Science.gov

Sample records for acute radiation research

  1. Acute radiation enteritis caused by dose-dependent radiation exposure in dogs: experimental research.

    PubMed

    Xu, Wenda; Chen, Jiang; Xu, Liu; Li, Hongyu; Guo, Xiaozhong

    2014-12-01

    Accidental or intended radiation exposure in mass casualty settings presents a serious and on-going threat. The development of mitigating and treating agents requires appropriate animal models. Unfortunately, the majority of research on radiation enteritis in animals has lacked specific assessments and targeted therapy. Our study showed beagle dogs, treated by intensity-modulated radiation therapy (IMRT) for abdominal irradiation, were administered single X-ray doses of 8-30 Gy. The degree of intestinal tract injury for all of the animals after radiation exposure was evaluated with regard to clinical syndrome, endoscopic findings, histological features, and intestinal function. The range of single doses (8 Gy, 10-14 Gy, and 16-30 Gy) represented the degree of injury (mild, moderate, and severe, respectively). Acute radiation enteritis included clinical syndrome with fever, vomiting, diarrhea, hemafecia, and weight loss; typical endoscopic findings included edema, bleeding, mucosal abrasions, and ulcers; and intestinal biopsy results revealed mucosal necrosis, erosion, and loss, inflammatory cell infiltration, hemorrhage, and congestion. Changes in serum diamine oxides (DAOs) and d-xylose represented intestinal barrier function and absorption function, respectively, and correlated with the extent of damage (P < 0.05 and P < 0.05, respectively). We successfully developed a dog model of acute radiation enteritis, thus obtaining a relatively objective evaluation of intestinal tract injury based on clinical performance and laboratory examination. The method of assessment of the degree of intestinal tract injury after abdominal irradiation could be beneficial in the development of novel and effective therapeutic strategies for acute radiation enteritis.

  2. Acute Radiation Syndrome

    MedlinePlus

    ... Dictionary Radiation Emergencies & Your Health Possible Health Effects Contamination and Exposure Acute Radiation Syndrome (ARS) Cutaneous Radiation ... Decision Making in Radiation Emergencies Protective Actions Internal Contamination Clinical Reference (ICCR) Application Psychological First Aid in ...

  3. Acute radiation risk models

    NASA Astrophysics Data System (ADS)

    Smirnova, Olga

    Biologically motivated mathematical models, which describe the dynamics of the major hematopoietic lineages (the thrombocytopoietic, lymphocytopoietic, granulocytopoietic, and erythropoietic systems) in acutely/chronically irradiated humans are developed. These models are implemented as systems of nonlinear differential equations, which variables and constant parameters have clear biological meaning. It is shown that the developed models are capable of reproducing clinical data on the dynamics of these systems in humans exposed to acute radiation in the result of incidents and accidents, as well as in humans exposed to low-level chronic radiation. Moreover, the averaged value of the "lethal" dose rates of chronic irradiation evaluated within models of these four major hematopoietic lineages coincides with the real minimal dose rate of lethal chronic irradiation. The demonstrated ability of the models of the human thrombocytopoietic, lymphocytopoietic, granulocytopoietic, and erythropoietic systems to predict the dynamical response of these systems to acute/chronic irradiation in wide ranges of doses and dose rates implies that these mathematical models form an universal tool for the investigation and prediction of the dynamics of the major human hematopoietic lineages for a vast pattern of irradiation scenarios. In particular, these models could be applied for the radiation risk assessment for health of astronauts exposed to space radiation during long-term space missions, such as voyages to Mars or Lunar colonies, as well as for health of people exposed to acute/chronic irradiation due to environmental radiological events.

  4. [Treatment and prevention of acute radiation dermatitis].

    PubMed

    Benomar, S; Boutayeb, S; Lalya, I; Errihani, H; Hassam, B; El Gueddari, B K

    2010-06-01

    Acute radiation dermatitis is a common side-effect of radiotherapy which often necessitates interruption of the therapy. Currently, there is no general consensus about its prevention or about the treatment of choice. The goal of this work was to focus on optimal methods to prevent and manage acute skin reactions related to radiation therapy and to determine if there are specific topical or oral agents for the prevention of this acute skin reaction. The prevention and the early treatment are the two focus points of the management of the acute radiation dermatitis.

  5. Charms of radiation research.

    SciTech Connect

    Inokuti, M.; Physics

    2005-01-01

    Most of my professional efforts over nearly five decades have been devoted to radiation research, that is, studies of the physical, chemical, and biological actions of high-energy radiation on matter. (By the term 'high-energy radiation' I mean here x rays, .GAMMA. rays, neutrons, and charged particles of high enough energies to produce ionization in matter. I exclude visible light, infrared waves, microwaves, and sound waves.) Charms of radiation research lie in its interdisciplinary character; although my training was in basic physics, the scope of my interest has gradually increased to cover many other areas, to my deep satisfaction. High-energy radiation is an important component of the universe, and of our environment. It often provides an effective avenue for characterizing matter and understanding its behavior. Near Earth's surface this radiation is normally present in exceptionally low quantity, and yet it plays a significant role in some atmospheric phenomena such as auroras, and also in the evolution of life. The recent advent of various devices for producing high-energy radiation has opened up the possibility of many applications, including medical and industrial uses. I have worked on some aspects of those uses. At every opportunity to address a broad audience I try to convey a sense of intellectual fun, together with some of the elements of the basic science involved. A goal of radiation education might be to make the word 'radiation' as common and familiar as words such as 'fire' and 'electricity' through increased usage.

  6. [Evaluation and management of acute radiation dermatitis].

    PubMed

    Modesto, A; Faivre, J-C; Granel-Brocard, F; Tao, Y-G; Pointreau, Y

    2012-09-01

    Acute radiation dermatitis remains one of the most commonly observed side effect during radiation therapy leading to complication such as superinfection or treatment disruption. Its management is characterized by a great heterogeneity. Few strategies have demonstrated a benefit in preventing radiation dermatitis, which relies mostly on decreasing dose delivered to the skin and skin care practices. Simple emollients and use of topical steroids can be useful in early stages. The singularity of the skin toxicity seen with cetuximab and radiotherapy warrants a specific grading system and distinctive clinical treatment with use of antibiotics.

  7. Acute Stroke Imaging Research Roadmap

    PubMed Central

    Wintermark, Max; Albers, Gregory W.; Alexandrov, Andrei V.; Alger, Jeffry R.; Bammer, Roland; Baron, Jean-Claude; Davis, Stephen; Demaerschalk, Bart M.; Derdeyn, Colin P.; Donnan, Geoffrey A.; Eastwood, James D.; Fiebach, Jochen B.; Fisher, Marc; Furie, Karen L.; Goldmakher, Gregory V.; Hacke, Werner; Kidwell, Chelsea S.; Kloska, Stephan P.; Köhrmann, Martin; Koroshetz, Walter; Lee, Ting-Yim; Lees, Kennedy R.; Lev, Michael H.; Liebeskind, David S.; Ostergaard, Leif; Powers, William J.; Provenzale, James; Schellinger, Peter; Silbergleit, Robert; Sorensen, Alma Gregory; Wardlaw, Joanna; Wu, Ona; Warach, Steven

    2009-01-01

    The recent “Advanced Neuroimaging for Acute Stroke Treatment” meeting on September 7 and 8, 2007 in Washington DC, brought together stroke neurologists, neuroradiologists, emergency physicians, neuroimaging research scientists, members of the National Institute of Neurological Disorders and Stroke (NINDS), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), industry representatives, and members of the US Food and Drug Administration (FDA) to discuss the role of advanced neuroimaging in acute stroke treatment. The goals of the meeting were to assess state-of-the-art practice in terms of acute stroke imaging research and to propose specific recommendations regarding: (1) the standardization of perfusion and penumbral imaging techniques, (2) the validation of the accuracy and clinical utility of imaging markers of the ischemic penumbra, (3) the validation of imaging biomarkers relevant to clinical outcomes, and (4) the creation of a central repository to achieve these goals. The present article summarizes these recommendations and examines practical steps to achieve them. PMID:18477656

  8. Medical mitigation strategies for acute radiation exposure during spaceflight.

    PubMed

    Epelman, Slava; Hamilton, Douglas R

    2006-02-01

    The United States Government has recently refocused their space program on manned missions to the Moon by 2018 and later to Mars. While there are many potential risks associated with exploration-class missions, one of the most serious and unpredictable is the effect of acute space radiation exposure, and the space program must make every reasonable effort to mitigate this risk. The two cosmic sources of radiation that could impact a mission outside the Earth's magnetic field are solar particle events (SPE) and galactic cosmic radiation (GCR). Either can cause acute and chronic medical illness. Numerous researchers are currently examining the ability of GCR exposure to induce the development of genetic changes that lead to malignancies and other delayed effects. However, relatively little has been published on the medical management of an acute SPE event and the potential impact on the mission and crew. This review paper will provide the readers with medical management options for an acute radiation event based on recommendations from the Department of Homeland Security (DHS), Centers for Disease Control (CDC), and evidence-based critical analysis of the scientific literature. It is the goal of this paper to stimulate debate regarding the definition of safety parameters for exploration-class missions to determine the level of medical care necessary to provide for the crew that will undertake such missions.

  9. Medical mitigation strategies for acute radiation exposure during spaceflight.

    PubMed

    Epelman, Slava; Hamilton, Douglas R

    2006-02-01

    The United States Government has recently refocused their space program on manned missions to the Moon by 2018 and later to Mars. While there are many potential risks associated with exploration-class missions, one of the most serious and unpredictable is the effect of acute space radiation exposure, and the space program must make every reasonable effort to mitigate this risk. The two cosmic sources of radiation that could impact a mission outside the Earth's magnetic field are solar particle events (SPE) and galactic cosmic radiation (GCR). Either can cause acute and chronic medical illness. Numerous researchers are currently examining the ability of GCR exposure to induce the development of genetic changes that lead to malignancies and other delayed effects. However, relatively little has been published on the medical management of an acute SPE event and the potential impact on the mission and crew. This review paper will provide the readers with medical management options for an acute radiation event based on recommendations from the Department of Homeland Security (DHS), Centers for Disease Control (CDC), and evidence-based critical analysis of the scientific literature. It is the goal of this paper to stimulate debate regarding the definition of safety parameters for exploration-class missions to determine the level of medical care necessary to provide for the crew that will undertake such missions. PMID:16491581

  10. The NASA Space Radiation Research Program

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2006-01-01

    We present a comprehensive overview of the NASA Space Radiation Research Program. This program combines basic research on the mechanisms of radiobiological action relevant for improving knowledge of the risks of cancer, central nervous system and other possible degenerative tissue effects, and acute radiation syndromes from space radiation. The keystones of the NASA Program are five NASA Specialized Center's of Research (NSCOR) investigating space radiation risks. Other research is carried out through peer-reviewed individual investigations and in collaboration with the US Department of Energies Low-Dose Research Program. The Space Radiation Research Program has established the Risk Assessment Project to integrate data from the NSCOR s and other peer-reviewed research into quantitative projection models with the goals of steering research into data and scientific breakthroughs that will reduce the uncertainties in current risk projections and developing the scientific knowledge needed for future individual risk assessment approaches and biological countermeasure assessments or design. The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory was created by the Program to simulate space radiation on the ground in support of the above research programs. New results from NSRL will be described.

  11. Health Impacts from Acute Radiation Exposure

    SciTech Connect

    Strom, Daniel J.

    2003-09-30

    Absorbed doses above1-2 Gy (100-200 rads) received over a period of a day or less lead to one or another of the acute radiation syndromes. These are the hematopoietic syndrome, the gastrointestinal (GI) syndrome, the cerebrovascular (CV) syndrome, the pulmonary syndrome, or the cutaneous syndrome. The dose that will kill about 50% of the exposed people within 60 days with minimal medical care, LD50-60, is around 4.5 Gy (450 rads) of low-LET radiation measured free in air. The GI syndrome may not be fatal with supportive medical care and growth factors below about 10 Gy (1000 rads), but above this is likely to be fatal. Pulmonary and cutaneous syndromes may or may not be fatal, depending on many factors. The CV syndrome is invariably fatal. Lower acute doses, or protracted doses delivered over days or weeks, may lead to many other health outcomes than death. These include loss of pregnancy, cataract, impaired fertility or temporary or permanent sterility, hair loss, skin ulceration, local tissue necrosis, developmental abnormalities including mental and growth retardation in persons irradiated as children or fetuses, radiation dermatitis, and other symptoms listed in Table 2 on page 12. Children of parents irradiated prior to conception may experience heritable ill-health, that is, genetic changes from their parents. These effects are less strongly expressed than previously thought. Populations irradiated to high doses at high dose rates have increased risk of cancer incidence and mortality, taken as about 10-20% incidence and perhaps 5-10% mortality per sievert of effective dose of any radiation or per gray of whole-body absorbed dose low-LET radiation. Cancer risks for non-uniform irradiation will be less.

  12. Synchrotron radiation sources and research

    SciTech Connect

    Teng, L.C.

    1995-12-31

    This is an introduction and a review of Synchrotron Radiation sources and the research performed using synchrotron radiation. I will begin with a brief discussion of the two principal uses of particle storage rings: for colliding beams (Collider) and for synchrotron radiation (Radiator). Then I will concentrate on discussions of synchrotron radiation topics, starting with a historical account, followed by descriptions of the features of the storage ring and the features of the radiation from the simplest source -- the bending magnet. I will then discuss the special insertion device sources -- wigglers and undulators -- and their radiations, and end with a brief general account of the research and other applications of synchrotron radiation.

  13. Acute Radiation Effects Resulting from Exposure to Solar Particle Event-Like Radiation

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann; Cengel, Keith

    2012-07-01

    A major solar particle event (SPE) may place astronauts at significant risk for the acute radiation syndrome (ARS), which may be exacerbated when combined with other space flight stressors, such that the mission or crew health may be compromised. The National Space Biomedical Research Institute (NSBRI) Center of Acute Radiation Research (CARR) is focused on the assessment of risks of adverse biological effects related to the ARS in animal models exposed to space flight stressors combined with the types of radiation expected during an SPE. As part of this program, FDA-approved drugs that may prevent and/or mitigate ARS symptoms are being evaluated. The CARR studies are focused on the adverse biological effects resulting from exposure to the types of radiation, at the appropriate energies, doses and dose-rates, present during an SPE (and standard reference radiations, gamma rays or electrons). The ARS is a phased syndrome which often includes vomiting and fatigue. Other acute adverse biologic effects of concern are the loss of hematopoietic cells, which can result in compromised bone marrow and immune cell functions. There is also concern for skin damage from high SPE radiation doses, including burns, and resulting immune system dysfunction. Using 3 separate animal model systems (ferrets, mice and pigs), the major ARS biologic endpoints being evaluated are: 1) vomiting/retching and fatigue, 2) hematologic changes (with focus on white blood cells) and immune system changes resulting from exposure to SPE radiation with and without reduced weightbearing conditions, and 3) skin injury and related immune system functions. In all of these areas of research, statistically significant adverse health effects have been observed in animals exposed to SPE-like radiation. Countermeasures for the management of ARS symptoms are being evaluated. New research findings from the past grant year will be discussed. Acknowledgements: This research is supported by the NSBRI Center of Acute

  14. Hematopoietic Acute Radiation Syndrome (Bone marrow syndrome, Aplastic Anemia): Molecular Mechanisms of Radiation Toxicity.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri

    found in the umbilical cord and bone marrow as hematopoietic cells, a subset of mesenchymal stem cells, endothelial progenitor cells, endothelial cells of blood vessels, etc. [Beutler et al. 2000 ] Potential mechanisms responsible for radiation-acquired marrow cell failure include direct toxicity , direct damage of hematopoietic multipotential cells or cellular or humoral immune suppression of the marrow multipotential cells. [ Beutler et al. 2000] Methods: These studies were conducted at several different research institutions and laboratories listed as follows: Kazan All-Union Scientific Research Veterinary, Biotechnology Centre of Russian Academy of Science (North Osetia), Institute Belarussian Scientific and Research Institute for Radiobiology in Gomel, the St. Petersburg Veterinary Institute, the Advanced Medical Technology and Systems Inc., Ontario, Canada. The studies were approved by the Animal Care and Use Committee for ethical animal research equivalent, at each institution. A critically important volume of purified Radiation Toxins (RT) was isolated from larger mammalian irradiated animals. Subsequently the RT were characterized chemically and biologically. The experimental design of later studies compared relative toxicity, potential for development of acute radiation hematopoietic syndrome, and potential cloning disorder of multipotential hematopoietic progenitors and their derivative and lethality after intravenous or intramuscular injections of SRD containing Hematopoietic Radiation Toxins. These experiments have employed a wide variety of experimental animals. The animals were irradiated in RUM-17, Puma, and Panorama devices. The dose varied from 0.7Gy to 100Gy. The methods of immune depletion, immuno-lympho plasmasabsorption, as well as direct extraction, were used to refine and purify the specific Radiation Toxins from the central lymph of animals with Hematopoietic forms of Radiation Toxins. Experiments include administration of Hematopoietic

  15. Medical management of the acute radiation syndrome

    PubMed Central

    López, Mario; Martín, Margarita

    2011-01-01

    The acute radiation syndrome (ARS) occurs after whole-body or significant partial-body irradiation (typically at a dose of >1 Gy). ARS can involve the hematopoietic, cutaneous, gastrointestinal and the neurovascular organ systems either individually or in combination. There is a correlation between the severity of clinical signs and symptoms of ARS and radiation dose. Radiation induced multi-organ failure (MOF) describes the progressive dysfunction of two or more organ systems over time. Radiation combined injury (RCI) is defined as radiation injury combined with blunt or penetrating trauma, burns, blast, or infection. The classic syndromes are: hematopoietic (doses >2–3 Gy), gastrointestinal (doses 5–12 Gy) and cerebrovascular syndrome (doses 10–20 Gy). There is no possibility to survive after doses >10–12 Gy. The Phases of ARS are—prodromal: 0–2 days from exposure, latent: 2–20 days, and manifest illness: 21–60 days from exposure. Granulocyte-colony stimulating factor (G-CSF) at a dose of 5 μg/kg body weight per day subcutaneously has been recommended as treatment of neutropenia, and antibiotics, antiviral and antifungal agents for prevention or treatment of infections. If taken within the first hours of contamination, stable iodine in the form of nonradioactive potassium iodide (KI) saturates iodine binding sites within the thyroid and inhibits incorporation of radioiodines into the gland. Finally, if severe aplasia persists under cytokines for more than 14 days, the possibility of a hematopoietic stem cell (HSC) transplantation should be evaluated. This review will focus on the clinical aspects of the ARS, using the European triage system (METREPOL) to evaluate the severity of radiation injury, and scoring groups of patients for the general and specific management of the syndrome. PMID:24376971

  16. Linking Doses with Clinical Scores of Hematopoietic Acute Radiation Syndrome.

    PubMed

    Hu, Shaowen

    2016-10-01

    In radiation accidents, determining the radiation dose the victim received is a key step for medical decision making and patient prognosis. To reconstruct and evaluate the absorbed dose, researchers have developed many physical devices and biological techniques during the last decades. However, using the physical parameter "absorbed dose" alone is not sufficient to predict the clinical development of the various organs injured in an individual patient. In operational situations for radiation accidents, medical responders need more urgently to classify the severity of the radiation injury based on the signs and symptoms of the patient. In this work, the author uses a unified hematopoietic model to describe dose-dependent dynamics of granulocytes, lymphocytes, and platelets, and the corresponding clinical grading of hematopoietic acute radiation syndrome. This approach not only visualizes the time course of the patient's probable outcome in the form of graphs but also indirectly gives information of the remaining stem and progenitor cells, which are responsible for the autologous recovery of the hematopoietic system. Because critical information on the patient's clinical evolution can be provided within a short time after exposure and only peripheral cell counts are required for the simulation, these modeling tools will be useful to assess radiation exposure and injury in human-involved radiation accident/incident scenarios. PMID:27575346

  17. Radiation health research, 1986 - 1990

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A collection of 225 abstracts of radiation research sponsored by NASA during the period 1986 through 1990 is reported. Each abstract was categorized within one of four discipline areas: physics, biology, risk assessment, and microgravity. Topic areas within each discipline were assigned as follows: Physics - atomic physics, nuclear science, space radiation, radiation transport and shielding, and instrumentation; Biology - molecular biology, cellular radiation biology, tissue, organs and organisms, radioprotectants, and plants; Risk assessment - radiation health and epidemiology, space flight radiation health physics, inter- and intraspecies extrapolation, and radiation limits and standards; and Microgravity. When applicable subareas were assigned for selected topic areas. Keywords and author indices are provided.

  18. Mesenchymal stem cell therapy for acute radiation syndrome.

    PubMed

    Fukumoto, Risaku

    2016-01-01

    Acute radiation syndrome affects military personnel and civilians following the uncontrolled dispersal of radiation, such as that caused by detonation of nuclear devices and inappropriate medical treatments. Therefore, there is a growing need for medical interventions that facilitate the improved recovery of victims and patients. One promising approach may be cell therapy, which, when appropriately implemented, may facilitate recovery from whole body injuries. This editorial highlights the current knowledge regarding the use of mesenchymal stem cells for the treatment of acute radiation syndrome, the benefits and limitations of which are under investigation. Establishing successful therapies for acute radiation syndrome may require using such a therapeutic approach in addition to conventional approaches. PMID:27182446

  19. Hematopoietic Acute Radiation Syndrome (Bone marrow syndrome, Aplastic Anemia): Molecular Mechanisms of Radiation Toxicity.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri

    found in the umbilical cord and bone marrow as hematopoietic cells, a subset of mesenchymal stem cells, endothelial progenitor cells, endothelial cells of blood vessels, etc. [Beutler et al. 2000 ] Potential mechanisms responsible for radiation-acquired marrow cell failure include direct toxicity , direct damage of hematopoietic multipotential cells or cellular or humoral immune suppression of the marrow multipotential cells. [ Beutler et al. 2000] Methods: These studies were conducted at several different research institutions and laboratories listed as follows: Kazan All-Union Scientific Research Veterinary, Biotechnology Centre of Russian Academy of Science (North Osetia), Institute Belarussian Scientific and Research Institute for Radiobiology in Gomel, the St. Petersburg Veterinary Institute, the Advanced Medical Technology and Systems Inc., Ontario, Canada. The studies were approved by the Animal Care and Use Committee for ethical animal research equivalent, at each institution. A critically important volume of purified Radiation Toxins (RT) was isolated from larger mammalian irradiated animals. Subsequently the RT were characterized chemically and biologically. The experimental design of later studies compared relative toxicity, potential for development of acute radiation hematopoietic syndrome, and potential cloning disorder of multipotential hematopoietic progenitors and their derivative and lethality after intravenous or intramuscular injections of SRD containing Hematopoietic Radiation Toxins. These experiments have employed a wide variety of experimental animals. The animals were irradiated in RUM-17, Puma, and Panorama devices. The dose varied from 0.7Gy to 100Gy. The methods of immune depletion, immuno-lympho plasmasabsorption, as well as direct extraction, were used to refine and purify the specific Radiation Toxins from the central lymph of animals with Hematopoietic forms of Radiation Toxins. Experiments include administration of Hematopoietic

  20. Acute parotitis and hyperamylasemia following whole-brain radiation therapy

    SciTech Connect

    Cairncross, J.G.; Salmon, J.; Kim, J.H.; Posner, J.B.

    1980-04-01

    Parotitis, an infrequent, previously unreported complication of whole-brain radiation therapy, was observed in 4 patients. The acute symptoms, which include fever, dry mouth, pain, swelling, and tenderness, are accompanied by hyperamylasemia. Among 10 patients receiving whole-brain irradiation, 8 had serum amylase elevations without symptoms. Both acute parotitis and asymptomatic hyperamylasemia result from irradiation of the parotid glands.

  1. Radiation Effects Research at IUCF

    NASA Astrophysics Data System (ADS)

    Cameron, J. M.

    1996-10-01

    The goal of the radiation effects research program at IUCF is to make available precisely calibrated doses of protons, neutrons, or other light ions for the study of radiation effects on technical hardware to be used in radiation environments. This work may include such studies as the observation of single event upsets in computer logic intended for space flight or satellite applications. Beam lines used in this work contain hardware to spread and collimate the beam, and to monitor low doses. Access for outside users is facilitated by joining the Indiana Radiation Effects Research Alliance. Applications of radiation effects also exist in materials science, involving, for example, the creation of pinning centers in superconducting material that trap and hold magnetic field. Radiation effects are studied in biological systems, such as Xenopus embryos, the mushroom Coprinus cinereus, RNase-P enzyme molecules, and human HeLa cells. Here damage and repair mechanisms are compared with comparable doses of gamma and neutron irradiation. Applications exist for this information in the areas of cancer research, radiation safety, and human space travel.

  2. NASA Human Research Program Space Radiation Program Element

    NASA Technical Reports Server (NTRS)

    Chappell, Lori; Huff, Janice; Patel, Janapriya; Wang, Minli; Hu, Shaowwen; Kidane, Yared; Myung-Hee, Kim; Li, Yongfeng; Nounu, Hatem; Plante, Ianik; Ponomarev, Artem; Hada, Megumi

    2013-01-01

    The goal of the NASA Human Research Program's Space Radiation Program Element is to ensure that crews can safely live and work in the space radiation environment. Current work is focused on developing the knowledge base and tools required for accurate assessment of health risks resulting from space radiation exposure including cancer and circulatory and central nervous system diseases, as well as acute risks from solar particle events. Division of Space Life Sciences (DSLS) Space Radiation Team scientists work at multiple levels to advance this goal, with major projects in biological risk research; epidemiology; and physical, biophysical, and biological modeling.

  3. Acute Cerebrovascular Radiation Syndrome: Radiation Neurotoxicity , mechanisms of CNS radiation injury, advanced countermeasures for Radiation Protection of Central Nervous System.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    Key words: Cerebrovascular Acute Radiation Syndrome (Cv ARS), Radiation Neurotoxins (RNT), Neurotransmitters, Radiation Countermeasures, Antiradiation Vaccine (ArV), Antiradiation Blocking Antibodies, Antiradiation Antidote. Psychoneuroimmunology, Neurotoxicity. ABSTRACT: To review the role of Radiation Neurotoxins in triggering, developing of radiation induced central nervous system injury. Radiation Neurotoxins - rapidly acting blood toxic lethal agent, which activated after irradiation and concentrated, circulated in interstitial fluid, lymph, blood with interactions with cell membranes, receptors and cell compartments. Radiation Neurotoxins - biological molecules with high enzymatic activity and/or specific lipids and activated or modified after irradiation. The Radiation Neurotoxins induce increased permeability of blood vessels, disruption of the blood-brain barrier, blood-cerebrospinal fluid (CSF) barrier and developing severe disorder of blood macro- and micro-circulation. Principles of Radiation Psychoneuro-immunology and Psychoneuro-allergology were applied for determination of pathological processes developed after irradiation or selective administration of Radiation Neurotoxins to radiation naïve mammals. Effects of radiation and exposure to radiation can develop severe irreversible abnormalities of Central Nervous System, brain structures and functions. Antiradiation Vaccine - most effective, advanced methods of protection, prevention, mitigation and treatment and was used for of Acute Radiation Syndromes and elaboration of new technology for immune-prophylaxis and immune-protection against ϒ, Heavy Ion, Neutron irradiation. Results of experiments suggested that blocking, antitoxic, antiradiation antibodies can significantly reduce toxicity of Radiation Toxins. New advanced technology include active immune-prophylaxis with Antiradiation Vaccine and Antiradiation therapy that included specific blocking antibodies to Radiation Neurotoxins

  4. Studies of acute and chronic radiation injury at the Biological and Medical Research Division, Argonne National Laboratory, 1970-1992: The JANUS Program Survival and Pathology Data

    SciTech Connect

    Grahn, D.; Wright, B.J.; Carnes, B.A.; Williamson, F.S.; Fox, C.

    1995-02-01

    A research reactor for exclusive use in experimental radiobiology was designed and built at Argonne National Laboratory in the 1960`s. It was located in a special addition to Building 202, which housed the Division of Biological and Medical Research. Its location assured easy access for all users to the animal facilities, and it was also near the existing gamma-irradiation facilities. The water-cooled, heterogeneous 200-kW(th) reactor, named JANUS, became the focal point for a range of radiobiological studies gathered under the rubic of {open_quotes}the JANUS program{close_quotes}. The program ran from about 1969 to 1992 and included research at all levels of biological organization, from subcellular to organism. More than a dozen moderate- to large-scale studies with the B6CF{sub 1} mouse were carried out; these focused on the late effects of whole-body exposure to gamma rays or fission neutrons, in matching exposure regimes. In broad terms, these studies collected data on survival and on the pathology observed at death. A deliberate effort was made to establish the cause of death. This archieve describes these late-effects studies and their general findings. The database includes exposure parameters, time of death, and the gross pathology and histopathology in codified form. A series of appendices describes all pathology procedures and codes, treatment or irradiation codes, and the manner in which the data can be accessed in the ORACLE database management system. A series of tables also presents summaries of the individual experiments in terms of radiation quality, sample sizes at entry, mean survival times by sex, and number of gross pathology and histopathology records.

  5. Antiradiation Vaccine: Immunological neutralization of Radiation Toxins at Acute Radiation Syndromes.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava

    Introduction: Current medical management of the Acute Radiation Syndromes (ARS) does not include immune prophylaxis based on the Antiradiation Vaccine. Existing principles for the treatment of acute radiation syndromes are based on the replacement and supportive therapy. Haemotopoietic cell transplantation is recomended as an important method of treatment of a Haemopoietic form of the ARS. Though in the different hospitals and institutions, 31 pa-tients with a haemopoietic form have previously undergone transplantation with stem cells, in all cases(100%) the transplantants were rejected. Lethality rate was 87%.(N.Daniak et al. 2005). A large amount of biological substances or antigens isolated from bacterias (flagellin and derivates), plants, different types of venom (honeybees, scorpions, snakes) have been studied. This biological active substances can produce a nonspecific stimulation of immune system of mammals and protect against of mild doses of irradiation. But their radioprotection efficacy against high doses of radiation were not sufficient. Relative radioprotection characteristics or adaptive properties of antioxidants were expressed only at mild doses of radiation. However antioxidants demonstrated a very low protective efficacy at high doses of radiation. Some ex-periments demonstrated even a harmful effect of antioxidants administered to animals that had severe forms of the ARS. Only Specific Radiation Toxins roused a specific antigenic stim-ulation of antibody synthesis. An active immunization by non-toxic doses of radiation toxins includes a complex of radiation toxins that we call the Specific Radiation Determinant (SRD). Immunization must be provided not less than 24 days before irradiation and it is effective up to three years and more. Active immunization by radiation toxins significantly reduces the mortality rate (100%) and improves survival rate up to 60% compare with the 0% sur-vival rate among the irradiated animals in control groups

  6. Antiradiation Vaccine: Immunological neutralization of Radiation Toxins at Acute Radiation Syndromes.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava

    Introduction: Current medical management of the Acute Radiation Syndromes (ARS) does not include immune prophylaxis based on the Antiradiation Vaccine. Existing principles for the treatment of acute radiation syndromes are based on the replacement and supportive therapy. Haemotopoietic cell transplantation is recomended as an important method of treatment of a Haemopoietic form of the ARS. Though in the different hospitals and institutions, 31 pa-tients with a haemopoietic form have previously undergone transplantation with stem cells, in all cases(100%) the transplantants were rejected. Lethality rate was 87%.(N.Daniak et al. 2005). A large amount of biological substances or antigens isolated from bacterias (flagellin and derivates), plants, different types of venom (honeybees, scorpions, snakes) have been studied. This biological active substances can produce a nonspecific stimulation of immune system of mammals and protect against of mild doses of irradiation. But their radioprotection efficacy against high doses of radiation were not sufficient. Relative radioprotection characteristics or adaptive properties of antioxidants were expressed only at mild doses of radiation. However antioxidants demonstrated a very low protective efficacy at high doses of radiation. Some ex-periments demonstrated even a harmful effect of antioxidants administered to animals that had severe forms of the ARS. Only Specific Radiation Toxins roused a specific antigenic stim-ulation of antibody synthesis. An active immunization by non-toxic doses of radiation toxins includes a complex of radiation toxins that we call the Specific Radiation Determinant (SRD). Immunization must be provided not less than 24 days before irradiation and it is effective up to three years and more. Active immunization by radiation toxins significantly reduces the mortality rate (100%) and improves survival rate up to 60% compare with the 0% sur-vival rate among the irradiated animals in control groups

  7. Acute radiation syndrones and their management

    SciTech Connect

    Cronkite, E.P.

    1988-01-01

    Radiation syndromes produced by large doses of ionizing radiation are divided into three general groups depending on dose of radiation and time after exposure. The CNS syndrome requires many thousands of rad, appears in minutes to hours, and kills within hours to days. The GIS appears after doses of a few hundred to 2000 rad. It is characterized by nausea, vomiting, diarrhea, and disturbances of water and electrolyte metabolism. It has a high mortality in the first week after exposure. Survivors will then experience the HS as a result of marrow aplasia. Depending on dose, survival is possible with antibiotic and transfusion therapy. The relationship of granulocyte depression to mortality in dogs and human beings is illustrated. The role of depth dose pattern of mortality of radiation exposure is described and used as an indication of why air exposure doses may be misleading. The therapy of radiation injury is described based on antibiotics, transfusion therapy, and use of molecular regulators. The limited role of matched allogenic bone marrow transplants is discussed. 52 refs., 13 figs.

  8. MODELING ACUTE EXPOSURE TO SOLAR RADIATION

    EPA Science Inventory

    One of the major technical challenges in calculating solar flux on the human form has been the complexity of the surface geometry (i.e., the surface normal vis a vis the incident radiation). The American Cancer Society reports that over 80% of skin cancers occur on the face, he...

  9. What's New in Adult Acute Myeloid Leukemia Research and Treatment?

    MedlinePlus

    ... Topic Additional resources for acute myeloid leukemia What’s new in acute myeloid leukemia research and treatment? Researchers ... benefit from current treatments. Researchers are studying many new chemo drugs for use in AML, including: Sapacitabine, ...

  10. Synchrotron Radiation Research--An Overview.

    ERIC Educational Resources Information Center

    Bienenstock, Arthur; Winick, Herman

    1983-01-01

    Discusses expanding user community seeking access to synchrotron radiation sources, properties/sources of synchrotron radiation, permanent-magnet technology and its impact on synchrotron radiation research, factors limiting power, the density of synchrotron radiation, and research results illustrating benefit of higher flux and brightness. Also…

  11. Mitigation Strategies for Acute Radiation Exposure during Space Flight

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Epelman, Slava

    2006-01-01

    While there are many potential risks in a Moon or Mars mission, one of the most important and unpredictable is that of crew radiation exposure. The two forms of radiation that impact a mission far from the protective environment of low-earth orbit, are solar particle events (SPE) and galactic cosmic radiation (GCR). The effects of GCR occur as a long-term cumulative dose that results increased longer-term medical risks such as malignancy and neurological degeneration. Unfortunately, relatively little has been published on the medical management of an acute SPE that could potentially endanger the mission and harm the crew. Reanalysis of the largest SPE in August 1972 revealed that the dose rate was significantly higher than previously stated in the literature. The peak dose rate was 9 cGy h(sup -1) which exceeds the low-dose-rate criteria for 25 hrs (National Council on Radiation Protection) and 16 hrs (United Nations Scientific Committee on the Effects of Atomic Radiation). The bone marrow dose accumulated was 0.8 Gy, which exceeded the 25 and 16 hour criteria and would pose a serious medical risk. Current spacesuits would not provide shielding from the damaging effects for an SPE as large as the 1972 event, as increased shielding from 1-5 gm/cm(sup 2) would do little to shield the bone marrow from exposure. Medical management options for an acute radiation event are discussed based on recommendations from the Department of Homeland Security, Centers for Disease Control and evidence-based scientific literature. The discussion will also consider how to define acute exposure radiation safety limits with respect to exploration-class missions, and to determine the level of care necessary for a crew that may be exposed to an SPE similar to August 1972.

  12. Mitigation Strategies for Acute Radiation Exposure during Space Flight

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Epelman, Slava

    2006-01-01

    While there are many potential risks in a Moon or Mars mission, one of the most important and unpredictable is that of crew radiation exposure. The two forms of radiation that impact a mission far from the protective environment of low-earth orbit, are solar particle events (SPE) and galactic cosmic radiation (GCR). The effects of GCR occur as a long-term cumulative dose that results increased longer-term medical risks such as malignancy and neurological degeneration. Unfortunately, relatively little has been published on the medical management of an acute SPE that could potentially endanger the mission and harm the crew. Reanalysis of the largest SPE in August 1972 revealed that the dose rate was significantly higher than previously stated in the literature. The peak dose rate was 9 cGy h(sup -1) which exceeds the low dose-rate criteria for 25 hrs (National Council on Radiation Protection) and 16 hrs (United Nations Scientific Committee on the Effects of Atomic Radiation). The bone marrow dose accumulated was 0.8 Gy, which exceeded the 25 and 16 hour criteria and would pose a serious medical risk. Current spacesuits would not provide shielding from the damaging effects for an SPE as large as the 1972 event, as increased shielding from 1-5 grams per square centimeters would do little to shield the bone marrow from exposure. Medical management options for an acute radiation event are discussed based on recommendations from the Department of Homeland Security, Centers for Disease Control and evidence-based scientific literature. The discussion will also consider how to define acute exposure radiation safety limits with respect to exploration-class missions, and to determine the level of care necessary for a crew that may be exposed to an SPE similar to August 1972.

  13. Immunotherapy of acute radiation syndromes with antiradiation gamma G globulin.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Vecheslav; Casey, Rachael; Jones, Jeffrey; Kedar, Prasad

    Introduction: If an immunotherapy treatment approach to treatment of acute radiation syndromes (ARS) were to be developed; consideration could be given to neutralization of radiation toxins (Specific Radiation Determinants- SRD) by specific antiradiation antibodies. To accomplish this objective, irradiated animals were injected with a preparation of antiradiation immunoglobulin G (IgG) obtained from hyperimmune donors. Radiation-indeced toxins that we call Specific Radiation Determinants (SRD) possess toxic (neurotoxic, haemotoxic and enterotoxic) characteristics as well as specific antigenic properties that combined with the direct physiochemical direct radiation damage, induce the development of many of the pathological processes associated with ARS. We tested several specific hyperimmune IgG preparations against these radiation toxins and observed that their toxic properties were neutralized by specific antiradiation IgGs. Material and Methods: Rabbits were inoculated with SRD radiation toxins to induce hyperimmune serum. The hyperimmune serum was pooled from several animals, purified, and concentrated. Enzyme-linked immunosorbent assays of the hyperimmune serum revealed high titers of IgG with specific binding to radiation toxins. The antiradiation IgG preparation was injected into laboratory animals one hour before and three hours after irradiation, and was evaluated for its ability to protect inoculated animals against the development of acute radiation syndromes. Results: Animals that were inoculated with specific antiradiation antibodies before receiving lethal irradiation at LD 100/30 exhibited 60-75% survival rate at 30 days, whereas all control animals expired by 30 days following exposure. These inoculated animals also exhibited markedly reduced clinical symptoms of ARS, even those that did not survive irradiation. Discussion: The results of our experiments demonstrate that rabbit hyperimmune serum directed against SRD toxins afford significant, albeit

  14. Acute Radiation Disease : Cutaneous Syndrome and Toxic properties of Radiomimetics -Radiation Neurotoxins and Hematotoxins.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava

    Cutaneous injury is an important complication of a general or local acute irradiation. A type of a skin and tissues lesions depends on a type, intensity, and period of irradiation. Also, the clinical picture, signs, and manifestations of the cutaneous syndrome depend on a type of the radiation toxins circulated in lymph and blood of irradiated mammals. Radiation Toxins were isolated from lymph of the mammals that were irradiated and developed different forms of the Acute Radiation Syndromes (ARS) -Cerebrovascular, Cardiovascular, Gastrointestinal, and Hematopoietic. Radiation Toxins can be divided into the two important types of toxins (Neu-rotoxins and Hematotoxins) or four groups. The effects of Radiation Neurotoxins include severe damages and cell death of brain, heart, gastrointestinal tissues and endothelial cells of blood and lymphatic vessels. The hematotoxicity of Hematotoxic Radiation Toxins includes lym-phopenia, leukopenia, thrombocytopenia, and anemia in the blood circulation and transitory lymphocytosis and leukocytosis in the Central Lymphatic System. In all cases, administration of the Radiomimetics (Radiation Toxins) intramuscularly or intravenously to healthy, radiation naive mammals had induced and developed the typical clinical manifestations of the ARS. In all cases, administration of Radiomimetics by subtoxic doses had demonstrated development of typical clinical signs of the cutaneous syndrome such as hair loss, erythema, swelling, desqua-mation, blistering and skin necrosis. In animal-toxic models, we have activated development of the local skin and tissue injury after injection of Radiation Toxins with cytoxic properties.

  15. Cerebrovascular Acute Radiation Syndrome : Radiation Neurotoxins, Mechanisms of Toxicity, Neuroimmune Interactions.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava

    Introduction: Cerebrovascular Acute Radiation Syndrome (CvARS) is an extremely severe in-jury of Central Nervous System (CNS) and Peripheral Nervous System (PNS). CvARS can be induced by the high doses of neutron, heavy ions, or gamma radiation. The Syndrome clinical picture depends on a type, timing, and the doses of radiation. Four grades of the CvARS were defined: mild, moderate, severe, and extremely severe. Also, four stages of CvARS were developed: prodromal, latent, manifest, outcome -death. Duration of stages depends on the types, doses, and time of radiation. The CvARS clinical symptoms are: respiratory distress, hypotension, cerebral edema, severe disorder of cerebral blood microcirculation, and acute motor weakness. The radiation toxins, Cerebro-Vascular Radiation Neurotoxins (SvARSn), determine development of the acute radiation syndrome. Mechanism of action of the toxins: Though pathogenesis of radiation injury of CNS remains unknown, our concept describes the Cv ARS as a result of Neurotoxicity and Excitotoxicity, cell death through apoptotic necrosis. Neurotoxicity occurs after the high doses radiation exposure, formation of radiation neuro-toxins, possible bioradicals, or group of specific enzymes. Intracerebral hemorrhage can be a consequence of the damage of endothelial cells caused by radiation and the radiation tox-ins. Disruption of blood-brain barrier (BBB)and blood-cerebrospinal fluid barrier (BCFB)is possibly the most significant effect of microcirculation disorder and metabolic insufficiency. NMDA-receptors excitotoxic injury mediated by cerebral ischemia and cerebral hypoxia. Dam-age of the pyramidal cells in layers 3 and 5 and Purkinje cell layer the cerebral cortex , damage of pyramidal cells in the hippocampus occur as a result of cerebral ischemia and intracerebral bleeding. Methods: Radiation Toxins of CV ARS are defined as glycoproteins with the molec-ular weight of RT toxins ranges from 200-250 kDa and with high enzymatic activity

  16. Center for Radiation Research. 1990 technical activities

    SciTech Connect

    Kuyatt, C.E.

    1991-02-01

    The report summarizes research projects, measurement method development, calibration and testing and data evaluation activities that were carried out during Fiscal Year 1990 in the NIST Center for Radiation Research. These activities fall in the areas of radiometric physics, radiation sources and instrumentation, and ionizing radiation.

  17. Cranial radiation in childhood acute lymphocytic leukemia. Neuropsychologic sequelae

    SciTech Connect

    Whitt, J.K.; Wells, R.J.; Lauria, M.M.; Wilhelm, C.L.; McMillan, C.W.

    1984-08-01

    A battery of neuropsychologic tests was administered ''blindly'' to 18 children with acute lymphocytic leukemia (ALL) who had been randomly assigned to treatment regimens with or without cranial radiation. These children were all in complete continuous remission for more than 3 1/2 years and were no longer receiving therapy. The results indicated no substantial differences between groups as a function of radiation therapy. However, decreased neuropsychologic performance was found when the entire sample was compared with population norms. These data do not support the hypothesis that cranial radiation therapy is responsible for the neuropsychologic sequelae seen in these survivors of ALL. Post hoc multiple regression analysis indicated that parental education levels accounted for more of the neuropsychologic variability seen in these children than other factors such as age at diagnosis, type of therapy, or sex of child.

  18. Stray radiation research in CSRS

    NASA Astrophysics Data System (ADS)

    Du, Baolin; Li, Lin; Huang, Yifan; Han, Xing; Ma, Bin

    2010-10-01

    Cryogenic space remote sensor(CSRS), working on the Sun-synchronous orbit, is used to make observation of deep space and implement scientific research tasks. To observe small targets in deep space, CSRS should have quite low noise. Stray light is a major part of noise that affects the imaging quality, therefore, stray light control is a critical part of CSRS. CSRS is cooled to 10K, and works on the orbit which is never directly illuminated by the Sun and far away from other radiation sources such as the Earth and the Moon, so stray light from these objects can be neglected. This paper focuses on stray light from self thermal emissions of CSRS components, which plays a more important role in acquiring qualified image. Based on the theory of radiation energy transfer in the optical system, a method is proposed to calculate self thermal emission. After analysis of self thermal emission, measures suppressing stray light are put forward. Also in the paper, a few simulations to testify the scheme mentioned above are presented. Component emittance and paint absorbance are measured at various wavelengths as inputs for simulations. The results show that peak value of irradiance is well restricted to meet the system's requirement.

  19. Accelerator Facilities for Radiation Research

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1999-01-01

    HSRP Goals in Accelerator Use and Development are: 1.Need for ground-based heavy ion and proton facility to understand space radiation effects discussed most recently by NAS/NRC Report (1996). 2. Strategic Program Goals in facility usage and development: -(1) operation of AGS for approximately 600 beam hours/year; (2) operation of Loma Linda University (LLU) proton facility for approximately 400 beam hours/year; (3) construction of BAF facility; and (4) collaborative research at HIMAC in Japan and with other existing or potential international facilities. 3. MOA with LLU has been established to provide proton beams with energies of 40-250 important for trapped protons and solar proton events. 4. Limited number of beam hours available at Brookhaven National Laboratory's (BNL) Alternating Gradient Synchrotron (AGS).

  20. [Treatment of extensive acute radiation burn and its complications].

    PubMed

    Li, Ye-yang; Wang, Jin-lun; Li, Gang; Lin, Wei-hua; Liang, Min; Huang, Jun; Sun, Jing-en

    2013-06-01

    This article reports the treatment of a patient suffered from acute radiation burn covering 41% TBSA, with deep partial-thickness and full-thickness injury, produced by exposure to a large-scale industrial electron accelerator. An open wound began to appear and enlarged gradually 10 weeks after the exposure. Serious wound infection with methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa, pneumonia, respiratory failure, systemic inflammatory response syndrome, nephropathy and hypoproteinemia developed successively since 3 weeks after the wound formation. Skin grafts failed to survive, resulting in enlargement of the wound. After being treated with proper measures, including parenteral nutrition, respiratory support with a ventilator, appropriate antibiotics, steroid administration for nephropathy, deep debridement for wounds followed by skin grafting, the patient was cured and discharged after undergoing 15 operations in 500 days. The clinical condition of an extensive acute radiation burn is complicated. We should pay close attention to the changes in functions of organs, and strengthen the therapeutic strategies to support the function of organs to reduce the incidence of systemic complications. The control of the infection and the timely and effective repair of the wound are still the key points of the treatment of an extensive local radiation injury.

  1. Medical Management of Acute Radiation Syndromes : Immunoprophylaxis by Antiradiation Vaccine

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Vecheslav; Jones, Jeffrey; Casey, Rachael; Kedar, Prasad

    Introduction: Traditionally, the treatment of Acute Radiation Syndrome (ARS) includes supportive therapy, cytokine therapy, blood component transfusions and even stem cell transplantation. Recommendations for ARS treatment are based on clinical symptoms, laboratory results, radiation exposure doses and information received from medical examinations. However, the current medical management of ARS does not include immune prophylaxis based on antiradiation vaccines or immune therapy with hyperimmune antiradiation serum. Immuneprophylaxis of ARS could result from stimulating the immune system via immunization with small doses of radiation toxins (Specific Radiation Determinants-SRD) that possess significant immuno-stimulatory properties. Methods: Principles of immuno-toxicology were used to derive this method of immune prophylaxis. An antiradiation vaccine containing a mixture of Hematotoxic, Neurotoxic and Non-bacterial (GI) radiation toxins, underwent modification into a toxoid forms of the original SRD radiation toxins. The vaccine was administered to animals at different times prior to irradiation. The animals were subjected to lethal doses of radiation that induced different forms of ARS at LD 100/30. Survival rates and clinical symptoms were observed in both control and vaccine-treated animals. Results: Vaccination with non-toxic doses of Radiation toxoids induced immunity from the elaborated Specific Radiation Determinant (SRD) toxins. Neutralization of radiation toxins by specific antiradiation antibodies resulted in significantly improved clinical symptoms in the severe forms of ARS and observed survival rates of 60-80% in animals subjected to lethal doses of radiation expected to induce different forms of ARS at LD 100/30. The most effective vaccination schedule for the antiradiation vaccine consisted of repeated injections 24 and 34 days before irradiation. The vaccine remained effective for the next two years, although the specific immune memory probably

  2. Countermeasure development : Specific Immunoprophylaxis and Immunotherapy of Combined Acute Radiation Syndromes.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava

    healthy mammals induces development of lymphocytosis, leukocytosis, trombocytosis, and ac-tivation of blood coagulation cascade. Administration of SRT (IV or IM) to radiation naive animals induces leukopeina, thrombopenia, lymphopenia as a result of clonogenic programmed cell death. Blood coagulation cascade suppression is registered. Materials and Methods: Cows, horses, rabbits, rats, mice were used for different stages of our experiments. Animals were quarantined at laboratory conditions for three weeks prior to experimentation. Isolation of the SRT was provided from the central lymphatic duct of irradiated cows. Immunization of horses and rabbits to obtain Antiradiation Antibodies (Specific Antiradiation Antidote -SAR) was provided. Animals: cows, mice, rats were irradiated in the VSRI (Kazan), Academy of Vet-erinary Medicine (Moscow), Scientific Research Institute of Radiobiology (Gomel), Scientific Research Nuclear Center (Dubna). Equipment for gamma-irradiation: " Pyma", "Panorama" -Co gamma radiation source. Irradiation was performed by different doses corresponding to induction of severe forms of the Acute Radiation Syndromes (ARS). Mice and rats were re-ceiving the combined radiation and thermal injury. Model of the thermal injury: Burns -10% of total body surface. Third grade of burns was used as a model. Thermal Injury was given after irradiation. Preparations of Antiradiation Vaccine -contained a toxoid form of Radiation Toxins were used for immune-prophylaxis. Preparations of Antiradiation Antidote IgG con-tained antibodies to Radiation Toxins was used for immune-therapy. Scheme of experiments: I. Control: Group A. Animals with the ARS not received any treatment. Group B. Animals with the thermal injury not received any treatment. Group C. Animals with combined forms of the ARS not received any treatment. II. Specific Immune-prophylaxis with Antiradiation Vaccine (AV): Group D. Animals undergone immune-prophylaxis by AV. Irradiation was provided 24 days after

  3. Rays Sting: The Acute Cellular Effects of Ionizing Radiation Exposure.

    PubMed

    Franco, A; Ciccarelli, M; Sorriento, D; Napolitano, L; Fiordelisi, A; Trimarco, B; Durante, M; Iaccarino, G

    2016-05-01

    High-precision radiation therapy is a clinical approach that uses the targeted delivery of ionizing radiation, and the subsequent formation of reactive oxygen species (ROS) in high proliferative, radiation sensitive cancers. In particular, in thoracic cancer ratdiation treatments, can not avoid a certain amount of cardiac toxicity. Given the low proliferative rate of cardiac myocytes, research has looked at the effect of radiation on endothelial cells and consequent coronary heart disease as the mechanism of ratdiation induced cardiotoxicity. In fact, little is known concerning the direct effect of radiation on mitochondria dynamis in cardiomyocyte. The main effect of ionizing radiation is the production of ROS and recent works have uncovered that they directly participates to pivotal cell function like mitochondrial quality control. In particular ROS seems to act as check point within the cell to promote either mitochondrial biogenesis and survival or mitochondrial damage and apoptosis. Thus, it appears evident that the functional state of the cell, as well as the expression patterns of molecules involved in mitochondrial metabolism may differently modulate mitochondrial fate in response to radiation induced ROS responses. Different molecules have been described to localize to mitochondria and regulate ROS production in response to stress, in particular GRK2. In this review we will discuss the evidences on the cardiac toxicity induced by X ray radiation on cardiomyocytes with emphasis on the role played by mitochondria dynamism.

  4. Rays Sting: The Acute Cellular Effects of Ionizing Radiation Exposure

    PubMed Central

    Franco, A; Ciccarelli, M; Sorriento, D; Napolitano, L; Fiordelisi, A; Trimarco, B; Durante, M; Iaccarino, G

    2016-01-01

    High-precision radiation therapy is a clinical approach that uses the targeted delivery of ionizing radiation, and the subsequent formation of reactive oxygen species (ROS) in high proliferative, radiation sensitive cancers. In particular, in thoracic cancer ratdiation treatments, can not avoid a certain amount of cardiac toxicity. Given the low proliferative rate of cardiac myocytes, research has looked at the effect of radiation on endothelial cells and consequent coronary heart disease as the mechanism of ratdiation induced cardiotoxicity. In fact, little is known concerning the direct effect of radiation on mitochondria dynamis in cardiomyocyte. The main effect of ionizing radiation is the production of ROS and recent works have uncovered that they directly participates to pivotal cell function like mitochondrial quality control. In particular ROS seems to act as check point within the cell to promote either mitochondrial biogenesis and survival or mitochondrial damage and apoptosis. Thus, it appears evident that the functional state of the cell, as well as the expression patterns of molecules involved in mitochondrial metabolism may differently modulate mitochondrial fate in response to radiation induced ROS responses. Different molecules have been described to localize to mitochondria and regulate ROS production in response to stress, in particular GRK2. In this review we will discuss the evidences on the cardiac toxicity induced by X ray radiation on cardiomyocytes with emphasis on the role played by mitochondria dynamism. PMID:27326395

  5. Rays Sting: The Acute Cellular Effects of Ionizing Radiation Exposure.

    PubMed

    Franco, A; Ciccarelli, M; Sorriento, D; Napolitano, L; Fiordelisi, A; Trimarco, B; Durante, M; Iaccarino, G

    2016-05-01

    High-precision radiation therapy is a clinical approach that uses the targeted delivery of ionizing radiation, and the subsequent formation of reactive oxygen species (ROS) in high proliferative, radiation sensitive cancers. In particular, in thoracic cancer ratdiation treatments, can not avoid a certain amount of cardiac toxicity. Given the low proliferative rate of cardiac myocytes, research has looked at the effect of radiation on endothelial cells and consequent coronary heart disease as the mechanism of ratdiation induced cardiotoxicity. In fact, little is known concerning the direct effect of radiation on mitochondria dynamis in cardiomyocyte. The main effect of ionizing radiation is the production of ROS and recent works have uncovered that they directly participates to pivotal cell function like mitochondrial quality control. In particular ROS seems to act as check point within the cell to promote either mitochondrial biogenesis and survival or mitochondrial damage and apoptosis. Thus, it appears evident that the functional state of the cell, as well as the expression patterns of molecules involved in mitochondrial metabolism may differently modulate mitochondrial fate in response to radiation induced ROS responses. Different molecules have been described to localize to mitochondria and regulate ROS production in response to stress, in particular GRK2. In this review we will discuss the evidences on the cardiac toxicity induced by X ray radiation on cardiomyocytes with emphasis on the role played by mitochondria dynamism. PMID:27326395

  6. Technetium-99m MDP imaging of acute radiation-induced inflammation

    SciTech Connect

    Ferris, J.V.; Ziessman, H.A.

    1988-06-01

    Tc-99m MDP three-phase bone imaging demonstrated the acute hyperemic inflammatory soft tissue phase of radiation injury to the hand in a patient receiving radiation therapy to bone lesions of multiple myeloma.

  7. Applications of radiation belt research

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Louis J.

    2011-10-01

    When Arthur Clark and John Pierce proposed geosynchronous and low-Earth-orbiting (GEO and LEO) communications satellites, respectively, they did not envision that the environment in which their concepts would fly would be anything but benign. Discovery of the Van Allen radiation belts in 1958 fundamentally altered understanding of Earth's near-space environment and its impacts on technologies. Indeed, the first commercial telecommunications satellite, Telstar 1, in LEO, failed some 6 months after launch (10 July 1962) due to trapped radiation that had been enhanced from the Starfish Prime high-altitude nuclear test on the day prior to launch. Today radiation trapped in the geomagnetic field, as well as solar energetic particles that can access the magnetosphere, forms critical constraints on the design and operations of satellite systems. These considerations were important factors in the planning of the AGU Chapman Conference on radiation belts that was hosted in July 2011 by the Memorial University of Newfoundland in St. John's, Canada (see "Chapman Conference on Radiation Belts and the Inner Magnetosphere," page 4). The conference presentations, discussions, and hallway conversations illuminated current understanding of Earth's radiation belts and critical issues remaining. Certainly, fundamental understanding of radiation belt origins remains elusive. The relative roles of adiabatic processes, geomagnetic storm injections, and wave heating, among other considerations, are central topics of intense debate and of competing modeling regimes by numerous active groups.

  8. Overview of NASA's space radiation research program

    NASA Technical Reports Server (NTRS)

    Schimmerling, Walter

    2003-01-01

    NASA is developing the knowledge required to accurately predict and to efficiently manage radiation risk in space. The strategy employed has three research components: (1) ground-based simulation of space radiation components to develop a science-based understanding of radiation risk; (2) space-based measurements of the radiation environment on planetary surfaces and interplanetary space, as well as use of space platforms to validate predictions; and, (3) implementation of countermeasures to mitigate risk. NASA intends to significantly expand its support of ground-based radiation research in line with completion of the Booster Applications Facility at Brookhaven National Laboratory, expected in summer of 2003. A joint research solicitation with the Department of Energy is under way and other interagency collaborations are being considered. In addition, a Space Radiation Initiative has been submitted by the Administration to Congress that would provide answers to most questions related to the International Space Station within the next 10 years.

  9. Overview of NASA's space radiation research program.

    PubMed

    Schimmerling, Walter

    2003-06-01

    NASA is developing the knowledge required to accurately predict and to efficiently manage radiation risk in space. The strategy employed has three research components: (1) ground-based simulation of space radiation components to develop a science-based understanding of radiation risk; (2) space-based measurements of the radiation environment on planetary surfaces and interplanetary space, as well as use of space platforms to validate predictions; and, (3) implementation of countermeasures to mitigate risk. NASA intends to significantly expand its support of ground-based radiation research in line with completion of the Booster Applications Facility at Brookhaven National Laboratory, expected in summer of 2003. A joint research solicitation with the Department of Energy is under way and other interagency collaborations are being considered. In addition, a Space Radiation Initiative has been submitted by the Administration to Congress that would provide answers to most questions related to the International Space Station within the next 10 years.

  10. Antiradiation Antitoxin IgG : Immunological neutralization of Radiation Toxins at Acute Radiation Syndromes.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava

    Introduction: High doses of radiation induce apoptotic necrosis of radio-sensitive cells. Mild doses of radiation induce apoptosis or controlled programmed death of radio-sensitive cells with-out development of inflammation and formation of Radiation Toxins. Cell apoptotic necrosis initiates Radiation Toxins (RT)formation. Radiation Toxins play an important role as a trig-ger mechanism for inflammation development and cell lysis. If an immunotherapy approach to treatment of the acute radiation syndromes (ARS) were to be developed, a consideration could be given to neutralization of radiation toxins (Specific Radiation Determinants-SRD) by specific antiradiation antibodies. Therapeutic neutralization effects of the blocking anti-radiation antibodies on the circulated RT had been studied. Radiation Toxins were isolated from the central lymph of irradiated animals with Cerebrovascular(Cv ARS),Cardiovascular (Cr ARS),Gastrointestinal(Gi ARS) and Haemopoietic (Hp ARS) forms of ARS. To accomplish this objective, irradiated animals were injected with a preparation of anti-radiation immunoglobulin G (IgG) obtained from hyperimmune donors. Radiation-induced toxins that we call Specific Radiation Determinants (SRD) possess toxic (neurotoxic, haemotoxic) characteristics as well as specific antigenic properties. Depending on direct physiochemical radiation damage, they can induce development of many of the pathological processes associated with ARS. We have tested several specific hyperimmune IgG preparations against these radiation toxins and ob-served that their toxic properties were neutralized by the specific antiradiation IgGs. Material and Methods: A scheme of experiments was following: 1.Isolation of radiation toxins (RT) from the central lymph of irradiated animals with different form of ARS. 2.Transformation of a toxic form of the RT to a toxoid form of the RT. 3.Immunization of radiation naive animals. Four groups of rabbits were inoculated with a toxoid form of SRD

  11. 2013 Space Radiation Standing Review Panel Status Review for: The Risk of Acute and Late Central Nervous System Effects from Radiation Exposure, The Risk of Acute Radiation Syndromes Due to Solar Particle Events (SPEs), The Risk Of Degenerative Tissue Or Other Health Effects From Radiation Exposure, and The Risk of Radiation Carcinogenesis

    NASA Technical Reports Server (NTRS)

    2014-01-01

    The Space Radiation Standing Review Panel (from here on referred to as the SRP) was impressed with the strong research program presented by the scientists and staff associated with NASA's Space Radiation Program Element and National Space Biomedical Research Institute (NSBRI). The presentations given on-site and the reports of ongoing research that were provided in advance indicated the potential Risk of Acute and Late Central Nervous System Effects from Radiation Exposure (CNS) and were extensively discussed by the SRP. This new data leads the SRP to recommend that a higher priority should be placed on research designed to identify and understand these risks at the mechanistic level. To support this effort the SRP feels that a shift of emphasis from Acute Radiation Syndromes (ARS) and carcinogenesis to CNS-related endpoints is justified at this point. However, these research efforts need to focus on mechanisms, should follow pace with advances in the field of CNS in general and should consider the specific comments and suggestions made by the SRP as outlined below. The SRP further recommends that the Space Radiation Program Element continue with its efforts to fill the vacant positions (Element Scientist, CNS Risk Discipline Lead) as soon as possible. The SRP also strongly recommends that NASA should continue the NASA Space Radiation Summer School. In addition to these broad recommendations, there are specific comments/recommendations noted for each risk, described in detail below.

  12. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together

  13. Development of Graphical User Interface for ARRBOD (Acute Radiation Risk and BRYNTRN Organ Dose Projection)

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Hu, Shaowen; Nounu, Hatem N.; Cucinotta, Francis A.

    2010-01-01

    The space radiation environment, particularly solar particle events (SPEs), poses the risk of acute radiation sickness (ARS) to humans; and organ doses from SPE exposure may reach critical levels during extra vehicular activities (EVAs) or within lightly shielded spacecraft. NASA has developed an organ dose projection model using the BRYNTRN with SUMDOSE computer codes, and a probabilistic model of Acute Radiation Risk (ARR). The codes BRYNTRN and SUMDOSE, written in FORTRAN, are a Baryon transport code and an output data processing code, respectively. The ARR code is written in C. The risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. BRYNTRN code operation requires extensive input preparation. With a graphical user interface (GUI) to handle input and output for BRYNTRN, the response models can be connected easily and correctly to BRYNTRN in friendly way. A GUI for the Acute Radiation Risk and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations, which are required for operations of the ARRBOD modules: BRYNTRN, SUMDOSE, and the ARR probabilistic response model. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations directorate (MOD), and space biophysics researchers. The ARRBOD GUI will serve as a proof-of-concept example for future integration of other human space applications risk projection models. The current version of the ARRBOD GUI is a new self-contained product and will have follow-on versions, as options are added: 1) human geometries of MAX/FAX in addition to CAM/CAF; 2) shielding distributions for spacecraft, Mars surface and atmosphere; 3) various space environmental and biophysical models; and 4) other response models to be connected to the BRYNTRN. The major components of the overall system, the subsystem interconnections, and external interfaces are described in this

  14. Synchrotron radiation and industrial research

    NASA Astrophysics Data System (ADS)

    Townsend, Rodney P.

    1995-05-01

    Fundamental studies on the properties of many different materials are of prime importance to most industrial concerns. For Unilever, solids (crystalline and amorphous), soft solids and complex fluids are the materials of primary interest. Synchrotron radiation has proved of great value for the analysis of a variety of such materials, because the intense and highly collimated radiation source has enabled us to obtain structural information rapidly as well as in time-resolved mode. In this paper are outlined the types of materials problems faced, and how we use different techniques to elucidate structure (both short and long range order) in zeolites, amorphous solids, as well as in biomaterials such as skin and hair containing lipid phases. Both equilibrium and time-resolved studies are described.

  15. Acute Radiation Risk and BRYNTRN Organ Dose Projection Graphical User Interface

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Hu, Shaowen; Nounu, Hateni N.; Kim, Myung-Hee

    2011-01-01

    The integration of human space applications risk projection models of organ dose and acute radiation risk has been a key problem. NASA has developed an organ dose projection model using the BRYNTRN with SUM DOSE computer codes, and a probabilistic model of Acute Radiation Risk (ARR). The codes BRYNTRN and SUM DOSE are a Baryon transport code and an output data processing code, respectively. The risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. With a graphical user interface (GUI) to handle input and output for BRYNTRN, the response models can be connected easily and correctly to BRYNTRN. A GUI for the ARR and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations, which are required for operations of the ARRBOD modules. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations directorate (MOD), and space biophysics researchers. BRYNTRN code operation requires extensive input preparation. Only a graphical user interface (GUI) can handle input and output for BRYNTRN to the response models easily and correctly. The purpose of the GUI development for ARRBOD is to provide seamless integration of input and output manipulations for the operations of projection modules (BRYNTRN, SLMDOSE, and the ARR probabilistic response model) in assessing the acute risk and the organ doses of significant Solar Particle Events (SPEs). The assessment of astronauts radiation risk from SPE is in support of mission design and operational planning to manage radiation risks in future space missions. The ARRBOD GUI can identify the proper shielding solutions using the gender-specific organ dose assessments in order to avoid ARR symptoms, and to stay within the current NASA short-term dose limits. The quantified evaluation of ARR severities based on any given shielding configuration and a specified EVA or other mission

  16. Radiation, chemicals, and occupational health research

    SciTech Connect

    Turner, J.E.

    1984-01-01

    Radiation protection and its interplay with physical research programs are described. Differences and similarities between problems in health protection for chemicals and for radiation are discussed. The importance of dosimetry in radiation work and its relevance to chemicals are cited. A collaborative program between physical and biological scientists on the toxicity of metals is briefly described. It serves as an example of new research directed toward the development of fundamental concepts and principles as a basis for understanding and controlling occupational and population exposures to chemicals. 12 references, 4 figures.

  17. Overview of Graphical User Interface for ARRBOD (Acute Radiation Risk and BRYNTRN Organ Dose Projection)

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee Y.; Hu, Shaowen; Nounu, Hatem; Cucinotta, Francis A.

    Solar particle events (SPEs) pose the risk of acute radiation sickness (ARS) to astronauts be-cause organ doses from large SPEs may reach critical levels during extra vehicular activities (EVAs) or lightly shielded spacecraft. NASA has developed an organ dose projection model of Baryon transport code (BRYNTRN) with an output data processing module of SUMDOSE, and a probabilistic model of acute radiation risk (ARR). BRYNTRN code operation requires extensive input preparation, and the risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. With a graphical user interface (GUI) to handle input and output for BRYNTRN, these response models can be connected easily and correctly to BRYNTRN in a user-friendly way. The GUI for the Acute Radiation Risk and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations required for operations of the ARRBOD modules: BRYNTRN, SUMDOSE, and the ARR probabilistic response model. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations direc-torate (MOD), and space biophysics researchers. Assessment of astronauts' organ doses and ARS from the exposure to historically large SPEs is in support of mission design and opera-tion planning to avoid ARS and stay within the current NASA short-term dose limits. The ARRBOD GUI will serve as a proof-of-concept for future integration of other risk projection models for human space applications. We present an overview of the ARRBOD GUI prod-uct, which is a new self-contained product, for the major components of the overall system, subsystem interconnections, and external interfaces.

  18. Overview of Graphical User Interface for ARRBOD (Acute Radiation Risk and BRYNTRN Organ Dose Projection)

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Hu, Shaowen; Nounu, Hatem N.; Cucinotta, Francis A.

    2010-01-01

    Solar particle events (SPEs) pose the risk of acute radiation sickness (ARS) to astronauts, because organ doses from large SPEs may reach critical levels during extra vehicular activities (EVAs) or lightly shielded spacecraft. NASA has developed an organ dose projection model of Baryon transport code (BRYNTRN) with an output data processing module of SUMDOSE, and a probabilistic model of acute radiation risk (ARR). BRYNTRN code operation requires extensive input preparation, and the risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. With a graphical user interface (GUI) to handle input and output for BRYNTRN, these response models can be connected easily and correctly to BRYNTRN in a user friendly way. The GUI for the Acute Radiation Risk and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations required for operations of the ARRBOD modules: BRYNTRN, SUMDOSE, and the ARR probabilistic response model. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations directorate (MOD), and space biophysics researchers. Assessment of astronauts organ doses and ARS from the exposure to historically large SPEs is in support of mission design and operation planning to avoid ARS and stay within the current NASA short-term dose limits. The ARRBOD GUI will serve as a proof-of-concept for future integration of other risk projection models for human space applications. We present an overview of the ARRBOD GUI product, which is a new self-contained product, for the major components of the overall system, subsystem interconnections, and external interfaces.

  19. A Research Agenda for Radiation Oncology: Results of the Radiation Oncology Institute's Comprehensive Research Needs Assessment

    SciTech Connect

    Jagsi, Reshma; Bekelman, Justin E.; Brawley, Otis W.; Deasy, Joseph O.; Le, Quynh-Thu; Michalski, Jeff M.; Movsas, Benjamin; Thomas, Charles R.; Lawton, Colleen A.; Lawrence, Theodore S.; Hahn, Stephen M.

    2012-10-01

    Purpose: To promote the rational use of scarce research funding, scholars have developed methods for the systematic identification and prioritization of health research needs. The Radiation Oncology Institute commissioned an independent, comprehensive assessment of research needs for the advancement of radiation oncology care. Methods and Materials: The research needs assessment used a mixed-method, qualitative and quantitative social scientific approach, including structured interviews with diverse stakeholders, focus groups, surveys of American Society for Radiation Oncology (ASTRO) members, and a prioritization exercise using a modified Delphi technique. Results: Six co-equal priorities were identified: (1) Identify and develop communication strategies to help patients and others better understand radiation therapy; (2) Establish a set of quality indicators for major radiation oncology procedures and evaluate their use in radiation oncology delivery; (3) Identify best practices for the management of radiation toxicity and issues in cancer survivorship; (4) Conduct comparative effectiveness studies related to radiation therapy that consider clinical benefit, toxicity (including quality of life), and other outcomes; (5) Assess the value of radiation therapy; and (6) Develop a radiation oncology registry. Conclusions: To our knowledge, this prioritization exercise is the only comprehensive and methodologically rigorous assessment of research needs in the field of radiation oncology. Broad dissemination of these findings is critical to maximally leverage the impact of this work, particularly because grant funding decisions are often made by committees on which highly specialized disciplines such as radiation oncology are not well represented.

  20. Research priorities for occupational radiation protection

    SciTech Connect

    Not Available

    1994-02-01

    The Subpanel on Occupational Radiation Protection Research concludes that the most urgently needed research is that leading to the resolution of the potential effects of low-level ionizing radiation. This is the primary driving force in setting appropriate radiation protection standards and in directing the emphasis of radiation protection efforts. Much has already been done in collecting data that represents a compendium of knowledge that should be fully reviewed and understood. It is imperative that health physics researchers more effectively use that data and apply the findings to enhance understanding of the potential health effects of low-level ionizing radiation and improve the risk estimates upon which current occupational radiation protection procedures and requirements depend. Research must be focused to best serve needs in the immediate years ahead. Only then will we get the most out of what is accomplished. Beyond the above fundamental need, a number of applied research areas also have been identified as national priority issues. If effective governmental focus is achieved on several of the most important national priority issues, important occupational radiation protection research will be enhanced, more effectively coordinated, and more quickly applied to the work environment. Response in the near term will be enhanced and costs will be reduced by: developing microprocessor-aided {open_quotes}smart{close_quotes} instruments to simplify the use and processing of radiation data; developing more sensitive, energy-independent, and tissue-equivalent dosimeters to more accurately quantify personnel dose; and developing an improved risk assessment technology base. This can lead to savings of millions of dollars in current efforts needed to ensure personnel safety and to meet new, more stringent occupational guidelines.

  1. The role of MRI in the diagnosis of acute radiation reaction in breast cancer patient

    NASA Astrophysics Data System (ADS)

    Startseva, Zh A.; Musabaeva, L. I.; Usova, AV; Frolova, I. G.; Simonov, K. A.; Velikaya, V. V.

    2016-02-01

    A clinical case with acute radiation reaction of the left breast after organ-preserving surgery with 10 Gy IORT (24.8 Gy) conventional radiation therapy has been presented. Comprehensive MRI examination showed signs of radiation- induced damage to skin, soft tissues and vessels of the residual breast.

  2. Center for Applied Radiation Research (CARR)

    NASA Technical Reports Server (NTRS)

    Fogarty, Thomas N.

