Sample records for acute respiratory syndrome-coronavirus

  1. Acute Middle East Respiratory Syndrome Coronavirus Infection in Livestock Dromedaries, Dubai, 2014

    PubMed Central

    Corman, Victor M.; Wong, Emily Y.M.; Tsang, Alan K.L.; Muth, Doreen; Lau, Susanna K. P.; Khazanehdari, Kamal; Zirkel, Florian; Ali, Mansoor; Nagy, Peter; Juhasz, Jutka; Wernery, Renate; Joseph, Sunitha; Syriac, Ginu; Elizabeth, Shyna K.; Patteril, Nissy Annie Georgy; Woo, Patrick C. Y.; Drosten, Christian

    2015-01-01

    Camels carry Middle East respiratory syndrome coronavirus, but little is known about infection age or prevalence. We studied >800 dromedaries of all ages and 15 mother–calf pairs. This syndrome constitutes an acute, epidemic, and time-limited infection in camels <4 years of age, particularly calves. Delayed social separation of calves might reduce human infection risk. PMID:25989145

  2. Severe acute respiratory syndrome (SARS)

    MedlinePlus

    SARS; Respiratory failure - SARS ... Complications may include: Respiratory failure Liver failure Heart failure ... 366. McIntosh K, Perlman S. Coronaviruses, including severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). ...

  3. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome.

    PubMed

    Cockrell, Adam S; Yount, Boyd L; Scobey, Trevor; Jensen, Kara; Douglas, Madeline; Beall, Anne; Tang, Xian-Chun; Marasco, Wayne A; Heise, Mark T; Baric, Ralph S

    2016-11-28

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel virus that emerged in 2012, causing acute respiratory distress syndrome (ARDS), severe pneumonia-like symptoms and multi-organ failure, with a case fatality rate of ∼36%. Limited clinical studies indicate that humans infected with MERS-CoV exhibit pathology consistent with the late stages of ARDS, which is reminiscent of the disease observed in patients infected with severe acute respiratory syndrome coronavirus. Models of MERS-CoV-induced severe respiratory disease have been difficult to achieve, and small-animal models traditionally used to investigate viral pathogenesis (mouse, hamster, guinea-pig and ferret) are naturally resistant to MERS-CoV. Therefore, we used CRISPR-Cas9 gene editing to modify the mouse genome to encode two amino acids (positions 288 and 330) that match the human sequence in the dipeptidyl peptidase 4 receptor, making mice susceptible to MERS-CoV infection and replication. Serial MERS-CoV passage in these engineered mice was then used to generate a mouse-adapted virus that replicated efficiently within the lungs and evoked symptoms indicative of severe ARDS, including decreased survival, extreme weight loss, decreased pulmonary function, pulmonary haemorrhage and pathological signs indicative of end-stage lung disease. Importantly, therapeutic countermeasures comprising MERS-CoV neutralizing antibody treatment or a MERS-CoV spike protein vaccine protected the engineered mice against MERS-CoV-induced ARDS.

  4. Detection of Severe Acute Respiratory Syndrome-Like, Middle East Respiratory Syndrome-Like Bat Coronaviruses and Group H Rotavirus in Faeces of Korean Bats.

    PubMed

    Kim, H K; Yoon, S-W; Kim, D-J; Koo, B-S; Noh, J Y; Kim, J H; Choi, Y G; Na, W; Chang, K-T; Song, D; Jeong, D G

    2016-08-01

    Bat species around the world have recently been recognized as major reservoirs of several zoonotic viruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), Nipah virus and Hendra virus. In this study, consensus primer-based reverse transcriptase polymerase chain reactions (RT-PCRs) and high-throughput sequencing were performed to investigate viruses in bat faecal samples collected at 11 natural bat habitat sites from July to December 2015 in Korea. Diverse coronaviruses were first detected in Korean bat faeces, including alphacoronaviruses, SARS-CoV-like and MERS-CoV-like betacoronaviruses. In addition, we identified a novel bat rotavirus belonging to group H rotavirus which has only been described in human and pigs until now. Therefore, our results suggest the need for continuing surveillance and additional virological studies in domestic bat. © 2016 Blackwell Verlag GmbH.

  5. Abelson Kinase Inhibitors Are Potent Inhibitors of Severe Acute Respiratory Syndrome Coronavirus and Middle East Respiratory Syndrome Coronavirus Fusion

    PubMed Central

    Coleman, Christopher M.; Sisk, Jeanne M.; Mingo, Rebecca M.; Nelson, Elizabeth A.; White, Judith M.

    2016-01-01

    ABSTRACT The highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) cause significant morbidity and morality. There is currently no approved therapeutic for highly pathogenic coronaviruses, even as MERS-CoV is spreading throughout the Middle East. We previously screened a library of FDA-approved drugs for inhibitors of coronavirus replication in which we identified Abelson (Abl) kinase inhibitors, including the anticancer drug imatinib, as inhibitors of both SARS-CoV and MERS-CoV in vitro. Here we show that the anti-CoV activity of imatinib occurs at the early stages of infection, after internalization and endosomal trafficking, by inhibiting fusion of the virions at the endosomal membrane. We specifically identified the imatinib target, Abelson tyrosine-protein kinase 2 (Abl2), as required for efficient SARS-CoV and MERS-CoV replication in vitro. These data demonstrate that specific approved drugs can be characterized in vitro for their anticoronavirus activity and used to identify host proteins required for coronavirus replication. This type of study is an important step in the repurposing of approved drugs for treatment of emerging coronaviruses. IMPORTANCE Both SARS-CoV and MERS-CoV are zoonotic infections, with bats as the primary source. The 2003 SARS-CoV outbreak began in Guangdong Province in China and spread to humans via civet cats and raccoon dogs in the wet markets before spreading to 37 countries. The virus caused 8,096 confirmed cases of SARS and 774 deaths (a case fatality rate of ∼10%). The MERS-CoV outbreak began in Saudi Arabia and has spread to 27 countries. MERS-CoV is believed to have emerged from bats and passed into humans via camels. The ongoing outbreak of MERS-CoV has resulted in 1,791 cases of MERS and 640 deaths (a case fatality rate of 36%). The emergence of SARS-CoV and MERS-CoV provides evidence that coronaviruses are currently spreading from zoonotic

  6. Recombinant protein-based assays for detection of antibodies to severe acute respiratory syndrome coronavirus spike and nucleocapsid proteins.

    PubMed

    Haynes, Lia M; Miao, Congrong; Harcourt, Jennifer L; Montgomery, Joel M; Le, Mai Quynh; Dryga, Sergey A; Kamrud, Kurt I; Rivers, Bryan; Babcock, Gregory J; Oliver, Jennifer Betts; Comer, James A; Reynolds, Mary; Uyeki, Timothy M; Bausch, Daniel; Ksiazek, Thomas; Thomas, William; Alterson, Harold; Smith, Jonathan; Ambrosino, Donna M; Anderson, Larry J

    2007-03-01

    Recombinant severe acute respiratory syndrome (SARS) nucleocapsid and spike protein-based immunoglobulin G immunoassays were developed and evaluated. Our assays demonstrated high sensitivity and specificity to the SARS coronavirus in sera collected from patients as late as 2 years postonset of symptoms. These assays will be useful not only for routine SARS coronavirus diagnostics but also for epidemiological and antibody kinetic studies.

  7. Recombinant Protein-Based Assays for Detection of Antibodies to Severe Acute Respiratory Syndrome Coronavirus Spike and Nucleocapsid Proteins▿

    PubMed Central

    Haynes, Lia M.; Miao, Congrong; Harcourt, Jennifer L.; Montgomery, Joel M.; Le, Mai Quynh; Dryga, Sergey A.; Kamrud, Kurt I.; Rivers, Bryan; Babcock, Gregory J.; Oliver, Jennifer Betts; Comer, James A.; Reynolds, Mary; Uyeki, Timothy M.; Bausch, Daniel; Ksiazek, Thomas; Thomas, William; Alterson, Harold; Smith, Jonathan; Ambrosino, Donna M.; Anderson, Larry J.

    2007-01-01

    Recombinant severe acute respiratory syndrome (SARS) nucleocapsid and spike protein-based immunoglobulin G immunoassays were developed and evaluated. Our assays demonstrated high sensitivity and specificity to the SARS coronavirus in sera collected from patients as late as 2 years postonset of symptoms. These assays will be useful not only for routine SARS coronavirus diagnostics but also for epidemiological and antibody kinetic studies. PMID:17229882

  8. Mechanisms of Severe Acute Respiratory Syndrome Coronavirus-Induced Acute Lung Injury

    PubMed Central

    Gralinski, Lisa E.; Bankhead, Armand; Jeng, Sophia; Menachery, Vineet D.; Proll, Sean; Belisle, Sarah E.; Matzke, Melissa; Webb-Robertson, Bobbie-Jo M.; Luna, Maria L.; Shukla, Anil K.; Ferris, Martin T.; Bolles, Meagan; Chang, Jean; Aicher, Lauri; Waters, Katrina M.; Smith, Richard D.; Metz, Thomas O.; Law, G. Lynn; Katze, Michael G.; McWeeney, Shannon; Baric, Ralph S.

    2013-01-01

    ABSTRACT Systems biology offers considerable promise in uncovering novel pathways by which viruses and other microbial pathogens interact with host signaling and expression networks to mediate disease severity. In this study, we have developed an unbiased modeling approach to identify new pathways and network connections mediating acute lung injury, using severe acute respiratory syndrome coronavirus (SARS-CoV) as a model pathogen. We utilized a time course of matched virologic, pathological, and transcriptomic data within a novel methodological framework that can detect pathway enrichment among key highly connected network genes. This unbiased approach produced a high-priority list of 4 genes in one pathway out of over 3,500 genes that were differentially expressed following SARS-CoV infection. With these data, we predicted that the urokinase and other wound repair pathways would regulate lethal versus sublethal disease following SARS-CoV infection in mice. We validated the importance of the urokinase pathway for SARS-CoV disease severity using genetically defined knockout mice, proteomic correlates of pathway activation, and pathological disease severity. The results of these studies demonstrate that a fine balance exists between host coagulation and fibrinolysin pathways regulating pathological disease outcomes, including diffuse alveolar damage and acute lung injury, following infection with highly pathogenic respiratory viruses, such as SARS-CoV. PMID:23919993

  9. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human

    PubMed Central

    Song, Huai-Dong; Tu, Chang-Chun; Zhang, Guo-Wei; Wang, Sheng-Yue; Zheng, Kui; Lei, Lian-Cheng; Chen, Qiu-Xia; Gao, Yu-Wei; Zhou, Hui-Qiong; Xiang, Hua; Zheng, Hua-Jun; Chern, Shur-Wern Wang; Cheng, Feng; Pan, Chun-Ming; Xuan, Hua; Chen, Sai-Juan; Luo, Hui-Ming; Zhou, Duan-Hua; Liu, Yu-Fei; He, Jian-Feng; Qin, Peng-Zhe; Li, Ling-Hui; Ren, Yu-Qi; Liang, Wen-Jia; Yu, Ye-Dong; Anderson, Larry; Wang, Ming; Xu, Rui-Heng; Wu, Xin-Wei; Zheng, Huan-Ying; Chen, Jin-Ding; Liang, Guodong; Gao, Yang; Liao, Ming; Fang, Ling; Jiang, Li-Yun; Li, Hui; Chen, Fang; Di, Biao; He, Li-Juan; Lin, Jin-Yan; Tong, Suxiang; Kong, Xiangang; Du, Lin; Hao, Pei; Tang, Hua; Bernini, Andrea; Yu, Xiao-Jing; Spiga, Ottavia; Guo, Zong-Ming; Pan, Hai-Yan; He, Wei-Zhong; Manuguerra, Jean-Claude; Fontanet, Arnaud; Danchin, Antoine; Niccolai, Neri; Li, Yi-Xue; Wu, Chung-I; Zhao, Guo-Ping

    2005-01-01

    The genomic sequences of severe acute respiratory syndrome coronaviruses from human and palm civet of the 2003/2004 outbreak in the city of Guangzhou, China, were nearly identical. Phylogenetic analysis suggested an independent viral invasion from animal to human in this new episode. Combining all existing data but excluding singletons, we identified 202 single-nucleotide variations. Among them, 17 are polymorphic in palm civets only. The ratio of nonsynonymous/synonymous nucleotide substitution in palm civets collected 1 yr apart from different geographic locations is very high, suggesting a rapid evolving process of viral proteins in civet as well, much like their adaptation in the human host in the early 2002–2003 epidemic. Major genetic variations in some critical genes, particularly the Spike gene, seemed essential for the transition from animal-to-human transmission to human-to-human transmission, which eventually caused the first severe acute respiratory syndrome outbreak of 2002/2003. PMID:15695582

  10. The Role of Severe Acute Respiratory Syndrome (SARS)-Coronavirus Accessory Proteins in Virus Pathogenesis

    PubMed Central

    McBride, Ruth; Fielding, Burtram C.

    2012-01-01

    A respiratory disease caused by a novel coronavirus, termed the severe acute respiratory syndrome coronavirus (SARS-CoV), was first reported in China in late 2002. The subsequent efficient human-to-human transmission of this virus eventually affected more than 30 countries worldwide, resulting in a mortality rate of ~10% of infected individuals. The spread of the virus was ultimately controlled by isolation of infected individuals and there has been no infections reported since April 2004. However, the natural reservoir of the virus was never identified and it is not known if this virus will re-emerge and, therefore, research on this virus continues. The SARS-CoV genome is about 30 kb in length and is predicted to contain 14 functional open reading frames (ORFs). The genome encodes for proteins that are homologous to known coronavirus proteins, such as the replicase proteins (ORFs 1a and 1b) and the four major structural proteins: nucleocapsid (N), spike (S), membrane (M) and envelope (E). SARS-CoV also encodes for eight unique proteins, called accessory proteins, with no known homologues. This review will summarize the current knowledge on SARS-CoV accessory proteins and will include: (i) expression and processing; (ii) the effects on cellular processes; and (iii) functional studies. PMID:23202509

  11. Brief Report: Incubation Period Duration and Severity of Clinical Disease Following Severe Acute Respiratory Syndrome Coronavirus Infection.

    PubMed

    Virlogeux, Victor; Fang, Vicky J; Wu, Joseph T; Ho, Lai-Ming; Peiris, J S Malik; Leung, Gabriel M; Cowling, Benjamin J

    2015-09-01

    Few previous studies have investigated the association between the severity of an infectious disease and the length of incubation period. We estimated the association between the length of the incubation period and the severity of infection with the severe acute respiratory syndrome coronavirus, using data from the epidemic in 2003 in Hong Kong. We estimated the incubation period of severe acute respiratory syndrome based on a subset of patients with available data on exposure periods and a separate subset of patients in a putative common source outbreak, and we found associations between shorter incubation period and greater severity in both groups after adjusting for potential confounders. Our findings suggest that patients with a shorter incubation period went on to have more severe disease. Further studies are needed to investigate potential biological mechanisms for this association.

  12. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection.

    PubMed

    Cheng, Vincent C C; Lau, Susanna K P; Woo, Patrick C Y; Yuen, Kwok Yung

    2007-10-01

    Before the emergence of severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) in 2003, only 12 other animal or human coronaviruses were known. The discovery of this virus was soon followed by the discovery of the civet and bat SARS-CoV and the human coronaviruses NL63 and HKU1. Surveillance of coronaviruses in many animal species has increased the number on the list of coronaviruses to at least 36. The explosive nature of the first SARS epidemic, the high mortality, its transient reemergence a year later, and economic disruptions led to a rush on research of the epidemiological, clinical, pathological, immunological, virological, and other basic scientific aspects of the virus and the disease. This research resulted in over 4,000 publications, only some of the most representative works of which could be reviewed in this article. The marked increase in the understanding of the virus and the disease within such a short time has allowed the development of diagnostic tests, animal models, antivirals, vaccines, and epidemiological and infection control measures, which could prove to be useful in randomized control trials if SARS should return. The findings that horseshoe bats are the natural reservoir for SARS-CoV-like virus and that civets are the amplification host highlight the importance of wildlife and biosecurity in farms and wet markets, which can serve as the source and amplification centers for emerging infections.

  13. Severe Acute Respiratory Syndrome Coronavirus as an Agent of Emerging and Reemerging Infection

    PubMed Central

    Cheng, Vincent C. C.; Lau, Susanna K. P.; Woo, Patrick C. Y.; Yuen, Kwok Yung

    2007-01-01

    Before the emergence of severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) in 2003, only 12 other animal or human coronaviruses were known. The discovery of this virus was soon followed by the discovery of the civet and bat SARS-CoV and the human coronaviruses NL63 and HKU1. Surveillance of coronaviruses in many animal species has increased the number on the list of coronaviruses to at least 36. The explosive nature of the first SARS epidemic, the high mortality, its transient reemergence a year later, and economic disruptions led to a rush on research of the epidemiological, clinical, pathological, immunological, virological, and other basic scientific aspects of the virus and the disease. This research resulted in over 4,000 publications, only some of the most representative works of which could be reviewed in this article. The marked increase in the understanding of the virus and the disease within such a short time has allowed the development of diagnostic tests, animal models, antivirals, vaccines, and epidemiological and infection control measures, which could prove to be useful in randomized control trials if SARS should return. The findings that horseshoe bats are the natural reservoir for SARS-CoV-like virus and that civets are the amplification host highlight the importance of wildlife and biosecurity in farms and wet markets, which can serve as the source and amplification centers for emerging infections. PMID:17934078

  14. Three dimensional model of severe acute respiratory syndrome coronavirus helicase ATPase catalytic domain and molecular design of severe acute respiratory syndrome coronavirus helicase inhibitors

    NASA Astrophysics Data System (ADS)

    Hoffmann, Marcin; Eitner, Krystian; von Grotthuss, Marcin; Rychlewski, Leszek; Banachowicz, Ewa; Grabarkiewicz, Tomasz; Szkoda, Tomasz; Kolinski, Andrzej

    2006-05-01

    The modeling of the severe acute respiratory syndrome coronavirus helicase ATPase catalytic domain was performed using the protein structure prediction Meta Server and the 3D Jury method for model selection, which resulted in the identification of 1JPR, 1UAA and 1W36 PDB structures as suitable templates for creating a full atom 3D model. This model was further utilized to design small molecules that are expected to block an ATPase catalytic pocket thus inhibit the enzymatic activity. Binding sites for various functional groups were identified in a series of molecular dynamics calculation. Their positions in the catalytic pocket were used as constraints in the Cambridge structural database search for molecules having the pharmacophores that interacted most strongly with the enzyme in a desired position. The subsequent MD simulations followed by calculations of binding energies of the designed molecules were compared to ATP identifying the most successful candidates, for likely inhibitors—molecules possessing two phosphonic acid moieties at distal ends of the molecule.

  15. T-cell-mediated immune response to respiratory coronaviruses

    PubMed Central

    Channappanavar, Rudragouda; Zhao, Jincun; Perlman, Stanley

    2014-01-01

    Emerging respiratory coronaviruses such as the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV) pose potential biological threats to humans. SARS and MERS are manifested as severe atypical pneumonia associated with high morbidity and mortality in humans. The majority of studies carried out in SARS-CoV-infected humans and animals attribute a dysregulated/exuberant innate response as a leading contributor to SARS-CoV-mediated pathology. A decade after the 2002–2003 SARS epidemic, we do not have any approved preventive or therapeutic agents available in case of re-emergence of SARS-CoV or other related viruses. A strong neutralizing antibody response generated against the spike (S) glycoprotein of SARS-CoV is completely protective in the susceptible host. However, neutralizing antibody titers and the memory B cell response are short-lived in SARS-recovered patients and the antibody will target primary homologous strain. Interestingly, the acute phase of SARS in humans is associated with a severe reduction in the number of T cells in the blood. Surprisingly, only a limited number of studies have explored the role of the T cell-mediated adaptive immune response in respiratory coronavirus pathogenesis. In this review, we discuss the role of anti-virus CD4 and CD8 T cells during respiratory coronavirus infections with a special emphasis on emerging coronaviruses. PMID:24845462

  16. Expression, post-translational modification and biochemical characterization of proteins encoded by subgenomic mRNA8 of the severe acute respiratory syndrome coronavirus.

    PubMed

    Le, Tra M; Wong, Hui H; Tay, Felicia P L; Fang, Shouguo; Keng, Choong-Tat; Tan, Yee J; Liu, Ding X

    2007-08-01

    The most striking difference between the subgenomic mRNA8 of severe acute respiratory syndrome coronavirus isolated from human and some animal species is the deletion of 29 nucleotides, resulting in splitting of a single ORF (ORF8) into two ORFs (ORF8a and ORF8b). ORF8a and ORF8b are predicted to encode two small proteins, 8a and 8b, and ORF8 a single protein, 8ab (a fusion form of 8a and 8b). To understand the functions of these proteins, we cloned cDNA fragments covering these ORFs into expression plasmids, and expressed the constructs in both in vitro and in vivo systems. Expression of a construct containing ORF8a and ORF8b generated only a single protein, 8a; no 8b protein expression was obtained. Expression of a construct containing ORF8 generated the 8ab fusion protein. Site-directed mutagenesis and enzymatic treatment revealed that protein 8ab is modified by N-linked glycosylation on the N81 residue and by ubiquitination. In the absence of the 8a region, protein 8b undergoes rapid degradation by proteasomes, and addition of proteasome inhibitors inhibits the degradation of protein 8b as well as the protein 8b-induced rapid degradation of the severe acute respiratory syndrome coronavirus E protein. Glycosylation could also stabilize protein 8ab. More interestingly, the two proteins could bind to monoubiquitin and polyubiquitin, suggesting the potential involvement of these proteins in the pathogenesis of severe acute respiratory syndrome coronavirus.

  17. Vaccines to prevent severe acute respiratory syndrome coronavirus-induced disease

    PubMed Central

    Enjuanes, Luis; DeDiego, Marta L.; Álvarez, Enrique; Deming, Damon; Sheahan, Tim; Baric, Ralph

    2009-01-01

    An important effort has been performed after the emergence of severe acute respiratory syndrome (SARS) epidemic in 2003 to diagnose and prevent virus spreading. Several types of vaccines have been developed including inactivated viruses, subunit vaccines, virus-like particles (VLPs), DNA vaccines, heterologous expression systems, and vaccines derived from SARS-CoV genome by reverse genetics. This review describes several aspects essential to develop SARS-CoV vaccines, such as the correlates of protection, virus serotypes, vaccination side effects, and bio-safeguards that can be engineered into recombinant vaccine approaches based on the SARS-CoV genome. The production of effective and safe vaccines to prevent SARS has led to the development of promising vaccine candidates, in contrast to the design of vaccines for other coronaviruses, that in general has been less successful. After preclinical trials in animal models, efficacy and safety evaluation of the most promising vaccine candidates described has to be performed in humans. PMID:17416434

  18. Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection

    PubMed Central

    Totura, Allison L.; Whitmore, Alan; Agnihothram, Sudhakar; Schäfer, Alexandra; Katze, Michael G.; Heise, Mark T.

    2015-01-01

    ABSTRACT Toll-like receptors (TLRs) are sensors that recognize molecular patterns from viruses, bacteria, and fungi to initiate innate immune responses to invading pathogens. The emergence of highly pathogenic coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) is a concern for global public health, as there is a lack of efficacious vaccine platforms and antiviral therapeutic strategies. Previously, it was shown that MyD88, an adaptor protein necessary for signaling by multiple TLRs, is a required component of the innate immune response to mouse-adapted SARS-CoV infection in vivo. Here, we demonstrate that TLR3−/−, TLR4−/−, and TRAM−/− mice are more susceptible to SARS-CoV than wild-type mice but experience only transient weight loss with no mortality in response to infection. In contrast, mice deficient in the TLR3/TLR4 adaptor TRIF are highly susceptible to SARS-CoV infection, showing increased weight loss, mortality, reduced lung function, increased lung pathology, and higher viral titers. Distinct alterations in inflammation were present in TRIF−/− mice infected with SARS-CoV, including excess infiltration of neutrophils and inflammatory cell types that correlate with increased pathology of other known causes of acute respiratory distress syndrome (ARDS), including influenza virus infections. Aberrant proinflammatory cytokine, chemokine, and interferon-stimulated gene (ISG) signaling programs were also noted following infection of TRIF−/− mice that were similar to those seen in human patients with poor disease outcome following SARS-CoV or MERS-CoV infection. These findings highlight the importance of TLR adaptor signaling in generating a balanced protective innate immune response to highly pathogenic coronavirus infections. PMID:26015500

  19. [Molecular cloning and expression of the severe acute respiratory syndrome-associated coronavirus nucleocapsid protein and its clinical application].

    PubMed

    Lu, Jian; Zhou, Bai-ping; Zhou, Yu-sen; Jiang, Xiao-ling; Wen, Li-xia; Le, Xiao-hua; Li, Bing; Xu, Liu-mei; Li, Li-xiong

    2005-03-01

    To clone and express nucleocapsid (N) protein of the severe acute respiratory syndrome (SARS)-associated coronavirus, and to evaluate its antigenicity and application value in the development of serological diagnostic test for SARS. SARS-associated coronavirus N protein gene was amplified from its genomic RNA by reverse transcript nested polymerase chain reaction (RT-nested-PCR) and cloned into pBAD/Thio-TOPO prokaryotic expression vector. The recombinant N fusion protein was expressed and purified, and its antigenicity and specificity was analyzed by Western Blot, to establish the recombinant N protein-based ELISA for detection of IgG antibodies to SARS-associated coronavirus, and SARS-associated coronavirus lysates-based ELISA was compared parallelly. The recombinant expression vector produced high level of the N fusion protein after induction, and that protein was purified successfully by affinity chromatography and displayed higher antigenicity and specificity as compared with whole virus lysates. The recombinant SARS-associated coronavirus N protein possessed better antigenicity and specificity and could be employed to establish a new, sensitive, and specific ELISA for SARS diagnosis.

  20. Comparative Epidemiology of Human Infections with Middle East Respiratory Syndrome and Severe Acute Respiratory Syndrome Coronaviruses among Healthcare Personnel

    PubMed Central

    Chu, Yu-Tseng; Wu, Joseph Tsung-Shu; Geng, Xingyi; Zhao, Na; Cheng, Wei; Chen, Enfu; King, Chwan-Chuen

    2016-01-01

    The largest nosocomial outbreak of Middle East respiratory syndrome (MERS) occurred in South Korea in 2015. Health Care Personnel (HCP) are at high risk of acquiring MERS-Coronavirus (MERS-CoV) infections, similar to the severe acute respiratory syndrome (SARS)-Coronavirus (SARS-CoV) infections first identified in 2003. This study described the similarities and differences in epidemiological and clinical characteristics of 183 confirmed global MERS cases and 98 SARS cases in Taiwan associated with HCP. The epidemiological findings showed that the mean age of MERS-HCP and total MERS cases were 40 (24~74) and 49 (2~90) years, respectively, much older than those in SARS [SARS-HCP: 35 (21~68) years, p = 0.006; total SARS: 42 (0~94) years, p = 0.0002]. The case fatality rates (CFR) was much lower in MERS-HCP [7.03% (9/128)] or SARS-HCP [12.24% (12/98)] than the MERS-non-HCP [36.96% (34/92), p<0.001] or SARS-non-HCP [24.50% (61/249), p<0.001], however, no difference was found between MERS-HCP and SARS-HCP [p = 0.181]. In terms of clinical period, the days from onset to death [13 (4~17) vs 14.5 (0~52), p = 0.045] and to discharge [11 (5~24) vs 24 (0~74), p = 0.010] and be hospitalized days [9.5 (3~22) vs 22 (0~69), p = 0.040] were much shorter in MERS-HCP than SARS-HCP. Similarly, days from onset to confirmation were shorter in MERS-HCP than MERS-non-HCP [6 (1~14) vs 10 (1~21), p = 0.044]. In conclusion, the severity of MERS-HCP and SARS-HCP was lower than that of MERS-non-HCP and SARS-non-HCP due to younger age and early confirmation in HCP groups. However, no statistical difference was found in MERS-HCP and SARS-HCP. Thus, prevention of nosocomial infections involving both novel Coronavirus is crucially important to protect HCP. PMID:26930074

  1. Amino Acids 270 to 510 of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Are Required for Interaction with Receptor

    PubMed Central

    Babcock, Gregory J.; Esshaki, Diana J.; Thomas, William D.; Ambrosino, Donna M.

    2004-01-01

    A novel coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV), has recently been identified as the causative agent of severe acute respiratory syndrome (SARS). SARS-CoV appears similar to other coronaviruses in both virion structure and genome organization. It is known for other coronaviruses that the spike (S) glycoprotein is required for both viral attachment to permissive cells and for fusion of the viral envelope with the host cell membrane. Here we describe the construction and expression of a soluble codon-optimized SARS-CoV S glycoprotein comprising the first 1,190 amino acids of the native S glycoprotein (S1190). The codon-optimized and native S glycoproteins exhibit similar molecular weight as determined by Western blot analysis, indicating that synthetic S glycoprotein is modified correctly in a mammalian expression system. S1190 binds to the surface of Vero E6 cells, a cell permissive to infection, as demonstrated by fluorescence-activated cell sorter analysis, suggesting that S1190 maintains the biologic activity present in native S glycoprotein. This interaction is blocked with serum obtained from recovering SARS patients, indicating that the binding is specific. In an effort to map the ligand-binding domain of the SARS-CoV S glycoprotein, carboxy- and amino-terminal truncations of the S1190 glycoprotein were constructed. Amino acids 270 to 510 were the minimal receptor-binding region of the SARS-CoV S glycoprotein as determined by flow cytometry. We speculate that amino acids 1 to 510 of the SARS-CoV S glycoprotein represent a unique domain containing the receptor-binding site (amino acids 270 to 510), analogous to the S1 subunit of other coronavirus S glycoproteins. PMID:15078936

  2. Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study.

    PubMed

    Reusken, Chantal B E M; Haagmans, Bart L; Müller, Marcel A; Gutierrez, Carlos; Godeke, Gert-Jan; Meyer, Benjamin; Muth, Doreen; Raj, V Stalin; Smits-De Vries, Laura; Corman, Victor M; Drexler, Jan-Felix; Smits, Saskia L; El Tahir, Yasmin E; De Sousa, Rita; van Beek, Janko; Nowotny, Norbert; van Maanen, Kees; Hidalgo-Hermoso, Ezequiel; Bosch, Berend-Jan; Rottier, Peter; Osterhaus, Albert; Gortázar-Schmidt, Christian; Drosten, Christian; Koopmans, Marion P G

    2013-10-01

    A new betacoronavirus-Middle East respiratory syndrome coronavirus (MERS-CoV)-has been identified in patients with severe acute respiratory infection. Although related viruses infect bats, molecular clock analyses have been unable to identify direct ancestors of MERS-CoV. Anecdotal exposure histories suggest that patients had been in contact with dromedary camels or goats. We investigated possible animal reservoirs of MERS-CoV by assessing specific serum antibodies in livestock. We took sera from animals in the Middle East (Oman) and from elsewhere (Spain, Netherlands, Chile). Cattle (n=80), sheep (n=40), goats (n=40), dromedary camels (n=155), and various other camelid species (n=34) were tested for specific serum IgG by protein microarray using the receptor-binding S1 subunits of spike proteins of MERS-CoV, severe acute respiratory syndrome coronavirus, and human coronavirus OC43. Results were confirmed by virus neutralisation tests for MERS-CoV and bovine coronavirus. 50 of 50 (100%) sera from Omani camels and 15 of 105 (14%) from Spanish camels had protein-specific antibodies against MERS-CoV spike. Sera from European sheep, goats, cattle, and other camelids had no such antibodies. MERS-CoV neutralising antibody titres varied between 1/320 and 1/2560 for the Omani camel sera and between 1/20 and 1/320 for the Spanish camel sera. There was no evidence for cross-neutralisation by bovine coronavirus antibodies. MERS-CoV or a related virus has infected camel populations. Both titres and seroprevalences in sera from different locations in Oman suggest widespread infection. European Union, European Centre For Disease Prevention and Control, Deutsche Forschungsgemeinschaft. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Middle East respiratory syndrome coronavirus: current situation and travel-associated concerns.

    PubMed

    Al-Tawfiq, Jaffar A; Omrani, Ali S; Memish, Ziad A

    2016-06-01

    The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 brought back memories of the occurrence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002. More than 1500 MERS-CoV cases were recorded in 42 months with a case fatality rate (CFR) of 40%. Meanwhile, 8000 cases of SARS-CoV were confirmed in six months with a CFR of 10%. The clinical presentation of MERS-CoV ranges from mild and non-specific presentation to progressive and severe pneumonia. No predictive signs or symptoms exist to differentiate MERS-CoV from community-acquired pneumonia in hospitalized patients. An apparent heterogeneity was observed in transmission. Most MERS-CoV cases were secondary to large outbreaks in healthcare settings. These cases were secondary to community-acquired cases, which may also cause family outbreaks. Travel-associated MERS infection remains low. However, the virus exhibited a clear tendency to cause large outbreaks outside the Arabian Peninsula as exemplified by the outbreak in the Republic of Korea. In this review, we summarize the current knowledge about MERS-CoV and highlight travel-related issues.

  4. Severe Acute Respiratory Syndrome-Associated Coronavirus Vaccines Formulated with Delta Inulin Adjuvants Provide Enhanced Protection while Ameliorating Lung Eosinophilic Immunopathology

    PubMed Central

    Honda-Okubo, Yoshikazu; Barnard, Dale; Ong, Chun Hao; Peng, Bi-Hung; Tseng, Chien-Te Kent

    2014-01-01

    ABSTRACT Although the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) epidemic was controlled by nonvaccine measures, coronaviruses remain a major threat to human health. The design of optimal coronavirus vaccines therefore remains a priority. Such vaccines present major challenges: coronavirus immunity often wanes rapidly, individuals needing to be protected include the elderly, and vaccines may exacerbate rather than prevent coronavirus lung immunopathology. To address these issues, we compared in a murine model a range of recombinant spike protein or inactivated whole-virus vaccine candidates alone or adjuvanted with either alum, CpG, or Advax, a new delta inulin-based polysaccharide adjuvant. While all vaccines protected against lethal infection, addition of adjuvant significantly increased serum neutralizing-antibody titers and reduced lung virus titers on day 3 postchallenge. Whereas unadjuvanted or alum-formulated vaccines were associated with significantly increased lung eosinophilic immunopathology on day 6 postchallenge, this was not seen in mice immunized with vaccines formulated with delta inulin adjuvant. Protection against eosinophilic immunopathology by vaccines containing delta inulin adjuvants correlated better with enhanced T-cell gamma interferon (IFN-γ) recall responses rather than reduced interleukin-4 (IL-4) responses, suggesting that immunopathology predominantly reflects an inadequate vaccine-induced Th1 response. This study highlights the critical importance for development of effective and safe coronavirus vaccines of selection of adjuvants based on the ability to induce durable IFN-γ responses. IMPORTANCE Coronaviruses such as SARS-CoV and Middle East respiratory syndrome-associated coronavirus (MERS-CoV) cause high case fatality rates and remain major human public health threats, creating a need for effective vaccines. While coronavirus antigens that induce protective neutralizing antibodies have been identified

  5. Release of Severe Acute Respiratory Syndrome Coronavirus Nuclear Import Block Enhances Host Transcription in Human Lung Cells

    PubMed Central

    Tilton, Susan C.; Menachery, Vineet D.; Gralinski, Lisa E.; Schäfer, Alexandra; Matzke, Melissa M.; Webb-Robertson, Bobbie-Jo M.; Chang, Jean; Luna, Maria L.; Long, Casey E.; Shukla, Anil K.; Bankhead, Armand R.; Burkett, Susan E.; Zornetzer, Gregory; Tseng, Chien-Te Kent; Metz, Thomas O.; Pickles, Raymond; McWeeney, Shannon; Smith, Richard D.; Katze, Michael G.; Waters, Katrina M.; Baric, Ralph S.

    2013-01-01

    The severe acute respiratory syndrome coronavirus accessory protein ORF6 antagonizes interferon signaling by blocking karyopherin-mediated nuclear import processes. Viral nuclear import antagonists, expressed by several highly pathogenic RNA viruses, likely mediate pleiotropic effects on host gene expression, presumably interfering with transcription factors, cytokines, hormones, and/or signaling cascades that occur in response to infection. By bioinformatic and systems biology approaches, we evaluated the impact of nuclear import antagonism on host expression networks by using human lung epithelial cells infected with either wild-type virus or a mutant that does not express ORF6 protein. Microarray analysis revealed significant changes in differential gene expression, with approximately twice as many upregulated genes in the mutant virus samples by 48 h postinfection, despite identical viral titers. Our data demonstrated that ORF6 protein expression attenuates the activity of numerous karyopherin-dependent host transcription factors (VDR, CREB1, SMAD4, p53, EpasI, and Oct3/4) that are critical for establishing antiviral responses and regulating key host responses during virus infection. Results were confirmed by proteomic and chromatin immunoprecipitation assay analyses and in parallel microarray studies using infected primary human airway epithelial cell cultures. The data strongly support the hypothesis that viral antagonists of nuclear import actively manipulate host responses in specific hierarchical patterns, contributing to the viral pathogenic potential in vivo. Importantly, these studies and modeling approaches not only provide templates for evaluating virus antagonism of nuclear import processes but also can reveal candidate cellular genes and pathways that may significantly influence disease outcomes following severe acute respiratory syndrome coronavirus infection in vivo. PMID:23365422

  6. Augmentation of chemokine production by severe acute respiratory syndrome coronavirus 3a/X1 and 7a/X4 proteins through NF-kappaB activation.

    PubMed

    Kanzawa, Noriyuki; Nishigaki, Kazuo; Hayashi, Takaya; Ishii, Yuichi; Furukawa, Souichi; Niiro, Ayako; Yasui, Fumihiko; Kohara, Michinori; Morita, Kouichi; Matsushima, Kouji; Le, Mai Quynh; Masuda, Takao; Kannagi, Mari

    2006-12-22

    Severe acute respiratory syndrome (SARS) is characterized by rapidly progressing respiratory failure resembling acute/adult respiratory distress syndrome (ARDS) associated with uncontrolled inflammatory responses. Here, we demonstrated that, among five accessory proteins of SARS coronavirus (SARS-CoV) tested, 3a/X1 and 7a/X4 were capable of activating nuclear factor kappa B (NF-kappaB) and c-Jun N-terminal kinase (JNK), and significantly enhanced interleukin 8 (IL-8) promoter activity. Furthermore, 3a/X1 and 7a/X4 expression in A549 cells enhanced production of inflammatory chemokines that were known to be up-regulated in SARS-CoV infection. Our results suggest potential involvement of 3a/X1 and 7a/X4 proteins in the pathological inflammatory responses in SARS.

  7. The Middle East Respiratory Syndrome Coronavirus - A Continuing Risk to Global Health Security.

    PubMed

    Azhar, Esam I; Lanini, Simone; Ippolito, Giuseppe; Zumla, Alimuddin

    2017-01-01

    Two new zoonotic coronaviruses causing disease in humans (Zumla et al. 2015a; Hui and Zumla 2015; Peiris et al. 2003; Yu et al. 2014) have been the focus of international attention for the past 14 years due to their epidemic potential; (1) The Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) (Peiris et al. 2003) first discovered in China in 2001 caused a major global epidemic of the Severe Acute Respiratory Syndrome (SARS). (2) The Middle East respiratory syndrome coronavirus (MERS-CoV) is a new corona virus isolated for the first time in a patients who died of severe lower respiratory tract infection in Jeddah (Saudi Arabia) in June 2012 (Zaki et al. 2012). The disease has been named Middle East Respiratory Syndrome (MERS) and it has remained on the radar of global public health authorities because of recurrent nosocomial and community outbreaks, and its association with severe disease and high mortality rates (Assiri et al. 2013a; Al-Abdallat et al. 2014; Memish et al. 2013a; Oboho et al. 2015; The WHO MERS-CoV Research Group 2013; Cotten et al. 2013a; Assiri et al. 2013b; Memish et al. 2013b; Azhar et al. 2014; Kim et al. 2015; Wang et al. 2015; Hui et al. 2015a). Cases of MERS have been reported from all continents and have been linked with travel to the Middle East (Hui et al. 2015a; WHO 2015c). The World Health Organization (WHO) have held nine meetings of the Emergency Committee (EC) convened by the Director-General under the International Health Regulations (IHR 2005) regarding MERS-CoV (WHO 2015c). There is wishful anticipation in the political and scientific communities that MERS-CoV like SARS-CoV will disappear with time. However it's been nearly 4 years since the first discovery of MERS-CoV, and MERS cases continue to be reported throughout the year from the Middle East (WHO 2015c). There is a large MERS-CoV camel reservoir, and there is no specific treatment or vaccine (Zumla et al. 2015a). With 10 million people visiting Saudi Arabia every

  8. Detection of the Severe Acute Respiratory Syndrome-Related Coronavirus and Alphacoronavirus in the Bat Population of Taiwan.

    PubMed

    Chen, Y-N; Phuong, V N; Chen, H C; Chou, C-H; Cheng, H-C; Wu, C-H

    2016-12-01

    Bats have been demonstrated to be natural reservoirs of severe acute respiratory syndrome coronavirus (SARS CoV) and Middle East respiratory syndrome (MERS) CoV. Faecal samples from 248 individuals of 20 bat species were tested for partial RNA-dependent RNA polymerase gene of CoV and 57 faecal samples from eight bat species were tested positive. The highest detection rate of 44% for Scotophilus kuhlii, followed by 30% for Rhinolophus monoceros. Significantly higher detection rates of coronaviral RNA were found in female bats and Scotophilus kuhlii roosting in palm trees. Phylogenetic analysis classified the positive samples into SARS-related (SARSr) CoV, Scotophilus bat CoV 512 close to those from China and Philippines, and Miniopterus bat CoV 1A-related lineages. Coronaviral RNA was also detected in bat guano from Scotophilus kuhlii and Myotis formosus flavus on the ground and had potential risk for human exposure. Diverse bat CoV with zoonotic potential could be introduced by migratory bats and maintained in the endemic bat population in Taiwan. © 2016 Blackwell Verlag GmbH.

  9. Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3a and M.

    PubMed

    Oostra, M; de Haan, C A M; de Groot, R J; Rottier, P J M

    2006-03-01

    The severe acute respiratory syndrome coronavirus (SARS-CoV) open reading frame 3a protein has recently been shown to be a structural protein. The protein is encoded by one of the so-called group-specific genes and has no sequence homology with any of the known structural or group-specific proteins of coronaviruses. It does, however, have several similarities to the coronavirus M proteins; (i) they are triple membrane spanning with the same topology, (ii) they have similar intracellular localizations (predominantly Golgi), (iii) both are viral structural proteins, and (iv) they appear to interact with the E and S proteins, as well as with each other. The M protein plays a crucial role in coronavirus assembly and is glycosylated in all coronaviruses, either by N-linked or by O-linked oligosaccharides. The conserved glycosylation of the coronavirus M proteins and the resemblance of the 3a protein to them led us to investigate the glycosylation of these two SARS-CoV membrane proteins. The proteins were expressed separately using the vaccinia virus T7 expression system, followed by metabolic labeling. Pulse-chase analysis showed that both proteins were modified, although in different ways. While the M protein acquired cotranslationally oligosaccharides that could be removed by PNGaseF, the 3a protein acquired its modifications posttranslationally, and they were not sensitive to the N-glycosidase enzyme. The SARS-CoV 3a protein, however, was demonstrated to contain sialic acids, indicating the presence of oligosaccharides. O-glycosylation of the 3a protein was indeed confirmed using an in situ O-glycosylation assay of endoplasmic reticulum-retained mutants. In addition, we showed that substitution of serine and threonine residues in the ectodomain of the 3a protein abolished the addition of the O-linked sugars. Thus, the SARS-CoV 3a protein is an O-glycosylated glycoprotein, like the group 2 coronavirus M proteins but unlike the SARS-CoV M protein, which is N

  10. Saracatinib Inhibits Middle East Respiratory Syndrome-Coronavirus Replication In Vitro.

    PubMed

    Shin, Jin Soo; Jung, Eunhye; Kim, Meehyein; Baric, Ralph S; Go, Yun Young

    2018-05-24

    The Middle East respiratory syndrome-coronavirus (MERS-CoV), first identified in Saudi Arabia, is an emerging zoonotic pathogen that causes severe acute respiratory illness in humans with a high fatality rate. Since its emergence, MERS-CoV continues to spread to countries outside of the Arabian Peninsula and gives rise to sporadic human infections following the entry of infected individuals to other countries, which can precipitate outbreaks similar to the one that occurred in South Korea in 2015. Current therapeutics against MERS-CoV infection have primarily been adapted from previous drugs used for the treatment of severe acute respiratory syndrome. In search of new potential drug candidates, we screened a library composed of 2334 clinically approved drugs and pharmacologically active compounds. The drug saracatinib, a potent inhibitor of Src-family of tyrosine kinases (SFK), was identified as an inhibitor of MERS-CoV replication in vitro. Our results suggest that saracatinib potently inhibits MERS-CoV at the early stages of the viral life cycle in Huh-7 cells, possibly through the suppression of SFK signaling pathways. Furthermore, saracatinib exhibited a synergistic effect with gemcitabine, an anticancer drug with antiviral activity against several RNA viruses. These data indicate that saracatinib alone or in combination with gemcitabine can provide a new therapeutic option for the treatment of MERS-CoV infection.

  11. Molecular pathology of emerging coronavirus infections

    PubMed Central

    Gralinski, Lisa E; Baric, Ralph S

    2015-01-01

    Respiratory viruses can cause a wide spectrum of pulmonary diseases, ranging from mild, upper respiratory tract infections to severe and life-threatening lower respiratory tract infections, including the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Viral clearance and subsequent recovery from infection require activation of an effective host immune response; however, many immune effector cells may also cause injury to host tissues. Severe acute respiratory syndrome (SARS) coronavirus and Middle East respiratory syndrome (MERS) coronavirus cause severe infection of the lower respiratory tract, with 10% and 35% overall mortality rates, respectively; however, >50% mortality rates are seen in the aged and immunosuppressed populations. While these viruses are susceptible to interferon treatment in vitro, they both encode numerous genes that allow for successful evasion of the host immune system until after high virus titres have been achieved. In this review, we discuss the importance of the innate immune response and the development of lung pathology following human coronavirus infection. PMID:25270030

  12. Severe Acute Respiratory Syndrome–associated Coronavirus Infection

    PubMed Central

    Ip, Margaret; Ng, KC; Wu, Alan; Lee, Nelson; Rainer, Timothy H.; Joynt, Gavin M.; Sung, Joseph J. Y.; Tam, John S.

    2003-01-01

    Whether severe acute respiratory syndrome–associated coronavirus (SARS-CoV) infection can be asymptomatic is unclear. We examined the seroprevalence of SARS-CoV among 674 healthcare workers from a hospital in which a SARS outbreak had occurred. A total of 353 (52%) experienced mild self-limiting illnesses, and 321 (48%) were asymptomatic throughout the course of these observations. None of these healthcare workers had antibody to SARS CoV, indicating that subclinical or mild infection attributable to SARS CoV in adults is rare. PMID:14718090

  13. Inhibition, Escape, and Attenuated Growth of Severe Acute Respiratory Syndrome Coronavirus Treated with Antisense Morpholino Oligomers†

    PubMed Central

    Neuman, Benjamin W.; Stein, David A.; Kroeker, Andrew D.; Churchill, Michael J.; Kim, Alice M.; Kuhn, Peter; Dawson, Philip; Moulton, Hong M.; Bestwick, Richard K.; Iversen, Patrick L.; Buchmeier, Michael J.

    2005-01-01

    The recently emerged severe acute respiratory syndrome coronavirus (SARS-CoV) is a potent pathogen of humans and is capable of rapid global spread. Peptide-conjugated antisense morpholino oligomers (P-PMO) were designed to bind by base pairing to specific sequences in the SARS-CoV (Tor2 strain) genome. The P-PMO were tested for their capacity to inhibit production of infectious virus as well as to probe the function of conserved viral RNA motifs and secondary structures. Several virus-targeted P-PMO and a random-sequence control P-PMO showed low inhibitory activity against SARS coronavirus. Certain other virus-targeted P-PMO reduced virus-induced cytopathology and cell-to-cell spread as a consequence of decreasing viral amplification. Active P-PMO were effective when administered at any time prior to peak viral synthesis and exerted sustained antiviral effects while present in culture medium. P-PMO showed low nonspecific inhibitory activity against translation of nontargeted RNA or growth of the arenavirus lymphocytic choriomeningitis virus. Two P-PMO targeting the viral transcription-regulatory sequence (TRS) region in the 5′ untranslated region were the most effective inhibitors tested. After several viral passages in the presence of a TRS-targeted P-PMO, partially drug-resistant SARS-CoV mutants arose which contained three contiguous base point mutations at the binding site of a TRS-targeted P-PMO. Those partially resistant viruses grew more slowly and formed smaller plaques than wild-type SARS-CoV. These results suggest PMO compounds have powerful therapeutic and investigative potential toward coronavirus infection. PMID:16014928

  14. Structural and Functional Analyses of the Severe Acute Respiratory Syndrome Coronavirus Endoribonuclease Nsp15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhardwaj, Kanchan; Palaninathan, Satheesh; Alcantara, Joanna Maria Ortiz

    2008-03-31

    The severe acute respiratory syndrome (SARS) coronavirus encodes several RNA-processing enzymes that are unusual for RNA viruses, including Nsp15 (nonstructural protein 15), a hexameric endoribonuclease that preferentially cleaves 3' of uridines. We solved the structure of a catalytically inactive mutant version of Nsp15, which was crystallized as a hexamer. The structure contains unreported flexibility in the active site of each subunit. Substitutions in the active site residues serine 293 and proline 343 allowed Nsp15 to cleave at cytidylate, whereas mutation of leucine 345 rendered Nsp15 able to cleave at purines as well as pyrimidines. Mutations that targeted the residues involvedmore » in subunit interactions generally resulted in the formation of catalytically inactive monomers. The RNA-binding residues were mapped by a method linking reversible cross-linking, RNA affinity purification, and peptide fingerprinting. Alanine substitution of several residues in the RNA-contacting portion of Nsp15 did not affect hexamer formation but decreased the affinity of RNA binding and reduced endonuclease activity. This suggests a model for Nsp15 hexamer interaction with RNA.« less

  15. Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Ion Channel Activity Promotes Virus Fitness and Pathogenesis

    PubMed Central

    Nieto-Torres, Jose L.; DeDiego, Marta L.; Verdiá-Báguena, Carmina; Jimenez-Guardeño, Jose M.; Regla-Nava, Jose A.; Fernandez-Delgado, Raul; Castaño-Rodriguez, Carlos; Alcaraz, Antonio; Torres, Jaume; Aguilella, Vicente M.; Enjuanes, Luis

    2014-01-01

    Deletion of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) envelope (E) gene attenuates the virus. E gene encodes a small multifunctional protein that possesses ion channel (IC) activity, an important function in virus-host interaction. To test the contribution of E protein IC activity in virus pathogenesis, two recombinant mouse-adapted SARS-CoVs, each containing one single amino acid mutation that suppressed ion conductivity, were engineered. After serial infections, mutant viruses, in general, incorporated compensatory mutations within E gene that rendered active ion channels. Furthermore, IC activity conferred better fitness in competition assays, suggesting that ion conductivity represents an advantage for the virus. Interestingly, mice infected with viruses displaying E protein IC activity, either with the wild-type E protein sequence or with the revertants that restored ion transport, rapidly lost weight and died. In contrast, mice infected with mutants lacking IC activity, which did not incorporate mutations within E gene during the experiment, recovered from disease and most survived. Knocking down E protein IC activity did not significantly affect virus growth in infected mice but decreased edema accumulation, the major determinant of acute respiratory distress syndrome (ARDS) leading to death. Reduced edema correlated with lung epithelia integrity and proper localization of Na+/K+ ATPase, which participates in edema resolution. Levels of inflammasome-activated IL-1β were reduced in the lung airways of the animals infected with viruses lacking E protein IC activity, indicating that E protein IC function is required for inflammasome activation. Reduction of IL-1β was accompanied by diminished amounts of TNF and IL-6 in the absence of E protein ion conductivity. All these key cytokines promote the progression of lung damage and ARDS pathology. In conclusion, E protein IC activity represents a new determinant for SARS-CoV virulence. PMID:24788150

  16. Searching for animal models and potential target species for emerging pathogens: Experience gained from Middle East respiratory syndrome (MERS) coronavirus.

    PubMed

    Vergara-Alert, Júlia; Vidal, Enric; Bensaid, Albert; Segalés, Joaquim

    2017-06-01

    Emerging and re-emerging pathogens represent a substantial threat to public health, as demonstrated with numerous outbreaks over the past years, including the 2013-2016 outbreak of Ebola virus in western Africa. Coronaviruses are also a threat for humans, as evidenced in 2002/2003 with infection by the severe acute respiratory syndrome coronavirus (SARS-CoV), which caused more than 8000 human infections with 10% fatality rate in 37 countries. Ten years later, a novel human coronavirus (Middle East respiratory syndrome coronavirus, MERS-CoV), associated with severe pneumonia, arose in the Kingdom of Saudi Arabia. Until December 2016, MERS has accounted for more than 1800 cases and 35% fatality rate. Finding an animal model of disease is key to develop vaccines or antivirals against such emerging pathogens and to understand its pathogenesis. Knowledge of the potential role of domestic livestock and other animal species in the transmission of pathogens is of importance to understand the epidemiology of the disease. Little is known about MERS-CoV animal host range. In this paper, experimental data on potential hosts for MERS-CoV is reviewed. Advantages and limitations of different animal models are evaluated in relation to viral pathogenesis and transmission studies. Finally, the relevance of potential new target species is discussed.

  17. An Overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and Small Molecule Chemotherapy.

    PubMed

    Pillaiyar, Thanigaimalai; Manickam, Manoj; Namasivayam, Vigneshwaran; Hayashi, Yoshio; Jung, Sang-Hun

    2016-07-28

    Severe acute respiratory syndrome (SARS) is caused by a newly emerged coronavirus that infected more than 8000 individuals and resulted in more than 800 (10-15%) fatalities in 2003. The causative agent of SARS has been identified as a novel human coronavirus (SARS-CoV), and its viral protease, SARS-CoV 3CL(pro), has been shown to be essential for replication and has hence been recognized as a potent drug target for SARS infection. Currently, there is no effective treatment for this epidemic despite the intensive research that has been undertaken since 2003 (over 3500 publications). This perspective focuses on the status of various efficacious anti-SARS-CoV 3CL(pro) chemotherapies discovered during the last 12 years (2003-2015) from all sources, including laboratory synthetic methods, natural products, and virtual screening. We describe here mainly peptidomimetic and small molecule inhibitors of SARS-CoV 3CL(pro). Attempts have been made to provide a complete description of the structural features and binding modes of these inhibitors under many conditions.

  18. Reverse Transcription Recombinase Polymerase Amplification Assay for the Detection of Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Abd El Wahed, Ahmed; Patel, Pranav; Heidenreich, Doris; Hufert, Frank T.; Weidmann, Manfred

    2013-01-01

    The emergence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in the eastern Mediterranean and imported cases to Europe has alerted public health authorities. Currently, detection of MERS-CoV in patient samples is done by real-time RT-PCR. Samples collected from suspected cases are sent to highly-equipped centralized laboratories for screening. A rapid point-of-care test is needed to allow more widespread mobile detection of the virus directly from patient material. In this study, we describe the development of a reverse transcription isothermal Recombinase Polymerase Amplification (RT-RPA) assay for the identification of MERS-CoV. A partial nucleocapsid gene RNA molecular standard of MERS-coronavirus was used to determine the assay sensitivity. The isothermal (42°C) MERS-CoV RT-RPA was as sensitive as real-time RT-PCR (10 RNA molecules), rapid (3-7 minutes) and mobile (using tubescanner weighing 1kg). The MERS-CoV RT-RPA showed cross-detection neither of any of the RNAs of several coronaviruses and respiratory viruses affecting humans nor of the human genome. The developed isothermal real-time RT-RPA is ideal for rapid mobile molecular MERS-CoV monitoring in acute patients and may also facilitate the search for the animal reservoir of MERS-CoV. PMID:24459611

  19. Repurposing of Clinically Developed Drugs for Treatment of Middle East Respiratory Syndrome Coronavirus Infection

    PubMed Central

    Dyall, Julie; Coleman, Christopher M.; Hart, Brit J.; Venkataraman, Thiagarajan; Holbrook, Michael R.; Kindrachuk, Jason; Johnson, Reed F.; Olinger, Gene G.; Jahrling, Peter B.; Laidlaw, Monique; Johansen, Lisa M.; Lear-Rooney, Calli M.; Glass, Pamela J.; Hensley, Lisa E.

