Trioxide Followed by Tretinoin With or Without Mercaptopurine and Methotrexate in Treating Patients With Acute Promyelocytic Leukemia

    ClinicalTrials.gov

    2013-06-04

    Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Promyelocytic Leukemia (M3); Childhood Acute Promyelocytic Leukemia (M3); Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  11. Tretinoin and Arsenic Trioxide in Treating Patients With Untreated Acute Promyelocytic Leukemia

    ClinicalTrials.gov

    2016-07-08

    Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Childhood Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Myeloid Neoplasm

  12. Thrombo-hemorrhagic deaths in acute promyelocytic leukemia.

    PubMed

    Breccia, Massimo; Lo Coco, Francesco

    2014-05-01

    Acute promyelocytic leukemia (APL) has become the most curable form of acute myeloid leukemia after the advent of all-trans retinoic acid (ATRA). However, early deaths (ED) mostly due to the disease-associated coagulopathy remain the major cause of treatment failure. In particular, hemorrhagic events account for 40-65% of ED and several prognostic factors have been identified for such hemorrhagic deaths, including poor performance status, high white blood cell (WBC) count and coagulopathy. Occurrence of thrombosis during treatment with ATRA may be associated with differentiation syndrome (DS) or represent an isolated event. Some prognostic factors have been reported to be associated with thrombosis, including increased WBC or aberrant immunophenotype of leukemic promyelocytes. Aim of this review is to report the incidence, severity, possible pathogenesis and clinical manifestations of thrombo-haemorrhagic deaths in APL.

  13. Thrombo-hemorrhagic deaths in acute promyelocytic leukemia.

    PubMed

    Breccia, Massimo; Lo Coco, Francesco

    2014-05-01

    Acute promyelocytic leukemia (APL) has become the most curable form of acute myeloid leukemia after the advent of all-trans retinoic acid (ATRA). However, early deaths (ED) mostly due to the disease-associated coagulopathy remain the major cause of treatment failure. In particular, hemorrhagic events account for 40-65% of ED and several prognostic factors have been identified for such hemorrhagic deaths, including poor performance status, high white blood cell (WBC) count and coagulopathy. Occurrence of thrombosis during treatment with ATRA may be associated with differentiation syndrome (DS) or represent an isolated event. Some prognostic factors have been reported to be associated with thrombosis, including increased WBC or aberrant immunophenotype of leukemic promyelocytes. Aim of this review is to report the incidence, severity, possible pathogenesis and clinical manifestations of thrombo-haemorrhagic deaths in APL. PMID:24862130

  14. Therapy Related Acute Myeloid Leukemia with t(8;16) Mimicking Acute Promyelocytic Leukemia.

    PubMed

    Chharchhodawala, Taher; Gajendra, Smeeta; Tiwari, Priya; Gogia, Ajay; Gupta, Ritu

    2016-06-01

    Acute myeloid leukemia (AML) with t(8;16)(p11;q13) is a distinct clinical and morphological entity with poor prognosis, which is characterized by a high frequency of extramedullary involvement, most commonly leukemia cutis; association with therapy related AML; frequent coagulopathy and morphologic features overlapping acute promyelocytic leukemia(APL). Herein, we present a case of 47 year-old post-menopausal woman developing secondary AML with t(8;16)(p11;q13) after 1 year of completion of therapy for breast carcinoma. Blasts were granulated with few showing clefted nucleus resembling promyelocytes and immnuophenotyping showed high side scatter with MPO positivity and CD 34 and HLA-DR negativity. In view of promyelocyte like morphology and immunophenotyping of blasts, possibility of APL was considered but, reverse transcription polymerase chain reaction (RT-PCR) for PML-RARα fusion transcript came out to be negative. Conventional cytogenetics showed t(8;16)(p11;q13). So, we should keep possibility of t(8;16) (p11;q13) in therapy related acute myeloid leukemia in patient showing clinical and morphological features of acute promyelocytic leukemia. PMID:27408347

  15. Massive Pulmonary Embolism at the Onset of Acute Promyelocytic Leukemia

    PubMed Central

    Sorà, Federica; Chiusolo, Patrizia; Laurenti, Luca; Autore, Francesco; Giammarco, Sabrina; Sica, Simona

    2016-01-01

    Life-threatening bleeding is a major and early complication of acute promyelocytic leukemia (APL), but in the last years there is a growing evidence of thromboses in APL. We report the first case of a young woman with dyspnea as the first symptom of APL due to massive pulmonary embolism (PE) successfully treated with thrombolysis for PE and heparin. APL has been processed with a combination of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) obtaining complete remission. PMID:27413520

  16. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia.

    PubMed

    Madan, V; Shyamsunder, P; Han, L; Mayakonda, A; Nagata, Y; Sundaresan, J; Kanojia, D; Yoshida, K; Ganesan, S; Hattori, N; Fulton, N; Tan, K-T; Alpermann, T; Kuo, M-C; Rostami, S; Matthews, J; Sanada, M; Liu, L-Z; Shiraishi, Y; Miyano, S; Chendamarai, E; Hou, H-A; Malnassy, G; Ma, T; Garg, M; Ding, L-W; Sun, Q-Y; Chien, W; Ikezoe, T; Lill, M; Biondi, A; Larson, R A; Powell, B L; Lübbert, M; Chng, W J; Tien, H-F; Heuser, M; Ganser, A; Koren-Michowitz, M; Kornblau, S M; Kantarjian, H M; Nowak, D; Hofmann, W-K; Yang, H; Stock, W; Ghavamzadeh, A; Alimoghaddam, K; Haferlach, T; Ogawa, S; Shih, L-Y; Mathews, V; Koeffler, H P

    2016-08-01

    Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by differentiation block at the promyelocyte stage. Besides the presence of chromosomal rearrangement t(15;17), leading to the formation of PML-RARA (promyelocytic leukemia-retinoic acid receptor alpha) fusion, other genetic alterations have also been implicated in APL. Here, we performed comprehensive mutational analysis of primary and relapse APL to identify somatic alterations, which cooperate with PML-RARA in the pathogenesis of APL. We explored the mutational landscape using whole-exome (n=12) and subsequent targeted sequencing of 398 genes in 153 primary and 69 relapse APL. Both primary and relapse APL harbored an average of eight non-silent somatic mutations per exome. We observed recurrent alterations of FLT3, WT1, NRAS and KRAS in the newly diagnosed APL, whereas mutations in other genes commonly mutated in myeloid leukemia were rarely detected. The molecular signature of APL relapse was characterized by emergence of frequent mutations in PML and RARA genes. Our sequencing data also demonstrates incidence of loss-of-function mutations in previously unidentified genes, ARID1B and ARID1A, both of which encode for key components of the SWI/SNF complex. We show that knockdown of ARID1B in APL cell line, NB4, results in large-scale activation of gene expression and reduced in vitro differentiation potential. PMID:27063598

  17. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia

    PubMed Central

    Madan, V; Shyamsunder, P; Han, L; Mayakonda, A; Nagata, Y; Sundaresan, J; Kanojia, D; Yoshida, K; Ganesan, S; Hattori, N; Fulton, N; Tan, K-T; Alpermann, T; Kuo, M-C; Rostami, S; Matthews, J; Sanada, M; Liu, L-Z; Shiraishi, Y; Miyano, S; Chendamarai, E; Hou, H-A; Malnassy, G; Ma, T; Garg, M; Ding, L-W; Sun, Q-Y; Chien, W; Ikezoe, T; Lill, M; Biondi, A; Larson, R A; Powell, B L; Lübbert, M; Chng, W J; Tien, H-F; Heuser, M; Ganser, A; Koren-Michowitz, M; Kornblau, S M; Kantarjian, H M; Nowak, D; Hofmann, W-K; Yang, H; Stock, W; Ghavamzadeh, A; Alimoghaddam, K; Haferlach, T; Ogawa, S; Shih, L-Y; Mathews, V; Koeffler, H P

    2016-01-01

    Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by differentiation block at the promyelocyte stage. Besides the presence of chromosomal rearrangement t(15;17), leading to the formation of PML-RARA (promyelocytic leukemia-retinoic acid receptor alpha) fusion, other genetic alterations have also been implicated in APL. Here, we performed comprehensive mutational analysis of primary and relapse APL to identify somatic alterations, which cooperate with PML-RARA in the pathogenesis of APL. We explored the mutational landscape using whole-exome (n=12) and subsequent targeted sequencing of 398 genes in 153 primary and 69 relapse APL. Both primary and relapse APL harbored an average of eight non-silent somatic mutations per exome. We observed recurrent alterations of FLT3, WT1, NRAS and KRAS in the newly diagnosed APL, whereas mutations in other genes commonly mutated in myeloid leukemia were rarely detected. The molecular signature of APL relapse was characterized by emergence of frequent mutations in PML and RARA genes. Our sequencing data also demonstrates incidence of loss-of-function mutations in previously unidentified genes, ARID1B and ARID1A, both of which encode for key components of the SWI/SNF complex. We show that knockdown of ARID1B in APL cell line, NB4, results in large-scale activation of gene expression and reduced in vitro differentiation potential. PMID:27063598

  18. Delirium in acute promyelocytic leukemia patients: two case reports

    PubMed Central

    2013-01-01

    Background Delirium is a frequently misdiagnosed and inadequately treated neuropsychiatric complication most commonly observed in terminally ill cancer patients. To our knowledge this is the first report describing delirium in two patients aged less than 60 years and enrolled in an intensive chemotherapeutic protocol for acute promyelocytic leukemia. Case presentation Two female Caucasian acute promyelocytic leukemia patients aged 46 and 56 years developed delirium during their induction treatment with all-trans retinoic acid and idarubicin. In both cases symptoms were initially attributed to all-trans retinoic acid that was therefore immediately suspended. In these two patients several situations may have contribute to the delirium: in patient 1 a previous psychiatric disorder, concomitant treatments with steroids and benzodiazepines, a severe infection and central nervous system bleeding while in patient 2 steroid treatment and isolation. In patient 1 delirium was treated with short-term low-doses of haloperidol while in patient 2 non-pharmacologic interventions had a beneficial role. When the diagnosis of delirium was clear, induction treatment was resumed and both patients completed their therapeutic program without any relapse of the psychiatric symptoms. Both patients are alive and in complete remission as far as their leukemia is concerned. Conclusions We suggest that patients with acute promyelocytic leukemia eligible to intensive chemotherapy should be carefully evaluated by a multisciplinary team including psychiatrists in order to early recognize symptoms of delirium and avoid inadequate treatments. In case of delirium, both pharmacologic and non-pharmacologic interventions may be considered. PMID:24237998

  19. Current management of newly diagnosed acute promyelocytic leukemia.

    PubMed

    Cicconi, L; Lo-Coco, F

    2016-08-01

    The management of acute promyelocytic leukemia (APL) has considerably evolved during the past two decades. The advent of all-trans retinoic acid (ATRA) and its inclusion in combinatorial regimens with anthracycline chemotherapy has provided cure rates exceeding 80%; however, this widely adopted approach also conveys significant toxicity including severe myelosuppression and rare occurrence of secondary leukemias. More recently, the advent of arsenic trioxide (ATO) and its use in association with ATRA with or without chemotherapy has further improved patient outcome by allowing to minimize the intensity of chemotherapy, thus reducing serious toxicity while maintaining high anti-leukemic efficacy. The advantage of ATRA-ATO over ATRA chemotherapy has been recently demonstrated in two large randomized trials and this option has now become the new standard of care in low-risk (i.e. non-hyperleukocytic) patients. In light of its rarity, abrupt onset and high risk of early death and due to specific treatment requirements, APL remains a challenging condition that needs to be managed in highly experienced centers. We review here the results of large clinical studies conducted in newly diagnosed APL as well as the recommendations for appropriate diagnosis, prevention and management of the main complications associated with modern treatment of the disease. PMID:27084953

  20. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia

    SciTech Connect

    Orfali, Nina; McKenna, Sharon L.; Cahill, Mary R.; Gudas, Lorraine J.; Mongan, Nigel P.

    2014-05-15

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies. - Highlights: • Normal and aberrant retinoid signaling in hematopoiesis and leukemia is reviewed. • We suggest a novel role for RARα in the development of X-RARα gene fusions in APL. • ATRA therapy in APL activates transcription and promotes onco-protein degradation. • Autophagy may be involved in both onco-protein degradation and differentiation. • Pharmacologic autophagy induction may potentiate ATRA's therapeutic effects.

  1. Acute promyelocytic leukemia during pregnancy: a systematic analysis of outcome.

    PubMed

    Verma, Vivek; Giri, Smith; Manandhar, Samyak; Pathak, Ranjan; Bhatt, Vijaya Raj

    2016-01-01

    The outcomes of acute promyelocytic leukemia (APL) in pregnancy are largely unknown. The MEDLINE database was systematically searched to obtain 43 articles with 71 patients with new-onset APL during pregnancy. Induction therapy included various regimens of all-trans retinoic acid (ATRA), cytarabine, and anthracycline and resulted in a complete remission rate of 93%. Obstetric and fetal complications included pre-term deliveries (46%), spontaneous/therapeutic abortion/intrauterine death (33.3%) and other neonatal complications (25.9%). Mothers diagnosed in the first trimester were more likely to experience obstetric (p < 0.01) and fetal (p < 0.01) complications. To our knowledge, this is the largest systematic review of APL in pregnancy. The vast majority of APL patients in pregnancy may achieve remission with initial induction therapy. APL or its therapy in pregnancy, however, is associated with a high risk of fetal and obstetrical complications. The results of our study may help in patient counseling and informed decision-making. PMID:26110880

  2. Pathogenesis and treatment of thrombohemorrhagic diathesis in acute promyelocytic leukemia.

    PubMed

    Falanga, Anna; Russo, Laura; Tartari, Carmen J

    2011-01-01

    Acute promyelocytic leukemia (APL) is a distinct subtype of myeloid leukemia characterized by t(15;17) chromosomal translocation, which involves the retinoic acid receptor-alpha (RAR-alpha). APL typically presents with a life-threatening hemorrhagic diathesis. Before the introduction of all-trans retinoic acid (ATRA) for the cure of APL, fatal hemorrhages due, at least in part, to the APL-associated coagulopathy, were a major cause of induction remission failure. The laboratory abnormalities of blood coagulation found in these patients indicate the occurrence of a hypercoagulable state. Major determinants of the coagulopathy of APL are endogenous factors expressed by the leukemic cells, including procoagulant factors, fibrinolytic proteins, and non-specific proteolytic enzymes. In addition, these cells have an increased capacity to adhere to the vascular endothelium, and to secrete inflammatory cytokines [i.e. interleukin-1beta (IL-1beta) and tumor necrosis factor (TNF-alpha)], which in turn stimulate the expression of prothrombotic activities by endothelial cells and leukocytes. ATRA can interfere with each of the principal hemostatic properties of the leukemic cell, thus reducing the APL cell procoagulant potential, in parallel to the induction of cellular differentiation. This effect occurs in vivo, in the bone marrow of APL patients receiving ATRA, and is associated with the improvement of the bleeding symptoms. Therapy with arsenic trioxide (ATO) also beneficially affects coagulation in APL. However, early deaths from bleeding still remain a major problem in APL and further research is required in this field. In this review, we will summarize our current knowledge of the pathogenesis of the APL-associated coagulopathy and will overview the therapeutic approaches for the management of this complication. PMID:22220265

  3. Pathogenesis and Treatment of Thrombohemorrhagic Diathesis in Acute Promyelocytic Leukemia

    PubMed Central

    Falanga, Anna; Russo, Laura; Tartari, Carmen J

    2011-01-01

    Acute promyelocytic leukemia (APL) is a distinct subtype of myeloid leukemia characterized by t(15;17) chromosomal translocation, which involves the retinoic acid receptor-alpha (RAR-alpha). APL typically presents with a life-threatening hemorrhagic diathesis. Before the introduction of all-trans retinoic acid (ATRA) for the cure of APL, fatal hemorrhages due, at least in part, to the APL-associated coagulopathy, were a major cause of induction remission failure. The laboratory abnormalities of blood coagulation found in these patients indicate the occurrence of a hypercoagulable state. Major determinants of the coagulopathy of APL are endogenous factors expressed by the leukemic cells, including procoagulant factors, fibrinolytic proteins, and non-specific proteolytic enzymes. In addition, these cells have an increased capacity to adhere to the vascular endothelium, and to secrete inflammatory cytokines [i.e. interleukin-1beta (IL-1beta) and tumor necrosis factor (TNF-alpha)], which in turn stimulate the expression of prothrombotic activities by endothelial cells and leukocytes. ATRA can interfere with each of the principal hemostatic properties of the leukemic cell, thus reducing the APL cell procoagulant potential, in parallel to the induction of cellular differentiation. This effect occurs in vivo, in the bone marrow of APL patients receiving ATRA, and is associated with the improvement of the bleeding symptoms. Therapy with arsenic trioxide (ATO) also beneficially affects coagulation in APL. However, early deaths from bleeding still remain a major problem in APL and further research is required in this field. In this review, we will summarize our current knowledge of the pathogenesis of the APL-associated coagulopathy and will overview the therapeutic approaches for the management of this complication. PMID:22220265

  4. PML, a growth suppressor disrupted in acute promyelocytic leukemia.

    PubMed Central

    Mu, Z M; Chin, K V; Liu, J H; Lozano, G; Chang, K S

    1994-01-01

    The nonrandom chromosomal translocation t(15;17)(q22;q21) in acute promyelocytic leukemia (APL) juxtaposes the genes for retinoic acid receptor alpha (RAR alpha) and the putative zinc finger transcription factor PML. The breakpoint site encodes fusion protein PML-RAR alpha, which is able to form a heterodimer with PML. It was hypothesized that PML-RAR alpha is a dominant negative inhibitor of PML. Inactivation of PML function in APL may play a critical role in APL pathogenesis. Our results demonstrated that PML, but not PML-RAR alpha, is a growth suppressor. This is supported by the following findings: (i) PML suppressed anchorage-independent growth of APL-derived NB4 cells on soft agar and tumorigenicity in nude mice, (ii) PML suppressed the oncogenic transformation of rat embryo fibroblasts by cooperative oncogenes, and (iii) PML suppressed transformation of NIH 3T3 cells by the activated neu oncogene. Cotransfection of PML with PML-RAR alpha resulted in a significant reduction in PML's transformation suppressor function in vivo, indicating that the fusion protein can be a dominant negative inhibitor of PML function in APL cells. This observation was further supported by the finding that cotransfection of PML and PML-RAR alpha resulted in altered normal cellular localization of PML. Our results also demonstrated that PML, but not PML-RAR alpha, is a promoter-specific transcription suppressor. Therefore, we hypothesized that disruption of the PML gene, a growth or transformation suppressor, by the t(15;17) translocation in APL is one of the critical events in leukemogenesis. Images PMID:7935403

  5. Metabolism of arsenic trioxide in acute promyelocytic leukemia cells.

    PubMed

    Khaleghian, Ali; Ghaffari, Seyed H; Ahmadian, Shahin; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir

    2014-10-01

    Arsenic trioxide (As2O3) effectively induces complete clinical and molecular remissions in acute promyelocytic leukemia (APL) patients and triggers apoptosis in APL cells. The effect induced by As2O3 is also associated with extensive genomic-wide epigenetic changes with large-scale alterations in DNA methylation. We investigated the As2O3 metabolism in association with factors involved in the production of its methylated metabolites in APL-derived cell line, NB4. We used high performance liquid chromatography (HPLC) technique to detect As2O3 metabolites in NB4 cells. The effects of As2O3 on glutathione level, S-Adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) levels were investigated. Also, we studied the expression levels of arsenic methyltransferase (AS3MT) and DNA methyltransferases (DNMT1, DNMT3a, and DNMT3b) by real-time PCR. Our results show that after As2O3 entry into the cell, it was converted into methylated metabolites, mono-methylarsenic (MMA) and dimethylarsenic (DMA). The glutathione (GSH) production was increased in parallel with the methylated metabolites formations. As2O3 treatment inhibited DNMTs (DNMT1, DNMT3a, and DNMT3b) in dose- and time-dependent manners. The SAH levels in As2O3-treated cells were increased; however, the SAM level was not affected. The present study shows that APL cell is capable of metabolizing As2O3. The continuous formation of intracellular methylated metabolites, the inhibition of DNMTs expression levels and the increase of SAH level by As2O3 biotransformation would probably affect the DNMTs-methylated DNA methylation in a manner related to the extent of DNA hypomethylation. Production of intracellular methylated metabolites and epigenetic changes of DNA methylation during As2O3 metabolism may contribute to the therapeutic effect of As2O3 in APL. PMID:24819152

  6. High frequency of acute promyelocytic leukemia among Latinos with acute myeloid leukemia.

    PubMed

    Douer, D; Preston-Martin, S; Chang, E; Nichols, P W; Watkins, K J; Levine, A M

    1996-01-01

    A high frequency (24%) of acute promyelocytic leukemia (APL) was noted among acute myelocytic leukemia (AML) cases at the Los Angeles County-University of Southern California (LAC-USC) Medical Center, in comparison with the expected frequency of 5% to 15%. Because of the high proportion of Latinos in this center, we questioned if APL is more common in this ethnic group. The proportion of APL among the 80 AML patients of Latino origin was significantly higher (30; 37.5%) when compared with the 62 non-Latinos (4; 6.5%) (P = .00001). In an attempt to verify this finding on a larger group of patients, we analyzed 276 pathologically verified cases of AML in patients aged 30 to 69 years from the entire County of Los Angeles, registered on an ongoing population-based epidemiologic study of AML. APL was more frequent among the 47 Latinos (24.3%) than in the 229 non-Latinos (8.3%) (P = .0075). APL is seen in younger patients with AML, but Latino AML patients also had a higher frequency of APL after accounting for their younger age (age-adjusted odds ratio for APL among Latinos in LAC-USC Medical Center, 9.4 [95% confidence interval (CI) 2.9, 30] P = .0002; among Latinos in the population-based study, 3.0 [95% CI 1.3 to 6.9] P = .01). The different ethnic distribution of AML was found to be due to a higher proportion of APL cases per se, and not to a lower proportion of any other French-American-British subtype (P = .0004). These results, from two different populations of AML patients, indicate that Latinos with AML have a higher likelihood of the APL subtype of disease, which may suggest a genetic predisposition to APL and/or exposure to distinct environmental factor(s).

  7. Development of Acute Promyelocytic Leukemia in a Patient With Gouty Arthritis on Long Term Colchicine.

    PubMed

    Buyukkurt, Nurhilal; Korur, Asli; Boga, Can

    2016-06-01

    Colchicine is a frequently used drug in rheumatological diseases. Acute promyelocytic leukemia developed in a patient who used colchicine for gouty arthritis since 10 years is presented and the possible relation between the long term use of colchicine and hematological malignancies is discussed. PMID:27408362

  8. Epidemiology and Treatment of Acute Promyelocytic Leukemia in Latin America

    PubMed Central

    Rego, E.M.; Jácomo, R.H.

    2011-01-01

    Distinct epidemiological characteristics have been described in Acute Promielocytic Leukemia (APL). Populations from Latin America have a higher incidence of APL and in some geographic areas a distinct distribution of the PML-RARA isoforms is present. Here, we review the main differences in APL epidemilogy in Latin America as well as treatment outcomes. PMID:22110899

  9. Acute promyelocytic leukemia after renal transplant and filgrastim treatment for neutropenia

    PubMed Central

    Krause, John R.

    2016-01-01

    Prolonged immunosuppression in solid organ transplant recipients has been considered a risk for developing opportunistic infections and malignancies. Acute leukemia is a rare complication. We report a case of acute promyelocytic leukemia (APL) (FAB M3) after cadaveric renal transplant for focal segmental glomerulosclerosis in a 24-year-old woman. Her immunosuppressive therapy included tacrolimus, mycophenolate mofetil, and prednisone. Approximately 2 years after transplant, she became pancytopenic, prompting administration of filgrastim. A few doses caused a markedly increased blast count, resulting in a diagnosis of APL. She was successfully treated with all-trans-retinoic acid and arsenic trioxide. Myeloproliferative neoplasms after organ transplant or due to filgrastim are rare. PMID:27695174

  10. Acute promyelocytic leukemia after renal transplant and filgrastim treatment for neutropenia

    PubMed Central

    Krause, John R.

    2016-01-01

    Prolonged immunosuppression in solid organ transplant recipients has been considered a risk for developing opportunistic infections and malignancies. Acute leukemia is a rare complication. We report a case of acute promyelocytic leukemia (APL) (FAB M3) after cadaveric renal transplant for focal segmental glomerulosclerosis in a 24-year-old woman. Her immunosuppressive therapy included tacrolimus, mycophenolate mofetil, and prednisone. Approximately 2 years after transplant, she became pancytopenic, prompting administration of filgrastim. A few doses caused a markedly increased blast count, resulting in a diagnosis of APL. She was successfully treated with all-trans-retinoic acid and arsenic trioxide. Myeloproliferative neoplasms after organ transplant or due to filgrastim are rare.

  11. Co-operative leukemogenesis in acute myeloid leukemia and acute promyelocytic leukemia reveals C/EBPα as a common target of TRIB1 and PML/RARA

    PubMed Central

    Keeshan, Karen; Vieugué, Pauline; Chaudhury, Shahzya; Rishi, Loveena; Gaillard, Coline; Liang, Lu; Garcia, Elaine; Nakamura, Takuro; Omidvar, Nader; Kogan, Scott C.

    2016-01-01

    The PML/RARA fusion protein occurs as a result of the t(15;17) translocation in the acute promyelocytic leukemia subtype of human acute myeloid leukemia. Gain of chromosome 8 is the most common chromosomal gain in human acute myeloid leukemia, including acute promyelocytic leukemia. We previously demonstrated that gain of chromosome 8-containing MYC is of central importance in trisomy 8, but the role of the nearby TRIB1 gene has not been experimentally addressed in this context. We have now tested the hypothesis that both MYC and TRIB1 have functional roles underlying leukemogenesis of trisomy 8 by using retroviral vectors to express MYC and TRIB1 in wild-type bone marrow and in marrow that expressed a PML/RARA transgene. Interestingly, although MYC and TRIB1 readily co-operated in leukemogenesis for wild-type bone marrow, TRIB1 provided no selective advantage to cells expressing PML/RARA. We hypothesized that this lack of co-operation between PML/RARA and TRIB1 reflected a common pathway for their effect: both proteins targeting the myeloid transcription factor C/EBPα. In support of this idea, TRIB1 expression abrogated the all-trans retinoic acid response of acute promyelocytic leukemia cells in vitro and in vivo. Our data delineate the common and redundant inhibitory effects of TRIB1 and PML/RARA on C/EBPα providing a potential explanation for the lack of selection of TRIB1 in human acute promyelocytic leukemia, and highlighting the key role of C/EBPs in acute promyelocytic leukemia pathogenesis and therapeutic response. In addition, the co-operativity we observed between MYC and TRIB1 in the absence of PML/RARA show that, outside of acute promyelocytic leukemia, gain of both genes may drive selection for trisomy 8. PMID:27390356

  12. Acute myocardial/cerebral infarction as first/relapse manifestation in one acute promyelocytic leukemia patient

    PubMed Central

    Li, Ying; Suo, Shanshan; Mao, Liping; Wang, Lei; Yang, Chunmei; Xu, Weilai; Lou, Yinjun; Mai, Wenyuan

    2015-01-01

    In the clinical setting, bleeding is a common manifestation of acute promyelocytic leukemia (APL), whereas thrombosis is relatively rare, especially as an initial symptom. Here, we report an unusual case of APL with acute myocardial infarction as the first manifestation and cerebral infarction as the relapse manifestation in a healthy young woman. This unique case emphasizes that a thrombotic event could be the first manifestation of an underlying hematological disorder such as APL and could also be a sign of relapse. Rapid detection of the underlying disorder and the timely use of anticoagulation therapy and ATRA are crucial for preventing further deterioration of the disease and saving the patient’s life. PMID:26550398

  13. Retinoic acid plus arsenic trioxide, the ultimate panacea for acute promyelocytic leukemia?

    PubMed

    Lallemand-Breitenbach, Valérie; de Thé, Hugues

    2013-09-19

    Rarely in the field of cancer treatment did we experience as many surprises as with acute promyelocytic leukemia (APL). Yet, the latest clinical trial reported by Lo-Coco et al in the New England Journal of Medicine is a practice-changing study, as it reports a very favorable outcome of virtually all enrolled low-intermediate risk patients with APL without any DNA-damaging chemotherapy. Although predicted from previous small pilot studies, these elegant and stringently controlled results open a new era in leukemia therapy.

  14. LG-362B targets PML-RARα and blocks ATRA resistance of acute promyelocytic leukemia.

    PubMed

    Wang, X; Lin, Q; Lv, F; Liu, N; Xu, Y; Liu, M; Chen, Y; Yi, Z

    2016-07-01

    Acute promyelocytic leukemia (APL) is a M3 subtype of acute myeloid leukemia (AML). Promyelocytic leukemia (PML)-retinoic acid receptor α (RARα) translocation generally occurs in APL patients and makes APL unique both for diagnosis and treatment. However, some conventional drugs like all-transretinoic acid (ATRA) and arsenic trioxide (ATO), as the preferred ones for APL therapy, induce irreversible resistance and responsible for clinical failure of complete remission. Herein, we screened a library of novel chemical compounds with structural diversity and discovered a novel synthetic small compound, named LG-362B, specifically inhibited the proliferation of APL and induced apoptosis. Notably, the differentiation arrest was also relieved by LG-362B in cultured APL cells and APL mouse models. Moreover, LG-362B overcame the ATRA resistance on cellular differentiation and transplantable APL mice. These positive effects were driven by caspases-mediated degradation of PML-RARα when treated with LG-362B, making it specific to APL and reasonable for ATRA resistance relief. We propose that LG-362B would be a potential candidate agent for the treatment of the relapsed APL with ATRA resistance in the future.

  15. The cell biology of disease: Acute promyelocytic leukemia, arsenic, and PML bodies.

    PubMed

    de Thé, Hugues; Le Bras, Morgane; Lallemand-Breitenbach, Valérie

    2012-07-01

    Acute promyelocytic leukemia (APL) is driven by a chromosomal translocation whose product, the PML/retinoic acid (RA) receptor α (RARA) fusion protein, affects both nuclear receptor signaling and PML body assembly. Dissection of APL pathogenesis has led to the rediscovery of PML bodies and revealed their role in cell senescence, disease pathogenesis, and responsiveness to treatment. APL is remarkable because of the fortuitous identification of two clinically effective therapies, RA and arsenic, both of which degrade PML/RARA oncoprotein and, together, cure APL. Analysis of arsenic-induced PML or PML/RARA degradation has implicated oxidative stress in the biogenesis of nuclear bodies and SUMO in their degradation.

  16. Severe Acute Axonal Neuropathy following Treatment with Arsenic Trioxide for Acute Promyelocytic Leukemia: a Case Report

    PubMed Central

    Kühn, Marcus; Sammartin, Kety; Nabergoj, Mitja; Vianello, Fabrizio

    2016-01-01

    Peripheral neuropathy is a common complication of arsenic toxicity. Symptoms are usually mild and reversible following discontinuation of treatment. A more severe chronic sensorimotor polyneuropathy characterized by distal axonal-loss neuropathy can be seen in chronic arsenic exposure. The clinical course of arsenic neurotoxicity in patients with coexistence of thiamine deficiency is only anecdotally known but this association may potentially lead to severe consequences. We describe a case of acute irreversible axonal neuropathy in a patient with hidden thiamine deficiency who was treated with a short course of arsenic trioxide for acute promyelocytic leukemia. Thiamine replacement therapy and arsenic trioxide discontinuation were not followed by neurological recovery and severe polyneuropathy persisted at 12-month follow-up. Thiamine plasma levels should be measured in patients who are candidate to arsenic trioxide therapy. Prophylactic administration of vitamin B1 may be advisable. The appearance of polyneuropathy signs early during the administration of arsenic trioxide should prompt electrodiagnostic testing to rule out a pattern of axonal neuropathy which would need immediate discontinuation of arsenic trioxide. PMID:27158436

  17. Additional chromosome abnormalities in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy

    PubMed Central

    Cervera, José; Montesinos, Pau; Hernández-Rivas, Jesús M.; Calasanz, María J.; Aventín, Anna; Ferro, María T.; Luño, Elisa; Sánchez, Javier; Vellenga, Edo; Rayón, Chelo; Milone, Gustavo; de la Serna, Javier; Rivas, Concha; González, José D.; Tormo, Mar; Amutio, Elena; González, Marcos; Brunet, Salut; Lowenberg, Bob; Sanz, Miguel A.

    2010-01-01

    Background Acute promyelocytic leukemia is a subtype of acute myeloid leukemia characterized by the t(15;17). The incidence and prognostic significance of additional chromosomal abnormalities in acute promyelocytic leukemia is still a controversial matter. Design and Methods Based on cytogenetic data available for 495 patients with acute promyelocytic leukemia enrolled in two consecutive PETHEMA trials (LPA96 and LPA99), we analyzed the incidence, characteristics, and outcome of patients with acute promyelocytic leukemia with and without additional chromosomal abnormalities who had been treated with all-trans retinoic acid plus anthracycline monochemotherapy for induction and consolidation. Results Additional chromosomal abnormalities were observed in 140 patients (28%). Trisomy 8 was the most frequent abnormality (36%), followed by abn(7q) (5%). Patients with additional chromosomal abnormalities more frequently had coagulopathy (P=0.03), lower platelet counts (P=0.02), and higher relapse-risk scores (P=0.02) than their counterparts without additional abnormalities. No significant association with FLT3/ITD or other clinicopathological characteristics was demonstrated. Patients with and without additional chromosomal abnormalities had similar complete remission rates (90% and 91%, respectively). Univariate analysis showed that additional chromosomal abnormalities were associated with a lower relapse-free survival in the LPA99 trial (P=0.04), but not in the LPA96 trial. However, neither additional chromosomal abnormalities overall nor any specific abnormality was identified as an independent risk factor for relapse in multivariate analysis. Conclusions The lack of independent prognostic value of additional chromosomal abnormalities in acute promyelocytic leukemia does not support the use of alternative therapeutic strategies when such abnormalities are found. PMID:19903674

  18. NPM and BRG1 Mediate Transcriptional Resistance to Retinoic Acid in Acute Promyelocytic Leukemia.

    PubMed

    Nichol, Jessica N; Galbraith, Matthew D; Kleinman, Claudia L; Espinosa, Joaquín M; Miller, Wilson H

    2016-03-29

    Perturbation in the transcriptional control of genes driving differentiation is an established paradigm whereby oncogenic fusion proteins promote leukemia. From a retinoic acid (RA)-sensitive acute promyelocytic leukemia (APL) cell line, we derived an RA-resistant clone characterized by a block in transcription initiation, despite maintaining wild-type PML/RARA expression. We uncovered an aberrant interaction among PML/RARA, nucleophosmin (NPM), and topoisomerase II beta (TOP2B). Surprisingly, RA stimulation in these cells results in enhanced chromatin association of the nucleosome remodeler BRG1. Inhibition of NPM or TOP2B abrogated BRG1 recruitment. Furthermore, NPM inhibition and targeting BRG1 restored differentiation when combined with RA. Here, we demonstrate a role for NPM and BRG1 in obstructing RA differentiation and implicate chromatin remodeling in mediating therapeutic resistance in malignancies. NPM mutations are the most common genetic change in patients with acute leukemia (AML); therefore, our model may be applicable to other more common leukemias driven by NPM.

  19. Acute promyelocytic leukemia presenting as pulmonary thromboembolism: Not all APLs bleed

    PubMed Central

    Vaid, Ashok K; Batra, Sandeep; Karanth, Suman S; Gupta, Sachin

    2015-01-01

    We present a rare case of acute promyelocytic leukemia (APL) presenting as pulmonary thromboembolism being misdiagnosed as community-acquired pneumonia. Thrombotic phenomenon in APL are poorly understood and grossly underreported. In our case, following no response to standard antibiotic treatment, the patient was further investigated and detected to have an acute pulmonary thromboembolism following right lower limb deep vein thrombosis (DVT). Though, complete blood picture revealed only mild hyperleukocytosis, bone marrow biopsy and aspiration revealed 60% blasts and a positive t (15,17)(q22,12) and PML retinoic acid receptor alpha (RARA) fusion protein on molecular cytogenetics. He was diagnosed as APL and received treatment with all-transretinoic acid (ATRA) and arsenic trioxide (ATO) and therapeutic anticoagulation PMID:26629469

  20. Erythema multiforme due to arsenic trioxide in a case of acute promyelocytic leukemia: A diagnostic challenge

    PubMed Central

    Badarkhe, Girish V.; Sil, Amrita; Bhattacharya, Sabari; Nath, Uttam Kumar; Das, Nilay Kanti

    2016-01-01

    Erythema multiforme (EM) is an acute, self-limited, Type IV hypersensitivity reactions associated with infections and drugs. In this case of acute promyelocytic leukemia, EM diagnosed during the induction phase was mistakenly attributed to vancomycin used to treat febrile neutropenia during that period. However, the occurrence of the lesions of EM again during the consolidation phase with arsenic trioxide (ATO) lead to a re-evaluation of the patient and both the Naranjo and World Health Organization-Uppsala Monitoring Centre scale showed the causality association as “probable.” The rash responded to topical corticosteroids and antihistamines. This rare event of EM being caused by ATO may be attributed to the genetic variation of methyl conjugation in the individual which had triggered the response, and the altered metabolic byproducts acted as a hapten in the subsequent keratinocyte necrosis. PMID:27114640

  1. Transient ischemic attack as an unusual initial manifestation of acute promyelocytic leukemia.

    PubMed

    Liu, Lifeng; Yuan, Xiaoling

    2016-07-01

    Patients with acute promyelocytic leukemia (APL) are prone to both bleeding and thrombosis. Both of these have a significant impact on the morbidity and mortality of patients with this disease. Here we report a case of a 41-year-old male, who presented with transient ischemic attack (TIA) and early neurological deterioration (END) as initial manifestations prior to an ultimate diagnosis of APL. This patient had no cerebrovascular risk factors or familial cerebrovascular disease. The patient experienced an acute ischemic stroke, verified by magnetic resonance imaging (MRI), in less than 24 h after his second hospital admission. Some APL patients suffer from cerebral ischemia as an initial manifestation or during induction therapy, and patients presenting this condition may continue to deteriorate until their death during hospitalization. Thus, APL should be considered as a possible underlying disease in patients with TIA without cerebrovascular risk factors. Delayed diagnosis and treatment of APL can be fatal.

  2. Erythema multiforme due to arsenic trioxide in a case of acute promyelocytic leukemia: A diagnostic challenge.

    PubMed

    Badarkhe, Girish V; Sil, Amrita; Bhattacharya, Sabari; Nath, Uttam Kumar; Das, Nilay Kanti

    2016-01-01

    Erythema multiforme (EM) is an acute, self-limited, Type IV hypersensitivity reactions associated with infections and drugs. In this case of acute promyelocytic leukemia, EM diagnosed during the induction phase was mistakenly attributed to vancomycin used to treat febrile neutropenia during that period. However, the occurrence of the lesions of EM again during the consolidation phase with arsenic trioxide (ATO) lead to a re-evaluation of the patient and both the Naranjo and World Health Organization-Uppsala Monitoring Centre scale showed the causality association as "probable." The rash responded to topical corticosteroids and antihistamines. This rare event of EM being caused by ATO may be attributed to the genetic variation of methyl conjugation in the individual which had triggered the response, and the altered metabolic byproducts acted as a hapten in the subsequent keratinocyte necrosis. PMID:27114640

  3. Acute promyelocytic leukemia: where did we start, where are we now, and the future

    PubMed Central

    Coombs, C C; Tavakkoli, M; Tallman, M S

    2015-01-01

    Historically, acute promyelocytic leukemia (APL) was considered to be one of the most fatal forms of acute leukemia with poor outcomes before the introduction of the vitamin A derivative all-trans retinoic acid (ATRA). With considerable advances in therapy, including the introduction of ATRA initially as a single agent and then in combination with anthracyclines, and more recently by development of arsenic trioxide (ATO)-containing regimens, APL is now characterized by complete remission rates of 90% and cure rates of ∼80%, even higher among low-risk patients. Furthermore, with ATRA–ATO combinations, chemotherapy may safely be omitted in low-risk patients. The disease is now considered to be the most curable subtype of acute myeloid leukemia (AML) in adults. Nevertheless, APL remains associated with a significant incidence of early death related to the characteristic bleeding diathesis. Early death, rather than resistant disease so common in all other subtypes of AML, has emerged as the major cause of treatment failure. PMID:25885425

  4. Retinoic acid signaling in cancer: The parable of acute promyelocytic leukemia.

    PubMed

    Ablain, Julien; de Thé, Hugues

    2014-11-15

    Inevitably fatal some 40 years, acute promyelocytic leukemia (APL) can now be cured in more than 95% of cases. This clinical success story is tightly linked to tremendous progress in our understanding of retinoic acid (RA) signaling. The discovery of retinoic acid receptor alpha (RARA) was followed by the cloning of the chromosomal translocations driving APL, all of which involve RARA. Since then, new findings on the biology of nuclear receptors have progressively enlightened the basis for the clinical efficacy of RA in APL. Reciprocally, the disease offered a range of angles to approach the cellular and molecular mechanisms of RA action. This virtuous circle contributed to make APL one of the best-understood cancers from both clinical and biological standpoints. Yet, some important questions remain unanswered including how lessons learnt from RA-triggered APL cure can help design new therapies for other malignancies. PMID:25130873

  5. Retinoic acid signaling in cancer: The parable of acute promyelocytic leukemia.

    PubMed

    Ablain, Julien; de Thé, Hugues

    2014-11-15

    Inevitably fatal some 40 years, acute promyelocytic leukemia (APL) can now be cured in more than 95% of cases. This clinical success story is tightly linked to tremendous progress in our understanding of retinoic acid (RA) signaling. The discovery of retinoic acid receptor alpha (RARA) was followed by the cloning of the chromosomal translocations driving APL, all of which involve RARA. Since then, new findings on the biology of nuclear receptors have progressively enlightened the basis for the clinical efficacy of RA in APL. Reciprocally, the disease offered a range of angles to approach the cellular and molecular mechanisms of RA action. This virtuous circle contributed to make APL one of the best-understood cancers from both clinical and biological standpoints. Yet, some important questions remain unanswered including how lessons learnt from RA-triggered APL cure can help design new therapies for other malignancies.

  6. Combined staurosporine and retinoic acid induces differentiation in retinoic acid resistant acute promyelocytic leukemia cell lines

    PubMed Central

    Ge, Dong-zheng; Sheng, Yan; Cai, Xun

    2014-01-01

    All-trans retinoic acid (ATRA) resistance has been a critical problem in acute promyelocytic leukemia (APL) relapsed patients. In ATRA resistant APL cell lines NB4-R1 and NB4-R2, the combination of staurosporine and ATRA synergized to trigger differentiation accompanied by significantly enhanced protein level of CCAAT/enhancer binding protein ε (C/EBPε) and C/EBPβ as well as the phosphorylation of mitogen-activated protein (MEK) and extracellular signal-regulated kinase (ERK). Furthermore, attenuation of the MEK activation blocked not only the differentiation but also the increased protein level of C/EBPε and C/EBPβ. Taken together, we concluded that the combination of ATRA and staurosporine could overcome differentiation block via MEK/ERK signaling pathway in ATRA-resistant APL cell lines. PMID:24769642

  7. The histone demethylase PHF8 governs retinoic acid response in acute promyelocytic leukemia.

    PubMed

    Arteaga, Maria Francisca; Mikesch, Jan-Henrik; Qiu, Jihui; Christensen, Jesper; Helin, Kristian; Kogan, Scott C; Dong, Shuo; So, Chi Wai Eric

    2013-03-18

    While all-trans retinoic acid (ATRA) treatment in acute promyelocytic leukemia (APL) has been the paradigm of targeted therapy for oncogenic transcription factors, the underlying mechanisms remain largely unknown, and a significant number of patients still relapse and become ATRA resistant. We identified the histone demethylase PHF8 as a coactivator that is specifically recruited by RARα fusions to activate expression of their downstream targets upon ATRA treatment. Forced expression of PHF8 resensitizes ATRA-resistant APL cells, whereas its downregulation confers resistance. ATRA sensitivity depends on the enzymatic activity and phosphorylation status of PHF8, which can be pharmacologically manipulated to resurrect ATRA sensitivity to resistant cells. These findings provide important molecular insights into ATRA response and a promising avenue for overcoming ATRA resistance.

  8. Extracellular DNA traps released by acute promyelocytic leukemia cells through autophagy.

    PubMed

    Ma, R; Li, T; Cao, M; Si, Y; Wu, X; Zhao, L; Yao, Z; Zhang, Y; Fang, S; Deng, R; Novakovic, V A; Bi, Y; Kou, J; Yu, B; Yang, S; Wang, J; Zhou, J; Shi, J

    2016-01-01

    Acute promyelocytic leukemia (APL) cells exhibit disrupted regulation of cell death and differentiation, and therefore the fate of these leukemic cells is unclear. Here, we provide the first evidence that a small percentage of APL cells undergo a novel cell death pathway by releasing extracellular DNA traps (ETs) in untreated patients. Both APL and NB4 cells stimulated with APL serum had nuclear budding of vesicles filled with chromatin that leaked to the extracellular space when nuclear and cell membranes ruptured. Using immunofluorescence, we found that NB4 cells undergoing ETosis extruded lattice-like structures with a DNA-histone backbone. During all-trans retinoic acid (ATRA)-induced cell differentiation, a subset of NB4 cells underwent ETosis at days 1 and 3 of treatment. The levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were significantly elevated at 3 days, and combined treatment with TNF-α and IL-6 stimulated NB4 cells to release ETs. Furthermore, inhibition of autophagy by pharmacological inhibitors or by small interfering RNA against Atg7 attenuated LC3 autophagy formation and significantly decreased ET generation. Our results identify a previously unrecognized mechanism for death in promyelocytes and suggest that ATRA may accelerate ET release through increased cytokines and autophagosome formation. Targeting this cellular death pathway in addition to conventional chemotherapy may provide new therapeutic modalities for APL. PMID:27362801

  9. FLT3 and NPM-1 mutations in a cohort of acute promyelocytic leukemia patients from India

    PubMed Central

    Swaminathan, Suchitra; Garg, Swati; Madkaikar, Manisha; Gupta, Maya; Jijina, Farah; Ghosh, Kanjaksha

    2014-01-01

    Background: Acute promyelocytic leukemia (APL) with t (15;17) is a distinct category of acute myeloid leukemia (AML) and is reported to show better response to anthracyclin based chemotherapy. A favorable overall prognosis over other subtypes of AML has been reported for APL patients but still about 15% patients relapse. Methods: This study evaluated the presence of Famus like tyrosine kinase-3 (FLT3) and nucleophosmin-1 (NPM1) gene mutations in a cohort of 40 APL patients. Bone marrow/peripheral blood samples from patients at the time of diagnosis and follow-up were processed for immunophenotyping, cytogenetic markers and isolation of DNA and RNA. Samples were screened for the presence of mutations in FLT3 and NPM1 genes using polymerase chain reaction followed by sequencing. Results: Frequency of FLT3/internal tandem duplication and FLT3/tyrosine kinase domain was found to be 25% and 7% respectively. We observed a high frequency of NPM1 mutation (45%) in the present population of APL patients. PMID:25400345

  10. Evolution of a FLT3-TKD mutated subclone at meningeal relapse in acute promyelocytic leukemia

    PubMed Central

    Bochtler, Tilmann; Fröhling, Stefan; Weichert, Wilko; Endris, Volker; Thiede, Christian; Hutter, Barbara; Hundemer, Michael; Ho, Anthony D.; Krämer, Alwin

    2016-01-01

    Here, we report the case of an acute promyelocytic leukemia (APL) patient who—although negative for FLT3 mutations at diagnosis—developed isolated FLT3 tyrosine kinase II domain (FLT3-TKD)-positive meningeal relapse, which, in retrospect, could be traced back to a minute bone marrow subclone present at first diagnosis. Initially, the 48-yr-old female diagnosed with high-risk APL had achieved complete molecular remission after standard treatment with all-trans retinoic acid (ATRA) and chemotherapy according to the AIDA (ATRA plus idarubicin) protocol. Thirteen months after the start of ATRA maintenance, the patient suffered clinically overt meningeal relapse along with minute molecular traces of PML/RARA (promyelocytic leukemia/retinoic acid receptor alpha) in the bone marrow. Following treatment with arsenic trioxide and ATRA in combination with intrathecal cytarabine and methotrexate, the patient achieved a complete molecular remission in both cerebrospinal fluid (CSF) and bone marrow, which currently lasts for 2 yr after completion of therapy. Whole-exome sequencing and subsequent ultradeep targeted resequencing revealed a heterozygous FLT3-TKD mutation in CSF leukemic cells (p.D835Y, c.2503G>T, 1000/1961 reads [51%]), which was undetectable in the concurrent bone marrow sample. Interestingly, the FLT3-TKD mutated meningeal clone originated from a small bone marrow subclone present in a variant allele frequency of 0.4% (6/1553 reads) at initial diagnosis. This case highlights the concept of clonal evolution with a subclone harboring an additional mutation being selected as the “fittest” and leading to meningeal relapse. It also further supports earlier suggestions that FLT3 mutations may play a role for migration and clonal expansion in the CSF sanctuary site. PMID:27626069

  11. Evolution of a FLT3-TKD mutated subclone at meningeal relapse in acute promyelocytic leukemia

    PubMed Central

    Bochtler, Tilmann; Fröhling, Stefan; Weichert, Wilko; Endris, Volker; Thiede, Christian; Hutter, Barbara; Hundemer, Michael; Ho, Anthony D.; Krämer, Alwin

    2016-01-01

    Here, we report the case of an acute promyelocytic leukemia (APL) patient who—although negative for FLT3 mutations at diagnosis—developed isolated FLT3 tyrosine kinase II domain (FLT3-TKD)-positive meningeal relapse, which, in retrospect, could be traced back to a minute bone marrow subclone present at first diagnosis. Initially, the 48-yr-old female diagnosed with high-risk APL had achieved complete molecular remission after standard treatment with all-trans retinoic acid (ATRA) and chemotherapy according to the AIDA (ATRA plus idarubicin) protocol. Thirteen months after the start of ATRA maintenance, the patient suffered clinically overt meningeal relapse along with minute molecular traces of PML/RARA (promyelocytic leukemia/retinoic acid receptor alpha) in the bone marrow. Following treatment with arsenic trioxide and ATRA in combination with intrathecal cytarabine and methotrexate, the patient achieved a complete molecular remission in both cerebrospinal fluid (CSF) and bone marrow, which currently lasts for 2 yr after completion of therapy. Whole-exome sequencing and subsequent ultradeep targeted resequencing revealed a heterozygous FLT3-TKD mutation in CSF leukemic cells (p.D835Y, c.2503G>T, 1000/1961 reads [51%]), which was undetectable in the concurrent bone marrow sample. Interestingly, the FLT3-TKD mutated meningeal clone originated from a small bone marrow subclone present in a variant allele frequency of 0.4% (6/1553 reads) at initial diagnosis. This case highlights the concept of clonal evolution with a subclone harboring an additional mutation being selected as the “fittest” and leading to meningeal relapse. It also further supports earlier suggestions that FLT3 mutations may play a role for migration and clonal expansion in the CSF sanctuary site.

  12. Evolution of a FLT3-TKD mutated subclone at meningeal relapse in acute promyelocytic leukemia.

    PubMed

    Bochtler, Tilmann; Fröhling, Stefan; Weichert, Wilko; Endris, Volker; Thiede, Christian; Hutter, Barbara; Hundemer, Michael; Ho, Anthony D; Krämer, Alwin

    2016-09-01

    Here, we report the case of an acute promyelocytic leukemia (APL) patient who-although negative for FLT3 mutations at diagnosis-developed isolated FLT3 tyrosine kinase II domain (FLT3-TKD)-positive meningeal relapse, which, in retrospect, could be traced back to a minute bone marrow subclone present at first diagnosis. Initially, the 48-yr-old female diagnosed with high-risk APL had achieved complete molecular remission after standard treatment with all-trans retinoic acid (ATRA) and chemotherapy according to the AIDA (ATRA plus idarubicin) protocol. Thirteen months after the start of ATRA maintenance, the patient suffered clinically overt meningeal relapse along with minute molecular traces of PML/RARA (promyelocytic leukemia/retinoic acid receptor alpha) in the bone marrow. Following treatment with arsenic trioxide and ATRA in combination with intrathecal cytarabine and methotrexate, the patient achieved a complete molecular remission in both cerebrospinal fluid (CSF) and bone marrow, which currently lasts for 2 yr after completion of therapy. Whole-exome sequencing and subsequent ultradeep targeted resequencing revealed a heterozygous FLT3-TKD mutation in CSF leukemic cells (p.D835Y, c.2503G>T, 1000/1961 reads [51%]), which was undetectable in the concurrent bone marrow sample. Interestingly, the FLT3-TKD mutated meningeal clone originated from a small bone marrow subclone present in a variant allele frequency of 0.4% (6/1553 reads) at initial diagnosis. This case highlights the concept of clonal evolution with a subclone harboring an additional mutation being selected as the "fittest" and leading to meningeal relapse. It also further supports earlier suggestions that FLT3 mutations may play a role for migration and clonal expansion in the CSF sanctuary site. PMID:27626069

  13. Synergy against PML-RARa: targeting transcription, proteolysis, differentiation, and self-renewal in acute promyelocytic leukemia

    PubMed Central

    dos Santos, Guilherme Augusto; Kats, Lev

    2013-01-01

    Acute promyelocytic leukemia (APL) is a hematological malignancy driven by a chimeric oncoprotein containing the C terminus of the retinoic acid receptor-a (RARa) fused to an N-terminal partner, most commonly promyelocytic leukemia protein (PML). Mechanistically, PML-RARa acts as a transcriptional repressor of RARa and non-RARa target genes and antagonizes the formation and function of PML nuclear bodies that regulate numerous signaling pathways. The empirical discoveries that PML-RARa–associated APL is sensitive to both all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO), and the subsequent understanding of the mechanisms of action of these drugs, have led to efforts to understand the contribution of molecular events to APL cell differentiation, leukemia-initiating cell (LIC) clearance, and disease eradication in vitro and in vivo. Critically, the mechanistic insights gleaned from these studies have resulted not only in a better understanding of APL itself, but also carry valuable lessons for other malignancies. PMID:24344243

  14. Acute promyelocytic leukemia co-existing with JAK2 V617F positive myeloproliferative neoplasm: a case report

    PubMed Central

    Mamorska-Dyga, Aleksandra; Wu, Jingjing; Khattar, Pallavi; Ronny, Faisal M. H.; Islam, Humayun; Seiter, Karen

    2016-01-01

    The V617F mutation of Janus-associated kinase 2 (JAK2) is commonly seen in myeloproliferative neoplasms (MPN). Transformation of JAK2 positive MPNs to acute leukemia has been reported. We here report a case of acute promyelocytic leukemia which was later confirmed to have a co-existing JAK2 V617F positive MPN. In addition, the patient was found to have FLT3-TKD mutation, which, together with PML/RARa, could play a role in the MPN transformation to APL. PMID:27358900

  15. Fucoidan Suppresses the Growth of Human Acute Promyelocytic Leukemia Cells In Vitro and In Vivo.

    PubMed

    Atashrazm, Farzaneh; Lowenthal, Ray M; Woods, Gregory M; Holloway, Adele F; Karpiniec, Samuel S; Dickinson, Joanne L

    2016-03-01

    Fucoidan, a natural component of seaweeds, is reported to have immunomodulatory and anti-tumor effects. The mechanisms underpinning these activities remain poorly understood. In this study, the cytotoxicity and anti-tumor activities of fucoidan were investigated in acute myeloid leukemia (AML) cells. The human AML cell lines NB4, KG1a, HL60, and K562 were treated with fucoidan and cell cycle, cell proliferation, and expression of apoptotic pathways molecules were analyzed. Fucoidan suppressed the proliferation and induced apoptosis through the intrinsic and extrinsic pathways in the acute promyelocytic leukemia (APL) cell lines NB4 and HL60, but not in KG1a and K562 cells. In NB4 cells, apoptosis was caspase-dependent as it was significantly attenuated by pre-treatment with a pan-caspase inhibitor. P21/WAF1/CIP1 was significantly up-regulated leading to cell cycle arrest. Fucoidan decreased the activation of ERK1/2 and down-regulated the activation of AKT through hypo-phosphorylation of Thr(308) residue but not Ser(473). In vivo, a xenograft model using the NB4 cells was employed. Mice were fed with fucoidan and tumor growth was measured following inoculation with NB4 cells. Subsequently, splenic natural killer (NK) cell cytotoxic activity was also examined. Oral doses of fucoidan significantly delayed tumor growth in the xenograft model and increased cytolytic activity of NK cells. Taken together, these data suggest that the selective inhibitory effect of fucoidan on APL cells and its protective effect against APL development in mice warrant further investigation of fucoidan as a useful agent in treatment of certain types of leukemia.

  16. Arsenic trioxide-based therapy of relapsed acute promyelocytic leukemia: registry results from the European LeukemiaNet.

    PubMed

    Lengfelder, E; Lo-Coco, F; Ades, L; Montesinos, P; Grimwade, D; Kishore, B; Ramadan, S M; Pagoni, M; Breccia, M; Huerta, A J G; Nloga, A M; González-Sanmiguel, J D; Schmidt, A; Lambert, J-F; Lehmann, S; Di Bona, E; Cassinat, B; Hofmann, W-K; Görlich, D; Sauerland, M-C; Fenaux, P; Sanz, M

    2015-05-01

    In 2008, a European registry of relapsed acute promyelocytic leukemia was established by the European LeukemiaNet. Outcome data were available for 155 patients treated with arsenic trioxide in first relapse. In hematological relapse (n=104), 91% of the patients entered complete hematological remission (CR), 7% had induction death and 2% resistance, 27% developed differentiation syndrome and 39% leukocytosis, whereas no death or side effects occurred in patients treated in molecular relapse (n=40). The rate of molecular (m)CR was 74% in hematological and 62% in molecular relapse (P=0.3). All patients with extramedullary relapse (n=11) entered clinical and mCR. After 3.2 years median follow-up, the 3-year overall survival (OS) and cumulative incidence of second relapse were 68% and 41% in hematological relapse, 66% and 48% in molecular relapse and 90 and 11% in extramedullary relapse, respectively. After allogeneic or autologous transplantation in second CR (n=93), the 3-year OS was 80% compared with 59% without transplantation (n=55) (P=0.03). Multivariable analysis demonstrated the favorable prognostic impact of first remission duration ⩾1.5 years, achievement of mCR and allogeneic or autologous transplantation on OS of patients alive after induction (P=0.03, P=0.01, P=0.01) and on leukemia-free survival (P=0.006, P<0.0001, P=0.003), respectively. PMID:25627637

  17. Autologous is Superior to Allogeneic Hematopoietic Cell Transplantation for Acute Promyelocytic Leukemia in Second Complete Remission

    PubMed Central

    Chakrabarty, Jennifer L. Holter; Rubinger, Morel; Le-Rademacher, Jennifer; Wang, Hai-Lin; Grigg, Andrew; Selby, George B.; Szer, Jeffrey; Rowe, Jacob M.; Weisdorf, Daniel J.; Tallman, Martin S.

    2014-01-01

    PURPOSE To identify favored choice of transplantation in patients with acute promyelocytic leukemia in second complete remission. PATIENTS We studied 294 acute promyelocytic leukemia (APL) patients receiving allogeneic (n=232) or autologous (62) hematopoietic cell transplantation (HCT) in second complete remission (CR2) reported to the Center for International Blood and Marrow Transplantation Research (CIBMTR) from 1995 to 2006 including pre-HCT PML/RAR∝ status in 155 (49% of allogeneic and 66% of autologous). METHODS Patient characteristics and transplant characteristics including treatment related mortality, overall survival, and disease free survival were collected and analyzed for both univariate and multivariate outcomes. RESULTS With median follow-up of 115 (allogeneic) and 72 months (autologous), 5-year disease-free survival (DFS) favored autologous 63% (49-75%) compared to allogeneic 50% (44-57%) (p=0.10) and overall survival (OS) 75% (63-85%) vs. 54% (48-61%) (p=.002) Multivariate analysis showed significantly worse DFS after allogeneic HCT (HR=1.88, 95% CI=1.16-3.06, p=0.011) and age >40 years (HR=2.30, 95% CI 1.44-3.67, p=0.0005). OS was significantly worse after allogeneic HCT (HR=2.66, 95%CI 1.52-4.65, p=0.0006; age >40 (HR=3.29, 95% CI 1.95-5.54, p<0.001) and CR1<12 months (HR=1.56 95% CI 1.07-2.26, p=0.021). Positive pre-HCT PML-RAR∝ status in 17/114 allogeneic and 6/41 autologous transplants did not influence relapse, treatment failure or survival in either group. The survival advantage for autografting was attributable to increased 3 years TRM: allogeneic 30%; autologous 2%, and GVHD. CONCLUSION We conclude that autologous HCT yields superior overall survival for APL in CR2. Long term DFS in autologous recipients, even with MRD+ grafts remains an important subject for further study. PMID:24691221

  18. Metformin induces differentiation in acute promyelocytic leukemia by activating the MEK/ERK signaling pathway

    SciTech Connect

    Huai, Lei; Wang, Cuicui; Zhang, Cuiping; Li, Qihui; Chen, Yirui; Jia, Yujiao; Li, Yan; Xing, Haiyan; Tian, Zheng; Rao, Qing; Wang, Min; Wang, Jianxiang

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer Metformin induces differentiation in NB4 and primary APL cells. Black-Right-Pointing-Pointer Metformin induces activation of the MEK/ERK signaling pathway in APL cells. Black-Right-Pointing-Pointer Metformin synergizes with ATRA to trigger maturation of NB4 and primary APL cells. Black-Right-Pointing-Pointer Metformin induces the relocalization and degradation of the PML-RAR{alpha} fusion protein. Black-Right-Pointing-Pointer The study may be applicable for new differentiation therapy in cancer treatment. -- Abstract: Recent studies have shown that metformin, a widely used antidiabetic agent, may reduce the risk of cancer development. In this study, we investigated the antitumoral effect of metformin on both acute myeloid leukemia (AML) and acute promyelocytic leukemia (APL) cells. Metformin induced apoptosis with partial differentiation in an APL cell line, NB4, but only displayed a proapoptotic effect on several non-M3 AML cell lines. Further analysis revealed that a strong synergistic effect existed between metformin and all-trans retinoic acid (ATRA) during APL cell maturation and that metformin induced the hyperphosphorylation of extracellular signal-regulated kinase (ERK) in APL cells. U0126, a specific MEK/ERK activation inhibitor, abrogated metformin-induced differentiation. Finally, we found that metformin induced the degradation of the oncoproteins PML-RAR{alpha} and c-Myc and activated caspase-3. In conclusion, these results suggest that metformin treatment may contribute to the enhancement of ATRA-induced differentiation in APL, which may deepen the understanding of APL maturation and thus provide insight for new therapy strategies.