    1997-01-01

    Prairie View A&M University (PVAMU) Center for Applied Radiation Research (CARR) was established in 1995 to address the tasks, missions and technological needs of NASA. CARR is built on a tradition of radiation research at Prairie View A&M started in 1984 with NASA funding. This continuing program has lead to: (1) A more fundamental and practical understanding of radiation effects on electronics and materials; (2) A dialog between space, military and commercial electronics manufacturers; (3) Innovative electronic circuit designs; (4) Development of state-of-the-art research facilities at PVAMU; (5) Expanded faculty and staff to mentor student research; and (6) Most importantly, increased flow in the pipeline leading to expanded participation of African-Americans and other minorities in science and technological fields of interest to NASA.

  3. Medical Management of Acute Radiation Syndromes : Comparison of Antiradiation Vaccine and Antioxidants radioprotection potency.

    NASA Astrophysics Data System (ADS)

    Maliev, Slava; Popov, Dmitri; Lisenkov, Nikolai

    Introduction: This experimental study of biological effects of the Antiradiation Vaccine and Antioxidants which were used for prophylaxis and treatment of the Acute Radiation Syndromes caused by high doses of the low-LET radiation. An important role of Reactive Oxyden Species (Singlet oxygen, hydroxyl radicals, superoxide anions and bio-radicals)in development of the Acute Radiation Syndromes could be defined as a "central dogma" of radiobiology. Oxida-tion and damages of lipids, proteins, DNA, and RNA are playing active role in development of postradiation apoptosis. However, the therapeutic role of antioxidants in modification of a postradiation injury caused by high doses of radiation remains controversial.Previous stud-ies had revealed that antioxidants did not increase a survival rate of mammals with severe forms of the Acute Radiation Syndromes caused by High Doses of the low-LET radiation. The Antiradiation Vaccine(ARV) contains toxoid forms of the Radiation Toxins(RT) from the Specific Radiation Determinants Group (SRD). The RT SRD has toxic and antigenic prop-erties at the same time and stimulates a specific antibody elaboration and humoral response form activated acquired immune system. The blocking antiradiation antibodies induce an im-munologically specific effect and have inhibiting effects on radiation induced neuro-toxicity, vascular-toxicity, gastrointestinal toxcity, hematopoietic toxicity, and radiation induced cytol-ysis of selected groups of cells that are sensitive to radiation. Methods and materials: Scheme of experiments: 1. Irradiated animals with development of Cerebrovascular ARS (Cv-ARS), Cardiovascular ARS (Cr-ARS) Gastrointestinal ARS(GI-ARS), Hematopoietic ARS (H-ARS) -control -were treated with placebo administration. 2. Irradiated animals were treated with antioxidants prophylaxisis and treatment of Cv-ARS, Cr-SRS, GI-ARS, Hp-ARS forms of the ARS. 3. irradiated animals were treated with radioprotection by Antiradiation Vaccine

  4. Space radiation health research, 1991-1992

    NASA Technical Reports Server (NTRS)

    Jablin, M. H. (Compiler); Brooks, C. (Compiler); Ferraro, G. (Compiler); Dickson, K. J. (Compiler); Powers, J. V. (Compiler); Wallace-Robinson, J. (Compiler); Zafren, B. (Compiler)

    1993-01-01

    The present volume is a collection of 227 abstracts of radiation research sponsored by the NASA Space Radiation Health Program for the period 1991-1992. Each abstract has been categorized within one of three discipline areas: Physics, Biology and Risk Assessment. Topic areas within each discipline have been assigned as follows: Physics - Atomic Physics, Theory, Cosmic Ray and Astrophysics, Experimental, Environments and Environmental Models, Solar Activity and Prediction, Experiments, Radiation Transport and Shielding, Theory and Model Development, Experimental Studies, and Instrumentation. Biology - Biology, Molecular Biology, Cellular Radiation Biology, Transformation, Mutation, Lethality, Survival, DNA Damage and Repair, Tissue, Organs, and Organisms, In Vivo/In Vitro Systems, Carcinogenesis and Life Shortening, Cataractogenesis, Genetics/Developmental, Radioprotectants, Plants, and Other Effects. Risk Assessment - Risk Assessment, Radiation Health and Epidemiology, Space Flight Radiation Health Physics, Inter- and Intraspecies Extrapolation and Radiation Limits and Standards. Section I contains refereed journals; Section II contains reports/meetings. Keywords and author indices are provided. A collection of abstracts spanning the period 1986-1990 was previously issued as NASA Technical Memorandum 4270.

  5. Radiation research society 1952-2002. Physics as an element of radiation research.

    PubMed

    Inokuti, Mitio; Seltzer, Stephen M

    2002-07-01

    Since its inception in 1954, Radiation Research has published an estimated total of about 8700 scientific articles up to August 2001, about 520, or roughly 6%, of which are primarily related to physics. This average of about 11 articles per year indicates steadily continuing contributions by physicists, though there are appreciable fluctuations from year to year. These works of physicists concern radiation sources, dosimetry, instrumentation for measurements of radiation effects, fundamentals of radiation physics, mechanisms of radiation actions, and applications. In this review, we have selected some notable accomplishments for discussion and present an outlook for the future.

  6. Evidence Report: Risk of Acute and Late Central Nervous System Effects from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Simonsen, Lisa; Huff, Janice L.

    2016-01-01

    Possible acute and late risks to the central nervous system (CNS) from galactic cosmic rays (GCR) and solar particle events (SPE) are concerns for human exploration of space. Acute CNS risks may include: altered cognitive function, reduced motor function, and behavioral changes, all of which may affect performance and human health. Late CNS risks may include neurological disorders such as Alzheimer's disease (AD), dementia and premature aging. Although detrimental CNS changes are observed in humans treated with high-dose radiation (e.g., gamma rays and 9 protons) for cancer and are supported by experimental evidence showing neurocognitive and behavioral effects in animal models, the significance of these results on the morbidity to astronauts has not been elucidated. There is a lack of human epidemiology data on which to base CNS risk estimates; therefore, risk projection based on scaling to human data, as done for cancer risk, is not possible for CNS risks. Research specific to the spaceflight environment using animal and cell models must be compiled to quantify the magnitude of CNS changes in order to estimate this risk and to establish validity of the current permissible exposure limits (PELs). In addition, the impact of radiation exposure in combination with individual sensitivity or other space flight factors, as well as assessment of the need for biological/pharmaceutical countermeasures, will be considered after further definition of CNS risk occurs.

  7. Anti-radiation vaccine: Immunologically-based Prophylaxis of Acute Toxic Radiation Syndromes Associated with Long-term Space Flight

    NASA Technical Reports Server (NTRS)

    Popov, Dmitri; Maliev, Vecheslav; Jones, Jeffrey; Casey, Rachael C.

    2007-01-01

    Protecting crew from ionizing radiation is a key life sciences problem for long-duration space missions. The three major sources/types of radiation are found in space: galactic cosmic rays, trapped Van Allen belt radiation, and solar particle events. All present varying degrees of hazard to crews; however, exposure to high doses of any of these types of radiation ultimately induce both acute and long-term biological effects. High doses of space radiation can lead to the development of toxicity associated with the acute radiation syndrome (ARS) which could have significant mission impact, and even render the crew incapable of performing flight duties. The creation of efficient radiation protection technologies is considered an important target in space radiobiology, immunology, biochemistry and pharmacology. Two major mechanisms of cellular, organelle, and molecular destruction as a result of radiation exposure have been identified: 1) damage induced directly by incident radiation on the macromolecules they encounter and 2) radiolysis of water and generation of secondary free radicals and reactive oxygen species (ROS), which induce chemical bond breakage, molecular substitutions, and damage to biological molecules and membranes. Free-radical scavengers and antioxidants, which neutralize the damaging activities of ROS, are effective in reducing the impact of small to moderate doses of radiation. In the case of high doses of radiation, antioxidants alone may be inadequate as a radioprotective therapy. However, it remains a valuable component of a more holistic strategy of prophylaxis and therapy. High doses of radiation directly damage biological molecules and modify chemical bond, resulting in the main pathological processes that drive the development of acute radiation syndromes (ARS). Which of two types of radiation-induced cellular lethality that ultimately develops, apoptosis or necrosis, depends on the spectrum of incident radiation, dose, dose rate, and

  8. Earth Radiation Budget Research at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Harrison, Edwin F.; Gibson, Gary G.

    2014-01-01

    In the 1970s research studies concentrating on satellite measurements of Earth's radiation budget started at the NASA Langley Research Center. Since that beginning, considerable effort has been devoted to developing measurement techniques, data analysis methods, and time-space sampling strategies to meet the radiation budget science requirements for climate studies. Implementation and success of the Earth Radiation Budget Experiment (ERBE) and the Clouds and the Earth's Radiant Energy System (CERES) was due to the remarkable teamwork of many engineers, scientists, and data analysts. Data from ERBE have provided a new understanding of the effects of clouds, aerosols, and El Nino/La Nina oscillation on the Earth's radiation. CERES spacecraft instruments have extended the time coverage with high quality climate data records for over a decade. Using ERBE and CERES measurements these teams have created information about radiation at the top of the atmosphere, at the surface, and throughout the atmosphere for a better understanding of our climate. They have also generated surface radiation products for designers of solar power plants and buildings and numerous other applications

  9. Influence of radiation quality on mouse chromosome 2 deletions in radiation-induced acute myeloid leukaemia.

    PubMed

    Brown, Natalie; Finnon, Rosemary; Manning, Grainne; Bouffler, Simon; Badie, Christophe

    2015-11-01

    Leukaemia is the prevailing neoplastic disorder of the hematopoietic system. Epidemiological analyses of the survivors of the Japanese atomic bombings show that exposure to ionising radiation (IR) can cause leukaemia. Although a clear association between radiation exposure and leukaemia development is acknowledged, the underlying mechanisms remain incompletely understood. A hemizygous deletion on mouse chromosome 2 (del2) is a common feature in several mouse strains susceptible to radiation-induced acute myeloid leukaemia (rAML). The deletion is an early event detectable 24h after exposure in bone marrow cells. Ultimately, 15-25% of exposed animals develop AML with 80-90% of cases carrying del2. Molecular mapping of leukaemic cell genomes identified a minimal deleted region (MDR) on chromosome 2 (chr2) in which a tumour suppressor gene, Sfpi1 is located, encoding the transcription factor PU.1, essential in haematopoiesis. The remaining copy of Sfpi1 has a point mutation in the coding sequence for the DNA-binding domain of the protein in 70% of rAML, which alters a single CpG sequence in the codon for arginine residue R235. In order to identify chr2 deletions and Sfpi.1/PU.1 loss, we performed array comparative genomic hybridization (aCGH) on a unique panel of 79rAMLs. Using a custom made CGH array specifically designed for mouse chr2, we analysed at unprecedentedly high resolution (1.4M array- 148bp resolution) the size of the MDR in low LET and high-LET induced rAMLs (32 X-ray- and 47 neutron-induced). Sequencing of Sfpi1/PU.1DNA binding domain identified the presence of R235 point mutations, showing no influence of radiation quality on R235 type or frequency. We identified for the first time rAML cases with complex del2 in a subset of neutron-induced AMLs. This study allowed us to re-define the MDR to a much smaller 5.5Mb region (still including Sfpi1/PU.1), identical regardless of radiation quality.

  10. Countermeasure development : Specific Immunoprophylaxis and Immunotherapy of Combined Acute Radiation Syndromes.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava

    healthy mammals induces development of lymphocytosis, leukocytosis, trombocytosis, and ac-tivation of blood coagulation cascade. Administration of SRT (IV or IM) to radiation naive animals induces leukopeina, thrombopenia, lymphopenia as a result of clonogenic programmed cell death. Blood coagulation cascade suppression is registered. Materials and Methods: Cows, horses, rabbits, rats, mice were used for different stages of our experiments. Animals were quarantined at laboratory conditions for three weeks prior to experimentation. Isolation of the SRT was provided from the central lymphatic duct of irradiated cows. Immunization of horses and rabbits to obtain Antiradiation Antibodies (Specific Antiradiation Antidote -SAR) was provided. Animals: cows, mice, rats were irradiated in the VSRI (Kazan), Academy of Vet-erinary Medicine (Moscow), Scientific Research Institute of Radiobiology (Gomel), Scientific Research Nuclear Center (Dubna). Equipment for gamma-irradiation: " Pyma", "Panorama" -Co gamma radiation source. Irradiation was performed by different doses corresponding to induction of severe forms of the Acute Radiation Syndromes (ARS). Mice and rats were re-ceiving the combined radiation and thermal injury. Model of the thermal injury: Burns -10% of total body surface. Third grade of burns was used as a model. Thermal Injury was given after irradiation. Preparations of Antiradiation Vaccine -contained a toxoid form of Radiation Toxins were used for immune-prophylaxis. Preparations of Antiradiation Antidote IgG con-tained antibodies to Radiation Toxins was used for immune-therapy. Scheme of experiments: I. Control: Group A. Animals with the ARS not received any treatment. Group B. Animals with the thermal injury not received any treatment. Group C. Animals with combined forms of the ARS not received any treatment. II. Specific Immune-prophylaxis with Antiradiation Vaccine (AV): Group D. Animals undergone immune-prophylaxis by AV. Irradiation was provided 24 days after

  11. Predictors of Severe Acute and Late Toxicities in Patients With Localized Head-and-Neck Cancer Treated With Radiation Therapy

    SciTech Connect

    Meyer, Francois; Fortin, Andre; Wang, Chang Shu; Liu, Geoffrey

    2012-03-15

    Purpose: Radiation therapy (RT) causes acute and late toxicities that affect various organs and functions. In a large cohort of patients treated with RT for localized head and neck cancer (HNC), we prospectively assessed the occurrence of RT-induced acute and late toxicities and identified characteristics that predicted these toxicities. Methods and Materials: We conducted a randomized trial among 540 patients treated with RT for localized HNC to assess whether vitamin E supplementation could improve disease outcomes. Adverse effects of RT were assessed using the Radiation Therapy Oncology Group Acute Radiation Morbidity Criteria during RT and one month after RT, and the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer Late Radiation Morbidity Scoring Scheme at six and 12 months after RT. The most severe adverse effect among the organs/tissues was selected as an overall measure of either acute or late toxicity. Grade 3 and 4 toxicities were considered as severe. Stepwise multivariate logistic regression models were used to identify all independent predictors (p < 0.05) of acute or late toxicity and to estimate odds ratios (OR) for severe toxicity with their 95% confidence intervals (CI). Results: Grade 3 or 4 toxicity was observed in 23% and 4% of patients, respectively, for acute and late toxicity. Four independent predictors of severe acute toxicity were identified: sex (female vs. male: OR = 1.72, 95% confidence interval [CI]: 1.06-2.80), Karnofsky Performance Status (OR = 0.67 for a 10-point increment, 95% CI: 0.52-0.88), body mass index (above 25 vs. below: OR = 1.88, 95% CI: 1.22-2.90), TNM stage (Stage II vs. I: OR = 1.91, 95% CI: 1.25-2.92). Two independent predictors were found for severe late toxicity: female sex (OR = 3.96, 95% CI: 1.41-11.08) and weight loss during RT (OR = 1.26 for a 1 kg increment, 95% CI: 1.12-1.41). Conclusions: Knowledge of these predictors easily collected in a clinical setting could help

  12. Medical Management of Acute Radiation Syndromes : Comparison of Antiradiation Vaccine and Antioxidants radioprotection potency.

    NASA Astrophysics Data System (ADS)

    Maliev, Slava; Popov, Dmitri; Lisenkov, Nikolai

    Introduction: This experimental study of biological effects of the Antiradiation Vaccine and Antioxidants which were used for prophylaxis and treatment of the Acute Radiation Syndromes caused by high doses of the low-LET radiation. An important role of Reactive Oxyden Species (Singlet oxygen, hydroxyl radicals, superoxide anions and bio-radicals)in development of the Acute Radiation Syndromes could be defined as a "central dogma" of radiobiology. Oxida-tion and damages of lipids, proteins, DNA, and RNA are playing active role in development of postradiation apoptosis. However, the therapeutic role of antioxidants in modification of a postradiation injury caused by high doses of radiation remains controversial.Previous stud-ies had revealed that antioxidants did not increase a survival rate of mammals with severe forms of the Acute Radiation Syndromes caused by High Doses of the low-LET radiation. The Antiradiation Vaccine(ARV) contains toxoid forms of the Radiation Toxins(RT) from the Specific Radiation Determinants Group (SRD). The RT SRD has toxic and antigenic prop-erties at the same time and stimulates a specific antibody elaboration and humoral response form activated acquired immune system. The blocking antiradiation antibodies induce an im-munologically specific effect and have inhibiting effects on radiation induced neuro-toxicity, vascular-toxicity, gastrointestinal toxcity, hematopoietic toxicity, and radiation induced cytol-ysis of selected groups of cells that are sensitive to radiation. Methods and materials: Scheme of experiments: 1. Irradiated animals with development of Cerebrovascular ARS (Cv-ARS), Cardiovascular ARS (Cr-ARS) Gastrointestinal ARS(GI-ARS), Hematopoietic ARS (H-ARS) -control -were treated with placebo administration. 2. Irradiated animals were treated with antioxidants prophylaxisis and treatment of Cv-ARS, Cr-SRS, GI-ARS, Hp-ARS forms of the ARS. 3. irradiated animals were treated with radioprotection by Antiradiation Vaccine

  13. Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis

    PubMed Central

    van der Walt, Anneke; Butzkueven, Helmut; Klistorner, Alexander; Egan, Gary F.; Kilpatrick, Trevor J.

    2016-01-01

    Previous studies have reported diffusion tensor imaging (DTI) changes within the optic radiations of patients after optic neuritis (ON). We aimed to study optic radiation DTI changes over 12 months following acute ON and to study correlations between DTI parameters and damage to the optic nerve and primary visual cortex (V1). We measured DTI parameters [fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD)] from the optic radiations of 38 acute ON patients at presentation and 6 and 12 months after acute ON. In addition, we measured retinal nerve fibre layer thickness, visual evoked potential amplitude, optic radiation lesion load, and V1 thickness. At baseline, FA was reduced and RD and MD were increased compared to control. Over 12 months, FA reduced in patients at an average rate of −2.6% per annum (control = −0.51%; p = 0.006). Change in FA, RD, and MD correlated with V1 thinning over 12 months (FA: R = 0.450, p = 0.006; RD: R = −0.428, p = 0.009; MD: R = −0.365, p = 0.029). In patients with no optic radiation lesions, AD significantly correlated with RNFL thinning at 12 months (R = 0.489, p = 0.039). In conclusion, DTI can detect optic radiation changes over 12 months following acute ON that correlate with optic nerve and V1 damage. PMID:27555964

  14. Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis.

    PubMed

    Kolbe, Scott C; van der Walt, Anneke; Butzkueven, Helmut; Klistorner, Alexander; Egan, Gary F; Kilpatrick, Trevor J

    2016-01-01

    Previous studies have reported diffusion tensor imaging (DTI) changes within the optic radiations of patients after optic neuritis (ON). We aimed to study optic radiation DTI changes over 12 months following acute ON and to study correlations between DTI parameters and damage to the optic nerve and primary visual cortex (V1). We measured DTI parameters [fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD)] from the optic radiations of 38 acute ON patients at presentation and 6 and 12 months after acute ON. In addition, we measured retinal nerve fibre layer thickness, visual evoked potential amplitude, optic radiation lesion load, and V1 thickness. At baseline, FA was reduced and RD and MD were increased compared to control. Over 12 months, FA reduced in patients at an average rate of -2.6% per annum (control = -0.51%; p = 0.006). Change in FA, RD, and MD correlated with V1 thinning over 12 months (FA: R = 0.450, p = 0.006; RD: R = -0.428, p = 0.009; MD: R = -0.365, p = 0.029). In patients with no optic radiation lesions, AD significantly correlated with RNFL thinning at 12 months (R = 0.489, p = 0.039). In conclusion, DTI can detect optic radiation changes over 12 months following acute ON that correlate with optic nerve and V1 damage.

  15. Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis.

    PubMed

    Kolbe, Scott C; van der Walt, Anneke; Butzkueven, Helmut; Klistorner, Alexander; Egan, Gary F; Kilpatrick, Trevor J

    2016-01-01

    Previous studies have reported diffusion tensor imaging (DTI) changes within the optic radiations of patients after optic neuritis (ON). We aimed to study optic radiation DTI changes over 12 months following acute ON and to study correlations between DTI parameters and damage to the optic nerve and primary visual cortex (V1). We measured DTI parameters [fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD)] from the optic radiations of 38 acute ON patients at presentation and 6 and 12 months after acute ON. In addition, we measured retinal nerve fibre layer thickness, visual evoked potential amplitude, optic radiation lesion load, and V1 thickness. At baseline, FA was reduced and RD and MD were increased compared to control. Over 12 months, FA reduced in patients at an average rate of -2.6% per annum (control = -0.51%; p = 0.006). Change in FA, RD, and MD correlated with V1 thinning over 12 months (FA: R = 0.450, p = 0.006; RD: R = -0.428, p = 0.009; MD: R = -0.365, p = 0.029). In patients with no optic radiation lesions, AD significantly correlated with RNFL thinning at 12 months (R = 0.489, p = 0.039). In conclusion, DTI can detect optic radiation changes over 12 months following acute ON that correlate with optic nerve and V1 damage. PMID:27555964

  16. Acute Radiation Syndrome Severity Score System in Mouse Total-Body Irradiation Model.

    PubMed

    Ossetrova, Natalia I; Ney, Patrick H; Condliffe, Donald P; Krasnopolsky, Katya; Hieber, Kevin P

    2016-08-01

    Radiation accidents or terrorist attacks can result in serious consequences for the civilian population and for military personnel responding to such emergencies. The early medical management situation requires quantitative indications for early initiation of cytokine therapy in individuals exposed to life-threatening radiation doses and effective triage tools for first responders in mass-casualty radiological incidents. Previously established animal (Mus musculus, Macaca mulatta) total-body irradiation (γ-exposure) models have evaluated a panel of radiation-responsive proteins that, together with peripheral blood cell counts, create a multiparametic dose-predictive algorithm with a threshold for detection of ~1 Gy from 1 to 7 d after exposure as well as demonstrate the acute radiation syndrome severity score systems created similar to the Medical Treatment Protocols for Radiation Accident Victims developed by Fliedner and colleagues. The authors present a further demonstration of the acute radiation sickness severity score system in a mouse (CD2F1, males) TBI model (1-14 Gy, Co γ-rays at 0.6 Gy min) based on multiple biodosimetric endpoints. This includes the acute radiation sickness severity Observational Grading System, survival rate, weight changes, temperature, peripheral blood cell counts and radiation-responsive protein expression profile: Flt-3 ligand, interleukin 6, granulocyte-colony stimulating factor, thrombopoietin, erythropoietin, and serum amyloid A. Results show that use of the multiple-parameter severity score system facilitates identification of animals requiring enhanced monitoring after irradiation and that proteomics are a complementary approach to conventional biodosimetry for early assessment of radiation exposure, enhancing accuracy and discrimination index for acute radiation sickness response categories and early prediction of outcome. PMID:27356057

  17. Acute Radiation Syndrome Severity Score System in Mouse Total-Body Irradiation Model.

    PubMed

    Ossetrova, Natalia I; Ney, Patrick H; Condliffe, Donald P; Krasnopolsky, Katya; Hieber, Kevin P

    2016-08-01

    Radiation accidents or terrorist attacks can result in serious consequences for the civilian population and for military personnel responding to such emergencies. The early medical management situation requires quantitative indications for early initiation of cytokine therapy in individuals exposed to life-threatening radiation doses and effective triage tools for first responders in mass-casualty radiological incidents. Previously established animal (Mus musculus, Macaca mulatta) total-body irradiation (γ-exposure) models have evaluated a panel of radiation-responsive proteins that, together with peripheral blood cell counts, create a multiparametic dose-predictive algorithm with a threshold for detection of ~1 Gy from 1 to 7 d after exposure as well as demonstrate the acute radiation syndrome severity score systems created similar to the Medical Treatment Protocols for Radiation Accident Victims developed by Fliedner and colleagues. The authors present a further demonstration of the acute radiation sickness severity score system in a mouse (CD2F1, males) TBI model (1-14 Gy, Co γ-rays at 0.6 Gy min) based on multiple biodosimetric endpoints. This includes the acute radiation sickness severity Observational Grading System, survival rate, weight changes, temperature, peripheral blood cell counts and radiation-responsive protein expression profile: Flt-3 ligand, interleukin 6, granulocyte-colony stimulating factor, thrombopoietin, erythropoietin, and serum amyloid A. Results show that use of the multiple-parameter severity score system facilitates identification of animals requiring enhanced monitoring after irradiation and that proteomics are a complementary approach to conventional biodosimetry for early assessment of radiation exposure, enhancing accuracy and discrimination index for acute radiation sickness response categories and early prediction of outcome.

  18. Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation

    SciTech Connect

    Daila S. Gridley, PhD

    2012-03-30

    FINAL TECHNICAL REPORT Supported by the Low Dose Radiation Research Program, Office of Science U.S. Department of Energy Grant No. DE-FG02-07ER64345 Project ID: 0012965 Award Register#: ER64345 Project Manager: Noelle F. Metting, Sc.D. Phone: 301-903-8309 Division SC-23.2 noelle.metting@science.doe.gov Submitted March 2012 To: https://www.osti.gov/elink/241.3.jsp Title: Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation PI: Daila S. Gridley, Ph.D. Human low dose radiation data have been derived primarily from studies of space and airline flight personnel, nuclear plant workers and others exposed occupationally, as well as victims in the vicinity of atomic bomb explosions. The findings remain inconclusive due to population inconsistencies and complex interactions among total dose, dose rate, radiation quality and age at exposure. Thus, safe limits for low dose occupational irradiation are currently based on data obtained with doses far exceeding the levels expected for the general population and health risks have been largely extrapolated using the linear-nonthreshold dose-response model. The overall working hypothesis of the present study is that priming with low dose, low-linear energy transfer (LET) radiation can ameliorate the response to acute high-dose radiation exposure. We also propose that the efficacy of low-dose induced protection will be dependent upon the form and regimen of the high-dose exposure: photons versus protons versus simulated solar particle event protons (sSPE). The emphasis has been on gene expression and function of CD4+ T helper (Th) lymphocytes harvested from spleens of whole-body irradiated C57BL/6 mice, a strain that provides the genetic background for many genetically engineered strains. Evaluations of the responses of other selected cells, tissues such as skin, and organs such as lung, liver and brain were also initiated (partially funded by other sources). The long-term goal is to provide information

  19. Fallout from government-sponsored radiation research.

    PubMed

    Spicer, Carol Mason

    1994-06-01

    On December 28, 1993, Energy Secretary Hazel R. O'Leary publicly appealed to both the executive and legislative branches of the United States Government to consider compensation for individuals who were harmed by their exposure to ionizing radiation while enrolled in government-sponsored studies conducted between 1940 and the early 1970s. The call for compensation was issued three weeks after Secretary O'Leary disclosed that radiation experiments involving humans, sometimes without their consent, had occurred under the auspices of the Atomic Energy Commission (AEC), a forerunner of the Department of Energy (DOE). Secretary O'Leary directed her department to investigate the nature and extent of the experiments, report on their medical and ethical acceptability, and locate the research subjects or their families.

  20. γ-Tocotrienol as a Promising Countermeasure for Acute Radiation Syndrome: Current Status.

    PubMed

    Singh, Vijay K; Hauer-Jensen, Martin

    2016-01-01

    The hazard of ionizing radiation exposure due to nuclear accidents or terrorist attacks is ever increasing. Despite decades of research, still, there is a shortage of non-toxic, safe and effective medical countermeasures for radiological and nuclear emergency. To date, the U.S. Food and Drug Administration (U.S. FDA) has approved only two growth factors, Neupogen (granulocyte colony-stimulating factor (G-CSF), filgrastim) and Neulasta (PEGylated G-CSF, pegfilgrastim) for the treatment of hematopoietic acute radiation syndrome (H-ARS) following the Animal Efficacy Rule. Promising radioprotective efficacy results of γ-tocotrienol (GT3; a member of the vitamin E family) in the mouse model encouraged its further evaluation in the nonhuman primate (NHP) model. These studies demonstrated that GT3 significantly aided the recovery of radiation-induced neutropenia and thrombocytopenia compared to the vehicle controls; these results particularly significant after exposure to 5.8 or 6.5 Gray (Gy) whole body γ-irradiation. The stimulatory effect of GT3 on neutrophils and thrombocytes (platelets) was directly and positively correlated with dose; a 75 mg/kg dose was more effective compared to 37.5 mg/kg. GT3 was also effective against 6.5 Gy whole body γ-irradiation for improving neutrophils and thrombocytes. Moreover, a single administration of GT3 without any supportive care was equivalent, in terms of improving hematopoietic recovery, to multiple doses of Neupogen and two doses of Neulasta with full supportive care (including blood products) in the NHP model. GT3 may serve as an ultimate radioprotector for use in humans, particularly for military personnel and first responders. In brief, GT3 is a promising radiation countermeasure that ought to be further developed for U.S. FDA approval for the ARS indication. PMID:27153057

  1. γ-Tocotrienol as a Promising Countermeasure for Acute Radiation Syndrome: Current Status

    PubMed Central

    Singh, Vijay K.; Hauer-Jensen, Martin

    2016-01-01

    The hazard of ionizing radiation exposure due to nuclear accidents or terrorist attacks is ever increasing. Despite decades of research, still, there is a shortage of non-toxic, safe and effective medical countermeasures for radiological and nuclear emergency. To date, the U.S. Food and Drug Administration (U.S. FDA) has approved only two growth factors, Neupogen (granulocyte colony-stimulating factor (G-CSF), filgrastim) and Neulasta (PEGylated G-CSF, pegfilgrastim) for the treatment of hematopoietic acute radiation syndrome (H-ARS) following the Animal Efficacy Rule. Promising radioprotective efficacy results of γ-tocotrienol (GT3; a member of the vitamin E family) in the mouse model encouraged its further evaluation in the nonhuman primate (NHP) model. These studies demonstrated that GT3 significantly aided the recovery of radiation-induced neutropenia and thrombocytopenia compared to the vehicle controls; these results particularly significant after exposure to 5.8 or 6.5 Gray (Gy) whole body γ-irradiation. The stimulatory effect of GT3 on neutrophils and thrombocytes (platelets) was directly and positively correlated with dose; a 75 mg/kg dose was more effective compared to 37.5 mg/kg. GT3 was also effective against 6.5 Gy whole body γ-irradiation for improving neutrophils and thrombocytes. Moreover, a single administration of GT3 without any supportive care was equivalent, in terms of improving hematopoietic recovery, to multiple doses of Neupogen and two doses of Neulasta with full supportive care (including blood products) in the NHP model. GT3 may serve as an ultimate radioprotector for use in humans, particularly for military personnel and first responders. In brief, GT3 is a promising radiation countermeasure that ought to be further developed for U.S. FDA approval for the ARS indication. PMID:27153057

  2. Glucagon-Like Peptide-2 Improves Both Acute and Late Experimental Radiation Enteritis in the Rat

    SciTech Connect

    Torres, Sandra

    2007-12-01

    Purpose: Acute and/or chronic radiation enteritis can develop after radiotherapy for pelvic cancers. Experimental and clinical observations have provided evidence of a role played by acute mucosal disruption in the appearance of late effects. The therapeutic potential of acute administration of glucagon-like peptide-2 (GLP-2) against acute and chronic intestinal injury was investigated in this study. Methods and Materials: Intestinal segments were surgically exteriorized and exposed to 16.7 or 19 Gy X-rays. The rats were treated once daily with vehicle or a protease-resistant GLP-2 derivative for 14 days before irradiation, with or without 7 days of GLP-2 after treatment. Macroscopic and microscopic observations were made 2 and 15 weeks after radiation exposure. Results: In the control animals, GLP-2 induced an increase in intestinal mucosal mass, along with an increase in villus height and crypt depth. GLP-2 administration before and after irradiation completely prevented the acute radiation-induced mucosal ulcerations observed after exposure to 16.7 Gy. GLP-2 treatment strikingly reduced the late radiation damage observed after 19 Gy irradiation. Microscopic observations revealed an improved organization of the intestinal wall and an efficient wound healing process, especially in the smooth muscle layers. Conclusion: GLP-2 has a clear therapeutic potential against both acute and chronic radiation enteritis. This therapeutic effect is mediated through an increased mucosal mass before tissue injury and the stimulation of still unknown mechanisms of tissue response to radiation damage. Although these preliminary results still need to be confirmed, GLP-2 might be a way to limit patient discomfort during radiotherapy and reduce the risk of consequential late effects.

  3. Radiation combined injury: overview of NIAID research.

    PubMed

    DiCarlo, Andrea L; Ramakrishnan, Narayani; Hatchett, Richard J

    2010-06-01

    The term "radiation combined injury" (RCI) is used to describe conditions where radiation injury is coupled with other insults such as burns, wounds, infection, or blunt trauma. A retrospective account of injuries sustained following the atomic bombing of Hiroshima estimates that RCI comprised approximately 65% of all injuries observed. Much of the research that has been performed on RCI was carried out during the Cold War and our understanding of the clinical problem RCI presents does not reflect the latest advances in medicine or science. Because concerns have increased that terrorists might employ radiological or nuclear weapons, and because of the likelihood that victims of such terrorism would experience RCI, the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health sponsored a meeting in 2007 to explore the state of the research in this area, identify programmatic gaps, and establish priorities for future research. As a follow-up to that meeting, in 2008 NIAID sponsored an initiative on RCI, leading to the award of several exploratory/developmental grants, the goals of which are to better understand biological synergy involved in RCI-induced damage, develop improved animal models for various type of RCI, and advance identification and testing of potential countermeasures to treat injuries that would be expected following a radiological or nuclear event. This program has already yielded new insight into the nature of combined injuries and has identified a number of novel and existing compounds that may be effective treatments for this condition.

  4. Radiation combined injury: overview of NIAID research.

    PubMed

    DiCarlo, Andrea L; Ramakrishnan, Narayani; Hatchett, Richard J

    2010-06-01

    The term "radiation combined injury" (RCI) is used to describe conditions where radiation injury is coupled with other insults such as burns, wounds, infection, or blunt trauma. A retrospective account of injuries sustained following the atomic bombing of Hiroshima estimates that RCI comprised approximately 65% of all injuries observed. Much of the research that has been performed on RCI was carried out during the Cold War and our understanding of the clinical problem RCI presents does not reflect the latest advances in medicine or science. Because concerns have increased that terrorists might employ radiological or nuclear weapons, and because of the likelihood that victims of such terrorism would experience RCI, the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health sponsored a meeting in 2007 to explore the state of the research in this area, identify programmatic gaps, and establish priorities for future research. As a follow-up to that meeting, in 2008 NIAID sponsored an initiative on RCI, leading to the award of several exploratory/developmental grants, the goals of which are to better understand biological synergy involved in RCI-induced damage, develop improved animal models for various type of RCI, and advance identification and testing of potential countermeasures to treat injuries that would be expected following a radiological or nuclear event. This program has already yielded new insight into the nature of combined injuries and has identified a number of novel and existing compounds that may be effective treatments for this condition. PMID:20445395

  5. Therapeutics interventions with anti-inflammatory creams in post radiation acute skin reactions: a systematic review of most important clinical trials.

    PubMed

    Koukourakis, Georgios V; Kelekis, Nikolaos; Kouvaris, John; Beli, Ivelina K; Kouloulias, Vassilios E

    2010-06-01

    The majority of cancer patients will receive radiation therapy treatment at some stage during their malignancy. An acute skin reaction represents a common post radiation side effect with different grade of severity. In order to investigate the optimal methods to prevent and manage acute skin reactions related to radiation therapy we have conducted a systematic review on this topic. It seems that skin washing, including gentle washing with water alone with or without mild soap, should be permitted in patients receiving radiation therapy, to prevent acute skin reaction. In addition, a low dose (i.e., 1%) corticosteroid cream may be beneficial in the reduction of itching and irritation. We have concluded that there is insufficient evidence to support or refute specific topical or oral agents for the prevention or management of acute skin reaction. There is a need for further research to review treatments that have produced promising results in the reviewed research studies and to evaluate other commonly recommended topical treatments. The purpose of this patent and literature review is to advocate the current management of acute skin reaction.

  6. Acute Radiation Hypotension in the Rabbit: a Model for the Human Radiation Shock Syndrome.

    NASA Astrophysics Data System (ADS)

    Makale, Milan Theodore

    This study has shown that total body irradiation (TBI) of immature (40 to 100 day old) rabbits leads to an acute fall in mean arterial pressure (MAP) 30 to 90 minutes after exposure, which takes no more than about three minutes, and often results in pressures which are less than 50% of the lowest pre-exposure MAP. This is termed acute cardiovascular collapse (ACC). ACC is often accompanied by ECG T-wave elevation, a sharp rise in ear temperature, labored breathing, pupillary constriction, bladder emptying, and loss of abdominal muscle tone. About 73% of 40 to 100 day rabbits exhibit ACC; the others and most older rabbits display gradual pressure reductions (deliberate hypotension) which may be profound, and which may be accompanied by the same changes associated with ACC. ACC and deliberate hypotension occurred in rabbits cannulated in the dorsal aorta, and in non-operated animals. The decline in MAP for all 40 to 100 day cannulated rabbits (deliberate and ACC responders) is 55.4%. The experiments described below only involved 40 to 100 day cannulated TBI rabbits. Heart region irradiation resulted in an average MAP decline of 29.1%, with 1/15 rabbits showing ACC. Heart shielding during TBI reduced the decline in MAP to 19%, with 1/10 rabbits experiencing ACC. These results imply that the heart region, which includes the heart, part of the lungs, neural receptors, roots of the systemic vessels, and the blood, is a sensitive target. Bilateral vagotomy reduced the decline in MAP to 24.9%, and abolished ACC. Atropine (6 mg/kg) reduced the frequency of ACC to 26%, and the decline in MAP to 41.4%. In 11/13 rabbits the voltage generated by left vagal transmission rose after TBI. The vagi appear to participate in radiation hypotension. Heart shielding together with bilateral vagotomy reduced the decline in MAP to only 9.9%, with no ACC responders. The mean right ventricular pressure (MRVP) rose after TBI in 8/10 rabbits. In animals which displayed either ACC or steep

  7. Studies of acute and chronic radiation injury at the Biological and Medical Research Division, Argonne National Laboratory, 1953-1970: Description of individual studies, data files, codes, and summaries of significant findings

    SciTech Connect

    Grahn, D.; Fox, C.; Wright, B.J.; Carnes, B.A.

    1994-05-01

    Between 1953 and 1970, studies on the long-term effects of external x-ray and {gamma} irradiation on inbred and hybrid mouse stocks were carried out at the Biological and Medical Research Division, Argonne National Laboratory. The results of these studies, plus the mating, litter, and pre-experimental stock records, were routinely coded on IBM cards for statistical analysis and record maintenance. Also retained were the survival data from studies performed in the period 1943-1953 at the National Cancer Institute, National Institutes of Health, Bethesda, Maryland. The card-image data files have been corrected where necessary and refiled on hard disks for long-term storage and ease of accessibility. In this report, the individual studies and data files are described, and pertinent factors regarding caging, husbandry, radiation procedures, choice of animals, and other logistical details are summarized. Some of the findings are also presented. Descriptions of the different mouse stocks and hybrids are included in an appendix; more than three dozen stocks were involved in these studies. Two other appendices detail the data files in their original card-image format and the numerical codes used to describe the animal`s exit from an experiment and, for some studies, any associated pathologic findings. Tabular summaries of sample sizes, dose levels, and other variables are also given to assist investigators in their selection of data for analysis. The archive is open to any investigator with legitimate interests and a willingness to collaborate and acknowledge the source of the data and to recognize appropriate conditions or caveats.

  8. Breast Intensity-Modulated Radiation Therapy Reduces Time Spent With Acute Dermatitis for Women of All Breast Sizes During Radiation

    SciTech Connect

    Freedman, Gary M. Li Tianyu; Nicolaou, Nicos; Chen Yan; Ma, Charlie C.-M.; Anderson, Penny R.

    2009-07-01

    Purpose: To study the time spent with radiation-induced dermatitis during a course of radiation therapy for breast cancer in women treated with conventional or intensity-modulated radiation therapy (IMRT). Methods and Materials: The study population consisted of 804 consecutive women with early-stage breast cancer treated with breast-conserving surgery and radiation from 2001 to 2006. All patients were treated with whole-breast radiation followed by a boost to the tumor bed. Whole-breast radiation consisted of conventional wedged photon tangents (n = 405) earlier in the study period and mostly of photon IMRT (n = 399) in later years. All patients had acute dermatitis graded each week of treatment. Results: The breakdown of the cases of maximum acute dermatitis by grade was as follows: 3%, Grade 0; 34%, Grade 1; 61%, Grade 2; and 2%, Grade 3. The breakdown of cases of maximum toxicity by technique was as follows: 48%, Grade 0/1, and 52%, Grade 2/3, for IMRT; and 25%, Grade 0/1, and 75%, Grade 2/3, for conventional radiation therapy (p < 0.0001). The IMRT patients spent 82% of weeks during treatment with Grade 0/1 dermatitis and 18% with Grade 2/3 dermatitis, compared with 29% and 71% of patients, respectively, treated with conventional radiation (p < 0.0001). Furthermore, the time spent with Grade 2/3 toxicity was decreased in IMRT patients with small (p = 0.0015), medium (p < 0.0001), and large (p < 0.0001) breasts. Conclusions: Breast IMRT is associated with a significant decrease both in the time spent during treatment with Grade 2/3 dermatitis and in the maximum severity of dermatitis compared with that associated with conventional radiation, regardless of breast size.

  9. Subacute radiation dermatitis: a histologic imitator of acute cutaneous graft-versus-host disease

    SciTech Connect

    LeBoit, P.E.

    1989-02-01

    The histopathologic changes of radiation dermatitis have been classified either as early effects (necrotic keratinocytes, fibrin thrombi, and hemorrhage) or as late effects (vacuolar changes at the dermal-epidermal junction, atypical radiation fibroblasts, and fibrosis). Two patients, one exposed to radiation therapeutically and one accidentally, are described. Skin biopsy specimens showed an interface dermatitis characterized by numerous dyskeratotic epidermal cells with lymphocytes in close apposition (satellite cell necrosis); that is, the epidermal changes were similar to those in acute graft-versus-host disease. Because recipients of bone marrow transplants frequently receive total body irradiation as part of their preparatory regimen, the ability of radiation to cause persistent epidermal changes similar to those in acute graft-versus-host disease could complicate the interpretation of posttransplant skin biopsy specimens.

  10. Evaluation of acute radiation optic neuropathy by B-scan ultrasonography

    SciTech Connect

    Lovato, A.A.; Char, D.H.; Quivey, J.M.; Castro, J.R. )

    1990-09-15

    We studied the accuracy of B-scan ultrasonography to diagnose radiation-induced optic neuropathy in 15 patients with uveal melanoma. Optic neuropathy was diagnosed by an observer masked as to clinical and photographic data. We analyzed planimetry area measurements of the retrobulbar nerve before and after irradiation. The retrobulbar area of the optic nerve shadow on B-scan was quantitated with a sonic digitizer. Increased optic nerve shadow area was confirmed in 13 of 15 patients who had radiation optic neuropathy (P less than .004). The correct diagnosis was confirmed when the results of ultrasound were compared to fundus photography and fluorescein angiography. In 13 patients there was acute radiation optic neuropathy. Two patients did not show an enlarged retrobulbar optic nerve, and the clinical appearance suggested early progression to optic atrophy. Ultrasonography documents the enlargement of the optic nerve caused by acute radiation changes.

  11. Radiation applications research and facilities in AECL research company

    NASA Astrophysics Data System (ADS)

    Iverson, S. L.

    In the 60's and 70's Atomic Energy of Canada had a very active R&D program to discover and develop applications of ionizing radiation. Out of this grew the technology underlying the company's current product line of industrial irradiators. With the commercial success of that product line the company turned its R&D attention to other activities. Presently, widespread interest in the use of radiation for food processing and the possibility of developing reliable and competitive machine sources of radiation hold out the promise of a major increase in industrial use of radiation. While many of the applications being considered are straightforward applications of existing knowledge, others depend on more subtle effects including combined effects of two or more agents. Further research is required in these areas. In March 1985 a new branch, Radiation Applications Research, began operations with the objective of working closely with industry to develop and assist the introduction of new uses of ionizing radiation. The Branch is equipped with appropriate analytical equipment including HPLC (high performance liquid chromatograph) and GC/MS (gas chromatograph/mass spectrometer) as well as a Gammacell 220 and an I-10/1, one kilowatt 10 MeV electron accelerator. The accelerator is located in a specially designed facility equipped for experimental irradiation of test quantities of packaged products as well as solids, liquids and gases in various configurations. A conveyor system moves the packaged products from the receiving area, through a maze, past the electron beam at a controlled rate and finally to the shipping area. Other necessary capabilities, such as gamma and electron dosimetry and a microbiology laboratory, have also been developed. Initial projects in areas ranging from food through environmental and industrial applications have been assessed and the most promising have been selected for further work. As an example, the use of charcoal adsorbent beds to concentrate

  12. Potential for a pluripotent adult stem cell treatment for acute radiation sickness

    PubMed Central

    Rodgerson, Denis O; Reidenberg, Bruce E; Harris, Alan G; Pecora, Andrew L

    2012-01-01

    Accidental radiation exposure and the threat of deliberate radiation exposure have been in the news and are a public health concern. Experience with acute radiation sickness has been gathered from atomic blast survivors of Hiroshima and Nagasaki and from civilian nuclear accidents as well as experience gained during the development of radiation therapy for cancer. This paper reviews the medical treatment reports relevant to acute radiation sickness among the survivors of atomic weapons at Hiroshima and Nagasaki, among the victims of Chernobyl, and the two cases described so far from the Fukushima Dai-Ichi disaster. The data supporting the use of hematopoietic stem cell transplantation and the new efforts to expand stem cell populations ex vivo for infusion to treat bone marrow failure are reviewed. Hematopoietic stem cells derived from bone marrow or blood have a broad ability to repair and replace radiation induced damaged blood and immune cell production and may promote blood vessel formation and tissue repair. Additionally, a constituent of bone marrow-derived, adult pluripotent stem cells, very small embryonic like stem cells, are highly resistant to ionizing radiation and appear capable of regenerating radiation damaged tissue including skin, gut and lung. PMID:24520532

  13. Potential for a pluripotent adult stem cell treatment for acute radiation sickness.

    PubMed

    Rodgerson, Denis O; Reidenberg, Bruce E; Harris, Alan G; Pecora, Andrew L

    2012-06-20

    Accidental radiation exposure and the threat of deliberate radiation exposure have been in the news and are a public health concern. Experience with acute radiation sickness has been gathered from atomic blast survivors of Hiroshima and Nagasaki and from civilian nuclear accidents as well as experience gained during the development of radiation therapy for cancer. This paper reviews the medical treatment reports relevant to acute radiation sickness among the survivors of atomic weapons at Hiroshima and Nagasaki, among the victims of Chernobyl, and the two cases described so far from the Fukushima Dai-Ichi disaster. The data supporting the use of hematopoietic stem cell transplantation and the new efforts to expand stem cell populations ex vivo for infusion to treat bone marrow failure are reviewed. Hematopoietic stem cells derived from bone marrow or blood have a broad ability to repair and replace radiation induced damaged blood and immune cell production and may promote blood vessel formation and tissue repair. Additionally, a constituent of bone marrow-derived, adult pluripotent stem cells, very small embryonic like stem cells, are highly resistant to ionizing radiation and appear capable of regenerating radiation damaged tissue including skin, gut and lung.

  14. Radiation injury and acute death in Armadillidium vulgare (terrestrial isopod, Crustacea) subjected to ionizing radiation. [/sup 137/Cs

    SciTech Connect

    Nakatsuchi, Y.; Egami, N.

    1981-01-01

    From whole- and partial-body irradiation experiments with adult Armadillidium vulgare, the following conclusions were drawn: the LD/sub 50/-30 days for this animal when subjected to ..gamma.. radiation at 25 +- 2/sup 0/C was about 30 kR. Radiosensitivity of the animal changed during the molt cycle. Ionizing radiation increased mortality at ecdysis and during intermolt stages. Anatomical and histological observations indicated that (1) gastrointestinal injury as the major cause of acute death does not apply to this animal because the intestine is not a cell-proliferative organ: (2) the epidermis may be the critical target organ.

  15. Prophylaxis and management of acute radiation-induced skin reactions: a systematic review of the literature

    PubMed Central

    Salvo, N.; Barnes, E.; van Draanen, J.; Stacey, E.; Mitera, G.; Breen, D.; Giotis, A.; Czarnota, G.; Pang, J.; De Angelis, C.

    2010-01-01

    Radiation therapy is a common treatment for cancer patients. One of the most common side effects of radiation is acute skin reaction (radiation dermatitis) that ranges from a mild rash to severe ulceration. Approximately 85% of patients treated with radiation therapy will experience a moderate-to-severe skin reaction. Acute radiation-induced skin reactions often lead to itching and pain, delays in treatment, and diminished aesthetic appearance—and subsequently to a decrease in quality of life. Surveys have demonstrated that a wide variety of topical, oral, and intravenous agents are used to prevent or to treat radiation-induced skin reactions. We conducted a literature review to identify trials that investigated products for the prophylaxis and management of acute radiation dermatitis. Thirty-nine studies met the pre-defined criteria, with thirty-three being categorized as prophylactic trials and six as management trials. For objective evaluation of skin reactions, the Radiation Therapy Oncology Group criteria and the U.S. National Cancer Institute Common Toxicity Criteria were the most commonly used tools (65% of the studies). Topical corticosteroid agents were found to significantly reduce the severity of skin reactions; however, the trials of corticosteroids evaluated various agents, and no clear indication about a preferred corticosteroid has emerged. Amifostine and oral enzymes were somewhat effective in preventing radiation-induced skin reactions in phase ii and phase iii trials respectively; further large randomized controlled trials should be undertaken to better investigate those products. Biafine cream (Ortho–McNeil Pharmaceuticals, Titusville, NJ, U.S.A.) was found not to be superior to standard regimes in the prevention of radiation-induced skin reactions (n = 6). In conclusion, the evidence is insufficient to support the use of a particular agent for the prevention and management of acute radiation-induced skin reactions. Future trials should focus

  16. Use of iron colloid-enhanced MRI for study of acute radiation-induced hepatic injury

    SciTech Connect

    Suto, Yuji; Ametani, Masaki; Kato, Takashi; Hashimoto, Masayuki; Kamba, Masayuki; Sugihara, Syuji; Ohta, Yoshio

    1996-03-01

    We present a case with acute radiation-induced hepatic injury using chondroitin sulfate iron colloid (CSIC)-enhanced MRI. Uptake of CSIC was decreased in the irradiated portion of the liver. CSIC-enhanced MRI is useful for obtaining information on the function of the reticuloendothelial system and demarcates between irradiated and nonirradiated zones. 18 refs., 3 figs

  17. What's New in Adult Acute Lymphocytic Leukemia (ALL) in Adults Research?

    MedlinePlus

    ... Topic Additional resources for acute lymphocytic leukemia What’s new in acute lymphocytic leukemia research and treatment? Researchers ... have the Philadelphia chromosome. Gene expression profiling This new lab technique is being studied to help identify ...

  18. Mometasone Furoate Cream Reduces Acute Radiation Dermatitis in Patients Receiving Breast Radiation Therapy: Results of a Randomized Trial

    SciTech Connect

    Hindley, Andrew; Zain, Zakiyah; Wood, Lisa; Whitehead, Anne; Sanneh, Alison; Barber, David; Hornsby, Ruth

    2014-11-15

    Purpose: We wanted to confirm the benefit of mometasone furoate (MF) in preventing acute radiation reactions, as shown in a previous study (Boström et al, Radiother Oncol 2001;59:257-265). Methods and Materials: The study was a double-blind comparison of MF with D (Diprobase), administered daily from the start of radiation therapy for 5 weeks in patients receiving breast radiation therapy, 40 Gy in 2.67-Gy fractions daily over 3 weeks. The primary endpoint was mean modified Radiation Therapy Oncology Group (RTOG) score. Results: Mean RTOG scores were significantly less for MF than for D (P=.046). Maximum RTOG and mean erythema scores were significantly less for MF than for D (P=.018 and P=.012, respectively). The Dermatology Life Quality Index (DLQI) score was significantly less for MF than for D at weeks 4 and 5 when corrected for Hospital Anxiety and Depression (HAD) questionnaire scores. Conclusions: MF cream significantly reduces radiation dermatitis when applied to the breast during and after radiation therapy. For the first time, we have shown a significantly beneficial effect on quality of life using a validated instrument (DLQI), for a topical steroid cream. We believe that application of this cream should be the standard of care where radiation dermatitis is expected.

  19. Current status of liquid sheet radiator research

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.; Mcmaster, Matthew S.

    1993-01-01

    Initial research on the external flow, low mass liquid sheet radiator (LSR), has been concentrated on understanding its fluid mechanics. The surface tension forces acting at the edges of the sheet produce a triangular planform for the radiating surface of width, W, and length, L. It has been experimentally verified that (exp L)/W agrees with the theoretical result, L/W = (We/8)exp 1/2, where We is the Weber number. Instability can cause holes to form in regions of large curvature such as where the edge cylinders join the sheet of thickness, tau. The W/tau limit that will cause hole formation with subsequent destruction of the sheet has yet to be reached experimentally. Although experimental measurements of sheet emissivity have not yet been performed because of limited program scope, calculations of the emissivity and sheet lifetime is determined by evaporation losses were made for two silicon based oils; Dow Corning 705 and Me(sub 2). Emissivities greater than 0.75 are calculated for tau greater than or equal to 200 microns for both oils. Lifetimes for Me(sub 2) are much longer than lifetimes for 705. Therefore, Me(sub 2) is the more attractive working fluid for higher temperatures (T greater than or equal to 400 K).

  20. Synchrotron radiation applications in medical research

    SciTech Connect

    Thomlinson, W.

    1995-12-31

    The medical projects employing synchrotron radiation as discussed in this paper are, for the most part, still in their infancies and no one can predict the direction in which they will develop. Both the basic research and applied medical programs are sure to be advanced at the new facilities coming on line, especially the ESRF and Spring- 8. However, success is not guaranteed. There is a lot of competition from advances in conventional imaging with the development of digital angiography, computed tomography, functional magnetic resonance imaging and ultrasound. The synchrotron programs will have to provide significant advantages over these modalities in order to be accepted by the medical profession. Advances in image processing and potentially the development of compact sources will be required in order to move the synchrotron developed imaging technologies into the clinical world. In any event, it can be expected that the images produced by the synchrotron technologies will establish ``gold standards`` to be targeted by conventional modalities. A lot more work needs to be done in order to bring synchrotron radiation therapy and surgery to the level of human studies and, subsequently, to clinical applications.

  1. Radiation methods in research of ancient monuments

    PubMed

    Cechak; Gerndt; Kubelik; Musilek; Pavlik

    2000-10-01

    A "Laboratory of Quantitative Methods in Monument Research" is being built at the CTU Prague. Its primary orientation is the investigation of historic architecture, although other objects of art can also be investigated. In the first phase, two radiation methods are being established, but it is set up in such a way, that various other methods can readily be added in its future development. The radiation methods chosen for the initial development of the laboratory are: thermoluminescence dating and X-ray fluorescence analysis. The design of the automated TL-reader, built in our laboratories, is adjusted for the purpose of dating of historic brick architecture (which, of course, does not exclude applications for ceramics and other materials). The investigation of renaissance architecture in southern Bohemia and Moravia is under preparation as the first large campaign of this kind in the Czech Republic. Radionuclide X-ray fluorescence analysis has been chosen as the basic analytical method in the laboratory. The possibility of analyses of paintings and fired building materials (bricks, roof tiles) have been investigated. The first results in both the areas are very promising.

  2. Ataxia Telangiectasia–Mutated Gene Polymorphisms and Acute Normal Tissue Injuries in Cancer Patients After Radiation Therapy: A Systematic Review and Meta-analysis

    SciTech Connect

    Dong, Lihua; Cui, Jingkun; Tang, Fengjiao; Cong, Xiaofeng; Han, Fujun

    2015-04-01

    dependent on the incidence of the injury. These support the evidence of an association between the rs1801516 polymorphism and acute radiation injuries, encouraging further research of this topic.

  3. Supplemental vitamin A prevents the acute radiation-induced defect in wound healing

    SciTech Connect

    Levenson, S.M.; Gruber, C.A.; Rettura, G.; Gruber, D.K.; Demetriou, A.A.; Seifter, E.

    1984-10-01

    Acute radiation injury leads to thymic involution, adrenal enlargement, leukopenia, thrombocytopenia, gastrointestinal ulceration, and impaired wound healing. The authors hypothesized that supplemental vitamin A would mitigate these adverse effects in rats exposed to acute whole-body radiation. To test their hypothesis, dorsal skin incisions and subcutaneous implantation of polyvinyl alcohol sponges were performed in anesthetized Sprague-Dawley rats at varying times following sham radiation or varying doses of whole-body radiation (175-850 rad). In each experiment, the control diet (which contains about 18,000 IU vit. A/kg chow (3 X the NRC RDA for normal rats)) was supplemented with 150,000 IU vit. A/kg diet beginning at, before, or after sham radiation and wounding or radiation and wounding. The supplemental vitamin A prevented the impaired wound healing and lessened the weight loss, leukopenia, thrombocytopenia, thymic involution, adrenal enlargement, decrease in splenic weight, and gastric ulceration of the radiated (750-850 rad) wounded rats. This was true whether the supplemental vitamin A was begun before (2 or 4 days) or after (1-2 hours to 4 days) radiation and wounding; the supplemental vitamin A was more effective when started before or up to 2 days after radiation and wounding. The authors believe that prevention of the impaired wound healing following radiation by supplemental vitamin A is due to its enhancing the early inflammatory reaction to wounding, including increasing the number of monocytes and macrophages at the wound site; possible effect on modulating collagenase activity; effect on epithelial cell (and possible mesenchymal cell) differentiation; stimulation of immune responsiveness; and lessening of the adverse effects of radiation.

  4. Gastrointestinal Acute Radiation Syndrome in Göttingen Minipigs (Sus Scrofa Domestica)

    PubMed Central

    Elliott, Thomas B; Deutz, Nicolaas E; Gulani, Jatinder; Koch, Amory; Olsen, Cara H; Christensen, Christine; Chappell, Mark; Whitnall, Mark H; Moroni, Maria

    2014-01-01

    In the absence of supportive care, exposing Göttingen minipigs to γ-radiation doses of less than 2 Gy achieves lethality due to hematopoietic acute radiation syndrome. Doses of 2 to 5 Gy are associated with an accelerated hematopoietic syndrome, characterized by villus blunting and fusion, the beginning of sepsis, and a mild transient reduction in plasma citrulline concentration. We exposed male Göttingen minipigs (age, 5 mo; weight, 9 to 11 kg) to γ-radiation doses of 5 to 12 Gy (total body; 60Co, 0.6 Gy/min) to test whether these animals exhibit classic gastrointestinal acute radiation syndrome (GI-ARS). After exposure, the minipigs were monitored for 10 d by using clinical signs, CBC counts, and parameters associated with the development of the gastrointestinal syndrome. Göttingen minipigs exposed to γ radiation of 5 to 12 Gy demonstrate a dose-dependent occurrence of all parameters classically associated with acute GI-ARS. These results suggest that Göttingen minipigs may be a suitable model for studying GI-ARS after total body irradiation, but the use of supportive care to extend survival beyond 10 d is recommended. This study is the first step toward determining the feasibility of using Göttingen minipigs in testing the efficacy of candidate drugs for the treatment of GI-ARS after total body irradiation. PMID:25527026

  5. Acute Radiation-Induced Nocturia in Prostate Cancer Patients Is Associated With Pretreatment Symptoms, Radical Prostatectomy, and Genetic Markers in the TGF{beta}1 Gene

    SciTech Connect

    De Langhe, Sofie; De Ruyck, Kim; Ost, Piet; Fonteyne, Valerie; Werbrouck, Joke; De Meerleer, Gert; De Neve, Wilfried; Thierens, Hubert

    2013-02-01

    Purpose: After radiation therapy for prostate cancer, approximately 50% of the patients experience acute genitourinary symptoms, mostly nocturia. This may be highly bothersome with a major impact on the patient's quality of life. In the past, nocturia is seldom reported as a single, physiologically distinct endpoint, and little is known about its etiology. It is assumed that in addition to dose-volume parameters and patient- and therapy-related factors, a genetic component contributes to the development of radiation-induced damage. In this study, we investigated the association among dosimetric, clinical, and TGF{beta}1 polymorphisms and the development of acute radiation-induced nocturia in prostate cancer patients. Methods and Materials: Data were available for 322 prostate cancer patients treated with primary or postoperative intensity modulated radiation therapy (IMRT). Five genetic markers in the TGF{beta}1 gene (-800 G>A, -509 C>T, codon 10 T>C, codon 25 G>C, g.10780 T>G), and a high number of clinical and dosimetric parameters were considered. Toxicity was scored using an symptom scale developed in-house. Results: Radical prostatectomy (P<.001) and the presence of pretreatment nocturia (P<.001) are significantly associated with the occurrence of radiation-induced acute toxicity. The -509 CT/TT (P=.010) and codon 10 TC/CC (P=.005) genotypes are significantly associated with an increased risk for radiation-induced acute nocturia. Conclusions: Radical prostatectomy, the presence of pretreatment nocturia symptoms, and the variant alleles of TGF{beta}1 -509 C>T and codon 10 T>C are identified as factors involved in the development of acute radiation-induced nocturia. These findings may contribute to the research on prediction of late nocturia after IMRT for prostate cancer.

  6. Consensus radiation protection practices for academic research institutions.

    PubMed

    Schiager, K J; McDougall, M M; Christman, E A; Party, E; Ring, J; Carlson, D E; Warfield, C A; Barkley, W E

    1996-12-01

    Under the auspices of the Howard Hughes Medical Institute, a set of consensus guidelines for Radiation Protection Practices has been developed for biomedical research using radioactive materials. The purposes of the guidelines are (1) to promote good radiation protection practices consistent with the needs of biomedical research, the ALARA principle, and regulatory requirements; (2) to establish common goals and consistent practices within radiation safety programs; and (3) to build a meaningful partnership between radiation safety professionals and the biomedical research community. These practices are intended to enhance radiation protection and the efficiency of the research staff. The consensus guidelines will lessen the variability in radiation safety practices that is evident among many academic research institutions and will encourage better acceptance and regulatory compliance by users of radioactive materials in biomedical research. PMID:8919082

  7. Acute cytotoxicity of fossil-energy-related comparative research materials

    SciTech Connect

    Schultz, T.W.

    1982-01-01

    Aqueous extracts of five fossil-energy-related comparative research materials have been examined under acute static conditions for toxic effects by use of the Tetrahymena assay system. Cells were exposed to various concentrations of extracts, and cytolysis and population growth impairment were monitored. In addition, chemical class fractionation and major organic elemental analysis were performed. Synthetic fossil fuel materials are more toxic than conventional petroleum crude oils and coal-derived materials are more toxic than crude shale oil. Synthetic fossil-fuel-related materials have a higher nitrogen and oxygen content and a greater aromaticity than do natural crude oils. Acute toxicity appears to be correlated with ether-soluble acid (phenolic) content, mono- and diaromatic hydrocarbon content, and ether-soluble base (primary aromatic amines and azaarenes) content.

  8. Acute cytotoxicity of fossil-energy-related comparative research materials

    SciTech Connect

    Schultz, T.W.

    1982-01-01

    Aqueous extracts of five fossil-energy-related comparative research materials have been examined under acute static conditions for toxic effects by use of the Tetrahymena assay system. Cells were exposed to various concentrations of extracts, and cytolysis and population growth impairment were monitored. In addition, chemical class fractionation and major organic elemental analysis were performed. Synthetic fossil fuel materials are more toxic than conventional petroleum crude oils and coal-derived materials are more toxic than crude shale oil. Synthetic fossil-fuel-related materials have a higher nitrogen and oxygen content and a greater aromaticity than do natural crude oils. Acute toxicity appears to be correlated with ether-soluble acid content, mono- and diaromatic hydrocarbon content, and ether-soluble base. 22 refs.

  9. Nuclear-weapon-effect research at PSR (Pacific-Sierra Research Corporation) - 1983. Volume 10. Symptomatology of acute radiation effects in humans after exposure to doses of 75 to 4500 rads (cGy) free-in-air. Final technical report, 27 October 1982-30 November 1983

    SciTech Connect

    Baum, S.J.; Young, R.W.; Anno, G.H.; Withers, H.R.

    1984-08-31

    This report distills from available data descriptions of typical human symptoms in reaction to prompt ionizing radiation in the dose range 75 to 4500 rads (cGy) free-in-air. The descriptions correlate symptoms with dose and time over the acute post-exposure period of six weeks. Their purpose is to provide an empirical base for estimating combat troop performance after a nuclear weapon attack. The dose range of interest is subdivided into eight subranges associated with important pathophysiological events. For each subrange, the signs and symptoms manifested by an exposed population are estimated--symptom onset, severity, duration, and incidence. The early or prodromal phase of radiation sickness begins about 2 to 4 hrs after doses of 300 to 530 rads (cGy). Onset time diminishes with dose, occurring within minutes of exposure to 4500 rads (cGy). Characteristic prodromal symptoms are nausea, vomiting, anorexia, and diarrhea. The prodromal phase lasts from several days to a matter of hours, depending on dose. Symptoms of the hemopoietic syndrome are bleeding, fever, infection, and ulceration. Symptoms of the gastrointestinal syndrome are fluid loss, electrolyte imbalance, severe diarrhea, and septicemia.

  10. 11th International Conference of Radiation Research

    SciTech Connect

    1999-07-18

    Topics discussed in the conference included the following: Radiation Physics, Radiation Chemistry and modelling--Radiation physics and dosimetry; Electron transfer in biological media; Radiation chemistry; Biophysical and biochemical modelling; Mechanisms of DNA damage; Assays of DNA damage; Energy deposition in micro volumes; Photo-effects; Special techniques and technologies; Oxidative damage. Molecular and cellular effects-- Photobiology; Cell cycle effects; DNA damage: Strand breaks; DNA damage: Bases; DNA damage Non-targeted; DNA damage: other; Chromosome aberrations: clonal; Chromosomal aberrations: non-clonal; Interactions: Heat/Radiation/Drugs; Biochemical effects; Protein expression; Gene induction; Co-operative effects; ``Bystander'' effects; Oxidative stress effects; Recovery from radiation damage. DNA damage and repair -- DNA repair genes; DNA repair deficient diseases; DNA repair enzymology; Epigenetic effects on repair; and Ataxia and ATM.

  11. Radiation-induced glioblastoma multiforme in a remitted acute lymphocytic leukemia patient.

    PubMed

    Joh, Daewon; Park, Bong Jin; Lim, Young Jin

    2011-09-01

    Radiation therapy has been widely applied for cancer treatment. Childhood acute lymphocytic leukemia (ALL), characterized by frequent central nervous system involvement, is a well documented disease for the effect of prophylactic cranio-spinal irradiation. Irradiation, however, acts as an oncogenic factor as a delayed effect and it is rare that glioblastoma multiforme develops during the remission period of ALL. We experienced a pediatric radiation-induced GBM patient which developed during the remission period of ALL, who were primarily treated with chemotherapeutic agents and brain radiation therapy for the prevention of central nervous system (CNS) relapse. Additionally, we reviewed the related literature regarding on the effects of brain irradiation in childhood and on the prognosis of radiation induced GBM.

  12. Immuno-therapy of Acute Radiation Syndromes : Extracorporeal Immuno-Lympho-Plasmo-Sorption.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava

    Methods Results Summary and conclusions Introduction: Existing Medical Management of the Acute Radiation Syndromes (ARS) does not include methods of specific immunotherapy and active detoxication. Though the Acute Radiation Syndromes were defined as an acute toxic poisonous with development of pathological processes: Systemic Inflammatory Response Syndrome (SIRS), Toxic Multiple Organ Injury (TMOI), Toxic Multiple Organ Dysfunction Syndrome(TMODS), Toxic Multiple Organ Failure (TMOF). Radiation Toxins of SRD Group play an important role as the trigger mechanisms in development of the ARS clinical symptoms. Methods: Immuno-Lympho-Plasmo-Sorption is a type of Immuno-therapy which includes prin-ciples of immunochromato-graphy, plasmopheresis, and hemodialysis. Specific Antiradiation Antitoxic Antibodies are the active pharmacological agents of immunotherapy . Antiradia-tion Antitoxic Antibodies bind selectively to Radiation Neurotoxins, Cytotoxins, Hematotox-ins and neutralize their toxic activity. We have developed the highly sensitive method and system for extracorporeal-immune-lypmh-plasmo-sorption with antigen-specific IgG which is clinically important for treatment of the toxic and immunologic phases of the ARS. The method of extracorporeal-immune-lypmh-plasmo-sorption includes Antiradiation Antitoxic Antibodies (AAA) immobilized on microporous polymeric membranes with a pore size that is capable to provide diffusion of blood-lymph plasma. Plasma of blood or lymph of irradiated mammals contains Radiation Toxins (RT) that have toxic and antigenic properties. Radiation Toxins are Antigen-specific to Antitoxic blocking antibodies (Immunoglobulin G). Plasma diffuses through membranes with immobilized AAA and AA-antibodies bind to the polysaccharide chain of tox-ins molecules and complexes of AAA-RT that are captured on membrane surfaces. RT were removed from plasma. Re-transfusion of plasma of blood and lymph had been provided. We show a statistical significant

  13. Supplemental vitamin A prevents the acute radiation-induced defect in wound healing.

    PubMed Central

    Levenson, S M; Gruber, C A; Rettura, G; Gruber, D K; Demetriou, A A; Seifter, E

    1984-01-01

    Acute radiation injury leads to thymic involution, adrenal enlargement, leukopenia, thrombocytopenia, gastrointestinal ulceration, and impaired wound healing. The authors hypothesized that supplemental vitamin A would mitigate these adverse effects in rats exposed to acute whole-body radiation. This hypothesis was based on previous experiments in their laboratory that showed that supplemental vitamin A is thymotropic for normal rodents and lessens the thymic involution, lymphopenia, and adrenal enlargement that follows stress, trauma, and neoplasia, largely obviates the impaired wound healing induced by the radiomimetic drugs streptozotocin and cyclophosphamide, lessens the systemic response (thymic involution, adrenal enlargement, leukopenia, lymphocytopenia) to local radiation, and shifts the median lethal dose (LD50/30) following whole-body radiation to the right. To test their hypothesis, dorsal skin incisions and subcutaneous implantation of polyvinyl alcohol sponges were performed in anesthetized Sprague-Dawley rats at varying times following sham radiation or varying doses of whole-body radiation (175-850 rad). In each experiment, the control diet [which contains about 18,000 IU vit. A/kg chow (3 X the NRC RDA for normal rats)] was supplemented with 150,000 IU vit. A/kg diet beginning at, before, or after sham radiation and wounding or radiation and wounding. The supplemental vitamin A prevented the impaired wound healing and lessened the weight loss, leukopenia, thrombocytopenia, thymic involution, adrenal enlargement, decrease in splenic weight, and gastric ulceration of the radiated (750-850 rad) wounded rats. This was true whether the supplemental vitamin A was begun before (2 or 4 days) or after (1-2 hours to 4 days) radiation and wounding; the supplemental vitamin A was more effective when started before or up to 2 days after radiation and wounding. The authors believe that prevention of the impaired wound healing following radiation by supplemental

  14. Effects of acute exposure to ultrahigh radiofrequency radiation on three antenna engineers.

    PubMed

    Schilling, C J

    1997-04-01

    Three men were accidentally exposed to high levels of ultrahigh frequency radiofrequency radiation (785 MHz mean frequency) while working on a television mast. They experienced an immediate sensation of intense heating of the parts of the body in the electromagnetic field followed by a variety of symptoms and signs which included pain, headache, numbness, and parasthesiae, malaise, diarrhoea, and skin erythema. The most notable problem was that of acute then chronic headache involving the part of the head which was most exposed.

  15. Acute myelogenous leukemia following radiation therapy and chemotherapy for osteogenic sarcoma

    SciTech Connect

    Jacobs, A.D.; Gale, R.P.

    1984-06-01

    Patients receiving ionizing radiation therapy or cytotoxic chemotherapy are at increased risk of developing acute myelogenous leukemia. Ten cases of therapy-linked myelogenous leukemia have been reported in patients with sarcoma, and the authors report here the first case in a patient who received combined-modality therapy for treatment of an osteogenic sarcoma. As treatment for this disease becomes more intensive and survival improves, the incidence of leukemia following therapy for osteogenic sarcoma may increase.

  16. Synchrotron radiation applications in medical research

    SciTech Connect

    Thomlinson, W.

    1997-08-01

    Over the past two decades there has been a phenomenal growth in the number of dedicated synchrotron radiation facilities and a corresponding growth in the number of applications in both basic and applied sciences. The high flux and brightness, tunable beams, time structure and polarization of synchrotron radiation provide an ideal x- ray source for many applications in the medical sciences. There is a dual aspect to the field of medical applications of synchrotron radiation. First there are the important in-vitro programs such as structural biology, x-ray microscopy, and radiation cell biology. Second there are the programs that are ultimately targeted at in-vivo applications. The present status of synchrotron coronary angiography, bronchography, multiple energy computed tomography, mammography and radiation therapy programs at laboratories around the world is reviewed.