    2014-01-01

    Outbreaks of emerging infections present health professionals with the unique challenge of trying to select appropriate pharmacologic treatments in the clinic with little time available for drug testing and development. Typically, clinicians are left with general supportive care and often untested convalescent-phase plasma as available treatment options. Repurposing of approved pharmaceutical drugs for new indications presents an attractive alternative to clinicians, researchers, public health agencies, drug developers, and funding agencies. Given the development times and manufacturing requirements for new products, repurposing of existing drugs is likely the only solution for outbreaks due to emerging viruses. In the studies described here, a library of 290 compounds was screened for antiviral activity against Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV). Selection of compounds for inclusion in the library was dependent on current or previous FDA approval or advanced clinical development. Some drugs that had a well-defined cellular pathway as target were included. In total, 27 compounds with activity against both MERS-CoV and SARS-CoV were identified. The compounds belong to 13 different classes of pharmaceuticals, including inhibitors of estrogen receptors used for cancer treatment and inhibitors of dopamine receptor used as antipsychotics. The drugs identified in these screens provide new targets for in vivo studies as well as incorporation into ongoing clinical studies. PMID:24841273

  20. Middle East Respiratory Syndrome Coronavirus Antibodies in Dromedary Camels, Bangladesh, 2015

    PubMed Central

    Islam, Ariful; Rostal, Melinda K.; Islam, Shariful; Rahman, Mohammed Ziaur; Hossain, Mohammed Enayet; Uzzaman, Mohammed Salim; Munster, Vincent J.; Peiris, Malik; Flora, Meerjady Sabrina; Rahman, Mahmudur; Daszak, Peter

    2018-01-01

    Dromedary camels are bred domestically and imported into Bangladesh. In 2015, of 55 camels tested for Middle East respiratory syndrome coronavirus in Dhaka, 17 (31%) were seropositive, including 1 bred locally. None were PCR positive. The potential for infected camels in urban markets could have public health implications and warrants further investigation. PMID:29664373

  1. Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus.

    PubMed

    Scobey, Trevor; Yount, Boyd L; Sims, Amy C; Donaldson, Eric F; Agnihothram, Sudhakar S; Menachery, Vineet D; Graham, Rachel L; Swanstrom, Jesica; Bove, Peter F; Kim, Jeeho D; Grego, Sonia; Randell, Scott H; Baric, Ralph S

    2013-10-01

    Severe acute respiratory syndrome with high mortality rates (~50%) is associated with a novel group 2c betacoronavirus designated Middle East respiratory syndrome coronavirus (MERS-CoV). We synthesized a panel of contiguous cDNAs that spanned the entire genome. Following contig assembly into genome-length cDNA, transfected full-length transcripts recovered several recombinant viruses (rMERS-CoV) that contained the expected marker mutations inserted into the component clones. Because the wild-type MERS-CoV contains a tissue culture-adapted T1015N mutation in the S glycoprotein, rMERS-CoV replicated ~0.5 log less efficiently than wild-type virus. In addition, we ablated expression of the accessory protein ORF5 (rMERS•ORF5) and replaced it with tomato red fluorescent protein (rMERS-RFP) or deleted the entire ORF3, 4, and 5 accessory cluster (rMERS-ΔORF3-5). Recombinant rMERS-CoV, rMERS-CoV•ORF5, and MERS-CoV-RFP replicated to high titers, whereas MERS-ΔORF3-5 showed 1-1.5 logs reduced titer compared with rMERS-CoV. Northern blot analyses confirmed the associated molecular changes in the recombinant viruses, and sequence analysis demonstrated that RFP was expressed from the appropriate consensus sequence AACGAA. We further show dipeptidyl peptidase 4 expression, MERS-CoV replication, and RNA and protein synthesis in human airway epithelial cell cultures, primary lung fibroblasts, primary lung microvascular endothelial cells, and primary alveolar type II pneumocytes, demonstrating a much broader tissue tropism than severe acute respiratory syndrome coronavirus. The availability of a MERS-CoV molecular clone, as well as recombinant viruses expressing indicator proteins, will allow for high-throughput testing of therapeutic compounds and provide a genetic platform for studying gene function and the rational design of live virus vaccines.

  2. Acute respiratory distress syndrome

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/000103.htm Acute respiratory distress syndrome To use the sharing features on this page, please enable JavaScript. Acute respiratory distress syndrome (ARDS) is a life-threatening lung ...

  3. Middle East Respiratory Syndrome (MERS)

    MedlinePlus

    Middle East Respiratory Syndrome Coronavirus; MERS-CoV; Novel coronavirus; nCoV ... for Disease Control and Prevention website. Middle East Respiratory Syndrome (MERS): Frequently asked questions and answers. www. ...

  4. Middle East respiratory syndrome: knowledge to date.

    PubMed

    Alsolamy, Sami

    2015-06-01

    To provide a conceptual and clinical review of Middle East respiratory syndrome. Peer-reviewed articles were identified through searches of PubMed using the terms "Middle East respiratory syndrome," "coronavirus respiratory illness in Saudi Arabia," and "novel (beta) coronavirus and human coronavirus Erasmus Medical Center". In addition, articles were searched on the websites of the World Health Organization and the U.S. Centers for Disease Control and Prevention using the terms "Middle East respiratory syndrome" and "novel coronavirus in Middle East." The reference lists of these articles and relevant review articles were also reviewed. Final references were selected for inclusion in the review on the basis of their relevance. The emerging Middle East respiratory syndrome coronavirus causes severe pulmonary disease with multiorgan involvement and a high fatality rate. Within months after its emergence, Middle East respiratory syndrome coronavirus was reported in several countries worldwide in people who had traveled from the Middle East. Middle East respiratory syndrome coronavirus is considered a zoonotic virus that has crossed the species barrier to humans, but the pathogenesis and the routes of transmission are not completely understood. There is currently no recommended treatment for Middle East respiratory syndrome coronavirus, although supportive treatment has played an important role. This syndrome has raised global public health concerns about the dissemination of an emerging infectious disease and highlights the need for a coordinated global response to contain such a disease threat.

  5. Overactive Epidermal Growth Factor Receptor Signaling Leads to Increased Fibrosis after Severe Acute Respiratory Syndrome Coronavirus Infection

    PubMed Central

    Venkataraman, Thiagarajan; Coleman, Christopher M.

    2017-01-01

    ABSTRACT Severe acute respiratory syndrome coronavirus (SARS-CoV) is a highly pathogenic respiratory virus that causes morbidity and mortality in humans. After infection with SARS-CoV, the acute lung injury caused by the virus must be repaired to regain lung function. A dysregulation in this wound healing process leads to fibrosis. Many survivors of SARS-CoV infection develop pulmonary fibrosis (PF), with higher prevalence in older patients. Using mouse models of SARS-CoV pathogenesis, we have identified that the wound repair pathway, controlled by the epidermal growth factor receptor (EGFR), is critical to recovery from SARS-CoV-induced tissue damage. In mice with constitutively active EGFR [EGFR(DSK5) mice], we find that SARS-CoV infection causes enhanced lung disease. Importantly, we show that during infection, the EGFR ligands amphiregulin and heparin-binding EGF-like growth factor (HB-EGF) are upregulated, and exogenous addition of these ligands during infection leads to enhanced lung disease and altered wound healing dynamics. Our data demonstrate a key role of EGFR in the host response to SARS-CoV and how it may be implicated in lung disease induced by other highly pathogenic respiratory viruses. IMPORTANCE PF has many causative triggers, including severe respiratory viruses such as SARS-CoV. Currently there are no treatments to prevent the onset or limit the progression of PF, and the molecular pathways underlying the development of PF are not well understood. In this study, we identified a role for the balanced control of EGFR signaling as a key factor in progression to PF. These data demonstrate that therapeutic treatment modulating EGFR activation could protect against PF development caused by severe respiratory virus infection. PMID:28404843

  6. Overactive Epidermal Growth Factor Receptor Signaling Leads to Increased Fibrosis after Severe Acute Respiratory Syndrome Coronavirus Infection.

    PubMed

    Venkataraman, Thiagarajan; Coleman, Christopher M; Frieman, Matthew B

    2017-06-15

    Severe acute respiratory syndrome coronavirus (SARS-CoV) is a highly pathogenic respiratory virus that causes morbidity and mortality in humans. After infection with SARS-CoV, the acute lung injury caused by the virus must be repaired to regain lung function. A dysregulation in this wound healing process leads to fibrosis. Many survivors of SARS-CoV infection develop pulmonary fibrosis (PF), with higher prevalence in older patients. Using mouse models of SARS-CoV pathogenesis, we have identified that the wound repair pathway, controlled by the epidermal growth factor receptor (EGFR), is critical to recovery from SARS-CoV-induced tissue damage. In mice with constitutively active EGFR [EGFR(DSK5) mice], we find that SARS-CoV infection causes enhanced lung disease. Importantly, we show that during infection, the EGFR ligands amphiregulin and heparin-binding EGF-like growth factor (HB-EGF) are upregulated, and exogenous addition of these ligands during infection leads to enhanced lung disease and altered wound healing dynamics. Our data demonstrate a key role of EGFR in the host response to SARS-CoV and how it may be implicated in lung disease induced by other highly pathogenic respiratory viruses. IMPORTANCE PF has many causative triggers, including severe respiratory viruses such as SARS-CoV. Currently there are no treatments to prevent the onset or limit the progression of PF, and the molecular pathways underlying the development of PF are not well understood. In this study, we identified a role for the balanced control of EGFR signaling as a key factor in progression to PF. These data demonstrate that therapeutic treatment modulating EGFR activation could protect against PF development caused by severe respiratory virus infection. Copyright © 2017 American Society for Microbiology.

  7. Roadmap to developing a recombinant coronavirus S protein receptor-binding domain vaccine for severe acute respiratory syndrome

    PubMed Central

    Jiang, Shibo; Bottazzi, Maria Elena; Du, Lanying; Lustigman, Sara; Tseng, Chien-Te Kent; Curti, Elena; Jones, Kathryn; Zhan, Bin; Hotez, Peter J

    2013-01-01

    A subunit vaccine, RBD-S, is under development to prevent severe acute respiratory syndrome (SARS) caused by SARS coronavirus (SARS-CoV), which is classified by the US NIH as a category C pathogen. This vaccine is comprised of a recombinant receptor-binding domain (RBD) of the SARS-CoV spike (S) protein and formulated on alum, together with a synthetic glucopyranosyl lipid A. The vaccine would induce neutralizing antibodies without causing Th2-type immunopathology. Vaccine development is being led by the nonprofit product development partnership; Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development in collaboration with two academic partners (the New York Blood Center and University of Texas Medical Branch); an industrial partner (Immune Design Corporation); and Walter Reed Army Institute of Research. A roadmap for the product development of the RBD-S SARS vaccine is outlined with a goal to manufacture the vaccine for clinical testing within the next 5 years. PMID:23252385

  8. CT correlation with outcomes in 15 patients with acute Middle East respiratory syndrome coronavirus.

    PubMed

    Das, Karuna M; Lee, Edward Y; Enani, Mushira A; AlJawder, Suhaila E; Singh, Rajvir; Bashir, Salman; Al-Nakshbandi, Nizar; AlDossari, Khalid; Larsson, Sven G

    2015-04-01

    The purpose of this article is to retrospectively analyze chest CT findings for 15 patients with Middle East respiratory syndrome coronavirus and to identify features associated with survival. Patients were assigned to group 1 if they died (n=9) and to group 2 if they made a full recovery (n=6). Two reviewers scored chest radiographs and CT examinations for segmental involvement, ground-glass opacities, consolidation, and interstitial thickening. Eight patients had ground-glass opacity (53%), five had ground-glass and consolidation in combination (33%), five had pleural effusion (33%), and four patients had interlobular thickening (27%). Of 281 CT findings, 151 (54%) were peripheral, 68 (24%) were central, and 62 (22%) had a mixed location. The number of involved lung segments was higher in group 1. The lower lobe was more commonly involved (mean, 12.2 segments) than in the upper and middle lobes combined (mean, 6.3 segments). The mean number of lung segments involved was 12.3 segments in group 1 and 3.4 segments in group 2. The CT lung score (mean±SD, 15.78±7.9 vs 7.3±5.7, p=0.003), chest radiographic score (20.8±1.7 vs 5.6±5.4; p=0.001), and mechanical ventilation duration (13.11±8.3 vs 0.5±1.2 days; p=0.002) were higher in group 1. All nine group 1 patients and three of six group 2 patients had pleural effusion (p=0.52). CT of patients with Middle East respiratory syndrome coronavirus predominantly showed ground-glass opacities, with peripheral lower lobe preference. Pleural effusion and higher CT lung and chest radiographic scores correlate with poor prognosis and short-term mortality.

  9. The Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Inhibits Type I Interferon Production by Interfering with TRIM25-Mediated RIG-I Ubiquitination.

    PubMed

    Hu, Yong; Li, Wei; Gao, Ting; Cui, Yan; Jin, Yanwen; Li, Ping; Ma, Qingjun; Liu, Xuan; Cao, Cheng

    2017-04-15

    Severe acute respiratory syndrome (SARS) is a respiratory disease, caused by a coronavirus (SARS-CoV), that is characterized by atypical pneumonia. The nucleocapsid protein (N protein) of SARS-CoV plays an important role in inhibition of type I interferon (IFN) production via an unknown mechanism. In this study, the SARS-CoV N protein was found to bind to the SPRY domain of the tripartite motif protein 25 (TRIM25) E3 ubiquitin ligase, thereby interfering with the association between TRIM25 and retinoic acid-inducible gene I (RIG-I) and inhibiting TRIM25-mediated RIG-I ubiquitination and activation. Type I IFN production induced by poly I·C or Sendai virus (SeV) was suppressed by the SARS-CoV N protein. SARS-CoV replication was increased by overexpression of the full-length N protein but not N amino acids 1 to 361, which could not interact with TRIM25. These findings provide an insightful interpretation of the SARS-CoV-mediated host innate immune suppression caused by the N protein. IMPORTANCE The SARS-CoV N protein is essential for the viral life cycle and plays a key role in the virus-host interaction. We demonstrated that the interaction between the C terminus of the N protein and the SPRY domain of TRIM25 inhibited TRIM25-mediated RIG-I ubiquitination, which resulted in the inhibition of IFN production. We also found that the Middle East respiratory syndrome CoV (MERS-CoV) N protein interacted with TRIM25 and inhibited RIG-I signaling. The outcomes of these findings indicate the function of the coronavirus N protein in modulating the host's initial innate immune response. Copyright © 2017 American Society for Microbiology.

  10. The Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Inhibits Type I Interferon Production by Interfering with TRIM25-Mediated RIG-I Ubiquitination

    PubMed Central

    Hu, Yong; Li, Wei; Gao, Ting; Cui, Yan; Jin, Yanwen; Li, Ping; Ma, Qingjun

    2017-01-01

    ABSTRACT Severe acute respiratory syndrome (SARS) is a respiratory disease, caused by a coronavirus (SARS-CoV), that is characterized by atypical pneumonia. The nucleocapsid protein (N protein) of SARS-CoV plays an important role in inhibition of type I interferon (IFN) production via an unknown mechanism. In this study, the SARS-CoV N protein was found to bind to the SPRY domain of the tripartite motif protein 25 (TRIM25) E3 ubiquitin ligase, thereby interfering with the association between TRIM25 and retinoic acid-inducible gene I (RIG-I) and inhibiting TRIM25-mediated RIG-I ubiquitination and activation. Type I IFN production induced by poly I·C or Sendai virus (SeV) was suppressed by the SARS-CoV N protein. SARS-CoV replication was increased by overexpression of the full-length N protein but not N amino acids 1 to 361, which could not interact with TRIM25. These findings provide an insightful interpretation of the SARS-CoV-mediated host innate immune suppression caused by the N protein. IMPORTANCE The SARS-CoV N protein is essential for the viral life cycle and plays a key role in the virus-host interaction. We demonstrated that the interaction between the C terminus of the N protein and the SPRY domain of TRIM25 inhibited TRIM25-mediated RIG-I ubiquitination, which resulted in the inhibition of IFN production. We also found that the Middle East respiratory syndrome CoV (MERS-CoV) N protein interacted with TRIM25 and inhibited RIG-I signaling. The outcomes of these findings indicate the function of the coronavirus N protein in modulating the host's initial innate immune response. PMID:28148787

  11. Phosphatidylinositol 4-Kinase IIIβ Is Required for Severe Acute Respiratory Syndrome Coronavirus Spike-mediated Cell Entry*

    PubMed Central

    Yang, Ning; Ma, Ping; Lang, Jianshe; Zhang, Yanli; Deng, Jiejie; Ju, Xiangwu; Zhang, Gongyi; Jiang, Chengyu

    2012-01-01

    Phosphatidylinositol kinases (PI kinases) play an important role in the life cycle of several viruses after infection. Using gene knockdown technology, we demonstrate that phosphatidylinositol 4-kinase IIIβ (PI4KB) is required for cellular entry by pseudoviruses bearing the severe acute respiratory syndrome-coronavirus (SARS-CoV) spike protein and that the cell entry mediated by SARS-CoV spike protein is strongly inhibited by knockdown of PI4KB. Consistent with this observation, pharmacological inhibitors of PI4KB blocked entry of SARS pseudovirions. Further research suggested that PI4P plays an essential role in SARS-CoV spike-mediated entry, which is regulated by the PI4P lipid microenvironment. We further demonstrate that PI4KB does not affect virus entry at the SARS-CoV S-ACE2 binding interface or at the stage of virus internalization but rather at or before virus fusion. Taken together, these results indicate a new function for PI4KB and suggest a new drug target for preventing SARS-CoV infection. PMID:22253445

  12. First Confirmed Case of Middle East Respiratory Syndrome Coronavirus Infection in the Kingdom of Bahrain: In a Saudi Gentleman after Cardiac Bypass Surgery

    PubMed Central

    Al-Qahtani, Manaf; Al-Tawfiq, Jaffar A.; Bukamal, Nazar

    2017-01-01

    Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is well known to cause severe respiratory infection and was first reported in the Kingdom of Saudi Arabia in 2012. We report here the first confirmed MERS-CoV infection in the Kingdom of Bahrain in a Saudi gentleman who was admitted electively for coronary bypass surgery, postoperatively developed an acute respiratory illness, and tested positive for MERS-CoV. 40 close contacts, all healthcare workers, were traced and followed with no documented secondary cases. PMID:28948054

  13. Clinico-epidemiological characteristics of acute respiratory infections caused by coronavirus OC43, NL63 and 229E.

    PubMed

    Reina, J; López-Causapé, C; Rojo-Molinero, E; Rubio, R

    2014-12-01

    Acute respiratory infection is a very common condition in the general population. The majority of these infections are due to viruses. This study attempted to determine the clinical and epidemiological characteristics of adult patients with respiratory infection by the coronavirus OC43, NL63 and 229E. Between January 2013 and February 2014, we prospectively studied all patients with suspected clinical respiratory infection by taking throat swabs and performing a reverse transcription polymerase chain reaction in search of coronavirus. In 48 cases (7.0% of the 686 enrolled patients; 12.6% of the 381 in whom a virus was detected) the presence of a coronavirus demonstrated. In 24 cases, the virus was OC43 (50%); in 14 cases, the virus was NL63 (29%); and in 10 cases, the virus was 229E (21%). The mean age was 54.5 years, with a slight predominance of men. The most common clinical presentations were nonspecific influenza symptoms (43.7%), pneumonia (29.2%) and chronic obstructive pulmonary disease exacerbation (8.3%). Fifty-two percent of the patients required hospitalization, and 2 patients required intensive care. There were no deaths. Acute respiratory infections caused by coronavirus mainly affect middle-aged male smokers, who are often affected by previous diseases. The most common clinical picture has been nonspecific influenza symptoms. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  14. [Prevalence and clinical characteristics of coronavirus NL63 infection in children hospitalized for acute lower respiratory tract infections in Changsha].

    PubMed

    Zhang, Fei; Zhang, Bing; Xie, Zhi-Ping; Gao, Han-Chun; Zhao, Xin; Zhong, Li-Li; Zhou, Qiong-Hua; Hou, Yun-De; Duan, Zhao-Jun

    2012-04-01

    The main objective of this study was to explore the prevalence and clinical characteristics of human coronavirus NL63 infection in hospitalized children with acute lower respiratory tract infection (ALRTI) in Changsha. Nasopharyngeal aspirates (NPA) samples were collected from 1185 hospitalized children with ALRTI at the People's Hospital of Hunan province, between September 2008 and October 2010. Reverse transcriptase polymerase chain reaction (RT-PCR) was employed to screen for coronavirus NL63, which is a 255 bp fragment of a part of N gene. All positive amplification products were confirmed by sequencing and compared with those in GenBank. The overall frequency of coronavirus NL63 infection was 0.8%, 6 (60%) out of the coronavirus NL63 positive patients were detected in summer, 2 in autumn, 1 in spring and winter, respectively. The patients were from 2 months to two and a half years old. The clinical diagnosis was bronchopneumonia (60%), bronchiolitis (30%), and acute laryngotracheal bronchitis (10%). Four of the 10 cases had critical illness, 4 cases had underlying diseases, and 7 cases had mixed infection with other viruses. The homogeneity of coronavirus NL63 with those published in the GenBank at nucleotide levels was 97%-100%. Coronavirus NL63 infection exists in hospitalized children with acute lower respiratory tract infection in Changsha. Coronavirus NL63 infections are common in children under 3 years of age. There is significant difference in the infection rate between the boys and the girls: the boys had higher rate than the girls. The peak of prevalence of the coronavirus NL63 was in summer. A single genetic lineage of coronavirus NL63 was revealed in human subjects in Changsha. Coronavirus NL63 may also be one of the lower respiratory pathogen in China.

  15. MERS, SARS and other coronaviruses as causes of pneumonia.

    PubMed

    Yin, Yudong; Wunderink, Richard G

    2018-02-01

    Human coronaviruses (HCoVs) have been considered to be relatively harmless respiratory pathogens in the past. However, after the outbreak of the severe acute respiratory syndrome (SARS) and emergence of the Middle East respiratory syndrome (MERS), HCoVs have received worldwide attention as important pathogens in respiratory tract infection. This review focuses on the epidemiology, pathogenesis and clinical characteristics among SARS-coronaviruses (CoV), MERS-CoV and other HCoV infections. © 2017 Asian Pacific Society of Respirology.

  16. Rewiring the severe acute respiratory syndrome coronavirus (SARS-CoV) transcription circuit: Engineering a recombination-resistant genome

    NASA Astrophysics Data System (ADS)

    Yount, Boyd; Roberts, Rhonda S.; Lindesmith, Lisa; Baric, Ralph S.

    2006-08-01

    Live virus vaccines provide significant protection against many detrimental human and animal diseases, but reversion to virulence by mutation and recombination has reduced appeal. Using severe acute respiratory syndrome coronavirus as a model, we engineered a different transcription regulatory circuit and isolated recombinant viruses. The transcription network allowed for efficient expression of the viral transcripts and proteins, and the recombinant viruses replicated to WT levels. Recombinant genomes were then constructed that contained mixtures of the WT and mutant regulatory circuits, reflecting recombinant viruses that might occur in nature. Although viable viruses could readily be isolated from WT and recombinant genomes containing homogeneous transcription circuits, chimeras that contained mixed regulatory networks were invariantly lethal, because viable chimeric viruses were not isolated. Mechanistically, mixed regulatory circuits promoted inefficient subgenomic transcription from inappropriate start sites, resulting in truncated ORFs and effectively minimize viral structural protein expression. Engineering regulatory transcription circuits of intercommunicating alleles successfully introduces genetic traps into a viral genome that are lethal in RNA recombinant progeny viruses. regulation | systems biology | vaccine design

  17. [Severe acute respiratory syndrome: the first transmissible disease of the 21st century].

    PubMed

    Nicastri, Emanuele; Petrosillo, Nicola; Macrì, Giulia; Ippolito, Giuseppe

    2003-01-01

    The Severe Acute Respiratory Syndrome (SARS) is the first severe and easily transmissible disease to emerge in the 21st century. It is caused by the infection with a coronavirus, a single strand RNA capsulated virus, recently found in a small mammalian, the masked palm civet. It is likely to represent the source of human infection. The first cases of SARS have been reported in the Chinese province of Guangdong and, since then, probable cases have been reported world wide. The clinical picture is characterized by nonspecific symptoms such as fever, cough or dyspnea in patients affected by air-space opacities (unifocal involvement in the 54.6% of cases) or distress respiratory syndrome and linked to a recent exposure to a SARS case or to a travel/residence in an affected area. The empirical therapy is based on broad-spectrum antibiotics, steroids and ribavirin, but susceptibility testing have failed to demonstrate direct anti-viral activity of ribavirin against SARS-related coronavirus in vitro. The exposure to respiratory droplets and the contact with biologic fluids (respiratory and gastrointestinal secretions) represent the most efficient transmission modality of the SARS-related coronavirus. Hand hygiene is the most simple and cost effective measure of infection control to prevent contagion, and the use of airborne, contact and droplet precaution is strictly recommended to all health care workers taking care of such patients. The spread of SARS, to less developed country with limited resource for public health programs, represent the emerging alarming threat in the new global scenario.

  18. Middle East Respiratory Syndrome Coronavirus: Another Zoonotic Betacoronavirus Causing SARS-Like Disease

    PubMed Central

    Chan, Jasper F. W.; Lau, Susanna K. P.; To, Kelvin K. W.; Cheng, Vincent C. C.; Woo, Patrick C. Y.

    2015-01-01

    SUMMARY The source of the severe acute respiratory syndrome (SARS) epidemic was traced to wildlife market civets and ultimately to bats. Subsequent hunting for novel coronaviruses (CoVs) led to the discovery of two additional human and over 40 animal CoVs, including the prototype lineage C betacoronaviruses, Tylonycteris bat CoV HKU4 and Pipistrellus bat CoV HKU5; these are phylogenetically closely related to the Middle East respiratory syndrome (MERS) CoV, which has affected more than 1,000 patients with over 35% fatality since its emergence in 2012. All primary cases of MERS are epidemiologically linked to the Middle East. Some of these patients had contacted camels which shed virus and/or had positive serology. Most secondary cases are related to health care-associated clusters. The disease is especially severe in elderly men with comorbidities. Clinical severity may be related to MERS-CoV's ability to infect a broad range of cells with DPP4 expression, evade the host innate immune response, and induce cytokine dysregulation. Reverse transcription-PCR on respiratory and/or extrapulmonary specimens rapidly establishes diagnosis. Supportive treatment with extracorporeal membrane oxygenation and dialysis is often required in patients with organ failure. Antivirals with potent in vitro activities include neutralizing monoclonal antibodies, antiviral peptides, interferons, mycophenolic acid, and lopinavir. They should be evaluated in suitable animal models before clinical trials. Developing an effective camel MERS-CoV vaccine and implementing appropriate infection control measures may control the continuing epidemic. PMID:25810418

  19. Purified coronavirus Spike protein nanoparticles induce coronavirus neutralizing antibodies in mice

    PubMed Central

    Mu, Haiyan; Taylor, Justin K; Massare, Michael; Flyer, David C

    2014-01-01

    Development of vaccination strategies for emerging pathogens are particularly challenging because of the sudden nature of the emergence of these viruses and the long process needed for traditional vaccine development. Therefore, there is a need for development of a rapid method of vaccine development that can respond to emerging pathogens in a short time frame. The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003 and Middle East respiratory syndrome (MERS-CoV) in late 2012 demonstrate the importance of coronaviruses as emerging pathogens. The spike glycoproteins of coronaviruses reside on the surface of the virion and are responsible for virus entry. The spike glycoprotein is the major immunodominant antigen of coronaviruses and has proven to be an excellent target for vaccine designs that seek to block coronavirus entry and promote antibody targeting of infected cells. Vaccination strategies for coronaviruses have involved live attenuated virus, recombinant viruses, non-replicative virus-like particles expressing coronavirus proteins or DNA plasmids expressing coronavirus genes. None of these strategies has progressed to an approved human coronavirus vaccine in the ten years since SARS-CoV emerged. Here we describe a novel method for generating MERS-CoV and SARS-CoV full-length spike nanoparticles, which in combination with adjuvants are able to produce high titer antibodies in mice. PMID:24736006

  20. Exogenous ACE2 Expression Allows Refractory Cell Lines To Support Severe Acute Respiratory Syndrome Coronavirus Replication

    PubMed Central

    Mossel, Eric C.; Huang, Cheng; Narayanan, Krishna; Makino, Shinji; Tesh, Robert B.; Peters, C. J.

    2005-01-01

    Of 30 cell lines and primary cells examined, productive severe acute respiratory syndrome coronavirus (Urbani strain) (SARS-CoV) infection after low-multiplicity inoculation was detected in only six: three African green monkey kidney epithelial cell lines (Vero, Vero E6, and MA104), a human colon epithelial line (CaCo-2), a porcine kidney epithelial line [PK(15)], and mink lung epithelial cells (Mv 1 Lu). SARS-CoV produced a lytic infection in Vero, Vero E6, and MA104 cells, but there was no visible cytopathic effect in Caco-2, Mv 1 Lu, or PK(15) cells. Multistep growth kinetics were identical in Vero E6 and MA104 cells, with maximum titer reached 24 h postinoculation (hpi). Virus titer was maximal 96 hpi in CaCo-2 cells, and virus was continually produced from infected CaCo-2 cells for at least 6 weeks after infection. CaCo-2 was the only human cell type of 13 tested that supported efficient SARS-CoV replication. Expression of the SARS-CoV receptor, angiotensin-converting enzyme 2 (ACE2), resulted in SARS-CoV replication in all refractory cell lines examined. Titers achieved were variable and dependent upon the method of ACE2 expression. PMID:15731278

  1. Preparation of armored RNA as a control for multiplex real-time reverse transcription-PCR detection of influenza virus and severe acute respiratory syndrome coronavirus.

    PubMed

    Yu, Xin-Fen; Pan, Jing-Cao; Ye, Rong; Xiang, Hai-Qing; Kou, Yu; Huang, Zhi-Cheng

    2008-03-01

    The common respiratory viruses, including influenza A, influenza B, and newly emerging severe acute respiratory syndrome (SARS) viruses, may cause similar clinical symptoms. Therefore, differential diagnosis of these virus pathogens is frequently required for single clinical samples. In addition, there is an urgent need for noninfectious and stable RNA standards and controls for multivirus detection. In this study, reverse transcription-PCR (RT-PCR) targeting of the RNAs of influenza A and influenza B viruses and SARS coronavirus was performed, and the resulting products were spliced into a fragment which was packaged into armored RNA for use as a noninfectious, quantifiable synthetic substitute. Furthermore, in the present study we developed a multiplex real-time RT-PCR assay in which the armored RNA was used as an external positive control and the three RNA viruses could be detected simultaneously in a single reaction mix. The detection limit of the multiplex real-time PCR was 10 copies/microl of armored RNA.

  2. Mechanisms of Host Receptor Adaptation by Severe Acute Respiratory Syndrome Coronavirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kailang; Peng, Guiqing; Wilken, Matthew

    The severe acute respiratory syndrome coronavirus (SARS-CoV) from palm civets has twice evolved the capacity to infect humans by gaining binding affinity for human receptor angiotensin-converting enzyme 2 (ACE2). Numerous mutations have been identified in the receptor-binding domain (RBD) of different SARS-CoV strains isolated from humans or civets. Why these mutations were naturally selected or how SARS-CoV evolved to adapt to different host receptors has been poorly understood, presenting evolutionary and epidemic conundrums. In this study, we investigated the impact of these mutations on receptor recognition, an important determinant of SARS-CoV infection and pathogenesis. Using a combination of biochemical, functional,more » and crystallographic approaches, we elucidated the molecular and structural mechanisms of each of these naturally selected RBD mutations. These mutations either strengthen favorable interactions or reduce unfavorable interactions with two virus-binding hot spots on ACE2, and by doing so, they enhance viral interactions with either human (hACE2) or civet (cACE2) ACE2. Therefore, these mutations were viral adaptations to either hACE2 or cACE2. To corroborate the above analysis, we designed and characterized two optimized RBDs. The human-optimized RBD contains all of the hACE2-adapted residues (Phe-442, Phe-472, Asn-479, Asp-480, and Thr-487) and possesses exceptionally high affinity for hACE2 but relative low affinity for cACE2. The civet-optimized RBD contains all of the cACE2-adapted residues (Tyr-442, Pro-472, Arg-479, Gly-480, and Thr-487) and possesses exceptionally high affinity for cACE2 and also substantial affinity for hACE2. These results not only illustrate the detailed mechanisms of host receptor adaptation by SARS-CoV but also provide a molecular and structural basis for tracking future SARS-CoV evolution in animals.« less

  3. Mechanisms of Host Receptor Adaptation by Severe Acute Respiratory Syndrome Coronavirus*

    PubMed Central

    Wu, Kailang; Peng, Guiqing; Wilken, Matthew; Geraghty, Robert J.; Li, Fang

    2012-01-01

    The severe acute respiratory syndrome coronavirus (SARS-CoV) from palm civets has twice evolved the capacity to infect humans by gaining binding affinity for human receptor angiotensin-converting enzyme 2 (ACE2). Numerous mutations have been identified in the receptor-binding domain (RBD) of different SARS-CoV strains isolated from humans or civets. Why these mutations were naturally selected or how SARS-CoV evolved to adapt to different host receptors has been poorly understood, presenting evolutionary and epidemic conundrums. In this study, we investigated the impact of these mutations on receptor recognition, an important determinant of SARS-CoV infection and pathogenesis. Using a combination of biochemical, functional, and crystallographic approaches, we elucidated the molecular and structural mechanisms of each of these naturally selected RBD mutations. These mutations either strengthen favorable interactions or reduce unfavorable interactions with two virus-binding hot spots on ACE2, and by doing so, they enhance viral interactions with either human (hACE2) or civet (cACE2) ACE2. Therefore, these mutations were viral adaptations to either hACE2 or cACE2. To corroborate the above analysis, we designed and characterized two optimized RBDs. The human-optimized RBD contains all of the hACE2-adapted residues (Phe-442, Phe-472, Asn-479, Asp-480, and Thr-487) and possesses exceptionally high affinity for hACE2 but relative low affinity for cACE2. The civet-optimized RBD contains all of the cACE2-adapted residues (Tyr-442, Pro-472, Arg-479, Gly-480, and Thr-487) and possesses exceptionally high affinity for cACE2 and also substantial affinity for hACE2. These results not only illustrate the detailed mechanisms of host receptor adaptation by SARS-CoV but also provide a molecular and structural basis for tracking future SARS-CoV evolution in animals. PMID:22291007

  4. Real-Time Sequence-Validated Loop-Mediated Isothermal Amplification Assays for Detection of Middle East Respiratory Syndrome Coronavirus (MERS-CoV)

    PubMed Central

    Bhadra, Sanchita; Jiang, Yu Sherry; Kumar, Mia R.; Johnson, Reed F.; Hensley, Lisa E.; Ellington, Andrew D.

    2015-01-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV), an emerging human coronavirus, causes severe acute respiratory illness with a 35% mortality rate. In light of the recent surge in reported infections we have developed asymmetric five-primer reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays for detection of MERS-CoV. Isothermal amplification assays will facilitate the development of portable point-of-care diagnostics that are crucial for management of emerging infections. The RT-LAMP assays are designed to amplify MERS-CoV genomic loci located within the open reading frame (ORF)1a and ORF1b genes and upstream of the E gene. Additionally we applied one-step strand displacement probes (OSD) for real-time sequence-specific verification of LAMP amplicons. Asymmetric amplification effected by incorporating a single loop primer in each assay accelerated the time-to-result of the OSD-RT-LAMP assays. The resulting assays could detect 0.02 to 0.2 plaque forming units (PFU) (5 to 50 PFU/ml) of MERS-CoV in infected cell culture supernatants within 30 to 50 min and did not cross-react with common human respiratory pathogens. PMID:25856093

  5. Avian influenza virus, Streptococcus suis serotype 2, severe acute respiratory syndrome-coronavirus and beyond: molecular epidemiology, ecology and the situation in China.

    PubMed

    Ma, Ying; Feng, Youjun; Liu, Di; Gao, George F

    2009-09-27

    The outbreak and spread of severe acute respiratory syndrome-associated coronavirus and the subsequent identification of its animal origin study have heightened the world's awareness of animal-borne or zoonotic pathogens. In addition to SARS, the highly pathogenic avian influenza virus (AIV), H5N1, and the lower pathogenicity H9N2 AIV have expanded their host ranges to infect human beings and other mammalian species as well as birds. Even the 'well-known' reservoir animals for influenza virus, migratory birds, became victims of the highly pathogenic H5N1 virus. Not only the viruses, but bacteria can also expand their host range: a new disease, streptococcal toxic shock syndrome, caused by human Streptococcus suis serotype 2 infection, has been observed in China with 52 human fatalities in two separate outbreaks (1998 and 2005, respectively). Additionally, enterohaemorrhagic Escherichia coli O157:H7 infection has increased worldwide with severe disease. Several outbreaks and sporadic isolations of this pathogen in China have made it an important target for disease control. A new highly pathogenic variant of porcine reproductive and respiratory syndrome virus (PRRSV) has been isolated in both China and Vietnam recently; although PRRSV is not a zoonotic human pathogen, its severe outbreaks have implications for food safety. All of these pathogens occur in Southeast Asia, including China, with severe consequences; therefore, we discuss the issues in this article by addressing the situation of the zoonotic threat in China.

  6. A rare cause of acute flaccid paralysis: Human coronaviruses

    PubMed Central

    Turgay, Cokyaman; Emine, Tekin; Ozlem, Koken; Muhammet, S. Paksu; Haydar, A. Tasdemir

    2015-01-01

    Acute flaccid paralysis (AFP) is a life-threatening clinical entity characterized by weakness in the whole body muscles often accompanied by respiratory and bulbar paralysis. The most common cause is Gullian–Barre syndrome, but infections, spinal cord diseases, neuromuscular diseases such as myasthenia gravis, drugs and toxins, periodic hypokalemic paralysis, electrolyte disturbances, and botulism should be considered as in the differential diagnosis. Human coronaviruses (HCoVs) cause common cold, upper and lower respiratory tract disease, but in the literature presentation with the lower respiratory tract infection and AFP has not been reported previously. In this study, pediatric case admitted with lower respiratory tract infection and AFP, who detected for HCoV 229E and OC43 co-infection by the real-time polymerase chain reaction, has been reported for the first time. PMID:26557177

  7. A rare cause of acute flaccid paralysis: Human coronaviruses.

    PubMed

    Turgay, Cokyaman; Emine, Tekin; Ozlem, Koken; Muhammet, S Paksu; Haydar, A Tasdemir

    2015-01-01

    Acute flaccid paralysis (AFP) is a life-threatening clinical entity characterized by weakness in the whole body muscles often accompanied by respiratory and bulbar paralysis. The most common cause is Gullian-Barre syndrome, but infections, spinal cord diseases, neuromuscular diseases such as myasthenia gravis, drugs and toxins, periodic hypokalemic paralysis, electrolyte disturbances, and botulism should be considered as in the differential diagnosis. Human coronaviruses (HCoVs) cause common cold, upper and lower respiratory tract disease, but in the literature presentation with the lower respiratory tract infection and AFP has not been reported previously. In this study, pediatric case admitted with lower respiratory tract infection and AFP, who detected for HCoV 229E and OC43 co-infection by the real-time polymerase chain reaction, has been reported for the first time.

  8. Detection and Phylogenetic Analysis of Group 1 Coronaviruses in South American Bats

    PubMed Central

    Foster, Jerome E.; Zhu, Hua Chen; Zhang, Jin Xia; Smith, Gavin J.D.; Thompson, Nadin; Auguste, Albert J.; Ramkissoon, Vernie; Adesiyun, Abiodun A.; Guan, Yi

    2008-01-01

    Bat coronaviruses (Bt-CoVs) are thought to be the precursors of severe acute respiratory syndrome coronavirus. We detected Bt-CoVs in 2 bat species from Trinidad. Phylogenetic analysis of the RNA-dependent RNA polymerase gene and helicase confirmed them as group 1 coronaviruses. PMID:19046513

  9. From SARS coronavirus to novel animal and human coronaviruses.

    PubMed

    To, Kelvin K W; Hung, Ivan F N; Chan, Jasper F W; Yuen, Kwok-Yung

    2013-08-01

    In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) caused one of the most devastating epidemics known to the developed world. There were two important lessons from this epidemic. Firstly, coronaviruses, in addition to influenza viruses, can cause severe and rapidly spreading human infections. Secondly, bats can serve as the origin and natural animal reservoir of deadly human viruses. Since then, researchers around the world, especially those in Asia where SARS-CoV was first identified, have turned their focus to find novel coronaviruses infecting humans, bats, and other animals. Two human coronaviruses, HCoV-HKU1 and HCoV-NL63, were identified shortly after the SARS-CoV epidemic as common causes of human respiratory tract infections. In 2012, a novel human coronavirus, now called Middle East respiratory syndrome coronavirus (MERS-CoV), has emerged in the Middle East to cause fatal human infections in three continents. MERS-CoV human infection is similar to SARS-CoV in having a high fatality rate and the ability to spread from person to person which resulted in secondary cases among close contacts including healthcare workers without travel history to the Middle East. Both viruses also have close relationships with bat coronaviruses. New cases of MERS-CoV infection in humans continue to occur with the origins of the virus still unknown in many cases. A multifaceted approach is necessary to control this evolving MERS-CoV outbreak. Source identification requires detailed epidemiological studies of the infected patients and enhanced surveillance of MERS-CoV or similar coronaviruses in humans and animals. Early diagnosis of infected patients and appropriate infection control measures will limit the spread in hospitals, while social distancing strategies may be necessary to control the outbreak in communities if it remained uncontrolled as in the SARS epidemic.

  10. Surveillance and Testing for Middle East Respiratory Syndrome Coronavirus, Saudi Arabia, April 2015-February 2016.

    PubMed

    Saeed, Abdulaziz A Bin; Abedi, Glen R; Alzahrani, Abdullah G; Salameh, Iyad; Abdirizak, Fatima; Alhakeem, Raafat; Algarni, Homoud; El Nil, Osman A; Mohammed, Mutaz; Assiri, Abdullah M; Alabdely, Hail M; Watson, John T; Gerber, Susan I

    2017-04-01

    Saudi Arabia has reported >80% of the Middle East respiratory syndrome coronavirus (MERS-CoV) cases worldwide. During April 2015-February 2016, Saudi Arabia identified and tested 57,363 persons (18.4/10,000 residents) with suspected MERS-CoV infection; 384 (0.7%) tested positive. Robust, extensive, and timely surveillance is critical for limiting virus transmission.

  11. Increased Antibody Affinity Confers Broad In Vitro Protection against Escape Mutants of Severe Acute Respiratory Syndrome Coronavirus

    PubMed Central

    Rani, Mridula; Bolles, Meagan; Donaldson, Eric F.; Van Blarcom, Thomas; Baric, Ralph; Iverson, Brent

    2012-01-01

    Even though the effect of antibody affinity on neutralization potency is well documented, surprisingly, its impact on neutralization breadth and escape has not been systematically determined. Here, random mutagenesis and DNA shuffling of the single-chain variable fragment of the neutralizing antibody 80R followed by bacterial display screening using anchored periplasmic expression (APEx) were used to generate a number of higher-affinity variants of the severe acute respiratory syndrome coronavirus (SARS-CoV)-neutralizing antibody 80R with equilibrium dissociation constants (KD) as low as 37 pM, a >270-fold improvement relative to that of the parental 80R single-chain variable fragment (scFv). As expected, antigen affinity was shown to correlate directly with neutralization potency toward the icUrbani strain of SARS-CoV. Additionally, the highest-affinity antibody fragment displayed 10-fold-increased broad neutralization in vitro and completely protected against several SARS-CoV strains containing substitutions associated with antibody escape. Importantly, higher affinity also led to the suppression of viral escape mutants in vitro. Escape from the highest-affinity variant required reduced selective pressure and multiple substitutions in the binding epitope. Collectively, these results support the hypothesis that engineered antibodies with picomolar dissociation constants for a neutralizing epitope can confer escape-resistant protection. PMID:22696652

  12. SARS and MERS: recent insights into emerging coronaviruses.

    PubMed

    de Wit, Emmie; van Doremalen, Neeltje; Falzarano, Darryl; Munster, Vincent J

    2016-08-01

    The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 marked the second introduction of a highly pathogenic coronavirus into the human population in the twenty-first century. The continuing introductions of MERS-CoV from dromedary camels, the subsequent travel-related viral spread, the unprecedented nosocomial outbreaks and the high case-fatality rates highlight the need for prophylactic and therapeutic measures. Scientific advancements since the 2002-2003 severe acute respiratory syndrome coronavirus (SARS-CoV) pandemic allowed for rapid progress in our understanding of the epidemiology and pathogenesis of MERS-CoV and the development of therapeutics. In this Review, we detail our present understanding of the transmission and pathogenesis of SARS-CoV and MERS-CoV, and discuss the current state of development of measures to combat emerging coronaviruses.

  13. Overview of preparedness and response for Middle East respiratory syndrome coronavirus (MERS-CoV) in Oman.

    PubMed

    Al-Abaidani, I S; Al-Maani, A S; Al-Kindi, H S; Al-Jardani, A K; Abdel-Hady, D M; Zayed, B E; Al-Harthy, K S; Al-Shaqsi, K H; Al-Abri, S S

    2014-12-01

    Several countries in the Middle East and around 22 countries worldwide have reported cases of human infection with the Middle East respiratory syndrome coronavirus (MERS-CoV). The exceptionally high fatality rate resulting from MERS-CoV infection in conjunction with the paucity of knowledge about this emerging virus has led to major public and international concern. Within the framework of the national acute respiratory illness surveillance, the Ministry of Health in the Sultanate of Oman has announced two confirmed cases of MERS-CoV to date. The aim of this report is to describe the epidemiological aspects of these two cases and to highlight the importance of public health preparedness and response. The absence of secondary cases among contacts of the reported cases can be seen as evidence of the effectiveness of infection prevention and control precautions as an important pillar of the national preparedness and response plan applied in the health care institutions in Oman. Copyright © 2014. Published by Elsevier Ltd.

  14. Follow-up of Contacts of Middle East Respiratory Syndrome Coronavirus-Infected Returning Travelers, the Netherlands, 2014.

    PubMed

    Mollers, Madelief; Jonges, Marcel; Pas, Suzan D; van der Eijk, Annemiek A; Dirksen, Kees; Jansen, Casper; Gelinck, Luc B S; Leyten, Eliane M S; Thurkow, Ingrid; Groeneveld, Paul H P; van Gageldonk-Lafeber, Arianne B; Koopmans, Marion P; Timen, Aura

    2015-09-01

    Notification of 2 imported cases of infection with Middle East respiratory syndrome coronavirus in the Netherlands triggered comprehensive monitoring of contacts. Observed low rates of virus transmission and the psychological effect of contact monitoring indicate that thoughtful assessment of close contacts is prudent and must be guided by clinical and epidemiologic risk factors.

  15. Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin.

    PubMed

    Ren, Wuze; Qu, Xiuxia; Li, Wendong; Han, Zhenggang; Yu, Meng; Zhou, Peng; Zhang, Shu-Yi; Wang, Lin-Fa; Deng, Hongkui; Shi, Zhengli

    2008-02-01

    Severe acute respiratory syndrome (SARS) is caused by the SARS-associated coronavirus (SARS-CoV), which uses angiotensin-converting enzyme 2 (ACE2) as its receptor for cell entry. A group of SARS-like CoVs (SL-CoVs) has been identified in horseshoe bats. SL-CoVs and SARS-CoVs share identical genome organizations and high sequence identities, with the main exception of the N terminus of the spike protein (S), known to be responsible for receptor binding in CoVs. In this study, we investigated the receptor usage of the SL-CoV S by combining a human immunodeficiency virus-based pseudovirus system with cell lines expressing the ACE2 molecules of human, civet, or horseshoe bat. In addition to full-length S of SL-CoV and SARS-CoV, a series of S chimeras was constructed by inserting different sequences of the SARS-CoV S into the SL-CoV S backbone. Several important observations were made from this study. First, the SL-CoV S was unable to use any of the three ACE2 molecules as its receptor. Second, the SARS-CoV S failed to enter cells expressing the bat ACE2. Third, the chimeric S covering the previously defined receptor-binding domain gained its ability to enter cells via human ACE2, albeit with different efficiencies for different constructs. Fourth, a minimal insert region (amino acids 310 to 518) was found to be sufficient to convert the SL-CoV S from non-ACE2 binding to human ACE2 binding, indicating that the SL-CoV S is largely compatible with SARS-CoV S protein both in structure and in function. The significance of these findings in relation to virus origin, virus recombination, and host switching is discussed.

  16. Identification of Diverse Alphacoronaviruses and Genomic Characterization of a Novel Severe Acute Respiratory Syndrome-Like Coronavirus from Bats in China

    PubMed Central

    He, Biao; Zhang, Yuzhen; Xu, Lin; Yang, Weihong; Yang, Fanli; Feng, Yun; Xia, Lele; Zhou, Jihua; Zhen, Weibin; Feng, Ye; Guo, Huancheng

    2014-01-01

    ABSTRACT Although many severe acute respiratory syndrome-like coronaviruses (SARS-like CoVs) have been identified in bats in China, Europe, and Africa, most have a genetic organization significantly distinct from human/civet SARS CoVs in the receptor-binding domain (RBD), which mediates receptor binding and determines the host spectrum, resulting in their failure to cause human infections and making them unlikely progenitors of human/civet SARS CoVs. Here, a viral metagenomic analysis of 268 bat rectal swabs collected from four counties in Yunnan Province has identified hundreds of sequences relating to alpha- and betacoronaviruses. Phylogenetic analysis based on a conserved region of the RNA-dependent RNA polymerase gene revealed that alphacoronaviruses had diversities with some obvious differences from those reported previously. Full genomic analysis of a new SARS-like CoV from Baoshan (LYRa11) showed that it was 29,805 nucleotides (nt) in length with 13 open reading frames (ORFs), sharing 91% nucleotide identity with human/civet SARS CoVs and the most recently reported SARS-like CoV Rs3367, while sharing 89% with other bat SARS-like CoVs. Notably, it showed the highest sequence identity with the S gene of SARS CoVs and Rs3367, especially in the RBD region. Antigenic analysis showed that the S1 domain of LYRa11 could be efficiently recognized by SARS-convalescent human serum, indicating that LYRa11 is a novel virus antigenically close to SARS CoV. Recombination analyses indicate that LYRa11 is likely a recombinant descended from parental lineages that had evolved into a number of bat SARS-like CoVs. IMPORTANCE Although many severe acute respiratory syndrome-like coronaviruses (SARS-like CoVs) have been discovered in bats worldwide, there are significant different genic structures, particularly in the S1 domain, which are responsible for host tropism determination, between bat SARS-like CoVs and human SARS CoVs, indicating that most reported bat SARS-like CoVs are

  17. Feline and Canine Coronaviruses: Common Genetic and Pathobiological Features

    PubMed Central

    Le Poder, Sophie

    2011-01-01

    A new human coronavirus responsible for severe acute respiratory syndrome (SARS) was identified in 2003, which raised concern about coronaviruses as agents of serious infectious disease. Nevertheless, coronaviruses have been known for about 50 years to be major agents of respiratory, enteric, or systemic infections of domestic and companion animals. Feline and canine coronaviruses are widespread among dog and cat populations, sometimes leading to the fatal diseases known as feline infectious peritonitis (FIP) and pantropic canine coronavirus infection in cats and dogs, respectively. In this paper, different aspects of the genetics, host cell tropism, and pathogenesis of the feline and canine coronaviruses (FCoV and CCoV) will be discussed, with a view to illustrating how study of FCoVs and CCoVs can improve our general understanding of the pathobiology of coronaviruses. PMID:22312347

  18. Feline and canine coronaviruses: common genetic and pathobiological features.

    PubMed

    Le Poder, Sophie

    2011-01-01

    A new human coronavirus responsible for severe acute respiratory syndrome (SARS) was identified in 2003, which raised concern about coronaviruses as agents of serious infectious disease. Nevertheless, coronaviruses have been known for about 50 years to be major agents of respiratory, enteric, or systemic infections of domestic and companion animals. Feline and canine coronaviruses are widespread among dog and cat populations, sometimes leading to the fatal diseases known as feline infectious peritonitis (FIP) and pantropic canine coronavirus infection in cats and dogs, respectively. In this paper, different aspects of the genetics, host cell tropism, and pathogenesis of the feline and canine coronaviruses (FCoV and CCoV) will be discussed, with a view to illustrating how study of FCoVs and CCoVs can improve our general understanding of the pathobiology of coronaviruses.

  19. Severe Acute Respiratory Syndrome Coronaviruses with Mutations in the E Protein Are Attenuated and Promising Vaccine Candidates

    PubMed Central

    Regla-Nava, Jose A.; Nieto-Torres, Jose L.; Jimenez-Guardeño, Jose M.; Fernandez-Delgado, Raul; Fett, Craig; Castaño-Rodríguez, Carlos; Perlman, Stanley; DeDiego, Marta L.

    2015-01-01

    ABSTRACT Severe acute respiratory syndrome coronavirus (SARS-CoV) causes a respiratory disease with a mortality rate of 10%. A mouse-adapted SARS-CoV (SARS-CoV-MA15) lacking the envelope (E) protein (rSARS-CoV-MA15-ΔE) is attenuated in vivo. To identify E protein regions and host responses that contribute to rSARS-CoV-MA15-ΔE attenuation, several mutants (rSARS-CoV-MA15-E*) containing point mutations or deletions in the amino-terminal or the carboxy-terminal regions of the E protein were generated. Amino acid substitutions in the amino terminus, or deletion of regions in the internal carboxy-terminal region of E protein, led to virus attenuation. Attenuated viruses induced minimal lung injury, diminished limited neutrophil influx, and increased CD4+ and CD8+ T cell counts in the lungs of BALB/c mice, compared to mice infected with the wild-type virus. To analyze the host responses leading to rSARS-CoV-MA15-E* attenuation, differences in gene expression elicited by the native and mutant viruses in the lungs of infected mice were determined. Expression levels of a large number of proinflammatory cytokines associated with lung injury were reduced in the lungs of rSARS-CoV-MA15-E*-infected mice, whereas the levels of anti-inflammatory cytokines were increased, both at the mRNA and protein levels. These results suggested that the reduction in lung inflammation together with a more robust antiviral T cell response contributed to rSARS-CoV-MA15-E* attenuation. The attenuated viruses completely protected mice against challenge with the lethal parental virus, indicating that these viruses are promising vaccine candidates. IMPORTANCE Human coronaviruses are important zoonotic pathogens. SARS-CoV caused a worldwide epidemic infecting more than 8,000 people with a mortality of around 10%. Therefore, understanding the virulence mechanisms of this pathogen and developing efficacious vaccines are of high importance to prevent epidemics from this and other human coronaviruses

  20. Infection prevention and control measures for acute respiratory infections in healthcare settings: an update.

    PubMed

    Seto, W H; Conly, J M; Pessoa-Silva, C L; Malik, M; Eremin, S

    2013-01-01

    Viruses account for the majority of the acute respiratory tract infections (ARIs) globally with a mortality exceeding 4 million deaths per year. The most commonly encountered viruses, in order of frequency, include influenza, respiratory syncytial virus, parainfluenza and adenovirus. Current evidence suggests that the major mode of transmission of ARls is through large droplets, but transmission through contact (including hand contamination with subsequent self-inoculation) and infectious respiratory aerosols of various sizes and at short range (coined as "opportunistic" airborne transmission) may also occur for some pathogens. Opportunistic airborne transmission may occur when conducting highrisk aerosol generating procedures and airborne precautions will be required in this setting. General infection control measures effective for all respiratory viral infections are reviewed and followed by discussion on some of the common viruses, including severe acute respiratory syndrome (SARS) coronavirus and the recently discovered novel coronavirus.

  1. Interaction of SARS and MERS Coronaviruses with the Antiviral Interferon Response.

    PubMed

    Kindler, E; Thiel, V; Weber, F

    2016-01-01

    Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) are the most severe coronavirus (CoV)-associated diseases in humans. The causative agents, SARS-CoV and MERS-CoV, are of zoonotic origin but may be transmitted to humans, causing severe and often fatal respiratory disease in their new host. The two coronaviruses are thought to encode an unusually large number of factors that allow them to thrive and replicate in the presence of efficient host defense mechanisms, especially the antiviral interferon system. Here, we review the recent progress in our understanding of the strategies that highly pathogenic coronaviruses employ to escape, dampen, or block the antiviral interferon response in human cells. © 2016 Elsevier Inc. All rights reserved.

  2. Important Role for the Transmembrane Domain of Severe Acute Respiratory Syndrome Coronavirus Spike Protein during Entry

    PubMed Central

    Broer, Rene; Boson, Bertrand; Spaan, Willy; Cosset, François-Loïc; Corver, Jeroen

    2006-01-01

    The spike protein (S) of severe acute respiratory syndrome coronavirus (SARS-CoV) is responsible for receptor binding and membrane fusion. It contains a highly conserved transmembrane domain that consists of three parts: an N-terminal tryptophan-rich domain, a central domain, and a cysteine-rich C-terminal domain. The cytoplasmic tail of S has previously been shown to be required for assembly. Here, the roles of the transmembrane and cytoplasmic domains of S in the infectivity and membrane fusion activity of SARS-CoV have been studied. SARS-CoV S-pseudotyped retrovirus (SARSpp) was used to measure S-mediated infectivity. In addition, the cell-cell fusion activity of S was monitored by a Renilla luciferase-based cell-cell fusion assay. Svsv-cyt, an S chimera with a cytoplasmic tail derived from vesicular stomatitis virus G protein (VSV-G), and Smhv-tmdcyt, an S chimera with the cytoplasmic and transmembrane domains of mouse hepatitis virus, displayed wild-type-like activity in both assays. Svsv-tmdcyt, a chimera with the cytoplasmic and transmembrane domains of VSV-G, was impaired in the SARSpp and cell-cell fusion assays, showing 3 to 25% activity compared to the wild type, depending on the assay and the cells used. Examination of the oligomeric state of the chimeric S proteins in SARSpp revealed that Svsv-tmdcyt trimers were less stable than wild-type S trimers, possibly explaining the lowered fusogenicity and infectivity. PMID:16415007

  3. Genomic Characterization of a Newly Discovered Coronavirus Associated with Acute Respiratory Distress Syndrome in Humans

    PubMed Central

    van Boheemen, Sander; de Graaf, Miranda; Lauber, Chris; Bestebroer, Theo M.; Raj, V. Stalin; Zaki, Ali Moh; Osterhaus, Albert D. M. E.; Haagmans, Bart L.; Gorbalenya, Alexander E.; Snijder, Eric J.; Fouchier, Ron A. M.