  19. [New Retinoid SX-116 Induces Apoptosis of Acute Promyelocytic Leukemia Cell Line NB4

    PubMed

    Yao, Yi-Yun; Sun, Guan-Lin; Guo, Zong-Ru; Wu, Wei-Li; Wang, Yun; Su, Hui

    2001-03-01

    In this research, the effect of novel retinoid SX-116 on acute promyelocytic leukemia cell line NB4 was studied in vitro. Cell proliferation, cell morphological characters, flow cytometry, DNA electrophoresis and RT-PCR were observational parameters. The results showed that treated with SX-116 at 10(-6) mol/L, the growth and survival of NB4 cells were markedly inhibited, morphological changes of apoptosis, including membrane blebbing, chromosome condensation and fragmentation of nuclei were observed in NB4 cells after 24 hours exposure of SX-116. Further studies showed "DNA ladder" in genomic DNA electrophoresis, as well as a typical apoptotic peak below G(1) phase presented in flow cytometry. The expression of apoptosis - related gene bcl-2 and p53 were examined. The level of bcl-2 mRNA was downregulated by 6-hour treatment of SX-116, while the gene restored to the normal level by following 12-, 24- and 48-hour exposure. However, p53 mRNA was unchanged during the treatment. The results demonstrated that SX-116 could induce apoptosis of NB4 cells while the mechanism remains to be studied.

  20. Single-Nucleotide Polymorphism Array-Based Karyotyping of Acute Promyelocytic Leukemia

    PubMed Central

    Gómez-Seguí, Inés; Sánchez-Izquierdo, Dolors; Barragán, Eva; Such, Esperanza; Luna, Irene; López-Pavía, María; Ibáñez, Mariam; Villamón, Eva; Alonso, Carmen; Martín, Iván; Llop, Marta; Dolz, Sandra; Fuster, Óscar; Montesinos, Pau; Cañigral, Carolina; Boluda, Blanca; Salazar, Claudia

    2014-01-01

    Acute promyelocytic leukemia (APL) is characterized by the t(15;17)(q22;q21), but additional chromosomal abnormalities (ACA) and other rearrangements can contribute in the development of the whole leukemic phenotype. We hypothesized that some ACA not detected by conventional techniques may be informative of the onset of APL. We performed the high-resolution SNP array (SNP-A) 6.0 (Affymetrix) in 48 patients diagnosed with APL on matched diagnosis and remission sample. Forty-six abnormalities were found as an acquired event in 23 patients (48%): 22 duplications, 23 deletions and 1 Copy-Neutral Loss of Heterozygocity (CN-LOH), being a duplication of 8(q24) (23%) and a deletion of 7(q33-qter) (6%) the most frequent copy-number abnormalities (CNA). Four patients (8%) showed CNAs adjacent to the breakpoints of the translocation. We compared our results with other APL series and found that, except for dup(8q24) and del(7q33-qter), ACA were infrequent (≤3%) but most of them recurrent (70%). Interestingly, having CNA or FLT3 mutation were mutually exclusive events. Neither the number of CNA, nor any specific CNA was associated significantly with prognosis. This study has delineated recurrent abnormalities in addition to t(15;17) that may act as secondary events and could explain leukemogenesis in up to 40% of APL cases with no ACA by conventional cytogenetics. PMID:24959826

  1. Genital ulcers during treatment with ALL-trans retinoic acid for acute promyelocytic leukemia.

    PubMed

    Fukuno, Kenji; Tsurumi, Hisashi; Goto, Hideko; Oyama, Masami; Tanabashi, Shinobu; Moriwaki, Hisataka

    2003-11-01

    Scrotal ulcer is a unique adverse effect of all-trans retinoic acid (ATRA) in patients with acute promyelocytic leukemia (APL). The pathogenesis of scrotal ulceration remains unknown. We describe genital ulcers that developed in four patients with APL who were undergoing ATRA therapy (45 mg/m2 per day p.o.). Two of the patients were female, in whom this condition is quite rare. Genital ulcers with concomitant fever appeared between 17 and 32 days of therapy in all four patients. Genital ulcers healed in three of the patients while another patient developed Fournier's gangrene and underwent left testectomy. Ulcer healing was brought by either local or intravenous corticosteroids. Intravenous dexamethasone actually enabled continued ATRA administration in one patient, while ATRA was discontinued in other two patients. If corticosteroids cannot control progression of genital ulcers nor concomitant fever, ATRA administration should be discontinued so as not to induce Fournier's gangrene nor retionic acid syndrome. Our experience indicates the importance of recognizing genital ulcers associated with ATRA in order that appropriate countermeasures can be taken.

  2. Lithium chloride antileukemic activity in acute promyelocytic leukemia is GSK-3 and MEK/ERK dependent.

    PubMed

    Zassadowski, F; Pokorna, K; Ferre, N; Guidez, F; Llopis, L; Chourbagi, O; Chopin, M; Poupon, J; Fenaux, P; Ann Padua, R; Pla, M; Chomienne, C; Cassinat, B

    2015-12-01

    We recently identified that the MEK/ERK1/2 pathway synergized with retinoic acid (RA) to restore both transcriptional activity and RA-induced differentiation in RA-resistant acute promyelocytic leukemia (APL) cells. To target the MEK/ERK pathway, we identified glycogen synthase kinase-3β (GSK-3β) inhibitors including lithium chloride (LiCl) as activators of this pathway in APL cells. Using NB4 (RA-sensitive) and UF-1 (RA-resistant) APL cell lines, we observed that LiCl as well as synthetic GSK-3β inhibitors decreased proliferation, induced apoptosis and restored, in RA-resistant cells, the expression of RA target genes and the RA-induced differentiation. Inhibition of the MEK/ERK1/2 pathway abolished these effects. These results were corroborated in primary APL patient cells and translated in vivo using an APL preclinical mouse model in which LiCl given alone was as efficient as RA in increasing survival of leukemic mice compared with untreated mice. When LiCl was combined with RA, we observed a significant survival advantage compared with mice treated by RA alone. In this work, we demonstrate that LiCl, a well-tolerated agent in humans, has antileukemic activity in APL and that it has the potential to restore RA-induced transcriptional activation and differentiation in RA-resistant APL cells in an MEK/ERK-dependent manner. PMID:26108692

  3. Analysis of factors affecting hemorrhagic diathesis and overall survival in patients with acute promyelocytic leukemia

    PubMed Central

    Lee, Ho Jin; Kim, Dong Hyun; Lee, Seul; Koh, Myeong Seok; Kim, So Yeon; Lee, Ji Hyun; Lee, Suee; Oh, Sung Yong; Han, Jin Yeong; Kim, Hyo-Jin; Kim, Sung-Hyun

    2015-01-01

    Background/Aims: This study investigated whether patients with acute promyelocytic leukemia (APL) truly fulfill the diagnostic criteria of overt disseminated intravascular coagulation (DIC), as proposed by the International Society on Thrombosis and Haemostasis (ISTH) and the Korean Society on Thrombosis and Hemostasis (KSTH), and analyzed which component of the criteria most contributes to bleeding diathesis. Methods: A single-center retrospective analysis was conducted on newly diagnosed APL patients between January 1995 and May 2012. Results: A total of 46 newly diagnosed APL patients were analyzed. Of these, 27 patients (58.7%) showed initial bleeding. The median number of points per patient fulfilling the diagnostic criteria of overt DIC by the ISTH and the KSTH was 5 (range, 1 to 7) and 3 (range, 1 to 4), respectively. At diagnosis of APL, 22 patients (47.8%) fulfilled the overt DIC diagnostic criteria by either the ISTH or KSTH. In multivariate analysis of the ISTH or KSTH diagnostic criteria for overt DIC, the initial fibrinogen level was the only statistically significant factor associated with initial bleeding (p = 0.035), but it was not associated with overall survival (OS). Conclusions: Initial fibrinogen level is associated with initial presentation of bleeding of APL patients, but does not affect OS. PMID:26552464

  4. Phase I Dose-Escalation Trial of Clofarabine Followed by Escalating Doses of Fractionated Cyclophosphamide in Children With Relapsed or Refractory Acute Leukemias

    ClinicalTrials.gov

    2010-09-21

    Myelodysplastic Syndrome; Acute Myeloid Leukemia; Myeloproliferative Disorders; Acute Lymphocytic Leukemia; Acute Promyelocytic Leukemia; Acute Leukemia; Chronic Myelogenous Leukemia; Myelofibrosis; Chronic Myelomonocytic Leukemia; Juvenile Myelomonocytic Leukemia

  5. Clinical impact of FLT3 mutation load in acute promyelocytic leukemia with t(15;17)/PML-RARA

    PubMed Central

    Schnittger, Susanne; Bacher, Ulrike; Haferlach, Claudia; Kern, Wolfgang; Alpermann, Tamara; Haferlach, Torsten

    2011-01-01

    Background Combined treatment with all-trans-retinoic acid and chemotherapy is extremely efficient in patients with acute promyelocytic leukemia with t(15;17)/PML-RARA, but up to 15% of patients relapse. Design and Methods To further clarify the prognostic impact of parameters such as FLT3 mutations, we comprehensively characterized the relation between genetic features and outcome in 147 patients (aged 19.7–86.3 years) with acute promyelocytic leukemia. Results Internal tandem duplications of the FLT3 gene (FLT3-ITD) were detected in 47/147 (32.0%) and tyrosine kinase domain mutations (FLT3-TKD) in 19/147 (12.9%) patients. FLT3-ITD or FLT3-TKD mutation status did not have a significant prognostic impact, whereas FLT3-ITD mutation load, as defined by a mutation/wild-type ratio of less than 0.5 was associated with trends to a better 2-year overall survival rate (86.7% versus 72.7%; P=0.075) and 2-year event-free survival rate (84.5% versus 62.1%, P=0.023) compared to the survival rates of patients with a ratio of 0.5 or more. Besides the t(15;17), an additional chromosomal abnormality was detected in 57 of 147 cases and did not show a significant impact on survival. White blood cell counts of 10×109/L or less versus more than 10×109/L were associated with a better 2-year overall survival rate (88.3% versus 69.4%, respectively; P=0.015), as was male sex (P=0.040). In multivariate analysis, only higher age had a significant adverse impact. Conclusions Prospective trials should further investigate the clinical impact of the FLT3-ITD/wild-type mutation load aiming to evaluate whether this parameter might be included in risk stratification in patients with acute promyelocytic leukemia. PMID:21859732

  6. Arsenic trioxide therapy for relapsed acute promyelocytic leukemia: an useful salvage therapy.

    PubMed

    Huan, S Y; Yang, C H; Chen, Y C

    2000-07-01

    Arsenic trioxide (As2O3) was recently identified as a very potent agent against acute promyelocytic leukemia (APL). Intravenous infusion of 10 mg As2O3 daily for one to two months can induce significant complete remission (CR) of APL, and there is no cross drug-resistance between As2O3 and other antileukemic agents, including all-trans retinoic acid (ATRA). The CR rate of relapsed and/or refractory APL patients who received As2O3 treatment ranged from 52.3% to 93.3%. The median duration to CR ranged from 38 to 51 days, with accumulative As2O3 dosage of 340-430 mg. Although most adverse reactions of As2O3 treatment were tolerable, certain infrequent but severe toxicities related to As2O3 were observed, including renal failure, hepatic damage, cardiac arrhythmia and chronic neuromuscular degeneration, which should be monitored carefully. As2O3 can induce partial differentiation and subsequent apoptosis of APL cells through degradation of wild type PML and PML/RAR alpha chimeric proteins and possible anti-mitochondrial effects. Like the treatment of ATRA in APL, early relapses from As2O3 treatment within a few months were not infrequently seen, indicating that rapid emerging resistance to As2O3 can occur. Nevertheless, the PML/RAR alpha fusion protein was reported to disappear in some APL patients who received As2O3, and who might earn long-survival. However, the follow-up is still too short to draw the conclusion. Intriguingly, it has been shown that As2O3 can also induce apoptosis of other non-APL tumor cells with clinical achievable concentrations. However, the detailed molecular mechanisms are not yet fully understood. Further studies regarding to the pharmacological characters, clinical efficacies, toxicities, apoptogenic mechanisms, and spectrum of anti-tumor activity of As2O3 are warranted.

  7. Significance of AZD1152 as a potential treatment against Aurora B overexpression in acute promyelocytic leukemia.

    PubMed

    Ghanizadeh-Vesali, Samad; Zekri, Ali; Zaker, Farhad; Zaghal, Azam; Yousefi, Meysam; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir; Ghaffari, Seyed H

    2016-06-01

    Aurora B kinase as a chromosomal passenger protein plays multiple roles in regulating mitosis and cytokinesis. The function of Aurora B in leukemic cells has made it an important treatment target. In this study, we explored the expressions of Aurora (A, B, and C) kinases in newly diagnosed acute promyelocytic leukemia (APL) patients. In addition, we investigated the effects of AZD1152 as a specific inhibitor of Aurora B on cell survival, DNA synthesis, nuclear morphology, apoptosis induction, cell cycle distribution, and gene expression in an APL-derived NB4 cell line. Our results showed that Aurora B was overexpressed in 88 % of APL patients. AZD1152 treatment of NB4 cells led to viability reduction and G2/M arrest followed by an increase in cell size and polyploidy induction. These giant cells showed morphological evidence of mitotic catastrophe. AZD1152 treatment induced activation of G2/M checkpoint which in turn led to transient G2/M arrest in a p21-independent manner. Lack of functional p53 in NB4 cells might provide an opportunity to escape from G2/M block and to endure repeated rounds of replication and polyploidy. Treated cells were probably eliminated via p73-mediated overexpression of BAX, PUMA, and APAF1 and downregulation of survivin and MCL-1. In summary, AZD1152 treatment led to endomitosis and polyploidy in TP53-mutated NB4 cells. These giant polyploid cells might undergo mitotic catastrophe and p73-mediated apoptosis. It seems that induction of polyploidy via AZD1152 could be a novel form of anti-cancer therapy for APL that may be clinically accessible in the near future. PMID:27091351

  8. Simple, rapid and accurate molecular diagnosis of acute promyelocytic leukemia by loop mediated amplification technology.

    PubMed

    Spinelli, Orietta; Rambaldi, Alessandro; Rigo, Francesca; Zanghì, Pamela; D'Agostini, Elena; Amicarelli, Giulia; Colotta, Francesco; Divona, Mariadomenica; Ciardi, Claudia; Coco, Francesco Lo; Minnucci, Giulia

    2015-01-01

    The diagnostic work-up of acute promyelocytic leukemia (APL) includes the cytogenetic demonstration of the t(15;17) translocation and/or the PML-RARA chimeric transcript by RQ-PCR or RT-PCR. This latter assays provide suitable results in 3-6 hours. We describe here two new, rapid and specific assays that detect PML-RARA transcripts, based on the RT-QLAMP (Reverse Transcription-Quenching Loop-mediated Isothermal Amplification) technology in which RNA retrotranscription and cDNA amplification are carried out in a single tube with one enzyme at one temperature, in fluorescence and real time format. A single tube triplex assay detects bcr1 and bcr3 PML-RARA transcripts along with GUS housekeeping gene. A single tube duplex assay detects bcr2 and GUSB. In 73 APL cases, these assays detected in 16 minutes bcr1, bcr2 and bcr3 transcripts. All 81 non-APL samples were negative by RT-QLAMP for chimeric transcripts whereas GUSB was detectable. In 11 APL patients in which RT-PCR yielded equivocal breakpoint type results, RT-QLAMP assays unequivocally and accurately defined the breakpoint type (as confirmed by sequencing). Furthermore, RT-QLAMP could amplify two bcr2 transcripts with particularly extended PML exon 6 deletions not amplified by RQ-PCR. RT-QLAMP reproducible sensitivity is 10(-3) for bcr1 and bcr3 and 10(-)2 for bcr2 thus making this assay particularly attractive at diagnosis and leaving RQ-PCR for the molecular monitoring of minimal residual disease during the follow up. In conclusion, PML-RARA RT-QLAMP compared to RT-PCR or RQ-PCR is a valid improvement to perform rapid, simple and accurate molecular diagnosis of APL. PMID:25815362

  9. Aberrant phenotypic expression of CD15 and CD56 identifies poor prognostic acute promyelocytic leukemia patients.

    PubMed

    Breccia, Massimo; De Propris, Maria Stefania; Minotti, Clara; Stefanizzi, Caterina; Raponi, Sara; Colafigli, Gioia; Latagliata, Roberto; Guarini, Anna; Foà, Robin

    2014-02-01

    Limited information is available on the relationship between expression of some additional aberrant phenotypic features and outcome of acute promyelocytic leukemia (APL) patients. Here, we set out to assess the frequency of CD15 and CD56 expression, and their prognostic value in a large series of APL patients. One hundred and fourteen adult patients consecutively diagnosed with PML/RARα-positive APL and homogeneously treated with the AIDA induction schedule at a single institution were included in the study. Twelve (10.5%) and 9 (8%) of the 114 patients expressed CD15 and CD56, respectively. CD15 expression identified a subset of patients with a classic morphologic subtype (92%), a prevalent association with a bcr1 expression (67%) with an unexpectedly higher frequency of relapses (42% vs 20% for the CD15- patients, p=0.03) and a low overall survival (OS) (median OS at 5 years 58% vs 85% for the CD15- patients, p=0.01). CD56 expression was detected only in patients with a classic morphologic subtype, a prevalent bcr3 expression (67%), high incidence of differentiation syndrome (55%), higher frequency of relapse (34% vs 20% for the CD56- population, p=0.04) and a low OS (60% vs 85% for the CD56- population p=0.02). We hereby confirm the negative prognostic value of CD56 and we show that the same applies also to cases expressing CD15. These aberrant markers may be considered for the refinement of risk-adapted therapeutic strategies in APL patients.

  10. Acute promyelocytic leukemia in patients aged >70 years: the cure beyond the age.

    PubMed

    Finsinger, Paola; Breccia, Massimo; Minotti, Clara; Carmosino, Ida; Girmenia, Corrado; Chisini, Marta; Volpicelli, Paola; Vozella, Federico; Romano, Angela; Montagna, Chiara; Colafigli, Gioia; Cimino, Giuseppe; Avvisati, Giuseppe; Petti, Maria Concetta; Lo-Coco, Francesco; Foà, Roberto; Latagliata, Roberto

    2015-02-01

    All-trans retinoic acid (ATRA) has made acute promyelocytic leukemia (APL) a very curable disease also in patients aged >60 years; however, there are only few case reports in very elderly APL patients. To address this issue, we reviewed treatment results in 13 patients aged >70 years with newly diagnosed APL followed at our institution from January 1991 to December 2008. According to Sanz score, seven patients were at low risk, five at intermediate risk, and one at high risk. Induction therapy consisted of ATRA + idarubicin in nine patients (3/9 with reduced idarubicin dosage) and ATRA alone in four patients; in this latter group, however, 2/4 needed to add chemotherapy (CHT) due to hyperleukocytosis during ATRA treatment. All patients achieved both morphological and molecular complete remission (CR) after a median time of 51 [interquartile range (IR) 43-55] and 114 (IR 74-155) days, respectively. Infective complications were observed in 10/13 patients, APL differentiation syndrome in 3/13 patients. Twelve patients received consolidation therapy, followed by maintenance treatment in nine patients. Five patients relapsed after 7, 8, 11, 35, and 56 months. At present, seven patients are still alive, five died due to disease progression (four) or senectus while in CR (one), and one was lost to follow-up while in CR. The 5-year event-free survival was 56.1 % (95 % CI, 26.0-86.2); the 5-year overall survival (OS) was 64.5 % (95 % CI, 35.6-93.4). ATRA-based treatment of APL is safe and effective also in very elderly patients, with long-lasting disease-free OS. PMID:25186786

  11. Simple, rapid and accurate molecular diagnosis of acute promyelocytic leukemia by loop mediated amplification technology

    PubMed Central

    Spinelli, Orietta; Rambaldi, Alessandro; Rigo, Francesca; Zanghì, Pamela; D'Agostini, Elena; Amicarelli, Giulia; Colotta, Francesco; Divona, Mariadomenica; Ciardi, Claudia; Coco, Francesco Lo; Minnucci, Giulia

    2015-01-01

    The diagnostic work-up of acute promyelocytic leukemia (APL) includes the cytogenetic demonstration of the t(15;17) translocation and/or the PML-RARA chimeric transcript by RQ-PCR or RT-PCR. This latter assays provide suitable results in 3-6 hours. We describe here two new, rapid and specific assays that detect PML-RARA transcripts, based on the RT-QLAMP (Reverse Transcription-Quenching Loop-mediated Isothermal Amplification) technology in which RNA retrotranscription and cDNA amplification are carried out in a single tube with one enzyme at one temperature, in fluorescence and real time format. A single tube triplex assay detects bcr1 and bcr3 PML-RARA transcripts along with GUS housekeeping gene. A single tube duplex assay detects bcr2 and GUSB. In 73 APL cases, these assays detected in 16 minutes bcr1, bcr2 and bcr3 transcripts. All 81 non-APL samples were negative by RT-QLAMP for chimeric transcripts whereas GUSB was detectable. In 11 APL patients in which RT-PCR yielded equivocal breakpoint type results, RT-QLAMP assays unequivocally and accurately defined the breakpoint type (as confirmed by sequencing). Furthermore, RT-QLAMP could amplify two bcr2 transcripts with particularly extended PML exon 6 deletions not amplified by RQ-PCR. RT-QLAMP reproducible sensitivity is 10−3 for bcr1 and bcr3 and 10−2 for bcr2 thus making this assay particularly attractive at diagnosis and leaving RQ-PCR for the molecular monitoring of minimal residual disease during the follow up. In conclusion, PML-RARA RT-QLAMP compared to RT-PCR or RQ-PCR is a valid improvement to perform rapid, simple and accurate molecular diagnosis of APL. PMID:25815362

  12. Improving acute promyelocytic leukemia (APL) outcome in developing countries through networking, results of the International Consortium on APL.

    PubMed

    Rego, Eduardo M; Kim, Haesook T; Ruiz-Argüelles, Guillermo J; Undurraga, Maria Soledad; Uriarte, Maria del Rosario; Jacomo, Rafael H; Gutiérrez-Aguirre, Homero; Melo, Raul A M; Bittencourt, Rosane; Pasquini, Ricardo; Pagnano, Katia; Fagundes, Evandro M; Chauffaille, Maria de Lourdes; Chiattone, Carlos S; Martinez, Lem; Meillón, Luis A; Gómez-Almaguer, David; Kwaan, Hau C; Garcés-Eisele, Javier; Gallagher, Robert; Niemeyer, Charlotte M; Schrier, Stanley L; Tallman, Martin; Grimwade, David; Ganser, Arnold; Berliner, Nancy; Ribeiro, Raul C; Lo-Coco, Francesco; Löwenberg, Bob; Sanz, Miguel A

    2013-03-14

    Thanks to modern treatment with all-trans retinoic acid and chemotherapy, acute promyelocytic leukemia (APL) is now the most curable type of leukemia. However, this progress has not yielded equivalent benefit in developing countries. The International Consortium on Acute Promyelocytic Leukemia (IC-APL) was established to create a network of institutions in developing countries that would exchange experience and data and receive support from well-established US and European cooperative groups. The IC-APL formulated expeditious diagnostic, treatment, and supportive guidelines that were adapted to local circumstances. APL was chosen as a model disease because of the potential impact on improved diagnosis and treatment. The project included 4 national coordinators and reference laboratories, common clinical record forms, 5 subcommittees, and laboratory and data management training programs. In addition, participating institutions held regular virtual and face-to-face meetings. Complete hematological remission was achieved in 153/180 (85%) patients and 27 (15%) died during induction. After a median follow-up of 28 months, the 2-year cumulative incidence of relapse, overall survival (OS), and disease-free survival (DFS) were 4.5%, 80%, and 91%, respectively. The establishment of the IC-APL network resulted in a decrease of almost 50% in early mortality and an improvement in OS of almost 30% compared with historical controls, resulting in OS and DFS similar to those reported in developed countries. PMID:23319575

  13. High pseudotumor cerebri incidence in tretinoin and arsenic treated acute promyelocytic leukemia and the role of topiramate after acetazolamide failure

    PubMed Central

    Smith, Morgan B.; Griffiths, Elizabeth A.; Thompson, James E.; Wang, Eunice S.; Wetzler, Meir; Freyer, Craig W.

    2014-01-01

    Dual differentiation therapy with arsenic trioxide and tretinoin (all-trans-retinoic acid; ATRA) for the management of low and intermediate risk acute promyelocytic leukemia has recently been recommended by the National Comprehensive Cancer Network. Some less common toxicities of the combination may have yet to be fully realized. Of ten patients we have treated thus far, five (50%) have developed pseudotumor cerebri. In one patient, temporary discontinuation of ATRA and initiation of acetazolamide controlled symptoms. In four patients, topiramate was substituted for acetazolamide to relieve symptoms and allow ATRA dose re-escalation. We conclude that providers should monitor for pseudotumor cerebri and consider topiramate if acetazolamide fails. PMID:25180154

  14. High ΔNp73/TAp73 ratio is associated with poor prognosis in acute promyelocytic leukemia

    PubMed Central

    Lucena-Araujo, Antonio R.; Kim, Haesook T.; Thomé, Carolina; Jacomo, Rafael H.; Melo, Raul A.; Bittencourt, Rosane; Pasquini, Ricardo; Pagnano, Katia; Glória, Ana Beatriz F.; Chauffaille, Maria de Lourdes; Athayde, Melina; Chiattone, Carlos S.; Mito, Ingrid; Bendlin, Rodrigo; Souza, Carmino; Bortolheiro, Cristina; Coelho-Silva, Juan L.; Schrier, Stanley L.; Tallman, Martin S.; Grimwade, David; Ganser, Arnold; Berliner, Nancy; Ribeiro, Raul C.; Lo-Coco, Francesco; Löwenberg, Bob; Sanz, Miguel A.

    2015-01-01

    The TP73 gene transcript is alternatively spliced and translated into the transcriptionally active (TAp73) or inactive (ΔNp73) isoforms, with opposite effects on the expression of p53 target genes and on apoptosis induction. The imbalance between ΔNp73 and TAp73 may contribute to tumorigenesis and resistance to chemotherapy in human cancers, including hematologic malignancies. In acute promyelocytic leukemia (APL), both isoforms are expressed, but their relevance in determining response to therapy and contribution to leukemogenesis remains unknown. Here, we provide the first evidence that a higher ΔNp73/TAp73 RNA expression ratio is associated with lower survival, lower disease-free survival, and higher risk of relapse in patients with APL homogeneously treated with all-trans retinoic acid and anthracycline-based chemotherapy, according to the International Consortium on Acute Promyelocytic Leukemia (IC-APL) study. Cox proportional hazards modeling showed that a high ΔNp73/TAp73 ratio was independently associated with shorter overall survival (hazard ratio, 4.47; 95% confidence interval, 1.64-12.2; P = .0035). Our data support the hypothesis that the ΔNp73/TAp73 ratio is an important determinant of clinical response in APL and may offer a therapeutic target for enhancing chemosensitivity in blast cells. PMID:26429976

  15. ZBTB16-RARα variant of acute promyelocytic leukemia with tuberculosis: a case report and review of literature

    PubMed Central

    Palta, Anshu; Cruz, Sanjay D.

    2012-01-01

    A 23-year-old male presented with pulmonary tuberculosis and swelling of both lower limbs. He was put on antitubercular treatment. Hemogram showed mild anemia and Pseudo Pelger-huet cells. The bone marrow (BM) examination showed 52% promyelocytes with regular round to oval nuclei, few granules and were positive for CD13 and CD33, and negative for HLA-DR. Cytogenetic analysis of the BM aspirate revealed an apparently balanced t(11;17)(q23;q21). Final diagnosis rendered was acute promyelocytic leukemia (APL) with t(11;17)(q23;q21); ZBTB16/RARA. APL is a distinct subtype of acute myeloid leukemia. The variant APL with t(11;17)(q23;q21) cases that are associated with the ZBTB16/RARA fusion gene have been reported as being resistant to all-trans-retinoic acid (ATRA). Therefore, differential diagnosis of variant APL with t(11;17)(q23;q12) from classical APL with t(15;17)(q22;q12); PML-RARA is very important. Here we have discussed the importance of distinct morphology of variant APL and also significance of rare presentation with tuberculosis. PMID:23071480

  16. Recurrent Arterial Thrombosis as a Presenting Feature of a Variant M3-Acute Promyelocytic Leukemia

    PubMed Central

    Chotai, Pranit N.; Kasangana, Kalenda; Chandra, Abhinav B.; Rao, Atul S.

    2016-01-01

    Acute limb ischemia (ALI) is a common vascular emergency. Hematologic malignancies are commonly associated with derangement of normal hemostasis and thrombo-hemorrhagic symptoms during the course of the disease are common. However, ALI as an initial presenting feature of acute leukemia is rare. Due to the rarity of this presentation, there is a scarcity of prospective randomized data to optimally guide the management of these patients. Current knowledge is mainly based on isolated cases. We report our experience managing a patient who presented with ALI and was found to have occult leukemia. A review of all cases with ALI as a presenting feature of acute leukemia is also presented. PMID:27386455

  17. Recurrent Arterial Thrombosis as a Presenting Feature of a Variant M3-Acute Promyelocytic Leukemia.

    PubMed

    Chotai, Pranit N; Kasangana, Kalenda; Chandra, Abhinav B; Rao, Atul S

    2016-06-01

    Acute limb ischemia (ALI) is a common vascular emergency. Hematologic malignancies are commonly associated with derangement of normal hemostasis and thrombo-hemorrhagic symptoms during the course of the disease are common. However, ALI as an initial presenting feature of acute leukemia is rare. Due to the rarity of this presentation, there is a scarcity of prospective randomized data to optimally guide the management of these patients. Current knowledge is mainly based on isolated cases. We report our experience managing a patient who presented with ALI and was found to have occult leukemia. A review of all cases with ALI as a presenting feature of acute leukemia is also presented. PMID:27386455

  18. Recurrent Arterial Thrombosis as a Presenting Feature of a Variant M3-Acute Promyelocytic Leukemia.

    PubMed

    Chotai, Pranit N; Kasangana, Kalenda; Chandra, Abhinav B; Rao, Atul S

    2016-06-01

    Acute limb ischemia (ALI) is a common vascular emergency. Hematologic malignancies are commonly associated with derangement of normal hemostasis and thrombo-hemorrhagic symptoms during the course of the disease are common. However, ALI as an initial presenting feature of acute leukemia is rare. Due to the rarity of this presentation, there is a scarcity of prospective randomized data to optimally guide the management of these patients. Current knowledge is mainly based on isolated cases. We report our experience managing a patient who presented with ALI and was found to have occult leukemia. A review of all cases with ALI as a presenting feature of acute leukemia is also presented.

  19. The differentiation syndrome in patients with acute promyelocytic leukemia: experience of the pethema group and review of the literature.

    PubMed

    Montesinos, Pau; Sanz, Miguel A

    2011-01-01

    Differentiation syndrome (DS), formerly known as retinoic acid syndrome, is the main life-threatening complication of therapy with differentiating agents (all-trans retinoic acid [ATRA] or arsenic trioxide [ATO]) in patients with acute promyelocytic leukemia (APL). The differentiation of leukemic blasts and promyelocytes induced by ATRA and/or ATO may lead to cellular migration, endothelial activation, and release of interleukins and vascular factors responsible of tissue damage. Roughly one quarter of patients with APL undergoing induction therapy will develop the DS, characterized by unexplained fever, acute respiratory distress with interstitial pulmonary infiltrates, and/or a vascular capillary leak syndrome leading to acute renal failure. Although the development of the DS, particularly of the severe form, is still associated with a significant increase in morbidity and mortality during induction, the early administration of high-dose dexamethasone at the onset of the first symptoms seems likely to have dramatically reduced the mortality rate of this complication. In this article, we will review the clinical features, incidence, prognostic factors, management, and outcome of the DS reported in the scientific literature. We will make focus in the experience of the three consecutive Programa Español de Tratamientos en Hematología trials (PETHEMA LPA96, LPA99, and LPA2005), in which more than one thousand patients were treated with ATRA plus idarubicin for induction.

  20. Induction of high-affinity GM-CSF receptors during all-trans retinoic acid treatment of acute promyelocytic leukemia.

    PubMed

    de Gentile, A; Toubert, M E; Dubois, C; Krawice, I; Schlageter, M H; Balitrand, N; Castaigne, S; Degos, L; Rain, J D; Najean, Y

    1994-10-01

    Differentiation of normal myeloid cells is accompanied by the increase of high-affinity GM-CSF receptors necessary for progenitor proliferation/differentiation and mature neutrophil function. All-trans retinoic acid (ATRA) induces terminal differentiation of acute promyelocytic leukemia cells (AML3 subtype). We report in this study that AML3 cells, like other AML subtypes, harbor high-affinity GM-CSF R (n = 138.3 +/- 69.3 sites/cell, Kd = 76.9 +/- 68.8 pM). In all cases, incubation with ATRA induces either an increase in the number of affinity of GM-CSF R (n = 212.7 +/- 116.2 sites/cell, Kd = 43.2 +/- 22.5 pM). The data presented show that modulation of GM-CSF receptors cells is correlated to the degree of ATRA-induced granulocytic differentiation but not to increased cell growth.

  1. Genital ulcers after treatment with all-trans-retinoic acid in a child with acute promyelocytic leukemia.

    PubMed

    Unal, Selma; Gümrük, Fatma; Cetin, Mualla; Hiçsönmez, Gönül

    2005-01-01

    All-trans-retinoic acid (ATRA) has been shown to improve the outcome of patients with acute promyelocytic leukemia (APL). However, various adverse effects of ATRA treatment have been noted, such as scrotal and genital ulcers in adult patients. The authors report genital ulcers that developed in a child with APL after ATRA treatment. An 8-year-old girl with APL was treated with ATRA for 21 days and after discontinuation of ATRA treatment she developed genital ulcers. Systemic and local antibiotic pomades were applied and the lesions improved within 15 days. In conclusion, genital ulcers may develop in children with APL as a complication of ATRA treatment and physicians should be alert to this possibility.

  2. Pathogenesis of disseminated intravascular coagulation in patients with acute promyelocytic leukemia, and its treatment using recombinant human soluble thrombomodulin.

    PubMed

    Ikezoe, Takayuki

    2014-07-01

    Acute promyelocytic leukemia (APL) is an uncommon subtype of acute myelogenous leukemia characterized by the proliferation of blasts with distinct morphology, a specific balanced reciprocal translocation t(15;17), and life-threatening hemorrhage caused mainly by enhanced fibrinolytic-type disseminated intravascular coagulation (DIC). The introduction of all-trans retinoic acid (ATRA) into anthracycline-based induction chemotherapy regimens has dramatically improved overall survival of individuals with APL, although hemorrhage-related death during the early phase of therapy remains a serious problem. Moreover, population-based studies have shown that the incidence of early death during induction chemotherapy is nearly 30 %, and the most common cause of death is associated with hemorrhage. Thus, development of a novel treatment strategy to alleviate abnormal coagulation in APL patients is urgently required. Recombinant human soluble thrombomodulin (rTM) comprises the active extracellular domain of TM, and has been used for treatment of DIC since 2008 in Japan. Use of rTM in combination with remission induction chemotherapy, including ATRA, produces potent resolution of DIC without exacerbation of bleeding tendency in individuals with APL. This review article discusses the pathogenesis and features of DIC caused by APL, as well as the possible anticoagulant and anti-leukemic action of rTM in APL patients.

  3. [PML-RARα and p21 are key factors for maintaining acute promyelocytic leukemia stem cells survival].

    PubMed

    Ding, Fei; Li, Jun-Min

    2011-10-01

    Tumor stem/progenitor cells are the cells with the characteristics of self-renewal, differentiating to all the other cell populations within tumor, which are also regarded as the source of tumor relapse, drug-resistance and metastasis. As a subtype of acute myeloid leukemia, acute promyelocytic leukemia (APL) represents the target of therapy due to the good response of the oncogenic protein PML-RARα to all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). This review summarizes the latest research results of APL as follows: (1) there probably are two APL stem/progenitor cell populations within APL, and self-renewal and survival of APL stem/progenitor cells highly depend on PML-RARα expression, cell cycle inhibitor p21, self-renewal associated molecules and chemokines; and (2) ATRA and ATO eradicate APL stem/progenitor cells mainly by PML-RARα degradation, FOXO3A activation and the inhibition of self-renewal-associated signaling pathway of sonic hedgehog. These findings are helpful to improve other tumor therapy.

  4. Comparative proteomic analysis of all-trans-retinoic acid treatment reveals systematic posttranscriptional control mechanisms in acute promyelocytic leukemia.

    PubMed

    Harris, Michael N; Ozpolat, Bulent; Abdi, Fadi; Gu, Sheng; Legler, Allison; Mawuenyega, Kwasi G; Tirado-Gomez, Maribel; Lopez-Berestein, Gabriel; Chen, Xian

    2004-09-01

    All-trans-retinoic acid (ATRA) induces growth inhibition, differentiation, and apoptosis in cancer cells, including acute promyelocytic leukemia (APL). In APL, expression of promyelocytic leukemia protein retinoic acid receptor-alpha (PML-RARalpha) fusion protein, owing to the t(15; 17) reciprocal translocation, leads to a block in the promyelocytic stage of differentiation. Here, we studied molecular mechanisms involved in ATRA-induced growth inhibition and myeloid cell differentiation in APL. By employing comprehensive high-throughput proteomic methods of 2-dimensional (2-D) gel electrophoresis and amino acid-coded mass tagging coupled with electrospray ionization (ESI) mass spectrometry, we systematically identified a total of 59 differentially expressed proteins that were consistently modulated in response to ATRA treatment. The data revealed significant down-regulation of eukaryotic initiation and elongation factors, initiation factor 2 (IF2), eukaryotic initiation factor 4AI (eIF4AI), eIF4G, eIF5, eIF6, eukaryotic elongation factor 1A-1 (eEF1A-1), EF-1-delta, eEF1gamma, 14-3-3epsilon, and 14-3-3zeta/delta (P <.05). The translational inhibitor DAP5/p97/NAT1 (death-associated protein 5) and PML isoform-1 were found to be up-regulated (P <.05). Additionally, the down-regulation of heterogeneous nuclear ribonucleoproteins (hnRNPs) C1/C2, UP2, K, and F; small nuclear RNPs (snRNPs) D3 and E; nucleoprotein tumor potentiating region (TPR); and protein phosphatase 2A (PP2A) were found (P <.05); these were found to function in pre-mRNA processing, splicing, and export events. Importantly, these proteomic findings were validated by Western blot analysis. Our data in comparison with previous cDNA microarray studies and our reverse transcription-polymerase chain reaction (RT-PCR) experiments demonstrate that broad networks of posttranscriptional suppressive pathways are activated during ATRA-induced growth inhibition processes in APL. PMID:15142884

  5. Acute promyelocytic leukemia with cryptic t(15;17) on isochromosome 17: a case report and review of literature

    PubMed Central

    Tang, Yuting; Wang, Ying; Hu, Liang; Meng, Fankai; Xu, Danmei; Wan, Kai; Huang, Lifang; Li, Chunrui; Zhou, Jianfeng

    2015-01-01

    Acute Promyelocytic Leukemia (APL) is one of the most curable leukemia which shows great sensitivity to all-trans retinoic acid (ATRA) although a small number of the patients present poor prognosis and short survival. Isochromosome 17 in APL which usually bears an additional copy of RARA/PML fusion gene is considered to be a negative factor on its prognosis. Cryptic t(15;17) on i(17q) leads to an extra copy of PML/RARA rather than RARA/PML which may confer a worse prognosis. We describe here a rare APL case with complex chromosomal abnormality including isochromosome 17 bearing cryptic t(15;17) showing poor outcome. The patient lacks a classic t(15;17) and fluorescence in situ hybridization (FISH) presents 2 PML/RARA fusion signals on both long arms of the isochromosome. The patient also acquired a secondary mutation at relapse when the initial karyotype was already a complex karyotype involving chromosome 13, 17 and 22 at the same time. The poor response of this patient to traditional chemotherapy like ATRA and novel therapy like arsenic trioxide (ATO) suggests that early auto-hematological stem cell transplantation may be the choice of APL with isochromosome 17 especially with cryptic t(15;17) on i(17q). We are the first to show a clear history and evidence of FISH of these kind of cases. A small summary of cases with cryptic t(15;17) on isochromosome 17 is also made. PMID:26823883

  6. [RXR, a key member of the oncogenic complex in acute promyelocytic leukemia].

    PubMed

    Halftermeyer, Juliane; Le Bras, Morgane; De Thé, Hugues

    2011-11-01

    Acute promyelocytic leukaemia (APL) is induced by fusion proteins always implying the retinoic acid receptor RARa. Although PML-RARa and other fusion oncoproteins are able to bind DNA as homodimers, in vivo they are always found in association with the nuclear receptor RXRa (Retinoid X Receptor). Thus, RXRa is an essential cofactor of the fusion protein for the transformation. Actually, RXRa contributes to several aspects of in vivo -transformation: RARa fusion:RXRa hetero-oligomeric complexes bind DNA with a much greater affinity than RARa fusion homodimers. Besides, PML-RARa:RXRa recognizes an enlarged repertoire of DNA binding sites. Thus the association between fusion proteins and RXRa regulates more genes than the homodimer alone. Titration of RXRa by the fusion protein may also play a role in the transformation process, as well as post-translational modifications of RXRa in the complex. Finally, RXRa is required for rexinoid-induced APL differentiation. Thus, RXRa is a key member of the oncogenic complex.

  7. From molecular interaction to acute promyelocytic leukemia: Calculating leukemogenesis and remission from endogenous molecular-cellular network

    PubMed Central

    Yuan, Ruoshi; Zhu, Xiaomei; Radich, Jerald P.; Ao, Ping

    2016-01-01

    Acute promyelocytic leukemia (APL) remains the best example of a malignancy that can be cured clinically by differentiation therapy. We demonstrate that APL may emerge from a dynamical endogenous molecular-cellular network obtained from normal, non-cancerous molecular interactions such as signal transduction and translational regulation under physiological conditions. This unifying framework, which reproduces APL, normal progenitor, and differentiated granulocytic phenotypes as different robust states from the network dynamics, has the advantage to study transition between these states, i.e. critical drivers for leukemogenesis and targets for differentiation. The simulation results quantitatively reproduce microarray profiles of NB4 and HL60 cell lines in response to treatment and normal neutrophil differentiation, and lead to new findings such as biomarkers for APL and additional molecular targets for arsenic trioxide therapy. The modeling shows APL and normal states mutually suppress each other, both in “wiring” and in dynamical cooperation. Leukemogenesis and recovery under treatment may be a consequence of spontaneous or induced transitions between robust states, through “passes” or “dragging” by drug effects. Our approach rationalizes leukemic complexity and constructs a platform towards extending differentiation therapy by performing “dry” molecular biology experiments. PMID:27098097

  8. Active Pin1 is a key target of all-trans retinoic acid in acute promyelocytic leukemia and breast cancer

    PubMed Central

    Wei, Shuo; Kozono, Shingo; Kats, Lev; Nechama, Morris; Li, Wenzong; Guarnerio, Jlenia; Luo, Manli; You, Mi-Hyeon; Yao, Yandan; Kondo, Asami; Hu, Hai; Bozkurt, Gunes; Moerke, Nathan J.; Cao, Shugeng; Reschke, Markus; Chen, Chun-Hau; Rego, Eduardo M.; LoCoco, Francesco; Cantley, Lewis; Lee, Tae Ho; Wu, Hao; Zhang, Yan; Pandolfi, Pier Paolo; Zhou, Xiao Zhen; Lu, Kun Ping

    2015-01-01

    A common key regulator of oncogenic signaling pathways in multiple tumor types is the unique isomerase Pin1. However, available Pin1 inhibitors lack the required specificity and potency. Using mechanism-based screening, here we find that all-trans retinoic acid (ATRA)--a therapy for acute promyelocytic leukemia (APL) that is considered the first example of targeted therapy in cancer, but its drug target remains elusive--inhibits and degrades active Pin1 selectively in cancer cells by directly binding to the substrate phosphate- and proline-binding pockets in the Pin1 active site. ATRA-induced Pin1 ablation degrades the fusion oncogene PML-RARα and treats APL in cell and animal models and human patients. ATRA-induced Pin1 ablation also inhibits triple negative breast cancer cell growth in human cells and in animal models by acting on many Pin1 substrate oncogenes and tumor suppressors. Thus, ATRA simultaneously blocks multiple Pin1-regulated cancer-driving pathways, an attractive property for treating aggressive and drug-resistant tumors. PMID:25849135

  9. The Mutational Landscape of Acute Promyelocytic Leukemia Reveals an Interacting Network of Co-Occurrences and Recurrent Mutations.

    PubMed

    Ibáñez, Mariam; Carbonell-Caballero, José; García-Alonso, Luz; Such, Esperanza; Jiménez-Almazán, Jorge; Vidal, Enrique; Barragán, Eva; López-Pavía, María; LLop, Marta; Martín, Iván; Gómez-Seguí, Inés; Montesinos, Pau; Sanz, Miguel A; Dopazo, Joaquín; Cervera, José

    2016-01-01

    Preliminary Acute Promyelocytic Leukemia (APL) whole exome sequencing (WES) studies have identified a huge number of somatic mutations affecting more than a hundred different genes mainly in a non-recurrent manner, suggesting that APL is a heterogeneous disease with secondary relevant changes not yet defined. To extend our knowledge of subtle genetic alterations involved in APL that might cooperate with PML/RARA in the leukemogenic process, we performed a comprehensive analysis of somatic mutations in APL combining WES with sequencing of a custom panel of targeted genes by next-generation sequencing. To select a reduced subset of high confidence candidate driver genes, further in silico analysis were carried out. After prioritization and network analysis we found recurrent deleterious mutations in 8 individual genes (STAG2, U2AF1, SMC1A, USP9X, IKZF1, LYN, MYCBP2 and PTPN11) with a strong potential of being involved in APL pathogenesis. Our network analysis of multiple mutations provides a reliable approach to prioritize genes for additional analysis, improving our knowledge of the leukemogenesis interactome. Additionally, we have defined a functional module in the interactome of APL. The hypothesis is that the number, or the specific combinations, of mutations harbored in each patient might not be as important as the disturbance caused in biological key functions, triggered by several not necessarily recurrent mutations. PMID:26886259

  10. The Mutational Landscape of Acute Promyelocytic Leukemia Reveals an Interacting Network of Co-Occurrences and Recurrent Mutations

    PubMed Central

    García-Alonso, Luz; Such, Esperanza; Jiménez-Almazán, Jorge; Vidal, Enrique; Barragán, Eva; López-Pavía, María; LLop, Marta; Martín, Iván; Gómez-Seguí, Inés; Montesinos, Pau; Sanz, Miguel A.; Dopazo, Joaquín; Cervera, José

    2016-01-01

    Preliminary Acute Promyelocytic Leukemia (APL) whole exome sequencing (WES) studies have identified a huge number of somatic mutations affecting more than a hundred different genes mainly in a non-recurrent manner, suggesting that APL is a heterogeneous disease with secondary relevant changes not yet defined. To extend our knowledge of subtle genetic alterations involved in APL that might cooperate with PML/RARA in the leukemogenic process, we performed a comprehensive analysis of somatic mutations in APL combining WES with sequencing of a custom panel of targeted genes by next-generation sequencing. To select a reduced subset of high confidence candidate driver genes, further in silico analysis were carried out. After prioritization and network analysis we found recurrent deleterious mutations in 8 individual genes (STAG2, U2AF1, SMC1A, USP9X, IKZF1, LYN, MYCBP2 and PTPN11) with a strong potential of being involved in APL pathogenesis. Our network analysis of multiple mutations provides a reliable approach to prioritize genes for additional analysis, improving our knowledge of the leukemogenesis interactome. Additionally, we have defined a functional module in the interactome of APL. The hypothesis is that the number, or the specific combinations, of mutations harbored in each patient might not be as important as the disturbance caused in biological key functions, triggered by several not necessarily recurrent mutations. PMID:26886259

  11. All-transretinoic acid (ATRA) treatment-related pancarditis and severe pulmonary edema in a child with acute promyelocytic leukemia.

    PubMed

    Işık, Pamir; Çetin, Ilker; Tavil, Betul; Azik, Fatih; Kara, Abdurrahman; Yarali, Nese; Tunc, Bahattin

    2010-11-01

    Use of all-transretinoic acid (ATRA) with other chemotherapeutic agents in the treatment of acute promyelocytic leukemia (APL) has been shown to cause the differentiation of abnormally granulated specific blast cells into mature granulocytes by acting on the t(15; 17) fusion gene product. The complete remission rate is increased and survival time is prolonged in APL patients who receive chemotherapy plus ATRA, whereas ATRA syndrome and other ATRA-related adverse effects including pseudo tumor cerebri, headache, severe bone pain, mucosal and skin dryness, hypercholesterolemia, and cheilitis may be observed especially during induction phase of the treatment. In this paper, we report a 9-year-old girl with APL who developed pancarditis while receiving the APL-93 treatment protocol. In our patient, endocarditis and myocarditis were initially determined after ATRA treatment during the induction part of the protocol. All findings disappeared after ATRA was discontinued. When ATRA was readministered in the maintenance part of the treatment protocol, she developed pancarditis and severe pulmonary edema. As her symptoms decreased dramatically with the discontinuation of ATRA and the initiation of steroid treatment, the clinical picture strongly suggested the ATRA treatment as the causative factor. To the best of our knowledge, this clinical picture of pancarditis secondary to ATRA treatment has not been reported earlier in the English literature. PMID:20881874

  12. Acute promyelocytic leukemia: a 5-year experience with new antileukemic agents and a new approach to preventing fatal hemorrhage.

    PubMed

    Feldman, E J; Arlin, Z A; Ahmed, T; Mittelman, A; Ascensao, J L; Puccio, C A; Coombe, N; Baskind, P

    1989-01-01

    Forty-six induction courses were administered to 32 patients with acute promyelocytic leukemia. There were 28 males and 18 females with a median age of 39.5 (range 19-68). Twelve patients were previously untreated, 32 were in relapse, and 2 were refractory to primary induction chemotherapy. Heparin 7.5-10 units/kg/h by continuous infusion, 4-6 units of platelets and 1-2 units of fresh-frozen plasma (FFP) every 12 h were given to all patients. Previously untreated patients received either daunorubicin, idarubicin or mitoxantrone in combination with cytarabine (Ara-C). For relapsed and refractory patients, regimens included amsacrine with high-dose cytarabine (Amsa/HiDac), homoharringtonine (HHT) alone, or with Ara-C, mitoxantrone and bisantrene. Hemorrhagic complications occurred in only 1 out of 46 courses (2%). Complete remission rates (CR) were as follows: previously untreated 83% (10/12), relapsed 66% (21/32), primary refractory 50% (1/2). Amsa/HiDac resulted in a 71% (10/14) CR and HHT-based regimens achieved a 46% (6/13) CR. These regimens are effective and the value of their incorporation into primary therapy should be studied. The use of heparin with platelet and FFP transfusions every 12 h reduces the risk of hemorrhage during induction therapy.

  13. Retinoid-dependent growth inhibition, differentiation and apoptosis in acute promyelocytic leukemia cells. Expression and activation of caspases.

    PubMed

    Gianni, M; Ponzanelli, I; Mologni, L; Reichert, U; Rambaldi, A; Terao, M; Garattini, E

    2000-05-01

    In the NB4 model of acute promyelocytic leukemia (APL), ATRA, 9-cis retinoic acid (9-cis RA), the pan-RAR and RARalpha-selective agonists, TTNPB and AM580, induce growth inhibition, granulocytic differentiation and apoptosis. By contrast, two RXR agonists, a RARbeta agonist and an anti-AP1 retinoid have very limited activity, ATRA- and AM580-dependent effects are completely inhibited by RAR antagonistic blockade, while 9-cis RA-induced cell-growth-inhibition and apoptosis are equally inhibited by RAR and RXR antagonists. ATRA, 9-cis RA and AM580 cause upregulation of the mRNAs coding for pro-caspase-1, -7, -8, and -9, which, however, results in increased synthesis of only pro-caspase-1 and -7 proteins. These phenomena are associated with activation of pro-caspase-6, -7 and -8, cytochrome c release from the mitochondria, inversion of Bcl-2/Bax ratio and degradation of PML-RARalpha. Caspase activation is fundamental for retinoid-induced apoptosis, which is suppressed by the caspase-inhibitor z-VAD.

  14. Comparison of Newly Diagnosed and Relapsed Patients with Acute Promyelocytic Leukemia Treated with Arsenic Trioxide: Insight into Mechanisms of Resistance

    PubMed Central

    Chendamarai, Ezhilarasi; Ganesan, Saravanan; Alex, Ansu Abu; Kamath, Vandana; Nair, Sukesh C.; Nellickal, Arun Jose; Janet, Nancy Beryl; Srivastava, Vivi; Lakshmi, Kavitha M.; Viswabandya, Auro; Abraham, Aby; Aiyaz, Mohammed; Mullapudi, Nandita; Mugasimangalam, Raja; Padua, Rose Ann; Chomienne, Christine; Chandy, Mammen; Srivastava, Alok; George, Biju; Balasubramanian, Poonkuzhali; Mathews, Vikram

    2015-01-01

    There is limited data on the clinical, cellular and molecular changes in relapsed acute promyeloytic leukemia (RAPL) in comparison with newly diagnosed cases (NAPL). We undertook a prospective study to compare NAPL and RAPL patients treated with arsenic trioxide (ATO) based regimens. 98 NAPL and 28 RAPL were enrolled in this study. RAPL patients had a significantly lower WBC count and higher platelet count at diagnosis. IC bleeds was significantly lower in RAPL cases (P=0.022). The ability of malignant promyelocytes to concentrate ATO intracellularly and their in-vitro IC50 to ATO was not significantly different between the two groups. Targeted NGS revealed PML B2 domain mutations in 4 (15.38%) of the RAPL subset and none were associated with secondary resistance to ATO. A microarray GEP revealed 1744 genes were 2 fold and above differentially expressed between the two groups. The most prominent differentially regulated pathways were cell adhesion (n=92), cell survival (n=50), immune regulation (n=74) and stem cell regulation (n=51). Consistent with the GEP data, immunophenotyping revealed significantly increased CD34 expression (P=0.001) in RAPL cases and there was in-vitro evidence of significant microenvironment mediated innate resistance (EM-DR) to ATO. Resistance and relapse following treatment with ATO is probably multi-factorial, mutations in PML B2 domain while seen only in RAPL may not be the major clinically relevant cause of subsequent relapses. In RAPL additional factors such as expansion of the leukemia initiating compartment along with EM-DR may contribute significantly to relapse following treatment with ATO based regimens. PMID:25822503

  15. A Multicenter Experience from Lebanon in Childhood and Adolescent Acute Myeloid Leukemia: High rate of Early Death in Childhood Acute Promyelocytic Leukemia

    PubMed Central

    Farah, Roula A.; Horkos, Jessy G.; Bustros, Youssef D.; Farhat, Hussein Z.; Abla, Oussama

    2015-01-01

    Background Acute myeloid leukemia (AML) is a disease with marked heterogeneity. Despite major improvement in outcome, it remains a life-threatening malignancy. Demographic and clinical data on pediatric AML is lacking among the Lebanese population. Purpose We aimed to identify clinical, molecular and outcome data in children with AML in Lebanon. Methods A retrospective chart review of children with AML diagnosed in three Lebanese hospitals during the past 8 years was conducted. Results From May 2002 through March 2010, we identified 24 children with AML in Saint George Hospital University Medical Center, University Medical Center Rizk Hospital, and Abou-Jaoude Hospital. Males and females were equally represented; median age at diagnosis was 9 years (range 1–24) and median WBC at diagnosis was 31 × 109/L (range: 2.1–376 × 109/L). Twenty five percent of patients (6 out of 24) had acute promyelocytic leukemia (APL). Karyotype was normal in 33% of patients; t(8;21), inv (16), t(8;9), t(7;11), t(9;11), complex chromosomal abnormality, monosomy 7 and trisomy 8 were the most common cytogenetic abnormalities encountered. Patients were treated on different European and North American protocols. Twelve patients (50%) achieved morphologic CR after cycle 1, 6 of them (50%) had bone marrow relapse within 11 months from diagnosis. Nine patients underwent allogeneic stem cell transplant, and 3 of them are alive at 5 years post-transplant. Early death rate was 16.6% of patients, mainly those with APL and a presenting WBC > 10 × 109/L. Fifty per cent of APL patients had an early death due to DIC despite starting ATRA therapy. Overall, median survival for AML patients who died from disease progression was 25.8 months (range: 1–60 months). Overall disease-free survival was 30.4%. Patients < 10 years of age had a 50% survival rate compared to 0% in patients > 10 years. Conclusions Our report highlights the needs in Lebanon for better supportive care of children with APL

  16. Microgranular variant of acute promyelocytic leukemia with der(17) ins(17;15): A case report and review of the literature

    PubMed Central

    GUAN, HONGZAI; LIU, JING; GUO, XIAOFANG; WU, CHUNMEI; YU, HUAWEI

    2015-01-01

    Acute promyelocytic leukemia (APL) with variant translocations is rare. The patient of the present case report, a 2-year-old male with a microgranular variant of APL carrying der(17) ins(17;15) translocation, exhibited fever and epistaxis. The complete blood count showed marked leukocytosis with 72% atypical promyelocytes, anemia and thrombocytopenia. Conventional cytogenetic analysis of the bone marrow cells revealed a karyotype of 47, XY, add(3)(q29), −7, ins(17;15)(q12;q14q22),+21,+mar. The promyelocytic leukemia/retinoic acid receptor α (PML/RARα) rearrangement and insertion were confirmed by fluorescence in situ hybridization. The PML/RARα transcripts were not detected by the reverse transcription polymerase chain reaction, and the patient was diagnosed with microgranular variant M3 APL. The patient achieved remission after a 30-day treatment and was still in remission during a recent follow-up. The present findings suggest that the ins(17;15) variant in APL may not be associated with an unfavorable prognosis. In summary, we reported an extremely rare case of APL with der(17) ins(17;15) abnormality in a pediatric patient and reviewed the literature. PMID:26622430

  17. Central nervous system involvement at first relapse in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline monochemotherapy without intrathecal prophylaxis

    PubMed Central

    Montesinos, Pau; Díaz-Mediavilla, Joaquín; Debén, Guillermo; Prates, Virginia; Tormo, Mar; Rubio, Vicente; Pérez, Inmaculada; Fernández, Isolda; Viguria, Maricruz; Rayón, Chelo; González, José; de la Serna, Javier; Esteve, Jordi; Bergua, Juan M.; Rivas, Concha; González, Marcos; González, Jose D.; Negri, Silvia; Brunet, Salut; Lowenberg, Bob; Sanz, Miguel A.