  17. NIAID/NIH radiation/nuclear medical countermeasures product research and development program.

    PubMed

    Hafer, Nathaniel; Cassatt, David; Dicarlo, Andrea; Ramakrishnan, Narayani; Kaminski, Joseph; Norman, Mai-Kim; Maidment, Bert; Hatchett, Richard

    2010-06-01

    One of the greatest national security threats to the United States is the detonation of an improvised nuclear device or a radiological dispersal device in a heavily populated area. The U.S. Government has addressed these threats with a two-pronged strategy of preventing organizations from obtaining weapons of mass destruction and preparing in case an event occurs. The National Institute of Allergy and Infectious Diseases (NIAID) contributes to these preparedness efforts by supporting basic research and development for chemical, biological, radiological, and nuclear countermeasures for civilian use. The Radiation Countermeasures Program at NIAID has established a broad research agenda focused on the development of new medical products to mitigate and treat acute and long-term radiation injury, promote the clearance of internalized radionuclides, and facilitate accurate individual dose and exposure assessment. This paper reviews the recent work and collaborations supported by the Radiation Countermeasures Program. PMID:20445403

  18. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    SciTech Connect

    Fabrikant, J.I.

    1982-08-01

    The present review provides an understanding of our current knowledge of the carcinogenic effect of low-dose radiation in man, and surveys the epidemiological studies of human populations exposed to nuclear explosions and medical radiation. Discussion centers on the contributions of quantitative epidemiology to present knowledge, the reliability of the dose-incidence data, and those relevant epidemiological studies that provide the most useful information for risk estimation of cancer-induction in man. Reference is made to dose-incidence relationships from laboratory animal experiments where they may obtain for problems and difficulties in extrapolation from data obtained at high doses to low doses, and from animal data to the human situation. The paper describes the methods of application of such epidemiological data for estimation of excess risk of radiation-induced cancer in exposed human populations, and discusses the strengths and limitations of epidemiology in guiding radiation protection philosophy and public health policy.

  19. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    SciTech Connect

    Fabrikant, J.I.

    1981-05-01

    The current knowledge of the carcinogenic effect of radiation in man is considered. The discussion is restricted to dose-incidence data in humans, particularly to certain of those epidemiological studies of human populations that are used most frequently for risk estimation for low-dose radiation carcinogenesis in man. Emphasis is placed solely on those surveys concerned with nuclear explosions and medical exposures. (ACR)

  20. Greetings: 50 years of Atomic Bomb Casualty Commission-Radiation Effects Research Foundation studies.

    PubMed

    Shigematsu, I

    1998-05-12

    The Atomic Bomb Casualty Commission was established in Hiroshima in 1947 and in Nagasaki in 1948 under the auspices of the U.S. National Academy of Sciences to initiate a long-term and comprehensive epidemiological and genetic study of the atomic bomb survivors. It was replaced in 1975 by the Radiation Effects Research Foundation which is a nonprofit Japanese foundation binationally managed and supported with equal funding by the governments of Japan and the United States. Thanks to the cooperation of the survivors and the contributions of a multitude of scientists, these studies flourish to this day in what must be the most successful long-term research collaboration between the two countries. Although these studies are necessarily limited to the effects of acute, whole-body, mixed gamma-neutron radiation from the atom bombs, their comprehensiveness and duration make them the most definitive descriptions of the late effects of radiation in humans. For this reason, the entire world relies heavily on these data to set radiation standards. As vital as the study results are, they still represent primarily the effects of radiation on older survivors. Another decade or two should correct this deficiency and allow us to measure definitively the human risk of heritable mutation from radiation. We look to the worldwide radiation and risk community as well as to the survivors who have contributed so much to what has been done already to accomplish this goal.

  1. A possible approach to large-scale laboratory testing for acute radiation sickness after a nuclear detonation.

    PubMed

    Adalja, Amesh A; Watson, Matthew; Wollner, Samuel; Toner, Eric

    2011-12-01

    After the detonation of an improvised nuclear device, several key actions will be necessary to save the greatest number of lives possible. Among these tasks, the identification of patients with impending acute radiation sickness is a critical problem that so far has lacked a clear solution in national planning. We present one possible solution: the formation of a public-private partnership to augment the capacity to identify those at risk for acute radiation sickness. PMID:21988186

  2. Radiation resistance of primary clonogenic blasts from children with acute lymphoblastic leukemia

    SciTech Connect

    Uckun, F.M. Childrens Cancer Group, Arcadia, CA ); Aeppli, D.; Song, C.W. )

    1993-11-15

    Detailed comparative analyses of the radiation sensitivity of primary clonogenic blasts from children with acute lymphoblastic leukemia (ALL) were performed to achieve a better understanding of clinical radiation resistance in ALL. The radiation sensitivity of primary clonogenic blasts from 74 children with newly diagnosed ALL was analyzed using leukemic progenitor cell (LPC) assays. Primary bone marrow blasts from all 74 patients were exposed to ionizing radiation and subsequently assayed for LPC-derived blast colony formation. Radiation survival curves of LPC were constructed for each of the newly diagnosed patients using computer programs for the single-hit multitarget as well as the linear quadratic models of cell survival. A marked interpatient variation in intrinsic radiation sensitivity was observed between LPC populations. The SF[sub 2] values ranged from 0.01 to 1.00. Patients were divided into groups according to their sex, age, WBC at diagnosis, cell cycle distribution of leukemic blasts, and immunophenotype. Only immunophenotype provided a significant correlation with the intrinsic radiation sensitivity of LPC. Patients with B-lineage ALL had higher SF[sub 2] and smaller [alpha] values than T-lineage ALL patients, consistent with greater intrinsic radiation resistance at the level of LPC. Notably, 43% of B-lineage ALL cases, but only 27% of T-lineage ALL cases had LPC with SF[sub 2] [ge] 0.5. Similarly, 66% of B-lineage ALL cases, but only 37% of T-lineage ALL cases had LPC with [alpha] values [le] 0.4 Gy[sup [minus]1]. Combining the two indicators of radiation resistance, they found that only 34% of the B-lineage ALL patients had none of the two parameters in the respective critical regions, while 63% of the T-lineage patients had none. In multivariate analyses, the immunophenotypic B-lineage affiliation was the only significant predictor of radiation resistance at the level of LPC. 42 refs., 1 fig., 2 tabs.

  3. Evidence Report: Risk of Acute Radiation Syndromes Due to Solar Particle Events

    NASA Technical Reports Server (NTRS)

    Carnell, Lisa; Blattnig, Steve; Hu, Shaowen; Huff, Janice; Kim, Myung-Hee; Norman, Ryan; Patel, Zarana; Simonsen, Lisa; Wu, Honglu

    2016-01-01

    Crew health and performance may be impacted by a major solar particle event (SPE), multiple SPEs, or the cumulative effect of galactic cosmic rays (GCR) and SPEs. Beyond low-Earth orbit, the protection of the Earth's magnetosphere is no longer available, such that increased shielding and protective mechanisms are necessary in order to prevent acute radiation sickness and impacts to mission success or crew survival. While operational monitoring and shielding are expected to minimize radiation exposures, there are EVA scenarios outside of low-Earth orbit where the risk of prodromal effects, including nausea, vomiting, anorexia, and fatigue, as well as skin injury and depletion of the blood-forming organs (BFO), may occur. There is a reasonable concern that a compromised immune system due to high skin doses from a SPE or due to synergistic space flight factors (e.g., microgravity) may lead to increased risk to the BFO. The primary data available at present are derived from analyses of medical patients and persons accidentally exposed to acute, high doses of low-linear energy transfer (LET) (or terrestrial) radiation. Data more specific to the space flight environment must be compiled to quantify the magnitude of increase of this risk and to develop appropriate protection strategies. In particular, information addressing the distinct differences between solar proton exposures and terrestrial exposure scenarios, including radiation quality, dose-rate effects, and non-uniform dose distributions, is required for accurate risk estimation.

  4. Indian research on acute organic brain syndrome: Delirium

    PubMed Central

    Pinto, Charles

    2010-01-01

    Delirium, though quite often referred to psychiatrists for management, does not find many takers for analysis, research and publications. Acute in onset, multiplicity of etiology and manifestations, high risk of mortality delirium is very rewarding in proper management and outcome. Delirium has a limited agenda on teaching programs, research protocols and therapeutic strategies. There is a dearth of Indian studies both in international and national scientific literature. This annotation is based on a Medline search for “delirium India” on Pubmed, which resulted in 54 articles. A search in Indian Journal of Psychiatry for “delirium” resulted in 38 published articles, “delirium tremens” showed up only five articles. The articles are primarily from the Indian Journal of Psychiatry with cross reference to articles on Pubmed or Google search on Indian studies and a few international studies PMID:21836671

  5. Robotic Delivery of Complex Radiation Volumes for Small Animal Research

    PubMed Central

    Matinfar, Mohammad; Iordachita, Iulian; Wong, John; Kazanzides, Peter

    2011-01-01

    The Small Animal Radiation Research Platform (SARRP) is a novel and complete system capable of delivering multidirectional (focal), kilo-voltage radiation fields to targets in small animals under robotic control using cone-beam CT (CBCT) image guidance. The capability of the SARRP to deliver highly focused beams to multiple animal models provides new research opportunities that more realistically bridge laboratory research and clinical translation. This paper describes the design and operation of the SARRP for precise radiation delivery. Different delivery procedures are presented which enable the system to radiate through a series of points, representative of a complex shape. A particularly interesting case is shell dose irradiation, where the goal is to deliver a high dose of radiation to the shape surface, with minimal dose to the shape interior. The ability to deliver a dose shell allows mechanistic research of how a tumor interacts with its microenvironment to sustain its growth and lead to its resistance or recurrence. PMID:21643448

  6. Robotic Delivery of Complex Radiation Volumes for Small Animal Research.

    PubMed

    Matinfar, Mohammad; Iordachita, Iulian; Wong, John; Kazanzides, Peter

    2010-07-15

    The Small Animal Radiation Research Platform (SARRP) is a novel and complete system capable of delivering multidirectional (focal), kilo-voltage radiation fields to targets in small animals under robotic control using cone-beam CT (CBCT) image guidance. The capability of the SARRP to deliver highly focused beams to multiple animal models provides new research opportunities that more realistically bridge laboratory research and clinical translation. This paper describes the design and operation of the SARRP for precise radiation delivery. Different delivery procedures are presented which enable the system to radiate through a series of points, representative of a complex shape. A particularly interesting case is shell dose irradiation, where the goal is to deliver a high dose of radiation to the shape surface, with minimal dose to the shape interior. The ability to deliver a dose shell allows mechanistic research of how a tumor interacts with its microenvironment to sustain its growth and lead to its resistance or recurrence.

  7. Association of Acute Radiation Syndrome and Rain after the Bombings in Atomic Bomb Survivors.

    PubMed

    Ozasa, K; Sakata, R; Cullings, H M; Grant, E J

    2016-06-01

    Acute radiation-induced symptoms reported in survivors after the atomic bombings in Hiroshima and Nagasaki have been suspected to be associated with rain that fell after the explosions, but this association has not been evaluated in an epidemiological study that considers the effects of the direct dose from the atomic bombs and other factors. The aim of this study was to evaluate this association using information from a fixed cohort, comprised of 93,741 members of the Life Span Study who were in the city at the time of the bombing. Information on acute symptoms and exposure to rain was collected in surveys conducted by interviewers, primarily in the 1950s. The proportion of survivors developing severe epilation was around 60% at levels of direct radiation doses of 3 Gy or higher and less than 0.2% at levels <0.005 Gy regardless of reported rain exposure status. The low prevalence of acute symptoms at low direct doses indicates that the reported fallout rain was not homogeneously radioactive at a level sufficient to cause a substantial probability of acute symptoms. We observed that the proportion of reported acute symptoms was slightly higher among those who reported rain exposure in some subgroups, however, suggestions that rain was the cause of these reported symptoms are not supported by analyses specific to the known areas of radioactive fallout. Misclassification of exposure and outcome, including symptoms due to other causes and recall bias, appears to be a more plausible explanation. However, the insufficient and retrospective nature of the available data limited our ability to quantify the attribution to those possible causes.

  8. Association of Acute Radiation Syndrome and Rain after the Bombings in Atomic Bomb Survivors.

    PubMed

    Ozasa, K; Sakata, R; Cullings, H M; Grant, E J

    2016-06-01

    Acute radiation-induced symptoms reported in survivors after the atomic bombings in Hiroshima and Nagasaki have been suspected to be associated with rain that fell after the explosions, but this association has not been evaluated in an epidemiological study that considers the effects of the direct dose from the atomic bombs and other factors. The aim of this study was to evaluate this association using information from a fixed cohort, comprised of 93,741 members of the Life Span Study who were in the city at the time of the bombing. Information on acute symptoms and exposure to rain was collected in surveys conducted by interviewers, primarily in the 1950s. The proportion of survivors developing severe epilation was around 60% at levels of direct radiation doses of 3 Gy or higher and less than 0.2% at levels <0.005 Gy regardless of reported rain exposure status. The low prevalence of acute symptoms at low direct doses indicates that the reported fallout rain was not homogeneously radioactive at a level sufficient to cause a substantial probability of acute symptoms. We observed that the proportion of reported acute symptoms was slightly higher among those who reported rain exposure in some subgroups, however, suggestions that rain was the cause of these reported symptoms are not supported by analyses specific to the known areas of radioactive fallout. Misclassification of exposure and outcome, including symptoms due to other causes and recall bias, appears to be a more plausible explanation. However, the insufficient and retrospective nature of the available data limited our ability to quantify the attribution to those possible causes. PMID:27223827

  9. Acute hematological effects of solar particle event proton radiation in the porcine model.

    PubMed

    Sanzari, J K; Wan, X S; Wroe, A J; Rightnar, S; Cengel, K A; Diffenderfer, E S; Krigsfeld, G S; Gridley, D S; Kennedy, A R

    2013-07-01

    Acute radiation sickness (ARS) is expected to occur in astronauts during large solar particle events (SPEs). One parameter associated with ARS is the hematopoietic syndrome, which can result from decreased numbers of circulating blood cells in those exposed to radiation. The peripheral blood cells are critical for an adequate immune response, and low blood cell counts can result in an increased susceptibility to infection. In this study, Yucatan minipigs were exposed to proton radiation within a range of skin dose levels expected for an SPE (estimated from previous SPEs). The proton-radiation exposure resulted in significant decreases in total white blood cell count (WBC) within 1 day of exposure, 60% below baseline control value or preirradiation values. At the lowest level of the blood cell counts, lymphocytes, neutrophils, monocytes and eosinophils were decreased up to 89.5%, 60.4%, 73.2% and 75.5%, respectively, from the preirradiation values. Monocytes and lymphocytes were decreased by an average of 70% (compared to preirradiation values) as early as 4 h after radiation exposure. Skin doses greater than 5 Gy resulted in decreased blood cell counts up to 90 days after exposure. The results reported here are similar to studies of ARS using the nonhuman primate model, supporting the use of the Yucatan minipig as an alternative. In addition, the high prevalence of hematologic abnormalities resulting from exposure to acute, whole-body SPE-like proton radiation warrants the development of appropriate countermeasures to prevent or treat ARS occurring in astronauts during space travel.

  10. Chemical toxicity of uranium hexafluoride compared to acute effects of radiation

    SciTech Connect

    McGuire, S.A.

    1991-02-01

    The chemical effects from acute exposures to uranium hexafluoride are compared to the nonstochastic effects from acute radiation doses of 25 rems to the whole body and 300 rems to the thyroid. The analysis concludes that an intake of about 10 mg of uranium in soluble form is roughly comparable, in terms of early effects, to an acute whole body dose of 25 rems because both are just below the threshold for significant nonstochastic effects. Similarly, an exposure to hydrogen fluoride at a concentration of 25 mg/m{sup 3} for 30 minutes is roughly comparable because there would be no significant nonstochastic effects. For times t other than 30 minutes, the concentration C of hydrogen fluoride considered to have the same effect can be calculated using a quadratic equation: C = 25 mg/m{sup 3} (30 min/t). The purpose of these analyses is to provide information for developing design and siting guideline based on chemical toxicity for enrichment plants using uranium hexafluoride. These guidelines are to be similar, in terms of stochastic health effects, to criteria in NRC regulations of nuclear power plants, which are based on radiation doses. 26 refs., 1 fig., 5 tabs.

  11. Dosimetric Predictors of Radiation-induced Acute Nausea and Vomiting in IMRT for Nasopharyngeal Cancer

    SciTech Connect

    Lee, Victor H.F.; Ng, Sherry C.Y.; Leung, T.W.; Au, Gordon K.H.; Kwong, Dora L.W.

    2012-09-01

    Purpose: We wanted to investigate dosimetric parameters that would predict radiation-induced acute nausea and vomiting in intensity-modulated radiation therapy (IMRT) for undifferentiated carcinoma of the nasopharynx (NPC). Methods and Materials: Forty-nine consecutive patients with newly diagnosed NPC were treated with IMRT alone in this prospective study. Patients receiving any form of chemotherapy were excluded. The dorsal vagal complex (DVC) as well as the left and right vestibules (VB-L and VB-R, respectively) were contoured on planning computed tomography images. A structure combining both the VB-L and the VB-R, named VB-T, was also generated. All structures were labeled organs at risk (OAR). A 3-mm three-dimensional margin was added to these structures and labeled DVC+3 mm, VB-L+3 mm, VB-R+3 mm, and VB-T+3 mm to account for physiological body motion and setup error. No weightings were given to these structures during optimization in treatment planning. Dosimetric parameters were recorded from dose-volume histograms. Statistical analysis of parameters' association with nausea and vomiting was performed using univariate and multivariate logistic regression. Results: Six patients (12.2%) reported Grade 1 nausea, and 8 patients (16.3%) reported Grade 2 nausea. Also, 4 patients (8.2%) complained of Grade 1 vomiting, and 4 patients (8.2%) experienced Grade 2 vomiting. No patients developed protracted nausea and vomiting after completion of IMRT. For radiation-induced acute nausea, V40 (percentage volume receiving at least 40Gy) to the VB-T and V40>=80% to the VB-T were predictors, using univariate analysis. On multivariate analysis, V40>=80% to the VB-T was the only predictor. There were no predictors of radiation-induced acute vomiting, as the number of events was too small for analysis. Conclusions: This is the first study demonstrating that a V40 to the VB-T is predictive of radiation-induced acute nausea. The vestibules should be labeled as sensitive OARs, and

  12. Radioprotectors and Radiomitigators for Improving Radiation Therapy: The Small Business Innovation Research (SBIR) Gateway for Accelerating Clinical Translation.

    PubMed

    Prasanna, Pataje G S; Narayanan, Deepa; Hallett, Kory; Bernhard, Eric J; Ahmed, Mansoor M; Evans, Gregory; Vikram, Bhadrasain; Weingarten, Michael; Coleman, C Norman

    2015-09-01

    Although radiation therapy is an important cancer treatment modality, patients may experience adverse effects. The use of a radiation-effect modulator may help improve the outcome and health-related quality of life (HRQOL) of patients undergoing radiation therapy either by enhancing tumor cell killing or by protecting normal tissues. Historically, the successful translation of radiation-effect modulators to the clinic has been hindered due to the lack of focused collaboration between academia, pharmaceutical companies and the clinic, along with limited availability of support for such ventures. The U.S. Government has been developing medical countermeasures against accidental and intentional radiation exposures to mitigate the risk and/or severity of acute radiation syndrome (ARS) and the delayed effects of acute radiation exposures (DEARE), and there is now a drug development pipeline established. Some of these medical countermeasures could potentially be repurposed for improving the outcome of radiation therapy and HRQOL of cancer patients. With the objective of developing radiation-effect modulators to improve radiotherapy, the Small Business Innovation Research (SBIR) Development Center at the National Cancer Institute (NCI), supported by the Radiation Research Program (RRP), provided funding to companies from 2011 to 2014 through the SBIR contracts mechanism. Although radiation-effect modulators collectively refer to radioprotectors, radiomitigators and radiosensitizers, the focus of this article is on radioprotection and mitigation of radiation injury. This specific SBIR contract opportunity strengthened existing partnerships and facilitated new collaborations between academia and industry. In this commentary, we assess the impact of this funding opportunity, outline the review process, highlight the organ/site-specific disease needs in the clinic for the development of radiation-effect modulators, provide a general understanding of a framework for gathering

  13. Radioprotectors and Radiomitigators for Improving Radiation Therapy: The Small Business Innovation Research (SBIR) Gateway for Accelerating Clinical Translation.

    PubMed

    Prasanna, Pataje G S; Narayanan, Deepa; Hallett, Kory; Bernhard, Eric J; Ahmed, Mansoor M; Evans, Gregory; Vikram, Bhadrasain; Weingarten, Michael; Coleman, C Norman

    2015-09-01

    Although radiation therapy is an important cancer treatment modality, patients may experience adverse effects. The use of a radiation-effect modulator may help improve the outcome and health-related quality of life (HRQOL) of patients undergoing radiation therapy either by enhancing tumor cell killing or by protecting normal tissues. Historically, the successful translation of radiation-effect modulators to the clinic has been hindered due to the lack of focused collaboration between academia, pharmaceutical companies and the clinic, along with limited availability of support for such ventures. The U.S. Government has been developing medical countermeasures against accidental and intentional radiation exposures to mitigate the risk and/or severity of acute radiation syndrome (ARS) and the delayed effects of acute radiation exposures (DEARE), and there is now a drug development pipeline established. Some of these medical countermeasures could potentially be repurposed for improving the outcome of radiation therapy and HRQOL of cancer patients. With the objective of developing radiation-effect modulators to improve radiotherapy, the Small Business Innovation Research (SBIR) Development Center at the National Cancer Institute (NCI), supported by the Radiation Research Program (RRP), provided funding to companies from 2011 to 2014 through the SBIR contracts mechanism. Although radiation-effect modulators collectively refer to radioprotectors, radiomitigators and radiosensitizers, the focus of this article is on radioprotection and mitigation of radiation injury. This specific SBIR contract opportunity strengthened existing partnerships and facilitated new collaborations between academia and industry. In this commentary, we assess the impact of this funding opportunity, outline the review process, highlight the organ/site-specific disease needs in the clinic for the development of radiation-effect modulators, provide a general understanding of a framework for gathering

  14. Radioprotectors and Radiomitigators for Improving Radiation Therapy: The Small Business Innovation Research (SBIR) Gateway for Accelerating Clinical Translation

    PubMed Central

    Prasanna, Pataje G. S.; Narayanan, Deepa; Hallett, Kory; Bernhard, Eric J.; Ahmed, Mansoor M.; Evans, Gregory; Vikram, Bhadrasain; Weingarten, Michael; Coleman, C. Norman

    2015-01-01

    Although radiation therapy is an important cancer treatment modality, patients may experience adverse effects. The use of a radiation-effect modulator may help improve the outcome and health-related quality of life (HRQOL) of patients undergoing radiation therapy either by enhancing tumor cell killing or by protecting normal tissues. Historically, the successful translation of radiation-effect modulators to the clinic has been hindered due to the lack of focused collaboration between academia, pharmaceutical companies and the clinic, along with limited availability of support for such ventures. The U.S. Government has been developing medical countermeasures against accidental and intentional radiation exposures to mitigate the risk and/or severity of acute radiation syndrome (ARS) and the delayed effects of acute radiation exposures (DEARE), and there is now a drug development pipeline established. Some of these medical countermeasures could potentially be repurposed for improving the outcome of radiation therapy and HRQOL of cancer patients. With the objective of developing radiation-effect modulators to improve radiotherapy, the Small Business Innovation Research (SBIR) Development Center at the National Cancer Institute (NCI), supported by the Radiation Research Program (RRP), provided funding to companies from 2011 to 2014 through the SBIR contracts mechanism. Although radiation-effect modulators collectively refer to radioprotectors, radiomitigators and radiosensitizers, the focus of this article is on radioprotection and mitigation of radiation injury. This specific SBIR contract opportunity strengthened existing partnerships and facilitated new collaborations between academia and industry. In this commentary, we assess the impact of this funding opportunity, outline the review process, highlight the organ/site-specific disease needs in the clinic for the development of radiation-effect modulators, provide a general understanding of a framework for gathering

  15. Low-dose radiation modifies skin response to acute gamma-rays and protons.

    PubMed

    Mao, Xiao Wen; Pecaut, Michael J; Cao, Jeffrey D; Moldovan, Maria; Gridley, Daila S

    2013-01-01

    The goal of the present study was to obtain pilot data on the effects of protracted low-dose/low-dose-rate (LDR) γ-rays on the skin, both with and without acute gamma or proton irradiation (IR). Six groups of C57BL/6 mice were examined: a) 0 Gy control, b) LDR, c) Gamma, d) LDR+Gamma, e) Proton, and f) LDR+Proton. LDR radiation was delivered to a total dose of 0.01 Gy (0.03 cGy/h), whereas the Gamma and Proton groups received 2 Gy (0.9 Gy/min and 1.0 Gy/min, respectively). Assays were performed 56 days after exposure. Skin samples from all irradiated groups had activated caspase-3, indicative of apoptosis. The significant (p<0.05) increases in immunoreactivity in the Gamma and Proton groups were not present when LDR pre-exposure was included. However, the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay for DNA fragmentation and histological examination of hematoxylin and eosin-stained sections revealed no significant differences among groups, regardless of radiation regimen. The data demonstrate that caspase-3 activation initially triggered by both forms of acute radiation was greatly elevated in the skin nearly two months after whole-body exposure. In addition, LDR γ-ray priming ameliorated this response.

  16. Intensity-Modulated Radiation Therapy Significantly Improves Acute Gastrointestinal Toxicity in Pancreatic and Ampullary Cancers

    SciTech Connect

    Yovino, Susannah; Poppe, Matthew; Jabbour, Salma; David, Vera; Garofalo, Michael; Pandya, Naimesh; Alexander, Richard; Hanna, Nader; Regine, William F.

    2011-01-01

    Purpose: Among patients with upper abdominal malignancies, intensity-modulated radiation therapy (IMRT) can improve dose distributions to critical dose-limiting structures near the target. Whether these improved dose distributions are associated with decreased toxicity when compared with conventional three-dimensional treatment remains a subject of investigation. Methods and Materials: 46 patients with pancreatic/ampullary cancer were treated with concurrent chemoradiation (CRT) using inverse-planned IMRT. All patients received CRT based on 5-fluorouracil in a schema similar to Radiation Therapy Oncology Group (RTOG) 97-04. Rates of acute gastrointestinal (GI) toxicity for this series of IMRT-treated patients were compared with those from RTOG 97-04, where all patients were treated with three-dimensional conformal techniques. Chi-square analysis was used to determine if there was a statistically different incidence in acute GI toxicity between these two groups of patients. Results: The overall incidence of Grade 3-4 acute GI toxicity was low in patients receiving IMRT-based CRT. When compared with patients who had three-dimensional treatment planning (RTOG 97-04), IMRT significantly reduced the incidence of Grade 3-4 nausea and vomiting (0% vs. 11%, p = 0.024) and diarrhea (3% vs. 18%, p = 0.017). There was no significant difference in the incidence of Grade 3-4 weight loss between the two groups of patients. Conclusions: IMRT is associated with a statistically significant decrease in acute upper and lower GI toxicity among patients treated with CRT for pancreatic/ampullary cancers. Future clinical trials plan to incorporate the use of IMRT, given that it remains a subject of active investigation.

  17. Radiation and Nuclear Materials Detection Research and Development at ORNL

    SciTech Connect

    Hardy, Jim E; Wright, Michael C

    2009-01-01

    Research and development is underway to improve radiation and nuclear detection capabilities. This research and development in radiation and nuclear detection includes areas such as advanced materials, applied research and engineering for designing and fabricating customized detection equipment, and theoretical modeling and computational support. Oak Ridge National Laboratory (ORNL) has a distinctive set of detector materials fabrication and characterization capabilities and recently created a Center for Radiation Detection Materials and Systems. Applied research and engineering efforts have led to the development of improved detectors for specific applications including safeguards, treaty monitoring, and science experiments. All sizes, types, and capabilities of detector systems have been addressed from miniature to man-portable and from neutrons to gamma radiation. Dedicated test beds, in-house and in the field, have been established to analyze, characterize, and improve detection systems.

  18. Enabling innovative translational research in acute kidney injury

    PubMed Central

    Zarjou, Abolfazl; Sanders, Paul W; Mehta, Ravindra L; Agarwal, Anupam

    2011-01-01

    Acute kidney injury (AKI) is a common, heterogeneous and detrimental clinical condition that has significant attributable morbidity and mortality. Despite major advances in understanding the epidemiology, pathogenesis and outcomes of AKI, preventive measures remain inadequate and therapeutic approaches (except for renal replacement therapy) have largely proven futile so far. Critical to the process of designing rational therapies is translational research, which involves the transition between the basic research discoveries and everyday clinical applications to prevent, diagnose and treat human diseases. Progress in innovative approaches has been hampered due in part to the reliance on functional markers (serum creatinine and blood urea nitrogen) that are neither sensitive nor specific to diagnose AKI. This limitation has created a great deal of interest and intense investigation to identify a “troponin-like marker” that would facilitate recognition of AKI and allow for timely implementation of the precise therapeutic agent. The other major obstacle in this field is the diverse and complex nature of AKI that involves multiple independent and overlapping pathways, making it difficult to cure AKI with a single approach. In this review, we will summarize the advances, ongoing studies and future perspectives in the field of translational research of AKI. PMID:22376265

  19. Amifostine ameliorates recognition memory defect in acute radiation syndrome caused by relatively low-dose of gamma radiation

    PubMed Central

    Lee, Hae-June; Kim, Joong-Sun; Song, Myoung-Sub; Seo, Heung-Sik; Yang, Miyoung; Kim, Jong Choon; Jo, Sung-Kee; Shin, Taekyun

    2010-01-01

    This study examined whether amifostine (WR-2721) could attenuate memory impairment and suppress hippocampal neurogenesis in adult mice with the relatively low-dose exposure of acute radiation syndrome (ARS). These were assessed using object recognition memory test, the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay, and immunohistochemical markers of neurogenesis [Ki-67 and doublecortin (DCX)]. Amifostine treatment (214 mg/kg, i.p.) prior to irradiation significantly attenuated the recognition memory defect in ARS, and markedly blocked the apoptotic death and decrease of Ki-67- and DCX-positive cells in ARS. Therefore, amifostine may attenuate recognition memory defect in a relatively low-dose exposure of ARS in adult mice, possibly by inhibiting a detrimental effect of irradiation on hippocampal neurogenesis. PMID:20195069

  20. Involvement of histamine released from mast cells in acute radiation dermatitis in mice.

    PubMed

    Moriyasu, Saiko; Yamamoto, Kouichi; Kureyama, Naoko; Okamura, Keita; Ikeda, Toshiji; Yamatodani, Atsushi

    2007-06-01

    A possible involvement of histamine in acute radiation dermatitis in mice was investigated. The dose of 40 Gy of gamma irradiation induced erythema and edema in C57BL/6 mice treated with vehicle. However, in C57BL/6 mice treated with chlorpheniramine and WBB6F1-W/Wv mice, erythema and edema were not observed. In all of these mice, epilation and dry desquamation were induced, but bepotastine significantly reduced the extent of these areas. These results suggest that gamma irradiation-induced erythema and edema were caused by histamine released from mast cells via histamine H1 receptor, and epilation was induced by other inflammatory mediators.

  1. Prostate Hypofractionated Radiation Therapy With Injection of Hyaluronic Acid: Acute Toxicities in a Phase 2 Study

    SciTech Connect

    Chapet, Olivier; Decullier, Evelyne; Bin, Sylvie; Faix, Antoine; Ruffion, Alain; Jalade, Patrice; Fenoglietto, Pascal; Udrescu, Corina; Enachescu, Ciprian; Azria, David

    2015-03-15

    Purpose: Hypofractionated radiation therapy (RT) in prostate cancer can be developed only if the risk of rectal toxicity is controlled. In a multicenter phase 2 trial, hypofractionated irradiation was combined with an injection of hyaluronic acid (HA) to preserve the rectal wall. Tolerance of the injection and acute toxicity rates are reported. Methods and Materials: The study was designed to assess late grade 2 toxicity rates. The results described here correspond to the secondary objectives. Acute toxicity was defined as occurring during RT or within 3 months after RT and graded according to the Common Terminology Criteria for Adverse Events version 4.0. HA tolerance was evaluated with a visual analog scale during the injection and 30 minutes after injection and then by use of the Common Terminology Criteria at each visit. Results: From 2010 to 2012, 36 patients with low-risk to intermediate-risk prostate cancer were included. The HA injection induced a mean pain score of 4.6/10 ± 2.3. Thirty minutes after the injection, 2 patients still reported pain (2/10 and 3/10), which persisted after the intervention. Thirty-three patients experienced at least 1 acute genitourinary toxicity and 20 patients at least 1 acute gastrointestinal toxicity. Grade 2 toxicities were reported for 19 patients with urinary obstruction, frequency, or both and for 1 patient with proctitis. No grade 3 or 4 toxicities were reported. At the 3-month visit, 4 patients described grade 2 obstruction or frequency, and no patients had any grade 2 gastrointestinal toxicities. Conclusions: The injection of HA makes it possible to deliver hypofractionated irradiation over 4 weeks with a dose per fraction of > 3 Gy, with limited acute rectal toxicity.

  2. The Foundations of Radiation Belt Research

    NASA Astrophysics Data System (ADS)

    Ludwig, G. H.

    2008-12-01

    The United States undertook the launching of an artificial Earth satellite as part of its contribution to the International Geophysical Year. The Vanguard program was established to meet that commitment, and it developed a launch vehicle, ground station network, and suite of scientific payloads, including the cosmic ray experiment proposed by James A. Van Allen. Although Vanguard eventually exceeded all of its pre-stated goals, the preemptive launches of Sputniks I and II by the Soviets in October and November 1957 spurred the U.S. into a frenzy of activity, resulting in the launches of Explorers I and III in January and March of 1958. The data from those two satellites quickly revealed the lower boundary of an unexpected region of high intensity radiation trapped in the Earth's magnetic field. The original announcement in May 1958 stated that the radiation was probably composed of either protons or electrons, and that, if electrons, it was probably bremsstrahlung formed in the satellite shell. Immediately following that announcement, approval was received for what became Explorer IV, whose announced purpose was to follow up on the new discovery. Another reason for the satellite, unmentioned at the time, was its inclusion as a component of the highly classified Argos program, a covert military program to test whether the detonation of nuclear devices at high altitude would inject measurable numbers of charged particles into durable trajectories in the Earth's magnetic field. Our team at Iowa produced the satellites under the oversight of, and with assistance by, the Army Ballistic Missile Agency in Huntsville, and with the contributions of key hardware from several other government laboratories. The project was completed in the unbelievably short period of seventy-seven days from approval to launch. Launched into a higher-inclination orbit than the earlier Explorers, Explorer IV confirmed the discovery and greatly expanded our understanding of the natural

  3. Space Radiation Research Unit, International Open Laboratory in NIRS

    PubMed Central

    Uchihori, Yukio; Hei, Tom K.; Konishi, Teruaki; Kobayashi, Alisa; Kitamura, Hisashi; Kodaira, Satoshi; Kobayashi, Shingo

    2014-01-01

    The radiation environment encountered by astronauts during spaceflight is far more complex than any radiation field existed on Earth. Space crew living and working in the International Space Station (ISS) are exposed to a mixed radiation field comprises primary high-energy cosmic rays, including energetic protons and heavy ions, and to secondary radiations, including energetic neutrons, produced when the primary radiation interacts with the mass of the space station and its contents. The doses of ionizing radiation received by astronauts and cosmonauts aboard the ISS are many times greater than those received by radiation workers on the ground. Exposure to ionizing radiation in space includes high LET events than can produce significant biological damage in human cells and tissues, and thus represents an important risk to space crew health and safety. The Space Radiation Research Unit at the National Institute of Radiological Sciences (NIRS) includes both physicists and radiation biologists and there is extensive collaboration between these two groups. This provides us with the expertise needed to investigate the effects of space crew exposure to the highly complex, mixed radiation environment encountered in space. In addition, NIRS is home to a heavy ion accelerator, HIMAC and the Medical Cyclotron that can be used to simulate various components of the space radiation environment. Recently, we have developed a medium energy proton radiation field using the NIRS Medical Cyclotron. [How about a sentence or two on the significance of this proton facilities.] In addition, NIRS has also developed a high precision tool, the Single Particle Irradiation System to Cell (SPICE) microbeam facility, for use in investigating various radiobiological endpoints, including the bystander effect and the adaptive response of various cell types, Caenorhabditis elegans and in Medaka fish. Some of these research activities are described in these proceedings [1, 2]. The Space Radiation

  4. Painful acute radiation thyroiditis induced by 131I treatment of Graves' disease.

    PubMed

    Shah, Kinjal K; Tarasova, Valentina; Davidian, Michael; Anderson, Robert J

    2015-01-01

    A 44-year-old woman, chronic smoker with Graves' disease was treated with radioactive iodine ablation (RAI). One week after the treatment, she presented with severe pain in the anterior neck with radiation to the angle of the jaw associated with fatigue, tremor and odynophagia. Physical examination demonstrated an asymmetric and exquisitely tender thyroid gland. There was no laboratory evidence of thyrotoxicosis. Acute radiation thyroiditis was diagnosed. Non-steroidal anti-inflammatory drugs and hydrocodone-acetaminophen started initially were ineffective for pain control. Prednisone provided relief and was continued for 1 month with a tapering dose. Symptoms completely resolved after 1 month at which time the thyroid remained diffusely enlarged and non-tender. Three months following RAI ablation she developed hypothyroid symptoms. Levothyroxine was initiated. The patient has remained asymptomatic on continued follow-up care. PMID:25576511

  5. Research needs and opportunities in radiation chemistry workshop

    SciTech Connect

    Barbara, Paul F

    1998-04-19

    There is a growing urgency for forefront basic research on ionizing radiation-induced chemical reactions, due to the relevance of these reactions in such areas of critical national need as environmental waste management, environmental remediation, nuclear energy production, and medical diagnosis and radiation therapy. Fortunately, the emergence of new theoretical and experimental tools for the study of radiation-induced chemical and physical processes, i.e. Radiation Chemistry, makes future progress quite promising. Nevertheless, a recent decline in he number of young investigators in radiation chemistry, as well as a natural obsolescence of large research facilities in radiation chemistry are serious obstacles to further progress. Understanding radiation-induced processes is of vital significance in such diverse fields as waste remediation in environmental cleanup, radiation processing of polymers and food, medical diagnosis and therapy, catalysis of chemical reactions, environmentally benign synthesis, and nuclear energy production. Radiation chemistry provides for these fields fundamental quantitative data, such as reaction rate coefficients, diffusion coefficients, radiation chemical yields, etc. As well as providing useful quantitative information of technological and medical importance, radiation chemistry is also a valuable tool for solving fundamental problems in chemistry and in material sciences. Exploiting the many facets of radiation chemistry requires a thorough and comprehensive understanding of the underlying chemical and physical processes. An understanding of the structure and dynamics of “tracks” produced by ionizing radiation is a central issue in the field. There is a continuing need to study the ultrafast processes that link the chemistry and physics of radiation-induced phenomena. This is especially true for practically important, but less well understood, nonstandard environments such as interfacial systems, supercritical media, and

  6. Successful Mitigation of Delayed Intestinal Radiation Injury Using Pravastatin is not Associated with Acute Injury Improvement or Tumor Protection

    SciTech Connect

    Haydont, Valerie; Bourhis, Jean; Vozenin-Brotons, Marie-Catherine |. E-mail: vozenin@igr.fr

    2007-08-01

    Purpose: To investigate whether pravastatin mitigates delayed radiation-induced enteropathy in rats, by focusing on the effects of pravastatin on acute cell death and fibrosis according to connective tissue growth factor (CTGF) expression and collagen inhibition. Methods and Materials: Mitigation of delayed radiation-induced enteropathy was investigated in rats using pravastatin administered in drinking water (30 mg/kg/day) 3 days before and 14 days after irradiation. The ileum was irradiated locally after surgical exteriorization (X-rays, 19 Gy). Acute apoptosis, acute and late histologic alterations, and late CTGF and collagen deposition were monitored by semiquantitative immunohistochemistry and colorimetric staining (6 h, 3 days, 14 days, 15 weeks, and 26 weeks after irradiation). Pravastatin antitumor action was studied in HT-29, HeLa, and PC-3 cells by clonogenic cell survival assays and tumor growth delay experiments. Results: Pravastatin improved delayed radiation enteropathy in rats, whereas its benefit in acute and subacute injury remained limited (6 h, 3 days, and 14 days after irradiation). Delayed structural improvement was associated with decreased CTGF and collagen deposition but seemed unrelated to acute damage. Indeed, the early apoptotic index increased, and severe subacute structural damage occurred. Pravastatin elicited a differential effect, protecting normal intestine but not tumors from radiation injury. Conclusion: Pravastatin provides effective protection against delayed radiation enteropathy without interfering with the primary antitumor action of radiotherapy, suggesting that clinical transfer is feasible.

  7. Treatment of radiation-induced acute intestinal injury with bone marrow-derived mesenchymal stem cells

    PubMed Central

    ZHENG, KAI; WU, WEIZHEN; YANG, SHUNLIANG; HUANG, LIANGHU; CHEN, JIN; GONG, CHUNGUI; FU, ZHICHAO; LIN, RUOFEI; TAN, JIANMING

    2016-01-01

    The aim of the present study was to investigate the ability of bone marrow-derived mesenchymal stem cells (BMSCs) to repair radiation-induced acute intestinal injury, and to elucidate the underlying repair mechanism. Male Sprague-Dawley rats were subjected to whole abdominal irradiation using a single medical linear accelerator (12 Gy) and randomly assigned to two groups. Rats in the BMSC-treated group were injected with 1 ml BMSC suspension (2×106 cells/ml) via the tail vein, while the control group rats were injected with normal saline. BMSCs were identified by detecting the expression of CD29, CD90, CD34 and CD45 using flow cytometry. The expression of the cytokines stromal cell-derived factor 1 (SDF-1), prostaglandin E2 (PGE2) and interleukin (IL)-2 was detected using immunohistochemical techniques. Plasma citrulline concentrations were evaluated using an ELISA kit. Rat general conditions, including body weight, and changes in cellular morphology were also recorded. The results suggested that BMSCs exerted a protective effect on radiation-induced acute intestinal injury in rats. The histological damage was rapidly repaired in the BMSC-treated group. In addition, the BMSC-treated group showed significantly reduced radiation injury scores (P<0.01), mildly reduced body weight and plasma citrulline levels, significantly more rapid recovery (P<0.01), significantly reduced expression of the cytokines PGE2 and IL-2 (P<0.05) and significantly increased SDF-1 expression (P<0.01) compared with the control group. In summary, the present results indicate that BMSCs are able to effectively reduce inflammation and promote repair of the structure and function of intestinal tissues damaged by radiation exposure, suggesting that they may provide a promising therapeutic agent. PMID:27284330

  8. Combined Exposure to Simulated Microgravity and Acute or Chronic Radiation Reduces Neuronal Network Integrity and Survival

    PubMed Central

    Quintens, Roel; Samari, Nada; de Saint-Georges, Louis; van Oostveldt, Patrick; Baatout, Sarah; Benotmane, Mohammed Abderrafi

    2016-01-01

    During orbital or interplanetary space flights, astronauts are exposed to cosmic radiations and microgravity. However, most earth-based studies on the potential health risks of space conditions have investigated the effects of these two conditions separately. This study aimed at assessing the combined effect of radiation exposure and microgravity on neuronal morphology and survival in vitro. In particular, we investigated the effects of simulated microgravity after acute (X-rays) or during chronic (Californium-252) exposure to ionizing radiation using mouse mature neuron cultures. Acute exposure to low (0.1 Gy) doses of X-rays caused a delay in neurite outgrowth and a reduction in soma size, while only the high dose impaired neuronal survival. Of interest, the strongest effect on neuronal morphology and survival was evident in cells exposed to microgravity and in particular in cells exposed to both microgravity and radiation. Removal of neurons from simulated microgravity for a period of 24 h was not sufficient to recover neurite length, whereas the soma size showed a clear re-adaptation to normal ground conditions. Genome-wide gene expression analysis confirmed a modulation of genes involved in neurite extension, cell survival and synaptic communication, suggesting that these changes might be responsible for the observed morphological effects. In general, the observed synergistic changes in neuronal network integrity and cell survival induced by simulated space conditions might help to better evaluate the astronaut's health risks and underline the importance of investigating the central nervous system and long-term cognition during and after a space flight. PMID:27203085

  9. Combined Exposure to Simulated Microgravity and Acute or Chronic Radiation Reduces Neuronal Network Integrity and Survival.

    PubMed

    Pani, Giuseppe; Verslegers, Mieke; Quintens, Roel; Samari, Nada; de Saint-Georges, Louis; van Oostveldt, Patrick; Baatout, Sarah; Benotmane, Mohammed Abderrafi

    2016-01-01

    During orbital or interplanetary space flights, astronauts are exposed to cosmic radiations and microgravity. However, most earth-based studies on the potential health risks of space conditions have investigated the effects of these two conditions separately. This study aimed at assessing the combined effect of radiation exposure and microgravity on neuronal morphology and survival in vitro. In particular, we investigated the effects of simulated microgravity after acute (X-rays) or during chronic (Californium-252) exposure to ionizing radiation using mouse mature neuron cultures. Acute exposure to low (0.1 Gy) doses of X-rays caused a delay in neurite outgrowth and a reduction in soma size, while only the high dose impaired neuronal survival. Of interest, the strongest effect on neuronal morphology and survival was evident in cells exposed to microgravity and in particular in cells exposed to both microgravity and radiation. Removal of neurons from simulated microgravity for a period of 24 h was not sufficient to recover neurite length, whereas the soma size showed a clear re-adaptation to normal ground conditions. Genome-wide gene expression analysis confirmed a modulation of genes involved in neurite extension, cell survival and synaptic communication, suggesting that these changes might be responsible for the observed morphological effects. In general, the observed synergistic changes in neuronal network integrity and cell survival induced by simulated space conditions might help to better evaluate the astronaut's health risks and underline the importance of investigating the central nervous system and long-term cognition during and after a space flight. PMID:27203085

  10. Small animal radiation research platform: imaging, mechanics, control and calibration.

    PubMed

    Matinfar, Mohammad; Gray, Owen; Iordachita, Iulian; Kennedy, Chris; Ford, Eric; Wong, John; Taylor, Russell H; Kazanzides, Peter

    2007-01-01

    In cancer research, well characterized small animal models of human cancer, such as transgenic mice, have greatly accelerated the pace of development of cancer treatments. The goal of the Small Animal Radiation Research Platform (SARRP) is to make those same models available for the development and evaluation of novel radiation therapies. In combination with advanced imaging methods, small animal research allows detailed study of biological processes, disease progression, and response to therapy, with the potential to provide a natural bridge to the clinical environment. The SARRP will realistically model human radiation treatment methods in standard animal models. In this paper, we describe the mechanical and control structure of the system. This system requires accurate calibration of the x-ray beam for both imaging and radiation treatment, which is presented in detail in the paper. PMID:18044657

  11. EURADOS strategic research agenda: vision for dosimetry of ionising radiation.

    PubMed

    Rühm, W; Fantuzzi, E; Harrison, R; Schuhmacher, H; Vanhavere, F; Alves, J; Bottollier Depois, J F; Fattibene, P; Knežević, Ž; Lopez, M A; Mayer, S; Miljanić, S; Neumaier, S; Olko, P; Stadtmann, H; Tanner, R; Woda, C

    2016-02-01

    Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises-based on input from EURADOS Working Groups (WGs) and Voting Members-five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS website (www.eurados.org). PMID:25752758

  12. Collective radiation biodosimetry for dose reconstruction of acute accidental exposures: a review.

    PubMed Central

    Pass, B

    1997-01-01

    Quantification of the biologically relevant dose is required to establish cause and effect between radiation detriment or burden and important biological outcomes. Most epidemiologic studies of unanticipated radiation exposure fail to establish cause and effect because researchers have not been able to construct a valid quantification of dose for the exposed population. However, no one biodosimetric technique (biophysical or biological) meets all the requirements of an ideal dosimeter. This paper reviews how the collection of biodosimetric data for victims of radiation accidents can be used to create a dosimetric "gold standard." Particular emphasis is placed on the use of electron spin resonance, a standard for radiation accident dosimetry. As an example of this technique, a review will be presented of a previously reported study of an individual exposed to a 60Co sterilization source. PMID:9467051

  13. Impact of Bone Marrow Radiation Dose on Acute Hematologic Toxicity in Cervical Cancer: Principal Component Analysis on High Dimensional Data

    SciTech Connect

    Yun Liang; Messer, Karen; Rose, Brent S.; Lewis, John H.; Jiang, Steve B.; Yashar, Catheryn M.; Mundt, Arno J.; Mell, Loren K.

    2010-11-01

    Purpose: To study the effects of increasing pelvic bone marrow (BM) radiation dose on acute hematologic toxicity in patients undergoing chemoradiotherapy, using a novel modeling approach to preserve the local spatial dose information. Methods and Materials: The study included 37 cervical cancer patients treated with concurrent weekly cisplatin and pelvic radiation therapy. The white blood cell count nadir during treatment was used as the indicator for acute hematologic toxicity. Pelvic BM radiation dose distributions were standardized across patients by registering the pelvic BM volumes to a common template, followed by dose remapping using deformable image registration, resulting in a dose array. Principal component (PC) analysis was applied to the dose array, and the significant eigenvectors were identified by linear regression on the PCs. The coefficients for PC regression and significant eigenvectors were represented in three dimensions to identify critical BM subregions where dose accumulation is associated with hematologic toxicity. Results: We identified five PCs associated with acute hematologic toxicity. PC analysis regression modeling explained a high proportion of the variation in acute hematologicity (adjusted R{sup 2}, 0.49). Three-dimensional rendering of a linear combination of the significant eigenvectors revealed patterns consistent with anatomical distributions of hematopoietically active BM. Conclusions: We have developed a novel approach that preserves spatial dose information to model effects of radiation dose on toxicity, which may be useful in optimizing radiation techniques to avoid critical subregions of normal tissues. Further validation of this approach in a large cohort is ongoing.

  14. Feasibility and Acute Toxicity of Hypofractionated Radiation in Large-breasted Patients

    SciTech Connect

    Dorn, Paige L.; Corbin, Kimberly S.; Al-Hallaq, Hania; Hasan, Yasmin; Chmura, Steven J.

    2012-05-01

    Purpose: To determine the feasibility of and acute toxicity associated with hypofractionated whole breast radiation (HypoRT) after breast-conserving surgery in patients excluded from or underrepresented in randomized trials comparing HypoRT with conventional fractionation schedules. Methods and Materials: A review was conducted of all patients consecutively treated with HypoRT at University of Chicago. All patients were treated to 42.56 Gy in 2.66 Gy daily fractions in either the prone or supine position. Planning was performed in most cases using wedges and large segments or a 'field-in-field' technique. Breast volume was estimated using volumetric measurements of the planning target volume (PTV). Dosimetric parameters of heterogeneity (V105, V107, V110, and maximum dose) were recorded for each treatment plan. Acute toxicity was scored for each treated breast. Results: Between 2006 and 2010, 78 patients were treated to 80 breasts using HypoRT. Most women were overweight or obese (78.7%), with a median body mass index of 29.2 kg/m{sup 2}. Median breast volume was 1,351 mL. Of the 80 treated breasts, the maximum acute skin toxicity was mild erythema or hyperpigmentation in 70.0% (56/80), dry desquamation in 21.25% (17/80), and focal moist desquamation in 8.75% (7/80). Maximum acute toxicity occurred after the completion of radiation in 31.9% of patients. Separation >25 cm was not associated with increased toxicity. Breast volume was the only patient factor significantly associated with moist desquamation on multivariable analysis (p = 0.01). Patients with breast volume >2,500 mL experienced focal moist desquamation in 27.2% of cases compared with 6.34% in patients with breast volume <2,500 mL (p = 0.03). Conclusions: HypoRT is feasible and safe in patients with separation >25 cm and in patients with large breast volume when employing modern planning and positioning techniques. We recommend counseling regarding expected increases in skin toxicity in women with a PTV

  15. NASA Self-Assessment of Space Radiation Research

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2010-01-01

    Space exploration involves unavoidable exposures to high-energy galactic cosmic rays whose penetration power and associated secondary radiation makes radiation shielding ineffective and cost prohibitive. NASA recognizing the possible health dangers from cosmic rays notified the U.S. Congress as early as 1959 of the need for a dedicated heavy ion accelerator to study the largely unknown biological effects of galactic cosmic rays on astronauts. Information and scientific tools to study radiation health effects expanded over the new decades as NASA exploration programs to the moon and preparations for Mars exploration were carried out. In the 1970 s through the early 1990 s a more than 3-fold increase over earlier estimates of fatal cancer risks from gamma-rays, and new knowledge of the biological dangers of high LET radiation were obtained. Other research has increased concern for degenerative risks to the central nervous system and other tissues at lower doses compared to earlier estimates. In 1996 a review by the National Academy of Sciences Space Science Board re-iterated the need for a dedicated ground-based accelerator facility capable of providing up to 2000 research hours per year to reduce uncertainties in risks projections and develop effective mitigation measures. In 1998 NASA appropriated funds for construction of a dedicated research facility and the NASA Space Radiation Laboratory (NSRL) opened for research in October of 2003. This year marks the 8th year of NSRL research were about 1000 research hours per year have been utilized. In anticipation of the approaching ten year milestone, funded investigators and selected others are invited to participate in a critical self-assessment of NSRL research progress towards NASA s goals in space radiation research. A Blue and Red Team Assessment format has been integrated into meeting posters and special plenary sessions to allow for a critical debate on the progress of the research and major gaps areas. Blue

  16. RADIATION CHEMISTRY 2010 GORDON RESEARCH CONFERENCE JULY 18-23

    SciTech Connect

    Thomas Orlando

    2010-07-23

    The 2010 Gordon Conference on Radiation Chemistry will present cutting edge research regarding the study of radiation-induced chemical transformations. Radiation Chemistry or 'high energy' chemistry is primarily initiated by ionizing radiation: i.e. photons or particles with energy sufficient to create conduction band electrons and 'holes', excitons, ionic and neutral free radicals, highly excited states, and solvated electrons. These transients often interact or 'react' to form products vastly different than those produced under thermal equilibrium conditions. The non-equilibrium, non-thermal conditions driving radiation chemistry exist in plasmas, star-forming regions, the outer solar system, nuclear reactors, nuclear waste repositories, radiation-based medical/clinical treatment centers and in radiation/materials processing facilities. The 2010 conference has a strong interdisciplinary flavor with focus areas spanning (1) the fundamental physics and chemistry involved in ultrafast (atto/femtosecond) energy deposition events, (2) radiation-induced processes in biology (particularly spatially resolved studies), (3) radiation-induced modification of materials at the nanoscale and cosmic ray/x-ray mediated processes in planetary science/astrochemistry. While the conference concentrates on fundamental science, topical applied areas covered will also include nuclear power, materials/polymer processing, and clinical/radiation treatment in medicine. The Conference will bring together investigators at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present work in poster format or as contributors to the Young Investigator session. The program and format provides excellent avenues to promote cross-disciplinary collaborations.

  17. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    SciTech Connect

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  18. [Radiation-induced intracranial osteosarcoma after radiation for acute lymphocytic leukemia associated with Li-Fraumeni syndrome].

    PubMed

    Yoshimura, Junichi; Natsumeda, Manabu; Nishihira, Yasushi; Nishiyama, Kenichi; Saito, Akihiko; Okamoto, Kouichirou; Takahashi, Hitoshi; Fujii, Yukihiko

    2013-06-01

    A 28-year-old man presented with osteosarcoma of the occipital bone 16 years after 24 Gy of craniospinal irradiation for acute lymphocytic leukemia. The tumor had both intra- and extra-cranial components. However, the affected skull appeared to be normal on imaging because of permeative infiltration by the tumor. Subtotal resection was achieved and the tumor was verified histologically as an osteosarcoma. The residual tumor soon showed remarkable enlargement and disseminated to the spinal cord. Both of the enlarged and disseminated tumor masses were treated by surgical intervention and chemotherapy. However, the patient deteriorated due to the tumor regrowth and died 11 months after the initial diagnosis. This patient had previously developed a leukemia, a colon cancer, a rectal cancer and a hepatocellular carcinoma. His brother also died of leukemia. The patient had a heterozygous TP53 germ-line mutation of codon 248 in the exon 7. In conclusion, we consider the present tumor to be a rare example of radiation-induced skull osteosarcoma in a member of the cancer-prone family with TP53 germ-line mutation which is associated with Li-Fraumeni syndrome.

  19. Efficacy of Polaprezinc for Acute Radiation Proctitis in a Rat Model

    SciTech Connect

    Doi, Hiroshi; Kamikonya, Norihiko; Takada, Yasuhiro; Fujiwara, Masayuki; Tsuboi, Keita; Inoue, Hiroyuki; Tanooka, Masao; Nakamura, Takeshi; Shikata, Toshiyuki; Tsujimura, Tohru; Hirota, Shozo

    2011-07-01

    Purpose: The purpose of the present study was to standardize the experimental rat model of radiation proctitis and to examine the efficacy of polaprezinc on radiation proctitis. Methods and Materials: A total of 54 female Wistar rats (5 weeks old) were used. The rats were divided into three groups: those treated with polaprezinc (PZ+), those treated with base alone, exclusive of polaprezinc (PZ-), and those treated without any medication (control). All the rats were irradiated to the rectum. Polaprezinc was prepared as an ointment. The ointment was administered rectally each day after irradiation. All rats were killed on the 10th day after irradiation. The mucosal changes were evaluated endoscopically and pathologically. The results were graded from 0 to 4 and compared according to milder or more severe status, as applicable. Results: According to the endoscopic findings, the proportion of mild changes in the PZ+, PZ-, and control group was 71.4%, 25.0%, and 14.3% respectively. On pathologic examination, the proportion of low-grade findings in the PZ+, PZ-, and control group was 80.0%, 58.3%, and 42.9% for mucosal damage, 85.0%, 41.7%, and 42.9% for a mild degree of inflammation, and 50.0%, 33.3%, and 4.8% for a shallow depth of inflammation, respectively. The PZ+ group tended to have milder mucosal damage than the other groups, according to all criteria used. In addition, significant differences were observed between the PZ+ and control groups regarding the endoscopic findings, degree of inflammation, and depth of inflammation. Conclusions: This model was confirmed to be a useful experimental rat model for radiation proctitis. The results of the present study have demonstrated the efficacy of polaprezinc against acute radiation-induced rectal disorders using the rat model.

  20. Autologous bone marrow stromal cell transplantation as a treatment for acute radiation enteritis induced by a moderate dose of radiation in dogs.

    PubMed

    Xu, Wenda; Chen, Jiang; Liu, Xu; Li, Hongyu; Qi, Xingshun; Guo, Xiaozhong

    2016-05-01

    Radiation enteritis is one of the most common complications of cancer radiotherapy, and the development of new and effective measures for its prevention and treatment is of great importance. Adult bone marrow stromal stem cells (ABMSCs) are capable of self-renewal and exhibit low immunogenicity. In this study, we investigated ABMSC transplantation as a treatment for acute radiation enteritis. We developed a dog model of acute radiation enteritis using abdominal intensity-modulated radiation therapy in a single X-ray dose of 14 Gy. ABMSCs were cultured in vitro, identified via immunofluorescence and flow cytometry, and double labeled with CM-Dil and superparamagnetic iron oxide (SPIO) before transplantation, which took place 48 hours after abdominal irradiation in a single fraction. The dog model of acute radiation enteritis was transplanted with cultured ABMSCs labeled with CM-Dil and SPIO into the mesenteric artery through the femoral artery. Compared with untreated control groups, dogs treated with ABMSCs exhibited substantially longer survival time and improved relief of clinical symptoms. ABMSC transplantation induced the regeneration of the intestinal epithelium and the recovery of intestinal function. Furthermore, ABMSC transplantation resulted in elevated serum levels of the anti-inflammatory cytokine interleukin-11 (IL10) and intestinal radioprotective factors, such as keratinocyte growth factor, basic fibroblast growth factor-2, and platelet-derived growth factor-B while reducing the serum level of the inflammatory cytokine IL17. ABMSCs induced the regeneration of the intestinal epithelium and regulated the secretion of serum cytokines and the expression of radioprotective proteins and thus could be beneficial in the development of novel and effective mitigators of and protectors against acute radiation enteritis. PMID:26763584

  1. Autologous bone marrow stromal cell transplantation as a treatment for acute radiation enteritis induced by a moderate dose of radiation in dogs.

    PubMed

    Xu, Wenda; Chen, Jiang; Liu, Xu; Li, Hongyu; Qi, Xingshun; Guo, Xiaozhong

    2016-05-01

    Radiation enteritis is one of the most common complications of cancer radiotherapy, and the development of new and effective measures for its prevention and treatment is of great importance. Adult bone marrow stromal stem cells (ABMSCs) are capable of self-renewal and exhibit low immunogenicity. In this study, we investigated ABMSC transplantation as a treatment for acute radiation enteritis. We developed a dog model of acute radiation enteritis using abdominal intensity-modulated radiation therapy in a single X-ray dose of 14 Gy. ABMSCs were cultured in vitro, identified via immunofluorescence and flow cytometry, and double labeled with CM-Dil and superparamagnetic iron oxide (SPIO) before transplantation, which took place 48 hours after abdominal irradiation in a single fraction. The dog model of acute radiation enteritis was transplanted with cultured ABMSCs labeled with CM-Dil and SPIO into the mesenteric artery through the femoral artery. Compared with untreated control groups, dogs treated with ABMSCs exhibited substantially longer survival time and improved relief of clinical symptoms. ABMSC transplantation induced the regeneration of the intestinal epithelium and the recovery of intestinal function. Furthermore, ABMSC transplantation resulted in elevated serum levels of the anti-inflammatory cytokine interleukin-11 (IL10) and intestinal radioprotective factors, such as keratinocyte growth factor, basic fibroblast growth factor-2, and platelet-derived growth factor-B while reducing the serum level of the inflammatory cytokine IL17. ABMSCs induced the regeneration of the intestinal epithelium and regulated the secretion of serum cytokines and the expression of radioprotective proteins and thus could be beneficial in the development of novel and effective mitigators of and protectors against acute radiation enteritis.

  2. Research studies on radiative collisional processes

    NASA Astrophysics Data System (ADS)

    Harris, S. E.; Young, J. F.

    1982-01-01

    This program has supported theoretical and experimental studies in three broad areas. The first is a study of pair absorption processes which may be viewed as a collisional process in which two atoms and a photon simultaneously react and exchange energy. The present goal is to investigate the possibility of using such processes to construct new types of lasers. Secondly, we have invented and developed a promising new technique for pumping high pressure gas systems using high power microwave pulses. This work has led to two related projects: excitation of rare gas halide excimer lasers to achieve long pulse lengths, high reliability and good efficiencies, and the excitation of metal vapors to create new lasers. Finally, we have been applying the anti-Stokes light source developed here to practical measurements of VUV spectral features both to elucidate the physics of such innershell transitions and to search for transitions suitable for short wavelength lasers. This last project has also been partially supported by NASA. Section 2 summarizes our research findings for these projects, and Sections 3 and 4 list the publications and personnel, respectively, supported by this program.

  3. Assessment of acute and late effects to high-LET radiation

    SciTech Connect

    Blakely, E.A.; Castro, J.R. |

    1994-11-01

    We have begun to reassess late tissue effects available from the Charged Particle Cancer Radiotherapy program at Berkeley. Our quantitative approach is limited in the analysis of these Phase I/II studies by not having equivalent patient numbers for each of the particle beams studied, by not having completely comparable follow-up times, by variations in the sizes of the fields compared, by variations in the skin scoring photographic documentation available from the patient charts, and by variations in the fractionation sizes, numbers and schedules. Despite these limitations, preliminary evidence demonstrates acute skin reactions with a shift to increasing lower dose per fraction per field for the maximum skin reactions of helium, carbon and neon ions compared to electrons. Comparisons with skin reactions from low-energy neutrons indicate that Bragg peak carbon ions (initial energy 308 MeV/nucleon) are slightly less effective than 7.5 MeV neutrons. Bragg peak neon ions (initial energy 670 MeV/nucleon) corrected for differences in reference radiation are slightly more effective than 7.5 MeV neutrons. Bragg peak silicon (initial energy 670 MeV/nucleon) result in an enhanced acute skin reaction, and a premature appearance of late effects that may indicate a significantly different mechanism of damage and/or repair.

  4. Acute DNA damage activates the tumour suppressor p53 to promote radiation-induced lymphoma

    PubMed Central

    Lee, Chang-Lung; Castle, Katherine D.; Moding, Everett J.; Blum, Jordan M.; Williams, Nerissa; Luo, Lixia; Ma, Yan; Borst, Luke B.; Kim, Yongbaek; Kirsch, David G.

    2015-01-01

    Genotoxic cancer therapies, such as chemoradiation, cause haematological toxicity primarily by activating the tumour suppressor p53. While inhibiting p53-mediated cell death during cancer therapy ameliorates haematologic toxicity, whether it also impacts carcinogenesis remains unclear. Here we utilize a mouse model of inducible p53 short hairpin RNA (shRNA) to show that temporarily blocking p53 during total-body irradiation (TBI) not only ameliorates acute toxicity, but also improves long-term survival by preventing lymphoma development. Using KrasLA1 mice, we show that TBI promotes the expansion of a rare population of thymocytes that express oncogenic KrasG12D. However, blocking p53 during TBI significantly suppresses the expansion of KrasG12D-expressing thymocytes. Mechanistically, bone marrow transplant experiments demonstrate that TBI activates p53 to decrease the ability of bone marrow cells to suppress lymphoma development through a non-cell-autonomous mechanism. Together, our results demonstrate that the p53 response to acute DNA damage promotes the development of radiation-induced lymphoma. PMID:26399548

  5. Research Findings on Radiation Hormesis and Radon Therapy

    SciTech Connect

    Hattori, Sadao

    1999-06-06

    Radiation hormesis research in Japan to determine the validity of Luckey's claims has revealed information on the health effects of low-level radiation. The scientific data of animal tests we obtained and successful results actually brought by radon therapy on human patients show us a clearer understanding of the health effects of low-level radiation. We obtained many animal test results and epidemiological survey data through our research activities cooperating with more than ten universities in Japan, categorized as follows: 1. suppression of cancer by enhancement of the immune system based on gene activation; 2. rejuvenation and suppression of aging by increasing cell membrane permeability and enzyme syntheses; 3. adaptive response by activation of gene expression on DNA repair and cell apoptosis; 4. pain relief and stress moderation by hormone formation in the brain and central nervous system; 5. avoidance and therapy of obstinate diseases by enhancing damage control systems and form one formation.

  6. The changing landscape of scholarly publishing: will radiation research survive?

    PubMed

    Odell, Jere; Whipple, Elizabeth C

    2013-10-01

    As a society published journal, Radiation Research has been a successful and enduring project of the Radiation Research Society (RRS). In 59 years of publication, the journal has produced 732 issues and 10,712 articles. As a nonprofit organization, RRS, like most societies, has used revenues from subscriptions to support, in part, the life of the organization (meetings, conferences and grants to new scholars). The model for scientific publishing, however, continues to evolve. Radiation Research has weathered the rise of electronic publishing, consolidation in the commercial publishing industry, the aggregation of library subscriptions and library subscription cuts. Recent years have seen dramatic changes in how scholarly publishing is financed and new funder and institution policies will accelerate these changes. The growth of open access to journal articles reflects the information habits of readers and facilitates the dissemination of new knowledge. The Radiation Research Society, however, will need to account for and adapt to changes in the publishing market if it intends to support the communication of peer reviewed scholarship in the future.

  7. Chairman's introduction: mechanisms, models and experiments in space radiation research.

    PubMed

    Kiefer, Juergen

    2004-01-01

    Radiation risk estimate in space is a moral obligation and a scientific challenge requiring the combined efforts of physicists and biologists. This introductory paper presents some thoughts about problems to be solved and the possible directions of research. It stresses the necessity of cooperation across disciplines and the combination of space and ground based investigations. PMID:15880914

  8. Research on radiation detectors, boiling transients, and organic lubricants

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The accomplishments of a space projects research facility are presented. The subjects discussed are: (1) a study of radiation resistant semiconductor devices, (2) synthesis of high temperature organic lubricants, (3) departure from phase equilibrium during boiling transients, (4) effects of neutron irradiation on defect state in tungsten, and (5) determination of photon response function of NE-213 liquid scintillation detectors.

  9. GUI to Facilitate Research on Biological Damage from Radiation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Frances A.; Ponomarev, Artem Lvovich

    2010-01-01

    A graphical-user-interface (GUI) computer program has been developed to facilitate research on the damage caused by highly energetic particles and photons impinging on living organisms. The program brings together, into one computational workspace, computer codes that have been developed over the years, plus codes that will be developed during the foreseeable future, to address diverse aspects of radiation damage. These include codes that implement radiation-track models, codes for biophysical models of breakage of deoxyribonucleic acid (DNA) by radiation, pattern-recognition programs for extracting quantitative information from biological assays, and image-processing programs that aid visualization of DNA breaks. The radiation-track models are based on transport models of interactions of radiation with matter and solution of the Boltzmann transport equation by use of both theoretical and numerical models. The biophysical models of breakage of DNA by radiation include biopolymer coarse-grained and atomistic models of DNA, stochastic- process models of deposition of energy, and Markov-based probabilistic models of placement of double-strand breaks in DNA. The program is designed for use in the NT, 95, 98, 2000, ME, and XP variants of the Windows operating system.

  10. Effects of acute low doses of gamma-radiation on erythrocytes membrane.

    PubMed

    Mahmoud, Sherif S; El-Sakhawy, Eman; Abdel-Fatah, Eman S; Kelany, Adel M; Rizk, Rizk M

    2011-03-01

    It is believed that any dose of ionizing radiation may damage cells and that the mutated cells could develop into cancer cells. Additionally, results of research performed over the past century on the effects of low doses of ionizing radiation on biological organisms show beneficial health effects, called hormesis. Much less is known about the cellular response to low doses of ionizing radiation, such as those typical for medical diagnostic procedures, normal occupational exposures or cosmic-ray exposures at flight altitudes. Extrapolating from the effects observed at higher doses to predict changes in cells after low-dose exposure is problematic. We examined the biological effects of low doses (0.01-0.3 Gy) of γ-radiation on the membrane characteristics of erythrocytes of albino rats and carried out osmotic fragility tests and Fourier transform infrared spectroscopy (FTIR). Our results indicate that the lowest three doses in the investigated radiation range, i.e., 0.01, 0.025 and 0.05 Gy, resulted in positive effects on the erythrocyte membranes, while a dose of 0.1 Gy appeared to represent the limiting threshold dose of those positive effects. Doses higher than 0.1 Gy were associated with the denaturation of erythrocyte proteins. PMID:20865271

  11. Dietary sugar beet fiber ameliorates diarrhea as an acute gamma-radiation injury in rats.

    PubMed

    Ishizuka, S; Ito, S; Kasai, T; Hara, H

    2000-09-01

    Gamma radiation induces diarrhea as an acute injury. We have studied whether ingestion of sugar beet fiber influences radiation-induced diarrhea. Abdominal irradiation with gamma rays induced diarrhea in male Wistar/ST rats from 2 to 7 days after a single sublethal dose. The body weight of the irradiated rats was decreased temporarily at 4 days after irradiation regardless of the ingestion of sugar beet fiber. At day 8, it returned to almost the same level as that of unirradiated rats. A change in daily food intake resulted in a pattern similar to that for body weight. Dietary sugar beet fiber had little significant effect on the changes in body weight and daily food intake, and its ingestion significantly decreased gamma-ray-induced diarrhea. Changes in biochemical and histological parameters in intestinal mucosa (small intestine, cecum and colon) were not greatly influenced by the ingestion of sugar beet fiber through the periods of diarrhea. It was concluded that dietary sugar beet fiber ameliorated the diarrhea induced by abdominal irradiation. We suggest that the inhibitory effect of the ingestion of sugar beet fiber is due to its effects on the luminal environment, such as support for bacterial function in the luminal contents in the colon of animals that ingest sugar beet fiber.

  12. Intrarectal amifostine suspension may protect against acute proctitis during radiation therapy for prostate cancer: A pilot study

    SciTech Connect

    Singh, Anurag K.; Menard, Cynthia; Guion, Peter . E-mail: guionp@mail.nih.gov; Simone, Nicole L.; Smith, Sharon; Crouse, Nancy Sears; Godette, Denise J.; Cooley-Zgela, Theresa; Sciuto, Linda C.; Camphausen, Kevin; Coleman, C. Norman; Coleman, Jonathan; Pinto, Peter; Albert, Paul S.

    2006-07-15

    Purpose: Our goal was to test the ability of intrarectal amifostine to limit symptoms of radiation proctitis. Methods and Materials: The first 18 patients received 1 g of intrarectal amifostine suspension placed 30-45 min before each radiation treatment. The following 12 patients received 2 g of amifostine. Total dose prescribed ranged from 66 to 76 Gy. All patients were treated with three-dimensional conformal radiation therapy. The suspension remained intrarectal during treatment and was expelled after treatment. For gastrointestinal symptoms, during treatment and follow-up, all patients had a Radiation Therapy Oncology Group (RTOG) grade recorded. Results: Median follow-up was 18 months (range, 6-24 months). With 2 g vs. 1 g amifostine, there was a nearly significant decrease in RTOG Grade 2 acute rectal toxicity. Seven weeks after the start of radiation therapy, the incidence of Grade 2 toxicity was 33% in the 1-g group (6/18) compared with 0% (0/12) in the 2-g group (p = 0.06). No Grade 3 toxicity or greater occurred in this study. Conclusion: This trial suggests greater rectal radioprotection from acute effects with 2 g vs. 1 g amifostine suspension. Further studies should be conducted in populations at higher risk for developing symptomatic acute and late proctitis.

  13. Acute Toxicity After Image-Guided Intensity Modulated Radiation Therapy Compared to 3D Conformal Radiation Therapy in Prostate Cancer Patients

    SciTech Connect

    Wortel, Ruud C.; Incrocci, Luca; Pos, Floris J.; Lebesque, Joos V.; Witte, Marnix G.; Heide, Uulke A. van der; Herk, Marcel van; Heemsbergen, Wilma D.