    2012-01-01

    ABSTRACT A novel human coronavirus (HCoV-EMC/2012) was isolated from a man with acute pneumonia and renal failure in June 2012. This report describes the complete genome sequence, genome organization, and expression strategy of HCoV-EMC/2012 and its relation with known coronaviruses. The genome contains 30,119 nucleotides and contains at least 10 predicted open reading frames, 9 of which are predicted to be expressed from a nested set of seven subgenomic mRNAs. Phylogenetic analysis of the replicase gene of coronaviruses with completely sequenced genomes showed that HCoV-EMC/2012 is most closely related to Tylonycteris bat coronavirus HKU4 (BtCoV-HKU4) and Pipistrellus bat coronavirus HKU5 (BtCoV-HKU5), which prototype two species in lineage C of the genus Betacoronavirus. In accordance with the guidelines of the International Committee on Taxonomy of Viruses, and in view of the 75% and 77% amino acid sequence identity in 7 conserved replicase domains with BtCoV-HKU4 and BtCoV-HKU5, respectively, we propose that HCoV-EMC/2012 prototypes a novel species in the genus Betacoronavirus. HCoV-EMC/2012 may be most closely related to a coronavirus detected in Pipistrellus pipistrellus in The Netherlands, but because only a short sequence from the most conserved part of the RNA-dependent RNA polymerase-encoding region of the genome was reported for this bat virus, its genetic distance from HCoV-EMC remains uncertain. HCoV-EMC/2012 is the sixth coronavirus known to infect humans and the first human virus within betacoronavirus lineage C. PMID:23170002

  4. Identification of Information Types and Sources by the Public for Promoting Awareness of Middle East Respiratory Syndrome Coronavirus in Saudi Arabia

    ERIC Educational Resources Information Center

    Hoda, Jradi

    2016-01-01

    Middle East Respiratory Syndrome (MERS) is a viral respiratory disease of serious consequences caused by MERS Coronavirus (MERS-CoV). Saudi communities still lack awareness of available protective measures to prevent the transmission of the virus. It is necessary to explore the current information-seeking strategies and preferences for…

  5. A molecular arms race between host innate antiviral response and emerging human coronaviruses.

    PubMed

    Wong, Lok-Yin Roy; Lui, Pak-Yin; Jin, Dong-Yan

    2016-02-01

    Coronaviruses have been closely related with mankind for thousands of years. Community-acquired human coronaviruses have long been recognized to cause common cold. However, zoonotic coronaviruses are now becoming more a global concern with the discovery of highly pathogenic severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses causing severe respiratory diseases. Infections by these emerging human coronaviruses are characterized by less robust interferon production. Treatment of patients with recombinant interferon regimen promises beneficial outcomes, suggesting that compromised interferon expression might contribute at least partially to the severity of disease. The mechanisms by which coronaviruses evade host innate antiviral response are under intense investigations. This review focuses on the fierce arms race between host innate antiviral immunity and emerging human coronaviruses. Particularly, the host pathogen recognition receptors and the signal transduction pathways to mount an effective antiviral response against SARS and MERS coronavirus infection are discussed. On the other hand, the counter-measures evolved by SARS and MERS coronaviruses to circumvent host defense are also dissected. With a better understanding of the dynamic interaction between host and coronaviruses, it is hoped that insights on the pathogenesis of newly-identified highly pathogenic human coronaviruses and new strategies in antiviral development can be derived.

  6. Managing severe acute respiratory syndrome (SARS) intellectual property rights: the possible role of patent pooling.

    PubMed Central

    Simon, James H. M.; Claassen, Eric; Correa, Carmen E.; Osterhaus, Albert D. M. E.

    2005-01-01

    Patent applications that incorporate the genomic sequence of the severe acute respiratory syndrome (SARS) coronavirus, have been filed by a number of organizations. This is likely to result in a fragmentation of intellectual property (IP) rights which in turn may adversely affect the development of products, such as vaccines, to combat SARS. Placing these patent rights into a patent pool to be licensed on a non-exclusive basis may circumvent these difficulties and set a key precedent for the use of this form of mechanism in other areas of health care, leading to benefits to public health. PMID:16211163

  7. Pediatric acute respiratory distress syndrome: definition, incidence, and epidemiology: proceedings from the Pediatric Acute Lung Injury Consensus Conference.

    PubMed

    Khemani, Robinder G; Smith, Lincoln S; Zimmerman, Jerry J; Erickson, Simon

    2015-06-01

    Although there are similarities in the pathophysiology of acute respiratory distress syndrome in adults and children, pediatric-specific practice patterns, comorbidities, and differences in outcome necessitate a pediatric-specific definition. We sought to create such a definition. A subgroup of pediatric acute respiratory distress syndrome investigators who drafted a pediatric-specific definition of acute respiratory distress syndrome based on consensus opinion and supported by detailed literature review tested elements of the definition with patient data from previously published investigations. International PICUs. Children enrolled in published investigations of pediatric acute respiratory distress syndrome. None. Several aspects of the proposed pediatric acute respiratory distress syndrome definition align with the Berlin Definition of acute respiratory distress syndrome in adults: timing of acute respiratory distress syndrome after a known risk factor, the potential for acute respiratory distress syndrome to coexist with left ventricular dysfunction, and the importance of identifying a group of patients at risk to develop acute respiratory distress syndrome. There are insufficient data to support any specific age for "adult" acute respiratory distress syndrome compared with "pediatric" acute respiratory distress syndrome. However, children with perinatal-related respiratory failure should be excluded from the definition of pediatric acute respiratory distress syndrome. Larger departures from the Berlin Definition surround 1) simplification of chest imaging criteria to eliminate bilateral infiltrates; 2) use of pulse oximetry-based criteria when PaO2 is unavailable; 3) inclusion of oxygenation index and oxygen saturation index instead of PaO2/FIO2 ratio with a minimum positive end-expiratory pressure level for invasively ventilated patients; 4) and specific inclusion of children with preexisting chronic lung disease or cyanotic congenital heart disease. This

  8. Severe Acute Respiratory Syndrome Coronavirus Replication Is Severely Impaired by MG132 due to Proteasome-Independent Inhibition of M-Calpain

    PubMed Central

    Schneider, Martha; Ackermann, Kerstin; Stuart, Melissa; Wex, Claudia; Protzer, Ulrike; Schätzl, Hermann M.

    2012-01-01

    The ubiquitin-proteasome system (UPS) is involved in the replication of a broad range of viruses. Since replication of the murine hepatitis virus (MHV) is impaired upon proteasomal inhibition, the relevance of the UPS for the replication of the severe acute respiratory syndrome coronavirus (SARS-CoV) was investigated in this study. We demonstrate that the proteasomal inhibitor MG132 strongly inhibits SARS-CoV replication by interfering with early steps of the viral life cycle. Surprisingly, other proteasomal inhibitors (e.g., lactacystin and bortezomib) only marginally affected viral replication, indicating that the effect of MG132 is independent of proteasomal impairment. Induction of autophagy by MG132 treatment was excluded from playing a role, and no changes in SARS-CoV titers were observed during infection of wild-type or autophagy-deficient ATG5−/− mouse embryonic fibroblasts overexpressing the human SARS-CoV receptor, angiotensin-converting enzyme 2 (ACE2). Since MG132 also inhibits the cysteine protease m-calpain, we addressed the role of calpains in the early SARS-CoV life cycle using calpain inhibitors III (MDL28170) and VI (SJA6017). In fact, m-calpain inhibition with MDL28170 resulted in an even more pronounced inhibition of SARS-CoV replication (>7 orders of magnitude) than did MG132. Additional m-calpain knockdown experiments confirmed the dependence of SARS-CoV replication on the activity of the cysteine protease m-calpain. Taken together, we provide strong experimental evidence that SARS-CoV has unique replication requirements which are independent of functional UPS or autophagy pathways compared to other coronaviruses. Additionally, this work highlights an important role for m-calpain during early steps of the SARS-CoV life cycle. PMID:22787216

  9. Origin and Possible Genetic Recombination of the Middle East Respiratory Syndrome Coronavirus from the First Imported Case in China: Phylogenetics and Coalescence Analysis

    PubMed Central

    Wang, Yanqun; Liu, Di; Shi, Weifeng; Lu, Roujian; Wang, Wenling; Zhao, Yanjie; Deng, Yao; Zhou, Weimin; Ren, Hongguang; Wu, Jun; Wang, Yu; Wu, Guizhen

    2015-01-01

    ABSTRACT The Middle East respiratory syndrome coronavirus (MERS-CoV) causes a severe acute respiratory tract infection with a high fatality rate in humans. Coronaviruses are capable of infecting multiple species and can evolve rapidly through recombination events. Here, we report the complete genomic sequence analysis of a MERS-CoV strain imported to China from South Korea. The imported virus, provisionally named ChinaGD01, belongs to group 3 in clade B in the whole-genome phylogenetic tree and also has a similar tree topology structure in the open reading frame 1a and -b (ORF1ab) gene segment but clusters with group 5 of clade B in the tree constructed using the S gene. Genetic recombination analysis and lineage-specific single-nucleotide polymorphism (SNP) comparison suggest that the imported virus is a recombinant comprising group 3 and group 5 elements. The time-resolved phylogenetic estimation indicates that the recombination event likely occurred in the second half of 2014. Genetic recombination events between group 3 and group 5 of clade B may have implications for the transmissibility of the virus. PMID:26350969

  10. Screening and identification of linear B-cell epitopes and entry-blocking peptide of severe acute respiratory syndrome (SARS)-associated coronavirus using synthetic overlapping peptide library.

    PubMed

    Hu, Hongbo; Li, Li; Kao, Richard Y; Kou, Binbin; Wang, Zhanguo; Zhang, Liang; Zhang, Huiyuan; Hao, Zhiyong; Tsui, Wayne H; Ni, Anping; Cui, Lianxian; Fan, Baoxing; Guo, Feng; Rao, Shuan; Jiang, Chengyu; Li, Qian; Sun, Manji; He, Wei; Liu, Gang

    2005-01-01

    A 10-mer overlapping peptide library has been synthesized for screening and identification of linear B-cell epitopes of severe acute respiratory syndrome associated coronavirus (SARS-CoV), which spanned the major structural proteins of SARS-CoV. One hundred and eleven candidate peptides were positive according to the result of PEPscan, which were assembled into 22 longer peptides. Five of these peptides showed high cross-immunoreactivities (approximately 66.7 to 90.5%) to SARS convalescent patients' sera from the severest epidemic regions of the China mainland. Most interestingly, S(471-503), a peptide located at the receptor binding domain (RBD) of SARS-CoV, could specifically block the binding between the RBD and angiotensin-converting enzyme 2, resulting in the inhibition of SARS-CoV entrance into host cells in vitro. The study demonstrated that S(471-503) peptide was a potential immunoantigen for the development of peptide-based vaccine or a candidate for further drug evaluation against the SARS-CoV virus-cell fusion.

  11. Evaluating the Performance of the Pediatric Acute Lung Injury Consensus Conference Definition of Acute Respiratory Distress Syndrome.

    PubMed

    Parvathaneni, Kaushik; Belani, Sanjay; Leung, Dennis; Newth, Christopher J L; Khemani, Robinder G

    2017-01-01

    The Pediatric Acute Lung Injury Consensus Conference has developed a pediatric-specific definition of acute respiratory distress syndrome, which is a significant departure from both the Berlin and American European Consensus Conference definitions. We sought to test the external validity and potential impact of the Pediatric Acute Lung Injury Consensus Conference definition by comparing the number of cases of acute respiratory distress syndrome and mortality rates among children admitted to a multidisciplinary PICU when classified by Pediatric Acute Lung Injury Consensus Conference, Berlin, and American European Consensus Conference criteria. Retrospective cohort study. Tertiary care, university-affiliated PICU. All patients admitted between March 2009 and April 2013 who met inclusion criteria for acute respiratory distress syndrome. None. Of 4,764 patients admitted to the ICU, 278 (5.8%) met Pediatric Acute Lung Injury Consensus Conference pediatric acute respiratory distress syndrome criteria with a mortality rate of 22.7%. One hundred forty-three (32.2% mortality) met Berlin criteria, and 134 (30.6% mortality) met American European Consensus Conference criteria. All patients who met American European Consensus Conference criteria and 141 (98.6%) patients who met Berlin criteria also met Pediatric Acute Lung Injury Consensus Conference criteria. The 137 patients who met Pediatric Acute Lung Injury Consensus Conference but not Berlin criteria had an overall mortality rate of 13.1%, but 29 had severe acute respiratory distress syndrome with 31.0% mortality. At acute respiratory distress syndrome onset, there was minimal difference in mortality between mild or moderate acute respiratory distress syndrome by both Berlin (32.4% vs 25.0%, respectively) and Pediatric Acute Lung Injury Consensus Conference (16.7% vs 18.6%, respectively) criteria, but higher mortality for severe acute respiratory distress syndrome (Berlin, 43.6%; Pediatric Acute Lung Injury Consensus

  12. Primary Severe Acute Respiratory Syndrome Coronavirus Infection Limits Replication but Not Lung Inflammation upon Homologous Rechallenge

    PubMed Central

    Clay, Candice; Donart, Nathan; Fomukong, Ndingsa; Knight, Jennifer B.; Lei, Wanli; Price, Lance; Hahn, Fletcher; Van Westrienen, Jesse

    2012-01-01

    Our knowledge regarding immune-protective and immunopathogenic events in severe acute respiratory syndrome coronavirus (SARS-CoV) infection is limited, and little is known about the dynamics of the immune response at the primary site of disease. Here, an African green monkey (AGM) model was used to elucidate immune mechanisms that facilitate viral clearance but may also contribute to persistent lung inflammation following SARS-CoV infection. During primary infection, SARS-CoV replicated in the AGM lung for up to 10 days. Interestingly, lung inflammation was more prevalent following viral clearance, as leukocyte numbers peaked at 14 days postinfection (dpi) and remained elevated at 28 dpi compared to those of mock-infected controls. Lung macrophages but not dendritic cells were rapidly activated, and both cell types had high activation marker expression at late infection time points. Lung proinflammatory cytokines were induced at 1 to 14 dpi, but most returned to baseline by 28 dpi except interleukin 12 (IL-12) and gamma interferon. In SARS-CoV homologous rechallenge studies, 11 of the 12 animals were free of replicating virus at day 5 after rechallenge. However, incidence and severity of lung inflammation was not reduced despite the limited viral replication upon rechallenge. Evaluating the role of antibodies in immune protection or potentiation revealed a progressive increase in anti-SARS-CoV antibodies in lung and serum that did not correlate temporally or spatially with enhanced viral replication. This study represents one of the first comprehensive analyses of lung immunity, including changes in leukocyte populations, lung-specific cytokines, and antibody responses following SARS-CoV rechallenge in AGMs. PMID:22345460

  13. Cleavage and Activation of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein by Human Airway Trypsin-Like Protease ▿

    PubMed Central

    Bertram, Stephanie; Glowacka, Ilona; Müller, Marcel A.; Lavender, Hayley; Gnirss, Kerstin; Nehlmeier, Inga; Niemeyer, Daniela; He, Yuxian; Simmons, Graham; Drosten, Christian; Soilleux, Elizabeth J.; Jahn, Olaf; Steffen, Imke; Pöhlmann, Stefan

    2011-01-01

    The highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) poses a constant threat to human health. The viral spike protein (SARS-S) mediates host cell entry and is a potential target for antiviral intervention. Activation of SARS-S by host cell proteases is essential for SARS-CoV infectivity but remains incompletely understood. Here, we analyzed the role of the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), in SARS-S activation. We found that HAT activates SARS-S in the context of surrogate systems and authentic SARS-CoV infection and is coexpressed with the viral receptor angiotensin-converting enzyme 2 (ACE2) in bronchial epithelial cells and pneumocytes. HAT cleaved SARS-S at R667, as determined by mutagenesis and mass spectrometry, and activated SARS-S for cell-cell fusion in cis and trans, while the related pulmonary protease TMPRSS2 cleaved SARS-S at multiple sites and activated SARS-S only in trans. However, TMPRSS2 but not HAT expression rendered SARS-S-driven virus-cell fusion independent of cathepsin activity, indicating that HAT and TMPRSS2 activate SARS-S differentially. Collectively, our results show that HAT cleaves and activates SARS-S and might support viral spread in patients. PMID:21994442

  14. Receptor recognition and cross-species infections of SARS coronavirus

    PubMed Central

    Li, Fang

    2013-01-01

    Receptor recognition is a major determinant of the host range, cross-species infections, and pathogenesis of the severe acute respiratory syndrome coronavirus (SARS-CoV). A defined receptor-binding domain (RBD) in the SARS-CoV spike protein specifically recognizes its host receptor, angiotensin-converting enzyme 2 (ACE2). This article reviews the latest knowledge about how RBDs from different SARS-CoV strains interact with ACE2 from several animal species. Detailed research on these RBD/ACE2 interactions has established important principles on host receptor adaptations, cross-species infections, and future evolution of SARS-CoV. These principles may apply to other emerging animal viruses, including the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV). This paper forms part of a series of invited articles in Antiviral Research on “From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses.” PMID:23994189

  15. Interferon-β 1a and SARS Coronavirus Replication

    PubMed Central

    Hensley, Lisa E.; Fritz, Elizabeth A.; Karp, Christopher; Huggins, John W.; Geisbert, Thomas W.

    2004-01-01

    A global outbreak of severe acute respiratory syndrome (SARS) caused by a novel coronavirus began in March 2003. The rapid emergence of SARS and the substantial illness and death it caused have made it a critical public health issue. Because no effective treatments are available, an intensive effort is under way to identify and test promising antiviral drugs. Here, we report that recombinant human interferon (IFN)-β 1a potently inhibits SARS coronavirus replication in vitro. PMID:15030704

  16. Human coronavirus and severe acute respiratory infection in Southern Brazil.

    PubMed

    Trombetta, Hygor; Faggion, Heloisa Z; Leotte, Jaqueline; Nogueira, Meri B; Vidal, Luine R R; Raboni, Sonia M

    2016-05-01

    Human coronaviruses (HCoVs) are an important cause of respiratory tract infection and are responsible for causing the common cold in the general population. Thus, adequate surveillance of HCoV is essential. This study aimed to analyze the impact of HCoV infections and their relation to severe acute respiratory infection (SARI) in a hospitalized population in Southern Brazil. A cross-sectional study was conducted at a tertiary care hospital, and assessed inpatients under investigation for SARI by the hospital epidemiology department, and all patients who had nasopharyngeal aspirates collected from January 2012 to December 2013 to detect respiratory viruses (RVs). Viral infection was detected by multiplex reverse transcriptase polymerase chain reaction (RT-PCR), with primers specific to the subtypes HCoV-229E/NL63 and OC43/HKU1. The overall positivity rate was 58.8% (444/755), and HCoVs were detected in 7.6% (n = 34) of positive samples. Children below two years of age were most frequently affected (62%). Comorbidities were more likely to be associated with HCoVs than with other RVs. Immunosuppression was an independent risk factor for HCoV infection (OR = 3.5, 95% CI 1.6-7.6). Dyspnea was less frequently associated with HCoV infection (p < 0.001), and HCoV accounted for 6% of the SARI cases. Three patients infected with HCoV (9%) died from respiratory infection. HCoVs are important respiratory pathogens, especially in hospitalized children under 2 years of age and in immunosuppressed patients. They may account for a small proportion of SARI diagnoses, increased need for mechanical ventilation, intensive care unit admission, and death.

  17. Inactivation and safety testing of Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Kumar, Mia; Mazur, Steven; Ork, Britini L.; Postnikova, Elena; Hensley, Lisa E.; Jahrling, Peter B.; Johnson, Reed; Holbrook, Michael R.

    2015-01-01

    Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a recently emerged virus that has caused a number of human infections and deaths, primarily in the Middle East. The transmission of MERS-CoV to humans has been proposed to be as a result of contact with camels, but evidence of human-to-human transmission also exists. In order to work with MERS-CoV in a laboratory setting, the US Centers for Disease Control and Prevention (CDC) has determined that MERS-CoV should be handled at a biosafety level (BSL) 3 (BSL-3) biocontainment level. Many processes and procedures used to characterize MERS-CoV and to evaluate samples from MERS-CoV infected animals are more easily and efficiently completed at BSL-2 or lower containment. In order to complete experimental work at BSL-2, demonstration or proof of inactivation is required before removal of specimens from biocontainment laboratories. In the studies presented here, we evaluated typical means of inactivating viruses prior to handling specimens at a lower biocontainment level. We found that Trizol, AVL buffer and gamma irradiation were effective at inactivating MERS-CoV, that formaldehyde-based solutions required at least 30 minutes of contact time in a cell culture system while a mixture of methanol and acetone required 60 minutes to inactivate MERS-CoV. Together, these data provide a foundation for safely inactivating MERS-CoV, and potentially other coronaviruses, prior to removal from biocontainment facilities. PMID:26190637

  18. Effects of Toll-Like Receptor Stimulation on Eosinophilic Infiltration in Lungs of BALB/c Mice Immunized with UV-Inactivated Severe Acute Respiratory Syndrome-Related Coronavirus Vaccine

    PubMed Central

    Iwata-Yoshikawa, Naoko; Uda, Akihiko; Suzuki, Tadaki; Tsunetsugu-Yokota, Yasuko; Sato, Yuko; Morikawa, Shigeru; Tashiro, Masato; Sata, Tetsutaro; Hasegawa, Hideki

    2014-01-01

    ABSTRACT Severe acute respiratory syndrome-related coronavirus (SARS-CoV) is an emerging pathogen that causes severe respiratory illness. Whole UV-inactivated SARS-CoV (UV-V), bearing multiple epitopes and proteins, is a candidate vaccine against this virus. However, whole inactivated SARS vaccine that includes nucleocapsid protein is reported to induce eosinophilic infiltration in mouse lungs after challenge with live SARS-CoV. In this study, an ability of Toll-like receptor (TLR) agonists to reduce the side effects of UV-V vaccination in a 6-month-old adult BALB/c mouse model was investigated, using the mouse-passaged Frankfurt 1 isolate of SARS-CoV. Immunization of adult mice with UV-V, with or without alum, resulted in partial protection from lethal doses of SARS-CoV challenge, but extensive eosinophil infiltration in the lungs was observed. In contrast, TLR agonists added to UV-V vaccine, including lipopolysaccharide, poly(U), and poly(I·C) (UV-V+TLR), strikingly reduced excess eosinophilic infiltration in the lungs and induced lower levels of interleukin-4 and -13 and eotaxin in the lungs than UV-V-immunization alone. Additionally, microarray analysis showed that genes associated with chemotaxis, eosinophil migration, eosinophilia, and cell movement and the polarization of Th2 cells were upregulated in UV-V-immunized but not in UV-V+TLR-immunized mice. In particular, CD11b+ cells in the lungs of UV-V-immunized mice showed the upregulation of genes associated with the induction of eosinophils after challenge. These findings suggest that vaccine-induced eosinophil immunopathology in the lungs upon SARS-CoV infection could be avoided by the TLR agonist adjuvants. IMPORTANCE Inactivated whole severe acute respiratory syndrome-related coronavirus (SARS-CoV) vaccines induce neutralizing antibodies in mouse models; however, they also cause increased eosinophilic immunopathology in the lungs upon SARS-CoV challenge. In this study, the ability of adjuvant Toll

  19. Receptor recognition and cross-species infections of SARS coronavirus.

    PubMed

    Li, Fang

    2013-10-01

    Receptor recognition is a major determinant of the host range, cross-species infections, and pathogenesis of the severe acute respiratory syndrome coronavirus (SARS-CoV). A defined receptor-binding domain (RBD) in the SARS-CoV spike protein specifically recognizes its host receptor, angiotensin-converting enzyme 2 (ACE2). This article reviews the latest knowledge about how RBDs from different SARS-CoV strains interact with ACE2 from several animal species. Detailed research on these RBD/ACE2 interactions has established important principles on host receptor adaptations, cross-species infections, and future evolution of SARS-CoV. These principles may apply to other emerging animal viruses, including the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV). This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses". Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Attenuation and Restoration of Severe Acute Respiratory Syndrome Coronavirus Mutant Lacking 2′-O-Methyltransferase Activity

    PubMed Central

    Menachery, Vineet D.; Yount, Boyd L.; Josset, Laurence; Gralinski, Lisa E.; Scobey, Trevor; Agnihothram, Sudhakar; Katze, Michael G.

    2014-01-01

    ABSTRACT The sudden emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and, more recently, Middle Eastern respiratory syndrome CoV (MERS-CoV) underscores the importance of understanding critical aspects of CoV infection and pathogenesis. Despite significant insights into CoV cross-species transmission, replication, and virus-host interactions, successful therapeutic options for CoVs do not yet exist. Recent identification of SARS-CoV NSP16 as a viral 2′-O-methyltransferase (2′-O-MTase) led to the possibility of utilizing this pathway to both attenuate SARS-CoV infection and develop novel therapeutic treatment options. Mutations were introduced into SARS-CoV NSP16 within the conserved KDKE motif and effectively attenuated the resulting SARS-CoV mutant viruses both in vitro and in vivo. While viruses lacking 2′-O-MTase activity had enhanced sensitivity to type I interferon (IFN), they were not completely restored in their absence in vivo. However, the absence of either MDA5 or IFIT1, IFN-responsive genes that recognize unmethylated 2′-O RNA, resulted in restored replication and virulence of the dNSP16 mutant virus. Finally, using the mutant as a live-attenuated vaccine showed significant promise for possible therapeutic development against SARS-CoV. Together, the data underscore the necessity of 2′-O-MTase activity for SARS-CoV pathogenesis and identify host immune pathways that mediate this attenuation. In addition, we describe novel treatment avenues that exploit this pathway and could potentially be used against a diverse range of viral pathogens that utilize 2′-O-MTase activity to subvert the immune system. IMPORTANCE Preventing recognition by the host immune response represents a critical aspect necessary for successful viral infection. Several viruses, including SARS-CoV, utilize virally encoded 2′-O-MTases to camouflage and obscure their viral RNA from host cell sensing machinery, thus preventing recognition and

  1. The outcomes of children with pediatric acute respiratory distress syndrome: proceedings from the Pediatric Acute Lung Injury Consensus Conference.

    PubMed

    Quasney, Michael W; López-Fernández, Yolanda M; Santschi, Miriam; Watson, R Scott

    2015-06-01

    To provide additional details and evidence behind the recommendations for outcomes assessment of patients with pediatric acute respiratory distress syndrome from the Pediatric Acute Lung Injury Consensus Conference. Consensus conference of experts in pediatric acute lung injury. A panel of 27 experts met over the course of 2 years to develop a taxonomy to define pediatric acute respiratory distress syndrome and to make recommendations regarding treatment and research priorities. The outcomes subgroup comprised four experts. When published data were lacking, a modified Delphi approach emphasizing strong professional agreement was used. The Pediatric Acute Lung Injury Consensus Conference experts developed and voted on a total of 151 recommendations addressing the topics related to pediatric acute respiratory distress syndrome, seven of which related to outcomes after pediatric acute respiratory distress syndrome. All seven recommendations had strong agreement. Children with acute respiratory distress syndrome continue to have a high mortality, specifically, in relation to certain comorbidities and etiologies related to pediatric acute respiratory distress syndrome. Comorbid conditions, such as an immunocompromised state, increase the risk of mortality even further. Likewise, certain etiologies, such as non-pulmonary sepsis, also place children at a higher risk of mortality. Significant long-term effects were reported in adult survivors of acute respiratory distress syndrome: diminished lung function and exercise tolerance, reduced quality of life, and diminished neurocognitive function. Little knowledge of long-term outcomes exists in children who survive pediatric acute respiratory distress syndrome. Characterization of the longer term consequences of pediatric acute respiratory distress syndrome in children is vital to help identify opportunities for improved therapeutic and rehabilitative strategies that will lessen the long-term burden of pediatric acute

  2. The PDZ-Binding Motif of Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Is a Determinant of Viral Pathogenesis

    PubMed Central

    Jimenez-Guardeño, Jose M.; Nieto-Torres, Jose L.; DeDiego, Marta L.; Regla-Nava, Jose A.; Fernandez-Delgado, Raul; Castaño-Rodriguez, Carlos; Enjuanes, Luis

    2014-01-01

    A recombinant severe acute respiratory syndrome coronavirus (SARS-CoV) lacking the envelope (E) protein is attenuated in vivo. Here we report that E protein PDZ-binding motif (PBM), a domain involved in protein-protein interactions, is a major determinant of virulence. Elimination of SARS-CoV E protein PBM by using reverse genetics caused a reduction in the deleterious exacerbation of the immune response triggered during infection with the parental virus and virus attenuation. Cellular protein syntenin was identified to bind the E protein PBM during SARS-CoV infection by using three complementary strategies, yeast two-hybrid, reciprocal coimmunoprecipitation and confocal microscopy assays. Syntenin redistributed from the nucleus to the cell cytoplasm during infection with viruses containing the E protein PBM, activating p38 MAPK and leading to the overexpression of inflammatory cytokines. Silencing of syntenin using siRNAs led to a decrease in p38 MAPK activation in SARS-CoV infected cells, further reinforcing their functional relationship. Active p38 MAPK was reduced in lungs of mice infected with SARS-CoVs lacking E protein PBM as compared with the parental virus, leading to a decreased expression of inflammatory cytokines and to virus attenuation. Interestingly, administration of a p38 MAPK inhibitor led to an increase in mice survival after infection with SARS-CoV, confirming the relevance of this pathway in SARS-CoV virulence. Therefore, the E protein PBM is a virulence domain that activates immunopathology most likely by using syntenin as a mediator of p38 MAPK induced inflammation. PMID:25122212

  3. Understanding bat SARS-like coronaviruses for the preparation of future coronavirus outbreaks - Implications for coronavirus vaccine development.

    PubMed

    Ng, Oi-Wing; Tan, Yee-Joo

    2017-01-02

    The severe acute respiratory syndrome coronavirus (SARS-CoV) first emerged in 2003, causing the SARS epidemic which resulted in a 10% fatality rate. The advancements in metagenomic techniques have allowed the identification of SARS-like coronaviruses (SL-CoVs) sequences that share high homology to the human SARS-CoV epidemic strains from wildlife bats, presenting concrete evidence that bats are the origin and natural reservoir of SARS-CoV. The application of reverse genetics further enabled that characterization of these bat CoVs and the prediction of their potential to cause disease in humans. The knowledge gained from such studies is valuable in the surveillance and preparation of a possible future outbreak caused by a spill-over of these bat SL-CoVs.

  4. Reciprocal Risk of Acute Kidney Injury and Acute Respiratory Distress Syndrome in Critically Ill Burn Patients.

    PubMed

    Clemens, Michael S; Stewart, Ian J; Sosnov, Jonathan A; Howard, Jeffrey T; Belenkiy, Slava M; Sine, Christy R; Henderson, Jonathan L; Buel, Allison R; Batchinsky, Andriy I; Cancio, Leopoldo C; Chung, Kevin K

    2016-10-01

    To evaluate the association between acute respiratory distress syndrome and acute kidney injury with respect to their contributions to mortality in critically ill patients. Retrospective analysis of consecutive adult burn patients requiring mechanical ventilation. A 16-bed burn ICU at tertiary military teaching hospital. Adult patients more than 18 years old requiring mechanical ventilation during their initial admission to our burn ICU from January 1, 2003, to December 31, 2011. None. A total 830 patients were included, of whom 48.2% had acute kidney injury (n = 400). These patients had a 73% increased risk of developing acute respiratory distress syndrome after controlling for age, gender, total body surface area burned, and inhalation injury (hazard ratio, 1.73; 95% CI, 1.18-2.54; p = 0.005). In a reciprocal multivariate analysis, acute respiratory distress syndrome (n = 299; 36%) demonstrated a strong trend toward developing acute kidney injury (hazard ratio, 1.39; 95% CI, 0.99-1.95; p = 0.05). There was a 24% overall in-hospital mortality (n = 198). After adjusting for the aforementioned confounders, both acute kidney injury (hazard ratio, 3.73; 95% CI, 2.39-5.82; p < 0.001) and acute respiratory distress syndrome (hazard ratio, 2.16; 95% CI, 1.58-2.94; p < 0.001) significantly contributed to mortality. Age, total body surface area burned, and inhalation injury were also significantly associated with increased mortality. Acute kidney injury increases the risk of acute respiratory distress syndrome in mechanically ventilated burn patients, whereas acute respiratory distress syndrome similarly demonstrates a strong trend toward the development of acute kidney injury. Acute kidney injury and acute respiratory distress syndrome are both independent risks for subsequent death. Future research should look at this interplay for possible early interventions.

  5. Impact of a viral respiratory epidemic on the practice of medicine and rehabilitation: severe acute respiratory syndrome.

    PubMed

    Lim, Peter A; Ng, Yee Sien; Tay, Boon Keng

    2004-08-01

    Severe acute respiratory syndrome (SARS) is a new respiratory viral epidemic that originated in China but has affected many parts of the world, with devastating impact on economies and the practice of medicine and rehabilitation. A novel coronavirus has been implicated, with transmission through respiratory droplets. Rehabilitation was significantly affected by SARS, because strict infection control measures run counter to principles such as multidisciplinary interactions, patients encouraging and learning from each other, and close physical contact during therapy. Immunocompromised patients who may silently carry SARS are common in rehabilitation and include those with renal failure, diabetes, and cancer. Routine procedures such as management of feces and respiratory secretions (eg, airway suctioning, tracheotomy care) have been classified as high risk. Personal protection equipment presented not only a physical but also a psychologic barrier to therapeutic human contact. Visitor restriction to decrease chances of disease transmission are particularly difficult for long-staying rehabilitation patients. At the height of the epidemic, curtailment of patient movement stopped all transfers for rehabilitation, and physiatrists had to function as general internists. Our experiences strongly suggest that rehabilitation institutions should have emergency preparedness plans because such epidemics may recur, whether as a result of nature or of bioterrorism.

  6. Middle East respiratory syndrome in children. Dental considerations.

    PubMed

    Al-Sehaibany, Fares S

    2017-04-01

    As of January 2016, 1,633 laboratory-confirmed cases of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection and 587 MERS-related deaths have been reported by the World Health Organization globally. Middle East Respiratory Syndrome Coronavirus  may occur sporadically in communities or may be transmitted within families or hospitals. The number of confirmed MERS-CoV cases among healthcare workers has been increasing. Middle East Respiratory Syndrome Coronavirus may also spread through aerosols generated during various dental treatments, resulting in transmission between patients and dentists. As MERS-CoV cases have also been reported among children, pediatric dentists are at risk of MERS-CoV infection. This review discusses MERS-CoV infection in children and healthcare workers, especially pediatric dentists, and considerations pertaining to pediatric dentistry. Although no cases of MERS-CoV transmission between a patient and a dentist have yet been reported, the risk of MERS-CoV transmission from an infected patient may be high due to the unique work environment of dentists (aerosol generation).

  7. A case of imported Middle East Respiratory Syndrome coronavirus infection and public health response, Greece, April 2014.

    PubMed

    Tsiodras, S; Baka, A; Mentis, A; Iliopoulos, D; Dedoukou, X; Papamavrou, G; Karadima, S; Emmanouil, M; Kossyvakis, A; Spanakis, N; Pavli, A; Maltezou, H; Karageorgou, A; Spala, G; Pitiriga, V; Kosmas, E; Tsiagklis, S; Gkatzias, S; Koulouris, Ng; Koutsoukou, A; Bakakos, P; Markozanhs, E; Dionellis, G; Pontikis, K; Rovina, N; Kyriakopoulou, M; Efstathiou, P; Papadimitriou, T; Kremastinou, J; Tsakris, A; Saroglou, G

    2014-04-24

    On 18 April 2014, a case of Middle East Respiratory Syndrome coronavirus (MERS-CoV) infection was laboratory confirmed in Athens, Greece in a patient returning from Jeddah, Saudi Arabia. Main symptoms upon initial presentation were protracted fever and diarrhoea, during hospitalisation he developed bilateral pneumonia and his condition worsened. During 14 days prior to onset of illness, he had extensive contact with the healthcare environment in Jeddah. Contact tracing revealed 73 contacts, no secondary cases had occurred by 22 April.

  8. Open Lung Approach for the Acute Respiratory Distress Syndrome: A Pilot, Randomized Controlled Trial.

    PubMed

    Kacmarek, Robert M; Villar, Jesús; Sulemanji, Demet; Montiel, Raquel; Ferrando, Carlos; Blanco, Jesús; Koh, Younsuck; Soler, Juan Alfonso; Martínez, Domingo; Hernández, Marianela; Tucci, Mauro; Borges, Joao Batista; Lubillo, Santiago; Santos, Arnoldo; Araujo, Juan B; Amato, Marcelo B P; Suárez-Sipmann, Fernando

    2016-01-01

    The open lung approach is a mechanical ventilation strategy involving lung recruitment and a decremental positive end-expiratory pressure trial. We compared the Acute Respiratory Distress Syndrome network protocol using low levels of positive end-expiratory pressure with open lung approach resulting in moderate to high levels of positive end-expiratory pressure for the management of established moderate/severe acute respiratory distress syndrome. A prospective, multicenter, pilot, randomized controlled trial. A network of 20 multidisciplinary ICUs. Patients meeting the American-European Consensus Conference definition for acute respiratory distress syndrome were considered for the study. At 12-36 hours after acute respiratory distress syndrome onset, patients were assessed under standardized ventilator settings (FIO2≥0.5, positive end-expiratory pressure ≥10 cm H2O). If Pao2/FIO2 ratio remained less than or equal to 200 mm Hg, patients were randomized to open lung approach or Acute Respiratory Distress Syndrome network protocol. All patients were ventilated with a tidal volume of 4 to 8 ml/kg predicted body weight. From 1,874 screened patients with acute respiratory distress syndrome, 200 were randomized: 99 to open lung approach and 101 to Acute Respiratory Distress Syndrome network protocol. Main outcome measures were 60-day and ICU mortalities, and ventilator-free days. Mortality at day-60 (29% open lung approach vs. 33% Acute Respiratory Distress Syndrome Network protocol, p = 0.18, log rank test), ICU mortality (25% open lung approach vs. 30% Acute Respiratory Distress Syndrome network protocol, p = 0.53 Fisher's exact test), and ventilator-free days (8 [0-20] open lung approach vs. 7 [0-20] d Acute Respiratory Distress Syndrome network protocol, p = 0.53 Wilcoxon rank test) were not significantly different. Airway driving pressure (plateau pressure - positive end-expiratory pressure) and PaO2/FIO2 improved significantly at 24, 48 and 72 hours in patients

  9. Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus.

    PubMed

    Sevajol, Marion; Subissi, Lorenzo; Decroly, Etienne; Canard, Bruno; Imbert, Isabelle

    2014-12-19

    The successive emergence of highly pathogenic coronaviruses (CoVs) such as the Severe Acute Respiratory Syndrome (SARS-CoV) in 2003 and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in 2012 has stimulated a number of studies on the molecular biology. This research has provided significant new insight into functions and activities of the replication/transcription multi-protein complex. The latter directs both continuous and discontinuous RNA synthesis to replicate and transcribe the large coronavirus genome made of a single-stranded, positive-sense RNA of ∼30 kb. In this review, we summarize our current understanding of SARS-CoV enzymes involved in RNA biochemistry, such as the in vitro characterization of a highly active and processive RNA polymerase complex which can associate with methyltransferase and 3'-5' exoribonuclease activities involved in RNA capping, and RNA proofreading, respectively. The recent discoveries reveal fascinating RNA-synthesizing machinery, highlighting the unique position of coronaviruses in the RNA virus world. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Preparation of His-tagged armored RNA phage particles as a control for real-time reverse transcription-PCR detection of severe acute respiratory syndrome coronavirus.

    PubMed

    Cheng, Yangjian; Niu, Jianjun; Zhang, Yongyou; Huang, Jianwei; Li, Qingge

    2006-10-01

    Armored RNA has been increasingly used as both an external and internal positive control in nucleic acid-based assays for RNA virus. In order to facilitate armored RNA purification, a His6 tag was introduced into the loop region of the MS2 coat protein, which allows the exposure of multiple His tags on the surface during armored RNA assembly. The His-tagged armored RNA particles were purified to homogeneity and verified to be free of DNA contamination in a single run of affinity chromatography. A fragment of severe acute respiratory syndrome coronavirus (SARS-CoV) genome targeted for SARS-CoV detection was chosen for an external positive control preparation. A plant-specific gene sequence was chosen for a universal noncompetitive internal positive control preparation. Both controls were purified by Co2+ affinity chromatography and were included in a real-time reverse transcription-PCR assay for SARS-CoV. The noncompetitive internal positive control can be added to clinical samples before RNA extraction and enables the identification of potential inhibitive effects without interfering with target amplification. The external control could be used for the quantification of viral loads in clinical samples.

  11. Coronavirus Infections in the Central Nervous System and Respiratory Tract Show Distinct Features in Hospitalized Children.

    PubMed

    Li, Yuanyuan; Li, Haipeng; Fan, Ruyan; Wen, Bo; Zhang, Jian; Cao, Xiaoying; Wang, Chengwu; Song, Zhanyi; Li, Shuochi; Li, Xiaojie; Lv, Xinjun; Qu, Xiaowang; Huang, Renbin; Liu, Wenpei

    2016-01-01

    Coronavirus (CoV) infections induce respiratory tract illnesses and central nervous system (CNS) diseases. We aimed to explore the cytokine expression profiles in hospitalized children with CoV-CNS and CoV-respiratory tract infections. A total of 183 and 236 hospitalized children with acute encephalitis-like syndrome and respiratory tract infection, respectively, were screened for anti-CoV IgM antibodies. The expression profiles of multiple cytokines were determined in CoV-positive patients. Anti-CoV IgM antibodies were detected in 22/183 (12.02%) and 26/236 (11.02%) patients with acute encephalitis-like syndrome and respiratory tract infection, respectively. Cytokine analysis revealed that the level of serum granulocyte colony-stimulating factor (G-CSF) was significantly higher in both CoV-CNS and CoV-respiratory tract infection compared with healthy controls. Additionally, the serum level of granulocyte macrophage colony-stimulating factor (GM-CSF) was significantly higher in CoV-CNS infection than in CoV-respiratory tract infection. In patients with CoV-CNS infection, the levels of IL-6, IL-8, MCP-1, and GM-CSF were significantly higher in their cerebrospinal fluid samples than in matched serum samples. To the best of our knowledge, this is the first report showing a high incidence of CoV infection in hospitalized children, especially with CNS illness. The characteristic cytokine expression profiles in CoV infection indicate the importance of host immune response in disease progression. © 2017 S. Karger AG, Basel.

  12. Prevalence and impact of active and passive cigarette smoking in acute respiratory distress syndrome.

    PubMed

    Hsieh, S Jean; Zhuo, Hanjing; Benowitz, Neal L; Thompson, B Taylor; Liu, Kathleen D; Matthay, Michael A; Calfee, Carolyn S

    2014-09-01

    Cigarette smoke exposure has recently been found to be associated with increased susceptibility to trauma- and transfusion-associated acute respiratory distress syndrome. We sought to determine 1) the incidence of cigarette smoke exposure in a diverse multicenter sample of acute respiratory distress syndrome patients and 2) whether cigarette smoke exposure is associated with severity of lung injury and mortality in acute respiratory distress syndrome. Analysis of the Albuterol for the Treatment of Acute Lung Injury and Omega Acute Respiratory Distress Syndrome Network studies. Acute Respiratory Distress Syndrome Network hospitals. Three hundred eighty-one patients with acute respiratory distress syndrome. None. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol, a validated tobacco-specific marker, was measured in urine samples from subjects enrolled in two National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network randomized controlled trials. Urine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol levels were consistent with active smoking in 36% of acute respiratory distress syndrome patients and with passive smoking in 41% of nonsmokers (vs 20% and 40% in general population, respectively). Patients with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol levels in the active smoking range were younger and had a higher incidence of alcohol misuse, fewer comorbidities, lower severity of illness, and less septic shock at enrollment compared with patients with undetectable 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol levels. Despite this lower severity of illness, the severity of lung injury did not significantly differ based on biomarker-determined smoking status. Cigarette smoke exposure was not significantly associated with death after adjusting for differences in age, alcohol use, comorbidities, and severity of illness. In this first multicenter study of biomarker-determined cigarette smoke exposure in acute respiratory distress syndrome patients

  13. Serologic follow-up of Middle East Respiratory Syndrome Coronavirus Cases and Contacts - Abu Dhabi, United Arab Emirates.

    PubMed

    Al Hosani, Farida Ismail; Kim, Lindsay; Khudhair, Ahmed; Pham, Huong; Al Mulla, Mariam; Al Bandar, Zyad; Pradeep, Krishna; Elkheir, Kheir Abou; Weber, Stefan; Khoury, Mary; Donnelly, George; Younis, Naima; El Saleh, Feda; Abdalla, Muna; Imambaccus, Hala; Haynes, Lia M; Thornburg, Natalie J; Harcourt, Jennifer L; Miao, Congrong; Tamin, Azaibi; Hall, Aron J; Russell, Elizabeth S; Harris, Aaron M; Kiebler, Craig; Mir, Roger A; Pringle, Kimberly; Alami, Negar N; Abedi, Glen R; Gerber, Susan I

    2018-06-13

    Although there is evidence of person-to-person transmission of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in household and healthcare settings, more data are needed to describe and better understand the risk factors and transmission routes in both settings, as well as the extent that disease severity affects transmission. A sero-epidemiological investigation was conducted among Middle East Respiratory Syndrome Coronavirus (MERS-CoV) case-patients and their household contacts to investigate transmission risk in Abu Dhabi, United Arab Emirates. Cases diagnosed between January 1, 2013-May 9, 2014 and their household contacts were approached for enrollment. Demographic, clinical, and exposure history data were collected. Sera were screened by MERS-CoV nucleocapsid protein (N) ELISA and indirect immunofluorescence, with results confirmed by microneutralization assay. Ninety-one percent (n=31/34) of case-patients were asymptomatic or mildly symptomatic and did not require oxygen during hospitalization. MERS-CoV antibodies were detected in 13 of 24 (54%) cases with available sera, including 3 asymptomatic, 9 mildly symptomatic, and 1 severely symptomatic case-patient. No serologic evidence of MERS-CoV transmission was found among 105 household contacts with available sera. Transmission of MERS-CoV was not documented in this investigation of mostly asymptomatic and mildly symptomatic cases and their household contacts. These results have implications for clinical management of cases and formulation of isolation policies to reduce the risk of transmission.

  14. Evaluation of Serologic and Antigenic Relationships Between Middle Eastern Respiratory Syndrome Coronavirus and Other Coronaviruses to Develop Vaccine Platforms for the Rapid Response to Emerging Coronaviruses

    PubMed Central

    Agnihothram, Sudhakar; Gopal, Robin; Yount, Boyd L.; Donaldson, Eric F.; Menachery, Vineet D.; Graham, Rachel L.; Scobey, Trevor D.; Gralinski, Lisa E.; Denison, Mark R.; Zambon, Maria; Baric, Ralph S.

    2014-01-01

    Background. Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012, causing severe acute respiratory disease and pneumonia, with 44% mortality among 136 cases to date. Design of vaccines to limit the virus spread or diagnostic tests to track newly emerging strains requires knowledge of antigenic and serologic relationships between MERS-CoV and other CoVs. Methods. Using synthetic genomics and Venezuelan equine encephalitis virus replicons (VRPs) expressing spike and nucleocapsid proteins from MERS-CoV and other human and bat CoVs, we characterize the antigenic responses (using Western blot and enzyme-linked immunosorbent assay) and serologic responses (using neutralization assays) against 2 MERS-CoV isolates in comparison with those of other human and bat CoVs. Results. Serologic and neutralization responses against the spike glycoprotein were primarily strain specific, with a very low level of cross-reactivity within or across subgroups. CoV N proteins within but not across subgroups share cross-reactive epitopes with MERS-CoV isolates. Our findings were validated using a convalescent-phase serum specimen from a patient infected with MERS-CoV (NA 01) and human antiserum against SARS-CoV, human CoV NL63, and human CoV OC43. Conclusions. Vaccine design for emerging CoVs should involve chimeric spike protein containing neutralizing epitopes from multiple virus strains across subgroups to reduce immune pathology, and a diagnostic platform should include a panel of nucleocapsid and spike proteins from phylogenetically distinct CoVs. PMID:24253287

  15. Is Overall Mortality the Right Composite Endpoint in Clinical Trials of Acute Respiratory Distress Syndrome?

    PubMed

    Villar, Jesús; Martínez, Domingo; Mosteiro, Fernando; Ambrós, Alfonso; Añón, José M; Ferrando, Carlos; Soler, Juan A; Montiel, Raquel; Vidal, Anxela; Conesa-Cayuela, Luís A; Blanco, Jesús; Arrojo, Regina; Solano, Rosario; Capilla, Lucía; Del Campo, Rafael; Civantos, Belén; Fernández, María Mar; Aldecoa, César; Parra, Laura; Gutiérrez, Andrea; Martínez-Jiménez, Chanel; González-Martín, Jesús M; Fernández, Rosa L; Kacmarek, Robert M

    2018-06-01

    Overall mortality in patients with acute respiratory distress syndrome is a composite endpoint because it includes death from multiple causes. In most acute respiratory distress syndrome trials, it is unknown whether reported deaths are due to acute respiratory distress syndrome or the underlying disease, unrelated to the specific intervention tested. We investigated the causes of death after contracting acute respiratory distress syndrome in a large cohort. A secondary analysis from three prospective, multicenter, observational studies. A network of multidisciplinary ICUs. We studied 778 patients with moderate-to-severe acute respiratory distress syndrome treated with lung-protective ventilation. None. We examined death in the ICU from individual causes. Overall ICU mortality was 38.8% (95% CI, 35.4-42.3). Causes of acute respiratory distress syndrome modified the risk of death. Twenty-three percent of deaths occurred from refractory hypoxemia due to nonresolving acute respiratory distress syndrome. Most patients died from causes unrelated to acute respiratory distress syndrome: 48.7% of nonsurvivors died from multisystem organ failure, and cancer or brain injury was involved in 37.1% of deaths. When quantifying the true burden of acute respiratory distress syndrome outcome, we identified 506 patients (65.0%) with one or more exclusion criteria for enrollment into current interventional trials. Overall ICU mortality of the "trial cohort" (21.3%) was markedly lower than the parent cohort (relative risk, 0.55; 95% CI, 0.43-0.70; p < 0.000001). Most deaths in acute respiratory distress syndrome patients are not directly related to lung damage but to extrapulmonary multisystem organ failure. It would be challenging to prove that specific lung-directed therapies have an effect on overall survival.

  16. Development of a SARS Coronavirus Vaccine from Recombinant Spike Protein Plus Delta Inulin Adjuvant.

    PubMed

    McPherson, Clifton; Chubet, Richard; Holtz, Kathy; Honda-Okubo, Yoshikazu; Barnard, Dale; Cox, Manon; Petrovsky, Nikolai

    2016-01-01

    Given periodic outbreaks of fatal human infections caused by coronaviruses, development of an optimal coronavirus vaccine platform capable of rapid production is an ongoing priority. This chapter describes the use of an insect cell expression system for rapid production of a recombinant vaccine against severe acute respiratory syndrome coronavirus (SARS). Detailed methods are presented for expression, purification, and release testing of SARS recombinant spike protein antigen, followed by adjuvant formulation and animal testing. The methods herein described for rapid development of a highly protective SARS vaccine are equally suited to rapid development of vaccines against other fatal human coronavirus infections, e.g., the MERS coronavirus.

  17. Pediatric Acute Respiratory Distress Syndrome in Pediatric Allogeneic Hematopoietic Stem Cell Transplants: A Multicenter Study.

    PubMed

    Rowan, Courtney M; Smith, Lincoln S; Loomis, Ashley; McArthur, Jennifer; Gertz, Shira J; Fitzgerald, Julie C; Nitu, Mara E; Moser, Elizabeth A S; Hsing, Deyin D; Duncan, Christine N; Mahadeo, Kris M; Moffet, Jerelyn; Hall, Mark W; Pinos, Emily L; Tamburro, Robert F; Cheifetz, Ira M

    2017-04-01

    Immunodeficiency is both a preexisting condition and a risk factor for mortality in pediatric acute respiratory distress syndrome. We describe a series of pediatric allogeneic hematopoietic stem cell transplant patients with pediatric acute respiratory distress syndrome based on the recent Pediatric Acute Lung Injury Consensus Conference guidelines with the objective to better define survival of this population. Secondary analysis of a retrospective database. Twelve U.S. pediatric centers. Pediatric allogeneic hematopoietic stem cell transplant recipients requiring mechanical ventilation. None. During the first week of mechanical ventilation, patients were categorized as: no pediatric acute respiratory distress syndrome or mild, moderate, or severe pediatric acute respiratory distress syndrome based on oxygenation index or oxygen saturation index. Univariable logistic regression evaluated the association between pediatric acute respiratory distress syndrome and PICU mortality. A total of 91.5% of the 211 patients met criteria for pediatric acute respiratory distress syndrome using the Pediatric Acute Lung Injury Consensus Conference definition: 61.1% were severe, 27.5% moderate, and 11.4% mild. Overall survival was 39.3%. Survival decreased with worsening pediatric acute respiratory distress syndrome: no pediatric acute respiratory distress syndrome 66.7%, mild 63.6%, odds ratio = 1.1 (95% CI, 0.3-4.2; p = 0.84), moderate 52.8%, odds ratio = 1.8 (95% CI, 0.6-5.5; p = 0.31), and severe 24.6%, odds ratio = 6.1 (95% CI, 2.1-17.8; p < 0.001). Nonsurvivors were more likely to have multiple consecutive days at moderate and severe pediatric acute respiratory distress syndrome (p < 0.001). Moderate and severe patients had longer PICU length of stay (p = 0.01) and longer mechanical ventilation course (p = 0.02) when compared with those with mild or no pediatric acute respiratory distress syndrome. Nonsurvivors had a higher median maximum oxygenation index than survivors at

  18. Detection of group 1 coronaviruses in bats in North America

    USGS Publications Warehouse

    Dominguez, S.R.; O'Shea, T.J.; Oko, L.M.; Holmes, K.V.

    2007-01-01

    The epidemic of severe acute respiratory syndrome (SARS) was caused by a newly emerged coronavirus (SARS-CoV). Bats of several species in southern People's Republic of China harbor SARS-like CoVs and may be reservoir hosts for them. To determine whether bats in North America also harbor coronaviruses, we used reverse transcription-PCR to detect coronavirus RNA in bats. We found coronavirus RNA in 6 of 28 fecal specimens from bats of 2 of 7 species tested. The prevalence of viral RNA shedding was high: 17% in Eptesicus fuscus and 50% in Myotis occultus. Sequence analysis of a 440-bp amplicon in gene 1b showed that these Rocky Mountain bat coronaviruses formed 3 clusters in phylogenetic group 1 that were distinct from group 1 coronaviruses of Asian bats. Because of the potential for bat coronaviruses to cause disease in humans and animals, further surveillance and characterization of bat coronaviruses in North America are needed.

  19. The search for a structural basis for therapeutic intervention against the SARS coronavirus

    NASA Astrophysics Data System (ADS)

    Bartlam, M.; Xue, X.; Rao, Z.

    2008-01-01

    The severe acute respiratory syndrome (SARS) coronavirus outbreak in 2003 had profound social and economic impacts worldwide. This review highlights the importance of structural biology and shows that structures for drug design can be rapidly determined in the event of an emerging infectious disease.