    2009-01-01

    Background The prevalence of and risk factors for central nervous system recurrence in patients with acute promyelocytic leukemia are not well established and remain a controversial matter. Design and Methods Between 1996 and 2005, 739 patients with newly diagnosed acute promyelocytic leukemia enrolled in two consecutive trials (PETHEMA LPA96 and LPA99) received induction therapy with all-trans retinoic acid and idarubicin. Consolidation therapy comprised three courses of anthracycline monochemotherapy (LPA96), with all-trans retinoic acid and reinforced doses of idarubicin in patients with an intermediate or high risk of relapse (LPA99). Central nervous system prophylaxis was not given. Results Central nervous system relapse was documented in 11 patients. The 5-year cumulative incidence of central nervous system relapse was 1.7% (LPA96 3.2% and LPA99 1.2%; p=0.09). The cumulative incidence was 0%, 0.8%, and 5.5% in low-, intermediate-, and high-risk patients, respectively. Relapse risk score (p=0.0001) and the occurrence of central nervous system hemorrhage during induction (5-year cumulative incidence 18.7%, p=0.006) were independent risk factors for central nervous system relapse. Conclusions This study shows a low incidence of central nervous system relapse in patients with acute promyelocytic leukemia following therapy with all-trans retinoic acid and anthracycline without specific central nervous system prophylaxis. Central nervous system relapse was significantly associated with high white blood cell counts and prior central nervous system hemorrhage, which emerged as independent prognostic factors. PMID:19608685

  18. Establishment of two-dimensional gel electrophoresis profiles of the human acute promyelocytic leukemia cell line NB4.

    PubMed

    He, Pengcheng; Liu, Yanfeng; Zhang, Mei; Wang, Xiaoning; Wang, Huaiyu; Xi, Jieying; Wei, Kaihua; Wang, Hongli; Zhao, Jing

    2012-09-01

    To explore optimum conditions for establishing a two‑dimensional gel electrophoresis (2-DE) map of the human acute promyelocytic leukemia (APL) cell line NB4 and to analyze its protein profiles, we extracted total proteins from NB4 cells using cell disruption, liquid nitrogen freeze-thawing and fracturing by ultrasound, and quantified the extracted protein samples using Bradford's method. 2-DE was applied to separate the proteins, which were silver-stained in the gel. Well‑separated protein spots were selected from the gel using the ImageMaster™ 2D Platinum analysis system. Moreover, the effects of various protein sample sizes (140, 160 and 180 µg) on the 2-DE maps of the NB4 cells were determined and compared. Matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF-MS), peptide mass fingerprinting (PMF) and database searching were used to identify the proteins. When the quantity of loading proteins was 160 µg, clear, well-resolved, reproducible 2-DE proteomic profiles of the NB4 cells were obtained. The average number of protein spots in 3 gels was 1160±51 with an average matching rate of 81%. A total of 10 proteins were identified by mass spectrometry and database queries, certain proteins were products of oncogenes and others were involved in cell cycle regulation and signal transduction. In summary, 2-DE profiles of the proteome of NB4 cells were established and certain proteins were identified by MALDI-TOF-MS and PMF which lay the foundation of further proteomic research of NB4 cells. These data should be useful for establishing a human APL proteome database. PMID:22736039

  19. Absolute quantification of the pretreatment PML-RARA transcript defines the relapse risk in acute promyelocytic leukemia.

    PubMed

    Albano, Francesco; Zagaria, Antonella; Anelli, Luisa; Coccaro, Nicoletta; Tota, Giuseppina; Brunetti, Claudia; Minervini, Crescenzio Francesco; Impera, Luciana; Minervini, Angela; Cellamare, Angelo; Orsini, Paola; Cumbo, Cosimo; Casieri, Paola; Specchia, Giorgina

    2015-05-30

    In this study we performed absolute quantification of the PML-RARA transcript by droplet digital polymerase chain reaction (ddPCR) in 76 newly diagnosed acute promyelocytic leukemia (APL) cases to verify the prognostic impact of the PML-RARA initial molecular burden. ddPCR analysis revealed that the amount of PML-RARA transcript at diagnosis in the group of patients who relapsed was higher than in that with continuous complete remission (CCR) (272 vs 89.2 PML-RARA copies/ng, p = 0.0004, respectively). Receiver operating characteristic analysis detected the optimal PML-RARA concentration threshold as 209.6 PML-RARA/ng (AUC 0.78; p < 0.0001) for discriminating between outcomes (CCR versus relapse). Among the 67 APL cases who achieved complete remission after the induction treatment, those with >209.6 PML-RARA/ng had a worse relapse-free survival (p = 0.0006). At 5-year follow-up, patients with >209.6 PML-RARA/ng had a cumulative incidence of relapse of 50.3% whereas 7.5% of the patients with suffered a relapse (p < 0.0001). Multivariate analysis identified the amount of PML-RARA before induction treatment as the sole independent prognostic factor for APL relapse.Our results show that the pretreatment PML-RARA molecular burden could therefore be used to improve risk stratification in order to develop more individualized treatment regimens for high-risk APL cases. PMID:25944686

  20. A drug from poison: how the therapeutic effect of arsenic trioxide on acute promyelocytic leukemia was discovered.

    PubMed

    Rao, Yi; Li, Runhong; Zhang, Daqing

    2013-06-01

    It is surprising that, while arsenic trioxide (ATO) is now considered as "the single most active agent in patients with acute promyelocytic leukemia (APL)", the most important discoverer remains obscure and his original papers have not been cited by a single English paper. The discovery was made during the Cultural Revolution when most Chinese scientists and doctors struggled to survive. Beginning with recipes from a countryside practitioner that were vague in applicable diseases, Zhang TingDong and colleagues proposed in the 1970s that a single chemical in the recipe is most effective and that its target is APL. More than 20 years of work by Zhang and colleagues eliminated the confusions about whether and how ATO can be used effectively. Other researchers, first in China and then in the West, followed his lead. Retrospective analysis of data from his own group proved that APL was indeed the most sensitive target. Removal of a trace amount of mercury chloride from the recipe by another group in his hospital proved that only ATO was required. Publication of Western replication in 1998 made the therapy widely accepted, though neither Western, nor Chinese authors of English papers on ATO cited Zhang's papers in the 1970s. This article focuses on the early papers of Zhang, but also suggests it worth further work to validate Chinese reports of ATO treatment of other cancers, and infers that some findings published in Chinese journals are of considerable value to patients and that doctors from other countries can benefit from the clinical experience of Chinese doctors with the largest population of patients.

  1. A drug from poison: how the therapeutic effect of arsenic trioxide on acute promyelocytic leukemia was discovered.

    PubMed

    Rao, Yi; Li, Runhong; Zhang, Daqing

    2013-06-01

    It is surprising that, while arsenic trioxide (ATO) is now considered as "the single most active agent in patients with acute promyelocytic leukemia (APL)", the most important discoverer remains obscure and his original papers have not been cited by a single English paper. The discovery was made during the Cultural Revolution when most Chinese scientists and doctors struggled to survive. Beginning with recipes from a countryside practitioner that were vague in applicable diseases, Zhang TingDong and colleagues proposed in the 1970s that a single chemical in the recipe is most effective and that its target is APL. More than 20 years of work by Zhang and colleagues eliminated the confusions about whether and how ATO can be used effectively. Other researchers, first in China and then in the West, followed his lead. Retrospective analysis of data from his own group proved that APL was indeed the most sensitive target. Removal of a trace amount of mercury chloride from the recipe by another group in his hospital proved that only ATO was required. Publication of Western replication in 1998 made the therapy widely accepted, though neither Western, nor Chinese authors of English papers on ATO cited Zhang's papers in the 1970s. This article focuses on the early papers of Zhang, but also suggests it worth further work to validate Chinese reports of ATO treatment of other cancers, and infers that some findings published in Chinese journals are of considerable value to patients and that doctors from other countries can benefit from the clinical experience of Chinese doctors with the largest population of patients. PMID:23645104

  2. A Rare Occurrence of Simultaneous Venous and Arterial Thromboembolic Events – Lower Limb Deep Venous Thrombosis and Pulmonary Thromboembolism as Initial Presentation in Acute Promyelocytic Leukemia

    PubMed Central

    Kutiyal, Aditya S.; Dharmshaktu, Pramila; Kataria, Babita; Garg, Abhilasha

    2016-01-01

    The development of acute myeloid leukemia has been attributed to various factors, including hereditary, radiation, drugs, and certain occupational exposures. The association between malignancy and venous thromboembolism events is well established. Here, we present a case of a 70-year-old Indian man who had presented with arterial and venous thrombosis, and the patient was later diagnosed with acute promyelocytic leukemia (APL). In our case, the patient presented with right lower limb deep venous thrombosis and pulmonary thromboembolism four months prior to the diagnosis of APL. Although thromboembolic event subsequent to the diagnosis of malignancy, and especially during the chemotherapy has been widely reported, this prior presentation with simultaneous occurrence of both venous and arterial thromboembolism has rarely been reported. We take this opportunity to state the significance of a complete medical evaluation in cases of recurrent or unusual thrombotic events. PMID:26949347

  3. BMS-214662 in Treating Patients With Acute Leukemia, Myelodysplastic Syndrome, or Chronic Myeloid Leukemia

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Promyelocytic Leukemia (M3); Blastic Phase Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia

  4. Extramedullary relapse in lumbar spine of patient with acute promyelocytic leukemia after remission for 16 years: a case report and literature review.

    PubMed

    He, Zhengmei; Tao, Shandong; Deng, Yuan; Chen, Yue; Song, Lixiao; Ding, Banghe; Chen, Kankan; Yu, Liang; Wang, Chunling

    2015-01-01

    Acute promyelocytic leukemia (APL) is a common myeloid leukemia. At the newly diagnosed stage, it can be fatal because of the serious complication-disseminated intravascular coagulation. With the advent and early application of all-trans retinoic acid, most APL patients can achieve a long-term survival, and only a minority of patients will develop extramedullary relapse after remission. The most common site of extramedullary relapse is central nervous system, while other sites are relatively rare. Here, we report a particularly rare APL patient who experienced extramedullary relapse with lumbar spine as the isolated site after a rather long time of remission for 16 years. At the time of relapse, the main clinical manifestations of the patient are obvious low back pain, weakness in lower limbs and limitation of activity. After treatment of local radiotherapy combined with ATRA and arsenic trioxide, the patient achieved and maintained a second complete remission by now. PMID:26885224

  5. Extramedullary relapse in lumbar spine of patient with acute promyelocytic leukemia after remission for 16 years: a case report and literature review

    PubMed Central

    He, Zhengmei; Tao, Shandong; Deng, Yuan; Chen, Yue; Song, Lixiao; Ding, Banghe; Chen, Kankan; Yu, Liang; Wang, Chunling

    2015-01-01

    Acute promyelocytic leukemia (APL) is a common myeloid leukemia. At the newly diagnosed stage, it can be fatal because of the serious complication-disseminated intravascular coagulation. With the advent and early application of all-trans retinoic acid, most APL patients can achieve a long-term survival, and only a minority of patients will develop extramedullary relapse after remission. The most common site of extramedullary relapse is central nervous system, while other sites are relatively rare. Here, we report a particularly rare APL patient who experienced extramedullary relapse with lumbar spine as the isolated site after a rather long time of remission for 16 years. At the time of relapse, the main clinical manifestations of the patient are obvious low back pain, weakness in lower limbs and limitation of activity. After treatment of local radiotherapy combined with ATRA and arsenic trioxide, the patient achieved and maintained a second complete remission by now. PMID:26885224

  6. Late onset post-transfusion hepatitis E developing during chemotherapy for acute promyelocytic leukemia.

    PubMed

    Fuse, Kyoko; Matsuyama, Yuichi; Moriyama, Masato; Miyakoshi, Shukuko; Shibasaki, Yasuhiko; Takizawa, Jun; Furukawa, Tatsuo; Fuse, Ichiro; Matsumura, Hiro; Uchida, Shigeharu; Takahashi, Yoshifumi; Kamimura, Kenya; Abe, Hiroyuki; Suda, Takeshi; Aoyagi, Yutaka; Sone, Hirohito; Masuko, Masayoshi

    2015-01-01

    We herein report the case of a leukemia patient who developed hepatitis E seven months after undergoing a transfusion with contaminated blood products. The latency period in this case was significantly longer than that of typical hepatitis E. Recently, chronic infection with hepatitis E virus (HEV) genotype 3 has been reported in immunocompromised patients. There is a possibility that our patient was unable to eliminate the virus due to immunosuppression following chemotherapy and the administration of steroids. The prevalence of HEV in healthy Japanese individuals is relatively high and constitutes a critical source of infection via transfusion. Hepatitis E is an important post-transfusion infection, and immunocompromised patients may exhibit a long latency period before developing the disease.

  7. Retinoid-induced differentiation of acute promyelocytic leukemia involves PML-RARalpha-mediated increase of type II transglutaminase.

    PubMed

    Benedetti, L; Grignani, F; Scicchitano, B M; Jetten, A M; Diverio, D; Lo Coco, F; Avvisati, G; Gambacorti-Passerini, C; Adamo, S; Levin, A A; Pelicci, P G; Nervi, C

    1996-03-01

    All-trans retinoic acid (t-RA) administration leads to complete remission in acute promyelocytic leukemia (APL) patients by inducing growth arrest and differentiation of the leukemic clone. In the present study, we show that t-RA treatment dramatically induced type II transglutaminase (type II TGase) expression in cells carrying the t(15;17) translocation and expressing the PML-RARalpha product such as the APL-derived NB4 cell line and fresh leukemic cells from APL patients. This induction correlated with t-RA-induced growth arrest, granulocytic differentiation, and upregulation of the leukocyte adherence receptor beta subunit (CD18) gene expression. The increase in type II TGase was not abolished by cycloheximide treatment, suggesting that synthesis of a protein intermediate was not required for the induction. t-RA did not significantly alter the rate of growth arrest and did not stimulate differentiation and type II TGase activity in NB4.306 cells, a t-RA-resistant subclone of the NB4 cell line, or in leukemic cells derived from two patients morphologically defined as APL but lacking the t(15;17). However, in NB4.306 cells, t-RA treatment was able to increase CD18 mRNA expression in a manner similar to NB4 cells. The molecular mechanisms involved in the induction of these genes were investigated. In NB4 cells, using novel receptor-selective ligands such as 9-cis-RA, TTNPB, AM580, and SR11217, we found that RAR- and RARalpha-selective retinoids were able to induce growth arrest, granulocytic differentiation, and type II TGase, whereas the RXR-selective retinoid SR11217 was inactive. Moreover, an RAR alpha-antagonist completely inhibited the expression of type II TGase and CD18 induced by these selective retinoids in NB4 cells. In NB4.306 cells, an RARalpha-dependent signaling pathway was found involved in the modulation of CD18 expression. In addition, expression of the PML-RARalpha gene in myeloid U937 precursor cells resulted in the ability of these cells to

  8. Quantitation of minimal residual disease in acute promyelocytic leukemia patients with t(15;17) translocation using real-time RT-PCR.

    PubMed

    Cassinat, B; Zassadowski, F; Balitrand, N; Barbey, C; Rain, J D; Fenaux, P; Degos, L; Vidaud, M; Chomienne, C

    2000-02-01

    We took advantage of a recently developed system allowing performance of real-time quantitation of polymerase chain reaction to develop a quantitative method of measurement of PML-RARalpha transcripts which are hallmarks of acute promyelocytic leukemia (APL) with t(15;17) translocation. Indeed, although quantitation of minimal residual disease has proved to be useful in predicting clinical outcome in other leukemias such as chronic myeloid leukemia or acute lymphoblastic leukemia, no quantitative data have been provided in the case of APL. We present here a method for quantitation of the most frequent subtypes of t(15;17) transcripts (namely bcr1 and bcr3). One specific forward primer is used for each subtype in order to keep amplicon length under 200 bp. The expression of PML-RARalpha transcripts is normalized using the housekeeping porphobilinogen deaminase (PBGD) gene. This technique allows detection of 10 copies of PML-RARalpha or PBGD plasmids, and quantitation was efficient up to 100 copies. One t(15;17)-positive NB4 cell could be detected among 106 HL60 cells, although quantitation was efficient up to one cell among 105. Repeatability and reproducibility of the method were satisfying as intra- and inter-assay variation coefficients were not higher than 15%. The efficiency of the method was finally tested in patient samples, showing a decrease of the PML-RARalpha copy number during therapy, and an increase at the time of relapse.

  9. BCOR as a novel fusion partner of retinoic acid receptor alpha in a t(X;17)(p11;q12) variant of acute promyelocytic leukemia.

    PubMed

    Yamamoto, Yukiya; Tsuzuki, Sachiko; Tsuzuki, Motohiro; Handa, Kousuke; Inaguma, Yoko; Emi, Nobuhiko

    2010-11-18

    The majority of acute promyelocytic leukemia (APL) cases are characterized by the presence of a promyelocytic leukemia-retinoic acid receptor alpha(RARA) fusion gene. In a small subset, RARA is fused to a different partner, usually involved in regulating cell growth and differentiation. Here, we identified a novel RARA fusion transcript, BCOR-RARA, in a t(X;17)(p11;q12) variant of APL with unique morphologic features, including rectangular and round cytoplasmic inclusion bodies. Although the patient was clinically responsive to all-trans retinoic acid, several relapses occurred with standard chemotherapy and all-trans retinoic acid. BCOR is a transcriptional corepressor through the proto-oncoprotein, BCL6, recruiting histone deacetylases and polycomb repressive complex 1 components. BCOR-RARA was found to possess common features with other RARA fusion proteins. These included: (1) the same break point in RARA cDNA; (2) self-association; (3) retinoid X receptor alpha is necessary for BCOR-RARA to associate with the RARA responsive element; (4) action in a dominant-negative manner on RARA transcriptional activation; and (5) aberrant subcellular relocalization. It should be noted that there was no intact BCOR found in the 45,-Y,t(X;17)(p11;q12) APL cells because they featured only a rearranged X chromosome. These results highlight essential features of pathogenesis in APL in more detail. BCOR appears to be involved not only in human congenital diseases, but also in a human cancer. PMID:20807888

  10. Matrine cooperates with all-trans retinoic acid on differentiation induction of all-trans retinoic acid-resistant acute promyelocytic leukemia cells (NB4-LR1): possible mechanisms.

    PubMed

    Wu, Dijiong; Shao, Keding; Sun, Jie; Zhu, Fuyun; Ye, Baodong; Liu, Tingting; Shen, Yiping; Huang, He; Zhou, Yuhong

    2014-03-01

    Retinoic acid resistance results in refractory disease, and recovery in acute promyelocytic leukemia remains a challenge in clinical practice, with no ideal chemotherapeutic drug currently available. Here we report on the effect of an active compound of Sophora flavescens called matrine (0.1 mmol/L) combined with all-trans retinoic acid (1 µmol/L) in alleviating retinoic acid resistance in acute promyelocytic leukemia-derived NB4-LR1 cells by differentiation induction, as can be seen by an induced morphology change, increased CD11b expression, and nitro blue tetrazolium reduction activity, and a decreased expression of the promyelocytic leukemia-retinoic acid receptor α fusion gene and protein product. We further explored the probable mechanism of how matrine promotes the recovery of differentiation ability in NB4-LR1 cells when exposed to all-trans retinoic acid. We observed that the combination of all-trans retinoic acid and matrine can increase the level of cyclic adenosine monophosphate and protein kinase A activity, reduce telomerase activity, and downregulate the protein expression of topoisomerase II beta in NB4-LR1 cells. The results of this study suggest the possible clinical utility of matrine in the treatment of retinoic acid-resistant acute promyelocytic leukemia.

  11. Gemtuzumab Ozogamicin in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-09-23

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia

  12. Misfolded N-CoR is Linked to the Ectopic Reactivation of CD34/Flt3-Based Stem-Cell Phenotype in Promyelocytic and Monocytic Acute Myeloid Leukemia

    PubMed Central

    Nin, Dawn Sijin; Li, Feng; Visvanathan, Sridevi; Khan, Matiullah

    2015-01-01

    Nuclear receptor co-repressor (N-CoR) is the key component of generic co-repressor complex essential for the transcriptional control of genes involved in cellular hemostasis. We have recently reported that N-CoR actively represses Flt3, a key factor of hematopoietic stem cells (HSC) self-renewal and growth, and that de-repression of Flt3 by the misfolded N-CoR plays an important role in the pathogenesis of promyelocytic and monocytic acute myeloid leukemia (AML). The leukemic cells derived from the promyelocytic and monocytic AML are distinctly characterized by the ectopic reactivation of stem cell phenotypes in relatively committed myeloid compartment. However, the molecular mechanism underlying this phenomenon is not known. Here, we report that N-CoR function is essential for the commitment of primitive hematopoietic cells to the cells of myeloid lineage and that loss of N-CoR function due to misfolding is linked to the ectopic reactivation of generic stem cell phenotypes in promyelocytic and monocytic AML. Analysis of N-CoR and Flt3 transcripts in mouse hematopoietic cells revealed a positive correlation between N-CoR level and the commitment of myeloid cells and an inverse correlation between N-CoR and Flt3 levels in primitive as well as committed myeloid cells. Enforced N-CoR expression in mouse HSCs inhibited their growth and self-renewal potentials and promoted maturation toward cells of myeloid lineage, suggesting a role of N-CoR in the commitment of cells of myeloid lineage. In contrast to AML cells with natively folded N-CoR, primary and secondary promyelocytic and monocytic AML cells harboring the misfolded N-CoR were highly positive for Flt3 and myeloid antigen-based HSC marker CD34. Genetic and therapeutic restoration of N-CoR conformation significantly down-regulated the CD34 levels in monocytic AML cells, suggesting an important role of N-CoR in the suppression of CD34-based HSC phenotypes. These findings collectively suggest that N-CoR is crucial

  13. NPM-RAR, not the RAR-NPM reciprocal t(5;17)(q35;q21) acute promyelocytic leukemia fusion protein, inhibits myeloid differentiation.

    PubMed

    Pollock, Sheri L; Rush, Elizabeth A; Redner, Robert L

    2014-06-01

    The t(5;17) variant of acute promyelocytic leukemia (APL) fuses the nucleophosmin (NPM) gene at 5q35 with the retinoic acid receptor alpha (RARA) at 17q12-22. We have previously shown that leukemic cells express both NPM-RAR and RAR- NPM reciprocal translocation products. In this study we investigated the potential role of both proteins in modulating myeloid differentiation. Expression of NPM-RAR inhibited vitamin D3/transforming growth factor β (TGFβ)-mediated differentiation of U937 cells by more than 50%. In contrast, RAR-NPM expression did not alter vitamin D3/TGFβ-induced differentiation of U937 clones. These results indicate that NPM-RAR, not RAR-NPM, is the prime mediator of myeloid differentiation arrest in t(5;17) APL.

  14. Treatment of an acute promyelocytic leukemia relapse using arsenic trioxide and all-trans-retinoic in a 6-year-old child.

    PubMed

    Rock, Nathalie; Mattiello, V; Judas, C; Huezo-Diaz, P; Bourquin, J P; Gumy-Pause, F; Ansari, M

    2014-03-01

    In adult therapy, arsenic trioxide (ATO) and all-trans-retinoic acid (ATRA) are recognized as active treatment of relapsed acute promyelocytic leukemia (APL). The efficacy of this combination in pediatric APL has not yet been well established. We report the case of a 6-year-old girl with relapsed APL, with a PML-RARα mutation, treated with a combination of ATO and ATRA. Over a period of 5 months, she received in total, 75 doses of intravenous ATO and 40 doses of oral ATRA. Currently, 22 months after relapse, she is still in complete remission. Here, we describe treatment of a relapsed APL in a child with limited treatment of ATO and ATRA and review the literature. PMID:24498972

  15. The evolution of arsenic in the treatment of acute promyelocytic leukemia and other myeloid neoplasms: Moving toward an effective oral, outpatient therapy.

    PubMed

    Falchi, Lorenzo; Verstovsek, Srdan; Ravandi-Kashani, Farhad; Kantarjian, Hagop M

    2016-04-15

    The therapeutic potential of arsenic derivatives has long been recognized and was recently rediscovered in modern literature. Early studies demonstrated impressive activity of this compound in patients with relapsed acute promyelocytic leukemia (APL). Over the last 2 decades, intravenous arsenic trioxide has been used successfully, both alone and in combination with other agents, for the treatment of APL and, with some success, of other myeloid neoplasms. Arsenic trioxide is currently part the standard of care for patients with APL. More recently, oral formulations of this compound have been developed and are entering clinical practice. In this review, the authors discuss the evolution of arsenic in the treatment of APL and other myeloid neoplasms. PMID:26716387

  16. The pleiotropic effects of fisetin and hesperetin on human acute promyelocytic leukemia cells are mediated through apoptosis, cell cycle arrest, and alterations in signaling networks.

    PubMed

    Adan, Aysun; Baran, Yusuf

    2015-11-01

    Fisetin and hesperetin, flavonoids from various plants, have several pharmaceutical activities including antioxidative, anti-inflammatory, and anticancer effects. However, studies elucidating the role and the mechanism(s) of action of fisetin and hesperetin in acute promyelocytic leukemia are absent. In this study, we investigated the mechanism of the antiproliferative and apoptotic actions exerted by fisetin and hesperetin on human HL60 acute promyelocytic leukemia cells. The viability of HL60 cells was evaluated using the MTT assay, apoptosis by annexin V/propidium iodide (PI) staining and cell cycle distribution using flow cytometry, and changes in caspase-3 enzyme activity and mitochondrial transmembrane potential. Moreover, we performed whole-genome microarray gene expression analysis to reveal genes affected by fisetin and hesperetin that can be important for developing of future targeted therapy. Based on data obtained from microarray analysis, we also described biological networks modulated after fisetin and hesperetin treatment by KEGG and IPA analysis. Fisetin and hesperetin treatment showed a concentration- and time-dependent inhibition of proliferation and induced G2/M arrest for both agents and G0/G1 arrest for hesperetin at only the highest concentrations. There was a disruption of mitochondrial membrane potential together with increased caspase-3 activity. Furthermore, fisetin- and hesperetin-triggered apoptosis was confirmed by annexin V/PI analysis. The microarray gene profiling analysis revealed some important biological pathways including mitogen-activated protein kinases (MAPK) and inhibitor of DNA binding (ID) signaling pathways altered by fisetin and hesperetin treatment as well as gave a list of genes modulated ≥2-fold involved in cell proliferation, cell division, and apoptosis. Altogether, data suggested that fisetin and hesperetin have anticancer properties and deserve further investigation.

  17. Possible benefit of consolidation therapy with high-dose cytarabine on overall survival of adults with non-promyelocytic acute myeloid leukemia

    PubMed Central

    Azevedo, M.C.; Velloso, E.D.R.P.; Buccheri, V.; Chamone, D.A.F.; Dorlhiac-Llacer, P.E.

    2014-01-01

    In adults with non-promyelocytic acute myeloid leukemia (AML), high-dose cytarabine consolidation therapy has been shown to influence survival in selected patients, although the appropriate doses and schemes have not been defined. We evaluated survival after calculating the actual dose of cytarabine that patients received for consolidation therapy and divided them into 3 groups according to dose. We conducted a single-center, retrospective study involving 311 non-promyelocytic AML patients with a median age of 36 years (16-79 years) who received curative treatment between 1978 and 2007. The 131 patients who received cytarabine consolidation were assigned to study groups by their cytarabine dose protocol. Group 1 (n=69) received <1.5 g/m2 every 12 h on 3 alternate days for up to 4 cycles. The remaining patients received high-dose cytarabine (≥1.5 g/m2 every 12 h on 3 alternate days for up to 4 cycles). The actual dose received during the entire consolidation period in these patients was calculated, allowing us to divide these patients into 2 additional groups. Group 2 (n=27) received an intermediate-high-dose (<27 g/m2), and group 3 (n=35) received a very-high-dose (≥27 g/m2). Among the 311 patients receiving curative treatment, the 5-year survival rate was 20.2% (63 patients). The cytarabine consolidation dose was an independent determinant of survival in multivariate analysis; age, karyotype, induction protocol, French-American-British classification, and de novo leukemia were not. Comparisons showed that the risk of death was higher in the intermediate-high-dose group 2 (hazard ratio [HR]=4.51; 95% confidence interval [CI]: 1.81-11.21) and the low-dose group 1 (HR=4.43; 95% CI: 1.97-9.96) than in the very-high-dose group 3, with no significant difference between those two groups. Our findings indicated that very-high-dose cytarabine during consolidation in adults with non-promyelocytic AML may improve survival. PMID:25517921

  18. A novel PAD4/SOX4/PU.1 signaling pathway is involved in the committed differentiation of acute promyelocytic leukemia cells into granulocytic cells

    PubMed Central

    Song, Guanhua; Shi, Lulu; Guo, Yuqi; Yu, Linchang; Wang, Lin; Zhang, Xiaoyu; Li, Lianlian; Han, Yang; Ren, Xia; Guo, Qiang; Bi, Kehong; Jiang, Guosheng

    2016-01-01

    All-trans retinoic acid (ATRA) treatment yields cure rates > 80% through proteasomal degradation of the PML-RARα fusion protein that typically promotes acute promyelocytic leukemia (APL). However, recent evidence indicates that ATRA can also promote differentiation of leukemia cells that are PML-RARα negative, such as HL-60 cells. Here, gene expression profiling of HL-60 cells was used to investigate the alternative mechanism of impaired differentiation in APL. The expression of peptidylarginine deiminase 4 (PADI4), encoding PAD4, a protein that post-translationally converts arginine into citrulline, was restored during ATRA-induced differentiation. We further identified that hypermethylation in the PADI4 promoter was associated with its transcriptional repression in HL-60 and NB4 (PML-RARα positive) cells. Functionally, PAD4 translocated into the nucleus upon ATRA exposure and promoted ATRA-mediated differentiation. Mechanistic studies using RNAi knockdown or electroporation-mediated delivery of PADI4, along with chromatin immunoprecipitation, helped identify PU.1 as an indirect target and SOX4 as a direct target of PAD4 regulation. Indeed, PAD4 regulates SOX4-mediated PU.1 expression, and thereby the differentiation process, in a SOX4-dependent manner. Taken together, our results highlight an association between PAD4 and DNA hypermethylation in APL and demonstrate that targeting PAD4 or regulating its downstream effectors may be a promising strategy to control differentiation in the clinic. PMID:26673819

  19. Clinical significance of CD56 expression in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based regimens.

    PubMed

    Montesinos, Pau; Rayón, Chelo; Vellenga, Edo; Brunet, Salut; González, José; González, Marcos; Holowiecka, Aleksandra; Esteve, Jordi; Bergua, Juan; González, José D; Rivas, Concha; Tormo, Mar; Rubio, Vicente; Bueno, Javier; Manso, Félix; Milone, Gustavo; de la Serna, Javier; Pérez, Inmaculada; Pérez-Encinas, Manuel; Krsnik, Isabel; Ribera, Josep M; Escoda, Lourdes; Lowenberg, Bob; Sanz, Miguel A

    2011-02-10

    The expression of CD56 antigen in acute promyelocytic leukemia (APL) blasts has been associated with short remission duration and extramedullary relapse. We investigated the clinical significance of CD56 expression in a large series of patients with APL treated with all-trans retinoic acid and anthracycline-based regimens. Between 1996 and 2009, 651 APL patients with available data on CD56 expression were included in 3 subsequent trials (PETHEMA LPA96 and LPA99 and PETHEMA/HOVON LPA2005). Seventy-two patients (11%) were CD56(+) (expression of CD56 in ≥ 20% leukemic promyelocytes). CD56(+) APL was significantly associated with high white blood cell counts; low albumin levels; BCR3 isoform; and the coexpression of CD2, CD34, CD7, HLA-DR, CD15, and CD117 antigens. For CD56(+) APL, the 5-year relapse rate was 22%, compared with a 10% relapse rate for CD56(-) APL (P = .006). In the multivariate analysis, CD56 expression retained the statistical significance together with the relapse-risk score. CD56(+) APL also showed a greater risk of extramedullary relapse (P < .001). In summary, CD56 expression is associated with the coexpression of immaturity-associated and T-cell antigens and is an independent adverse prognostic factor for relapse in patients with APL treated with all-trans-retinoic acid plus idarubicin-derived regimens. This marker may be considered for implementing risk-adapted therapeutic strategies in APL. The LPA2005 trial is registered at http://www.clinicaltrials.gov as NCT00408278.

  20. PML/RARα-Regulated miR-181a/b Cluster Targets the Tumor Suppressor RASSF1A in Acute Promyelocytic Leukemia.

    PubMed

    Bräuer-Hartmann, Daniela; Hartmann, Jens-Uwe; Wurm, Alexander Arthur; Gerloff, Dennis; Katzerke, Christiane; Verga Falzacappa, Maria Vittoria; Pelicci, Pier Giuseppe; Müller-Tidow, Carsten; Tenen, Daniel G; Niederwieser, Dietger; Behre, Gerhard

    2015-08-15

    In acute promyelocytic leukemia (APL), all-trans retinoic acid (ATRA) treatment induces granulocytic maturation and complete remission of leukemia. microRNAs are known to be critical players in the formation of the leukemic phenotype. In this study, we report downregulation of the miR-181a/b gene cluster in APL blasts and NB4 leukemia cells upon ATRA treatment as a key event in the drug response. We found that miR-181a/b expression was activated by the PML/RARα oncogene in cells and transgenic knock-in mice, an observation confirmed and extended by evidence of enhanced expression of miR-181a/b in APL patient specimens. RNA interference (RNAi)-mediated attenuation of miR-181a/b expression in NB4 cells was sufficient to reduce colony-forming capacity, proliferation, and survival. Mechanistic investigations revealed that miR-181a/b targets the ATRA-regulated tumor suppressor gene RASSF1A by direct binding to its 3'-untranslated region. Enforced expression of miR-181a/b or RNAi-mediated attenuation of RASSF1A inhibited ATRA-induced granulocytic differentiation via regulation of the cell-cycle regulator cyclin D1. Conversely, RASSF1A overexpression enhanced apoptosis. Finally, RASSF1A levels were reduced in PML/RARα knock-in mice and APL patient samples. Taken together, our results define miR-181a and miR-181b as oncomiRs in PML/RARα-associated APL, and they reveal RASSF1A as a pivotal element in the granulocytic differentiation program induced by ATRA in APL. PMID:26041820

  1. Cancer procoagulant and tissue factor are differently modulated by all-trans-retinoic acid in acute promyelocytic leukemia cells.

    PubMed

    Falanga, A; Consonni, R; Marchetti, M; Locatelli, G; Garattini, E; Passerini, C G; Gordon, S G; Barbui, T

    1998-07-01

    All-trans-retinoic acid (ATRA) downregulates the expression of two cellular procoagulants, tissue factor (TF) and cancer procoagulant (CP), in human promyelocytic leukemia cells. To evaluate whether or not changes of the procoagulant activities (PCAs) may share mechanisms with the ATRA-induced cyto-differentiation process, we have characterized the effect of ATRA on the TF and CP expression by NB4 cells, an ATRA maturation-inducible cell line, and two NB4-derived cell lines resistant to ATRA-induced maturation, the NB4. 306 and NB4.007/6 cells. Next, we evaluated the effect on the PCAs of the NB4 parental cells of three synthetic retinoid analogues, ie: AM580 (selective for the retinoic acid receptor [RAR] alpha), capable to induce the granulocytic differentiation of NB4 cells; and CD2019 (selective for RARbeta) and CD437 (selective for RARgamma), both lacking this capability. Cells were treated with either ATRA or the analogues (10(-6) to 10(-8) mol/L) for 96 hours. The effect on cell differentiation was evaluated by morphologic changes, cell proliferation, nitro blue tetrazolium reduction assay, and flow cytometry analysis of the CD33 and CD11b surface-antigen expression. PCA was first measured in 20 mmol/L Veronal Buffer cell extracts by the one-stage clotting assay of normal and FVII-deficient plasmas. Further TF and CP have been characterized and quantified in cell-sample preparations by chromogenic and immunological assays. In the first series of experiments, ATRA downregulates both TF and CP in NB4 parental cells, as expected. However, in the differentiation-resistant cell lines, it induced a significant loss of TF but had little or no effect on CP. In a second series of experiments, in the NB4 parental cells, the RARalpha agonist (AM580) induced cell maturation and reduced 91% CP expression, whereas CD437 and CD2019 had no cyto-differentiating effects and did not affect CP levels. On the other hand, in the same cells the TF expression was reduced by ATRA

  2. PS-341 in Treating Patients With Refractory or Relapsed Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myeloid Leukemia in Blast Phase, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Promyelocytic Leukemia (M3); Blastic Phase Chronic Myelogenous Leukemia; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia

  3. miR-299-5p promotes cell growth and regulates G1/S transition by targeting p21Cip1/Waf1 in acute promyelocytic leukemia

    PubMed Central

    WU, SHUN-QUAN; ZHANG, LANG-HUI; HUANG, HAO-BO; LI, YA-PING; NIU, WEN-YAN; ZHAN, RONG

    2016-01-01

    MicroRNAs (miRs) are often located in genomic breakpoint regions and are hypothesized to be important regulators involved in the regulation of critical cell processes, including cell apoptosis, proliferation and differentiation. miR-299 has been reported to be upregulated in acute promyelocytic leukemia (APL); however, the function and mechanistic role of miR-299 in APL remains unknown. The present study demonstrated mir-299 significantly induced cell growth and cell cycle progression at the G1/S transition in APL cells. Notably, the present study revealed that miR-299-5p induces these effects, whereas miR-299-3p does not. Additional studies demonstrated that in APL cells the tumor suppressor p21Cip1/Waf1 is a downstream target of miR-299; miR-299 binds directly to the 3′ untranslated region of p21Cip1/Waf1, and reduces protein, but not mRNA, levels of p21Cip1/Waf1. The present findings demonstrate that miR-299 exerts growth-promoting effects in APL cells through the suppression of p21Cip1/Waf1. Overall, the present study demonstrates that p21Cip1/Waf1 is a direct functional target of miR-299 in APL. PMID:27347210

  4. Clinical Study on Prospective Efficacy of All-Trans Acid, Realgar-Indigo Naturalis Formula Combined with Chemotherapy as Maintenance Treatment of Acute Promyelocytic Leukemia

    PubMed Central

    Lu-Qun, Wang; Hao, Li; Xiao-Peng, He; Fang-Lin, Li; Ling-Ling, Wang; Xue-Liang, Chen; Ming, Hou

    2014-01-01

    Objectives. To test the efficiency and safety of sequential application of retinoic acid (ATRA), Realgar-Indigo naturalis formula (RIF) and chemotherapy (CT) were used as the maintenance treatment in patients with acute promyelocytic leukemia (APL). Methods. This was a retrospective study of 98 patients with newly diagnosed APL who accepted two different maintenance treatments. After remission induction and consolidation chemotherapy according to their Sanz scores, patients received two different kinds of maintenance scheme. The first regimen was using ATRA, RIF, and standard dose of CT sequentially (ATRA/RIF/CT regimen), while the second one was using ATRA and low dose of chemotherapy with methotrexate (MTX) plus 6-mercaptopurine (6-MP) alternately (ATRA/CTlow regimen). The OS, DFS, relapse rate, minimal residual disease, and adverse reactions in two groups were monitored and evaluated. Results. ATRA/RIF/CT regimen could effectively reduce the chance of relapse in different risk stratification of patients, but there was no significant difference in 5-year DFS rate and OS rate between the two groups. Besides, the patients in the experimental group suffered less severe adverse reactions than those in the control group. Conclusions. The repeated sequential therapeutic regimen to APL with ATRA, RIF, and chemotherapy is worth popularizing for its high effectiveness and low toxicity. PMID:24963332

  5. Design and stereoselective synthesis of retinoids with ferrocene or N-butylcarbazole pharmacophores that induce post-differentiation apoptosis in acute promyelocytic leukemia cells.

    PubMed

    Ivanova, Diana; Gronemeyer, Hinrich; de Lera, Angel R

    2011-08-01

    New ferrocene and N-alkylcarbazole retinoids were designed and synthesized stereoselectively in good yields. A number of these synthesized ligands, in particular 2, 3, and 11, were found to exhibit a high RARα activation potential and to effectively induce post-differentiation apoptosis in NB4 acute promyelocytic leukemia (APL) cells. Increasing the length of the side chain attached to the heterocycle of the carbazole arotinoids creates new opportunities for altered compound catabolism and for fine-tuning of the apoptosis-inducing potential of the ligand. In the carbazole series of new retinoids, maximal activity was established for N-butylcarbazole analogue 11 in all assays (i.e., RARα activation, differentiation induction, and apoptosis induction). Study of the mechanism of apoptosis revealed an activation of initiator caspases-8 and -9, followed by efficient cleavage of effector caspase-3 on day 6 of treatment. Subsequent induction of a caspase cascade in NB4 cells triggered ultimate leukemic cell death. The selected ligands 2, 3, and 11 may provide alternate options for the treatment of APL in cases of life-threatening ATRA syndrome, resistance, and high toxicity to conventionally used retinoids.

  6. Influence of time to complete remission and duration of all-trans retinoic acid therapy on the relapse risk in patients with acute promyelocytic leukemia receiving AIDA protocols.

    PubMed

    Breccia, Massimo; Minotti, Clara; Latagliata, Roberto; Loglisci, Giuseppina; Salaroli, Adriano; Loglisci, Maria Giovanna; Lo-Coco, Francesco

    2013-04-01

    Despite the impressive results obtained with standard chemotherapy, approximately 20% of acute promyelocytic leukemia (APL) patients undergo disease relapse thereby requiring salvage therapy. Few data is available on long-term prognosis in relation to time to complete remission (CR): we reviewed 142 patients treated with AIDA protocols and we found that 42 out of 142 (29.6%) patients achieved CR after 35 days (median time, 42 days). No significant differences in presenting features, including FAB subtype, type of PML/RARA transcript and relapse risk at presentation between the two patient groups achieving CR > or <35 days were revealed, except for male sex and older age that were significantly associated with delayed CR. Rate of relapse was 31% in patients with delayed CR compared to 17% in the group of patients who achieved CR<35 days (p=0.001), with a 5-year CIR of 29.6% compared to 12% (p=0.03). APL patients with delayed CR should be more closely monitored during follow-up for early identification of relapse and prompt administration of pre-emptive salvage therapy.

  7. Increased BMI correlates with higher risk of disease relapse and differentiation syndrome in patients with acute promyelocytic leukemia treated with the AIDA protocols.

    PubMed

    Breccia, Massimo; Mazzarella, Luca; Bagnardi, Vincenzo; Disalvatore, Davide; Loglisci, Giuseppina; Cimino, Giuseppe; Testi, Anna Maria; Avvisati, Giuseppe; Petti, Maria Concetta; Minotti, Clara; Latagliata, Roberto; Foà, Robin; Pelicci, Pier Giuseppe; Lo-Coco, Francesco

    2012-01-01

    We investigated whether body mass index (BMI) correlates with distinct outcomes in newly diagnosed acute promyelocytic leukemia (APL). The study population included 144 patients with newly diagnosed and genetically confirmed APL consecutively treated at a single institution. All patients received All-trans retinoic acid and idarubicin according to the GIMEMA protocols AIDA-0493 and AIDA-2000. Outcome estimates according to the BMI were carried out together with multivariable analysis for the risk of relapse and differentiation syndrome. Fifty-four (37.5%) were under/normal weight (BMI < 25), whereas 90 (62.5%) patients were overweight/obese (BMI ≥ 25). An increased BMI was associated with older age (P < .0001) and male sex (P = .02). BMI was the most powerful predictor of differentiation syndrome in multivariable analysis (odds ratio = 7.24; 95% CI, 1.50-34; P = .014). After a median follow-up of 6 years, the estimated cumulative incidence of relapse at 5 years was 31.6% (95% CI, 22.7%-43.8%) in overweight/obese and 11.2% (95% CI, 5.3%-23.8%) in underweight/normal weight patients (P = .029). Multivariable analysis showed that BMI was an independent predictor of relapse (hazard ratio = 2.45, 95% CI, 1.00-5.99, in overweight/obese vs under/normal weight patients, P = .049). An increased BMI at diagnosis is associated with a higher risk of developing differentiation syndrome and disease relapse in APL patients treated with AIDA protocols.

  8. Differentiation syndrome in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline chemotherapy: characteristics, outcome, and prognostic factors.

    PubMed

    Montesinos, Pau; Bergua, Juan M; Vellenga, Edo; Rayón, Chelo; Parody, Ricardo; de la Serna, Javier; León, Angel; Esteve, Jordi; Milone, Gustavo; Debén, Guillermo; Rivas, Concha; González, Marcos; Tormo, Mar; Díaz-Mediavilla, Joaquín; González, Jose D; Negri, Silvia; Amutio, Elena; Brunet, Salut; Lowenberg, Bob; Sanz, Miguel A

    2009-01-22

    Differentiation syndrome (DS) can be a life-threatening complication in patients with acute promyelocytic leukemia (APL) undergoing induction therapy with all-trans retinoic acid (ATRA). Detailed knowledge about DS has remained limited. We present an analysis of the incidence, characteristics, prognostic factors, and outcome of 739 APL patients treated with ATRA plus idarubicin in 2 consecutive trials (Programa Español de Tratamientos en Hematología [PETHEMA] LPA96 and LPA99). Overall, 183 patients (24.8%) experienced DS, 93 with a severe form (12.6%) and 90 with a moderate form (12.2%). Severe but not moderate DS was associated with an increase in mortality. A bimodal incidence of DS was observed, with peaks occurring in the first and third weeks after the start of ATRA therapy. A multivariate analysis indicated that a WBC count greater than 5 x 10(9)/L and an abnormal serum creatinine level correlated with an increased risk of developing severe DS. Patients receiving systematic prednisone prophylaxis (LPA99 trial) in contrast to those receiving selective prophylaxis with dexamethasone (LPA96 trial) had a lower incidence of severe DS. Patients developing severe DS showed a reduced 7-year relapse-free survival in the LPA96 trial (60% vs 85%, P = .003), but this difference was not apparent in the LPA99 trial (86% vs 88%).

  9. International Society of Thrombosis and Hemostasis Scoring System for disseminated intravascular coagulation ≥ 6: a new predictor of hemorrhagic early death in acute promyelocytic leukemia.

    PubMed

    Mitrovic, Mirjana; Suvajdzic, Nada; Bogdanovic, Andrija; Kurtovic, Nada Kraguljac; Sretenovic, Aleksandra; Elezovic, Ivo; Tomin, Dragica

    2013-03-01

    High-hemorrhagic early death (ED) rate is a major impediment in the managing of acute promyelocytic leukemia (APL). In our group of 56 newly diagnosed APL patients, ED occurred in 12 subjects, due to endocranial bleeding (8/12), differentiation syndrome (2/12), or infection (2/12). Predictors of hemorrhagic ED were as follows: white blood cells count ≥ 20 × 10(9)/L (P = 0.002337), Eastern cooperative oncology group performance status ≥ 3 (P = 0.00173), fibrinogen level <2 g/L (P = 0.004907), prothrombin time <50% (P = 0.0124), and International Society of Thrombosis and Hemostasis Scoring System for disseminated intravascular coagulation (ISTH DIC score) ≥ 6 (P = 0.00741). Multivariate analysis indicated ISTH DIC score ≥ 6 to be the most significant predictor for hemorrhagic ED (P = 0.008). The main finding of this study is that simple coagulation-related tests, performed on hospital admission and combined in the ISTH DIC score, might help to identify patients at high risk for fatal bleeding needing more aggressive supportive measures.

  10. Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia.

    PubMed

    Hu, Jiong; Liu, Yuan-Fang; Wu, Chuan-Feng; Xu, Fang; Shen, Zhi-Xiang; Zhu, Yong-Mei; Li, Jun-Min; Tang, Wei; Zhao, Wei-Li; Wu, Wen; Sun, Hui-Ping; Chen, Qiu-Sheng; Chen, Bing; Zhou, Guang-Biao; Zelent, Arthur; Waxman, Samuel; Wang, Zhen-Yi; Chen, Sai-Juan; Chen, Zhu

    2009-03-01

    All-trans retinoic acid (ATRA)/arsenic trioxide (ATO) combination-based therapy has benefitted newly diagnosed acute promyelocytic leukemia (APL) in short-term studies, but the long-term efficacy and safety remained unclear. From April 2001, we have followed 85 patients administrated ATRA/ATO with a median follow-up of 70 months. Eighty patients (94.1%) entered complete remission (CR). Kaplan-Meier estimates of the 5-year event-free survival (EFS) and overall survival (OS) for all patients were 89.2% +/- 3.4% and 91.7% +/- 3.0%, respectively, and the 5-year relapse-free survival (RFS) and OS for patients who achieved CR (n = 80) were 94.8% +/- 2.5% and 97.4% +/- 1.8%, respectively. Upon ATRA/ATO, prognosis was not influenced by initial white blood cell count, distinct PML-RARalpha types, or FLT3 mutations. The toxicity profile was mild and reversible. No secondary carcinoma was observed, and 24 months after the last dose of ATRA/ATO, patients had urine arsenic concentrations well below the safety limit. These results demonstrate the high efficacy and minimal toxicity of ATRA/ATO treatment for newly diagnosed APL in long-term follow-up, suggesting a potential frontline therapy for de novo APL.

  11. Severe stomatitis and ileocecal perforation developed after all-trans retinoic acid monotherapy in an HLA-B51-positive patient with acute promyelocytic leukemia.

    PubMed

    Kimura, Kenji; Takeuchi, Masahiro; Hasegawa, Nagisa; Togasaki, Emi; Shimizu, Ryoh; Kawajiri, Chika; Muto, Tomoya; Tsukamoto, Shokichi; Takeda, Yusuke; Ohwada, Chikako; Sakaida, Emiko; Sakai, Shio; Mimura, Naoya; Ota, Satoshi; Iseki, Tohru; Nakaseko, Chiaki

    2016-06-01

    A 34-year-old man who had been referred to our hospital was diagnosed with acute promyelocytic leukemia (APL). All-trans retinoic acid (ATRA), oral administration, was initiated. On day 25, he developed fever and respiratory distress with bilateral pulmonary infiltrates, suggesting differentiation syndrome (DS) caused by ATRA. These symptoms showed amelioration after discontinuing ATRA and initiating methylprednisolone. ATRA was re-started on day 29 at half the original dose because of residual APL blasts. The patient subsequently developed fever, severe stomatitis, and oropharyngeal ulcers, which persisted even after discontinuing ATRA. On day 48, he suddenly developed severe abdominal pain with free air, observable on an abdominal X-ray, and underwent emergency ileocecal resection. Pathological examination of the resected ileocecal intestines revealed multiple ulcers and perforations. No leukemic cell infiltration was observed. In this case, only ATRA was administered for APL treatment. These findings suggest that ileocecal ulcerations and perforations, as well as oropharyngeal ulcers, might have been caused by DS or ATRA. Furthermore, DNA typing of the HLA-B locus revealed that the patient had HLA-B51 associated with Behçet's disease. Therefore, hypercytokinemia with DS might have induced Behçet's disease-like symptoms, including stomatitis and ileocecal perforation, complications that are particularly observed in patients with HLA-B51. PMID:27384858

  12. Clofarabine, Cytarabine, and G-CSF in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-05-05

    Acute Myeloid Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia

  13. Romidepsin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-12-03

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia

  14. Coexistence of tetrasomy 8 and trisomy 8 in acute promyelocytic leukemia (AML-M3) with t(15;17)(q22;q12).

    PubMed

    Wang, Hui-Ping; Li, Guo-Xia; Qiao, Zhen-Hua; Ren, Wen-Ying; Wang, Hong-Wei

    2004-08-01

    This study was purposed to characterize the first case of acute promyelocitic leukemia (AML-M(3a)) with t(15;17), trisomy 8 and tetrasomy 8, and explore its characteristics of morphology, cytogenetics, molecular biology, immunology and clinical features. Morphological changes of peripheral blood and bone marrow smears were observed under microscope. Chromosome specimen was prepared by 24 h short-term culture of bone marrow cell, RHG-banding technique was used for karyotypic analysis. PML-RARa fusion gene transcript was detected by nested-reverse transcription-polymerase chain reaction (nested RT-PCR). Interphase fluorescence in situ hybridization (FISH) using chromosome 8 centromere specific probe were carried out to detect abnormal numbers of chromosome 8. Immunophenotypic analysis was performed by flow cytometry. The results showed that peripheral blood smear revealed 65% promyelocyte, and bone marrow aspirate was hypercellular with 72.4% promyelocyte, moderately basophilic cytoplasm with numerous azurophilic granules. Karyotype analysis demonstrated 48, XY, +8, +8, t(15;17)(q22;q12) [16]/47, XY, +8, t(15;17)(q22;q12) [3]/46, XY, t(15;17)(q22;q12) [1]. RT-PCR assay revealed PML-RARa fusion gene transcript (+). FISH showed that the percentages of cells exhibiting 1, 2, 3, 4, 5, 6 green fluorescence signals were 0.5, 7, 19, 55, 18 and 0.5, respectively. This confirmed the presence of tetrasomy 8 and trisomy 8 and also revealed a low percentage of a pentasomy 8 clone. Immunophenotypes of the blasts displayed that CD13 (96.2%), CD33 (55.9%), CYMPO (93.5%) were positive. All the lymphoid markers tested were negative. The patient survival time was just 10 days. It is concluded that tetrasomy 8 is secondary cytogenetic event after t(15;17) in this case. It may be a consequence of clonal evolution of trisomy 8. t(15;17) AML-M(3) with tetrasomy 8 heralds a poor prognosis. PMID:15363120

  15. AM580, a stable benzoic derivative of retinoic acid, has powerful and selective cyto-differentiating effects on acute promyelocytic leukemia cells.

    PubMed

    Gianní, M; Li Calzi, M; Terao, M; Guiso, G; Caccia, S; Barbui, T; Rambaldi, A; Garattini, E

    1996-02-15

    All-trans retinoic acid (ATRA) is successfully used in the cyto-differentiating treatment of acute promyelocytic leukemia (APL). Paradoxically, APL cells express PML-RAR, an aberrant form of the retinoic acid receptor type alpha (RAR alpha) derived from the leukemia-specific t(15;17) chromosomal translocation. We show here that AM580, a stable retinobenzoic derivative originally synthesized as a RAR alpha agonist, is a powerful inducer of granulocytic maturation in NB4, an APL-derived cell line, and in freshly isolated APL blasts. After treatment of APL cells with AM580 either alone or in combination with granulocyte colony-stimulating factor (G-CSF), the compound induces granulocytic maturation, as assessed by determination of the levels of leukocyte alkaline phosphatase, CD11b, CD33, and G-CSF receptor mRNA, at concentrations that are 10- to 100-fold lower than those of ATRA necessary to produce similar effects. By contrast, AM580 is not effective as ATRA in modulating the expression of these differentiation markers in the HL-60 cell line and in freshly isolated granulocytes obtained from the peripheral blood of chronic myelogenous leukemia patients during the stable phase of the disease. In NB4 cells, two other synthetic nonselective RAR ligands are capable of inducing LAP as much as AM580, whereas RAR beta- or RAR gamma-specific ligands are totally ineffective. These results show that AM580 is more powerful than ATRA in modulating the expression of differentiation antigens only in cells in which PML-RAR is present. Binding experiments, using COS-7 cells transiently transfected with PML-RAR and the normal RAR alpha, show that AM580 has a lower affinity than ATRA for both receptors. However, in the presence of PML-RAR, the synthetic retinoid is a much better transactivator of retinoic acid-responsive element-containing promoters than the natural retinoid, whereas, in the presence of RAR alpha, AM580 and ATRA have similar activity. This may explain the strong cyto

  16. Azidothymidine hinders arsenic trioxide-induced apoptosis in acute promyelocytic leukemia cells by induction of p21 and attenuation of G2/M arrest.

    PubMed

    Hassani, Saeed; Ghaffari, Seyed H; Zaker, Farhad; Mirzaee, Rohellah; Mardani, Hajar; Bashash, Davood; Zekri, Ali; Yousefi, Meysam; Zaghal, Azam; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir

    2013-09-01

    To enhance anticancer efficacy of the arsenic trioxide (ATO), the combination of ATO and azidothymidine (AZT), with convergence anti-telomerase activity, were examined on acute promyelocytic leukemia (APL) cell line, NB4. In spite of an induction of apoptosis by both drugs separately and a synergistic effect of them on hTERT down-regulation and telomerase inhibition, the ATO-induced cytotoxicity was reduced when it was used in combination with AZT. AZT attenuated the ATO effects on viability, metabolic activity, DNA synthesis, and apoptosis. These observations, despite the deflection from the main goal of this study, dedicate an especial opportunity to elucidate the importance of some of the mechanisms that have been suggested by which ATO induces apoptosis. Cell cycle distribution, ROS level, and caspase-3 activation analyses suggest that AZT reduced the ATO-induced cytotoxic effect possibly via relative induction and diminution of cells accumulated in (G1, S) and (G2/M) phase, respectively, as well as through attenuation of ROS generation and subsequent caspase-3 inhibition. QRT-PCR assay revealed that induction of p21expression by the combined AZT/ATO compared to ATO alone could be a reason for the relative decline of cells accumulation in G2/M and the increase of cells in G1 and S phases. Therefore, the G2/M arrest and ROS generation are likely principle mediators for the ATO-induced apoptosis and can be used as a guide to design rational combinatorial strategies involving ATO and agents with G2/M arrest or ROS generation capacity to intensify ATO-induced apoptosis.

  17. MIR125B1 represses the degradation of the PML-RARA oncoprotein by an autophagy-lysosomal pathway in acute promyelocytic leukemia.

    PubMed

    Zeng, Cheng-Wu; Chen, Zhen-Hua; Zhang, Xing-Ju; Han, Bo-Wei; Lin, Kang-Yu; Li, Xiao-Juan; Wei, Pan-Pan; Zhang, Hua; Li, Yangqiu; Chen, Yue-Qin

    2014-10-01

    Acute promyelocytic leukemia (APL) is characterized by the t(15;17)-associated PML-RARA fusion gene. We have previously found that MIR125B1 is highly expressed in patients with APL and may be associated with disease pathogenesis; however, the mechanism by which MIR125B1 exerts its oncogenic potential has not been fully elucidated. Here, we demonstrated that MIR125B1 abundance correlates with the PML-RARA status. MIR125B1 overexpression enhanced PML-RARA expression and inhibited the ATRA-induced degradation of the PML-RARA oncoprotein. RNA-seq analysis revealed a direct link between the PML-RARA degradation pathway and MIR125B1-arrested differentiation. We further demonstrated that the MIR125B1-mediated blockade of PML-RARA proteolysis was regulated via an autophagy-lysosomal pathway, contributing to the inhibition of APL differentiation. Furthermore, we identified DRAM2 (DNA-damage regulated autophagy modulator 2), a critical regulator of autophagy, as a novel target that was at least partly responsible for the function of MIR125B1 involved in autophagy. Importantly, the knockdown phenotypes for DRAM2 are similar to the effects of overexpressing MIR125B1 as impairment of PML-RARA degradation, inhibition of autophagy, and myeloid cell differentiation arrest. These effects of MIR125B1 and its target DRAM2 were further confirmed in an APL mouse model. Thus, MIR125B1 dysregulation may interfere with the effectiveness of ATRA-mediated differentiation through an autophagy-dependent pathway, representing a novel potential APL therapeutic target.

  18. Treatment-influenced associations of PML-RARα mutations, FLT3 mutations, and additional chromosome abnormalities in relapsed acute promyelocytic leukemia

    PubMed Central

    Moser, Barry K.; Racevskis, Janis; Poiré, Xavier; Bloomfield, Clara D.; Carroll, Andrew J.; Ketterling, Rhett P.; Roulston, Diane; Schachter-Tokarz, Esther; Zhou, Da-cheng; Chen, I-Ming L.; Harvey, Richard; Koval, Greg; Sher, Dorie A.; Feusner, James H.; Tallman, Martin S.; Larson, Richard A.; Powell, Bayard L.; Appelbaum, Frederick R.; Paietta, Elisabeth; Willman, Cheryl L.; Stock, Wendy

    2012-01-01

    Mutations in the all-trans retinoic acid (ATRA)–targeted ligand binding domain of PML-RARα (PRα/LBD+) have been implicated in the passive selection of ATRA-resistant acute promyelocytic leukemia clones leading to disease relapse. Among 45 relapse patients from the ATRA/chemotherapy arm of intergroup protocol C9710, 18 patients harbored PRα/LBD+ (40%), 7 of whom (39%) relapsed Off-ATRA selection pressure, suggesting a possible active role of PRα/LBD+. Of 41 relapse patients coanalyzed, 15 (37%) had FMS-related tyrosine kinase 3 internal tandem duplication mutations (FLT3-ITD+), which were differentially associated with PRα/LBD+ depending on ATRA treatment status at relapse: positively, On-ATRA; negatively, Off-ATRA. Thirteen of 21 patients (62%) had additional chromosome abnormalities (ACAs); all coanalyzed PRα/LBD mutant patients who relapsed off-ATRA (n = 5) had associated ACA. After relapse Off-ATRA, ACA and FLT3-ITD+ were negatively associated and were oppositely associated with presenting white blood count and PML-RARα type: ACA, low, L-isoform; FLT3-ITD+, high, S-isoform. These exploratory results suggest that differing PRα/LBD+ activities may interact with FLT3-ITD+ or ACA, that FLT3-ITD+ and ACA are associated with different intrinsic disease progression pathways manifest at relapse Off-ATRA, and that these different pathways may be short-circuited by ATRA-selectable defects at relapse On-ATRA. ACA and certain PRα/LBD+ were also associated with reduced postrelapse survival. PMID:22734072

  19. Aquaporin 9, a promising predictor for the cytocidal effects of arsenic trioxide in acute promyelocytic leukemia cell lines and primary blasts.