    2015-03-15

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows significant dose reductions to organs at risk in prostate cancer patients. However, clinical data identifying the benefits of IG-IMRT in daily practice are scarce. The purpose of this study was to compare dose distributions to organs at risk and acute gastrointestinal (GI) and genitourinary (GU) toxicity levels of patients treated to 78 Gy with either IG-IMRT or 3D-CRT. Methods and Materials: Patients treated with 3D-CRT (n=215) and IG-IMRT (n=260) receiving 78 Gy in 39 fractions within 2 randomized trials were selected. Dose surface histograms of anorectum, anal canal, and bladder were calculated. Identical toxicity questionnaires were distributed at baseline, prior to fraction 20 and 30 and at 90 days after treatment. Radiation Therapy Oncology Group (RTOG) grade ≥1, ≥2, and ≥3 endpoints were derived directly from questionnaires. Univariate and multivariate binary logistic regression analyses were applied. Results: The median volumes receiving 5 to 75 Gy were significantly lower (all P<.001) with IG-IMRT for anorectum, anal canal, and bladder. The mean dose to the anorectum was 34.4 Gy versus 47.3 Gy (P<.001), 23.6 Gy versus 44.6 Gy for the anal canal (P<.001), and 33.1 Gy versus 43.2 Gy for the bladder (P<.001). Significantly lower grade ≥2 toxicity was observed for proctitis, stool frequency ≥6/day, and urinary frequency ≥12/day. IG-IMRT resulted in significantly lower overall RTOG grade ≥2 GI toxicity (29% vs 49%, respectively, P=.002) and overall GU grade ≥2 toxicity (38% vs 48%, respectively, P=.009). Conclusions: A clinically meaningful reduction in dose to organs at risk and acute toxicity levels was observed in IG-IMRT patients, as a result of improved technique and tighter margins. Therefore reduced late toxicity levels can be expected as well; additional research is needed to quantify such reductions.

  14. Ionizing radiation: Future etiologic research and preventive strategies

    SciTech Connect

    Darby, S.C.; Inskip, P.D.

    1995-11-01

    Estimates of cancer risks following exposure to ionizing radiation traditionally have been based on the experience of populations exposed to substantial (and known) doses delivered over short periods of time. Examples include survivors of the atomic bombings at Hiroshima and Nagasaki, and persons treated with radiation for benign or malignant disease. Continued follow-up of these populations is important to determine the long-term effects of exposure in childhood, to characterize temporal patterns of excess risk for different types of cancer, and to understand better the interactions between radiation and other host and environmental factors. Studies of nuclear workers chronically exposed over a working lifetime provide data that preliminary indications are that the risks per unit dose for most cancers other than leukemia are similar to those for acute exposure. However, these results are subject to considerable uncertainty, and further information on this question is needed. Residential radon is the major source of population exposure to high-LET radiation. Current estimates of the risk of lung cancer due to residential exposure to radon and radon daughters are based on the experience of miners exposed to much higher concentrations. Data indicate that lung cancer risk among miners is inversely associated with exposure rate, and also is influenced by the presence of other lung carcinogens such as arsenic in the mine environment. Further study of populations of radon-exposed miners would be informative, particularly those exposed at below-average levels. More direct evidence on the effects of residential exposure to radon also is desirable but might be difficult to come by, as risks associated with radon levels found in most homes might be too low to be quantified accurately in epidemiological studies. 29 refs., 3 figs., 5 tabs.

  15. Protracted Oxidative Alterations in the Mechanism of Hematopoietic Acute Radiation Syndrome

    PubMed Central

    Gorbunov, Nikolai V.; Sharma, Pushpa

    2015-01-01

    The biological effects of high-dose total body ionizing irradiation [(thereafter, irradiation (IR)] are attributed to primary oxidative breakage of biomolecule targets, mitotic, apoptotic and necrotic cell death in the dose-limiting tissues, clastogenic and epigenetic effects, and cascades of functional and reactive responses leading to radiation sickness defined as the acute radiation syndrome (ARS). The range of remaining and protracted injuries at any given radiation dose as well as the dynamics of post-IR alterations is tissue-specific. Therefore, functional integrity of the homeostatic tissue barriers may decline gradually within weeks in the post-IR period culminating with sepsis and failure of organs and systems. Multiple organ failure (MOF) leading to moribundity is a common sequela of the hemotapoietic form of ARS (hARS). Onset of MOF in hARS can be presented as “two-hit phenomenon” where the “first hit” is the underlying consequences of the IR-induced radiolysis in cells and biofluids, non-septic inflammation, metabolic up-regulation of pro-oxidative metabolic reactions, suppression of the radiosensitive hematopoietic and lymphoid tissues and the damage to gut mucosa and vascular endothelium. While the “second hit” derives from bacterial translocation and spread of the bacterial pathogens and inflammagens through the vascular system leading to septic inflammatory, metabolic responses and a cascade of redox pro-oxidative and adaptive reactions. This sequence of events can create a ground for development of prolonged metabolic, inflammatory, oxidative, nitrative, and carbonyl, electrophilic stress in crucial tissues and thus exacerbate the hARS outcomes. With this perspective, the redox mechanisms, which can mediate the IR-induced protracted oxidative post-translational modification of proteins, oxidation of lipids and carbohydrates and their countermeasures in hARS are subjects of the current review. Potential role of ubiquitous, radioresistant

  16. Proton and heavy ion acceleration facilities for space radiation research

    NASA Technical Reports Server (NTRS)

    Miller, Jack

    2003-01-01

    The particles and energies commonly used for medium energy nuclear physics and heavy charged particle radiobiology and radiotherapy at particle accelerators are in the charge and energy range of greatest interest for space radiation health. In this article we survey some of the particle accelerator facilities in the United States and around the world that are being used for space radiation health and related research, and illustrate some of their capabilities with discussions of selected accelerator experiments applicable to the human exploration of space.

  17. Combined Hydration and Antibiotics with Lisinopril to Mitigate Acute and Delayed High-dose Radiation Injuries to Multiple Organs.

    PubMed

    Fish, Brian L; Gao, Feng; Narayanan, Jayashree; Bergom, Carmen; Jacobs, Elizabeth R; Cohen, Eric P; Moulder, John E; Orschell, Christie M; Medhora, Meetha

    2016-11-01

    The NIAID Radiation and Nuclear Countermeasures Program is developing medical agents to mitigate the acute and delayed effects of radiation that may occur from a radionuclear attack or accident. To date, most such medical countermeasures have been developed for single organ injuries. Angiotensin converting enzyme (ACE) inhibitors have been used to mitigate radiation-induced lung, skin, brain, and renal injuries in rats. ACE inhibitors have also been reported to decrease normal tissue complication in radiation oncology patients. In the current study, the authors have developed a rat partial-body irradiation (leg-out PBI) model with minimal bone marrow sparing (one leg shielded) that results in acute and late injuries to multiple organs. In this model, the ACE inhibitor lisinopril (at ~24 mg m d started orally in the drinking water at 7 d after irradiation and continued to ≥150 d) mitigated late effects in the lungs and kidneys after 12.5-Gy leg-out PBI. Also in this model, a short course of saline hydration and antibiotics mitigated acute radiation syndrome following doses as high as 13 Gy. Combining this supportive care with the lisinopril regimen mitigated overall morbidity for up to 150 d after 13-Gy leg-out PBI. Furthermore, lisinopril was an effective mitigator in the presence of the growth factor G-CSF (100 μg kg d from days 1-14), which is FDA-approved for use in a radionuclear event. In summary, by combining lisinopril (FDA-approved for other indications) with hydration and antibiotics, acute and delayed radiation injuries in multiple organs were mitigated. PMID:27682899

  18. Combined Hydration and Antibiotics with Lisinopril to Mitigate Acute and Delayed High-dose Radiation Injuries to Multiple Organs.

    PubMed

    Fish, Brian L; Gao, Feng; Narayanan, Jayashree; Bergom, Carmen; Jacobs, Elizabeth R; Cohen, Eric P; Moulder, John E; Orschell, Christie M; Medhora, Meetha

    2016-11-01

    The NIAID Radiation and Nuclear Countermeasures Program is developing medical agents to mitigate the acute and delayed effects of radiation that may occur from a radionuclear attack or accident. To date, most such medical countermeasures have been developed for single organ injuries. Angiotensin converting enzyme (ACE) inhibitors have been used to mitigate radiation-induced lung, skin, brain, and renal injuries in rats. ACE inhibitors have also been reported to decrease normal tissue complication in radiation oncology patients. In the current study, the authors have developed a rat partial-body irradiation (leg-out PBI) model with minimal bone marrow sparing (one leg shielded) that results in acute and late injuries to multiple organs. In this model, the ACE inhibitor lisinopril (at ~24 mg m d started orally in the drinking water at 7 d after irradiation and continued to ≥150 d) mitigated late effects in the lungs and kidneys after 12.5-Gy leg-out PBI. Also in this model, a short course of saline hydration and antibiotics mitigated acute radiation syndrome following doses as high as 13 Gy. Combining this supportive care with the lisinopril regimen mitigated overall morbidity for up to 150 d after 13-Gy leg-out PBI. Furthermore, lisinopril was an effective mitigator in the presence of the growth factor G-CSF (100 μg kg d from days 1-14), which is FDA-approved for use in a radionuclear event. In summary, by combining lisinopril (FDA-approved for other indications) with hydration and antibiotics, acute and delayed radiation injuries in multiple organs were mitigated.

  19. Network-based real-time radiation monitoring system in Synchrotron Radiation Research Center.

    PubMed

    Sheu, R J; Wang, J P; Chen, C R; Liu, J; Chang, F D; Jiang, S H

    2003-10-01

    The real-time radiation monitoring system (RMS) in the Synchrotron Radiation Research Center (SRRC) has been upgraded significantly during the past years. The new framework of the RMS is built on the popular network technology, including Ethernet hardware connections and Web-based software interfaces. It features virtually no distance limitations, flexible and scalable equipment connections, faster response time, remote diagnosis, easy maintenance, as well as many graphic user interface software tools. This paper briefly describes the radiation environment in SRRC and presents the system configuration, basic functions, and some operational results of this real-time RMS. Besides the control of radiation exposures, it has been demonstrated that a variety of valuable information or correlations could be extracted from the measured radiation levels delivered by the RMS, including the changes of operating conditions, beam loss pattern, radiation skyshine, and so on. The real-time RMS can be conveniently accessed either using the dedicated client program or World Wide Web interface. The address of the Web site is http:// www-rms.srrc.gov.tw.

  20. Life-span exposure to sinusoidal-50 Hz magnetic field and acute low-dose γ radiation induce carcinogenic effects in Sprague-Dawley rats.

    PubMed

    Soffritti, Morando; Tibaldi, Eva; Padovani, Michela; Hoel, David G; Giuliani, Livio; Bua, Luciano; Lauriola, Michelina; Falcioni, Laura; Manservigi, Marco; Manservisi, Fabiana; Panzacchi, Simona; Belpoggi, Fiorella

    2016-01-01

    Background In 2002 the International Agency for Research on Cancer classified extremely low frequency magnetic fields (ELFMF) as a possible carcinogen on the basis of epidemiological evidence. Experimental bioassays on rats and mice performed up to now on ELFMF alone or in association with known carcinogens have failed to provide conclusive confirmation. Objectives To study the carcinogenic effects of combined exposure to sinusoidal-50 Hz (S-50 Hz) magnetic fields and acute γ radiation in Sprague-Dawley rats. Methods We studied groups of male and female Sprague-Dawley rats exposed from prenatal life until natural death to 20 or 1000 μT S-50 Hz MF and also to 0.1 Gy γ radiation delivered as a single acute exposure at 6 weeks of age. Results The results of the study showed significant carcinogenic effects for the mammary gland in males and females and a significant increased incidence of malignant schwannomas of the heart as well as increased incidence of lymphomas/leukemias in males. Conclusions These results call for a re-evaluation of the safety of non-ionizing radiation. PMID:26894944

  1. Nuclear model calculations and their role in space radiation research

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Cucinotta, F. A.; Heilbronn, L. H.

    2002-01-01

    Proper assessments of spacecraft shielding requirements and concomitant estimates of risk to spacecraft crews from energetic space radiation requires accurate, quantitative methods of characterizing the compositional changes in these radiation fields as they pass through thick absorbers. These quantitative methods are also needed for characterizing accelerator beams used in space radiobiology studies. Because of the impracticality/impossibility of measuring these altered radiation fields inside critical internal body organs of biological test specimens and humans, computational methods rather than direct measurements must be used. Since composition changes in the fields arise from nuclear interaction processes (elastic, inelastic and breakup), knowledge of the appropriate cross sections and spectra must be available. Experiments alone cannot provide the necessary cross section and secondary particle (neutron and charged particle) spectral data because of the large number of nuclear species and wide range of energies involved in space radiation research. Hence, nuclear models are needed. In this paper current methods of predicting total and absorption cross sections and secondary particle (neutrons and ions) yields and spectra for space radiation protection analyses are reviewed. Model shortcomings are discussed and future needs presented. c2002 COSPAR. Published by Elsevier Science Ltd. All right reserved.

  2. Combined mitigation of the gastrointestinal and hematopoietic acute radiation syndromes by an LPA2 receptor-specific nonlipid agonist.

    PubMed

    Patil, Renukadevi; Szabó, Erzsébet; Fells, James I; Balogh, Andrea; Lim, Keng G; Fujiwara, Yuko; Norman, Derek D; Lee, Sue-Chin; Balazs, Louisa; Thomas, Fridtjof; Patil, Shivaputra; Emmons-Thompson, Karin; Boler, Alyssa; Strobos, Jur; McCool, Shannon W; Yates, C Ryan; Stabenow, Jennifer; Byrne, Gerrald I; Miller, Duane D; Tigyi, Gábor J

    2015-02-19

    Pharmacological mitigation of injuries caused by high-dose ionizing radiation is an unsolved medical problem. A specific nonlipid agonist of the type 2 G protein coupled receptor for lysophosphatidic acid (LPA2) 2-[4-(1,3-dioxo-1H,3H-benzoisoquinolin-2-yl)butylsulfamoyl]benzoic acid (DBIBB) when administered with a postirradiation delay of up to 72 hr reduced mortality of C57BL/6 mice but not LPA2 knockout mice. DBIBB mitigated the gastrointestinal radiation syndrome, increased intestinal crypt survival and enterocyte proliferation, and reduced apoptosis. DBIBB enhanced DNA repair by augmenting the resolution of γ-H2AX foci, increased clonogenic survival of irradiated IEC-6 cells, attenuated the radiation-induced death of human CD34(+) hematopoietic progenitors and enhanced the survival of the granulocyte/macrophage lineage. DBIBB also increased the survival of mice suffering from the hematopoietic acute radiation syndrome after total-body irradiation. DBIBB represents a drug candidate capable of mitigating acute radiation syndrome caused by high-dose γ-radiation to the hematopoietic and gastrointestinal system. PMID:25619933

  3. Transplantation of Endothelial Cells to Mitigate Acute and Chronic Radiation Injury to Vital Organs.

    PubMed

    Rafii, Shahin; Ginsberg, Michael; Scandura, Joseph; Butler, Jason M; Ding, Bi-Sen

    2016-08-01

    Current therapeutic approaches for treatment of exposure to radiation involve the use of antioxidants, chelating agents, recombinant growth factors and transplantation of stem cells (e.g., hematopoietic stem cell transplantation). However, exposure to high-dose radiation is associated with severe damage to the vasculature of vital organs, often leading to impaired healing, tissue necrosis, thrombosis and defective regeneration caused by aberrant fibrosis. It is very unlikely that infusion of protective chemicals will reverse severe damage to the vascular endothelial cells (ECs). The role of irradiated vasculature in mediating acute and chronic radiation syndromes has not been fully appreciated or well studied. New approaches are necessary to replace and reconstitute ECs in organs that are irreversibly damaged by radiation. We have set forth the novel concept that ECs provide paracrine signals, also known as angiocrine signals, which not only promote healing of irradiated tissue but also direct organ regeneration without provoking fibrosis. We have developed innovative technologies that enable manufacturing and banking of human GMP-grade ECs. These ECs can be transplanted intravenously to home to and engraft to injured tissues where they augment organ repair, while preventing maladaptive fibrosis. In the past, therapeutic transplantation of ECs was not possible due to a shortage of availability of suitable donor cell sources and preclinical models, a lack of understanding of the immune privilege of ECs, and inadequate methodologies for expansion and banking of engraftable ECs. Recent advances made by our group as well as other laboratories have breached the most significant of these obstacles with the development of technologies to manufacture clinical-scale quantities of GMP-grade and human ECs in culture, including genetically diverse reprogrammed human amniotic cells into vascular ECs (rAC-VECs) or human pluripotent stem cells into vascular ECs (iVECs). This

  4. Literature Review and Global Consensus on Management of Acute Radiation Syndrome Affecting Nonhematopoietic Organ Systems

    PubMed Central

    Dainiak, Nicholas; Gent, Robert Nicolas; Carr, Zhanat; Schneider, Rita; Bader, Judith; Buglova, Elena; Chao, Nelson; Coleman, C. Norman; Ganser, Arnold; Gorin, Claude; Hauer-Jensen, Martin; Huff, L. Andrew; Lillis-Hearne, Patricia; Maekawa, Kazuhiko; Nemhauser, Jeffrey; Powles, Ray; Schünemann, Holger; Shapiro, Alla; Stenke, Leif; Valverde, Nelson; Weinstock, David; White, Douglas; Albanese, Joseph; Meineke, Viktor

    2013-01-01

    Objectives The World Health Organization convened a panel of experts to rank the evidence for medical countermeasures for management of acute radiation syndrome (ARS) in a hypothetical scenario involving the hospitalization of 100 to 200 victims. The goal of this panel was to achieve consensus on optimal management of ARS affecting nonhematopoietic organ systems based upon evidence in the published literature. Methods English-language articles were identified in MEDLINE and PubMed. Reference lists of retrieved articles were distributed to conferees in advance of and updated during the meeting. Published case series and case reports of ARS, publications of randomized controlled trials of relevant interventions used to treat nonirradiated individuals, reports of studies in irradiated animals, and prior recommendations of subject matter experts were selected. Studies were extracted using the Grading of Recommendations Assessment Development and Evaluation system. In cases in which data were limited or incomplete, a narrative review of the observations was made. Results No randomized controlled trials of medical countermeasures have been completed for individuals with ARS. Reports of countermeasures were often incompletely described, making it necessary to rely on data generated in nonirradiated humans and in experimental animals. A strong recommendation is made for the administration of a serotonin-receptor antagonist prophylactically when the suspected exposure is >2 Gy and topical steroids, antibiotics, and antihistamines for radiation burns, ulcers, or blisters; excision and grafting of radiation ulcers or necrosis with intractable pain; provision of supportive care to individuals with neurovascular syndrome; and administration of electrolyte replacement therapy and sedatives to individuals with significant burns, hypovolemia, and/ orshock. A strong recommendation is made against the use of systemic steroids in the absence of a specific indication. A weak

  5. Transplantation of Endothelial Cells to Mitigate Acute and Chronic Radiation Injury to Vital Organs

    PubMed Central

    Rafii, Shahin; Ginsberg, Michael; Scandura, Joseph; Butler, Jason M.; Ding, Bi-Sen

    2016-01-01

    Current therapeutic approaches for treatment of exposure to radiation involve the use of antioxidants, chelating agents, recombinant growth factors and transplantation of stem cells (e.g., hematopoietic stem cell transplantation). However, exposure to high-dose radiation is associated with severe damage to the vasculature of vital organs, often leading to impaired healing, tissue necrosis, thrombosis and defective regeneration caused by aberrant fibrosis. It is very unlikely that infusion of protective chemicals will reverse severe damage to the vascular endothelial cells (ECs). The role of irradiated vasculature in mediating acute and chronic radiation syndromes has not been fully appreciated or well studied. New approaches are necessary to replace and reconstitute ECs in organs that are irreversibly damaged by radiation. We have set forth the novel concept that ECs provide paracrine signals, also known as angiocrine signals, which not only promote healing of irradiated tissue but also direct organ regeneration without provoking fibrosis. We have developed innovative technologies that enable manufacturing and banking of human GMP-grade ECs. These ECs can be transplanted intravenously to home to and engraft to injured tissues where they augment organ repair, while preventing maladaptive fibrosis. In the past, therapeutic transplantation of ECs was not possible due to a shortage of availability of suitable donor cell sources and preclinical models, a lack of understanding of the immune privilege of ECs, and inadequate methodologies for expansion and banking of engraftable ECs. Recent advances made by our group as well as other laboratories have breached the most significant of these obstacles with the development of technologies to manufacture clinical-scale quantities of GMP-grade and human ECs in culture, including genetically diverse reprogrammed human amniotic cells into vascular ECs (rAC-VECs) or human pluripotent stem cells into vascular ECs (iVECs). This

  6. Molecular and cellular profiling of acute responses to total body radiation exposure in ovariectomized female cynomolgus macaques

    PubMed Central

    DeBo, Ryne J.; Register, Thomas C.; Caudell, David L.; Sempowski, Gregory D.; Dugan, Gregory; Gray, Shauna; Owzar, Kouros; Jiang, Chen; Bourland, J. Daniel; Chao, Nelson J.; Cline, J. Mark

    2015-01-01

    Purpose The threat of radiation exposure requires a mechanistic understanding of radiation-induced immune injury and recovery. The study objective was to evaluate responses to ionizing radiation in ovariectomized (surgically post-menopausal) female cynomolgus macaques. Materials and methods Animals received a single total-body irradiation (TBI) exposure at doses of 0, 2 or 5 Gy with scheduled necropsies at 5 days, 8 weeks and 24 weeks post-exposure. Blood and lymphoid tissues were evaluated for morphologic, cellular, and molecular responses. Results Irradiated animals developed symptoms of acute hematopoietic syndrome, and reductions in thymus weight, thymopoiesis, and bone marrow cellularity. Acute, transient increases in plasma monocyte chemoattractant protein 1 (MCP-1) were observed in 5 Gy animals along with dose-dependent alterations in messenger ribonucleic acid (mRNA) signatures in thymus, spleen, and lymph node. Expression of T cell markers was lower in thymus and spleen, while expression of macrophage marker CD68 (cluster of differentiation 68) was relatively elevated in lymphoid tissues from irradiated animals. Conclusions Ovariectomized female macaques exposed to moderate doses of radiation experienced increased morbidity, including acute, dose-dependent alterations in systemic and tissue-specific biomarkers, and increased macrophage/T cell ratios. The effects on mortality exceeded expectations based on previous studies in males, warranting further investigation. PMID:25786585

  7. Enhancing Cloud Radiative Processes and Radiation Efficiency in the Advanced Research Weather Research and Forecasting (WRF) Model

    SciTech Connect

    Iacono, Michael J.

    2015-03-09

    The objective of this research has been to evaluate and implement enhancements to the computational performance of the RRTMG radiative transfer option in the Advanced Research version of the Weather Research and Forecasting (WRF) model. Efficiency is as essential as accuracy for effective numerical weather prediction, and radiative transfer is a relatively time-consuming component of dynamical models, taking up to 30-50 percent of the total model simulation time. To address this concern, this research has implemented and tested a version of RRTMG that utilizes graphics processing unit (GPU) technology (hereinafter RRTMGPU) to greatly improve its computational performance; thereby permitting either more frequent simulation of radiative effects or other model enhancements. During the early stages of this project the development of RRTMGPU was completed at AER under separate NASA funding to accelerate the code for use in the Goddard Space Flight Center (GSFC) Goddard Earth Observing System GEOS-5 global model. It should be noted that this final report describes results related to the funded portion of the originally proposed work concerning the acceleration of RRTMG with GPUs in WRF. As a k-distribution model, RRTMG is especially well suited to this modification due to its relatively large internal pseudo-spectral (g-point) dimension that, when combined with the horizontal grid vector in the dynamical model, can take great advantage of the GPU capability. Thorough testing under several model configurations has been performed to ensure that RRTMGPU improves WRF model run time while having no significant impact on calculated radiative fluxes and heating rates or on dynamical model fields relative to the RRTMG radiation. The RRTMGPU codes have been provided to NCAR for possible application to the next public release of the WRF forecast model.

  8. A patient-centered research agenda for the care of the acutely ill older patient

    PubMed Central

    Wald, Heidi L.; Leykum, Luci K.; Mattison, Melissa L. P.; Vasilevskis, Eduard E.; Meltzer, David O.

    2015-01-01

    Hospitalists and others acute care providers are limited by gaps in evidence addressing the needs of the acutely ill older adult population. The Society of Hospital Medicine (SHM) sponsored the Acute Care of Older Patients (ACOP) Priority Setting Partnership to develop a research agenda focused on bridging this gap. Informed by the Patient-Centered Outcomes Research Institute (PCORI) framework for identification and prioritization of research areas, we adapted a methodology developed by the James Lind Alliance to engage diverse stakeholders in the research agenda setting process. The work of the Partnership proceeded through four steps: convening, consulting, collating, and prioritizing. First, the steering committee convened a Partnership of 18 stakeholder organizations in May 2013. Next, stakeholder organizations surveyed members to identify important unanswered questions in the acute care of older persons, receiving 1299 responses from 580 individuals. Finally, an extensive and structured process of collation and prioritization resulted in a final list of ten research questions in the following areas: advanced care planning, care transitions, delirium, dementia, depression, medications, models of care, physical function, surgery, and training. With the changing demographics of the hospitalized population, a workforce with limited geriatrics training, and gaps in evidence to inform clinical decision-making for acutely ill older patients, the identified research questions deserve the highest priority in directing future research efforts to improve care for the older hospitalized patient and enrich training. PMID:25877486

  9. Efficacy of Synbiotics to Reduce Acute Radiation Proctitis Symptoms and Improve Quality of Life: A Randomized, Double-Blind, Placebo-Controlled Pilot Trial

    SciTech Connect

    Nascimento, Mariana; Aguilar-Nascimento, José Eduardo; Caporossi, Cervantes; Castro-Barcellos, Heloisa Michelon; Motta, Rodrigo Teixeira

    2014-10-01

    Purpose: To evaluate whether the daily intake of synbiotics interferes in radiation-induced acute proctitis symptoms and in quality of life in patients with prostate cancer. Methods and Materials: Twenty patients who underwent 3-dimensional conformal radiation therapy for prostate cancer were randomized to intake either a synbiotic powder containing Lactobacillus reuteri 10{sup 8} colony-forming units and 4.3 g of soluble fiber (Nestlé) or placebo. The questionnaire EORTC QLQ-PRT23 was applied before the beginning of radiation therapy and in every week for the first 4 weeks of treatment. The sum of both the complete (proctitis symptoms plus quality of life) and partial (proctitis symptoms) scores of the EORTC QLQ-PRT23 (European Organization for Research and Treatment of Cancer Quality of Life Module for Proctitis–23 items) questionnaire were the main endpoints. Results: This pilot study showed that the complete questionnaire score (median [range]) was higher in the second (23 [21-30] vs 26.5 [22-34], P<.05) and third (23 [21-32] vs 27.5 [24-33], P<.01) weeks in the placebo group. Proctitis symptoms were highest scored in the placebo group in both the second (19.5 [16-25]) and third (19 [17-24]) weeks than in the synbiotic group (week 2: 16.5 [15-20], P<.05; week 3: 17 [15-23], P<.01). In both scores the placebo group had a significantly higher result (P<.01) than the synbiotic group (repeated-measures analysis of variance). Conclusions: Synbiotics reduce proctitis symptoms and improve quality of life in radiation-induced acute proctitis during radiation therapy for prostate cancer.

  10. Establishing a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome

    PubMed Central

    Plett, P. Artur; Sampson, Carol H.; Chua, Hui Lin; Joshi, Mandar; Booth, Catherine; Gough, Alec; Johnson, Cynthia S.; Katz, Barry P.; Farese, Ann M.; Parker, Jeffrey; MacVittie, Thomas J.; Orschell, Christie M.

    2012-01-01

    We have developed a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS) for efficacy testing of medical countermeasures (MCM) against radiation according to the FDA Animal Rule. Ten to 12 week old male and female C57BL/6 mice were exposed to the LD50/30-LD70/30 dose of total body irradiation (TBI, 137Cs, 0.62-0.67 Gy min-1) in the morning hours when mice were determined to be most radiosensitive, and assessed for 30 day survival and mean survival time (MST). Antibiotics were delivered in the drinking water on days 4-30 post-TBI at a concentration based on the amount of water that lethally-irradiated mice were found to consume. The fluoroquinolones, ciprofloxacin and levofloxacin, and the tetracycline doxycycline and aminoglycoside neomycin, all significantly increased MST of decedent mice, while ciprofloxacin (p=0.061) and doxycycline + neomycin (p=0.005) showed at least some efficacy to increase 30 day survival. Blood sampling (30uL/mouse every 5th day) was found to negatively impact 30 day survival. Histopathology of tissues harvested from non-moribund mice showed expected effects of lethal irradiation, while moribund mice were largely septicemic with a preponderance of enteric organisms. Kinetics of loss and recovery of peripheral blood cells in untreated mice and those treated with two MCM, granulocyte-colony stimulating factor and Amifostine, further characterized and validated our model for use in screening studies and pivotal efficacy studies of candidate MCM for licensure to treat irradiated individuals suffering from H-ARS. PMID:22929467

  11. Acute Esophagus Toxicity in Lung Cancer Patients After Intensity Modulated Radiation Therapy and Concurrent Chemotherapy

    SciTech Connect

    Kwint, Margriet; Uyterlinde, Wilma; Nijkamp, Jasper; Chen, Chun; Bois, Josien de; Sonke, Jan-Jakob; Heuvel, Michel van den; Knegjens, Joost; Herk, Marcel van; Belderbos, Jose

    2012-10-01

    Purpose: The purpose of this study was to investigate the dose-effect relation between acute esophageal toxicity (AET) and the dose-volume parameters of the esophagus after intensity modulated radiation therapy (IMRT) and concurrent chemotherapy for patients with non-small cell lung cancer (NSCLC). Patients and Methods: One hundred thirty-nine patients with inoperable NSCLC treated with IMRT and concurrent chemotherapy were prospectively analyzed. The fractionation scheme was 66 Gy in 24 fractions. All patients received concurrently a daily dose of cisplatin (6 mg/m Superscript-Two ). Maximum AET was scored according to Common Toxicity Criteria 3.0. Dose-volume parameters V5 to V70, D{sub mean} and D{sub max} of the esophagus were calculated. A logistic regression analysis was performed to analyze the dose-effect relation between these parameters and grade {>=}2 and grade {>=}3 AET. The outcome was compared with the clinically used esophagus V35 prediction model for grade {>=}2 after radical 3-dimensional conformal radiation therapy (3DCRT) treatment. Results: In our patient group, 9% did not experience AET, and 31% experienced grade 1 AET, 38% grade 2 AET, and 22% grade 3 AET. The incidence of grade 2 and grade 3 AET was not different from that in patients treated with CCRT using 3DCRT. The V50 turned out to be the most significant dosimetric predictor for grade {>=}3 AET (P=.012). The derived V50 model was shown to predict grade {>=}2 AET significantly better than the clinical V35 model (P<.001). Conclusions: For NSCLC patients treated with IMRT and concurrent chemotherapy, the V50 was identified as most accurate predictor of grade {>=}3 AET. There was no difference in the incidence of grade {>=}2 AET between 3DCRT and IMRT in patients treated with concurrent chemoradiation therapy.

  12. Synchrotron radiation applications in medical research at Brookhaven National Laboratory

    SciTech Connect

    Thomlinson, W.

    1997-08-01

    In the relatively short time that synchrotrons have been available to the scientific community, their characteristic beams of UV and X-ray radiation have been applied to virtually all areas of medical science which use ionizing radiation. The ability to tune intense monochromatic beams over wide energy ranges clearly differentiates these sources from standard clinical and research tools. The tunable spectrum, high intrinsic collimation of the beams, polarization and intensity of the beams make possible in-vitro and in-vivo research and therapeutic programs not otherwise possible. From the beginning of research operation at the National Synchrotron Light Source (NSLS), many programs have been carrying out basic biomedical research. At first, the research was limited to in-vitro programs such as the x-ray microscope, circular dichroism, XAFS, protein crystallography, micro-tomography and fluorescence analysis. Later, as the coronary angiography program made plans to move its experimental phase from SSRL to the NSLS, it became clear that other in-vivo projects could also be carried out at the synchrotron. The development of SMERF (Synchrotron Medical Research Facility) on beamline X17 became the home not only for angiography but also for the MECT (Multiple Energy Computed Tomography) project for cerebral and vascular imaging. The high energy spectrum on X17 is necessary for the MRT (Microplanar Radiation Therapy) experiments. Experience with these programs and the existence of the Medical Programs Group at the NSLS led to the development of a program in synchrotron based mammography. A recent adaptation of the angiography hardware has made it possible to image human lungs (bronchography). Fig. 1 schematically depicts the broad range of active programs at the NSLS.

  13. Shielding considerations for the small animal radiation research platform (SARRP).

    PubMed

    Sayler, Elaine; Dolney, Derek; Avery, Stephen; Koch, Cameron

    2013-05-01

    The Small Animal Radiation Research Platform (SARRP) is a commercially available platform designed to deliver conformal, image-guided radiation to small animals using a dual-anode kV x-ray source. At the University of Pennsylvania, a free-standing 2 m enclosure was designed to shield the SARRP according to federal code regulating cabinet x-ray systems. The initial design consisted of 4.0-mm-thick lead for all secondary barriers and proved wholly inadequate. Radiation levels outside the enclosure were 15 times higher than expected. Additionally, the leakage appeared to be distributed broadly within the enclosure, so concern arose that a subject might receive significant doses outside the intended treatment field. Thus, a detailed analysis was undertaken to identify and block all sources of leakage. Leakage sources were identified by Kodak X-OmatV (XV) film placed throughout the enclosure. Radiation inside the enclosure was quantified using Gafchromic film. Outside the enclosure, radiation was measured using a survey meter. Sources of leakage included (1) an unnecessarily broad beam exiting the tube, (2) failure of the secondary collimator to confine the primary beam entirely, (3) scatter from the secondary collimator, (4) lack of beam-stop below the treatment volume, and (5) incomplete shielding of the x-ray tube. The exit window was restricted, and a new collimator was designed to address problems (1-3). A beam-stop and additional tube shielding were installed. These modifications reduced internal scatter by more than 100-fold. Radiation outside the enclosure was reduced to levels compliant with federal regulations, provided the SARRP is operated using tube potentials of 175 kV or less. In addition, these simple and relatively inexpensive modifications eliminate the possibility of exposing a larger animal (such as a rat) to significant doses outside the treatment field. PMID:23532076

  14. The Hematopoietic Syndrome of the Acute Radiation Syndrome in Rhesus Macaques: A Systematic Review of the Lethal Dose Response Relationship.

    PubMed

    MacVittie, Thomas J; Farese, Ann M; Jackson, William

    2015-11-01

    Well characterized animal models that mimic the human response to potentially lethal doses of radiation are required to assess the efficacy of medical countermeasures under the criteria of the U.S. Food and Drug Administration "animal rule." Development of a model requires the determination of the radiation dose response relationship and time course of mortality and morbidity across the hematopoietic acute radiation syndrome. The nonhuman primate, rhesus macaque, is a relevant animal model that may be used to determine the efficacy of medical countermeasures to mitigate major signs of morbidity and mortality at selected lethal doses of total body irradiation. A systematic review of relevant studies that determined the dose response relationship for the hematopoietic acute radiation syndrome in the rhesus macaque relative to radiation quality, dose rate, and exposure uniformity has never been performed. The selection of data cohorts was made from the following sources: Ovid Medline (1957-present), PubMed (1954-present), AGRICOLA (1976-present), Web of Science (1954-present), and U.S. HHS REPORT (2002 to present). The following terms were used: Rhesus, total body-irradiation, total body x irradiation, TBI, irradiation, gamma radiation, hematopoiesis, LD50/60, Macaca mulatta, whole-body irradiation, nonhuman primate, NHP, monkey, primates, hematopoietic radiation syndrome, mortality, and nuclear radiation. The reference lists of all studies, published and unpublished, were reviewed for additional studies. The total number of hits across all search sites was 3,001. There were a number of referenced, unpublished, non-peer reviewed government reports that were unavailable for review. Fifteen studies, 11 primary (n = 863) and four secondary (n = 153) studies [n = 1,016 total nonhuman primates (NHP), rhesus Macaca mulatta] were evaluated to provide an informative and consistent review. The dose response relationships (DRRs) were determined for uniform or non-uniform total

  15. Chronomodulation of topotecan or X-radiation treatment increases treatment efficacy without enhancing acute toxicity

    SciTech Connect

    Mullins, Dana; Proulx, Denise; Saoudi, A.; Ng, Cheng E. . E-mail: cng@ohri.ca

    2005-05-01

    Purpose: Topotecan (TPT), a camptothecin analog, is currently used to treat human ovarian and small-cell lung cancer and is in clinical trials for other tumor sites. However, it is unknown whether chronomodulation of TPT treatment is beneficial. We examined the effects of administering TPT or X-radiation (XR) alone at different times of the day or night. Methods: We treated mice bearing human colorectal tumor xenografts at four different times representing the early rest period (9 AM or 3 HALO [hours after light onset]), late rest period (3 PM or 9 HALO), early active period (9 PM or 15 HALO), and late active period (3 AM or 21 HALO) of the mice. We gave either TPT (12 mg/kg, injected i.p.) or XR (4 Gy, directed to the tumor) twice weekly on Days 0, 4, 7, 10 within 2 weeks. Results: Treatment with either TPT or XR at 3 AM demonstrated the greatest efficacy (measured by a tumor regrowth assay) without significantly increasing acute toxicity (assessed by a decrease in leukocyte counts or body weight). Conversely, treatment at 3 PM, in particular, showed increased toxicity without any enhanced efficacy. Conclusions: Our study provided the first evidence that chronomodulation of TPT treatments, consistent with the findings of other camptothecin analogs, is potentially clinically beneficial. Additionally, our findings suggest that chronomodulation of fractionated XR treatments is also potentially clinically beneficial.

  16. Effects of cranial radiation on hearing in children with acute lymphocytic leukemia

    SciTech Connect

    Thibadoux, G.M.; Pereira, W.V.; Hodges, J.M.; Aur, R.J.

    1980-03-01

    The hearing sensitivity of 61 children with acute lymphocytic leukemia who were admitted to our Total Therapy IX study between December 1975 and July 1977 was studied. Their treatment included combined chemotherapy, 2400 rads of cranial radiation, and intrathecal methotrexate. Subjects initially received an otologic examination and middle ear function testing. Audiometric testing was not done until ears were free of outer or middle ear pathology. If the child had no outer or middle ear disease, audiometric thresholds were obtained for the test frequencies: 500, 1000, 2000, 4000, 6000, and 8000 Hz. Pure-tone thresholds were obtained before irradiation (61 patients) and at 6, 12, and 36 months thereafter (49, 46, and 22 patients, respectively). The median age of time of baseline testing was 10 years, 2 months. A paired sample test based on group data was used to test whether there were any significant changes from the threshold values at 6, 12, and 36 months after irradiation. Thresholds were not significantly affected for any test frequency at any test time. Assessments of individual audiograms indicated that none of the children had any significant reductions in hearing levels at the end of the third year after cranial irradiation.

  17. The healing effect of bone marrow-derived stem cells in acute radiation syndrome

    PubMed Central

    Mortazavi, Seyed Mohammad Javad; Shekoohi-Shooli, Fatemeh; Aghamir, Seyed Mahmood Reza; Mehrabani, Davood; Dehghanian, Amirreza; Zare, Shahrokh; Mosleh-Shirazi, Mohammad Amin

    2016-01-01

    Objectives: To determine the effect of bone marrow-derived mesenchymal stem cells (BMSCs) on regeneration of bone marrow and intestinal tissue and survival rate in experimental mice with acute radiation syndrome (ARS). Methods: Forty mice were randomly divided into two equal groups of A receiving no BMSC transplantation and B receiving BMSCs. BMSCs were isolated from the bone marrow and cultured in DMEM media. Both groups were irradiated with 10 Gy (dose rate 0.28 Gy/ min) 60CO during 35 minutes with a field size of 35×35 for all the body area. Twenty-four hours after γ irradiation, 150×103 cells of passage 5 in 150 µl medium were injected intravenously into the tail. Animals were euthanized one and two weeks after cell transplantation. They were evaluated histologically for any changes in bone marrow and intestinal tissues. The survival rate in mice were also determined. Results: A significant increase for bone marrow cell count and survival rate were observed in group B in comparison to group A. Histological findings denoted to a healing in sample tissues. Conclusion: BMSCs could significantly reduce the side effects of ARS and increase the survival rate and healing in injured tissue. As such their transplantation may open a window in treatment of patients with ARS. PMID:27375707

  18. [The individual prognosis of the gravity and of the outcome of acute radiation disease based on immunological indexes].

    PubMed

    Mal'tsev, V N; Ivanov, A A; Mikhaĭlov, V F; Mazurik, V K

    2006-01-01

    The information significance of the immunological indexes for the prognosis of gravity of course and of outcome of an acute radiation disease for the people after the exposure of ionizing radiation in clinically significant doses is studied. The value of indexes of the C-reactive protein contents, of the complement contents and of the titer of haemagglutinins in serum of a blood of 147 patients damaged at Chernobyl NPP accident as a result of external radiation gamma-exposure in combination with internal irradiation from the incorporation in an organism predominantly beta-emitting radionuclides were compared to the weight of acute radiation disease and its outcome (survival or loss). Was determined, that indexes of the contents of C-reactive protein in a peripheral blood during primary reactions on the irradiation (1-2 day after irradiation) and in latent period of disease (3-9 day after irradiation), and also titer of a complement on 3-9 day after irradiation can serve a source of information for the prognosis of probable gravity of a radiation injury and its outcome at irradiation of the man in clinically significant doses.

  19. Radiation exposure of fertile women in medical research studies

    SciTech Connect

    Vetter, R.J.

    1988-08-01

    Fertile women may be exposed to ionizing radiation as human subjects in medical research studies. If the woman is pregnant, such exposures may result in risk to an embryo/fetus. Fertile women may be screened for pregnancy before exposure to ionizing radiation by interview, general examination, or pregnancy test. Use of the sensitive serum pregnancy test has become common because it offers concrete evidence that the woman is not pregnant (more specifically, that an embryo is not implanted). Evidence suggests that risk to the embryo from radiation exposure before organogenesis is extremely low or nonexistent. Further, demonstrated effects on organogenesis are rare or inconclusive at fetal doses below 50 mSv (5 rem). Therefore, there may be some level of radiation exposure below which risk to the fetus may be considered essentially zero, and a serum pregnancy test is unnecessary. This paper reviews the fetal risks and suggests that consideration be given to establishing a limit to the fetus of 0.5 mSv (50 mrem), below which pregnancy screening need not include the use of a serum pregnancy test.

  20. Liquid droplet radiator program at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Presler, A. F.; Coles, C. E.; Diem-Kirsop, P. S.; White, K. A., III

    1985-01-01

    The NASA Lewis Research Center and the Air Force Rocket Propulsion Laboratory (AFRPL) are jointly engaged in a program for technical assessment of the Liquid Droplet Radiator (LDR) concept as an advanced high performance heat ejection component for future space missions. NASA Lewis has responsibility for the technology needed for the droplet generator, for working fluid qualification, and for investigating the physics of droplets in space; NASA Lewis is also conducting systems/mission analyses for potential LDR applications with candidate space power systems. For the droplet generator technology task, both micro-orifice fabrication techniques and droplet stream formation processes have been experimentally investigated. High quality micro-orifices (to 50 micron diameter) are routinely fabricated with automated equipment. Droplet formation studies have established operating boundaries for the generation of controlled and uniform droplet streams. A test rig is currently being installed for the experimental verification, under simulated space conditions, of droplet radiation heat transfer performance analyses and the determination of the effect radiative emissivity of multiple droplet streams. Initial testing has begun in the NASA Lewis Zero-Gravity Facility for investigating droplet stream behavior in microgravity conditions. This includes the effect of orifice wetting on jet dynamics and droplet formation. Results for both Brayton and Stirling power cycles have identified favorable mass and size comparisons of the LDR with conventional radiator concepts.

  1. Urinary tract infections in patients admitted to rehabilitation from acute care settings: a descriptive research study.

    PubMed

    Romito, Diane; Beaudoin, JoAnn M; Stein, Patricia

    2011-01-01

    The use of an indwelling urinary catheter comes with associated risks. At a hospital in southern California, nurses on the acute rehabilitation unit suspected their patients were arriving from acute care with undiagnosed urinary tract infections (UTIs). This descriptive research study quantified the incidence of UTI on admission to a rehabilitation unit and correlations with catheter use. During the study period, 132 patients were admitted to acute rehabilitation from an acute care setting, and 123 met criteria to participate in the study. Among participants, 12% had a UTI upon admission. Questionnaires examined nursing attitudes toward appropriate urinary catheter use and proactive catheter removal. The data revealed that nurses want to be involved in decisions about urinary catheter use and that medical/surgical and rehabilitation nurses agree strongly about advocating for patients with indwelling urinary catheters.

  2. A phase III randomized, placebo-controlled, double-blind study of misoprostol rectal suppositories to prevent acute radiation proctitis in patients with prostate cancer

    SciTech Connect

    Hille, Andrea . E-mail: ahille@med.uni-goettingen.de; Schmidberger, Heinz; Hermann, Robert M.; Christiansen, Hans; Saile, Bernhard; Pradier, Olivier; Hess, Clemens F.

    2005-12-01

    Purpose: Acute radiation proctitis is the most relevant complication of pelvic radiation and is still mainly treated supportively. Considering the negative impact of acute proctitis symptoms on patients' daily activities and the potential relationship between the severity of acute radiation injury and late damage, misoprostol was tested in the prevention of acute radiation-induced proctitis. Methods and Materials: A total of 100 patients who underwent radiotherapy for prostate cancer were entered into this phase III randomized, placebo-controlled, double-blind study with misoprostol or placebo suppositories. Radiation-induced toxicity was evaluated weekly during radiotherapy using the Common Toxicity Criteria. Results: Between the placebo and the misoprostol groups, no significant differences in proctitis symptoms occurred: 76% of patients in each group had Grade 1 toxicity, and 26% in the placebo group and 36% in the misoprostol group had Grade 2 toxicity. No differences were found in onset or symptom duration. Comparing the peak incidence of patients' toxicity symptoms, significantly more patients experienced rectal bleeding in the misoprostol group (p = 0.03). Conclusion: Misoprostol given as a once-daily suppository did not decrease the incidence and severity of radiation-induced acute proctitis and may increase the incidence of acute bleeding.

  3. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2007

    SciTech Connect

    LR Roeder

    2007-12-01

    This annual report describes the purpose and structure of the program, and presents key accomplishments in 2007. Notable achievements include: • Successful review of the ACRF as a user facility by the DOE Biological and Environmental Research Advisory Committee. The subcommittee reinforced the importance of the scientific impacts of this facility, and its value for the international research community. • Leadership of the Cloud Land Surface Interaction Campaign. This multi-agency, interdisciplinary field campaign involved enhanced surface instrumentation at the ACRF Southern Great Plains site and, in concert with the Cumulus Humilis Aerosol Processing Study sponsored by the DOE Atmospheric Science Program, coordination of nine aircraft through the ARM Aerial Vehicles Program. • Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors to the site. • Key advancements in the representation of radiative transfer in weather forecast models from the European Centre for Medium-Range Weather Forecasts. • Development of several new enhanced data sets, ranging from best estimate surface radiation measurements from multiple sensors at all ACRF sites to the extension of time-height cloud occurrence profiles to Niamey, Niger, Africa. • Publication of three research papers in a single issue (February 2007) of the Bulletin of the American Meteorological Society.

  4. Curcumin protects against radiation-induced acute and chronic cutaneous toxicity in mice and decreases mRNA expression of inflammatory and fibrogenic cytokines

    SciTech Connect

    Okunieff, Paul . E-mail: paul_okunieff@urmc.rochester.edu; Xu Jianhua; Hu Dongping; Liu Weimin; Zhang Lurong; Morrow, Gary; Pentland, Alice; Ryan, Julie L.; Ding, Ivan M.D.

    2006-07-01

    Purpose: To determine whether curcumin ameliorates acute and chronic radiation skin toxicity and to examine the expression of inflammatory cytokines (interleukin [IL]-1, IL-6, IL-18, IL-1Ra, tumor necrosis factor [TNF]-{alpha}, and lymphotoxin-{beta}) or fibrogenic cytokines (transforming growth factor [TGF]-{beta}) during the same acute and chronic phases. Methods and Materials: Curcumin was given intragastrically or intraperitoneally to C3H/HeN mice either: 5 days before radiation; 5 days after radiation; or both 5 days before and 5 days after radiation. The cutaneous damage was assessed at 15-21 days (acute) and 90 days (chronic) after a single 50 Gy radiation dose was given to the hind leg. Skin and muscle tissues were collected for measurement of cytokine mRNA. Results: Curcumin, administered before or after radiation, markedly reduced acute and chronic skin toxicity in mice (p < 0.05). Additionally, curcumin significantly decreased mRNA expression of early responding cytokines (IL-1 IL-6, IL-18, TNF-{alpha}, and lymphotoxin-{beta}) and the fibrogenic cytokine, TGF-{beta}, in cutaneous tissues at 21 days postradiation. Conclusion: Curcumin has a protective effect on radiation-induced cutaneous damage in mice, which is characterized by a downregulation of both inflammatory and fibrogenic cytokines in irradiated skin and muscle, particularly in the early phase after radiation. These results may provide the molecular basis for the application of curcumin in clinical radiation therapy.

  5. Radiation chemistry in solvent etxraction: FY2011 research

    SciTech Connect

    Bruce J. Mincher; Stephen P. Mezyk; Leigh R. Martin

    2011-09-01

    This report summarizes work accomplished under the Fuel Cycle Research and Development (FCR&D) program in the area of radiation chemistry during FY 2011. The tasks assigned during FY 2011 included: (1) Continue measurements free radical reaction kinetics in the organic phase; (2) Continue development of an alpha-radiolysis program and compare alpha and gamma radiolysis for CMPO; (3) Initiate an effort to understand dose rate effects in radiation chemistry; and (4) Continued work to characterize TALSPEAK radiation chemistry, including the examination of metal complexed ligand kinetics. Progress made on each of these tasks is reported here. Briefly, the method developed to measure the kinetics of the reactions of the NO3 radical with solvent extraction ligands in organic solution during FY10 was extended here to a number of compounds to better understand the differences between radical reactions in the organic versus aqueous phases. The alpha-radiolysis program in FY11 included irradiations of CMPO solutions with 244Cm, 211At and the He ion beam, for comparison to gamma irradiations, and a comparison of the gamma irradiation results for CMPO at three different gamma dose rates. Finally, recent results for TALSPEAK radiolysis are reported, summarizing the latest in an effort to understand how metal complexation to ligands affects their reaction kinetics with free radicals.

  6. Human Research Program Space Radiation Standing Review Panel (SRP)

    NASA Technical Reports Server (NTRS)

    Woloschak, Gayle; Steinberg-Wright, S.; Coleman, Norman; Grdina, David; Hill, Colin; Iliakis, George; Metting, Noelle; Meyers, Christina

    2010-01-01

    The Space Radiation Standing Review Panel (SRP) met at the NASA Johnson Space Center (JSC) on December 9-11, 2009 to discuss the areas of current and future research targeted by the Space Radiation Program Element (SRPE) of the Human Research Program (HRP). Using evidence-based knowledge as a background for identified risks to astronaut health and performance, NASA had identified gaps in knowledge to address those risks. Ongoing and proposed tasks were presented to address the gaps. The charge to the Space Radiation SRP was to review the gaps, evaluate whether the tasks addressed these gaps and to make recommendations to NASA s HRP Science Management Office regarding the SRP's review. The SRP was requested to evaluate the practicality of the proposed efforts in light of the demands placed on the HRP. Several presentations were made to the SRP during the site visit and the SRP spent sufficient time to address the SRP charge. The SRP made a final debriefing to the HRP Program Scientist, Dr. John B. Charles, on December 11, 2009. The SRP noted that current SRPE strategy is properly science-based and views this as the best assurance of the likelihood that answers to the questions posed as gaps in knowledge can be found, that the uncertainty in risk estimates can be reduced, and that a solid, cost-effective approach to risk reduction solutions is being developed. The current approach of the SRPE, based on the use of carefully focused research solicitations, requiring thorough peer-review and approaches demonstrated to be on the path to answering the NASA strategic questions, addressed to a broad extramural community of qualified scientists, optimally positioned to take advantage of serendipitous discoveries and to leverage scientific advances made elsewhere, is sound and appropriate. The SRP viewed with concern statements by HRP implying that the only science legitimately deserving support should be "applied" or, in some instances that the very term "research" might be

  7. Gravitational radiation theory. M.A. Thesis - Rice Univ.; [survey of current research

    NASA Technical Reports Server (NTRS)

    Wilson, T. L.

    1973-01-01

    A survey is presented of current research in the theory of gravitational radiation. The mathematical structure of gravitational radiation is stressed. Furthermore, the radiation problem is treated independently from other problems in gravitation. The development proceeds candidly through three points of view - scalar, rector, and tensor radiation theory - and the corresponding results are stated.

  8. Immunomodulatory effects of high-protein diet with resveratrol supplementation on radiation-induced acute-phase inflammation in rats.

    PubMed

    Kim, Kyoung-Ok; Park, HyunJin; Chun, Mison; Kim, Hyun-Sook

    2014-09-01

    We hypothesized that a high-protein diet and/or resveratrol supplementation will improve acute inflammatory responses in rats after receiving experimental abdominal radiation treatment (ART). Based on our previous study, the period of 10 days after ART was used as an acute inflammation model. Rats were exposed to a radiation dose of 17.5 Gy and were supplied with a control (C), 30% high-protein diet (HP), resveratrol supplementation (RES), or HP with RES diet ([HP+RES]). At day 10 after ART, we measured profiles of lipids, proteins, and immune cells in blood. The levels of clusters of differentiating 4(+) (CD4(+)) cells and regulatory T cells, serum proinflammatory cytokines, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in urine were also measured. ART caused significant disturbances of lipid profiles by increasing triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C), and decreasing high-density lipoprotein cholesterol. The proinflammatroy cytokine levels were also increased by ART. All the experimental diets (HP, RES, and [HP+RES]) significantly decreased levels of TG, monocytes, proinflammatory cytokines, and 8-OHdG, whereas the platelet counts were increased. In addition, the HP and [HP+RES] diets decreased the concentrations of plasma LDL-C and total cholesterol. Also, the HP and RES diets decreased regulatory T cells compared with those of the control diet in ART group. Further, the HP diet led to a significant recovery of white blood cell counts, as well as increased percentages of lymphocyte and decreased percentages of neutrophils. In summary, RES appeared to be significantly effective in minimizing radiation-induced damage to lipid metabolism and immune responses. Our study also demonstrated the importance of dietary protein intake in recovering from acute inflammation by radiation.

  9. Background radiation measurements at high power research reactors

    SciTech Connect

    Ashenfelter, J.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffroni, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y. -R.; Zhang, C.; Zhang, X.

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including -ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  10. Background radiation measurements at high power research reactors

    SciTech Connect

    Ashenfelter, J.; Yeh, M.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yen, Y. -R.; Zhang, C.; Zhang, X.

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  11. Background radiation measurements at high power research reactors

    DOE PAGES

    Ashenfelter, J.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; et al

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including -ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the backgroundmore » fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.« less

  12. Background radiation measurements at high power research reactors

    DOE PAGES

    Ashenfelter, J.; Yeh, M.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; et al

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the backgroundmore » fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.« less

  13. Radiation pneumonitis and fibrosis: Mechanisms underlying its pathogenesis and implications for future research

    SciTech Connect

    Tsoutsou, Pelagia G.; Koukourakis, Michael I. . E-mail: targ@her.forthnet.gr

    2006-12-01

    Radiation pneumonitis and subsequent radiation pulmonary fibrosis are the two main dose-limiting factors when irradiating the thorax that can have severe implications for patients' quality of life. In this article, the current concepts about the pathogenetic mechanisms underlying radiation pneumonitis and fibrosis are presented. The clinical course of fibrosis, a postulated acute inflammatory stage, and a late fibrotic and irreversible stage are discussed. The interplay of cells and the wide variety of molecules orchestrating the immunologic response to radiation, their interactions with specific receptors, and the cascade of events they trigger are elucidated. Finally, the implications of this knowledge with respect to the therapeutic interventions are critically presented.

  14. The Teaching/Research Nexus and Internationalisation: An Action Research Project in Radiation Physics

    ERIC Educational Resources Information Center

    Guatelli, Susanna; Layton, Catherine; Cutajar, Dean; Rosenfeld, Anatoly B.

    2010-01-01

    This paper attempts to unpack the teaching and learning experiences of academics and students when a new way of teaching radiation physics was introduced. In an attempt to articulate the University of Wollongong's commitment to the enhancement of the teaching/research nexus and to the development of learning communities, staff of the School of…

  15. A Summary of Lightpipe Radiation Thermometry Research at NIST

    PubMed Central

    Tsai, Benjamin K.

    2006-01-01

    During the last 10 years, research in light-pipe radiation thermometry has significantly reduced the uncertainties for temperature measurements in semiconductor processing. The National Institute of Standards and Technology (NIST) has improved the calibration of lightpipe radiation thermometers (LPRTs), the characterization procedures for LPRTs, the in situ calibration of LPRTs using thin-film thermocouple (TFTC) test wafers, and the application of model-based corrections to improve LPRT spectral radiance temperatures. Collaboration with industry on implementing techniques and ideas established at NIST has led to improvements in temperature measurements in semiconductor processing. LPRTs have been successfully calibrated at NIST for rapid thermal processing (RTP) applications using a sodium heat-pipe blackbody between 700 °C and 900 °C with an uncertainty of about 0.3 °C (k = 1) traceable to the International Temperature Scale of 1990. Employing appropriate effective emissivity models, LPRTs have been used to determine the wafer temperature in the NIST RTP Test Bed with an uncertainty of 3.5 °C. Using a TFTC wafer for calibration, the LPRT can measure the wafer temperature in the NIST RTP Test Bed with an uncertainty of 2.3 °C. Collaborations with industry in characterizing and calibrating LPRTs will be summarized, and future directions for LPRT research will be discussed. PMID:27274914

  16. A Summary of Lightpipe Radiation Thermometry Research at NIST.

    PubMed

    Tsai, Benjamin K

    2006-01-01

    During the last 10 years, research in light-pipe radiation thermometry has significantly reduced the uncertainties for temperature measurements in semiconductor processing. The National Institute of Standards and Technology (NIST) has improved the calibration of lightpipe radiation thermometers (LPRTs), the characterization procedures for LPRTs, the in situ calibration of LPRTs using thin-film thermocouple (TFTC) test wafers, and the application of model-based corrections to improve LPRT spectral radiance temperatures. Collaboration with industry on implementing techniques and ideas established at NIST has led to improvements in temperature measurements in semiconductor processing. LPRTs have been successfully calibrated at NIST for rapid thermal processing (RTP) applications using a sodium heat-pipe blackbody between 700 °C and 900 °C with an uncertainty of about 0.3 °C (k = 1) traceable to the International Temperature Scale of 1990. Employing appropriate effective emissivity models, LPRTs have been used to determine the wafer temperature in the NIST RTP Test Bed with an uncertainty of 3.5 °C. Using a TFTC wafer for calibration, the LPRT can measure the wafer temperature in the NIST RTP Test Bed with an uncertainty of 2.3 °C. Collaborations with industry in characterizing and calibrating LPRTs will be summarized, and future directions for LPRT research will be discussed.

  17. Developing system for delivery of optical radiation in medicobiological researches

    NASA Astrophysics Data System (ADS)

    Loschenov, Victor B.; Taraz, Majid

    2004-06-01

    Methods of optical diagnostics and methods of photodynamic therapy are actively used in medico-biological researches. The system for delivery of optical radiation is one of the key methods in these researches. Usually these systems use flexible optical fibers with diameters from 200 to 1000 micron. Two types of systems for delivery are subdivided, first for diagnostic researches, second for therapeutic procedures. Existing diagnostic catheters, which have most widely applied in medicine, have bifurcated with diameter of the tip equal 1.8 mm. These devices, which are called fiber-optical catheters, satisfy the majority endoscopes researches. However, till now the problem of optical-diagnostics inside tissue is not soled. Especially it is important at diagnostics of a mammary gland, livers, thyroid glands tumor, tumor of a brain and some other studies connected with punctures. In these cases, it is necessary that diameter of fiber-optical catheters be less than one millimeter. This work is devoted to the development of these catheters. Also in clinical procedures such as photodynamic therapy (PDT) and interstitial laser photocoagulation (ILP), cylindrical light diffusing tips are rapidly becoming a popular device for the administration of the desired light dose for the illumination of hollow organs, such as bronchus, trachea and oesophagus. This work is devoted to the development of these catheters.

  18. Radiation carcinogenesis and acute radiation mortality in the rat as produced by 2.2 GeV protons

    NASA Technical Reports Server (NTRS)

    Shellabarger, C. J.; Straub, R. F.; Jesseph, J. E.; Montour, J. L.

    1972-01-01

    Biological studies, proton carcinogenesis, the interaction of protons and gamma-rays on carcinogenesis, proton-induced acute mortality, and chemical protection against proton-induced acute mortality were studied in the rat and these proton-produced responses were compared to similar responses produced by gamma-rays or X-rays. Litter-mate mice were assigned to each experimental and control group so that approximately equal numbers of litter mates were placed in each group. Animals to be studied for mammary neoplasia were handled for 365 days post-exposure when all animals alive were killed. All animals were examined frequently for mammary tumors and as these were found, they were removed, sectioned and given a pathologic classification.

  19. A case-referent study on acute myeloid leukemia, background radiation and exposure to solvents and other agents.

    PubMed

    Flodin, U; Andersson, L; Anjou, C G; Palm, U B; Vikrot, O; Axelson, O

    1981-09-01

    The effect of potential risk factors for acute myeloid leukemia was evaluated in a case-referent study encompassing 42 cases and 244 referents, all deceased. Information on exposure was obtained with questionnaires mailed to the next of kin. Particularly the effect of background radiation was evaluated, as assessed with a gamma radiation index weighing the time spent outdoors and indoors and considering the building material (stone, wood, etc.) in the homes and the workplaces of the subjects. Especially between the ages of 20 and 49 a, to some extent also between 50 and 69 a but not above 70, there seemed to be an effect from background radiation and a trend suggesting an exposure-effect relationship. There was also about a sixfold increase in the rate ratio with regard to solvent exposure, which also seemed to modify the effect of background radiation. Other exposures were associated with relatively modest increases in the rate ratios and/or very small numbers of exposed individuals. It would be worthwhile to undertake further cancer epidemiologic studies of background radiation in which effective study designs are applied and a variety of potential confounders and modifiers of effect are identified and accounted for. PMID:20120581

  20. Solar Radiation Measurements Onboard the Research Aircraft HALO

    NASA Astrophysics Data System (ADS)

    Lohse, I.; Bohn, B.; Werner, F.; Ehrlich, A.; Wendisch, M.

    2014-12-01

    Airborne measurements of the separated upward and downward components of solar spectral actinic flux densities for the determination of photolysis frequencies and of upward nadir spectral radiance were performed with the HALO Solar Radiation (HALO-SR) instrument package onboard the High Altitude and Long Range Research Aircraft (HALO). The instrumentation of HALO-SR is characterized and first measurement data from the Next-generation Aircraft Remote-Sensing for Validation Studies (NARVAL) campaigns in 2013 and 2014 are presented. The measured data are analyzed in the context of the retrieved microphysical and optical properties of clouds which were observed underneath the aircraft. Detailed angular sensitivities of the two optical actinic flux receivers were determined in the laboratory. The effects of deviations from the ideal response are investigated using radiative transfer calculations of atmospheric radiance distributions under various atmospheric conditions and different ground albedos. Corresponding correction factors are derived. Example photolysis frequencies are presented, which were sampled in the free troposphere and lower stratosphere over the Atlantic Ocean during the 2013/14 HALO NARVAL campaigns. Dependencies of photolysis frequencies on cloud cover, flight altitude and wavelength range of the photolysis process are investigated. Calculated actinic flux densities in the presence of clouds benefit from the measured spectral radiances. Retrieved cloud optical thicknesses and effective droplet radii are used as model input for the radiative transfer calculations. By comparison with the concurrent measurements of actinic flux densities the retrieval approach is validated. Acknowledgements: Funding by the Deutsche Forschungsgemeinschaft within the priority program HALO (BO 1580/4-1, WE 1900/21-1) is gratefully acknowledged.

  1. Comparative Effectiveness Research: Alternatives to "Traditional" Computed Tomography Use in the Acute Care Setting.

    PubMed

    Moore, Christopher L; Broder, Joshua; Gunn, Martin L; Bhargavan-Chatfield, Mythreyi; Cody, Dianna; Cullison, Kevin; Daniels, Brock; Gans, Bradley; Kennedy Hall, M; Gaines, Barbara A; Goldman, Sarah; Heil, John; Liu, Rachel; Marin, Jennifer R; Melnick, Edward R; Novelline, Robert A; Pare, Joseph; Repplinger, Michael D; Taylor, Richard A; Sodickson, Aaron D

    2015-12-01

    Computed tomography (CT) scanning is an essential diagnostic tool and has revolutionized care of patients in the acute care setting. However, there is widespread agreement that overutilization of CT, where benefits do not exceed possible costs or harms, is occurring. The goal was to seek consensus in identifying and prioritizing research questions and themes that involve the comparative effectiveness of "traditional" CT use versus alternative diagnostic strategies in the acute care setting. A modified Delphi technique was used that included input from emergency physicians, emergency radiologists, medical physicists, and an industry expert to achieve this.

  2. The impact of microbial immune enteral nutrition on the patients with acute radiation enteritis in bowel function and immune status.

    PubMed

    Shao, Feng; Xin, Fu-Ze; Yang, Cheng-Gang; Yang, Dao-Gui; Mi, Yue-Tang; Yu, Jun-Xiu; Li, Guo-Yong

    2014-06-01

    The aim of the study was to investigate the effect of microbial immune enteral nutrition by microecopharmaceutics and deep sea fish oil and glutamine and Peptisorb on the patients with acute radiation enteritis in bowel function and immune status. From June 2010 to January 2013, 46 acute radiation enteritis patients in Liaocheng People's Hospital were randomized into the microbial immune enteral nutrition group and the control group: 24 patients in treatment group and 22 patients in control group. The immune microbial nutrition was given to the study group, but not to the control group. The concentration of serum albumin and prealbumin and the number of CD3 (+) T cell, CD4 (+) T cell, CD8 (+) T cell, CD4 (+)/CD8 (+) and natural killer cell of the two groups were detected on the 1, 7 and 14 days after treatment. The arm muscle circumference and triceps skinfold thickness (TSF) were recorded, and the tolerance of the two groups for enteral nutrition and intestinal symptoms was collected and then comparing the two indicators and get results. The tolerance of microbial immune enteral nutrition group about abdominal pain, bloating and diarrhea was better than the control group (P values were 0.018, 0.04 and 0.008 after 7 days; P values were 0.018, 0.015 and 0.002 after 14 days); and the cellular immune parameters were better than the control group((△) P = 0.008,([Symbol: see text]) P = 0.039, (☆) P = 0.032); No difference was found in nutrition indicators. To the patients with acute radiation enteritis, microbial immune enteral nutrition could improve the patient's immune status, and the tolerance of enteral nutrition could be better for the bowel function and the patients' rehabilitation.

  3. Errors and Uncertainties in Dose Reconstruction for Radiation Effects Research

    SciTech Connect

    Strom, Daniel J.

    2008-04-14

    Dose reconstruction for studies of the health effects of ionizing radiation have been carried out for many decades. Major studies have included Japanese bomb survivors, atomic veterans, downwinders of the Nevada Test Site and Hanford, underground uranium miners, and populations of nuclear workers. For such studies to be credible, significant effort must be put into applying the best science to reconstructing unbiased absorbed doses to tissues and organs as a function of time. In many cases, more and more sophisticated dose reconstruction methods have been developed as studies progressed. For the example of the Japanese bomb survivors, the dose surrogate “distance from the hypocenter” was replaced by slant range, and then by TD65 doses, DS86 doses, and more recently DS02 doses. Over the years, it has become increasingly clear that an equal level of effort must be expended on the quantitative assessment of uncertainty in such doses, and to reducing and managing uncertainty. In this context, this paper reviews difficulties in terminology, explores the nature of Berkson and classical uncertainties in dose reconstruction through examples, and proposes a path forward for Joint Coordinating Committee for Radiation Effects Research (JCCRER) Project 2.4 that requires a reasonably small level of effort for DOSES-2008.

  4. Preclinical acute toxicity, biodistribution, pharmacokinetics, radiation dosimetry and microPET imaging studies of [(18)F]fluorocholine in mice.

    PubMed

    Silveira, Marina B; Ferreira, Soraya M Z M D; Nascimento, Leonardo T C; Costa, Flávia M; Mendes, Bruno M; Ferreira, Andrea V; Malamut, Carlos; Silva, Juliana B; Mamede, Marcelo

    2016-10-01

    [(18)F]Fluorocholine ([(18)F]FCH) has been proven to be effective in prostate cancer. Since [(18)F]FCH is classified as a new radiopharmaceutical in Brazil, preclinical safety and efficacy data are required to support clinical trials and to obtain its approval. The aim of this work was to perform acute toxicity, biodistribution, pharmacokinetics, radiation dosimetry and microPET imaging studies of [(18)F]FCH. The results could support its use in nuclear medicine as an important piece of work for regulatory in Brazil.

  5. Preclinical acute toxicity, biodistribution, pharmacokinetics, radiation dosimetry and microPET imaging studies of [(18)F]fluorocholine in mice.

    PubMed

    Silveira, Marina B; Ferreira, Soraya M Z M D; Nascimento, Leonardo T C; Costa, Flávia M; Mendes, Bruno M; Ferreira, Andrea V; Malamut, Carlos; Silva, Juliana B; Mamede, Marcelo

    2016-10-01

    [(18)F]Fluorocholine ([(18)F]FCH) has been proven to be effective in prostate cancer. Since [(18)F]FCH is classified as a new radiopharmaceutical in Brazil, preclinical safety and efficacy data are required to support clinical trials and to obtain its approval. The aim of this work was to perform acute toxicity, biodistribution, pharmacokinetics, radiation dosimetry and microPET imaging studies of [(18)F]FCH. The results could support its use in nuclear medicine as an important piece of work for regulatory in Brazil. PMID:27509594

  6. Committee on Interagency Radiation Research and Policy Coordination (CIRRPC)

    SciTech Connect

    Not Available

    1994-05-10

    Enclosed are proceedings of the workshop on Internal Dosimetry held on Atlanta, Georgia in April 1992. The recommendations from the Workshop were considered by the CIRRPC Subpanel on Occupational Radiation Protection Research in identifying those areas to be undertaken by individual Federal Agencies or in cooperative efforts. This document presents summaries of the following sessions: A.1 Applications and limitations of ICRP and other metabolic models, A.2 Applications and implementation of proposed ICRP lung model, A.3 Estimates of intake from repetitive bioassay data, A.4 Chelation models for plutonium urinalysis data, B.1 Transuranium/uranium registry data, B.2 Autopsy tissue analysis, B.3 Bioassay / Whole body counting, B.4 Data base formatting and availability, C.1 An overview of calculational techniques in use today, C.2 The perfect code, C.3 Dose calculations based on individuals instead of averages, C.4 From macro dosimetry to micro dosimetry.

  7. Radiation chemistry in solvent extraction: FY2010 Research

    SciTech Connect

    Bruce J. Mincher; Leigh R. Martin; Stephen P. Mezyk

    2010-09-01

    This report summarizes work accomplished under the Fuel Cycle Research and Development (FCR&D) program in the area of radiation chemistry during FY 2010. The tasks assigned during FY 2010 included: • Development of techniques to measure free radical reaction kinetics in the organic phase. • Initiation of an alpha-radiolysis program • Initiation of an effort to understand dose rate effects in radiation chemistry • Continued work to characterize TALSPEAK radiation chemistry Progress made on each of these tasks is reported here. Briefly, a method was developed and used to measure the kinetics of the reactions of the •NO3 radical with solvent extraction ligands in organic solution, and the method to measure •OH radical reactions under the same conditions has been designed. Rate constants for the CMPO and DMDOHEMA reaction with •NO3 radical in organic solution are reported. Alpha-radiolysis was initiated on samples of DMDOHEMA in alkane solution using He ion beam irradiation and 211At isotope irradiation. The samples are currently being analyzed for comparison to DMDOHEMA ?-irradiations using a custom-developed mass spectrometric method. Results are also reported for the radiolytic generation of nitrous acid, in ?-irradiated nitric acid. It is shown that the yield of nitrous acid is unaffected by an order-of-magnitude change in dose rate. Finally, recent results for TALSPEAK radiolysis are reported, summarizing the effects on solvent extraction efficiency due to HDEHP irradiation, and the stable products of lactic acid and DTPA irradiation. In addition, results representing increased scope are presented for the radiation chemistry program. These include an investigation of the effect of metal complexation on radical reaction kinetics using DTPA as an example, and the production of a manuscript reporting the mechanism of Cs-7SB radiolysis. The Cs-7SB work takes advantage of recent results from a current LDRD program to understand the fundamental chemistry

  8. Boron neutron capture therapy and radiation synovectomy research at the Massachusetts Institute of Technology Research Reactor

    SciTech Connect

    Zamenhof, R.G.; Nwanguma, C.I.; Wazer, D.E.; Saris, S.; Madoc-Jones, H. ); Sledge, C.B.; Shortkroff, S. )

    1992-04-01

    In this paper, current research in boron neutron capture therapy (BNCT) and radiation synovectomy at the Massachusetts Institute of Technology Research Reactor is reviewed. In the last few years, major emphasis has been placed on the development of BNCT primarily for treatment of brain tumors. This has required a concerted effort in epithermal beam design and construction as well as the development of analytical capabilities for {sup 10}B analysis and patient treatment planning. Prompt gamma analysis and high-resolution track-etch autoradiography have been developed to meet the needs, respectively, for accurate bulk analysis and for quantitative imaging of {sup 10}B in tissue at subcellular resolutions. Monte Carlo-based treatment planning codes have been developed to ensure optimized and individualized patient treatments. In addition, the development of radiation synovectomy as an alternative therapy to surgical intervention is joints that are affected by rheumatoid arthritis is described.