  20. Acute respiratory distress syndrome 40 years later: time to revisit its definition.

    PubMed

    Phua, Jason; Stewart, Thomas E; Ferguson, Niall D

    2008-10-01

    Acute respiratory distress syndrome is a common disorder associated with significant mortality and morbidity. The aim of this article is to critically evaluate the definition of acute respiratory distress syndrome and examine the impact the definition has on clinical practice and research. Articles from a MEDLINE search (1950 to August 2007) using the Medical Subject Heading respiratory distress syndrome, adult, diagnosis, limited to the English language and human subjects, their relevant bibliographies, and personal collections, were reviewed. The definition of acute respiratory distress syndrome is important to researchers, clinicians, and administrators alike. It has evolved significantly over the last 40 years, culminating in the American-European Consensus Conference definition, which was published in 1994. Although the American-European Consensus Conference definition is widely used, it has some important limitations that may impact on the conduct of clinical research, on resource allocation, and ultimately on the bedside management of such patients. These limitations stem partially from the fact that as defined, acute respiratory distress syndrome is a heterogeneous entity and also involve the reliability and validity of the criteria used in the definition. This article critically evaluates the American-European Consensus Conference definition and its limitations. Importantly, it highlights how these limitations may contribute to clinical trials that have failed to detect a potential true treatment effect. Finally, recommendations are made that could be considered in future definition modifications with an emphasis on the significance of accurately identifying the target population in future trials and subsequently in clinical care. How acute respiratory distress syndrome is defined has a significant impact on the results of randomized, controlled trials and epidemiologic studies. Changes to the current American-European Consensus Conference definition are

  1. Bat-to-human: spike features determining 'host jump' of coronaviruses SARS-CoV, MERS-CoV, and beyond.

    PubMed

    Lu, Guangwen; Wang, Qihui; Gao, George F

    2015-08-01

    Both severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are zoonotic pathogens that crossed the species barriers to infect humans. The mechanism of viral interspecies transmission is an important scientific question to be addressed. These coronaviruses contain a surface-located spike (S) protein that initiates infection by mediating receptor-recognition and membrane fusion and is therefore a key factor in host specificity. In addition, the S protein needs to be cleaved by host proteases before executing fusion, making these proteases a second determinant of coronavirus interspecies infection. Here, we summarize the progress made in the past decade in understanding the cross-species transmission of SARS-CoV and MERS-CoV by focusing on the features of the S protein, its receptor-binding characteristics, and the cleavage process involved in priming. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Development and Evaluation of a Novel Loop-Mediated Isothermal Amplification Method for Rapid Detection of Severe Acute Respiratory Syndrome Coronavirus

    PubMed Central

    Thai, Hong Thi Cam; Le, Mai Quynh; Vuong, Cuong Duc; Parida, Manmohan; Minekawa, Harumi; Notomi, Tsugunori; Hasebe, Futoshi; Morita, Kouichi

    2004-01-01

    The development and evaluation of a one-step single-tube accelerated real-time quantitative reverse transcription (RT) loop-mediated isothermal amplification (LAMP) assay is reported for rapid detection of the severe acute respiratory syndrome coronavirus (SARS-CoV) replicase gene. A total of 49 samples (15 throat washes, 13 throat swabs, and 21 combined throat and nasal swabs) collected from patients admitted to the Hanoi-French and Ninhbinh hospitals in Vietnam during the SARS epidemic were evaluated and compared to conventional RT-PCR. The RT-LAMP assay demonstrated 100-fold-greater sensitivity, with a detection limit of 0.01 PFU. The sensitivity and specificity of RT-LAMP assay for detecting viral RNA in clinical specimens with regard to RT-PCR were 100 and 87%, respectively. The specificity of the RT-LAMP assay was further validated by restriction analysis as well as nucleotide sequencing of the amplified product. The concentration of virus in most of the clinical samples was 0.1 PFU (0.1 to 102 PFU), as determined from the standard curve of SARS RT-LAMP and based on the time of positivity. The assay procedure is quite simple, wherein the amplification is carried out in a single tube under isothermal conditions at 63°C, and the result can be obtained in less than 1 h (as early as 11 min). Thus, the RT-LAMP assay reported here has the advantages of rapid amplification, simple operation, and easy detection and will be useful for rapid and reliable clinical diagnosis of SARS-CoV in developing countries. PMID:15131154

  3. Response to Emergence of Middle East Respiratory Syndrome Coronavirus, Abu Dhabi, United Arab Emirates, 2013-2014.

    PubMed

    Al Hosani, Farida Ismail; Pringle, Kimberly; Al Mulla, Mariam; Kim, Lindsay; Pham, Huong; Alami, Negar N; Khudhair, Ahmed; Hall, Aron J; Aden, Bashir; El Saleh, Feda; Al Dhaheri, Wafa; Al Bandar, Zyad; Bunga, Sudhir; Abou Elkheir, Kheir; Tao, Ying; Hunter, Jennifer C; Nguyen, Duc; Turner, Andrew; Pradeep, Krishna; Sasse, Jurgen; Weber, Stefan; Tong, Suxiang; Whitaker, Brett L; Haynes, Lia M; Curns, Aaron; Gerber, Susan I

    2016-07-01

    In January 2013, several months after Middle East respiratory syndrome coronavirus (MERS-CoV) was first identified in Saudi Arabia, Abu Dhabi, United Arab Emirates, began surveillance for MERS-CoV. We analyzed medical chart and laboratory data collected by the Health Authority-Abu Dhabi during January 2013-May 2014. Using real-time reverse transcription PCR, we tested respiratory tract samples for MERS-CoV and identified 65 case-patients. Of these patients, 23 (35%) were asymptomatic at the time of testing, and 4 (6%) showed positive test results for >3 weeks (1 had severe symptoms and 3 had mild symptoms). We also identified 6 clusters of MERS-CoV cases. This report highlights the potential for virus shedding by mildly ill and asymptomatic case-patients. These findings will be useful for MERS-CoV management and infection prevention strategies.

  4. Middle East Respiratory Syndrome Coronavirus Nonstructural Protein 16 Is Necessary for Interferon Resistance and Viral Pathogenesis

    PubMed Central

    Menachery, Vineet D.; Gralinski, Lisa E.; Mitchell, Hugh D.; Dinnon, Kenneth H.; Leist, Sarah R.; Yount, Boyd L.; Graham, Rachel L.; McAnarney, Eileen T.; Stratton, Kelly G.; Cockrell, Adam S.; Debbink, Kari; Sims, Amy C.; Waters, Katrina M.

    2017-01-01

    ABSTRACT Coronaviruses (CoVs) encode a mixture of highly conserved and novel genes, as well as genetic elements necessary for infection and pathogenesis, raising the possibility of common targets for attenuation and therapeutic design. In this study, we focused on highly conserved nonstructural protein 16 (NSP16), a viral 2′O-methyltransferase (2′O-MTase) that encodes critical functions in immune modulation and infection. Using reverse genetics, we disrupted a key motif in the conserved KDKE motif of Middle East respiratory syndrome CoV (MERS-CoV) NSP16 (D130A) and evaluated the effect on viral infection and pathogenesis. While the absence of 2′O-MTase activity had only a marginal impact on propagation and replication in Vero cells, dNSP16 mutant MERS-CoV demonstrated significant attenuation relative to the control both in primary human airway cell cultures and in vivo. Further examination indicated that dNSP16 mutant MERS-CoV had a type I interferon (IFN)-based attenuation and was partially restored in the absence of molecules of IFN-induced proteins with tetratricopeptide repeats. Importantly, the robust attenuation permitted the use of dNSP16 mutant MERS-CoV as a live attenuated vaccine platform protecting from a challenge with a mouse-adapted MERS-CoV strain. These studies demonstrate the importance of the conserved 2′O-MTase activity for CoV pathogenesis and highlight NSP16 as a conserved universal target for rapid live attenuated vaccine design in an expanding CoV outbreak setting. IMPORTANCE Coronavirus (CoV) emergence in both humans and livestock represents a significant threat to global public health, as evidenced by the sudden emergence of severe acute respiratory syndrome CoV (SARS-CoV), MERS-CoV, porcine epidemic diarrhea virus, and swine delta CoV in the 21st century. These studies describe an approach that effectively targets the highly conserved 2′O-MTase activity of CoVs for attenuation. With clear understanding of the IFN/IFIT (IFN

  5. Severe acute respiratory syndrome vaccine efficacy in ferrets: whole killed virus and adenovirus-vectored vaccines.

    PubMed

    See, Raymond H; Petric, Martin; Lawrence, David J; Mok, Catherine P Y; Rowe, Thomas; Zitzow, Lois A; Karunakaran, Karuna P; Voss, Thomas G; Brunham, Robert C; Gauldie, Jack; Finlay, B Brett; Roper, Rachel L

    2008-09-01

    Although the 2003 severe acute respiratory syndrome (SARS) outbreak was controlled, repeated transmission of SARS coronavirus (CoV) over several years makes the development of a SARS vaccine desirable. We performed a comparative evaluation of two SARS vaccines for their ability to protect against live SARS-CoV intranasal challenge in ferrets. Both the whole killed SARS-CoV vaccine (with and without alum) and adenovirus-based vectors encoding the nucleocapsid (N) and spike (S) protein induced neutralizing antibody responses and reduced viral replication and shedding in the upper respiratory tract and progression of virus to the lower respiratory tract. The vaccines also diminished haemorrhage in the thymus and reduced the severity and extent of pneumonia and damage to lung epithelium. However, despite high neutralizing antibody titres, protection was incomplete for all vaccine preparations and administration routes. Our data suggest that a combination of vaccine strategies may be required for effective protection from this pathogen. The ferret may be a good model for SARS-CoV infection because it is the only model that replicates the fever seen in human patients, as well as replicating other SARS disease features including infection by the respiratory route, clinical signs, viral replication in upper and lower respiratory tract and lung damage.

  6. Targeting Membrane-Bound Viral RNA Synthesis Reveals Potent Inhibition of Diverse Coronaviruses Including the Middle East Respiratory Syndrome Virus

    PubMed Central

    Bergström, Tomas; Kann, Nina; Adamiak, Beata; Hannoun, Charles; Kindler, Eveline; Jónsdóttir, Hulda R.; Muth, Doreen; Kint, Joeri; Forlenza, Maria; Müller, Marcel A.; Drosten, Christian; Thiel, Volker; Trybala, Edward

    2014-01-01

    Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs), a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6), a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS–CoV), and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections. PMID:24874215

  7. Discovery of Novel Bat Coronaviruses in South China That Use the Same Receptor as Middle East Respiratory Syndrome Coronavirus.

    PubMed

    Luo, Chu-Ming; Wang, Ning; Yang, Xing-Lou; Liu, Hai-Zhou; Zhang, Wei; Li, Bei; Hu, Ben; Peng, Cheng; Geng, Qi-Bin; Zhu, Guang-Jian; Li, Fang; Shi, Zheng-Li

    2018-07-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) has represented a human health threat since 2012. Although several MERS-related CoVs that belong to the same species as MERS-CoV have been identified from bats, they do not use the MERS-CoV receptor, dipeptidyl peptidase 4 (DPP4). Here, we screened 1,059 bat samples from at least 30 bat species collected in different regions in south China and identified 89 strains of lineage C betacoronaviruses, including Tylonycteris pachypus coronavirus HKU4 , Pipistrellus pipistrellus coronavirus HKU5 , and MERS-related CoVs. We sequenced the full-length genomes of two positive samples collected from the great evening bat, Ia io , from Guangdong Province. The two genomes were highly similar and exhibited genomic structures identical to those of other lineage C betacoronaviruses. While they exhibited genome-wide nucleotide identities of only 75.3 to 81.2% with other MERS-related CoVs, their gene-coding regions were highly similar to their counterparts, except in the case of the spike proteins. Further protein-protein interaction assays demonstrated that the spike proteins of these MERS-related CoVs bind to the receptor DPP4. Recombination analysis suggested that the newly discovered MERS-related CoVs have acquired their spike genes from a DPP4-recognizing bat coronavirus HKU4. Our study provides further evidence that bats represent the evolutionary origins of MERS-CoV. IMPORTANCE Previous studies suggested that MERS-CoV originated in bats. However, its evolutionary path from bats to humans remains unclear. In this study, we discovered 89 novel lineage C betacoronaviruses in eight bat species. We provide evidence of a MERS-related CoV derived from the great evening bat that uses the same host receptor as human MERS-CoV. This virus also provides evidence for a natural recombination event between the bat MERS-related CoV and another bat coronavirus, HKU4. Our study expands the host ranges of MERS-related CoV and represents an

  8. Prone position in patients with acute respiratory distress syndrome

    PubMed Central

    Setten, Mariano; Plotnikow, Gustavo Adrián; Accoce, Matías

    2016-01-01

    Acute respiratory distress syndrome occupies a great deal of attention in intensive care units. Despite ample knowledge of the physiopathology of this syndrome, the focus in intensive care units consists mostly of life-supporting treatment and avoidance of the side effects of invasive treatments. Although great advances in mechanical ventilation have occurred in the past 20 years, with a significant impact on mortality, the incidence continues to be high. Patients with acute respiratory distress syndrome, especially the most severe cases, often present with refractory hypoxemia due to shunt, which can require additional treatments beyond mechanical ventilation, among which is mechanical ventilation in the prone position. This method, first recommended to improve oxygenation in 1974, can be easily implemented in any intensive care unit with trained personnel. Prone position has extremely robust bibliographic support. Various randomized clinical studies have demonstrated the effect of prone decubitus on the oxygenation of patients with acute respiratory distress syndrome measured in terms of the PaO2/FiO2 ratio, including its effects on increasing patient survival. The members of the Respiratory Therapists Committee of the Sociedad Argentina de Terapia Intensiva performed a narrative review with the objective of discovering the available evidence related to the implementation of prone position, changes produced in the respiratory system due to the application of this maneuver, and its impact on mortality. Finally, guidelines are suggested for decision-making. PMID:27925054

  9. Adaptation of a Biomarker-Based Sepsis Mortality Risk Stratification Tool for Pediatric Acute Respiratory Distress Syndrome.

    PubMed

    Yehya, Nadir; Wong, Hector R

    2018-01-01

    The original Pediatric Sepsis Biomarker Risk Model and revised (Pediatric Sepsis Biomarker Risk Model-II) biomarker-based risk prediction models have demonstrated utility for estimating baseline 28-day mortality risk in pediatric sepsis. Given the paucity of prediction tools in pediatric acute respiratory distress syndrome, and given the overlapping pathophysiology between sepsis and acute respiratory distress syndrome, we tested the utility of Pediatric Sepsis Biomarker Risk Model and Pediatric Sepsis Biomarker Risk Model-II for mortality prediction in a cohort of pediatric acute respiratory distress syndrome, with an a priori plan to revise the model if these existing models performed poorly. Prospective observational cohort study. University affiliated PICU. Mechanically ventilated children with acute respiratory distress syndrome. Blood collection within 24 hours of acute respiratory distress syndrome onset and biomarker measurements. In 152 children with acute respiratory distress syndrome, Pediatric Sepsis Biomarker Risk Model performed poorly and Pediatric Sepsis Biomarker Risk Model-II performed modestly (areas under receiver operating characteristic curve of 0.61 and 0.76, respectively). Therefore, we randomly selected 80% of the cohort (n = 122) to rederive a risk prediction model for pediatric acute respiratory distress syndrome. We used classification and regression tree methodology, considering the Pediatric Sepsis Biomarker Risk Model biomarkers in addition to variables relevant to acute respiratory distress syndrome. The final model was comprised of three biomarkers and age, and more accurately estimated baseline mortality risk (area under receiver operating characteristic curve 0.85, p < 0.001 and p = 0.053 compared with Pediatric Sepsis Biomarker Risk Model and Pediatric Sepsis Biomarker Risk Model-II, respectively). The model was tested in the remaining 20% of subjects (n = 30) and demonstrated similar test characteristics. A validated, biomarker

  10. Genetic diversity of coronaviruses in bats in Lao PDR and Cambodia.

    PubMed

    Lacroix, Audrey; Duong, Veasna; Hul, Vibol; San, Sorn; Davun, Hull; Omaliss, Keo; Chea, Sokha; Hassanin, Alexandre; Theppangna, Watthana; Silithammavong, Soubanh; Khammavong, Kongsy; Singhalath, Sinpakone; Greatorex, Zoe; Fine, Amanda E; Goldstein, Tracey; Olson, Sarah; Joly, Damien O; Keatts, Lucy; Dussart, Philippe; Afelt, Aneta; Frutos, Roger; Buchy, Philippe

    2017-03-01

    South-East Asia is a hot spot for emerging zoonotic diseases, and bats have been recognized as hosts for a large number of zoonotic viruses such as Severe Acute Respiratory Syndrome (SARS), responsible for acute respiratory syndrome outbreaks. Thus, it is important to expand our knowledge of the presence of viruses in bats which could represent a risk to humans. Coronaviruses (CoVs) have been reported in bat species from Thailand, China, Indonesia, Taiwan and the Philippines. However no such work was conducted in Cambodia or Lao PDR. Between 2010 and 2013, 1965 bats were therefore sampled at interfaces with human populations in these two countries. They were tested for the presence of coronavirus by consensus reverse transcription-PCR assay. A total of 93 samples (4.7%) from 17 genera of bats tested positive. Sequence analysis revealed the presence of potentially 37 and 56 coronavirus belonging to alpha-coronavirus (αCoV) and beta-CoV (βCoV), respectively. The βCoVs group is known to include some coronaviruses highly pathogenic to human, such as SARS-CoV and MERS-CoV. All coronavirus sequences generated from frugivorous bats (family Pteropodidae) (n=55) clustered with other bat βCoVs of lineage D, whereas one coronavirus from Pipistrellus coromandra fell in the lineage C of βCoVs which also includes the MERS-CoV. αCoVs were all detected in various genera of insectivorous bats and clustered with diverse bat αCoV sequences previously published. A closely related strain of PEDV, responsible for severe diarrhea in pigs (PEDV-CoV), was detected in 2 Myotis bats. We highlighted the presence and the high diversity of coronaviruses circulating in bats from Cambodia and Lao PDR. Three new bat genera and species were newly identified as host of coronaviruses, namely Macroglossus sp., Megaerops niphanae and Myotis horsfieldii. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Acute respiratory distress syndrome: an audit of incidence and outcome in Scottish intensive care units.

    PubMed

    Hughes, M; MacKirdy, F N; Ross, J; Norrie, J; Grant, I S

    2003-09-01

    This prospective audit of incidence and outcome of the acute respiratory distress syndrome was conducted as part of the national audit of intensive care practice in Scotland. All patients with acute respiratory distress syndrome in 23 adult intensive care units were identified using the diagnostic criteria defined by the American-European Consensus Conference. Daily data collection was continued until death or intensive care unit discharge. Three hundred and sixty-nine patients were diagnosed with acute respiratory distress syndrome over the 8-month study period. The frequency of acute respiratory distress syndrome in the intensive care unit population was 8.1%; the incidence in the Scottish population was estimated at 16.0 cases.100,000(-1).year(-1). Intensive care unit mortality for acute respiratory distress syndrome was 53.1%, with a hospital mortality of 60.9%. In our national unselected population of critically ill patients, the overall outcome is comparable with published series (Acute Physiology and Chronic Health Evaluation II standardised mortality ratio = 0.99). However, mortality from acute respiratory distress syndrome in Scotland is substantially higher than in recent other series suggesting an improvement in outcome in this condition.

  12. Incubation period as part of the case definition of severe respiratory illness caused by a novel coronavirus.

    PubMed

    Nishiura, H; Mizumoto, K; Ejima, K; Zhong, Y; Cowling, Bj; Omori, R

    2012-10-18

    Non-specific symptoms of acute respiratory viral infections make it difficult for many countries without ongoing transmission of a novel coronavirus to rule out other possibilities including influenza before isolating imported febrile individuals with a possible exposure history. The incubation period helps differential diagnosis, and up to two days is suggestive of influenza. It is worth including the incubation period in the case definition of novel coronavirus infection.

  13. Inactivation of surrogate coronaviruses on hard surfaces by health care germicides.

    PubMed

    Hulkower, Rachel L; Casanova, Lisa M; Rutala, William A; Weber, David J; Sobsey, Mark D

    2011-06-01

    In the 2003 severe acute respiratory syndrome outbreak, finding viral nucleic acids on hospital surfaces suggested surfaces could play a role in spread in health care environments. Surface disinfection may interrupt transmission, but few data exist on the effectiveness of health care germicides against coronaviruses on surfaces. The efficacy of health care germicides against 2 surrogate coronaviruses, mouse hepatitis virus (MHV) and transmissible gastroenteritis virus (TGEV), was tested using the quantitative carrier method on stainless steel surfaces. Germicides were o-phenylphenol/p-tertiary amylphenol) (a phenolic), 70% ethanol, 1:100 sodium hypochlorite, ortho-phthalaldehyde (OPA), instant hand sanitizer (62% ethanol), and hand sanitizing spray (71% ethanol). After 1-minute contact time, for TGEV, there was a log(10) reduction factor of 3.2 for 70% ethanol, 2.0 for phenolic, 2.3 for OPA, 0.35 for 1:100 hypochlorite, 4.0 for 62% ethanol, and 3.5 for 71% ethanol. For MHV, log(10) reduction factors were 3.9 for 70% ethanol, 1.3 for phenolic, 1.7 for OPA, 0.62 for 1:100 hypochlorite, 2.7 for 62% ethanol, and 2.0 for 71% ethanol. Only ethanol reduced infectivity of the 2 coronaviruses by >3-log(10) after 1 minute. Germicides must be chosen carefully to ensure they are effective against viruses such as severe acute respiratory syndrome coronavirus. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  14. High Prevalence of Middle East Respiratory Coronavirus in Young Dromedary Camels in Jordan.

    PubMed

    van Doremalen, Neeltje; Hijazeen, Zaidoun S K; Holloway, Peter; Al Omari, Bilal; McDowell, Chester; Adney, Danielle; Talafha, Hani A; Guitian, Javier; Steel, John; Amarin, Nadim; Tibbo, Markos; Abu-Basha, Ehab; Al-Majali, Ahmad M; Munster, Vincent J; Richt, Juergen A

    2017-02-01

    Prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) was determined in 45 dromedary camels from two geographically separated herds in Jordan. Virus shedding was only detected in swabs obtained from the respiratory tract and primarily observed in camels younger than 3 years. MERS-CoV seroprevalence increased with age of camels. Bovine and sheep sera were seronegative. Phylogenetic analysis of partial S2 clustered the Jordanian MERS-CoV strains with contemporary MERS-CoV strains associated with nosocomial outbreaks.

  15. Transmission of Middle East Respiratory Syndrome Coronavirus Infections in Healthcare Settings, Abu Dhabi

    PubMed Central

    Nguyen, Duc; Aden, Bashir; Al Bandar, Zyad; Al Dhaheri, Wafa; Abu Elkheir, Kheir; Khudair, Ahmed; Al Mulla, Mariam; El Saleh, Feda; Imambaccus, Hala; Al Kaabi, Nawal; Sheikh, Farrukh Amin; Sasse, Jurgen; Turner, Andrew; Abdel Wareth, Laila; Weber, Stefan; Al Ameri, Asma; Abu Amer, Wesal; Alami, Negar N.; Bunga, Sudhir; Haynes, Lia M.; Hall, Aron J.; Kallen, Alexander J.; Kuhar, David; Pham, Huong; Pringle, Kimberly; Tong, Suxiang; Whitaker, Brett L.; Gerber, Susan I.; Al Hosani, Farida Ismail

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) infections sharply increased in the Arabian Peninsula during spring 2014. In Abu Dhabi, United Arab Emirates, these infections occurred primarily among healthcare workers and patients. To identify and describe epidemiologic and clinical characteristics of persons with healthcare-associated infection, we reviewed laboratory-confirmed MERS-CoV cases reported to the Health Authority of Abu Dhabi during January 1, 2013–May 9, 2014. Of 65 case-patients identified with MERS-CoV infection, 27 (42%) had healthcare-associated cases. Epidemiologic and genetic sequencing findings suggest that 3 healthcare clusters of MERS-CoV infection occurred, including 1 that resulted in 20 infected persons in 1 hospital. MERS-CoV in healthcare settings spread predominantly before MERS-CoV infection was diagnosed, underscoring the importance of increasing awareness and infection control measures at first points of entry to healthcare facilities. PMID:26981708

  16. [Cell entry mechanisms of coronaviruses].

    PubMed

    Taguchi, Fumihiro; Matsuyama, Shutoku

    2009-12-01

    Enveloped viruses enter into cells via fusion of their envelope and cellular membrane. Spike (S) protein of coronavirus (CoV) is responsible for entry events. We studied the cell entry mechanisms of two different CoVs, murine coronavirus mouse hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus (SARS-CoV). MHV-JHM that induces syncytia in infected cells entered directly from cell surface, i.e., fusion of envelope and plasma membrane, whereas SARS-CoV and MHV-2 that fail to induce syncytia entered via endosome in a protease-dependent fashion, i.e., fusion of envelope and endosomal membrane. The latter viruses entered directly from cell surface, when receptor-bound viruses were treated with proteases that activate fusion activity of their S proteins. The entry pathway of SARS-CoV could influence the severity of the disease. It was also reveled that a highly neurovirulent JHM spread in a receptor-independent fashion, which could result in a high neuropathogenicity of the virus.

  17. Acute respiratory infections among returning Hajj pilgrims-Jordan, 2014.

    PubMed

    Al-Abdallat, Mohammad Mousa; Rha, Brian; Alqasrawi, Sultan; Payne, Daniel C; Iblan, Ibrahim; Binder, Alison M; Haddadin, Aktham; Nsour, Mohannad Al; Alsanouri, Tarek; Mofleh, Jawad; Whitaker, Brett; Lindstrom, Stephen L; Tong, Suxiang; Ali, Sami Sheikh; Dahl, Rebecca Moritz; Berman, LaShondra; Zhang, Jing; Erdman, Dean D; Gerber, Susan I

    2017-04-01

    The emergence of Middle East Respiratory Syndrome coronavirus (MERS-CoV) has prompted enhanced surveillance for respiratory infections among pilgrims returning from the Hajj, one of the largest annual mass gatherings in the world. To describe the epidemiology and etiologies of respiratory illnesses among pilgrims returning to Jordan after the 2014 Hajj. Surveillance for respiratory illness among pilgrims returning to Jordan after the 2014 Hajj was conducted at sentinel health care facilities using epidemiologic surveys and molecular diagnostic testing of upper respiratory specimens for multiple respiratory pathogens, including MERS-CoV. Among the 125 subjects, 58% tested positive for at least one virus; 47% tested positive for rhino/enterovirus. No cases of MERS-CoV were detected. The majority of pilgrims returning to Jordan from the 2014 Hajj with respiratory illness were determined to have a viral etiology, but none were due to MERS-CoV. A greater understanding of the epidemiology of acute respiratory infections among returning travelers to other countries after Hajj should help optimize surveillance systems and inform public health response practices. Published by Elsevier B.V.

  18. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses.

    PubMed

    Su, Shuo; Wong, Gary; Shi, Weifeng; Liu, Jun; Lai, Alexander C K; Zhou, Jiyong; Liu, Wenjun; Bi, Yuhai; Gao, George F

    2016-06-01

    Human coronaviruses (HCoVs) were first described in the 1960s for patients with the common cold. Since then, more HCoVs have been discovered, including those that cause severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), two pathogens that, upon infection, can cause fatal respiratory disease in humans. It was recently discovered that dromedary camels in Saudi Arabia harbor three different HCoV species, including a dominant MERS HCoV lineage that was responsible for the outbreaks in the Middle East and South Korea during 2015. In this review we aim to compare and contrast the different HCoVs with regard to epidemiology and pathogenesis, in addition to the virus evolution and recombination events which have, on occasion, resulted in outbreaks amongst humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Response to Emergence of Middle East Respiratory Syndrome Coronavirus, Abu Dhabi, United Arab Emirates, 2013–2014

    PubMed Central

    Al Hosani, Farida Ismail; Al Mulla, Mariam; Kim, Lindsay; Pham, Huong; Alami, Negar N.; Khudhair, Ahmed; Hall, Aron J.; Aden, Bashir; El Saleh, Feda; Al Dhaheri, Wafa; Al Bandar, Zyad; Bunga, Sudhir; Abou Elkheir, Kheir; Tao, Ying; Hunter, Jennifer C.; Nguyen, Duc; Turner, Andrew; Pradeep, Krishna; Sasse, Jurgen; Weber, Stefan; Tong, Suxiang; Whitaker, Brett L.; Haynes, Lia M.; Curns, Aaron; Gerber, Susan I.

    2016-01-01

    In January 2013, several months after Middle East respiratory syndrome coronavirus (MERS-CoV) was first identified in Saudi Arabia, Abu Dhabi, United Arab Emirates, began surveillance for MERS-CoV. We analyzed medical chart and laboratory data collected by the Health Authority–Abu Dhabi during January 2013–May 2014. Using real-time reverse transcription PCR, we tested respiratory tract samples for MERS-CoV and identified 65 case-patients. Of these patients, 23 (35%) were asymptomatic at the time of testing, and 4 (6%) showed positive test results for >3 weeks (1 had severe symptoms and 3 had mild symptoms). We also identified 6 clusters of MERS-CoV cases. This report highlights the potential for virus shedding by mildly ill and asymptomatic case-patients. These findings will be useful for MERS-CoV management and infection prevention strategies. PMID:27314227

  20. Severe Acute Respiratory Syndrome (SARS) Prevention in Taiwan

    ERIC Educational Resources Information Center

    Liu, Hsueh-Erh

    2004-01-01

    Severe Acute Respiratory Syndrome (SARS) is a newly identified respiratory disease that threatened Taiwan between April 14 and July 5, 2003. Chang Gung University experienced various SARS-related episodes, such as the postponement of classes for 7 days, the reporting of probable SARS cases, and the isolation of students under Level A and B…

  1. High Prevalence of Middle East Respiratory Coronavirus in Young Dromedary Camels in Jordan

    PubMed Central

    van Doremalen, Neeltje; Hijazeen, Zaidoun S.K.; Holloway, Peter; Al Omari, Bilal; McDowell, Chester; Adney, Danielle; Talafha, Hani A.; Guitian, Javier; Steel, John; Amarin, Nadim; Tibbo, Markos; Abu-Basha, Ehab; Al-Majali, Ahmad M.

    2017-01-01

    Abstract Prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) was determined in 45 dromedary camels from two geographically separated herds in Jordan. Virus shedding was only detected in swabs obtained from the respiratory tract and primarily observed in camels younger than 3 years. MERS-CoV seroprevalence increased with age of camels. Bovine and sheep sera were seronegative. Phylogenetic analysis of partial S2 clustered the Jordanian MERS-CoV strains with contemporary MERS-CoV strains associated with nosocomial outbreaks. PMID:28009529

  2. The nucleocapsid proteins of mouse hepatitis virus and severe acute respiratory syndrome coronavirus share the same IFN-β antagonizing mechanism: attenuation of PACT-mediated RIG-I/MDA5 activation

    PubMed Central

    Ding, Zhen; Fang, Liurong; Yuan, Shuangling; Zhao, Ling; Wang, Xunlei; Long, Siwen; Wang, Mohan; Wang, Dang; Foda, Mohamed Frahat; Xiao, Shaobo

    2017-01-01

    Coronaviruses (CoVs) are a huge threat to both humans and animals and have evolved elaborate mechanisms to antagonize interferons (IFNs). Nucleocapsid (N) protein is the most abundant viral protein in CoV-infected cells, and has been identified as an innate immunity antagonist in several CoVs, including mouse hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV. However, the underlying molecular mechanism(s) remain unclear. In this study, we found that MHV N protein inhibited Sendai virus and poly(I:C)-induced IFN-β production by targeting a molecule upstream of retinoic acid-induced gene I (RIG-I) and melanoma differentiation gene 5 (MDA5). Further studies showed that both MHV and SARS-CoV N proteins directly interacted with protein activator of protein kinase R (PACT), a cellular dsRNA-binding protein that can bind to RIG-I and MDA5 to activate IFN production. The N–PACT interaction sequestered the association of PACT and RIG-I/MDA5, which in turn inhibited IFN-β production. However, the N proteins from porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV), which are also classified in the order Nidovirales, did not interact and counteract with PACT. Taken together, our present study confirms that both MHV and SARS-CoV N proteins can perturb the function of cellular PACT to circumvent the innate antiviral response. However, this strategy does not appear to be used by all CoVs N proteins. PMID:28591694

  3. Taking forward a 'One Health' approach for turning the tide against the Middle East respiratory syndrome coronavirus and other zoonotic pathogens with epidemic potential.

    PubMed

    Zumla, Alimuddin; Dar, Osman; Kock, Richard; Muturi, Matthew; Ntoumi, Francine; Kaleebu, Pontiano; Eusebio, Macete; Mfinanga, Sayoki; Bates, Matthew; Mwaba, Peter; Ansumana, Rashid; Khan, Mishal; Alagaili, Abdulaziz N; Cotten, Matthew; Azhar, Esam I; Maeurer, Markus; Ippolito, Giuseppe; Petersen, Eskild

    2016-06-01

    The appearance of novel pathogens of humans with epidemic potential and high mortality rates have threatened global health security for centuries. Over the past few decades new zoonotic infectious diseases of humans caused by pathogens arising from animal reservoirs have included West Nile virus, Yellow fever virus, Ebola virus, Nipah virus, Lassa Fever virus, Hanta virus, Dengue fever virus, Rift Valley fever virus, Crimean-Congo haemorrhagic fever virus, severe acute respiratory syndrome coronavirus, highly pathogenic avian influenza viruses, Middle East Respiratory Syndrome Coronavirus, and Zika virus. The recent Ebola Virus Disease epidemic in West Africa and the ongoing Zika Virus outbreak in South America highlight the urgent need for local, regional and international public health systems to be be more coordinated and better prepared. The One Health concept focuses on the relationship and interconnectedness between Humans, Animals and the Environment, and recognizes that the health and wellbeing of humans is intimately connected to the health of animals and their environment (and vice versa). Critical to the establishment of a One Health platform is the creation of a multidisciplinary team with a range of expertise including public health officers, physicians, veterinarians, animal husbandry specialists, agriculturalists, ecologists, vector biologists, viral phylogeneticists, and researchers to co-operate, collaborate to learn more about zoonotic spread between animals, humans and the environment and to monitor, respond to and prevent major outbreaks. We discuss the unique opportunities for Middle Eastern and African stakeholders to take leadership in building equitable and effective partnerships with all stakeholders involved in human and health systems to take forward a 'One Health' approach to control such zoonotic pathogens with epidemic potential. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. Identification and Characterization of a Novel Alpaca Respiratory Coronavirus Most Closely Related to the Human Coronavirus 229E

    PubMed Central

    Crossley, Beate M.; Mock, Richard E.; Callison, Scott A.; Hietala, Sharon K.

    2012-01-01

    In 2007, a novel coronavirus associated with an acute respiratory disease in alpacas (Alpaca Coronavirus, ACoV) was isolated. Full-length genomic sequencing of the ACoV demonstrated the genome to be consistent with other Alphacoronaviruses. A putative additional open-reading frame was identified between the nucleocapsid gene and 3'UTR. The ACoV was genetically most similar to the common human coronavirus (HCoV) 229E with 92.2% nucleotide identity over the entire genome. A comparison of spike gene sequences from ACoV and from HCoV-229E isolates recovered over a span of five decades showed the ACoV to be most similar to viruses isolated in the 1960’s to early 1980’s. The true origin of the ACoV is unknown, however a common ancestor between the ACoV and HCoV-229E appears to have existed prior to the 1960’s, suggesting virus transmission, either as a zoonosis or anthroponosis, has occurred between alpacas and humans. PMID:23235471

  5. Dromedary camels and the transmission of Middle East Respiratory Syndrome Coronavirus (MERS-CoV)

    PubMed Central

    Hemida, Maged G; Elmoslemany, Ahmed; Al-Hizab, Fahad; Alnaeem, Abdulmohsen; Almathen, Faisal; Faye, Bernard; Chu, Daniel KW; Perera, Ranawaka A; Peiris, Malik

    2015-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is an existential threat to global public health. The virus has been repeatedly detected in dromedary camels (Camelus dromedarius). Adult animals in many countries in the Middle East as well as in North and East Africa showed high (>90%) sero-prevalence to the virus. MERS-CoV isolated from dromedaries is genetically and phenotypically similar to viruses from humans. We summarise current understanding of the ecology of MERS-CoV in animals and transmission at the animal-human interface. We review aspects of husbandry, animal movements and trade and the use and consumption of camel dairy and meat products in the Middle East that may be relevant to the epidemiology of MERS. We also highlight the gaps in understanding the transmission of this virus in animals and from animals to humans. PMID:26256102

  6. Origin and Possible Genetic Recombination of the Middle East Respiratory Syndrome Coronavirus from the First Imported Case in China: Phylogenetics and Coalescence Analysis.

    PubMed

    Wang, Yanqun; Liu, Di; Shi, Weifeng; Lu, Roujian; Wang, Wenling; Zhao, Yanjie; Deng, Yao; Zhou, Weimin; Ren, Hongguang; Wu, Jun; Wang, Yu; Wu, Guizhen; Gao, George F; Tan, Wenjie

    2015-09-08

    The Middle East respiratory syndrome coronavirus (MERS-CoV) causes a severe acute respiratory tract infection with a high fatality rate in humans. Coronaviruses are capable of infecting multiple species and can evolve rapidly through recombination events. Here, we report the complete genomic sequence analysis of a MERS-CoV strain imported to China from South Korea. The imported virus, provisionally named ChinaGD01, belongs to group 3 in clade B in the whole-genome phylogenetic tree and also has a similar tree topology structure in the open reading frame 1a and -b (ORF1ab) gene segment but clusters with group 5 of clade B in the tree constructed using the S gene. Genetic recombination analysis and lineage-specific single-nucleotide polymorphism (SNP) comparison suggest that the imported virus is a recombinant comprising group 3 and group 5 elements. The time-resolved phylogenetic estimation indicates that the recombination event likely occurred in the second half of 2014. Genetic recombination events between group 3 and group 5 of clade B may have implications for the transmissibility of the virus. The recent outbreak of MERS-CoV in South Korea has attracted global media attention due to the speed of spread and onward transmission. Here, we present the complete genome of the first imported MERS-CoV case in China and demonstrate genetic recombination events between group 3 and group 5 of clade B that may have implications for the transmissibility of MERS-CoV. Copyright © 2015 Wang et al.

  7. Acute respiratory distress syndrome in an alpaca cria

    PubMed Central

    Simpson, Katharine M.; Streeter, Robert N.; Genova, Suzanne G.

    2011-01-01

    A 7-hour-old alpaca was presented for lethargy and depression. The cria responded favorably to initial treatment but developed acute-onset dyspnea 48 hours later. Acute respiratory distress syndrome was diagnosed by thoracic imaging and blood gas analysis. The cria was successfully treated with corticosteroids and discharged from the hospital. PMID:22210945

  8. From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses.

    PubMed

    Hilgenfeld, Rolf; Peiris, Malik

    2013-10-01

    This article introduces a series of invited papers in Antiviral Research marking the 10th anniversary of the outbreak of severe acute respiratory syndrome (SARS), caused by a novel coronavirus that emerged in southern China in late 2002. Until that time, coronaviruses had not been recognized as agents causing severe disease in humans, hence, the emergence of the SARS-CoV came as a complete surprise. Research during the past ten years has revealed the existence of a diverse pool of coronaviruses circulating among various bat species and other animals, suggesting that further introductions of highly pathogenic coronaviruses into the human population are not merely probable, but inevitable. The recent emergence of another coronavirus causing severe disease, Middle East respiratory syndrome (MERS), in humans, has made it clear that coronaviruses pose a major threat to human health, and that more research is urgently needed to elucidate their replication mechanisms, identify potential drug targets, and develop effective countermeasures. In this series, experts in many different aspects of coronavirus replication and disease will provide authoritative, up-to-date reviews of the following topics: - clinical management and infection control of SARS; - reservoir hosts of coronaviruses; - receptor recognition and cross-species transmission of SARS-CoV; - SARS-CoV evasion of innate immune responses; - structures and functions of individual coronaviral proteins; - anti-coronavirus drug discovery and development; and - the public health legacy of the SARS outbreak. Each article will be identified in the last line of its abstract as belonging to the series "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses." Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Severe acute respiratory syndrome coronavirus replication inhibitor that interferes with the nucleic acid unwinding of the viral helicase.

    PubMed

    Adedeji, Adeyemi O; Singh, Kamalendra; Calcaterra, Nicholas E; DeDiego, Marta L; Enjuanes, Luis; Weiss, Susan; Sarafianos, Stefan G

    2012-09-01

    Severe acute respiratory syndrome (SARS) is a highly contagious disease, caused by SARS coronavirus (SARS-CoV), for which there are no approved treatments. We report the discovery of a potent inhibitor of SARS-CoV that blocks replication by inhibiting the unwinding activity of the SARS-CoV helicase (nsp13). We used a Förster resonance energy transfer (FRET)-based helicase assay to screen the Maybridge Hitfinder chemical library. We identified and validated a compound (SSYA10-001) that specifically blocks the double-stranded RNA (dsRNA) and dsDNA unwinding activities of nsp13, with 50% inhibitory concentrations (IC(50)s) of 5.70 and 5.30 μM, respectively. This compound also has inhibitory activity (50% effective concentration [EC(50)] = 8.95 μM) in a SARS-CoV replicon assay, with low cytotoxicity (50% cytotoxic concentration [CC(50)] = >250 μM), suggesting that the helicase plays a still unidentified critical role in the SARS-CoV life cycle. Enzyme kinetic studies on the mechanism of nsp13 inhibition revealed that SSYA10-001 acts as a noncompetitive inhibitor of nsp13 with respect to nucleic acid and ATP substrates. Moreover, SSYA10-001 does not affect ATP hydrolysis or nsp13 binding to the nucleic acid substrate. SSYA10-001 did not inhibit hepatitis C virus (HCV) helicase, other bacterial and viral RNA-dependent RNA polymerases, or reverse transcriptase. These results suggest that SSYA10-001 specifically blocks nsp13 through a novel mechanism and is less likely to interfere with the functions of cellular enzymes that process nucleic acids or ATP. Hence, it is possible that SSYA10-001 inhibits unwinding by nsp13 by affecting conformational changes during the course of the reaction or translocation on the nucleic acid. SSYA10-001 will be a valuable tool for studying the specific role of nsp13 in the SARS-CoV life cycle, which could be a model for other nidoviruses and also a candidate for further development as a SARS antiviral target.

  10. Detection of feline coronavirus using microcantilever sensors

    NASA Astrophysics Data System (ADS)

    Velanki, Sreepriya; Ji, Hai-Feng

    2006-11-01

    This work demonstrated the feasibility of detecting severe acute respiratory syndrome associated coronavirus (SARS-CoV) using microcantilever technology by showing that the feline coronavirus (FIP) type I virus can be detected by a microcantilever modified by feline coronavirus (FIP) type I anti-viral antiserum. A microcantilever modified by FIP type I anti-viral antiserum was developed for the detection of FIP type I virus. When the FIP type I virus positive sample is injected into the fluid cell where the microcantilever is held, the microcantilever bends upon the recognition of the FIP type I virus by the antiserum on the surface of the microcantilever. A negative control sample that does not contain FIP type I virus did not cause any bending of the microcantilever. The detection limit of the sensor was 0.1 µg ml-1 when the assay time was <1 h.

  11. Monitoring of pulmonary mechanics in acute respiratory distress syndrome to titrate therapy.

    PubMed

    Gattinoni, Luciano; Eleonora, Carlesso; Caironi, Pietro

    2005-06-01

    This paper reviews recent findings regarding the respiratory mechanics during acute respiratory distress syndrome as a tool for tailoring its ventilatory management. The pressure-volume curve has been used for many years as a descriptor of the respiratory mechanics in patients affected by acute respiratory distress syndrome. The use of the sigmoidal equation introduced by Venegas for the analysis of the pressure-volume curve seems to be the most rigorous mathematical approach to assessing lung mechanics. Increasing attention has been focused on the deflation limb for titration of positive end-expiratory pressure. Based on physiologic reasoning, a novel parameter, the stress index, has been proposed for tailoring a safe mechanical ventilation, although its clinical impact has still to be proved. Evidence has confirmed that a variety of underlying pathologies may lead to acute respiratory distress syndrome, making unrealistic any attempt to unify the ventilatory approach. Although extensively proposed to tailor mechanical ventilation during acute respiratory distress syndrome, there is no evidence that the pressure-volume curve may be useful in setting a lung-protective strategy in the presence of different potentials for recruitment. The Venegas approach should be the standard analysis of pressure-volume curves. In any patient, the potential for recruitment should be assessed, as a basis for tailoring the most effective mechanical ventilation. Further studies are needed to clarify the potential use of the pressure-volume curve to guide a lung-protective ventilatory strategy.

  12. Pediatric Acute Lung Injury Epidemiology and Natural History study: Incidence and outcome of the acute respiratory distress syndrome in children.

    PubMed

    López-Fernández, Yolanda; Azagra, Amelia Martínez-de; de la Oliva, Pedro; Modesto, Vicent; Sánchez, Juan I; Parrilla, Julio; Arroyo, María José; Reyes, Susana Beatriz; Pons-Ódena, Martí; López-Herce, Jesús; Fernández, Rosa Lidia; Kacmarek, Robert M; Villar, Jesús

    2012-12-01

    The incidence and outcome of the acute respiratory distress syndrome in children are not well-known, especially under current ventilatory practices. The goal of this study was to determine the incidence, etiology, and outcome of acute respiratory distress syndrome in the pediatric population in the setting of lung protective ventilation. A 1-yr, prospective, multicenter, observational study in 12 geographical areas of Spain (serving a population of 3.77 million ≤ 15 yrs of age) covered by 21 pediatric intensive care units. All consecutive pediatric patients receiving invasive mechanical ventilation and meeting American-European Consensus Criteria for acute respiratory distress syndrome. None. Data on ventilatory management, gas exchange, hemodynamics, and organ dysfunction were collected. A total of 146 mechanically ventilated patients fulfilled the acute respiratory distress syndrome definition, representing a incidence of 3.9/100,000 population ≤ 15 yrs of age/yr. Pneumonia and sepsis were the most common causes of acute respiratory distress syndrome. At the time of meeting acute respiratory distress syndrome criteria, mean PaO2/FIO2 was 99 mm Hg ± 41 mm Hg, mean tidal volume was 7.6 mL/kg ± 1.8 mL/kg predicted body weight, mean plateau pressure was 27 cm H2O ± 6 cm H2O, and mean positive end-expiratory pressure was 8.9 cm ± 2.9 cm H2O. Overall pediatric intensive care unit and hospital mortality were 26% (95% confidence interval 19.6-33.7) and 27.4% (95% confidence interval 20.8-35.1), respectively. At 24 hrs, after the assessment of oxygenation under standard ventilatory settings, 118 (80.8%) patients continued to meet acute respiratory distress syndrome criteria (PaO2/FIO2 104 mm Hg ± 36 mm Hg; pediatric intensive care units mortality 30.5%), whereas 28 patients (19.2%) had a PaO2/FIO2 >200 mm Hg (pediatric intensive care units mortality 7.1%) (p = .014). This is the largest study to estimate prospectively the pediatric population-based acute

  13. Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination

    PubMed Central

    Lau, Susanna K. P.; Feng, Yun; Chen, Honglin; Luk, Hayes K. H.; Yang, Wei-Hong; Li, Kenneth S. M.; Zhang, Yu-Zhen; Huang, Yi; Song, Zhi-Zhong; Chow, Wang-Ngai; Fan, Rachel Y. Y.; Ahmed, Syed Shakeel; Yeung, Hazel C.; Lam, Carol S. F.; Cai, Jian-Piao; Wong, Samson S. Y.; Chan, Jasper F. W.; Yuen, Kwok-Yung

    2015-01-01

    ABSTRACT Despite the identification of horseshoe bats as the reservoir of severe acute respiratory syndrome (SARS)-related coronaviruses (SARSr-CoVs), the origin of SARS-CoV ORF8, which contains the 29-nucleotide signature deletion among human strains, remains obscure. Although two SARS-related Rhinolophus sinicus bat CoVs (SARSr-Rs-BatCoVs) previously detected in Chinese horseshoe bats (Rhinolophus sinicus) in Yunnan, RsSHC014 and Rs3367, possessed 95% genome identities to human and civet SARSr-CoVs, their ORF8 protein exhibited only 32.2 to 33% amino acid identities to that of human/civet SARSr-CoVs. To elucidate the origin of SARS-CoV ORF8, we sampled 348 bats of various species in Yunnan, among which diverse alphacoronaviruses and betacoronaviruses, including potentially novel CoVs, were identified, with some showing potential interspecies transmission. The genomes of two betacoronaviruses, SARSr-Rf-BatCoV YNLF_31C and YNLF_34C, from greater horseshoe bats (Rhinolophus ferrumequinum), possessed 93% nucleotide identities to human/civet SARSr-CoV genomes. Although these two betacoronaviruses displayed lower similarities than SARSr-Rs-BatCoV RsSHC014 and Rs3367 in S protein to civet SARSr-CoVs, their ORF8 proteins demonstrated exceptionally high (80.4 to 81.3%) amino acid identities to that of human/civet SARSr-CoVs, compared to SARSr-BatCoVs from other horseshoe bats (23.2 to 37.3%). Potential recombination events were identified around ORF8 between SARSr-Rf-BatCoVs and SARSr-Rs-BatCoVs, leading to the generation of civet SARSr-CoVs. The expression of ORF8 subgenomic mRNA suggested that the ORF8 protein may be functional in SARSr-Rf-BatCoVs. The high Ka/Ks ratio among human SARS-CoVs compared to that among SARSr-BatCoVs supported that ORF8 is under strong positive selection during animal-to-human transmission. Molecular clock analysis using ORF1ab showed that SARSr-Rf-BatCoV YNLF_31C and YNLF_34C diverged from civet/human SARSr-CoVs in approximately 1990. SARS

  14. Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination.

    PubMed

    Lau, Susanna K P; Feng, Yun; Chen, Honglin; Luk, Hayes K H; Yang, Wei-Hong; Li, Kenneth S M; Zhang, Yu-Zhen; Huang, Yi; Song, Zhi-Zhong; Chow, Wang-Ngai; Fan, Rachel Y Y; Ahmed, Syed Shakeel; Yeung, Hazel C; Lam, Carol S F; Cai, Jian-Piao; Wong, Samson S Y; Chan, Jasper F W; Yuen, Kwok-Yung; Zhang, Hai-Lin; Woo, Patrick C Y

    2015-10-01

    Despite the identification of horseshoe bats as the reservoir of severe acute respiratory syndrome (SARS)-related coronaviruses (SARSr-CoVs), the origin of SARS-CoV ORF8, which contains the 29-nucleotide signature deletion among human strains, remains obscure. Although two SARS-related Rhinolophus sinicus bat CoVs (SARSr-Rs-BatCoVs) previously detected in Chinese horseshoe bats (Rhinolophus sinicus) in Yunnan, RsSHC014 and Rs3367, possessed 95% genome identities to human and civet SARSr-CoVs, their ORF8 protein exhibited only 32.2 to 33% amino acid identities to that of human/civet SARSr-CoVs. To elucidate the origin of SARS-CoV ORF8, we sampled 348 bats of various species in Yunnan, among which diverse alphacoronaviruses and betacoronaviruses, including potentially novel CoVs, were identified, with some showing potential interspecies transmission. The genomes of two betacoronaviruses, SARSr-Rf-BatCoV YNLF_31C and YNLF_34C, from greater horseshoe bats (Rhinolophus ferrumequinum), possessed 93% nucleotide identities to human/civet SARSr-CoV genomes. Although these two betacoronaviruses displayed lower similarities than SARSr-Rs-BatCoV RsSHC014 and Rs3367 in S protein to civet SARSr-CoVs, their ORF8 proteins demonstrated exceptionally high (80.4 to 81.3%) amino acid identities to that of human/civet SARSr-CoVs, compared to SARSr-BatCoVs from other horseshoe bats (23.2 to 37.3%). Potential recombination events were identified around ORF8 between SARSr-Rf-BatCoVs and SARSr-Rs-BatCoVs, leading to the generation of civet SARSr-CoVs. The expression of ORF8 subgenomic mRNA suggested that the ORF8 protein may be functional in SARSr-Rf-BatCoVs. The high Ka/Ks ratio among human SARS-CoVs compared to that among SARSr-BatCoVs supported that ORF8 is under strong positive selection during animal-to-human transmission. Molecular clock analysis using ORF1ab showed that SARSr-Rf-BatCoV YNLF_31C and YNLF_34C diverged from civet/human SARSr-CoVs in approximately 1990. SARS-CoV ORF8

  15. Serology of severe acute respiratory syndrome: implications for surveillance and outcome.

    PubMed

    Chen, Xinchun; Zhou, Boping; Li, Meizhong; Liang, Xiaorong; Wang, Huosheng; Yang, Guilin; Wang, Hui; Le, Xiaohua

    2004-04-01

    Severe acute respiratory syndrome (SARS) is a novel infectious disease. No information is currently available on host-specific immunity against the SARS coronavirus (CoV), and detailed characteristics of the epidemiology of SARS CoV infection have not been identified. ELISA was used to detect antibody to SARS CoV. Reverse-transcriptase polymerase chain reaction was used to detect SARS CoV RNA. T cells in peripheral blood of patients were quantified by flow cytometry. Of 36 patients with probable SARS CoV infection, 30 (83.3%) were positive for IgG antibody to SARS CoV; in contrast, only 3 of 48 patients with suspected SARS CoV infection, 0 of 112 patients with fever but without SARS, and 0 of 96 healthy control individuals were positive for it. IgG antibody to SARS CoV was first detected between day 5 and day 47 after onset of illness (mean +/- SD, 18.7+/-10.4). Detection of antibody to SARS CoV is useful in the diagnosis of SARS; however, at the incubation and initial phases of the illness, serological assay is of little value, because of late seroconversion in most patients.

  16. Epidemiology of a Novel Recombinant Middle East Respiratory Syndrome Coronavirus in Humans in Saudi Arabia

    PubMed Central

    Assiri, Abdullah M.; Midgley, Claire M.; Abedi, Glen R.; Saeed, Abdulaziz Bin; Almasri, Malak M.; Lu, Xiaoyan; Al-Abdely, Hail M.; Abdalla, Osman; Mohammed, Mutaz; Algarni, Homoud S.; Alhakeem, Raafat F.; Sakthivel, Senthilkumar K.; Nooh, Randa; Alshayab, Zainab; Alessa, Mohammad; Srinivasamoorthy, Ganesh; AlQahtani, Saeed Yahya; Kheyami, Ali; HajOmar, Waleed Husein; Banaser, Talib M.; Esmaeel, Ahmad; Hall, Aron J.; Curns, Aaron T.; Tamin, Azaibi; Alsharef, Ali Abraheem; Erdman, Dean; Watson, John T.; Gerber, Susan I.

    2017-01-01

    Background Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory illness in humans. Fundamental questions about circulating viruses and transmission routes remain. Methods We assessed routinely collected epidemiologic data for MERS-CoV cases reported in Saudi Arabia during 1 January– 30 June 2015 and conducted a more detailed investigation of cases reported during February 2015. Available respiratory specimens were obtained for sequencing. Results During the study period, 216 MERS-CoV cases were reported. Full genome (n = 17) or spike gene sequences (n = 82) were obtained from 99 individuals. Most sequences (72 of 99 [73%]) formed a discrete, novel recombinant subclade (NRC-2015), which was detected in 6 regions and became predominant by June 2015. No clinical differences were noted between clades. Among 87 cases reported during February 2015, 13 had no recognized risks for secondary acquisition; 12 of these 13 also denied camel contact. Most viruses (8 of 9) from these 13 individuals belonged to NRC-2015. Discussions Our findings document the spread and eventual predominance of NRC-2015 in humans in Saudi Arabia during the first half of 2015. Our identification of cases without recognized risk factors but with similar virus sequences indicates the need for better understanding of risk factors for MERS-CoV transmission. PMID:27302191

  17. Biodiversity impact of host interferon-stimulated-gene-product 15 on the coronavirus Papain-like protease deISGylase functions

    USDA-ARS?s Scientific Manuscript database

    Coronaviruses are single-stranded, positive sense RNA viruses whose members have severe impact on human health and cause significant economic hardships. Some pertinent examples include severe acute and Middle East respiratory syndromes (SARS-CoV; MERS-CoV), porcine epidemic diarrhea virus (PEDV), an...

  18. Pilot Feasibility Study of Therapeutic Hypothermia for Moderate to Severe Acute Respiratory Distress Syndrome.

    PubMed

    Slack, Donald F; Corwin, Douglas S; Shah, Nirav G; Shanholtz, Carl B; Verceles, Avelino C; Netzer, Giora; Jones, Kevin M; Brown, Clayton H; Terrin, Michael L; Hasday, Jeffrey D

    2017-07-01

    Prior studies suggest hypothermia may be beneficial in acute respiratory distress syndrome, but cooling causes shivering and increases metabolism. The objective of this study was to assess the feasibility of performing a randomized clinical trial of hypothermia in patients with acute respiratory distress syndrome receiving treatment with neuromuscular blockade because they cannot shiver. Retrospective study and pilot, prospective, open-label, feasibility study. Medical ICU. Retrospective review of 58 patients with acute respiratory distress syndrome based on Berlin criteria and PaO2/FIO2 less than 150 who received neuromuscular blockade. Prospective hypothermia treatment in eight acute respiratory distress syndrome patients with PaO2/FIO2 less than 150 receiving neuromuscular blockade. Cooling to 34-36°C for 48 hours. Core temperature, hemodynamics, serum glucose and electrolytes, and P/F were sequentially measured, and medians (interquartile ranges) presented, 28-day ventilator-free days, and hospital mortality were calculated in historical controls and eight cooled patients. Average patient core temperature was 36.7°C (36-37.3°C), and fever occurred during neuromuscular blockade in 30 of 58 retrospective patients. In the prospectively cooled patients, core temperature reached target range less than or equal to 4 hours of initiating cooling, remained less than 36°C for 92% of the 48 hours cooling period without adverse events, and was lower than the controls (34.35°C [34-34.8°C]; p < 0.0001). Compared with historical controls, the cooled patients tended to have lower hospital mortality (75% vs 53.4%; p = 0.26), more ventilator-free days (9 [0-21.5] vs 0 [0-12]; p = 0.16), and higher day 3 P/F (255 [160-270] vs 171 [120-214]; p = 0.024). Neuromuscular blockade alone does not cause hypothermia but allowed acute respiratory distress syndrome patients to be effectively cooled. Results support conducting a randomized clinical trial of hypothermia in acute

  19. Recombinant truncated nucleocapsid protein as antigen in a novel immunoglobulin M capture enzyme-linked immunosorbent assay for diagnosis of severe acute respiratory syndrome coronavirus infection.