    PubMed

    Iriyama, Noriyoshi; Yuan, Bo; Yoshino, Yuta; Hatta, Yoshihiro; Horikoshi, Akira; Aizawa, Shin; Takeuchi, Jin; Toyoda, Hiroo

    2013-06-01

    A close correlation between the cytocidal effects of arsenic trioxide (ATO) and aquaporin-9 (AQP9) expression levels has been proposed, yet detailed studies are still needed to confirm this association. Thus, in the present study, the correlation between the expression levels of AQP9 and sensitivity to ATO was investigated using two acute promyelocytic leukemia (APL) cell lines, NB4 and HT93A, as well as primary APL cells from newly diagnosed and relapsed APL patients. A substantially higher sensitivity to ATO-mediated induction of apoptosis was observed in the NB4 cells when compared to that in the HT93A cells. In addition, markedly higher expression levels of AQP9, as assessed using flow cytometry, along with more intracellular arsenic accumulation, were observed in the NB4 cells. More importantly, similar to APL cell lines, the trend of expression levels of AQP9 correlated closely with the differential sensitivity to ATO-mediated induction of apoptosis in primary APL cells. In contrast, no correlation was observed between ATO sensitivity associated with AQP9 expression levels and the expression profiles of cell surface markers as well as chromosomal alterations. These results provide direct evidence that the expression levels of AQP9, rather than other biomarkers such as cell surface markers and chromosomal alterations, correlate closely with the sensitivity to ATO in both APL cell lines and primary blasts. These findings suggest that the AQP9 expression status of APL patients is a predictive marker for the successful outcome of ATO treatment, since AQP9 plays a pivotal role in various arsenite-mediated biological effects on normal and cancer cells. Moreover, flow cytometry may be a new convenient and valuable tool for analyzing the AQP9 status of APL patients compared to current methods such as western blotting.

  20. All-Trans Retinoic Acid plus Arsenic Trioxide versus All-Trans Retinoic Acid plus Chemotherapy for Newly Diagnosed Acute Promyelocytic Leukemia: A Meta-Analysis

    PubMed Central

    Ma, Yafang; Liu, Lu; Jin, Jie; Lou, Yinjun

    2016-01-01

    Background Recently, the all-trans retinoic acid (ATRA) plus arsenic trioxide (ATO) protocol has become a promising first-line therapeutic approach in patients with newly diagnosed acute promyelocytic leukemia (APL), but its benefits compared with standard ATRA plus chemotherapy regimen needs to be proven. Herein, we conducted a meta-analysis comparing the efficacy of ATRA plus ATO with ATRA plus chemotherapy for adult patients with newly diagnosed APL. Methods We systematically searched biomedical electronic databases and conference proceedings through February 2016. Two reviewers independently assessed all studies for relevance and validity. Results Overall, three studies were eligible for inclusion in this meta-analysis, which included a total of 585 patients, with 317 in ATRA plus ATO group and 268 in ATRA plus chemotherapy group. Compared with patients who received ATRA and chemotherapy, patients who received ATRA plus ATO had a significantly better event-free survival (hazard ratio [HR] = 0.38, 95% confidence interval [CI]: 0.22–0.67, p = 0.009), overall survival (HR = 0.44, 95% CI: 0.24–0.82, p = 0.009), complete remission rate (relative risk [RR] = 1.05; 95% CI: 1.01–1.10; p = 0.03). There were no significant differences in early mortality (RR = 0.48; 95% CI: 0.22–1.05; p = 0.07). Conclusion Thus, this analysis indicated that ATRA plus ATO protocol may be preferred to standard ATRA plus chemotherapy protocol, particularly in low-to-intermediate risk APL patients. Further larger trials were needed to provide more evidence in high-risk APL patients. PMID:27391027

  1. Negative prognostic value of CD34 antigen also if expressed on a small population of acute promyelocytic leukemia cells.

    PubMed

    Breccia, Massimo; De Propris, Maria Stefania; Stefanizzi, Caterina; Raponi, Sara; Molica, Matteo; Colafigli, Gioia; Minotti, Clara; Latagliata, Roberto; Diverio, Daniela; Guarini, Anna; Foà, Robin

    2014-11-01

    Potential clinical significance of CD34 expression in acute promyelocitic leukemia (APL) has not been deeply investigated. We hereby analyzed the clinico-biological features and treatment outcome of APL patients in relation to CD34 expression, even when expressed in a small subpopulation: 114 APL patients homogeneously treated with the AIDA schedule were included in the study and prognostic correlation with respect to CD34 expression, both when expressed in association with CD2 and as isolated expression (cutoff ≥2 to <10 % or ≥10 %), were investigated. CD34 was associated to CD2 in 30 patients and was isolated in 19 patients. When compared to the CD34-negative population, CD34/CD2 expression identified a subgroup with characteristic features: M3 variant subtype (26 vs 7 % in the negative group, p = 0.02), bcr3 transcript subtype (73 vs 32 %, p = 0.001), high risk according to the risk of relapse (66 vs 17 %, p = 0.002), high incidence of differentiation syndrome (26 vs 12 %, p = 0.01), lower overall survival (88 vs 95 %), and a significantly higher rate of relapse (22 vs 13.8 %, p = 0.05). We then evaluated the prognostic value of isolated CD34 expression: it was detected in nine patients with a cutoff of expression ≥10 % and in 10 patients with a cutoff ≥2 but <10 %. Isolated CD34 positivity identified a subgroup with a classic morphology (79 %), bcr1 prevalence (53 %), higher rate of relapse (37 vs 13.8 % in the negative group, p = 0.002), higher incidence of differentiation syndrome (55 vs 12 %, p = 0.03), and lower overall survival (60 vs 95 %, p = 0.001). The results of our study confirm that CD34/CD2 expression characterizes a subset of APL with a high WBC count and a variant morphological subtype, associated with an unfavorable clinical course. We also show that the isolated expression of CD34, even at a low cutoff, identifies a group of classic APL with a negative prognosis. Further studies aimed at identifying other

  2. Negative prognostic value of CD34 antigen also if expressed on a small population of acute promyelocytic leukemia cells.

    PubMed

    Breccia, Massimo; De Propris, Maria Stefania; Stefanizzi, Caterina; Raponi, Sara; Molica, Matteo; Colafigli, Gioia; Minotti, Clara; Latagliata, Roberto; Diverio, Daniela; Guarini, Anna; Foà, Robin

    2014-11-01

    Potential clinical significance of CD34 expression in acute promyelocitic leukemia (APL) has not been deeply investigated. We hereby analyzed the clinico-biological features and treatment outcome of APL patients in relation to CD34 expression, even when expressed in a small subpopulation: 114 APL patients homogeneously treated with the AIDA schedule were included in the study and prognostic correlation with respect to CD34 expression, both when expressed in association with CD2 and as isolated expression (cutoff ≥2 to <10 % or ≥10 %), were investigated. CD34 was associated to CD2 in 30 patients and was isolated in 19 patients. When compared to the CD34-negative population, CD34/CD2 expression identified a subgroup with characteristic features: M3 variant subtype (26 vs 7 % in the negative group, p = 0.02), bcr3 transcript subtype (73 vs 32 %, p = 0.001), high risk according to the risk of relapse (66 vs 17 %, p = 0.002), high incidence of differentiation syndrome (26 vs 12 %, p = 0.01), lower overall survival (88 vs 95 %), and a significantly higher rate of relapse (22 vs 13.8 %, p = 0.05). We then evaluated the prognostic value of isolated CD34 expression: it was detected in nine patients with a cutoff of expression ≥10 % and in 10 patients with a cutoff ≥2 but <10 %. Isolated CD34 positivity identified a subgroup with a classic morphology (79 %), bcr1 prevalence (53 %), higher rate of relapse (37 vs 13.8 % in the negative group, p = 0.002), higher incidence of differentiation syndrome (55 vs 12 %, p = 0.03), and lower overall survival (60 vs 95 %, p = 0.001). The results of our study confirm that CD34/CD2 expression characterizes a subset of APL with a high WBC count and a variant morphological subtype, associated with an unfavorable clinical course. We also show that the isolated expression of CD34, even at a low cutoff, identifies a group of classic APL with a negative prognosis. Further studies aimed at identifying other

  3. Herbo-mineral ayurvedic treatment in a high risk acute promyelocytic leukemia patient with second relapse: 12 years follow up

    PubMed Central

    Prakash, Balendu; Parikh, Purvish M.; Pal, Sanjoy K.

    2010-01-01

    A 47 year old diabetic male patient was diagnosed and treated for high risk AML-M3 at Tata Memorial Hospital (BJ 17572), Mumbai in September 1995. His bone marrow aspiration cytology indicated 96% promyelocytes with abnormal forms, absence of lymphocytic series and myeloperoxide test 100% positive. Initially treated with ATRA, he achieved hematological remission on day 60, but cytogenetically the disease persisted. The patient received induction and consolidated chemotherapy with Daunorubicin and Cytarabine combination from 12.01.96 to 14.05.96, following which he achieved remission. However, his disease relapsed in February 97. The patient was given two cycles of chemotherapy with Idarubicine and Etoposide, after which he achieved remission. His disease again relapsed in December 97. The patient then refused more chemotherapy and volunteered for a pilot Ayurvedic study conducted by the Central Council for Research in Ayurveda and Siddha, New Delhi. The patient was treated with a proprietary Ayurvedic medicine Navajeevan, Kamadudha Rasa and Keharuba Pisti for one year. For the subsequent 5 years the patient received three months of intermittent Ayurvedic treatment every year. The patient achieved complete disease remission with the alternative treatment without any adverse side effects. The patient has so far completed 13 years of survival after the start of Ayurvedic therapy. PMID:21547051

  4. Herbo-mineral ayurvedic treatment in a high risk acute promyelocytic leukemia patient with second relapse: 12 years follow up.

    PubMed

    Prakash, Balendu; Parikh, Purvish M; Pal, Sanjoy K

    2010-07-01

    A 47 year old diabetic male patient was diagnosed and treated for high risk AML-M3 at Tata Memorial Hospital (BJ 17572), Mumbai in September 1995. His bone marrow aspiration cytology indicated 96% promyelocytes with abnormal forms, absence of lymphocytic series and myeloperoxide test 100% positive. Initially treated with ATRA, he achieved hematological remission on day 60, but cytogenetically the disease persisted. The patient received induction and consolidated chemotherapy with Daunorubicin and Cytarabine combination from 12.01.96 to 14.05.96, following which he achieved remission. However, his disease relapsed in February 97. The patient was given two cycles of chemotherapy with Idarubicine and Etoposide, after which he achieved remission. His disease again relapsed in December 97. The patient then refused more chemotherapy and volunteered for a pilot Ayurvedic study conducted by the Central Council for Research in Ayurveda and Siddha, New Delhi. The patient was treated with a proprietary Ayurvedic medicine Navajeevan, Kamadudha Rasa and Keharuba Pisti for one year. For the subsequent 5 years the patient received three months of intermittent Ayurvedic treatment every year. The patient achieved complete disease remission with the alternative treatment without any adverse side effects. The patient has so far completed 13 years of survival after the start of Ayurvedic therapy. PMID:21547051

  5. Risk-adapted treatment of acute promyelocytic leukemia based on all-trans retinoic acid and anthracycline with addition of cytarabine in consolidation therapy for high-risk patients: further improvements in treatment outcome.

    PubMed

    Sanz, Miguel A; Montesinos, Pau; Rayón, Chelo; Holowiecka, Alexandra; de la Serna, Javier; Milone, Gustavo; de Lisa, Elena; Brunet, Salut; Rubio, Vicente; Ribera, José M; Rivas, Concha; Krsnik, Isabel; Bergua, Juan; González, José; Díaz-Mediavilla, Joaquín; Rojas, Rafael; Manso, Félix; Ossenkoppele, Gert; González, José D; Lowenberg, Bob

    2010-06-24

    A risk-adapted strategy based on all-trans retinoic acid (ATRA) and anthracycline monochemotherapy (PETHEMA LPA99 trial) has demonstrated a high antileukemic efficacy in acute promyelocytic leukemia. We designed a new trial (LPA2005) with the objective of achieving stepwise improvements in outcome. Between July 2005 and April 2009, low- and intermediate-risk patients (leukocytes < 10 x 10(9)/L) received a reduced dose of mitoxantrone for the second consolidation course, whereas high- risk patients younger than 60 years of age received cytarabine combined with ATRA and idarubicin in the first and third consolidation courses. Of 372 patients attaining complete remission after ATRA plus idarubicin (92.5%), 368 proceeded to consolidation therapy. For low- and intermediate-risk patients, duration of neutropenia and thrombocytopenia and hospital stay were significantly reduced without sacrificing antileukemic efficacy, compared with the previous LPA99 trial. For high-risk patients, the 3-year relapse rate was significantly lower in the LPA2005 trial (11%) than in the LPA99 (26%; P = .03). Overall disease-free survival was also better in the LPA2005 trial (P = .04). In conclusion, the lower dose of mitoxantrone resulted in a significant reduction of toxicity and hospital stay while maintaining the antileukemic activity, and the combination of ATRA, idarubicin, and cytarabine for high-risk acute promyelocytic leukemia significantly reduced the relapse rate in this setting. Registered at http://www.clinicaltrials.gov as NCT00408278.

  6. Bortezomib in Treating Patients With High-Risk Acute Myeloid Leukemia in Remission

    ClinicalTrials.gov

    2014-10-30

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia

  7. Opposite effects of the acute promyelocytic leukemia PML-retinoic acid receptor alpha (RAR alpha) and PLZF-RAR alpha fusion proteins on retinoic acid signalling.

    PubMed Central

    Ruthardt, M; Testa, U; Nervi, C; Ferrucci, P F; Grignani, F; Puccetti, E; Grignani, F; Peschle, C; Pelicci, P G

    1997-01-01

    Fusion proteins involving the retinoic acid receptor alpha (RAR alpha) and the PML or PLZF nuclear protein are the genetic markers of acute promyelocytic leukemias (APLs). APLs with the PML-RAR alpha or the PLZF-RAR alpha fusion protein are phenotypically indistinguishable except that they differ in their sensitivity to retinoic acid (RA)-induced differentiation: PML-RAR alpha blasts are sensitive to RA and patients enter disease remission after RA treatment, while patients with PLZF-RAR alpha do not. We here report that (i) like PML-RAR alpha expression, PLZF-RAR alpha expression blocks terminal differentiation of hematopoietic precursor cell lines (U937 and HL-60) in response to different stimuli (vitamin D3, transforming growth factor beta1, and dimethyl sulfoxide); (ii) PML-RAR alpha, but not PLZF-RAR alpha, increases RA sensitivity of hematopoietic precursor cells and restores RA sensitivity of RA-resistant hematopoietic cells; (iii) PML-RAR alpha and PLZF-RAR alpha have similar RA binding affinities; and (iv) PML-RAR alpha enhances the RA response of RA target genes (those for RAR beta, RAR gamma, and transglutaminase type II [TGase]) in vivo, while PLZF-RAR alpha expression has either no effect (RAR beta) or an inhibitory activity (RAR gamma and type II TGase). These data demonstrate that PML-RAR alpha and PLZF-RAR alpha have similar (inhibitory) effects on RA-independent differentiation and opposite (stimulatory or inhibitory) effects on RA-dependent differentiation and that they behave in vivo as RA-dependent enhancers or inhibitors of RA-responsive genes, respectively. Their different activities on the RA signalling pathway might underlie the different responses of PML-RAR alpha and PLZF-RAR alpha APLs to RA treatment. The PLZF-RAR alpha fusion protein contains an approximately 120-amino-acid N-terminal motif (called the POZ domain), which is also found in a variety of zinc finger proteins and a group of poxvirus proteins and which mediates protein

  8. Budgetary impact of treating acute promyelocytic leukemia patients with first-line arsenic trioxide and retinoic acid from an Italian payer perspective.

    PubMed

    Kruse, Morgan; Wildner, Rebecca; Barnes, Gisoo; Martin, Monique; Mueller, Udo; Lo-Coco, Francesco; Pathak, Ashutosh

    2015-01-01

    The objective of this study was to estimate the net cost of arsenic trioxide (ATO) added to all-trans retinoic acid (ATRA) compared to ATRA plus chemotherapy when used in first-line acute promyelocytic leukemia (APL) treatment for low to intermediate risk patients from the perspective of the overall Italian healthcare systemA Markov model was developed with 3 health states: stable disease, disease event and death. Each month, patients could move from stable to disease event or die from either state. After a disease event, patients discontinued initial treatment and switched to the other regimen as second-line therapy. Treatment regimens, efficacy and adverse events were derived from published sources and expert opinion; unit costs were collected from standard Italian sources. Clinical outcomes and costs for pre-ATO and post-ATO scenarios were combined with population and product utilization information to calculate the total budgetary impact using a 3-year time horizon; one-way sensitivity analyses were conducted. Three-year cumulative pharmacy costs for ATO+ATRA were €46,700 per-patient versus €6,500 for ATRA+chemotherapy; however, medical costs for ATO+ATRA were €12,300 per-patient versus €30,200 for ATRA+chemotherapy. The total budgetary impact was estimated to be an additional €127,300, €312,500 and €477,800 in the first, second and third years, respectively. The model was most sensitive to changes in the cost of the ATO+ATRA regimen during the consolidation phase. Budgetary impact models are valuable to payers making formulary decisions regarding the access and affordability of new medicines. The cost of treatment analysis showed that pharmacy costs for ATO+ATRA were higher than for ATRA+chemotherapy, while all other evaluated costs were lower for ATO+ATRA treated patients. The average budgetary impact was €305,900 per year overall, representing a 3.5% increase. Further research is needed to determine the cost-effectiveness of ATO+ATRA compared

  9. SB-715992 in Treating Patients With Acute Leukemia, Chronic Myelogenous Leukemia, or Advanced Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-01-10

    Acute Undifferentiated Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  10. AIDA (all-trans retinoic acid + idarubicin) in newly diagnosed acute promyelocytic leukemia: a Gruppo Italiano Malattie Ematologiche Maligne dell'Adulto (GIMEMA) pilot study.

    PubMed

    Avvisati, G; Lo Coco, F; Diverio, D; Falda, M; Ferrara, F; Lazzarino, M; Russo, D; Petti, M C; Mandelli, F

    1996-08-15

    From March 1993 to October 1993, 20 consecutive, newly diagnosed acute promyelocytic leukemia (APL) patients from 13 Italian institutions entered in a pilot study named AIDA, combining all-trans retinoic acid (ATRA) with idarubicin (IDA). ATRA was administered orally beginning on the first day of induction at the dosage of 45 mg/m2/d until complete remission (CR), whereas IDA was administered intravenously at the dosage of 12 mg/m2/d on days 2, 4, 6, and 8 of the induction. Patients who achieved CR were consolidated with 3 courses of chemotherapy without ATRA; thereafter, they were followed up for molecular and hematologic CR. The median age was 35.3 years (range, 6.5 to 67.6 years); 8 patients were males and 12 females; 4 had the hypogranular variant of APL (M3v), and 4 (2 with M3v) presented with leukocyte counts > or = 10,000/microL. Molecular analysis for the promyelocytic leukemia-retinoic acid receptor alpha (PML-RAR alpha) hybrid gene at diagnosis was performed in 16 patients by means of reverse transcription-polymerase chain reaction (RT-PCR) analysis, and all were RT-PCR+ for the hybrid gene. In the remaining 4 patients, the cytogenetic study showed the presence of the t(15;17). After a median time of 36 days (range, 28 to 52 days) 18 (90%) patients achieved CR; the remaining 2 patients died 12 and 34 days after diagnosis from myocardial infarction caused by fungal myocarditis and from massive hemoptysis, respectively. ATRA syndrome was observed in only 2 patients, and, after the prompt discontinuation of ATRA and initiation of dexamethasone, both recovered from the syndrome. However, after recovering, 1 patient achieved CR, whereas the other died at day 34 because of massive hemoptysis; other side effects were very limited. At recovery from the third consolidation course, only 3 of 14 (21.4%) tested patients were RT-PCR+ for the PML-RAR alpha hybrid gene. Of these, 2 relapsed shortly afterwards; however, in the last patient, the PML-RAR alpha disappeared

  11. Azacitidine With or Without Entinostat in Treating Patients With Myelodysplastic Syndromes, Chronic Myelomonocytic Leukemia, or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-03-16

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  12. Decitabine, Vorinostat, and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-12-19

    Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  13. Veliparib and Temozolomide in Treating Patients With Acute Leukemia

    ClinicalTrials.gov

    2016-07-20

    Accelerated Phase of Disease; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Adult B Acute Lymphoblastic Leukemia; Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Adult T Acute Lymphoblastic Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Blastic Phase; Chronic Myelomonocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Disease; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  14. Transcription and methylation analyses of preleukemic promyelocytes indicate a dual role for PML/RARA in leukemia initiation.

    PubMed

    Gaillard, Coline; Tokuyasu, Taku A; Rosen, Galit; Sotzen, Jason; Vitaliano-Prunier, Adeline; Roy, Ritu; Passegué, Emmanuelle; de Thé, Hugues; Figueroa, Maria E; Kogan, Scott C

    2015-08-01

    Acute promyelocytic leukemia is an aggressive malignancy characterized by the accumulation of promyelocytes in the bone marrow. PML/RARA is the primary abnormality implicated in this pathology, but the mechanisms by which this chimeric fusion protein initiates disease are incompletely understood. Identifying PML/RARA targets in vivo is critical for comprehending the road to pathogenesis. Utilizing a novel sorting strategy, we isolated highly purified promyelocyte populations from normal and young preleukemic animals, carried out microarray and methylation profiling analyses, and compared the results from the two groups of animals. Surprisingly, in the absence of secondary lesions, PML/RARA had an overall limited impact on both the transcriptome and methylome. Of interest, we did identify down-regulation of secondary and tertiary granule genes as the first step engaging the myeloid maturation block. Although initially not sufficient to arrest terminal granulopoiesis in vivo, such alterations set the stage for the later, complete differentiation block seen in leukemia. Further, gene set enrichment analysis revealed that PML/RARA promyelocytes exhibit a subtle increase in expression of cell cycle genes, and we show that this leads to both increased proliferation of these cells and expansion of the promyelocyte compartment. Importantly, this proliferation signature was absent from the poorly leukemogenic p50/RARA fusion model, implying a critical role for PML in the altered cell-cycle kinetics and ability to initiate leukemia. Thus, our findings challenge the predominant model in the field and we propose that PML/RARA initiates leukemia by subtly shifting cell fate decisions within the promyelocyte compartment.

  15. Heterogeneous nuclear expression of the promyelocytic leukemia (PML) protein in normal and neoplastic human tissues.

    PubMed Central

    Gambacorta, M.; Flenghi, L.; Fagioli, M.; Pileri, S.; Leoncini, L.; Bigerna, B.; Pacini, R.; Tanci, L. N.; Pasqualucci, L.; Ascani, S.; Mencarelli, A.; Liso, A.; Pelicci, P. G.; Falini, B.

    1996-01-01

    The RING-finger promyelocytic leukemia (PML) protein is the product of the PML gene that fuses with the retinoic acid receptor-alpha gene in the t(15; 17) translocation of acute promyelocytic leukemia. Wild-type PML localizes in the nucleus with a typical speckled pattern that is a consequence of the concentration of the protein within discrete subnuclear domains known as nuclear bodies. Delocalization of PML from nuclear bodies has been documented in acute promyelocytic leukemia cells and suggested to contribute to leukemogenesis. In an attempt to get new insights into the function of the wild-type PML protein and to investigate whether it displays an altered expression pattern in neoplasms other than acute promyelocytic leukemia, we stained a large number of normal and neoplastic human tissues with a new murine monoclonal antibody (PG-M3) directed against the amino-terminal region of PML. As the PG-M3 epitope is partially resistant to fixatives, only cells that overexpress PML are detected by the antibody in microwave-heated paraffin sections. Among normal tissues, PML was characteristically up-regulated in activated epithelioid histiocytes and fibroblasts in a variety of pathological conditions, columnar epithelium in small active thyroid follicles, well differentiated foamy cells in the center of sebaceous glands, and hypersecretory endometria (Arias-Stella). Interferons, the PML of which is a primary target gene, and estrogens are likely to represent some of the cytokines and/or hormones that may be involved in the up-regulation of PML under these circumstances. In keeping with this concept, we found that PML is frequently overexpressed in Hodgkin and Reed-Sternberg cells of Hodgkin's disease, a tumor of cytokine-producing cells. Among solid tumors, overexpression of PML was frequently found in carcinomas of larynx and thyroid (papillary), epithelial thymomas, and Kaposi's sarcoma, whereas carcinomas of the lung, thyroid (follicular), breast, and colon were

  16. Leukomogenic factors downregulate heparanase expression in acute myeloid leukemia cells

    SciTech Connect

    Eshel, Rinat; Ben-Zaken, Olga; Vainas, Oded; Nadir, Yona; Minucci, Saverio; Polliack, Aaron; Naparstek, Ella; Vlodavsky, Israel; Katz, Ben-Zion; E-mail: bkatz@tasmc.healt.gov.il

    2005-10-07

    Heparanase is a heparan sulfate-degrading endoglycosidase expressed by mature monocytes and myeloid cells, but not by immature hematopoietic progenitors. Heparanase gene expression is upregulated during differentiation of immature myeloid cells. PML-RAR{alpha} and PLZF-RAR{alpha} fusion gene products associated with acute promyelocytic leukemia abrogate myeloid differentiation and heparanase expression. AML-Eto, a translocation product associated with AML FAB M2, also downregulates heparanase gene expression. The common mechanism that underlines the activity of these three fusion gene products involves the recruitment of histone deacetylase complexes to specific locations within the DNA. We found that retinoic acid that dissociates PML-RAR{alpha} from the DNA, and which is used to treat acute promyelocytic leukemia patients, restores heparanase expression to normal levels in an acute promyelocytic leukemia cell line. The retinoic acid effects were also observed in primary acute promyelocytic leukemia cells and in a retinoic acid-treated acute promyelocytic leukemia patient. Histone deacetylase inhibitor reverses the downregulation of heparanase expression induced by the AML-Eto fusion gene product in M2 type AML. In summary, we have characterized a link between leukomogenic factors and the downregulation of heparanase in myeloid leukemic cells.

  17. Sorafenib in Treating Patients With Refractory or Relapsed Acute Leukemia, Myelodysplastic Syndromes, or Blastic Phase Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2015-04-27

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Blastic Phase; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome

  18. PLZF-RAR[alpha] fusion proteins generated from the variant t(11; 17)(q23; q21) translocation in acute promyelocytic leukemia inhibit ligand-dependent transactivation of wild-type retinoic acid receptors

    SciTech Connect

    Chen, Zhu; Chen, Sai-Juan; Wang, Zhen-Yi ); Guidez, F.; Rousselot, P.; Agadir, A.; Degos, L.; Chomienne, C. ); Zelent, A. ); Waxman, S. )

    1994-02-01

    Recently, the authors described a recurrent variant translocation, t(11;17)(q23;q21), in acute promyelocytic leukemia (APL) which juxtaposes PLZF, a gene encoding a zinc finger protein, to RARA, encoding retinoic acid receptor [alpha] (RAR[alpha]). They have now cloned cDNAs encoding PLZF-RAR[alpha] chimeric proteins and studied their transactivating activities. In transient-expression assays, both the PLZF(A)-RAR[alpha] and PLZF(B)-RAR[alpha] fusion proteins like the PML-RAR[alpha] protein resulting from the well-known t(15;17) translocation in APL, antagonized endogenous and transfected wild-type RAR[alpha] in the presence of retinoic acid. Cotransfection assays showed that a significant repression of RAR[alpha] transactivation activity was obtained even with a very low PLZF-RAR[alpha]-expressing plasmid concentration. A [open quotes]dominant negative[close quotes] effect was observed with vectors expressing RAR[alpha] and retinoid X receptor [alpha] (RXR[alpha]). These abnormal transactivation properties observed in retinoic acid-sensitive myeloid cells strongly implicate the PLZF-RAR[alpha] fusion proteins in the molecular pathogenesis of APL.

  19. New Role for Granulocyte Colony-Stimulating Factor-Induced Extracellular Signal-Regulated Kinase 1/2 in Histone Modification and Retinoic Acid Receptor α Recruitment to Gene Promoters: Relevance to Acute Promyelocytic Leukemia Cell Differentiation ▿

    PubMed Central

    Cassinat, B.; Zassadowski, F.; Ferry, C.; Llopis, L.; Bruck, N.; Lainey, E.; Duong, V.; Cras, A.; Despouy, G.; Chourbagi, O.; Beinse, G.; Fenaux, P.; Rochette Egly, C.; Chomienne, C.

    2011-01-01

    The induction of the granulocytic differentiation of leukemic cells by all-trans retinoic acid (RA) has been a major breakthrough in terms of survival for acute promyelocytic leukemia (APL) patients. Here we highlight the synergism and the underlying novel mechanism between RA and the granulocyte colony-stimulating factor (G-CSF) to restore differentiation of RA-refractory APL blasts. First, we show that in RA-refractory APL cells (UF-1 cell line), PML-RA receptor alpha (RARα) is not released from target promoters in response to RA, resulting in the maintenance of chromatin repression. Consequently, RARα cannot be recruited, and the RA target genes are not activated. We then deciphered how the combination of G-CSF and RA successfully restored the activation of RA target genes to levels achieved in RA-sensitive APL cells. We demonstrate that G-CSF restores RARα recruitment to target gene promoters through the activation of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway and the subsequent derepression of chromatin. Thus, combinatorial activation of cytokines and RARs potentiates transcriptional activity through epigenetic modifications induced by specific signaling pathways. PMID:21262770

  20. Induction of promyelocytic leukemia (PML) oncogenic domains (PODs) by papillomavirus

    SciTech Connect

    Nakahara, Tomomi; Lambert, Paul F.

    2007-09-30

    Promyelocytic leukemia oncogenic domains (PODs), also called nuclear domain 10 (ND10), are subnuclear structures that have been implicated in a variety of cellular processes as well as the life cycle of DNA viruses including papillomaviruses. In order to investigate the interplay between papillomaviruses and PODs, we analyzed the status of PODs in organotypic raft cultures of human keratinocytes harboring HPV genome that support the differentiation-dependent HPV life cycle. The number of PODs per nucleus was increased in the presence of HPV genomes selectively within the poorly differentiated layers but was absent in the terminally differentiated layers of the stratified epithelium. This increase in PODs was correlated with an increase in abundance of post-translationally modified PML protein. Neither the E2-dependent transcription nor viral DNA replication was reliant upon the presence of PML. Implications of these findings in terms of HPV's interaction with its host are discussed.

  1. Acute Lymphocytic Leukemia

    MedlinePlus

    ... hard for blood to do its work. In acute lymphocytic leukemia (ALL), also called acute lymphoblastic leukemia, there are too ... of white blood cells called lymphocytes or lymphoblasts. ALL is the most common type of cancer in ...

  2. Clofarabine, Cytarabine, and Filgrastim Followed by Infusion of Non-HLA Matched Ex Vivo Expanded Cord Blood Progenitors in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-08-13

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  3. 7-Hydroxystaurosporine and Perifosine in Treating Patients With Relapsed or Refractory Acute Leukemia, Chronic Myelogenous Leukemia or High Risk Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-09-27

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Neoplasms; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  4. What Is Acute Myeloid Leukemia?

    MedlinePlus

    ... about acute myeloid leukemia? What is acute myeloid leukemia? Cancer starts when cells in a part of ... the body from doing their jobs. Types of leukemia Not all leukemias are the same. There are ...

  5. Synergistic decrease of clonal proliferation, induction of differentiation, and apoptosis of acute promyelocytic leukemia cells after combined treatment with novel 20-epi vitamin D3 analogs and 9-cis retinoic acid.

    PubMed Central

    Elstner, E; Linker-Israeli, M; Le, J; Umiel, T; Michl, P; Said, J W; Binderup, L; Reed, J C; Koeffler, H P

    1997-01-01

    Patients with acute promyelocytic leukemia (APL) usually relapse after all-trans retinoic acid (RA) treatment because this therapy fails to eradicate the malignant clone. Our data showed that KH 1060 and other 20-epi vitamin D3 analogs alone were potent inhibitors of clonal growth of NB4 cells, an APL cell line (ED50, approximately 5 x 10(-11) M). The combination of KH 1060 and 9-cis-RA synergistically and irreversibly enhanced this effect. Neither KH 1060 nor 9-cis-RA (10(-6) M, 3 d) were strong inducers of differentiation of NB4 cells. However, 98% of the cells underwent differentiation to a mature phenotype with features of both granulocytes and monocytes after exposure to a combination of both compounds. Apoptosis only increased after incubation of NB4 cells with 9-cis-RA alone (28%) or with a combination of 9-cis-RA plus KH1060 (32%). Immunohistochemistry showed that the bcl-2 protein decreased from nearly 100% of the wild-type NB4 cells to 2% after incubation with a combination of KH 1060 and 9-cis-RA, and the bax protein increased from 50% of wild-type NB4 cells to 92% after culture with both analogs (5 x 10(-7) M, 3 d). Western blot analysis paralleled these results. Studies of APL cells from one untreated individual paralleled our results with NB4 cells. Taken together, the data demonstrated that nearly all of the NB4 cells can be irreversibly induced to differentiate terminally when exposed to the combination of KH 1060 and 9-cis-RA. PMID:9006004

  6. Granulocyte colony-stimulating factor potentiates differentiation induction by all-trans retinoic acid and arsenic trioxide and enhances arsenic uptake in the acute promyelocytic leukemia cell line HT93A.

    PubMed

    Iriyama, Noriyoshi; Yuan, Bo; Hatta, Yoshihiro; Horikoshi, Akira; Yoshino, Yuta; Toyoda, Hiroo; Aizawa, Shin; Takeuchi, Jin

    2012-11-01

    The effects of arsenic trioxide (ATO), all-trans retinoic acid (ATRA) and granulocyte colony-stimulating factor (G-CSF), alone or in combination, were investigated by focusing on differentiation, growth inhibition and arsenic uptake in the acute promyelocytic leukemia (APL) cell line HT93A. ATO induced differentiation at low concentrations (0.125 µM) and apoptosis at high concentrations (1-2 µM). Furthermore, ATRA induced greater differentiation than ATO. No synergistic effect of ATRA and ATO was found on differentiation. G-CSF promoted differentiation-inducing activities of both ATO and ATRA. The combination of ATRA and G-CSF showed maximum differentiation and ATO addition was not beneficial. Addition of 1 µM ATRA and/or 50 ng/ml G-CSF to ATO did not affect apoptosis compared to ATO treatment alone. ATRA induced expression of aquaporin-9 (AQP9), a transmembrane transporter recognized as a major pathway of arsenic uptake, in a time- and dose-dependent manner. However, treatment with 1 µM ATRA decreased arsenic uptake by 43.7% compared to control subject. Although G-CSF addition did not enhance AQP9 expression in the cells, the reduced arsenic uptake was recovered to the same level as that in controls. ATRA decreased cell viability and addition of 50 ng/ml G-CSF to ATRA significantly increased the number of viable cells compared with that in ATRA alone treated cells. G-CSF not only promotes differentiation-inducing activities of both ATRA and ATO, but also makes APL cells vulnerable to increased arsenic uptake. These observations provide new insights into combination therapy using these three agents for the treatment of APL.

  7. Does microgranular variant morphology of acute promyelocytic leukemia independently predict a less favorable outcome compared with classical M3 APL? A joint study of the North American Intergroup and the PETHEMA Group.

    PubMed

    Tallman, Martin S; Kim, Haesook T; Montesinos, Pau; Appelbaum, Frederick R; de la Serna, Javier; Bennett, John M; Deben, Guillermo; Bloomfield, Clara D; Gonzalez, Jose; Feusner, James H; Gonzalez, Marcos; Gallagher, Robert; Miguel, Jose D Gonzalez-San; Larson, Richard A; Milone, Gustavo; Paietta, Elisabeth; Rayon, Chelo; Rowe, Jacob M; Rivas, Concha; Schiffer, Charles A; Vellenga, Edo; Shepherd, Lois; Slack, James L; Wiernik, Peter H; Willman, Cheryl L; Sanz, Miguel A

    2010-12-16

    Few studies have examined the outcome of large numbers of patients with the microgranular variant (M3V) of acute promyelocytic leukemia (APL) in the all-trans retinoic acid era. Here, the outcome of 155 patients treated with all-trans retinoic acid-based therapy on 3 clinical trials, North American Intergroup protocol I0129 and Programa para el Estudio de la Terapéutica en Hemopatía Maligna protocols LPA96 and LPA99, are reported. The complete remission rate for all 155 patients was 82%, compared with 89% for 748 patients with classical M3 disease. The incidence of the APL differentiation syndrome was 26%, compared with 25% for classical M3 patients, and the early death rate was 13.6% compared with 8.4% for patients with classical M3 morphology. With a median follow-up time among survivors of 7.6 years (range 3.6-14.5), the 5-year overall survival, disease-free survival, and cumulative incidence of relapse for patients with M3V were 70%, 73%, and 24%, respectively. With a median follow-up time among survivors of 7.6 years (range 0.6-14.3), the 5-year overall survival, disease-free survival, and cumulative incidence of relapse among patients with classical M3 morphology were 80% (P = .006 compared with M3V), 81% (P = .07), and 15% (P = .005), respectively. When outcomes were adjusted for the white blood cell count or the relapse risk score, none of these outcomes were significantly different between patients with M3V and classical M3 APL.

  8. Traumatic stress in acute leukemia

    PubMed Central

    Rodin, Gary; Yuen, Dora; Mischitelle, Ashley; Minden, Mark D; Brandwein, Joseph; Schimmer, Aaron; Marmar, Charles; Gagliese, Lucia; Lo, Christopher; Rydall, Anne; Zimmermann, Camilla

    2013-01-01

    Objective Acute leukemia is a condition with an acute onset that is associated with considerable morbidity and mortality. However, the psychological impact of this life-threatening condition and its intensive treatment has not been systematically examined. In the present study, we investigate the prevalence and correlates of post-traumatic stress symptoms in this population. Methods Patients with acute myeloid, lymphocytic, and promyelocytic leukemia who were newly diagnosed, recently relapsed, or treatment failures were recruited at a comprehensive cancer center in Toronto, Canada. Participants completed the Stanford Acute Stress Reaction Questionnaire, Memorial Symptom Assessment Scale, CARES Medical Interaction Subscale, and other psychosocial measures. A multivariate regression analysis was used to assess independent predictors of post-traumatic stress symptoms. Results Of the 205 participants, 58% were male, mean age was 50.1 ± 15.4 years, 86% were recently diagnosed, and 94% were receiving active treatment. The mean Stanford Acute Stress Reaction Questionnaire score was 30.2 ± 22.5, with 27 of 200 (14%) patients meeting criteria for acute stress disorder and 36 (18%) for subsyndromal acute stress disorder. Post-traumatic stress symptoms were associated with more physical symptoms, physical symptom distress, attachment anxiety, and perceived difficulty communicating with health-care providers, and poorer spiritual well-being (all p <0.05). Conclusions The present study demonstrates that clinically significant symptoms of traumatic stress are common in acute leukemia and are linked to the degree of physical suffering, to satisfaction with relationships with health-care providers, and with individual psychological characteristics. Longitudinal study is needed to determine the natural history, but these findings suggest that intervention may be indicated to alleviate or prevent traumatic stress in this population. PMID:22081505

  9. Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions

    PubMed Central

    Wang, Jayson; Shiels, Carol; Sasieni, Peter; Wu, Pei Jun; Islam, Suhail A.; Freemont, Paul S.; Sheer, Denise

    2004-01-01

    The promyelocytic leukemia (PML) protein is aggregated into nuclear bodies that are associated with diverse nuclear processes. Here, we report that the distance between a locus and its nearest PML body correlates with the transcriptional activity and gene density around the locus. Genes on the active X chromosome are more significantly associated with PML bodies than their silenced homologues on the inactive X chromosome. We also found that a histone-encoding gene cluster, which is transcribed only in S-phase, is more strongly associated with PML bodies in S-phase than in G0/G1 phase of the cell cycle. However, visualization of specific RNA transcripts for several genes showed that PML bodies were not themselves sites of transcription for these genes. Furthermore, knock-down of PML bodies by RNA interference did not preferentially change the expression of genes closely associated with PML bodies. We propose that PML bodies form in nuclear compartments of high transcriptional activity, but they do not directly regulate transcription of genes in these compartments. PMID:14970191

  10. Lenalidomide, Cytarabine, and Idarubicin in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-12-22

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  11. Positive and negative predictive values of HLA-DR and CD34 in the diagnosis of acute promyelocytic leukemia and other types of acute myeloid leukemia with recurrent chromosomal translocations.

    PubMed

    Promsuwicha, Orathai; Auewarakul, Chirayu U

    2009-12-01

    The predictive value of HLA-DR and CD34 in the diagnosis of four distinct genetic entities of acute myeloid leukemia (AML) is presently not established. We evaluated the positive and negative predictive values (PPV and NPV, respectively), sensitivity, specificity, and correlation coefficients of HLA-DR and CD34 in AML patients with t(15;17), t(8;21), inv(16), and abn(11q23). In AML with t(15;17) (n = 64), HLA-DR was expressed in 4.68% and CD34 was expressed in 15.62% and none of the cases expressed both HLA-DR and CD34. In AML with t(8;21) (n = 99), HLA-DR, CD34 or both antigens were expressed in the majority of cases (90.90%, 80.80%, and 79.79%, respectively). AML patients with inv(16) (n = 18) and abn(11q23) (n = 31) also highly expressed HLA-DR and CD34. Eight cases of t(8;21) and 1 case of abn(11q23) did not express either antigen. The highest correlation between CD34 and HLA-DR expression values was observed in cases with t(8;21) (r = 0.72) with the lowest correlation in inv(16) (r = 0.035). The PPV and NPV of HLA-DR-negativity plus CD34-negativity to predict t(15;17) was 85% and 100%, respectively, with 100% sensitivity and 92.74% specificity. The PPV and NPV of other myeloid markers such as CD117, MPO and CD11c to diagnose t(15;17) were much lower than those of HLA-DR and CD34. It was concluded that the absence of double negativity of HLA-DR and CD34 strongly predicts against t(15;17). Rare HLA-DR-positive/CD34-negative cases exist in patients with t(15;17) and 8% of t(8;21) cases expressed neither antigen. Further studies should determine whether HLA-DR-positive t(15;17) and HLA-DR-negative/CD34-negative t(8;21) represent a special entity associated with significant prognostic relevance.

  12. Azacitidine in Combination With Mitoxantrone, Etoposide Phosphate, and Cytarabine in Treating Patients With Relapsed and Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-08-23

    Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia

  13. Effects of arsenic on modification of promyelocytic leukemia (PML): PML responds to low levels of arsenite

    SciTech Connect

    Hirano, Seishiro; Watanabe, Takayuki; Kobayashi, Yayoi

    2013-12-15

    Inorganic arsenite (iAs{sup 3+}) is a two-edged sword. iAs{sup 3+} is a well-known human carcinogen; nevertheless, it has been used as a therapeutic drug for acute promyelocytic leukemia (APL), which is caused by a fusion protein comprising retinoic acid receptor-α and promyelocytic leukemia (PML). PML, a nuclear transcription factor, has a RING finger domain with densely positioned cysteine residues. To examine PML-modulated cellular responses to iAs{sup 3+}, CHO-K1 and HEK293 cells were each used to establish cell lines that expressed ectopic human PML. Overexpression of PML increased susceptibility to iAs{sup 3+} in CHO-K1 cells, but not in HEK293 cells. Exposure of PML-transfected cells to iAs{sup 3+} caused PML to change from a soluble form to less soluble forms, and this modification of PML was observable even with just 0.1 μM iAs{sup 3+} (7.5 ppb). Western blot and immunofluorescent microscopic analyses revealed that the biochemical changes of PML were caused at least in part by conjugation with small ubiquitin-like modifier proteins (SUMOylation). A luciferase reporter gene was used to investigate whether modification of PML was caused by oxidative stress or activation of antioxidant response element (ARE) in CHO-K1 cells. Modification of PML protein occurred faster than activation of the ARE in response to iAs{sup 3+}, suggesting that PML was not modified as a consequence of oxidative stress-induced ARE activation. - Highlights: • PML was found in nuclear microspecles in response to arsenite. • Arsenite triggers SUMOylation of PML. • Arsenite modifies PML at as low as 0.1 μM. • Modification of PML is not caused by ARE activation.

  14. The Promyelocytic Leukemia Zinc Finger Protein: Two Decades of Molecular Oncology

    PubMed Central

    Suliman, Bandar Ali; Xu, Dakang; Williams, Bryan Raymond George

    2012-01-01

    The promyelocytic leukemia zinc finger (PLZF) protein, also known as Zbtb16 or Zfp145, was first identified in a patient with acute promyelocytic leukemia, where a reciprocal chromosomal translocation t(11;17)(q23;q21) resulted in a fusion with the RARA gene encoding retinoic acid receptor alpha. The wild-type Zbtb16 gene encodes a transcription factor that belongs to the POK (POZ and Krüppel) family of transcriptional repressors. In addition to nine Krüppel-type sequence-specific zinc fingers, which make it a member of the Krüppel-like zinc finger protein family, the PLZF protein contains an N-terminal BTB/POZ domain and RD2 domain. PLZF has been shown to be involved in major developmental and biological processes, such as spermatogenesis, hind limb formation, hematopoiesis, and immune regulation. PLZF is localized mainly in the nucleus where it exerts its transcriptional repression function, and many post-translational modifications affect this ability and also have an impact on its cytoplasmic/nuclear dissociation. PLZF achieves its transcriptional regulation by binding to many secondary molecules to form large multi-protein complexes that bind to the regulatory elements in the promoter region of the target genes. These complexes are also capable of physically interacting with its target proteins. Recently, PLZF has become implicated in carcinogenesis as a tumor suppressor gene, since it regulates the cell cycle and apoptosis in many cell types. This review will examine the major advances in our knowledge of PLZF biological activities that augment its value as a therapeutic target, particularly in cancer and immunological diseases. PMID:22822476

  15. Flavopiridol, Cytarabine, and Mitoxantrone in Treating Patients With Acute Leukemia

    ClinicalTrials.gov

    2013-10-07

    Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  16. Restoration of CCAAT enhancer binding protein α P42 induces myeloid differentiation and overcomes all-trans retinoic acid resistance in human acute promyelocytic leukemia NB4-R1 cells

    PubMed Central

    WANG, LIMENGMENG; XIAO, HAOWEN; ZHANG, XING; LIAO, WEICHAO; FU, SHAN; HUANG, HE

    2015-01-01

    All-trans retinoic acid (ATRA) is one of the first line agents in differentiation therapy for acute promyelocytic leukemia (APL). However, drug resistance is a major problem influencing the efficacy of ATRA. Identification of mechanisms of ATRA resistance are urgenly needed. In the present study, we found that expression of C/EBPα, an important transcription factor for myeloid differentiation, was significantly suppressed in ATRA resistant APL cell line NB4-R1 compared with ATRA sensitive NB4 cells. Moreover, two forms of C/EBPα were unequally suppressed in NB4-R1 cells. Suppression of the full-length form P42 was more pronounced than the truncated form P30. Inhibition of PI3K/Akt/mTOR pathway was also observed in NB4-R1 cells. Moreover, C/EBPα expression was reduced by PI3K inhibitor LY294002 and mTOR inhibitor RAD001 in NB4 cells, suggesting that inactivation of the PI3K/Akt/mTOR pathway was responsible for C/EBPα suppression in APL cells. We restored C/EBPα P42 and P30 by lentivirus vectors in NB4-R1 cells, respectively, and found C/EBPα P42, but not P30, could increase CD11b, CD14, G-CSFR and GM-CSFR expression, which indicated the occurrence of myeloid differentiation. Further upregulating of CD11b expression and differential morphological changes were found in NB4-R1 cells with restored C/EBPα P42 after ATRA treatment. However, CD11b expression and differential morphological changes could not be induced by ATRA in NB4-R1 cells infected with P30 expressing or control vector. Thus, we inferred that ATRA sensitivity of NB4-R1 cells was enhanced by restoration of C/EBPα P42. In addition, we used histone deacetylase inhibitor trichostatin (TSA) to restore C/EBPα expression in NB4-R1 cells. Similar enhancement of myeloid differentiation and cell growth arrest were detected. Together, the present study demonstrated that suppression of C/EBPα P42 induced by PI3K/Akt/mTOR inhibition impaired the differentiation and ATRA sensitivity of APL cells. Restoring C

  17. Immunotherapy for acute myeloid leukemia.

    PubMed

    Jurcic, Joseph G

    2005-09-01

    Immunotherapeutic strategies have become part of standard cancer treatment. Chimeric and humanized antibodies have demonstrated activity against a variety of tumors. Although the humanized anti-CD33 antibody HuM195 has only modest activity against overt acute myeloid leukemia (AML), it can eliminate minimal residual disease in acute promyelocytic leukemia. High-dose radioimmunotherapy with b-particle-emitting isotopes targeting CD33, CD45, and CD66 can potentially allow intensification of antileukemic therapy before hematopoietic stem cell transplantation. Conversely, a-particle immunotherapy with isotopes such as bismuth-213 or actinium-225 offers the possibility of selective tumor cell kill while sparing surrounding normal tissues. Targeted chemotherapy with the anti-CD33- calicheamicin construct gemtuzumab ozogamicin has produced remissions in relapsed AML and appears promising when used in combination with standard chemotherapy for newly diagnosed AML. T-cell recognition of peptide antigens presented on the cell surface in combination with major histocompatibility complex antigen provides another potentially promising approach for the treatment of AML. PMID:16091194

  18. Vorinostat, Cytarabine, and Etoposide in Treating Patients With Relapsed and/or Refractory Acute Leukemia or Myelodysplastic Syndromes or Myeloproliferative Disorders

    ClinicalTrials.gov

    2013-05-01

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  19. Thrombosis and acute leukemia.

    PubMed

    Crespo-Solís, Erick

    2012-04-01

    Thrombosis is a common complication in patients with acute leukemia. While the presence of central venous lines, concomitant steroids, the use of Escherichia coli asparaginase and hereditary thrombophilic abnormalities are known risk factors for thrombosis in children, information on the pathogenesis, risk factors, and clinical outcome of thrombosis in adult patients with acute lymphoid leukemia (ALL) or acute myeloid leukemia (AML) is still scarce. Expert consensus and guidelines regarding leukemia-specific risk factors, thrombosis prevention, and treatment strategies, as well as optimal type of central venous catheter in acute leukemia patients are required. It is likely that each subtype of acute leukemia represents a different setting for the development of thrombosis and the risk of bleeding. This is perhaps due to a combination of different disease-specific pathogenic mechanisms of thrombosis, including the type of chemotherapy protocol chosen, the underlying patients health, associated risk factors, as well as the biology of the disease itself. The risk of thrombosis may also vary according to ethnicity and prevalence of hereditary risk factors for thrombosis; thus, it is advisable for Latin American, Asian, and African countries to report on their specific patient population. PMID:22507812

  20. Treatment of Acute Promyelocytic (M3) Leukemia

    MedlinePlus

    ... to give ATRA plus another differentiating drug called arsenic trioxide (Trisenox). This is often used in patients ... anthracycline plus cytarabine for at least 2 cycles Arsenic trioxide for 2 cycles (over about 2½ months), ...

  1. Targeted Therapy in Treating Patients With Relapsed or Refractory Acute Lymphoblastic Leukemia or Acute Myelogenous Leukemia

    ClinicalTrials.gov

    2016-07-28

    Chronic Myelomonocytic Leukemia; Myelodysplastic Syndrome; Recurrent Acute Myeloid Leukemia With Myelodysplasia-Related Changes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia

  2. Laboratory-Treated Donor Cord Blood Cell Infusion Following Combination Chemotherapy in Treating Younger Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-09-26

    Acute Leukemia of Ambiguous Lineage; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Childhood Acute Myeloid Leukemia in Remission; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  3. What Is Acute Lymphocytic Leukemia (ALL)?

    MedlinePlus

    ... key statistics about acute lymphocytic leukemia? What is acute lymphocytic leukemia? Cancer starts when cells in the body begin ... leukemias). The rest of this document focuses on acute lymphocytic leukemia (ALL) in adults. For information on ALL in ...

  4. Novel and Emerging Drugs for Acute Myeloid Leukemia

    PubMed Central

    Stein, E.M.; Tallman, M.S.

    2014-01-01

    Acute myeloid leukemia (AML) is a challenging disease to treat with the majority of patients dying from their illness. While overall survival has been markedly prolonged in acute promyelocytic leukemia (APL), survival in younger adults with other subtypes of AML has only modestly improved over the last twenty years. Physicians who treat AML eagerly await drugs like Imatinib for chronic myeloid leukemia, Cladribine for hairy cell leukemia, and Rituximab for non-Hodgkin Lymphoma which have had an important impact on improving outcome. Recent research efforts have focused on refining traditional chemotherapeutic agents to make them more active in AML, targeting specific genetic mutations in myeloid leukemia cells, and utilizing novel agents such as Lenalidomide that have shown activity in other hematologic malignancies. Here, we focus on reviewing the recent literature on agents that may assume a role in clinical practice for patients with AML over the next five years. PMID:22483153

  5. Flavopiridol in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2013-06-03

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia

  6. Sorafenib in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2013-01-08

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia

  7. IMMUNOTHERAPY IN ACUTE LEUKEMIA

    PubMed Central

    Leung, Wing

    2010-01-01

    Recent advances in immunotherapy of cancer may represent a successful example in translational research, in which progress in knowledge and technology in immunology has lead to new strategies of immunotherapy, and even past failure in many clinical trials have led to a better understanding of basic cancer immunobiology. This article reviews the latest concepts in antitumor immunology and its application in the treatment of cancer, with particular focus on acute leukemia. PMID:19100371

  8. [Infant acute leukemia].

    PubMed

    Brethon, Benoît; Cavé, Hélène; Fahd, Mony; Baruchel, André

    2016-03-01

    If acute leukemia is the most frequent cancer in childhood (33%), it remains a very rare diagnosis in infants less than one year old, e.g. less than 5% of cases. At this age, the frequency of acute lymphoblastic leukemia (ALL) (almost all of B-lineage) is quite similar to the one of myeloblastic forms (AML). Infant leukemia frequently presents with high hyperleucocytosis, major tumoral burden and numerous extra-hematological features, especially in central nervous system and skin. Whatever the lineage, the leukemic cell is often very immature cytologically and immunologically. Rearrangements of the Mixed Lineage Leukemia (MLL) gene, located on band 11q23, are the hallmark of these immature leukemias and confer a particular resistance to conventional approaches, corticosteroids and chemotherapy. The immaturity of infants less than 1-year-old is associated to a decrease of the tolerable dose-intensity of some drugs (anthracyclines, alkylating agents) or asks questions about some procedures like radiotherapy or high dose conditioning regimen, responsible of inacceptable acute and late toxicities. The high level of severe infectious diseases and other high-grade side effects limits also the capacity to cure these infants. The survival of infants less than 1-year-old with AML is only 50% but similar to older children. On the other hand, survival of those with ALL is the same, then quite limited comparing the 80% survival in children over one year. Allogeneic stem cell transplantations are indicated in high-risk subgroups of infant ALL (age below 6 months, high hyperleucocytosis >300.10(9)/L, MLL-rearrangement, initial poor prednisone response). However, morbidity and mortality remain very important and these approaches cannot be extended to all cases. During the neonatal period, the dismal prognosis linked to the high number of primary failures or very early relapses and uncertainties about the late toxicities question physicians about ethics. It is an emergency to

  9. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia.

    PubMed

    Wang, Lan; Zhou, Guang-Biao; Liu, Ping; Song, Jun-Hong; Liang, Yang; Yan, Xiao-Jing; Xu, Fang; Wang, Bing-Shun; Mao, Jian-Hua; Shen, Zhi-Xiang; Chen, Sai-Juan; Chen, Zhu

    2008-03-25

    To enhance therapeutic efficacy and reduce adverse effects, practitioners of traditional Chinese medicine (TCM) prescribe a combination of plant species/minerals, called formulae, based on clinical experience. Nearly 100,000 formulae have been recorded, but the working mechanisms of most remain unknown. In trying to address the possible beneficial effects of formulae with current biomedical approaches, we use Realgar-Indigo naturalis formula (RIF), which has been proven to be very effective in treating human acute promyelocytic leukemia (APL) as a model. The main components of RIF are realgar, Indigo naturalis, and Salvia miltiorrhiza, with tetraarsenic tetrasulfide (A), indirubin (I), and tanshinone IIA (T) as major active ingredients, respectively. Here, we report that the ATI combination yields synergy in the treatment of a murine APL model in vivo and in the induction of APL cell differentiation in vitro. ATI causes intensified ubiquitination/degradation of promyelocytic leukemia (PML)-retinoic acid receptor alpha (RARalpha) oncoprotein, stronger reprogramming of myeloid differentiation regulators, and enhanced G(1)/G(0) arrest in APL cells through hitting multiple targets compared with the effects of mono- or biagents. Furthermore, ATI intensifies the expression of Aquaglyceroporin 9 and facilitates the transportation of A into APL cells, which in turn enhances A-mediated PML-RARalpha degradation and therapeutic efficacy. Our data also indicate A as the principal component of the formula, whereas T and I serve as adjuvant ingredients. We therefore suggest that dissecting the mode of action of clinically effective formulae at the molecular, cellular, and organism levels may be a good strategy in exploring the value of traditional medicine.

  10. Two distinctly regulated events, priming and triggering, during retinoid-induced maturation and resistance of NB4 promyelocytic leukemia cell line.

    PubMed Central

    Ruchaud, S; Duprez, E; Gendron, M C; Houge, G; Genieser, H G; Jastorff, B; Doskeland, S O; Lanotte, M

    1994-01-01

    In t(15;17) acute promyelocytic leukemia, all-trans retinoic acid (RA) induces leukemic cell maturation in vitro and remission in acute promyelocytic leukemia patients, but in vivo treatments invariably lead to relapse with resistance to RA. NB4, a maturation-inducible cell line, and NB4-RAr sublines (R1 and R2) displaying no maturation in the presence of RA have been isolated from a patient in relapse. We show that resistance to maturation is not a mere unresponsiveness to RA: rather, R1 "resistant" cells do respond to RA (1 microM) by sustained growth, become competent to undergo terminal maturation, and up-regulate CD11c/CD18 integrins. Interestingly, maturation of "resistant" cells, rendered competent by RA, can be achieved by cAMP-elevating agents (prostaglandin E, isoproterenol, cholera toxin, or phosphodiesterase inhibitor) or stable agonistic cAMP analogs such as (SP)-8-chloroadenosine cyclic 3',5'-phosphorothioate. This shows that activation of cAMP-dependent protein kinase (cA kinase) can override the RA resistance and suggests interdependent RA and cAMP signaling pathways in acute promyelocytic leukemia maturation. No such cooperation was observed in the R2 resistant cells, though their cA-kinase was functional. (RP)-8-Chloroadenosine cyclic 3',5'-phosphorothioate, which by displacing endogenous cAMP inhibits the basal cA-kinase activity, decreased the response of sensitive cells to RA. This raises the possibility that cA-kinase plays a key role in the maturation also of RA-sensitive cells. Our results define two discrete steps in the maturation process: an RA-dependent priming step that maintains proliferation while cells become competent to undergo maturation in response to retinoids and a cAMP-dependent step that triggers RA-primed cells to undergo terminal maturation. Uncoupling RA and cAMP action might cause the so-called "resistance." Images PMID:7915840

  11. Acute Leukemias in Children

    PubMed Central

    Pai, Mohan K. R.

    1979-01-01

    With combination chemotherapy approximately 50% of children with lymphoblastic leukemia survive for five or more years and it is now realistic to hope for a cure. Development of sophisticated cytochemical and immunological techniques have enabled us to recognize the factors that predispose to treatment failures. The survival in acute non-lymphocytic leukemia continues to be poor despite the introduction of several innovative treatment regimens. Current research is focused on the manipulation of the host-tumor immune response to eradicate the disease by treatment modalities such as immunotherapy and bone marrow transplantation. Since the treatment regimens are becoming more complex, the initial diagnosis and treatment is best carried out at centres specialized in the management of childhood malignancies. ImagesFig. 1Fig. 2Fig. 3 PMID:21297755

  12. Genetically Modified T-cell Immunotherapy in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-08-10

    Adult Acute Myeloid Leukemia in Remission; Donor; Early Relapse of Acute Myeloid Leukemia; Late Relapse of Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  13. Vorinostat and Idarubicin in Treating Patients With Relapsed or Refractory Leukemia or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-09-27

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Blastic Phase Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  14. Current standard treatment of adult acute promyelocytic leukaemia.

    PubMed

    Lo-Coco, Francesco; Cicconi, Laura; Breccia, Massimo

    2016-03-01

    The outcome of patients with acute promyelocytic leukaemia (APL) has dramatically improved over the last two decades, due to the introduction of combined all-trans retinoic acid (ATRA) and chemotherapy regimens and, more recently, to the advent of arsenic trioxide (ATO). ATRA and anthracycline-based chemotherapy remains a widely used strategy, providing cure rates above 80%, but it is associated with risk of severe infections and occurrence of secondary leukaemias. ATO is the most effective single agent in APL and, used alone or in combination with ATRA or ATRA and reduced-intensity chemotherapy, results in greater efficacy with considerably less haematological toxicity. The toxic profile of ATO includes frequent, but manageable, QTc prolongation and increase of liver enzymes. Two large randomized studies have shown that ATRA + ATO is superior to ATRA + chemotherapy for newly diagnosed low-risk APL resulting in 2-4 year event-free survival rates above 90% and very few relapses. According to real world data, the spectacular progress in APL outcomes reported in clinical trials has not been paralleled by a significant improvement in early death rates, this remains the most challenging issue for the final cure of the disease.