  9. Ethical problems in conducting research in acute epidemics: the Pfizer meningitis study in Nigeria as an illustration.

    PubMed

    Ezeome, Emmanuel R; Simon, Christian

    2010-04-01

    The ethics of conducting research in epidemic situations have yet to account fully for differences in the proportion and acuteness of epidemics, among other factors. While epidemics most often arise from infectious diseases, not all infectious diseases are of epidemic proportions, and not all epidemics occur acutely. These and other variations constrain the generalization of ethical decision-making and impose ethical demands on the individual researcher in a way not previously highlighted. This paper discusses a number of such constraints and impositions. It applies the ethical principles enunciated by Emmanuel et al.(1) to the controversial Pfizer study in Nigeria in order to highlight the particular ethical concerns of acute epidemic research, and suggest ways of meeting such challenges. The paper recommends that research during epidemics should be partly evaluated on its own merits in order to determine its ethical appropriateness to the specific situation. Snap decisions to conduct research during acute epidemics should be resisted. Community engagement, public notification and good information management are needed to promote the ethics of conducting research during acute epidemics. Individual consent is most at risk of being compromised, and every effort should be made to ensure that it is maintained and valid. Use of data safety management boards should be routine. Acute epidemics also present opportunities to enhance the social value of research and maximize its benefits to communities. Ethical research is possible in acute epidemics, if the potential challenges are thought of ahead of time and appropriate precautions taken.

  10. Diffuse Optical Spectroscopy for the Quantitative Assessment of Acute Ionizing Radiation Induced Skin Toxicity Using a Mouse Model

    PubMed Central

    Chin, Lee; Korpela, Elina; Kim, Anthony; Yohan, Darren; Niu, Carolyn; Wilson, Brian C.; Liu, Stanley K.

    2016-01-01

    Acute skin toxicities from ionizing radiation (IR) are a common side effect from therapeutic courses of external beam radiation therapy (RT) and negatively impact patient quality of life and long term survival. Advances in the understanding of the biological pathways associated with normal tissue toxicities have allowed for the development of interventional drugs, however, current response studies are limited by a lack of quantitative metrics for assessing the severity of skin reactions. Here we present a diffuse optical spectroscopic (DOS) approach that provides quantitative optical biomarkers of skin response to radiation. We describe the instrumentation design of the DOS system as well as the inversion algorithm for extracting the optical parameters. Finally, to demonstrate clinical utility, we present representative data from a pre-clinical mouse model of radiation induced erythema and compare the results with a commonly employed visual scoring. The described DOS method offers an objective, high through-put evaluation of skin toxicity via functional response that is translatable to the clinical setting. PMID:27284926

  11. Acute effects of radiation therapy on indium-111-labeled leukocyte uptake in bone marrow

    SciTech Connect

    Palestro, C.J.; Kim, C.K.; Vega, A.; Goldsmith, S.J. )

    1989-11-01

    We recently performed ({sup 99m}Tc)MDP bone and {sup 111}In-labeled leukocyte scintigraphy on a patient receiving radiation therapy to the lower cervical and upper thoracic spine. While the bone images revealed only minimally increased activity in the radiation port, leukocyte images revealed diffuse, intensely increased uptake in this same region. Radiation therapy should be included in the differential diagnosis of increased bone marrow activity on {sup 111}In leukocyte images.

  12. Prophylactic Treatment with Adlay Bran Extract Reduces the Risk of Severe Acute Radiation Dermatitis: A Prospective, Randomized, Double-Blind Study

    PubMed Central

    Huang, Chih-Jen; Hou, Ming-Feng; Kan, Jung-Yu; Juan, Chiung-Hui; Yuan, Shyng-Shiou F.; Luo, Kuei-Hau; Chuang, Hung-Yi; Hu, Stephen Chu-Sung

    2015-01-01

    Acute radiation dermatitis is a frequent adverse effect in patients with breast cancer undergoing radiotherapy, but there are only a small number of studies providing evidence-based interventions for this clinical condition. Adlay is a cereal crop that has been previously shown to have anti-inflammatory and antioxidant properties. In this study, we seek to evaluate the effectiveness of oral prophylactic treatment with adlay bran extract in reducing the risk of severe acute radiation dermatitis. A total of 110 patients with breast cancer undergoing radiotherapy were analyzed. Using a prospective, randomized, double-blind design, 73 patients received oral treatment with adlay bran extract and 37 patients received olive oil (placebo). Treatment was started at the beginning of radiation therapy and continued until the termination of radiation treatment. Our results showed that the occurrence of severe acute radiation dermatitis (RTOG grade 2 or higher) was significantly lower in patients treated with oral adlay bran extract compared to placebo (45.2% versus 75.7%, adjusted odds ratio 0.24). No serious adverse effects from adlay bran treatment were noted. In conclusion, prophylactic oral treatment with adlay bran extract reduces the risk of severe acute radiation dermatitis and may have potential use in patients with breast cancer undergoing radiotherapy. PMID:26495009

  13. Acceleration of atherogenesis in ApoE-/- mice exposed to acute or low-dose-rate ionizing radiation.

    PubMed

    Mancuso, Mariateresa; Pasquali, Emanuela; Braga-Tanaka, Ignacia; Tanaka, Satoshi; Pannicelli, Alessandro; Giardullo, Paola; Pazzaglia, Simonetta; Tapio, Soile; Atkinson, Michael J; Saran, Anna

    2015-10-13

    There is epidemiological evidence for increased non-cancer mortality, primarily due to circulatory diseases after radiation exposure above 0.5 Sv. We evaluated the effects of chronic low-dose rate versus acute exposures in a murine model of spontaneous atherogenesis. Female ApoE-/- mice (60 days) were chronically irradiated for 300 days with gamma rays at two different dose rates (1 mGy/day; 20 mGy/day), with total accumulated doses of 0.3 or 6 Gy. For comparison, age-matched ApoE-/- females were acutely exposed to the same doses and sacrificed 300 days post-irradiation. Mice acutely exposed to 0.3 or 6 Gy showed increased atherogenesis compared to age-matched controls, and this effect was persistent. When the same doses were delivered at low dose rate over 300 days, we again observed a significant impact on global development of atherosclerosis, although at 0.3 Gy effects were limited to the descending thoracic aorta. Our data suggest that a moderate dose of 0.3 Gy can have persistent detrimental effects on the cardiovascular system, and that a high dose of 6 Gy poses high risks at both high and low dose rates. Our results were clearly nonlinear with dose, suggesting that lower doses may be more damaging than predicted by a linear dose response. PMID:26359350

  14. Acceleration of atherogenesis in ApoE−/− mice exposed to acute or low-dose-rate ionizing radiation

    PubMed Central

    Mancuso, Mariateresa; Pasquali, Emanuela; Braga-Tanaka, Ignacia; Tanaka, Satoshi; Pannicelli, Alessandro; Giardullo, Paola; Pazzaglia, Simonetta; Tapio, Soile; Atkinson, Michael J.; Saran, Anna

    2015-01-01

    There is epidemiological evidence for increased non-cancer mortality, primarily due to circulatory diseases after radiation exposure above 0.5 Sv. We evaluated the effects of chronic low-dose rate versus acute exposures in a murine model of spontaneous atherogenesis. Female ApoE−/− mice (60 days) were chronically irradiated for 300 days with gamma rays at two different dose rates (1 mGy/day; 20 mGy/day), with total accumulated doses of 0.3 or 6 Gy. For comparison, age-matched ApoE−/− females were acutely exposed to the same doses and sacrificed 300 days post-irradiation. Mice acutely exposed to 0.3 or 6 Gy showed increased atherogenesis compared to age-matched controls, and this effect was persistent. When the same doses were delivered at low dose rate over 300 days, we again observed a significant impact on global development of atherosclerosis, although at 0.3 Gy effects were limited to the descending thoracic aorta. Our data suggest that a moderate dose of 0.3 Gy can have persistent detrimental effects on the cardiovascular system, and that a high dose of 6 Gy poses high risks at both high and low dose rates. Our results were clearly nonlinear with dose, suggesting that lower doses may be more damaging than predicted by a linear dose response. PMID:26359350

  15. Vascular Access Port Implantation and Serial Blood Sampling in a Gottingen Minipig (Sus scrofa domestica) Model of Acute Radiation Injury

    PubMed Central

    Moroni, Maria; Coolbaugh, Thea V; Mitchell, Jennifer M; Lombardini, Eric; Moccia, Krinon D; Shelton, Larry J; Nagy, Vitaly; Whitnall, Mark H

    2011-01-01

    Threats of nuclear and other radiologic exposures have been increasing, but no countermeasure for acute radiation syndrome has been approved by regulatory authorities. Because of their similarity to humans in regard to physiology and anatomy, we are characterizing Gottingen minipigs as a model to aid the development of radiation countermeasures. Irradiated minipigs exhibit immunosuppression, severe thrombocytopenia, vascular leakage, and acute inflammation. These complications render serial acquisition of blood samples problematic. Vascular access ports (VAP) facilitate serial sampling, but their use often is complicated by infections and fibrin deposition. We demonstrate here the successful use of VAP for multiple blood samplings in irradiated minipigs. Device design and limited postoperative prophylactic antimicrobial therapy before irradiation were key to obtaining serial sampling, reducing swelling, and eliminating infection and skin necrosis at the implantation site. Modifications of previous protocols included the use of polydioxanone sutures instead of silk; eliminating chronic port access; single-use, sterile, antireflux prefilled syringes for flushing; strict aseptic weekly maintenance of the device, and acclimating animals to reduce stress. VAP remained functional in 19 of 20 irradiated animals for as long as 3 mo. The remaining VAP failed due to a small leak in the catheter, leading to clot formation. VAP-related sepsis occurred in 2 minipigs. Blood sampling did not cause detectable stress in nonanesthetized sham-irradiated animals, according to leukograms and clinical signs. PMID:21333166

  16. Comparative proteomic profiling and possible toxicological mechanism of acute injury induced by carbon ion radiation in pubertal mice testes

    NASA Astrophysics Data System (ADS)

    Zhang, Hong

    2016-07-01

    We investigated potential mechanisms of acute injury in pubertal mice testes after exposure to carbon ion radiation (CIR). Serum testosterone was measured following whole-body irradiation with a 2Gy carbon ion beam. Comparative proteomic profiling and Western blotting were applied to identify potential biomarkers and measure protein expression, and terminal dUTP nick end-labeling (TUNEL) was performed to detect apoptotic cells. Immunohistochemistry and immunofluorescence were used to investigate protein localization. Serum testosterone was lowest at 24h after CIR, and 10 differentially expressed proteins were identified at this time point that included eIF4E, an important regulator of initiation that combines with mTOR and 4EBP1 to control protein synthesis via the mTOR signalling pathway during proliferation and apoptosis. Protein expression and localization studies confirmed their association with acute injury following exposure to CIR. These three proteins may be useful molecular markers for detecting abnormal spermatogenesis following exposure to environmental and cosmic radiation

  17. Research on fast rise time EMP radiating-wave simulator

    NASA Astrophysics Data System (ADS)

    Fan, Lisi; Liu, Haitao; Wang, Yun

    2013-03-01

    This paper presents an antenna of High altitude electromagnetic pulse (HEMP) radiating-wave simulator which expands the testing zone larger than the traditional transmission line simulator. The numerical results show that traverse electramagnetic (TEM) antenna can be used to radiate HEMP simulation radiating wave, but in low frequency band the emissive capability is poor. The experiment proves the numerical model is valid. The results of this paper show that TEM antenna can be used to HEMP radiating-wave simulator, and can prove the low frequency radiation capability through resistance loaded method.

  18. Treatment of acute pancreatitis with mexidol and low-intensity laser radiation

    NASA Astrophysics Data System (ADS)

    Parzyan, G. R.; Geinits, A. V.

    2001-04-01

    This article presents the results of treatment of 54 patients with acute pancreatitis. The patients were divided into two groups according to the method of treatment. The control group (26 patients) received a conventional therapy, whereas the experimental group (28 patients) received mexidol in combination with the intravenous laser irradiation of blood. Clinical and laboratory tests confirmed a high efficiency of the combined therapy based on the administration of mexidol antioxidant and low-intensity (lambda) equals 0.63 micrometers diode laser irradiation of blood. This therapeutic technique produced an influence on the basic pathogenetic mechanisms of acute pancreatitis. The application of this method of treatment improved the course and prognosis of acute pancreatitis.

  19. Acute adverse effects of radiation therapy on HIV-positive patients in Japan: study of 31 cases at Tokyo Metropolitan Komagome Hospital.

    PubMed

    Kaminuma, Takuya; Karasawa, Katsuyuki; Hanyu, Nahoko; Chang, Ta-Chen; Kuga, Gencho; Okano, Naoko; Kubo, Nobuteru; Okuma, Yusuke; Nagata, Yasunobu; Maeda, Yoshiharu; Ajisawa, Atsushi

    2010-01-01

    Recently, the number of human immunodeficiency virus (HIV) -positive patients has increased in Japan. HIV-positive patients are at a higher risk of cancer than the general population. This paper retrospectively reports the acute adverse effects of radiation therapy on HIV-positive patients who were treated at Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital (TMCICK). Thirty-one cases involving 24 HIV-positive cancer patients who were treated at TMCICK from January 1997 to March 2009 were included in this study. All acute adverse effects of radiation therapy were examined during, and one month after, the last radiation therapy session. Acute adverse effects were classified according to the site of radiation therapy treatment and analyzed using the Common Terminology Criteria for Adverse Events (CTCAE) version 3.0. Grade 3 acute adverse effects were seen in 17% of cases, and Grade 2 toxicities were found in 23% of patients. Damage to the skin and mucosa, including stomatitis or diarrhea, tended to occur after low-dose radiation therapy; however, no severe acute adverse effects were seen in other organs, such as the brain, lung, and bone. Acute adverse effects tended to occur earlier in HIV-positive patients and became severe more frequently than in the general population. In particular, disorders of the mucosa, such as those of the oral cavity, pharynx, and intestine, tended to occur rapidly. It was shown that radiation therapy is safe when treatment is performed carefully and that it is a very useful treatment for cancer in HIV-positive patients.

  20. Acute Hematological Effects in Mice Exposed to the Expected Doses, Dose-rates, and Energies of Solar Particle Event-like Proton Radiation

    PubMed Central

    Sanzari, Jenine K.; Cengel, Keith A.; Wan, X. Steven; Rusek, Adam; Kennedy, Ann R.

    2014-01-01

    NASA has funded several projects that have provided evidence for the radiation risk in space. One radiation concern arises from solar particle event (SPE) radiation, which is composed of energetic electrons, protons, alpha particles and heavier particles. SPEs are unpredictable and the accompanying SPE radiation can place astronauts at risk of blood cell death, contributing to a weakened immune system and increased susceptibility to infection. The doses, dose rates, and energies of the proton radiation expected to occur during a SPE have been simulated at the NASA Space Radiation Laboratory, Brookhaven National Laboratory, delivering total body doses to mice. Hematological values were evaluated at acute time points, up to 24 hrs. post-radiation exposure. PMID:25202654

  1. Combined exposure to simulated microgravity and acute or chronic radiation reduces neuronal network integrity and cell survival

    NASA Astrophysics Data System (ADS)

    Benotmane, Rafi

    During orbital or interplanetary space flights, astronauts are exposed to cosmic radiations and microgravity. This study aimed at assessing the effect of these combined conditions on neuronal network density, cell morphology and survival, using well-connected mouse cortical neuron cultures. To this end, neurons were exposed to acute low and high doses of low LET (X-rays) radiation or to chronic low dose-rate of high LET neutron irradiation (Californium-252), under the simulated microgravity generated by the Random Positioning Machine (RPM, Dutch space). High content image analysis of cortical neurons positive for the neuronal marker βIII-tubulin unveiled a reduced neuronal network integrity and connectivity, and an altered cell morphology after exposure to acute/chronic radiation or to simulated microgravity. Additionally, in both conditions, a defect in DNA-repair efficiency was revealed by an increased number of γH2AX-positive foci, as well as an increased number of Annexin V-positive apoptotic neurons. Of interest, when combining both simulated space conditions, we noted a synergistic effect on neuronal network density, neuronal morphology, cell survival and DNA repair. Furthermore, these observations are in agreement with preliminary gene expression data, revealing modulations in cytoskeletal and apoptosis-related genes after exposure to simulated microgravity. In conclusion, the observed in vitro changes in neuronal network integrity and cell survival induced by space simulated conditions provide us with mechanistic understanding to evaluate health risks and the development of countermeasures to prevent neurological disorders in astronauts over long-term space travels. Acknowledgements: This work is supported partly by the EU-FP7 projects CEREBRAD (n° 295552)

  2. [Research on clouds affecting the spectra of solar ultraviolet radiation].

    PubMed

    Zhao, Xiao-Yan; Yan, Hai-Tao; Zhen, Zhi-Qiang; Tang, Zheng-Xin; Wang, Hui

    2011-01-01

    In the present paper, using UV CCD optical multi-channel analyzer, the solar ultraviolet radiation spectra under the conditions of cloud cover were measured, and the impact of clouds on the solar ultraviolet radiation spectra were studied mostly. The results of spectral analysis showed that the intensity of solar ultraviolet radiation spectra was weakened by the clouds. The solar ultraviolet radiation spectral intensity attenuation depended on the wavelength and decreased with decreasing wavelength. The greater the cloud cover, the stronger the attenuation, The solar ultraviolet radiation spectral intensity at wavelengths below 315 nm was affected relatively less by the cloud cover. These results have more important practical applications. When we use solar ultraviolet radiation spectrum to study the atmospheric composition, we should choose the spectral band that is less affected by the atmospheric environment.

  3. Comprehensive Evaluation of Personal, Clinical, and Radiation Dosimetric Parameters for Acute Skin Reaction during Whole Breast Radiotherapy

    PubMed Central

    Yang, Dae Sik; Lee, Jung Ae; Lee, Nam Kwon; Park, Young Je; Lee, Suk; Kim, Chul Yong; Son, Gil Soo

    2016-01-01

    Skin reaction is major problem during whole breast radiotherapy. To identify factors related to skin reactions during whole breast radiotherapy, various personal, clinical, and radiation dosimetric parameters were evaluated. From January 2012 to December 2013, a total of 125 patients who underwent breast conserving surgery and adjuvant whole breast irradiation were retrospectively reviewed. All patients had both whole breast irradiation and boost to the tumour bed. Skin reaction was measured on the first day of boost therapy based on photography of the radiation field and medical records. For each area of axilla and inferior fold, the intensity score of erythema (score 1 to 5) and extent (score 0 to 1) were summed. The relationship of various parameters to skin reaction was evaluated using chi-square and linear regression tests. The V100 (volume receiving 100% of prescribed radiation dose, p < 0.001, both axilla and inferior fold) and age (p = 0.039 for axilla and 0.026 for inferior fold) were significant parameters in multivariate analyses. The calculated axilla dose (p = 0.003) and breast separation (p = 0.036) were also risk factors for axilla and inferior fold, respectively. Young age and large V100 are significant factors for acute skin reaction that can be simply and cost-effectively measured. PMID:27579310

  4. Comprehensive Evaluation of Personal, Clinical, and Radiation Dosimetric Parameters for Acute Skin Reaction during Whole Breast Radiotherapy.

    PubMed

    Yang, Dae Sik; Lee, Jung Ae; Yoon, Won Sup; Lee, Nam Kwon; Park, Young Je; Lee, Suk; Kim, Chul Yong; Son, Gil Soo

    2016-01-01

    Skin reaction is major problem during whole breast radiotherapy. To identify factors related to skin reactions during whole breast radiotherapy, various personal, clinical, and radiation dosimetric parameters were evaluated. From January 2012 to December 2013, a total of 125 patients who underwent breast conserving surgery and adjuvant whole breast irradiation were retrospectively reviewed. All patients had both whole breast irradiation and boost to the tumour bed. Skin reaction was measured on the first day of boost therapy based on photography of the radiation field and medical records. For each area of axilla and inferior fold, the intensity score of erythema (score 1 to 5) and extent (score 0 to 1) were summed. The relationship of various parameters to skin reaction was evaluated using chi-square and linear regression tests. The V 100 (volume receiving 100% of prescribed radiation dose, p < 0.001, both axilla and inferior fold) and age (p = 0.039 for axilla and 0.026 for inferior fold) were significant parameters in multivariate analyses. The calculated axilla dose (p = 0.003) and breast separation (p = 0.036) were also risk factors for axilla and inferior fold, respectively. Young age and large V 100 are significant factors for acute skin reaction that can be simply and cost-effectively measured. PMID:27579310

  5. Committee on Interagency Radiation Research and Policy Coordination 10th anniversary report

    SciTech Connect

    Not Available

    1994-06-01

    Ten years ago, on April 9, 1984, the Science Advisor to the President, and Director of the Office of Science and Technology Policy, established the Committee on Interagency Radiation Research and Policy Coordination (CIRRPC) to meet the need for an interagency committee to address Congressionally mandated and agency-identified issues related to radiation research and policy. CIRRPC replaced the Committee on Interagency Radiation Policy, a committee of the Federal Coordinating Council for Science, Engineering and Technology, and assumed the responsibilities of the Interagency Radiation Research Committee and the Radiation Policy Council, whose charters had expired. Since then, CIRRPC has been recognized as an effective and respected mechanism for coordinating radiation policy among Federal agencies and as an efficient coordinator and evaluator of Federal efforts on designated radiation research projects. In the last 10 years, CIRRPC has established various Policy and Science Subpanels to undertake the oftentimes difficult task of resolving and coordinating agency policies and responses to issues dealing with radiation. These subpanels addressed such issues as the metrication of radiation units, the policy impact of the radioepidemiological tables, naturally occurring and accelerator-produced radioactive materials, radon protection and health effects, predisaster planning for human health effects research, and ionizing radiation risk assessment. These subpanels and their work represent CIRRPC`s continuing effort to seek a common position on issues of national significance and interest.

  6. Solar terrestrial radiation data from the Sleepers River Research Watershed

    NASA Astrophysics Data System (ADS)

    Hardy, Janet P.

    1994-08-01

    A long-term (24-year) database of solar and terrestrial radiation, as monitored in northern Vermont, has been compiled. This extensive database is a result of cooperative efforts among many different government agencies. This report summarizes the present status of the solar and terrestrial radiation database, the instrumentation and calibration, and methods of data measurement, acquisition and analysis.

  7. The effect of acute dose charge particle radiation on expression of DNA repair genes in mice.

    PubMed

    Tariq, Muhammad Akram; Soedipe, Ayodotun; Ramesh, Govindarajan; Wu, Honglu; Zhang, Ye; Shishodia, Shishir; Gridley, Daila S; Pourmand, Nader; Jejelowo, Olufisayo

    2011-03-01

    The space radiation environment consists of trapped particle radiation, solar particle radiation, and galactic cosmic radiation (GCR), in which protons are the most abundant particle type. During missions to the moon or to Mars, the constant exposure to GCR and occasional exposure to particles emitted from solar particle events (SPE) are major health concerns for astronauts. Therefore, in order to determine health risks during space missions, an understanding of cellular responses to proton exposure is of primary importance. The expression of DNA repair genes in response to ionizing radiation (X-rays and gamma rays) has been studied, but data on DNA repair in response to protons is lacking. Using qPCR analysis, we investigated changes in gene expression induced by positively charged particles (protons) in four categories (0, 0.1, 1.0, and 2.0 Gy) in nine different DNA repair genes isolated from the testes of irradiated mice. DNA repair genes were selected on the basis of their known functions. These genes include ERCC1 (5' incision subunit, DNA strand break repair), ERCC2/NER (opening DNA around the damage, Nucleotide Excision Repair), XRCC1 (5' incision subunit, DNA strand break repair), XRCC3 (DNA break and cross-link repair), XPA (binds damaged DNA in preincision complex), XPC (damage recognition), ATA or ATM (activates checkpoint signaling upon double strand breaks), MLH1 (post-replicative DNA mismatch repair), and PARP1 (base excision repair). Our results demonstrate that ERCC1, PARP1, and XPA genes showed no change at 0.1 Gy radiation, up-regulation at 1.0 Gy radiation (1.09 fold, 7.32 fold, 0.75 fold, respectively), and a remarkable increase in gene expression at 2.0 Gy radiation (4.83 fold, 57.58 fold and 87.58 fold, respectively). Expression of other genes, including ATM and XRCC3, was unchanged at 0.1 and 1.0 Gy radiation but showed up-regulation at 2.0 Gy radiation (2.64 fold and 2.86 fold, respectively). We were unable to detect gene expression for the

  8. Survivors and scientists: Hiroshima, Fukushima, and the Radiation Effects Research Foundation, 1975-2014.

    PubMed

    Lindee, Susan

    2016-04-01

    In this article, I reflect on the Radiation Effects Research Foundation and its ongoing studies of long-term radiation risk. Originally called the Atomic Bomb Casualty Commission (1947-1975), the Radiation Effects Research Foundation has carried out epidemiological research tracking the biomedical effects of radiation at Hiroshima and Nagasaki for almost 70 years. Radiation Effects Research Foundation scientists also played a key role in the assessment of populations exposed at Chernobyl and are now embarking on studies of workers at the Fukushima Daiichi Nuclear Power Plant. I examine the role of estimating dosimetry in post-disaster epidemiology, highlight how national identity and citizenship have mattered in radiation risk networks, and track how participants interpreted the relationships between nuclear weapons and nuclear energy. Industrial interests in Japan and the United States sought to draw a sharp line between the risks of nuclear war and the risks of nuclear power, but the work of the Radiation Effects Research Foundation (which became the basis of worker protection standards for the industry) and the activism of atomic bomb survivors have drawn these two nuclear domains together. This is so particularly in the wake of the Fukushima disaster, Japan's 'third atomic bombing'. The Radiation Effects Research Foundation is therefore a critical node in a complex global network of scientific institutions that adjudicate radiation risk and proclaim when it is present and when absent. Its history, I suggest, can illuminate some properties of modern disasters and the many sciences that engage with them.

  9. Survivors and scientists: Hiroshima, Fukushima, and the Radiation Effects Research Foundation, 1975-2014.

    PubMed

    Lindee, Susan

    2016-04-01

    In this article, I reflect on the Radiation Effects Research Foundation and its ongoing studies of long-term radiation risk. Originally called the Atomic Bomb Casualty Commission (1947-1975), the Radiation Effects Research Foundation has carried out epidemiological research tracking the biomedical effects of radiation at Hiroshima and Nagasaki for almost 70 years. Radiation Effects Research Foundation scientists also played a key role in the assessment of populations exposed at Chernobyl and are now embarking on studies of workers at the Fukushima Daiichi Nuclear Power Plant. I examine the role of estimating dosimetry in post-disaster epidemiology, highlight how national identity and citizenship have mattered in radiation risk networks, and track how participants interpreted the relationships between nuclear weapons and nuclear energy. Industrial interests in Japan and the United States sought to draw a sharp line between the risks of nuclear war and the risks of nuclear power, but the work of the Radiation Effects Research Foundation (which became the basis of worker protection standards for the industry) and the activism of atomic bomb survivors have drawn these two nuclear domains together. This is so particularly in the wake of the Fukushima disaster, Japan's 'third atomic bombing'. The Radiation Effects Research Foundation is therefore a critical node in a complex global network of scientific institutions that adjudicate radiation risk and proclaim when it is present and when absent. Its history, I suggest, can illuminate some properties of modern disasters and the many sciences that engage with them. PMID:27263236

  10. Electron paramagnetic resonance spectroscopy in radiation research: Current status and perspectives

    PubMed Central

    Rana, Sudha; Chawla, Raman; Kumar, Raj; Singh, Shefali; Zheleva, Antoaneta; Dimitrova, Yanka; Gadjeva, Veselina; Arora, Rajesh; Sultana, Sarwat; Sharma, Rakesh Kumar

    2010-01-01

    Exposure to radiation leads to a number of health-related malfunctions. Ionizing radiation is more harmful than non-ionizing radiation, as it causes both direct and indirect effects. Irradiation with ionizing radiation results in free radical-induced oxidative stress. Free radical-mediated oxidative stress has been implicated in a plethora of diseased states, including cancer, arthritis, aging, Parkinson's disease, and so on. Electron Paramagnetic Resonance (EPR) spectroscopy has various applications to measure free radicals, in radiation research. Free radicals disintegrate immediately in aqueous environment. Free radicals can be detected indirectly by the EPR spin trapping technique in which these forms stabilize the radical adduct and produce characteristic EPR spectra for specific radicals. Ionizing radiation-induced free radicals in calcified tissues, for example, teeth, bone, and fingernail, can be detected directly by EPR spectroscopy, due to their extended stability. Various applications of EPR in radiation research studies are discussed in this review. PMID:21814437

  11. [Research Progress on the Role of Chromatin Remodeling Factor BRG1 in Acute Myeloid Leukemia].

    PubMed

    Gao, Shuo; Xu, Xue-Jing; Zhang, Kui

    2016-06-01

    BRG1 (Brahma-related gene 1, BRG1) is the ATPase subunit of SWI/SNF chromatin remodeling complexes, which plays an important role in cell cycle regulation, DNA repair and tumor development. Unlike the evidence as tumor suppressor genes in the past reports, latest researches show that BRG1 plays an important role in sustaining the growth of leukemia cells in acute myeloid leukemia, and these effects on normal hematopoietic stem cells are dispensable. Further studies of the role and mechanism of BRG1 in acute myeloid leukemia will contribute to the development of a new and promising targeted therapy strategy. This article reviews the role of BRG1 on leukemia cells and leukemia stem cells in AML and discusses the related mechanism, which providing some reference for the targeted treatment strategy of AML. PMID:27342536

  12. Emetic mechanism in acute radiation sickness. Technical report, 1 December 1982-30 November 1986

    SciTech Connect

    Borison, H.L.

    1987-08-20

    A dose-response relationship was established in normal cats for the evocation of vomiting within 24 h after whole-body exposure to /sup 60/Co radiation with doses ranging from 7.5 to 60 Gy delivered at 1.0 Gy/min. Vomiting was recorded oscillographically. Radiation-induced vomiting was elicited unabatedly at the optimal dose of 45 Gy in chronically postremectomized cats. Radioemetic susceptibility was evaluated in normal cats after each of two doses of radiation, from 7.5 to 60 Gy, given on successive days. Occurrence of radioemetic protection against the second irradiation was manifested in direct relation to the magnitude of the first exposure, and complete protection for 24 h resulted after second radiation exposure at the highest dose level. Postremectomized cats were also fully protected against the radioemetic effect of a second exposure at 45 Gy. All normal cats vomited in response to an emetic drug injection during the state of radioemetic refractoriness after the second irradiation at 45 Gy. A neural origin of emetic signal generated by first radiation exposure was examined in postrema-intact cats.

  13. Genetic predictors of acute toxicities related to radiation therapy following lumpectomy for breast cancer: a case-series study

    PubMed Central

    Ambrosone, Christine B; Tian, Chunqiao; Ahn, Jiyoung; Kropp, Silke; Helmbold, Irmgard; von Fournier, Dietrich; Haase, Wulf; Sautter-Bihl, Marie Luise; Wenz, Frederik; Chang-Claude, Jenny

    2006-01-01

    Introduction The cytotoxic effects of radiation therapy are mediated primarily through increased formation of hydroxyl radicals and reactive oxygen species, which can damage cells, proteins and DNA; the glutathione S-transferases (GSTs) function to protect against oxidative stress. We hypothesized that polymorphisms encoding reduced or absent activity in the GSTs might result in greater risk for radiation-associated toxicity. Methods Women receiving therapy in radiation units in Germany following lumpectomy for breast cancer (1998–2001) provided a blood sample and completed an epidemiological questionnaire (n = 446). Genotypes were determined using Sequonom MALDI-TOF (GSTA1, GSTP1) and Masscode (GSTM1, GSTT1). Biologically effective radiotherapy dose (BED) was calculated, accounting for differences in fractionation and overall treatment time. Side effects considered were grade 2c and above, as classified using the modified Common Toxicity Criteria. Predictors of toxicity were modelled using Cox regression models in relation to BED, with adjustment for treating clinic, photon field, beam energy and boost method, and potential confounding variables. Results Low activity GSTP1 genotypes were associated with a greater than twofold increase in risk for acute skin toxicities (adjusted hazard ratio 2.28, 95% confidence interval 1.04–4.99). No associations were noted for the other GST genotypes. Conclusion These data indicate that GSTP1 plays an important role in protecting normal cells from damage associated with radiation therapy. Studies examining the effects of GSTP1 polymorphisms on toxicity, recurrence and survival will further inform individualized therapeutics based on genotypes. PMID:16848913

  14. Symptomatology of acute radiation effects in humans after exposure to doses of 0. 5-30 Gy

    SciTech Connect

    Anno, G.H.; Baum, S.J.; Withers, H.R.; Young, R.W. )

    1989-06-01

    This article distills from available data descriptions of typical human symptoms in reaction to prompt total-body ionizing radiation in the dose range 0.5 to 30 Gy midline body tissue. The symptoms are correlated with dose and time over the acute postexposure period of 6 wk. The purpose is to provide a symptomatology basis for assessing early functional impairment of individuals who may be involved in civil defense, emergency medical care and various military activities in the event of a nuclear attack. The dose range is divided into eight subranges associated with important pathophysiological events. For each subrange, signs and symptoms are designated including estimates of symptom onset, severity, duration and incidence.

  15. Mitigation of the Hematopoietic and Gastrointestinal Acute Radiation Syndrome by Octadecenyl Thiophosphate, a Small Molecule Mimic of Lysophosphatidic Acid

    PubMed Central

    Deng, Wenlin; Kimura, Yasuhiro; Gududuru, Veeresh; Wu, Wenjie; Balogh, Andrea; Szabo, Erzsebet; Thompson, Karin Emmons; Yates, C. Ryan; Balazs, Louisa; Johnson, Leonard R.; Miller, Duane D.; Strobos, Jur; McCool, W. Shannon; Tigyi, Gabor J.

    2015-01-01

    We have previously demonstrated that the small molecule octadecenyl thiophosphate (OTP), a synthetic mimic of the growth factor-like mediator lysophosphatidic acid (LPA), showed radioprotective activity in a mouse model of total-body irradiation (TBI) when given orally or intraperitoneally 30 min before exposure to 9 Gy γ radiation. In the current study, we evaluated the effects of OTP, delivered subcutaneously, for radioprotection or radiomitigation from −24 h before to up to +72 h postirradiation using a mouse TBI model with therapeutic doses at around 1 mg/kg. OTP was injected at 10 mg/kg without observable toxic side effects in mice, providing a comfortable safety margin. Treatment of C57BL/6 mice with a single dose of OTP over the time period from −12 h before to +26 h after a lethal dose of TBI reduced mortality by 50%. When administered at +48 h to +72 h postirradiation (LD50/30 to LD100/30), OTP reduced mortality by ≥34%. OTP administered at +24 h postirradiation significantly elevated peripheral white blood cell and platelet counts, increased crypt survival in the jejunum, enhanced intestinal glucose absorption and reduced endotoxin seepage into the blood. In the 6.4–8.6 Gy TBI range using LD50/10 as the end point, OTP yielded a dose modification factor of 1.2. The current data indicate that OTP is a potent radioprotector and radiomitigator ameliorating the mortality and tissue injury of acute hematopoietic as well as acute gastrointestinal radiation syndrome. PMID:25807318

  16. BM-16INCREASED ACUTE RADIATION EFFECT (ARE) WITH IPILUMUMAB AND RADIOSURGERY IN PATIENTS WITH MELANOMA BRAIN METASTASES

    PubMed Central

    Khoja, Leila; Kurtz, Goldie; Zadeh, Gelareh; Laperriere, Normand; Menard, Cynthia; Millar, Barbara-Ann; Bernstein, Mark; Kongkham, Paul; Joshua, Anthony; Hogg, David; Butler, Marcus; Chung, Caroline

    2014-01-01

    BACKGROUND: Ipilumumab (Ipi), an antibody that enhances T-cell activation, has been shown to improve survival in patients with metastatic melanoma. Ipilumumab may have synergistic effects with radiotherapy but this may result in increased toxicity. This study investigated the incidence of acute radiation effect (ARE) in patients with melanoma brain metastases treated with Ipi and radiosurgery (SRS) or whole brain radiotherapy (WBRT). METHODOLOGY: This retrospective study included metastatic melanoma patients treated at our institution from 2008-2013 who received SRS or WBRT for brain metastases within 4 months of Ipi treatment. We evaluated the incidence, timing and factors associated with acute radiation effect (ARE). RESULTS: From 159 patients treated with Ipi, 22 patients also received brain RT within 4 months of treatment. Three patients were excluded for lack of follow-up brain imaging, thus 19 were analysed: 14 males and 5 females, with median age 58 years (range 24-82). Ten were treated with SRS, 7 with WBRT, and 2 with SRS plus WBRT. Median dose for SRS was 21 Gy (range: 15-24 Gy). Five of 13 patients treated with SRS (38%) experienced symptomatic edema requiring steroids within 1 month of starting Ipi, and within 4 months of RT. One patient had a haemorrhage and 1 required surgical resection, which demonstrated viable disease. Therefore 3 patients (23%) treated with SRS developed isolated ARE. These metastases had volumes less than 4.2 cm3 and were treated within 4 months of Ipi to a median dose of 19.5 Gy (range 15-21 Gy). No patients with WBRT alone developed ARE. CONCLUSIONS: Following SRS for brain mets and Ipi, ARE was seen in 23% of patients within 4 months of starting Ipi treatment. This is greater than the commonly reported 10% risk of ARE after SRS alone for brain metastasis. No increased toxicity was seen with WBRT and Ipi.

  17. Quantitative analysis of contrast-enhanced ultrasonography in acute radiation-induced liver injury: An animal model

    PubMed Central

    FENG, JUN; CHEN, SHU-BO; WU, SHU-JUN; SUN, PING; XIN, TIAN-YOU; CHEN, YING-ZHEN

    2015-01-01

    The aim of the present study was to examine and assess contrast-enhanced ultrasound in the early diagnosis of acute radiation-induced liver injury in a rat model. Sixty female rats were used, with 50 rats being utilized to produce an animal model of liver injury with a single dose of stereotactic X-ray irradiation of 20 Gy. Ten rats from the injury group and 2 rats from the control group were randomly selected on days 3, 7, 14, 21 and 28, and examined by contrast-enhanced ultrasound and histopathology of liver specimens. The rats were divided into four groups: the normal control group, mild, moderate, and severe radioactive liver injury groups based on the histopathological examination results. Hepatic artery arriving time (HAAT) and hepatic vein arriving time (HVAT) were recorded, and hepatic artery to vein transit time (HA-HVTT) was calculated. The time-intensity curve of liver parenchyma, the time to peak (TTP) and peak intensity (PI) were also obtained. Significant differences were observed between liver injury and control groups for PI and HA-HVTT (P<0.05). PI and HA-HVTT were shorter in the severe liver injury group compared to the mild and moderate liver injury groups (P<0.05). Compared to the control group, higher TTP was recorded in all the liver injury groups (P<0.05), and the highest TTP level was observed in the severe liver injury group compared to the mild or moderate group (P<0.05). However, no significant difference was observed between the mild and moderate groups for PI, HA-HVTT and TTP. In conclusion, the results showed that contrast-enhanced ultrasonography is useful for an earlier diagnosis in a rat model of acute radiation-induced liver injury. PMID:26640553

  18. Effect of corticosteroid treatment on cell recovery by lung lavage in acute radiation-induced lung injury

    SciTech Connect

    Wesselius, L.J.; Floreani, A.A.; Kimler, B.F.; Papasian, C.J.; Dixon, A.Y. )

    1989-11-01

    The purpose of this study was to quantitate cell populations recovered by lung lavage up to 6 weeks following thoracic irradiation (24 Gy) as an index of the acute inflammatory response within lung structures. Additionally, rats were treated five times weekly with intraperitoneal saline (0.3 cc) or methylprednisolone (7.5 mg/kg/week). Lung lavage of irradiated rats recovered increased numbers of total cells compared to controls beginning 3 weeks after irradiation (P less than 0.05). The initial increase in number of cells recovered was attributable to an influx of neutrophils (P less than 0.05), and further increases at 4 and 6 weeks were associated with increased numbers of recovered macrophages (P less than 0.05). Lung lavage of steroid-treated rats at 6 weeks after irradiation recovered increased numbers of all cell populations compared to controls (P less than 0.05); however, numbers of recovered total cells, macrophages, neutrophils, and lymphocytes were all significantly decreased compared to saline-treated rats (P less than 0.05). The number of inflammatory cells recovered by lung lavage during acute radiation-induced lung injury is significantly diminished by corticosteroid treatment. Changes in cells recovered by lung lavage can also be correlated with alteration in body weight and respiration rate subsequent to treatment with thoracic irradiation and/or corticosteroids.

  19. Space and radiation protection: scientific requirements for space research

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.

    1995-01-01

    Ionizing radiation poses a significant risk to humans living and working in space. The major sources of radiation are solar disturbances and galactic cosmic rays. The components of this radiation are energetic charged particles, protons, as well as fully ionized nuclei of all elements. The biological effects of these particles cannot be extrapolated in a straightforward manner from available data on x-rays and gamma-rays. A radiation protection program that meets the needs of spacefaring nations must have a solid scientific basis, capable not only of predicting biological effects, but also of making reliable estimates of the uncertainty in these predictions. A strategy leading to such predictions is proposed, and scientific requirements arising from this strategy are discussed.

  20. Space and radiation protection: scientific requirements for space research.

    PubMed

    Schimmerling, W

    1995-08-01

    Ionizing radiation poses a significant risk to humans living and working in space. The major sources of radiation are solar disturbances and galactic cosmic rays. The components of this radiation are energetic charged particles, protons, as well as fully ionized nuclei of all elements. The biological effects of these particles cannot be extrapolated in a straightforward manner from available data on x-rays and gamma-rays. A radiation protection program that meets the needs of spacefaring nations must have a solid scientific basis, capable not only of predicting biological effects, but also of making reliable estimates of the uncertainty in these predictions. A strategy leading to such predictions is proposed, and scientific requirements arising from this strategy are discussed. PMID:7480626

  1. Acute effects of exposure to space radiation on CNS function and cognitive performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On exploratory class missions, such as a mission to Mars, astronauts will be exposed to types and doses of radiation (cosmic rays) that are not experienced in low earth orbit where the Space Shuttle and International Space Station operate. Exposure to cosmic rays produces changes in neuronal functi...

  2. Management of radiation and chemotherapy related acute toxicity in gastrointestinal cancer.

    PubMed

    Grabenbauer, Gerhard G; Holger, Göbel

    2016-08-01

    Possible toxic effects following radiation and chemotherapy of gastrointestinal tumours may cause a depletion of the mucosal barrier within the radiation volumes with severe mucositis. Diarrhoea, nausea, emesis and severe malabsorption followed by infections with dehydration and electrolyte disorders have to be encountered. For prevention and treatment of oropharyngeal mucositis an oral care protocol, oral cryotherapy together with benzydamine mouthwash may be recommended. Lower gastrointestinal diarrhoea is best treated by Octreotide (>100 μg s.c. bid) if loperamide is ineffective and amifostine (340 mg/m(2) IV) to prevent radiation proctitis. Enteral nutrition may be necessary with severe malnutrition or no enteral food intake for >7days or insufficient intake (<60%) for >10 days. With severe generalized mucositis or severe radiation induced enteritis parenteral nutrition will be initiated. Following the application of highly emetogenic chemotherapy regimen, 5-HT3 antagonists, dexamethasone and aprepitant, whereas in moderate risk levels 5-HT3 antagonist plus dexamethasone may be sufficient. PMID:27644912

  3. TNFSF10/TRAIL regulates human T4 effector memory lymphocyte radiosensitivity and predicts radiation-induced acute and subacute dermatitis

    PubMed Central

    Baijer, Jan; Déchamps, Nathalie; Perdry, Hervé; Morales, Pablo; Kerns, Sarah; Vasilescu, Alexandre; Baulande, Sylvain; Azria, David; Roméo, Paul Henri; Schmitz, Annette

    2016-01-01

    Sensitivity of T4 effector-memory (T4EM) lymphocytes to radiation-induced apoptosis shows heritability compatible with a Mendelian mode of transmission. Using gene expression studies and flow cytometry, we show a higher TNF-Related Apoptosis Inducing Ligand (TRAIL/TNFSF10) mRNA level and a higher level of membrane bound TRAIL (mTRAIL) on radiosensitive compared to radioresistant T4EM lymphocytes. Functionally, we show that mTRAIL mediates a pro-apoptotic autocrine signaling after irradiation of T4EM lymphocytes linking mTRAIL expression to T4EM radiosensitivity. Using single marker and multimarker Family-Based Association Testing, we identified 3 SNPs in the TRAIL gene that are significantly associated with T4EM lymphocytes radiosensitivity. Among these 3 SNPs, two are also associated with acute and subacute dermatitis after radiotherapy in breast cancer indicating that T4EM lymphocytes radiosensitivity may be used to predict response to radiotherapy. Altogether, these results show that mTRAIL level regulates the response of T4EM lymphocytes to ionizing radiation and suggest that TRAIL/TNFSF10 genetic variants hold promise as markers of individual radiosensitivity. PMID:26982083

  4. Research on the test method of using injection as an equivalent substitute for electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Pan, X. D.; Wei, G. H.; Lu, X. F.; Li, K.

    2013-03-01

    This paper presents a method to carry out high intensity radiated field (HIRF) effect experiments by using injection as an equivalent substitute for electromagnetic radiation. In allusion to typical interconnected system, the equal response voltage on the equipment cable port is regarded as an equivalent basis of injection and radiation methods. The equivalent relation formula between injected voltage and radiated field is derived theoretically. The conditions needed for extrapolating injected voltage in HIRF are confirmed, and the extrapolation method is proposed. On the basis of the above research, the electromagnetic environment effect test new method combined injection with radiation for interconnected system is summarized. The typical nonlinear interconnected system is selected as equipment under test, and the single frequency continuous wave radiation and injection effect experiments are carried out separately. The test results indicate that the relation between radiated field and injected voltage is linear, and the equivalent injected voltage used to substitute HIRF can be obtained by linear extrapolation.

  5. Effects of proton and gamma radiation on lymphocyte populations and acute response to antigen

    NASA Technical Reports Server (NTRS)

    Kajioka, E. H.; Gheorghe, C.; Andres, M. L.; Abell, G. A.; Folz-Holbeck, J.; Slater, J. M.; Nelson, G. A.; Gridley, D. S.

    1999-01-01

    BACKGROUND: The clinical use of proton radiation in the management of cancer, as well as benign disorders, is rapidly increasing. The major goal of this study was to compare the effects of proton and gamma (60Co) radiation on cell-mediated and humoral immunological parameters. MATERIALS AND METHODS: C57BL/6 mice were exposed to a single dose of 3 Gray (Gy) protons or gamma-rays and intraperitoneally injected 1 day later with sheep red blood cells (sRBC). On 4, 10, 15, and 29 days after exposure, subsets from each group were euthanised; nonirradiated controls (with and without sRBC injection) were included. Body and relative spleen weights, leukocyte counts, spontaneous blastogenesis, lymphocyte populations, and anti-sRBC titers were evaluated. RESULTS: The data showed significant depression (p < 0.05) in nearly all assays on days 4 and 10 after irradiation. B lymphocytes (CD19+) were the most radiosensitive, although reconstitution back to normal levels was observed by day 15. T cell (CD3+) and T helper cell (CD4+) recovery was evident by day 29, whereas the T cytotoxic cell (CD8+) count remained significantly below normal. Natural killer cells (NK1.1+) were relatively radioresistant. Anti-sRBC antibody production was slow and low titers were obtained after irradiation. No significant differences were noted between the two types of radiation. CONCLUSIONS: Taken together, the data show that whole-body irradiation with protons or gamma-rays, at the dose employed, results in marked, but transient, immunosuppression. However, at the time points of testing and with the assays used, little or no differences were found between the two forms of radiation.

  6. Delayed Effects of Acute Radiation Exposure in a Murine Model of the H-ARS: Multiple-Organ Injury Consequent to <10 Gy Total Body Irradiation.

    PubMed

    Unthank, Joseph L; Miller, Steven J; Quickery, Ariel K; Ferguson, Ethan L; Wang, Meijing; Sampson, Carol H; Chua, Hui Lin; DiStasi, Matthew R; Feng, Hailin; Fisher, Alexa; Katz, Barry P; Plett, P Artur; Sandusky, George E; Sellamuthu, Rajendran; Vemula, Sasidhar; Cohen, Eric P; MacVittie, Thomas J; Orschell, Christie M

    2015-11-01

    The threat of radiation exposure from warfare or radiation accidents raises the need for appropriate animal models to study the acute and chronic effects of high dose rate radiation exposure. The goal of this study was to assess the late development of fibrosis in multiple organs (kidney, heart, and lung) in survivors of the C57BL/6 mouse model of the hematopoietic-acute radiation syndrome (H-ARS). Separate groups of mice for histological and functional studies were exposed to a single uniform total body dose between 8.53 and 8.72 Gy of gamma radiation from a Cs radiation source and studied 1-21 mo later. Blood urea nitrogen levels were elevated significantly in the irradiated mice at 9 and 21 mo (from ∼22 to 34 ± 3.8 and 69 ± 6.0 mg dL, p < 0.01 vs. non-irradiated controls) and correlated with glomerosclerosis (29 ± 1.8% vs. 64 ± 9.7% of total glomeruli, p < 0.01 vs. non-irradiated controls). Glomerular tubularization and hypertrophy and tubular atrophy were also observed at 21 mo post-total body irradiation (TBI). An increase in interstitial, perivascular, pericardial and peribronchial fibrosis/collagen deposition was observed from ∼9-21 mo post-TBI in kidney, heart, and lung of irradiated mice relative to age-matched controls. Echocardiography suggested decreased ventricular volumes with a compensatory increase in the left ventricular ejection fraction. The results indicate that significant delayed effects of acute radiation exposure occur in kidney, heart, and lung in survivors of the murine H-ARS TBI model, which mirrors pathology detected in larger species and humans at higher radiation doses focused on specific organs.

  7. Deficient Innate Immunity, Thymopoiesis, and Gene Expression Response to Radiation in Survivors of Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Leung, Wing; Neale, Geoffrey; Behm, Fred; Iyengar, Rekha; Finkelstein, David; Kastan, Michael B.; Pui, Ching-Hon

    2010-01-01

    Background Survivors of childhood acute lymphoblastic leukemia (ALL) are at an increased risk of developing secondary malignant neoplasms. Radiation and chemotherapy can cause mutations and cytogenetic abnormalities and induce genomic instability. Host immunity and appropriate DNA damage responses are critical inhibitors of carcinogenesis. Therefore, we sought to determine the long-term effects of ALL treatment on immune function and response to DNA damage. Methods Comparative studies on 14 survivors in first complete remission and 16 siblings were conducted. Results In comparison to siblings on the cells that were involved in adaptive immunity, the patients had either higher numbers (CD19+ B cells and CD4+CD25+ T regulatory cells) or similar numbers (αβT cells and CD45RO+/RA− memory T cells) in the blood. In contrast, patients had lower numbers of all lymphocyte subsets involved in innate immunity (γδT cells and all NK subsets, including KIR2DL1+ cells, KIR2DL2/L3+ cells, and CD16+ cells), and lower natural cytotoxicity against K562 leukemia cells. Thymopoiesis was lower in patients, as demonstrated by less CD45RO−/RA+ Naïve T cell and less SjTREC levels in the blood, whereas the Vβ spectratype complexity score was similar. Array of gene expression response to low-dose radiation showed that about 70% of the probesets had a reduced response in patients. One of these genes, SCHIP-1, was also among the top-ranked single nucleotide polymorphisms (SNPs) during the whole genome scanning by SNP microarray analysis. Conclusion ALL survivors were deficient in innate immunity, thymopoiesis, and DNA damage responses to radiation. These defects may contribute to their increased likelihood of second malignancy. PMID:20413363

  8. Flaxseed Mitigates Acute Oxidative Lung Damage in a Mouse Model of Repeated Radiation and Hyperoxia Exposure Associated with Space Exploration

    PubMed Central

    Pietrofesa, Ralph A.; Solomides, Charalambos C.; Christofidou-Solomidou, Melpo

    2015-01-01

    Background Spaceflight missions may require crewmembers to conduct extravehicular activities (EVA). Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours and be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health. We have developed a mouse model of total body radiation and hyperoxia exposure and identified acute damage of lung tissues. In the current study we evaluated the usefulness of dietary flaxseed (FS) as a countermeasure agent for such double-hit exposures. Methods We evaluated lung tissue changes 2 weeks post-initiation of exposure challenges. Mouse cohorts (n=5/group) were pre-fed diets containing either 0% FS or 10% FS for 3 weeks and exposed to: a) normoxia (Untreated); b) >95% O2 (O2); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O2 and IR (O2+IR) 3 times per week for 2 consecutive weeks, where 8-hour hyperoxia treatments were spanned by normoxic intervals. Results At 2 weeks post challenge, while control-diet fed mice developed significant lung injury and inflammation across all challenges, FS protected lung tissues by decreasing bronchoalveolar lavage fluid (BALF) neutrophils (p<0.003) and protein levels, oxidative tissue damage, as determined by levels of malondialdehyde (MDA) (p<0.008) and nitrosative stress as determined by nitrite levels. Lung hydroxyproline levels, a measure of lung fibrosis, were significantly elevated in mice fed 0% FS (p<0.01) and exposed to hyperoxia/radiation or the combination treatment, but not in FS-fed mice. FS also decreased levels of a pro-inflammatory, pro-fibrogenic cytokine (TGF-β1) gene expression levels in lung. Conclusion Flaxseed mitigated adverse effects in lung of repeat exposures to radiation/hyperoxia. This data will provide useful information in the design of countermeasures to early

  9. Final report of the Committee on Interagency Radiation Research and Policy Coordination, 1984-1995

    SciTech Connect

    1995-09-01

    This document is the final report of the Committee on Interagency Radiation Research and Policy Coordination (CIRRPC). The committee was established to address national and international issues involving ionizing and nonionizing radiation. Three sections are included in the report: a summary of CIRRPC`s history structure, and operations; CIRRPC`s most significant activities, findings and recommendations on national radiation issues of sufficient importance and scope to require interagency attention; topics for future consideration by Federal agencies.

  10. Applied radiation research around a 15 MeV high-average-power linac

    NASA Astrophysics Data System (ADS)

    Lahorte, P.; Mondelaers, W.; De Frenne, D.; Callens, F.; Vanhaelewyn, G.; Schacht, E.; Van Calenberg, S.; Van Cleemput, O.; Huyghebaert, A.

    1999-08-01

    The Department of Subatomic and Radiation Physics of the University Gent is equipped with a 15 MeV 20 kW linear electron accelerator (linac) facility. In its present configuration the accelerator is used as a multipurpose apparatus for research in the fields of polymer chemistry, biomedical materials, medicine, food technology, dosimetry, solid state physics, agriculture and nuclear and radiation physics. We present an overview of both the various research projects around our linac facility involving radiation chemistry and physics and the specialised technologies facilitating this research.

  11. Successful Pregnancy and Delivery After Radiation With Ovarian Shielding for Acute Lymphocytic Leukemia Before Menarche.

    PubMed

    Ishibashi, Naoya; Maebayashi, Toshiya; Aizawa, Takuya; Sakaguchi, Masakuni; Abe, Osamu; Saito, Tsutomu; Tanaka, Yoshiaki; Chin, Motoaki; Mugishima, Hideo

    2015-07-01

    Total body irradiation is performed as a preconditioning regimen to inhibit graft-versus-host disease after bone marrow transplantation and to eradicate remaining tumor cells. However, these regimens result in delayed secondary sex characteristics and failure of ovarian function recovery, leading to amenorrhea and infertility. Herein, we report a case of an 11-year-old girl diagnosed with acute lymphocytic leukemia who received induction chemotherapy and prophylactic cranial irradiation. For bone marrow transplantation, she received total body irradiation of 12 Gy with uterine and ovarian shielding at 13 years of age. The patient remained in remission and menarche began at 14 years of age. At 23, she became pregnant and delivered a baby naturally with no abnormalities.

  12. Acute effect of exposure of mollusk single neuron to 900-MHz mobile phone radiation.

    PubMed

    Partsvania, B; Sulaberidze, T; Shoshiashvili, L; Modebadze, Z

    2011-09-01

    The goal of the present work was to explore the influence of commercially available cell phone irradiation on the single neuron excitability and memory processes. A Transverse Electromagnetic Cell (TEM Cell) was used to expose single neurons of mollusk to the electromagnetic field. Finite-Difference Time-Domain (FDTD) method was used for modeling the TEM Cell and the electromagnetic field interactions with living nerve ganglion and neurons. Neuron electrophysiology was investigated using standard microelectrode technique. The specific absorption rate (SAR) deposited into the single neuron was calculated to be 0.63 W/kg with a temperature increment of 0.1°C. After acute exposure, average firing threshold of the action potentials was not changed. However, the average latent period was significantly decreased. This indicates that together with latent period the threshold and the time of habituation might be altered during exposure. However, these alterations are transient and only latent period remains on the changed level.

  13. A fast all-sky radiative transfer model and its implications for solar energy research

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Sengupta, M.

    2015-12-01

    Radiative transfer models simulating broadband solar radiation, e.g. Rapid Radiation Transfer Model (RRTM) and its GCM applications, have been widely used by atmospheric scientists to model solar resource for various energy applications such as operational forecasting. Due to the complexity of solving the radiative transfer equation, simulating solar radiation under cloudy conditions can be extremely time consuming though many approximations, e.g. two-stream approach and delta-M truncation scheme, have been utilized. To provide a new option to approximate solar radiation, we developed a Fast All-sky Radiation Model for Solar applications (FARMS) using simulated cloud transmittance and reflectance from 16-stream RRTM model runs. The solar irradiances at the land surface were simulated by combining parameterized cloud properties with a fast clear-sky radiative transfer model. Using solar radiation measurements from the US Department of Energy's Atmospheric Radiation Measurement (ARM) central facility in Oklahoma as a benchmark against the model simulations, we were able to demonstrate that the accuracy of FARMS was comparable to the two-stream approach. However, FARMS is much more efficient since it does not explicitly solve the radiative transfer equation for each individual cloud condition. We further explored the use of FARMS to promote solar resource assessment and forecasting research through the increased ability to accommodate higher spatial and temporal resolution calculations for the next generation of satellite and numerical weather prediction (NWP) models.

  14. Prospects for management of gastrointestinal injury associated with the acute radiation syndrome

    SciTech Connect

    Dubois, A.; Walker, R.I.

    1988-08-01

    The effect of total-body ionizing radiation on the digestive tract is dose-dependent and time-dependent. At low doses (1.5 Gy), one observes only a short prodromal syndrome consisting of nausea, vomiting, and gastric suppression. At doses greater than 6 Gy, the prodromal syndrome is more marked, and it is followed after a 2-5-day remission period by a subacute syndrome, characterized by diarrhea and hematochezia. This gastrointestinal syndrome is superimposed onto a radiation-induced bone marrow suppression. The combination of intestinal and hemopoietic syndromes results in dehydration, anemia, and infection, leading eventually to irreversible shock and death. The treatment of prodromal symptoms is based on the administration of antiemetics and gastrokinetics, although an effective treatment devoid of side effects is not yet available for human therapy. The treatment of the gastrointestinal subacute syndrome remains difficult and unsuccessful after exposure to total body doses greater than 8-10 Gy. Supportive therapy to prevent infection and dehydration may be effective if restoration or repopulation of the intestinal and bone marrow stem cells does occur. In addition, bone marrow transplantation may improve the prospect of treating the hemopoietic syndrome, although the experience gained in Chernobyl suggests that this treatment is difficult to apply in the case of nuclear accidents. Administration of radioprotectants before irradiation decreases damage to healthy cells, while not protecting cancerous tissues. In the future, stimulation of gastrointestinal and hemopoietic progenitor cells may be possible using cell growth regulators, but much remains to be done to improve the treatment of radiation damage to the gastrointestinal tract. 77 references.

  15. Prospects for management of gastrointestinal injury associated with the acute radiation syndrome

    SciTech Connect

    Dubois, A.; Walker, R.I.

    1988-08-01

    The effect of total-body ionizing radiation on the digestive tract is dose-dependent and time-dependent. At low doses (1.5 Gy), one observes only a short prodromal syndrome consisting of nausea, vomiting, and gastric suppression. At doses>6 Gy, the prodromal syndrome is more marked, and it is followed after a 2-5-day remission period by a subacute syndrome, characterized by diarrhea and hematochezia. This gastrointestinal syndrome is superimposed onto a radiation-induced bone marrow suppression. The combination of intestinal and hemopoietic syndromes results in dehydration, anemia, and infection, leading eventually to irreversible shock and death. The treatment of prodromal symptoms is based on the administration of antiemetics and gastrokinetics, although an effective treatment devoid of side effects is not yet available for human therapy. The treatment of the gastrointestinal subacute syndrome remains difficult and unsuccessful after exposure to total-body doses >8-10 Gy. Supportive therapy to prevent infection and dehydration may be effective if restoration or repopulation of the intestinal and bone marrow stem cells does occur. In addition, bone marrow transplantation may improve the prospect of treating the hemopoietic syndrome, although the experience gained in Chernobyl suggests that this treatment is difficult to apply in the case of nuclear accidents. Administration of radioprotectants before irradiation decreases damage to healthy cells, while not protecting cancerous tissues. In the future, stimulation of gastrointestinal and hemopoietic progenitor cells may be possible using cell growth regulators, but much remains to be done to improve the treatment of radiation damage to the gastrointestinal tract.

  16. Education and training for radiation scientists: radiation research program and American Society of Therapeutic Radiology and Oncology Workshop, Bethesda, Maryland, May 12-14, 2003.

    PubMed

    Coleman, C Norman; Stone, Helen B; Alexander, George A; Barcellos-Hoff, Mary Helen; Bedford, Joel S; Bristow, Robert G; Dynlacht, Joseph R; Fuks, Zvi; Gorelic, Lester S; Hill, Richard P; Joiner, Michael C; Liu, Fei-Fei; McBride, William H; McKenna, W Gillies; Powell, Simon N; Robbins, Michael E C; Rockwell, Sara; Schiff, Peter B; Shaw, Edward G; Siemann, Dietmar W; Travis, Elizabeth L; Wallner, Paul E; Wong, Rosemary S L; Zeman, Elaine M

    2003-12-01

    Current and potential shortfalls in the number of radiation scientists stand in sharp contrast to the emerging scientific opportunities and the need for new knowledge to address issues of cancer survivorship and radiological and nuclear terrorism. In response to these challenges, workshops organized by the Radiation Research Program (RRP), National Cancer Institute (NCI) (Radiat. Res. 157, 204-223, 2002; Radiat. Res. 159, 812-834, 2003), and National Institute of Allergy and Infectious Diseases (NIAID) (Nature, 421, 787, 2003) have engaged experts from a range of federal agencies, academia and industry. This workshop, Education and Training for Radiation Scientists, addressed the need to establish a sustainable pool of expertise and talent for a wide range of activities and careers related to radiation biology, oncology and epidemiology. Although fundamental radiation chemistry and physics are also critical to radiation sciences, this workshop did not address workforce needs in these areas. The recommendations include: (1) Establish a National Council of Radiation Sciences to develop a strategy for increasing the number of radiation scientists. The strategy includes NIH training grants, interagency cooperation, interinstitutional collaboration among universities, and active involvement of all stakeholders. (2) Create new and expanded training programs with sustained funding. These may take the form of regional Centers of Excellence for Radiation Sciences. (3) Continue and broaden educational efforts of the American Society for Therapeutic Radiology and Oncology (ASTRO), the American Association for Cancer Research (AACR), the Radiological Society of North America (RSNA), and the Radiation Research Society (RRS). (4) Foster education and training in the radiation sciences for the range of career opportunities including radiation oncology, radiation biology, radiation epidemiology, radiation safety, health/government policy, and industrial research. (5) Educate other

  17. Education and training for radiation scientists: radiation research program and American Society of Therapeutic Radiology and Oncology Workshop, Bethesda, Maryland, May 12-14, 2003.

    PubMed

    Coleman, C Norman; Stone, Helen B; Alexander, George A; Barcellos-Hoff, Mary Helen; Bedford, Joel S; Bristow, Robert G; Dynlacht, Joseph R; Fuks, Zvi; Gorelic, Lester S; Hill, Richard P; Joiner, Michael C; Liu, Fei-Fei; McBride, William H; McKenna, W Gillies; Powell, Simon N; Robbins, Michael E C; Rockwell, Sara; Schiff, Peter B; Shaw, Edward G; Siemann, Dietmar W; Travis, Elizabeth L; Wallner, Paul E; Wong, Rosemary S L; Zeman, Elaine M

    2003-12-01

    Current and potential shortfalls in the number of radiation scientists stand in sharp contrast to the emerging scientific opportunities and the need for new knowledge to address issues of cancer survivorship and radiological and nuclear terrorism. In response to these challenges, workshops organized by the Radiation Research Program (RRP), National Cancer Institute (NCI) (Radiat. Res. 157, 204-223, 2002; Radiat. Res. 159, 812-834, 2003), and National Institute of Allergy and Infectious Diseases (NIAID) (Nature, 421, 787, 2003) have engaged experts from a range of federal agencies, academia and industry. This workshop, Education and Training for Radiation Scientists, addressed the need to establish a sustainable pool of expertise and talent for a wide range of activities and careers related to radiation biology, oncology and epidemiology. Although fundamental radiation chemistry and physics are also critical to radiation sciences, this workshop did not address workforce needs in these areas. The recommendations include: (1) Establish a National Council of Radiation Sciences to develop a strategy for increasing the number of radiation scientists. The strategy includes NIH training grants, interagency cooperation, interinstitutional collaboration among universities, and active involvement of all stakeholders. (2) Create new and expanded training programs with sustained funding. These may take the form of regional Centers of Excellence for Radiation Sciences. (3) Continue and broaden educational efforts of the American Society for Therapeutic Radiology and Oncology (ASTRO), the American Association for Cancer Research (AACR), the Radiological Society of North America (RSNA), and the Radiation Research Society (RRS). (4) Foster education and training in the radiation sciences for the range of career opportunities including radiation oncology, radiation biology, radiation epidemiology, radiation safety, health/government policy, and industrial research. (5) Educate other

  18. Atmospheric Radiation Measurement program climate research facility operations quarterly report.

    SciTech Connect

    Sisterson, D. L.; Decision and Information Sciences

    2006-09-06

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.60 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.40 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.80 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive

  19. Combined Mitigation of the Gastrointestinal and Hematopoietic Acute Radiation Syndromes by a Novel LPA2 Receptor-specific Non-lipid Agonist

    PubMed Central

    Patil, Renukadevi; Szabó, Erzsébet; Fells, James I.; Balogh, Andrea; Lim, Keng G.; Fujiwara, Yuko; Norman, Derek B.; Lee, Sue-Chin; Balazs, Louisa; Thomas, Fridtjof; Patil, Shivaputra; Emmons-Thompson, Karin; Boler, Alyssa; Strobos, Jur; McCool, Shannon W.; Yates, C. Ryan; Stabenow, Jennifer; Byrne, Gerrald I.; Miller, Duane D.; Tigyi, Gábor J.

    2015-01-01

    Pharmacological mitigation of injuries caused by high-dose ionizing radiation is an unsolved medical problem. A specific nonlipid agonists of the type 2 GPCR for lysophosphatidic acid (LPA2) 2-[4-(1,3-Dioxo-1H,3H-benzoisoquinolin-2-yl)butylsulfamoyl]benzoic acid (DBIBB) when administered with a postirradiation delay up to 72 hours reduced mortality of C57BL/6 mice but not in LPA2 KO mice. DBIBB mitigated the gastrointestinal radiation syndrome, increased intestinal crypt survival and enterocyte proliferation, and reduced apoptosis. DBIBB enhanced DNA repair by augmenting the resolution of γ–H2AX foci, increased clonogenic survival of irradiated IEC-6 cells, attenuated the radiation-induced death of human CD34+ hematopoietic progenitors and enhanced the survival of the granulocyte/macrophage lineage. DBIBB also increased the survival of mice suffering of the hematopoietic acute radiation syndrome after total body irradiation. DBIBB represents the first drug candidate capable of mitigating acute radiation syndrome caused by high-dose γ-radiation to the hematopoietic and gastrointestinal system. PMID:25619933

  20. The long-term effects of acute exposure to ionising radiation on survival and fertility in Daphnia magna.

    PubMed

    Sarapultseva, Elena I; Dubrova, Yuri E

    2016-10-01

    The results of recent studies have provided strong evidence for the transgenerational effects of parental exposure to ionising radiation and chemical mutagens. However, the transgenerational effects of parental exposure on survival and fertility remain poorly understood. To establish whether parental irradiation can affect the survival and fertility of directly exposed organisms and their offspring, crustacean Daphnia magna were given 10, 100, 1000 and 10,000mGy of acute γ-rays. Exposure to 1000 and 10,000mGy significantly compromised the viability of irradiated Daphnia and their first-generation progeny, but did not affect the second-generation progeny. The fertility of F0 and F1Daphnia gradually declined with the dose of parental exposure and significantly decreased at dose of 100mGy and at higher doses. The effects of parental irradiation on the number of broods were only observed among the F0Daphnia exposed to 1000 and 10,000mGy, whereas the brood size was equally affected in the two consecutive generations. In contrast, the F2 total fertility was compromised only among progeny of parents that received the highest dose of 10,000mGy. We propose that the decreased fertility observed among the F2 progeny of parents exposed to 10,000mGy is attributed to transgenerational effects of parental irradiation. Our results also indicate a substantial recovery of the F2 progeny of irradiated F0Daphnia exposed to the lower doses of acute γ-rays.

  1. The long-term effects of acute exposure to ionising radiation on survival and fertility in Daphnia magna.

    PubMed

    Sarapultseva, Elena I; Dubrova, Yuri E

    2016-10-01

    The results of recent studies have provided strong evidence for the transgenerational effects of parental exposure to ionising radiation and chemical mutagens. However, the transgenerational effects of parental exposure on survival and fertility remain poorly understood. To establish whether parental irradiation can affect the survival and fertility of directly exposed organisms and their offspring, crustacean Daphnia magna were given 10, 100, 1000 and 10,000mGy of acute γ-rays. Exposure to 1000 and 10,000mGy significantly compromised the viability of irradiated Daphnia and their first-generation progeny, but did not affect the second-generation progeny. The fertility of F0 and F1Daphnia gradually declined with the dose of parental exposure and significantly decreased at dose of 100mGy and at higher doses. The effects of parental irradiation on the number of broods were only observed among the F0Daphnia exposed to 1000 and 10,000mGy, whereas the brood size was equally affected in the two consecutive generations. In contrast, the F2 total fertility was compromised only among progeny of parents that received the highest dose of 10,000mGy. We propose that the decreased fertility observed among the F2 progeny of parents exposed to 10,000mGy is attributed to transgenerational effects of parental irradiation. Our results also indicate a substantial recovery of the F2 progeny of irradiated F0Daphnia exposed to the lower doses of acute γ-rays. PMID:27288911

  2. Acute skin lesions following psoralen plus ultraviolet A radiation investigated by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Z. M.; Zhong, H. Q.; Zhai, J.; Wang, C. X.; Xiong, H. L.; Guo, Z. Y.

    2013-08-01

    Psoralen plus ultraviolet A radiation (PUVA) therapy is a very important clinical treatment of skin diseases such as vitiligo and psoriasis, but associated with an increased risk of skin photodamage, especially photoaging. In this work, optical coherence tomography (OCT), a novel non-invasive imaging technology, was introduced to investigate in vivo the photodamage induced by PUVA qualitatively and quantitatively. Balb/c mouse dorsal skin was treated with 8-methoxypsoralen (8-MOP), and then exposed to UVA radiation. OCT images of the tissues were obtained by an OCT system with a 1310 nm central wavelength. Skin thickness and the attenuation coefficient were extracted from the OCT images to analyze the degree of injury to mouse skin. The results demonstrated that PUVA-treated skin showed an increase in skin thickness, and a reduction of attenuation coefficient in the OCT signal compared with the control groups. The data also showed good correlation with the results observed in histological sections using hematoxylin and eosin staining. In conclusion, OCT is a promising tool for photobiological studies aimed at assessing the effect of PUVA therapy in vivo.

  3. The Impact of Pretreatment Prostate Volume on Severe Acute Genitourinary Toxicity in Prostate Cancer Patients Treated With Intensity-Modulated Radiation Therapy

    SciTech Connect

    Aizer, Ayal A.; Anderson, Nicole S.; Oh, Steven C.; Yu, James B.; McKeon, Anne M.; Decker, Roy H.; Peschel, Richard E.