    PubMed

    Yu, Fuxun; Le, Mai Quynh; Inoue, Shingo; Hasebe, Futoshi; Parquet, Maria del Carmen; Morikawa, Shigeru; Morita, Kouichi

    2007-02-01

    We report the development of an immunoglobulin M (IgM) antibody capture enzyme-linked immunosorbent assay (MAC-ELISA) for severe acute respiratory syndrome coronavirus (SARS-CoV) by using recombinant truncated SARS-CoV nucleocapsid protein as the antigen. The newly developed MAC-ELISA had a specificity and sensitivity of 100% as evaluated by using sera from healthy volunteers and patients with laboratory-confirmed SARS. Using serial serum samples collected from SARS patients, the times to seroconversion were determined by IgM antibody detection after SARS-CoV infection. The median time to seroconversion detection was 8 days (range, 5 to 17 days) after disease onset, and the seroconversion rates after the onset of illness were 33% by the first week, 97% by the second week, and 100% by the third week. Compared with the results of our previous report on the detection of IgG, the median seroconversion time by IgM detection was 3 days earlier and the seroconversion rate by the second week after the illness for IgM was significantly higher than by IgG assay. Our results indicating that the IgM response appears earlier than IgG after SARS-CoV infection in consistent with those for other pathogens. Our newly developed MAC-ELISA system offers a new alternative for the confirmation of SARS-CoV infection.

  20. Recombinant Truncated Nucleocapsid Protein as Antigen in a Novel Immunoglobulin M Capture Enzyme-Linked Immunosorbent Assay for Diagnosis of Severe Acute Respiratory Syndrome Coronavirus Infection▿

    PubMed Central

    Yu, Fuxun; Le, Mai Quynh; Inoue, Shingo; Hasebe, Futoshi; Parquet, Maria del Carmen; Morikawa, Shigeru; Morita, Kouichi

    2007-01-01

    We report the development of an immunoglobulin M (IgM) antibody capture enzyme-linked immunosorbent assay (MAC-ELISA) for severe acute respiratory syndrome coronavirus (SARS-CoV) by using recombinant truncated SARS-CoV nucleocapsid protein as the antigen. The newly developed MAC-ELISA had a specificity and sensitivity of 100% as evaluated by using sera from healthy volunteers and patients with laboratory-confirmed SARS. Using serial serum samples collected from SARS patients, the times to seroconversion were determined by IgM antibody detection after SARS-CoV infection. The median time to seroconversion detection was 8 days (range, 5 to 17 days) after disease onset, and the seroconversion rates after the onset of illness were 33% by the first week, 97% by the second week, and 100% by the third week. Compared with the results of our previous report on the detection of IgG, the median seroconversion time by IgM detection was 3 days earlier and the seroconversion rate by the second week after the illness for IgM was significantly higher than by IgG assay. Our results indicating that the IgM response appears earlier than IgG after SARS-CoV infection in consistent with those for other pathogens. Our newly developed MAC-ELISA system offers a new alternative for the confirmation of SARS-CoV infection. PMID:17202310

  1. Ebola virus and severe acute respiratory syndrome coronavirus display late cell entry kinetics: evidence that transport to NPC1+ endolysosomes is a rate-defining step.

    PubMed

    Mingo, Rebecca M; Simmons, James A; Shoemaker, Charles J; Nelson, Elizabeth A; Schornberg, Kathryn L; D'Souza, Ryan S; Casanova, James E; White, Judith M

    2015-03-01

    Ebola virus (EBOV) causes hemorrhagic fevers with high mortality rates. During cellular entry, the virus is internalized by macropinocytosis and trafficked through endosomes until fusion between the viral and an endosomal membrane is triggered, releasing the RNA genome into the cytoplasm. We found that while macropinocytotic uptake of filamentous EBOV viruslike particles (VLPs) expressing the EBOV glycoprotein (GP) occurs relatively quickly, VLPs only begin to enter the cytoplasm after a 30-min lag, considerably later than particles bearing the influenza hemagglutinin or GP from lymphocytic choriomeningitis virus, which enter through late endosomes (LE). For EBOV, the long lag is not due to the large size or unusual shape of EBOV filaments, the need to prime EBOV GP to the 19-kDa receptor-binding species, or a need for unusually low endosomal pH. In contrast, since we observed that EBOV entry occurs upon arrival in Niemann-Pick C1 (NPC1)-positive endolysosomes (LE/Lys), we propose that trafficking to LE/Lys is a key rate-defining step. Additional experiments revealed, unexpectedly, that severe acute respiratory syndrome (SARS) S-mediated entry also begins only after a 30-min lag. Furthermore, although SARS does not require NPC1 for entry, SARS entry also begins after colocalization with NPC1. Since the only endosomal requirement for SARS entry is cathepsin L activity, we tested and provide evidence that NPC1(+) LE/Lys have higher cathepsin L activity than LE, with no detectable activity in earlier endosomes. Our findings suggest that both EBOV and SARS traffic deep into the endocytic pathway for entry and that they do so to access higher cathepsin activity. Ebola virus is a hemorrhagic fever virus that causes high fatality rates when it spreads from zoonotic vectors into the human population. Infection by severe acute respiratory syndrome coronavirus (SARS-CoV) causes severe respiratory distress in infected patients. A devastating outbreak of EBOV occurred in West

  2. Ebola Virus and Severe Acute Respiratory Syndrome Coronavirus Display Late Cell Entry Kinetics: Evidence that Transport to NPC1+ Endolysosomes Is a Rate-Defining Step

    PubMed Central

    Mingo, Rebecca M.; Simmons, James A.; Shoemaker, Charles J.; Nelson, Elizabeth A.; Schornberg, Kathryn L.; D'Souza, Ryan S.; Casanova, James E.

    2014-01-01

    ABSTRACT Ebola virus (EBOV) causes hemorrhagic fevers with high mortality rates. During cellular entry, the virus is internalized by macropinocytosis and trafficked through endosomes until fusion between the viral and an endosomal membrane is triggered, releasing the RNA genome into the cytoplasm. We found that while macropinocytotic uptake of filamentous EBOV viruslike particles (VLPs) expressing the EBOV glycoprotein (GP) occurs relatively quickly, VLPs only begin to enter the cytoplasm after a 30-min lag, considerably later than particles bearing the influenza hemagglutinin or GP from lymphocytic choriomeningitis virus, which enter through late endosomes (LE). For EBOV, the long lag is not due to the large size or unusual shape of EBOV filaments, the need to prime EBOV GP to the 19-kDa receptor-binding species, or a need for unusually low endosomal pH. In contrast, since we observed that EBOV entry occurs upon arrival in Niemann-Pick C1 (NPC1)-positive endolysosomes (LE/Lys), we propose that trafficking to LE/Lys is a key rate-defining step. Additional experiments revealed, unexpectedly, that severe acute respiratory syndrome (SARS) S-mediated entry also begins only after a 30-min lag. Furthermore, although SARS does not require NPC1 for entry, SARS entry also begins after colocalization with NPC1. Since the only endosomal requirement for SARS entry is cathepsin L activity, we tested and provide evidence that NPC1+ LE/Lys have higher cathepsin L activity than LE, with no detectable activity in earlier endosomes. Our findings suggest that both EBOV and SARS traffic deep into the endocytic pathway for entry and that they do so to access higher cathepsin activity. IMPORTANCE Ebola virus is a hemorrhagic fever virus that causes high fatality rates when it spreads from zoonotic vectors into the human population. Infection by severe acute respiratory syndrome coronavirus (SARS-CoV) causes severe respiratory distress in infected patients. A devastating outbreak of EBOV

  3. Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3.

    PubMed

    Wong, Hui Hui; Fung, To Sing; Fang, Shouguo; Huang, Mei; Le, My Tra; Liu, Ding Xiang

    2018-02-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) is an inefficient inducer of interferon (IFN) response. It expresses various proteins that effectively circumvent IFN production at different levels via distinct mechanisms. Through the construction of recombinant IBV expressing proteins 8a, 8b and 8ab encoded by SARS-CoV ORF8, we demonstrate that expression of 8b and 8ab enables the corresponding recombinant viruses to partially overcome the inhibitory actions of IFN activation to achieve higher replication efficiencies in cells. We also found that proteins 8b and 8ab could physically interact with IRF3. Overexpression of 8b and 8ab resulted in the reduction of poly (I:C)-induced IRF3 dimerization and inhibition of the IFN-β signaling pathway. This counteracting effect was partially mediated by protein 8b/8ab-induced degradation of IRF3 in a ubiquitin-proteasome-dependent manner. Taken together, we propose that SARS-CoV may exploit the unique functions of proteins 8b and 8ab as novel mechanisms to overcome the effect of IFN response during virus infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Optimizing Severe Acute Respiratory Syndrome Response Strategies: Lessons Learned From Quarantine

    PubMed Central

    Wang, Tsung-Hsi; Wei, Kuo-Chen; Hsiung, Chao Agnes; Maloney, Susan A.; Eidex, Rachel Barwick; Posey, Drew L.; Chou, Wei-Hui; Shih, Wen-Yi; Kuo, Hsu-Sung

    2007-01-01

    Taiwan used quarantine as 1 of numerous interventions implemented to control the outbreak of severe acute respiratory syndrome in 2003. From March 18 to July 31, 2003, 147 526 persons were placed under quarantine. Quarantining only persons with known exposure to people infected with severe acute respiratory syndrome could have reduced the number of persons quarantined by approximately 64%. Focusing quarantine efforts on persons with known or suspected exposure can greatly decrease the number of persons placed under quarantine, without substantially compromising its yield and effectiveness. PMID:17413071

  5. Noninvasive ventilation for patients with acute lung injury or acute respiratory distress syndrome.

    PubMed

    Nava, Stefano; Schreiber, Ania; Domenighetti, Guido

    2011-10-01

    Few studies have been performed on noninvasive ventilation (NIV) to treat hypoxic acute respiratory failure in patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). The outcomes of these patients, for whom endotracheal intubation is not mandatory, depend on the degree of hypoxia, the presence of comorbidities and complications, and their illness severity. The use of NIV as an alternative to invasive ventilation in severely hypoxemic patients with ARDS (ie, P(aO(2))/F(IO(2)) < 200) is not generally advisable and should be limited to hemodynamically stable patients who can be closely monitored in an intensive care unit by highly skilled staff. Early NIV application may be extremely helpful in immunocompromised patients with pulmonary infiltrates, in whom intubation dramatically increases the risk of infection, pneumonia, and death. The use of NIV in patients with severe acute respiratory syndrome and other airborne diseases has generated debate, despite encouraging clinical results, mainly because of safety issues. Overall, the high rate of NIV failure suggests a cautious approach to NIV use in patients with ALI/ARDS, including early initiation, intensive monitoring, and prompt intubation if signs of NIV failure emerge.

  6. Epidemiology and outcomes of acute respiratory distress syndrome in children according to the Berlin definition: a multicenter prospective study.

    PubMed

    Barreira, Eliane R; Munoz, Gabriela O C; Cavalheiro, Priscilla O; Suzuki, Adriana S; Degaspare, Natalia V; Shieh, Huei H; Martines, João A D S; Ferreira, Juliana C; Lane, Christianne; Carvalho, Werther B; Gilio, Alfredo E; Precioso, Alexander R

    2015-05-01

    In 2012, a new acute respiratory distress syndrome definition was proposed for adult patients. It was later validated for infants and toddlers. Our objective was to evaluate the prevalence, outcomes, and risk factors associated with acute respiratory distress syndrome in children up to 15 years according to the Berlin definition. A prospective, multicenter observational study from March to September 2013. Seventy-seven PICU beds in eight centers: two private hospitals and six public academic hospitals in Brazil. All children aged 1 month to 15 years admitted to the participating PICUs in the study period. None. All children admitted to the PICUs were daily evaluated for the presence of acute respiratory distress syndrome according to the American-European Consensus Conference and Berlin definitions. Of the 562 patients included, acute respiratory distress syndrome developed in 57 patients (10%) and 58 patients (10.3%) according to the Berlin definition and the American-European Consensus Conference definition, respectively. Among patients with acute respiratory distress syndrome according to the Berlin definition, nine patients (16%) were mild, 21 (37%) were moderate, and 27 (47%) were severe. Compared with patients without acute respiratory distress syndrome, patients with acute respiratory distress syndrome had significantly higher severity scores, longer PICU and hospital length of stay, longer duration of mechanical ventilation, and higher mortality (p < 0.001). The presence of two or more comorbidities and admission for medical reasons were associated with development of acute respiratory distress syndrome. Comparisons across the three the Berlin categories showed significant differences in the number of ventilator-free days (21, 20, and 5 d, p = 0.001) and mortality for severe acute respiratory distress syndrome (41%) in comparison with mild (0) and moderate (15%) acute respiratory distress syndrome(p = 0.02). No differences in PICU or hospital stay were

  7. Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies.

    PubMed

    Zhang, Hong; Wang, Guangwen; Li, Jian; Nie, Yuchun; Shi, Xuanling; Lian, Gewei; Wang, Wei; Yin, Xiaolei; Zhao, Yang; Qu, Xiuxia; Ding, Mingxiao; Deng, Hongkui

    2004-07-01

    Severe acute respiratory syndrome (SARS) is a life-threatening disease caused by a newly identified coronavirus (CoV), SARS-CoV. The spike (S) glycoprotein of CoV is the major structural protein responsible for induction of host immune response and virus neutralization by antibodies. Hence, knowledge of neutralization determinants on the S protein is helpful for designing protective vaccines. To analyze the antigenic structure of the SARS-CoV S2 domain, the carboxyl-terminal half of the S protein, we first used sera from convalescent SARS patients to test the antigenicity of 12 overlapping fragments spanning the entire S2 and identified two antigenic determinants (Leu 803 to Ala 828 and Pro 1061 to Ser 1093). To determine whether neutralizing antibodies can be elicited by these two determinants, we immunized animals and found that both of them could induce the S2-specific antisera. In some animals, however, only one determinant (Leu 803 to Ala 828) was able to induce the antisera with the binding ability to the native S protein and the neutralizing activity to the SARS-CoV pseudovirus. This determinant is highly conserved across different SARS-CoV isolates. Identification of a conserved antigenic determinant on the S2 domain of the SARS-CoV S protein, which has the potential for inducing neutralizing antibodies, has implications in the development of effective vaccines against SARS-CoV.

  8. Human Neutralizing Monoclonal Antibody Inhibition of Middle East Respiratory Syndrome Coronavirus Replication in the Common Marmoset.

    PubMed

    Chen, Zhe; Bao, Linlin; Chen, Cong; Zou, Tingting; Xue, Ying; Li, Fengdi; Lv, Qi; Gu, Songzhi; Gao, Xiaopan; Cui, Sheng; Wang, Jianmin; Qin, Chuan; Jin, Qi

    2017-06-15

    Middle East respiratory syndrome coronavirus (MERS-CoV) infection in humans is highly lethal, with a fatality rate of 35%. New prophylactic and therapeutic strategies to combat human infections are urgently needed. We isolated a fully human neutralizing antibody, MCA1, from a human survivor. The antibody recognizes the receptor-binding domain of MERS-CoV S glycoprotein and interferes with the interaction between viral S and the human cellular receptor human dipeptidyl peptidase 4 (DPP4). To our knowledge, this study is the first to report a human neutralizing monoclonal antibody that completely inhibits MERS-CoV replication in common marmosets. Monotherapy with MCA1 represents a potential alternative treatment for human infections with MERS-CoV worthy of evaluation in clinical settings. © Crown copyright 2017.

  9. Catalytic Function and Substrate Specificity of the Papain-Like Protease Domain of nsp3 from the Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Báez-Santos, Yahira M.; Mielech, Anna M.; Deng, Xufang; Baker, Susan

    2014-01-01

    ABSTRACT The papain-like protease (PLpro) domain from the deadly Middle East respiratory syndrome coronavirus (MERS-CoV) was overexpressed and purified. MERS-CoV PLpro constructs with and without the putative ubiquitin-like (UBL) domain at the N terminus were found to possess protease, deubiquitinating, deISGylating, and interferon antagonism activities in transfected HEK293T cells. The quaternary structure and substrate preferences of MERS-CoV PLpro were determined and compared to those of severe acute respiratory syndrome coronavirus (SARS-CoV) PLpro, revealing prominent differences between these closely related enzymes. Steady-state kinetic analyses of purified MERS-CoV and SARS-CoV PLpros uncovered significant differences in their rates of hydrolysis of 5-aminomethyl coumarin (AMC) from C-terminally labeled peptide, ubiquitin, and ISG15 substrates, as well as in their rates of isopeptide bond cleavage of K48- and K63-linked polyubiquitin chains. MERS-CoV PLpro was found to have 8-fold and 3,500-fold higher catalytic efficiencies for hydrolysis of ISG15-AMC than for hydrolysis of the Ub-AMC and Z-RLRGG-AMC substrates, respectively. A similar trend was observed for SARS-CoV PLpro, although it was much more efficient than MERS-CoV PLpro toward ISG15-AMC and peptide-AMC substrates. MERS-CoV PLpro was found to process K48- and K63-linked polyubiquitin chains at similar rates and with similar debranching patterns, producing monoubiquitin species. However, SARS-CoV PLpro much preferred K48-linked polyubiquitin chains to K63-linked chains, and it rapidly produced di-ubiquitin molecules from K48-linked chains. Finally, potent inhibitors of SARS-CoV PLpro were found to have no effect on MERS-CoV PLpro. A homology model of the MERS-CoV PLpro structure was generated and compared to the X-ray structure of SARS-CoV PLpro to provide plausible explanations for differences in substrate and inhibitor recognition. IMPORTANCE Unlocking the secrets of how coronavirus (CoV) papain

  10. Prone Positioning Improves Oxygenation in Adult Burn Patients with Severe Acute Respiratory Distress Syndrome

    DTIC Science & Technology

    2012-01-01

    Prone positioning improves oxygenation in adult burn patients with severe acute respiratory distress syndrome Diane F. Hale, MD, Jeremy W. Cannon, MD...Kevin K. Chung, MD, San Antonio, Texas BACKGROUND: Prone positioning (PP) improves oxygenation and may provide a benefit in patients with acute... positioning improves oxygenation in adult burn patients with severe acute respiratory distress syndrome 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  11. Recent insight into potential acute respiratory distress syndrome.

    PubMed

    Amin, Zulkifli; Rahmawati, Fitriana N

    2017-04-01

    Acute respiratory distress syndrome (ARDS) is an acute inflammatory lung injury, characterized by increased pulmonary capillary endothelial cells and alveolar epithelial cells permeability leading to respiratory failure in the absence of cardiac failure. Despite recent advances in treatments, the overall mortality because of ARDS remains high. Biomarkers may help to diagnose, predict the severity, development, and outcome of ARDS in order to improve patient care and decrease morbidity and mortality. This review will focus on soluble receptor for advanced glycation end-products, soluble tumor necrosis factor-receptor 1, Interluken-6 (IL-6), IL-8, and plasminogen activator inhibitor-1, which have a greater potential based on recent studies.

  12. Recent insight into potential acute respiratory distress syndrome

    PubMed Central

    Amin, Zulkifli; Rahmawati, Fitriana N.

    2017-01-01

    Acute respiratory distress syndrome (ARDS) is an acute inflammatory lung injury, characterized by increased pulmonary capillary endothelial cells and alveolar epithelial cells permeability leading to respiratory failure in the absence of cardiac failure. Despite recent advances in treatments, the overall mortality because of ARDS remains high. Biomarkers may help to diagnose, predict the severity, development, and outcome of ARDS in order to improve patient care and decrease morbidity and mortality. This review will focus on soluble receptor for advanced glycation end-products, soluble tumor necrosis factor-receptor 1, Interluken-6 (IL-6), IL-8, and plasminogen activator inhibitor-1, which have a greater potential based on recent studies. PMID:28397939

  13. Interferon-Beta 1a and SARS Coronavirus Replication

    DTIC Science & Technology

    2004-02-01

    A global outbreak of severe acute respiratory syn- drome ( SARS ) caused by a novel coronavirus began in March 2003. The rapid emergence of SARS and...emerging infectious disease. The etiologic agent was identified as a coronavirus ( SARS -CoV) that is not closely related to any of the previously...some coronaviruses , including avian infectious bronchitis virus, murine hepati- tis virus, and human coronavirus 229E, are susceptible to type I

  14. Severe H1N1-Associated acute respiratory distress syndrome: A case series.

    PubMed

    Lai, Andrew R; Keet, Kevin; Yong, Celina M; Diaz, Janet V

    2010-03-01

    Acute respiratory distress syndrome resulting from novel influenza A virus (H1N1) infection remains uncommon. We describe the clinical profiles of adult patients with acute respiratory distress syndrome due to microbiologically confirmed H1N1 admitted to a medical intensive care unit in San Francisco, California over a 2-month period. Between June 1 and July 31, 2009, 7 patients (age range: 25-66 years; 4 patients under the age of 40 years; 6 male; 1 pregnant) were diagnosed with H1N1, with 5 of 6 (83%) having initial false-negative rapid testing. All developed respiratory failure complicated by acute respiratory distress syndrome, with 4 additionally developing multiorgan dysfunction. All were managed with a lung protective ventilator strategy (average number of days on the ventilator: 16), and 4 patients also required additional rescue therapies for refractory hypoxemia, including very high positive end-expiratory pressure, inhaled epoprostenol, recruitment maneuvers, and prone positioning. Despite these measures, 3 patients (43%) ultimately died. Clinicians should be vigilant for the potential of H1N1 infection to progress to severe acute respiratory distress syndrome in a variety of patient demographics, including younger patients without baseline cardiopulmonary disease. A high degree of suspicion is critical, especially with the relative insensitivity of rapid testing, and should prompt empiric antiviral therapy. 2010 Elsevier Inc. All rights reserved.

  15. Poor Adherence to Lung-Protective Mechanical Ventilation in Pediatric Acute Respiratory Distress Syndrome.

    PubMed

    Ward, Shan L; Quinn, Carson M; Valentine, Stacey L; Sapru, Anil; Curley, Martha A Q; Willson, Douglas F; Liu, Kathleen D; Matthay, Michael A; Flori, Heidi R

    2016-10-01

    To determine the frequency of low-tidal volume ventilation in pediatric acute respiratory distress syndrome and assess if any demographic or clinical factors improve low-tidal volume ventilation adherence. Descriptive post hoc analysis of four multicenter pediatric acute respiratory distress syndrome studies. Twenty-six academic PICU. Three hundred fifteen pediatric acute respiratory distress syndrome patients. All patients who received conventional mechanical ventilation at hours 0 and 24 of pediatric acute respiratory distress syndrome who had data to calculate ideal body weight were included. Two cutoff points for low-tidal volume ventilation were assessed: less than or equal to 6.5 mL/kg of ideal body weight and less than or equal to 8 mL/kg of ideal body weight. Of 555 patients, we excluded 240 for other respiratory support modes or missing data. The remaining 315 patients had a median PaO2-to-FIO2 ratio of 140 (interquartile range, 90-201), and there were no differences in demographics between those who did and did not receive low-tidal volume ventilation. With tidal volume cutoff of less than or equal to 6.5 mL/kg of ideal body weight, the adherence rate was 32% at hour 0 and 33% at hour 24. A low-tidal volume ventilation cutoff of tidal volume less than or equal to 8 mL/kg of ideal body weight resulted in an adherence rate of 58% at hour 0 and 60% at hour 24. Low-tidal volume ventilation use was no different by severity of pediatric acute respiratory distress syndrome nor did adherence improve over time. At hour 0, overweight children were less likely to receive low-tidal volume ventilation less than or equal to 6.5 mL/kg ideal body weight (11% overweight vs 38% nonoverweight; p = 0.02); no difference was noted by hour 24. Furthermore, in the overweight group, using admission weight instead of ideal body weight resulted in misclassification of up to 14% of patients as receiving low-tidal volume ventilation when they actually were not. Low

  16. Acute interstitial pneumonia (AIP): relationship to Hamman-Rich syndrome, diffuse alveolar damage (DAD), and acute respiratory distress syndrome (ARDS).

    PubMed

    Mukhopadhyay, Sanjay; Parambil, Joseph G

    2012-10-01

    Acute interstitial pneumonia (AIP) is a term used for an idiopathic form of acute lung injury characterized clinically by acute respiratory failure with bilateral lung infiltrates and histologically by diffuse alveolar damage (DAD), a combination of findings previously known as the Hamman-Rich syndrome. This review aims to clarify the diagnostic criteria of AIP, its relationship with DAD and acute respiratory distress syndrome (ARDS), key etiologies that need to be excluded before making the diagnosis, and the salient clinical features. Cases that meet clinical and pathologic criteria for AIP overlap substantially with those that fulfill clinical criteria for ARDS. The main differences between AIP and ARDS are that AIP requires a histologic diagnosis of DAD and exclusion of known etiologies. AIP should also be distinguished from "acute exacerbation of IPF," a condition in which acute lung injury (usually DAD) supervenes on underlying usual interstitial pneumonia (UIP)/idiopathic pulmonary fibrosis (IPF). Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  17. Middle East respiratory syndrome coronavirus (MERS-CoV): animal to human interaction

    PubMed Central

    Omrani, Ali S.; Al-Tawfiq, Jaffar A.

    2015-01-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel enzootic betacoronavirus that was first described in September 2012. The clinical spectrum of MERS-CoV infection in humans ranges from an asymptomatic or mild respiratory illness to severe pneumonia and multi-organ failure; overall mortality is around 35.7%. Bats harbour several betacoronaviruses that are closely related to MERS-CoV but more research is needed to establish the relationship between bats and MERS-CoV. The seroprevalence of MERS-CoV antibodies is very high in dromedary camels in Eastern Africa and the Arabian Peninsula. MERS-CoV RNA and viable virus have been isolated from dromedary camels, including some with respiratory symptoms. Furthermore, near-identical strains of MERS-CoV have been isolated from epidemiologically linked humans and camels, confirming inter-transmission, most probably from camels to humans. Though inter-human spread within health care settings is responsible for the majority of reported MERS-CoV cases, the virus is incapable at present of causing sustained human-to-human transmission. Clusters can be readily controlled with implementation of appropriate infection control procedures. Phylogenetic and sequencing data strongly suggest that MERS-CoV originated from bat ancestors after undergoing a recombination event in the spike protein, possibly in dromedary camels in Africa, before its exportation to the Arabian Peninsula along the camel trading routes. MERS-CoV serosurveys are needed to investigate possible unrecognized human infections in Africa. Amongst the important measures to control MERS-CoV spread are strict regulation of camel movement, regular herd screening and isolation of infected camels, use of personal protective equipment by camel handlers and enforcing rules banning all consumption of unpasteurized camel milk and urine. PMID:26924345

  18. Personalizing mechanical ventilation for acute respiratory distress syndrome.

    PubMed

    Berngard, S Clark; Beitler, Jeremy R; Malhotra, Atul

    2016-03-01

    Lung-protective ventilation with low tidal volumes remains the cornerstone for treating patient with acute respiratory distress syndrome (ARDS). Personalizing such an approach to each patient's unique physiology may improve outcomes further. Many factors should be considered when mechanically ventilating a critically ill patient with ARDS. Estimations of transpulmonary pressures as well as individual's hemodynamics and respiratory mechanics should influence PEEP decisions as well as response to therapy (recruitability). This summary will emphasize the potential role of personalized therapy in mechanical ventilation.

  19. Acute Respiratory Infections in Travelers Returning from MERS-CoV–Affected Areas

    PubMed Central

    Olsha, Romy; Kristjanson, Erik; Marchand-Austin, Alex; Peci, Adriana; Winter, Anne-Luise; Gubbay, Jonathan B.

    2015-01-01

    We examined which respiratory pathogens were identified during screening for Middle East respiratory syndrome coronavirus in 177 symptomatic travelers returning to Ontario, Canada, from regions affected by the virus. Influenza A and B viruses (23.1%) and rhinovirus (19.8%) were the most common pathogens identified among these travelers. PMID:26291541

  20. Glycopeptide Antibiotics Potently Inhibit Cathepsin L in the Late Endosome/Lysosome and Block the Entry of Ebola Virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)*

    PubMed Central

    Zhou, Nan; Pan, Ting; Zhang, Junsong; Li, Qianwen; Zhang, Xue; Bai, Chuan; Huang, Feng; Peng, Tao; Zhang, Jianhua; Liu, Chao; Tao, Liang; Zhang, Hui

    2016-01-01

    Ebola virus infection can cause severe hemorrhagic fever with a high mortality in humans. The outbreaks of Ebola viruses in 2014 represented the most serious Ebola epidemics in history and greatly threatened public health worldwide. The development of additional effective anti-Ebola therapeutic agents is therefore quite urgent. In this study, via high throughput screening of Food and Drug Administration-approved drugs, we identified that teicoplanin, a glycopeptide antibiotic, potently prevents the entry of Ebola envelope pseudotyped viruses into the cytoplasm. Furthermore, teicoplanin also has an inhibitory effect on transcription- and replication-competent virus-like particles, with an IC50 as low as 330 nm. Comparative analysis further demonstrated that teicoplanin is able to block the entry of Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) envelope pseudotyped viruses as well. Teicoplanin derivatives such as dalbavancin, oritavancin, and telavancin can also inhibit the entry of Ebola, MERS, and SARS viruses. Mechanistic studies showed that teicoplanin blocks Ebola virus entry by specifically inhibiting the activity of cathepsin L, opening a novel avenue for the development of additional glycopeptides as potential inhibitors of cathepsin L-dependent viruses. Notably, given that teicoplanin has routinely been used in the clinic with low toxicity, our work provides a promising prospect for the prophylaxis and treatment of Ebola, MERS, and SARS virus infection. PMID:26953343

  1. Rapid generation of a mouse model for Middle East respiratory syndrome

    PubMed Central

    Zhao, Jincun; Li, Kun; Wohlford-Lenane, Christine; Agnihothram, Sudhakar S.; Fett, Craig; Zhao, Jingxian; Gale, Michael J.; Baric, Ralph S.; Enjuanes, Luis; Gallagher, Tom; McCray, Paul B.; Perlman, Stanley

    2014-01-01

    In this era of continued emergence of zoonotic virus infections, the rapid development of rodent models represents a critical barrier to public health preparedness, including the testing of antivirus therapy and vaccines. The Middle East respiratory syndrome coronavirus (MERS-CoV) was recently identified as the causative agent of a severe pneumonia. Given the ability of coronavirus to rapidly adapt to new hosts, a major public health concern is that MERS-CoV will further adapt to replication in humans, triggering a pandemic. No small-animal model for this infection is currently available, but studies suggest that virus entry factors can confer virus susceptibility. Here, we show that mice were sensitized to MERS-CoV infection by prior transduction with adenoviral vectors expressing the human host-cell receptor dipeptidyl peptidase 4. Mice developed a pneumonia characterized by extensive inflammatory-cell infiltration with virus clearance occurring 6–8 d after infection. Clinical disease and histopathological changes were more severe in the absence of type-I IFN signaling whereas the T-cell response was required for virus clearance. Using these mice, we demonstrated the efficacy of a therapeutic intervention (poly I:C) and a potential vaccine [Venezuelan equine encephalitis replicon particles expressing MERS-CoV spike protein]. We also found little protective cross-reactivity between MERS-CoV and the severe acute respiratory syndrome-CoV. Our results demonstrate that this system will be useful for MERS-CoV studies and for the rapid development of relevant animal models for emerging respiratory viral infections. PMID:24599590

  2. Contact tracing the first Middle East respiratory syndrome case in the Philippines, February 2015.

    PubMed

    Racelis, Sheryl; de los Reyes, Vikki Carr; Sucaldito, Ma Nemia; Deveraturda, Imelda; Roca, John Bobbie; Tayag, Enrique

    2015-01-01

    Middle East respiratory syndrome (MERS) is an illness caused by a coronavirus in which infected persons develop severe acute respiratory illness. A person can be infected through close contacts. This is an outbreak investigation report of the first confirmed MERS case in the Philippines and the subsequent contact tracing activities. Review of patient records and interviews with health-care personnel were done. Patient and close contacts were tested for MERS-coronavirus (CoV) by real time-polymerase chain reaction. Close contacts were identified and categorized. All traced contacts were monitored daily for appearance of illness for 14 days starting from the date of last known exposure to the confirmed case. A standard log sheet was used for symptom monitoring. The case was a 31-year-old female who was a health-care worker in Saudi Arabia. She had mild acute respiratory illness five days before travelling to the Philippines. On 1 February, she travelled with her husband to the Philippines while she had a fever. On 2 February, she attended a health facility in the Philippines. On 8 February, respiratory samples were tested for MERS-CoV and yielded positive results. A total of 449 close contacts were identified, and 297 (66%) were traced. Of those traced, 15 developed respiratory symptoms. All of them tested negative for MERS. In this outbreak investigation, the participation of health-care personnel in conducting vigorous contact tracing may have reduced the risk of transmission. However, being overly cautious to include more contacts for the outbreak response should be further reconsidered.

  3. Middle East Respiratory Syndrome Coronavirus Intra-Host Populations Are Characterized by Numerous High Frequency Variants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borucki, Monica K.; Lao, Victoria; Hwang, Mona

    Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging human pathogen related to SARS virus. In vitro studies indicate this virus may have a broad host range suggesting an increased pandemic potential. Genetic and epidemiological evidence indicate camels serve as a reservoir for MERS virus but the mechanism of cross species transmission is unclear and many questions remain regarding the susceptibility of humans to infection. Deep sequencing data was obtained from the nasal samples of three camels that had been experimentally infected with a human MERS-CoV isolate. A majority of the genome was covered and average coverage was greater thanmore » 12,000x depth. Although only 5 mutations were detected in the consensus sequences, 473 intrahost single nucleotide variants were identified. Lastly, many of these variants were present at high frequencies and could potentially influence viral phenotype and the sensitivity of detection assays that target these regions for primer or probe binding.« less

  4. Middle East Respiratory Syndrome Coronavirus Intra-Host Populations Are Characterized by Numerous High Frequency Variants

    DOE PAGES

    Borucki, Monica K.; Lao, Victoria; Hwang, Mona; ...

    2016-01-20

    Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging human pathogen related to SARS virus. In vitro studies indicate this virus may have a broad host range suggesting an increased pandemic potential. Genetic and epidemiological evidence indicate camels serve as a reservoir for MERS virus but the mechanism of cross species transmission is unclear and many questions remain regarding the susceptibility of humans to infection. Deep sequencing data was obtained from the nasal samples of three camels that had been experimentally infected with a human MERS-CoV isolate. A majority of the genome was covered and average coverage was greater thanmore » 12,000x depth. Although only 5 mutations were detected in the consensus sequences, 473 intrahost single nucleotide variants were identified. Lastly, many of these variants were present at high frequencies and could potentially influence viral phenotype and the sensitivity of detection assays that target these regions for primer or probe binding.« less

  5. The Characteristics of Middle Eastern Respiratory Syndrome Coronavirus Transmission Dynamics in South Korea.

    PubMed

    Kim, Yunhwan; Lee, Sunmi; Chu, Chaeshin; Choe, Seoyun; Hong, Saeme; Shin, Youngseo

    2016-02-01

    The outbreak of Middle Eastern respiratory syndrome coronavirus (MERS-CoV) was one of the major events in South Korea in 2015. In particular, this study pays attention to formulating a mathematical model for MERS transmission dynamics and estimating transmission rates. Incidence data of MERS-CoV from the government authority was analyzed for the first aim and a mathematical model was built and analyzed for the second aim of the study. A mathematical model for MERS-CoV transmission dynamics is used to estimate the transmission rates in two periods due to the implementation of intensive interventions. Using the estimates of the transmission rates, the basic reproduction number was estimated in two periods. Due to the superspreader, the basic reproduction number was very large in the first period; however, the basic reproduction number of the second period has reduced significantly after intensive interventions. It turned out to be the intensive isolation and quarantine interventions that were the most critical factors that prevented the spread of the MERS outbreak. The results are expected to be useful to devise more efficient intervention strategies in the future.

  6. Cynomolgus Macaque as an Animal Model for Severe Acute Respiratory Syndrome

    PubMed Central

    Lawler, James V; Endy, Timothy P; Hensley, Lisa E; Garrison, Aura; Fritz, Elizabeth A; Lesar, May; Baric, Ralph S; Kulesh, David A; Norwood, David A; Wasieloski, Leonard P; Ulrich, Melanie P; Slezak, Tom R; Vitalis, Elizabeth; Huggins, John W; Jahrling, Peter B; Paragas, Jason

    2006-01-01

    Background The emergence of severe acute respiratory syndrome (SARS) in 2002 and 2003 affected global health and caused major economic disruption. Adequate animal models are required to study the underlying pathogenesis of SARS-associated coronavirus (SARS-CoV) infection and to develop effective vaccines and therapeutics. We report the first findings of measurable clinical disease in nonhuman primates (NHPs) infected with SARS-CoV. Methods and Findings In order to characterize clinically relevant parameters of SARS-CoV infection in NHPs, we infected cynomolgus macaques with SARS-CoV in three groups: Group I was infected in the nares and bronchus, group II in the nares and conjunctiva, and group III intravenously. Nonhuman primates in groups I and II developed mild to moderate symptomatic illness. All NHPs demonstrated evidence of viral replication and developed neutralizing antibodies. Chest radiographs from several animals in groups I and II revealed unifocal or multifocal pneumonia that peaked between days 8 and 10 postinfection. Clinical laboratory tests were not significantly changed. Overall, inoculation by a mucosal route produced more prominent disease than did intravenous inoculation. Half of the group I animals were infected with a recombinant infectious clone SARS-CoV derived from the SARS-CoV Urbani strain. This infectious clone produced disease indistinguishable from wild-type Urbani strain. Conclusions SARS-CoV infection of cynomolgus macaques did not reproduce the severe illness seen in the majority of adult human cases of SARS; however, our results suggest similarities to the milder syndrome of SARS-CoV infection characteristically seen in young children. PMID:16605302

  7. High-resolution computed tomography findings of acute respiratory distress syndrome, acute interstitial pneumonia, and acute exacerbation of idiopathic pulmonary fibrosis.

    PubMed

    Ichikado, Kazuya

    2014-02-01

    Diffuse alveolar damage (DAD) is the pathologic feature of rapidly progressive lung diseases, including acute respiratory distress syndrome, acute interstitial pneumonia, and acute exacerbation of idiopathic pulmonary fibrosis. The clinical significance and limitation of high-resolution computed tomography (HRCT) findings in these diseases were reviewed. The HRCT findings correlate well with pathologic phases (exudative, proliferative, and fibrotic) of DAD, although it cannot detect early exudative phase. Traction bronchiolectasis or bronchiectasis within areas of increased attenuation on HRCT scan is a sign of progression from the exudative to the proliferative and fibrotic phase of DAD. Extensive abnormalities seen on HRCT scans, which are indicative of fibroproliferative changes, were independently predictive of poor prognosis in patients with clinically early acute respiratory distress syndrome, acute interstitial pneumonia, and acute exacerbation of idiopathic pulmonary fibrosis. © 2013 Published by Elsevier Inc.

  8. Virological and serological analysis of a recent Middle East respiratory syndrome coronavirus infection case on a triple combination antiviral regimen.

    PubMed

    Spanakis, Nikolaos; Tsiodras, Sotirios; Haagmans, Bart L; Raj, V Stalin; Pontikis, Kostantinos; Koutsoukou, Antonia; Koulouris, Nikolaos G; Osterhaus, Albert D M E; Koopmans, Marion P G; Tsakris, Athanassios

    2014-12-01

    Serological, molecular and phylogenetic analyses of a recently imported case of Middle East respiratory syndrome coronavirus (MERS-CoV) in Greece are reported. Although MERS-CoV remained detectable in the respiratory tract secretions of the patient until the fourth week of illness, viraemia was last detected 2 days after initiation of triple combination therapy with pegylated interferon, ribavirin and lopinavir/ritonavir, administered from Day 13 of illness. Phylogenetic analysis of the virus showed close similarity with other human MERS-CoVs from the recent Jeddah outbreak in Saudi Arabia. Immunoglobulin G (IgG) titres peaked 3 weeks after the onset of illness, whilst IgM levels remained constantly elevated during the follow-up period (second to fifth week of illness). Serological testing confirmed by virus neutralisation assay detected an additional case that was a close contact of the patient. Copyright © 2014. Published by Elsevier B.V.

  9. SARS-unique fold in the Rousettus bat coronavirus HKU9.

    PubMed

    Hammond, Robert G; Tan, Xuan; Johnson, Margaret A

    2017-09-01

    The coronavirus nonstructural protein 3 (nsp3) is a multifunctional protein that comprises multiple structural domains. This protein assists viral polyprotein cleavage, host immune interference, and may play other roles in genome replication or transcription. Here, we report the solution NMR structure of a protein from the "SARS-unique region" of the bat coronavirus HKU9. The protein contains a frataxin fold or double-wing motif, which is an α + β fold that is associated with protein/protein interactions, DNA binding, and metal ion binding. High structural similarity to the human severe acute respiratory syndrome (SARS) coronavirus nsp3 is present. A possible functional site that is conserved among some betacoronaviruses has been identified using bioinformatics and biochemical analyses. This structure provides strong experimental support for the recent proposal advanced by us and others that the "SARS-unique" region is not unique to the human SARS virus, but is conserved among several different phylogenetic groups of coronaviruses and provides essential functions. © 2017 The Protein Society.

  10. Glycopeptide Antibiotics Potently Inhibit Cathepsin L in the Late Endosome/Lysosome and Block the Entry of Ebola Virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV).

    PubMed

    Zhou, Nan; Pan, Ting; Zhang, Junsong; Li, Qianwen; Zhang, Xue; Bai, Chuan; Huang, Feng; Peng, Tao; Zhang, Jianhua; Liu, Chao; Tao, Liang; Zhang, Hui

    2016-04-22

    Ebola virus infection can cause severe hemorrhagic fever with a high mortality in humans. The outbreaks of Ebola viruses in 2014 represented the most serious Ebola epidemics in history and greatly threatened public health worldwide. The development of additional effective anti-Ebola therapeutic agents is therefore quite urgent. In this study, via high throughput screening of Food and Drug Administration-approved drugs, we identified that teicoplanin, a glycopeptide antibiotic, potently prevents the entry of Ebola envelope pseudotyped viruses into the cytoplasm. Furthermore, teicoplanin also has an inhibitory effect on transcription- and replication-competent virus-like particles, with an IC50 as low as 330 nm Comparative analysis further demonstrated that teicoplanin is able to block the entry of Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) envelope pseudotyped viruses as well. Teicoplanin derivatives such as dalbavancin, oritavancin, and telavancin can also inhibit the entry of Ebola, MERS, and SARS viruses. Mechanistic studies showed that teicoplanin blocks Ebola virus entry by specifically inhibiting the activity of cathepsin L, opening a novel avenue for the development of additional glycopeptides as potential inhibitors of cathepsin L-dependent viruses. Notably, given that teicoplanin has routinely been used in the clinic with low toxicity, our work provides a promising prospect for the prophylaxis and treatment of Ebola, MERS, and SARS virus infection. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Hospital Outbreak of Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Assiri, Abdullah; McGeer, Allison; Perl, Trish M.; Price, Connie S.; Al Rabeeah, Abdullah A.; Cummings, Derek A.T.; Alabdullatif, Zaki N.; Assad, Maher; Almulhim, Abdulmohsen; Makhdoom, Hatem; Madani, Hossam; Alhakeem, Rafat; Al-Tawfiq, Jaffar A.; Cotten, Matthew; Watson, Simon J.; Kellam, Paul; Zumla, Alimuddin I.; Memish, Ziad A.

    2013-01-01

    BACKGROUND In September 2012, the World Health Organization reported the first cases of pneumonia caused by the novel Middle East respiratory syndrome coronavirus (MERS-CoV). We describe a cluster of health care–acquired MERS-CoV infections. METHODS Medical records were reviewed for clinical and demographic information and determination of potential contacts and exposures. Case patients and contacts were interviewed. The incubation period and serial interval (the time between the successive onset of symptoms in a chain of transmission) were estimated. Viral RNA was sequenced. RESULTS Between April 1 and May 23, 2013, a total of 23 cases of MERS-CoV infection were reported in the eastern province of Saudi Arabia. Symptoms included fever in 20 patients (87%), cough in 20 (87%), shortness of breath in 11 (48%), and gastrointestinal symptoms in 8 (35%); 20 patients (87%) presented with abnormal chest radiographs. As of June 12, a total of 15 patients (65%) had died, 6 (26%) had recovered, and 2 (9%) remained hospitalized. The median incubation period was 5.2 days (95% confidence interval [CI], 1.9 to 14.7), and the serial interval was 7.6 days (95% CI, 2.5 to 23.1). A total of 21 of the 23 cases were acquired by person-to-person transmission in hemodialysis units, intensive care units, or in-patient units in three different health care facilities. Sequencing data from four isolates revealed a single monophyletic clade. Among 217 household contacts and more than 200 health care worker contacts whom we identified, MERS-CoV infection developed in 5 family members (3 with laboratory-confirmed cases) and in 2 health care workers (both with laboratory-confirmed cases). CONCLUSIONS Person-to-person transmission of MERS-CoV can occur in health care settings and may be associated with considerable morbidity. Surveillance and infection-control measures are critical to a global public health response. PMID:23782161

  12. Nucleocapsid protein-dependent assembly of the RNA packaging signal of Middle East respiratory syndrome coronavirus.

    PubMed

    Hsin, Wei-Chen; Chang, Chan-Hua; Chang, Chi-You; Peng, Wei-Hao; Chien, Chung-Liang; Chang, Ming-Fu; Chang, Shin C

    2018-05-24

    Middle East respiratory syndrome coronavirus (MERS-CoV) consists of a positive-sense, single-stranded RNA genome and four structural proteins: the spike, envelope, membrane, and nucleocapsid protein. The assembly of the viral genome into virus particles involves viral structural proteins and is believed to be mediated through recognition of specific sequences and RNA structures of the viral genome. A culture system for the production of MERS coronavirus-like particles (MERS VLPs) was determined and established by electron microscopy and the detection of coexpressed viral structural proteins. Using the VLP system, a 258-nucleotide RNA fragment, which spans nucleotides 19,712 to 19,969 of the MERS-CoV genome (designated PS258(19712-19969) ME ), was identified to function as a packaging signal. Assembly of the RNA packaging signal into MERS VLPs is dependent on the viral nucleocapsid protein. In addition, a 45-nucleotide stable stem-loop substructure of the PS258(19712-19969) ME interacted with both the N-terminal domain and the C-terminal domain of the viral nucleocapsid protein. Furthermore, a functional SARS-CoV RNA packaging signal failed to assemble into the MERS VLPs, which indicated virus-specific assembly of the RNA genome. A MERS-oV RNA packaging signal was identified by the detection of GFP expression following an incubation of MERS VLPs carrying the heterologous mRNA GFP-PS258(19712-19969) ME with virus permissive Huh7 cells. The MERS VLP system could help us in understanding virus infection and morphogenesis.

  13. Respiratory support in patients with acute respiratory distress syndrome: an expert opinion.

    PubMed

    Chiumello, Davide; Brochard, Laurent; Marini, John J; Slutsky, Arthur S; Mancebo, Jordi; Ranieri, V Marco; Thompson, B Taylor; Papazian, Laurent; Schultz, Marcus J; Amato, Marcelo; Gattinoni, Luciano; Mercat, Alain; Pesenti, Antonio; Talmor, Daniel; Vincent, Jean-Louis

    2017-09-12

    Acute respiratory distress syndrome (ARDS) is a common condition in intensive care unit patients and remains a major concern, with mortality rates of around 30-45% and considerable long-term morbidity. Respiratory support in these patients must be optimized to ensure adequate gas exchange while minimizing the risks of ventilator-induced lung injury. The aim of this expert opinion document is to review the available clinical evidence related to ventilator support and adjuvant therapies in order to provide evidence-based and experience-based clinical recommendations for the management of patients with ARDS.

  14. A case of Clostridium difficile infection complicated by acute respiratory distress syndrome treated with fecal microbiota transplantation.

    PubMed

    Kim, Ji Eun; Gweon, Tae-Geun; Yeo, Chang Dong; Cho, Young-Seok; Kim, Gi Jun; Kim, Jae Young; Kim, Jong Wook; Kim, Hyunho; Lee, Hye Won; Lim, Taeseok; Ham, Hyoju; Oh, Hyun Jin; Lee, Yeongbok; Byeon, Jaeho; Park, Sung Soo

    2014-09-21

    Acute respiratory distress syndrome is a life-threatening disorder caused mainly by pneumonia. Clostridium difficile infection (CDI) is a common nosocomial diarrheal disease. Disruption of normal intestinal flora by antibiotics is the main risk factor for CDI. The use of broad-spectrum antibiotics for serious medical conditions can make it difficult to treat CDI complicated by acute respiratory distress syndrome. Fecal microbiota transplantation is a highly effective treatment in patients with refractory CDI. Here we report on a patient with refractory CDI and acute respiratory distress syndrome caused by pneumonia who was treated with fecal microbiota transplantation.

  15. Genomic and serological detection of bat coronavirus from bats in the Philippines.

    PubMed

    Tsuda, Shumpei; Watanabe, Shumpei; Masangkay, Joseph S; Mizutani, Tetsuya; Alviola, Phillip; Ueda, Naoya; Iha, Koichiro; Taniguchi, Satoshi; Fujii, Hikaru; Kato, Kentaro; Horimoto, Taisuke; Kyuwa, Shigeru; Yoshikawa, Yasuhiro; Akashi, Hiroomi

    2012-12-01

    Bat coronavirus (BtCoV) is assumed to be a progenitor of severe acute respiratory syndrome (SARS)-related coronaviruses. To explore the distribution of BtCoVs in the Philippines, we collected 179 bats and detected viral RNA from intestinal or fecal samples by RT-PCR. The overall prevalence of BtCoVs among bats was 29.6 %. Phylogenetic analysis of the partial RNA-dependent RNA polymerase gene suggested that one of the detected BtCoVs was a novel alphacoronavirus, while the others belonged to the genus Betacoronavirus. Western blotting revealed that 66.5 % of bat sera had antibodies to BtCoV. These surveys suggested the endemic presence of BtCoVs in the Philippines.

  16. Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History

    PubMed Central

    Tao, Ying; Shi, Mang; Chommanard, Christina; Queen, Krista; Zhang, Jing; Markotter, Wanda; Kuzmin, Ivan V.; Holmes, Edward C.

    2017-01-01

    ABSTRACT Bats harbor a large diversity of coronaviruses (CoVs), several of which are related to zoonotic pathogens that cause severe disease in humans. Our screening of bat samples collected in Kenya from 2007 to 2010 not only detected RNA from several novel CoVs but, more significantly, identified sequences that were closely related to human CoVs NL63 and 229E, suggesting that these two human viruses originate from bats. We also demonstrated that human CoV NL63 is a recombinant between NL63-like viruses circulating in Triaenops bats and 229E-like viruses circulating in Hipposideros bats, with the breakpoint located near 5′ and 3′ ends of the spike (S) protein gene. In addition, two further interspecies recombination events involving the S gene were identified, suggesting that this region may represent a recombination “hot spot” in CoV genomes. Finally, using a combination of phylogenetic and distance-based approaches, we showed that the genetic diversity of bat CoVs is primarily structured by host species and subsequently by geographic distances. IMPORTANCE Understanding the driving forces of cross-species virus transmission is central to understanding the nature of disease emergence. Previous studies have demonstrated that bats are the ultimate reservoir hosts for a number of coronaviruses (CoVs), including ancestors of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and human CoV 229E (HCoV-229E). However, the evolutionary pathways of bat CoVs remain elusive. We provide evidence for natural recombination between distantly related African bat coronaviruses associated with Triaenops afer and Hipposideros sp. bats that resulted in a NL63-like virus, an ancestor of the human pathogen HCoV-NL63. These results suggest that interspecies recombination may play an important role in CoV evolution and the emergence of novel CoVs with zoonotic potential. PMID:28077633

  17. Reversal of the Progression of Fatal Coronavirus Infection in Cats by a Broad-Spectrum Coronavirus Protease Inhibitor

    PubMed Central

    Kim, Yunjeong; Liu, Hongwei; Galasiti Kankanamalage, Anushka C.; Weerasekara, Sahani; Hua, Duy H.; Groutas, William C.; Chang, Kyeong-Ok; Pedersen, Niels C.

    2016-01-01

    Coronaviruses infect animals and humans causing a wide range of diseases. The diversity of coronaviruses in many mammalian species is contributed by relatively high mutation and recombination rates during replication. This dynamic nature of coronaviruses may facilitate cross-species transmission and shifts in tissue or cell tropism in a host, resulting in substantial change in virulence. Feline enteric coronavirus (FECV) causes inapparent or mild enteritis in cats, but a highly fatal disease, called feline infectious peritonitis (FIP), can arise through mutation of FECV to FIP virus (FIPV). The pathogenesis of FIP is intimately associated with immune responses and involves depletion of T cells, features shared by some other coronaviruses like Severe Acute Respiratory Syndrome Coronavirus. The increasing risks of highly virulent coronavirus infections in humans or animals call for effective antiviral drugs, but no such measures are yet available. Previously, we have reported the inhibitors that target 3C-like protease (3CLpro) with broad-spectrum activity against important human and animal coronaviruses. Here, we evaluated the therapeutic efficacy of our 3CLpro inhibitor in laboratory cats with FIP. Experimental FIP is 100% fatal once certain clinical and laboratory signs become apparent. We found that antiviral treatment led to full recovery of cats when treatment was started at a stage of disease that would be otherwise fatal if left untreated. Antiviral treatment was associated with a rapid improvement in fever, ascites, lymphopenia and gross signs of illness and cats returned to normal health within 20 days or less of treatment. Significant reduction in viral titers was also observed in cats. These results indicate that continuous virus replication is required for progression of immune-mediated inflammatory disease of FIP. These findings may provide important insights into devising therapeutic strategies and selection of antiviral compounds for further

  18. Extracorporeal gas exchange and spontaneous breathing for the treatment of acute respiratory distress syndrome: an alternative to mechanical ventilation?*.

    PubMed

    Langer, Thomas; Vecchi, Vittoria; Belenkiy, Slava M; Cannon, Jeremy W; Chung, Kevin K; Cancio, Leopoldo C; Gattinoni, Luciano; Batchinsky, Andriy I

    2014-03-01

    Venovenous extracorporeal gas exchange is increasingly used in awake, spontaneously breathing patients as a bridge to lung transplantation. Limited data are available on a similar use of extracorporeal gas exchange in patients with acute respiratory distress syndrome. The aim of this study was to investigate the use of extracorporeal gas exchange in awake, spontaneously breathing sheep with healthy lungs and with acute respiratory distress syndrome and describe the interactions between the native lung (healthy and diseased) and the artificial lung (extracorporeal gas exchange) in this setting. Laboratory investigation. Animal ICU of a governmental laboratory. Eleven awake, spontaneously breathing sheep on extracorporeal gas exchange. Sheep were studied before (healthy lungs) and after the induction of acute respiratory distress syndrome via IV injection of oleic acid. Six gas flow settings (1-10 L/min), resulting in different amounts of extracorporeal CO2 removal (20-100% of total CO2 production), were tested in each animal before and after the injury. Respiratory variables and gas exchange were measured for every gas flow setting. Both healthy and injured sheep reduced minute ventilation according to the amount of extracorporeal CO2 removal, up to complete apnea. However, compared with healthy sheep, sheep with acute respiratory distress syndrome presented significantly increased esophageal pressure variations (25 ± 9 vs 6 ± 3 cm H2O; p < 0.001), which could be reduced only with very high amounts of CO2 removal (> 80% of total CO2 production). Spontaneous ventilation of both healthy sheep and sheep with acute respiratory distress syndrome can be controlled via extracorporeal gas exchange. If this holds true in humans, extracorporeal gas exchange could be used in awake, spontaneously breathing patients with acute respiratory distress syndrome to support gas exchange. A deeper understanding of the pathophysiology of spontaneous breathing during acute respiratory

  19. The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis.

    PubMed

    Venkataraman, Thiagarajan; Frieman, Matthew B

    2017-07-01

    Many survivors of the 2003 outbreak of severe acute respiratory syndrome (SARS) developed residual pulmonary fibrosis with increased severity seen in older patients. Autopsies of patients that died from SARS also showed fibrosis to varying extents. Pulmonary fibrosis can be occasionally seen as a consequence to several respiratory viral infections but is much more common after a SARS coronavirus (SARS-CoV) infection. Given the threat of future outbreaks of severe coronavirus disease, including Middle East respiratory syndrome (MERS), it is important to understand the mechanisms responsible for pulmonary fibrosis, so as to support the development of therapeutic countermeasures and mitigate sequelae of infection. In this article, we summarize pulmonary fibrotic changes observed after a SARS-CoV infection, discuss the extent to which other respiratory viruses induce fibrosis, describe available animal models to study the development of SARS-CoV induced fibrosis and review evidence that pulmonary fibrosis is caused by a hyperactive host response to lung injury mediated by epidermal growth factor receptor (EGFR) signaling. We summarize work from our group and others indicating that inhibiting EGFR signaling may prevent an excessive fibrotic response to SARS-CoV and other respiratory viral infections and propose directions for future research. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The influence of prehospital systemic corticosteroid use on development of acute respiratory distress syndrome and hospital outcomes.