  15. Current standard treatment of adult acute promyelocytic leukaemia.

    PubMed

    Lo-Coco, Francesco; Cicconi, Laura; Breccia, Massimo

    2016-03-01

    The outcome of patients with acute promyelocytic leukaemia (APL) has dramatically improved over the last two decades, due to the introduction of combined all-trans retinoic acid (ATRA) and chemotherapy regimens and, more recently, to the advent of arsenic trioxide (ATO). ATRA and anthracycline-based chemotherapy remains a widely used strategy, providing cure rates above 80%, but it is associated with risk of severe infections and occurrence of secondary leukaemias. ATO is the most effective single agent in APL and, used alone or in combination with ATRA or ATRA and reduced-intensity chemotherapy, results in greater efficacy with considerably less haematological toxicity. The toxic profile of ATO includes frequent, but manageable, QTc prolongation and increase of liver enzymes. Two large randomized studies have shown that ATRA + ATO is superior to ATRA + chemotherapy for newly diagnosed low-risk APL resulting in 2-4 year event-free survival rates above 90% and very few relapses. According to real world data, the spectacular progress in APL outcomes reported in clinical trials has not been paralleled by a significant improvement in early death rates, this remains the most challenging issue for the final cure of the disease. PMID:26687281

  16. Decitabine, Cytarabine, and Daunorubicin Hydrochloride in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-20

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  17. Molecular Genetic Markers in Acute Myeloid Leukemia

    PubMed Central

    Yohe, Sophia

    2015-01-01

    Genetics play an increasingly important role in the risk stratification and management of acute myeloid leukemia (AML) patients. Traditionally, AML classification and risk stratification relied on cytogenetic studies; however, molecular detection of gene mutations is playing an increasingly important role in classification, risk stratification, and management of AML. Molecular testing does not take the place of cytogenetic testing results, but plays a complementary role to help refine prognosis, especially within specific AML subgroups. With the exception of acute promyelocytic leukemia, AML therapy is not targeted but the intensity of therapy is driven by the prognostic subgroup. Many prognostic scoring systems classify patients into favorable, poor, or intermediate prognostic subgroups based on clinical and genetic features. Current standard of care combines cytogenetic results with targeted testing for mutations in FLT3, NPM1, CEBPA, and KIT to determine the prognostic subgroup. Other gene mutations have also been demonstrated to predict prognosis and may play a role in future risk stratification, although some of these have not been confirmed in multiple studies or established as standard of care. This paper will review the contribution of cytogenetic results to prognosis in AML and then will focus on molecular mutations that have a prognostic or possible therapeutic impact. PMID:26239249

  18. Tipifarnib and Bortezomib in Treating Patients With Acute Leukemia or Chronic Myelogenous Leukemia in Blast Phase

    ClinicalTrials.gov

    2015-04-14

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Blastic Phase; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Disease; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  19. In vitro inhibition of promyelocytic leukemia/retinoic acid receptor-alpha (PML/RARalpha) expression and leukemogenic activity by DNA/LNA chimeric antisense oligos.

    PubMed

    Caprodossi, Sara; Galluzzi, Luca; Biagetti, Simona; Della Chiara, Giulia; Pelicci, Pier Giuseppe; Magnani, Mauro; Fanelli, Mirco

    2005-01-01

    Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by the chromosomal translocation t(15:17) that leads to the expression of promyelocytic leukemia/retinoic acid receptor-alpha (PML/ RARalpha) oncofusion protein. The block of differentiation at the promyelocytic stage of the blasts and their increased survival induced by PML/RARalpha are the principal biological features of the disease. Therapies based on pharmacological doses of retinoic acid (RA, 10(-6) M) are able to restore APL cell differentiation in most cases, but not to achieve complete hematological remission because retinoic acid resistance occurs in many patients. In order to elaborate alternative therapeutic approaches, we focused our attention on the use of antisense oligonucleotides as gene-specific drug directed to PML/RARalpha mRNA target. We used antisense molecules containing multiple locked nucleic acid (LNA) modifications. The LNAs are nucleotide analogues that are able to form duplexes with complementary DNA or RNA sequences with highly increased thermal stability and are resistant to 3'-exonuclease degradation in vitro. The DNA/LNA chimeric molecules were designed on the fusion sequence of PML and RARalpha genes to specifically target the oncofusion protein. Cell-free and in vitro experiments using U937-PR9-inducible cell line showed that DNA/LNA oligonucleotides were able to interfere with PML/RARalpha expression more efficiently than the corresponding unmodified DNA oligo. Moreover, the treatment of U937-PR9 cells with these chimeric antisense molecules was able to abrogate the block of differentiation induced by PML/RARalpha oncoprotein. These data suggest a possible application of oligonucleotides containing LNA in an antisense therapeutic strategy for APL.

  20. Antiproliferative activity of various Uncaria tomentosa preparations on HL-60 promyelocytic leukemia cells.

    PubMed

    Pilarski, Radosław; Poczekaj-Kostrzewska, Magdalena; Ciesiołka, Danuta; Szyfter, Krzysztof; Gulewicz, Krzysztof

    2007-01-01

    The woody Amazonian vine Uncaria tomentosa (cat's claw) has been recently more and more popular all over the world as an immunomodulatory, antiinflammatory and anti-cancer remedy. This study investigates anti-proliferative potency of several cat's claw preparations with different quantitative and qualitative alkaloid contents on HL-60 acute promyelocytic human cells by applying trypan blue exclusion and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay (MTT). By standardization and statistical comparison of the obtained results pteropodine and isomitraphylline are indicated to be most suitable for standardization of medical cat's claw preparations.

  1. Nilotinib and Imatinib Mesylate After Donor Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2014-12-09

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Phase Chronic Myelogenous Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Relapsing Chronic Myelogenous Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  2. Acute Myeloid Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, however, the bone marrow produces abnormal white blood ...

  3. Oxidative stress-mediated intrinsic apoptosis in human promyelocytic leukemia HL-60 cells induced by organic arsenicals

    PubMed Central

    Fan, Xiao-Yang; Chen, Xin-You; Liu, Yu-Jiao; Zhong, Hui-Min; Jiang, Feng-Lei; Liu, Yi

    2016-01-01

    Arsenic trioxide has shown the excellent therapeutic efficiency for acute promyelocytic leukemia. Nowadays, more and more research focuses on the design of the arsenic drugs, especially organic arsenicals, and on the mechanism of the inducing cell death. Here we have synthesized some organic arsenicals with Schiff base structure, which showed a better antitumor activity for three different kinds of cancer cell lines, namely HL-60, SGC 7901 and MCF-7. Compound 2a (2-(((4-(oxoarsanyl)phenyl)imino)methyl)phenol) and 2b (2-methoxy-4-(((4-(oxoarsanyl)phenyl)imino)methyl)phenol) were chosen for further mechanism study due to their best inhibitory activities for HL-60 cells, of which the half inhibitory concentration (IC50) were 0.77 μM and 0.51 μM, respectively. It was illustrated that 2a or 2b primarily induced the elevation of reactive oxygen species, decrease of glutathione level, collapse of mitochondrial membrane potential, release of cytochrome c, activation of Caspase-3 and apoptosis, whereas all of the phenomena can be eliminated by the addition of antioxidants. Therefore, we concluded that compound 2a and 2b can induce the oxidative stress-mediated intrinsic apoptosis in HL-60 cells. Both the simplicity of structure with Schiff base group and the better anticancer efficiency demonstrate that organic arsenicals are worthy of further exploration as a class of potent antitumor drugs. PMID:27432798

  4. A Corticosteroid-Responsive Transcription Factor, Promyelocytic Leukemia Zinc Finger Protein, Mediates Protection of the Cochlea from Acoustic Trauma

    PubMed Central

    Peppi, Marcello; Kujawa, Sharon G.; Sewell, William F.

    2012-01-01

    Animals can be induced to resist cochlear damage associated with acoustic trauma by exposure to a variety of “conditioning” stimuli, including restraint stress, moderate level sound, heat stress, hypoxia, and corticosteroids. Here we identify in mice a corticosteroid-responsive transcription factor, PLZF (promyelocytic leukemia zinc finger protein), which mediates conditioned protection of the cochlea from acoustic trauma. PLZF mRNA levels in the cochlea are increased following conditioning stimuli, including restraint stress, dexamethasone administration, and moderate-to-high level acoustic stimulation. Heterozygous mutant (luxoid.Zbtb16LU/J) mice deficient in PLZF have hearing and responses to acoustic trauma similar to their wild type littermates but are unable to generate conditioning-induced protection from acoustic trauma. PLZF immunoreactivity is present in the spiral ganglion, lateral wall of the cochlea, and organ of Corti, all targets for acoustic trauma. PLZF is also present in the brain and PLZF mRNA in brain is elevated following conditioning stimuli. The identification of a transcription factor that mediates conditioned protection from trauma provides a tool for understanding the protective action of corticosteroids, which are widely used in treating acute hearing loss, and has relevance to understanding the role of corticosteroids in trauma protection. PMID:21228182

  5. Decitabine and Bortezomib in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-11-06

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  6. Decitabine in Treating Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-18

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  7. Lenalidomide in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-07-25

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  8. The induction of monocytopoiesis in HL-60 promyelocytic leukemia cells is inhibited by hydroquinone, a toxic metabolite of benzene

    SciTech Connect

    Oliveira, N.L.

    1992-01-01

    Chronic exposure of humans to benzene has been shown to have a cytotoxic effect on hematopoietic progenitor cells in intermediate stages of differentiation which can lead to aplastic anemia and acute myelogenous leukemia. This thesis examined the effect of hydroquinone, a toxic metabolite of benzene found in the bone marrow, on the human promyelocytic leukemia cell line (HL-60) which can be induced to differentiate to both monocyte and myeloid cells, and thus has been used as a surrogate for a granulocyte/macrophage progenitor cell. Exposure of HL-60 cells to noncytotoxic concentrations of hydroquinone for three hours prior to induction with 12-O-tetradecanoyl phorbol-13-acetate caused a dose-dependent inhibition of the acquisition of characteristics of monocytic differentiation. These included adherence, nonspecific esterase activity and phagocytosis. Hydroquinone had no effect on cell proliferation. Hydroquinone appeared to be affecting maturation beyond the monoblast/promonocyte stages. Hydroquinone also prevented differentiation induced by 1, 25-dihydroxy vitamin D[sub 3], however, the block occurred after the acquisition of adherence. Hydroquinone at concentrations that inhibited monocytic differentiation had no effect on differentiation to granulocytes, suggesting that the block in the differentiation of these bipotential cells is at a step unique to the monocytic pathway. Hydroquinone was unable to prevent differentiation induced by the macrophage-derived cytokine interleukin-1, a differentiation factor for cells of the monocytic lineage. These data demonstrate that treatment of Hl-60 cells with hydroquinone prior to induction of differentiation prevents the acquisition of the monocytic phenotype induced by TPA or 1, 25(OH)[sub 2]D[sub 3] by a mechanism which at present is unknown, but which appears to be specific for the monocytic pathway. These results are of considerable significance for benzene hematotoxicity.

  9. Flavopiridol and Vorinostat in Treating Patients With Relapsed or Refractory Acute Leukemia or Chronic Myelogenous Leukemia or Refractory Anemia

    ClinicalTrials.gov

    2013-04-01

    Blastic Phase Chronic Myelogenous Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Relapsing Chronic Myelogenous Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  10. General Information about Adult Acute Lymphoblastic Leukemia

    MedlinePlus

    ... Acute Lymphoblastic Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Lymphoblastic Leukemia Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  11. General Information about Adult Acute Myeloid Leukemia

    MedlinePlus

    ... Acute Myeloid Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Myeloid Leukemia Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  12. General Information about Childhood Acute Lymphoblastic Leukemia

    MedlinePlus

    ... Acute Lymphoblastic Leukemia Treatment (PDQ®)–Patient Version General Information About Childhood Acute Lymphoblastic Leukemia Go to Health ... the PDQ Pediatric Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  13. Targeted Therapy for Acute Lymphocytic Leukemia

    MedlinePlus

    ... Monoclonal antibodies to treat acute lymphocytic leukemia Targeted therapy for acute lymphocytic leukemia In recent years, new ... These drugs are often referred to as targeted therapy. Some of these drugs can be useful in ...

  14. Treatment Options for Adult Acute Myeloid Leukemia

    MedlinePlus

    ... Treatment Childhood AML Treatment Research Adult Acute Myeloid Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Myeloid Leukemia Go to Health Professional Version Key Points Adult ...

  15. Stages of Adult Acute Myeloid Leukemia

    MedlinePlus

    ... Treatment Childhood AML Treatment Research Adult Acute Myeloid Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Myeloid Leukemia Go to Health Professional Version Key Points Adult ...

  16. Treatment Option Overview (Adult Acute Myeloid Leukemia)

    MedlinePlus

    ... Treatment Childhood AML Treatment Research Adult Acute Myeloid Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Myeloid Leukemia Go to Health Professional Version Key Points Adult ...

  17. How Is Acute Lymphocytic Leukemia Classified?

    MedlinePlus

    ... How is acute lymphocytic leukemia treated? How is acute lymphocytic leukemia classified? Most types of cancers are assigned numbered ... ALL are now named as follows: B-cell ALL Early pre-B ALL (also called pro-B ...

  18. Progress in acute myeloid leukemia.

    PubMed

    Kadia, Tapan M; Ravandi, Farhad; O'Brien, Susan; Cortes, Jorge; Kantarjian, Hagop M

    2015-03-01

    Significant progress has been made in the treatment of acute myeloid leukemia (AML). Steady gains in clinical research and a renaissance of genomics in leukemia have led to improved outcomes. The recognition of tremendous heterogeneity in AML has allowed individualized treatments of specific disease entities within the context of patient age, cytogenetics, and mutational analysis. The following is a comprehensive review of the current state of AML therapy and a roadmap of our approach to these distinct disease entities. PMID:25441110

  19. Molecular remission in PML/RAR alpha-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy. Gruppo Italiano-Malattie Ematologiche Maligne dell'Adulto and Associazione Italiana di Ematologia ed Oncologia Pediatrica Cooperative Groups.

    PubMed

    Mandelli, F; Diverio, D; Avvisati, G; Luciano, A; Barbui, T; Bernasconi, C; Broccia, G; Cerri, R; Falda, M; Fioritoni, G; Leoni, F; Liso, V; Petti, M C; Rodeghiero, F; Saglio, G; Vegna, M L; Visani, G; Jehn, U; Willemze, R; Muus, P; Pelicci, P G; Biondi, A; Lo Coco, F

    1997-08-01

    Two hundred fifty-three patients with newly diagnosed acute promyelocytic leukemia (APL) were eligible to enter the multicentric GIMEMA-AIEOP "AIDA" trial during the period July 1993 to February 1996. As a mandatory prerequisite for eligibility, all patients had genetic evidence of the specific t(15;17) lesion in their leukemic cells confirmed by karyotyping or by reverse transcription-polymerase chain reaction (RT-PCR) of the PML/RAR alpha fusion gene (the latter available in 247 cases). Median age was 37.8 years (range, 2.2 to 73.9). Induction treatment consisted of oral all-trans retinoic acid (ATRA), 45 mg/m2/d until complete remission (CR), given with intravenous Idarubicin, 12 mg/m2/d on days 2, 4, 6, and 8. Three polychemotherapy cycles were given as consolidation. Hematologic and molecular response by RT-PCR was assessed after induction and after consolidation. At the time of analysis, 240 of the 253 eligible patients were evaluable for induction. Of these, 11 (5%) died of early complications and 229 (95%) achieved hematologic remission. No cases of resistant leukemia were observed. Of 139 cases studied by RT-PCR after induction, 84 (60.5%) were PCR-negative and 55 (39.5%) PCR-positive. One hundred sixty-two patients were evaluable by RT-PCR at the end of consolidation. Of these, 159 (98%) tested PCR-negative and 3 (2%), PCR-positive. After a median follow up of 12 months (range, 0 to 33), the estimated actuarial event-free survival for the whole series of 253 eligible patients was 83% +/- 2.6% and 79% +/- 3.2% at 1 and 2 years, respectively. This study indicates that the AIDA protocol is a well-tolerated regimen that induces molecular remission in almost all patients with PML/RAR alpha-positive APL. Preliminary survival data suggest that a remarkable cure rate can be obtained with this treatment.

  20. Risk-Based Classification System of Patients With Newly Diagnosed Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-10-24

    Adult B Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  1. Tipifarnib in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-03-19

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  2. Tanespimycin and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, Chronic Myelomonocytic Leukemia, or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-09-27

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  3. Acute myeloid leukemia

    MedlinePlus

    ... a low number of platelets. A white blood cell count ( WBC ) can be high, low, or normal. Bone ... and overall health How high your white blood cell count was Certain genetic changes in the leukemia cells ...

  4. Acute lymphoblastic leukemia (ALL)

    MedlinePlus

    ... be found for ALL. The following factors may play a role in the development of all types of leukemia: Certain chromosome problems Exposure to radiation, including x-rays before birth Past treatment with chemotherapy drugs ...

  5. An antiviral disulfide compound blocks interaction between arenavirus Z protein and cellular promyelocytic leukemia protein

    SciTech Connect

    Garcia, C.C.; Topisirovic, I.; Djavani, M.; Borden, K.L.B.; Damonte, E.B.; Salvato, M.S.

    2010-03-19

    The promyelocytic leukemia protein (PML) forms nuclear bodies (NB) that can be redistributed by virus infection. In particular, lymphocytic choriomeningitis virus (LCMV) influences disruption of PML NB through the interaction of PML with the arenaviral Z protein. In a previous report, we have shown that the disulfide compound NSC20625 has antiviral and virucidal properties against arenaviruses, inducing unfolding and oligomerization of Z without affecting cellular RING-containing proteins such as the PML. Here, we further studied the effect of the zinc-finger-reactive disulfide NSC20625 on PML-Z interaction. In HepG2 cells infected with LCMV or transiently transfected with Z protein constructs, treatment with NSC20625 restored PML distribution from a diffuse-cytoplasmic pattern to punctate, discrete NB which appeared identical to NB found in control, uninfected cells. Similar results were obtained in cells transfected with a construct expressing a Z mutant in zinc-binding site 2 of the RING domain, confirming that this Z-PML interaction requires the integrity of only one zinc-binding site. Altogether, these results show that the compound NSC20625 suppressed Z-mediated PML NB disruption and may be used as a tool for designing novel antiviral strategies against arenavirus infection.

  6. Nucleus accumbens associated 1 is recruited within the promyelocytic leukemia nuclear body through SUMO modification

    PubMed Central

    Tatemichi, Yoshinori; Shibazaki, Masahiko; Yasuhira, Shinji; Kasai, Shuya; Tada, Hiroshi; Oikawa, Hiroki; Suzuki, Yuji; Takikawa, Yasuhiro; Masuda, Tomoyuki; Maesawa, Chihaya

    2015-01-01

    Nucleus accumbens associated 1 (NACC1) is a cancer-associated BTB/POZ (pox virus and zinc finger/bric-a-brac tramtrack broad complex) gene, and is involved in several cellular functions in neurons, cancer and stem cells. Some of the BTB/POZ proteins associated with cancer biology are SUMOylated, which appears to play an important role in transcription regulation. We show that NACC1 is SUMOylated on a phylogenetically conserved lysine (K167) out of three consensus SUMOylation motif sites. Amino acid substitution in the SIM sequence (SIM/M) within the BTB/POZ domain partially reduced K167 SUMOylation activity of NACC1. Overexpression of GFP-NACC1 fusion protein leads to formation of discrete nuclear foci similar to promyelocytic leukemia nuclear bodies (PML-NB), which colocalized with SUMO paralogues (SUMO1/2/3). Both NACC1 nuclear body formation and colocalization with SUMO paralogues were completely suppressed in the GFP-NACC1-SIM/M mutant, whereas they were partially maintained in the NACC1 K167R mutant. Confocal immunofluorescence analysis showed that endogenous and exogenous NACC1 proteins colocalized with endogenous PML protein. A pull-down assay revealed that the consensus motifs of the SUMO acceptor site at K167 and the SIM within the BTB/POZ domain were both necessary for efficient binding to PML protein. Our study demonstrates that NACC1 can be modified by SUMO paralogues, and cooperates with PML protein. PMID:25891951

  7. Cardiac Glycosides Activate the Tumor Suppressor and Viral Restriction Factor Promyelocytic Leukemia Protein (PML)

    PubMed Central

    Milutinovic, Snezana; Heynen-Genel, Susanne; Chao, Elizabeth; Dewing, Antimone; Solano, Ricardo; Milan, Loribelle; Barron, Nikki; He, Min; Diaz, Paul W.; Matsuzawa, Shu-ichi; Reed, John C.; Hassig, Christian A.

    2016-01-01

    Cardiac glycosides (CGs), inhibitors of Na+/K+-ATPase (NKA), used clinically to treat heart failure, have garnered recent attention as potential anti-cancer and anti-viral agents. A high-throughput phenotypic screen designed to identify modulators of promyelocytic leukemia protein (PML) nuclear body (NB) formation revealed the CG gitoxigenin as a potent activator of PML. We demonstrate that multiple structurally distinct CGs activate the formation of PML NBs and induce PML protein SUMOylation in an NKA-dependent fashion. CG effects on PML occur at the post-transcriptional level, mechanistically distinct from previously described PML activators and are mediated through signaling events downstream of NKA. Curiously, genomic deletion of PML in human cancer cells failed to abrogate the cytotoxic effects of CGs and other apoptotic stimuli such as ceramide and arsenic trioxide that were previously shown to function through PML in mice. These findings suggest that alternative pathways can compensate for PML loss to mediate apoptosis in response to CGs and other apoptotic stimuli. PMID:27031987

  8. Serum-dependent expression of promyelocytic leukemia protein suppresses propagation of influenza virus

    SciTech Connect

    Iki, Shigeo; Yokota, Shin-ichi; Okabayashi, Tamaki; Yokosawa, Noriko; Nagata, Kyosuke; Fujii, Nobuhiro . E-mail: fujii@sapmed.ac.jp

    2005-12-05

    The rate of propagation of influenza virus in human adenocarcinoma Caco-2 cells was found to negatively correlate with the concentration of fetal bovine serum (FBS) in the culture medium. Virus replicated more rapidly at lower FBS concentrations (0 or 2%) than at higher concentrations (10 or 20%) during an early stage of infection. Basal and interferon (IFN)-induced levels of typical IFN-inducible anti-viral proteins, such as 2',5'-oligoadenylate synthetase, dsRNA-activated protein kinase and MxA, were unaffected by variation in FBS concentrations. But promyelocytic leukemia protein (PML) was expressed in a serum-dependent manner. In particular, the 65 to 70 kDa isoform of PML was markedly upregulated following the addition of serum. In contrast, other isoforms were induced by IFN treatment, and weakly induced by FBS concentrations. Immunofluorescence microscopy indicated that PML was mainly formed nuclear bodies in Caco-2 cells at various FBS concentrations, and the levels of the PML-nuclear bodies were upregulated by FBS. Overexpression of PML isoform consisting of 560 or 633 amino acid residues by transfection of expression plasmid results in significantly delayed viral replication rate in Caco-2 cells. On the other hand, downregulation of PML expression by RNAi enhanced viral replication. These results indicate that PML isoforms which are expressed in a serum-dependent manner suppress the propagation of influenza virus at an early stage of infection.

  9. Promyelocytic leukemia protein enhances apoptosis of gastric cancer cells through Yes-associated protein.

    PubMed

    Xu, Zhipeng; Chen, Jiamin; Shao, Liming; Ma, Wangqian; Xu, Dingting

    2015-09-01

    It has been shown that Yes-associated protein (YAP) acts as a transcriptional co-activator to regulate p73-dependent apoptosis in response to DNA damage in some cell types, and promyelocytic leukemia (PML) protein is involved in the regulation loop through stabilization of YAP through sumoylation. Although YAP has been shown to be significantly upregulated in gastric cancer, whether the YAP/PML/p73 regulation loop also functions in gastric cancer is unknown. Here, we show significantly higher levels of YAP and significantly lower levels of PML in the gastric cancer specimen. Overexpression of YAP in gastric cancer cells significantly increased cell growth, but did not affect apoptosis. However, overexpression of PML in gastric cancer cells significantly increased cell apoptosis, resulting in decreases in cell growth, which seemed to require the presence of YAP. The effect of PML on apoptosis appeared to be conducted through p73-mediated modulation of apoptosis-associated genes, Bcl-2, Bak, and caspase9. Thus, our study suggests the presence of a YAP/PML/p73 regulatory loop in gastric cancer, and highlights PML as a promising tumor suppressor in gastric cancer through YAP-coordinated cancer cell apoptosis.

  10. Cardiac Glycosides Activate the Tumor Suppressor and Viral Restriction Factor Promyelocytic Leukemia Protein (PML).

    PubMed

    Milutinovic, Snezana; Heynen-Genel, Susanne; Chao, Elizabeth; Dewing, Antimone; Solano, Ricardo; Milan, Loribelle; Barron, Nikki; He, Min; Diaz, Paul W; Matsuzawa, Shu-ichi; Reed, John C; Hassig, Christian A

    2016-01-01

    Cardiac glycosides (CGs), inhibitors of Na+/K+-ATPase (NKA), used clinically to treat heart failure, have garnered recent attention as potential anti-cancer and anti-viral agents. A high-throughput phenotypic screen designed to identify modulators of promyelocytic leukemia protein (PML) nuclear body (NB) formation revealed the CG gitoxigenin as a potent activator of PML. We demonstrate that multiple structurally distinct CGs activate the formation of PML NBs and induce PML protein SUMOylation in an NKA-dependent fashion. CG effects on PML occur at the post-transcriptional level, mechanistically distinct from previously described PML activators and are mediated through signaling events downstream of NKA. Curiously, genomic deletion of PML in human cancer cells failed to abrogate the cytotoxic effects of CGs and other apoptotic stimuli such as ceramide and arsenic trioxide that were previously shown to function through PML in mice. These findings suggest that alternative pathways can compensate for PML loss to mediate apoptosis in response to CGs and other apoptotic stimuli. PMID:27031987

  11. Live Cell Dynamics of Promyelocytic Leukemia Nuclear Bodies upon Entry into and Exit from Mitosis

    PubMed Central

    Chen, Yi-Chun M.; Kappel, Constantin; Beaudouin, Joel; Eils, Roland

    2008-01-01

    Promyelocytic leukemia nuclear bodies (PML NBs) have been proposed to be involved in tumor suppression, viral defense, DNA repair, and/or transcriptional regulation. To study the dynamics of PML NBs during mitosis, we developed several U2OS cell lines stably coexpressing PML-enhanced cyan fluorescent protein with other individual marker proteins. Using three-dimensional time-lapse live cell imaging and four-dimensional particle tracking, we quantitatively demonstrated that PML NBs exhibit a high percentage of directed movement when cells progressed from prophase to prometaphase. The timing of this increased dynamic movement occurred just before or upon nuclear entry of cyclin B1, but before nuclear envelope breakdown. Our data suggest that entry into prophase leads to a loss of tethering between regions of chromatin and PML NBs, resulting in their increased dynamics. On exit from mitosis, Sp100 and Fas death domain-associated protein (Daxx) entered the daughter nuclei after a functional nuclear membrane was reformed. However, the recruitment of these proteins to PML NBs was delayed and correlated with the timing of de novo PML NB formation. Together, these results provide insight into the dynamic changes associated with PML NBs during mitosis. PMID:18480407

  12. High Throughput Drug Sensitivity Assay and Genomics- Guided Treatment of Patients With Relapsed or Refractory Acute Leukemia

    ClinicalTrials.gov

    2016-05-19

    Acute Leukemia of Ambiguous Lineage; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Refractory Childhood Acute Lymphoblastic Leukemia

  13. Biomarkers in Bone Marrow Samples From Pediatric Patients With High-Risk Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-17

    Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Recurrent Childhood Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  14. Acute myeloid leukemia in children: Current status and future directions.

    PubMed

    Taga, Takashi; Tomizawa, Daisuke; Takahashi, Hiroyuki; Adachi, Souichi

    2016-02-01

    Acute myeloid leukemia (AML) accounts for 25% of pediatric leukemia and affects approximately 180 patients annually in Japan. The treatment outcome for pediatric AML has improved through advances in chemotherapy, hematopoietic stem cell transplantation (HSCT), supportive care, and optimal risk stratification. Currently, clinical pediatric AML studies are conducted separately according to the AML subtypes: de novo AML, acute promyelocytic leukemia (APL), and myeloid leukemia with Down syndrome (ML-DS). Children with de novo AML are treated mainly with anthracyclines and cytarabine, in some cases with HSCT, and the overall survival (OS) rate now approaches 70%. Children with APL are treated with an all-trans retinoic acid (ATRA)-combined regimen with an 80-90% OS. Children with ML-DS are treated with a less intensive regimen compared with non-DS patients, and the OS is approximately 80%. HSCT in first remission is restricted to children with high-risk de novo AML only. To further improve outcomes, it will be necessary to combine more accurate risk stratification strategies using molecular genetic analysis with assessment of minimum residual disease, and the introduction of new drugs in international collaborative clinical trials. PMID:26645706

  15. Rebeccamycin Analog in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Myelodysplastic Syndrome, Acute Lymphoblastic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  16. Bortezomib and Combination Chemotherapy in Treating Younger Patients With Recurrent, Refractory, or Secondary Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-05-13

    Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myelomonocytic Leukemia (M4); Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  17. The Promyelocytic Leukemia Zinc Finger Transcription Factor Is Critical for Human Endometrial Stromal Cell Decidualization.

    PubMed

    Kommagani, Ramakrishna; Szwarc, Maria M; Vasquez, Yasmin M; Peavey, Mary C; Mazur, Erik C; Gibbons, William E; Lanz, Rainer B; DeMayo, Francesco J; Lydon, John P

    2016-04-01

    Progesterone, via the progesterone receptor (PGR), is essential for endometrial stromal cell decidualization, a cellular transformation event in which stromal fibroblasts differentiate into decidual cells. Uterine decidualization supports embryo implantation and placentation as well as subsequent events, which together ensure a successful pregnancy. Accordingly, impaired decidualization results not only in implantation failure or early fetal miscarriage, but also may lead to potential adverse outcomes in all three pregnancy trimesters. Transcriptional reprogramming on a genome-wide scale underlies progesterone dependent decidualization of the human endometrial stromal cell (hESC). However, identification of the functionally essential signals encoded by these global transcriptional changes remains incomplete. Importantly, this knowledge-gap undercuts future efforts to improve diagnosis and treatment of implantation failure based on a dysfunctional endometrium. By integrating genome-wide datasets derived from decidualization of hESCs in culture, we reveal that the promyelocytic leukemia zinc finger (PLZF) transcription factor is rapidly induced by progesterone and that this induction is indispensable for progesterone-dependent decidualization. Chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) identified at least ten progesterone response elements within the PLZF gene, indicating that PLZF may act as a direct target of PGR signaling. The spatiotemporal expression profile for PLZF in both the human and mouse endometrium offers further support for stromal PLZF as a mediator of the progesterone decidual signal. To identify functional targets of PLZF, integration of PLZF ChIP-Seq and RNA Pol II RNA-Seq datasets revealed that the early growth response 1 (EGR1) transcription factor is a PLZF target for which its level of expression must be reduced to enable progesterone dependent hESC decidualization. Apart from furnishing essential insights

  18. The Promyelocytic Leukemia Zinc Finger Transcription Factor Is Critical for Human Endometrial Stromal Cell Decidualization

    PubMed Central

    Kommagani, Ramakrishna; Szwarc, Maria M.; Vasquez, Yasmin M.; Peavey, Mary C.; Mazur, Erik C.; Gibbons, William E.; Lanz, Rainer B.; DeMayo, Francesco J.; Lydon, John P.

    2016-01-01

    Progesterone, via the progesterone receptor (PGR), is essential for endometrial stromal cell decidualization, a cellular transformation event in which stromal fibroblasts differentiate into decidual cells. Uterine decidualization supports embryo implantation and placentation as well as subsequent events, which together ensure a successful pregnancy. Accordingly, impaired decidualization results not only in implantation failure or early fetal miscarriage, but also may lead to potential adverse outcomes in all three pregnancy trimesters. Transcriptional reprogramming on a genome-wide scale underlies progesterone dependent decidualization of the human endometrial stromal cell (hESC). However, identification of the functionally essential signals encoded by these global transcriptional changes remains incomplete. Importantly, this knowledge-gap undercuts future efforts to improve diagnosis and treatment of implantation failure based on a dysfunctional endometrium. By integrating genome-wide datasets derived from decidualization of hESCs in culture, we reveal that the promyelocytic leukemia zinc finger (PLZF) transcription factor is rapidly induced by progesterone and that this induction is indispensable for progesterone-dependent decidualization. Chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) identified at least ten progesterone response elements within the PLZF gene, indicating that PLZF may act as a direct target of PGR signaling. The spatiotemporal expression profile for PLZF in both the human and mouse endometrium offers further support for stromal PLZF as a mediator of the progesterone decidual signal. To identify functional targets of PLZF, integration of PLZF ChIP-Seq and RNA Pol II RNA-Seq datasets revealed that the early growth response 1 (EGR1) transcription factor is a PLZF target for which its level of expression must be reduced to enable progesterone dependent hESC decidualization. Apart from furnishing essential insights

  19. Decitabine With or Without Bortezomib in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-03-14

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  20. Treosulfan, Fludarabine Phosphate, and Total-Body Irradiation Before Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Myeloid Leukemia, Myelodysplastic Syndrome, Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-10-29

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  1. Genomic characterization of acute leukemias.

    PubMed

    Chiaretti, Sabina; Gianfelici, Valentina; Ceglie, Giulia; Foà, Robin

    2014-01-01

    Over the past two decades, hematologic malignancies have been extensively evaluated due to the introduction of powerful technologies, such as conventional karyotyping, FISH analysis, gene and microRNA expression profiling, array comparative genomic hybridization and SNP arrays, and next-generation sequencing (including whole-exome sequencing and RNA-seq). These analyses have allowed for the refinement of the mechanisms underlying the leukemic transformation in several oncohematologic disorders and, more importantly, they have permitted the definition of novel prognostic algorithms aimed at stratifying patients at the onset of disease and, consequently, treating them in the most appropriate manner. Furthermore, the identification of specific molecular markers is opening the door to targeted and personalized medicine. The most important findings on novel acquisitions in the context of acute lymphoblastic leukemia of both B and T lineage and de novo acute myeloid leukemia are described in this review.

  2. Tipifarnib in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-03-22

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Cellular Diagnosis, Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  3. Entinostat and Clofarabine in Treating Patients With Newly Diagnosed, Relapsed, or Refractory Poor-Risk Acute Lymphoblastic Leukemia or Bilineage/Biphenotypic Leukemia

    ClinicalTrials.gov

    2014-07-16

    Acute Leukemias of Ambiguous Lineage; Philadelphia Chromosome Negative Adult Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  4. Combination Chemotherapy With or Without Donor Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-09-09

    Adult Acute Lymphoblastic Leukemia in Remission; Adult B Acute Lymphoblastic Leukemia; Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Adult L1 Acute Lymphoblastic Leukemia; Adult L2 Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  5. Genetics Home Reference: core binding factor acute myeloid leukemia

    MedlinePlus

    ... acute myeloid leukemia core binding factor acute myeloid leukemia Enable Javascript to view the expand/collapse boxes. ... Close All Description Core binding factor acute myeloid leukemia (CBF-AML) is one form of a cancer ...

  6. MS-275 and Azacitidine in Treating Patients With Myelodysplastic Syndromes, Chronic Myelomonocytic Leukemia, or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-20

    Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndrome; Leukemia; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  7. Collaborative Efforts Driving Progress in Pediatric Acute Myeloid Leukemia

    PubMed Central

    Zwaan, C. Michel; Kolb, Edward A.; Reinhardt, Dirk; Abrahamsson, Jonas; Adachi, Souichi; Aplenc, Richard; De Bont, Eveline S.J.M.; De Moerloose, Barbara; Dworzak, Michael; Gibson, Brenda E.S.; Hasle, Henrik; Leverger, Guy; Locatelli, Franco; Ragu, Christine; Ribeiro, Raul C.; Rizzari, Carmelo; Rubnitz, Jeffrey E.; Smith, Owen P.; Sung, Lillian; Tomizawa, Daisuke; van den Heuvel-Eibrink, Marry M.; Creutzig, Ursula; Kaspers, Gertjan J.L.

    2015-01-01

    Diagnosis, treatment, response monitoring, and outcome of pediatric acute myeloid leukemia (AML) have made enormous progress during the past decades. Because AML is a rare type of childhood cancer, with an incidence of approximately seven occurrences per 1 million children annually, national and international collaborative efforts have evolved. This overview describes these efforts and includes a summary of the history and contributions of each of the main collaborative pediatric AML groups worldwide. The focus is on translational and clinical research, which includes past, current, and future clinical trials. Separate sections concern acute promyelocytic leukemia, myeloid leukemia of Down syndrome, and relapsed AML. A plethora of novel antileukemic agents that have emerged, including new classes of drugs, are summarized as well. Finally, an important aspect of the treatment of pediatric AML—supportive care—and late effects are discussed. The future is bright, with a wide range of emerging innovative therapies and with more and more international collaboration that ultimately aim to cure all children with AML, with fewer adverse effects and without late effects. PMID:26304895

  8. Collaborative Efforts Driving Progress in Pediatric Acute Myeloid Leukemia.

    PubMed

    Zwaan, C Michel; Kolb, Edward A; Reinhardt, Dirk; Abrahamsson, Jonas; Adachi, Souichi; Aplenc, Richard; De Bont, Eveline S J M; De Moerloose, Barbara; Dworzak, Michael; Gibson, Brenda E S; Hasle, Henrik; Leverger, Guy; Locatelli, Franco; Ragu, Christine; Ribeiro, Raul C; Rizzari, Carmelo; Rubnitz, Jeffrey E; Smith, Owen P; Sung, Lillian; Tomizawa, Daisuke; van den Heuvel-Eibrink, Marry M; Creutzig, Ursula; Kaspers, Gertjan J L

    2015-09-20

    Diagnosis, treatment, response monitoring, and outcome of pediatric acute myeloid leukemia (AML) have made enormous progress during the past decades. Because AML is a rare type of childhood cancer, with an incidence of approximately seven occurrences per 1 million children annually, national and international collaborative efforts have evolved. This overview describes these efforts and includes a summary of the history and contributions of each of the main collaborative pediatric AML groups worldwide. The focus is on translational and clinical research, which includes past, current, and future clinical trials. Separate sections concern acute promyelocytic leukemia, myeloid leukemia of Down syndrome, and relapsed AML. A plethora of novel antileukemic agents that have emerged, including new classes of drugs, are summarized as well. Finally, an important aspect of the treatment of pediatric AML--supportive care--and late effects are discussed. The future is bright, with a wide range of emerging innovative therapies and with more and more international collaboration that ultimately aim to cure all children with AML, with fewer adverse effects and without late effects.

  9. Alemtuzumab and Combination Chemotherapy in Treating Patients With Untreated Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2014-03-20

    Acute Undifferentiated Leukemia; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; L1 Adult Acute Lymphoblastic Leukemia; L1 Childhood Acute Lymphoblastic Leukemia; L2 Adult Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; Philadelphia Chromosome Negative Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  10. Vosaroxin and Infusional Cytarabine in Treating Patients With Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-03-10

    Acute Myeloid Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia With Multilineage Dysplasia; Myeloid Sarcoma; Secondary Acute Myeloid Leukemia; Therapy-Related Acute Myeloid Leukemia; Therapy-Related Myelodysplastic Syndrome

  11. Combination Chemotherapy and Imatinib Mesylate in Treating Children With Relapsed Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-10-07

    L1 Childhood Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; Non-T, Non-B Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  12. Studying Biomarkers in Samples From Younger Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-17

    Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia/Other Myeloid Malignancies; Childhood Acute Myelomonocytic Leukemia (M4)

  13. Nivolumab and Dasatinib in Treating Patients With Relapsed or Refractory Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-08-25

    B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Refractory Childhood Acute Lymphoblastic Leukemia

  14. CCI-779 in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Myelodysplastic Syndromes, or Chronic Myelogenous Leukemia in Blastic Phase

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes

  15. Azacitidine, Mitoxantrone Hydrochloride, and Etoposide in Treating Older Patients With Poor-Prognosis Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-08-18

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  16. Effect of therapy-related acute myeloid leukemia on the outcome of patients with acute myeloid leukemia

    PubMed Central

    ESPíRITO SANTO, ANA ESPÍRITO; CHACIM, SÉRGIO; FERREIRA, ISABEL; LEITE, LUÍS; MOREIRA, CLAUDIA; PEREIRA, DULCINEIA; DANTAS BRITO, MARGARIDA DANTAS; NUNES, MARTA; DOMINGUES, NELSON; OLIVEIRA, ISABEL; MOREIRA, ILÍDIA; MARTINS, ANGELO; VITERBO, LUÍSA; MARIZ, JOSÉ MÁRIO; MEDEIROS, RUI

    2016-01-01

    Therapy-related acute myeloid leukemia (t-AML) is a rare and almost always fatal late side effect of antineoplastic treatment involving chemotherapy, radiotherapy or the two combined. The present retrospective study intended to characterize t-AML patients that were diagnosed and treated in a single referral to an oncological institution in North Portugal. Over the past 10 years, 231 cases of AML were diagnosed and treated at the Portuguese Institute of Oncology of Porto, of which 38 t-AML cases were identified. Data regarding the patient demographics, primary diagnosis and treatment, age at onset of therapy-related myeloid neoplasm, latency time of the neoplasm, cytogenetic characteristics, AML therapy and outcome were collected from medical records. A previous diagnosis with solid tumors was present in 28 patients, and 10 patients possessed a history of hematological conditions, all a lymphoproliferative disorder. Breast cancer was the most frequent solid tumor identified (39.5% of all solid tumors diagnosed). The mean latency time was 3 years. In the present study, t-AML patients were older (P<0.001) and more frequently carried cytogenetic abnormalities (P=0.009) compared with de novo AML patients. The overall survival time was observed to be significantly poorer among individuals with t-AML (P<0.001). However, in younger patients (age, <50 years) there was no difference between the overall survival time of patients with t-AML and those with de novo AML (P=0.983). Additionally, patients with promyelocytic leukemia possess a good prognosis, even when AML occurs as a secondary event (P=0.98). To the best of our knowledge, the present study is the first to evaluate t-AML in Portugal and the results are consistent with the data published previously in other populations. The present study concludes that although t-AML demonstrates a poor prognosis, this is not observed among younger patients or promyelocytic leukemia patients. PMID:27347135

  17. Management of acute promyelocytic leukemia in the elderly.

    PubMed

    Lo-Coco, Francesco; Latagliata, Roberto; Breccia, Massimo

    2013-01-01

    Unlike other forms of AML, APL is less frequently diagnosed in the elderly and has a relatively favourable outcome. Elderly patients with APL seem at least as responsive to therapy as do younger patients, but rates of response and survival are lower in this age setting owing to a higher incidence of early deaths and deaths in remission when conventional treatment with ATRA and chemotherapy is used. Elderly APL patients are more likely to present with low-risk features compared with younger patients, and this may explain the relative low risk of relapse reported in several clinical studies. Alternative approaches, such as arsenic trioxide and gentuzumab ozogamicin have been tested with success in this setting and could replace in the near future frontline conventional chemotherapy and ATRA.

  18. Late differentiation syndrome in acute promyelocytic leukemia: a challenging diagnosis.

    PubMed

    Cabral, Renata; Caballero, Juan Carlos; Alonso, Sara; Dávila, Julio; Cabrero, Monica; Caballero, Dolores; Vázquez, Lourdes; Sánchez-Guijo, Fermin; López, Lucia; Cañizo, Maria C; Mateos, Maria V; González, Marcos

    2014-11-19

    Detailed knowledge about differentiation syndrome (DS) has remained limited. There are 2 large studies conducted by the Spanish workgroup PETHEMA (Programa Español de Tratamientos en Hematología; Spanish Program on Hematology Treatments) and the European group trial (LPA 96-99 and APL 93) in which the incidence, characteristics, prognostic factors and outcome of patients developing DS are evaluated. Both have described the median time of DS development between 10 and 12 days. The severity of the DS has been evaluated in the study conducted by PETHEMA, and severe DS usually occurs at the beginning of the treatment (median of 6 days), as compared with moderate DS (median of 15 days). We report here in two cases of late severe DS, with late diagnosis due to both time and form of presentation. We discuss the physiopathology, clinical presentation, prophylaxis and treatment of DS.

  19. The acute promyelocytic leukaemia success story: curing leukaemia through targeted therapies.

    PubMed

    Rice, K L; de Thé, H

    2014-07-01

    The recent finding that almost all patients with acute promyelocytic leukaemia (APL) may be cured using a combination of retinoic acid (RA) and arsenic trioxide (As(2)O(3)) (N Engl J Med, 369, 2013 and 111) highlights the progress made in our understanding of APL pathogenesis and therapeutic approaches over the past 25 years. The study of APL has revealed many important lessons related to transcriptional control, nuclear organization, epigenetics and the role of proteolysis in biological control. Even more important has been the clinical demonstration that molecularly targeted therapy can eradicate disease.

  20. What Should You Ask Your Doctor about Acute Lymphocytic Leukemia?

    MedlinePlus

    ... leukemia? What should you ask your doctor about acute lymphocytic leukemia? It is important to have frank, honest discussions ... answer many of your questions. What kind of acute lymphocytic leukemia (ALL) do I have? Do I have any ...

  1. What Are the Key Statistics about Acute Lymphocytic Leukemia?

    MedlinePlus

    ... lymphocytic leukemia? What are the key statistics about acute lymphocytic leukemia? The American Cancer Society’s estimates for acute lymphocytic leukemia (ALL) in the United States for 2016 (including ...

  2. Altered nuclear co-factor switching in retinoic resistant variants of the PML-RARα oncoprotein of acute promyelocytic leukemia†

    PubMed Central

    Farris, Mindy; Lague, Astrid; Manuelyan, Zara; Statnekov, Jacob; Francklyn, Christopher

    2011-01-01

    Acute Promyelocytic Leukemia (APL) results from a reciprocal translocation that fuses the gene for the PML tumor suppressor to that encoding the retinoic acid receptor alpha (RARα). The resulting PML-RARα oncogene product interferes with multiple regulatory pathways associated with myeloid differentiation, including normal PML and RARα functions. The standard treatment for APL includes anthracycline-based chemotherapeutic agents plus the RARα agonist all-trans retinoic acid (ATRA). Relapse, which is often accompanied by ATRA resistance, occurs in an appreciable frequency of treated patients. One potential mechanism suggested by model experiments featuring the selection of ATRA resistant APL cell lines involves ATRA resistant versions of the PML-RARα oncogene, where the relevant mutations localize to the RARα ligand-binding domain (LBD). Such mutations may act by compromising agonist binding, but other mechanisms are possible. Here, we studied the molecular consequence of ATRA resistance by use of circular dichroism, protease resistance, and fluorescence anisotropy assays employing peptides derived from the NCOR nuclear co-repressor and the ACTR nuclear co-activator. The consequences of the mutations on global structure and co-factor interaction functions were assessed quantitatively, providing insights into the basis of agonist resistance. Attenuated co-factor switching and increased protease resistance represent features of the LBDs of ATRA-resistant PML-RARα, and these properties may be recapitulated in the full-length oncoproteins. PMID:22228505

  3. Biological Therapy in Treating Patients With Advanced Myelodysplastic Syndrome, Acute or Chronic Myeloid Leukemia, or Acute Lymphoblastic Leukemia Who Are Undergoing Stem Cell Transplantation

    ClinicalTrials.gov

    2013-07-03

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  4. Advancing the Minimal Residual Disease Concept in Acute Myeloid Leukemia.

    PubMed

    Hokland, Peter; Ommen, Hans B; Mulé, Matthew P; Hourigan, Christopher S

    2015-07-01

    The criteria to evaluate response to treatment in acute myeloid leukemia (AML) have changed little in the past 60 years. It is now possible to use higher sensitivity tools to measure residual disease burden in AML. Such minimal or measurable residual disease (MRD) measurements provide a deeper understanding of current patient status and allow stratification for risk of subsequent clinical relapse. Despite these obvious advantages, and after over a decade of laboratory investigation and preclinical validation, MRD measurements are not currently routinely used for clinical decision-making or drug development in non-acute promyelocytic leukemia (non-APL) AML. We review here some potential constraints that may have delayed adoption, including a natural hesitancy of end users, economic impact concerns, misperceptions regarding the meaning of and need for assay sensitivity, the lack of one single MRD solution for all AML patients, and finally the need to involve patients in decision-making based on such correlates. It is our opinion that none of these issues represent insurmountable barriers and our hope is that by providing potential solutions we can help map a path forward to a future where our patients will be offered personalized treatment plans based on the amount of AML they have left remaining to treat. PMID:26111465

  5. [Acute myeloid leukemia. Genetic diagnostics and molecular therapy].

    PubMed

    Schlenk, R F; Döhner, K; Döhner, H

    2013-02-01

    Acute myeloid leukemia (AML) is a genetically heterogeneous disease. The genetic diagnostics have become an essential component in the initial work-up for disease classification, prognostication and prediction. More and more promising molecular targeted therapeutics are becoming available. A prerequisite for individualized treatment strategies is a fast pretherapeutic molecular screening including the fusion genes PML-RARA, RUNX1-RUNX1T1 and CBFB-MYH11 as well as mutations in the genes NPM1, FLT3 and CEBPA. Promising new therapeutic approaches include the combination of all- trans retinoic acid and arsentrioxid in acute promyelocytic leukemia, the combination of intensive chemotherapy with KIT inhibitors in core-binding factor AML and FLT3 inhibitors in AML with FLT3 mutation, as well as gemtuzumab ozogamicin therapy in patients with low and intermediate cytogenetic risk profiles. With the advent of the next generation sequencing technologies it is expected that new therapeutic targets will be identified. These insights will lead to a further individualization of AML therapy.

  6. Arsenic Mediated Disruption of Promyelocytic Leukemia Protein Nuclear Bodies Induces Ganciclovir Susceptibility in Epstein-Barr Positive Epithelial Cells

    PubMed Central

    Sides, Mark D.; Block, Gregory J.; Shan, Bin; Esteves, Kyle C.; Lin, Zhen; Flemington, Erik K.; Lasky, Joseph A.

    2011-01-01

    Promyelocytic leukemia protein nuclear bodies (PML NBs) have been implicated in host immune response to viral infection. PML NBs are targeted for degradation during reactivation of herpes viruses, suggesting that disruption of PML NB function supports this aspect of the viral life cycle. The Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1) has been shown to suppress EBV reactivation. Our finding that LMP1 induces PML NB immunofluorescence intensity led to the hypothesis that LMP1 may modulate PML NBs as a means of maintaining EBV latency. Increased PML protein and morphometric changes in PML NBs were observed in EBV infected alveolar epithelial cells and nasopharyngeal carcinoma cells. Treatment with low dose arsenic trioxide disrupted PML NBs, induced expression of EBV lytic proteins, and conferred ganciclovir susceptibility. This study introduces an effective modality to induce susceptibility to ganciclovir in epithelial cells with implications for the treatment of EBV associated pathologies. PMID:21605886

  7. Arsenic mediated disruption of promyelocytic leukemia protein nuclear bodies induces ganciclovir susceptibility in Epstein-Barr positive epithelial cells.

    PubMed

    Sides, Mark D; Block, Gregory J; Shan, Bin; Esteves, Kyle C; Lin, Zhen; Flemington, Erik K; Lasky, Joseph A

    2011-07-20

    Promyelocytic leukemia protein nuclear bodies (PML NBs) have been implicated in host immune response to viral infection. PML NBs are targeted for degradation during reactivation of herpes viruses, suggesting that disruption of PML NB function supports this aspect of the viral life cycle. The Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1) has been shown to suppress EBV reactivation. Our finding that LMP1 induces PML NB immunofluorescence intensity led to the hypothesis that LMP1 may modulate PML NBs as a means of maintaining EBV latency. Increased PML protein and morphometric changes in PML NBs were observed in EBV infected alveolar epithelial cells and nasopharyngeal carcinoma cells. Treatment with low dose arsenic trioxide disrupted PML NBs, induced expression of EBV lytic proteins, and conferred ganciclovir susceptibility. This study introduces an effective modality to induce susceptibility to ganciclovir in epithelial cells with implications for the treatment of EBV associated pathologies. PMID:21605886

  8. Arsenic mediated disruption of promyelocytic leukemia protein nuclear bodies induces ganciclovir susceptibility in Epstein-Barr positive epithelial cells

    SciTech Connect

    Sides, Mark D.; Block, Gregory J.; Shan, Bin; Esteves, Kyle C.; Lin, Zhen; Flemington, Erik K.; Lasky, Joseph A.

    2011-06-20

    Promyelocytic leukemia protein nuclear bodies (PML NBs) have been implicated in host immune response to viral infection. PML NBs are targeted for degradation during reactivation of herpes viruses, suggesting that disruption of PML NB function supports this aspect of the viral life cycle. The Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1) has been shown to suppress EBV reactivation. Our finding that LMP1 induces PML NB immunofluorescence intensity led to the hypothesis that LMP1 may modulate PML NBs as a means of maintaining EBV latency. Increased PML protein and morphometric changes in PML NBs were observed in EBV infected alveolar epithelial cells and nasopharyngeal carcinoma cells. Treatment with low dose arsenic trioxide disrupted PML NBs, induced expression of EBV lytic proteins, and conferred ganciclovir susceptibility. This study introduces an effective modality to induce susceptibility to ganciclovir in epithelial cells with implications for the treatment of EBV associated pathologies.

  9. Nucleocytoplasmic Shuttling of p62/SQSTM1 and Its Role in Recruitment of Nuclear Polyubiquitinated Proteins to Promyelocytic Leukemia Bodies*

    PubMed Central

    Pankiv, Serhiy; Lamark, Trond; Bruun, Jack-Ansgar; Øvervatn, Aud; Bjørkøy, Geir; Johansen, Terje

    2010-01-01

    p62, also known as sequestosome1 (SQSTM1), A170, or ZIP, is a multifunctional protein implicated in several signal transduction pathways. p62 is induced by various forms of cellular stress, is degraded by autophagy, and acts as a cargo receptor for autophagic degradation of ubiquitinated targets. It is also suggested to shuttle ubiquitinated proteins for proteasomal degradation. p62 is commonly found in cytosolic protein inclusions in patients with protein aggregopathies, it is up-regulated in several forms of human tumors, and mutations in the gene are linked to classical adult onset Paget disease of the bone. To this end, p62 has generally been considered to be a cytosolic protein, and little attention has been paid to possible nuclear roles of this protein. Here, we present evidence that p62 shuttles continuously between nuclear and cytosolic compartments at a high rate. The protein is also found in nuclear promyelocytic leukemia bodies. We show that p62 contains two nuclear localization signals and a nuclear export signal. Our data suggest that the nucleocytoplasmic shuttling of p62 is modulated by phosphorylations at or near the most important nuclear localization signal, NLS2. The aggregation of p62 in cytosolic bodies also regulates the transport of p62 between the compartments. We found p62 to be essential for accumulation of polyubiquitinated proteins in promyelocytic leukemia bodies upon inhibition of nuclear protein export. Furthermore, p62 contributed to the assembly of proteasome-containing degradative compartments in the vicinity of nuclear aggregates containing polyglutamine-expanded Ataxin1Q84 and to the degradation of Ataxin1Q84. PMID:20018885

  10. Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies.

    PubMed

    Pankiv, Serhiy; Lamark, Trond; Bruun, Jack-Ansgar; Øvervatn, Aud; Bjørkøy, Geir; Johansen, Terje

    2010-02-19

    p62, also known as sequestosome1 (SQSTM1), A170, or ZIP, is a multifunctional protein implicated in several signal transduction pathways. p62 is induced by various forms of cellular stress, is degraded by autophagy, and acts as a cargo receptor for autophagic degradation of ubiquitinated targets. It is also suggested to shuttle ubiquitinated proteins for proteasomal degradation. p62 is commonly found in cytosolic protein inclusions in patients with protein aggregopathies, it is up-regulated in several forms of human tumors, and mutations in the gene are linked to classical adult onset Paget disease of the bone. To this end, p62 has generally been considered to be a cytosolic protein, and little attention has been paid to possible nuclear roles of this protein. Here, we present evidence that p62 shuttles continuously between nuclear and cytosolic compartments at a high rate. The protein is also found in nuclear promyelocytic leukemia bodies. We show that p62 contains two nuclear localization signals and a nuclear export signal. Our data suggest that the nucleocytoplasmic shuttling of p62 is modulated by phosphorylations at or near the most important nuclear localization signal, NLS2. The aggregation of p62 in cytosolic bodies also regulates the transport of p62 between the compartments. We found p62 to be essential for accumulation of polyubiquitinated proteins in promyelocytic leukemia bodies upon inhibition of nuclear protein export. Furthermore, p62 contributed to the assembly of proteasome-containing degradative compartments in the vicinity of nuclear aggregates containing polyglutamine-expanded Ataxin1Q84 and to the degradation of Ataxin1Q84.

  11. Synergistic targeted therapy for acute promyelocytic leukaemia: a model of translational research in human cancer.

    PubMed

    Mi, J-Q; Chen, S-J; Zhou, G-B; Yan, X-J; Chen, Z

    2015-12-01

    Acute promyelocytic leukaemia (APL), the M3 subtype of acute myeloid leukaemia, was once a lethal disease, yet nowadays the majority of patients with APL can be successfully cured by molecularly targeted therapy. This dramatic improvement in the survival rate is an example of the advantage of modern medicine. APL is characterized by a balanced reciprocal chromosomal translocation fusing the promyelocytic leukaemia (PML) gene on chromosome 15 with the retinoic acid receptor α (RARα) gene on chromosome 17. It has been found that all-trans-retinoic acid (ATRA) or arsenic trioxide (ATO) alone exerts therapeutic effect on APL patients with the PML-RARα fusion gene, and the combination of both drugs can act synergistically to further enhance the cure rate of the patients. Here, we provide an insight into the pathogenesis of APL and the mechanisms underlying the respective roles of ATRA and ATO. In addition, treatments that lead to more effective differentiation and apoptosis of APL cells, including leukaemia-initiating cells, and more thorough eradication of the disease will be discussed. Moreover, as a model of translational research, the development of a cure for APL has followed a bidirectional approach of 'bench to bedside' and 'bedside to bench', which can serve as a valuable example for the diagnosis and treatment of other malignancies.

  12. Incorporating measurable ('minimal') residual disease-directed treatment strategies to optimize outcomes in adults with acute myeloid leukemia.

    PubMed

    Pettit, Kristen; Stock, Wendy; Walter, Roland B

    2016-07-01

    Curative-intent therapy leads to complete remissions in many adults with acute myeloid leukemia (AML), but relapse remains common. Numerous studies have unequivocally demonstrated that the persistence of measurable ('minimal') residual disease (MRD) at the submicroscopic level during morphologic remission identifies patients at high risk of disease recurrence and short survival. This association has provided the impetus to customize anti-leukemia therapy based on MRD data, a strategy that is now routinely pursued in acute promyelocytic leukemia (APL). While it is currently uncertain whether this approach will improve outcomes in AML other than APL, randomized studies have validated MRD-based risk-stratified treatment algorithms in acute lymphoblastic leukemia. Here, we review the available studies examining MRD-directed therapy in AML, appraise their strengths and limitations, and discuss avenues for future investigation.

  13. Eltrombopag Olamine in Improving Platelet Recovery in Older Patients With Acute Myeloid Leukemia Undergoing Chemotherapy

    ClinicalTrials.gov

    2016-02-17

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia

  14. Dasatinib, Cytarabine, and Idarubicin in Treating Patients With High-Risk Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-08

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  15. Nerve growth factor receptor gene is at human chromosome region 17q12-17q22, distal to the chromosome 17 breakpoint in acute leukemias

    SciTech Connect

    Huebner, K.; Isobe, M.; Chao, M.; Bothwell, M.; Ross, A.H.; Finan, J.; Hoxie, J.A.; Sehgal, A.; Buck, C.R.; Lanahan, A.

    1986-03-01

    Genomic and cDNA clones for the human nerve growth factor receptor have been used in conjunction with somatic cell hybrid analysis and in situ hybridization to localize the nerve growth factor receptor locus to human chromosome region 17q12-q22. Additionally, part, if not all, of the nerve growth factor receptor locus is present on the translocated portion of 17q (17q21-qter) from a poorly differential acute leukemia in which the chromosome 17 breakpoint was indistinguishable cytogenetically from the 17 breakpoint observed in the t(15;17)(q22;q21) translocation associated with acute promyelocytic leukemia. Thus the nerve growth factor receptor locus may be closely distal to the acute promyelocytic leukemia-associated chromosome 17 breakpoint at 17q21.