    2011-02-01

    Purpose: To assess the impact of pretreatment prostate volume on the development of severe acute genitourinary toxicity in patients undergoing intensity-modulated radiation therapy (IMRT) for prostate cancer. Methods and Materials: Between 2004 and 2007, a consecutive sample of 214 patients who underwent IMRT (75.6 Gy) for prostate cancer at two referral centers was analyzed. Prostate volumes were obtained from computed tomography scans taken during treatment simulation. Genitourinary toxicity was defined using the National Cancer Institute Common Terminology Criteria for Adverse Events Version 3.0 guidelines. Acute toxicity was defined as any toxicity originating within 90 days of the completion of radiation therapy. Patients were characterized as having a small or large prostate depending on whether their prostate volume was less than or greater than 50 cm{sup 3}, respectively. Genitourinary toxicity was compared in these groups using the chi-square or Fisher's exact test, as appropriate. Bivariate and multivariate logistic regression analysis was performed to further assess the impact of prostate volume on severe (Grade 3) acute genitourinary toxicity. Results: Patients with large prostates (>50 cm{sup 3}) had a higher rate of acute Grade 3 genitourinary toxicity (p = .02). Prostate volume was predictive of the likelihood of developing acute Grade 3 genitourinary toxicity on bivariate (p = .004) and multivariate (p = .006) logistic regression. Every 27.0 cm{sup 3} increase in prostate volume doubled the likelihood of acute Grade 3 genitourinary toxicity. Conclusions: Patients with larger prostates are at higher risk for the development of severe acute genitourinary toxicity when treated with IMRT for prostate cancer.

  4. Applications of particle microbeams in space radiation research.

    PubMed

    Durante, Marco

    2009-03-01

    Galactic cosmic radiation is acknowledged as one of the major barriers to human space exploration. In space, astronauts are exposed to charged particles from Z = 1 (H) up to Z = 28 (Ni), but the probability of a hit to a specific single cell in the human body is low. Particle microbeams can deliver single charged particles of different charge and energy to single cells from different tissues, and microbeam studies are therefore very useful for improving current risk estimates for long-term space travel. 2D in vitro cell cultures can be very useful for establishing basic molecular mechanisms, but they are not sufficient to extrapolate risk, given the substantial evidence proving tissue effects are key in determining the response to radiation insult. 3D tissue or animal systems represent a more promising target for space radiobiology using microbeams.

  5. Applications of particle microbeams in space radiation research.

    PubMed

    Durante, Marco

    2009-03-01

    Galactic cosmic radiation is acknowledged as one of the major barriers to human space exploration. In space, astronauts are exposed to charged particles from Z = 1 (H) up to Z = 28 (Ni), but the probability of a hit to a specific single cell in the human body is low. Particle microbeams can deliver single charged particles of different charge and energy to single cells from different tissues, and microbeam studies are therefore very useful for improving current risk estimates for long-term space travel. 2D in vitro cell cultures can be very useful for establishing basic molecular mechanisms, but they are not sufficient to extrapolate risk, given the substantial evidence proving tissue effects are key in determining the response to radiation insult. 3D tissue or animal systems represent a more promising target for space radiobiology using microbeams. PMID:19346685

  6. Polymer research at synchrotron radiation sources: symposium proceedings

    SciTech Connect

    Russell, T.P.; Goland, A.N.

    1985-01-01

    The twenty-two papers are arranged into eleven sessions entitled: general overviews; time-resolved x-ray scattering; studies using fluorescence, ion-containing polymers; time-resolved x-ray scattering; novel applications of synchrotron radiation; phase transitions in polymers; x-ray diffraction on polymers; recent detector advances; complementary light, x-ray and neutron studies; and neutron scattering studies. Seven of the papers are processed separately; three of the remainder have been previously processed. (DLC)

  7. Comparison of Acute and Late Toxicities for Three Modern High-Dose Radiation Treatment Techniques for Localized Prostate Cancer

    SciTech Connect

    Mohammed, Nasiruddin; Kestin, Larry; Ghilezan, Mihai; Krauss, Daniel; Vicini, Frank; Brabbins, Donald; Gustafson, Gary; Ye Hong; Martinez, Alavaro

    2012-01-01

    Purpose: We compared acute and late genitourinary (GU) and gastrointestinal (GI) toxicities in prostate cancer patients treated with three different high-dose radiation techniques. Methods and Materials: A total of 1,903 patients with localized prostate cancer were treated with definitive RT at William Beaumont Hospital from 1992 to 2006: 22% with brachytherapy alone (BT), 55% with image-guided external beam (EB-IGRT), and 23% external beam with high-dose-rate brachytherapy boost (EBRT+HDR). Median dose with BT was 120 Gy for LDR and 38 Gy for HDR (9.5 Gy Multiplication-Sign 4). Median dose with EB-IGRT was 75.6 Gy (PTV) to prostate with or without seminal vesicles. For EBRT+HDR, the pelvis was treated to 46 Gy with an additional 19 Gy (9.5 Gy Multiplication-Sign 2) delivered via HDR. GI and GU toxicity was evaluated utilizing the NCI-CTC criteria (v.3.0). Median follow-up was 4.8 years. Results: The incidences of any acute {>=} Grade 2 GI or GU toxicities were 35%, 49%, and 55% for BT, EB-IGRT, and EBRT+HDR (p < 0.001). Any late GU toxicities {>=} Grade 2 were present in 22%, 21%, and 28% for BT, EB-IGRT, and EBRT+HDR (p = 0.01), respectively. Patients receiving EBRT+HDR had a higher incidence of urethral stricture and retention, whereas dysuria was most common in patients receiving BT. Any Grade {>=}2 late GI toxicities were 2%, 20%, and 9% for BT, EB-IGRT, and EBRT+HDR (p < 0.001). Differences were most pronounced for rectal bleeding, with 3-year rates of 0.9%, 20%, and 6% (p < 0.001) for BT, EB-IGRT, and EBRT+HDR respectively. Conclusions: Each of the three modern high-dose radiation techniques for localized prostate cancer offers a different toxicity profile. These data can help patients and physicians to make informed decisions regarding radiotherapy for prostate andenocarcinoma.

  8. Statistical Prediction of Solar Particle Event Frequency Based on the Measurements of Recent Solar Cycles for Acute Radiation Risk Analysis

    NASA Technical Reports Server (NTRS)

    Myung-Hee, Y. Kim; Shaowen, Hu; Cucinotta, Francis A.

    2009-01-01

    Large solar particle events (SPEs) present significant acute radiation risks to the crew members during extra-vehicular activities (EVAs) or in lightly shielded space vehicles for space missions beyond the protection of the Earth's magnetic field. Acute radiation sickness (ARS) can impair performance and result in failure of the mission. Improved forecasting capability and/or early-warning systems and proper shielding solutions are required to stay within NASA's short-term dose limits. Exactly how to make use of observations of SPEs for predicting occurrence and size is a great challenge, because SPE occurrences themselves are random in nature even though the expected frequency of SPEs is strongly influenced by the time position within the solar activity cycle. Therefore, we developed a probabilistic model approach, where a cumulative expected occurrence curve of SPEs for a typical solar cycle was formed from a non-homogeneous Poisson process model fitted to a database of proton fluence measurements of SPEs that occurred during the past 5 solar cycles (19 - 23) and those of large SPEs identified from impulsive nitrate enhancements in polar ice. From the fitted model, the expected frequency of SPEs was estimated at any given proton fluence threshold (Phi(sub E)) with energy (E) >30 MeV during a defined space mission period. Corresponding Phi(sub E) (E=30, 60, and 100 MeV) fluence distributions were simulated with a random draw from a gamma distribution, and applied for SPE ARS risk analysis for a specific mission period. It has been found that the accurate prediction of deep-seated organ doses was more precisely predicted at high energies, Phi(sub 100), than at lower energies such as Phi(sub 30) or Phi(sub 60), because of the high penetration depth of high energy protons. Estimates of ARS are then described for 90th and 95th percentile events for several mission lengths and for several likely organ dose-rates. The ability to accurately measure high energy protons

  9. Evaluation of continuous low dose rate versus acute single high dose rate radiation combined with oncolytic viral therapy for prostate cancer

    PubMed Central

    LIU, CHUNYAN; ZHANG, YONGGANG; LIU, MINZHI MAGGIE; ZHOU, HAOMING; CHOWDHURY, WASIM H.; LUPOLD, SHAWN E.; DEWEESE, TED L.; RODRIGUEZ, RONALD

    2011-01-01

    Purpose Conditionally Replicative Adenovirus (CRAd) has been previously demonstrated to augment the activity of radiation, resulting in synergy of cell kill. However, previous models combining radiation with CRAd have not focused on the methods of radiation delivery. Materials and methods We model the combination of a novel prostate-specific CRAd, Ad5 PSE/PBN E1A-AR (Ad5: adenovirus 5; PSE: prostate-specific enhancer; PBN: rat probasin promoter; E1A: early region 1A; AR: androgen receptor), with radiation delivered both acutely and continuously, in an effort to better mimic the potential clinical modes of prostate cancer radiotherapy. Results We demonstrate that pre-treatment of cells with acute single high dose rate (HDR) radiation 24 hours prior to viral infection results in significantly enhanced viral replication and virus-mediated cell death. In addition, this combination causes increased level of γ-H2AX (Phosphorylated histone protein H2AX on serine 139), a marker of double-stranded DNA damage and an indirect measure of nuclear fragmentation. In contrast, continuous low dose rate (LDR) radiation immediately following infection of the same CRAd results in no enhancement of viral replication, and only additive effects in virus-mediated cell death. Conclusions These data provide the first direct assessment of the real-time impact of radiation on viral replication and the first comparison of the effect of radiation delivery on the efficacy of CRAd virotherapy. Our data demonstrate substantial differences in CRAd efficacy based on the mode of radiation delivery. PMID:20201650

  10. Research on radiation characteristic of plasma antenna through FDTD method.

    PubMed

    Zhou, Jianming; Fang, Jingjing; Lu, Qiuyuan; Liu, Fan

    2014-01-01

    The radiation characteristic of plasma antenna is investigated by using the finite-difference time-domain (FDTD) approach in this paper. Through using FDTD method, we study the propagation of electromagnetic wave in free space in stretched coordinate. And the iterative equations of Maxwell equation are derived. In order to validate the correctness of this method, we simulate the process of electromagnetic wave propagating in free space. Results show that electromagnetic wave spreads out around the signal source and can be absorbed by the perfectly matched layer (PML). Otherwise, we study the propagation of electromagnetic wave in plasma by using the Boltzmann-Maxwell theory. In order to verify this theory, the whole process of electromagnetic wave propagating in plasma under one-dimension case is simulated. Results show that Boltzmann-Maxwell theory can be used to explain the phenomenon of electromagnetic wave propagating in plasma. Finally, the two-dimensional simulation model of plasma antenna is established under the cylindrical coordinate. And the near-field and far-field radiation pattern of plasma antenna are obtained. The experiments show that the variation of electron density can introduce the change of radiation characteristic.

  11. Research on radiation characteristic of plasma antenna through FDTD method.

    PubMed

    Zhou, Jianming; Fang, Jingjing; Lu, Qiuyuan; Liu, Fan

    2014-01-01

    The radiation characteristic of plasma antenna is investigated by using the finite-difference time-domain (FDTD) approach in this paper. Through using FDTD method, we study the propagation of electromagnetic wave in free space in stretched coordinate. And the iterative equations of Maxwell equation are derived. In order to validate the correctness of this method, we simulate the process of electromagnetic wave propagating in free space. Results show that electromagnetic wave spreads out around the signal source and can be absorbed by the perfectly matched layer (PML). Otherwise, we study the propagation of electromagnetic wave in plasma by using the Boltzmann-Maxwell theory. In order to verify this theory, the whole process of electromagnetic wave propagating in plasma under one-dimension case is simulated. Results show that Boltzmann-Maxwell theory can be used to explain the phenomenon of electromagnetic wave propagating in plasma. Finally, the two-dimensional simulation model of plasma antenna is established under the cylindrical coordinate. And the near-field and far-field radiation pattern of plasma antenna are obtained. The experiments show that the variation of electron density can introduce the change of radiation characteristic. PMID:25114961

  12. Overview of Atmospheric Ionizing Radiation (AIR) research: SST-present

    NASA Astrophysics Data System (ADS)

    Wilson, J.; Goldhagen, P.; Rafnson, V.; Clem, J.; Deangelis, G.

    The Super Sonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant passengers and crew by solar energetic particles (SEP), and neutrons were suspected to have a main role in effects due to particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray exposures, with the largest contribution from neutrons above 10 MeV. The FAA Standing Committee provided recommendations on SST radiobiological issues and operational requirements. The lowering of ICRP-recommended exposure limits (1990) with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies of effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in 2000 and more recent European aircrew epidemiological studies of health outcomes brings renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.

  13. Overview of atmospheric ionizing radiation (AIR) Research: SST-present

    NASA Astrophysics Data System (ADS)

    Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; Clem, J. M.; De Angelis, G.; Friedberg, W.

    The Supersonic Transport (SST) program proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of ICRP-recommended exposure limits 1990 with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum June 1997 and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.

  14. Overview of atmospheric ionizing radiation (AIR) research: SST-present.

    PubMed

    Wilson, J W; Goldhagen, P; Rafnsson, V; Clem, J M; De Angelis, G; Friedberg, W

    2003-01-01

    The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of ICRP-recommended exposure limits (1990) with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented. PMID:14727657

  15. Overview of atmospheric ionizing radiation (AIR) research: SST-present

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; Clem, J. M.; De Angelis, G.; Friedberg, W.

    2003-01-01

    The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of ICRP-recommended exposure limits (1990) with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented. Published by Elsevier Ltd on behalf of COSPAR.

  16. [Research on ground scenery spectral radiation source with tunable spectra].

    PubMed

    Xiang, Jin-rong; Ren, Jian-wei; Li, Bao-yong; Wan, Zhi; Liu, Ze-xun; Liu, Hong-xing; Li, Xian-sheng; Sun, Jing-xu

    2015-02-01

    A spectrum-tunable ground scenery spectrum radiation source, using LEDs and bromine tungsten lamp as luminescence media, was introduced. System structure and control of the spectrum radiation source was expounded in detail. In order to simulate various ground scenery spectrum distribution with different shapes, a ground scenery spectral database was established in the control system. An improved genetic algorithm was proposed, and a large number of ground scenery spectra were produced by the simulator. Spectral similarity and the average spectral matching error of several typical ground scenery spectra were further analyzed. Spectral similarity of red bands, green bands, blue bands and near-infrared spectral band also was discussed. When the radiance of the target was 50 W x (m2 x sr)(-1), the average spectral matching error was less than 10% and spectral similarity was greater than 0.9, up to 0.983. Spectral similarity of red band, green band, blue band and near-infrared band (especially green band and near-infrared band) was less than that of full-band. Compared with blue band and red band, spectral similarity of green band and near-infrared band low-amplitude maximum can rearch 50%. Ground scenery spectrum radiation source can be used as radiometric calibration source for optical remote sensor, and calibration error, which is caused by objectives and calibration sources spectral mismatch, can be effectively reduced. PMID:25970881

  17. Overview of Atmospheric Ionizing Radiation (AIR) Research: SST - Present

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; Clem, J. M.; DeAngelis, G.; Friedberg, W.

    2002-01-01

    The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray (GCR) exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent (1990) lowering of recommended exposure limits by the International Commission on Radiological Protection with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.

  18. Innovative techniques in radiation oncology. Clinical research programs to improve local and regional control in cancer

    SciTech Connect

    Brady, L.W.; Markoe, A.M.; Micaily, B.; Fisher, S.A.; Lamm, F.R. )

    1990-02-01

    There is a growing importance in failure analysis in cancer management. In these analyses locoregional failure as the cause of death emerges as a significant problem in many tumor sites, e.g., head and neck cancer, gynecologic cancer, genitourinary cancer. Because of these data, the radiation oncology community has attributed high priority to research efforts to improve locoregional control. These efforts include the following: (1) brachytherapy alone or with external beam radiation therapy or surgery; (2) intraoperative radiation therapy; (3) hyperthermia with radiation therapy; (4) particle irradiation (protons, neutrons, stripped nuclei, and pions); and (5) routes of administration of the treatment, including infusional (intravenous) chemotherapy with radiation therapy, intraarterial monoclonal antibodies with radionuclides, and intraarterial chemotherapy with radiation therapy. Each area of investigation is discussed.

  19. Hematopoietic stem cell compartment: Acute and late effects of radiation therapy an chemotherapy

    SciTech Connect

    Mauch, P.; Constine, L.; Greenberger, J.

    1995-03-30

    The bone marrow is an important dose-limiting cell renewal tissue for chemotherapy, wide-field irradiation, and autologous bone marrow transplantion. Over the past 5-10 years a great deal has been discovered about the hematopoietic stem cell compartment. Although the toxicity associated with prolonged myelosuppression continue to limit the wider use of chemotherapy and irradiation, ways are being discovered to circumvent this toxicity such as with the increasing use of cytokines. This review describes what is known of how chemotherapy and irradiation damage stem cells and the microenvironment, how cytokines protect hematopoietic cells from radiation damage and speed marrow recovery after chemotherapy or marrow transplantation, and how various types of blood marrow cells contribute to engraftment and long-term hematopoiesis after high doses of cytotoxic agents and/or total body irradiation. 167 refs., 7 figs., 6 tabs.

  20. Association of Hematological Nadirs and Survival in a Nonhuman Primate Model of Hematopoietic Syndrome of Acute Radiation Syndrome.

    PubMed

    Gluzman-Poltorak, Zoya; Vainstein, Vladimir; Basile, Lena A

    2015-08-01

    Recombinant human interleukin-12 (rHuIL-12) mitigates the hematopoietic subsyndrome of acute radiation syndrome (HSARS) after total body irradiation (TBI) in a nonhuman primate (NHP) model of HSARS. The mechanism for this effect appears to involve multiple effects of rHuIL-12 on hematopoiesis. We conducted a meta-analysis to examine hematological nadirs and survival across our three NHP completed studies. Animals were irradiated (700 cGy) and treated with a single subcutaneous injection of vehicle (n = 64) or rHuIL-12 (50-500 ng/kg; n = 108) 24-25 h after irradiation, or with daily subcutaneous injections of granulocyte-colony stimulating factor (G-CSF; 10 μg/kg/day) for 18 days starting 24-25 h after exposure (n = 26). Blood samples were obtained at various time points up to day 60 after TBI. Lymphocytes, neutrophils and platelets were significantly lower in nonsurvivors than in survivors in the overall sample and in each treatment group (P < 0.001 for each comparison, Wilcoxon rank-sum test). Lymphocyte nadir was the strongest and most consistent predictor of death by Spearman's rank correlation. Receiver operating characteristic (ROC) curve analysis of death and threshold hematologic nadir values (where nadir values less than or equal the threshold are predictive of death) showed that a threshold of 0.08 × 10(9)/L for lymphocytes had the largest positive predictive value of death (97.2% and 92.5% for the control and rHuIL-12 groups, respectively) and high sensitivity (76.1% and 62.7%, respectively), consistent with human radiation victims data. The current findings suggest that enhanced early bone marrow regeneration resulting in increases in nadir values for all major blood cell types may be the main mechanism of action by which rHuIL-12 mitigates the lethality of HSARS.

  1. Clinical and Dosimetric Predictors of Acute Severe Lymphopenia During Radiation Therapy and Concurrent Temozolomide for High-Grade Glioma

    SciTech Connect

    Huang, Jiayi; DeWees, Todd A.; Badiyan, Shahed N.; Speirs, Christina K.; Mullen, Daniel F.; Fergus, Sandra; Tran, David D.; Linette, Gerry; Campian, Jian L.; Chicoine, Michael R.; Kim, Albert H.; Dunn, Gavin; Simpson, Joseph R.; Robinson, Clifford G.

    2015-08-01

    Purpose: Acute severe lymphopenia (ASL) frequently develops during radiation therapy (RT) and concurrent temozolomide (TMZ) for high-grade glioma (HGG) and is associated with decreased survival. The current study was designed to identify potential predictors of ASL, with a focus on actionable RT-specific dosimetric parameters. Methods and Materials: From January 2007 to December 2012, 183 patients with HGG were treated with RT+TMZ and had available data including total lymphocyte count (TLC) and radiation dose-volume histogram parameters. ASL was defined as TLC of <500/μL within the first 3 months from the start of RT. Stepwise logistic regression analysis was used to determine the most important predictors of ASL. Results: Fifty-three patients (29%) developed ASL. Patients with ASL had significantly worse overall survival than those without (median: 12.5 vs 20.2 months, respectively, P<.001). Stepwise logistic regression analysis identified female sex (odds ratio [OR]: 5.30; 95% confidence interval [CI]: 2.46-11.41), older age (OR: 1.05; 95% CI: 1.02-1.09), lower baseline TLC (OR: 0.92; 95% CI: 0.87-0.98), and higher brain volume receiving 25 Gy (V{sub 25Gy}) (OR: 1.03; 95% CI: 1.003-1.05) as the most significant predictors for ASL. Brain V{sub 25Gy} <56% appeared to be the optimal threshold (OR: 2.36; 95% CI: 1.11-5.01), with an ASL rate of 38% versus 20% above and below this threshold, respectively (P=.006). Conclusions: Female sex, older age, lower baseline TLC, and higher brain V{sub 25Gy} are significant predictors of ASL during RT+TMZ therapy for HGG. Maintaining the V{sub 25Gy} of brain below 56% may reduce the risk of ASL.

  2. Influence of Double-Strand Break Repair on Radiation Therapy-Induced Acute Skin Reactions in Breast Cancer Patients

    SciTech Connect

    Mumbrekar, Kamalesh Dattaram; Fernandes, Donald Jerard; Goutham, Hassan Venkatesh; Sharan, Krishna; Vadhiraja, Bejadi Manjunath; Satyamoorthy, Kapaettu; Bola Sadashiva, Satish Rao

    2014-03-01

    Purpose: Curative radiation therapy (RT)-induced toxicity poses strong limitations for efficient RT and worsens the quality of life. The parameter that explains when and to what extent normal tissue toxicity in RT evolves would be of clinical relevance because of its predictive value and may provide an opportunity for personalized treatment approach. Methods and Materials: DNA double-strand breaks and repair were analyzed by microscopic γ-H2AX foci analysis in peripheral lymphocytes from 38 healthy donors and 80 breast cancer patients before RT, a 2 Gy challenge dose of x-ray exposed in vitro. Results: The actual damage (AD) at 0.25, 3, and 6 hours and percentage residual damage (PRD) at 3 and 6 hours were used as parameters to measure cellular radiosensitivity and correlated with RT-induced acute skin reactions in patients stratified as non-overresponders (NOR) (Radiation Therapy Oncology Group [RTOG] grade <2) and overresponders (OR) (RTOG grade ≥2). The results indicated that the basal and induced (at 0.25 and 3 hours) γ-H2AX foci numbers were nonsignificant (P>.05) between healthy control donors and the NOR and OR groups, whereas it was significant between ORs and healthy donors at 6 hours (P<.001). There was a significantly higher PRD in OR versus NOR (P<.05), OR versus healthy donors (P<.001) and NOR versus healthy donors (P<.01), supported further by the trend analysis (r=.2392; P=.0326 at 6 hours). Conclusions: Our findings strongly suggest that the measurement of PRD by performing γ-H2AX foci analysis has the potential to be developed into a clinically useful predictive assay.

  3. Excellence in Radiation Research for the 21st Century (EIRR21): Description of an Innovative Research Training Program

    SciTech Connect

    P'ng, Christine; Ito, Emma; How, Christine; Bezjak, Andrea; Bristow, Rob; Catton, Pam; Fyles, Anthony; Gospodarowicz, Mary; Jaffray, David; Kelley, Shana; Wong Shun; Liu Feifei

    2012-08-01

    Purpose: To describe and assess an interdisciplinary research training program for graduate students, postdoctoral fellows, and clinical fellows focused on radiation medicine; funded by the Canadian Institutes for Health Research since 2003, the program entitled 'Excellence in Radiation Research for the 21st Century' (EIRR21) aims to train the next generation of interdisciplinary radiation medicine researchers. Methods and Materials: Online surveys evaluating EIRR21 were sent to trainees (n=56), mentors (n=36), and seminar speakers (n=72). Face-to-face interviews were also conducted for trainee liaisons (n=4) and participants in the international exchange program (n=2). Results: Overall response rates ranged from 53% (mentors) to 91% (trainees). EIRR21 was well received by trainees, with the acquisition of several important skills related to their research endeavors. An innovative seminar series, entitled Brainstorm sessions, imparting 'extracurricular' knowledge in intellectual property protection, commercialization strategies, and effective communication, was considered to be the most valuable component of the program. Networking with researchers in other disciplines was also facilitated owing to program participation. Conclusions: EIRR21 is an innovative training program that positively impacts the biomedical community and imparts valuable skill sets to foster success for the future generation of radiation medicine researchers.

  4. Research progress in radiation detectors, pattern recognition programs, and radiation damage determination in DNA

    NASA Technical Reports Server (NTRS)

    Baily, N. A.

    1973-01-01

    The radiological implications of statistical variations in energy deposition by ionizing radiation were investigated in the conduct of the following experiments: (1) study of the production of secondary particles generated by the passage of the primary radiation through bone and muscle; (2) the study of the ratio of nonreparable to reparable damage in DNA as a function of different energy deposition patterns generated by X rays versus heavy fast charged particles; (3) the use of electronic radiography systems for direct fluoroscopic tomography and for the synthesis of multiple planes and; (4) the determination of the characteristics of systems response to split fields having different contrast levels, and of minimum detectable contrast levels between the halves under realistic clinical situations.

  5. [RBE of neutrons from the BR-10 reactor based on their antitumor effect and on acute radiation reactions of the skin].

    PubMed

    Kuznetsova, M N; Ul'ianenko, S E

    1989-05-01

    The paper is concerned with the results of investigation of antitumor effectiveness (rats, sarcoma M-1) of neutron radiation of a BR-10 reactor with the mean energy of 0.85 MeV, correlated with the effect of 60Co gamma radiation (Luch-1). RBE in single local tumor radiation with neutrons was 4.5, being higher than RBE based on acute skin radiation reactions over a tumor (4.0). For this case FTA is over I (1.13) but slightly lower than after dose fractionated irradiation (1.18). Experimental data indicate the necessity of extending the clinical use of reactor neutrons and a profound study of the effects after neutron irradiation, particularly in dose-fractionated regimens.

  6. Synergistic targeted therapy for acute promyelocytic leukaemia: a model of translational research in human cancer.

    PubMed

    Mi, J-Q; Chen, S-J; Zhou, G-B; Yan, X-J; Chen, Z

    2015-12-01

    Acute promyelocytic leukaemia (APL), the M3 subtype of acute myeloid leukaemia, was once a lethal disease, yet nowadays the majority of patients with APL can be successfully cured by molecularly targeted therapy. This dramatic improvement in the survival rate is an example of the advantage of modern medicine. APL is characterized by a balanced reciprocal chromosomal translocation fusing the promyelocytic leukaemia (PML) gene on chromosome 15 with the retinoic acid receptor α (RARα) gene on chromosome 17. It has been found that all-trans-retinoic acid (ATRA) or arsenic trioxide (ATO) alone exerts therapeutic effect on APL patients with the PML-RARα fusion gene, and the combination of both drugs can act synergistically to further enhance the cure rate of the patients. Here, we provide an insight into the pathogenesis of APL and the mechanisms underlying the respective roles of ATRA and ATO. In addition, treatments that lead to more effective differentiation and apoptosis of APL cells, including leukaemia-initiating cells, and more thorough eradication of the disease will be discussed. Moreover, as a model of translational research, the development of a cure for APL has followed a bidirectional approach of 'bench to bedside' and 'bedside to bench', which can serve as a valuable example for the diagnosis and treatment of other malignancies.

  7. Acute Radiation Effects on Cardiac Function Detected by Strain Rate Imaging in Breast Cancer Patients

    SciTech Connect

    Erven, Katrien; Jurcut, Ruxandra; Weltens, Caroline; Giusca, Sorin; Ector, Joris; Wildiers, Hans; Van den Bogaert, Walter; Voigt, Jens-Uwe

    2011-04-01

    Purpose: To investigate the occurrence of early radiation-induced changes in regional cardiac function using strain rate imaging (SRI) by tissue Doppler echocardiography. Methods and Materials: We included 20 left-sided and 10 right-sided breast cancer patients receiving radiotherapy (RT) to the breast or chest wall. Standard echocardiography and SRI were performed before RT (baseline), immediately after RT (post-RT), and at 2 months follow-up (FUP) after RT. Regional strain (S) and strain rate (SR) values were obtained from all 18 left ventricular (LV) segments. Data were compared to the regional radiation dose. Results: A reduction in S was observed post-RT and at FUP in left-sided patients (S{sub post-RT}: -17.6 {+-} 1.5%, and S{sub FUP}: -17.4 {+-} 2.3%, vs. S{sub baseline}: -19.5 {+-} 2.1%, p < 0.001) but not in right-sided patients. Within the left-sided patient group, S and SR were significantly reduced after RT in apical LV segments (S{sub post-RT}: -15.3 {+-} 2.5%, and S{sub FUP}: -14.3 {+-} 3.7%, vs. S{sub baseline}: -19.3 {+-} 3.0%, p < 0.01; and SR{sub post-RT}: -1.06 {+-} 0.15 s {sup -1}, and SR{sub FUP}: -1.16 {+-} 0.28 s {sup -1}, vs. SR{sub baseline}: -1.29 {+-} 0.27s {sup -1}, p = 0.01), but not in mid- or basal segments. Furthermore, we observed that segments exposed to more than 3 Gy showed a significant decrease in S after RT (S{sub post-RT}: -16.1 {+-} 1.6%, and S{sub FUP}: -15.8 {+-} 3.4%, vs. S{sub baseline}: -18.9 {+-} 2.6%, p < 0.001). This could not be observed in segments receiving less than 3 Gy. Conclusions: SRI shows a dose-related regional decrease in myocardial function after RT. It might be a useful tool in the evaluation of modern RT techniques, with respect to cardiac toxicity.

  8. Mitigation Effect of an FGF-2 Peptide on Acute Gastrointestinal Syndrome After High-Dose Ionizing Radiation

    SciTech Connect

    Zhang Lurong; Sun Weimin; Wang Jianjun; Zhang Mei; Yang Shanmin; Tian Yeping; Vidyasagar, Sadasivan; Pena, Louis A.; Zhang Kunzhong; Cao Yongbing; Yin Liangjie; Wang Wei; Zhang Lei; Schaefer, Katherine L.; Saubermann, Lawrence J.; Swarts, Steven G.; Fenton, Bruce M.; Keng, Peter C.; Okunieff, Paul

    2010-05-01

    Purpose: Acute gastrointestinal syndrome (AGS) resulting from ionizing radiation causes death within 7 days. Currently, no satisfactory agent exists for mitigation of AGS. A peptide derived from the receptor binding domain of fibroblast growth factor 2 (FGF-P) was synthesized and its mitigation effect on AGS was examined. Methods and Materials: A subtotal body irradiation (sub-TBI) model was created to induce gastrointestinal (GI) death while avoiding bone marrow death. After 10.5 to 16 Gy sub-TBI, mice received an intramuscular injection of FGF-P (10 mg/kg/day) or saline (0.2 ml/day) for 5 days; survival (frequency and duration) was measured. Crypt cells and their proliferation were assessed by hematoxylin, eosin, and BrdU staining. In addition, GI hemoccult score, stool formation, and plasma levels of endotoxin, insulin, amylase, interleukin (IL)-6, keratinocyte-derived chemokine (KC) monocyte chemoattractant protein 1 (MCP-1) and tumor necrosis factor (TNF)-alpha were evaluated. Results: Treatment with FGF-P rescued a significant fraction of four strains of mice (33-50%) exposed to a lethal dose of sub-TBI. Use of FGF-P improved crypt survival and repopulation and partially preserved or restored GI function. Furthermore, whereas sub-TBI increased plasma endotoxin levels and several pro-inflammation cytokines (IL-6, KC, MCP-1, and TNF-alpha), FGF-P reduced these adverse responses. Conclusions: The study data support pursuing FGF-P as a mitigator for AGS.

  9. Prediction of Renal Allograft Acute Rejection Using a Novel Non-Invasive Model Based on Acoustic Radiation Force Impulse.

    PubMed

    Yang, Cheng; Jin, Yunjie; Wu, Shengdi; Li, Long; Hu, Mushuang; Xu, Ming; Rong, Ruiming; Zhu, Tongyu; He, Wanyuan

    2016-09-01

    Point shear wave elastography based on acoustic radiation force impulse is a novel technology used to quantify tissue stiffness by measuring shear wave speed. A total of 115 kidney transplantation recipients were consecutively enrolled in this prospective study. The patients were subdivided into two groups using 1 mo post-transplantation as the cutoff time for determining the development of acute rejection (AR). Shear wave speed was significantly higher in the AR group than in the non-AR group. We created a model called SEV, comprising shear wave speed, estimated glomerular filtration rate and kidney volume change, that could successfully discriminate patients with or without AR. The area under the receiver operating characteristic curve of SEV was 0.89, which was higher than values for other variables; it was even better in patients within 1 mo post-transplantation (0.954), but was lower than the estimated glomerular filtration rate in patients after 1 mo post-transplantation. Therefore, the SEV model may predict AR after renal transplantation with a high degree of accuracy, and it may be more useful in the early post-operative stage after renal transplantation. PMID:27267289

  10. Effect of acute nutritional deprivation on immune function in mice. II. Response to sublethal radiation

    SciTech Connect

    Wing, E.J.; Barczynski, L.K.

    1984-03-01

    Previous studies from this laboratory indicated that mice starved for 48 or 72 hr were resistant to the intracellular pathogen, Listeria monocytogenes. In the present experiments, we investigated the possibility that rapidly proliferating monocytes were responsible for the early protective effect observed in these mice. Confirming previous studies, the numbers of L. monocytogenes in livers and spleens of starved mice were 2-3 logs lower than those of fed mice 72 hr after inoculation of bacteria. The early protective effect of starvation could be eliminated completely by nonlethal doses of radiation (200-900 rads). Organ bacterial counts in starved-irradiated mice were similar to those of fed mice. Correlative histopathologic studies were carried out on all three groups of mice. Seventy-two hours after challenge with L. monocytogenes, the livers of fed mice had multiple microabscesses with cental necrosis and a poor mononuclear response. In contrast, livers of starved mice had fewer infectious foci, less necrosis, and a more prominent monocyte/macrophage inflammatory response. Similar to fed mice, the livers of starved-irradiated mice had marked necrosis and few monocytes/macrophages. In addition, the number of peripheral blood monocytes in starved mice was increased 72 hr after inoculation compared to fed and starved-irradiated mice. The data from these experiments suggest that a proliferating population of monocytes is responsible for resistance of starved mice against L. monocytogenes.

  11. Epigenetics in radiation biology: a new research frontier

    PubMed Central

    Merrifield, Matt; Kovalchuk, Olga

    2013-01-01

    The number of people that receive exposure to ionizing radiation (IR) via occupational, diagnostic, or treatment-related modalities is progressively rising. It is now accepted that the negative consequences of radiation exposure are not isolated to exposed cells or individuals. Exposure to IR can induce genome instability in the germline, and is further associated with transgenerational genomic instability in the offspring of exposed males. The exact molecular mechanisms of transgenerational genome instability have yet to be elucidated, although there is support for it being an epigenetically induced phenomenon. This review is centered on the long-term biological effects associated with IR exposure, mainly focusing on the epigenetic mechanisms (DNA methylation and small RNAs) involved in the molecular etiology of IR-induced genome instability, bystander and transgenerational effects. Here, we present evidence that IR-mediated effects are maintained by epigenetic mechanisms, and demonstrate how a novel, male germline-specific, small RNA pathway is posited to play a major role in the epigenetic inheritance of genome instability. PMID:23577019

  12. Synchrotron radiation in transactinium research report of the workshop

    SciTech Connect

    Not Available

    1992-11-01

    This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe[sub 2] and U-S; the laser plasma laboratory light source: a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.

  13. Synchrotron radiation in transactinium research report of the workshop

    SciTech Connect

    Not Available

    1992-11-01

    This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe{sub 2} and U-S; the laser plasma laboratory light source: a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.

  14. Acute and fractionated exposure to high-LET (56)Fe HZE-particle radiation both result in similar long-term deficits in adult hippocampal neurogenesis.

    PubMed

    Rivera, Phillip D; Shih, Hung-Ying; Leblanc, Junie A; Cole, Mara G; Amaral, Wellington Z; Mukherjee, Shibani; Zhang, Shichuan; Lucero, Melanie J; Decarolis, Nathan A; Chen, Benjamin P C; Eisch, Amelia J

    2013-12-01

    Astronauts on multi-year interplanetary missions will be exposed to a low, chronic dose of high-energy, high-charge particles. Studies in rodents show acute, nonfractionated exposure to these particles causes brain changes such as fewer adult-generated hippocampal neurons and stem cells that may be detrimental to cognition and mood regulation and thus compromise mission success. However, the influence of a low, chronic dose of these particles on neurogenesis and stem cells is unknown. To examine the influence of galactic cosmic radiation on neurogenesis, adult-generated stem and progenitor cells in Nestin-CreER(T2)/R26R-YFP transgenic mice were inducibly labeled to allow fate tracking. Mice were then sham exposed or given one acute 100 cGy (56)Fe-particle exposure or five fractionated 20 cGy (56)Fe-particle exposures. Adult-generated hippocampal neurons and stem cells were quantified 24 h or 3 months later. Both acute and fractionated exposure decreased the amount of proliferating cells and immature neurons relative to sham exposure. Unexpectedly, neither acute nor fractionated exposure decreased the number of adult neural stem cells relative to sham expsoure. Our findings show that single and fractionated exposures of (56)Fe-particle irradiation are similarly detrimental to adult-generated neurons. Implications for future missions and ground-based studies in space radiation are discussed. PMID:24320054

  15. Acute and Fractionated Exposure to High-LET 56Fe HZE-Particle Radiation Both Result in Similar Long-Term Deficits in Adult Hippocampal Neurogenesis

    PubMed Central

    Rivera, Phillip D.; Shih, Hung-Ying; LeBlanc, Junie A.; Cole, Mara G.; Amaral, Wellington Z.; Mukherjee, Shibani; Zhang, Shichuan; Lucero, Melanie J.; DeCarolis, Nathan A.; Chen, Benjamin P. C.; Eisch, Amelia J.

    2014-01-01

    Astronauts on multi-year interplanetary missions will be exposed to a low, chronic dose of high-energy, high-charge particles. Studies in rodents show acute, nonfractionated exposure to these particles causes brain changes such as fewer adult-generated hippocampal neurons and stem cells that may be detrimental to cognition and mood regulation and thus compromise mission success. However, the influence of a low, chronic dose of these particles on neurogenesis and stem cells is unknown. To examine the influence of galactic cosmic radiation on neurogenesis, adult-generated stem and progenitor cells in Nestin-CreERT2/R26R-YFP transgenic mice were inducibly labeled to allow fate tracking. Mice were then sham exposed or given one acute 100 cGy 56Fe-particle exposure or five fractionated 20 cGy 56Fe-particle exposures. Adult-generated hippocampal neurons and stem cells were quantified 24 h or 3 months later. Both acute and fractionated exposure decreased the amount of proliferating cells and immature neurons relative to sham exposure. Unexpectedly, neither acute nor fractionated exposure decreased the number of adult neural stem cells relative to sham expsoure. Our findings show that single and fractionated exposures of 56Fe-particle irradiation are similarly detrimental to adult-generated neurons. Implications for future missions and ground-based studies in space radiation are discussed. PMID:24320054

  16. Atmospheric Radiation Measurement Climate Research Facility (ACRF Instrumentation Status: New, Current, and Future)

    SciTech Connect

    JW Voyles

    2008-01-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  17. Fundamental remote sensing science research program. Part 1: Scene radiation and atmospheric effects characterization project

    NASA Technical Reports Server (NTRS)

    Murphy, R. E.; Deering, D. W.

    1984-01-01

    Brief articles summarizing the status of research in the scene radiation and atmospheric effect characterization (SRAEC) project are presented. Research conducted within the SRAEC program is focused on the development of empirical characterizations and mathematical process models which relate the electromagnetic energy reflected or emitted from a scene to the biophysical parameters of interest.

  18. Radiation protective structure alternatives for habitats of a lunar base research outpost

    NASA Technical Reports Server (NTRS)

    Bell, Fred J.; Foo, Lai T.; Mcgrew, William P.

    1988-01-01

    The solar and galactic cosmic radiation levels on the Moon pose a hazard to extended manned lunar missions. Lunar soil represents an available, economical material to be used for radiation shielding. Several alternatives have been suggested to use lunar soil to protect the inhabitants of a lunar base research outpost from radiation. The Universities Space Research Association has requested that a comparative analysis of the alternatives be performed, with the purpose of developing the most advantageous design. Eight alternatives have been analyzed, including an original design which was developed to satisfy the identified design criteria. The original design consists of a cylindrical module and airlock, partially buried in the lunar soil, at a depth sufficient to achieve adequate radiation shielding. The report includes descriptions of the alternatives considered, the method of analysis used, and the final design selected.

  19. Space Radiation

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2006-01-01

    Astronauts receive the highest occupational radiation exposure. Effective protections are needed to ensure the safety of astronauts on long duration space missions. Increased cancer morbidity or mortality risk in astronauts may be caused by occupational radiation exposure. Acute and late radiation damage to the central nervous system (CNS) may lead to changes in motor function and behavior, or neurological disorders. Radiation exposure may result in degenerative tissue diseases (non-cancer or non-CNS) such as cardiac, circulatory, or digestive diseases, as well as cataracts. Acute radiation syndromes may occur due to occupational radiation exposure.

  20. The Theoretical Agenda in Cosmic Backround Radiation Research

    NASA Astrophysics Data System (ADS)

    Bond, J. R.

    1996-12-01

    The terrain that theorists cover in this CMB golden age is described. We ponder early universe physics in quest of the fluctuation generator. We extol the virtues of inflation and defects. We transport fields, matter and radiation into the linear (primary anisotropies) and nonlinear (secondary anisotropies) regimes. We validate our linear codes to deliver accurate predictions for experimentalists to shoot at. We struggle at the computing edge to push our nonlinear simulations from only illustrative to fully predictive. We are now phenomenologists, optimizing statistical techniques for extracting truths and their errors from current and future experiments. We begin to clean foregrounds. We join CMB experimental teams. We combine the CMB with large scale structure, galaxy and other cosmological observations in search of current concordance. The brave use all topical data. Others carefully craft their prior probabilities to downweight data sets. We are always unbiased. We declare theories sick, dead, ugly. Sometimes we cure them, resurrect them, rarely beautify them. Our goal is to understand how all cosmic structure we see arose and what the Universe is made of, and to use this to discover the laws of ultrahigh energy physics. Theorists are humble, without hubris.

  1. Ultraviolet radiation and autoimmune disease: insights from epidemiological research.

    PubMed

    Ponsonby, Anne-Louise; McMichael, Anthony; van der Mei, Ingrid

    2002-12-27

    This review examines the epidemiological evidence that suggests ultraviolet radiation (UVR) may play a protective role in three autoimmune diseases: multiple sclerosis, insulin-dependent diabetes mellitus and rheumatoid arthritis. To date, most of the information has accumulated from population studies that have studied the relationship between geography or climate and autoimmune disease prevalence. An interesting gradient of increasing prevalence with increasing latitude has been observed for at least two of the three diseases. This is most evident for multiple sclerosis, but a similar gradient has been shown for insulin-dependent diabetes mellitus in Europe and North America. Seasonal influences on both disease incidence and clinical course and, more recently, analytical studies at the individual level have provided further support for a possible protective role for UVR in some of these diseases but the data are not conclusive. Organ-specific autoimmune diseases involve Th1 cell-mediated immune processes. Recent work in photoimmunology has shown ultraviolet B (UVB) can specifically attenuate these processes through several mechanisms which we discuss. In particular, the possible contribution of an UVR-induced increase in serum vitamin D (1,25(OH)2D3) levels in the beneficial immunomodulation of these diseases is discussed. PMID:12505287

  2. Considerations for observational research using large data sets in radiation oncology.

    PubMed

    Jagsi, Reshma; Bekelman, Justin E; Chen, Aileen; Chen, Ronald C; Hoffman, Karen; Shih, Ya-Chen Tina; Smith, Benjamin D; Yu, James B

    2014-09-01

    The radiation oncology community has witnessed growing interest in observational research conducted using large-scale data sources such as registries and claims-based data sets. With the growing emphasis on observational analyses in health care, the radiation oncology community must possess a sophisticated understanding of the methodological considerations of such studies in order to evaluate evidence appropriately to guide practice and policy. Because observational research has unique features that distinguish it from clinical trials and other forms of traditional radiation oncology research, the International Journal of Radiation Oncology, Biology, Physics assembled a panel of experts in health services research to provide a concise and well-referenced review, intended to be informative for the lay reader, as well as for scholars who wish to embark on such research without prior experience. This review begins by discussing the types of research questions relevant to radiation oncology that large-scale databases may help illuminate. It then describes major potential data sources for such endeavors, including information regarding access and insights regarding the strengths and limitations of each. Finally, it provides guidance regarding the analytical challenges that observational studies must confront, along with discussion of the techniques that have been developed to help minimize the impact of certain common analytical issues in observational analysis. Features characterizing a well-designed observational study include clearly defined research questions, careful selection of an appropriate data source, consultation with investigators with relevant methodological expertise, inclusion of sensitivity analyses, caution not to overinterpret small but significant differences, and recognition of limitations when trying to evaluate causality. This review concludes that carefully designed and executed studies using observational data that possess these qualities hold

  3. Considerations for Observational Research Using Large Data Sets in Radiation Oncology

    SciTech Connect

    Jagsi, Reshma; Bekelman, Justin E.; Chen, Aileen; Chen, Ronald C.; Hoffman, Karen; Tina Shih, Ya-Chen; Smith, Benjamin D.; Yu, James B.

    2014-09-01

    The radiation oncology community has witnessed growing interest in observational research conducted using large-scale data sources such as registries and claims-based data sets. With the growing emphasis on observational analyses in health care, the radiation oncology community must possess a sophisticated understanding of the methodological considerations of such studies in order to evaluate evidence appropriately to guide practice and policy. Because observational research has unique features that distinguish it from clinical trials and other forms of traditional radiation oncology research, the International Journal of Radiation Oncology, Biology, Physics assembled a panel of experts in health services research to provide a concise and well-referenced review, intended to be informative for the lay reader, as well as for scholars who wish to embark on such research without prior experience. This review begins by discussing the types of research questions relevant to radiation oncology that large-scale databases may help illuminate. It then describes major potential data sources for such endeavors, including information regarding access and insights regarding the strengths and limitations of each. Finally, it provides guidance regarding the analytical challenges that observational studies must confront, along with discussion of the techniques that have been developed to help minimize the impact of certain common analytical issues in observational analysis. Features characterizing a well-designed observational study include clearly defined research questions, careful selection of an appropriate data source, consultation with investigators with relevant methodological expertise, inclusion of sensitivity analyses, caution not to overinterpret small but significant differences, and recognition of limitations when trying to evaluate causality. This review concludes that carefully designed and executed studies using observational data that possess these qualities hold

  4. Considerations for observational research using large data sets in radiation oncology.

    PubMed

    Jagsi, Reshma; Bekelman, Justin E; Chen, Aileen; Chen, Ronald C; Hoffman, Karen; Shih, Ya-Chen Tina; Smith, Benjamin D; Yu, James B

    2014-09-01

    The radiation oncology community has witnessed growing interest in observational research conducted using large-scale data sources such as registries and claims-based data sets. With the growing emphasis on observational analyses in health care, the radiation oncology community must possess a sophisticated understanding of the methodological considerations of such studies in order to evaluate evidence appropriately to guide practice and policy. Because observational research has unique features that distinguish it from clinical trials and other forms of traditional radiation oncology research, the International Journal of Radiation Oncology, Biology, Physics assembled a panel of experts in health services research to provide a concise and well-referenced review, intended to be informative for the lay reader, as well as for scholars who wish to embark on such research without prior experience. This review begins by discussing the types of research questions relevant to radiation oncology that large-scale databases may help illuminate. It then describes major potential data sources for such endeavors, including information regarding access and insights regarding the strengths and limitations of each. Finally, it provides guidance regarding the analytical challenges that observational studies must confront, along with discussion of the techniques that have been developed to help minimize the impact of certain common analytical issues in observational analysis. Features characterizing a well-designed observational study include clearly defined research questions, careful selection of an appropriate data source, consultation with investigators with relevant methodological expertise, inclusion of sensitivity analyses, caution not to overinterpret small but significant differences, and recognition of limitations when trying to evaluate causality. This review concludes that carefully designed and executed studies using observational data that possess these qualities hold

  5. Lung texture in serial thoracic CT scans: correlation with radiologist-defined severity of acute changes following radiation therapy

    NASA Astrophysics Data System (ADS)

    Cunliffe, Alexandra R.; Armato, Samuel G., III; Straus, Christopher; Malik, Renuka; Al-Hallaq, Hania A.

    2014-09-01

    This study examines the correlation between the radiologist-defined severity of normal tissue damage following radiation therapy (RT) for lung cancer treatment and a set of mathematical descriptors of computed tomography (CT) scan texture (‘texture features’). A pre-therapy CT scan and a post-therapy CT scan were retrospectively collected under IRB approval for each of the 25 patients who underwent definitive RT (median dose: 66 Gy). Sixty regions of interest (ROIs) were automatically identified in the non-cancerous lung tissue of each post-therapy scan. A radiologist compared post-therapy scan ROIs with pre-therapy scans and categorized each as containing no abnormality, mild abnormality, moderate abnormality, or severe abnormality. Twenty texture features that characterize gray-level intensity, region morphology, and gray-level distribution were calculated in post-therapy scan ROIs and compared with anatomically matched ROIs in the pre-therapy scan. Linear regression and receiver operating characteristic (ROC) analysis were used to compare the percent feature value change (ΔFV) between ROIs at each category of visible radiation damage. Most ROIs contained no (65%) or mild abnormality (30%). ROIs with moderate (3%) or severe (2%) abnormalities were observed in 9 patients. For 19 of 20 features, ΔFV was significantly different among severity levels. For 12 features, significant differences were observed at every level. Compared with regions with no abnormalities, ΔFV for these 12 features increased, on average, by 1.5%, 12%, and 30%, respectively, for mild, moderate, and severe abnormalitites. Area under the ROC curve was largest when comparing ΔFV in the highest severity level with the remaining three categories (mean AUC across features: 0.84). In conclusion, 19 features that characterized the severity of radiologic changes from pre-therapy scans were identified. These features may be used in future studies to quantify acute normal lung tissue damage

  6. Solar radiation measurements and their applications in climate research

    NASA Astrophysics Data System (ADS)

    Yin, Bangsheng

    Aerosols and clouds play important roles in the climate system through their radiative effects and their vital link in the hydrological cycle. Accurate measurements of aerosol and cloud optical and microphysical properties are crucial for the study of climate and climate change. This study develops/improves retrieval algorithms for aerosol single scattering albedo (SSA) and low liquid water path (LWP) cloud optical properties, evaluates a new spectrometer, and applies long-term measurements to establish climatology of aerosol and cloud optical properties. The following results were obtained. (1) The ratio of diffuse horizontal and direct normal fluxes measured from Multifilter Rotating Shadowband Radiometer (MFRSR) has been used to derive the aerosol SSA. Various issues have impacts on the accuracy of SSA retrieval, from measurements (e.g., calibration accuracy, cosine respond correction, and forward scattering correction) to input parameters and assumptions (e.g., asymmetry factor, Rayleigh scattering optical depth, and surface albedo). This study carefully analyzed these issues and extensively assessed their impacts on the retrieval accuracy. Furthermore, the retrievals of aerosol SSA from MFRSR are compared with independent measurements from co-located instruments. (2) The Thin-Cloud Rotating Shadowband Radiometer (TCRSR) has been used to derive simultaneously the cloud optical depth (COD) and cloud drop effective radius (DER), subsequently inferring the cloud liquid-water path (LWP). The evaluation of the TCRSR indicates that the error of radiometric calibration has limited impact on the cloud DER retrievals. However, the retrieval accuracy of cloud DER is sensitive to the uncertainties of background setting (e.g., aerosol loading and the existence of ice cloud) and the measured solar aureole shape. (3) A new high resolution oxygen A-band spectrometer (HABS) has been developed, which has the ability to measure both direct-beam and zenith diffuse solar radiation

  7. Space Photovoltaic Research and Technology 1983. High Efficiency, Radiation Damage, and Blanket Technology

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This three day conference, sixth in a series that began in 1974, was held at the NASA Lewis Research Center on October 18-20, 1983. The conference provided a forum for the discussion of space photovoltaic systems, their research status, and program goals. Papers were presented and workshops were held in a variety of technology areas, including basic cell research, advanced blanket technology, and radiation damage.

  8. Comparison of Radiation-Induced Bystander Effect in QU-DB Cells after Acute and Fractionated Irradiation: An In Vitro Study

    PubMed Central

    Soleymanifard, Shokouhozaman; Bahreyni Toossi, Mohammad Taghi; Kamran Samani, Roghayeh; Mohebbi, Shokoufeh

    2016-01-01

    Objective Radiation effects induced in non-irradiated cells are termed radiation-induced bystander effects (RIBE). The present study intends to examine the RIBE response of QU-DB bystander cells to first, second and third radiation fractions and compare their cumulative outcome with an equal, single acute dose. Materials and Methods This experimental study irradiated three groups of target cells for one, two and three times with60Co gamma rays. One hour after irradiation, we transferred their culture media to non-irradiated (bystander) cells. We used the cytokinesis block micronucleus assay to evaluate RIBE response in the bystander cells. The numbers of micronuclei generated in bystander cells were determined. Results RIBE response to single acute doses increased up to 4 Gy, then decreased, and finally at the 8 Gy dose disappeared. The second and third fractions induced RIBE in bystander cells, except when RIBE reached to the maximum level at the first fraction. We split the 4 Gy acute dose into two fractions, which decreased the RIBE response. However, fractionation of 6 Gy (into two fractions of 3 Gy or three fractions of 2 Gy) had no effect on RIBE response. When we split the 8 Gy acute dose into two fractions we observed RIBE, which had disappeared following the single 8 Gy dose. Conclusion The impact of dose fractionation on RIBE induced in QU-DB cells de- pended on the RIBE dose-response relationship. Where RIBE increased proportion- ally with the dose, fractionation reduced the RIBE response. In contrast, at high dos- es where RIBE decreased proportionally with the dose, fractionation either did not change RIBE (at 6 Gy) or increased it (at 8 Gy).

  9. Comparison of Radiation-Induced Bystander Effect in QU-DB Cells after Acute and Fractionated Irradiation: An In Vitro Study

    PubMed Central

    Soleymanifard, Shokouhozaman; Bahreyni Toossi, Mohammad Taghi; Kamran Samani, Roghayeh; Mohebbi, Shokoufeh

    2016-01-01

    Objective Radiation effects induced in non-irradiated cells are termed radiation-induced bystander effects (RIBE). The present study intends to examine the RIBE response of QU-DB bystander cells to first, second and third radiation fractions and compare their cumulative outcome with an equal, single acute dose. Materials and Methods This experimental study irradiated three groups of target cells for one, two and three times with60Co gamma rays. One hour after irradiation, we transferred their culture media to non-irradiated (bystander) cells. We used the cytokinesis block micronucleus assay to evaluate RIBE response in the bystander cells. The numbers of micronuclei generated in bystander cells were determined. Results RIBE response to single acute doses increased up to 4 Gy, then decreased, and finally at the 8 Gy dose disappeared. The second and third fractions induced RIBE in bystander cells, except when RIBE reached to the maximum level at the first fraction. We split the 4 Gy acute dose into two fractions, which decreased the RIBE response. However, fractionation of 6 Gy (into two fractions of 3 Gy or three fractions of 2 Gy) had no effect on RIBE response. When we split the 8 Gy acute dose into two fractions we observed RIBE, which had disappeared following the single 8 Gy dose. Conclusion The impact of dose fractionation on RIBE induced in QU-DB cells de- pended on the RIBE dose-response relationship. Where RIBE increased proportion- ally with the dose, fractionation reduced the RIBE response. In contrast, at high dos- es where RIBE decreased proportionally with the dose, fractionation either did not change RIBE (at 6 Gy) or increased it (at 8 Gy). PMID:27602316

  10. NASA Strategy to Safely Live and Work in the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis; Wu, Honglu; Corbin, Barbara; Sulzman, Frank; Kreneck, Sam

    2007-01-01

    This viewgraph document reviews the radiation environment that is a significant potential hazard to NASA's goals for space exploration, of living and working in space. NASA has initiated a Peer reviewed research program that is charged with arriving at an understanding of the space radiation problem. To this end NASA Space Radiation Laboratory (NSRL) was constructed to simulate the harsh cosmic and solar radiation found in space. Another piece of the work was to develop a risk modeling tool that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting risk of carcinogenesis, central nervous system damage, degenerative tissue disease, and acute radiation effects acute radiation effects.

  11. Representative benthic bioindicator organisms for use in radiation effects research: Culture of Neanthes arenaceodentata (Polychaeta)

    SciTech Connect

    Harrison, F.L.; Knezovich, J.P.; Martinelli, R.E.

    1992-09-01

    The purpose of this document is to present a comprehensive synthesis of information pertaining to the selection and maintenance of bioindicator organisms for use in radiation-effects research. The focus of this report is on the benthic polychaete, Neanthes arenaceodentata, a species that has been used successfully at the Lawrence Livermore National Laboratory (LLNL) and other institutions to define the impacts of radiation and chemical toxicants on aquatic organisms. In this document, the authors provide a rationale for the selection of this organism, a description of its reproductive biology, and a description of the conditions that are required for the maintenance and rearing of the organism for use in toxicological research.

  12. Broadcasting in the airways: the fifth anniversary of the Radiation Research Podcast (1).

    PubMed

    Shaffer, Vered Anzenberg; Boerma, Marjan; Buonanno, Manuela; Costes, Sylvain; Criswell, Tracy; Gonon, Geraldine; Pandey, Badri N; Pinto, Massimo; Rockwell, Sara

    2012-07-01

    The Radiation Research Podcast was funded just over five years ago by a few Radiation Research Society members. To date, the volunteers running the podcast have produced and published online, open access, over 70 audio interviews. The program includes monthly interviews with authors of articles, award winners, and other recordings at conferences, such as round table discussions. We here present an overview of the podcast, from its creation to its fifth birthday, to explain how it is working, how the featured interviews are scheduled, and what future directions are taken. So, stay tuned!

  13. Broadcasting in the airways: the fifth anniversary of the Radiation Research Podcast (1).

    PubMed

    Shaffer, Vered Anzenberg; Boerma, Marjan; Buonanno, Manuela; Costes, Sylvain; Criswell, Tracy; Gonon, Geraldine; Pandey, Badri N; Pinto, Massimo; Rockwell, Sara

    2012-07-01

    The Radiation Research Podcast was funded just over five years ago by a few Radiation Research Society members. To date, the volunteers running the podcast have produced and published online, open access, over 70 audio interviews. The program includes monthly interviews with authors of articles, award winners, and other recordings at conferences, such as round table discussions. We here present an overview of the podcast, from its creation to its fifth birthday, to explain how it is working, how the featured interviews are scheduled, and what future directions are taken. So, stay tuned! PMID:22686863

  14. Fidelity in Animal Modeling: Prerequisite for a Mechanistic Research Front Relevant to the Inflammatory Incompetence of Acute Pediatric Malnutrition

    PubMed Central

    Woodward, Bill

    2016-01-01

    Inflammatory incompetence is characteristic of acute pediatric protein-energy malnutrition, but its underlying mechanisms remain obscure. Perhaps substantially because the research front lacks the driving force of a scholarly unifying hypothesis, it is adrift and research activity is declining. A body of animal-based research points to a unifying paradigm, the Tolerance Model, with some potential to offer coherence and a mechanistic impetus to the field. However, reasonable skepticism prevails regarding the relevance of animal models of acute pediatric malnutrition; consequently, the fundamental contributions of the animal-based component of this research front are largely overlooked. Design-related modifications to improve the relevance of animal modeling in this research front include, most notably, prioritizing essential features of pediatric malnutrition pathology rather than dietary minutiae specific to infants and children, selecting windows of experimental animal development that correspond to targeted stages of pediatric immunological ontogeny, and controlling for ontogeny-related confounders. In addition, important opportunities are presented by newer tools including the immunologically humanized mouse and outbred stocks exhibiting a magnitude of genetic heterogeneity comparable to that of human populations. Sound animal modeling is within our grasp to stimulate and support a mechanistic research front relevant to the immunological problems that accompany acute pediatric malnutrition. PMID:27077845

  15. Principals Of Radiation Toxicology: Important Aspects.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava; Jones, Jeffrey

    . 1990, 2012] Moderate and high doses of radiation induces necrosis of radiosensitive cells with the subsequent formation of radiation toxins and their induced acute inflammatory processes. Radiation necrosis is the most substantial and most severe form of radiation induced injury, and when widespread, has grave therapeutic implications. [D. Popov et al. 1990, 2012,Claudio A. et al. 2002, Robertson J. et al. 2002, ] Relatively small doses of Radiation Toxins induce apoptosis and high doses of Radiation Toxins induce necrosis. [Rastogi P. et al. 2009, D. Popov et al. 1990, 2012,] Threshold of Toxic Effects occurs and can be defined. [D. Popov et al. 2012, ] Radiation Toxins affects Somatic cells and Germ Cells. Radiation Toxins can induce teratogenic processes. Specific Toxicity of Radiation Toxins can affects developing fetus. Material and Methods, Results: http://www.intechopen.com/books/current-topics-in-ionizing-radiation-research/radiation-toxins-molecular-mechanisms-of-toxicity-and-radiomimetic-properties- Conclusion: Radiation is a physical agent - induce activation of some secretory proteins with high enzymatic activity. This proteins called as Radiation Toxins can produce specific for radiation biological and toxic effects after administration to radiation naive mammals. [V. Maliev et al. 2007, D. Popov et al. 1990, 2012] Radiation Toxins are teratogenic and oncogenic. Radiation Toxins effects depend on Administered Dose and Radiation effects depend on Exposure Dose and Absorbed Dose. The levels of Radiation Toxins correlates with Radiation Exposure.

  16. Atmospheric Radiation Measurement Climate Research Facility Annual Report 2006

    SciTech Connect

    LR Roeder

    2005-11-30

    This annual report describes the purpose and structure of the ARM Climate Research Facility and ARM Science programs and presents key accomplishments in 2006. Noteworthy scientific and infrastructure accomplishments in 2006 include: • Collaborating with the Australian Bureau of Meteorology to lead the Tropical Warm Pool-International Cloud Experiment, a major international field campaign held in Darwin, Australia • Successfully deploying the ARM Mobile Facility in Niger, Africa • Developing the new ARM Aerial Vehicles Program (AVP) to provide airborne measurements • Publishing a new finding on the impacts of aerosols on surface energy budget in polar latitudes • Mitigating a long-standing double-Intertropical Convergence Zone problem in climate models using ARM data and a new cumulus parameterization scheme.

  17. First Author Research Productivity of United States Radiation Oncology Residents: 2002-2007

    SciTech Connect

    Morgan, Peter B. Sopka, Dennis M.; Kathpal, Madeera; Haynes, Jeffrey C.; Lally, Brian E.; Li, Linna

    2009-08-01

    Purpose: Participation in investigative research is a required element of radiation oncology residency in the United States. Our purpose was to quantify the first author research productivity of recent U.S. radiation oncology residents during their residency training. Methods and Materials: We performed a computer-based search of PubMed and a manual review of the proceedings of the annual meetings of the American Society for Therapeutic Radiology and Oncology to identify all publications and presented abstracts with a radiation oncology resident as the first author between 2002 and 2007. Results: Of 1,098 residents trained at 81 programs, 50% published {>=}1 article (range, 0-9), and 53% presented {>=}1 abstract (range, 0-3) at an American Society for Therapeutic Radiology and Oncology annual meeting. The national average was 1.01 articles published and 1.09 abstracts presented per resident during 4 years of training. Of 678 articles published, 82% represented original research and 18% were review articles. Residents contributed 15% of all abstracts at American Society for Therapeutic Radiology and Oncology annual meetings, and the resident contribution to orally presented abstracts increased from 12% to 21% during the study period. Individuals training at programs with >6 residents produced roughly twice as many articles and abstracts. Holman Research Pathway residents produced double the national average of articles and abstracts. Conclusion: Although variability exists among individuals and among training programs, U.S. radiation oncology residents routinely participate in investigative research suitable for publication or presentation at a scientific meeting. These data provide national research benchmarks that can assist current and future radiation oncology residents and training programs in their self-assessment and research planning.

  18. Space radiation research in Europe: flight experiments and ground-based studies.

    PubMed

    Durante, M; Reitz, G; Angerer, O

    2010-08-01

    Exposure to space radiation has long been acknowledged as a potential showstopper for long-duration manned interplanetary missions. In an effort to gain more information on space radiation risk and to develop countermeasures, NASA initiated several years ago a Space Radiation Health Program, which is currently supporting biological experiments performed at the Brookhaven National Laboratory. Accelerator-based radiobiology research in the field of space radiation research is also under way in Russia and Japan. The European Space Agency (ESA) supports research in the field in three main directions: spaceflight experiments on the International Space Station; modeling and simulations of the space radiation environment and transport; and, recently, ground-based radiobiology experiments exploiting the high-energy SIS18 synchrotron at GSI in Germany (IBER program). Several experiments are currently under way within IBER, and so far, beams of C and Fe-ions at energies between 11 and 1,000 MeV/n have been used in cell and tissue targets. PMID:20532544

  19. Radiation

    NASA Video Gallery

    Outside the protective cocoon of Earth's atmosphere, the universe is full of harmful radiation. Astronauts who live and work in space are exposed not only to ultraviolet rays but also to space radi...

  20. Facilitators and barriers to doing workplace mental health research: Case study of acute psychological trauma in a public transit system.

    PubMed

    Links, Paul S; Bender, Ash; Eynan, Rahel; O'Grady, John; Shah, Ravi

    2016-03-10

    The Acute Psychological Trauma (APT) Study was a collaboration between an acute care hospital, a specialized multidisciplinary program designed to meet the mental health needs of injured workers, and a large urban public transit system. The overall purpose was to evaluate a Best Practices Intervention (BPI) for employees affected by acute psychological trauma compared to a Treatment as Usual (TAU) group. The specific purpose is to discuss facilitators and barriers that were recognized in implementing and carrying out mental health research in a workplace setting. Over the course of the APT study, a joint implementation committee was responsible for day-to-day study operations and made regular observations on the facilitators and barriers that arose throughout the study. The facilitators to this study included the longstanding relationships among the partners, increased recognition for the need of mental health research in the workplace, and the existence of a community advisory committee. The significant barriers to doing this study of mental health research in the workplace included differences in organizational culture, inconsistent union support, co-interventions, and stigma. Researchers and funding agencies need to be flexible and provide additional resources in order to overcome the barriers that can exist doing workplace mental health research.

  1. Facilitators and barriers to doing workplace mental health research: Case study of acute psychological trauma in a public transit system.

    PubMed

    Links, Paul S; Bender, Ash; Eynan, Rahel; O'Grady, John; Shah, Ravi

    2016-03-10

    The Acute Psychological Trauma (APT) Study was a collaboration between an acute care hospital, a specialized multidisciplinary program designed to meet the mental health needs of injured workers, and a large urban public transit system. The overall purpose was to evaluate a Best Practices Intervention (BPI) for employees affected by acute psychological trauma compared to a Treatment as Usual (TAU) group. The specific purpose is to discuss facilitators and barriers that were recognized in implementing and carrying out mental health research in a workplace setting. Over the course of the APT study, a joint implementation committee was responsible for day-to-day study operations and made regular observations on the facilitators and barriers that arose throughout the study. The facilitators to this study included the longstanding relationships among the partners, increased recognition for the need of mental health research in the workplace, and the existence of a community advisory committee. The significant barriers to doing this study of mental health research in the workplace included differences in organizational culture, inconsistent union support, co-interventions, and stigma. Researchers and funding agencies need to be flexible and provide additional resources in order to overcome the barriers that can exist doing workplace mental health research. PMID:26967029

  2. [Cohort studies of the atomic bomb survivors at the Radiation Effects Research Foundation].

    PubMed

    Ozasa, Kotaro

    2012-03-01

    The Radiation Effects Research Foundation has been evaluating the risk of atomic bomb radiation for various diseases since the beginning of its former organization, the Atomic Bomb Casualty Commission. Cohorts of atomic-bomb survivors, in-utero survivors, and survivors' offspring have been followed up. The risk of all solid cancers at 1 Gy was estimated as ERR = 0.47 and EAR = 52/10,000 person-years for people who were exposed at 30 years of age and had reached 70 years of age, based on the cancer incidence during 1958-1998. The risk seemed to be increased in the in-utero survivors, but was rather lower than the risk for the survivors exposed at a young age. Effects on the offspring of survivors have not been shown to be significant. Continuing the research is important in order to more accurately estimate and understand radiation-induced health effects.

  3. [Cohort studies of the atomic bomb survivors at the Radiation Effects Research Foundation].

    PubMed

    Ozasa, Kotaro

    2012-03-01

    The Radiation Effects Research Foundation has been evaluating the risk of atomic bomb radiation for various diseases since the beginning of its former organization, the Atomic Bomb Casualty Commission. Cohorts of atomic-bomb survivors, in-utero survivors, and survivors' offspring have been followed up. The risk of all solid cancers at 1 Gy was estimated as ERR = 0.47 and EAR = 52/10,000 person-years for people who were exposed at 30 years of age and had reached 70 years of age, based on the cancer incidence during 1958-1998. The risk seemed to be increased in the in-utero survivors, but was rather lower than the risk for the survivors exposed at a young age. Effects on the offspring of survivors have not been shown to be significant. Continuing the research is important in order to more accurately estimate and understand radiation-induced health effects. PMID:22514915

  4. Review of experimental animal models of biliary acute pancreatitis and recent advances in basic research.

    PubMed

    Wan, Mei H; Huang, Wei; Latawiec, Diane; Jiang, Kun; Booth, David M; Elliott, Victoria; Mukherjee, Rajarshi; Xia, Qing

    2012-02-01

    Acute pancreatitis (AP) is a formidable disease, which, in severe forms, causes significant mortality. Biliary AP, or gallstone obstruction-associated AP, accounts for 30-50% of all clinical cases of AP. In biliary AP, pancreatic acinar cell (PAC) death (the initiating event in the disease) is believed to occur as acinar cells make contact with bile salts when bile refluxes into the pancreatic duct. Recent advances have unveiled an important receptor responsible for the major function of bile acids on acinar cells, namely, the cell surface G-protein-coupled bile acid receptor-1 (Gpbar1), located in the apical pole of the PAC. High concentrations of bile acids induce cytosolic Ca(2+) overload and inhibit mitochondrial adenosine triphosphate (ATP) production, resulting in cell injury to both PACs and pancreatic ductal epithelial cells. Various bile salts are employed to induce experimental AP, most commonly sodium taurocholate. Recent characterization of taurolithocholic acid 3-sulphate on PACs has led researchers to focus on this bile salt because of its potency in causing acinar cell injury at relatively low, sub-detergent concentrations, which strongly implicates action via the receptor Gpbar1. Improved surgical techniques have enabled the infusion of bile salts into the pancreatic duct to induce experimental biliary AP in mice, which allows the use of these transgenic animals as powerful tools. This review summarizes recent findings using transgenic mice in experimental biliary AP. PMID:22221567

  5. 2012 RADIATION CHEMISTRY GORDON RESEARCH CONFERENCE AND GORDON RESEARCH SEMINAR, JULY 28, - AUGUST 3, 2012

    SciTech Connect

    y LaVerne

    2012-08-03

    The overarching objective of this conference is to catalyze the interchange of new ideas and recent discoveries within the basic radiation sciences of physics, chemistry, and biology, and to facilitate translating this knowledge to applications in medicine and industry. The 9 topics for the GRC are: "œFrom Energy Absorption to Disease", "œBiodosimetry after a Radiological Incident," "œTrack Structure and Low Energy Electrons," "Free Radical Processes in DNA and Proteins," "Irradiated Polymers for Industrial/ Medical Applications," "Space Radiation Chemistry/Biology," "Nuclear Power and Waste Management," "Nanoparticles and Surface Interfaces", and the "Young Investigator" session.