    PubMed

    Karnatovskaia, Lioudmila V; Lee, Augustine S; Gajic, Ognjen; Festic, Emir

    2013-07-01

    The role of systemic corticosteroids in pathophysiology and treatment of acute respiratory distress syndrome is controversial. Use of prehospital systemic corticosteroid therapy may prevent the development of acute respiratory distress syndrome and improve hospital outcomes. This is a preplanned retrospective subgroup analysis of the prospectively identified cohort from a trial by the U.S. Critical Illness and Injury Trials Group designed to validate the Lung Injury Prediction Score. Twenty-two acute care hospitals. : Five thousand eighty-nine patients with at least one risk factor for acute respiratory distress syndrome at the time of hospitalization. Propensity-based analysis of previously recorded data. Three hundred sixty-four patients were on systemic corticosteroids. Prevalence of acute respiratory distress syndrome was 7.7% and 6.9% (odds ratio, 1.1 [95% CI, 0.8-1.7]; p = 0.54) for patients on systemic corticosteroid and not on systemic corticosteroids, respectively. A propensity for being on systemic corticosteroids was derived through logistic regression by using all available covariates. Subsequently, 354 patients (97%) on systemic corticosteroids were matched to 1,093 not on systemic corticosteroids by their propensity score for a total of 1,447 patients in the matched set. Adjusted risk for acute respiratory distress syndrome (odds ratio, 0.96 [95% CI, 0.54-1.38]), invasive ventilation (odds ratio, 0.84 [95% CI, 0.62-1.12]), and in-hospital mortality (odds ratio, 0.97 [95% CI, 0.63-1.49]) was then calculated from the propensity-matched sample using conditional logistic regression model. No significant associations were present. Prehospital use of systemic corticosteroids neither decreased the development of acute respiratory distress syndrome among patients hospitalized with at one least risk factor, nor affected the need for mechanical ventilation or hospital mortality.

  1. Severe acute respiratory syndrome (SARS) S protein production in plants: Development of recombinant vaccine

    PubMed Central

    Pogrebnyak, Natalia; Golovkin, Maxim; Andrianov, Vyacheslav; Spitsin, Sergei; Smirnov, Yuriy; Egolf, Richard; Koprowski, Hilary

    2005-01-01

    In view of a recent spread of severe acute respiratory syndrome (SARS), there is a high demand for production of a vaccine to prevent this disease. Recent studies indicate that SARS-coronavirus (CoV) spike protein (S protein) and its truncated fragments are considered the best candidates for generation of the recombinant vaccine. Toward the development of a safe, effective, and inexpensive vaccine candidate, we have expressed the N-terminal fragment of SARS-CoV S protein (S1) in tomato and low-nicotine tobacco plants. Incorporation of the S1 fragment into plant genomes as well as its transcription was confirmed by PCR and RT-PCR analyses. High levels of expression of recombinant S1 protein were observed in several transgenic lines by Western blot analysis using specific antibodies. Plant-derived antigen was evaluated to induce the systemic and mucosal immune responses in mice. Mice showed significantly increased levels of SARS-CoV-specific IgA after oral ingestion of tomato fruits expressing S1 protein. Sera of mice parenterally primed with tobacco-derived S1 protein revealed the presence of SARS-CoV-specific IgG as detected by Western blot and ELISA analysis. PMID:15956182

  2. Severe acute respiratory syndrome (SARS) S protein production in plants: development of recombinant vaccine.

    PubMed

    Pogrebnyak, Natalia; Golovkin, Maxim; Andrianov, Vyacheslav; Spitsin, Sergei; Smirnov, Yuriy; Egolf, Richard; Koprowski, Hilary

    2005-06-21

    In view of a recent spread of severe acute respiratory syndrome (SARS), there is a high demand for production of a vaccine to prevent this disease. Recent studies indicate that SARS-coronavirus (CoV) spike protein (S protein) and its truncated fragments are considered the best candidates for generation of the recombinant vaccine. Toward the development of a safe, effective, and inexpensive vaccine candidate, we have expressed the N-terminal fragment of SARS-CoV S protein (S1) in tomato and low-nicotine tobacco plants. Incorporation of the S1 fragment into plant genomes as well as its transcription was confirmed by PCR and RT-PCR analyses. High levels of expression of recombinant S1 protein were observed in several transgenic lines by Western blot analysis using specific antibodies. Plant-derived antigen was evaluated to induce the systemic and mucosal immune responses in mice. Mice showed significantly increased levels of SARS-CoV-specific IgA after oral ingestion of tomato fruits expressing S1 protein. Sera of mice parenterally primed with tobacco-derived S1 protein revealed the presence of SARS-CoV-specific IgG as detected by Western blot and ELISA analysis.

  3. Genetic Characteristics of Coronaviruses from Korean Bats in 2016.

    PubMed

    Lee, Saemi; Jo, Seong-Deok; Son, Kidong; An, Injung; Jeong, Jipseol; Wang, Seung-Jun; Kim, Yongkwan; Jheong, Weonhwa; Oem, Jae-Ku

    2018-01-01

    Bats have increasingly been recognized as the natural reservoir of severe acute respiratory syndrome (SARS), coronavirus, and other coronaviruses found in mammals. However, little research has been conducted on bat coronaviruses in South Korea. In this study, bat samples (332 oral swabs, 245 fecal samples, 38 urine samples, and 57 bat carcasses) were collected at 33 natural bat habitat sites in South Korea. RT-PCR and sequencing were performed for specific coronavirus genes to identify the bat coronaviruses in different bat samples. Coronaviruses were detected in 2.7% (18/672) of the samples: 13 oral swabs from one species of the family Rhinolophidae, and four fecal samples and one carcass (intestine) from three species of the family Vespertiliodae. To determine the genetic relationships of the 18 sequences obtained in this study and previously known coronaviruses, the nucleotide sequences of a 392-nt region of the RNA-dependent RNA polymerase (RdRp) gene were analyzed phylogenetically. Thirteen sequences belonging to SARS-like betacoronaviruses showed the highest nucleotide identity (97.1-99.7%) with Bat-CoV-JTMC15 reported in China. The other five sequences were most similar to MERS-like betacoronaviruses. Four nucleotide sequences displayed the highest identity (94.1-95.1%) with Bat-CoV-HKU5 from Hong Kong. The one sequence from a carcass showed the highest nucleotide identity (99%) with Bat-CoV-SC2013 from China. These results suggest that careful surveillance of coronaviruses from bats should be continued, because animal and human infections may result from the genetic variants present in bat coronavirus reservoirs.

  4. Evaluation of Inapparent Nosocomial Severe Acute Respiratory Syndrome Coronavirus Infection in Vietnam by Use of Highly Specific Recombinant Truncated Nucleocapsid Protein-Based Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Yu, Fuxun; Le, Mai Quynh; Inoue, Shingo; Thai, Hong Thi Cam; Hasebe, Futoshi; del Carmen Parquet, Maria; Morita, Kouichi

    2005-01-01

    Severe acute respiratory syndrome (SARS) is a recently emerged human disease associated with pneumonia. Inapparent infection with SARS coronavirus (CoV) is not well characterized. To develop a safe, simple, and reliable screening method for SARS diagnosis and epidemiological study, two recombinant SARS-CoV nucleocapsid proteins (N′ protein and NΔ121 protein) were expressed in Escherichia coli, purified by affinity chromatography, and used as antigens for indirect, immunoglobulin G enzyme-linked immunosorbent assays (ELISA). Serum samples collected from healthy volunteers and SARS patients in Vietnam were used to evaluate the newly developed methods. The N′ protein-based ELISA showed a highly nonspecific reaction. The NΔ121 protein-based ELISA, with a nonspecific reaction drastically reduced compared to that of the nearly-whole-length N′ protein-based ELISA, resulted in higher rates of positive reactions, higher titers, and earlier detection than the SARS-CoV-infected cell lysate-based ELISA. These results indicate that our newly developed SARS-CoV NΔ121 protein-based ELISA is not only safe but also a more specific and more sensitive method to diagnose SARS-CoV infection and hence a useful tool for large-scale epidemiological studies. To identify inapparent SARS-CoV infections, serum samples collected from health care workers (HCWs) in Vietnam were screened by the NΔ121 protein-based ELISA, and positive samples were confirmed by a virus neutralization test. Four out of 149 HCWs were identified to have inapparent SARS-CoV infection in Vietnam, indicating that subclinical SARS-CoV infection in Vietnam is rare but does exist. PMID:16002634

  5. Severe acute respiratory syndrome in a doctor working at the Prince of Wales Hospital.

    PubMed

    Wong, R S M

    2003-06-01

    Severe acute respiratory syndrome is a new disease that is highly contagious and is spreading in the local community and worldwide. This report is of a hospital medical officer with severe acute respiratory syndrome. He presented with sudden onset of fever, chills, myalgia, headache, and dizziness in early March 2003. He developed progressive respiratory symptoms and bilateral pulmonary infiltrates during the second week of his illness. Blood tests showed lymphopenia, mild thrombocytopenia, and prolonged activated partial thromboplastin time with normal d-dimer level. His chest condition gradually responded to ribavirin and corticosteroids, and serial chest X-ray showed resolving pulmonary infiltrates. The importance of early diagnosis lies in the potential for early treatment, leading to better response.

  6. Spontaneously regulated vs. controlled ventilation of acute lung injury/acute respiratory distress syndrome.

    PubMed

    Marini, John J

    2011-02-01

    To present an updated discussion of those aspects of controlled positive pressure breathing and retained spontaneous regulation of breathing that impact the management of patients whose tissue oxygenation is compromised by acute lung injury. The recent introduction of ventilation techniques geared toward integrating natural breathing rhythms into even the earliest phase of acute respiratory distress syndrome support (e.g., airway pressure release, proportional assist ventilation, and neurally adjusted ventilatory assist), has stimulated a burst of new investigations. Optimizing gas exchange, avoiding lung injury, and preserving respiratory muscle strength and endurance are vital therapeutic objectives for managing acute lung injury. Accordingly, comparing the physiology and consequences of breathing patterns that preserve and eliminate breathing effort has been a theme of persisting investigative interest throughout the several decades over which it has been possible to sustain cardiopulmonary life support outside the operating theater.

  7. Global patterns in coronavirus diversity

    PubMed Central

    Johnson, Christine K.; Greig, Denise J.; Kramer, Sarah; Che, Xiaoyu; Wells, Heather; Hicks, Allison L.; Joly, Damien O.; Wolfe, Nathan D.; Daszak, Peter; Karesh, William; Lipkin, W. I.; Morse, Stephen S.; Mazet, Jonna A. K.

    2017-01-01

    Abstract Since the emergence of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrom Coronavirus (MERS-CoV) it has become increasingly clear that bats are important reservoirs of CoVs. Despite this, only 6% of all CoV sequences in GenBank are from bats. The remaining 94% largely consist of known pathogens of public health or agricultural significance, indicating that current research effort is heavily biased towards describing known diseases rather than the ‘pre-emergent’ diversity in bats. Our study addresses this critical gap, and focuses on resource poor countries where the risk of zoonotic emergence is believed to be highest. We surveyed the diversity of CoVs in multiple host taxa from twenty countries to explore the factors driving viral diversity at a global scale. We identified sequences representing 100 discrete phylogenetic clusters, ninety-one of which were found in bats, and used ecological and epidemiologic analyses to show that patterns of CoV diversity correlate with those of bat diversity. This cements bats as the major evolutionary reservoirs and ecological drivers of CoV diversity. Co-phylogenetic reconciliation analysis was also used to show that host switching has contributed to CoV evolution, and a preliminary analysis suggests that regional variation exists in the dynamics of this process. Overall our study represents a model for exploring global viral diversity and advances our fundamental understanding of CoV biodiversity and the potential risk factors associated with zoonotic emergence. PMID:28630747

  8. Evidence that TMPRSS2 Activates the Severe Acute Respiratory Syndrome Coronavirus Spike Protein for Membrane Fusion and Reduces Viral Control by the Humoral Immune Response▿

    PubMed Central

    Glowacka, Ilona; Bertram, Stephanie; Müller, Marcel A.; Allen, Paul; Soilleux, Elizabeth; Pfefferle, Susanne; Steffen, Imke; Tsegaye, Theodros Solomon; He, Yuxian; Gnirss, Kerstin; Niemeyer, Daniela; Schneider, Heike; Drosten, Christian; Pöhlmann, Stefan

    2011-01-01

    The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) can be proteolytically activated by cathepsins B and L upon viral uptake into target cell endosomes. In contrast, it is largely unknown whether host cell proteases located in the secretory pathway of infected cells and/or on the surface of target cells can cleave SARS S. We along with others could previously show that the type II transmembrane protease TMPRSS2 activates the influenza virus hemagglutinin and the human metapneumovirus F protein by cleavage. Here, we assessed whether SARS S is proteolytically processed by TMPRSS2. Western blot analysis revealed that SARS S was cleaved into several fragments upon coexpression of TMPRSS2 (cis-cleavage) and upon contact between SARS S-expressing cells and TMPRSS2-positive cells (trans-cleavage). cis-cleavage resulted in release of SARS S fragments into the cellular supernatant and in inhibition of antibody-mediated neutralization, most likely because SARS S fragments function as antibody decoys. trans-cleavage activated SARS S on effector cells for fusion with target cells and allowed efficient SARS S-driven viral entry into targets treated with a lysosomotropic agent or a cathepsin inhibitor. Finally, ACE2, the cellular receptor for SARS-CoV, and TMPRSS2 were found to be coexpressed by type II pneumocytes, which represent important viral target cells, suggesting that SARS S is cleaved by TMPRSS2 in the lung of SARS-CoV-infected individuals. In summary, we show that TMPRSS2 might promote viral spread and pathogenesis by diminishing viral recognition by neutralizing antibodies and by activating SARS S for cell-cell and virus-cell fusion. PMID:21325420

  9. Debate on MERS-CoV respiratory precautions: surgical mask or N95 respirators?

    PubMed Central

    Chung, Jasmine Shimin; Ling, Moi Lin; Seto, Wing Hong; Ang, Brenda Sze Peng; Tambyah, Paul Anantharajah

    2014-01-01

    Since the emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) in mid-2012, there has been controversy over the respiratory precaution recommendations in different guidelines from various international bodies. Our understanding of MERS-CoV is still evolving. Current recommendations on infection control practices are heavily influenced by the lessons learnt from severe acute respiratory syndrome. A debate on respiratory precautions for MERS-CoV was organised by Infection Control Association (Singapore) and the Society of Infectious Disease (Singapore). We herein discuss and present the evidence for surgical masks for the protection of healthcare workers from MERS-CoV. PMID:25017402

  10. Identification of a Novel Inhibitor against Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Sun, Yaping; Zhang, Huaidong; Shi, Jian; Zhang, Zhe; Gong, Rui

    2017-01-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV) was first isolated in 2012, and circulated worldwide with high mortality. The continual outbreaks of MERS-CoV highlight the importance of developing antiviral therapeutics. Here, we rationally designed a novel fusion inhibitor named MERS-five-helix bundle (MERS-5HB) derived from the six-helix bundle (MERS-6HB) which was formed by the process of membrane fusion. MERS-5HB consists of three copies of heptad repeat 1 (HR1) and two copies of heptad repeat 2 (HR2) while MERS-6HB includes three copies each of HR1 and HR2. As it lacks one HR2, MERS-5HB was expected to interact with viral HR2 to interrupt the fusion step. What we found was that MERS-5HB could bind to HR2P, a peptide derived from HR2, with a strong affinity value (KD) of up to 0.24 nM. Subsequent assays indicated that MERS-5HB could inhibit pseudotyped MERS-CoV entry effectively with 50% inhibitory concentration (IC50) of about 1 μM. In addition, MERS-5HB significantly inhibited spike (S) glycoprotein-mediated syncytial formation in a dose-dependent manner. Further biophysical characterization showed that MERS-5HB was a thermo-stable α-helical secondary structure. The inhibitory potency of MERS-5HB may provide an attractive basis for identification of a novel inhibitor against MERS-CoV, as a potential antiviral agent. PMID:28906430

  11. Fluid management with a simplified conservative protocol for the acute respiratory distress syndrome*.

    PubMed

    Grissom, Colin K; Hirshberg, Eliotte L; Dickerson, Justin B; Brown, Samuel M; Lanspa, Michael J; Liu, Kathleen D; Schoenfeld, David; Tidswell, Mark; Hite, R Duncan; Rock, Peter; Miller, Russell R; Morris, Alan H

    2015-02-01

    In the Fluid and Catheter Treatment Trial (FACTT) of the National Institutes of Health Acute Respiratory Distress Syndrome Network, a conservative fluid protocol (FACTT Conservative) resulted in a lower cumulative fluid balance and better outcomes than a liberal fluid protocol (FACTT Liberal). Subsequent Acute Respiratory Distress Syndrome Network studies used a simplified conservative fluid protocol (FACTT Lite). The objective of this study was to compare the performance of FACTT Lite, FACTT Conservative, and FACTT Liberal protocols. Retrospective comparison of FACTT Lite, FACTT Conservative, and FACTT Liberal. Primary outcome was cumulative fluid balance over 7 days. Secondary outcomes were 60-day adjusted mortality and ventilator-free days through day 28. Safety outcomes were prevalence of acute kidney injury and new shock. ICUs of Acute Respiratory Distress Syndrome Network participating hospitals. Five hundred three subjects managed with FACTT Conservative, 497 subjects managed with FACTT Liberal, and 1,124 subjects managed with FACTT Lite. Fluid management by protocol. Cumulative fluid balance was 1,918 ± 323 mL in FACTT Lite, -136 ± 491 mL in FACTT Conservative, and 6,992 ± 502 mL in FACTT Liberal (p < 0.001). Mortality was not different between groups (24% in FACTT Lite, 25% in FACTT Conservative and Liberal, p = 0.84). Ventilator-free days in FACTT Lite (14.9 ± 0.3) were equivalent to FACTT Conservative (14.6 ± 0.5) (p = 0.61) and greater than in FACTT Liberal (12.1 ± 0.5, p < 0.001 vs Lite). Acute kidney injury prevalence was 58% in FACTT Lite and 57% in FACTT Conservative (p = 0.72). Prevalence of new shock in FACTT Lite (9%) was lower than in FACTT Conservative (13%) (p = 0.007 vs Lite) and similar to FACTT Liberal (11%) (p = 0.18 vs Lite). FACTT Lite had a greater cumulative fluid balance than FACTT Conservative but had equivalent clinical and safety outcomes. FACTT Lite is an alternative to FACTT Conservative for fluid management in Acute

  12. A Kinome-Wide Small Interfering RNA Screen Identifies Proviral and Antiviral Host Factors in Severe Acute Respiratory Syndrome Coronavirus Replication, Including Double-Stranded RNA-Activated Protein Kinase and Early Secretory Pathway Proteins

    PubMed Central

    de Wilde, Adriaan H.; Wannee, Kazimier F.; Scholte, Florine E. M.; Goeman, Jelle J.; ten Dijke, Peter; Snijder, Eric J.

    2015-01-01

    ABSTRACT To identify host factors relevant for severe acute respiratory syndrome-coronavirus (SARS-CoV) replication, we performed a small interfering RNA (siRNA) library screen targeting the human kinome. Protein kinases are key regulators of many cellular functions, and the systematic knockdown of their expression should provide a broad perspective on factors and pathways promoting or antagonizing coronavirus replication. In addition to 40 proteins that promote SARS-CoV replication, our study identified 90 factors exhibiting an antiviral effect. Pathway analysis grouped subsets of these factors in specific cellular processes, including the innate immune response and the metabolism of complex lipids, which appear to play a role in SARS-CoV infection. Several factors were selected for in-depth validation in follow-up experiments. In cells depleted for the β2 subunit of the coatomer protein complex (COPB2), the strongest proviral hit, we observed reduced SARS-CoV protein expression and a >2-log reduction in virus yield. Knockdown of the COPB2-related proteins COPB1 and Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1) also suggested that COPI-coated vesicles and/or the early secretory pathway are important for SARS-CoV replication. Depletion of the antiviral double-stranded RNA-activated protein kinase (PKR) enhanced virus replication in the primary screen, and validation experiments confirmed increased SARS-CoV protein expression and virus production upon PKR depletion. In addition, cyclin-dependent kinase 6 (CDK6) was identified as a novel antiviral host factor in SARS-CoV replication. The inventory of pro- and antiviral host factors and pathways described here substantiates and expands our understanding of SARS-CoV replication and may contribute to the identification of novel targets for antiviral therapy. IMPORTANCE Replication of all viruses, including SARS-CoV, depends on and is influenced by cellular pathways. Although

  13. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling

    PubMed Central

    Jones, Joshua D.; Chung, Betty Y.-W.; Siddell, Stuart G.; Brierley, Ian

    2016-01-01

    Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global “snap-shot” of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal

  14. Middle East Respiratory Syndrome Coronavirus Nonstructural Protein 16 Is Necessary for Interferon Resistance and Viral Pathogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menachery, Vineet D.; Gralinski, Lisa E.; Mitchell, Hugh D.

    ABSTRACT Coronaviruses (CoVs) encode a mixture of highly conserved and novel genes, as well as genetic elements necessary for infection and pathogenesis, raising the possibility of common targets for attenuation and therapeutic design. In this study, we focused on highly conserved nonstructural protein 16 (NSP16), a viral 2'O-methyltransferase (2'O-MTase) that encodes critical functions in immune modulation and infection. Using reverse genetics, we disrupted a key motif in the conserved KDKE motif of Middle East respiratory syndrome CoV (MERS-CoV) NSP16 (D130A) and evaluated the effect on viral infection and pathogenesis. While the absence of 2'O-MTase activity had only a marginal impactmore » on propagation and replication in Vero cells, dNSP16 mutant MERS-CoV demonstrated significant attenuation relative to the control both in primary human airway cell cultures andin vivo. Further examination indicated that dNSP16 mutant MERS-CoV had a type I interferon (IFN)-based attenuation and was partially restored in the absence of molecules of IFN-induced proteins with tetratricopeptide repeats. Importantly, the robust attenuation permitted the use of dNSP16 mutant MERS-CoV as a live attenuated vaccine platform protecting from a challenge with a mouse-adapted MERS-CoV strain. These studies demonstrate the importance of the conserved 2'O-MTase activity for CoV pathogenesis and highlight NSP16 as a conserved universal target for rapid live attenuated vaccine design in an expanding CoV outbreak setting. IMPORTANCECoronavirus (CoV) emergence in both humans and livestock represents a significant threat to global public health, as evidenced by the sudden emergence of severe acute respiratory syndrome CoV (SARS-CoV), MERS-CoV, porcine epidemic diarrhea virus, and swine delta CoV in the 21st century. These studies describe an approach that effectively targets the highly conserved 2'O-MTase activity of CoVs for attenuation. With clear understanding of the IFN/IFIT (IFN

  15. Individualized positive end-expiratory pressure application in patients with acute respiratory distress syndrome.

    PubMed

    Pintado, M C; de Pablo, R

    2014-11-01

    Current treatment of acute respiratory distress syndrome is based on ventilatory support with a lung protective strategy, avoiding the development of iatrogenic injury, including ventilator-induced lung injury. One of the mechanisms underlying such injury is atelectrauma, and positive end-expiratory pressure (PEEP) is advocated in order to avoid it. The indicated PEEP level has not been defined, and in many cases is based on the patient oxygen requirements for maintaining adequate oxygenation. However, this strategy does not consider the mechanics of the respiratory system, which varies in each patient and depends on many factors-including particularly the duration of acute respiratory distress syndrome. A review is therefore made of the different methods for adjusting PEEP, focusing on the benefits of individualized application. Copyright © 2013 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  16. Pharmacotherapy of Acute Lung Injury and Acute Respiratory Distress Syndrome

    PubMed Central

    Raghavendran, Krishnan; Pryhuber, Gloria S.; Chess, Patricia R.; Davidson, Bruce A.; Knight, Paul R.; Notter, Robert H.

    2009-01-01

    Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) are characterized by rapid-onset respiratory failure following a variety of direct and indirect insults to the parenchyma or vasculature of the lungs. Mortality from ALI/ARDS is substantial, and current therapy primarily emphasizes mechanical ventilation and judicial fluid management plus standard treatment of the initiating insult and any known underlying disease. Current pharmacotherapy for ALI/ARDS is not optimal, and there is a significant need for more effective medicinal chemical agents for use in these severe and lethal lung injury syndromes. To facilitate future chemical-based drug discovery research on new agent development, this paper reviews present pharmacotherapy for ALI/ARDS in the context of biological and biochemical drug activities. The complex lung injury pathophysiology of ALI/ARDS offers an array of possible targets for drug therapy, including inflammation, cell and tissue injury, vascular dysfunction, surfactant dysfunction, and oxidant injury. Added targets for pharmacotherapy outside the lungs may also be present, since multiorgan or systemic pathology is common in ALI/ARDS. The biological and physiological complexity of ALI/ARDS requires the consideration of combined-agent treatments in addition to single-agent therapies. A number of pharmacologic agents have been studied individually in ALI/ARDS, with limited or minimal success in improving survival. However, many of these agents have complementary biological/biochemical activities with the potential for synergy or additivity in combination therapy as discussed in this article. PMID:18691048

  17. Risks of Death and Severe Disease in Patients With Middle East Respiratory Syndrome Coronavirus, 2012-2015.

    PubMed

    Rivers, Caitlin M; Majumder, Maimuna S; Lofgren, Eric T

    2016-09-15

    Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging pathogen, first recognized in 2012, with a high case fatality risk, no vaccine, and no treatment beyond supportive care. We estimated the relative risks of death and severe disease among MERS-CoV patients in the Middle East between 2012 and 2015 for several risk factors, using Poisson regression with robust variance and a bootstrap-based expectation maximization algorithm to handle extensive missing data. Increased age and underlying comorbidity were risk factors for both death and severe disease, while cases arising in Saudi Arabia were more likely to be severe. Cases occurring later in the emergence of MERS-CoV and among health-care workers were less serious. This study represents an attempt to estimate risk factors for an emerging infectious disease using open data and to address some of the uncertainty surrounding MERS-CoV epidemiology. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Acute respiratory distress syndrome.

    PubMed

    Confalonieri, Marco; Salton, Francesco; Fabiano, Francesco

    2017-06-30

    Since its first description, the acute respiratory distress syndrome (ARDS) has been acknowledged to be a major clinical problem in respiratory medicine. From July 2015 to July 2016 almost 300 indexed articles were published on ARDS. This review summarises only eight of them as an arbitrary overview of clinical relevance: definition and epidemiology, risk factors, prevention and treatment. A strict application of definition criteria is crucial, but the diverse resource-setting scenarios foster geographic variability and contrasting outcome data. A large international multicentre prospective cohort study including 50 countries across five continents reported that ARDS is underdiagnosed, and there is potential for improvement in its management. Furthermore, epidemiological data from low-income countries suggest that a revision of the current definition of ARDS is needed in order to improve its recognition and global clinical outcome. In addition to the well-known risk-factors for ARDS, exposure to high ozone levels and low vitamin D plasma concentrations were found to be predisposing circumstances. Drug-based preventive strategies remain a major challenge, since two recent trials on aspirin and statins failed to reduce the incidence in at-risk patients. A new disease-modifying therapy is awaited: some recent studies promised to improve the prognosis of ARDS, but mortality and disabling complications are still high in survivors in intensive care. Copyright ©ERS 2017.

  19. Age, PaO2/FIO2, and Plateau Pressure Score: A Proposal for a Simple Outcome Score in Patients With the Acute Respiratory Distress Syndrome.

    PubMed

    Villar, Jesús; Ambrós, Alfonso; Soler, Juan Alfonso; Martínez, Domingo; Ferrando, Carlos; Solano, Rosario; Mosteiro, Fernando; Blanco, Jesús; Martín-Rodríguez, Carmen; Fernández, María Del Mar; López, Julia; Díaz-Domínguez, Francisco J; Andaluz-Ojeda, David; Merayo, Eleuterio; Pérez-Méndez, Lina; Fernández, Rosa Lidia; Kacmarek, Robert M

    2016-07-01

    Although there is general agreement on the characteristic features of the acute respiratory distress syndrome, we lack a scoring system that predicts acute respiratory distress syndrome outcome with high probability. Our objective was to develop an outcome score that clinicians could easily calculate at the bedside to predict the risk of death of acute respiratory distress syndrome patients 24 hours after diagnosis. A prospective, multicenter, observational, descriptive, and validation study. A network of multidisciplinary ICUs. Six-hundred patients meeting Berlin criteria for moderate and severe acute respiratory distress syndrome enrolled in two independent cohorts treated with lung-protective ventilation. None. Using individual demographic, pulmonary, and systemic data at 24 hours after acute respiratory distress syndrome diagnosis, we derived our prediction score in 300 acute respiratory distress syndrome patients based on stratification of variable values into tertiles, and validated in an independent cohort of 300 acute respiratory distress syndrome patients. Primary outcome was in-hospital mortality. We found that a 9-point score based on patient's age, PaO2/FIO2 ratio, and plateau pressure at 24 hours after acute respiratory distress syndrome diagnosis was associated with death. Patients with a score greater than 7 had a mortality of 83.3% (relative risk, 5.7; 95% CI, 3.0-11.0), whereas patients with scores less than 5 had a mortality of 14.5% (p < 0.0000001). We confirmed the predictive validity of the score in a validation cohort. A simple 9-point score based on the values of age, PaO2/FIO2 ratio, and plateau pressure calculated at 24 hours on protective ventilation after acute respiratory distress syndrome diagnosis could be used in real time for rating prognosis of acute respiratory distress syndrome patients with high probability.

  20. The SARS-Coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds

    PubMed Central

    Baez-Santos, Yahira M.; St. John, Sarah E.; Mesecar, Andrew D.

    2018-01-01

    Over ten years have passed since the deadly human coronavirus that causes severe acute respiratory syndrome (SARS-CoV) emerged from the Guangdong Province of China. Despite the fact that the SARS-CoV pandemic infected over 8,500 individuals, claimed over 800 lives and cost billions of dollars in economic loss worldwide, there still are no clinically approved antiviral drugs, vaccines or monoclonal antibody therapies to treat SARS-CoV infections. The recent emergence of the deadly human coronavirus that causes Middle East respiratory syndrome (MERS-CoV) is a sobering reminder that new and deadly coronaviruses can emerge at any time with the potential to become pandemics. Therefore, the continued development of therapeutic and prophylactic countermeasures to potentially deadly coronaviruses is warranted. The coronaviral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro), are attractive antiviral drug targets because they are essential for coronaviral replication. Although the primary function of PLpro and 3CLpro are to process the viral polyprotein in a coordinated manner, PLpro has the additional function of stripping ubiquitin and ISG15 from host-cell proteins to aid coronaviruses in their evasion of the host innate immune responses. Therefore, targeting PLpro with antiviral drugs may have an advantage in not only inhibiting viral replication but also inhibiting the dysregulation of signaling cascades in infected cells that may lead to cell death in surrounding, uninfected cells. This review provides an up-to-date discussion on the SARS-CoV papain-like protease including a brief overview of the SARS-CoV genome and replication followed by a more in-depth discussion on the structure and catalytic mechanism of SARS-CoV PLpro, the multiple cellular functions of SARS-CoV PLpro, the inhibition of SARS-CoV PLpro by small molecule inhibitors, and the prospect of inhibiting papain-like protease from other coronaviruses. This paper forms part of a series

  1. Acute Middle East Respiratory Syndrome Coronavirus: Temporal Lung Changes Observed on the Chest Radiographs of 55 Patients.

    PubMed

    Das, Karuna M; Lee, Edward Y; Al Jawder, Suhayla E; Enani, Mushira A; Singh, Rajvir; Skakni, Leila; Al-Nakshabandi, Nizar; AlDossari, Khalid; Larsson, Sven G

    2015-09-01

    The objective of our study was to describe lung changes on serial chest radiographs from patients infected with the acute Middle East respiratory syndrome corona-virus (MERS-CoV) and to compare the chest radiographic findings and final outcomes with those of health care workers (HCWs) infected with the same virus. Chest radiographic scores and comorbidities were also examined as indicators of a fatal outcome to determine their potential prognostic value. Chest radiographs of 33 patients and 22 HCWs infected with MERS-CoV were examined for radiologic features indicative of disease and for evidence of radiographic deterioration and progression. Chest radiographic scores were estimated after dividing each lung into three zones. The scores (1 [mild] to 4 [severe]) for all six zones per chest radiographic examination were summed to provide a cumulative chest radiographic score (range, 0-24). Serial radiographs were also examined to assess for radiographic deterioration and progression from type 1 (mild) to type 4 (severe) disease. Multivariate logistic regression analysis, Kaplan-Meier survival curve analysis, and the Mann-Whitney U test were used to compare data of deceased patients with those of individuals who recovered to identify prognostic radiographic features. Ground-glass opacity was the most common abnormality (66%) followed by consolidation (18%). Overall mortality was 35% (19/55). Mortality was higher in the patient group (55%, 18/33) than in the HCW group (5%, 1/22). The mean chest radiographic score for deceased patients was significantly higher than that for those who recovered (13 ± 2.6 [SD] vs 5.8 ± 5.6, respectively; p = 0.001); in addition, higher rates of pneumothorax (deceased patients vs patients who recovered, 47% vs 0%; p = 0.001), pleural effusion (63% vs 14%; p = 0.001), and type 4 radiographic progression (63% vs 6%; p = 0.001) were seen in the deceased patients compared with those who recovered. Univariate and logistic regression analyses

  2. Lectin Affinity Plasmapheresis for Middle East Respiratory Syndrome-Coronavirus and Marburg Virus Glycoprotein Elimination.

    PubMed

    Koch, Benjamin; Schult-Dietrich, Patricia; Büttner, Stefan; Dilmaghani, Bijan; Lohmann, Dario; Baer, Patrick C; Dietrich, Ursula; Geiger, Helmut

    2018-04-26

    Middle East respiratory syndrome coronavirus (MERS-CoV) and Marburg virus (MARV) are among the World Health Organization's top 8 emerging pathogens. Both zoonoses share nonspecific early symptoms, a high lethality rate, and a reduced number of specific treatment options. Therefore, we evaluated extracorporeal virus and glycoprotein (GP) elimination by lectin affinity plasmapheresis (LAP). For both MERS-CoV (pseudovirus) as well as MARV (GPs), 4 LAP devices (Mini Hemopurifiers, Aethlon Medical, San Diego, CA, USA) and 4 negative controls were tested. Samples were collected every 30 min and analyzed for reduction in virus infectivity by a flow cytometry-based infectivity assay (MERS-CoV) and in soluble GP content (MARV) by an immunoassay. The experiments show a time-dependent clearance of MERS-CoV of up to 80% within 3 h (pseudovirus). Up to 70% of MARV-soluble GPs were eliminated at the same time. Substantial saturation of the binding resins was detected within the first treatment hour. MERS-CoV (pseudovirus) and MARV soluble GPs are eliminated by LAP in vitro. Considering the high lethality and missing established treatment options, LAP should be evaluated in vivo. Especially early initiation, continuous therapy, and timed cartridge exchanges could be of importance. The Author(s). Published by S. Karger AG, Basel.

  3. Evaluation of inapparent nosocomial severe acute respiratory syndrome coronavirus infection in Vietnam by use of highly specific recombinant truncated nucleocapsid protein-based enzyme-linked immunosorbent assay.

    PubMed

    Yu, Fuxun; Le, Mai Quynh; Inoue, Shingo; Thai, Hong Thi Cam; Hasebe, Futoshi; Del Carmen Parquet, Maria; Morita, Kouichi

    2005-07-01

    Severe acute respiratory syndrome (SARS) is a recently emerged human disease associated with pneumonia. Inapparent infection with SARS coronavirus (CoV) is not well characterized. To develop a safe, simple, and reliable screening method for SARS diagnosis and epidemiological study, two recombinant SARS-CoV nucleocapsid proteins (N' protein and (N)Delta(121) protein) were expressed in Escherichia coli, purified by affinity chromatography, and used as antigens for indirect, immunoglobulin G enzyme-linked immunosorbent assays (ELISA). Serum samples collected from healthy volunteers and SARS patients in Vietnam were used to evaluate the newly developed methods. The N' protein-based ELISA showed a highly nonspecific reaction. The (N)Delta(121) protein-based ELISA, with a nonspecific reaction drastically reduced compared to that of the nearly-whole-length N' protein-based ELISA, resulted in higher rates of positive reactions, higher titers, and earlier detection than the SARS-CoV-infected cell lysate-based ELISA. These results indicate that our newly developed SARS-CoV (N)Delta(121) protein-based ELISA is not only safe but also a more specific and more sensitive method to diagnose SARS-CoV infection and hence a useful tool for large-scale epidemiological studies. To identify inapparent SARS-CoV infections, serum samples collected from health care workers (HCWs) in Vietnam were screened by the (N)Delta(121) protein-based ELISA, and positive samples were confirmed by a virus neutralization test. Four out of 149 HCWs were identified to have inapparent SARS-CoV infection in Vietnam, indicating that subclinical SARS-CoV infection in Vietnam is rare but does exist.

  4. Severe acute respiratory syndrome: implications for perinatal and neonatal nurses.

    PubMed

    Rebmann, Terri

    2005-01-01

    Severe acute respiratory syndrome (SARS) is an emerging infection that causes a potentially fatal respiratory disease. Although the SARS outbreak lasted less than 1 year, it resulted in significant morbidity and mortality and impacted nursing practices. A literature review was conducted. Only English language research articles in peer-reviewed journals, national organization publications, and book chapters were utilized. Data from 37 relevant articles were extracted, analyzed, and summarized. SARS' clinical description is presented, including its common signs/symptoms, diagnosis, and treatment. Recommended isolation practices for labor and delivery and proper procedures for donning, using, and doffing personal protective equipment are provided. Potential maternal outcomes include spontaneous miscarriage during the first trimester, preterm birth, emergency cesarean section, renal failure, secondary bacterial pneumonia, sepsis, adult respiratory distress syndrome, disseminated intravascular coagulation, surgical site infection, and maternal death. There have been no documented cases of vertical transmission; passive immunity is suspected on the basis of the presence of antibodies in some maternal body fluids. Potential neonatal outcomes include complications related to premature birth, intrauterine growth restriction, respiratory distress syndrome, and severe gastrointestinal manifestations. It is not known if or when SARS will reemerge, but perinatal and neonatal nurses should become familiar with its clinical description and proper infection control procedures to halt potential outbreaks.

  5. Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines.

    PubMed

    Müller, Marcel A; Raj, V Stalin; Muth, Doreen; Meyer, Benjamin; Kallies, Stephan; Smits, Saskia L; Wollny, Robert; Bestebroer, Theo M; Specht, Sabine; Suliman, Tasnim; Zimmermann, Katrin; Binger, Tabea; Eckerle, Isabella; Tschapka, Marco; Zaki, Ali M; Osterhaus, Albert D M E; Fouchier, Ron A M; Haagmans, Bart L; Drosten, Christian

    2012-12-11

    A new human coronavirus (hCoV-EMC) has emerged very recently in the Middle East. The clinical presentation resembled that of the severe acute respiratory syndrome (SARS) as encountered during the epidemic in 2002/2003. In both cases, acute renal failure was observed in humans. HCoV-EMC is a member of the same virus genus as SARS-CoV but constitutes a sister species. Here we investigated whether it might utilize angiotensin-converting enzyme 2 (ACE2), the SARS-CoV receptor. Knowledge of the receptor is highly critical because the restriction of the SARS receptor to deep compartments of the human respiratory tract limited the spread of SARS. In baby hamster kidney (BHK) cells, lentiviral transduction of human ACE2 (hACE2) conferred permissiveness and replication for SARS-CoV but not for hCoV-EMC. Monkey and human kidney cells (LLC-MK2, Vero, and 769-P) and swine kidney cells were permissive for both viruses, but only SARS-CoV infection could be blocked by anti-hACE2 antibody and could be neutralized by preincubation of virus with soluble ACE2. Our data show that ACE2 is neither necessary nor sufficient for hCoV-EMC replication. Moreover, hCoV-EMC, but not SARS-CoV, replicated in cell lines from Rousettus, Rhinolophus, Pipistrellus, Myotis, and Carollia bats, representing four major chiropteran families from both suborders. As human CoV normally cannot replicate in bat cells from different families, this suggests that hCoV-EMC might use a receptor molecule that is conserved in bats, pigs, and humans, implicating a low barrier against cross-host transmission. IMPORTANCE A new human coronavirus (hCoV) emerged recently in the Middle East. The disease resembled SARS (severe acute respiratory syndrome), causing a fatal epidemic in 2002/2003. Coronaviruses have a reservoir in bats and because this novel virus is related to SARS-CoV, we investigated whether it might replicate in bat cells and use the same receptor (angiotensin-converting enzyme 2 [ACE2]). This knowledge is

  6. Prophylaxis With a Middle East Respiratory Syndrome Coronavirus (MERS-CoV)–Specific Human Monoclonal Antibody Protects Rabbits From MERS-CoV Infection

    PubMed Central

    Houser, Katherine V.; Gretebeck, Lisa; Ying, Tianlei; Wang, Yanping; Vogel, Leatrice; Lamirande, Elaine W.; Bock, Kevin W.; Moore, Ian N.; Dimitrov, Dimiter S.; Subbarao, Kanta

    2016-01-01

    With >1600 documented human infections with Middle East respiratory syndrome coronavirus (MERS-CoV) and a case fatality rate of approximately 36%, medical countermeasures are needed to prevent and limit the disease. We examined the in vivo efficacy of the human monoclonal antibody m336, which has high neutralizing activity against MERS-CoV in vitro. m336 was administered to rabbits intravenously or intranasally before infection with MERS-CoV. Prophylaxis with m336 resulted in a reduction of pulmonary viral RNA titers by 40–9000-fold, compared with an irrelevant control antibody with little to no inflammation or viral antigen detected. This protection in rabbits supports further clinical development of m336. PMID:26941283

  7. Imported case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection from Oman to Thailand, June 2015

    PubMed Central

    Plipat, Tanarak; Buathong, Rome; Wacharapluesadee, Supaporn; Siriarayapon, Potjaman; Pittayawonganon, Chakrarat; Sangsajja, Chariya; Kaewpom, Thongchai; Petcharat, Sininat; Ponpinit, Teerada; Jumpasri, Jaruphan; Joyjinda, Yutthana; Rodpan, Apaporn; Ghai, Siriporn; Jittmittraphap, Akanitt; Khongwichit, Sarawut; Smith, Duncan R; Corman, Victor M; Drosten, Christian; Hemachudha, Thiravat

    2017-01-01

    Thailand reported the first Middle East respiratory syndrome (MERS) case on 18 June 2015 (day 4) in an Omani patient with heart condition who was diagnosed with pneumonia on hospital admission on 15 June 2015 (day 1). Two false negative RT-PCR on upper respiratory tract samples on days 2 and 3 led to a 48-hour diagnosis delay and a decision to transfer the patient out of the negative pressure unit (NPU). Subsequent examination of sputum later on day 3 confirmed MERS coronavirus (MERS-CoV) infection. The patient was immediately moved back into the NPU and then transferred to Bamrasnaradura Infectious Disease Institute. Over 170 contacts were traced; 48 were quarantined and 122 self-monitored for symptoms. High-risk close contacts exhibiting no symptoms, and whose laboratory testing on the 12th day after exposure was negative, were released on the 14th day. The Omani Ministry of Health (MOH) was immediately notified using the International Health Regulation (IHR) mechanism. Outbreak investigation was conducted in Oman, and was both published on the World Health Organization (WHO) intranet and shared with Thailand’s IHR focal point. The key to successful infection control, with no secondary transmission, were the collaborative efforts among hospitals, laboratories and MOHs of both countries. PMID:28840828

  8. Association of RANTES with the replication of severe acute respiratory syndrome coronavirus in THP-1 cells.

    PubMed

    Li, D; Wu, N; Yao, H; Bader, A; Brockmeyer, Norbert H; Altmeyer, P

    2005-03-29

    Severe acute respiratory syndrome (SARS) is a novel infectious disease which is characterized by an overaggressive immune response. Chemokines are important inflammatory mediators and regulate disease due to viral infection. In previous study, we found that SARS-CoV has the ability to replicate in mononuclear cells. In present work, we sought to characterize the replication of SARS-CoV at the presence of RANTES in THP-1 cells. To determine whether RANTES play an role in the process of SARS, THP-1 cells were incubated with heat-inactivated SARS-CoV and ELISA was used to test RANTES levels in the supernatants; Then the effect of dexamethasone on the induced secretion was evaluated. Real-time PCR was used to investigate the effort of RANTES on the replication of SARS-CoV in vitro. Macrophages, induced by THP-1 cells, were used as cell model. Inactive SARS-CoV could induce THP-1 cells secret RANTES and this increase effect could not be suppressed by DXM. RANTES itself could inhibit the replication of SARS-CoV in THP-1 cells when it was added into the culture before or at the same time with the virus; No inhibition effect was shown when RANTES were added into the culture after SARS-CoV infected the cells.

  9. CDC's Early Response to a Novel Viral Disease, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), September 2012-May 2014.

    PubMed

    Williams, Holly Ann; Dunville, Richard L; Gerber, Susan I; Erdman, Dean D; Pesik, Nicki; Kuhar, David; Mason, Karen A; Haynes, Lia; Rotz, Lisa; St Pierre, Jeanette; Poser, Sarah; Bunga, Sudhir; Pallansch, Mark A; Swerdlow, David L

    2015-01-01

    The first ever case of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) was reported in September 2012. This report describes the approaches taken by CDC, in collaboration with the World Health Organization (WHO) and other partners, to respond to this novel virus, and outlines the agency responses prior to the first case appearing in the United States in May 2014. During this time, CDC's response integrated multiple disciplines and was divided into three distinct phases: before, during, and after the initial activation of its Emergency Operations Center. CDC's response to MERS-CoV required a large effort, deploying at least 353 staff members who worked in the areas of surveillance, laboratory capacity, infection control guidance, and travelers' health. This response built on CDC's experience with previous outbreaks of other pathogens and provided useful lessons for future emerging threats.

  10. The SARS-Coronavirus-Host Interactome: Identification of Cyclophilins as Target for Pan-Coronavirus Inhibitors

    PubMed Central

    Friedel, Caroline C.; Müller, Marcel A.; Carbajo-Lozoya, Javier; Stellberger, Thorsten; von Dall’Armi, Ekatarina; Herzog, Petra; Kallies, Stefan; Niemeyer, Daniela; Ditt, Vanessa; Kuri, Thomas; Züst, Roland; Pumpor, Ksenia; Hilgenfeld, Rolf; Schwarz, Frank; Zimmer, Ralf; Steffen, Imke; Weber, Friedemann; Thiel, Volker; Herrler, Georg; Thiel, Heinz-Jürgen; Schwegmann-Weßels, Christel; Pöhlmann, Stefan; Haas, Jürgen; Drosten, Christian; von Brunn, Albrecht

    2011-01-01

    Coronaviruses (CoVs) are important human and animal pathogens that induce fatal respiratory, gastrointestinal and neurological disease. The outbreak of the severe acute respiratory syndrome (SARS) in 2002/2003 has demonstrated human vulnerability to (Coronavirus) CoV epidemics. Neither vaccines nor therapeutics are available against human and animal CoVs. Knowledge of host cell proteins that take part in pivotal virus-host interactions could define broad-spectrum antiviral targets. In this study, we used a systems biology approach employing a genome-wide yeast-two hybrid interaction screen to identify immunopilins (PPIA, PPIB, PPIH, PPIG, FKBP1A, FKBP1B) as interaction partners of the CoV non-structural protein 1 (Nsp1). These molecules modulate the Calcineurin/NFAT pathway that plays an important role in immune cell activation. Overexpression of NSP1 and infection with live SARS-CoV strongly increased signalling through the Calcineurin/NFAT pathway and enhanced the induction of interleukin 2, compatible with late-stage immunopathogenicity and long-term cytokine dysregulation as observed in severe SARS cases. Conversely, inhibition of cyclophilins by cyclosporine A (CspA) blocked the replication of CoVs of all genera, including SARS-CoV, human CoV-229E and -NL-63, feline CoV, as well as avian infectious bronchitis virus. Non-immunosuppressive derivatives of CspA might serve as broad-range CoV inhibitors applicable against emerging CoVs as well as ubiquitous pathogens of humans and livestock. PMID:22046132

  11. Acute respiratory distress syndrome in combat casualties: military medicine and advances in mechanical ventilation.

    PubMed

    Morris, Michael James

    2006-11-01

    Military medicine has made numerous enduring contributions to the advancement of pulmonary medicine. Acute respiratory distress syndrome was first recognized as a complication in battlefield casualties in World War I and continued to play a significant role in the treatment of casualties through the Vietnam War. Innovative surgeons during World War II devised methods to assist their patients with positive pressure breathing. This concept was later adopted and applied to the development of mechanical ventilation in the late 1940s and early 1950s. The continued treatment of acute respiratory distress syndrome in combat casualties by military physicians has provided a major impetus for advances in modern mechanical ventilation and intensive care unit medicine.

  12. Discovery of a novel canine respiratory coronavirus support genetic recombination among betacoronavirus1.

    PubMed

    Lu, Shuai; Wang, Yanqun; Chen, Yingzhu; Wu, Bingjie; Qin, Kun; Zhao, Jincun; Lou, Yongliang; Tan, Wenjie

    2017-06-02

    Although canine respiratory coronavirus (CRCoV) is an important respiratory pathogen that is prevalent in many countries, only one complete genome sequence of CRCoV (South Korea strain K37) has been obtained to date. Genome-wide analyses and recombination have rarely been conducted, as small numbers of samples and limited genomic characterization have previously prevented further analyses. Herein, we report a unique CRCoV strain, denoted strain BJ232, derived from a CRCoV-positive dog with a mild respiratory infection. Phylogenetic analysis based on complete genome of all available coronaviruses consistently show that CRCoV BJ232 is most closely related to human coronavirus OC43 (HCoV-OC43) and BCoV, forming a separate clade that split off early from other Betacoronavirus 1. Based on the phylogenetic and SimPlot analysis we propose that CRCoV-K37 was derived from genetic recombination between CRCoV-BJ232 and BCoV. In detail, spike (S) gene of CRCoV-K37 clustered with CRCoV-BJ232. However orf1ab, membrane (M) and nucleocapsid (N) genes were more related to Bovine coronavirus (BCoV) than CRCoV-B232. Molecular epidemic analysis confirmed the prevalence of CRCoV-BJ232 lineage around the world for a long time. Recombinant events among Betacoronavirus 1 may have implications for CRCoV transmissibility. All these findings provide further information regarding the origin of CRCoV. Copyright © 2017. Published by Elsevier B.V.

  13. Acute Respiratory Distress Syndrome Secondary to Influenza A(H1N1)pdm09: Clinical Characteristics and Mortality Predictors.

    PubMed

    Hernández-Cárdenas, Carmen Margarita; Serna-Secundino, Héctor; García-Olazarán, José Guadalupe; Aguilar-Pérez, Cristina Leticia; Rocha-Machado, Jesús; Campos-Calderón, Luis Fernando; Lugo-Goytia, Gustavo

    2016-01-01

    Acute respiratory distress syndrome secondary to influenza A(H1N1)pdm09 virus is the leading cause of death among this patient population. Expanding the knowledge of its course and predictors of mortality is relevant to decision making. We aimed to describe the clinical characteristics and identify factors associated with mortality in patients with acute respiratory distress syndrome secondary to influenza A(H1N1)pdm09 during the 2013-2014 influenza season. This is an observational study of a prospective cohort of 70 patients with acute respiratory distress syndrome and influenza A(H1N1) pdm09 seen in an academic medical center. Multivariate logistic regression was used to identify the independent mortality predictors. Bootstrap was used for internal model validation. This cohort was represented by young adults (43 ± 11 years old). Obesity was present in 62.5% and was not associated with mortality. Mortality at 28 days and at discharge from the respiratory intensive care unit was 14 and 20%, respectively. All patients met the criteria for acute respiratory distress syndrome, 73% had vasodilatory shock, and 27.1% had acute kidney injury on respiratory intensive care unit admission. We observed a high incidence of intensive care unit-acquired weakness (81.4%). Ventilator-associated pneumonia developed in 47.1% and was not associated with mortality. In multivariate analysis, independent risk factors for intensive care unit mortality were age (odds ratio [OR] = 1.102), white blood cell count (OR = 1.22), and lactate dehydrogenase levels (OR = 1.004) on admission to the intensive care unit. We described the clinical characteristics and course of a cohort of patients with acute respiratory distress syndrome secondary to influenza A(H1N1)pdm09, and developed a predictive model of mortality based on the covariates age, levels of lactate dehydrogenase, and white cell count on admission to the respiratory intensive care unit.

  14. Two deletion variants of Middle East respiratory syndrome coronavirus found in a patient with characteristic symptoms.

    PubMed

    Xie, Qian; Cao, Yujuan; Su, Juan; Wu, Jie; Wu, Xianbo; Wan, Chengsong; He, Mingliang; Ke, Changwen; Zhang, Bao; Zhao, Wei

    2017-08-01

    Significant sequence variation of Middle East respiratory syndrome coronavirus (MERS CoV) has never been detected since it was first reported in 2012. A MERS patient came from Korea to China in late May 2015. The patient was 44 years old and had symptoms including high fever, dry cough with a little phlegm, and shortness of breath, which are roughly consistent with those associated with MERS, and had had close contact with individuals with confirmed cases of MERS.After one month of therapy with antiviral, anti-infection, and immune-enhancing agents, the patient recovered in the hospital and was discharged. A nasopharyngeal swab sample was collected for direct sequencing, which revealed two deletion variants of MERS CoV. Deletions of 414 and 419 nt occurred between ORF5 and the E protein, resulting in a partial protein fusion or truncation of ORF5 and the E protein. Functional analysis by bioinformatics and comparison to previous studies implied that the two variants might be defective in their ability to package MERS CoV. However, the mechanism of how these deletions occurred and what effects they have need to be further investigated.

  15. Stability of bovine coronavirus on lettuce surfaces under household refrigeration conditions.

    PubMed

    Mullis, Lisa; Saif, Linda J; Zhang, Yongbin; Zhang, Xuming; Azevedo, Marli S P

    2012-05-01

    Fecal suspensions with an aerosol route of transmission were responsible for a cluster of severe acute respiratory syndrome (SARS) cases in 2003 in Hong Kong. Based on that event, the World Health Organization recommended that research be implemented to define modes of transmission of SARS coronavirus through sewage, feces, food and water. Environmental studies have shown that animal coronaviruses remain infectious in water and sewage for up to a year depending on the temperature and humidity. In this study, we examined coronavirus stability on lettuce surfaces. A cell culture adapted bovine coronavirus, diluted in growth media or in bovine fecal suspensions to simulate fecal contamination was used to spike romaine lettuce. qRT-PCR detected viral RNA copy number ranging from 6.6 × 10⁴ to 1.7 × 10⁶ throughout the experimental period of 30 days. Whereas infectious viruses were detected for at least 14 days, the amount of infectious virus varied, depending upon the diluent used for spiking the lettuce. UV and confocal microscopic observation indicated attachment of residual labeled virions to the lettuce surface after the elution procedure, suggesting that rates of inactivation or detection of the virus may be underestimated. Thus, it is possible that contaminated vegetables may be potential vehicles for coronavirus zoonotic transmission to humans. Published by Elsevier Ltd.

  16. [Surveillance on severe acute respiratory syndrome associated coronavirus in animals at a live animal market of Guangzhou in 2004].