  16. Ipilimumab and Decitabine in Treating Patients With Relapsed or Refractory Myelodysplastic Syndrome or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-09-12

    Chimerism; Hematopoietic Cell Transplantation Recipient; Previously Treated Myelodysplastic Syndrome; RAEB-1; RAEB-2; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  17. Donor Umbilical Cord Blood Transplant With or Without Ex-vivo Expanded Cord Blood Progenitor Cells in Treating Patients With Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2016-09-09

    Acute Biphenotypic Leukemia; Acute Lymphoblastic Leukemia in Remission; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia in Remission; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Mixed Phenotype Acute Leukemia; Myelodysplastic Syndrome; Pancytopenia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Secondary Acute Myeloid Leukemia

  18. Promyelocytic leukemia zinc finger-retinoic acid receptor α (PLZF-RARα), an oncogenic transcriptional repressor of cyclin-dependent kinase inhibitor 1A (p21WAF/CDKN1A) and tumor protein p53 (TP53) genes.

    PubMed

    Choi, Won-Il; Yoon, Jae-Hyeon; Kim, Min-Young; Koh, Dong-In; Licht, Jonathan D; Kim, Kunhong; Hur, Man-Wook

    2014-07-01

    Promyelocytic leukemia zinc finger-retinoic acid receptor α (PLZF-RARα) is an oncogene transcriptional repressor that is generated by a chromosomal translocation between the PLZF and RARα genes in acute promyelocytic leukemia (APL-type) patients. The molecular interaction between PLZF-RARα and the histone deacetylase corepressor was proposed to be important in leukemogenesis. We found that PLZF-RARα can repress transcription of the p21WAF/CDKN1A gene, which encodes the negative cell cycle regulator p21 by binding to its proximal promoter Sp1-binding GC-boxes 3, 4, 5/6, a retinoic acid response element (RARE), and distal p53-responsive elements (p53REs). PLZF-RARα also acts as a competitive transcriptional repressor of p53, RARα, and Sp1. PLZF-RARα interacts with co-repressors such as mSin3A, NCoR, and SMRT, thereby deacetylating histones Ac-H3 and Ac-H4 at the CDKN1A promoter. PLZF-RARα also interacts with the MBD3-NuRD complex, leading to epigenetic silencing of CDKN1A through DNA methylation. Furthermore, PLZF-RARα represses TP53 and increases p53 protein degradation by ubiquitination, further repressing p21 expression. Resultantly, PLZF-RARα promotes cell proliferation and significantly increases the number of cells in S-phase.

  19. Promyelocytic Leukemia Zinc Finger-Retinoic Acid Receptor α (PLZF-RARα), an Oncogenic Transcriptional Repressor of Cyclin-dependent Kinase Inhibitor 1A (p21WAF/CDKN1A) and Tumor Protein p53 (TP53) Genes*

    PubMed Central

    Choi, Won-Il; Yoon, Jae-Hyeon; Kim, Min-Young; Koh, Dong-In; Licht, Jonathan D.; Kim, Kunhong; Hur, Man-Wook

    2014-01-01

    Promyelocytic leukemia zinc finger-retinoic acid receptor α (PLZF-RARα) is an oncogene transcriptional repressor that is generated by a chromosomal translocation between the PLZF and RARα genes in acute promyelocytic leukemia (APL-type) patients. The molecular interaction between PLZF-RARα and the histone deacetylase corepressor was proposed to be important in leukemogenesis. We found that PLZF-RARα can repress transcription of the p21WAF/CDKN1A gene, which encodes the negative cell cycle regulator p21 by binding to its proximal promoter Sp1-binding GC-boxes 3, 4, 5/6, a retinoic acid response element (RARE), and distal p53-responsive elements (p53REs). PLZF-RARα also acts as a competitive transcriptional repressor of p53, RARα, and Sp1. PLZF-RARα interacts with co-repressors such as mSin3A, NCoR, and SMRT, thereby deacetylating histones Ac-H3 and Ac-H4 at the CDKN1A promoter. PLZF-RARα also interacts with the MBD3-NuRD complex, leading to epigenetic silencing of CDKN1A through DNA methylation. Furthermore, PLZF-RARα represses TP53 and increases p53 protein degradation by ubiquitination, further repressing p21 expression. Resultantly, PLZF-RARα promotes cell proliferation and significantly increases the number of cells in S-phase. PMID:24821728

  20. Long intergenic non-coding RNA HOTAIRM1 regulates cell cycle progression during myeloid maturation in NB4 human promyelocytic leukemia cells

    PubMed Central

    Zhang, Xueqing; Weissman, Sherman M; Newburger, Peter E

    2014-01-01

    HOTAIRM1 is a long intergenic non-coding RNA encoded in the human HOXA gene cluster, with gene expression highly specific for maturing myeloid cells. Knockdown of HOTAIRM1 in the NB4 acute promyelocytic leukemia cell line retarded all-trans retinoid acid (ATRA)-induced granulocytic differentiation, resulting in a significantly larger population of immature and proliferating cells that maintained cell cycle progression from G1 to S phases. Correspondingly, HOTAIRM1 knockdown resulted in retained expression of many otherwise ATRA-suppressed cell cycle and DNA replication genes, and abated ATRA induction of cell surface leukocyte activation, defense response, and other maturation-related genes. Resistance to ATRA-induced cell cycle arrest at the G1/S phase transition in knockdown cells was accompanied by retained expression of ITGA4 (CD49d) and decreased induction of ITGAX (CD11c). The coupling of cell cycle progression with temporal dynamics in the expression patterns of these integrin genes suggests a regulated switch to control the transit from the proliferative phase to granulocytic maturation. Furthermore, ITGAX was among a small number of genes showing perturbation in transcript levels upon HOTAIRM1 knockdown even without ATRA treatment, suggesting a direct pathway of regulation. These results indicate that HOTAIRM1 provides a regulatory link in myeloid maturation by modulating integrin-controlled cell cycle progression at the gene expression level. PMID:24824789

  1. Acute myeloid leukemia presenting as galactorrhea

    PubMed Central

    Nambiar, K. Rakul; Devi, R. Nandini

    2016-01-01

    Acute myeloid leukemia (AML) presents with symptoms related to pancytopenia (weakness, infections, bleeding diathesis) and organ infiltration with leukemic cells. Galactorrhea is an uncommon manifestation of AML. We report a case of AML presenting with galactorrhea. PMID:27695173

  2. Acute myeloid leukemia presenting as galactorrhea

    PubMed Central

    Nambiar, K. Rakul; Devi, R. Nandini

    2016-01-01

    Acute myeloid leukemia (AML) presents with symptoms related to pancytopenia (weakness, infections, bleeding diathesis) and organ infiltration with leukemic cells. Galactorrhea is an uncommon manifestation of AML. We report a case of AML presenting with galactorrhea.

  3. Treatment Option Overview (Childhood Acute Lymphoblastic Leukemia)

    MedlinePlus

    ... recovery) and treatment options. Childhood acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... genetic conditions affect the risk of having childhood ALL. Anything that increases your risk of getting a ...

  4. Stages of Adult Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... to radiation may increase the risk of developing ALL. Anything that increases your risk of getting a ...

  5. Risk Groups for Childhood Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Childhood acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... genetic conditions affect the risk of having childhood ALL. Anything that increases your risk of getting a ...

  6. Treatment Options for Adult Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... to radiation may increase the risk of developing ALL. Anything that increases your risk of getting a ...

  7. Treatment Options for Childhood Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Childhood acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... genetic conditions affect the risk of having childhood ALL. Anything that increases your risk of getting a ...

  8. Treatment Option Overview (Adult Acute Lymphoblastic Leukemia)

    MedlinePlus

    ... recovery) and treatment options. Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... to radiation may increase the risk of developing ALL. Anything that increases your risk of getting a ...

  9. Combination Chemotherapy in Treating Young Patients With Down Syndrome and Acute Myeloid Leukemia or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2016-03-16

    Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  10. Idarubicin, Cytarabine, and Tipifarnib in Treating Patients With Newly Diagnosed Myelodysplastic Syndromes or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-05-09

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  11. S1312, Inotuzumab Ozogamicin and Combination Chemotherapy in Treating Patients With Relapsed or Refractory Acute Leukemia

    ClinicalTrials.gov

    2016-04-14

    Acute Leukemias of Ambiguous Lineage; B-cell Adult Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma

  12. Monoclonal Antibody Therapy in Treating Patients With Chronic Lymphocytic Leukemia, Lymphocytic Lymphoma, Acute Lymphoblastic Leukemia, or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-06-03

    Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Splenic Marginal Zone Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma

  13. Selinexor and Chemotherapy in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-09-29

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  14. Lenalidomide in Treating Older Patients With Acute Myeloid Leukemia Who Have Undergone Stem Cell Transplant

    ClinicalTrials.gov

    2015-03-02

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia

  15. Choline Magnesium Trisalicylate and Combination Chemotherapy in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-08

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  16. Tipifarnib and Etoposide in Treating Older Patients With Newly Diagnosed, Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-10-01

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  17. Alvocidib, Cytarabine, and Mitoxantrone in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-07-14

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  18. Alvocidib, Cytarabine, and Mitoxantrone in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-06-03

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  19. Omacetaxine Mepesuccinate, Cytarabine, and Decitabine in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-05

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  20. Eltrombopag Olamine in Treating Patients With Relapsed/Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-04

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  1. Blinatumomab and Combination Chemotherapy or Dasatinib, Prednisone, and Blinatumomab in Treating Older Patients With Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-10-19

    B Acute Lymphoblastic Leukemia; B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Recurrent Adult Acute Lymphoblastic Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  2. Levofloxacin in Preventing Infection in Young Patients With Acute Leukemia Receiving Chemotherapy or Undergoing Stem Cell Transplantation

    ClinicalTrials.gov

    2016-10-14

    Acute Leukemias of Ambiguous Lineage; Bacterial Infection; Diarrhea; Fungal Infection; Musculoskeletal Complications; Neutropenia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  3. GTI-2040 in Treating Patients With Relapsed, Refractory, or High-Risk Acute Leukemia, High-Grade Myelodysplastic Syndromes, or Refractory or Blastic Phase Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2015-12-03

    Acute Undifferentiated Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  4. Bortezomib and Combination Chemotherapy in Treating Young Patients With Relapsed Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2014-09-30

    B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Lymphoblastic Lymphoma; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  5. Bioelectrical Impedance Measurement for Predicting Treatment Outcome in Patients With Newly Diagnosed Acute Leukemia

    ClinicalTrials.gov

    2016-07-26

    Acute Undifferentiated Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Mast Cell Leukemia; Myeloid/NK-cell Acute Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  6. Autologous stem cell transplantation versus alternative allogeneic donor transplants in adult acute leukemias.

    PubMed

    Claude Gorin, Norbert

    2016-04-01

    The availability of alternative sources of stem cells including most recently T-replete haploidentical marrow or peripheral blood, and the increasing use of reduced-intensity conditioning (RIC), renders feasible an allogeneic transplant to almost all patients with acute leukemia up to 70 years of age. Autologous stem cell transplantation (ASCT) for consolidation of complete remission (CR), however, offers in some circumstances an alternative option. Although associated with a higher relapse rate, autologous transplant benefits from a lower non-relapse mortality, the absence of graft-versus-host disease (GVHD), and a better quality of life for long-term survivors. The recent use of intravenous busulfan (IVBU) with high-dose melphalan, better monitoring of minimal residual disease (MRD), and maintenance therapy post autografting bring new interest. Few retrospective studies compared the outcome following alternative donor versus autologous transplants for remission consolidation. Genoidentical and phenoidentical allogeneic stem cell transplantations are undisputed gold standards, but there are no data showing the superiority of alternative allogeneic donor over autologous transplantation, at the time of undetectable MRD, in patients with good- and intermediate-1 risk acute myelocytic leukemia (AML) in first complete remission (CR1), acute promyelocytic leukemia in second complete remission (CR2), and Philadelphia chromosome-positive (Ph(+)) acute lymphocytic leukemia (ALL). PMID:27000734

  7. Autologous stem cell transplantation versus alternative allogeneic donor transplants in adult acute leukemias.

    PubMed

    Claude Gorin, Norbert

    2016-04-01

    The availability of alternative sources of stem cells including most recently T-replete haploidentical marrow or peripheral blood, and the increasing use of reduced-intensity conditioning (RIC), renders feasible an allogeneic transplant to almost all patients with acute leukemia up to 70 years of age. Autologous stem cell transplantation (ASCT) for consolidation of complete remission (CR), however, offers in some circumstances an alternative option. Although associated with a higher relapse rate, autologous transplant benefits from a lower non-relapse mortality, the absence of graft-versus-host disease (GVHD), and a better quality of life for long-term survivors. The recent use of intravenous busulfan (IVBU) with high-dose melphalan, better monitoring of minimal residual disease (MRD), and maintenance therapy post autografting bring new interest. Few retrospective studies compared the outcome following alternative donor versus autologous transplants for remission consolidation. Genoidentical and phenoidentical allogeneic stem cell transplantations are undisputed gold standards, but there are no data showing the superiority of alternative allogeneic donor over autologous transplantation, at the time of undetectable MRD, in patients with good- and intermediate-1 risk acute myelocytic leukemia (AML) in first complete remission (CR1), acute promyelocytic leukemia in second complete remission (CR2), and Philadelphia chromosome-positive (Ph(+)) acute lymphocytic leukemia (ALL).

  8. What's New in Adult Acute Myeloid Leukemia Research and Treatment?

    MedlinePlus

    ... Topic Additional resources for acute myeloid leukemia What’s new in acute myeloid leukemia research and treatment? Researchers ... benefit from current treatments. Researchers are studying many new chemo drugs for use in AML, including: Sapacitabine, ...

  9. Nilotinib and Combination Chemotherapy in Treating Patients With Newly Diagnosed Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia or Blastic Phase Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2015-10-29

    B-cell Adult Acute Lymphoblastic Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  10. Physical and functional interactions of human endogenous retrovirus proteins Np9 and rec with the promyelocytic leukemia zinc finger protein.

    PubMed

    Denne, Miriam; Sauter, Marlies; Armbruester, Vivienne; Licht, Jonathan D; Roemer, Klaus; Mueller-Lantzsch, Nikolaus

    2007-06-01

    Only few of the human endogenous retrovirus (HERV) sequences in the human genome can produce proteins. We have previously reported that (i) patients with germ cell tumors often make antibodies against proteins encoded by HERV-K elements, (ii) expression of the HERV-K rec gene in transgenic mice can interfere with germ cell development and induce carcinoma in situ, and (iii) HERV-K np9 transcript is overproduced in many tumors including breast cancers. Here we document that both Np9 and Rec physically and functionally interact with the promyelocytic leukemia zinc finger (PLZF) tumor suppressor, a transcriptional repressor and chromatin remodeler implicated in cancer and the self-renewal of spermatogonial stem cells. Interaction is mediated via two different central and C-terminal domains of Np9 and Rec and the C-terminal zinc fingers of PLZF. One major target of PLZF is the c-myc proto-oncogene. Coexpression of Np9 and Rec with PLZF abrogates the transcriptional repression of the c-myc gene promoter by PLZF and results in c-Myc overproduction, altered expression of c-Myc-regulated genes, and corresponding effects on cell proliferation and survival. Thus, the human endogenous retrovirus proteins Np9 and Rec may act oncogenically by derepressing c-myc through the inhibition of PLZF.

  11. Promyelocytic leukemia zinc-finger induction signs mesenchymal stem cell commitment: identification of a key marker for stemness maintenance?

    PubMed Central

    2014-01-01

    Introduction Mesenchymal stem cells (MSCs) are an attractive cell source for cartilage and bone tissue engineering given their ability to differentiate into chondrocytes and osteoblasts. However, the common origin of these two specialized cell types raised the question about the identification of regulatory pathways determining the differentiation fate of MSCs into chondrocyte or osteoblast. Methods Chondrogenesis, osteoblastogenesis, and adipogenesis of human and mouse MSC were induced by using specific inductive culture conditions. Expression of promyelocytic leukemia zinc-finger (PLZF) or differentiation markers in MSCs was determined by RT-qPCR. PLZF-expressing MSC were implanted in a mouse osteochondral defect model and the neotissue was analyzed by routine histology and microcomputed tomography. Results We found out that PLZF is not expressed in MSCs and its expression at early stages of MSC differentiation is the mark of their commitment toward the three main lineages. PLZF acts as an upstream regulator of both Sox9 and Runx2, and its overexpression in MSC enhances chondrogenesis and osteogenesis while it inhibits adipogenesis. In vivo, implantation of PLZF-expressing MSC in mice with full-thickness osteochondral defects resulted in the formation of a reparative tissue resembling cartilage and bone. Conclusions Our findings demonstrate that absence of PLZF is required for stemness maintenance and its expression is an early event at the onset of MSC commitment during the differentiation processes of the three main lineages. PMID:24564963

  12. Pondering the puzzle of PML (promyelocytic leukemia) nuclear bodies: Can we fit the pieces together using an RNA regulon?

    PubMed Central

    Borden, Katherine L.B.

    2008-01-01

    Summary The promyelocytic leukemia protein PML and its associated nuclear bodies are hot topics of investigation. This interest arises for multiple reasons including the tight link between the integrity of PML nuclear bodies and several disease states and the impact of the PML protein and PML nuclear bodies on proliferation, apoptosis and viral infection. Unfortunately, an understanding of the molecular underpinnings of PML nuclear body function remains elusive. Here, a general overview of the PML field is provided and is extended to discuss whether some of the basic tenets of “PML-ology” are still valid. For instance, recent findings suggest that some components of PML nuclear bodies form bodies in the absence of the PML protein. Also, a new model for PML nuclear body function is proposed which provides a unifying framework for its effects on diverse biochemical pathways such as Akt signaling and the p53-Mdm2 axis. In this model, the PML protein acts as an inhibitor of gene expression post-transcriptionally via inhibiting a network node in the eIF4E RNA regulon. An example is given for how the PML RNA regulon model provided the basis for the development of a new anti-cancer strategy being tested in the clinic. PMID:18616965

  13. Trebananib With or Without Low-Dose Cytarabine in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-25

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  14. Yttrium Y 90 Anti-CD45 Monoclonal Antibody BC8 Followed by Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-09-29

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Secondary Acute Myeloid Leukemia

  15. Actual biological diagnosis of acute myeloblastic leukemia in children

    PubMed Central

    Buga Corbu, V; Glűck, A; Arion, C

    2014-01-01

    Abstract Acute myeloblastic leukemia accounts for approximately 20% of acute leukemias in children. The days the microscope represented the main tool in the diagnosis and classification of Acute Myeloblastic Leukemia seem to be very far. This review summarizes the current diagnosis of this malignancy, where the morphological, cytochemical, immunophenotyping, cytogenetic and molecular characterization represents the basement of a risk group related therapy. PMID:25408742

  16. Actual biological diagnosis of acute myeloblastic leukemia in children.

    PubMed

    Buga Corbu, V; Glűck, A; Arion, C

    2014-06-15

    Acute myeloblastic leukemia accounts for approximately 20% of acute leukemias in children. The days the microscope represented the main tool in the diagnosis and classification of Acute Myeloblastic Leukemia seem to be very far. This review summarizes the current diagnosis of this malignancy, where the morphological, cytochemical, immunophenotyping, cytogenetic and molecular characterization represents the basement of a risk group related therapy.

  17. Phase I Combination of Midostaurin, Bortezomib, and Chemo in Relapsed/Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-04

    Acute Myeloid Leukemia; Acute Myeloid Leukemia With Multilineage Dysplasia Following; Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  18. AR-42 and Decitabine in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-21

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  19. The biology of pediatric acute megakaryoblastic leukemia

    PubMed Central

    Downing, James R.

    2015-01-01

    Acute megakaryoblastic leukemia (AMKL) comprises between 4% and 15% of newly diagnosed pediatric acute myeloid leukemia patients. AMKL in children with Down syndrome (DS) is characterized by a founding GATA1 mutation that cooperates with trisomy 21, followed by the acquisition of additional somatic mutations. In contrast, non–DS-AMKL is characterized by chimeric oncogenes consisting of genes known to play a role in normal hematopoiesis. CBFA2T3-GLIS2 is the most frequent chimeric oncogene identified to date in this subset of patients and confers a poor prognosis. PMID:26186939

  20. Idarubicin, Cytarabine, and Pravastatin Sodium in Treating Patients With Acute Myeloid Leukemia or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2015-03-03

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Refractory Anemia With Excess Blasts; Untreated Adult Acute Myeloid Leukemia

  1. Clofarabine and Melphalan Before Donor Stem Cell Transplant in Treating Patients With Myelodysplasia, Acute Leukemia in Remission, or Chronic Myelomonocytic Leukemia

    ClinicalTrials.gov

    2016-09-16

    Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Previously Treated Myelodysplastic Syndromes; Secondary Acute Myeloid Leukemia in Remission; Chronic Myelomonocytic Leukemia

  2. Filgrastim, Cladribine, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With Newly Diagnosed or Relapsed/Refractory Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndromes

    ClinicalTrials.gov

    2016-09-26

    Acute Biphenotypic Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  3. Fludarabine Phosphate and Total-Body Irradiation Followed by Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia or Chronic Myelogenous Leukemia That Has Responded to Treatment With Imatinib Mesylate, Dasatinib, or Nilotinib

    ClinicalTrials.gov

    2016-07-18

    Adult Acute Lymphoblastic Leukemia in Remission; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Phase Chronic Myelogenous Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Relapsing Chronic Myelogenous Leukemia

  4. Total Marrow and Lymphoid Irradiation and Chemotherapy Before Donor Transplant in Treating Patients With Myelodysplastic Syndrome or Acute Leukemia

    ClinicalTrials.gov

    2016-08-10

    Adult Acute Lymphoblastic Leukemia in Complete Remission; Acute Myeloid Leukemia in Remission; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Childhood Acute Lymphoblastic Leukemia in Complete Remission

  5. Vaccine Therapy and Basiliximab in Treating Patients With Acute Myeloid Leukemia in Complete Remission

    ClinicalTrials.gov

    2016-06-27

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)

  6. CPI-613, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-26

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia

  7. Clofarabine and Cytarabine in Treating Patients With Acute Myeloid Leukemia With Minimal Residual Disease

    ClinicalTrials.gov

    2013-05-07

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia

  8. Cancer Statistics: Acute Lymphocytic Leukemia (ALL)

    MedlinePlus

    ... at a Glance Show More At a Glance Estimated New Cases in 2016 6,590 % of All New Cancer Cases 0.4% Estimated Deaths in 2016 1,430 % of All Cancer ... of This Cancer : In 2013, there were an estimated 77,855 people living with acute lymphocytic leukemia ...

  9. Ixazomib in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-10-18

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  10. Vorinostat and Gemtuzumab Ozogamicin in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2011-11-03

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  11. Cytarabine With or Without SCH 900776 in Treating Adult Patients With Relapsed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-20

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia

  12. Arsenic Trioxide in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-10-04

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  13. Flavopiridol, Cytarabine, and Mitoxantrone in Treating Patients With Relapsed or Refractory Acute Leukemia

    ClinicalTrials.gov

    2013-09-27

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Malignant Neoplasm; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia

  14. Tipifarnib and Etoposide in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-01-08

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  15. Bortezomib, Daunorubicin, and Cytarabine in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-09-04

    Acute Myeloid Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  16. Vaccine Therapy Plus Immune Adjuvant in Treating Patients With Chronic Myeloid Leukemia, Acute Myeloid Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2013-01-04

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Myeloid Leukemia in Remission; Chronic Phase Chronic Myelogenous Leukemia; Previously Treated Myelodysplastic Syndromes; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia

  17. Clinical characteristics and outcomes in patients with acute promyelocytic leukaemia and hyperleucocytosis.

    PubMed

    Daver, Naval; Kantarjian, Hagop; Marcucci, Guido; Pierce, Sherry; Brandt, Mark; Dinardo, Courtney; Pemmaraju, Naveen; Garcia-Manero, Guillermo; O'Brien, Susan; Ferrajoli, Alessandra; Verstovsek, Srdan; Popat, Uday; Hosing, Chitra; Anderlini, Paolo; Borthakur, Gautam; Kadia, Tapan; Cortes, Jorge; Ravandi, Farhad

    2015-03-01

    The clinical characteristics, treatment options and outcomes in patients with acute promyelocytic leukaemia (APL) and hyperleucocytosis remain poorly defined. This study reviewed 242 consecutive patients with APL; 29 patients (12%) had a white blood cell count (WBC) ≥ 50 × 10(9) /l at presentation (median WBC 85·5 × 10(9) /l). Patients with hyperleucocytosis had inferior complete remission (CR) rates (69% vs. 88%; P = 0·004) and higher 4-week mortality (24% vs. 9%; P = 0·018) compared to patients without hyperleucocytosis. We noted a trend towards inferior 3-year disease-free survival (DFS) (69% vs. 80%; P = 0·057) and inferior 3-year overall survival (OS) (74% vs. 92%; P = 0·2) for patients with hyperleucocytosis. Leukapheresis was performed in 11 (38%) of the 29 patients with hyperleucocytosis. CR rate and 3-year OS were not significantly improved in patients who received leukapheresis. CR rate and 3-year OS for the 15 patients with hyperleucocytosis treated with all-trans retinoic acid (ATRA) plus arsenic trioxide (ATO) plus cytotoxic therapy (idarubicin or gemtuzumab ozogamicin) combinations were 100% and 100% vs. 57% and 35% for the 14 patients treated with non-ATRA/ATO combinations (P = 0·004 and P = 0·002). Leukapheresis does not improve the outcomes in patients with APL presenting with hyperleucocytosis. ATRA/ATO-based combinations are superior to other regimens in these patients. PMID:25312977

  18. Numbers and cytotoxicities of CD3+CD56+ T lymphocytes in peripheral blood of patients with acute myeloid leukemia and acute lymphocytic leukemia.

    PubMed

    Guo, Wenjian; Xing, Chao; Dong, Aishu; Lin, Xiaoji; Lin, Ying; Zhu, Baoling; He, Muqing; Yao, Rongxing

    2013-10-01

    Recent reports have highlighted the role of cellular immunity in anti-tumor defenses. T lymphocytes are known to play important part in anti-cancer immunity. The number and function of T lymphocytes are altered in chronic leukemia patients. CD3(+)CD56(+) T lymphocytes have also been found to be abnormal in cancer patients. We therefore investigated changes in the number and cytotoxicity of CD3(+)CD56(+) T lymphocytes in the peripheral blood of acute leukemia (AL) patients (excluding acute promyelocytic leukemia), to improve our understanding of the role of this T lymphocyte subset. We analyzed CD3(+)CD56(+) T lymphocyte numbers and cytotoxicities in healthy controls, AL patients, and AL patients with complete remission. Lymphocyte counts were performed in peripheral blood and flow cytometry was used to determine cell numbers and cytotoxicities. The absolute number of CD3(+)CD56(+) T lymphocytes was increased in AL patients (including acute myeloid [AML] and acute lymphocytic leukemia [ALL]) compared with healthy controls (P<0.05), but their functioning was significantly reduced (P<0.05). The number of CD3(+)CD56(+) T lymphocytes in AML and ALL patients who achieved remission following chemotherapy was close to healthy controls (P>0.05), but their functioning was still significantly reduced (P<0.05). In addition, the number of CD3(+)CD56(+) T lymphocytes increased significantly in AML patients with increased peripheral blood white blood cell (WBC) counts, and in ALL patients without increased WBCs. These results suggest that cellular immunity may respond to AML and ALL, but that lymphocyte cytotoxicity remains impaired. Dysfunction of CD3(+)CD56(+) T lymphocytes in AML and ALL patients may contribute to the failure of the host immune response against leukemic blasts.

  19. Dual oncogenic and tumor suppressor roles of the promyelocytic leukemia gene in hepatocarcinogenesis associated with hepatitis B virus surface antigen.

    PubMed

    Chung, Yih-Lin; Wu, Mei-Ling

    2016-05-10

    Proteasome-mediated degradation of promyelocytic leukemia tumor suppressor (PML) is upregulated in many viral infections and cancers. We previously showed that PML knockdown promotes early-onset hepatocellular carcinoma (HCC) in hepatitis B virus surface antigen (HBsAg)-transgenic mice. Here we report the effects of PML restoration on late-onset HBsAg-induced HCC. We compared protein expression patterns, genetic mutations and the effects of pharmacologically targeting PML in wild-type, PML-/-, PML+/+HBsAgtg/o and PML-/-HBsAgtg/o mice. PML-/- mice exhibited somatic mutations in DNA repair genes and developed severe steatosis and proliferative disorders, but not HCC. PML-/-HBsAgtg/o mice exhibited early mutations in cancer driver genes and developed hyperplasia, fatty livers and indolent adipose-like HCC. In PML+/+HBsAg-transgenic mice, HBsAg expression declined over time, and HBsAg-associated PML suppression was concomitantly relieved. Nevertheless, these mice accumulated mutations in genes contributing to oxidative stress pathways and developed aggressive late-onset angiogenic trabecular HCC. PML inhibition using non-toxic doses of arsenic trioxide selectively killed long-term HBsAg-affected liver cells in PML+/+HBsAgtg/o mice with falling HBsAg and rising PML levels, but not normal liver cells or early-onset HCC cells in PML-/-HBsAgtg/0 mice. These findings suggest dual roles for PML as a tumor-suppressor lost in early-onset HBsAg-induced hepatocarcinogenesis and as an oncogenic promoter in late-onset HBsAg-related HCC progression. PMID:27058621

  20. Dual oncogenic and tumor suppressor roles of the promyelocytic leukemia gene in hepatocarcinogenesis associated with hepatitis B virus surface antigen

    PubMed Central

    Chung, Yih-Lin; Wu, Mei-Ling

    2016-01-01

    Proteasome-mediated degradation of promyelocytic leukemia tumor suppressor (PML) is upregulated in many viral infections and cancers. We previously showed that PML knockdown promotes early-onset hepatocellular carcinoma (HCC) in hepatitis B virus surface antigen (HBsAg)-transgenic mice. Here we report the effects of PML restoration on late-onset HBsAg-induced HCC. We compared protein expression patterns, genetic mutations and the effects of pharmacologically targeting PML in wild-type, PML−/−, PML+/+HBsAgtg/o and PML−/−HBsAgtg/o mice. PML−/− mice exhibited somatic mutations in DNA repair genes and developed severe steatosis and proliferative disorders, but not HCC. PML−/−HBsAgtg/o mice exhibited early mutations in cancer driver genes and developed hyperplasia, fatty livers and indolent adipose-like HCC. In PML+/+HBsAg-transgenic mice, HBsAg expression declined over time, and HBsAg-associated PML suppression was concomitantly relieved. Nevertheless, these mice accumulated mutations in genes contributing to oxidative stress pathways and developed aggressive late-onset angiogenic trabecular HCC. PML inhibition using non-toxic doses of arsenic trioxide selectively killed long-term HBsAg-affected liver cells in PML+/+HBsAgtg/o mice with falling HBsAg and rising PML levels, but not normal liver cells or early-onset HCC cells in PML−/−HBsAgtg/0 mice. These findings suggest dual roles for PML as a tumor-suppressor lost in early-onset HBsAg-induced hepatocarcinogenesis and as an oncogenic promoter in late-onset HBsAg-related HCC progression. PMID:27058621

  1. Positive Role of Promyelocytic Leukemia Protein in Type I Interferon Response and Its Regulation by Human Cytomegalovirus

    PubMed Central

    Kim, Young-Eui; Ahn, Jin-Hyun

    2015-01-01

    Promyelocytic leukemia protein (PML), a major component of PML nuclear bodies (also known as nuclear domain 10), is involved in diverse cellular processes such as cell proliferation, apoptosis, gene regulation, and DNA damage response. PML also acts as a restriction factor that suppresses incoming viral genomes, therefore playing an important role in intrinsic defense. Here, we show that PML positively regulates type I interferon response by promoting transcription of interferon-stimulated genes (ISGs) and that this regulation by PML is counteracted by human cytomegalovirus (HCMV) IE1 protein. Small hairpin RNA-mediated PML knockdown in human fibroblasts reduced ISG induction by treatment of interferon-β or infection with UV-inactivated HCMV. PML was required for accumulation of activated STAT1 and STAT2, interacted with them and HDAC1 and HDAC2, and was associated with ISG promoters after HCMV infection. During HCMV infection, viral IE1 protein interacted with PML, STAT1, STAT2, and HDACs. Analysis of IE1 mutant viruses revealed that, in addition to the STAT2-binding domain, the PML-binding domain of IE1 was necessary for suppression of interferon-β-mediated ISG transcription, and that IE1 inhibited ISG transcription by sequestering interferon-stimulated gene factor 3 (ISGF3) in a manner requiring its binding of PML and STAT2, but not of HDACs. In conclusion, our results demonstrate that PML participates in type I interferon-induced ISG expression by regulating ISGF3, and that this regulation by PML is counteracted by HCMV IE1, highlighting a widely shared viral strategy targeting PML to evade intrinsic and innate defense mechanisms. PMID:25812002

  2. Alterations in polyamine levels induced by phorbol diesters and other agents that promote differentiation in human promyelocytic leukemia cells

    SciTech Connect

    Huberman, E.; Weeks, C.; Herrmann, A.; Callaham, M.; Slaga, T.

    1981-02-01

    Polyamine levels were evaluated in human HL-60 promyelocytic leukemia cells after treatment with inducers of terminal differentiation. Differentiation in these cells was determined by increases in the percentage of morphologically mature cells and in lysozyme activity. Treatment of the HL-60 cells with phorbol 12-myristate-13-acetate (PMA), phorbol 12,13-didecanoate or other inducers of terminal differentiation such as dimethylsulfoxide and retinoic acid resulted in increased levels of putrescine. However, no increase in putrescine could be detected after PMA treatment of a HL-60 cell variant that exhibited a decreased susceptibility to PMA-induced terminal differentiation. Similarly, no increase in putrescine was observed with two nontumor-promoters (phorbol 12,13-diacetate and 4-O-methyl-PMA) or with anthralin, a non-phorbol tumor promoter. In addition to enhancing putrescine levels, PMA also increased the amount of spermidine and decreased the amount of spermine. The increase in putrescine and spermidine preceded the expression of the various differentiation markers. Unlike the changes observed in the polyamine levels after PMA treatment, the activities of ornithine and S-adenosylmethionine decarboxylases, which are polyamine biosynthetic enzymes, did not significantly change. ..cap alpha..-Methylornithine and ..cap alpha..-difluoromethylornithine and methylglyoxal bis(guanylhydrazone), which are inhibitors of the polyamine biosynthetic enzymes, did not affect differentiation in control or PMA-treated cells. Because of these observations, we suggest that the change in polyamine levels involve biochemical pathways other than the known biosynthetic ones. By-products of these pathways may perhaps be the controlling factors involved in the induction of terminal differentiation in the HL-60 and other cell types as well.

  3. Histone deacetylases: a common molecular target for differentiation treatment of acute myeloid leukemias?

    PubMed

    Minucci, S; Nervi, C; Lo Coco, F; Pelicci, P G

    2001-05-28

    Recent discoveries have identified key molecular events in the pathogenesis of acute promyelocytic leukemia (APL), caused by chromosomal rearrangements of the transcription factor RAR (resulting in a fusion protein with the product of other cellular genes, such as PML). Oligomerization of RAR, through a self-association domain present in PML, imposes an altered interaction with transcriptional co-regulators (NCoR/SMRT). NCoR/SMRT are responsible for recruitment of histone deacetylases (HDACs), which is required for transcriptional repression of PML-RAR target genes, and for the transforming potential of the fusion protein. Oligomerization and altered recruitment of HDACs are also responsible for transformation by the fusion protein AML1-ETO, extending these mechanisms to other forms of acute myeloid leukemias (AMLs) and suggesting that HDAC is a common target for myeloid leukemias. Strikingly, AML1-ETO expression blocks retinoic acid (RA) signaling in hematopoietic cells, suggesting that interference with the RA pathway (genetically altered in APL) by HDAC recruitment may be a common theme in AMLs. Treatment of APLs with RA, and of other AMLs with RA plus HDAC inhibitors (HDACi), results in myeloid differentiation. Thus, activation of the RA signaling pathway and inhibition of HDAC activity might represent a general strategy for the differentiation treatment of myeloid leukemias.

  4. Caspofungin Acetate or Fluconazole in Preventing Invasive Fungal Infections in Patients With Acute Myeloid Leukemia Who Are Undergoing Chemotherapy

    ClinicalTrials.gov

    2016-08-23

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia in Remission; Childhood Acute Myelomonocytic Leukemia (M4); Fungal Infection; Neutropenia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  5. Identification of de Novo Fanconi Anemia in Younger Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-13

    Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Fanconi Anemia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Anemia With Ringed Sideroblasts; Secondary Myelodysplastic Syndromes; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  6. What Are the Risk Factors for Acute Lymphocytic Leukemia?

    MedlinePlus

    ... lymphocytic leukemia? What are the risk factors for acute lymphocytic leukemia? A risk factor is something that affects your ... this is unknown. Having an identical twin with ALL Someone who has an identical twin who develops ...

  7. Targeting MTHFD2 in acute myeloid leukemia.

    PubMed

    Pikman, Yana; Puissant, Alexandre; Alexe, Gabriela; Furman, Andrew; Chen, Liying M; Frumm, Stacey M; Ross, Linda; Fenouille, Nina; Bassil, Christopher F; Lewis, Caroline A; Ramos, Azucena; Gould, Joshua; Stone, Richard M; DeAngelo, Daniel J; Galinsky, Ilene; Clish, Clary B; Kung, Andrew L; Hemann, Michael T; Vander Heiden, Matthew G; Banerji, Versha; Stegmaier, Kimberly

    2016-06-27

    Drugs targeting metabolism have formed the backbone of therapy for some cancers. We sought to identify new such targets in acute myeloid leukemia (AML). The one-carbon folate pathway, specifically methylenetetrahydrofolate dehydrogenase-cyclohydrolase 2 (MTHFD2), emerged as a top candidate in our analyses. MTHFD2 is the most differentially expressed metabolic enzyme in cancer versus normal cells. Knockdown of MTHFD2 in AML cells decreased growth, induced differentiation, and impaired colony formation in primary AML blasts. In human xenograft and MLL-AF9 mouse leukemia models, MTHFD2 suppression decreased leukemia burden and prolonged survival. Based upon primary patient AML data and functional genomic screening, we determined that FLT3-ITD is a biomarker of response to MTHFD2 suppression. Mechanistically, MYC regulates the expression of MTHFD2, and MTHFD2 knockdown suppresses the TCA cycle. This study supports the therapeutic targeting of MTHFD2 in AML. PMID:27325891

  8. Sirolimus, Idarubicin, and Cytarabine in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-06-03

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  9. Cholecalciferol in Treating Patients With Acute Myeloid Leukemia Undergoing Intensive Induction Chemotherapy

    ClinicalTrials.gov

    2015-06-18

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  10. Lithium Carbonate and Tretinoin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-10-19

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  11. Azacitidine and Gemtuzumab Ozogamicin in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-09-20

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  12. Comparing Three Different Combination Chemotherapy Regimens in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-07-02

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  13. Decitabine in Treating Patients With Myelodysplastic Syndromes or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-09-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; de Novo Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  14. Diagnosis of acute leukemia in cerebrospinal fluid (CSF-acute leukemia).

    PubMed

    Crespo-Solis, Erick; López-Karpovitch, Xavier; Higuera, Jesús; Vega-Ramos, Beatriz

    2012-10-01

    Cerebrospinal fluid-acute leukemia (CSF-acute leukemia) is a frequent and serious complication in patients with acute leukemia. One of the major problems of this complication is the diagnosis process itself. CSF cytology is currently considered the gold standard for establishing the diagnosis, a technique which presents various processing limitations, seriously impacting the predictive values. In the last 11 years, studies of CSF flow cytometry analysis done in patients with acute leukemia have demonstrated superiority in comparison with CSF cytology. Although comparative studies between these two techniques have been reported since 2001, no new consensus or formal changes to the gold standard have been established for the CSF acute leukemia diagnosis. The evidence suggests that positive flow cytometry cases, considered as indeterminate cases, will behave like disease in the central nervous system (CNS). Nevertheless, we think there are some variables and considerations that must be first evaluated under research protocols before CNS relapse can be established with only one positive flow cytometry analysis in the setting of indeterminate CSF samples. This paper proposes a diagnostic algorithm and complementary strategies. PMID:22639108

  15. Entinostat and Sorafenib Tosylate in Treating Patients With Advanced or Metastatic Solid Tumors or Refractory or Relapsed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-09-18

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Recurrent Adult Acute Myeloid Leukemia; Unspecified Adult Solid Tumor, Protocol Specific

  16. Leukemia.

    PubMed

    Juliusson, Gunnar; Hough, Rachael

    2016-01-01

    Leukemias are a group of life threatening malignant disorders of the blood and bone marrow. In the adolescent and young adult (AYA) population, the acute leukemias are most prevalent, with chronic myeloid leukemia being infrequently seen. Factors associated with more aggressive disease biology tend to increase in frequency with increasing age, whilst tolerability of treatment strategies decreases. There are also challenges regarding the effective delivery of therapy specific to the AYA group, consequences on the unique psychosocial needs of this age group, including compliance. This chapter reviews the current status of epidemiology, pathophysiology, treatment strategies and outcomes of AYA leukemia, with a focus on acute lymphoblastic leukemia and acute myeloid leukemia. PMID:27595359

  17. Midostaurin and Decitabine in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia and FLT3 Mutation

    ClinicalTrials.gov

    2016-10-10

    Acute Myeloid Leukemia With FLT3/ITD Mutation; Acute Myeloid Leukemia With Gene Mutations; FLT3 Tyrosine Kinase Domain Point Mutation; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  18. Dynamic Response of IFI16 and Promyelocytic Leukemia Nuclear Body Components to Herpes Simplex Virus 1 Infection

    PubMed Central

    2015-01-01

    ABSTRACT Intrinsic immunity is an aspect of antiviral defense that operates through diverse mechanisms at the intracellular level through a wide range of constitutively expressed cellular proteins. In the case of herpesviruses, intrinsic resistance involves the repression of viral gene expression during the very early stages of infection, a process that is normally overcome by viral tegument and/or immediate-early proteins. Thus, the balance between cellular repressors and virus-counteracting proteins determines whether or not a cell becomes productively infected. One aspect of intrinsic resistance to herpes simplex virus 1 (HSV-1) is conferred by components of promyelocytic leukemia nuclear bodies (PML NBs), which respond to infection by accumulating at sites that are closely associated with the incoming parental HSV-1 genomes. Other cellular proteins, including IFI16, which has been implicated in sensing pathogen DNA and initiating signaling pathways that lead to an interferon response, also respond to viral genomes in this manner. Here, studies of the dynamics of the response of PML NB components and IFI16 to invading HSV-1 genomes demonstrated that this response is extremely rapid, occurring within the first hour after addition of the virus, and that human Daxx (hDaxx) and IFI16 respond more rapidly than PML. In the absence of HSV-1 regulatory protein ICP0, which counteracts the recruitment process, the newly formed, viral-genome-induced PML NB-like foci can fuse with existing PML NBs. These data are consistent with a model involving viral genome sequestration into such structures, thereby contributing to the low probability of initiation of lytic infection in the absence of ICP0. IMPORTANCE Herpesviruses have intimate interactions with their hosts, with infection leading either to the productive lytic cycle or to a quiescent infection in which viral gene expression is suppressed while the viral genome is maintained in the host cell nucleus. Whether a cell

  19. Brain Function in Young Patients Receiving Methotrexate for Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-04-08

    Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Cognitive Side Effects of Cancer Therapy; Long-Term Effects Secondary to Cancer Therapy in Children; Neurotoxicity Syndrome; Psychological Impact of Cancer; Untreated Childhood Acute Lymphoblastic Leukemia

  20. The influence of joint application of arsenic trioxide and daunorubicin on primary acute promyelocytic leukaemia cells and apoptosis and blood coagulation of cell strain.

    PubMed

    Zhang, Xiaojuan; Qin, Na; Chen, Xinghua; Guo, Shuxia

    2015-05-01

    This test cultivated three groups of acute promyelocytic leukemia (APL) and NB4 cells in liquid in vitro, processed them with arsenic trioxide (ATO), daunorubicin (DNR), ATO+DNR respectively, and then set up blank control group. Apoptosis of cells in each group was observed using flow cytometry, procoagulant activity of APL and NB4 cells in each group was detected with recalcification time, and expressions of tissue factor (TF), thrombomodulin and annexin II of NB4 cells in each group were measured using ELISA method. The results showed that the apoptosis rate increased 4-8 times compared with blank control group after processing APL and NB4 cells with ATO and DNR; procoagulant activity decreased obviously; and expression of TF and annexin II of NB4 cells reduced significantly (P<0.05). We concluded that combination of ATO and DNR could promote APL and NB4 cell apoptosis effectively without aggravating blood coagulation disorders, which might improve coagulation function of APL by inhibiting coagulation and hyperfibrinolysis through reducing expression of TF and annexin II. This drug combination may be a safe and effective method in the treatment of APL of primary high white blood cells type.

  1. The effect of aqueous cinnamon extract on the apoptotic process in acute myeloid leukemia HL-60 cells

    PubMed Central

    Assadollahi, Vahideh; Parivar, Kazem; Roudbari, Nasim Hayati; Khalatbary, Ali Reza; Motamedi, Masoumeh; Ezatpour, Behrouz; Dashti, Gholam Reza

    2013-01-01

    Background: Acute promyelocytic leukemia (APL) is an acute leukemia diagnosed by translocation of chromosomes 15 and 17 [T (15,17)] and aggregation of neoplastic promyelocytes which are incapable of being converted into mature cells. Today, many tend to use medicinal herbs in studies and clinical applications for treatment of cancers. Cinnamon with scientific name “cinnamomumzelanicum” is a shrub of Laurales order, lauraceae family with cinnamomum genus. It is a medicinal shrub with anti-proliferation effect on tumor cells. This study was conducted to determine the effects of aqueous cinnamon extract on HL-60 cells as a model for APL. Materials and Methods: In this in vitro experimental study, HL-60 cell line was cultured under the influence of cinnamon extract's concentrations of 0.01, 0.1, 1, and 2 mg/ml in with intervals of 24, 48, and 72 h. Growth inhibition and toxic effects of cinnamon extract were evaluated through tetrazolium salt reduction. The effect of this herb on the cell cycle was studied by flow cytometry. The Hoechst stain was used to detect apoptotic cell nuclei. Results: Cinnamon extract inhibited the growth of HL-60 cells as correlated with concentration and time. After 72 h of treating HL-60 cells with 0.01 mg/l cinnamon extract, the growth of cells was inhibited by 90.1%. Cinnamon extract stopped the cell cycle in G1 phase and the Hoechst staining verified the apoptotic process in those cells. Conclusion: Considering the inhibitory property of cinnamon extract, we recommend it as a single drug or besides other medications for treating promyelocytic leukemia. PMID:23977653

  2. Vorinostat and Azacitidine in Treating Patients With Myelodysplastic Syndromes or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-06-27

    Acute Erythroid Leukemia; Acute Megakaryoblastic Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Anemia With Ring Sideroblasts

  3. Decitabine, Donor Natural Killer Cells, and Aldesleukin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-01-07

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  4. Combination Chemotherapy and Dasatinib in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-19

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  5. Combination Chemotherapy With or Without PSC 833, Peripheral Stem Cell Transplantation, and/or Interleukin-2 in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-06-03

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  6. Leukemia

    MedlinePlus

    ... Acute leukemia in adults. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan MB, Tepper JE, eds. Abeloff's ... Pui CH. Childhood leukemia. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan MB, Tepper JE, eds. Abeloff's ...

  7. Ipilimumab in Treating Patients With Relapsed or Refractory High-Risk Myelodysplastic Syndrome or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-09-16

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome

  8. WEE1 Inhibitor AZD1775 With or Without Cytarabine in Treating Patients With Advanced Acute Myeloid Leukemia or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-09-12

    Chronic Myelomonocytic Leukemia; Myelodysplastic Syndrome With Isolated Del(5q); Myelodysplastic/Myeloproliferative Neoplasm; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  9. Genetics Home Reference: cytogenetically normal acute myeloid leukemia

    MedlinePlus

    ... one form of a cancer of the blood-forming tissue (bone marrow) called acute myeloid leukemia. In ... 1 link) PubMed Sources for This Page Döhner H. Implication of the molecular characterization of acute myeloid ...

  10. Clinico-pathological profile of acute promyelocytic leukaemia at Al-Amal Oncology-Haematology Centre, Qatar.

    PubMed

    Ibrahim, F A; Yassin, M A; El-Ayoubi, H R; Alhiji, I A; Albinali, A S; Almansour, S M; Qafoud, F M

    2010-09-01

    This cases series describes the profile of adult patients with acute promyelocytic leukaemia (APt) at a referral hospital in Qatar. Of 34 acute myeloid leukaemia (AML) cases diagnosed, 11(32%) were classified as APt. Disseminated intravascular coagulation was common at presentation (91%). Severe thrombocytopenia was seen in 73%, leukocytosis in 55% and severe anaemia in 45%. Only 2 patients were of the classic hypergranular type. In the remaining 9 patients, 3 morphological subtypes were recognized: microgranular variant (6 patients), hyperbasophilic (2 patients) and regular nuclear outline M3r (1 patient). Translocation t(15;17) was detected in 63% of cases. APL constitutes a high proportion of AML cases in Qatar, with considerable morphological heterogeneity and a oredominance of APL variants with unfavourable oresenting features. PMID:21218723

  11. [Acute monoblastic leukemia with tetrasomy 8].

    PubMed

    Kameoka, Junichi; Horiuchi, Takahiro; Miyamura, Koichi; Miura, Ikuo; Okuda, Mitsutaka; Nomura, Jun; Hirokawa, Makoto; Sawada, Kenichi; Sasaki, Takeshi

    2006-08-01

    Tetrasomy 8 is a rare chromosomal abnormality in acute leukemia, and it has recently been considered as a poor prognostic factor. A 20-year-old woman was admitted because of purpura on the upper and lower limbs in February 2002. On admission, her leukocyte count was 6.5 x 10(9)/l with 66% of blasts, the hemoglobin level was 11.2 g/dl, and the platelet count was 101 x 10(9)/l. The bone marrow aspirate contained 85.6% of peroxidase-negative, alpha-naphthyl-butyrate esterase-positive, and CD4+ CD56+ blast cells. Karyotypic analysis of the bone marrow cells showed 48, XY, + 8, + 8[17]/47, XY, +8[3]. The patient was diagnosed as having AML (M5a), and treatment with daunorubicin (70 mg x 5 days) and cytosine arabinoside (150 mg x 7 days) resulted in a complete remission. She relapsed four months later, however, with an extramedullary tumor in T12. Remission could not be achieved, and the patient underwent allogeneic peripheral blood stem cell transplantation from her HLA-identical mother. Her clinical course was almost uneventful except for a phlegmon in the right leg, but on day 49 a relapse occurred, and she died of acute renal failure on day 73. This case strongly illustrates the characteristic of tetrasomy 8 as a poor prognostic factor in acute leukemia. PMID:16986717

  12. Does hematopoietic stem cell transplantation benefit infants with acute leukemia?

    PubMed Central

    Sison, Edward Allan R.; Brown, Patrick

    2015-01-01

    A 6-month-old girl was diagnosed with acute lymphoblastic leukemia (ALL). She has completed induction therapy and is currently in first complete remission (CR1). You are asked by your resident if hematopoietic stem cell transplantation (HSCT) would benefit infants with acute leukemia. PMID:24319238

  13. Donor Peripheral Blood Stem Cell Transplant and Pretargeted Radioimmunotherapy in Treating Patients With High-Risk Advanced Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-03-01

    Chronic Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Cytopenia With Multilineage Dysplasia; Refractory Cytopenia With Multilineage Dysplasia and Ringed Sideroblasts; Secondary Acute Myeloid Leukemia

  14. Alvocidib, Cytarabine, and Mitoxantrone Hydrochloride or Cytarabine and Daunorubicin Hydrochloride in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-10-10

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  15. Early Discharge and Outpatients Care in Patients With Myelodysplastic Syndrome or Acute Myeloid Leukemia Previously Treated With Intensive Chemotherapy

    ClinicalTrials.gov

    2015-02-05

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia

  16. Curcumin suppresses activation of NF-kappaB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells.

    PubMed

    Han, Seong-Su; Keum, Young-Sam; Seo, Hyo-Joung; Surh, Young-Joon

    2002-05-31

    Many components that are derived from medicinal or dietary plants possess potential chemopreventive properties. Curcumin, a yellow coloring agent from turmeric (Curcuma longa Linn, Zingiberaceae), possesses strong antimutagenic and anticarcinogenic activities. In this study, we have found that curcumin inhibits the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced nuclear factor kB (NF-kappaB) activation by preventing the degradation of the inhibitory protein IkBalpa; and the subsequent translocation of the p65 subunit in cultured human promyelocytic leukemia (HL-60) cells. Alternatively, curcumin repressed the TPA-induced activation of NF-kappaB through direct interruption of the binding of NF-kappaB to its consensus DNA sequences. Likewise, the TPA-induced DNA binding of the activator protein-1 (AP-1) was inhibited by curcumin pretreatment. PMID:12297018

  17. Eugenol isolated from the essential oil of Eugenia caryophyllata induces a reactive oxygen species-mediated apoptosis in HL-60 human promyelocytic leukemia cells.

    PubMed

    Yoo, Chae-Bin; Han, Ki-Tae; Cho, Kyu-Seok; Ha, Joohun; Park, Hee-Juhn; Nam, Jung-Hwan; Kil, Uk-Hyun; Lee, Kyung-Tae

    2005-07-01

    Eugenol is a major component of essential oil isolated from the Eugenia caryophyllata (Myrtaceae), which has been widely used as a herbal drug. In this study, we investigated the effects of eugenol on the cytotoxicity, induction of apoptosis, and the putative pathways of its actions in human promyelocytic leukemia cells (HL-60) under the standard laboratory illumination. Eugenol-treated HL-60 cells displayed features of apoptosis including DNA fragmentation and formation of DNA ladders in agarose gel electrophoresis. We observed that eugenol transduced the apoptotic signal via ROS generation, thereby inducing mitochondrial permeability transition (MPT), reducing anti-apoptotic protein bcl-2 level, inducing cytochrome c release to the cytosol, and subsequent apoptotic cell death. Taken together, the present study demonstrated that ROS plays a critical role in eugenol-induced apoptosis in HL-60, and this is the first report on the mechanism of the anticancer effect of eugenol. PMID:15922856

  18. Copper(II) and uranyl(II) complexes with acylthiosemicarbazide: synthesis, characterization, antibacterial activity and effects on the growth of promyelocytic leukemia cells HL-60.

    PubMed

    Angelusiu, Madalina Veronica; Almajan, Gabriela Laura; Rosu, Tudor; Negoiu, Maria; Almajan, Eva-Ruxandra; Roy, Jenny

    2009-08-01

    New chelates of N(1)-[4-(4-X-phenylsulfonyl)benzoyl]-N(4)-butyl-thiosemicarbazide (X=H, Cl, Br) with Cu(2+) and UO(2)(2+) have been prepared and characterized by analytical and physico-chemical techniques such as magnetic susceptibility measurements, elemental and thermal analyses, electronic, ESR and IR spectral studies. Room temperature ESR spectra of Cu(II) complexes yield {g} values characteristic of distorted octahedral and pseudo-tetrahedral geometry. Infrared spectra indicate that complexes contain six-coordinate uranium atom with the ligand atoms arranged in an equatorial plane around the linear uranyl group. Effects of these complexes on the growth of human promyelocytic leukemia cells HL-60 and their antibacterial activity (against Staphylococcus epidermidis ATCC 14990, Bacillus subtilis ATCC 6633, Bacillus cereus ATCC 14579, Pseudomonas aeruginosa ATCC 9027 and Escherichia coli ATCC 11775 strains) were studied comparatively with that of free ligands. PMID:19356828

  19. High-Dose Busulfan and High-Dose Cyclophosphamide Followed By Donor Bone Marrow Transplant in Treating Patients With Leukemia, Myelodysplastic Syndrome, Multiple Myeloma, or Recurrent Hodgkin or Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2010-08-05

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With T(15;17)(q22;q12); Adult Acute Myeloid Leukemia With T(16;16)(p13;q22); Adult Acute Myeloid Leukemia With T(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Adult Pure Erythroid Leukemia (M6b); Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Burkitt Lymphoma; Childhood Acute Erythroleukemia (M6); Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia in Remission; Childhood Acute Myelomonocytic Leukemia (M4); Childhood Acute Promyelocytic Leukemia (M3); Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Phase Chronic Myelogenous Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; De Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-Cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent

  20. Etoposide, Prednisone, Vincristine Sulfate, Cyclophosphamide, and Doxorubicin Hydrochloride With Asparaginase in Treating Patients With Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2016-10-24

    B Acute Lymphoblastic Leukemia; B Lymphoblastic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent B Lymphoblastic Lymphoma; Recurrent T Lymphoblastic Leukemia/Lymphoma; Refractory B Lymphoblastic Lymphoma; Refractory T Lymphoblastic Lymphoma; T Acute Lymphoblastic Leukemia; T Lymphoblastic Lymphoma

  1. Decitabine and Valproic Acid in Treating Patients With Refractory or Relapsed Acute Myeloid Leukemia or Previously Treated Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2013-09-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Untreated Adult Acute Myeloid Leukemia

  2. High-Risk Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Bhojwani, Deepa; Howard, Scott C.; Pui, Ching-Hon

    2009-01-01

    Although most children with acute lymphoblastic leukemia (ALL) are cured, certain subsets have a high risk of relapse. Relapse risk can be predicted by early response to therapy, clinical and pharmacogenetic features of the host, and genetic characteristics of leukemic cells. Though early treatment response can be assessed by the peripheral blast cell count after 1 week of single-agent glucocorticoid treatment or percent of bone marrow blasts by morphology after 1 or 2 weeks of multiagent induction treatment, determination of minimal residual disease by polymerase chain reaction (PCR) or flow cytometry after 2 to 6 weeks of induction is the most precise and useful measure. Augmented therapy has improved outcome for the poor responders to initial treatment. Infants with mixed-lineage leukemia (MLL)–rearranged ALL comprise a very poor-risk group wherein further intensification of chemotherapy causes significant toxicity. Hybrid protocols incorporating drugs effective for acute myeloid leukemia could improve survival, a strategy being tested in international trials. Studies on the biology of MLL-induced leukemogenesis have prompted the development of novel targeted agents, currently under evaluation in clinical trials. Short-term outcomes of patients with Philadelphia chromosome (Ph)–positive ALL have improved significantly by adding tyrosine kinase inhibitors to standard chemotherapy regimens. New agents and methods to overcome resistance are under investigation, and allogeneic stem cell transplantation is recommended for certain subsets of patients, for example those with Ph+ and T-cell ALL with poor early response. Genome-wide interrogation of leukemic cell genetic abnormalities and germline genetic variations promise to identify new molecular targets for therapy. PMID:19778845

  3. Nanomedicine approaches in acute lymphoblastic leukemia.

    PubMed

    Tatar, Andra-Sorina; Nagy-Simon, Timea; Tomuleasa, Ciprian; Boca, Sanda; Astilean, Simion

    2016-09-28

    Acute lymphoblastic leukemia (ALL) is the malignancy with the highest incidence amongst children (26% of all cancer cases), being surpassed only by the cancers of the brain and of the nervous system. The most recent research on ALL is focusing on new molecular therapies, like targeting specific biological structures in key points in the cell cycle, or using selective inhibitors for transmembranary proteins involved in cell signalling, and even aiming cell surface receptors with specifically designed antibodies for active targeting. Nanomedicine approaches, especially by the use of nanoparticle-based compounds for the delivery of drugs, cancer diagnosis or therapeutics may represent new and modern ways in the near future anti-cancer therapies. This review offers an overview on the recent role of nanomedicine in the detection and treatment of acute lymphoblastic leukemia as resulting from a thorough literature survey. A short introduction on the basics of ALL is presented followed by the description of the conventional methods used in the ALL detection and treatment. We follow our discussion by introducing some of the general nano-strategies used for cancer detection and treatment. The detailed role of organic and inorganic nanoparticles in ALL applications is further presented, with a special focus on gold nanoparticle-based nanocarriers of antileukemic drugs. PMID:27460684

  4. Nanomedicine approaches in acute lymphoblastic leukemia.

    PubMed

    Tatar, Andra-Sorina; Nagy-Simon, Timea; Tomuleasa, Ciprian; Boca, Sanda; Astilean, Simion

    2016-09-28

    Acute lymphoblastic leukemia (ALL) is the malignancy with the highest incidence amongst children (26% of all cancer cases), being surpassed only by the cancers of the brain and of the nervous system. The most recent research on ALL is focusing on new molecular therapies, like targeting specific biological structures in key points in the cell cycle, or using selective inhibitors for transmembranary proteins involved in cell signalling, and even aiming cell surface receptors with specifically designed antibodies for active targeting. Nanomedicine approaches, especially by the use of nanoparticle-based compounds for the delivery of drugs, cancer diagnosis or therapeutics may represent new and modern ways in the near future anti-cancer therapies. This review offers an overview on the recent role of nanomedicine in the detection and treatment of acute lymphoblastic leukemia as resulting from a thorough literature survey. A short introduction on the basics of ALL is presented followed by the description of the conventional methods used in the ALL detection and treatment. We follow our discussion by introducing some of the general nano-strategies used for cancer detection and treatment. The detailed role of organic and inorganic nanoparticles in ALL applications is further presented, with a special focus on gold nanoparticle-based nanocarriers of antileukemic drugs.