  6. Regulatory T Cells Contribute to the Inhibition of Radiation-Induced Acute Lung Inflammation via Bee Venom Phospholipase A2 in Mice

    PubMed Central

    Shin, Dasom; Lee, Gihyun; Sohn, Sung-Hwa; Park, Soojin; Jung, Kyung-Hwa; Lee, Ji Min; Yang, Jieun; Cho, Jaeho; Bae, Hyunsu

    2016-01-01

    Bee venom has long been used to treat various inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. Previously, we reported that bee venom phospholipase A2 (bvPLA2) has an anti-inflammatory effect through the induction of regulatory T cells. Radiotherapy is a common anti-cancer method, but often causes adverse effects, such as inflammation. This study was conducted to evaluate the protective effects of bvPLA2 in radiation-induced acute lung inflammation. Mice were focally irradiated with 75 Gy of X-rays in the lung and administered bvPLA2 six times after radiation. To evaluate the level of inflammation, the number of immune cells, mRNA level of inflammatory cytokine, and histological changes in the lung were measured. BvPLA2 treatment reduced the accumulation of immune cells, such as macrophages, neutrophils, lymphocytes, and eosinophils. In addition, bvPLA2 treatment decreased inflammasome-, chemokine-, cytokine- and fibrosis-related genes’ mRNA expression. The histological results also demonstrated the attenuating effect of bvPLA2 on radiation-induced lung inflammation. Furthermore, regulatory T cell depletion abolished the therapeutic effects of bvPLA2 in radiation-induced pneumonitis, implicating the anti-inflammatory effects of bvPLA2 are dependent upon regulatory T cells. These results support the therapeutic potential of bvPLA2 in radiation pneumonitis and fibrosis treatments. PMID:27144583

  7. Risk factors of radiation-induced acute esophagitis in non-small cell lung cancer patients treated with concomitant chemoradiotherapy

    PubMed Central

    2014-01-01

    Background To analyze the clinical and dosimetric risk factors of acute esophagitis (AE) in non-small-cell lung cancer (NSCLC) patients treated with concomitant chemoradiotherapy. Methods Seventy-six NSCLC patients treated with concomitant chemoradiotherapy were retrospectively analyzed. Forty-one patients received concomitant chemoradiotherapy with vinorelbine/cisplatin (VC), 35 with docetaxel/cisplatin (DC). AE was graded according to criteria of the Radiation Therapy Oncology Group (RTOG). The following clinical and dosimetric parameters were analyzed: gender, age, clinical stage, Karnofsky performance status (KPS), pretreatment weight loss, concomitant chemotherapy agents (CCA) (VC vs. DC), percentage of esophagus volume treated to ≥20 (V20), ≥30 (V30), ≥40 (V40), ≥50 (V50) and ≥60 Gy (V60), and the maximum (Dmax) and mean doses (Dmean) delivered to esophagus. Univariate and multivariate logistic regression analysis were used to test the association between the different factors and AE. Results Seventy patients developed AE (Grade 1, 19 patients; Grade 2, 36 patients; and Grade 3, 15 patients). By multivariate logistic regression analysis, V40 was the only statistically significant factor associated with Grade ≥2 AE (p<0.001, OR = 1.159). A V40 of <23% had a 33.3% (10/30) risk of Grade ≥2 AE, which increased to 89.1% (41/46) with a V40 of ≥23% (p<0.001). CCA (p =0.01; OR = 9.686) and V50 (p<0.001; OR = 1.122) were most significantly correlated with grade 3 AE. A V50 of <26.5% had a 6.7% (3/45) risk of Grade 3 AE, which increased to 38.7% (12/31) with a V50 of ≥26.5% (p = 0.001). On the linear regression analysis, V50 and CCA were significant independent factors affecting AE duration. Patients who received concomitant chemotherapy with VC had a decreased risk of grade 3 AE and shorter duration compared with DC. Conclusions Concomitant chemotherapy agents have potential influence on AE. Concomitant chemotherapy with VC led to

  8. Radiation cataract.

    PubMed

    Kleiman, N J

    2012-01-01

    Until very recently, ocular exposure guidelines were based on the assumption that radiation cataract is a deterministic event requiring threshold doses generally greater than 2 Gy. This view was, in part, based on older studies which generally had short follow-up periods, failed to take into account increasing latency as dose decreased, had relatively few subjects with doses below a few Gy, and were not designed to detect early lens changes. Newer findings, including those in populations exposed to much lower radiation doses and in subjects as diverse as astronauts, medical workers, atomic bomb survivors, accidentally exposed individuals, and those undergoing diagnostic or radiotherapeutic procedures, strongly suggest dose-related lens opacification at significantly lower doses. These observations resulted in a recent re-evaluation of current lens occupational exposure guidelines, and a proposed lowering of the presumptive radiation cataract threshold to 0.5 Gy/year and the occupational lens exposure limit to 20 mSv/year, regardless of whether received as an acute, protracted, or chronic exposure. Experimental animal studies support these conclusions and suggest a role for genotoxicity in the development of radiation cataract. Recent findings of a low or even zero threshold for radiation-induced lens opacification are likely to influence current research efforts and directions concerning the cellular and molecular mechanisms underlying this pathology. Furthermore, new guidelines are likely to have significant implications for occupational and/or accidental exposure, and the need for occupational eye protection (e.g. in fields such as interventional medicine).

  9. Reconstruction of the Radiation Emergency Medical System From the Acute to the Sub-acute Phases After the Fukushima Nuclear Power Plant Crisis.

    PubMed

    Ojino, Mayo; Ishii, Masami

    2014-02-01

    The radiation emergency medical system in Japan ceased to function as a result of the accident at the Fukushima Daiichi Nuclear Power Plant, which has commonly become known as the "Fukushima Accident." In this paper, we review the reconstruction processes of the radiation emergency medical system in order of events and examine the ongoing challenges to overcoming deficiencies and reinforcing the system by reviewing relevant literature, including the official documents of the investigation committees of the National Diet of Japan, the Japanese government, and the Tokyo Electric Power Company, as well as technical papers written by the doctors involved in radiation emergency medical activities in Fukushima. Our review has revealed that the reconstruction was achieved in 6 stages from March 11 to July 1, 2011: (1) Re-establishment of an off-site center (March 13), (2) Re-establishment of a secondary radiation emergency hospital (March 14), (3) Reconstruction of the initial response system for radiation emergency care (April 2), (4) Reinforcement of the off-site center and stationing of disaster medical advisors at the off-site center (April 4), (5) Reinforcement of the medical care system and an increase in the number of hospitals for non-contaminated patients (From April 2 to June 23), and (6) Enhancement of the medical care system in the Fukushima Nuclear Power Plant and the construction of a new medical care system, involving both industrial medicine and emergency medicine (July 1). Medical resources such as voluntary efforts, academic societies, a local community medical system and university hospitals involved in medical care activities on 6 stages originally had not planned. In the future, radiation emergency medical systems should be evaluated with these 6 stages as a basis, in order to reinforce and enrich both the existing and backup systems so that minimal harm will come to nuclear power plant workers or evacuees and that they will receive proper care. This

  10. Particle radiation transport and effects models from research to space weather operations

    NASA Astrophysics Data System (ADS)

    Santin, Giovanni; Nieminen, Petteri; Rivera, Angela; Ibarmia, Sergio; Truscott, Pete; Lei, Fan; Desorgher, Laurent; Ivanchenko, Vladimir; Kruglanski, Michel; Messios, Neophytos

    Assessment of risk from potential radiation-induced effects to space systems requires knowledge of both the conditions of the radiation environment and of the impact of radiation on sensi-tive spacecraft elements. During sensitivity analyses, test data are complemented by models to predict how external radiation fields are transported and modified in spacecraft materials. Radiation transport is still itself a subject of research and models are continuously improved to describe the physical interactions that take place when particles pass through shielding materi-als or hit electronic systems or astronauts, sometimes down to nanometre-scale interactions of single particles with deep sub-micron technologies or DNA structures. In recent years, though, such radiation transport models are transitioning from being a research subject by itself, to being widely used in the space engineering domain and finally being directly applied in the context of operation of space weather services. A significant "research to operations" (R2O) case is offered by Geant4, an open source toolkit initially developed and used in the context of fundamental research in high energy physics. Geant4 is also being used in the space domain, e.g. for modelling detector responses in science payloads, but also for studying the radiation environment itself, with subjects ranging from cosmic rays, to solar energetic particles in the heliosphere, to geomagnetic shielding. Geant4-based tools are now becoming more and more integrated in spacecraft design procedures, also through user friendly interfaces such as SPEN-VIS. Some examples are given by MULASSIS, offering multi-layered shielding analysis capa-bilities in realistic spacecraft materials, or GEMAT, focused on micro-dosimetry in electronics, or PLANETOCOSMICS, describing the interaction of the space environment with planetary magneto-and atmospheres, or GRAS, providing a modular and easy to use interface to various analysis types in simple or

  11. Gordon Research Conference on Radiation & Climate in 2009, July 5 -10

    SciTech Connect

    Quiang Fu

    2009-07-10

    The 2009 Gordon Research Conference on Radiation and Climate will present cutting-edge research on the outstanding issues in global climate change with focus on the radiative forcing and sensitivity of the climate system and associated physical processes. The Conference will feature a wide range of topics, including grand challenges in radiation and climate, radiative forcing, climate feedbacks, cloud processes in climate system, hydrological cycle in changing climate, absorbing aerosols and Asian monsoon, recent climate changes, and geo-engineering. The invited speakers will present the recent most important advances and future challenges in these areas. The Conference will bring together a collection of leading investigators who are at the forefront of their field, and will provide opportunities for scientists especially junior scientists and graduate students to present their work in poster format and exchange ideas with leaders in the field. The collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings, provides an avenue for scientists from different disciplines to brainstorm and promotes cross-disciplinary collaborations in the various research areas represented.

  12. Record of the first meeting of the Joint Coordinating Committee for Radiation Effects Research

    SciTech Connect

    1994-12-31

    This conference was held July 27--28, 1994 in Moscow. The main purpose of the meeting was to implement an agreement between the Russian Federation and the US to facilitate cooperative research on health and environmental effects of radiation. It was hoped that the exchange of information would provide a good basis for employing new scientific knowledge to implement practical measures to facilitate the rehabilitation of radioactively contaminated areas and to treat radiation illnesses. The Russian Federation suggested five main scientific areas for cooperative research. They will prepare proposals on 4--5 projects within the scope of the scientific areas discussed and forward them to the US delegation for consideration of the possibility to facilitate joint research.

  13. BREN Tower: A Monument to the Material Culture of Radiation Dosimetry Research

    SciTech Connect

    Susan Edwards

    2008-05-30

    With a height of more than 1,500 feet, the BREN (Bare Reactor Experiment, Nevada) Tower dominates the surrounding desert landscape of the Nevada Test Site. Associated with the nuclear research and atmospheric testing programs carried out during the 1950s and 1960s, the tower was a vital component in a series of experiments aimed at characterizing radiation fields from nuclear detonations. Research programs conducted at the tower provided the data for the baseline dosimetry studies crucial to determining the radiation dose rates received by the atomic bomb survivors of Hiroshima and Nagasaki, Japan. Today, BREN Tower stands as a monument to early dosimetry research and one of the legacies of the Cold War.

  14. Comparative effectiveness research on patients with acute ischemic stroke using Markov decision processes

    PubMed Central

    2012-01-01

    Background Several methodological issues with non-randomized comparative clinical studies have been raised, one of which is whether the methods used can adequately identify uncertainties that evolve dynamically with time in real-world systems. The objective of this study is to compare the effectiveness of different combinations of Traditional Chinese Medicine (TCM) treatments and combinations of TCM and Western medicine interventions in patients with acute ischemic stroke (AIS) by using Markov decision process (MDP) theory. MDP theory appears to be a promising new method for use in comparative effectiveness research. Methods The electronic health records (EHR) of patients with AIS hospitalized at the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine between May 2005 and July 2008 were collected. Each record was portioned into two "state-action-reward" stages divided by three time points: the first, third, and last day of hospital stay. We used the well-developed optimality technique in MDP theory with the finite horizon criterion to make the dynamic comparison of different treatment combinations. Results A total of 1504 records with a primary diagnosis of AIS were identified. Only states with more than 10 (including 10) patients' information were included, which gave 960 records to be enrolled in the MDP model. Optimal combinations were obtained for 30 types of patient condition. Conclusion MDP theory makes it possible to dynamically compare the effectiveness of different combinations of treatments. However, the optimal interventions obtained by the MDP theory here require further validation in clinical practice. Further exploratory studies with MDP theory in other areas in which complex interventions are common would be worthwhile. PMID:22400712

  15. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2012

    SciTech Connect

    Voyles, JW

    2013-01-11

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  16. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2012

    SciTech Connect

    Voyles, JW

    2012-10-10

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  17. Reconstruction of the Radiation Emergency Medical System From the Acute to the Sub-acute Phases After the Fukushima Nuclear Power Plant Crisis.

    PubMed

    Ojino, Mayo; Ishii, Masami

    2014-02-01

    The radiation emergency medical system in Japan ceased to function as a result of the accident at the Fukushima Daiichi Nuclear Power Plant, which has commonly become known as the "Fukushima Accident." In this paper, we review the reconstruction processes of the radiation emergency medical system in order of events and examine the ongoing challenges to overcoming deficiencies and reinforcing the system by reviewing relevant literature, including the official documents of the investigation committees of the National Diet of Japan, the Japanese government, and the Tokyo Electric Power Company, as well as technical papers written by the doctors involved in radiation emergency medical activities in Fukushima. Our review has revealed that the reconstruction was achieved in 6 stages from March 11 to July 1, 2011: (1) Re-establishment of an off-site center (March 13), (2) Re-establishment of a secondary radiation emergency hospital (March 14), (3) Reconstruction of the initial response system for radiation emergency care (April 2), (4) Reinforcement of the off-site center and stationing of disaster medical advisors at the off-site center (April 4), (5) Reinforcement of the medical care system and an increase in the number of hospitals for non-contaminated patients (From April 2 to June 23), and (6) Enhancement of the medical care system in the Fukushima Nuclear Power Plant and the construction of a new medical care system, involving both industrial medicine and emergency medicine (July 1). Medical resources such as voluntary efforts, academic societies, a local community medical system and university hospitals involved in medical care activities on 6 stages originally had not planned. In the future, radiation emergency medical systems should be evaluated with these 6 stages as a basis, in order to reinforce and enrich both the existing and backup systems so that minimal harm will come to nuclear power plant workers or evacuees and that they will receive proper care. This

  18. Reconstruction of the Radiation Emergency Medical System From the Acute to the Sub-acute Phases After the Fukushima Nuclear Power Plant Crisis

    PubMed Central

    OJINO, Mayo; ISHII, Masami

    2014-01-01

    The radiation emergency medical system in Japan ceased to function as a result of the accident at the Fukushima Daiichi Nuclear Power Plant, which has commonly become known as the “Fukushima Accident.” In this paper, we review the reconstruction processes of the radiation emergency medical system in order of events and examine the ongoing challenges to overcoming deficiencies and reinforcing the system by reviewing relevant literature, including the official documents of the investigation committees of the National Diet of Japan, the Japanese government, and the Tokyo Electric Power Company, as well as technical papers written by the doctors involved in radiation emergency medical activities in Fukushima. Our review has revealed that the reconstruction was achieved in 6 stages from March 11 to July 1, 2011: (1) Re-establishment of an off-site center (March 13), (2) Re-establishment of a secondary radiation emergency hospital (March 14), (3) Reconstruction of the initial response system for radiation emergency care (April 2), (4) Reinforcement of the off-site center and stationing of disaster medical advisors at the off-site center (April 4), (5) Reinforcement of the medical care system and an increase in the number of hospitals for non-contaminated patients (From April 2 to June 23), and (6) Enhancement of the medical care system in the Fukushima Nuclear Power Plant and the construction of a new medical care system, involving both industrial medicine and emergency medicine (July 1). Medical resources such as voluntary efforts, academic societies, a local community medical system and university hospitals involved in medical care activities on 6 stages originally had not planned. In the future, radiation emergency medical systems should be evaluated with these 6 stages as a basis, in order to reinforce and enrich both the existing and backup systems so that minimal harm will come to nuclear power plant workers or evacuees and that they will receive proper care

  19. Performance tuning Weather Research and Forecasting (WRF) Goddard longwave radiative transfer scheme on Intel Xeon Phi

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2015-10-01

    Next-generation mesoscale numerical weather prediction system, the Weather Research and Forecasting (WRF) model, is a designed for dual use for forecasting and research. WRF offers multiple physics options that can be combined in any way. One of the physics options is radiance computation. The major source for energy for the earth's climate is solar radiation. Thus, it is imperative to accurately model horizontal and vertical distribution of the heating. Goddard solar radiative transfer model includes the absorption duo to water vapor,ozone, ozygen, carbon dioxide, clouds and aerosols. The model computes the interactions among the absorption and scattering by clouds, aerosols, molecules and surface. Finally, fluxes are integrated over the entire longwave spectrum.In this paper, we present our results of optimizing the Goddard longwave radiative transfer scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The optimizations improved the performance of the original Goddard longwave radiative transfer scheme on Xeon Phi 7120P by a factor of 2.2x. Furthermore, the same optimizations improved the performance of the Goddard longwave radiative transfer scheme on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 2.1x compared to the original Goddard longwave radiative transfer scheme code.

  20. Research on infrared radiation characteristics of Pyromark1200 high-temperature coating

    NASA Astrophysics Data System (ADS)

    Song, Xuyao; Huan, Kewei; Dong, Wei; Wang, Jinghui; Zang, Yanzhe; Shi, Xiaoguang

    2014-11-01

    Pyromark 1200 (Tempil Co, USA), which is a type of high-temperature high-emissivity coating, is silicon-based with good thermal radiation performance. Its stably working condition is at the temperature range 589~922 K thus a wide range of applications in industrial, scientific research, aviation, aerospace and other fields. Infrared emissivity is one of the most important factors in infrared radiation characteristics. Data on infrared spectral emissivity of Pyromark 1200 is in shortage, as well as the reports on its infrared radiation characteristics affected by its spray painting process, microstructure and thermal process. The results of this research show that: (1) The coating film critical thickness on the metal base is 10μm according to comparison among different types of spray painting process, coating film thickness, microstructure, which would influence the infrared radiation characteristics of Pyromark 1200 coating. The infrared spectral emissivity will attenuate when the coating film thickness is lower or much higher than that. (2) Through measurements, the normal infrared radiation characteristics is analyzed within the range at the temperature range 573~873 K under normal atmospheric conditions, and the total infrared spectral emissivity of Pyromark 1200 coating is higher than 0.93 in the 3~14 μm wavelength range. (3) The result of 72-hour aging test at the temperature 673 K which studied the effect of thermal processes on the infrared radiation characteristics of the coating shows that the infrared spectral emissivity variation range is approximately 0.01 indicating that Pyromark 1200 coating is with good stability. Compared with Nextel Velvet Coating (N-V-C) which is widely used in optics field, Pyromark 1200 high-temperature coating has a higher applicable temperature and is more suitable for spraying on the material surface which is in long-term operation under high temperature work conditions and requires high infrared spectral emissivity.

  1. Offshore Radiation Observations for Climate Research at the CERES Ocean Validation Experiment

    NASA Technical Reports Server (NTRS)

    Rutledge, Charles K.; Schuster, Gregory L.; Charlock, Thomas P.; Denn, Frederick M.; Smith, William L., Jr.; Fabbri, Bryan E.; Madigan, James J., Jr.; Knapp, Robert J.

    2006-01-01

    When radiometers on a satellite are pointed towards the planet with the goal of understanding a phenomenon quantitatively, rather than just creating a pleasing image, the task at hand is often problematic. The signal at the detector can be affected by scattering, absorption, and emission; and these can be due to atmospheric constituents (gases, clouds, and aerosols), the earth's surface, and subsurface features. When targeting surface phenomena, the remote sensing algorithm needs to account for the radiation associated with the atmospheric constituents. Likewise, one needs to correct for the radiation leaving the surface, when atmospheric phenomena are of interest. Rigorous validation of such remote sensing products is a real challenge. In visible and near infrared wavelengths, the jumble of effects on atmospheric radiation are best accomplished over dark surfaces with fairly uniform reflective properties (spatial homogeneity) in the satellite instrument's field of view (FOV). The ocean's surface meets this criteria; land surfaces - which are brighter, more spatially inhomogeneous, and more changeable with time - generally do not. NASA's Clouds and the Earth's Radiant Energy System (CERES) project has used this backdrop to establish a radiation monitoring site in Virginia's coastal Atlantic Ocean. The project, called the CERES Ocean Validation Experiment (COVE), is located on a rigid ocean platform allowing the accurate measurement of radiation parameters that require precise leveling and pointing unavailable from ships or buoys. The COVE site is an optimal location for verifying radiative transfer models and remote sensing algorithms used in climate research; because of the platform's small size, there are no island wake effects; and suites of sensors can be simultaneously trained both on the sky and directly on ocean itself. This paper describes the site, the types of measurements made, multiple years of atmospheric and ocean surface radiation observations, and

  2. A Theoretical Framework for Utilizing Long-Term Measurements of Radiation and Clouds for Solar Energy Research

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Xie, Y.

    2015-12-01

    One of the greatest challenges facing solar energy research is accurately predicting global horizontal irradiance (GHI) for photovoltaic (PV) modules and direct normal irradiance (DNI) for concentrated solar power (CSP) plants at the surface with a high temporal resolution. Addressing this solar energy challenge is tied ultimately to the quantitative relationship between the direct, diffuse and total radiation reaching the surface and clouds in the atmosphere, which remains elusive. Here we will first introduce a theoretical framework that relates DNI and GHI to cloud fraction and cloud albedo through two dimensionless numbers: the relative cloud radiative forcing for the direct radiation (defined as the difference between the clear sky and all sky direct downwelling radiative fluxes normalized by the clear sky direct downwelling radiative fluxes) is primarily determined by cloud fraction; the ratio of the relative cloud radiative forcing for the total downwelling radiation to the relative cloud radiative forcing for the direct radiation is primarily determined by cloud albedo. We then use decade-long measurements of partitioned radiation and cloud properties at the ARM sites to validate the theoretical relationships between the two dimensionless radiation-based parameters and cloud properties. We will also explore the potentials and challenges of using the relationships between cloud properties and radiation partition at the surface for solar energy research, opening new avenues to utilizing ARM measurements.

  3. Colony-stimulating factors for the treatment of the hematopoietic component of the acute radiation syndrome (H-ARS): a review.

    PubMed

    Singh, Vijay K; Newman, Victoria L; Seed, Thomas M

    2015-01-01

    One of the greatest national security threats to the United States is the detonation of an improvised nuclear device or a radiological dispersal device in a heavily populated area. As such, this type of security threat is considered to be of relatively low risk, but one that would have an extraordinary high impact on health and well-being of the US citizenry. Psychological counseling and medical assessments would be necessary for all those significantly impacted by the nuclear/radiological event. Direct medical interventions would be necessary for all those individuals who had received substantial radiation exposures (e.g., >1 Gy). Although no drugs or products have yet been specifically approved by the United States Food and Drug Administration (US FDA) to treat the effects of acute radiation syndrome (ARS), granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), and pegylated G-CSF have been used off label for treating radiation accident victims. Recent threats of terrorist attacks using nuclear or radiologic devices makes it imperative that the medical community have up-to-date information and a clear understanding of treatment protocols using therapeutically effective recombinant growth factors and cytokines such as G-CSF and GM-CSF for patients exposed to injurious doses of ionizing radiation. Based on limited human studies with underlying biology, we see that the recombinants, G-CSF and GM-CSF appear to have modest, but significant medicinal value in treating radiation accident victims. In the near future, the US FDA may approve G-CSF and GM-CSF as ‘Emergency Use Authorization’ (EUA) for managing radiation-induced aplasia, an ARS-related pathology. In this article, we review the status of growth factors for the treatment of radiological/nuclear accident victims. PMID:25215458

  4. An assessment of research opportunities and the need for synchrotron radiation facilities

    SciTech Connect

    1995-12-31

    The workshop focused on six topics, all of which are areas of active research: (1) speciation, reactivity and mobility of contaminants in aqueous systems, (2) the role of surfaces and interfaces in molecular environmental science, (3) the role of solid phases in molecular environmental science, (4) molecular biological processes affecting speciation, reactivity, and mobility of contaminants in the environment, (5) molecular constraints on macroscopic- and field-scale processes, and (6) synchrotron radiation facilities and molecular environmental sciences. These topics span a range of important issues in molecular environmental science. They focus on the basic knowledge required for understanding contaminant transport and fate and for the development of science-based remediation and waste management technologies. Each topic was assigned to a working group charged with discussing recent research accomplishments, significant research opportunities, methods required for obtaining molecular-scale information on environmental contaminants and processes, and the value of synchrotron x-ray methods relative to other methods in providing this information. A special working group on synchrotron radiation facilities was convened to provide technical information about experimental facilities at the four DOE-supported synchrotron radiation sources in the US (NSLS, SSRL, AS and UPS) and synchrotron- based methods available for molecular environmental science research. Similar information on the NSF-funded Cornell High Energy synchrotron Source (CHESS) was obtained after the workshop was held.

  5. Genetic influences on the neural and physiological bases of acute threat: A research domain criteria (RDoC) perspective.

    PubMed

    Sumner, Jennifer A; Powers, Abigail; Jovanovic, Tanja; Koenen, Karestan C

    2016-01-01

    The NIMH Research Domain Criteria (RDoC) initiative aims to describe key dimensional constructs underlying mental function across multiple units of analysis-from genes to observable behaviors-in order to better understand psychopathology. The acute threat ("fear") construct of the RDoC Negative Valence System has been studied extensively from a translational perspective, and is highly pertinent to numerous psychiatric conditions, including anxiety and trauma-related disorders. We examined genetic contributions to the construct of acute threat at two units of analysis within the RDoC framework: (1) neural circuits and (2) physiology. Specifically, we focused on genetic influences on activation patterns of frontolimbic neural circuitry and on startle, skin conductance, and heart rate responses. Research on the heritability of activation in threat-related frontolimbic neural circuitry is lacking, but physiological indicators of acute threat have been found to be moderately heritable (35-50%). Genetic studies of the neural circuitry and physiology of acute threat have almost exclusively relied on the candidate gene method and, as in the broader psychiatric genetics literature, most findings have failed to replicate. The most robust support has been demonstrated for associations between variation in the serotonin transporter (SLC6A4) and catechol-O-methyltransferase (COMT) genes with threat-related neural activation and physiological responses. However, unbiased genome-wide approaches using very large samples are needed for gene discovery, and these can be accomplished with collaborative consortium-based research efforts, such as those of the Psychiatric Genomics Consortium (PGC) and Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consortium.

  6. Accelerator-based radiation sources for next-generation radiobiological research

    NASA Astrophysics Data System (ADS)

    DeVeaux, Linda C.; Wells, Douglas P.; Hunt, Alan; Webb, Tim; Beezhold, Wendland; Harmon, J. Frank

    2006-06-01

    The Idaho Accelerator Center (IAC) of Idaho State University has developed a unique radiation research facility to answer next-generation radiobiological questions. The IAC has 10 operating research accelerators. These include continuously delivered radiation beams such as a 950 keV electron beam and a 2 MeV light-ion Van de Graaff. The IAC also has a number of pulsed electron linacs which range in energy from 4 to 40 MeV. The most intense amongst them deliver peak dose rates greater than 10 12 Gy/s. The operational flexibility of pulsed electron linacs allows control of peak and average dose rate, pulse separation and total dose over many orders of magnitude in these parameters. These high dose rates also allow delivery of large doses on time scales that are very small when compared to biological responses. The spectrum of particle beams that the IAC can deliver includes alphas, protons, neutrons, electrons (betas), and gammas (X-rays). Current radiobiological research at the IAC is focused upon radiation effects in unicellular organisms. The effectiveness of extremely high dose rate electron irradiation for the neutralization of microbes is being investigated. Concurrently, we are characterizing the survival mechanisms employed by microbes when exposed to these extremely high doses and dose rates. We have isolated strains from several diverse species that show increased radiation-resistance over normal populations. In addition, we were the first to demonstrate radiation-induced Bystander effects in unicellular organisms. Because of the numerous and diverse accelerators at the IAC, these and many other novel radiobiological investigations are readily attainable.

  7. From research to industry — The establishment of a radiation processing industry in South Africa

    NASA Astrophysics Data System (ADS)

    Plessis, T. A. Du; Stevens, RCB

    In the late sixties the South African Atomic Energy Board in pursuing its objectives to promote the peaceful application of nuclear energy in general, established a research group with the specific purpose of investigating and developing radiation processing as a new technique. During the early years it was realised that the economic and technological facets of establishing a new industry were equally important and, in addition to fundamental research, strong emphasis was placed on the necessity of marketing this new technology. Although the initial emphasis was put on gamma sterilization, and today still forms the backbone of the radiation processing industry, the promising fields of polymer modification and food irradiation hold a lot of promise in the radiation processing industry. Following ten years of successfully introducing and providing a radiation service, the South African Atomic Energy Board in 1980 decided to transfer its service to the private sector. These developments in South Africa are a good sample of how a small country, through initial government envolvement, can acquire a sophisticated new private industry.

  8. The role of IAEA in coordinating research and transferring technology in radiation chemistry and processing of polymers

    NASA Astrophysics Data System (ADS)

    Haji-Saeid, M.; Sampa, M. H.; Ramamoorthy, N.; Güven, O.; Chmielewski, A. G.

    2007-12-01

    The IAEA has been playing a significant role in fostering developments in radiation technology in general and radiation processing of polymers in particular, among its Member States (MS) and facilitate know-how/technology transfer to developing MS. The former is usually achieved through coordinated research projects (CRP) and thematic technical meetings, while the latter is mainly accomplished through technical cooperation (TC) projects. Coordinated research projects encourage research on, and development and practical application of, radiation technology to foster exchange of scientific and technical information. The technical cooperation (TC) programme helps Member States to realize their development priorities through the application of appropriate radiation technology. The IAEA has implemented several coordinated research projects (CRP) recently, including one on-going project, in the field of radiation processing of polymeric materials. The CRPs facilitated the acquisition and dissemination of know-how and technology for controlling of degradation effects in radiation processing of polymers, radiation synthesis of stimuli-responsive membranes, hydrogels and absorbents for separation purposes and the use of radiation processing to prepare biomaterials for applications in medicine. The IAEA extends cooperation to well-known international conferences dealing with radiation technology to facilitate participation of talented scientists from developing MS and building collaborations. The IAEA published technical documents, covering the findings of thematic technical meetings (TM) and coordinated research projects have been an important source of valuable practical information.

  9. First Generation Gene Expression Signature for Early Prediction of Late Occurring Hematological Acute Radiation Syndrome in Baboons.

    PubMed

    Port, M; Herodin, F; Valente, M; Drouet, M; Lamkowski, A; Majewski, M; Abend, M

    2016-07-01

    We implemented a two-stage study to predict late occurring hematologic acute radiation syndrome (HARS) in a baboon model based on gene expression changes measured in peripheral blood within the first two days after irradiation. Eighteen baboons were irradiated to simulate different patterns of partial-body and total-body exposure, which corresponded to an equivalent dose of 2.5 or 5 Gy. According to changes in blood cell counts the surviving baboons (n = 17) exhibited mild (H1-2, n = 4) or more severe (H2-3, n = 13) HARS. Blood samples taken before irradiation served as unexposed control (H0, n = 17). For stage I of this study, a whole genome screen (mRNA microarrays) was performed using a portion of the samples (H0, n = 5; H1-2, n = 4; H2-3, n = 5). For stage II, using the remaining samples and the more sensitive methodology, qRT-PCR, validation was performed on candidate genes that were differentially up- or down-regulated during the first two days after irradiation. Differential gene expression was defined as significant (P < 0.05) and greater than or equal to a twofold difference above a H0 classification. From approximately 20,000 genes, on average 46% appeared to be expressed. On day 1 postirradiation for H2-3, approximately 2-3 times more genes appeared up-regulated (1,418 vs. 550) or down-regulated (1,603 vs. 735) compared to H1-2. This pattern became more pronounced at day 2 while the number of differentially expressed genes decreased. The specific genes showed an enrichment of biological processes coding for immune system processes, natural killer cell activation and immune response (P = 1 × E-06 up to 9 × E-14). Based on the P values, magnitude and sustained differential gene expression over time, we selected 89 candidate genes for validation using qRT-PCR. Ultimately, 22 genes were confirmed for identification of H1-3 classifications and seven genes for identification of H2-3 classifications using qRT-PCR. For H1-3 classifications, most genes were

  10. A Comparison of Acute and Chronic Toxicity for Men With Low-Risk Prostate Cancer Treated With Intensity-Modulated Radiation Therapy or {sup 125}I Permanent Implant

    SciTech Connect

    Eade, Thomas N.; Horwitz, Eric M. Ruth, Karen; Buyyounouski, Mark K.; D'Ambrosio, David J.; Feigenberg, Steven J.; Chen, David Y.T.; Pollack, Alan

    2008-06-01

    Purpose: To compare the toxicity and biochemical outcomes of intensity-modulated radiation therapy (IMRT) and {sup 125}I transperineal permanent prostate seed implant ({sup 125}I) for patients with low-risk prostate cancer. Methods and Materials: Between 1998 and 2004, a total of 374 low-risk patients (prostate-specific antigen < 10 ng/ml, T1c-T2b, Gleason score of 6 or less, and no neoadjuvant hormones) were treated at Fox Chase Cancer Center (216 IMRT and 158 {sup 125}I patients). Median follow-up was 43 months for IMRT and 48 months for {sup 125}I. The IMRT prescription dose ranged from 74-78 Gy, and {sup 125}I prescription was 145 Gy. Acute and late gastrointestinal (GI) and genitourinary (GU) toxicity was recorded by using a modified Radiation Therapy Oncology Group scale. Freedom from biochemical failure was defined by using the Phoenix definition (prostate-specific antigen nadir + 2.0 ng/ml). Results: Patients treated by using IMRT were more likely to be older and have a higher baseline American Urological Association symptom index score, history of previous transurethral resection of the prostate, and larger prostate volumes. On multivariate analysis, IMRT was an independent predictor of lower acute and late Grade 2 or higher GU toxicity and late Grade 2 or higher GI toxicity. Three-year actuarial estimates of late Grade 2 or higher toxicity were 2.4% for GI and 3.5% for GU by using IMRT compared with 7.7% for GI and 19.2% for GU for {sup 125}I, respectively. Four-year actuarial estimates of freedom from biochemical failure were 99.5% for IMRT and 93.5% for {sup 125}I (p = 0.09). Conclusions: The IMRT and {sup 125}I produce similar outcomes, although IMRT appears to have less acute and late toxicity.

  11. Evaluation of genotoxicity of the acute gamma radiation on earthworm Eisenia fetida using single cell gel electrophoresis technique (Comet assay).

    PubMed

    Sowmithra, K; Shetty, N J; Jha, S K; Chaubey, R C

    2015-12-01

    Earthworms (Eisenia fetida) most suitable biological indicators of radioactive pollution. Radiation-induced lesions in DNA can be considered to be molecular markers for early effects of ionizing radiation. Gamma radiation produces a wide spectrum of DNA. Some of these lesions, i.e., DNA strand breaks and alkali labile sites can be detected by the single-cell gel electrophoresis (SCGE) or comet assay by measuring the migration of DNA from immobilized nuclear DNA. E. fetida were exposed to different doses of gamma radiation, i.e., 1, 5, 10, 20, 30, 40 and 50Gy, and comet assay was performed for all the doses along with control at 1, 3 and 5h post irradiation to evaluate the genotoxicity of gamma radiation in this organism. The DNA damage was measured as percentage of comet tail DNA. A significant increase in DNA damage was observed in samples exposed to 5Gy and above, and the increase in DNA damage was dose dependent i.e., DNA damage was increased with increased doses of radiation. The highest DNA damage was noticed at 1h post irradiation and gradually decreased with time, i.e., at 3 and 5h post irradiation. The present study reveals that gamma radiation induces DNA damage in E. fetida and the comet assay is a sensitive and rapid method for its detection to detect genotoxicity of gamma radiation.

  12. Research design considerations for single-dose analgesic clinical trials in acute pain: IMMPACT recommendations.

    PubMed

    Cooper, Stephen A; Desjardins, Paul J; Turk, Dennis C; Dworkin, Robert H; Katz, Nathaniel P; Kehlet, Henrik; Ballantyne, Jane C; Burke, Laurie B; Carragee, Eugene; Cowan, Penney; Croll, Scott; Dionne, Raymond A; Farrar, John T; Gilron, Ian; Gordon, Debra B; Iyengar, Smriti; Jay, Gary W; Kalso, Eija A; Kerns, Robert D; McDermott, Michael P; Raja, Srinivasa N; Rappaport, Bob A; Rauschkolb, Christine; Royal, Mike A; Segerdahl, Märta; Stauffer, Joseph W; Todd, Knox H; Vanhove, Geertrui F; Wallace, Mark S; West, Christine; White, Richard E; Wu, Christopher

    2016-02-01

    This article summarizes the results of a meeting convened by the Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials (IMMPACT) on key considerations and best practices governing the design of acute pain clinical trials. We discuss the role of early phase clinical trials, including pharmacokinetic-pharmacodynamic (PK-PD) trials, and the value of including both placebo and active standards of comparison in acute pain trials. This article focuses on single-dose and short-duration trials with emphasis on the perioperative and study design factors that influence assay sensitivity. Recommendations are presented on assessment measures, study designs, and operational factors. Although most of the methodological advances have come from studies of postoperative pain after dental impaction, bunionectomy, and other surgeries, the design considerations discussed are applicable to many other acute pain studies conducted in different settings. PMID:26683233

  13. Research design considerations for single-dose analgesic clinical trials in acute pain: IMMPACT recommendations.

    PubMed

    Cooper, Stephen A; Desjardins, Paul J; Turk, Dennis C; Dworkin, Robert H; Katz, Nathaniel P; Kehlet, Henrik; Ballantyne, Jane C; Burke, Laurie B; Carragee, Eugene; Cowan, Penney; Croll, Scott; Dionne, Raymond A; Farrar, John T; Gilron, Ian; Gordon, Debra B; Iyengar, Smriti; Jay, Gary W; Kalso, Eija A; Kerns, Robert D; McDermott, Michael P; Raja, Srinivasa N; Rappaport, Bob A; Rauschkolb, Christine; Royal, Mike A; Segerdahl, Märta; Stauffer, Joseph W; Todd, Knox H; Vanhove, Geertrui F; Wallace, Mark S; West, Christine; White, Richard E; Wu, Christopher

    2016-02-01

    This article summarizes the results of a meeting convened by the Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials (IMMPACT) on key considerations and best practices governing the design of acute pain clinical trials. We discuss the role of early phase clinical trials, including pharmacokinetic-pharmacodynamic (PK-PD) trials, and the value of including both placebo and active standards of comparison in acute pain trials. This article focuses on single-dose and short-duration trials with emphasis on the perioperative and study design factors that influence assay sensitivity. Recommendations are presented on assessment measures, study designs, and operational factors. Although most of the methodological advances have come from studies of postoperative pain after dental impaction, bunionectomy, and other surgeries, the design considerations discussed are applicable to many other acute pain studies conducted in different settings.

  14. Acute low back problems in adults: assessment and treatment. Agency for Health Care Policy and Research.

    PubMed

    1994-12-01

    This Quick Reference Guide for Clinicians contains highlights from the Clinical Practice Guideline version of Acute Low Back Problems in Adults, which was developed by a private-sector panel of health care providers and consumers. The Quick Reference Guide is an example of how a clinician might implement the panel's findings and recommendations on the management of acute low back problems in working-age adults. Topics covered include the initial assessment of patients presenting with acute low back problems, identification of red flags that may indicate the presence of a serious underlying medical condition, initial management, special studies and diagnostic considerations, and further management considerations. Instructions for clinical testing for sciatic tension, recommendations for sitting and unassisted lifting, tests for identification of clinical pathology, and algorithms for patient management are included.

  15. The U.S. National Research Council's views of the radiation hazards in space.

    PubMed

    Setlow, R B

    1999-12-01

    The author was the Chairman of a Task Group on the Biological Effects of Space Radiation formed as a result of discussions between NASA and the U.S. National Research Council's Committee on Space Biology and Medicine - a committee under the U.S. National Research Council's Space Studies Board. The Task Group was asked to review current knowledge on the effects of long-term exposure to radiation in space and to consider NASA radiation shielding requirements for orbital and interplanetary spacecraft. The group was charged with assessing the adequacy of NASA planning for the protection of humans from radiation in space and with making recommendations regarding needed research and/or new shielding requirements. This manuscript is a summary of the findings and recommendations of the Task Group. Beyond the protection of the Earth's atmosphere and its magnetosphere, the exposure to ionizing radiations far exceeds that on Earth. Of all the risks astronauts may face, this one is probably the most straightforward to control - by providing adequate shielding. However, because shielding adds weight, cost and complexity to space vehicles, it is important for designers to have a good quantitative understanding of the true risk and its degree of uncertainty so as not to under- or overshield spacecrafts. The extrapolations from our knowledge of ionizing radiation effects of low linear energy transfer (LET) to the risks from high-atomic-number high-energy energetic (HZE) cosmic rays are very uncertain because the necessary experiments on the effects of such particles have not been carried out and the extrapolation from low-LET to very high-LET has great uncertainties. These uncertainties were enumerated by the Task Group, and the types of experiments needed to minimize the uncertainties were described. The report found that, because of the small amounts of available time for biological research at HZE accelerators, it would take more than a decade of effort to obtain the answers to

  16. Acute Skin Toxicity Following Stereotactic Body Radiation Therapy for Stage I Non-Small-Cell Lung Cancer: Who's at Risk?

    SciTech Connect

    Hoppe, Bradford S.; Laser, Benjamin; Kowalski, Alex V.; Fontenla, Sandra C.; Pena-Greenberg, Elizabeth; Yorke, Ellen D.; Lovelock, D. Michael; Hunt, Margie A.; Rosenzweig, Kenneth E.

    2008-12-01

    Purpose: We examined the rate of acute skin toxicity within a prospectively managed database of patients treated for early-stage non-small-cell lung cancer (NSCLC) and investigated factors that might predict skin toxicity. Methods: From May 2006 through January 2008, 50 patients with Stage I NSCLC were treated at Memorial Sloan-Kettering Cancer Center with 60 Gy in three fractions or 44-48 Gy in four fractions. Patients were treated with multiple coplanar beams (3-7, median 4) with a 6 MV linac using intensity-modulated radiotherapy (IMRT) and dynamic multileaf collimation. Toxicity grading was performed and based on the National Cancer Institute Common Terminology Criteria for Adverse Effects. Factors associated with Grade 2 or higher acute skin reactions were calculated by Fisher's exact test. Results: After a minimum 3 months of follow-up, 19 patients (38%) developed Grade 1, 4 patients (8%) Grade 2, 2 patients (4%) Grade 3, and 1 patient Grade 4 acute skin toxicity. Factors associated with Grade 2 or higher acute skin toxicity included using only 3 beams (p = 0.0007), distance from the tumor to the posterior chest wall skin of less than 5 cm (p = 0.006), and a maximum skin dose of 50% or higher of the prescribed dose (p = 0.02). Conclusions: SBRT can be associated with significant skin toxicity. One must consider the skin dose when evaluating the treatment plan and consider the bolus effect of immobilization devices.

  17. Position statement on ethics, equipoise and research on charged particle radiation therapy.

    PubMed

    Sheehan, Mark; Timlin, Claire; Peach, Ken; Binik, Ariella; Puthenparampil, Wilson; Lodge, Mark; Kehoe, Sean; Brada, Michael; Burnet, Neil; Clarke, Steve; Crellin, Adrian; Dunn, Michael; Fossati, Piero; Harris, Steve; Hocken, Michael; Hope, Tony; Ives, Jonathan; Kamada, Tadashi; London, Alex John; Miller, Robert; Parker, Michael; Pijls-Johannesma, Madelon; Savulescu, Julian; Short, Susan; Skene, Loane; Tsujii, Hirohiko; Tuan, Jeffrey; Weijer, Charles

    2014-08-01

    The use of charged-particle radiation therapy (CPRT) is an increasingly important development in the treatment of cancer. One of the most pressing controversies about the use of this technology is whether randomised controlled trials are required before this form of treatment can be considered to be the treatment of choice for a wide range of indications. Equipoise is the key ethical concept in determining which research studies are justified. However, there is a good deal of disagreement about how this concept is best understood and applied in the specific case of CPRT. This report is a position statement on these controversies that arises out of a workshop held at Wolfson College, Oxford in August 2011. The workshop brought together international leaders in the relevant fields (radiation oncology, medical physics, radiobiology, research ethics and methodology), including proponents on both sides of the debate, in order to make significant progress on the ethical issues associated with CPRT research. This position statement provides an ethical platform for future research and should enable further work to be done in developing international coordinated programmes of research.

  18. Update to the management of pediatric acute pancreatitis: highlighting areas in need of research.

    PubMed

    Abu-El-Haija, Maisam; Lin, Tom K; Palermo, Joseph

    2014-06-01

    Acute pancreatitis is an emerging problem in pediatrics, with an incidence that is rising in the last 2 decades. Data regarding the optimal management and physician practice patterns are lacking. We present a literature review and updates on the management of pediatric pancreatitis. Prospective multicenter studies defining optimal management of pediatric pancreatitis are needed to guide care and improve outcomes for this patient population.

  19. Current Status and Recommendations for the Future of Research, Teaching, and Testing in the Biological Sciences of Radiation Oncology: Report of the American Society for Radiation Oncology Cancer Biology/Radiation Biology Task Force, Executive Summary

    SciTech Connect

    Wallner, Paul E.; Anscher, Mitchell S.; Barker, Christopher A.; Bassetti, Michael; Bristow, Robert G.; Dicker, Adam P.; Formenti, Silvia C.; Graves, Edward E.; Hahn, Stephen M.; Hei, Tom K.; Kimmelman, Alec C.; Kirsch, David G.; Kozak, Kevin R.; Lawrence, Theodore S.; Marples, Brian; and others

    2014-01-01

    In early 2011, a dialogue was initiated within the Board of Directors (BOD) of the American Society for Radiation Oncology (ASTRO) regarding the future of the basic sciences of the specialty, primarily focused on the current state and potential future direction of basic research within radiation oncology. After consideration of the complexity of the issues involved and the precise nature of the undertaking, in August 2011, the BOD empanelled a Cancer Biology/Radiation Biology Task Force (TF). The TF was charged with developing an accurate snapshot of the current state of basic (preclinical) research in radiation oncology from the perspective of relevance to the modern clinical practice of radiation oncology as well as the education of our trainees and attending physicians in the biological sciences. The TF was further charged with making suggestions as to critical areas of biological basic research investigation that might be most likely to maintain and build further the scientific foundation and vitality of radiation oncology as an independent and vibrant medical specialty. It was not within the scope of service of the TF to consider the quality of ongoing research efforts within the broader radiation oncology space, to presume to consider their future potential, or to discourage in any way the investigators committed to areas of interest other than those targeted. The TF charge specifically precluded consideration of research issues related to technology, physics, or clinical investigations. This document represents an Executive Summary of the Task Force report.

  20. Current status and recommendations for the future of research, teaching, and testing in the biological sciences of radiation oncology: report of the American Society for Radiation Oncology Cancer Biology/Radiation Biology Task Force, executive summary.

    PubMed

    Wallner, Paul E; Anscher, Mitchell S; Barker, Christopher A; Bassetti, Michael; Bristow, Robert G; Cha, Yong I; Dicker, Adam P; Formenti, Silvia C; Graves, Edward E; Hahn, Stephen M; Hei, Tom K; Kimmelman, Alec C; Kirsch, David G; Kozak, Kevin R; Lawrence, Theodore S; Marples, Brian; McBride, William H; Mikkelsen, Ross B; Park, Catherine C; Weidhaas, Joanne B; Zietman, Anthony L; Steinberg, Michael

    2014-01-01

    In early 2011, a dialogue was initiated within the Board of Directors (BOD) of the American Society for Radiation Oncology (ASTRO) regarding the future of the basic sciences of the specialty, primarily focused on the current state and potential future direction of basic research within radiation oncology. After consideration of the complexity of the issues involved and the precise nature of the undertaking, in August 2011, the BOD empanelled a Cancer Biology/Radiation Biology Task Force (TF). The TF was charged with developing an accurate snapshot of the current state of basic (preclinical) research in radiation oncology from the perspective of relevance to the modern clinical practice of radiation oncology as well as the education of our trainees and attending physicians in the biological sciences. The TF was further charged with making suggestions as to critical areas of biological basic research investigation that might be most likely to maintain and build further the scientific foundation and vitality of radiation oncology as an independent and vibrant medical specialty. It was not within the scope of service of the TF to consider the quality of ongoing research efforts within the broader radiation oncology space, to presume to consider their future potential, or to discourage in any way the investigators committed to areas of interest other than those targeted. The TF charge specifically precluded consideration of research issues related to technology, physics, or clinical investigations. This document represents an Executive Summary of the Task Force report.

  1. Activities of the National Academy of Sciences in relation to the Radiation Effects Research Foundation

    SciTech Connect

    Edington, C.W.

    1991-02-01

    The activities of the National Academy of Sciences (NAS), in relation to the Radiation Effects Research Foundation (RERF), has a long history and the specific time period supported by this contract is but a small piece of the long-term continuing program. As a background, in August 1945, atomic bombs were dropped on Hiroshima (6 August) and Nagasaki (9 August). Shortly after the bombings, US medical teams joined forces with their Japanese counterparts to form a Joint Commission for the Investigation of the Effects of the Atomic Bombs. As a result of the Joint Commission's investigations, it was determined that consideration should be given to the establishment of a long-term study of the potential late health effects of exposure of the survivors to radiation from the bombs. The results obtained from RERF studies contribute the vast majority of information that provides a better understanding of radiation effects on humans. This information has been used extensively by national organizations and international committees for estimating risks associated with radiation exposures. The estimated risks developed by these independent organizations are used by government agencies around the world to establish standards for protection of individuals exposed in the occupational, medical, and general environment. Some of these results are described briefly in this report.

  2. Live cell detection of chromosome 2 deletion and Sfpi1/PU1 loss in radiation-induced mouse acute myeloid leukaemia☆

    PubMed Central

    Olme, C.-H.; Finnon, R.; Brown, N.; Kabacik, S.; Bouffler, S.D.; Badie, C.

    2013-01-01

    The CBA/H mouse model of radiation-induced acute myeloid leukaemia (rAML) has been studied for decades to bring to light the molecular mechanisms associated with multistage carcinogenesis. A specific interstitial deletion of chromosome 2 found in a high proportion of rAML is recognised as the initiating event. The deletion leads to the loss of Sfpi, a gene essential for haematopoietic development. Its product, the transcription factor PU.1 acts as a tumour suppressor in this model. Although the deletion can be detected early following ionising radiation exposure by cytogenetic techniques, precise characterisation of the haematopoietic cells carrying the deletion and the study of their fate in vivo cannot be achieved. Here, using a genetically engineered C57BL/6 mouse model expressing the GFP fluorescent molecule under the control of the Sfpi1 promoter, which we have bred onto the rAML-susceptible CBA/H strain, we demonstrate that GFP expression did not interfere with X-ray induced leukaemia incidence and that GFP fluorescence in live leukaemic cells is a surrogate marker of radiation-induced chromosome 2 deletions with or without point mutations on the remaining allele of the Sfpi1 gene. This study presents the first experimental evidence for the detection of this leukaemia initiating event in live leukemic cells. PMID:23806234

  3. Acute and chronic intakes of fallout radionuclides by Marshallese from nuclear weapons testing at Bikini and Enewetak and related internal radiation doses.

    PubMed

    Simon, Steven L; Bouville, André; Melo, Dunstana; Beck, Harold L; Weinstock, Robert M

    2010-08-01

    Annual internal radiation doses resulting from both acute and chronic intakes of all important dose-contributing radionuclides occurring in fallout from nuclear weapons testing at Bikini and Enewetak from 1946 through 1958 have been estimated for the residents living on all atolls and separate reef islands of the Marshall Islands. Internal radiation absorbed doses to the tissues most at risk to cancer induction (red bone marrow, thyroid, stomach, and colon) have been estimated for representative persons of all population communities for all birth years from 1929 through 1968, and for all years of exposure from 1948 through 1970. The acute intake estimates rely on a model using, as its basis, historical urine bioassay data, for members of the Rongelap Island and Ailinginae communities as well as for Rongerik residents. The model also utilizes fallout times of arrival and radionuclide deposition densities estimated for all tests and all atolls. Acute intakes of 63 radionuclides were estimated for the populations of the 20 inhabited atolls and for the communities that were relocated during the testing years for reasons of safety and decontamination. The model used for chronic intake estimates is based on reported whole-body, urine, and blood counting data for residents of Utrik and Rongelap. Dose conversion coefficients relating intake to organ absorbed dose were developed using internationally accepted models but specifically tailored for intakes of particulate fallout by consideration of literature-based evidence to choose the most appropriate alimentary tract absorption fraction (f1) values. Dose estimates were much higher for the thyroid gland than for red marrow, stomach wall, or colon. The highest thyroid doses to adults were about 7,600 mGy for the people exposed on Rongelap; thyroid doses to adults were much lower, by a factor of 100 or more, for the people exposed on the populated atolls of Kwajalein and Majuro. The estimates of radionuclide intake and

  4. Normal Tissue Complication Probability Analysis of Acute Gastrointestinal Toxicity in Cervical Cancer Patients Undergoing Intensity Modulated Radiation Therapy and Concurrent Cisplatin

    SciTech Connect

    Simpson, Daniel R.; Song, William Y.; Moiseenko, Vitali; Rose, Brent S.; Yashar, Catheryn M.; Mundt, Arno J.; Mell, Loren K.

    2012-05-01

    Purpose: To test the hypothesis that increased bowel radiation dose is associated with acute gastrointestinal (GI) toxicity in cervical cancer patients undergoing concurrent chemotherapy and intensity-modulated radiation therapy (IMRT), using a previously derived normal tissue complication probability (NTCP) model. Methods: Fifty patients with Stage I-III cervical cancer undergoing IMRT and concurrent weekly cisplatin were analyzed. Acute GI toxicity was graded using the Radiation Therapy Oncology Group scale, excluding upper GI events. A logistic model was used to test correlations between acute GI toxicity and bowel dosimetric parameters. The primary objective was to test the association between Grade {>=}2 GI toxicity and the volume of bowel receiving {>=}45 Gy (V{sub 45}) using the logistic model. Results: Twenty-three patients (46%) had Grade {>=}2 GI toxicity. The mean (SD) V{sub 45} was 143 mL (99). The mean V{sub 45} values for patients with and without Grade {>=}2 GI toxicity were 176 vs. 115 mL, respectively. Twenty patients (40%) had V{sub 45} >150 mL. The proportion of patients with Grade {>=}2 GI toxicity with and without V{sub 45} >150 mL was 65% vs. 33% (p = 0.03). Logistic model parameter estimates V50 and {gamma} were 161 mL (95% confidence interval [CI] 60-399) and 0.31 (95% CI 0.04-0.63), respectively. On multivariable logistic regression, increased V{sub 45} was associated with an increased odds of Grade {>=}2 GI toxicity (odds ratio 2.19 per 100 mL, 95% CI 1.04-4.63, p = 0.04). Conclusions: Our results support the hypothesis that increasing bowel V{sub 45} is correlated with increased GI toxicity in cervical cancer patients undergoing IMRT and concurrent cisplatin. Reducing bowel V{sub 45} could reduce the risk of Grade {>=}2 GI toxicity by approximately 50% per 100 mL of bowel spared.

  5. ACUTE AND CHRONIC INTAKES OF FALLOUT RADIONUCLIDES BY MARSHALLESE FROM NUCLEAR WEAPONS TESTING AT BIKINI AND ENEWETAK AND RELATED INTERNAL RADIATION DOSES

    PubMed Central

    Simon, Steven L.; Bouville, André; Melo, Dunstana; Beck, Harold L.; Weinstock, Robert M.

    2014-01-01

    Annual internal radiation doses resulting from both acute and chronic intakes of all important dose-contributing radionuclides occurring in fallout from nuclear weapons testing at Bikini and Enewetak from 1946 through 1958 have been estimated for the residents living on all atolls and separate reef islands of the Marshall Islands. Internal radiation absorbed doses to the tissues most at risk to cancer induction (red bone marrow, thyroid, stomach, and colon) have been estimated for representative persons of all population communities for all birth years from 1929 through 1968, and for all years of exposure from 1948 through 1970. The acute intake estimates rely on a model using, as its basis, historical urine bioassay data, for members of the Rongelap Island and Ailinginae communities as well as for Rongerik residents. The model also utilizes fallout times of arrival and radionuclide deposition densities estimated for all tests and all atolls. Acute intakes of 63 radionuclides were estimated for the populations of the 20 inhabited atolls and for the communities that were relocated during the testing years for reasons of safety and decontamination. The model used for chronic intake estimates is based on reported whole-body, urine, and blood counting data for residents of Utrik and Rongelap. Dose conversion coefficients relating intake to organ absorbed dose were developed using internationally accepted models but specifically tailored for intakes of particulate fallout by consideration of literature-based evidence to choose the most appropriate alimentary tract absorption fraction (f1) values. Dose estimates were much higher for the thyroid gland than for red marrow, stomach wall, or colon. The highest thyroid doses to adults were about 7,600 mGy for the people exposed on Rongelap; thyroid doses to adults were much lower, by a factor of 100 or more, for the people exposed on the populated atolls of Kwajalein and Majuro. The estimates of radionuclide intake and

  6. Acute and chronic intakes of fallout radionuclides by Marshallese from nuclear weapons testing at Bikini and Enewetak and related internal radiation doses.

    PubMed

    Simon, Steven L; Bouville, André; Melo, Dunstana; Beck, Harold L; Weinstock, Robert M

    2010-08-01

    Annual internal radiation doses resulting from both acute and chronic intakes of all important dose-contributing radionuclides occurring in fallout from nuclear weapons testing at Bikini and Enewetak from 1946 through 1958 have been estimated for the residents living on all atolls and separate reef islands of the Marshall Islands. Internal radiation absorbed doses to the tissues most at risk to cancer induction (red bone marrow, thyroid, stomach, and colon) have been estimated for representative persons of all population communities for all birth years from 1929 through 1968, and for all years of exposure from 1948 through 1970. The acute intake estimates rely on a model using, as its basis, historical urine bioassay data, for members of the Rongelap Island and Ailinginae communities as well as for Rongerik residents. The model also utilizes fallout times of arrival and radionuclide deposition densities estimated for all tests and all atolls. Acute intakes of 63 radionuclides were estimated for the populations of the 20 inhabited atolls and for the communities that were relocated during the testing years for reasons of safety and decontamination. The model used for chronic intake estimates is based on reported whole-body, urine, and blood counting data for residents of Utrik and Rongelap. Dose conversion coefficients relating intake to organ absorbed dose were developed using internationally accepted models but specifically tailored for intakes of particulate fallout by consideration of literature-based evidence to choose the most appropriate alimentary tract absorption fraction (f1) values. Dose estimates were much higher for the thyroid gland than for red marrow, stomach wall, or colon. The highest thyroid doses to adults were about 7,600 mGy for the people exposed on Rongelap; thyroid doses to adults were much lower, by a factor of 100 or more, for the people exposed on the populated atolls of Kwajalein and Majuro. The estimates of radionuclide intake and

  7. Transfer of Real-time Dynamic Radiation Environment Assimilation Model; Research to Operation

    NASA Astrophysics Data System (ADS)

    Cho, K. S. F.; Hwang, J.; Shin, D. K.; Kim, G. J.; Morley, S.; Henderson, M. G.; Friedel, R. H.; Reeves, G. D.

    2015-12-01

    Real-time Dynamic Radiation Environment Assimilation Model (rtDREAM) was developed by LANL for nowcast of energetic electrons' flux at the radiation belt to quantify potential risks from radiation damage at the satellites. Assimilated data are from multiple sources including LANL assets (GEO, GPS). For transfer from research to operation of the rtDREAM code, LANL/KSWC/NOAA makes a Memorandum Of Understanding (MOU) on the collaboration between three parts. By this MOU, KWSC/RRA provides all the support for transitioning the research version of DREAM to operations. KASI is primarily responsible for providing all the interfaces between the current scientific output formats of the code and useful space weather products that can be used and accessed through the web. In the second phase, KASI will be responsible in performing the work needed to transform the Van Allen Probes beacon data into "DREAM ready" inputs. KASI will also provide the "operational" code framework and additional data preparation, model output, display and web page codes back to LANL and SWPC. KASI is already a NASA partnering ground station for the Van Allen Probes' space weather beacon data and can here show use and utility of these data for comparison between rtDREAM and observations by web. NOAA has offered to take on some of the data processing tasks specific to the GOES data.

  8. Complete Remission of Acute Myeloid Leukemia following Cisplatin Based Concurrent Therapy with Radiation for Squamous Cell Laryngeal Cancer

    PubMed Central

    Gill, Harpaul S.; Higgins, Kristin A.; Saba, Nabil F.; Kota, Vamsi K.

    2016-01-01

    Acute myeloid leukemia (AML) is a myeloid disorder with several established treatment regimens depending on patient and leukemic factors. Cisplatin is known to have strong leukemogenic potential and is rarely used even as salvage therapy in relapsed or refractory AML. We present a patient simultaneously diagnosed with AML and squamous cell carcinoma of the larynx, who was found to be in complete remission from AML following treatment with cisplatin based chemoradiotherapy for his laryngeal cancer. PMID:27127664

  9. Neurobehavioural Changes and Brain Oxidative Stress Induced by Acute Exposure to GSM900 Mobile Phone Radiations in Zebrafish (Danio rerio).

    PubMed

    Nirwane, Abhijit; Sridhar, Vinay; Majumdar, Anuradha

    2016-04-01

    The impact of mobile phone (MP) radiation on the brain is of specific interest to the scientific community and warrants investigations, as MP is held close to the head. Studies on humans and rodents revealed hazards MP radiation associated such as brain tumors, impairment in cognition, hearing etc. Melatonin (MT) is an important modulator of CNS functioning and is a neural antioxidant hormone. Zebrafish has emerged as a popular model organism for CNS studies. Herein, we evaluated the impact of GSM900MP (GSM900MP) radiation exposure daily for 1 hr for 14 days with the SAR of 1.34W/Kg on neurobehavioral and oxidative stress parameters in zebrafish. Our study revealed that, GSM900MP radiation exposure, significantly decreased time spent near social stimulus zone and increased total distance travelled, in social interaction test. In the novel tank dive test, the GSM900MP radiation exposure elicited anxiety as revealed by significantly increased time spent in bottom half; freezing bouts and duration and decreased distance travelled, average velocity, and number of entries to upper half of the tank. Exposed zebrafish spent less time in the novel arm of the Y-Maze, corroborating significant impairment in learning as compared to the control group. Exposure decreased superoxide dismutase (SOD), catalase (CAT) activities whereas, increased levels of reduced glutathione (GSH) and lipid peroxidation (LPO) was encountered showing compromised antioxidant defense. Treatment with MT significantly reversed the above neurobehavioral and oxidative derangements induced by GSM900MP radiation exposure. This study traced GSM900MP radiation exposure induced neurobehavioral aberrations and alterations in brain oxidative status. Furthermore, MT proved to be a promising therapeutic candidate in ameliorating such outcomes in zebrafish.

  10. Neurobehavioural Changes and Brain Oxidative Stress Induced by Acute Exposure to GSM900 Mobile Phone Radiations in Zebrafish (Danio rerio).

    PubMed

    Nirwane, Abhijit; Sridhar, Vinay; Majumdar, Anuradha

    2016-04-01

    The impact of mobile phone (MP) radiation on the brain is of specific interest to the scientific community and warrants investigations, as MP is held close to the head. Studies on humans and rodents revealed hazards MP radiation associated such as brain tumors, impairment in cognition, hearing etc. Melatonin (MT) is an important modulator of CNS functioning and is a neural antioxidant hormone. Zebrafish has emerged as a popular model organism for CNS studies. Herein, we evaluated the impact of GSM900MP (GSM900MP) radiation exposure daily for 1 hr for 14 days with the SAR of 1.34W/Kg on neurobehavioral and oxidative stress parameters in zebrafish. Our study revealed that, GSM900MP radiation exposure, significantly decreased time spent near social stimulus zone and increased total distance travelled, in social interaction test. In the novel tank dive test, the GSM900MP radiation exposure elicited anxiety as revealed by significantly increased time spent in bottom half; freezing bouts and duration and decreased distance travelled, average velocity, and number of entries to upper half of the tank. Exposed zebrafish spent less time in the novel arm of the Y-Maze, corroborating significant impairment in learning as compared to the control group. Exposure decreased superoxide dismutase (SOD), catalase (CAT) activities whereas, increased levels of reduced glutathione (GSH) and lipid peroxidation (LPO) was encountered showing compromised antioxidant defense. Treatment with MT significantly reversed the above neurobehavioral and oxidative derangements induced by GSM900MP radiation exposure. This study traced GSM900MP radiation exposure induced neurobehavioral aberrations and alterations in brain oxidative status. Furthermore, MT proved to be a promising therapeutic candidate in ameliorating such outcomes in zebrafish. PMID:27123163

  11. Neurobehavioural Changes and Brain Oxidative Stress Induced by Acute Exposure to GSM900 Mobile Phone Radiations in Zebrafish (Danio rerio)

    PubMed Central

    Nirwane, Abhijit; Sridhar, Vinay; Majumdar, Anuradha

    2016-01-01

    The impact of mobile phone (MP) radiation on the brain is of specific interest to the scientific community and warrants investigations, as MP is held close to the head. Studies on humans and rodents revealed hazards MP radiation associated such as brain tumors, impairment in cognition, hearing etc. Melatonin (MT) is an important modulator of CNS functioning and is a neural antioxidant hormone. Zebrafish has emerged as a popular model organism for CNS studies. Herein, we evaluated the impact of GSM900MP (GSM900MP) radiation exposure daily for 1 hr for 14 days with the SAR of 1.34W/Kg on neurobehavioral and oxidative stress parameters in zebrafish. Our study revealed that, GSM900MP radiation exposure, significantly decreased time spent near social stimulus zone and increased total distance travelled, in social interaction test. In the novel tank dive test, the GSM900MP radiation exposure elicited anxiety as revealed by significantly increased time spent in bottom half; freezing bouts and duration and decreased distance travelled, average velocity, and number of entries to upper half of the tank. Exposed zebrafish spent less time in the novel arm of the Y-Maze, corroborating significant impairment in learning as compared to the control group. Exposure decreased superoxide dismutase (SOD), catalase (CAT) activities whereas, increased levels of reduced glutathione (GSH) and lipid peroxidation (LPO) was encountered showing compromised antioxidant defense. Treatment with MT significantly reversed the above neurobehavioral and oxidative derangements induced by GSM900MP radiation exposure. This study traced GSM900MP radiation exposure induced neurobehavioral aberrations and alterations in brain oxidative status. Furthermore, MT proved to be a promising therapeutic candidate in ameliorating such outcomes in zebrafish. PMID:27123163

  12. Fundamental remote sensing science research program: The Scene Radiation and Atmospheric Effects Characterization Project

    NASA Technical Reports Server (NTRS)

    Deering, D. W.

    1985-01-01

    The Scene Radiation and Atmospheric Effects Characterization (SRAEC) Project was established within the NASA Fundamental Remote Sensing Science Research Program to improve our understanding of the fundamental relationships of energy interactions between the sensor and the surface target, including the effect of the atmosphere. The current studies are generalized into the following five subject areas: optical scene modeling, Earth-space radiative transfer, electromagnetic properties of surface materials, microwave scene modeling, and scatterometry studies. This report has been prepared to provide a brief overview of the SRAEC Project history and objectives and to report on the scientific findings and project accomplishments made by the nineteen principal investigators since the project's initiation just over three years ago. This annual summary report derives from the most recent annual principal investigators meeting held January 29 to 31, 1985.

  13. Big Data and Comparative Effectiveness Research in Radiation Oncology: Synergy and Accelerated Discovery

    PubMed Central

    Trifiletti, Daniel M.; Showalter, Timothy N.

    2015-01-01

    Several advances in large data set collection and processing have the potential to provide a wave of new insights and improvements in the use of radiation therapy for cancer treatment. The era of electronic health records, genomics, and improving information technology resources creates the opportunity to leverage these developments to create a learning healthcare system that can rapidly deliver informative clinical evidence. By merging concepts from comparative effectiveness research with the tools and analytic approaches of “big data,” it is hoped that this union will accelerate discovery, improve evidence for decision making, and increase the availability of highly relevant, personalized information. This combination offers the potential to provide data and analysis that can be leveraged for ultra-personalized medicine and high-quality, cutting-edge radiation therapy. PMID:26697409

  14. Acute effects of carbon monoxide on cardiac electrical stability. Research report, Sep 85-Jul 88

    SciTech Connect

    Verrier, R.L.; Mills, A.K.; Skornik, W.A.

    1990-01-01

    The objective of the project was to determine the effects of acute carbon monoxide exposure on cardiac electrical stability in the normal and ischemic heart of anesthetized and conscious dogs. Exposure (90 to 120 minutes) to relatively high levels of carbon monoxide, leading to carboxyhemoglobin concentrations of up to 20 percent, was without significant effect on ventricular electrical stability in laboratory dogs. This appears to be the case in the acutely ischemic heart as well as in the normal heart. Using a model involving partial coronary artery stenosis, no changes were found in either the cycle frequency of coronary blood flow oscillations or in platelet aggregability during carbon monoxide exposure. Also examined were the effects of carbon monoxide exposure in the conscious state in order to take into consideration possible adverse consequences mediated by the central nervous system. The study found no adverse effects on the cardiac-excitable properties in response to either a 2-hour- or 24-hour-exposure paradigm.

  15. Dissociative identity disorder and the nurse-patient relationship in the acute care setting: an action research study.

    PubMed

    McAllister, M; Higson, D; McIntosh, W; O'Leary, S; Hargreaves, L; Murrell, L; Mullen, V; Lovell, F; Kearney, J; Sammon, D; Woelders, S; Adams, T; Davies-Cotter, D; Wilson, J; O'Brien, J

    2001-03-01

    This paper presents the results of an action research study into the acute care experience of Dissociative Identity Disorder. The study, which was grounded in principles of critical social science, utilized focus group interviews and narrative construction. Nurses and patients are under-represented in all clinical evaluation and their voices need to be heard if services are to be truly collaborative. Findings of the study extend intrapsychic theories of trauma to emphasize the interpersonal relationship between nurse and person who can work together to facilitate recovery from trauma, make connections both intra and interpersonally and build resilience.

  16. Low Dose Radiation Response Curves, Networks and Pathways in Human Lymphoblastoid Cells Exposed from 1 to 10 cGy of Acute Gamma Radiation

    SciTech Connect

    Wyrobek, A. J.; Manohar, C. F.; Nelson, D. O.; Furtado, M. R.; Bhattacharya, M. S.; Marchetti, F.; Coleman, M.A.

    2011-04-18

    We investigated the low dose dependency of the transcriptional response of human cells to characterize the shape and biological functions associated with the dose response curve and to identify common and conserved functions of low dose expressed genes across cells and tissues. Human lymphoblastoid (HL) cells from two unrelated individuals were exposed to graded doses of radiation spanning the range of 1-10 cGy were analyzed by transcriptome profiling, qPCR and bioinformatics, in comparison to sham irradiated samples. A set of {approx}80 genes showed consistent responses in both cell lines; these genes were associated with homeostasis mechanisms (e.g., membrane signaling, molecule transport), subcellular locations (e.g., Golgi, and endoplasmic reticulum), and involved diverse signal transduction pathways. The majority of radiation-modulated genes had plateau-like responses across 1-10 cGy, some with suggestive evidence that transcription was modulated at doses below 1 cGy. MYC, FOS and TP53 were the major network nodes of the low-dose response in HL cells. Comparison our low dose expression findings in HL cells with those of prior studies in mouse brain after whole body exposure, in human keratinocyte cultures, and in endothelial cells cultures, indicates that certain components of the low dose radiation response are broadly conserved across cell types and tissues, independent of proliferation status.

  17. RADIATION DOSIMETRY AT THE BNL HIGH FLUX BEAM REACTOR AND MEDICAL RESEARCH REACTOR.

    SciTech Connect

    HOLDEN,N.E.

    1999-09-10

    RADIATION DOSIMETRY MEASUREMENTS HAVE BEEN PERFORMED OVER A PERIOD OF MANY YEARS AT THE HIGH FLUX BEAM REACTOR (HFBR) AND THE MEDICAL RESEARCH REACTOR (BMRR) AT BROOKHAVEN NATIONAL LABORATORY TO PROVIDE INFORMATION ON THE ENERGY DISTRIBUTION OF THE NEUTRON FLUX, NEUTRON DOSE RATES, GAMMA-RAY FLUXES AND GAMMA-RAY DOSE RATES. THE MCNP PARTICLE TRANSPORT CODE PROVIDED MONTE CARLO RESULTS TO COMPARE WITH VARIOUS DOSIMETRY MEASUREMENTS PERFORMED AT THE EXPERIMENTAL PORTS, AT THE TREATMENT ROOMS AND IN THE THIMBLES AT BOTH HFBR AND BMRR.

  18. Evaluation of Radiometers Deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory

    SciTech Connect

    Habte, A.; Wilcox, S.; Stoffel, T.

    2014-02-01

    This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances and direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with fixed internal shading and are all deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. Data from 32 global horizontal irradiance and 19 direct normal irradiance radiometers are presented. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference global horizontal irradiances and direct normal irradiances.

  19. Anthocyanin-rich blueberry diets enhance protection of critical brain regions exposed to acute levels of 56Fe cosmic radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The protective effects of anthocyanin-rich blueberries on brain health are well documented and are particularly important under conditions of high oxidative stress which can lead to “accelerated aging”. One such scenario is exposure to space radiation, which consists of high-energy and -charge parti...

  20. Suitability of Commonly Used Housekeeping Genes in Gene Expression Studies for Space Radiation Research

    NASA Astrophysics Data System (ADS)

    Arenz, A.; Hellweg, C. E.; Bogner, S.; Lau, P.; Baumstark-Khan, C.

    Research on the effects of ionizing radiation exposure involves the use of real-time reverse transcription polymerase chain reaction qRT-PCR for measuring changes in gene expression Several variables needs to be controlled for gene expression analysis -- different amounts of starting material between the samples variations in enzymatic efficiencies of the reverse transcription step and differences in RNA integrity Normalization of the obtained data to an invariant endogenous control gene reference gene is the elementary step in relative quantification strategy There is a strong correlation between the quality of the normalized data and the stability of the reference gene itself This is especially relevant when the samples have been obtained after exposure to radiation qualities inducing different amounts and kinds of damage leading to a cell cycle delay or even to a cell cycle block In order to determine suitable reference genes as internal controls in qRT-PCR assays after exposure to ionizing radiation we studied the gene expression levels of commonly used reference genes in A549 lung cancer cells Expression levels obtained for human beta actin ACTB human beta-2-microglobulin B2M human glyceraldehyde-3-phosphate dehydrogenase GAPDH human porphobilinogen deaminase PBGD human 18S ribosomal RNA 18S rRNA human glucose-6-phosphate dehydrogenase G6PDH human hypoxanthine phosphoribosyl transferase HPRT human ubiquitin C UBC human transferrin TFRC

  1. Ground-based research with heavy ions for space radiation protection

    NASA Astrophysics Data System (ADS)

    Durante, M.; Kronenberg, A.