    PubMed

    Wang, Ming; Jing, Huai-qi; Xu, Hui-fang; Jiang, Xiu-gao; Kan, Biao; Liu, Qi-yong; Wan, Kang-lin; Cui, Bu-yun; Zheng, Han; Cui, Zhi-gang; Yan, Mei-ying; Liang, Wei-li; Wang, Hong-xia; Qi, Xiao-bao; Li, Zhen-jun; Li, Ma-chao; Chen, Kai; Zhang, En-min; Zhang, Shou-yin; Hai, Rong; Yu, Dong-zheng; Xu, Jian-guo

    2005-02-01

    To study the prevalence of severe acute respiratory syndrome coronavirus (SARS-CoV) like virus in animals at a live animal market of Guanzhou in 2004 before and after culling of wild animal action taken by the local authority, in order to predict the re-emerging of SARS from animal originals in this region. Animals at live animal market were sampled for rectal and throat swabs in triplicate. A single step realtime reverse transcription-polymerase chain reaction (RT-PCR) diagnostic kit was performed for screening SARS-CoV like virus, the manual nested RT- PCR and DNA sequencing were performed for confirmation. Only specimens which tested positive for both of the N and P genes by nested RT-PCR were scored as positive. In 31 animals sampled in January 5 2004 before culling of wild animals at Guangdong Province, including 20 cats (Felis catus), 5 red fox (Vulpes vulpes) and 6 Lesser rice field rats (Rattus losea), 8 (25.8%) animals were tested positive for SARS-CoV like virus by RT-PCR methods, of which 4 cats, 3 red fox and one Lesser rice field rats were included. However, two weeks after culling of animals and disinfection of the market were implemented, in 119 animals sampled in January 20 2004, including 6 rabbits (Oryctolagus cuniculus), 13 cats, 46 red jungle fowl (Gallus gallus), 13 spotbill duck (Anas platyrhynchos), 10 greylag goose (Anser anser), 31 Chinese francolin (Franclinus pintadeanus), only rectal swab from one greylag goose was tested positive for SARS-CoV like virus. Furthermore, in 102 animals that including 14 greylag gooses, 3 cats, 5 rabbits, 9 spotbill duck (Anaspoecilorhyncha), 2 Chinese francolin (Franclinus pintadeanus), 8 common pheasant (Phasianus colchicus), 6 pigeons, 9 Chinese muntjac (Muntiacus reevesi), 19 wild boar (Sus scrofa), 16 Lesser rice field rats, 5 dogs, 1 mink (Mustela vison), 3 goats, 2 green peafowl (Pavo muticus) sampled in April, May, June, July, August and November, only rectal swab from one pig was tested positive

  17. Mechanical Ventilation–associated Lung Fibrosis in Acute Respiratory Distress Syndrome A Significant Contributor to Poor Outcome

    PubMed Central

    Cabrera-Benitez, Nuria E.; Laffey, John G.; Parotto, Matteo; Spieth, Peter M.; Villar, Jesús; Zhang, Haibo; Slutsky, Arthur S.

    2016-01-01

    One of the most challenging problems in critical care medicine is the management of patients with the acute respiratory distress syndrome. Increasing evidence from experimental and clinical studies suggests that mechanical ventilation, which is necessary for life support in patients with acute respiratory distress syndrome, can cause lung fibrosis, which may significantly contribute to morbidity and mortality. The role of mechanical stress as an inciting factor for lung fibrosis versus its role in lung homeostasis and the restoration of normal pulmonary parenchymal architecture is poorly understood. In this review, the authors explore recent advances in the field of pulmonary fibrosis in the context of acute respiratory distress syndrome, concentrating on its relevance to the practice of mechanical ventilation, as commonly applied by anesthetists and intensivists. The authors focus the discussion on the thesis that mechanical ventilation—or more specifically, that ventilator-induced lung injury—may be a major contributor to lung fibrosis. The authors critically appraise possible mechanisms underlying the mechanical stress–induced lung fibrosis and highlight potential therapeutic strategies to mitigate this fibrosis. PMID:24732023

  18. Mechanical ventilation-associated lung fibrosis in acute respiratory distress syndrome: a significant contributor to poor outcome.

    PubMed

    Cabrera-Benitez, Nuria E; Laffey, John G; Parotto, Matteo; Spieth, Peter M; Villar, Jesús; Zhang, Haibo; Slutsky, Arthur S

    2014-07-01

    One of the most challenging problems in critical care medicine is the management of patients with the acute respiratory distress syndrome. Increasing evidence from experimental and clinical studies suggests that mechanical ventilation, which is necessary for life support in patients with acute respiratory distress syndrome, can cause lung fibrosis, which may significantly contribute to morbidity and mortality. The role of mechanical stress as an inciting factor for lung fibrosis versus its role in lung homeostasis and the restoration of normal pulmonary parenchymal architecture is poorly understood. In this review, the authors explore recent advances in the field of pulmonary fibrosis in the context of acute respiratory distress syndrome, concentrating on its relevance to the practice of mechanical ventilation, as commonly applied by anesthetists and intensivists. The authors focus the discussion on the thesis that mechanical ventilation-or more specifically, that ventilator-induced lung injury-may be a major contributor to lung fibrosis. The authors critically appraise possible mechanisms underlying the mechanical stress-induced lung fibrosis and highlight potential therapeutic strategies to mitigate this fibrosis.

  19. Guillian-Barré syndrome in high tetraplegia following acute respiratory illness.

    PubMed

    Grant, C; Briscoe, N; Mezei, M; Krassioukov, A

    2011-03-01

    A case report of a Guillain-Barré syndrome (GBS) variant presenting in a patient with a high cervical spinal cord injury (SCI). To illustrate a clinical presentation of GBS in an individual with chronic SCI. Vancouver General Hospital, Vancouver, BC, Canada. A 31-year-old man with chronic C2 AIS B (American Spinal Injury Association Impairment Scale) SCI and diaphragmatic pacing presented with respiratory failure with sepsis. His sepsis resolved with antibiotic therapy, but he continued to have autonomic instability and was unable to be weaned off his ventilator. Concurrently he developed flaccidity and facial diplegia. Investigations including nerve conduction studies and cerebrospinal fluid analysis prompted a diagnosis of acute motor-sensory axonal neuropathy, a variant of Guillian-Barré syndrome. Owing to ongoing autonomic instability, he was treated with intravenous immunoglobulin. His autonomic dysfunction resolved and he regained some facial muscle function, but 6 months post injury he remained dysphagic and required 24-h ventilator support. Careful neurological reassessment prompted the diagnosis of acute polyradiculoneuropathy following respiratory sepsis as the root cause of diaphragmatic pacer failure and autonomic instability.

  20. Increase in Middle East Respiratory Syndrome-Coronavirus Cases in Saudi Arabia Linked to Hospital Outbreak With Continued Circulation of Recombinant Virus, July 1–August 31, 2015

    PubMed Central

    Assiri, Abdullah M.; Biggs, Holly M.; Abedi, Glen R.; Lu, Xiaoyan; Bin Saeed, Abdulaziz; Abdalla, Osman; Mohammed, Mutaz; Al-Abdely, Hail M.; Algarni, Homoud S.; Alhakeem, Raafat F.; Almasri, Malak M.; Alsharef, Ali A.; Nooh, Randa; Erdman, Dean D.; Gerber, Susan I.; Watson, John T.

    2016-01-01

    During July–August 2015, the number of cases of Middle East respiratory syndrome (MERS) reported from Saudi Arabia increased dramatically. We reviewed the 143 confirmed cases from this period and classified each based upon likely transmission source. We found that the surge in cases resulted predominantly (90%) from secondary transmission largely attributable to an outbreak at a single healthcare facility in Riyadh. Genome sequencing of MERS coronavirus from 6 cases demonstrated continued circulation of the recently described recombinant virus. A single unique frameshift deletion in open reading frame 5 was detected in the viral sequence from 1 case. PMID:27704019

  1. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection.

    PubMed

    Ng, Oi-Wing; Chia, Adeline; Tan, Anthony T; Jadi, Ramesh S; Leong, Hoe Nam; Bertoletti, Antonio; Tan, Yee-Joo

    2016-04-12

    Severe acute respiratory syndrome (SARS) is a highly contagious infectious disease which first emerged in late 2002, caused by a then novel human coronavirus, SARS coronavirus (SARS-CoV). The virus is believed to have originated from bats and transmitted to human through intermediate animals such as civet cats. The re-emergence of SARS-CoV remains a valid concern due to the continual persistence of zoonotic SARS-CoVs and SARS-like CoVs (SL-CoVs) in bat reservoirs. In this study, the screening for the presence of SARS-specific T cells in a cohort of three SARS-recovered individuals at 9 and 11 years post-infection was carried out, and all memory T cell responses detected target the SARS-CoV structural proteins. Two CD8(+) T cell responses targeting the SARS-CoV membrane (M) and nucleocapsid (N) proteins were characterized by determining their HLA restriction and minimal T cell epitope regions. Furthermore, these responses were found to persist up to 11 years post-infection. An absence of cross-reactivity of these CD8(+) T cell responses against the newly-emerged Middle East respiratory syndrome coronavirus (MERS-CoV) was also demonstrated. The knowledge of the persistence of SARS-specific celullar immunity targeting the viral structural proteins in SARS-recovered individuals is important in the design and development of SARS vaccines, which are currently unavailable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor.

    PubMed

    Ge, Xing-Yi; Li, Jia-Lu; Yang, Xing-Lou; Chmura, Aleksei A; Zhu, Guangjian; Epstein, Jonathan H; Mazet, Jonna K; Hu, Ben; Zhang, Wei; Peng, Cheng; Zhang, Yu-Ji; Luo, Chu-Ming; Tan, Bing; Wang, Ning; Zhu, Yan; Crameri, Gary; Zhang, Shu-Yi; Wang, Lin-Fa; Daszak, Peter; Shi, Zheng-Li

    2013-11-28

    The 2002-3 pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV) was one of the most significant public health events in recent history. An ongoing outbreak of Middle East respiratory syndrome coronavirus suggests that this group of viruses remains a key threat and that their distribution is wider than previously recognized. Although bats have been suggested to be the natural reservoirs of both viruses, attempts to isolate the progenitor virus of SARS-CoV from bats have been unsuccessful. Diverse SARS-like coronaviruses (SL-CoVs) have now been reported from bats in China, Europe and Africa, but none is considered a direct progenitor of SARS-CoV because of their phylogenetic disparity from this virus and the inability of their spike proteins to use the SARS-CoV cellular receptor molecule, the human angiotensin converting enzyme II (ACE2). Here we report whole-genome sequences of two novel bat coronaviruses from Chinese horseshoe bats (family: Rhinolophidae) in Yunnan, China: RsSHC014 and Rs3367. These viruses are far more closely related to SARS-CoV than any previously identified bat coronaviruses, particularly in the receptor binding domain of the spike protein. Most importantly, we report the first recorded isolation of a live SL-CoV (bat SL-CoV-WIV1) from bat faecal samples in Vero E6 cells, which has typical coronavirus morphology, 99.9% sequence identity to Rs3367 and uses ACE2 from humans, civets and Chinese horseshoe bats for cell entry. Preliminary in vitro testing indicates that WIV1 also has a broad species tropism. Our results provide the strongest evidence to date that Chinese horseshoe bats are natural reservoirs of SARS-CoV, and that intermediate hosts may not be necessary for direct human infection by some bat SL-CoVs. They also highlight the importance of pathogen-discovery programs targeting high-risk wildlife groups in emerging disease hotspots as a strategy for pandemic preparedness.

  3. Fear of Severe Acute Respiratory Syndrome (SARS) among Health Care Workers

    ERIC Educational Resources Information Center

    Ho, Samuel M. Y.; Kwong-Lo, Rosalie S. Y.; Mak, Christine W. Y.; Wong, Joe S.

    2005-01-01

    In this study, the authors examined fear related to severe acute respiratory syndrome (SARS) among 2 samples of hospital staff in Hong Kong. Sample 1 included health care workers (n = 82) and was assessed during the peak of the SARS epidemic. Sample 2 included hospital staff who recovered from SARS (n = 97). The results show that participants in…

  4. CDC's Early Response to a Novel Viral Disease, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), September 2012–May 2014

    PubMed Central

    Dunville, Richard L.; Gerber, Susan I.; Erdman, Dean D.; Pesik, Nicki; Kuhar, David; Mason, Karen A.; Haynes, Lia; Rotz, Lisa; St. Pierre, Jeanette; Poser, Sarah; Bunga, Sudhir; Pallansch, Mark A.; Swerdlow, David L.

    2015-01-01

    The first ever case of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) was reported in September 2012. This report describes the approaches taken by CDC, in collaboration with the World Health Organization (WHO) and other partners, to respond to this novel virus, and outlines the agency responses prior to the first case appearing in the United States in May 2014. During this time, CDC's response integrated multiple disciplines and was divided into three distinct phases: before, during, and after the initial activation of its Emergency Operations Center. CDC's response to MERS-CoV required a large effort, deploying at least 353 staff members who worked in the areas of surveillance, laboratory capacity, infection control guidance, and travelers' health. This response built on CDC's experience with previous outbreaks of other pathogens and provided useful lessons for future emerging threats. PMID:26345122

  5. A patient with asymptomatic severe acute respiratory syndrome (SARS) and antigenemia from the 2003-2004 community outbreak of SARS in Guangzhou, China.

    PubMed

    Che, Xiao-yan; Di, Biao; Zhao, Guo-ping; Wang, Ya-di; Qiu, Li-wen; Hao, Wei; Wang, Ming; Qin, Peng-zhe; Liu, Yu-fei; Chan, Kwok-hong; Cheng, Vincent C C; Yuen, Kwok-yung

    2006-07-01

    An asymptomatic case of severe acute respiratory syndrome (SARS) occurred early in 2004, during a community outbreak of SARS in Guangzhou, China. This was the first time that a case of asymptomatic SARS was noted in an individual with antigenemia and seroconversion. The asymptomatic case patient and the second index case patient with SARS in the 2003-2004 outbreak both worked in the same restaurant, where they served palm civets, which were found to carry SARS-associated coronaviruses. Epidemiological information and laboratory findings suggested that the findings for the patient with asymptomatic infection, together with the findings from previously reported serological analyses of handlers of wild animals and the 4 index case patients from the 2004 community outbreak, reflected a likely intermediate phase of animal-to-human transmission of infection, rather than a case of human-to-human transmission. This intermediate phase may be a critical stage for virus evolution and disease prevention.

  6. Coronavirus infections in horses in Saudi Arabia and Oman.

    PubMed

    Hemida, M G; Chu, D K W; Perera, R A P M; Ko, R L W; So, R T Y; Ng, B C Y; Chan, S M S; Chu, S; Alnaeem, A A; Alhammadi, M A; Webby, R J; Poon, L L M; Balasuriya, U B R; Peiris, M

    2017-12-01

    Equine coronaviruses (ECoV) are the only coronavirus known to infect horses. So far, data on ECoV infection in horses remain limited to the USA, France and Japan and its geographic distribution is not well understood. We carried out RT-PCR on 306 nasal and 315 rectal swabs and tested 243 sera for antibodies to detect coronavirus infections in apparently healthy horses in Saudi Arabia and Oman. We document evidence of infection with ECoV and HKU23 coronavirus by RT-PCR. There was no conclusive evidence of Middle East respiratory syndrome coronavirus infection in horses. Serological data suggest that lineage A betacoronavirus infections are commonly infecting horses in Saudi Arabia and Oman but antibody cross-reactivities between these viruses do not permit us to use serological data alone to identify which coronaviruses are causing these infections. © 2017 Blackwell Verlag GmbH.

  7. [Choice of optimal respiratory support in acute parenchymatous respiratory failure].

    PubMed

    Cherniĭ, V I; Kuznetsova, I V; Kovalenko, V L

    2005-01-01

    The principal goals of respiratory therapy for acute respiratory failure are to correct gas exchange and to lower respiratory performance. In acute lung lesion syndrome (ALLS) and acute respiratory distress syndrome (ARDS), the oxygenation index (PaO2/FiO2) reflects the degree of alveolar-capillary membrane damage. The changes in PaO2/FiO2 between 400 to 300 at adequate ventilation can be interpreted as occult alveolar-capillary insufficiency. The principle of power saving in ALLS/ARDS is to choose a respiratory support regimen that may ensure oxygenation safety by eliminating the excess work of respiration. The ratio of PaO2/FiO2/VO2 is proposed to consider to be a criterion for the effectiveness of respiratory support in ALLS/ARDS and a marker of energy deficiency. It has been established that the function of the alveolar-capillary membrane is not impaired with the PaO2/FiO2 ratio of more than 1.5 and the ratio of less than 1.0 is typical of the severe course of the severe course of ARDS and suggests both alveolar-capillary membrane damage and energy deficiency.

  8. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds.

    PubMed

    Báez-Santos, Yahira M; St John, Sarah E; Mesecar, Andrew D

    2015-03-01

    Over 10 years have passed since the deadly human coronavirus that causes severe acute respiratory syndrome (SARS-CoV) emerged from the Guangdong Province of China. Despite the fact that the SARS-CoV pandemic infected over 8500 individuals, claimed over 800 lives and cost billions of dollars in economic loss worldwide, there still are no clinically approved antiviral drugs, vaccines or monoclonal antibody therapies to treat SARS-CoV infections. The recent emergence of the deadly human coronavirus that causes Middle East respiratory syndrome (MERS-CoV) is a sobering reminder that new and deadly coronaviruses can emerge at any time with the potential to become pandemics. Therefore, the continued development of therapeutic and prophylactic countermeasures to potentially deadly coronaviruses is warranted. The coronaviral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro), are attractive antiviral drug targets because they are essential for coronaviral replication. Although the primary function of PLpro and 3CLpro are to process the viral polyprotein in a coordinated manner, PLpro has the additional function of stripping ubiquitin and ISG15 from host-cell proteins to aid coronaviruses in their evasion of the host innate immune responses. Therefore, targeting PLpro with antiviral drugs may have an advantage in not only inhibiting viral replication but also inhibiting the dysregulation of signaling cascades in infected cells that may lead to cell death in surrounding, uninfected cells. This review provides an up-to-date discussion on the SARS-CoV papain-like protease including a brief overview of the SARS-CoV genome and replication followed by a more in-depth discussion on the structure and catalytic mechanism of SARS-CoV PLpro, the multiple cellular functions of SARS-CoV PLpro, the inhibition of SARS-CoV PLpro by small molecule inhibitors, and the prospect of inhibiting papain-like protease from other coronaviruses. This paper forms part of a series of

  9. Detection of coronavirus genomes in Moluccan naked-backed fruit bats in Indonesia.

    PubMed

    Anindita, Paulina Duhita; Sasaki, Michihito; Setiyono, Agus; Handharyani, Ekowati; Orba, Yasuko; Kobayashi, Shintaro; Rahmadani, Ibnu; Taha, Siswatiana; Adiani, Sri; Subangkit, Mawar; Nakamura, Ichiro; Sawa, Hirofumi; Kimura, Takashi

    2015-04-01

    Bats have been shown to serve as natural reservoirs for numerous emerging viruses including severe acute respiratory syndrome coronavirus (SARS-CoV). In the present study, we report the discovery of bat CoV genes in Indonesian Moluccan naked-backed fruit bats (Dobsonia moluccensis). A partial RNA-dependent RNA polymerase gene sequence was detected in feces and tissues samples from the fruit bats, and the region between the RdRp and helicase genes could also be amplified from fecal samples. Phylogenetic analysis suggested that these bat CoVs are related to members of the genus Betacoronavirus.

  10. Discovery, Synthesis, And Structure-Based Optimization of a Series of N-(tert-Butyl)-2-(N-arylamido)-2-(pyridin-3-yl) Acetamides (ML188) as Potent Noncovalent Small Molecule Inhibitors of the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) 3CL Protease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Jon; Grum-Tokars, Valerie; Zhou, Ya

    A high-throughput screen of the NIH molecular libraries sample collection and subsequent optimization of a lead dipeptide-like series of severe acute respiratory syndrome (SARS) main protease (3CLpro) inhibitors led to the identification of probe compound ML188 (16-(R), (R)-N-(4-(tert-butyl)phenyl)-N-(2-(tert-butylamino)-2-oxo-1-(pyridin-3-yl)ethyl)furan-2-carboxamide, Pubchem CID: 46897844). But, unlike the majority of reported coronavirus 3CLpro inhibitors that act via covalent modification of the enzyme, 16-(R) is a noncovalent SARS-CoV 3CLpro inhibitor with moderate MW and good enzyme and antiviral inhibitory activity. A multicomponent Ugi reaction was utilized to rapidly explore structure–activity relationships within S1', S1, and S2enzyme binding pockets. Moreover, the X-ray structure of SARS-CoV 3CLpromore » bound with 16-(R) was instrumental in guiding subsequent rounds of chemistry optimization. 16-(R) provides an excellent starting point for the further design and refinement of 3CLpro inhibitors that act by a noncovalent mechanism of action.« less

  11. Imported case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection from Oman to Thailand, June 2015.

    PubMed

    Plipat, Tanarak; Buathong, Rome; Wacharapluesadee, Supaporn; Siriarayapon, Potjaman; Pittayawonganon, Chakrarat; Sangsajja, Chariya; Kaewpom, Thongchai; Petcharat, Sininat; Ponpinit, Teerada; Jumpasri, Jaruphan; Joyjinda, Yutthana; Rodpan, Apaporn; Ghai, Siriporn; Jittmittraphap, Akanitt; Khongwichit, Sarawut; Smith, Duncan R; Corman, Victor M; Drosten, Christian; Hemachudha, Thiravat

    2017-08-17

    Thailand reported the first Middle East respiratory syndrome (MERS) case on 18 June 2015 (day 4) in an Omani patient with heart condition who was diagnosed with pneumonia on hospital admission on 15 June 2015 (day 1). Two false negative RT-PCR on upper respiratory tract samples on days 2 and 3 led to a 48-hour diagnosis delay and a decision to transfer the patient out of the negative pressure unit (NPU). Subsequent examination of sputum later on day 3 confirmed MERS coronavirus (MERS-CoV) infection. The patient was immediately moved back into the NPU and then transferred to Bamrasnaradura Infectious Disease Institute. Over 170 contacts were traced; 48 were quarantined and 122 self-monitored for symptoms. High-risk close contacts exhibiting no symptoms, and whose laboratory testing on the 12th day after exposure was negative, were released on the 14th day. The Omani Ministry of Health (MOH) was immediately notified using the International Health Regulation (IHR) mechanism. Outbreak investigation was conducted in Oman, and was both published on the World Health Organization (WHO) intranet and shared with Thailand's IHR focal point. The key to successful infection control, with no secondary transmission, were the collaborative efforts among hospitals, laboratories and MOHs of both countries. This article is copyright of The Authors, 2017.

  12. Characteristics and Outcome of Patients After Allogeneic Hematopoietic Stem Cell Transplantation Treated With Extracorporeal Membrane Oxygenation for Acute Respiratory Distress Syndrome.

    PubMed

    Wohlfarth, Philipp; Beutel, Gernot; Lebiedz, Pia; Stemmler, Hans-Joachim; Staudinger, Thomas; Schmidt, Matthieu; Kochanek, Matthias; Liebregts, Tobias; Taccone, Fabio Silvio; Azoulay, Elie; Demoule, Alexandre; Kluge, Stefan; Svalebjørg, Morten; Lueck, Catherina; Tischer, Johanna; Combes, Alain; Böll, Boris; Rabitsch, Werner; Schellongowski, Peter

    2017-05-01

    The acute respiratory distress syndrome is a frequent condition following allogeneic hematopoietic stem cell transplantation. Extracorporeal membrane oxygenation may serve as rescue therapy in refractory acute respiratory distress syndrome but has not been assessed in allogeneic hematopoietic stem cell transplantation recipients. Multicenter, retrospective, observational study. ICUs in 12 European tertiary care centers (Austria, Germany, France, and Belgium). All allogeneic hematopoietic stem cell transplantation recipients treated with venovenous extracorporeal membrane oxygenation for acute respiratory distress syndrome between 2010 and 2015. None. Thirty-seven patients, nine of whom underwent noninvasive ventilation at the time of extracorporeal membrane oxygenation initiation, were analyzed. ICU admission occurred at a median of 146 (interquartile range, 27-321) days after allogeneic hematopoietic stem cell transplantation. The main reason for acute respiratory distress syndrome was pneumonia in 81% of patients. All but one patient undergoing noninvasive ventilation at extracorporeal membrane oxygenation initiation had to be intubated thereafter. Overall, seven patients (19%) survived to hospital discharge and were alive and in remission of their hematologic disease after a follow-up of 18 (range, 5-30) months. Only one of 24 patients (4%) initiated on extracorporeal membrane oxygenation within 240 days after allogeneic hematopoietic stem cell transplantation survived compared to six of 13 (46%) of those treated thereafter (p < 0.01). Fourteen patients (38%) experienced bleeding events, of which six (16%) were associated with fatal outcomes. Discouraging survival rates in patients treated early after allogeneic hematopoietic stem cell transplantation do not support the use of extracorporeal membrane oxygenation for acute respiratory distress syndrome in this group. On the contrary, long-term allogeneic hematopoietic stem cell transplantation recipients

  13. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein

    PubMed Central

    Millet, Jean Kaoru; Whittaker, Gary R.

    2014-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly identified betacoronavirus causing high morbidity and mortality in humans. The coronavirus spike (S) protein is the main determinant of viral entry, and although it was previously shown that MERS-CoV S can be activated by various proteases, the details of the mechanisms of proteolytic activation of fusion are still incompletely characterized. Here, we have uncovered distinctive characteristics of MERS-CoV S. We identify, by bioinformatics and peptide cleavage assays, two cleavage sites for furin, a ubiquitously expressed protease, which are located at the S1/S2 interface and at the S2′ position of the S protein. We show that although the S1/S2 site is proteolytically processed by furin during protein biosynthesis, the S2′ site is cleaved upon viral entry. MERS-CoV pseudovirion infection was shown to be enhanced by elevated levels of furin expression, and entry could be decreased by furin siRNA silencing. Enhanced furin activity appeared to partially override the low pH-dependent nature of MERS-CoV entry. Inhibition of furin activity was shown to decrease MERS-CoV S-mediated entry, as well as infection by the virus. Overall, we show that MERS-CoV has evolved an unusual two-step furin activation for fusion, suggestive of a role during the process of emergence into the human population. The ability of MERS-CoV to use furin in this manner, along with other proteases, may explain the polytropic nature of the virus. PMID:25288733

  14. SARS-like cluster of circulating bat coronavirus pose threat for human emergence

    PubMed Central

    Menachery, Vineet D.; Yount, Boyd L.; Debbink, Kari; Agnihothram, Sudhakar; Gralinski, Lisa E.; Plante, Jessica A.; Graham, Rachel L.; Scobey, Trevor; Ge, Xing-Yi; Donaldson, Eric F.; Randell, Scott H.; Lanzavecchia, Antonio; Marasco, Wayne A.; Shi, Zhengli-Li; Baric, Ralph S.

    2016-01-01

    The emergence of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome (MERS)-CoV underscores the threat of cross-species transmission events leading to outbreaks in humans. In this study, we examine the disease potential for SARS-like CoVs currently circulating in Chinese horseshoe bat populations. Utilizing the SARS-CoV infectious clone, we generated and characterized a chimeric virus expressing the spike of bat coronavirus SHC014 in a mouse adapted SARS-CoV backbone. The results indicate that group 2b viruses encoding the SHC014 spike in a wild type backbone can efficiently utilize multiple ACE2 receptor orthologs, replicate efficiently in primary human airway cells, and achieve in vitro titers equivalent to epidemic strains of SARS-CoV. Additionally, in vivo experiments demonstrate replication of the chimeric virus in mouse lung with notable pathogenesis. Evaluation of available SARS-based immune-therapeutic and prophylactic modalities revealed poor efficacy; both monoclonal antibody and vaccine approaches failed to neutralize and protect from CoVs utilizing the novel spike protein. Importantly, based on these findings, we synthetically rederived an infectious full length SHC014 recombinant virus and demonstrate robust viral replication both in vitro and in vivo. Together, the work highlights a continued risk of SARS-CoV reemergence from viruses currently circulating in bat populations. PMID:26552008

  15. Temporal evolution of acute respiratory distress syndrome definitions.

    PubMed

    Fioretto, José R; Carvalho, Werther B

    2013-01-01

    to review the evolution of acute respiratory distress syndrome (ARDS) definitions and present the current definition for the syndrome. a literature review and selection of the most relevant articles on ARDS definitions was performed using the MEDLINE®/PubMed® Resource Guide database (last ten years), in addition to including the most important articles (classic articles) that described the disease evolution. the review included the following subjects: introduction; importance of definition; description of the first diagnostic criterion and subsequently used definitions, such as acute lung injury score; definition by the American-European Consensus Conference, and its limitations; description of the definition by Delphi, and its problems; accuracy of the aforementioned definitions; description of most recent definition (the Berlin definition), and its limitations; and practical importance of the new definition. ARDS is a serious disease that remains an ongoing diagnostic and therapeutic challenge. The evolution of definitions used to describe the disease shows that studies are needed to validate the current definition, especially in pediatrics, where the data are very scarce. Copyright © 2013 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  16. Oxygen Exposure Resulting in Arterial Oxygen Tensions Above the Protocol Goal Was Associated With Worse Clinical Outcomes in Acute Respiratory Distress Syndrome.

    PubMed

    Aggarwal, Neil R; Brower, Roy G; Hager, David N; Thompson, B Taylor; Netzer, Giora; Shanholtz, Carl; Lagakos, Adrian; Checkley, William

    2018-04-01

    High fractions of inspired oxygen may augment lung damage to exacerbate lung injury in patients with acute respiratory distress syndrome. Participants enrolled in Acute Respiratory Distress Syndrome Network trials had a goal partial pressure of oxygen in arterial blood range of 55-80 mm Hg, yet the effect of oxygen exposure above this arterial oxygen tension range on clinical outcomes is unknown. We sought to determine if oxygen exposure that resulted in a partial pressure of oxygen in arterial blood above goal (> 80 mm Hg) was associated with worse outcomes in patients with acute respiratory distress syndrome. Longitudinal analysis of data collected in these trials. Ten clinical trials conducted at Acute Respiratory Distress Syndrome Network hospitals between 1996 and 2013. Critically ill patients with acute respiratory distress syndrome. None. We defined above goal oxygen exposure as the difference between the fraction of inspired oxygen and 0.5 whenever the fraction of inspired oxygen was above 0.5 and when the partial pressure of oxygen in arterial blood was above 80 mm Hg. We then summed above goal oxygen exposures in the first five days to calculate a cumulative above goal oxygen exposure. We determined the effect of a cumulative 5-day above goal oxygen exposure on mortality prior to discharge home at 90 days. Among 2,994 participants (mean age, 51.3 yr; 54% male) with a study-entry partial pressure of oxygen in arterial blood/fraction of inspired oxygen that met acute respiratory distress syndrome criteria, average cumulative above goal oxygen exposure was 0.24 fraction of inspired oxygen-days (interquartile range, 0-0.38). Participants with above goal oxygen exposure were more likely to die (adjusted interquartile range odds ratio, 1.20; 95% CI, 1.11-1.31) and have lower ventilator-free days (adjusted interquartile range mean difference of -0.83; 95% CI, -1.18 to -0.48) and lower hospital-free days (adjusted interquartile range mean difference of -1.38; 95

  17. Critically Ill Patients With the Middle East Respiratory Syndrome: A Multicenter Retrospective Cohort Study.

    PubMed

    Arabi, Yaseen M; Al-Omari, Awad; Mandourah, Yasser; Al-Hameed, Fahad; Sindi, Anees A; Alraddadi, Basem; Shalhoub, Sarah; Almotairi, Abdullah; Al Khatib, Kasim; Abdulmomen, Ahmed; Qushmaq, Ismael; Mady, Ahmed; Solaiman, Othman; Al-Aithan, Abdulsalam M; Al-Raddadi, Rajaa; Ragab, Ahmed; Al Mekhlafi, Ghaleb A; Al Harthy, Abdulrahman; Kharaba, Ayman; Ahmadi, Mashael Al; Sadat, Musharaf; Mutairi, Hanan Al; Qasim, Eman Al; Jose, Jesna; Nasim, Maliha; Al-Dawood, Abdulaziz; Merson, Laura; Fowler, Robert; Hayden, Frederick G; Balkhy, Hanan H

    2017-10-01

    To describe patient characteristics, clinical manifestations, disease course including viral replication patterns, and outcomes of critically ill patients with severe acute respiratory infection from the Middle East respiratory syndrome and to compare these features with patients with severe acute respiratory infection due to other etiologies. Retrospective cohort study. Patients admitted to ICUs in 14 Saudi Arabian hospitals. Critically ill patients with laboratory-confirmed Middle East respiratory syndrome severe acute respiratory infection (n = 330) admitted between September 2012 and October 2015 were compared to consecutive critically ill patients with community-acquired severe acute respiratory infection of non-Middle East respiratory syndrome etiology (non-Middle East respiratory syndrome severe acute respiratory infection) (n = 222). None. Although Middle East respiratory syndrome severe acute respiratory infection patients were younger than those with non-Middle East respiratory syndrome severe acute respiratory infection (median [quartile 1, quartile 3] 58 yr [44, 69] vs 70 [52, 78]; p < 0.001), clinical presentations and comorbidities overlapped substantially. Patients with Middle East respiratory syndrome severe acute respiratory infection had more severe hypoxemic respiratory failure (PaO2/FIO2: 106 [66, 160] vs 176 [104, 252]; p < 0.001) and more frequent nonrespiratory organ failure (nonrespiratory Sequential Organ Failure Assessment score: 6 [4, 9] vs 5 [3, 7]; p = 0.002), thus required more frequently invasive mechanical ventilation (85.2% vs 73.0%; p < 0.001), oxygen rescue therapies (extracorporeal membrane oxygenation 5.8% vs 0.9%; p = 0.003), vasopressor support (79.4% vs 55.0%; p < 0.001), and renal replacement therapy (48.8% vs 22.1%; p < 0.001). After adjustment for potential confounding factors, Middle East respiratory syndrome was independently associated with death compared to non-Middle East respiratory syndrome severe acute respiratory

  18. Middle East Respiratory Syndrome Coronavirus Antibody Reactors Among Camels in Dubai, United Arab Emirates, in 2005

    PubMed Central

    Alexandersen, S; Kobinger, G P; Soule, G; Wernery, U

    2014-01-01

    We tested, using a low starting dilution, sequential serum samples from dromedary camels, sheep and horses collected in Dubai from February/April to October of 2005 and from dromedary camels for export/import testing between Canada and USA in 2000–2001. Using a standard Middle East respiratory syndrome coronavirus (MERS-CoV) neutralization test, serial sera from three sheep and three horses were all negative while sera from 9 of 11 dromedary camels from Dubai were positive for antibodies supported by similar results in a MERS-CoV recombinant partial spike protein antibody ELISA. The two negative Dubai camels were both dromedary calves and remained negative over the 5 months studied. The six dromedary samples from USA and Canada were negative in both tests. These results support the recent findings that infection with MERS-CoV or a closely related virus is not a new occurrence in camels in the Middle East. Therefore, interactions of MERS-CoV at the human–animal interface may have been ongoing for several, perhaps many, years and by inference, a widespread pandemic may be less likely unless significant evolution of the virus allow accelerated infection and spread potential in the human population. PMID:24456414

  19. Variation analysis of the severe acute respiratory syndrome coronavirus putative non-structural protein 2 gene and construction of three-dimensional model.

    PubMed

    Lu, Jia-hai; Zhang, Ding-mei; Wang, Guo-ling; Guo, Zhong-min; Zhang, Chuan-hai; Tan, Bing-yan; Ouyang, Li-ping; Lin, Li; Liu, Yi-min; Chen, Wei-qing; Ling, Wen-hua; Yu, Xin-bing; Zhong, Nan-shan

    2005-05-05

    The rapid transmission and high mortality rate made severe acute respiratory syndrome (SARS) a global threat for which no efficacious therapy is available now. Without sufficient knowledge about the SARS coronavirus (SARS-CoV), it is impossible to define the candidate for the anti-SARS targets. The putative non-structural protein 2 (nsp2) (3CL(pro), following the nomenclature by Gao et al, also known as nsp5 in Snidjer et al) of SARS-CoV plays an important role in viral transcription and replication, and is an attractive target for anti-SARS drug development, so we carried on this study to have an insight into putative polymerase nsp2 of SARS-CoV Guangdong (GD) strain. The SARS-CoV strain was isolated from a SARS patient in Guangdong, China, and cultured in Vero E6 cells. The nsp2 gene was amplified by reverse transcription-polymerase chain reaction (RT-PCR) and cloned into eukaryotic expression vector pCI-neo (pCI-neo/nsp2). Then the recombinant eukaryotic expression vector pCI-neo/nsp2 was transfected into COS-7 cells using lipofectin reagent to express the nsp2 protein. The expressive protein of SARS-CoV nsp2 was analyzed by 7% sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). The nucleotide sequence and protein sequence of GD nsp2 were compared with that of other SARS-CoV strains by nucleotide-nucleotide basic local alignment search tool (BLASTN) and protein-protein basic local alignment search tool (BLASTP) to investigate its variance trend during the transmission. The secondary structure of GD strain and that of other strains were predicted by Garnier-Osguthorpe-Robson (GOR) Secondary Structure Prediction. Three-dimensional-PSSM Protein Fold Recognition (Threading) Server was employed to construct the three-dimensional model of the nsp2 protein. The putative polymerase nsp2 gene of GD strain was amplified by RT-PCR. The eukaryotic expression vector (pCI-neo/nsp2) was constructed and expressed the protein in COS-7 cells successfully. The

  20. SARS-associated Coronavirus Transmitted from Human to Pig

    PubMed Central

    Chen, Weijun; Yan, Minghua; Yang, Ling; Ding, Boliang; He, Bo; Wang, Yingzhen; Liu, Xiuli; Liu, Chenhui; Zhu, Hui; You, Bo; Huang, Shengyong; Zhang, Jiangguo; Mu, Feng; Xiang, Zhao; Feng, Xiaoli; Wen, Jie; Fang, Jianqiu; Yu, Jun; Yang, Huanming

    2005-01-01

    Severe acute respiratory syndrome–associated coronavirus (SARS-CoV) was isolated from a pig during a survey for possible routes of viral transmission after a SARS epidemic. Sequence and epidemiology analyses suggested that the pig was infected by a SARS-CoV of human origin. PMID:15757562

  1. Does Regional Lung Strain Correlate With Regional Inflammation in Acute Respiratory Distress Syndrome During Nonprotective Ventilation? An Experimental Porcine Study.

    PubMed

    Retamal, Jaime; Hurtado, Daniel; Villarroel, Nicolás; Bruhn, Alejandro; Bugedo, Guillermo; Amato, Marcelo Britto Passos; Costa, Eduardo Leite Vieira; Hedenstierna, Göran; Larsson, Anders; Borges, João Batista

    2018-06-01

    It is known that ventilator-induced lung injury causes increased pulmonary inflammation. It has been suggested that one of the underlying mechanisms may be strain. The aim of this study was to investigate whether lung regional strain correlates with regional inflammation in a porcine model of acute respiratory distress syndrome. Retrospective analysis of CT images and positron emission tomography images using [F]fluoro-2-deoxy-D-glucose. University animal research laboratory. Seven piglets subjected to experimental acute respiratory distress syndrome and five ventilated controls. Acute respiratory distress syndrome was induced by repeated lung lavages, followed by 210 minutes of injurious mechanical ventilation using low positive end-expiratory pressures (mean, 4 cm H2O) and high inspiratory pressures (mean plateau pressure, 45 cm H2O). All animals were subsequently studied with CT scans acquired at end-expiration and end-inspiration, to obtain maps of volumetric strain (inspiratory volume - expiratory volume)/expiratory volume, and dynamic positron emission tomography imaging. Strain maps and positron emission tomography images were divided into 10 isogravitational horizontal regions-of-interest, from which spatial correlation was calculated for each animal. The acute respiratory distress syndrome model resulted in a decrease in respiratory system compliance (20.3 ± 3.4 to 14.0 ± 4.9 mL/cm H2O; p < 0.05) and oxygenation (PaO2/FIO2, 489 ± 80 to 92 ± 59; p < 0.05), whereas the control animals did not exhibit changes. In the acute respiratory distress syndrome group, strain maps showed a heterogeneous distribution with a greater concentration in the intermediate gravitational regions, which was similar to the distribution of [F]fluoro-2-deoxy-D-glucose uptake observed in the positron emission tomography images, resulting in a positive spatial correlation between both variables (median R = 0.71 [0.02-0.84]; p < 0.05 in five of seven animals

  2. New and emerging pathogens in canine infectious respiratory disease.

    PubMed

    Priestnall, S L; Mitchell, J A; Walker, C A; Erles, K; Brownlie, J

    2014-03-01

    Canine infectious respiratory disease is a common, worldwide disease syndrome of multifactorial etiology. This review presents a summary of 6 viruses (canine respiratory coronavirus, canine pneumovirus, canine influenza virus, pantropic canine coronavirus, canine bocavirus, and canine hepacivirus) and 2 bacteria (Streptococcus zooepidemicus and Mycoplasma cynos) that have been associated with respiratory disease in dogs. For some pathogens a causal role is clear, whereas for others, ongoing research aims to uncover their pathogenesis and contribution to this complex syndrome. Etiology, clinical disease, pathogenesis, and epidemiology are described for each pathogen, with an emphasis on recent discoveries or novel findings.

  3. The pragmatics of feeding the pediatric patient with acute respiratory distress syndrome.

    PubMed

    Verger, Judy T; Bradshaw, Darla J; Henry, Elizabeth; Roberts, Kathryn E

    2004-09-01

    Acute respiratory distress syndrome (ARDS) represents the ultimate pulmonary response to a wide range of injuries, from septicemia to trauma. Optimal nutrition is vital to enhancing oxygen delivery, supporting adequate cardiac contractility and respiratory musculature, eliminating fluid and electrolyte imbalances, and supporting the proinflammatory response. Research is providing a better understanding of nutrients that specifically address the complex physiologic changes in ARDS. This article highlights the pathophysiology of ARDS as it relates to nutrition, relevant nutritional assessment, and important enteral and parenteral considerations for the pediatric patient who has ARDS.

  4. Antiviral Potential of ERK/MAPK and PI3K/AKT/mTOR Signaling Modulation for Middle East Respiratory Syndrome Coronavirus Infection as Identified by Temporal Kinome Analysis

    PubMed Central

    Ork, Britini; Hart, Brit J.; Holbrook, Michael R.; Frieman, Matthew B.; Traynor, Dawn; Johnson, Reed F.; Dyall, Julie; Olinger, Gene G.; Hensley, Lisa E.

    2014-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a lineage C betacoronavirus, and infections with this virus can result in acute respiratory syndrome with renal failure. Globally, MERS-CoV has been responsible for 877 laboratory-confirmed infections, including 317 deaths, since September 2012. As there is a paucity of information regarding the molecular pathogenesis associated with this virus or the identities of novel antiviral drug targets, we performed temporal kinome analysis on human hepatocytes infected with the Erasmus isolate of MERS-CoV with peptide kinome arrays. bioinformatics analysis of our kinome data, including pathway overrepresentation analysis (ORA) and functional network analysis, suggested that extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and phosphoinositol 3-kinase (PI3K)/serine-threonine kinase (AKT)/mammalian target of rapamycin (mTOR) signaling responses were specifically modulated in response to MERS-CoV infection in vitro throughout the course of infection. The overrepresentation of specific intermediates within these pathways determined by pathway and functional network analysis of our kinome data correlated with similar patterns of phosphorylation determined through Western blot array analysis. In addition, analysis of the effects of specific kinase inhibitors on MERS-CoV infection in tissue culture models confirmed these cellular response observations. Further, we have demonstrated that a subset of licensed kinase inhibitors targeting the ERK/MAPK and PI3K/AKT/mTOR pathways significantly inhibited MERS-CoV replication in vitro whether they were added before or after viral infection. Taken together, our data suggest that ERK/MAPK and PI3K/AKT/mTOR signaling responses play important roles in MERS-CoV infection and may represent novel drug targets for therapeutic intervention strategies. PMID:25487801

  5. Clinical validation of 3 commercial real-time reverse transcriptase polymerase chain reaction assays for the detection of Middle East respiratory syndrome coronavirus from upper respiratory tract specimens.

    PubMed

    Mohamed, Deqa H; AlHetheel, AbdulKarim F; Mohamud, Hanat S; Aldosari, Kamel; Alzamil, Fahad A; Somily, Ali M

    2017-04-01

    Since discovery of Middle East respiratory syndrome coronavirus (MERS-CoV), a novel betacoronavirus first isolated and characterized in 2012, MERS-CoV real-time reverse transcriptase polymerase chain reaction (rRT-PCR) assays represent one of the most rapidly expanding commercial tests. However, in the absence of extensive evaluations of these assays on positive clinical material of different sources, evaluating their diagnostic effectiveness remains challenging. We describe the diagnostic performance evaluation of 3 common commercial MERS-CoV rRT-PCR assays on a large panel (n = 234) of upper respiratory tract specimens collected during an outbreak episode in Saudi Arabia. Assays were compared to the RealStar® MERS-CoV RT-PCR (Alton Diagnostics, Hamburg, Germany) assay as the gold standard. Results showed i) the TIB MolBiol® LightMix UpE and Orf1a assays (TIB MolBiol, Berlin, Germany) to be the most sensitive, followed by ii) the Anyplex™ Seegene MERS-CoV assay (Seegene, Seoul, Korea), and finally iii) the PrimerDesign™ Genesig® HCoV_2012 assay (PrimerDesign, England, United Kingdom). We also evaluate a modified protocol for the PrimerDesign™ Genesig® HCoV_2012 assay. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Severe Acute Respiratory Syndrome Epidemic and Change of People's Health Behavior in China

    ERIC Educational Resources Information Center

    Tan, Xiaodong; Li, Shiyue; Wang, Chunhong; Chen, Xiaoqing; Wu, Xiaomin

    2004-01-01

    Severe Acute Respiratory Syndrome (SARS) has become a new worldwide epidemic whose origin was until recently unknown. It is the unpredictable nature of this epidemic that makes people want answers to some important questions about what they can do to protect themselves. This study presents an inquiry into peoples knowledge and self-reported…

  7. Severe respiratory illness associated with a novel coronavirus--Saudi Arabia and Qatar, 2012.

    PubMed

    2012-10-12

    CDC is working closely with the World Health Organization (WHO) and other partners to better understand the public health risk presented by a recently detected, novel coronavirus. This virus has been identified in two patients, both previously healthy adults who suffered severe respiratory illness. The first patient, a man aged 60 years from Saudi Arabia, was hospitalized in June 2012 and died; the second patient, a man aged 49 years from Qatar with onset of symptoms in September 2012 was transported to the United Kingdom for intensive care. He remains hospitalized on life support with both pulmonary and renal failure. Person-to-person or health-care-associated transmission has not been identified to date. Interim case definitions based on acute respiratory illness and travel history were issued by WHO on September 29 and include criteria for "patient under investigation," "probable case," and "confirmed case". This information is current as of October 4. Updates on the investigation and the WHO case definition are available at http://www.who.int/csr/don/en/index.html.

  8. Computational modeling of the bat HKU4 coronavirus 3CLpro inhibitors as a tool for the development of antivirals against the emerging Middle East respiratory syndrome (MERS) coronavirus.

    PubMed

    Abuhammad, Areej; Al-Aqtash, Rua'a A; Anson, Brandon J; Mesecar, Andrew D; Taha, Mutasem O

    2017-11-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging virus that poses a major challenge to clinical management. The 3C-like protease (3CL pro ) is essential for viral replication and thus represents a potential target for antiviral drug development. Presently, very few data are available on MERS-CoV 3CL pro inhibition by small molecules. We conducted extensive exploration of the pharmacophoric space of a recently identified set of peptidomimetic inhibitors of the bat HKU4-CoV 3CL pro . HKU4-CoV 3CL pro shares high sequence identity (81%) with the MERS-CoV enzyme and thus represents a potential surrogate model for anti-MERS drug discovery. We used 2 well-established methods: Quantitative structure-activity relationship (QSAR)-guided modeling and docking-based comparative intermolecular contacts analysis. The established pharmacophore models highlight structural features needed for ligand recognition and revealed important binding-pocket regions involved in 3CL pro -ligand interactions. The best models were used as 3D queries to screen the National Cancer Institute database for novel nonpeptidomimetic 3CL pro inhibitors. The identified hits were tested for HKU4-CoV and MERS-CoV 3CL pro inhibition. Two hits, which share the phenylsulfonamide fragment, showed moderate inhibitory activity against the MERS-CoV 3CL pro and represent a potential starting point for the development of novel anti-MERS agents. To the best of our knowledge, this is the first pharmacophore modeling study supported by in vitro validation on the MERS-CoV 3CL pro . MERS-CoV is an emerging virus that is closely related to the bat HKU4-CoV. 3CL pro is a potential drug target for coronavirus infection. HKU4-CoV 3CL pro is a useful surrogate model for the identification of MERS-CoV 3CL pro enzyme inhibitors. dbCICA is a very robust modeling method for hit identification. The phenylsulfonamide scaffold represents a potential starting point for MERS coronavirus 3CL pro inhibitors

  9. Effects on Pulmonary Vascular Mechanics of Two Different Lung-Protective Ventilation Strategies in an Experimental Model of Acute Respiratory Distress Syndrome.

    PubMed

    Santos, Arnoldo; Gomez-Peñalver, Eva; Monge-Garcia, M Ignacio; Retamal, Jaime; Borges, João Batista; Tusman, Gerardo; Hedenstierna, Goran; Larsson, Anders; Suarez-Sipmann, Fernando

    2017-11-01

    To compare the effects of two lung-protective ventilation strategies on pulmonary vascular mechanics in early acute respiratory distress syndrome. Experimental study. University animal research laboratory. Twelve pigs (30.8 ± 2.5 kg). Acute respiratory distress syndrome was induced by repeated lung lavages and injurious mechanical ventilation. Thereafter, animals were randomized to 4 hours ventilation according to the Acute Respiratory Distress Syndrome Network protocol or to an open lung approach strategy. Pressure and flow sensors placed at the pulmonary artery trunk allowed continuous assessment of pulmonary artery resistance, effective elastance, compliance, and reflected pressure waves. Respiratory mechanics and gas exchange data were collected. Acute respiratory distress syndrome led to pulmonary vascular mechanics deterioration. Four hours after randomization, pulmonary vascular mechanics was similar in Acute Respiratory Distress Syndrome Network and open lung approach: resistance (578 ± 252 vs 626 ± 153 dyn.s/cm; p = 0.714), effective elastance, (0.63 ± 0.22 vs 0.58 ± 0.17 mm Hg/mL; p = 0.710), compliance (1.19 ± 0.8 vs 1.50 ± 0.27 mL/mm Hg; p = 0.437), and reflection index (0.36 ± 0.04 vs 0.34 ± 0.09; p = 0.680). Open lung approach as compared to Acute Respiratory Distress Syndrome Network was associated with improved dynamic respiratory compliance (17.3 ± 2.6 vs 10.5 ± 1.3 mL/cm H2O; p < 0.001), driving pressure (9.6 ± 1.3 vs 19.3 ± 2.7 cm H2O; p < 0.001), and venous admixture (0.05 ± 0.01 vs 0.22 ± 0.03, p < 0.001) and lower mean pulmonary artery pressure (26 ± 3 vs 34 ± 7 mm Hg; p = 0.045) despite of using a higher positive end-expiratory pressure (17.4 ± 0.7 vs 9.5 ± 2.4 cm H2O; p < 0.001). Cardiac index, however, was lower in open lung approach (1.42 ± 0.16 vs 2.27 ± 0.48 L/min; p = 0.005). In this experimental model, Acute

  10. The roles of transportation and transportation hubs in the propagation of influenza and coronaviruses: a systematic review.

    PubMed

    Browne, Annie; Ahmad, Sacha St-Onge; Beck, Charles R; Nguyen-Van-Tam, Jonathan S

    2016-01-01

    Respiratory viruses spread in humans across wide geographical areas in short periods of time, resulting in high levels of morbidity and mortality. We undertook a systematic review to assess the evidence that air, ground and sea mass transportation systems or hubs are associated with propagating influenza and coronaviruses. Healthcare databases and sources of grey literature were searched using pre-defined criteria between April and June 2014. Two reviewers screened all identified records against the protocol, undertook risk of bias assessments and extracted data using a piloted form. Results were analysed using a narrative synthesis. Forty-one studies met the eligibility criteria. Risk of bias was high in the observational studies, moderate to high in the reviews and moderate to low in the modelling studies. In-flight influenza transmission was identified substantively on five flights with up to four confirmed and six suspected secondary cases per affected flight. Five studies highlighted the role of air travel in accelerating influenza spread to new areas. Influenza outbreaks aboard cruise ships affect 2-7% of passengers. Influenza transmission events have been observed aboard ground transport vehicles. High heterogeneity between studies and the inability to exclude other sources of infection means that the risk of influenza transmission from an index case to other passengers cannot be accurately quantified. A paucity of evidence was identified describing severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus transmission events associated with transportation systems or hubs. Air transportation appears important in accelerating and amplifying influenza propagation. Transmission occurs aboard aeroplanes, at the destination and possibly at airports. Control measures to prevent influenza transmission on cruise ships are needed to reduce morbidity and mortality. There is no recent evidence of sea transport accelerating influenza

  11. Middle East respiratory syndrome coronavirus antibody reactors among camels in Dubai, United Arab Emirates, in 2005.

    PubMed

    Alexandersen, S; Kobinger, G P; Soule, G; Wernery, U

    2014-04-01

    We tested, using a low starting dilution, sequential serum samples from dromedary camels, sheep and horses collected in Dubai from February/April to October of 2005 and from dromedary camels for export/import testing between Canada and USA in 2000-2001. Using a standard Middle East respiratory syndrome coronavirus (MERS-CoV) neutralization test, serial sera from three sheep and three horses were all negative while sera from 9 of 11 dromedary camels from Dubai were positive for antibodies supported by similar results in a MERS-CoV recombinant partial spike protein antibody ELISA. The two negative Dubai camels were both dromedary calves and remained negative over the 5 months studied. The six dromedary samples from USA and Canada were negative in both tests. These results support the recent findings that infection with MERS-CoV or a closely related virus is not a new occurrence in camels in the Middle East. Therefore, interactions of MERS-CoV at the human-animal interface may have been ongoing for several, perhaps many, years and by inference, a widespread pandemic may be less likely unless significant evolution of the virus allow accelerated infection and spread potential in the human population. © Her Majesty the Queen in Right of Canada 2014 Reproduced with the permission of the Minister of Agriculture and Agri-food and Minister of Health.

  12. Interpretation of diagnostic laboratory tests for severe acute respiratory syndrome: the Toronto experience

    PubMed Central

    Tang, Patrick; Louie, Marie; Richardson, Susan E.; Smieja, Marek; Simor, Andrew E.; Jamieson, Frances; Fearon, Margaret; Poutanen, Susan M.; Mazzulli, Tony; Tellier, Raymond; Mahony, James; Loeb, Mark; Petrich, Astrid; Chernesky, Max; McGeer, Allison; Low, Donald E.; Phillips, Elizabeth; Jones, Steven; Bastien, Nathalie; Li, Yan; Dick, Daryl; Grolla, Allen; Fernando, Lisa; Booth, Timothy F.; Henry, Bonnie; Rachlis, Anita R.; Matukas, Larissa M.; Rose, David B.; Lovinsky, Reena; Walmsley, Sharon; Gold, Wayne L.; Krajden, Sigmund

    2004-01-01

    Background An outbreak of severe acute respiratory syndrome (SARS) began in Canada in February 2003. The initial diagnosis of SARS was based on clinical and epidemiological criteria. During the outbreak, molecular and serologic tests for the SARS-associated coronavirus (SARS-CoV) became available. However, without a “gold standard,” it was impossible to determine the usefulness of these tests. We describe how these tests were used during the first phase of the SARS outbreak in Toronto and offer some recommendations that may be useful if SARS returns. Methods We examined the results of all diagnostic laboratory tests used in 117 patients admitted to hospitals in Toronto who met the Health Canada criteria for suspect or probable SARS. Focusing on tests for SARS-CoV, we attempted to determine the optimal specimen types and timing of specimen collection. Results Diagnostic test results for SARS-CoV were available for 110 of the 117 patients. SARS-CoV was detected by means of reverse-transcriptase polymerase chain reaction (RT-PCR) in at least one specimen in 59 (54.1%) of 109 patients. Serologic test results of convalescent samples were positive in 50 (96.2%) of 52 patients for whom paired serum samples were collected during the acute and convalescent phases of the illness. Of the 110 patients, 78 (70.9%) had specimens that tested positive by means of RT-PCR, serologic testing or both methods. The proportion of RT-PCR test results that were positive was similar between patients who met the criteria for suspect SARS (50.8%, 95% confidence interval [CI] 38.4%–63.2%) and those who met the criteria for probable SARS (58.0%, 95% CI 44.2%–70.7%). SARS-CoV was detected in nasopharyngeal swabs in 33 (32.4%) of 102 patients, in stool specimens in 19 (63.3%) of 30 patients, and in specimens from the lower respiratory tract in 10 (58.8%) of 17 patients. Interpretation These findings suggest that the rapid diagnostic tests in use at the time of the initial outbreak lack

  13. Preventing Facial Pressure Ulcers in Acute Respiratory Distress Syndrome (ARDS).

    PubMed

    Kim, Ruth S; Mullins, Kimberly

    2016-01-01

    In patients with acute lung injury and/or severe acute respiratory distress syndrome (ARDS), prone positioning is a therapeutic intervention to improve oxygenation. Positioning a patient in a prone position increases the risk of medical device-related pressure ulcers in the facial area. This article summarizes experience with 4 patients with ARDS. Two did not receive pressure ulcer preventive measures and subsequently developed multiple necrotic facial pressure ulcers related to prone positioning for treatment of ARDS. The other 2 patients were managed on a thin silicone foam dressing; neither of these patients developed facial pressure ulcers during pronation therapy. The use of thin soft silicone foam dressings may prevent the development of facial deep tissue injuries in patients receiving prolonged pronation therapy.

  14. Variability in Usual Care Mechanical Ventilation for Pediatric Acute Respiratory Distress Syndrome: Time for a Decision Support Protocol?