  5. Cancer procoagulant in acute lymphoblastic leukemia.

    PubMed

    Alessio, M G; Falanga, A; Consonni, R; Bassan, R; Minetti, B; Donati, M B; Barbui, T

    1990-08-01

    In a previous study we characterized cancer procoagulant (CP), a 68 kd cysteine proteinase which directly activates coagulation factor X in various subtypes (from M1 to M5) of acute non-lymphoblastic leukemia (ANLL). The aim of this study was to determine whether CP is also expressed by acute lymphoblastic leukemia (ALL) cells. Blasts from 25 ALL patients were extracted and tested for their procoagulant properties. 16 samples (64%) shortened the recalcification time of normal human plasma, and 9 (36%) did not. 8 of the 16 active samples showed properties compatible with CP, i.e. independence from factor VII in triggering blood coagulation and sensitivity to cysteine proteinase inhibitors. Selected samples also cross-reacted with a polyclonal antibody raised against purified CP. The specific activity of CP in ALL extracts was significantly lower than in most ANLL types previously studied (all but M4). These finding indicate that CP can be a property of the lymphoid phenotype although its expression may be lower than in the myeloid phenotype.

  6. Dasatinib and Combination Chemotherapy in Treating Young Patients With Newly Diagnosed Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-09-08

    Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Childhood B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  7. Induction of differentiation and apoptosis- a possible strategy in the treatment of adult acute myelogenous leukemia.

    PubMed

    Bruserud, O; Gjertsen, B T; Huang, Ts

    2000-01-01

    A differentiation block with accumulation of immature myeloid cells characterizes acute myelogenous leukemia (AML). However, native AML cells often show some morphological signs of differentiation that allow a classification into different subsets, and further differentiation may be induced by exposure to various soluble mediators, e.g., all trans-retinoic acid (ATRA) and several cytokines. Combination therapy with ATRA and chemotherapy should now be regarded as the standard treatment for the acute promyelocytic leukemia variant of AML. Several agents can induce leukemic cell differentiation for other AML subtypes, although these effects differ between patients. Differentiation may then be associated with induction of apoptosis, and differentiation-inducing therapy may therefore become useful in combination with intensive chemotherapy to increase the susceptibility of AML blasts to drug-induced apoptosis. However, it should be emphasized that differentiation and apoptosis can occur as separate events with different regulation in AML cells, and future studies in AML should therefore focus on: A) the identification of new agents with more predictable effects on differentiation and apoptosis; B) the use of clinical and laboratory parameters to define new subsets of AML patients in which differentiation/apoptosis induction has a predictable and beneficial effect, and C) further characterization of how AML blast sensitivity to drug-induced apoptosis is modulated by differentiation induction.

  8. Sorafenib Tosylate and Chemotherapy in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-05

    Acute Myeloid Leukemia (Megakaryoblastic) With t(1;22)(p13;q13); RBM15-MKL1; Acute Myeloid Leukemia With a Variant RARA Translocation; Acute Myeloid Leukemia With Inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1; Acute Myeloid Leukemia With t(6;9)(p23;q34); DEK-NUP214; Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Acute Myeloid Leukemia With Variant MLL Translocations; Untreated Adult Acute Myeloid Leukemia

  9. Acute megakaryoblastic leukemia, unlike acute erythroid leukemia, predicts an unfavorable outcome after allogeneic HSCT.

    PubMed

    Ishiyama, Ken; Yamaguchi, Takuhiro; Eto, Tetsuya; Ohashi, Kazuteru; Uchida, Naoyuki; Kanamori, Heiwa; Fukuda, Takahiro; Miyamura, Koichi; Inoue, Yoshiko; Taguchi, Jun; Mori, Takehiko; Iwato, Koji; Morishima, Yasuo; Nagamura-Inoue, Tokiko; Atsuta, Yoshiko; Sakamaki, Hisashi; Takami, Akiyoshi

    2016-08-01

    Acute erythroid leukemia (FAB-M6) and acute megakaryoblastic leukemia (FAB-M7) exhibit closely related properties in cells regarding morphology and the gene expression profile. Although allogeneic hematopoietic stem cell transplantation (allo-HSCT) is considered the mainstay of the treatment for both subtypes of leukemia due to their refractoriness to chemotherapy and high rates of relapse, it remains unclear whether allo-HSCT is curative in such cases due to their scarcity. We retrospectively examined the impact of allo-HSCT in 382 patients with M6 and 108 patients with M7 using nationwide HSCT data and found the overall survival (OS) and relapse rates of the M6 patients to be significantly better than those of the M7 patients after adjusting for confounding factors and statistically comparable with those of the patients with M0/M1/M2/M4/M5 disease. Consequently, the factors of age, gender, performance status, karyotype, disease status at HSCT and development of graft-vs.-host disease predicted the OS for the M6 patients, while the performance status and disease status at HSCT were predictive of the OS for the M7 patients. These findings substantiate the importance of distinguishing between M6 and M7 in the HSCT setting and suggest that unknown mechanisms influence the HSCT outcomes of these closely related subtypes of leukemia. PMID:27244257

  10. Cyclosporine, Pravastatin Sodium, Etoposide, and Mitoxantrone Hydrochloride in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2012-06-18

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  11. Vorinostat and Decitabine in Treating Patients With Advanced Solid Tumors or Relapsed or Refractory Non-Hodgkin's Lymphoma, Acute Myeloid Leukemia, Acute Lymphocytic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2014-08-26

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Secondary Acute Myeloid Leukemia; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma

  12. Vorinostat With or Without Isotretinoin in Treating Young Patients With Recurrent or Refractory Solid Tumors, Lymphoma, or Leukemia

    ClinicalTrials.gov

    2014-06-16

    Childhood Acute Promyelocytic Leukemia (M3); Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Juvenile Myelomonocytic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Neuroblastoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Relapsing Chronic Myelogenous Leukemia; Unspecified Childhood Solid Tumor, Protocol Specific

  13. New Strategies in Acute Myelogenous Leukemia: Leukemogenesis and Personalized Medicine

    PubMed Central

    Gojo, Ivana; Karp, Judith E.

    2014-01-01

    Recent advances in molecular technology have unraveled the complexity of leukemogenesis and provided the opportunity to design more personalized and pathophysiology-targeted therapeutic strategies. Despite the use of intensive chemotherapy, relapse remains the most common cause for therapeutic failure in acute myelogenous leukemia (AML). The interactions between leukemia stem cells (LSC) and marrow microenvironment appear to be critical in promoting therapeutic resistance through progressive acquisition of genetic and epigenetic changes within leukemia cells and immune evasion, resulting in leukemia cell survival. With advances in genomic sequencing efforts, epigenetic and phenotypic characterization, personalized therapeutic strategies aimed at critical leukemia survival mechanisms may be feasible in the near future. Here, we review select novel approaches to therapy of AML such as targeting LSC, altering leukemia/marrow microenvironment interactions, inhibiting DNA repair or cell cycle checkpoints, and augmenting immune-based anti-leukemia activity. PMID:25324141

  14. Is Acute Myeloid Leukemia a Liquid Tumor?

    PubMed Central

    Ohanian, Maro; Faderl, Stefan; Ravandi, Farhad; Pemmaraju, Naveen; Garcia-Manero, Guillermo; Cortes, Jorge; Estrov, Zeev

    2014-01-01

    Extramedullary manifestations of acute myeloid leukemia (AML) were described as early as the 19th century. However, the incidence, clinical significance, and pathobiology of extramedullary AML remain ill defined. We reviewed case reports, retrospective case series, pilot studies, and imaging studies of extramedullary leukemia (EML) to determine its frequency, characteristics, clinical presentation, and significance. EML precedes or accompanies development of AML and occurs during or following treatment, even during remission. Although imaging studies are rarely conducted and the true incidence of EML has yet to be verified, authors have reported several estimates based on retrospective and autopsy studies. The incidence of EML in patients with AML of all ages is estimated to be about 9% and EML in children with AML was detected in 40% of patients at diagnosis. The combination of positron emission tomography and computed tomography were the most sensitive and reliable techniques of detecting and monitoring EML. Based on our literature review, the frequency of EML is likely underreported. The well-documented nature of EML in AML patients suggests that AML can manifest as a solid tumor. The extent to which EML accompanies AML and whether EML is derived from bone marrow are unknown. Furthermore, questions remain regarding the role of the microenvironment, which may or may not facilitate the survival and proliferation of EML, and the implications of these interactions with regard to minimal residual disease, tumor cell quiescence, and relapse. Therefore, prospective studies of detection and characterization of EML in AML patients are warranted. PMID:23280377

  15. MINIMAL RESIDUAL DISEASE IN ACUTE LYMPHOBLASTIC LEUKEMIA

    PubMed Central

    Campana, Dario

    2009-01-01

    In patients with acute lymphoblastic leukemia (ALL), monitoring of minimal residual disease (MRD) offers a way to precisely assess early treatment response and detect relapse. Established methods to study MRD are flow cytometric detection of abnormal immunophenotypes, polymerase chain reaction (PCR) amplification of antigen-receptor genes, and PCR amplification of fusion transcripts. The strong correlation between MRD levels and risk of relapse in childhood ALL is well established; studies in adult patients also support its prognostic value. Hence, results of MRD studies can be used to select treatment intensity and duration, and estimate the optimal timing for hematopoietic stem cell transplantation. Practical issues in the implementation of MRD assays in clinical studies include determining the most informative time point to study MRD, the levels of MRD that will trigger changes in treatment intensity, as well as the relative cost and informative power of different methodologies. The identification of new markers of leukemia and the use of increasingly refined assays should further facilitate routine monitoring of MRD and help clarifying the cellular and biologic features of leukemic cells that resist chemotherapy in vivo. PMID:19100372

  16. Acute lymphoblastic leukemia and developmental biology

    PubMed Central

    Campos-Sanchez, Elena; Toboso-Navasa, Amparo; Romero-Camarero, Isabel; Barajas-Diego, Marcos

    2011-01-01

    The latest scientific findings in the field of cancer research are redefining our understanding of the molecular and cellular basis of the disease, moving the emphasis toward the study of the mechanisms underlying the alteration of the normal processes of cellular differentiation. The concepts best exemplifying this new vision are those of cancer stem cells and tumoral reprogramming. The study of the biology of acute lymphoblastic leukemias (ALLs) has provided seminal experimental evidence supporting these new points of view. Furthermore, in the case of B cells, it has been shown that all the stages of their normal development show a tremendous degree of plasticity, allowing them to be reprogrammed to other cellular types, either normal or leukemic. Here we revise the most recent discoveries in the fields of B-cell developmental plasticity and B-ALL research and discuss their interrelationships and their implications for our understanding of the biology of the disease. PMID:22031225

  17. Pharmacogenetics of childhood acute lymphoblastic leukemia.

    PubMed

    Lopez-Lopez, Elixabet; Gutierrez-Camino, Angela; Bilbao-Aldaiturriaga, Nerea; Pombar-Gomez, Maria; Martin-Guerrero, Idoia; Garcia-Orad, Africa

    2014-07-01

    Acute lymphoblastic leukemia (ALL) is the major pediatric cancer in developed countries. Although treatment outcome has improved owing to advances in chemotherapy, there is still a group of patients for which therapy fails while some patients experience severe toxicity. In the last few years, several pharmacogenetic studies have been performed to search for markers of outcome and toxicity in pediatric ALL. However, to date, TPMT is the only pharmacogenetic marker in ALL with clinical guidelines for drug dosing. In this article, we will provide an overview of the most important findings carried out in pharmacogenetics for pediatric ALL, such as the interest drawn by methotrexate transporters in the context of methotrexate treatment. Even if most of the studies are centered on coding genes, we will also point to new approaches focusing on noncoding regions and epigenetic variation that could be interesting for consideration in the near future.

  18. Perinatal risk factors for acute myeloid leukemia.

    PubMed

    Crump, Casey; Sundquist, Jan; Sieh, Weiva; Winkleby, Marilyn A; Sundquist, Kristina

    2015-12-01

    Infectious etiologies have been hypothesized for acute leukemias because of their high incidence in early childhood, but have seldom been examined for acute myeloid leukemia (AML). We conducted the first large cohort study to examine perinatal factors including season of birth, a proxy for perinatal infectious exposures, and risk of AML in childhood through young adulthood. A national cohort of 3,569,333 persons without Down syndrome who were born in Sweden in 1973-2008 were followed up for AML incidence through 2010 (maximum age 38 years). There were 315 AML cases in 69.7 million person-years of follow-up. We found a sinusoidal pattern in AML risk by season of birth (P < 0.001), with peak risk among persons born in winter. Relative to persons born in summer (June-August), incidence rate ratios for AML were 1.72 (95 % CI 1.25-2.38; P = 0.001) for winter (December-February), 1.37 (95 % CI 0.99-1.90; P = 0.06) for spring (March-May), and 1.27 (95 % CI 0.90-1.80; P = 0.17) for fall (September-November). Other risk factors for AML included high fetal growth, high gestational age at birth, and low maternal education level. These findings did not vary by sex or age at diagnosis. Sex, birth order, parental age, and parental country of birth were not associated with AML. In this large cohort study, birth in winter was associated with increased risk of AML in childhood through young adulthood, possibly related to immunologic effects of early infectious exposures compared with summer birth. These findings warrant further investigation of the role of seasonally varying perinatal exposures in the etiology of AML.

  19. Cyclophosphamide and Busulfan Followed by Donor Stem Cell Transplant in Treating Patients With Myelofibrosis, Acute Myeloid Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2014-04-03

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Childhood Acute Myeloid Leukemia in Remission; Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Myelodysplastic Syndrome With Isolated Del(5q); Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Secondary Myelofibrosis; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  20. Adult Acute Myeloid Leukemia Long-term Survivors

    PubMed Central

    Cheng, M. Jennifer; Hourigan, Christopher S.; Smith, Thomas J.

    2014-01-01

    The number of leukemia patients and survivors is growing. This review summarizes what is known regarding the health related quality of life (HRQOL) and medical complications associated with acute myeloid leukemia (AML) disease and treatment and highlights understudied aspects of adult AML survivorship care, and potential novel areas for intervention. PMID:25243197

  1. Symptom-Adapted Physical Activity Intervention in Minimizing Physical Function Decline in Older Patients With Acute Myeloid Leukemia Undergoing Chemotherapy

    ClinicalTrials.gov

    2016-07-26

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  2. Combination Chemotherapy in Treating Young Patients With Newly Diagnosed High-Risk B Acute Lymphoblastic Leukemia and Ph-Like TKI Sensitive Mutations

    ClinicalTrials.gov

    2016-11-02

    B Acute Lymphoblastic Leukemia; Bone Necrosis; Central Nervous System Leukemia; Cognitive Side Effects of Cancer Therapy; Neurotoxicity Syndrome; Pain; Testicular Leukemia; Therapy-Related Toxicity; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  3. Serum metabonomics of acute leukemia using nuclear magnetic resonance spectroscopy

    PubMed Central

    Musharraf, Syed Ghulam; Siddiqui, Amna Jabbar; Shamsi, Tahir; Choudhary, M. Iqbal; Rahman, Atta-ur

    2016-01-01

    Acute leukemia is a critical neoplasm of white blood cells. In order to differentiate between the metabolic alterations associated with two subtypes of acute leukemia, acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), we investigated the serum of ALL and AML patients and compared with two controls (healthy and aplastic anemia) using 1H NMR (nuclear magnetic resonance) spectroscopy. Thirty-seven putative metabolites were identified using Carr-Purcell-Meiboom-Gill (CPMG) sequence. The use of PLS-DA and OPLS-DA models gave results with 84.38% and 90.63% classification rate, respectively. The metabolites responsible for classification are mainly lipids, lactate and glucose. Compared with controls, ALL and AML patients showed serum metabonomic differences involving aberrant metabolism pathways including glycolysis, TCA cycle, lipoprotein changes, choline and fatty acid metabolisms. PMID:27480133

  4. Endometrial and acute myeloid leukemia cancer genomes characterized

    Cancer.gov

    Two studies from The Cancer Genome Atlas (TCGA) program reveal details about the genomic landscapes of acute myeloid leukemia (AML) and endometrial cancer. Both provide new insights into the molecular underpinnings of these cancers with the potential to i

  5. Agents for refractory/relapsed acute lymphocytic leukemia in adults.

    PubMed

    Qian, L-R; Fu, W; Shen, J-L

    2014-01-01

    Although treatment results for adult acute lymphoblastic leukemia (ALL) have improved considerably in the past decades, treating adult patients with relapsed/refractory acute lymphocytic leukemia (ALL) is still difficult. Adults with refractory/relapsed acute lymphocytic leukemia (ALL) processed to death rapidly associated with chemotherapy resistance, high mortality by reinduction, etc. Only 20% to 30% of those patients acquired complete remission (CR). Those patients are always of short duration unless an allogeneic stem cell transplant is feasible. Median survival is only ranging from 2 to 12 months. Therapeutic strategy on relapsed/refractory acute lymphocytic leukemia (ALL) is always a major therapeutic challenge bothering hematological researchers. Novel agents and unique therapeutic strategies have been developed in recent years. This review focuses on major clinical advances in the agents for refractory/relapsed ALL.

  6. Genetics Home Reference: familial acute myeloid leukemia with mutated CEBPA

    MedlinePlus

    ... N. A family harboring a germ-line N-terminal C/EBPalpha mutation and development of acute myeloid leukemia with an additional somatic C-terminal C/EBPalpha mutation. Genes Chromosomes Cancer. 2010 Mar; ...

  7. Decitabine Followed by Idarubicin and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-10-09

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts

  8. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance

    PubMed Central

    Ivey, Adam; Huntly, Brian J. P.

    2016-01-01

    Recent major advances in understanding the molecular basis of acute myeloid leukemia (AML) provide a double-edged sword. Although defining the topology and key features of the molecular landscape are fundamental to development of novel treatment approaches and provide opportunities for greater individualization of therapy, confirmation of the genetic complexity presents a huge challenge to successful translation into routine clinical practice. It is now clear that many genes are recurrently mutated in AML; moreover, individual leukemias harbor multiple mutations and are potentially composed of subclones with differing mutational composition, rendering each patient’s AML genetically unique. In order to make sense of the overwhelming mutational data and capitalize on this clinically, it is important to identify (1) critical AML-defining molecular abnormalities that distinguish biological disease entities; (2) mutations, typically arising in subclones, that may influence prognosis but are unlikely to be ideal therapeutic targets; (3) mutations associated with preleukemic clones; and (4) mutations that have been robustly shown to confer independent prognostic information or are therapeutically relevant. The reward of identifying AML-defining molecular lesions present in all leukemic populations (including subclones) has been exemplified by acute promyelocytic leukemia, where successful targeting of the underlying PML-RARα oncoprotein has eliminated the need for chemotherapy for disease cure. Despite the molecular heterogeneity and recognizing that treatment options for other forms of AML are limited, this review will consider the scope for using novel molecular information to improve diagnosis, identify subsets of patients eligible for targeted therapies, refine outcome prediction, and track treatment response. PMID:26660431

  9. Overexpression of Promyelocytic Leukemia Protein Precludes the Dispersal of ND10 Structures and Has No Effect on Accumulation of Infectious Herpes Simplex Virus 1 or Its Proteins

    PubMed Central

    Lopez, Pascal; Jacob, Robert J.; Roizman, Bernard

    2002-01-01

    A key early event in the replication of herpes simplex virus 1 (HSV-1) is the localization of infected-cell protein no. 0 (ICP0) in nuclear structures knows as ND10 or promyelocytic leukemia oncogenic domains (PODs). This is followed by dispersal of ND10 constituents such as the promyelocytic leukemia protein (PML), CREB-binding protein (CBP), and Daxx. Numerous experiments have shown that this dispersal is mediated by ICP0. PML is thought to be the organizing structural component of ND10. To determine whether the virus targets PML because it is inimical to viral replication, telomerase-immortalized human foreskin fibroblasts and HEp-2 cells were transduced with wild-type baculovirus or a baculovirus expressing the Mr 69,000 form of PML. The transduced cultures were examined for expression and localization of PML in mock-infected and HSV-1-infected cells. The results obtained from studies of cells overexpressing PML were as follows. (i) Transduced cells accumulate large amounts of unmodified and SUMO-I-modified PML. (ii) Mock-infected cells exhibited enlarged ND10 structures containing CBP and Daxx in addition to PML. (iii) In infected cells, ICP0 colocalized with PML in ND10 early in infection, but the two proteins did not overlap or were juxtaposed in orderly structures. (iv) The enlarged ND10 structures remained intact at least until 12 h after infection and retained CBP and Daxx in addition to PML. (v) Overexpression of PML had no effect on the accumulation of viral proteins representative of α, β, or γ groups and had no effect on the accumulation of infectious virus in cells infected with wild-type virus or a mutant (R7910) from which the α0 genes had been deleted. These results indicate the following: (i) PML overexpressed in transduced cells cannot be differentiated from endogenous PML with respect to sumoylation and localization in ND10 structures. (ii) PML does not affect viral replication or the changes in the localization of ICP0 through infection

  10. Decitabine as Maintenance Therapy After Standard Therapy in Treating Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-19

    Acute Myeloid Leukemia With Myelodysplasia-Related Changes; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Untreated Adult Acute Myeloid Leukemia

  11. Role of Promyelocytic Leukemia Zinc Finger (PLZF) in Cell Proliferation and Cyclin-dependent Kinase Inhibitor 1A (p21WAF/CDKN1A) Gene Repression*

    PubMed Central

    Choi, Won-Il; Kim, Min-Young; Jeon, Bu-Nam; Koh, Dong-In; Yun, Chae-Ok; Li, Yan; Lee, Choong-Eun; Oh, Jiyoung; Kim, Kunhong; Hur, Man-Wook

    2014-01-01

    Promyelocytic leukemia zinc finger (PLZF) is a transcription repressor that was initially isolated as a fusion protein with retinoic acid receptor α. PLZF is aberrantly overexpressed in various human solid tumors, such as clear cell renal carcinoma, glioblastoma, and seminoma. PLZF causes cellular transformation of NIH3T3 cells and increases cell proliferation in several cell types. PLZF also increases tumor growth in the mouse xenograft tumor model. PLZF may stimulate cell proliferation by controlling expression of the genes of the p53 pathway (ARF, TP53, and CDKN1A). We found that PLZF can directly repress transcription of CDKN1A encoding p21, a negative regulator of cell cycle progression. PLZF binds to the proximal Sp1-binding GC-box 5/6 and the distal p53-responsive elements of the CDKN1A promoter to repress transcription. Interestingly, PLZF interacts with Sp1 or p53 and competes with Sp1 or p53. PLZF interacts with corepressors, such as mSin3A, NCoR, and SMRT, thereby deacetylates Ac-H3 and Ac-H4 histones at the CDKN1A promoter, which indicated the involvement of the corepressor·HDACs complex in transcription repression by PLZF. Also, PLZF represses transcription of TP53 and also decreases p53 protein stability by ubiquitination. PLZF may act as a potential proto-oncoprotein in various cell types. PMID:24821727

  12. Induction of mitochondrial dependent apoptosis and cell cycle arrest in human promyelocytic leukemia HL-60 cells by an extract from Dorstenia psilurus: a spice from Cameroon

    PubMed Central

    2013-01-01

    Background The use of edible plants is an integral part of dietary behavior in the West region of Cameroon. Dorstenia psilurus (Moraceae) is widely used as spice and as medicinal plant for the treatment of several diseases in Cameroon. The aim of this study is to investigate the cytotoxic and apoptotic potential of methanol extract of D. psilurus in human promyelocytic leukemia (HL-60) cells and prostate cancer (PC-3) cells. Methods Cytotoxicity of D. psilurus extract was tested in HL-60 and PC-3 cells using 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay and flow cytometric methods Results The methanol extract of D. psilurus have significant in vitro cytotoxic activity in HL-60 cells and PC-3 cells with IC50 value of 12 ±1.54 μg/ml and 18 ± 0.45 μg/ml respectively after 48 h. The mechanism of antiproliferative activity showed that after 24 h, D. psilurus extract induces apoptosis on HL-60 cells by the generation of reactive oxygen species (ROS) along with concurrent loss of mitochondrial membrane potential, modification in the DNA distribution and enhance of G2/M phase cell cycle. Conclusion The extract induces apoptosis of HL-60 cells associated with ROS production, loss of mitochondrial membrane potential and apoptotic DNA fragmentation. PMID:24016040

  13. Busulfan and Etoposide Followed by Peripheral Blood Stem Cell Transplant and Low-Dose Aldesleukin in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-08-04

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Childhood Acute Myeloid Leukemia in Remission; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia

  14. Total Marrow and Lymphoid Irradiation and Chemotherapy Before Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Lymphocytic or Myelogenous Leukemia

    ClinicalTrials.gov

    2016-09-07

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia

  15. Reduced Intensity Donor Peripheral Blood Stem Cell Transplant in Treating Patients With De Novo or Secondary Acute Myeloid Leukemia in Remission

    ClinicalTrials.gov

    2016-01-19

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia

  16. Clofarabine or Daunorubicin Hydrochloride and Cytarabine Followed By Decitabine or Observation in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-09-16

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  17. Tacrolimus and Methotrexate With or Without Sirolimus in Preventing Graft-Versus-Host Disease in Young Patients Undergoing Donor Stem Cell Transplant for Acute Lymphoblastic Leukemia in Complete Remission

    ClinicalTrials.gov

    2014-01-23

    B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Graft Versus Host Disease; L1 Childhood Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  18. Childhood Acute Lymphoblastic Leukemia: Progress Through Collaboration

    PubMed Central

    Yang, Jun J.; Hunger, Stephen P.; Pieters, Rob; Schrappe, Martin; Biondi, Andrea; Vora, Ajay; Baruchel, André; Silverman, Lewis B.; Schmiegelow, Kjeld; Escherich, Gabriele; Horibe, Keizo; Benoit, Yves C.M.; Izraeli, Shai; Yeoh, Allen Eng Juh; Liang, Der-Cherng; Downing, James R.; Evans, William E.; Relling, Mary V.; Mullighan, Charles G.

    2015-01-01

    Purpose To review the impact of collaborative studies on advances in the biology and treatment of acute lymphoblastic leukemia (ALL) in children and adolescents. Methods A review of English literature on childhood ALL focusing on collaborative studies was performed. The resulting article was reviewed and revised by the committee chairs of the major ALL study groups. Results With long-term survival rates for ALL approaching 90% and the advent of high-resolution genome-wide analyses, several international study groups or consortia were established to conduct collaborative research to further improve outcome. As a result, treatment strategies have been improved for several subtypes of ALL, such as infant, MLL-rearranged, Philadelphia chromosome–positive, and Philadelphia chromosome–like ALL. Many recurrent genetic abnormalities that respond to tyrosine kinase inhibitors and multiple genetic determinants of drug resistance and toxicities have been identified to help develop targeted therapy. Several genetic polymorphisms have been recognized that show susceptibility to developing ALL and that help explain the racial/ethnic differences in the incidence of ALL. Conclusion The information gained from collaborative studies has helped decipher the heterogeneity of ALL to help improve personalized treatment, which will further advance the current high cure rate and the quality of life for children and adolescents with ALL. PMID:26304874

  19. The Epigenetic Landscape of Acute Myeloid Leukemia

    PubMed Central

    Conway O'Brien, Emma

    2014-01-01

    Acute myeloid leukemia (AML) is a genetically heterogeneous disease. Certain cytogenetic and molecular genetic mutations are recognized to have an impact on prognosis, leading to their inclusion in some prognostic stratification systems. Recently, the advent of high-throughput whole genome or exome sequencing has led to the identification of several novel recurrent mutations in AML, a number of which have been found to involve genes concerned with epigenetic regulation. These genes include in particular DNMT3A, TET2, and IDH1/2, involved with regulation of DNA methylation, and EZH2 and ASXL-1, which are implicated in regulation of histones. However, the precise mechanisms linking these genes to AML pathogenesis have yet to be fully elucidated as has their respective prognostic relevance. As massively parallel DNA sequencing becomes increasingly accessible for patients, there is a need for clarification of the clinical implications of these mutations. This review examines the literature surrounding the biology of these epigenetic modifying genes with regard to leukemogenesis and their clinical and prognostic relevance in AML when mutated. PMID:24778653

  20. Acute myeloid leukemia masquerading as hepatocellular carcinoma

    PubMed Central

    Abu-Zeinah, Ghaith F.; Weisman, Paul; Ganesh, Karuna; Katz, Seth S.; Dogan, Ahmet; Abou-Alfa, Ghassan K.; Stein, Eytan M.; Jarnagin, William; Mauro, Michael J.

    2016-01-01

    Hepatocellular carcinoma (HCC) is often diagnosed on the basis of high quality imaging without a biopsy in the cirrhotic liver. This is a case of a 64-year-old Caucasian man with no history of liver disease or cirrhosis that presented with fatigue, weight loss, and abdominal distension and was found to have a large, isolated liver mass with arterial enhancement and portal venous washout on triple-phase computed tomography (CT) suspicious for HCC. The patient was initially referred for a surgical evaluation. Meanwhile, he developed fevers, pancytopenia, and worsening back pain, and a subsequent spinal MRI revealed a heterogeneous bone marrow signal suspicious for metastatic disease. A bone marrow biopsy that followed was diffusely necrotic. A core biopsy of the patient’s liver mass was then performed and was diagnostic of acute monocytic-monoblastic leukemia. Findings from peripheral flow cytometry and a repeat bone marrow biopsy were also consistent with this diagnosis, and induction chemotherapy with cytarabine and idarubicin was initiated. This case describes a rare presentation of myeloid sarcoma (MS) as an isolated, hypervascular liver mass that mimics HCC in its radiographic appearance. Due to the broad differential for a liver mass, a confirmatory biopsy should routinely be considered prior to surgical intervention. PMID:27284485

  1. Epigenetic deregulation in pediatric acute lymphoblastic leukemia

    PubMed Central

    Chatterton, Zac; Morenos, Leah; Mechinaud, Francoise; Ashley, David M; Craig, Jeffrey M; Sexton-Oates, Alexandra; Halemba, Minhee S; Parkinson-Bates, Mandy; Ng, Jane; Morrison, Debra; Carroll, William L; Saffery, Richard; Wong, Nicholas C

    2014-01-01

    Similar to most cancers, genome-wide DNA methylation profiles are commonly altered in pediatric acute lymphoblastic leukemia (ALL); however, recent observations highlight that a large portion of malignancy-associated DNA methylation alterations are not accompanied by related gene expression changes. By analyzing and integrating the methylome and transcriptome profiles of pediatric B-cell ALL cases and primary tissue controls, we report 325 genes hypermethylated and downregulated and 45 genes hypomethylated and upregulated in pediatric B-cell ALL, irrespective of subtype. Repressed cation channel subunits and cAMP signaling activators and transducers are overrepresented, potentially indicating a reduced cellular potential to receive and propagate apoptotic signals. Furthermore, we report specific DNA methylation alterations with concurrent gene expression changes within individual ALL subtypes. The ETV6-RUNX1 translocation was associated with downregulation of ASNS and upregulation of the EPO-receptor, while Hyperdiploid patients (>50 chr) displayed upregulation of B-cell lymphoma (BCL) members and repression of PTPRG and FHIT. In combination, these data indicate genetically distinct B-cell ALL subtypes contain cooperative epimutations and genome-wide epigenetic deregulation is common across all B-cell ALL subtypes. PMID:24394348

  2. Acute lymphoblastic leukemia: age and biology.

    PubMed

    Foà, Robin

    2011-06-22

    Acute lymphoblastic leukemia (ALL) is the most frequent neoplasm in children, while being relatively rare in adults. The outcome of children with ALL is far superior than that observed in adults, whose survival rates generally do not exceed 40%. A retrospective analysis recently carried out on a large series of cases enrolled in the AIEOP and GIMEMA protocols for the treatment of pediatric and adult ALL has documented specific differences among the various age cohorts examined, particularly in terms of incidence of molecular rearrangements, with the BCR/ABL rearrangement being detected in more than half of patients in the 6(th) decade of life. These findings highlight the importance of a precise diagnostic screening at all ages, since elderly patients might benefit more from targeted approaches, that are associated with less toxic effects. Furthermore, extended biologic approaches aimed at identifying novel therapeutic targets should be regarded as a main goal to refine our therapeutic armamentarium.Finally, the introduction of pediatric-like protocols is progressively changing the outcome of young adult patients, although an important caveat is represented by the comorbidities and toxic effects associated with more aggressive chemotherapy; therefore, patients' fitness should always be carefully considered.

  3. Diffuse Alveolar Hemorrhage in Acute Myeloid Leukemia.

    PubMed

    Nanjappa, Sowmya; Jeong, Daniel K; Muddaraju, Manjunath; Jeong, Katherine; Hill, Ebone D; Greene, John N

    2016-07-01

    Diffuse alveolar hemorrhage is a potentially fatal pulmonary disease syndrome that affects individuals with hematological and nonhematological malignancies. The range of inciting factors is wide for this syndrome and includes thrombocytopenia, underlying infection, coagulopathy, and the frequent use of anticoagulants, given the high incidence of venous thrombosis in this population. Dyspnea, fever, and cough are commonly presenting symptoms. However, clinical manifestations can be variable. Obvious bleeding (hemoptysis) is not always present and can pose a potential diagnostic challenge. Without prompt treatment, hypoxia that rapidly progresses to respiratory failure can occur. Diagnosis is primarily based on radiological and bronchoscopic findings. This syndrome is especially common in patients with hematological malignancies, given an even greater propensity for thrombocytopenia as a result of bone marrow suppression as well as the often prolonged immunosuppression in this patient population. The syndrome also has an increased incidence in individuals with hematological malignancies who have received a bone marrow transplant. We present a case series of 5 patients with acute myeloid leukemia presenting with diffuse alveolar hemorrhage at our institution. A comparison of clinical manifestations, radiographic findings, treatment course, and outcomes are described. A review of the literature and general overview of the diagnostic evaluation, differential diagnoses, pathophysiology, and treatment of this syndrome are discussed. PMID:27556667

  4. Laboratory-Treated T Cells in Treating Patients With High-Risk Relapsed Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Chronic Myelogenous Leukemia Previously Treated With Donor Stem Cell Transplant

    ClinicalTrials.gov

    2016-08-08

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Myelodysplastic Syndrome; Childhood Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Secondary Acute Myeloid Leukemia; Therapy-Related Acute Myeloid Leukemia

  5. Acute Myeloid Leukemia Presenting as Intracerebral Granulocytic Sarcoma.

    PubMed

    Dhandapani, E; Thirumavalavan; Sowrirajan

    2015-10-01

    The CNS involvement of acute myeloid leukemia (AML) is more commonly manifest as meningeal involvement. Rarely it may present as intravascular tumor aggregates called granulocytic sarcoma which presents as intracranial hemorrhage. We are presenting a case of intracranial, intra-parenchymal granulocytic sarcoma (other names: chloroma, extramedullary myeloblastoma), presenting as acute hemiplegia without cerebral hemorrhage. PMID:27608697

  6. Bacillus cereus bacteremia in an adult with acute leukemia.

    PubMed

    Funada, H; Uotani, C; Machi, T; Matsuda, T; Nonomura, A

    1988-03-01

    Bacillus cereus, which used to be considered non-pathogenic, was isolated from the blood of a patient with acute leukemia who was receiving intensive chemotherapy. Fatal bacteremia developed with a clinical syndrome of acute gastroenteritis, followed by both meningoencephalitis with subarachnoid hemorrhage and multiple liver abscesses probably caused by infective vasculitis. Surveillance stool cultures revealed colonization with the organism prior to the onset of diarrhea, and repetitive blood cultures were found to be positive. Thus, this case suggested some new important clinicopathologic features of true B. cereus bacteremia complicating acute leukemia.

  7. Acute lymphoblastic leukemia in a pygmy hippopotamus (Hexaprotodon liberiensis).

    PubMed

    McCurdy, Paul; Sangster, Cheryl; Lindsay, Scott; Vogelnest, Larry

    2014-12-01

    A captive, 31-yr-old, intact male pygmy hippopotamus presented with nonspecific signs of weight loss, inappetence, diarrhea, and lethargy. After 5 wk of diagnostic investigation and symptomatic treatment, an acute leukemic process with concurrent polycystic kidney disease was suspected. The animal's condition continued to deteriorate prompting euthanasia. Necropsy, histopathologic, and immunohistochemical examination confirmed acute T-cell lymphoblastic leukemia and polycystic kidneys. Acute T-cell lymphoblastic leukemia has not previously been documented in this species; however, polycystic kidney disease has been reported. This case report adds to the increasing number of pygmy hippopotamuses diagnosed with polycystic kidney disease and describes acute T-cell lymphoblastic leukemia, a previously unreported disease of this species.

  8. Acute lymphoblastic leukemia in a pygmy hippopotamus (Hexaprotodon liberiensis).

    PubMed

    McCurdy, Paul; Sangster, Cheryl; Lindsay, Scott; Vogelnest, Larry

    2014-12-01

    A captive, 31-yr-old, intact male pygmy hippopotamus presented with nonspecific signs of weight loss, inappetence, diarrhea, and lethargy. After 5 wk of diagnostic investigation and symptomatic treatment, an acute leukemic process with concurrent polycystic kidney disease was suspected. The animal's condition continued to deteriorate prompting euthanasia. Necropsy, histopathologic, and immunohistochemical examination confirmed acute T-cell lymphoblastic leukemia and polycystic kidneys. Acute T-cell lymphoblastic leukemia has not previously been documented in this species; however, polycystic kidney disease has been reported. This case report adds to the increasing number of pygmy hippopotamuses diagnosed with polycystic kidney disease and describes acute T-cell lymphoblastic leukemia, a previously unreported disease of this species. PMID:25632680

  9. Tosedostat in Combination With Cytarabine or Decitabine in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome

    ClinicalTrials.gov

    2014-06-09

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  10. Combination Chemotherapy With or Without Bone Marrow Transplantation in Treating Children With Acute Myelogenous Leukemia or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2013-01-15

    Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Anemia With Ringed Sideroblasts; Secondary Myelodysplastic Syndromes; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  11. Cediranib Maleate in Treating Patients With Relapsed, Refractory, or Untreated Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome

    ClinicalTrials.gov

    2014-09-18

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  12. JNK and NFκB dependence of apoptosis induced by vinblastine in human acute promyelocytic leukaemia cells.

    PubMed

    Calviño, Eva; Tejedor, M Cristina; Sancho, Pilar; Herráez, Angel; Diez, José C

    2015-06-01

    The relationship between the mitogen-activated protein kinase response, nuclear factor-κB (NFκB) expression and the apoptosis in human acute promyelocytic leukaemia NB4 cells treated with vinblastine was investigated in this work. Cell viability, subdiploid DNA and cell cycle were analysed by propidium iodide permeability and flow cytometry analyses. Apoptosis was determined by annexin V-Fluorescein isothiocyanate assays. Western-blot analysis was used for determination of expression levels of apoptotic factors (p53, Bax and Bcl2), intracellular kinases [serine/threonine-specific protein kinase, extracellular signal-regulated kinase and c-Jun N-terminal kinase (JNK)], NFκB factor and caspases. Electrophoretic mobility shift assay was usefully applied to study DNA-NFκB interaction. In NB4 cells, vinblastine produces alteration of p53 and DNA fragmentation. Vinblastine treatment had an antiproliferative effect via the induction of apoptosis producing Bax/Bcl-2 imbalance. Vinblastine treatment suppressed NFκB expression and depressed NFκB-DNA binding activity while maintaining JNK activation that subsequently resulted in apoptotic response through caspase-dependent pathway. Our study provides a possible anti-cancer mechanism of vinblastine action on NB4 cells by deregulation of the intracellular signalling cascade affecting to JNK activation and NFκB expression. Moreover, JNK activation and NFκB depression can be very significant factors in apoptosis induction by vinblastine. PMID:25914345

  13. ADCY7 supports development of acute myeloid leukemia

    PubMed Central

    Li, Chunling; Xie, Jingjing; Lu, Zhigang; Chen, Chen; Li, Yancun; Zhan, Renhui; Fang, Yi; Hu, Xuemei; Zhang, Cheng Cheng

    2015-01-01

    Acute myeloid leukemia (AML) is the most common adult acute leukemia. Despite treatment, the majority of the AML patients relapse within 5 years. In silico analysis of several available databases of AML patients showed that the expression of adenylate cyclase 7 (ADCY7) significantly inversely correlates with the overall survival of AML patients. To determine whether ADCY7 supports AML development, we employed an shRNA-encoding lentivirus system to inhibit adcy7 expression in human AML cells including U937, MV4-11, and THP-1 cells. The ADCY7 deficiency resulted in decreased cell growth, elvated apoptosis, and lower c-Myc expression of these leukemia cells. This indicates that G protein-coupled receptor signaling contributes to AML pathogenesis. Our study suggests that inhibition of ADCY7 may be novel strategy for treating leukemia. PMID:26220344

  14. What's New in Adult Acute Lymphocytic Leukemia (ALL) in Adults Research?

    MedlinePlus

    ... Topic Additional resources for acute lymphocytic leukemia What’s new in acute lymphocytic leukemia research and treatment? Researchers ... have the Philadelphia chromosome. Gene expression profiling This new lab technique is being studied to help identify ...

  15. Solubility shift and SUMOylaltion of promyelocytic leukemia (PML) protein in response to arsenic(III) and fate of the SUMOylated PML

    SciTech Connect

    Hirano, Seishiro; Tadano, Mihoko; Kobayashi, Yayoi; Udagawa, Osamu; Kato, Ayaka

    2015-09-15

    Promyelocytic leukemia (PML), which is a tumor suppressor protein that nevertheless plays an important role in the maintenance of leukemia initiating cells, is known to be biochemically modified by As{sup 3+}. We recently developed a simple method to evaluate the modification of PML by As{sup 3+} resulting in a change in solubility and the covalent binding of small ubiquitin-like modifier (SUMO). Here we semi-quantitatively investigated the SUMOylation of PML using HEK293 cells which were stably transfected with PML-VI (HEK-PML). Western blot analyses indicated that PML became insoluble in cold RadioImmunoPrecipitation Assay (RIPA) lysis buffer and was SUMOylated by both SUMO2/3 and SUMO1 by As{sup 3+}. Surprisingly SUMO1 monomers were completely utilized for the SUMOylation of PML. Antimony (Sb{sup 3+}) but not bismuth (Bi{sup 3+}), Cu{sup 2+}, or Cd{sup 2+} biochemically modified PML similarly. SUMOylated PML decreased after removal of As{sup 3+} from the culture medium. However, unSUMOylated PML was still recovered in the RIPA-insoluble fraction, suggesting that SUMOylation is not requisite for changing the RIPA-soluble PML into the RIPA-insoluble form. Immunofluorescence staining of As{sup 3+}-exposed cells indicated that SUMO2/3 was co-localized with PML in the nuclear bodies. However, some PML protein was present in peri-nuclear regions without SUMO2/3. Functional Really Interesting New Gene (RING)-deleted mutant PML neither formed PML nuclear bodies nor was biochemically modified by As{sup 3+}. Conjugation with intracellular glutathione may explain the accessibility of As{sup 3+} and Sb{sup 3+} to PML in the nuclear region evading chelation and entrapping by cytoplasmic proteins such as metallothioneins. - Highlights: • As{sup 3+} is a carcinogen and also a therapeutic agent for leukemia. • PML becomes insoluble in RIPA and SUMOylated by As{sup 3+}. • Sb{sup 3+} modifies PML similar to As{sup 3+}. • Functional RING motif is necessary for As{sup 3

  16. Veliparib and Topotecan With or Without Carboplatin in Treating Patients With Relapsed or Refractory Acute Leukemia, High-Risk Myelodysplasia, or Aggressive Myeloproliferative Disorders

    ClinicalTrials.gov

    2016-08-23

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndrome; Essential Thrombocythemia; Hematopoietic and Lymphoid Cell Neoplasm; Philadelphia Chromosome Negative, BCR-ABL1 Positive Chronic Myelogenous Leukemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Disease; Secondary Myelodysplastic Syndrome

  17. The role of autologous transplantation for acute myeloid leukemia in first and second remission.

    PubMed

    Linker, Charles

    2007-03-01

    Since 1986, the University of California San Francisco has developed novel approaches to autologous transplantation for acute myeloid leukemia (AML). Strategies have included intensive preparative regimens using busulfan and etoposide, and evolving strategies for pre-transplant consolidation and stem cell collection. Treatment-related mortality has been low (<5%), and after problems with slow engraftment and extended mucosal and skin toxicity in initial studies using 4-hydroperoxycyclophosphamide (4-HC)-purged bone marrow, peripheral blood autologous stem cell transplantation (ASCT) has been well tolerated even in older patients. In particular, careful attention to avoiding neurotoxicity associated with the use of high-dose cytarabine has limited dropout rates. Long-term event-free survival (EFS) has been excellent in first remission (CR1) cytogenetically favorable groups, particularly with post-transplant treatment for acute promyelocytic leukemia (APL) patients with all-trans retinoic acid (ATRA; EFS 88%). ASCT in advanced disease showed overall long-term EFS of 44%; patients with APL in second remission achieved long-term EFS of 64%. Even among those failing primary induction, after remission induction with an alternative regimen, EFS was 61%. ASCT appears to be a treatment of choice for those in APL CR2, and offers some curative potential for AML CR2. The role of ASCT for those in CR1 is less clear, in part because high dropout rates in large randomized studies complicates interpretation of those studies. New directions for ASCT in the treatment of AML should focus on improving therapy, including calibrated intensification of induction regimens using plasma-kinetics targeting of dosages and the development and incorporation of immunotherapies into consolidation regimens. PMID:17336257

  18. Evaluation of D-dimer and lactate dehydrogenase plasma levels in patients with relapsed acute leukemia

    PubMed Central

    HU, WANGQIANG; WANG, XIAOXIA; YANG, RONGRONG

    2016-01-01

    Despite the outstanding advances made over the past decade regarding our knowledge of acute leukemia (AL), relapsed AL remains to be associated with a dismal prognosis. A better understanding of AL relapse and monitoring of the D-dimer and lactate dehydrogenase (LDH) plasma levels following chemotherapy may aid clinicians in determining whether relapse may occur in the subsequent phases of the disease. The present study evaluated D-dimer and LDH levels in 204 patients with relapsed AL. Data were collected at the initial onset of AL, at complete remission (CR) and in patients with relapsed AL. D-dimer plasma levels were significantly increased in patients with initial AL and in patients with relapsed AL (P=0.005 and P=0.007, respectively) but not in those with CR. LDH levels were significantly increased in AL patients at the initial onset of disease and at relapse compared with patients achieving CR, irrespective of cell type. Plasma prothrombin time, activated partial thromboplastin time and fibrinogen levels were not significantly different across patients (with the exception of acute promyelocytic leukemia patients) at the initial onset, relapsed AL or CR. Routine hematological parameters (white blood cell count, hemoglobin, platelet count) were significantly different at the initial onset of AL (P=0.002, P<0.001 and P=0.001, respectively) and during relapsed AL (P=0.009, P=0.003 and P<0.001, respectively) compared with patients achieving CR, suggesting an association between D-dimer, LDH and relapsed AL. These results also indicate that determination of D-dimer and LDH levels may be useful for predicting the probability of relapse during chemotherapy, but should also be combined with routine hematological parameters. PMID:27347185

  19. Acquired protein C deficiency in a child with acute myelogenous leukemia, splenic, renal, and intestinal infarction.

    PubMed

    Farah, Roula A; Jalkh, Khalil S; Farhat, Hussein Z; Sayad, Paul E; Kadri, Adel M

    2011-03-01

    We report the case of a 6-year-old boy diagnosed with acute promyelocytic leukemia (AML-M3V) when he presented with pallor, abdominal pain, anorexia, and fatigue. Induction chemotherapy was started according to the AML-BFM 98 protocol along with Vesanoid (ATRA, All-trans retinoic acid). On the sixth day of induction, he developed splenic and gallbladder infarcts. Splenectomy and cholecystectomy were performed while chemotherapy induction continued as scheduled. Four days later, he developed ischemic areas in the kidneys and ischemic colitis in the sigmoid colon. Hypercoagulation studies showed severe deficiency of protein C. Tests showed protein C 16% (reference range 70-140%), protein S 87% (reference range 70-140%), antithrombin III 122% (reference range 80-120%), prothrombin time 13.6 s (reference = 11.3), INR (international normalized ratio) 1.21, partial thromboplastin time 33 s (reference = 33), fibrinogen 214 mg/dl, D-dimer 970 μg/ml, factor II 98%, and that antinuclear antibody, antiphospholipid antibodies, mutation for factor II gene (G20210A), and mutation for Arg506 Gln of factor V were all negative (factor V Leiden). There was no evidence of clinical disseminated intravascular coagulation (DIC). He was treated with low molecular weight heparin and did well. He continues to be in complete remission 7 years later with normal protein C levels. Acquired protein C deficiency can occur in a variety of settings and has been reported in acute myelocytic leukemia. However, clinically significant thrombosis in the absence of clinical DIC, such as our case, remains extremely rare.

  20. Survival after intestinal mucormycosis in acute myelogenous leukemia.

    PubMed

    Parra, R; Arnau, E; Julia, A; Lopez, A; Nadal, A; Allende, E

    1986-12-15

    A young woman with acute myelocytic leukemia developed acute lower gastrointestinal bleeding immediately after a first remission induction of her leukemia. After the site of bleeding was located in the descending colon, a necrotic bleeding ulcer was resected. Histologic examination of the ulcer established the diagnosis of gastrointestinal mucormycosis. Treatment with amphotericin B was administered because of the high risk of dissemination. The patient has been followed for 9 months with no evidence of relapse of infection. Survival after gastrointestinal mucormycosis in acute leukemia has not previously been reported in the English language literature. Success in managing mucormycosis depends on the adherence to the recommended principles of early aggressive diagnostic measures, excisional surgery, amphotericin B therapy, and control of the underlying predisposing condition.

  1. Decitabine and Total-Body Irradiation Followed By Donor Bone Marrow Transplant and Cyclophosphamide in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-08

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  2. Medullary allotransplant in acute myeloblastic leukemia in a child.

    PubMed

    Buga Corbu, V; Glűck, A; Arion, C

    2014-09-15

    Although acute myeloblastic leukemia (AML) is more resistant to chemotherapy than acute lymphoblastic leukemia (ALL), significant progresses have been achieved over the last 20 years with an improvement in the long-term survival up to 50-60%. This may be attributed to the intensification of chemotherapy, including the increased use of stem-cell transplantation (HSCT) in well-defined subgroups. Allo-HSCT represents an extremely effective alternative in pediatric AML treatment panel, but its efficiency is limited both by the toxic effects and by the difficulty of finding a matched HLA donor.

  3. Medullary allotransplant in acute myeloblastic leukemia in a child

    PubMed Central

    Buga Corbu, V; Glűck, R; Arion, C

    2014-01-01

    Abstract Although acute myeloblastic leukemia (AML) is more resistant to chemotherapy than acute lymphoblastic leukemia (ALL), significant progresses have been achieved over the last 20 years with an improvement in the long-term survival up to 50-60%. This may be attributed to the intensification of chemotherapy, including the increased use of stem-cell transplantation (HSCT) in well-defined subgroups. Allo-HSCT represents an extremely effective alternative in pediatric AML treatment panel, but its efficiency is limited both by the toxic effects and by the difficulty of finding a matched HLA donor. PMID:25408774

  4. Neutropenic enterocolitis: a rare presenting complication of acute leukemia.

    PubMed

    Quigley, M M; Bethel, K; Nowacki, M; Millard, F; Sharpe, R

    2001-03-01

    Neutropenic enterocolitis is a necrotizing inflammatory process with intramural infection that occurs predominantly in neutropenic patients. This syndrome is most frequently observed after chemotherapy for hematologic and solid tissue malignancies, but it can also be observed in a number of other clinical settings as well. Neutropenic enterocolitis can be a rare presenting complication of acute leukemia. We report a case of acute lymphoblastic leukemia that presented with abdominal pain due to neutropenic enterocolitis. The diagnostic and treatment challenges associated with this manner of presentation are discussed.

  5. Interactions between P-glycoprotein and drugs used in the supportive care of acute myeloid leukemia patients.

    PubMed

    Möllgård, L; Hellberg, E; Smolowicz, A; Paul, C; Tidefelt, U

    2001-06-01

    Multidrug resistance due to overexpression of P-glycoprotein (Pgp) leads to reduced intracellular drug accumulation and makes the cells resistant to chemotherapy. In this study we focused on how drugs used in the supportive care of acute myeloid leukemia (AML) patients interfere with Pgp. The effect on intracellular accumulation of the fluorescent dye Rhodamine 123 (Rh 123) was studied in the human promyelocytic leukemia cell line HL-60 and two anthracycline resistant, Pgp expressing, sublines. Each drug was used at two different concentrations: plasma peak concentration and half the plasma peak concentration. Drugs which increased the Rh 123 uptake by > 10% were included in the second part of the study where the cytotoxic effect was tested in combination with daunorubicin. In the Rhodamine assay none of the tested drugs had any significant effect on the Rh 123 efflux in the resistant cell lines. Amphotericin B, cefuroxime, erythromycin and dixyrazin had minor effects on Rh 123 uptake but showed a significant additive effect to the toxicity of daunorubicin suggesting other mechanisms of action than reversal of Pgp. In conclusion this in vitro model where Rh 123 uptake was studied in an anthracycline resistant leukemia cell line could not demonstrate any significant interactions with Pgp for the tested drugs.

  6. Programmed Cell Death Induced by (−)-8,9-Dehydroneopeltolide in Human Promyelocytic Leukemia HL-60 Cells under Energy Stress Conditions

    PubMed Central

    Fuwa, Haruhiko; Sato, Mizuho; Sasaki, Makoto

    2014-01-01

    (+)-Neopeltolide is a marine macrolide natural product that exhibits potent antiproliferative activity against several human cancer cell lines. Previous study has established that this natural product primarily targets the complex III of the mitochondrial electron transport chain. However, the biochemical mode-of-actions of neopeltolide have not been investigated in detail. Here we report that (−)-8,9-dehydroneopeltolide (8,9-DNP), a more accessible synthetic analogue, shows potent cytotoxicity against human promyelocytic leukemia HL-60 cells preferentially under energy stress conditions. Nuclear morphology analysis, as well as DNA ladder assay, indicated that 8,9-DNP induced significant nuclear condensation/fragmentation and DNA fragmentation, and these events could be suppressed by preincubating the cells with a pan-caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD). Immunoblot analysis demonstrated the release of cytochrome c from the mitochondria and the cleavage of full-length caspase-3 and poly(ADP-ribose) polymerase (PARP). These results indicated that 8,9-DNP induced caspase-dependent apoptotic programmed cell death under energy stress conditions. It was also found that 8,9-DNP induced non-apoptotic cell death in the presence/absence of zVAD under energy stress conditions. Immunoblot analysis showed the intracytosolic release of apoptosis-inducing factor (AIF), although it did not further translocate to the nucleus. It appears most likely that, in the presence of zVAD, 8,9-DNP triggered necrotic cell death as a result of severe intracellular ATP depletion. PMID:25419998

  7. Seed dormancy breaking diterpenoids from the liverwort Plagiochila sciophila and their differentiation inducing activity in human promyelocytic leukemia HL-60 cells.

    PubMed

    Kenmoku, Hiromichi; Tada, Hiroyuki; Oogushi, Megumi; Esumi, Tomoyuki; Takahashi, Hironobu; Noji, Masaaki; Sassa, Takeshi; Toyota, Masao; Asakawa, Yoshinori

    2014-07-01

    To obtain the structural diversity of bioactive compounds similar to cotylenins and fusicoccins that modulate 14-3-3 protein-protein interactions in eukaryotes, screening tests were carried out using the lettuce seed dormancy breaking-assay. An acetone extract of the liverwort Plagiochila sciophila exhibited significant activity against the seeds in the presence of the plant hormone abscisic acid. Activity-guided fractionation of the extract afforded the isolation of seven novel fusicoccane-type diterpenoids, named fusicosciophins A-E (1-5), 8-deacetyl (6) and 9-deacetyl fusicosciophin E (7). Their structures were determined by spectroscopic methods and X-ray crystallographic analyses. All the pure isolated compounds (1-7) exhibited moderate lettuce seed dormancy breaking activity. In addition, the differentiation-inducing activity and cytotoxicity of these isolates, together with fusicoccin A (FC-A) and all-trans retinoic acid (ATRA), were evaluated in human promyelocytic leukemia HL-60 cells and human mouth epidermal carcinoma KB cells, respectively. Fusicosciophins (2 and 4) and FC-A exhibited moderate differentiation-inducing activity (EC50 31.2-59.1 microM) compared with ATRA (EC50 0.3 microM), while 2, 4 and ATRA exhibited higher selectivity indices (IC50/EC50 >3.38-667) than FC-A (IC50/EC50 1.05). This is the first report on the isolation of fusicoccane-type diterpenoids from liverworts having seed dormancy breaking activity and differentiation-inducing activity in mammal cells. PMID:25230492

  8. Seed dormancy breaking diterpenoids from the liverwort Plagiochila sciophila and their differentiation inducing activity in human promyelocytic leukemia HL-60 cells.

    PubMed

    Kenmoku, Hiromichi; Tada, Hiroyuki; Oogushi, Megumi; Esumi, Tomoyuki; Takahashi, Hironobu; Noji, Masaaki; Sassa, Takeshi; Toyota, Masao; Asakawa, Yoshinori

    2014-07-01

    To obtain the structural diversity of bioactive compounds similar to cotylenins and fusicoccins that modulate 14-3-3 protein-protein interactions in eukaryotes, screening tests were carried out using the lettuce seed dormancy breaking-assay. An acetone extract of the liverwort Plagiochila sciophila exhibited significant activity against the seeds in the presence of the plant hormone abscisic acid. Activity-guided fractionation of the extract afforded the isolation of seven novel fusicoccane-type diterpenoids, named fusicosciophins A-E (1-5), 8-deacetyl (6) and 9-deacetyl fusicosciophin E (7). Their structures were determined by spectroscopic methods and X-ray crystallographic analyses. All the pure isolated compounds (1-7) exhibited moderate lettuce seed dormancy breaking activity. In addition, the differentiation-inducing activity and cytotoxicity of these isolates, together with fusicoccin A (FC-A) and all-trans retinoic acid (ATRA), were evaluated in human promyelocytic leukemia HL-60 cells and human mouth epidermal carcinoma KB cells, respectively. Fusicosciophins (2 and 4) and FC-A exhibited moderate differentiation-inducing activity (EC50 31.2-59.1 microM) compared with ATRA (EC50 0.3 microM), while 2, 4 and ATRA exhibited higher selectivity indices (IC50/EC50 >3.38-667) than FC-A (IC50/EC50 1.05). This is the first report on the isolation of fusicoccane-type diterpenoids from liverworts having seed dormancy breaking activity and differentiation-inducing activity in mammal cells.