    Human exposure to ionizing radiation is one of the acknowledged potential showstoppers for long duration manned interplanetary missions. Human exploratory missions cannot be safely performed without a substantial reduction of the uncertainties associated with different space radiation health risks, and the development of effective countermeasures. Most of our knowledge of the biological effects of heavy charged particles comes from accelerator-based experiments. During the 35th COSPAR meeting, recent ground-based experiments with high-energy iron ions were discussed, and these results are briefly summarised in this paper. High-quality accelerator-based research with heavy ions will continue to be the main source of knowledge of space radiation health effects and will lead to reductions of the uncertainties in predictions of human health risks. Efforts in materials science, nutrition and pharmaceutical sciences and their rigorous evaluation with biological model systems in ground-based accelerator experiments will lead to the development of safe and effective countermeasures to permit human exploration of the Solar System.

  2. Ground-based research with heavy ions for space radiation protection.

    PubMed

    Durante, M; Kronenberg, A

    2005-01-01

    Human exposure to ionizing radiation is one of the acknowledged potential showstoppers for long duration manned interplanetary missions. Human exploratory missions cannot be safely performed without a substantial reduction of the uncertainties associated with different space radiation health risks, and the development of effective countermeasures. Most of our knowledge of the biological effects of heavy charged particles comes from accelerator-based experiments. During the 35th COSPAR meeting, recent ground-based experiments with high-energy iron ions were discussed, and these results are briefly summarised in this paper. High quality accelerator-based research with heavy ions will continue to be the main source of knowledge of space radiation health effects and will lead to reductions of the uncertainties in predictions of human health risks. Efforts in materials science, nutrition and pharmaceutical sciences and their rigorous evaluation with biological model systems in ground-based accelerator experiments will lead to the development of safe and effective countermeasures to permit human exploration of the Solar System. PMID:15934192

  3. Activities of the National Academy of Sciences in relation to the Radiation Effects Research Foundation

    SciTech Connect

    Edington, C.W.

    1992-06-01

    This progress report relates progress in the various research projects evaluating the late health effects, both somatic and genetic, resulting from radiation exposure of the survivors of the atomic bombs at Hiroshima and Nagasaki, Japan. Considerable progress has been made in the collection and utilization of the various epidemiological data bases. These include the Life Span Study, (LSS) cohort, the Adult Health Study (AHS) cohort, the In Utero cohort, the leukemia registry and the F-1 Study population. Important progress has been made in using RERF Tumor and Tissue Registry records for evaluation of cancer incidence and radiation risk estimates for comparison with cancer mortality and risk in the LSS cohort. At the present time, a manuscript on the incidence of solid tumors (1950-1987) is undergoing internal and external review for publication as an RERF Technical report (TR) and for publication in a peer-reviewed scientific journal. In addition, manuscripts are in preparation on (1) a comprehensive report on the incidence of hematological cancers, including analysis of leukemia by cell type (1950-1987), (2) a general description of Tumor Registry operations and (3) a comparison of incidence- and mortality-based estimates of radiation risk in the LSS cohort.

  4. Radiation Proctopathy

    PubMed Central

    Grodsky, Marc B.; Sidani, Shafik M.

    2015-01-01

    Radiation therapy is a widely utilized treatment modality for pelvic malignancies, including prostate cancer, rectal cancer, and cervical cancer. Given its fixed position in the pelvis, the rectum is at a high risk for injury secondary to ionizing radiation. Despite advances made in radiation science, up to 75% of the patients will suffer from acute radiation proctitis and up to 20% may experience chronic symptoms. Symptoms can be variable and include diarrhea, bleeding, incontinence, and fistulization. A multitude of treatment options exist. This article summarizes the latest knowledge relating to radiation proctopathy focusing on the vast array of treatment options. PMID:26034407

  5. Radiation proctopathy.

    PubMed

    Grodsky, Marc B; Sidani, Shafik M

    2015-06-01

    Radiation therapy is a widely utilized treatment modality for pelvic malignancies, including prostate cancer, rectal cancer, and cervical cancer. Given its fixed position in the pelvis, the rectum is at a high risk for injury secondary to ionizing radiation. Despite advances made in radiation science, up to 75% of the patients will suffer from acute radiation proctitis and up to 20% may experience chronic symptoms. Symptoms can be variable and include diarrhea, bleeding, incontinence, and fistulization. A multitude of treatment options exist. This article summarizes the latest knowledge relating to radiation proctopathy focusing on the vast array of treatment options. PMID:26034407

  6. Suitability of commonly used housekeeping genes in gene expression studies for space radiation research

    NASA Astrophysics Data System (ADS)

    Arenz, A.; Stojicic, N.; Lau, P.; Hellweg, C. E.; Baumstark-Khan, C.

    Research on the effects of ionizing radiation exposure involves the use of real-time reverse transcription polymerase chain reaction (qRT-PCR) for measuring changes in gene expression. Several variables need to be controlled for gene expression analysis, such as different amounts of starting material between the samples, variations in enzymatic efficiencies of the reverse transcription step, and differences in RNA integrity. Normalization of the obtained data to an invariant endogenous control gene (reference gene) is the elementary step in relative quantification strategy. There is a strong correlation between the quality of the normalized data and the stability of the reference gene itself. This is especially relevant when the samples have been obtained after exposure to radiation qualities inducing different amounts and kinds of damage, leading to effects on cell cycle delays or even on cell cycle blocks. In order to determine suitable reference genes as internal controls in qRT-PCR assays after exposure to ionizing radiation, we studied the gene expression levels of nine commonly used reference genes which are constitutively expressed in A549 lung cancer cells. Expression levels obtained for ACTB, B2M, GAPDH, PBGD, 18S rRNA, G6PDH, HPRT, UBC, TFRC and SDHA were determined after exposure to 2 and 6 Gy X-radiation. Gene expression data for Growth arrest and damage-inducible gene 45 (GADD45α) and Cyclin-dependent kinase inhibitor 1A (CDKN1A/p21CIP1) were selected to elucidate the influence of normalization by using appropriate and inappropriate internal control genes. According to these results, we strongly recommend the use of a panel of reference genes instead of only one.

  7. Radiation, work experience, and cause specific mortality among workers at an energy research laboratory.

    PubMed Central

    Checkoway, H; Mathew, R M; Shy, C M; Watson, J E; Tankersley, W G; Wolf, S H; Smith, J C; Fry, S A

    1985-01-01

    A retrospective cohort mortality study was conducted among 8375 white male employees who had worked at the Oak Ridge National Laboratory for at least one month between 1943 and 1972. This plant has been the site of energy related research, including uranium and plutonium reactor technology and radioisotope production. Radiation doses, primarily from gamma rays, were generally low; the median cumulative exposure for workers was 0.16 rems. Historical follow up was conducted for the years 1943-77 and ascertainment of vital status was achieved for 92.3% of the cohort. Standardised mortality ratios (SMRs) were computed to contrast the subjects' cause specific mortality experience with that of the United States white male population. The observed number of 966 deaths from all causes was 73% of the number expected. Mortality deficits were also seen for arteriosclerotic heart disease (SMR = 0.75; 344 observed) and all cancers (SMR = 0.78; 194 observed). These results are indicative of the healthy worker effect and the favourable influence on health of the cohort's relatively high socioeconomic status. Non-statistically significant raised SMRs were seen for all leukaemias (SMR = 1.49, 16 observed), cancer of the prostate (SMR = 1.16, 14 observed), and Hodgkin's disease (SMR = 1.10, 5 observed). Internal comparisons of mortality (standardised rate ratios, SRRs) were made between subgroups of the cohort according to radiation dose level and duration of employment in various job categories. No consistent gradients of cause specific mortality were detected for radiation exposure. Leukaemia mortality was highest among workers with greater than or equal to 10 years employment in engineering (SRR = 2.40) and maintenance (SRR = 3.12) jobs. The association of leukaemia with employment in engineering was unexpected; maintenance jobs entail potential exposures to radiation and to a wide range of organic chemicals; metals, and other substances. PMID:4016003

  8. Psychobiology of PTSD in the Acute Aftermath of Trauma: Integrating Research on Coping, HPA Function and Sympathetic Nervous System Activity

    PubMed Central

    Morris, Matthew C.; Rao, Uma

    2012-01-01

    Research on the psychobiological sequelae of trauma has typically focused on long-term alterations in individuals with chronic posttraumatic stress disorder (PTSD). Far less is known about the nature and course of psychobiological risk factors for PTSD during the acute aftermath of trauma. In this review, we summarize data from prospective studies focusing on the relationships among sympathetic nervous system activity, hypothalamic-pituitary-adrenal function, coping strategies and PTSD symptoms during the early recovery (or non-recovery) phase. Findings from pertinent studies are integrated to inform psychobiological profiles of PTSD-risk in children and adults in the context of existing models of PTSD-onset and maintenance. Data regarding bidirectional relations between coping strategies and stress hormones is reviewed. Limitations of existing literature and recommendations for future research are discussed. PMID:23380312

  9. Psychobiology of PTSD in the acute aftermath of trauma: Integrating research on coping, HPA function and sympathetic nervous system activity.

    PubMed

    Morris, Matthew C; Rao, Uma

    2013-02-01

    Research on the psychobiological sequelae of trauma has typically focused on long-term alterations in individuals with chronic posttraumatic stress disorder (PTSD). Far less is known about the nature and course of psychobiological risk factors for PTSD during the acute aftermath of trauma. In this review, we summarize data from prospective studies focusing on the relationships among sympathetic nervous system activity, hypothalamic-pituitary-adrenal function, coping strategies and PTSD symptoms during the early recovery (or non-recovery) phase. Findings from pertinent studies are integrated to inform psychobiological profiles of PTSD-risk in children and adults in the context of existing models of PTSD-onset and maintenance. Data regarding bidirectional relations between coping strategies and stress hormones is reviewed. Limitations of existing literature and recommendations for future research are discussed.

  10. Acute exposure to 930 MHz CW electromagnetic radiation in vitro affects reactive oxygen species level in rat lymphocytes treated by iron ions.

    PubMed

    Zmyślony, Marek; Politanski, Piotr; Rajkowska, Elzbieta; Szymczak, Wieslaw; Jajte, Jolanta

    2004-07-01

    The aim of this study was to test the hypothesis that the 930 MHz continuous wave (CW) electromagnetic field, which is the carrier of signals emitted by cellular phones, affects the reactive oxygen species (ROS) level in living cells. Rat lymphocytes were used in the experiments. A portion of the lymphocytes was treated with iron ions to induce oxidative processes. Exposures to electromagnetic radiation (power density 5 W/m2, theoretical calculated SAR = 1.5 W/kg) were performed within a GTEM cell. Intracellular ROS were measured by the fluorescent probe dichlorofluorescin diacetate (DCF-DA). The results show that acute (5 and 15 min) exposure does not affect the number of produced ROS. If, however, FeCl2 with final concentration 10 microg/ml was added to the lymphocyte suspensions to stimulate ROS production, after both durations of exposure, the magnitude of fluorescence (ROS level during the experiment) was significantly greater in the exposed lymphocytes. The character of the changes in the number of free radicals observed in our experiments was qualitatively compatible with the theoretical prediction from the model of electromagnetic radiation effect on radical pairs. PMID:15197754

  11. Prediction of Acute Radiation Mucositis using an Oral Mucosal Dose Surface Model in Carbon Ion Radiotherapy for Head and Neck Tumors

    PubMed Central

    Musha, Atsushi; Shimada, Hirofumi; Shirai, Katsuyuki; Saitoh, Jun-ichi; Yokoo, Satoshi; Chikamatsu, Kazuaki; Ohno, Tatsuya; Nakano, Takashi

    2015-01-01

    Purpose To evaluate the dose-response relationship for development of acute radiation mucositis (ARM) using an oral mucosal dose surface model (OMDS-model) in carbon ion radiotherapy (C-ion RT) for head and neck tumors. Methods Thirty-nine patients receiving C-ion RT for head and neck cancer were evaluated for ARM (once per week for 6 weeks) according to the Common Terminology Criteria for Adverse Events (CTCAE), version 4.0, and the Radiation Therapy Oncology Group (RTOG) scoring systems. The irradiation schedule typically used was 64 Gy [relative biological effectiveness (RBE)] in 16 fractions for 4 weeks. Maximum point doses in the palate and tongue were compared with ARM in each patient. Results The location of the ARM coincided with the high-dose area in the OMDS-model. There was a clear dose-response relationship between maximum point dose and ARM grade assessed using the RTOG criteria but not the CTCAE. The threshold doses for grade 2–3 ARM in the palate and tongue were 43.0 Gy(RBE) and 54.3 Gy(RBE), respectively. Conclusions The OMDS-model was useful for predicting the location and severity of ARM. Maximum point doses in the model correlated well with grade 2–3 ARM. PMID:26512725

  12. Acute exposure to 930 MHz CW electromagnetic radiation in vitro affects reactive oxygen species level in rat lymphocytes treated by iron ions.

    PubMed

    Zmyślony, Marek; Politanski, Piotr; Rajkowska, Elzbieta; Szymczak, Wieslaw; Jajte, Jolanta

    2004-07-01

    The aim of this study was to test the hypothesis that the 930 MHz continuous wave (CW) electromagnetic field, which is the carrier of signals emitted by cellular phones, affects the reactive oxygen species (ROS) level in living cells. Rat lymphocytes were used in the experiments. A portion of the lymphocytes was treated with iron ions to induce oxidative processes. Exposures to electromagnetic radiation (power density 5 W/m2, theoretical calculated SAR = 1.5 W/kg) were performed within a GTEM cell. Intracellular ROS were measured by the fluorescent probe dichlorofluorescin diacetate (DCF-DA). The results show that acute (5 and 15 min) exposure does not affect the number of produced ROS. If, however, FeCl2 with final concentration 10 microg/ml was added to the lymphocyte suspensions to stimulate ROS production, after both durations of exposure, the magnitude of fluorescence (ROS level during the experiment) was significantly greater in the exposed lymphocytes. The character of the changes in the number of free radicals observed in our experiments was qualitatively compatible with the theoretical prediction from the model of electromagnetic radiation effect on radical pairs.

  13. DNA Double-Strand Break Analysis by {gamma}-H2AX Foci: A Useful Method for Determining the Overreactors to Radiation-Induced Acute Reactions Among Head-and-Neck Cancer Patients

    SciTech Connect

    Goutham, Hassan Venkatesh; Mumbrekar, Kamalesh Dattaram; Vadhiraja, Bejadi Manjunath; Fernandes, Donald Jerard; Sharan, Krishna; Kanive Parashiva, Guruprasad; Kapaettu, Satyamoorthy; Bola Sadashiva, Satish Rao

    2012-12-01

    Purpose: Interindividual variability in normal tissue toxicity during radiation therapy is a limiting factor for successful treatment. Predicting the risk of developing acute reactions before initiation of radiation therapy may have the benefit of opting for altered radiation therapy regimens to achieve minimal adverse effects with improved tumor cure. Methods and Materials: DNA double-strand break (DSB) induction and its repair kinetics in lymphocytes of head-and-neck cancer patients undergoing chemoradiation therapy was analyzed by counting {gamma}-H2AX foci, neutral comet assay, and a modified version of neutral filter elution assay. Acute normal tissue reactions were assessed by Radiation Therapy Oncology Group criteria. Results: The correlation between residual DSBs and the severity of acute reactions demonstrated that residual {gamma}-H2AX foci in head-and-neck cancer patients increased with the severity of oral mucositis and skin reaction. Conclusions: Our results suggest that {gamma}-H2AX analysis may have predictive implications for identifying the overreactors to mucositis and skin reactions among head-and-neck cancer patients prior to initiation of radiation therapy.

  14. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1–March 31, 2012

    SciTech Connect

    Voyles, JW

    2012-04-13

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  15. Somatic mutational transients: models of response to acute and distributed doses of radiation applied to growing plants.

    PubMed

    Sand, S A

    1972-08-01

    After limited exposures of whole plants to gamma radiation, the induced-mutation frequency, measured in somatic tissue of successively blooming flowers, is a transient function of time. Quantitative interpretation of the data is aided by construction of a cell-generation model. Seven theoretical models are designed to represent interaction between the cell-generation model and seven different modes of application of the radiation treatment. The models provide a structure for integration of the mutational contributions from different floral primordia. These different contributions are distributed over the array of mature flowers by the quantitative relationships of each model. A mathematical expression for the average response of a model can be equated to the average observed response and solved for the implied mutation rate per cell per roentgen.

  16. NIST Accelerator Facilities And Programs In Support Of Industrial Radiation Research

    NASA Astrophysics Data System (ADS)

    Bateman, F. B.; Desrosiers, M. F.; Hudson, L. T.; Coursey, B. M.; Bergstrom, P. M.; Seltzer, S. M.

    2003-08-01

    NIST's Ionizing Radiation Division maintains and operates three electron accelerators used in a number of applications including waste treatment and sterilization, radiation hardness testing, detector calibrations and materials modification studies. These facilities serve a large number of governmental, academic and industrial users as well as an active intramural research program. They include a 500 kV cascaded-rectifier accelerator, a 2.5 MV electron Van de Graaff accelerator and a 7 to 32 MeV electron linac, supplying beams ranging in energy from a few keV up to 32 MeV. In response to the recent anthrax incident, NIST along with the US Postal Service and the Armed Forces Radiobiology Research Institute (AFRRI) are working to develop protocols and testing procedures for the USPS mail sanitization program. NIST facilities and personnel are being employed in a series of quality-assurance measurements for both electron- and photon-beam sanitization. These include computational modeling, dose verification and VOC (volatile organic compounds) testing using megavoltage electron and photon sources.

  17. NIST Accelerator Facilities And Programs In Support Of Industrial Radiation Research

    SciTech Connect

    Bateman, F.B.; Desrosiers, M.F.; Hudson, L.T.; Coursey, B.M.; Bergstrom, P.M. Jr.; Seltzer, S.M.

    2003-08-26

    NIST's Ionizing Radiation Division maintains and operates three electron accelerators used in a number of applications including waste treatment and sterilization, radiation hardness testing, detector calibrations and materials modification studies. These facilities serve a large number of governmental, academic and industrial users as well as an active intramural research program. They include a 500 kV cascaded-rectifier accelerator, a 2.5 MV electron Van de Graaff accelerator and a 7 to 32 MeV electron linac, supplying beams ranging in energy from a few keV up to 32 MeV. In response to the recent anthrax incident, NIST along with the US Postal Service and the Armed Forces Radiobiology Research Institute (AFRRI) are working to develop protocols and testing procedures for the USPS mail sanitization program. NIST facilities and personnel are being employed in a series of quality-assurance measurements for both electron- and photon-beam sanitization. These include computational modeling, dose verification and VOC (volatile organic compounds) testing using megavoltage electron and photon sources.

  18. Advances in clinical research in gynecologic radiation oncology: an RTOG symposium.

    PubMed

    Gaffney, David; Mundt, Arno; Schwarz, Julie; Eifel, Patricia

    2012-05-01

    There have been inexorable improvements in gynecologic radiation oncology through technologically advances, 3-dimensional imaging, and clinical research. Investment in these 3 critical areas has improved, and will continue to improve, the lives of patients with gynecologic cancer. Advanced technology delivery in gynecologic radiation oncology is challenging owing to the following: (1) setup difficulties, (2) managing considerable internal organ motion, and (3) responding to tumor volume reduction during treatment. Image guidance is a potential route to solve these problems and improve delivery to tumor and sparing organs at risk. Imaging with positron emission tomography-computed tomography and magnetic resonance imaging are contributing significantly to improved accuracy in diagnosis, treatment, and follow-up in cancer of the cervix. Functional imaging by exploiting tumor biology may improve prognosis and treatment. Clinical trials have been the greatest mechanism to improve and establish standards of care in women with vulvar, endometrial, and cervical cancer. There have been multiple technological advances and practice changing trials within the past several decades. Many important questions remain in optimizing care for women with gynecologic malignancies. The performance of clinical trials will be advanced with the use of consistent language (ie, similar staging system and criteria), eligibility criteria that fit the research question, end points that matter, adequate statistical power, complete follow-up, and prompt publication of mature results. PMID:22398709

  19. The Toll-Like Receptor 5 Agonist Entolimod Mitigates Lethal Acute Radiation Syndrome in Non-Human Primates

    PubMed Central

    Krivokrysenko, Vadim I.; Toshkov, Ilia A.; Gleiberman, Anatoli S.; Krasnov, Peter; Shyshynova, Inna; Bespalov, Ivan; Maitra, Ratan K.; Narizhneva, Natalya V.; Singh, Vijay K.; Whitnall, Mark H.; Purmal, Andrei A.; Shakhov, Alexander N.; Gudkov, Andrei V.; Feinstein, Elena

    2015-01-01

    There are currently no approved medical radiation countermeasures (MRC) to reduce the lethality of high-dose total body ionizing irradiation expected in nuclear emergencies. An ideal MRC would be effective even when administered well after radiation exposure and would counteract the effects of irradiation on the hematopoietic system and gastrointestinal tract that contribute to its lethality. Entolimod is a Toll-like receptor 5 agonist with demonstrated radioprotective/mitigative activity in rodents and radioprotective activity in non-human primates. Here, we report data from several exploratory studies conducted in lethally irradiated non-human primates (rhesus macaques) treated with a single intramuscular injection of entolimod (in the absence of intensive individualized supportive care) administered in a mitigative regimen, 1–48 hours after irradiation. Following exposure to LD50-70/40 of radiation, injection of efficacious doses of entolimod administered as late as 25 hours thereafter reduced the risk of mortality 2-3-fold, providing a statistically significant (P<0.01) absolute survival advantage of 40–60% compared to vehicle treatment. Similar magnitude of survival improvement was also achieved with drug delivered 48 hours after irradiation. Improved survival was accompanied by predominantly significant (P<0.05) effects of entolimod administration on accelerated morphological recovery of hematopoietic and immune system organs, decreased severity and duration of thrombocytopenia, anemia and neutropenia, and increased clonogenic potential of the bone marrow compared to control irradiated animals. Entolimod treatment also led to reduced apoptosis and accelerated crypt regeneration in the gastrointestinal tract. Together, these data indicate that entolimod is a highly promising potential life-saving treatment for victims of radiation disasters. PMID:26367124

  20. The Toll-Like Receptor 5 Agonist Entolimod Mitigates Lethal Acute Radiation Syndrome in Non-Human Primates.

    PubMed

    Krivokrysenko, Vadim I; Toshkov, Ilia A; Gleiberman, Anatoli S; Krasnov, Peter; Shyshynova, Inna; Bespalov, Ivan; Maitra, Ratan K; Narizhneva, Natalya V; Singh, Vijay K; Whitnall, Mark H; Purmal, Andrei A; Shakhov, Alexander N; Gudkov, Andrei V; Feinstein, Elena

    2015-01-01

    There are currently no approved medical radiation countermeasures (MRC) to reduce the lethality of high-dose total body ionizing irradiation expected in nuclear emergencies. An ideal MRC would be effective even when administered well after radiation exposure and would counteract the effects of irradiation on the hematopoietic system and gastrointestinal tract that contribute to its lethality. Entolimod is a Toll-like receptor 5 agonist with demonstrated radioprotective/mitigative activity in rodents and radioprotective activity in non-human primates. Here, we report data from several exploratory studies conducted in lethally irradiated non-human primates (rhesus macaques) treated with a single intramuscular injection of entolimod (in the absence of intensive individualized supportive care) administered in a mitigative regimen, 1-48 hours after irradiation. Following exposure to LD50-70/40 of radiation, injection of efficacious doses of entolimod administered as late as 25 hours thereafter reduced the risk of mortality 2-3-fold, providing a statistically significant (P<0.01) absolute survival advantage of 40-60% compared to vehicle treatment. Similar magnitude of survival improvement was also achieved with drug delivered 48 hours after irradiation. Improved survival was accompanied by predominantly significant (P<0.05) effects of entolimod administration on accelerated morphological recovery of hematopoietic and immune system organs, decreased severity and duration of thrombocytopenia, anemia and neutropenia, and increased clonogenic potential of the bone marrow compared to control irradiated animals. Entolimod treatment also led to reduced apoptosis and accelerated crypt regeneration in the gastrointestinal tract. Together, these data indicate that entolimod is a highly promising potential life-saving treatment for victims of radiation disasters. PMID:26367124

  1. The protective effect of amifostine on radiation-induced acute pulmonary toxicity: Detection by {sup 99m}Tc-DTPA transalveolar clearances

    SciTech Connect

    Uzal, Cem . E-mail: cemuzal@yahoo.com; Durmus-Altun, Gulay; Caloglu, Murat; Erguelen, Alev; Altaner, Semsi; Yigitbasi, N. Omer

    2004-10-01

    Purpose: The purpose of this study was to determine by using {sup 99m}Tc-diethylenetriaminepentaacetic acid (DTPA) lung scintigraphy whether amifostine given before irradiation protects alveolocapillary integrity in a rabbit model. Methods and materials: Twenty white New Zealand rabbits were randomly divided into 4 groups: (1) control (CONT), (2) amifostine alone (AMF), (3) radiation (RAD), and (4) radiation plus amifostine (RAD+AMF). The AMF and RAD+AMF groups received amifostine. The RAD and RAD+AMF groups were irradiated to the right hemithorax with a single dose of 20 Gy using a {sup 60}Co treatment unit. Amifostine (200 mg/kg) was given i.p. 30 min before irradiation. The {sup 99m}Tc-DTPA radioaerosol study was performed 14 day after irradiation. Results: The mean clearance rate of {sup 99m}Tc-DTPA in control subjects was 140 {+-} 21 min. The highest t{sub 1}/2 value was noted in the RAD group (603 {+-} 105 min, p = 0.001). There were no significant differences between the {sup 99m}Tc-DTPA lung clearance rates of the CONT, RAD+AMF (238 {+-} 24 min), and AMF groups (227 {+-} 54 min). The mean penetration index values of CONT, RAD, AMF, and RAD+AMF are 63% {+-} 1.6%, 63% {+-} 2.5%, 60% {+-} 2.9%, and 63% {+-} 2%, respectively. Conclusions: We concluded that amifostine treatment before the lung irradiation protects the lung alveolocapillary integrity. This study confirms the protective effect of amifostine in an acute phase of radiation lung injury.

  2. Analysis of cellular response by exposure to acute or chronic radiation in human lymphoblastoid TK-6 cells

    NASA Astrophysics Data System (ADS)

    Ohnishi, T.; Yasumoto, J.; Takahashi, A.; Ohnishi, K.

    To clarify the biological effects of low-dose rate radiation on human health for long-term stay in space, we analyzed the induction of apoptosis and apoptosis-related gene expression after irradiation with different dose-rate in human lymphoblastoid TK-6 cells harboring wild-type p53 gene. We irradiated TK-6 cells by X-ray at 1.5 Gy (1 Gy/min) and then sampled at 25 hr after culturing. We also irradiated by gamma-ray at 1.5 Gy (1 mGy/min) and then sampled immediately or 25 hr after irradiation. For DNA ladder analysis, we extracted DNA from these samples and electrophoresed with 2% agarose gel. In addition, we extracted mRNA from these samples for DNA-array analysis. mRNA from non-irradiated cells was used as a control. After labeling the cDNA against mRNA with [α -33P]-dCTP and hybridizing onto DNA array (Human Apoptosis Expression Array, R&D Systems), we scanned the profiles of the spots by a phosphorimager (BAS5000, FUJI FILM) and calculated using a NIH Image program. The data of each DNA-array were normalized with eight kinds of house keeping genes. We analyzed the expression level of apoptosis-related genes such as p53-related, Bcl-2 family, Caspase family and Fas-related genes. DNA ladders were obviously detected in the cells exposed to a high dose-rate radiation. We detected the induction of the gene expression of apoptosis-promotive genes. In contrast, almost no apoptosis was observed in the cells exposed to the chronic radiation at a low dose-rate. In addition, we detected the induction of the gene expression of apoptosis-suppressive genes as compared with apoptosis promotive-genes immediately after chronic irradiation. These results lead the importance of biological meaning of exposure to radiation at low dose-rate from an aspect of carcinogenesis. Finally, the effects of chronic irradiation become a highly important issue in space radiation biology for human health.

  3. Anticoagulation Management Practices and Outcomes in Elderly Patients with Acute Venous Thromboembolism: A Clinical Research Study

    PubMed Central

    Insam, Charlène; Angelillo-Scherrer, Anne; Aschwanden, Markus; Banyai, Martin; Beer, Juerg- Hans; Bounameaux, Henri; Egloff, Michael; Frauchiger, Beat; Husmann, Marc; Kucher, Nils; Lämmle, Bernhard; Matter, Christian; Osterwalder, Joseph; Righini, Marc; Staub, Daniel; Rodondi, Nicolas

    2016-01-01

    Whether anticoagulation management practices are associated with improved outcomes in elderly patients with acute venous thromboembolism (VTE) is uncertain. Thus, we aimed to examine whether practices recommended by the American College of Chest Physicians guidelines are associated with outcomes in elderly patients with VTE. We studied 991 patients aged ≥65 years with acute VTE in a Swiss prospective multicenter cohort study and assessed the adherence to four management practices: parenteral anticoagulation ≥5 days, INR ≥2.0 for ≥24 hours before stopping parenteral anticoagulation, early start with vitamin K antagonists (VKA) ≤24 hours of VTE diagnosis, and the use of low-molecular-weight heparin (LMWH) or fondaparinux. The outcomes were all-cause mortality, VTE recurrence, and major bleeding at 6 months, and the length of hospital stay (LOS). We used Cox regression and lognormal survival models, adjusting for patient characteristics. Overall, 9% of patients died, 3% had VTE recurrence, and 7% major bleeding. Early start with VKA was associated with a lower risk of major bleeding (adjusted hazard ratio 0.37, 95% CI 0.20–0.71). Early start with VKA (adjusted time ratio [TR] 0.77, 95% CI 0.69–0.86) and use of LMWH/fondaparinux (adjusted TR 0.87, 95% CI 0.78–0.97) were associated with a shorter LOS. An INR ≥2.0 for ≥24 hours before stopping parenteral anticoagulants was associated with a longer LOS (adjusted TR 1.2, 95% CI 1.08–1.33). In elderly patients with VTE, the adherence to recommended anticoagulation management practices showed mixed results. In conclusion, only early start with VKA and use of parenteral LMWH/fondaparinux were associated with better outcomes. PMID:26906217

  4. Cancer research results of the consortial radiation team of the NSBRI

    NASA Astrophysics Data System (ADS)

    Dicello, J. F.; Chang, P. Y.; Huso, D. L.; Kennedy, A. R.

    During the last eight years through a cooperative agreement with NASA, the National Space Biomedical Research Institute (NSBRI) has been investigating biological risks for personnel in Space, biologic mechanisms and environmental factors responsible for those risks, and countermeasures that could reduce the consequences. The NSBRI uses a programmatic approach where each major risk is investigated by a team through a consortium of individual peer-reviewed research grants. In its initial structuring, NSBRI recognized radiation as one of the major risks in Space, and the Radiation Team has been investigating radiation-induced excess cancer incidences, damage to the central nervous system, and other non-malignant diseases. This presentation reports cancer results and underlying mechanisms. The team is completing the first comprehensive measurement of cancers induced by protons or energetic heavy ions (HZEs) in rodent models (J. Dicello). The results for breast cancer suggest that the biological effectiveness of particles such as iron ions may be less than that frequently assumed. The Team has further demonstrated that exposures to such particles at levels comparable to those in space might be mitigated through pharmaceutical intervention even after exposures have occurred (D. Huso). Dr. Huso's group was able to identify through genetic marking with quantitative immunohistochemistry and microarray analysis that resistant, poorly differentiated breast cancers appear to arise from epithelial cells with a unique gene expression profile. In a parallel NIH grant, Dr. D. Huso developed a new transgenic mouse model for NSBRI studies that better parallels specific genetic pathways associated with hematopoietic malignancies. Dr. A. Kennedy's group at the University of Pennsylvania has shown that non-toxic nutritional supplements can decrease the cytotoxicity levels of oxidative stress and yields of malignantly transformed cells induced by the types of radiation encountered

  5. The Chernobyl Tissue Bank: integrating research on radiation-induced thyroid cancer.

    PubMed

    Thomas, G A

    2012-03-01

    The only unequivocal radiological effect of the Chernobyl accident on human health is the increase in thyroid cancer in those exposed in childhood or early adolescence. Cancer is a complicated disease and it is unclear whether the mechanism by which radiation gives rise to cancer differs from that involved in the generation of cancers of the same type by other environmental stimuli. The Chernobyl Tissue Bank was established in response to the scientific interest in studying the molecular biology of thyroid cancer after Chernobyl to address this question. The project is supported by the governments of Ukraine and Russia, and financially supported (in total around US$3 million) by the European Commission, the National Cancer Institute of the USA and the Sasakawa Memorial Health Foundation of Japan. The project began collecting a variety of biological samples from patients on 1 October 1988, and has supplied material to 23 research projects in Japan, the USA and Europe. The establishment of the Chernobyl Tissue Bank has facilitated co-operation between these research projects and the combination of clinical and research data provides a paradigm for cancer research in the molecular biological age.

  6. Review and Evaluation of Updated Research on the Health Effects Associated with Low-Dose Ionizing Radiation

    SciTech Connect

    Dauer, Lawrence T.; Brooks, Antone L.; Hoel, David G.; Morgan, William F.; Stram, Daniel; Tran, Phung

    2010-07-01

    Potential health effects of low levels of radiation have predominantly been based on those effects observed at high levels of radiation. The authors have reviewed more than 200 percent publications in radiobiology and epidermiology related to low dose radiation and concluded that recent radiobiological studies at low-doses; that doses <100 mSv in a single exposure appear to be too small to allow epidermiological detection of statistically significant excess cancers in the presence of naturally occurring cancers; that low dose radiation research should to holistic, systems-based approaches to develop models that define the shape of the dose-response relationships at low doses; and that these results should be combined with the latest epidermiology to produce a comprehensive understanding of radiation effects that addresses both damage, likely with a linear effect, and response, possibly with non-linear consequences.

  7. Quality assurance in military medical research and medical radiation accident management.

    PubMed

    Hotz, Mark E; Meineke, Viktor

    2012-08-01

    The provision of quality radiation-related medical diagnostic and therapeutic treatments cannot occur without the presence of robust quality assurance and standardization programs. Medical laboratory services are essential in patient treatment and must be able to meet the needs of all patients and the clinical personnel responsible for the medical care of these patients. Clinical personnel involved in patient care must embody the quality assurance process in daily work to ensure program sustainability. In conformance with the German Federal Government's concept for modern departmental research, the international standard ISO 9001, one of the relevant standards of the International Organization for Standardization (ISO), is applied in quality assurance in military medical research. By its holistic approach, this internationally accepted standard provides an excellent basis for establishing a modern quality management system in line with international standards. Furthermore, this standard can serve as a sound basis for the further development of an already established quality management system when additional standards shall apply, as for instance in reference laboratories or medical laboratories. Besides quality assurance, a military medical facility must manage additional risk events in the context of early recognition/detection of health risks of military personnel on deployment in order to be able to take appropriate preventive and protective measures; for instance, with medical radiation accident management. The international standard ISO 31000:2009 can serve as a guideline for establishing risk management. Clear organizational structures and defined work processes are required when individual laboratory units seek accreditation according to specific laboratory standards. Furthermore, international efforts to develop health laboratory standards must be reinforced that support sustainable quality assurance, as in the exchange and comparison of test results within

  8. microRNA Alterations Driving Acute and Late Stages of Radiation-Induced Fibrosis in a Murine Skin Model

    SciTech Connect

    Simone, Brittany A.; Ly, David; Savage, Jason E.; Hewitt, Stephen M.; Dan, Tu D.; Ylaya, Kris; Shankavaram, Uma; Lim, Meng; Jin, Lianjin; Camphausen, Kevin; Mitchell, James B.; Simone, Nicole L.

    2014-09-01

    Purpose: Although ionizing radiation is critical in treating cancer, radiation-induced fibrosis (RIF) can have a devastating impact on patients' quality of life. The molecular changes leading to radiation-induced fibrosis must be elucidated so that novel treatments can be designed. Methods and Materials: To determine whether microRNAs (miRs) could be responsible for RIF, the fibrotic process was induced in the right hind legs of 9-week old CH3 mice by a single-fraction dose of irradiation to 35 Gy, and the left leg served as an unirradiated control. Fibrosis was quantified by measurements of leg length compared with control leg length. By 120 days after irradiation, the irradiated legs were 20% (P=.013) shorter on average than were the control legs. Results: Tissue analysis was done on muscle, skin, and subcutaneous tissue from irradiated and control legs. Fibrosis was noted on both gross and histologic examination by use of a pentachrome stain. Microarrays were performed at various times after irradiation, including 7 days, 14 days, 50 days, 90 days, and 120 days after irradiation. miR-15a, miR-21, miR-30a, and miR-34a were the miRs with the most significant alteration by array with miR-34a, proving most significant on confirmation by reverse transcriptase polymerase chain reaction, c-Met, a known effector of fibrosis and downstream molecule of miR-34a, was evaluated by use of 2 cell lines: HCT116 and 1522. The cell lines were exposed to various stressors to induce miR changes, specifically ionizing radiation. Additionally, in vitro transfections with pre-miRs and anti-miRs confirmed the relationship of miR-34a and c-Met. Conclusions: Our data demonstrate an inverse relationship with miR-34a and c-Met; the upregulation of miR-34a in RIF causes inhibition of c-Met production. miRs may play a role in RIF; in particular, miR-34a should be investigated as a potential target to prevent or treat this devastating side effect of irradiation.

  9. Medical informatics: an essential tool for health sciences research in acute care.

    PubMed

    Li, Man; Pickering, Brian W; Smith, Vernon D; Hadzikadic, Mirsad; Gajic, Ognjen; Herasevich, Vitaly

    2009-10-01

    Medical Informatics has become an important tool in modern health care practice and research. In the present article we outline the challenges and opportunities associated with the implementation of electronic medical records (EMR) in complex environments such as intensive care units (ICU). We share our initial experience in the design, maintenance and application of a customized critical care, Microsoft SQL based, research warehouse, ICU DataMart. ICU DataMart integrates clinical and administrative data from heterogeneous sources within the EMR to support research and practice improvement in the ICUs. Examples of intelligent alarms -- "sniffers", administrative reports, decision support and clinical research applications are presented.

  10. Multi-projection bioluminescence tomography guided system for small animal radiation research platform (SARRP)

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Iordachita, Iulian; Wong, John W.; Wang, Ken Kang-Hsin

    2016-03-01

    Cone beam computed tomography (CBCT) is limited in guiding irradiation for soft tissue targets. As a complementary imaging modality, bioluminescence tomography (BLT) provides strong soft tissue contrast. We developed a dual-use BLT system which consists of an optical assembly, a mobile cart and an independent mouse bed. The system is motorized which can easily dock onto an independent mouse bed operating as a standalone system for longitudinal bioluminescence imaging (BLI)/BLT studies and also dock onto the SARRP for on-line radiation guidance. Our initial tests for the system demonstrate that (i) the imaging depth is 28 mm, (ii) the optical background is sufficiently low and uniform, (iii) the non-uniform response of the optical imaging can be corrected by the flat field correction, and (iv) the imaging acquisition speed was improved by an average of 3.7 times faster than our previous systems. We also presented a geometry calibration procedure to map the planar BLIs acquired at multi-projections onto the surface of the CBCT image. The CBCT is required to generate the mesh for BLT reconstruction and used for treatment planning and radiation delivery. Feasibility study of the geometry calibration was performed on a manual-docking prototype. The mean and maximum mapping accuracy is 0.3 and 0.6 mm. The performance of the proposed motorized dual-use system is expected to be superior to that of the manual-docking prototype because of the mechanism stability. We anticipate the dual-use system as a highly efficient and cost-effective platform to facilitate optical imaging for preclinical radiation research.

  11. Researchers lack data on trends in UV radiation at Earth's surface

    SciTech Connect

    Zurer, P.S.

    1993-07-26

    Current anxiety about depletion of stratospheric ozone stems from the expected resulting increase in biologically damaging ultraviolet (UV) radiation at Earth's surface. Atmospheric ozone absorbs sunlight with wavelengths shorter than 320 nm--the highest-energy UV-B wavelengths (280-320 nm) that can damage DNA in living systems. But surprisingly, despite firm evidence the ozone layer is being eroded by chlorine and bromine from man-made compounds, very little information exists on how UV light intensity is changing. Solid data from Antarctica reveal that UV radiation soars under the ozone hole, where fully half of the atmospheric ozone is destroyed each spring. But elsewhere on the globe, where ozone has been thinning at a rate of a few percent per decade, the corresponding trends in UV intensity are not at all clear. In the late 1970s and early 1980s the problem of ozone depletion seemed solved. The US had banned the use of chlorofluorocarbons (CFCs) in aerosols. Model calculations were predicting CFCs would cause only a small loss of ozone by the second half of the 21st century. Costly monitoring of UV radiation commanded little attention. Attitudes began to change with the 1985 discovery of the Antarctic ozone hole. The National Science Foundation (NSF) established UV monitoring stations in the Antarctic in 1988, adding an Alaskan station in 1990. Both the Department of Agriculture (USDA) and the Environmental Protection Agency (EPA) have programs in the works that will eventually place monitoring stations across the US, but it will be many years before researchers have access to the kind of extensive database necessary to reliably evaluation long-term trends in UV intensity.

  12. CIRRPC (Committee on Interagency Radiation Research and Policy Coordination): Twelfth quarterly report

    SciTech Connect

    Young, A.L.

    1987-06-30

    The policy subpanels held meetings concerning SI metric radiation units, radioepidemiological tables, and radon risk assessment. The science subpanels considered the scientific basis for radiation protection standards, and pre-disaster planning for human health effects risk assessment. Special projects include radiation protection standards fact sheets, a US population radiation exposure assessment, human and animal databases on radiation induced cancers, and ecological and agricultural effects of nuclear war.

  13. A research program on radiative transfer model development in support of the ARM program

    SciTech Connect

    Clough, S.A.

    1992-05-01

    Research continued on the development of a radiative transfer model. This report discusses the revised continuum model. The water vapor continuum plays an important role in atmospheric radiative transfer providing increased opacity between spectral lines over the full spectral region from the microwave to the visible. The continuum has a significant influence on atmospheric fluxes and cooling rates. Additionally the continuum is important to the physical solution of the inverse problem, the remote sensing of atmospheric state to retrieve temperature, water vapor, surface properties and other state parameters. There are two components to the continuum: The self-broadened continuum, dependent on the square of the partial pressure of water vapor, and the foreign-broadened continuum, principally dependent on the product of the water vapor partial pressure and the total pressure. As a consequence the self broadened continuum tends to be more important in the lower atmosphere while the foreign broadened continuum tends to be more important in the mid to upper troposphere. To address this situation and to improve overall accuracy, we have embarked on the development of an improved water vapor continuum model.

  14. Initial Report for the Radiation Effects Research Foundation F1 Mail Survey.

    PubMed

    Milder, Cm; Sakata, R; Sugiyama, H; Sadakane, A; Utada, M; Cordova, Ka; Hida, A; Ohishi, W; Ozasa, K; Grant, Ej

    2016-01-01

    To study the full health effects of parental radiation exposure on the children of the atomic bomb survivors, the Radiation Effects Research Foundation developed a cohort of 76,814 children born to atomic bomb survivors (F1 generation) to assess cancer incidence and mortality from common adult diseases. In analyzing radiationassociated health information, it is important to be able to adjust for sociodemographic and lifestyle variations that may affect health. In order to gain this and other background information on the F1 cohort and to determine willingness to participate in a related clinical study, the F1 Mail Survey Questionnaire was designed with questions corresponding to relevant health, sociodemographic, and lifestyle indicators. Between the years 2000 and 2006, the survey was sent to a subset of the F1 Mortality Cohort. A total of 16,183 surveys were completed and returned: 10,980 surveys from Hiroshima residents and 5,203 from Nagasaki residents. The response rate was 65.6%, varying somewhat across parental exposure category, city, gender, and year of birth. Differences in health and lifestyle were noted in several variables on comparison across city and gender. No major differences in health, lifestyle, sociodemographics, or disease were seen across parental exposure categories, though statistically significant tests for heterogeneity and linear trend revealed some possible changes with dose. The data described herein provide a foundation for studies in the future. PMID:27039765

  15. A multipurpose quality assurance phantom for the small animal radiation research platform (SARRP)

    NASA Astrophysics Data System (ADS)

    Ngwa, Wilfred; Tsiamas, Panagiotis; Zygmanski, Piotr; Makrigiorgos, G. Mike; Berbeco, Ross I.

    2012-05-01

    In this work, the suitability and performance of a mouse-size MOSFET (Mousefet) phantom is investigated for routine quality assurance (QA) of the small animal radiation research platform (SARRP). This Mousefet phantom is a simple construction consisting of five micro-MOSFETS custom integrated in a quincunx pattern within a tissue-equivalent phantom, allowing repeat/multiple QA tasks to be quickly performed in one experimental set-up. The Mousefet phantom is particularly evaluated for facilitating SARRP QA tasks which may warrant daily evaluation, including output constancy, isocenter congruency test and cone beam computed tomography (CBCT) image geometric accuracy. Results for the output constancy measurements showed a maximum daily variation of less than 2.6% for all MOSFETS, in consonance with observations from concurrent ion chamber measurements. It is also shown that the design of the Mousefet phantom allows the output check data to be used for prompt verification of beam energy and cone profile constancy. For the isocenter congruency test, it is demonstrated that the Mousefet phantom can detect 0.3 mm deviations of the CBCT isocenter from the radiation isocenter. Meanwhile, results for CBCT image geometric accuracy were consistently found to be within 2% of the expected value. Other CBCT image quality parameters could also be assessed in terms of image intensity constancy, noise and image uniformity. Overall, the results establish the Mousefet phantom as a simple and time-efficient multipurpose tool that could be employed effectively for routine QA of the SARRP.

  16. Modeling the Risk of Radiation-Induced Acute Esophagitis for Combined Washington University and RTOG Trial 93-11 Lung Cancer Patients

    SciTech Connect

    Huang, Ellen X.; Bradley, Jeffrey D.; El Naqa, Issam; Hope, Andrew J.; Lindsay, Patricia E.; Bosch, Walter R.; Matthews, John W.; Sause, William T.; Graham, Mary V.; Deasy, Joseph O.

    2012-04-01

    Purpose: To construct a maximally predictive model of the risk of severe acute esophagitis (AE) for patients who receive definitive radiation therapy (RT) for non-small-cell lung cancer. Methods and Materials: The dataset includes Washington University and RTOG 93-11 clinical trial data (events/patients: 120/374, WUSTL = 101/237, RTOG9311 = 19/137). Statistical model building was performed based on dosimetric and clinical parameters (patient age, sex, weight loss, pretreatment chemotherapy, concurrent chemotherapy, fraction size). A wide range of dose-volume parameters were extracted from dearchived treatment plans, including Dx, Vx, MOHx (mean of hottest x% volume), MOCx (mean of coldest x% volume), and gEUD (generalized equivalent uniform dose) values. Results: The most significant single parameters for predicting acute esophagitis (RTOG Grade 2 or greater) were MOH85, mean esophagus dose (MED), and V30. A superior-inferior weighted dose-center position was derived but not found to be significant. Fraction size was found to be significant on univariate logistic analysis (Spearman R = 0.421, p < 0.00001) but not multivariate logistic modeling. Cross-validation model building was used to determine that an optimal model size needed only two parameters (MOH85 and concurrent chemotherapy, robustly selected on bootstrap model-rebuilding). Mean esophagus dose (MED) is preferred instead of MOH85, as it gives nearly the same statistical performance and is easier to compute. AE risk is given as a logistic function of (0.0688 Asterisk-Operator MED+1.50 Asterisk-Operator ConChemo-3.13), where MED is in Gy and ConChemo is either 1 (yes) if concurrent chemotherapy was given, or 0 (no). This model correlates to the observed risk of AE with a Spearman coefficient of 0.629 (p < 0.000001). Conclusions: Multivariate statistical model building with cross-validation suggests that a two-variable logistic model based on mean dose and the use of concurrent chemotherapy robustly predicts

  17. Cellular and molecular research to reduce uncertainties in estimates of health effects from low-level radiation

    SciTech Connect

    Elkind, M.M.; Bedford, J.; Benjamin, S.A.; Waldren, C.A. ); Gotchy, R.L. )

    1990-10-01

    A study was undertaken by five radiation scientists to examine the feasibility of reducing the uncertainties in the estimation of risk due to protracted low doses of ionizing radiation. In addressing the question of feasibility, a review was made by the study group: of the cellular, molecular, and mammalian radiation data that are available; of the way in which altered oncogene properties could be involved in the loss of growth control that culminates in tumorigenesis; and of the progress that had been made in the genetic characterizations of several human and animal neoplasms. On the basis of this analysis, the study group concluded that, at the present time, it is feasible to mount a program of radiation research directed at the mechanism(s) of radiation-induced cancer with special reference to risk of neoplasia due to protracted, low doses of sparsely ionizing radiation. To implement a program of research, a review was made of the methods, techniques, and instruments that would be needed. This review was followed by a survey of the laboratories and institutions where scientific personnel and facilities are known to be available. A research agenda of the principal and broad objectives of the program is also discussed. 489 refs., 21 figs., 14 tabs.

  18. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2006

    SciTech Connect

    DL Sisterson

    2006-10-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  19. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - January 1 - March 31, 2008

    SciTech Connect

    Sisterson, DL

    2008-04-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  20. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 – June 30, 2006

    SciTech Connect

    DL Sisterson

    2006-07-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998.

  1. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2009

    SciTech Connect

    DL Sisterson

    2009-10-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data then are sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by 1) individual data stream, site, and month for the current year and 2) site and fiscal year (FY) dating back to 1998.

  2. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - July 1 - September 30, 2008

    SciTech Connect

    DL Sisterson

    2008-09-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  3. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2009

    SciTech Connect

    DL Sisterson

    2009-03-17

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  4. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2007

    SciTech Connect

    DL Sisterson

    2008-01-08

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  5. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report: October 1 - December 31, 2010

    SciTech Connect

    Sisterson, DL

    2011-03-02

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  6. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2011

    SciTech Connect

    Voyles, JW

    2011-10-10

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  7. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - October 1 - December 31, 2008

    SciTech Connect

    Sisterson, DL

    2009-01-15

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  8. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2008

    SciTech Connect

    DL Sisterson

    2008-06-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  9. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2007

    SciTech Connect

    DL Sisterson

    2007-07-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  10. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 – March 31, 2007

    SciTech Connect

    DL Sisterson

    2007-04-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  11. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2011

    SciTech Connect

    Voyles, JW

    2012-01-09

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  12. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2007

    SciTech Connect

    DL Sisterson

    2007-10-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  13. Support of Activities of the NAS in Relation to the Radiation Effects Research Foundation

    SciTech Connect

    Douple, Evan B.

    2006-05-31

    The National Academies (NA) provides support for the activities related to the long-term follow up of the health of the survivors of the atomic bombings of Hiroshima and Nagasaki being conducted by the Radiation Effects Research Foundation (RERF) laboratories in Hiroshima and Nagasaki, Japan. The NA serves as scientific and administrative liaison between the U.S. Department of Energy (DOE) and RERF, and performs tasks in the areas of scientific oversight, information/public interface, fiscal oversight, and personnel management. The project includes recruitment and support of approximately 10 NA employees who work at RERF in Japan. Specific activities are performed consistent with the cooperative agreement’s Statement of Work between DOE and NA and consistent with an Annual Work Plan developed by DOE and NA.

  14. The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory

    SciTech Connect

    1995-10-01

    The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube.

  15. NOAA-ERL solar ultraviolet radiation and climate research project: Program description and progress

    NASA Astrophysics Data System (ADS)

    Donnelly, R. F.; Baker-Blocker, A.; Bouwer, S. D.; Lean, J.

    1982-09-01

    Research of the temporal variations of solar ultraviolet radiation is reviewed. Progress on a collaborative program to analyze Dr. D. F. Heath's NIMBUS-7 SBUV measurements of the solar UV spectral irradiance is summarized. Significant progress has been made on determining the wavelength and temporal characteristics of UV variations caused by solar active region evolution (birth, growth, peak, decay and occasionally rejuvenation) and by solar rotation (area foreshortening, center-to-limb darkening and limb occulation). Work on trying to corroborate an observed semiannual UV variation has commenced. Extensive progress on modeling solar UV variations has been achieved. Support for improved rocket-flight measurements of solar UV spectral irradiance is discussed. The importance of obtaining accurate recalibration is stressed.

  16. Clinical research of fenofibrate and spironolactone for acute central serous chorioretinopathy

    PubMed Central

    Chai, Yong; Liu, Rong-Qiang; Yi, Jing-Lin; Ye, Ling-Hong; Zou, Jing; Jiang, Nan; Shao, Yi

    2016-01-01

    AIM To compare the effectiveness of combined fenofibrate and spironolactone with fenofibrate alone for treatment of central serous chorioretinopathy (CSCR). METHODS Totally 60 patients (60 eyes) with a history of acute CSCR were randomed into two groups: group A with combination of fenofibrate (200 mg) and spironolactone (100 mg), and group B with only fenofibrate (200 mg). They were taken half an hour before meals and once per day for 8wk. The changes of the visual acuity, subjective symptom, ocular surface disease index (OSDI), the tear film and optical coherence tomography were observed at 2, 4, 6, and 8wk before and after treatment. RESULTS The best corrected visual acuity (BCVA, logMAR) was improved to 0.22 and 0.27 after treatment from baseline of 0.35 and 0.36 in groups A and B (P<0.05), respectively. After 8wk treatment, the central subfield thickness (CST), and subretinal fluid volumn (SFV) decreased significantly to 49.5% and 78.8% in group A and 37.0% and 57.2% in group B. There were significant differences of CST and SFV in both groups (all P<0.05). CONCLUSION Fenofibrate combined with spironolactone may have more clinical efficacy in the treatment of CSCR than fenofibrate only. PMID:27803862

  17. State Institution "National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine" - research activities and scientific advance in 2013.

    PubMed

    Bazyka, D; Sushko, V; Chumak, A; Buzunov, V; Talko, V; Yanovych, L

    2014-09-01

    Research activities and scientific advance achieved in 2013 at the State Institution "National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine" (NRCRM) concerning medical problems of the Chornobyl disaster, radiation medicine, radiobiology, radiation hygiene and epidemiology in collaboration with the WHO network of medical preparedness and assistance in radiation accidents are outlined in the annual report. Key points include the research results of XRCC1 and XPD gene polymorphism in thyroid cancer patients, CD38 gene GG genotype as a risk factor for chronic lymphocytic leukemia, frequency of 185delAG and 5382insC mutations in BRCA1 gene in women with breast cancer, cognitive function and TERF1, TERF2, TERT gene expression both with telomere length in human under the low dose radiation exposure. The "source-scattering/shielding structures- man" models for calculation of partial dose values to the eye lens and new methods for radiation risk assessment were developed and adapted. Radiation risks of leukemia including chronic lymphocytic leukemia in the cohort of liquidators were published according to the "case-control" study results after 20 years of survey. Increase of non-tumor morbidity in liquidators during the 1988-2011 with the maximum level 12-21 years upon irradiation was found. Incidence in evacuees appeared being of two-peak pattern i.e. in the first years after the accident and 12 years later. Experimental studies have concerned the impact of radio-modifiers on cellular systems, reproductive function in the population, features of the child nutrition in radiation contamination area were studied. Report also shows the results of scientific and organizational, medical and preventive work, staff training, and implementation of innovations. The NRCRM Annual Report was approved at the Scientific Council meeting of NAMS on March 3, 2014. PMID:25536544

  18. State Institution "National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine" - research activities and scientific advance in 2013.

    PubMed

    Bazyka, D; Sushko, V; Chumak, A; Buzunov, V; Talko, V; Yanovych, L

    2014-09-01

    Research activities and scientific advance achieved in 2013 at the State Institution "National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine" (NRCRM) concerning medical problems of the Chornobyl disaster, radiation medicine, radiobiology, radiation hygiene and epidemiology in collaboration with the WHO network of medical preparedness and assistance in radiation accidents are outlined in the annual report. Key points include the research results of XRCC1 and XPD gene polymorphism in thyroid cancer patients, CD38 gene GG genotype as a risk factor for chronic lymphocytic leukemia, frequency of 185delAG and 5382insC mutations in BRCA1 gene in women with breast cancer, cognitive function and TERF1, TERF2, TERT gene expression both with telomere length in human under the low dose radiation exposure. The "source-scattering/shielding structures- man" models for calculation of partial dose values to the eye lens and new methods for radiation risk assessment were developed and adapted. Radiation risks of leukemia including chronic lymphocytic leukemia in the cohort of liquidators were published according to the "case-control" study results after 20 years of survey. Increase of non-tumor morbidity in liquidators during the 1988-2011 with the maximum level 12-21 years upon irradiation was found. Incidence in evacuees appeared being of two-peak pattern i.e. in the first years after the accident and 12 years later. Experimental studies have concerned the impact of radio-modifiers on cellular systems, reproductive function in the population, features of the child nutrition in radiation contamination area were studied. Report also shows the results of scientific and organizational, medical and preventive work, staff training, and implementation of innovations. The NRCRM Annual Report was approved at the Scientific Council meeting of NAMS on March 3, 2014.

  19. Fundamental research on a cerenkov radiation sensor based on optical glass for detecting beta-rays

    NASA Astrophysics Data System (ADS)

    Kim, Jae Seok; Jang, Kyoung Won; Shin, Sang Hun; Jeon, Dayeong; Hong, Seunghan; Sim, Hyeok In; Kim, Seon Geun; Yoo, Wook Jae; Lee, Bongsoo; Moon, Joo Hyun; Park, Byung Gi

    2015-01-01

    In this study, a Cerenkov radiation sensor for detecting low-energy beta-particles was fabricated using various Cerenkov radiators such as an aerogel and CaF2-, SiO2-, and Al2O3-based optical glasses. Because the Cerenkov threshold energy (CTE) is determined by the refractive index of the Cerenkov radiator, the intensity of Cerenkov radiation varies according to the refractive indices of the Cerenkov radiators. Therefore, we measured the intensities of Cerenkov radiation induced by beta-particles generated from a radioactive isotope as a function of the refractive indices of the Cerenkov radiators. Also, the electron fluxes were calculated for various Cerenkov radiators by using a Monte Carlo N-Particle extended transport code (MCNPX) to determine the relationship between the intensities of the Cerenkov radiation and the electron fluxes.

  20. SU-E-T-89: Comprehensive Quality Assurance Phantom for the Small Animal Radiation Research Platform

    SciTech Connect

    Jermoumi, M; Ngwa, W; Korideck, H; Zygmanski, P; Berbeco, R; Makrigiorgos, G; Cormack, R

    2014-06-01

    Purpose: Use of Small Animal Radiation Research Platform (SARRP) systems for conducting state-of-the-art image guided radiotherapy (IGRT) research on small animals has become more common over the past years. The purpose of this work is to develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the SARRP. Methods: A QA phantom was developed for carrying out daily, monthly and annual QA tasks including imaging, dosimetry and treatment planning system (TPS) performance evaluation of the SARRP. The QA phantom consists of nine (60×60×5 mm3) KV-energy tissue equivalent solid water slabs that can be employed for annual dosimetry QA with film. Three of the top slabs are replaceable with ones incorporating Mosfets or OSLDs arranged in a quincunx pattern, or a slab drilled to accommodate an ion chamber insert. These top slabs are designed to facilitate routine daily and monthly QA tasks such as output constancy, isocenter congruency test, treatment planning system (TPS) QA, etc. One slab is designed with inserts for image QA. A prototype of the phantom was applied to test the performance of the imaging, planning and treatment delivery systems. Results: Output constancy test results showed daily variations within 3%. For isocenter congruency test, the phantom could be used to detect 0.3 mm deviations of the CBCT isocenter from the radiation isocenter. Using the Mosfet in phantom as target, the difference between TPS calculations and measurements was within 5%. Image-quality parameters could also be assessed in terms of geometric accuracy, CT number accuracy, linearity, noise and image uniformity, etc. Conclusion: The developed phantom can be employed as a simple tool for comprehensive performance evaluation of the SARRP. The study provides a reference for development of a comprehensive quality assurance program for the SARRP, with proposed tolerances and frequency of required tests.

  1. Normal Tissue Complication Probability Modeling of Acute Hematologic Toxicity in Patients Treated With Intensity-Modulated Radiation Therapy for Squamous Cell Carcinoma of the Anal Canal

    SciTech Connect

    Bazan, Jose G.; Luxton, Gary; Mok, Edward C.; Koong, Albert C.; Chang, Daniel T.

    2012-11-01

    Purpose: To identify dosimetric parameters that correlate with acute hematologic toxicity (HT) in patients with squamous cell carcinoma of the anal canal treated with definitive chemoradiotherapy (CRT). Methods and Materials: We analyzed 33 patients receiving CRT. Pelvic bone (PBM) was contoured for each patient and divided into subsites: ilium, lower pelvis (LP), and lumbosacral spine (LSS). The volume of each region receiving at least 5, 10, 15, 20, 30, and 40 Gy was calculated. Endpoints included grade {>=}3 HT (HT3+) and hematologic event (HE), defined as any grade {>=}2 HT with a modification in chemotherapy dose. Normal tissue complication probability (NTCP) was evaluated with the Lyman-Kutcher-Burman (LKB) model. Logistic regression was used to test associations between HT and dosimetric/clinical parameters. Results: Nine patients experienced HT3+ and 15 patients experienced HE. Constrained optimization of the LKB model for HT3+ yielded the parameters m = 0.175, n = 1, and TD{sub 50} = 32 Gy. With this model, mean PBM doses of 25 Gy, 27.5 Gy, and 31 Gy result in a 10%, 20%, and 40% risk of HT3+, respectively. Compared with patients with mean PBM dose of <30 Gy, patients with mean PBM dose {>=}30 Gy had a 14-fold increase in the odds of developing HT3+ (p = 0.005). Several low-dose radiation parameters (i.e., PBM-V10) were associated with the development of HT3+ and HE. No association was found with the ilium, LP, or clinical factors. Conclusions: LKB modeling confirms the expectation that PBM acts like a parallel organ, implying that the mean dose to the organ is a useful predictor for toxicity. Low-dose radiation to the PBM was also associated with clinically significant HT. Keeping the mean PBM dose <22.5 Gy and <25 Gy is associated with a 5% and 10% risk of HT, respectively.

  2. Randomized trial of radiation-free central nervous system prophylaxis comparing intrathecal triple therapy with liposomal cytarabine in acute lymphoblastic leukemia

    PubMed Central

    Bassan, Renato; Masciulli, Arianna; Intermesoli, Tamara; Audisio, Ernesta; Rossi, Giuseppe; Pogliani, Enrico Maria; Cassibba, Vincenzo; Mattei, Daniele; Romani, Claudio; Cortelezzi, Agostino; Corti, Consuelo; Scattolin, Anna Maria; Spinelli, Orietta; Tosi, Manuela; Parolini, Margherita; Marmont, Filippo; Borlenghi, Erika; Fumagalli, Monica; Cortelazzo, Sergio; Gallamini, Andrea; Marfisi, Rosa Maria; Oldani, Elena; Rambaldi, Alessandro

    2015-01-01

    Developing optimal radiation-free central nervous system prophylaxis is a desirable goal in acute lymphoblastic leukemia, to avoid the long-term toxicity associated with cranial irradiation. In a randomized, phase II trial enrolling 145 adult patients, we compared intrathecal liposomal cytarabine (50 mg: 6/8 injections in B-/T-cell subsets, respectively) with intrathecal triple therapy (methotrexate/cytarabine/prednisone: 12 injections). Systemic therapy included methotrexate plus cytarabine or L-asparaginase courses, with methotrexate augmented to 2.5 and 5 g/m2 in Philadelphia-negative B- and T-cell disease, respectively. The primary study objective was the comparative assessment of the risk/benefit ratio, combining the analysis of feasibility, toxicity and efficacy. In the liposomal cytarabine arm 17/71 patients (24%) developed grade 3–4 neurotoxicity compared to 2/74 (3%) in the triple therapy arm (P=0.0002), the median number of episodes of neurotoxicity of any grade was one per patient compared to zero, respectively (P=0.0001), and even though no permanent disabilities or deaths were registered, four patients (6%) discontinued intrathecal prophylaxis on account of these toxic side effects (P=0.06). Neurotoxicity worsened with liposomal cytarabine every 14 days (T-cell disease), and was improved by the adjunct of intrathecal dexamethasone. Two patients in the liposomal cytarabine arm suffered from a meningeal relapse (none with T-cell disease, only one after high-dose chemotherapy) compared to four in the triple therapy arm (1 with T-cell disease). While intrathecal liposomal cytarabine could contribute to improved, radiation-free central nervous system prophylaxis, the toxicity reported in this trial does not support its use at 50 mg and prompts the investigation of a lower dosage. (clinicaltrials.gov identifier: NCT-00795756). PMID:25749825

  3. Sex- and Gender-Specific Research Priorities for the Emergency Management of Heart Failure and Acute Arrhythmia: Proceedings from the 2014 AEM Consensus Conference Cardiovascular Research Workgroup

    PubMed Central

    McGregor, Alyson J.; Peacock, Frank F.; Chang, Anna Marie; Safdar, Basmah; Diercks, Deborah

    2014-01-01

    The emergency department (ED) is the point of first contact for patients with acute heart failure and arrhythmias, with one million annual ED visits in the United States. Although the total numbers of men and women living with heart failure are similar, female patients are underrepresented in clinical studies, with current knowledge predominantly based on data from male patients. This has led to an under-appreciation of the sex-specific differences in clinical characteristics and pathophysiology-based management of heart failure. Similar disparities have been found in management of acute arrhythmias, especially atrial arrhythmias that lead to an increased risk of stroke in women. Additionally, peripartum and postpartum cardiomyopathy represent a diagnostic and treatment dilemma. This article is the result of a breakout session in the cardiovascular and resuscitation work group of the 2014 Academic Emergency Medicine consensus conference “Gender-Specific Research in Emergency Medicine: Investigate, Understand, and Translate How Gender Affects Patient Outcomes.” A nominal group technique was used to identify and prioritize themes and research questions using electronic mail, monthly conference calls, in-person meetings, and web-based surveys between June 2013 and May 2014. Consensus was achieved through three rounds of nomination followed by the meeting on May 13, 2014, and resulted in seven priority themes that are essential to the common complex clinical syndrome of heart failure for both men and women, and include the areas of pathophysiology, presentation and symptomatology, diagnostic strategies using biomarkers, treatment, and mortality, with special consideration to arrhythmia management and pregnancy. PMID:25422074

  4. Original Research: Acute chest syndrome in sickle cell disease: Effect of genotype and asthma

    PubMed Central

    Pahl, Kristy

    2016-01-01

    Sickle cell disease is a severe hemoglobinopathy caused by mutations in the beta globin genes. The disorder has protean manifestations and leads to severe morbidity and early mortality. Acute chest syndrome (ACS) is a common complication and in the USA is the leading cause of death in patients with sickle cell disease. Care of patients with sickle cell disease is complex and typically involves both primary care physicians and hematology subspecialists. The purpose of this study was first to attempt to validate in a pediatric sickle cell patient cohort associations between ACS and sickle cell disease genotype and between ACS and asthma as a comorbidity. The second purpose of the study was to study in a typical community the frequency with which asthma associated with ACS was addressed in terms of electronic medical record integration, pulmonary subspecialty consultation for management of asthma, and completion of pulmonary function testing (PFTs). A retrospective study of the electronic medical record of a children’s hospital that provides most of the medical care for children in a portion of western New York state was performed. We found that ACS was more common in the sickle cell disease genotypes SS and S/beta-thalassemia-null, and that ACS was more frequent in patients treated for asthma. We also found that despite the use of a comprehensive electronic medical record, there was poor documentation of ACS and asthma episodes in the problem lists of patients with sickle cell disease, and that most patients with sickle cell disease with ACS or asthma failed to receive formal consultation services from pediatric pulmonary subspecialists. PMID:26936083

  5. Original Research: Acute chest syndrome in sickle cell disease: Effect of genotype and asthma.

    PubMed

    Pahl, Kristy; Mullen, Craig A

    2016-04-01

    Sickle cell disease is a severe hemoglobinopathy caused by mutations in the beta globin genes. The disorder has protean manifestations and leads to severe morbidity and early mortality. Acute chest syndrome (ACS) is a common complication and in the USA is the leading cause of death in patients with sickle cell disease. Care of patients with sickle cell disease is complex and typically involves both primary care physicians and hematology subspecialists. The purpose of this study was first to attempt to validate in a pediatric sickle cell patient cohort associations between ACS and sickle cell disease genotype and between ACS and asthma as a comorbidity. The second purpose of the study was to study in a typical community the frequency with which asthma associated with ACS was addressed in terms of electronic medical record integration, pulmonary subspecialty consultation for management of asthma, and completion of pulmonary function testing (PFTs). A retrospective study of the electronic medical record of a children's hospital that provides most of the medical care for children in a portion of western New York state was performed. We found that ACS was more common in the sickle cell disease genotypes SS and S/beta-thalassemia-null, and that ACS was more frequent in patients treated for asthma. We also found that despite the use of a comprehensive electronic medical record, there was poor documentation of ACS and asthma episodes in the problem lists of patients with sickle cell disease, and that most patients with sickle cell disease with ACS or asthma failed to receive formal consultation services from pediatric pulmonary subspecialists.

  6. Reasons for and Reservations about Research Participation in Acutely Injured Adults

    PubMed Central

    Irani, Elliane; Richmond, Therese S.

    2014-01-01

    Purpose The purpose of this study was to explore the reasons adult patients seeking emergency department care for minor injuries agree to participate in clinical research and to identify their reservations about participating in a research study. Design and Methods This is a secondary analysis of data from a longitudinal cohort study of 275 adults who sought emergency department care for physical injury and were followed over 12 months. At the final interview, participants were asked open-ended short-answer questions about their perception of participating in the study. Free text responses were analyzed using conventional content analysis. Findings The final sample of 214 participants was equally males and females, predominately Black (54%) and White (42%), with a mean age of 41 years. Six themes about reasons for participation emerged from free text responses: being asked, altruism, potential for personal benefit, financial gain, curiosity, and valuing and/or knowledge of research. Most did not report reservations. Those reservations identified included: time constraints, confidentiality, and whether patients felt well suited to fulfill the study requirements. Conclusion Although injured patients are identified by the research community as vulnerable, they are willing to participate in research studies for diverse reasons and their participation is commonly associated with positive experiences. PMID:25599886

  7. Effects of radiation on testicular function in long-term survivors of childhood acute lymphoblastic leukemia: A report from the Children Cancer Study Group

    SciTech Connect

    Sklar, C.A.; Robison, L.L.; Nesbit, M.E.; Sather, H.N.; Meadows, A.T.; Ortega, J.A.; Kim, T.H.; Hammond, G.D. )

    1990-12-01

    Testicular function was evaluated in 60 long-term survivors of childhood acute lymphoblastic leukemia (ALL). All the patients were treated on two consecutive Children Cancer Study Group protocols and received identical chemotherapy and either 18 or 24 Gy radiation therapy (RT) to one of the following fields: craniospinal plus 12 Gy abdominal RT including the gonads (group 1); craniospinal (group 2); or cranial (group 3). The median age at the time of their last evaluation was 14.5 years (range, 10.5 to 25.7), which took place a median of 5.0 years (range, 1 to 10.3) after discontinuing therapy. The incidence of primary germ cell dysfunction as judged by raised levels of follicle-stimulating hormone (FSH) and/or reduced testicular volume was significantly associated with field of RT; 55% of group 1, 17% of group 2, and 0% of group 3 were abnormal (P = .002). Leydig cell function, as assessed by plasma concentrations of luteinizing hormone (LH) and testosterone, and pubertal development, was unaffected in the majority of subjects regardless of RT field. These data indicate that in boys undergoing therapy for ALL, germ cell dysfunction is common following testicular irradiation and can occur following exposure to scattered irradiation from craniospinal RT. In contrast, Leydig cell function appears resistant to direct irradiation with doses as high as 12 Gy.

  8. New Zealand Emergency Medicine Network: a collaboration for acute care research in New Zealand.

    PubMed

    2015-04-01

    The specialty of emergency medicine in Australasia is coming of age. As part of this maturation there is a need for high-quality evidence to inform practice. This article describes the development of the New Zealand Emergency Medicine Network, a collaboration of committed emergency care researchers who share the vision that New Zealand/Aotearoa will have a world-leading, patient-centred emergency care research network, which will improve emergency care for all, so that people coming to any ED in the country will have access to the same world-class emergency care.

  9. Comparison of central nervous system prophylaxis with cranial radiation and intrathecal methotrexate versus intrathecal methotrexate alone in acute lymphoblastic leukemia

    SciTech Connect

    Muriel, F.S.; Svarch, E.; Pavlovsky, S.; Eppinger-Helft, M.; Braier, J.; Vergara, B.; Garay, G.; Kvicala, R.; Divito, J.M.; Failace, R.

    1983-08-01

    In acute lymphoblastic leukemia, central nervous system prophylaxis with irradiation plus intrathecal methotrexate (i.t. MTX) reduces the incidence of CNS relapse to 7%-15%. However, increased evidence of CNS delayed toxicity was recognized mainly in children as CT scan abnormalities and neuropsychologic alterations. Two questions were analyzed: (1) Will further doses of i.t. methotraxate and dex