  9. Optimizing asparaginase therapy for acute lymphoblastic leukemia.

    PubMed

    Rizzari, Carmelo; Conter, Valentino; Starý, Jan; Colombini, Antonella; Moericke, Anja; Schrappe, Martin

    2013-03-01

    Asparaginases are important agents used in the treatment of children with acute lymphoblastic leukemia (ALL). Three types of asparaginase are currently available: two are derived from Escherichia coli [native asparaginase and pegylated asparaginase (PEG-asparaginase)] and one from Erwinia chrysanthemi (crisantaspase). All three products share the same mechanism of action but have different pharmacokinetic properties, which do not make them easily interchangeable. Among the known toxicities and side-effects, allergic reactions and silent inactivation represent the most important limitations to the prolonged use of any asparaginase product, with associated reduced therapeutic effects and poorer outcomes. Routine real time monitoring can help to identify patients with silent inactivation and facilitate a switch to a different product to ensure continued depletion of asparagine, completion of the treatment schedule and maintenance of outcomes. However, the most appropriate second-line treatment is still a matter of debate. PEG-asparaginase has lower immunogenicity and a longer half-life than native Escherichia coli (E. coli) asparaginase, which makes it useful for both first-line and second-line use with a reduced number of doses. However, PEG-asparaginase displays cross-reactivity with native E. coli asparaginase that may harm its therapeutic effects. Crisantaspase does not display cross-reactivity to either of the E. coli-derived products, which has made crisantaspase the second-line treatment option in a number of recent protocols. As crisantaspase has a much shorter biological half-life than the E. coli-derived products, the appropriate dosage and administration schedule are of paramount importance in delivering treatment with this product. In the ongoing trial AIEOP-BFM ALL 2009 (Associazione Italiana Ematologia Oncologia Pediatrica - Berlin-Franklin-Munster), in which PEG-asparaginase is used first-line, one dose of PEG-asparaginase is substituted by seven doses

  10. The MLL recombinome of acute leukemias in 2013

    PubMed Central

    Meyer, C; Hofmann, J; Burmeister, T; Gröger, D; Park, T S; Emerenciano, M; Pombo de Oliveira, M; Renneville, A; Villarese, P; Macintyre, E; Cavé, H; Clappier, E; Mass-Malo, K; Zuna, J; Trka, J; De Braekeleer, E; De Braekeleer, M; Oh, S H; Tsaur, G; Fechina, L; van der Velden, V H J; van Dongen, J J M; Delabesse, E; Binato, R; Silva, M L M; Kustanovich, A; Aleinikova, O; Harris, M H; Lund-Aho, T; Juvonen, V; Heidenreich, O; Vormoor, J; Choi, W W L; Jarosova, M; Kolenova, A; Bueno, C; Menendez, P; Wehner, S; Eckert, C; Talmant, P; Tondeur, S; Lippert, E; Launay, E; Henry, C; Ballerini, P; Lapillone, H; Callanan, M B; Cayuela, J M; Herbaux, C; Cazzaniga, G; Kakadiya, P M; Bohlander, S; Ahlmann, M; Choi, J R; Gameiro, P; Lee, D S; Krauter, J; Cornillet-Lefebvre, P; Te Kronnie, G; Schäfer, B W; Kubetzko, S; Alonso, C N; zur Stadt, U; Sutton, R; Venn, N C; Izraeli, S; Trakhtenbrot, L; Madsen, H O; Archer, P; Hancock, J; Cerveira, N; Teixeira, M R; Lo Nigro, L; Möricke, A; Stanulla, M; Schrappe, M; Sedék, L; Szczepański, T; Zwaan, C M; Coenen, E A; van den Heuvel-Eibrink, M M; Strehl, S; Dworzak, M; Panzer-Grümayer, R; Dingermann, T; Klingebiel, T; Marschalek, R

    2013-01-01

    Chromosomal rearrangements of the human MLL (mixed lineage leukemia) gene are associated with high-risk infant, pediatric, adult and therapy-induced acute leukemias. We used long-distance inverse-polymerase chain reaction to characterize the chromosomal rearrangement of individual acute leukemia patients. We present data of the molecular characterization of 1590 MLL-rearranged biopsy samples obtained from acute leukemia patients. The precise localization of genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs) were determined and novel TPGs identified. All patients were classified according to their gender (852 females and 745 males), age at diagnosis (558 infant, 416 pediatric and 616 adult leukemia patients) and other clinical criteria. Combined data of our study and recently published data revealed a total of 121 different MLL rearrangements, of which 79 TPGs are now characterized at the molecular level. However, only seven rearrangements seem to be predominantly associated with illegitimate recombinations of the MLL gene (∼90%): AFF1/AF4, MLLT3/AF9, MLLT1/ENL, MLLT10/AF10, ELL, partial tandem duplications (MLL PTDs) and MLLT4/AF6, respectively. The MLL breakpoint distributions for all clinical relevant subtypes (gender, disease type, age at diagnosis, reciprocal, complex and therapy-induced translocations) are presented. Finally, we present the extending network of reciprocal MLL fusions deriving from complex rearrangements. PMID:23628958

  11. Childhood acute leukemias are frequent in Mexico City: descriptive epidemiology

    PubMed Central

    2011-01-01

    Background Worldwide, acute leukemia is the most common type of childhood cancer. It is particularly common in the Hispanic populations residing in the United States, Costa Rica, and Mexico City. The objective of this study was to determine the incidence of acute leukemia in children who were diagnosed and treated in public hospitals in Mexico City. Methods Included in this study were those children, under 15 years of age and residents of Mexico City, who were diagnosed in 2006 and 2007 with leukemia, as determined by using the International Classification of Childhood Cancer. The average annual incidence rates (AAIR), and the standardized average annual incidence rates (SAAIR) per million children were calculated. We calculated crude, age- and sex-specific incidence rates and adjusted for age by the direct method with the world population as standard. We determined if there were a correlation between the incidence of acute leukemias in the various boroughs of Mexico City and either the number of agricultural hectares, the average number of persons per household, or the municipal human development index for Mexico (used as a reference of socio-economic level). Results Although a total of 610 new cases of leukemia were registered during 2006-2007, only 228 fit the criteria for inclusion in this study. The overall SAAIR was 57.6 per million children (95% CI, 46.9-68.3); acute lymphoblastic leukemia (ALL) was the most frequent type of leukemia, constituting 85.1% of the cases (SAAIR: 49.5 per million), followed by acute myeloblastic leukemia at 12.3% (SAAIR: 6.9 per million), and chronic myeloid leukemia at 1.7% (SAAIR: 0.9 per million). The 1-4 years age group had the highest SAAIR for ALL (77.7 per million). For cases of ALL, 73.2% had precursor B-cell immunophenotype (SAAIR: 35.8 per million) and 12.4% had T-cell immunophenotype (SAAIR 6.3 per million). The peak ages for ALL were 2-6 years and 8-10 years. More than half the children (58.8%) were classified as high

  12. Incidence and outcomes for adults diagnosed with acute myeloid leukemia in the north of England: a real world study.

    PubMed

    McGregor, Andrew Kenneth; Moulton, Deborah; Bown, Nick; Cuthbert, Gavin; Bourn, David; Mathew, Susanna; Dang, Raymond; Mounter, Philip; Jones, Gail

    2016-07-01

    We conducted a retrospective population-based study of patients diagnosed with acute myeloid leukemia (AML) in northern England (population 3.1 million) in order to assess the impact of age and genetics on outcome. Four hundred and sixteen patients were diagnosed with AML, between 2007 and 2011. In those aged ≤60 years (n = 20) with acute promyelocytic leukemia (APL) overall survival (OS) was 100%. For non-APL patients aged ≤60 years, OS for those with favorable, intermediate and adverse cytogenetics was not reached, 17 and 9.8 months, respectively (p = 0.0001). Of particular note, intensively treated patients aged >60 years with intermediate cytogenetics and FLT3-/NPM1+ status had a five-year survival of 60% versus median OS of 11 months for other subsets (p = 0.04). Population-based studies reduce selection bias and have utility in studying rarer diseases, particularly in populations that recruit poorly to trials. The highly favorable outcome in our subgroup of intensively-treated FLT3-/NPM1+ older patients merits further study.

  13. [Tumor lysis syndrome in a pregnancy complicated with acute lymphoblastic leukemia].

    PubMed

    Álvarez-Goris, M P; Sánchez-Zamora, R; Torres-Aguilar, A A; Briones Garduño, J C

    2016-04-01

    Acute leukemia is rare during pregnancy, affects about 1 in 75,000 pregnancies, of all leukemias diagnosed only 28% are acute lymphoblastic leukemia, this is a risk factor to develop spontaneous tumor lysis syndrome, it's a oncologic complication potentially deadly if the prophylactic treatment its avoided. Cases of acute lymphoblastic leukemia associated with pregnancy has been poorly documented in the literature the association of these two entities to pregnancy is the first report published worldwide, so the information is limited. PMID:27443101

  14. Radiolabeled BC8 Antibody, Busulfan, Cyclophosphamide Followed by Donor Stem Cell Transplant in Treating Patients With Acute Myelogenous Leukemia in First Remission

    ClinicalTrials.gov

    2015-11-16

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)

  15. Hypocellular acute myeloid leukemia in adults: analysis of the clinical outcome of 123 patients

    PubMed Central

    Al-Kali, Aref; Konoplev, Sergej; Lin, Erpei; Kadia, Tapan; Faderl, Stefan; Ravandi, Farhad; Ayoubi, Mohamad; Brandt, Mark; Cortes, Jorge E.; Kantarjian, Hagop; Borthakur, Gautam

    2012-01-01

    Background The hypocellular variant of acute myeloid leukemia accounts for less than 10% of all cases of adult acute myeloid leukemia. It is defined by having less than 20 percent of cellular bone marrow in a biopsy at presentation. It is unclear in the literature whether the outcome of hypocellular acute myeloid leukemia differs from that of non-hypocellular acute myeloid leukemia. Design and Methods We retrospectively analyzed all the cases reported to be hypocellular acute myeloid leukemia between 2000 and 2009. A second pathology review was conducted and the diagnosis was confirmed in all cases. Results One hundred twenty-three (9%) patients were identified: patients with hypocellular acute myeloid leukemia were older than those with non-hypocellular acute myeloid leukemia (P=0.009) and more frequently presented with cytopenias (P<0.001). Forty-one patients with hypocellular acute myeloid leukemia had an antecedent hematologic disorder and 11 patients had received prior chemo-radiotherapy for non-hematopoietic neoplasms. On multivariate analysis, overall survival, remission duration and event-free survival were comparable to those of other patients with acute myeloid leukemia. Conclusions The outcome of hypocellular acute myeloid leukemia does not differ from that of non-hypocellular acute myeloid leukemia. PMID:22058194

  16. Upregulation of Leukocytic Syncytin-1 in Acute Myeloid Leukemia Patients

    PubMed Central

    Sun, Yi; Zhu, Hongyan; Song, Jianxin; Jiang, Yaxian; Ouyang, Hongmei; Huang, Rongzhong; Zhang, Guiqian; Fan, Xin; Tao, Rui; Jiang, Jie; Niu, Hua

    2016-01-01

    Background Syncytin-1, a cell membrane-localizing fusogen, is abnormally expressed in several cancers, including endometrial cancer, breast cancer, and leukemia. Although abnormal syncytin-1 expression has been detected in two-thirds of leukemia blood samples, its expression profile in acute leukemia patients has not yet been analyzed. Material/Methods Bone marrow samples from 50 acute myelogenous leukemia (AML) cases and 14 B-cell acute lymphocytic leukemia (B-cell ALL) patients were subjected to flow cytometry to assess leukocyte type distributions and leukocytic syncytin-1 surface expression. RT-PCR was applied to assess leukocytic syncytin-1 mRNA expression. Statistical analysis was applied to compare syncytin-1 expression between AML and B-cell ALL patients across blasts, granulocytes, lymphocytes, and monocytes as well as to determine clinical factors statistically associated with changes in syncytin-1 expression. Results The leukocyte type distributions of the AML and B-cell ALL cohorts highly overlapped, with an observable difference in blast distribution between the 2 cohorts. The AML cohort displayed significantly greater syncytin-1 surface and mRNA expression (p<0.05). Syncytin-1 surface and mRNA expression was significantly increased across all 4 leukocyte types (p<0.05). The percentage of syncytin-1-expressing blasts was significantly greater in AML patients (p<0.05), with blasts showing the largest fold-change in syncytin-1 expression (p<0.05). M5, M5a, and M5b AML patients displayed significantly higher syncytin-1 surface expression relative to all other AML French-American-British (FAB) classifications (p<0.05). Conclusions These findings suggest leukocytic syncytin-1 expression may play a role in the development and/or maintenance of the AML phenotype and the acute monocytic leukemia phenotype in particular. PMID:27393911

  17. Bendamustine Hydrochloride and Idarubicin in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2012-12-07

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); de Novo Myelodysplastic Syndromes; Myelodysplastic Syndrome With Isolated Del(5q); Untreated Adult Acute Myeloid Leukemia

  18. Neurodevelopmental Sequelae of Pediatric Acute Lymphoblastic Leukemia and Its Treatment

    ERIC Educational Resources Information Center

    Janzen, Laura A.; Spiegler, Brenda J.

    2008-01-01

    This review will describe the neurocognitive outcomes associated with pediatric acute lymphoblastic leukemia (ALL) and its treatment. The literature is reviewed with the aim of addressing methodological issues, treatment factors, risks and moderators, special populations, relationship to neuroimaging findings, and directions for future research.…

  19. [Acute leukemia in Jehovah's Witnesses: difficulties in its management].

    PubMed

    Gómez-Almaguer, D; Ruiz-Argüelles, G; Lozano de la Vega, A; García-Guajardo, B M

    1990-01-01

    The Witnesses of Jehovah is a religious community posing special problems because of their religions conviction which objects to transfusions of blood or blood products. Six patients with acute lymphoblastic leukemia (one adult and 5 children) are presented. We obtained permission for blood transfusion in four children without resorting to legal pressures which, on the hand, are non-existent in Mexico. PMID:2091183

  20. Acute non-lymphocytic leukemia following multimodality therapy for retinoblastoma

    SciTech Connect

    White, L.; Ortega, J.A.; Ying, K.L.

    1985-02-01

    The genetic form of retinoblastoma carries a high risk of secondary malignant neoplasm, apparently not related to the use of chemotherapy. A child with unilateral non-genetic retinoblastoma who had received chemotherapy and radiation therapy and developed acute non-lymphocytic leukemia (ANLL) is reported. The occurrence of ANLL and retinoblastoma has not been previously reported.

  1. Acute myelogenous leukemia treated with daunomycin associated with nephrotic syndrome.

    PubMed

    Thomson, M; de Arriba, G; Ordi, J; Oliva, H; Hernando, L

    1989-01-01

    We report a 33-year-old patient with a diagnosis of acute myelogenous leukemia that developed a nephrotic syndrome 9 days after starting treatment with daunomycin. Pathological studies of the kidneys revealed minimal change disease with IgM deposits. Possible pathogenetic mechanisms are discussed.

  2. Tetrandrine induces autophagy and differentiation by activating ROS and Notch1 signaling in leukemia cells.

    PubMed

    Liu, Ting; Men, Qiuxu; Wu, Guixian; Yu, Chunrong; Huang, Zan; Liu, Xin; Li, Wenhua

    2015-04-10

    All-trans retinoic acid (ATRA) is a differentiating agent for the treatment of acute promyelocytic leukemia (APL). However, the therapeutic efficacy of ATRA has limitations. Tetrandrine is a traditional Chinese medicinal herb extract with antitumor effects. In this study, we investigated the effects of tetrandrine on human PML-RARα-positive acute promyelocytic leukemia cells. Tetrandrine inhibited tumors in vivo. It induced autophagy and differentiation by triggering ROS generation and activating Notch1 signaling. Tetrandrine induced autophagy and differentiation in M5 type patient primary leukemia cells. The in vivo results indicated that low concentrations of tetrandrine inhibited leukemia cells proliferation and induced autophagy and then facilitated their differentiation, by activating ROS and Notch1 signaling. We suggest that tetrandrine is a potential agent for the treatment of APL by inducing differentiation of leukemia cells. PMID:25797266

  3. Phase I Trial of AZD1775 and Belinostat in Treating Patients With Relapsed or Refractory Myeloid Malignancies or Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-20

    Blast Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Refractory Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Secondary Acute Myeloid Leukemia; Therapy-Related Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  4. JC virus inclusions in progressive multifocal leukoencephalopathy: scaffolding promyelocytic leukemia nuclear bodies grow with cell cycle transition through an S-to-G2-like state in enlarging oligodendrocyte nuclei.

    PubMed

    Shishido-Hara, Yukiko; Yazawa, Takuya; Nagane, Motoo; Higuchi, Kayoko; Abe-Suzuki, Shiho; Kurata, Morito; Kitagawa, Masanobu; Kamma, Hiroshi; Uchihara, Toshiki

    2014-05-01

    In progressive multifocal leukoencephalopathy, JC virus-infected oligodendroglia display 2 distinct patterns of intranuclear viral inclusions: full inclusions in which progeny virions are present throughout enlarged nuclei and dot-shaped inclusions in which virions are clustered in subnuclear domains termed "promyelocytic leukemia nuclear bodies" (PML-NBs). Promyelocytic leukemia nuclear bodies may serve a scaffolding role in viral progeny production. We analyzed the formation process of intranuclear viral inclusions by morphometry and assessed PML-NB alterations in the brains of 2 patients with progressive multifocal leukoencephalopathy. By immunohistochemistry, proliferating cell nuclear antigen was most frequently detected in smaller nuclei; cyclin A was detected in larger nuclei. This suggests an S-to-G2 cell cycle transition in infected cells associated with nuclear enlargement. Sizes of PML-NBs were variable, but they were usually either small speckles 200 to 400 nm in diameter or distinct spherical shells with a diameter of 1 μm or more. By confocal microscopy, JC virus capsid proteins were associated with both small and large PML-NBs, but disruption of large PML-NBs was observed by ground-state depletion fluorescence nanoscopy. Clusters of progeny virions were also detected by electron microscopy. Our data suggest that, in progressive multifocal leukoencephalopathy, JC virus produces progeny virions in enlarging oligodendrocyte nuclei in association with growing PML-NBs and with cell cycle transition through an S-to-G2-like state.

  5. Family history of autoimmune thyroid disease and childhood acute leukemia.

    PubMed

    Perillat-Menegaux, Florence; Clavel, Jacqueline; Auclerc, Marie-Françoise; Baruchel, André; Leverger, Guy; Nelken, Brigitte; Philippe, Noël; Sommelet, Danièle; Vilmer, Etienne; Hémon, Denis

    2003-01-01

    The association between a familial history of autoimmune disease and childhood acute leukemia was investigated in a French case-control study that, overall, was designed to assess the role of perinatal, infectious, environmental, and genetic factors in the etiology of childhood acute leukemia. Familial histories of autoimmune disease in first- and second-degree relatives were compared in 279 incident cases, 240 cases of acute lymphocytic leukemia (ALL) and 39 cases of acute non-lymphoblastic leukemia (ANLL), and 285 controls. Recruitment was frequency matched by age, gender, hospital, and ethnic origin. Odds ratios (OR) were estimated using an unconditional regression model taking into account the stratification variables, socioeconomic status, and familial structure. A statistically significant association between a history of autoimmune disease in first- or second-degree relatives and ALL (OR, 1.7; 95% confidence interval (CI), 1.0-2.8) was found. A relationship between thyroid diseases overall and ALL (OR, 2.0; 95% CI, 1.0-3.9) was observed. This association was more pronounced for potentially autoimmune thyroid diseases (Grave's disease and/or hyperthyroidism and Hashimoto's disease and/or hypothyroidism) (OR, 3.5; 95% CI, 1.1-10.7 and OR, 5.6; 95% CI, 1.0-31.1, respectively for ALL and ANLL), whereas it was not statistically significant for the other thyroid diseases (thyroid goiter, thyroid nodule, and unspecified thyroid disorders) (OR, 1.6; 95% CI, 0.7-3.5 and OR, 1.3; 95% CI, 0.2-7.0, respectively, for ALL and ANLL). The results suggest that a familial history of autoimmune thyroid disease may be associated with childhood acute leukemia.

  6. Survival of patients with mixed phenotype acute leukemias: A large population-based study.

    PubMed

    Shi, Runhua; Munker, Reinhold

    2015-06-01

    Little is known about the incidence and treatment outcome of patients with acute biphenotypic leukemias. The World Health Organization (WHO) established the term of acute leukemia of ambiguous phenotype in 2001 (revised in 2008) introducing the term of mixed phenotype acute leukemias. Using the database of the Surveillance, Epidemiology, and End Results registry (SEER), we identified 313 patients with mixed phenotype acute leukemias and compared them with 14,739 patients with acute lymphoblastic leukemia and 34,326 patients with acute myelogenous leukemias diagnosed between 2001 and 2011. As a further control group, 1777 patients were included who were not classified as myeloid, lymphoid or biphenotypic (other acute leukemias). The incidence of mixed phenotype acute leukemias is 0.35 cases/1,000,000 person-years. In a multivariate analysis, the prognosis depends strongly on age (as with other leukemias) and it has the worst outcome of all four types of leukemia. However, the prognosis has improved, comparing 2001-2005 with 2006-2011. We present the first comprehensive, population-based study of acute biphenotypic or mixed phenotype acute leukemias according to the WHO classification. Especially in older patients, the prognosis is unfavorable and new treatments should be investigated.

  7. Sex disparity in childhood and young adult acute myeloid leukemia (AML) survival: Evidence from US population data.

    PubMed

    Hossain, Md Jobayer; Xie, Li

    2015-12-01

    Sex variation has been persistently investigated in studies concerning acute myeloid leukemia (AML) survival outcomes but has not been fully explored among pediatric and young adult AML patients. We detected sex difference in the survival of AML patients diagnosed at ages 0-24 years and explored distinct effects of sex across subgroups of age at diagnosis, race-ethnicity and AML subtypes utilizing the United States Surveillance Epidemiology and End Results (SEER) population based dataset of 4865 patients diagnosed with AML between 1973 and 2012. Kaplan-Meier survival function, propensity scores and stratified Cox proportional hazards regression were used for data analyses. After controlling for other prognostic factors, females showed a significant survival advantage over their male counterparts, adjusted hazard ratio (aHR, 95% confidence interval (CI): 1.09, 1.00-1.18). Compared to females, male patients had substantially increased risk of mortality in the following subgroups of: ages 20-24 years at diagnosis (aHR1.30), Caucasian (1.14), acute promyelocytic leukemia (APL) (1.35), acute erythroid leukemia (AEL) (1.39), AML with inv(16)(p13.1q22) (2.57), AML with minimum differentiation (1.47); and had substantially decreased aHR in AML t(9;11)(p22;q23) (0.57) and AML with maturation (0.82). Overall, females demonstrated increased survival over males and this disparity was considerably large in patients ages 20-24 years at diagnosis, Caucasians, and in AML subtypes of AML inv(16), APL and AEL. In contrast, males with AML t(9;11)(p22;q23), AML with maturation and age at diagnosis of 10-14 years showed survival benefit. Further investigations are needed to detect the biological processes influencing the mechanisms of these interactions.

  8. Acute myeloid leukemia cells polarize macrophages towards a leukemia supporting state in a Growth factor independence 1 dependent manner

    PubMed Central

    Al-Matary, Yahya S.; Botezatu, Lacramioara; Opalka, Bertram; Hönes, Judith M.; Lams, Robert F.; Thivakaran, Aniththa; Schütte, Judith; Köster, Renata; Lennartz, Klaus; Schroeder, Thomas; Haas, Rainer; Dührsen, Ulrich; Khandanpour, Cyrus

    2016-01-01

    The growth of malignant cells is not only driven by cell-intrinsic factors, but also by the surrounding stroma. Monocytes/Macrophages play an important role in the onset and progression of solid cancers. However, little is known about their role in the development of acute myeloid leukemia, a malignant disease characterized by an aberrant development of the myeloid compartment of the hematopoietic system. It is also unclear which factors are responsible for changing the status of macrophage polarization, thus supporting the growth of malignant cells instead of inhibiting it. We report herein that acute myeloid leukemia leads to the invasion of acute myeloid leukemia-associated macrophages into the bone marrow and spleen of leukemic patients and mice. In different leukemic mouse models, these macrophages support the in vitro expansion of acute myeloid leukemia cell lines better than macrophages from non-leukemic mice. The grade of macrophage infiltration correlates in vivo with the survival of the mice. We found that the transcriptional repressor Growth factor independence 1 is crucial in the process of macrophage polarization, since its absence impedes macrophage polarization towards a leukemia supporting state and favors an anti-tumor state both in vitro and in vivo. These results not only suggest that acute myeloid leukemia-associated macrophages play an important role in the progression of acute myeloid leukemia, but also implicate Growth factor independence 1 as a pivotal factor in macrophage polarization. These data may provide new insights and opportunities for novel therapies for acute myeloid leukemia. PMID:27390361

  9. Specificity of Heteroantisera to Human Acute Leukemia-Associated Antigens

    PubMed Central

    Baker, Michael A.; Ramachandar, K.; Taub, Robert N.

    1974-01-01

    Antisera have been raised to human leukemic blast cells from individual patients in mice rendered tolerant with cyclophosphamide to remission leukocytes from the same individual. 10 antisera were raised against acute myelogenous leukemia (AML) cells and 5 antisera were raised against acute lymphoblastic leukemia (ALL) cells. Antisera to AML cells were absorbed with ALL cells, and antisera to ALL cells were absorbed with AML cells. Unabsorbed and absorbed antisera as well as antisera raised in nontolerant mice were tested for cytotoxicity against various cells of a panel containing myeloblasts from 35 patients with AML, lymphoblasts from 7 patients with ALL, myeloblasts from 7 patients with chronic myelogenous leukemia (CML) in blast crisis, peripheral blood leukocytes from 12 patients with acute leukemia in remission and 30 nonleukemic patients, and nucleated bone marrow cells from 10 nonleukemic patients. Unabsorbed antisera to AML or ALL cells raised in tolerant mice were highly cytotoxic to leukemic blasts cells but significantly less cytotoxic to remission and control cells. Antisera to AML cells absorbed with ALL cells retained measurable cytotoxicity against AML cells but were not cytotoxic to ALL cells or control cells. Similarly, antisera to ALL cells absorbed with AML cells retained significant cytotoxicity only to ALL cells. Control antisera raised in nontolerant mice were cytotoxic to all cells tested. Although species specific, histocompatibility, differentiation, maturation, and cell cycle-associated antigens may be responsible in part for the cytotoxic activity of the unabsorbed antisera, the absorbed antisera are probably detecting antigens specific for their leukemic cell type. PMID:4140196

  10. Outcomes for patients with chronic lymphocytic leukemia and acute leukemia or myelodysplastic syndrome.

    PubMed

    Tambaro, F P; Garcia-Manero, G; O'Brien, S M; Faderl, S H; Ferrajoli, A; Burger, J A; Pierce, S; Wang, X; Do, K-A; Kantarjian, H M; Keating, M J; Wierda, W G

    2016-02-01

    Acute leukemia (AL) and myelodysplastic syndrome (MDS) are uncommon in chronic lymphocytic leukemia (CLL). We retrospectively identified 95 patients with CLL, also diagnosed with AL (n=38) or MDS (n=57), either concurrently (n=5) or subsequent (n=90) to CLL diagnosis and report their outcomes. Median number of CLL treatments prior to AL and MDS was 2 (0-9) and 1 (0-8), respectively; the most common regimen was purine analog combined with alkylating agent±CD20 monoclonal antibody. Twelve cases had no prior CLL treatment. Among 38 cases with AL, 33 had acute myelogenous leukemia (AML), 3 had acute lymphoid leukemia (ALL; 1 Philadelphia chromosome positive), 1 had biphenotypic and 1 had extramedullary (bladder) AML. Unfavorable AML karyotype was noted in 26, and intermediate risk in 7 patients. There was no association between survival from AL and number of prior CLL regimens or karyotype. Expression of CD7 on blasts was associated with shorter survival. Among MDS cases, all International Prognostic Scoring System (IPSS) were represented; karyotype was unfavorable in 36, intermediate in 6 and favorable in 12 patients; 10 experienced transformation to AML. Shorter survival from MDS correlated with higher risk IPSS, poor-risk karyotype and increased number of prior CLL treatments. Overall, outcomes for patients with CLL subsequently diagnosed with AL or MDS were very poor; AL/MDS occurred without prior CLL treatment. Effective therapies for these patients are desperately needed.

  11. Acute Lymphocytic Leukemia with Bilateral Renal Masses Masquerading as Nephroblastomatosis.

    PubMed

    Thakore, Poonam; Aljabari, Salim; Turner, Curtis; Vasylyeva, Tetyana L

    2015-01-01

    Acute lymphoblastic leukemia (ALL) is the most common malignancy in the pediatric patient population. However, renal involvement as the primary manifestation of ALL is rare. We report a case of a 4-year-old boy with bilateral renal lesions resembling nephroblastic rests as the first finding of early stage ALL preceding hematological changes and subsequent classic clinical findings by two weeks. These renal hypodensities completely resolved after one week of induction chemotherapy. This case demonstrates that renal involvement can be the only initial presenting finding of leukemia. Children with lesions resembling nephroblastic rests need appropriate surveillance due to the risk of malignant disease.

  12. Acute Lymphocytic Leukemia with Bilateral Renal Masses Masquerading as Nephroblastomatosis

    PubMed Central

    Thakore, Poonam; Aljabari, Salim; Turner, Curtis; Vasylyeva, Tetyana L.

    2015-01-01

    Acute lymphoblastic leukemia (ALL) is the most common malignancy in the pediatric patient population. However, renal involvement as the primary manifestation of ALL is rare. We report a case of a 4-year-old boy with bilateral renal lesions resembling nephroblastic rests as the first finding of early stage ALL preceding hematological changes and subsequent classic clinical findings by two weeks. These renal hypodensities completely resolved after one week of induction chemotherapy. This case demonstrates that renal involvement can be the only initial presenting finding of leukemia. Children with lesions resembling nephroblastic rests need appropriate surveillance due to the risk of malignant disease. PMID:26613060

  13. Iodine I 131 Monoclonal Antibody BC8, Fludarabine Phosphate, Cyclophosphamide, Total-Body Irradiation and Donor Bone Marrow Transplant in Treating Patients With Advanced Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or High-Risk Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-07-18

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndrome; Refractory Anemia With Excess Blasts; Refractory Anemia With Ring Sideroblasts; Refractory Cytopenia With Multilineage Dysplasia; Refractory Cytopenia With Multilineage Dysplasia and Ring Sideroblasts

  14. Low-Dose or High-Dose Conditioning Followed by Peripheral Blood Stem Cell Transplant in Treating Patients With Myelodysplastic Syndrome or Acute Myelogenous Leukemia

    ClinicalTrials.gov

    2014-10-23

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Acute Myeloid Leukemia/Transient Myeloproliferative Disorder; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Childhood Acute Myeloid Leukemia in Remission; Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Myelodysplastic Syndrome With Isolated Del(5q); Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  15. Ovarian reserve in women treated for acute lymphocytic leukemia or acute myeloid leukemia with chemotherapy, but not stem cell transplantation.

    PubMed

    Rossi, Brooke V; Missmer, Stacey; Correia, Katharine F; Wadleigh, Martha; Ginsburg, Elizabeth S

    2012-01-01

    Purpose. It is well known that chemotherapy regimens may have a negative effect on ovarian reserve, leading to amenorrhea or premature ovarian failure. There are little data regarding the effects of leukemia chemotherapy on ovarian reserve, specifically in women who received the chemotherapy as adults and are having regular menstrual periods. Our primary objective was to determine if premenopausal women with a history of chemotherapy for leukemia, without subsequent stem cell transplantation, have decreased ovarian reserve. Materials and Methods. We measured ovarian reserve in five women who had been treated for acute lymphocytic leukemia (ALL) or acute myeloid leukemia (AML) and compared them to age-matched control women without a history of chemotherapy. Results. There appeared to be a trend towards lower antimullerian hormone and antral follicle counts and higher follicle-stimulating hormone levels in the leukemia group. Conclusion. Our results indicate that chemotherapy for AML or ALL without stem cell transplantation may compromise ovarian reserve. Although our results should be confirmed by a larger study, oncologists, infertility specialists, and patients should be aware of the potential risks to ovarian function and should be counseled on options for fertility preservation.

  16. Ovarian Reserve in Women Treated for Acute Lymphocytic Leukemia or Acute Myeloid Leukemia with Chemotherapy, but Not Stem Cell Transplantation

    PubMed Central

    Rossi, Brooke V.; Missmer, Stacey; Correia, Katharine F.; Wadleigh, Martha; Ginsburg, Elizabeth S.

    2012-01-01

    Purpose. It is well known that chemotherapy regimens may have a negative effect on ovarian reserve, leading to amenorrhea or premature ovarian failure. There are little data regarding the effects of leukemia chemotherapy on ovarian reserve, specifically in women who received the chemotherapy as adults and are having regular menstrual periods. Our primary objective was to determine if premenopausal women with a history of chemotherapy for leukemia, without subsequent stem cell transplantation, have decreased ovarian reserve. Materials and Methods. We measured ovarian reserve in five women who had been treated for acute lymphocytic leukemia (ALL) or acute myeloid leukemia (AML) and compared them to age-matched control women without a history of chemotherapy. Results. There appeared to be a trend towards lower antimullerian hormone and antral follicle counts and higher follicle-stimulating hormone levels in the leukemia group. Conclusion. Our results indicate that chemotherapy for AML or ALL without stem cell transplantation may compromise ovarian reserve. Although our results should be confirmed by a larger study, oncologists, infertility specialists, and patients should be aware of the potential risks to ovarian function and should be counseled on options for fertility preservation. PMID:23050166

  17. Acute pediatric leg compartment syndrome in chronic myeloid leukemia.

    PubMed

    Cohen, Eric; Truntzer, Jeremy; Trunzter, Jeremy; Klinge, Steve; Schwartz, Kevin; Schiller, Jonathan

    2014-11-01

    Acute compartment syndrome is an orthopedic surgical emergency and may result in devastating complications in the setting of delayed or missed diagnosis. Compartment syndrome has a variety of causes, including posttraumatic or postoperative swelling, external compression, burns, bleeding disorders, and ischemia-reperfusion injury. Rare cases of pediatric acute compartment syndrome in the setting of acute myeloid leukemia and, even less commonly, chronic myeloid leukemia have been reported. The authors report the first known case of pediatric acute compartment syndrome in a patient without a previously known diagnosis of chronic myeloid leukemia. On initial examination, an 11-year-old boy presented with a 2-week history of progressive left calf pain and swelling after playing soccer. Magnetic resonance imaging scan showed a hematoma in the left superficial posterior compartment. The patient had unrelenting pain, intermittent lateral foot parethesias, and inability to bear weight. Subsequently, he was diagnosed with acute compartment syndrome and underwent fasciotomy and evacuation of a hematoma. Laboratory results showed an abnormal white blood cell count of 440×10(9)/L (normal, 4.4-11×10(9)) and international normalized ratio of 1.3 (normal, 0.8-1.2). Further testing included the BCR-ABL1 fusion gene located on the Philadelphia chromosome, leading to a diagnosis of chronic myeloid leukemia. Monotherapy with imatinib mesylate (Gleevec) was initiated. This report adds another unique case to the growing literature on compartment syndrome in the pediatric population and reinforces the need to consider compartment syndrome, even in unlikely clinical scenarios. PMID:25361367

  18. Acute pediatric leg compartment syndrome in chronic myeloid leukemia.

    PubMed

    Cohen, Eric; Truntzer, Jeremy; Trunzter, Jeremy; Klinge, Steve; Schwartz, Kevin; Schiller, Jonathan

    2014-11-01

    Acute compartment syndrome is an orthopedic surgical emergency and may result in devastating complications in the setting of delayed or missed diagnosis. Compartment syndrome has a variety of causes, including posttraumatic or postoperative swelling, external compression, burns, bleeding disorders, and ischemia-reperfusion injury. Rare cases of pediatric acute compartment syndrome in the setting of acute myeloid leukemia and, even less commonly, chronic myeloid leukemia have been reported. The authors report the first known case of pediatric acute compartment syndrome in a patient without a previously known diagnosis of chronic myeloid leukemia. On initial examination, an 11-year-old boy presented with a 2-week history of progressive left calf pain and swelling after playing soccer. Magnetic resonance imaging scan showed a hematoma in the left superficial posterior compartment. The patient had unrelenting pain, intermittent lateral foot parethesias, and inability to bear weight. Subsequently, he was diagnosed with acute compartment syndrome and underwent fasciotomy and evacuation of a hematoma. Laboratory results showed an abnormal white blood cell count of 440×10(9)/L (normal, 4.4-11×10(9)) and international normalized ratio of 1.3 (normal, 0.8-1.2). Further testing included the BCR-ABL1 fusion gene located on the Philadelphia chromosome, leading to a diagnosis of chronic myeloid leukemia. Monotherapy with imatinib mesylate (Gleevec) was initiated. This report adds another unique case to the growing literature on compartment syndrome in the pediatric population and reinforces the need to consider compartment syndrome, even in unlikely clinical scenarios.

  19. Oral Maintenance Chemotherapy with 6-Mercaptopurine and Methotrexate in Patients with Acute Myeloid Leukemia Ineligible for Transplantation.

    PubMed

    Choi, Yong Won; Jeong, Seong Hyun; Ahn, Mi Sun; Lee, Hyun Woo; Kang, Seok Yun; Choi, Jin-Hyuk; Park, Joon Seong

    2015-10-01

    For decades, maintenance chemotherapy has failed to improve the cure rate or prolong the survival of patients with acute myeloid leukemia (AML), other than those with acute promyelocytic leukemia. Immediately after the first complete remission following consolidation therapy was obtained, oral maintenance chemotherapy (daily 6-mercaptopurine and weekly methotrexate) was given and continued for two years in transplant-ineligible AML patients. Leukemia-free survival (LFS) and overall survival (OS) were studied and compared between these patients and the historical control group who did not receive maintenance therapy. Consecutive 52 transplant-ineligible AML patients were analyzed. Among these patients, 27 received oral maintenance chemotherapy. No significant difference was found in the patients' characteristics between the maintenance and the control groups. The median OS was 43 (95% CI, 19-67) and 19 (95% CI, 8-30) months in the maintenance and the control groups, respectively (P = 0.202). In the multivariate analysis, the presence of maintenance therapy was an independent prognostic factor for better OS (P = 0.021) and LFS (P = 0.024). Clinical benefit from maintenance chemotherapy was remarkable in older patients (≥ 60 yr) (P = 0.035), those with intermediate or unfavorable cytogenetics (P = 0.006), those with initial low blast count in peripheral blood (P = 0.044), and those receiving less than two cycles of consolidation therapy (P = 0.017). Maintenance oral chemotherapy as a post-remission therapy can prolong the survival of patients with AML who are not eligible for transplantation, particularly older patients, those with intermediate or unfavorable cytogenetics, those with initial low blast count, and those receiving less than two cycles of consolidation therapy.

  20. PHF6 mutations in adult acute myeloid leukemia.

    PubMed

    Van Vlierberghe, P; Patel, J; Abdel-Wahab, O; Lobry, C; Hedvat, C V; Balbin, M; Nicolas, C; Payer, A R; Fernandez, H F; Tallman, M S; Paietta, E; Melnick, A; Vandenberghe, P; Speleman, F; Aifantis, I; Cools, J; Levine, R; Ferrando, A

    2011-01-01

    Loss of function mutations and deletions encompassing the plant homeodomain finger 6 (PHF6) gene are present in about 20% of T-cell acute lymphoblastic leukemias (ALLs). Here, we report the identification of recurrent mutations in PHF6 in 10/353 adult acute myeloid leukemias (AMLs). Genetic lesions in PHF6 found in AMLs are frameshift and nonsense mutations distributed through the gene or point mutations involving the second plant homeodomain (PHD)-like domain of the protein. As in the case of T-ALL, where PHF6 alterations are found almost exclusively in males, mutations in PHF6 were seven times more prevalent in males than in females with AML. Overall, these results identify PHF6 as a tumor suppressor gene mutated in AML and extend the role of this X-linked tumor suppressor gene in the pathogenesis of hematologic tumors.

  1. Inotuzumab ozogamicin in the treatment of acute lymphoblastic leukemia.

    PubMed

    Dahl, Jenny; Marx, Kayleigh; Jabbour, Elias

    2016-01-01

    Over 90% of leukemic blasts in patients with acute lymphoblastic leukemia express the marker CD22. Inotuzumab ozogamicin (INO) is a CD22-directed humanized monoclonal antibody conjugated to the potent cytotoxin, calicheamicin, via an acid labile linker. INO has shown high rates of response in the treatment of relapsed and refractory (R/R) ALL in single-agent studies, with fewer adverse effects than traditional cytotoxic chemotherapy. Given this experience, studies are now being done to evaluate INO in combination with low-intensity chemotherapy as frontline treatment for older adults with ALL and patients with R/R disease. Herein we will discuss the use of INO in the treatment of acute lymphoblastic leukemia.

  2. Elbow septic arthritis associated with pediatric acute leukemia: a case report and literature review.

    PubMed

    Uemura, Takuya; Yagi, Hirohisa; Okada, Mitsuhiro; Yokoi, Takuya; Shintani, Kosuke; Nakamura, Hiroaki

    2015-01-01

    Acute leukemia in children presents with various clinical manifestations that mimic orthopaedic conditions. The association of septic arthritis of the elbow with acute leukemia is very rare, and the correct diagnosis of acute leukemia is often established only after treatment of the septic arthritis. In this article, we present a three-year-old child patient with elbow septic arthritis related to acute leukemia, diagnosed promptly by bone marrow aspiration on the same day as emergency surgical debridement of the septic elbow joint due to the maintenance of a high index of suspicion, and treated with chemotherapy as soon as possible. The emergency physician and orthopaedist must recognize unusual patterns of presentation like this. Since delay in initiating treatment of septic arthritis may result in growth disturbance, elbow septic arthritis associated with pediatric acute leukemia must be treated promptly and appropriately. Early diagnosis is a good prognostic feature of childhood acute leukemia.

  3. Bone marrow necrosis in acute leukemia: Clinical characteristic and outcome.

    PubMed

    Badar, Talha; Shetty, Aditya; Bueso-Ramos, Carlos; Cortes, Jorge; Konopleva, Marina; Borthakur, Gautam; Pierce, Sherry; Huang, Xuelin; Chen, Hsiang-Chun; Kadia, Tapan; Daver, Naval; Dinardo, Courtney; O'Brien, Susan; Garcia-Manero, Guillermo; Kantarjian, Hagop; Ravandi, Farhad

    2015-09-01

    Bone marrow necrosis (BMN) is characterized by infarction of the medullary stroma, leading to marrow necrosis with preserved cortical bone. In reported small series, BMN in hematological malignancies is associated with poor prognosis. We sought to find the impact of BMN on clinical outcome in a relatively larger cohort of patients with acute leukemias. Overall we evaluated 1,691 patients; 1,051 with acute myeloid leukemia (AML) and 640 with acute lymphocytic leukemia referred to our institution between 2002 and 2013. Patients with AML and acute lymphoblastic leukemia (ALL) were evaluated separately to determine the incidence of BMN, associated clinical features and its prognostic significance. At initial diagnosis, BMN was observed in 25 (2.4%) patients with AML and 20 (3.2%) patients with ALL. In AML, BMN was significantly associated with French-American-British AML M5 morphology (32% vs. 10%, P = 0.002). The complete remission (CR) rate in AML with and without BMN was 32% and 59% respectively (P = 0.008). Likewise, CR rate in ALL with BMN was also inferior, 70% vs. 92% (P = 0.005). The median overall survival (OS) in AML with BMN was significantly poorer, 3.7 months compared to 14 months without BMN (P = 0.003). Similarly, the median OS in ALL with and without BMN was 61.7 and 72 months respectively (P = 0.33). BMN is not a rare entity in AML and ALL, but is infrequent. BMN in AML and in ALL is suggestive of inferior response and poor prognosis.

  4. Acute myeloid leukemia with non-specific cutaneous manifestation.

    PubMed

    Kotokey, R K; Potsangham, T; Das, R

    2008-09-01

    Acute myeloid leukemia is not uncommon in upper Assam. Primary skin manifestation in AML though very rare, may be found. The skin manifestation may be the first presentation in AML. Here such a case has been discussed which presented with primarily skin manifestation, subsequently diagnosed as AML. Therefore routine investigations are mandatory in all patients before going for a sophisticated investigation so that the diagnosis is not missed. PMID:19086364

  5. Effect of Taurine on Febrile Episodes in Acute Lymphoblastic Leukemia

    PubMed Central

    Islambulchilar, Mina; Asvadi, Iraj; Sanaat, Zohreh; Esfahani, Ali; Sattari, Mohammadreza

    2015-01-01

    Purpose: The purpose of our study was to evaluate the effect of oral taurine on the incidence of febrile episodes during chemotherapy in young adults with acute lymphoblastic leukemia. Methods: Forty young adults with acute lymphoblastic leukemia, at the beginning of maintenance course of their chemotherapy, were eligible for this study. The study population was randomized in a double blind manner to receive either taurine or placebo (2 gram per day orally). Life quality and side effects including febrile episodes were assessed using questionnaire. Data were analyzed using Pearson’s Chi square test. Results: Of total forty participants, 43.8% were female and 56.3 % were male. The mean age was 19.16±1.95 years (ranges: 16-23 years). The results indicated that the levels of white blood cells are significantly (P<0.05) increased in taurine treated group. There was no elevation in blasts count. A total of 70 febrile episodes were observed during study, febrile episodes were significantly (P<0.05) lower in taurine patients in comparison to the control ones. Conclusion: The overall incidence of febrile episodes and infectious complications in acute lymphoblastic leukemia patients receiving taurine was lower than placebo group. Taurine’s ability to increase leukocyte count may result in lower febrile episodes. PMID:25789226

  6. Temsirolimus, Dexamethasone, Mitoxantrone Hydrochloride, Vincristine Sulfate, and Pegaspargase in Treating Young Patients With Relapsed Acute Lymphoblastic Leukemia or Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2015-07-09

    Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Lymphoblastic Lymphoma

  7. Dasatinib in Treating Young Patients With Recurrent or Refractory Solid Tumors or Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia or Chronic Myelogenous Leukemia That Did Not Respond to Imatinib Mesylate

    ClinicalTrials.gov

    2013-02-04

    Accelerated Phase Chronic Myelogenous Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Childhood Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Meningeal Chronic Myelogenous Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Relapsing Chronic Myelogenous Leukemia; Unspecified Childhood Solid Tumor, Protocol Specific

  8. Busulfan, Fludarabine Phosphate, and Anti-Thymocyte Globulin Followed By Donor Stem Cell Transplant and Azacitidine in Treating Patients With High-Risk Myelodysplastic Syndrome and Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-09-26

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  9. Clofarabine and Cytarabine in Treating Older Patients With Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndromes That Have Relapsed or Not Responded to Treatment

    ClinicalTrials.gov

    2013-08-06

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Myelodysplastic Syndrome With Isolated Del(5q); Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia

  10. Outcomes after Induction Failure in Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Schrappe, Martin; Hunger, Stephen P.; Pui, Ching-Hon; Saha, Vaskar; Gaynon, Paul S.; Baruchel, André; Conter, Valentino; Otten, Jacques; Ohara, Akira; Versluys, Anne Birgitta; Escherich, Gabriele; Heyman, Mats; Silverman, Lewis B.; Horibe, Keizo; Mann, Georg; Camitta, Bruce M.; Harbott, Jochen; Riehm, Hansjörg; Richards, Sue; Devidas, Meenakshi; Zimmermann, Martin

    2012-01-01

    BACKGROUND Failure of remission-induction therapy is a rare but highly adverse event in children and adolescents with acute lymphoblastic leukemia (ALL). METHODS We identified induction failure, defined by the persistence of leukemic blasts in blood, bone marrow, or any extramedullary site after 4 to 6 weeks of remission-induction therapy, in 1041 of 44,017 patients (2.4%) 0 to 18 years of age with newly diagnosed ALL who were treated by a total of 14 cooperative study groups between 1985 and 2000. We analyzed the relationships among disease characteristics, treatments administered, and outcomes in these patients. RESULTS Patients with induction failure frequently presented with high-risk features, including older age, high leukocyte count, leukemia with a T-cell phenotype, the Philadelphia chromosome, and 11q23 rearrangement. With a median follow-up period of 8.3 years (range, 1.5 to 22.1), the 10-year survival rate (±SE) was estimated at only 32±1%. An age of 10 years or older, T-cell leukemia, the presence of an 11q23 rearrangement, and 25% or more blasts in the bone marrow at the end of induction therapy were associated with a particularly poor outcome. High hyperdiploidy (a modal chromosome number >50) and an age of 1 to 5 years were associated with a favorable outcome in patients with precursor B-cell leukemia. Allogeneic stem-cell transplantation from matched, related donors was associated with improved outcomes in T-cell leukemia. Children younger than 6 years of age with precursor B-cell leukemia and no adverse genetic features had a 10-year survival rate of 72±5% when treated with chemotherapy only. CONCLUSIONS Pediatric ALL with induction failure is highly heterogeneous. Patients who have T-cell leukemia appear to have a better outcome with allogeneic stem-cell transplantation than with chemotherapy, whereas patients who have precursor B-cell leukemia without other adverse features appear to have a better outcome with chemotherapy. (Funded by Deutsche

  11. Acute promyelocytic leukaemia (APL) in a patient with Crohn's disease and exposure to infliximab: a rare clinical presentation and review of the literature.

    PubMed

    Mohammad, Farhan; Vivekanandarajah, Abhirami; Haddad, Housam; Shutty, Christopher M; Hurford, Matthew T; Dai, Qun

    2014-01-01

    With the introduction of potent immunosuppressive and chemotherapeutic medications for various diseases, there is an increased incidence of therapy-related myeloid neoplasms. They are the result of mutational rearrangement and historically, have a grave prognosis compared with de novo myeloid neoplasms. We did a short review on various types of myeloid leukaemias reported after therapy with antitumour necrosis factor and also report, to the best of our knowledge, one among the very few cases of therapy-related acute promyelocytic leukaemia in a patient on infliximab therapy for refractory Crohn's disease. The patient responded well to the traditional treatment and is in complete remission for more than 5 years. PMID:24842356

  12. Antileukemic Efficacy of Continuous vs Discontinuous Dexamethasone in Murine Models of Acute Lymphoblastic Leukemia

    PubMed Central

    Ramsey, Laura B.; Janke, Laura J.; Payton, Monique A.; Cai, Xiangjun; Paugh, Steven W.; Karol, Seth E.; Kamdem, Landry Kamdem; Cheng, Cheng; Williams, Richard T.; Jeha, Sima; Pui, Ching-Hon; Evans, William E.; Relling, Mary V.

    2015-01-01

    Osteonecrosis is one of the most common, serious, toxicities resulting from the treatment of acute lymphoblastic leukemia. In recent years, pediatric acute lymphoblastic leukemia clinical trials have used discontinuous rather than continuous dosing of dexamethasone in an effort to reduce the incidence of osteonecrosis. However, it is not known whether discontinuous dosing would compromise antileukemic efficacy of glucocorticoids. Therefore, we tested the efficacy of discontinuous dexamethasone against continuous dexamethasone in murine models bearing human acute lymphoblastic leukemia xenografts (n = 8 patient samples) or murine BCR-ABL+ acute lymphoblastic leukemia. Plasma dexamethasone concentrations (7.9 to 212 nM) were similar to those achieved in children with acute lymphoblastic leukemia using conventional dosages. The median leukemia-free survival ranged from 16 to 59 days; dexamethasone prolonged survival from a median of 4 to 129 days in all seven dexamethasone-sensitive acute lymphoblastic leukemias. In the majority of cases (7 of 8 xenografts and the murine BCR-ABL model) we demonstrated equal efficacy of the two dexamethasone dosing regimens; whereas for one acute lymphoblastic leukemia sample, the discontinuous regimen yielded inferior antileukemic efficacy (log-rank p = 0.002). Our results support the clinical practice of using discontinuous rather than continuous dexamethasone dosing in patients with acute lymphoblastic leukemia. PMID:26252865

  13. Primary acute myeloid leukemia cells with overexpression of EVI-1 are sensitive to all-trans retinoic acid.

    PubMed

    Verhagen, Han J M P; Smit, Marjon A; Rutten, Arjo; Denkers, Fedor; Poddighe, Pino J; Merle, Pauline A; Ossenkoppele, Gert J; Smit, Linda

    2016-01-28

    Enhanced expression of ecotropic viral integration site 1 (EVI-1) occurs in ∼10% of acute myeloid leukemia (AML) patients and is associated with a very poor disease outcome. Patients with EVI-1-positive AML have poor initial responses to chemotherapy and high relapse rates, indicating an urgent need for alternative treatment strategies improving clinical outcome for these patients. Because treatment of acute promyelocytic patients with all-trans retinoic acid (ATRA) has improved the survival of these patients substantially, we investigated whether ATRA might also be effective for the subgroup of AML patients with EVI-1 overexpression. Here, we show that a substantial part of the EVI-1-positive AML cases respond to ATRA by induction of differentiation and decreased clonogenic capacity of myeloid blasts. Most importantly, we demonstrate that in vivo treatment of primary EVI-1-positive AML with ATRA leads to a significant reduction in leukemic engraftment. Altogether, our results show that a considerable part of the EVI-1-positive primary AML cases are sensitive to ATRA, suggesting that combining ATRA with the currently used conventional chemotherapy might be a promising treatment strategy decreasing relapse rates and enhancing complete remissions in this poor prognostic subgroup of AML patients.

  14. Functional Integration of Acute Myeloid Leukemia into the Vascular Niche

    PubMed Central

    Leon, Ronald P.; Masri, Azzah Al; Clark, Hilary A.; Asbaghi, Steven A.; Tyner, Jeffrey W.; Dunlap, Jennifer; Fan, Guang; Kovacsovics, Tibor; Liu, Qiuying; Meacham, Amy; Hamlin, Kimberly L.; Hromas, Robert A.; Scott, Edward W.; Fleming, William H.

    2014-01-01

    Vascular endothelial cells are a critical component of the hematopoietic microenvironment that regulates blood cell production. Recent studies suggest the existence of functional cross-talk between hematologic malignancies and vascular endothelium. Here, we show that human acute myeloid leukemia (AML) localizes to the vasculature in both patients and in a xenograft model. A significant number of vascular tissue-associated AML cells (V-AML) integrate into vasculature in vivo and can fuse with endothelial cells. V-AML cells acquire several endothelial cell-like characteristics, including the up-regulation of CD105, a receptor associated with activated endothelium. Remarkably, endothelial-integrated V-AML shows an almost 4-fold reduction in proliferative activity compared to non-vascular associated AML. Primary AML cells can be induced to down regulate the expression of their hematopoietic markers in vitro and differentiate into phenotypically and functionally-defined endothelial-like cells. After transplantation, these leukemia-derived endothelial cells are capable of giving rise to AML. Taken together, these novel functional interactions between AML cells and normal endothelium along with the reversible endothelial cell potential of AML suggest that vascular endothelium may serve as a previously unrecognized reservoir for acute myeloid leukemia. PMID:24637335

  15. Haploidentical Transplantation in Children with Acute Leukemia: The Unresolved Issues

    PubMed Central

    Jaiswal, Sarita Rani; Chakrabarti, Suparno

    2016-01-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) remains a curative option for children with high risk and advanced acute leukemia. Yet availability of matched family donor limits its use and although matched unrelated donor or mismatched umbilical cord blood (UCB) are viable options, they fail to meet the global need. Haploidentical family donor is almost universally available and is emerging as the alternate donor of choice in adult patients. However, the same is not true in the case of children. The studies of haploidentical HSCT in children are largely limited to T cell depleted grafts with not so encouraging results in advanced leukemia. At the same time, emerging data from UCBT are challenging the existing paradigm of less stringent HLA match requirements as perceived in the past. The use of posttransplantation cyclophosphamide (PTCY) has yielded encouraging results in adults, but data in children is sorely lacking. Our experience of using PTCY based haploidentical HSCT in children shows inadequacy of this approach in younger children compared to excellent outcome in older children. In this context, we discuss the current status of haploidentical HSCT in children with acute leukemia in a global perspective and dwell on its future prospects. PMID:27110243

  16. Clinical characteristics, outcome and early induction deaths in patients with acute promyelocytic leukaemia: a five-year experience at a tertiary care centre

    PubMed Central

    Karim, Farheen; Shaikh, Usman; Adil, Salman Naseem; Khurshid, Mohammad

    2014-01-01

    INTRODUCTION Acute promyelocytic leukaemia (APL) is a distinct clinical and biological subtype of acute myeloid leukaemia. APL is notorious for causing early death during induction therapy, resulting in induction failure. The aim of our study was to report the clinical characteristics, outcome and early induction deaths with regard to patients with APL seen at our hospital. METHODS This was a retrospective study carried out at Aga Khan University Hospital, Karachi, Pakistan. Patients aged > 15 years diagnosed with APL within the period September 2007–September 2012 were included in the study. RESULTS Within the study period, 26 patients were diagnosed with APL based on morphology and the detection of t(15;17)(q24.1;q21.1) and promyelocytic leukaemia-retinoic acid receptor alpha (PML-RARA). The male to female ratio was 1:1. The median age of the patients was 41 (range 16–72) years. In all, there were 13 (50.0%) high-risk patients, and early induction death rate was 61.5%. Causes of early induction deaths (n = 16) included haemorrhage in 7 (43.8%) patients, differentiation (ATRA) syndrome in 7 (43.8%) and infection in 2 (12.5%). The survival rate among patients who survived the early period was 70% at 42 months. The relapse rate was 30%. CONCLUSION Early induction death rate was very high in patients with APL. The most common cause of early induction death in our study was haemorrhage. Outcome among patients with APL was found to be better among those who survived the initial period. PMID:25189308

  17. Indoleamine 2,3-dioxygenase 1 (IDO1) activity in leukemia blasts correlates with poor outcome in childhood acute myeloid leukemia.

    PubMed

    Folgiero, Valentina; Goffredo, Bianca M; Filippini, Perla; Masetti, Riccardo; Bonanno, Giuseppina; Caruso, Roberta; Bertaina, Valentina; Mastronuzzi, Angela; Gaspari, Stefania; Zecca, Marco; Torelli, Giovanni F; Testi, Anna M; Pession, Andrea; Locatelli, Franco; Rutella, Sergio

    2014-04-30

    Microenvironmental factors contribute to the immune dysfunction characterizing acute myeloid leukemia (AML). Indoleamine 2,3-dioxygenase 1 (IDO1) is an interferon (IFN)-γ-inducible enzyme that degrades tryptophan into kynurenine, which, in turn, inhibits effector T cells and promotes regulatory T-cell (Treg) differentiation. It is presently unknown whether childhood AML cells express IDO1 and whether IDO1 activity correlates with patient outcome. We investigated IDO1 expression and function in 37 children with newly diagnosed AML other than acute promyelocytic leukemia. Blast cells were cultured with exogenous IFN-γ for 24 hours, followed by the measurement of kynurenine production and tryptophan consumption. No constitutive expression of IDO1 protein was detected in blast cells from the 37 AML samples herein tested. Conversely, 19 out of 37 (51%) AML samples up-regulated functional IDO1 protein in response to IFN-γ. The inability to express IDO1 by the remaining 18 AML samples was not apparently due to a defective IFN-γ signaling circuitry, as suggested by the measurement of signal transducer and activator of transcription 3 (STAT3) phosphorylation. Co-immunoprecipitation assays indicated the occurrence of physical interactions between STAT3 and IDO1 in AML blasts. In line with this finding, STAT3 inhibitors abrogated IDO1 function in AML blasts. Interestingly, levels of IFN-γ were significantly higher in the bone marrow fluid of IDO-expressing compared with IDO-nonexpressing AMLs. In mixed tumor lymphocyte cultures (MTLC), IDO-expressing AML blasts blunted the ability of allogeneic naïve T cells to produce IFN-γ and promoted Treg differentiation. From a clinical perspective, the 8-year event-free survival was significantly worse in IDO-expressing children (16.4%, SE 9.8) as compared with IDO-nonexpressing ones (48.0%, SE 12.1; p=0.035). These data indicate that IDO1 expression by leukemia blasts negatively affects the prognosis of childhood AML. Moreover

  18. Update on developmental therapeutics for acute lymphoblastic leukemia.

    PubMed

    Smith, Malcolm A

    2009-07-01

    This is an exciting time in drug development for acute lymphoblastic leukemia (ALL). A confluence of trends makes it likely that highly effective new agents for ALL will be identified in the coming decade. One contributory factor is the development of more representative preclinical models of ALL for testing and prioritizing novel agents. Another important trend in ALL drug development is the increasing understanding at the molecular level of the genomic changes that occur in B-precursor and T-cell ALL. A final important trend is the increasing availability of new agents against relevant molecular targets. Molecularly targeted agents of interest discussed in this review include novel antibody-based drugs targeted against leukemia surface antigens, proteasome inhibitors, mTOR inhibitors, JAK inhibitors, Aurora A kinase inhibitors, and inhibitors of Bcl-2 family proteins. PMID:20425431

  19. PHF6 mutations in T-cell acute lymphoblastic leukemia.

    PubMed

    Van Vlierberghe, Pieter; Palomero, Teresa; Khiabanian, Hossein; Van der Meulen, Joni; Castillo, Mireia; Van Roy, Nadine; De Moerloose, Barbara; Philippé, Jan; González-García, Sara; Toribio, María L; Taghon, Tom; Zuurbier, Linda; Cauwelier, Barbara; Harrison, Christine J; Schwab, Claire; Pisecker, Markus; Strehl, Sabine; Langerak, Anton W; Gecz, Jozef; Sonneveld, Edwin; Pieters, Rob; Paietta, Elisabeth; Rowe, Jacob M; Wiernik, Peter H; Benoit, Yves; Soulier, Jean; Poppe, Bruce; Yao, Xiaopan; Cordon-Cardo, Carlos; Meijerink, Jules; Rabadan, Raul; Speleman, Frank; Ferrando, Adolfo

    2010-04-01

    Tumor suppressor genes on the X chromosome may skew the gender distribution of specific types of cancer. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with an increased incidence in males. In this study, we report the identification of inactivating mutations and deletions in the X-linked plant homeodomain finger 6 (PHF6) gene in 16% of pediatric and 38% of adult primary T-ALL samples. Notably, PHF6 mutations are almost exclusively found in T-ALL samples from male subjects. Mutational loss of PHF6 is importantly associated with leukemias driven by aberrant expression of the homeobox transcription factor oncogenes TLX1 and TLX3. Overall, these results identify PHF6 as a new X-linked tumor suppressor in T-ALL and point to a strong genetic interaction between PHF6 loss and aberrant expression of TLX transcription factors in the pathogenesis of this disease.

  20. [Bleeding complications in acute myeloblastic leukemia (author's transl)].

    PubMed

    Sutor, A H

    1979-03-01

    Bleeding is common in acute myeloblastic leukemia (AML). At the time of diagnosis, the danger of bleeding cannot be predicted by laboratory means. However, the following factors represent increased risks: Promyeloblastic leukemia, high blast count, low fibrinogen, low plasminogen. From coagulation studies performed at the time of bleeding complications, the pathomechanism leading to bleeding complications usually cannot be detected. The question whether impairment of production, consumption coagulopathy, or primary fibrinolysis causes the bleeding complications can only be answered by controlling frequently clinical and hemostatic criteria, which include the thrombocytic stystem as well as plasmatic coagulation and fibrinolysis. At the present time, the therapy of bleeding complications in AML is symptomatic. It consists of transfusion with thrombocytes or fresh whole blood, respectively. Coagulation factor concentrates should only be given in combination with Heparin to prevent the deterioration of consumption coagulopathy.