    PubMed

    Newth, Christopher J L; Sward, Katherine A; Khemani, Robinder G; Page, Kent; Meert, Kathleen L; Carcillo, Joseph A; Shanley, Thomas P; Moler, Frank W; Pollack, Murray M; Dalton, Heidi J; Wessel, David L; Berger, John T; Berg, Robert A; Harrison, Rick E; Holubkov, Richard; Doctor, Allan; Dean, J Michael; Jenkins, Tammara L; Nicholson, Carol E

    2017-11-01

    Although pediatric intensivists philosophically embrace lung protective ventilation for acute lung injury and acute respiratory distress syndrome, we hypothesized that ventilator management varies. We assessed ventilator management by evaluating changes to ventilator settings in response to blood gases, pulse oximetry, or end-tidal CO2. We also assessed the potential impact that a pediatric mechanical ventilation protocol adapted from National Heart Lung and Blood Institute acute respiratory distress syndrome network protocols could have on reducing variability by comparing actual changes in ventilator settings to those recommended by the protocol. Prospective observational study. Eight tertiary care U.S. PICUs, October 2011 to April 2012. One hundred twenty patients (age range 17 d to 18 yr) with acute lung injury/acute respiratory distress syndrome. Two thousand hundred arterial and capillary blood gases, 3,964 oxygen saturation by pulse oximetry, and 2,757 end-tidal CO2 values were associated with 3,983 ventilator settings. Ventilation mode at study onset was pressure control 60%, volume control 19%, pressure-regulated volume control 18%, and high-frequency oscillatory ventilation 3%. Clinicians changed FIO2 by ±5 or ±10% increments every 8 hours. Positive end-expiratory pressure was limited at ~10 cm H2O as oxygenation worsened, lower than would have been recommended by the protocol. In the first 72 hours of mechanical ventilation, maximum tidal volume/kg using predicted versus actual body weight was 10.3 (8.5-12.9) (median [interquartile range]) versus 9.2 mL/kg (7.6-12.0) (p < 0.001). Intensivists made changes similar to protocol recommendations 29% of the time, opposite to the protocol's recommendation 12% of the time and no changes 56% of the time. Ventilator management varies substantially in children with acute respiratory distress syndrome. Opportunities exist to minimize variability and potentially injurious ventilator settings by using a

  15. Development of chemical inhibitors of the SARS coronavirus: viral helicase as a potential target.

    PubMed

    Keum, Young-Sam; Jeong, Yong-Joo

    2012-11-15

    Severe acute respiratory syndrome (SARS) was the first pandemic in the 21st century to claim more than 700 lives worldwide. However, effective anti-SARS vaccines or medications are currently unavailable despite being desperately needed to adequately prepare for a possible SARS outbreak. SARS is caused by a novel coronavirus, and one of its components, a viral helicase, is emerging as a promising target for the development of chemical SARS inhibitors. In the following review, we describe the characterization, family classification, and kinetic movement mechanisms of the SARS coronavirus (SCV) helicase-nsP13. We also discuss the recent progress in the identification of novel chemical inhibitors of nsP13 in the context of our recent discovery of the strong inhibition of the SARS helicase by natural flavonoids, myricetin and scutellarein. These compounds will serve as important resources for the future development of anti-SARS medications. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence.

    PubMed

    Menachery, Vineet D; Yount, Boyd L; Debbink, Kari; Agnihothram, Sudhakar; Gralinski, Lisa E; Plante, Jessica A; Graham, Rachel L; Scobey, Trevor; Ge, Xing-Yi; Donaldson, Eric F; Randell, Scott H; Lanzavecchia, Antonio; Marasco, Wayne A; Shi, Zhengli-Li; Baric, Ralph S

    2015-12-01

    The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome (MERS)-CoV underscores the threat of cross-species transmission events leading to outbreaks in humans. Here we examine the disease potential of a SARS-like virus, SHC014-CoV, which is currently circulating in Chinese horseshoe bat populations. Using the SARS-CoV reverse genetics system, we generated and characterized a chimeric virus expressing the spike of bat coronavirus SHC014 in a mouse-adapted SARS-CoV backbone. The results indicate that group 2b viruses encoding the SHC014 spike in a wild-type backbone can efficiently use multiple orthologs of the SARS receptor human angiotensin converting enzyme II (ACE2), replicate efficiently in primary human airway cells and achieve in vitro titers equivalent to epidemic strains of SARS-CoV. Additionally, in vivo experiments demonstrate replication of the chimeric virus in mouse lung with notable pathogenesis. Evaluation of available SARS-based immune-therapeutic and prophylactic modalities revealed poor efficacy; both monoclonal antibody and vaccine approaches failed to neutralize and protect from infection with CoVs using the novel spike protein. On the basis of these findings, we synthetically re-derived an infectious full-length SHC014 recombinant virus and demonstrate robust viral replication both in vitro and in vivo. Our work suggests a potential risk of SARS-CoV re-emergence from viruses currently circulating in bat populations.

  17. Genome-Wide Screen Reveals Valosin-Containing Protein Requirement for Coronavirus Exit from Endosomes

    PubMed Central

    Wong, Hui Hui; Kumar, Pankaj; Tay, Felicia Pei Ling; Moreau, Dimitri

    2015-01-01

    ABSTRACT Coronaviruses are RNA viruses with a large zoonotic reservoir and propensity for host switching, representing a real threat for public health, as evidenced by severe acute respiratory syndrome (SARS) and the emerging Middle East respiratory syndrome (MERS). Cellular factors required for their replication are poorly understood. Using genome-wide small interfering RNA (siRNA) screening, we identified 83 novel genes supporting infectious bronchitis virus (IBV) replication in human cells. Thirty of these hits can be placed in a network of interactions with viral proteins and are involved in RNA splicing, membrane trafficking, and ubiquitin conjugation. In addition, our screen reveals an unexpected role for valosin-containing protein (VCP/p97) in early steps of infection. Loss of VCP inhibits a previously uncharacterized degradation of the nucleocapsid N protein. This inhibition derives from virus accumulation in early endosomes, suggesting a role for VCP in the maturation of virus-loaded endosomes. The several host factors identified in this study may provide avenues for targeted therapeutics. IMPORTANCE Coronaviruses are RNA viruses representing a real threat for public health, as evidenced by SARS and the emerging MERS. However, cellular factors required for their replication are poorly understood. Using genome-wide siRNA screening, we identified novel genes supporting infectious bronchitis virus (IBV) replication in human cells. The several host factors identified in this study may provide directions for future research on targeted therapeutics. PMID:26311884

  18. A Real-Time PCR Assay for Bat SARS-Like Coronavirus Detection and Its Application to Italian Greater Horseshoe Bat Faecal Sample Surveys

    PubMed Central

    Balboni, Andrea; Gallina, Laura; Palladini, Alessandra; Prosperi, Santino; Battilani, Mara

    2012-01-01

    Bats are source of coronaviruses closely related to the severe acute respiratory syndrome (SARS) virus. Numerous studies have been carried out to identify new bat viruses related to SARS-coronavirus (bat-SARS-like CoVs) using a reverse-transcribed-polymerase chain reaction assay. However, a qualitative PCR could underestimate the prevalence of infection, affecting the epidemiological evaluation of bats in viral ecology. In this work an SYBR Green-real time PCR assay was developed for diagnosing infection with SARS-related coronaviruses from bat guano and was applied as screening tool in a survey carried out on 45 greater horseshoe bats (Rhinolophus ferrumequinum) sampled in Italy in 2009. The assay showed high sensitivity and reproducibility. Its application on bats screening resulted in a prevalence of 42%. This method could be suitable as screening tool in epidemiological surveys about the presence of bat-SARS-like CoVs, consequently to obtain a more realistic scenario of the viral prevalence in the population. PMID:22654650

  19. [Acute respiratory distress syndrome in childhood: Changing definition and news from the Pediatric Consensus Conference].

    PubMed

    Dauger, S; Le Bourgeois, F; Guichoux, J; Brissaud, O

    2017-05-01

    Acute respiratory distress syndrome (ARDS) is a rapidly progressive hypoxemic respiratory insufficiency induced by alveolar filling mainly caused by alveolocapillary wall disruption, following direct or indirect pulmonary injury. Much less frequent in children than in adults, pediatric intensivists had long applied adult guidelines to their daily practice. In 2015, experts from the Pediatric Acute Lung Injury Consensus Conference (PALICC) published the first international guidelines specifically dedicated to pediatric ARDS. After a short summary of the history of the ARDS definition since its first report in 1967, we describe the main diagnostic and therapeutic guidelines for PALICC. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Acute viral respiratory infections among children in MERS-endemic Riyadh, Saudi Arabia, 2012-2013.

    PubMed

    Fagbo, Shamsudeen F; Garbati, Musa A; Hasan, Rami; AlShahrani, Dayel; Al-Shehri, Mohamed; AlFawaz, Tariq; Hakawi, Ahmed; Wani, Tariq Ahmad; Skakni, Leila

    2017-02-01

    The emergence of the Middle East Respiratory Syndrome (MERS) in Saudi Arabia has intensified focus on Acute Respiratory Infections [ARIs]. This study sought to identify respiratory viruses (RVs) associated with ARIs in children presenting at a tertiary hospital. Children (aged ≤13) presenting with ARI between January 2012 and December 2013 tested for 15 RVs using the Seeplex R RV15 kit were retrospectively included. Epidemiological data was retrieved from patient records. Of the 2235 children tested, 61.5% were ≤1 year with a male: female ratio of 3:2. Viruses were detected in 1364 (61.02%) children, 233 (10.4%) having dual infections: these viruses include respiratory syncytial virus (RSV) (24%), human rhinovirus (hRV) (19.7%), adenovirus (5.7%), influenza virus (5.3%), and parainfluenzavirus-3 (4.6%). Children, aged 9-11 months, were most infected (60.9%). Lower respiratory tract infections (55.4%) were significantly more than upper respiratory tract infection (45.3%) (P < 0.001). Seasonal variation of RV was directly and inversely proportional to relative humidity and temperature, respectively, for non MERS coronaviruses (NL63, 229E, and OC43). The study confirms community-acquired RV associated with ARI in children and suggests modulating roles for abiotic factors in RV epidemiology. However, community-based studies are needed to elucidate how these factors locally influence RV epidemiology. J. Med. Virol. 89:195-201, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Respiratory health issues in the Asia-Pacific region: an overview.

    PubMed

    Jamrozik, Euzebiusz; Musk, Arthur William

    2011-01-01

    The Asia-Pacific region is home to a large heterogeneous population whose respiratory health is influenced by diverse social, economic and environmental factors. Despite this variability, the most prevalent causes of respiratory morbidity and mortality are tobacco smoking, infection, and air pollution. This review aims to summarize current respiratory health issues in the region including smoking-related diseases especially COPD, lung cancer and infectious problems such as pandemic influenza, the severe acute respiratory syndrome coronavirus, bacterial pneumonia and tuberculosis, as well as the contribution of air pollution to respiratory disease. Published data on trends in the epidemiology and management of respiratory diseases and are summarized; finally, the limitations of available data and projections for the future of respiratory health in the region are discussed. © 2010 Commonwealth of Australia. Respirology © 2010 Asian Pacific Society of Respirology.

  2. Use of thoracic electrical impedance tomography as an auxiliary tool for alveolar recruitment maneuvers in acute respiratory distress syndrome: case report and brief literature review

    PubMed Central

    Rosa, Regis Goulart; Rutzen, William; Madeira, Laura; Ascoli, Aline Maria; Dexheimer Neto, Felippe Leopoldo; Maccari, Juçara Gasparetto; de Oliveira, Roselaine Pinheiro; Teixeira, Cassiano

    2015-01-01

    Thoracic electrical impedance tomography is a real-time, noninvasive monitoring tool of the regional pulmonary ventilation distribution. Its bedside use in patients with acute respiratory distress syndrome has the potential to aid in alveolar recruitment maneuvers, which are often necessary in cases of refractory hypoxemia. In this case report, we describe the monitoring results and interpretation of thoracic electrical impedance tomography used during alveolar recruitment maneuvers in a patient with acute respiratory distress syndrome, with transient application of high alveolar pressures and optimal positive end-expiratory pressure titration. Furthermore, we provide a brief literature review regarding the use of alveolar recruitment maneuvers and monitoring using thoracic electrical impedance tomography in patients with acute respiratory distress syndrome. PMID:26761481

  3. Central ions and lateral asparagine/glutamine zippers stabilize the post-fusion hairpin conformation of the SARS coronavirus spike glycoprotein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duquerroy, Stephane; Vigouroux, Armelle; Rottier, Peter J.M.

    2005-05-10

    The coronavirus spike glycoprotein is a class I membrane fusion protein with two characteristic heptad repeat regions (HR1 and HR2) in its ectodomain. Here, we report the X-ray structure of a previously characterized HR1/HR2 complex of the severe acute respiratory syndrome coronavirus spike protein. As expected, the HR1 and HR2 segments are organized in antiparallel orientations within a rod-like molecule. The HR1 helices form an exceptionally long (120 A) internal coiled coil stabilized by hydrophobic and polar interactions. A striking arrangement of conserved asparagine and glutamine residues of HR1 propagates from two central chloride ions, providing hydrogen-bonding 'zippers' that stronglymore » constrain the path of the HR2 main chain, forcing it to adopt an extended conformation at either end of a short HR2 {alpha}-helix.« less

  4. Knowledge and awareness of Middle East respiratory syndrome coronavirus among Saudi and Non-Saudi Arabian pilgrims.

    PubMed

    Althobaity, Hosam M; Alharthi, Raed A S; Altowairqi, Mohammed H; Alsufyani, Ziyad A; Aloufi, Nahar S; Altowairqi, Abdulrahman E; Alqahtani, Abdulrahman S; Alzahrani, Ali K; Abdel-Moneim, Ahmed S

    2017-01-01

    The current study was intended to evaluate the knowledge and awareness toward Middle East respiratory syndrome coronavirus (MERS-CoV) of pilgrims from Saudi Arabia and from different Arabian countries. A prospective study was conducted among pilgrims from Saudi Arabia and those from other Arab nations. A total number of 2120 participants including 736 Saudi pilgrims (436 males and 300 females) and 1384 non-Saudi Arabian pilgrims (1384; 909 males and 475 females) were included in the study. The responses of the participants were descriptively analyzed. Pearson correlation coefficient was used to screen the possible correlations among different variables. The differences in the responses between the two groups were evaluated using Mann-Whitney analysis. The responses of the Saudi pilgrims showed statistically significant results in comparison to non-Saudi pilgrims in answering all questions except those related to the presence of efficient vaccination or treatment and the source of information. It was clear that the Saudi pilgrims were more oriented about different aspects of MERS-CoV including the nature of the causative agent, the signs, the severity of the disease, the animals that can transmit the infection to humans, the risk groups, and when one need to be screened for infection. In both Saudi and non-Saudi pilgrims, the official websites of health organizations constitute the main source of their information. It was concluded that Saudi pilgrims possess good knowledge about the MERS-CoV although more orientation is still required.

  5. Treatment of Adenoviral Acute Respiratory Distress Syndrome Using Cidofovir With Extracorporeal Membrane Oxygenation.

    PubMed

    Lee, Minhyeok; Kim, Seulgi; Kwon, Oh Jung; Kim, Ji Hye; Jeong, Inbeom; Son, Ji Woong; Na, Moon Jun; Yoon, Yoo Sang; Park, Hyun Woong; Kwon, Sun Jung

    2017-03-01

    Adenovirus infections are associated with respiratory (especially upper respiratory) infection and gastrointestinal disease and occur primarily in infants and children. Although rare in adults, severe lower respiratory adenovirus infections including pneumonia are reported in specific populations, such as military recruits and immunocompromised patients. Antiviral treatment is challenging due to limited clinical experience and lack of well-controlled randomized trials. Several previously reported cases of adenoviral pneumonia showed promising efficacy of cidofovir. However, few reports discussed the efficacy of cidofovir in acute respiratory distress syndrome (ARDS). We experienced 3 cases of adenoviral pneumonia associated with ARDS and treated with cidofovir and respiratory support, including extracorporeal membrane oxygenation (ECMO). All 3 patients showed a positive clinical response to cidofovir and survival at 28 days. Cidofovir with early ECMO therapy may be a therapeutic option in adenoviral ARDS. A literature review identified 15 cases of adenovirus pneumonia associated with ARDS.

  6. Treatment outcomes for patients with Middle Eastern Respiratory Syndrome Coronavirus (MERS CoV) infection at a coronavirus referral center in the Kingdom of Saudi Arabia.

    PubMed

    Al Ghamdi, Mohammed; Alghamdi, Khalid M; Ghandoora, Yasmeen; Alzahrani, Ameera; Salah, Fatmah; Alsulami, Abdulmoatani; Bawayan, Mayada F; Vaidya, Dhananjay; Perl, Trish M; Sood, Geeta

    2016-04-21

    Middle Eastern Respiratory Syndrome coronavirus (MERS-CoV) is a poorly understood disease with no known treatments. We describe the clinical features and treatment outcomes of patients with laboratory confirmed MERS-CoV at a regional referral center in the Kingdom of Saudi Arabia. In 2014, a retrospective chart review was performed on patients with a laboratory confirmed diagnosis of MERS-CoV to determine clinical and treatment characteristics associated with death. Confounding was evaluated and a multivariate logistic regression was performed to assess the independent effect of treatments administered. Fifty-one patients had an overall mortality of 37 %. Most patients were male (78 %) with a mean age of 54 years. Almost a quarter of the patients were healthcare workers (23.5 %) and 41 % had a known exposure to another person with MERS-CoV. Survival was associated with male gender, working as a healthcare worker, history of hypertension, vomiting on admission, elevated respiratory rate, abnormal lung exam, elevated alanine transaminase (ALT), clearance of MERS-CoV on repeat PCR polymerase chain reaction (PCR) testing, and mycophenolate mofetil treatment. Survival was reduced in the presence of coronary artery disease, hypotension, hypoxemia, CXR (chest X-ray) abnormalities, leukocytosis, creatinine >1 · 5 mg/dL, thrombocytopenia, anemia, and renal failure. In a multivariate analysis of treatments administered, severity of illness was the greatest predictor of reduced survival. Care for patients with MERS-CoV remains a challenge. In this retrospective cohort, interferon beta and mycophenolate mofetil treatment were predictors of increased survival in the univariate analysis. Severity of illness was the greatest predictor of reduced survival in the multivariate analysis. Larger randomized trials are needed to better evaluate the efficacy of these treatment regimens for MERS-CoV.

  7. Obstructive Sleep Apnea, Obesity, and the Development of Acute Respiratory Distress Syndrome

    PubMed Central

    Karnatovskaia, Lioudmila V.; Lee, Augustine S.; Bender, S. Patrick; Talmor, Daniel; Festic, Emir

    2014-01-01

    Background: Obstructive sleep apnea (OSA) may increase the risk of respiratory complications and acute respiratory distress syndrome (ARDS) among surgical patients. OSA is more prevalent among obese individuals; obesity can predispose to ARDS. Hypothesis: It is unclear whether OSA independently contributes towards the risk of ARDS among hospitalized patients. Methods: This is a pre-planned retrospective subgroup analysis of the prospectively identified cohort of 5,584 patients across 22 hospitals with at least one risk factor for ARDS at the time of hospitalization from a trial by the US Critical Illness and Injury Trials Group designed to validate the Lung Injury Prediction Score. A total of 252 patients (4.5%) had a diagnosis of OSA at the time of hospitalization; of those, 66% were obese. Following multivariate adjustment in the logistic regression model, there was no significant relationship between OSA and development of ARDS (OR = 0.65, 95%CI = 0.32-1.22). However, body mass index (BMI) was associated with subsequent ARDS development (OR = 1.02, 95%CI = 1.00-1.04, p = 0.03). Neither OSA nor BMI affected mechanical ventilation requirement or mortality. Conclusions: Prior diagnosis of OSA did not independently affect development of ARDS among patients with at least one predisposing condition, nor the need for mechanical ventilation or hospital mortality. Obesity appeared to independently increase the risk of ARDS. Citation: Karnatovskaia LV, Lee AS, Bender SP, Talmor D, Festic E. Obstructive sleep apnea, obesity, and the development of acute respiratory distress syndrome. J Clin Sleep Med 2014;10(6):657-662. PMID:24932146

  8. ANLN truncation causes a familial fatal acute respiratory distress syndrome in Dalmatian dogs

    PubMed Central

    Syrjä, Pernilla; Arumilli, Meharji; Järvinen, Anna-Kaisa; Rajamäki, Minna

    2017-01-01

    Acute respiratory distress syndrome (ARDS) is the leading cause of death in critical care medicine. The syndrome is typified by an exaggerated inflammatory response within the lungs. ARDS has been reported in many species, including dogs. We have previously reported a fatal familial juvenile respiratory disease accompanied by occasional unilateral renal aplasia and hydrocephalus, in Dalmatian dogs. The condition with a suggested recessive mode of inheritance resembles acute exacerbation of usual interstitial pneumonia in man. We combined SNP-based homozygosity mapping of two ARDS-affected Dalmatian dogs and whole genome sequencing of one affected dog to identify a case-specific homozygous nonsense variant, c.31C>T; p.R11* in the ANLN gene. Subsequent analysis of the variant in a total cohort of 188 Dalmatians, including seven cases, indicated complete segregation of the variant with the disease and confirmed an autosomal recessive mode of inheritance. Low carrier frequency of 1.7% was observed in a population cohort. The early nonsense variant results in a nearly complete truncation of the ANLN protein and immunohistochemical analysis of the affected lung tissue demonstrated the lack of the membranous and cytoplasmic staining of ANLN protein in the metaplastic bronchial epithelium. The ANLN gene encodes an anillin actin binding protein with a suggested regulatory role in the integrity of intercellular junctions. Our study suggests that defective ANLN results in abnormal cellular organization of the bronchiolar epithelium, which in turn predisposes to acute respiratory distress. ANLN has been previously linked to a dominant focal segmental glomerulosclerosis in human without pulmonary defects. However, the lack of similar renal manifestations in the affected Dalmatians suggest a novel ANLN-related pulmonary function and disease association. PMID:28222102

  9. Lung recruitability is better estimated according to the Berlin definition of acute respiratory distress syndrome at standard 5 cm H2O rather than higher positive end-expiratory pressure: a retrospective cohort study.

    PubMed

    Caironi, Pietro; Carlesso, Eleonora; Cressoni, Massimo; Chiumello, Davide; Moerer, Onner; Chiurazzi, Chiara; Brioni, Matteo; Bottino, Nicola; Lazzerini, Marco; Bugedo, Guillermo; Quintel, Michael; Ranieri, V Marco; Gattinoni, Luciano

    2015-04-01

    The Berlin definition of acute respiratory distress syndrome has introduced three classes of severity according to PaO2/FIO2 thresholds. The level of positive end-expiratory pressure applied may greatly affect PaO2/FIO2, thereby masking acute respiratory distress syndrome severity, which should reflect the underlying lung injury (lung edema and recruitability). We hypothesized that the assessment of acute respiratory distress syndrome severity at standardized low positive end-expiratory pressure may improve the association between the underlying lung injury, as detected by CT, and PaO2/FIO2-derived severity. Retrospective analysis. Four university hospitals (Italy, Germany, and Chile). One hundred forty-eight patients with acute lung injury or acute respiratory distress syndrome according to the American-European Consensus Conference criteria. Patients underwent a three-step ventilator protocol (at clinical, 5 cm H2O, or 15 cm H2O positive end-expiratory pressure). Whole-lung CT scans were obtained at 5 and 45 cm H2O airway pressure. Nine patients did not fulfill acute respiratory distress syndrome criteria of the novel Berlin definition. Patients were then classified according to PaO2/FIO2 assessed at clinical, 5 cm H2O, or 15 cm H2O positive end-expiratory pressure. At clinical positive end-expiratory pressure (11±3 cm H2O), patients with severe acute respiratory distress syndrome had a greater lung tissue weight and recruitability than patients with mild or moderate acute respiratory distress syndrome (p<0.001). At 5 cm H2O, 54% of patients with mild acute respiratory distress syndrome at clinical positive end-expiratory pressure were reclassified to either moderate or severe acute respiratory distress syndrome. In these patients, lung recruitability and clinical positive end-expiratory pressure were higher than in patients who remained in the mild subgroup (p<0.05). When patients were classified at 5 cm H2O, but not at clinical or 15 cm H2O, lung

  10. Severe Acute Respiratory Syndrome and the Delivery of Continuing Medical Education: Case Study from Toronto

    ERIC Educational Resources Information Center

    Davis, Dave; Ryan, David; Sibbald, Gary; Rachlis, Anita; Davies, Sharon; Manchul, Lee; Parikh, Sagar

    2004-01-01

    Introduction: Severe acute respiratory syndrome (SARS) struck Toronto in the spring of 2003, causing many deaths, serious morbidity, forced quarantine of thousands of individuals, and the closure of all provincial hospitals for several weeks. Given the direction by public health authorities to cancel or postpone all continuing medical education…

  11. History of mechanical ventilation may affect respiratory mechanics evolution in acute respiratory distress syndrome.

    PubMed

    Koutsoukou, Antonia; Perraki, Helen; Orfanos, Stylianos E; Koulouris, Nikolaos G; Tromaropoulos, Andreas; Sotiropoulou, Christina; Roussos, Charis

    2009-12-01

    The aim of this study was to investigate the effect of mechanical ventilation (MV) before acute respiratory distress syndrome (ARDS) on subsequent evolution of respiratory mechanics and blood gases in protectively ventilated patients with ARDS. Nineteen patients with ARDS were stratified into 2 groups according to ARDS onset relative to the onset of MV: In group A (n = 11), MV was applied at the onset of ARDS; in group B (n = 8), MV had been initiated before ARDS. Respiratory mechanics and arterial blood gas were assessed in early (respiratory system decreased (8.3 +/- 1.8 vs 6.0 +/- 2.1 cm H(2)O L(-1) s(-1)) from early to late ARDS. In group B, static elastance of respiratory system increased in the late stage (30.4 +/- 7.8 vs 36.4 +/- 9.9 cm H(2)O/L). In both groups, positive end-expiratory pressure application resulted in Pao(2)/fractional inspired oxygen concentration improvement and minimal resistance of respiratory system decreases in both stages. In protectively ventilated patients with ARDS, late alteration of respiratory mechanics occurs more commonly in patients who have been ventilated before ARDS onset, suggesting that the history of MV affects the subsequent progress of ARDS even when using protective ventilation.

  12. Identification of a Broad-Spectrum Antiviral Small Molecule against Severe Acute Respiratory Syndrome Coronavirus and Ebola, Hendra, and Nipah Viruses by Using a Novel High-Throughput Screening Assay

    PubMed Central

    Elshabrawy, Hatem A.; Fan, Jilao; Haddad, Christine S.; Ratia, Kiira; Broder, Christopher C.; Caffrey, Michael

    2014-01-01

    ABSTRACT Severe acute respiratory syndrome coronavirus (SARS-CoV) and Ebola, Hendra, and Nipah viruses are members of different viral families and are known causative agents of fatal viral diseases. These viruses depend on cathepsin L for entry into their target cells. The viral glycoproteins need to be primed by protease cleavage, rendering them active for fusion with the host cell membrane. In this study, we developed a novel high-throughput screening assay based on peptides, derived from the glycoproteins of the aforementioned viruses, which contain the cathepsin L cleavage site. We screened a library of 5,000 small molecules and discovered a small molecule that can inhibit the cathepsin L cleavage of all viral peptides with minimal inhibition of cleavage of a host protein-derived peptide (pro-neuropeptide Y). The small molecule inhibited the entry of all pseudotyped viruses in vitro and the cleavage of SARS-CoV spike glycoprotein in an in vitro cleavage assay. In addition, the Hendra and Nipah virus fusion glycoproteins were not cleaved in the presence of the small molecule in a cell-based cleavage assay. Furthermore, we demonstrate that the small molecule is a mixed inhibitor of cathepsin L. Our broad-spectrum antiviral small molecule appears to be an ideal candidate for future optimization and development into a potent antiviral against SARS-CoV and Ebola, Hendra, and Nipah viruses. IMPORTANCE We developed a novel high-throughput screening assay to identify small molecules that can prevent cathepsin L cleavage of viral glycoproteins derived from SARS-CoV and Ebola, Hendra, and Nipah viruses that are required for their entry into the host cell. We identified a novel broad-spectrum small molecule that could block cathepsin L-mediated cleavage and thus inhibit the entry of pseudotypes bearing the glycoprotein derived from SARS-CoV or Ebola, Hendra, or Nipah virus. The small molecule can be further optimized and developed into a potent broad-spectrum antiviral

  13. Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay.

    PubMed

    Elshabrawy, Hatem A; Fan, Jilao; Haddad, Christine S; Ratia, Kiira; Broder, Christopher C; Caffrey, Michael; Prabhakar, Bellur S

    2014-04-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) and Ebola, Hendra, and Nipah viruses are members of different viral families and are known causative agents of fatal viral diseases. These viruses depend on cathepsin L for entry into their target cells. The viral glycoproteins need to be primed by protease cleavage, rendering them active for fusion with the host cell membrane. In this study, we developed a novel high-throughput screening assay based on peptides, derived from the glycoproteins of the aforementioned viruses, which contain the cathepsin L cleavage site. We screened a library of 5,000 small molecules and discovered a small molecule that can inhibit the cathepsin L cleavage of all viral peptides with minimal inhibition of cleavage of a host protein-derived peptide (pro-neuropeptide Y). The small molecule inhibited the entry of all pseudotyped viruses in vitro and the cleavage of SARS-CoV spike glycoprotein in an in vitro cleavage assay. In addition, the Hendra and Nipah virus fusion glycoproteins were not cleaved in the presence of the small molecule in a cell-based cleavage assay. Furthermore, we demonstrate that the small molecule is a mixed inhibitor of cathepsin L. Our broad-spectrum antiviral small molecule appears to be an ideal candidate for future optimization and development into a potent antiviral against SARS-CoV and Ebola, Hendra, and Nipah viruses. We developed a novel high-throughput screening assay to identify small molecules that can prevent cathepsin L cleavage of viral glycoproteins derived from SARS-CoV and Ebola, Hendra, and Nipah viruses that are required for their entry into the host cell. We identified a novel broad-spectrum small molecule that could block cathepsin L-mediated cleavage and thus inhibit the entry of pseudotypes bearing the glycoprotein derived from SARS-CoV or Ebola, Hendra, or Nipah virus. The small molecule can be further optimized and developed into a potent broad-spectrum antiviral drug.

  14. The SARS coronavirus nucleocapsid protein--forms and functions.

    PubMed

    Chang, Chung-ke; Hou, Ming-Hon; Chang, Chi-Fon; Hsiao, Chwan-Deng; Huang, Tai-huang

    2014-03-01

    The nucleocapsid phosphoprotein of the severe acute respiratory syndrome coronavirus (SARS-CoV N protein) packages the viral genome into a helical ribonucleocapsid (RNP) and plays a fundamental role during viral self-assembly. It is a protein with multifarious activities. In this article we will review our current understanding of the N protein structure and its interaction with nucleic acid. Highlights of the progresses include uncovering the modular organization, determining the structures of the structural domains, realizing the roles of protein disorder in protein-protein and protein-nucleic acid interactions, and visualizing the ribonucleoprotein (RNP) structure inside the virions. It was also demonstrated that N-protein binds to nucleic acid at multiple sites with a coupled-allostery manner. We propose a SARS-CoV RNP model that conforms to existing data and bears resemblance to the existing RNP structures of RNA viruses. The model highlights the critical role of modular organization and intrinsic disorder of the N protein in the formation and functions of the dynamic RNP capsid in RNA viruses. This paper forms part of a symposium in Antiviral Research on "From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses." Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Homology models of main proteinase from coronavirus associated with SARS

    NASA Astrophysics Data System (ADS)

    Liu, Hsuan-Liang; Lin, Jin-Chung; Ho, Yih; Chen, Chin-Wen

    2005-01-01

    In this study, two homology models of the main proteinase (M pro) from the novel coronavirus associated with severe acute respiratory syndrome (SARS-CoV) were constructed. These models reveal three distinct functional domains, in which an intervening loop connecting domains II and III as well as a catalytic cleft containing the substrate binding subsites S1 and S2 between domains I and II are observed. S2 exhibits structural variations more significantly than S1 during the 200 ps molecular dynamics simulations because it is located at the open mouth of the catalytic cleft and the amino acid residues lining up this subsite are least conserved. In addition, the higher structural variation of S2 makes it flexible enough to accommodate a bulky hydrophobic residue from the substrate.

  16. Development and Evaluation of Novel Real-Time Reverse Transcription-PCR Assays with Locked Nucleic Acid Probes Targeting Leader Sequences of Human-Pathogenic Coronaviruses

    PubMed Central

    Chan, Jasper Fuk-Woo; Choi, Garnet Kwan-Yue; Tsang, Alan Ka-Lun; Tee, Kah-Meng; Lam, Ho-Yin; Yip, Cyril Chik-Yan; To, Kelvin Kai-Wang; Cheng, Vincent Chi-Chung; Yeung, Man-Lung; Lau, Susanna Kar-Pui; Woo, Patrick Chiu-Yat; Chan, Kwok-Hung; Tang, Bone Siu-Fai

    2015-01-01

    Based on findings in small RNA-sequencing (Seq) data analysis, we developed highly sensitive and specific real-time reverse transcription (RT)-PCR assays with locked nucleic acid probes targeting the abundantly expressed leader sequences of Middle East respiratory syndrome coronavirus (MERS-CoV) and other human coronaviruses. Analytical and clinical evaluations showed their noninferiority to a commercial multiplex PCR test for the detection of these coronaviruses. PMID:26019210

  17. [Septic shock Fusobacterium necrophorum from origin gynecological at complicated an acute respiratory distress syndrome: a variant of Lemierre's syndrome].

    PubMed

    Huynh-Moynot, Sophie; Commandeur, Diane; Danguy des Déserts, Marc; Drouillard, Isabelle; Leguen, Patrick; Ould-Ahmed, Mehdi

    2011-01-01

    We report a case of a female patient of 47 years old who presents in a state of septic shock with acute insufficient respiratory complicated with syndrome of acute respiratory distress, together with a list of abdominal pain and polyarthralgia too. In her case of medical history, it is retained that she has had a intra-uterine device since 6 years without medical follow up. The initial thoraco-abdomino-pelvic scan shows a left ovarian vein thrombosis, as well as the opaqueness alveolus diffused interstitiel bilaterally and an aspect of ileitis. The IUD is taken off because of sudden occuring of purulent leucorrhoea. This results in a clinical and paraclinical improvement, whereas aminopenicillin was administered to the patient since 1 week. The microbiological blood test allows to put in evidence Fusobacterium necrophorum found in a blood culture and is sensitive to the amoxicilline-acide clavulanique and metronidazole. Isolation of this bacteria, classically found in Lemierre's syndrome, allowed to explain the multilfocalization of the symtoms and the list of pain. The whole concerns about a variant of Lemierre's syndrom: a state of septic shock secondary then caused by the anaerobic Gram negative bacilli, which is a commensal bacteria of the female genital tractus, complicated of septic emboli typical.

  18. Acute Respiratory Distress Syndrome Neutrophils Have a Distinct Phenotype and Are Resistant to Phosphoinositide 3-Kinase Inhibition

    PubMed Central

    Juss, Jatinder K.; House, David; Amour, Augustin; Begg, Malcolm; Herre, Jurgen; Storisteanu, Daniel M. L.; Hoenderdos, Kim; Bradley, Glyn; Lennon, Mark; Summers, Charlotte; Hessel, Edith M.; Condliffe, Alison

    2016-01-01

    Rationale: Acute respiratory distress syndrome is refractory to pharmacological intervention. Inappropriate activation of alveolar neutrophils is believed to underpin this disease’s complex pathophysiology, yet these cells have been little studied. Objectives: To examine the functional and transcriptional profiles of patient blood and alveolar neutrophils compared with healthy volunteer cells, and to define their sensitivity to phosphoinositide 3-kinase inhibition. Methods: Twenty-three ventilated patients underwent bronchoalveolar lavage. Alveolar and blood neutrophil apoptosis, phagocytosis, and adhesion molecules were quantified by flow cytometry, and oxidase responses were quantified by chemiluminescence. Cytokine and transcriptional profiling were used in multiplex and GeneChip arrays. Measurements and Main Results: Patient blood and alveolar neutrophils were distinct from healthy circulating cells, with increased CD11b and reduced CD62L expression, delayed constitutive apoptosis, and primed oxidase responses. Incubating control cells with disease bronchoalveolar lavage recapitulated the aberrant functional phenotype, and this could be reversed by phosphoinositide 3-kinase inhibitors. In contrast, the prosurvival phenotype of patient cells was resistant to phosphoinositide 3-kinase inhibition. RNA transcriptomic analysis revealed modified immune, cytoskeletal, and cell death pathways in patient cells, aligning closely to sepsis and burns datasets but not to phosphoinositide 3-kinase signatures. Conclusions: Acute respiratory distress syndrome blood and alveolar neutrophils display a distinct primed prosurvival profile and transcriptional signature. The enhanced respiratory burst was phosphoinositide 3-kinase–dependent but delayed apoptosis and the altered transcriptional profile were not. These unexpected findings cast doubt over the utility of phosphoinositide 3-kinase inhibition in acute respiratory distress syndrome and highlight the importance of

  19. [Genetic predisposition and Pediatric Acute Respiratory Distress Syndrome: New tools for genetic study].

    PubMed

    Erranz, M Benjamín; Wilhelm, B Jan; Riquelme, V Raquel; Cruces, R Pablo

    2015-01-01

    Acute respiratory distress syndrome (ARDS) is the most severe form of respiratory failure. Theoretically, any acute lung condition can lead to ARDS, but only a small percentage of individuals actually develop the disease. On this basis, genetic factors have been implicated in the risk of developing ARDS. Based on the pathophysiology of this disease, many candidate genes have been evaluated as potential modifiers in patient, as well as in animal models, of ARDS. Recent experimental data and clinical studies suggest that variations of genes involved in key processes of tissue, cellular and molecular lung damage may influence susceptibility and prognosis of ARDS. However, the pathogenesis of pediatric ARDS is complex, and therefore, it can be expected that many genes might contribute. Genetic variations such as single nucleotide polymorphisms and copy-number variations are likely associated with susceptibility to ARDS in children with primary lung injury. Genome-wide association (GWA) studies can objectively examine these variations, and help identify important new genes and pathogenetic pathways for future analysis. This approach might also have diagnostic and therapeutic implications, such as predicting patient risk or developing a personalized therapeutic approach to this serious syndrome. Copyright © 2015. Publicado por Elsevier España, S.L.U.

  20. Molecular dynamics of Middle East Respiratory Syndrome Coronavirus (MERS CoV) fusion heptad repeat trimers.

    PubMed

    Kandeel, Mahmoud; Al-Taher, Abdulla; Li, Huifang; Schwingenschlogl, Udo; Al-Nazawi, Mohamed

    2018-08-01

    Structural studies related to Middle East Respiratory Syndrome Coronavirus (MERS CoV) infection process are so limited. In this study, molecular dynamics (MD) simulations were carried out to unravel changes in the MERS CoV heptad repeat domains (HRs) and factors affecting fusion state HR stability. Results indicated that HR trimer is more rapidly stabilized, having stable system energy and lower root mean square deviations (RMSDs). While trimers were the predominant active form of CoVs HRs, monomers were also discovered in both of viral and cellular membranes. In order to find the differences between S2 monomer and trimer molecular dynamics, S2 monomer was modelled and subjected to MD simulation. In contrast to S2 trimer, S2 monomer was unstable, having high RMSDs with major drifts above 8 Å. Fluctuation of HR residue positions revealed major changes in the C-terminal of HR2 and the linker coil between HR1 and HR2 in both monomer and trimer. Hydrophobic residues at the a and d positions of HR helices stabilize the whole system, with minimal changes in RMSD. The global distance test and contact area difference scores support instability of MERS CoV S2 monomer. Analysis of HR1-HR2 inter-residue contacts and interaction energy revealed three energy scales along HR helices. Two strong interaction energies were identified at the start of the HR2 helix and at the C-terminal of HR2. The identified critical residues by MD simulation and residues at the a and d positions of HR helix were strong stabilizers of HR recognition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. A Pathophysiologic Approach to Biomarkers in Acute Respiratory Distress Syndrome

    PubMed Central

    Blondonnet, Raiko; Constantin, Jean-Michel; Sapin, Vincent; Jabaudon, Matthieu

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is an acute-onset hypoxic condition with radiographic bilateral lung infiltration. It is characterized by an acute exudative phase combining diffuse alveolar damage and lung edema followed by a later fibroproliferative phase. Despite an improved understanding of ARDS pathobiology, our ability to predict the development of ARDS and risk-stratify patients with the disease remains limited. Biomarkers may help to identify patients at the highest risk of developing ARDS, assess response to therapy, predict outcome, and optimize enrollment in clinical trials. After a short description of ARDS pathobiology, here, we review the scientific evidence that supports the value of various ARDS biomarkers with regard to their major biological roles in ARDS-associated lung injury and/or repair. Ongoing research aims at identifying and characterizing novel biomarkers, in order to highlight relevant mechanistic explorations of lung injury and repair, and to ultimately develop innovative therapeutic approaches for ARDS patients. This review will focus on the pathophysiologic, diagnostic, and therapeutic implications of biomarkers in ARDS and on their utility to ultimately improve patient care. PMID:26980924

  2. [Acute respiratory distress syndrome: a review of the Berlin definition].

    PubMed

    de Luis Cabezón, N; Sánchez Castro, I; Bengoetxea Uriarte, U X; Rodrigo Casanova, M P; García Peña, J M; Aguilera Celorrio, L

    2014-01-01

    Acute Respiratory Distress Syndrome (ARDS) is due to many causes. The absence of a universal definition up until now has led to a series of practical problems for a definitive diagnosis. The incidences of ARDS and Acute Lung Injury (ALI) vary widely in the current literature. The American-European Consensus Conference definition has been applied since its publication in 1994 and has helped to improve knowledge about ARDS. However, 18 years later, in 2011, the European Intensive Medicine Society, requested a team of international experts to meet in Berlin to review the ARDS definition. The purpose of the Berlin definition is not to use it as a prognostic tool, but to improve coherence between research and clinical practice. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.

  3. Knowledge and awareness of Middle East respiratory syndrome coronavirus among Saudi and Non-Saudi Arabian pilgrims

    PubMed Central

    Althobaity, Hosam M.; Alharthi, Raed A. S.; Altowairqi, Mohammed H.; Alsufyani, Ziyad A.; Aloufi, Nahar S.; Altowairqi, Abdulrahman E.; Alqahtani, Abdulrahman S.; Alzahrani, Ali K.; Abdel-Moneim, Ahmed S.

    2017-01-01

    Objective: The current study was intended to evaluate the knowledge and awareness toward Middle East respiratory syndrome coronavirus (MERS-CoV) of pilgrims from Saudi Arabia and from different Arabian countries. Methods: A prospective study was conducted among pilgrims from Saudi Arabia and those from other Arab nations. A total number of 2120 participants including 736 Saudi pilgrims (436 males and 300 females) and 1384 non-Saudi Arabian pilgrims (1384; 909 males and 475 females) were included in the study. The responses of the participants were descriptively analyzed. Pearson correlation coefficient was used to screen the possible correlations among different variables. The differences in the responses between the two groups were evaluated using Mann–Whitney analysis. Results: The responses of the Saudi pilgrims showed statistically significant results in comparison to non-Saudi pilgrims in answering all questions except those related to the presence of efficient vaccination or treatment and the source of information. It was clear that the Saudi pilgrims were more oriented about different aspects of MERS-CoV including the nature of the causative agent, the signs, the severity of the disease, the animals that can transmit the infection to humans, the risk groups, and when one need to be screened for infection. In both Saudi and non-Saudi pilgrims, the official websites of health organizations constitute the main source of their information. Conclusion: It was concluded that Saudi pilgrims possess good knowledge about the MERS-CoV although more orientation is still required. PMID:29114190

  4. Anti-SARS coronavirus agents: a patent review (2008 - present).

    PubMed

    Kumar, Vathan; Jung, Young-Sik; Liang, Po-Huang

    2013-10-01

    A novel coronavirus (CoV), unlike previous typical human coronaviruses (HCoVs), was identified as causative agent for severe acute respiratory syndrome (SARS). SARS first surfaced as a pandemic in late 2002 and originated in southern China. SARS-CoV rapidly spread to > 30 countries by 2003, infecting nearly 8,000 people and causing around 800 fatalities. After 10 years of silence, a 2012 report alarmed researchers about the emergence of a new strain of CoV causing SARS-like disease. To combat SARS, scientists applied for patents on various therapeutic agents, including small-molecule inhibitors targeting the essential proteases, helicase and other proteins of the virus, natural products, approved drugs, molecules binding to the virus, neutralizing antibodies, vaccines, anti-sense RNA, siRNA and ribozyme against SARS-CoV. In this article, the patents published from 2008 to the present for the new therapeutics that could potentially be used in the prophylaxis and treatment of SARS are reviewed. The therapeutic interventions or prophylaxis discussed in this review seems to offer promising solutions to tackle SARS. Rather than being complacent about the results, we should envisage how to transform them into drug candidates that may be useful in combating SARS and related viral infections in the future.

  5. Specialized Pro-resolving Mediators Regulate Alveolar Fluid Clearance during Acute Respiratory Distress Syndrome

    PubMed Central

    Wang, Qian; Yan, Song-Fan; Hao, Yu; Jin, Sheng-Wei

    2018-01-01

    Objective: Acute respiratory distress syndrome (ARDS) is an acute and lethal clinical syndrome that is characterized by the injury of alveolar epithelium, which impairs active fluid transport in the lung, and impedes the reabsorption of edema fluid from the alveolar space. This review aimed to discuss the role of pro-resolving mediators on the regulation of alveolar fluid clearance (AFC) in ARDS. Data Sources: Articles published up to September 2017 were selected from the PubMed, with the keywords of “alveolar fluid clearance” or “lung edema” or “acute lung injury” or “acute respiratory distress syndrome”, and “specialized pro-resolving mediators” or “lipoxin” or “resolvin” or “protectin” or “maresin” or “alveolar epithelial cells” or “aspirin-triggered lipid mediators” or “carbon monoxide and heme oxygenase” or “annexin A1”. Study Selection: We included all relevant articles published up to September 2017, with no limitation of study design. Results: Specialized pro-resolving mediators (SPMs), as the proinflammatory mediators, not only upregulated epithelial sodium channel, Na,K-ATPase, cystic fibrosis transmembrane conductance regulator (CFTR), and aquaporins levels, but also improved Na,K-ATPase activity to promote AFC in ARDS. In addition to the direct effects on ion channels and pumps of the alveolar epithelium, the SPMs also inhibited the inflammatory cytokine expression and improved the alveolar epithelial cell repair to enhance the AFC in ARDS. Conclusions: The present review discusses a novel mechanism for pulmonary edema fluid reabsorption. SPMs might provide new opportunities to design “reabsorption-targeted” therapies with high degrees of precision in controlling ALI/ARDS. PMID:29664060

  6. Exploring the Roles and Nature of Science: A Case Study of Severe Acute Respiratory Syndrome

    ERIC Educational Resources Information Center

    Lee, Yeung Chung

    2008-01-01

    The roles of science in society and the nature of science are the focus of many science curricula. Current views about these two aspects of science have largely been informed by the history of scientific development. This article uses the outbreak of severe acute respiratory syndrome--a recent health scare--as a case study to explore the roles of…

  7. [Human coronavirus infections: importance and diagnosis].

    PubMed

    Vabret, A; Brouard, J; Petitjean, J; Eugene-Ruellan, G; Freymuth, F

    1998-11-14

    POORLY-KNOWN VIRUS: Coronaviruses, so named because of their sun-ray-like aspect, were discovered in the sixties. The biology of these RNA viruses is complex and poorly understood. KNOWN PATHOGENS: Coronaviruses are known pathogens in veterinary medicine, causing disease states in several domestic species. In human medicine, they can cause benign respiratory infections, but few laboratories include coronaviruses in their routine diagnostic tests. SUSPECTED PATHOGENS: There is some data in the literature suggesting coronaviruses might be implicated in more severe diseases including multiple sclerosis, necrotizing enterocolitis, and lower respiratory tract infections, particularly in infants. IMPROVING DIAGNOSTIC METHODS: Due to the lack of reliable and sensitive diagnostic techniques, it is impossible to date to correctly assess the medical impact of these ubiquitous and endemic viruses. Molecular biology techniques enabling detection of human coronavirus infections should be applied to verifying the suspected implication of these viruses in diverse disease states.

  8. Acute respiratory distress syndrome and acute lung injury.

    PubMed

    Dushianthan, A; Grocott, M P W; Postle, A D; Cusack, R

    2011-09-01

    Acute respiratory distress syndrome (ARDS) is a life threatening respiratory failure due to lung injury from a variety of precipitants. Pathologically ARDS is characterised by diffuse alveolar damage, alveolar capillary leakage, and protein rich pulmonary oedema leading to the clinical manifestation of poor lung compliance, severe hypoxaemia, and bilateral infiltrates on chest radiograph. Several aetiological factors associated with the development of ARDS are identified with sepsis, pneumonia, and trauma with multiple transfusions accounting for most cases. Despite the absence of a robust diagnostic definition, extensive epidemiological investigations suggest ARDS remains a significant health burden with substantial morbidity and mortality. Improvements in outcome following ARDS over the past decade are in part due to improved strategies of mechanical ventilation and advanced support of other failing organs. Optimal treatment involves judicious fluid management, protective lung ventilation with low tidal volumes and moderate positive end expiratory pressure, multi-organ support, and treatment where possible of the underlying cause. Moreover, advances in general supportive measures such as appropriate antimicrobial therapy, early enteral nutrition, prophylaxis against venous thromboembolism and gastrointestinal ulceration are likely contributory reasons for the improved outcomes. Although therapies such as corticosteroids, nitric oxide, prostacyclins, exogenous surfactants, ketoconazole and antioxidants have shown promising clinical effects in animal models, these have failed to translate positively in human studies. Most recently, clinical trials with β2 agonists aiding alveolar fluid clearance and immunonutrition with omega-3 fatty acids have also provided disappointing results. Despite these negative studies, mortality seems to be in decline due to advances in overall patient care. Future directions of research are likely to concentrate on identifying potential

  9. Molecular and epidemiological characterization of a respiratory disease outbreak in pre-weaned beef calves associated with bovine coronavirus

    USDA-ARS?s Scientific Manuscript database

    Bovine coronavirus (BCV) is associated with respiratory tract infections in cattle of all ages; however, a temporal study to evaluate the effect of BCV immunity on virus shedding and bovine respiratory disease (BRD) incidence in pre-weaned beef calves has not been reported. Thus, we report here a pr...

  10. Dynamics of SARS-coronavirus HR2 domain in the prefusion and transition states

    NASA Astrophysics Data System (ADS)

    McReynolds, Susanna; Jiang, Shaokai; Rong, Lijun; Caffrey, Michael

    2009-12-01

    The envelope glycoproteins S1 and S2 of severe acute respiratory syndrome coronavirus (SARS-CoV) mediate viral entry by conformational change from a prefusion state to a postfusion state that enables fusion of the viral and target membranes. In this work we present the characterization of the dynamic properties of the SARS-CoV S2-HR2 domain (residues 1141-1193 of S) in the prefusion and newly discovered transition states by NMR 15N relaxation studies. The dynamic properties of the different states, which are stabilized under different experimental conditions, extend the current model of viral membrane fusion and give insight into the design of structure-based antagonists of SARS-CoV in particular, as well as other enveloped viruses such as HIV.

  11. Pathogenic Influenza Viruses and Coronaviruses Utilize Similar and Contrasting Approaches To Control Interferon-Stimulated Gene Responses

    PubMed Central

    Menachery, Vineet D.; Eisfeld, Amie J.; Schäfer, Alexandra; Josset, Laurence; Sims, Amy C.; Proll, Sean; Fan, Shufang; Li, Chengjun; Neumann, Gabriele; Tilton, Susan C.; Chang, Jean; Gralinski, Lisa E.; Long, Casey; Green, Richard; Williams, Christopher M.; Weiss, Jeffrey; Matzke, Melissa M.; Webb-Robertson, Bobbie-Jo; Schepmoes, Athena A.; Shukla, Anil K.; Metz, Thomas O.; Smith, Richard D.; Waters, Katrina M.; Katze, Michael G.; Kawaoka, Yoshihiro

    2014-01-01

    ABSTRACT The broad range and diversity of interferon-stimulated genes (ISGs) function to induce an antiviral state within the host, impeding viral pathogenesis. While successful respiratory viruses overcome individual ISG effectors, analysis of the global ISG response and subsequent viral antagonism has yet to be examined. Employing models of the human airway, transcriptomics and proteomics datasets were used to compare ISG response patterns following highly pathogenic H5N1 avian influenza (HPAI) A virus, 2009 pandemic H1N1, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome CoV (MERS-CoV) infection. The results illustrated distinct approaches utilized by each virus to antagonize the global ISG response. In addition, the data revealed that highly virulent HPAI virus and MERS-CoV induce repressive histone modifications, which downregulate expression of ISG subsets. Notably, influenza A virus NS1 appears to play a central role in this histone-mediated downregulation in highly pathogenic influenza strains. Together, the work demonstrates the existence of unique and common viral strategies for controlling the global ISG response and provides a novel avenue for viral antagonism via altered histone modifications. PMID:24846384

  12. Implementing a bedside assessment of respiratory mechanics in patients with acute respiratory distress syndrome.

    PubMed

    Chen, Lu; Chen, Guang-Qiang; Shore, Kevin; Shklar, Orest; Martins, Concetta; Devenyi, Brian; Lindsay, Paul; McPhail, Heather; Lanys, Ashley; Soliman, Ibrahim; Tuma, Mazin; Kim, Michael; Porretta, Kerri; Greco, Pamela; Every, Hilary; Hayes, Chris; Baker, Andrew; Friedrich, Jan O; Brochard, Laurent

    2017-04-04

    Despite their potential interest for clinical management, measurements of respiratory mechanics in patients with acute respiratory distress syndrome (ARDS) are seldom performed in routine practice. We introduced a systematic assessment of respiratory mechanics in our clinical practice. After the first year of clinical use, we retrospectively assessed whether these measurements had any influence on clinical management and physiological parameters associated with clinical outcomes by comparing their value before and after performing the test. The respiratory mechanics assessment constituted a set of bedside measurements to determine passive lung and chest wall mechanics, response to positive end-expiratory pressure, and alveolar derecruitment. It was obtained early after ARDS diagnosis. The results were provided to the clinical team to be used at their own discretion. We compared ventilator settings and physiological variables before and after the test. The physiological endpoints were oxygenation index, dead space, and plateau and driving pressures. Sixty-one consecutive patients with ARDS were enrolled. Esophageal pressure was measured in 53 patients (86.9%). In 41 patients (67.2%), ventilator settings were changed after the measurements, often by reducing positive end-expiratory pressure or by switching pressure-targeted mode to volume-targeted mode. Following changes, the oxygenation index, airway plateau, and driving pressures were significantly improved, whereas the dead-space fraction remained unchanged. The oxygenation index continued to improve in the next 48 h. Implementing a systematic respiratory mechanics test leads to frequent individual adaptations of ventilator settings and allows improvement in oxygenation indexes and reduction of the risk of overdistention at the same time. The present study involves data from our ongoing registry for respiratory mechanics (ClinicalTrials.gov identifier: NCT02623192 . Registered 30 July 2015).

  13. Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome.

    PubMed

    Silva, Johnatas D; Lopes-Pacheco, Miquéias; Paz, Ana H R; Cruz, Fernanda F; Melo, Elga B; de Oliveira, Milena V; Xisto, Débora G; Capelozzi, Vera L; Morales, Marcelo M; Pelosi, Paolo; Cirne-Lima, Elizabeth; Rocco, Patricia R M

    2018-02-01

    Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. Animal study and primary cell culture. Laboratory investigation. Seventy-five Wistar rats. Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1β, keratinocyte-derived chemokine, transforming growth factor-β, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue

  14. Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013.

    PubMed

    Meyer, Benjamin; Müller, Marcel A; Corman, Victor M; Reusken, Chantal B E M; Ritz, Daniel; Godeke, Gert-Jan; Lattwein, Erik; Kallies, Stephan; Siemens, Artem; van Beek, Janko; Drexler, Jan F; Muth, Doreen; Bosch, Berend-Jan; Wernery, Ulrich; Koopmans, Marion P G; Wernery, Renate; Drosten, Christian

    2014-04-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) has caused an ongoing outbreak of severe acute respiratory tract infection in humans in the Arabian Peninsula since 2012. Dromedary camels have been implicated as possible viral reservoirs. We used serologic assays to analyze 651 dromedary camel serum samples from the United Arab Emirates; 151 of 651 samples were obtained in 2003, well before onset of the current epidemic, and 500 serum samples were obtained in 2013. Recombinant spike protein-specific immunofluorescence and virus neutralization tests enabled clear discrimination between MERS-CoV and bovine CoV infections. Most (632/651, 97.1%) camels had antibodies against MERS-CoV. This result included all 151 serum samples obtained in 2003. Most (389/651, 59.8%) serum samples had MERS-CoV-neutralizing antibody titers >1,280. Dromedary camels from the United Arab Emirates were infected at high rates with MERS-CoV or a closely related, probably conspecific, virus long before the first human MERS cases.

  15. Acute respiratory distress syndrome and acute renal failure from Plasmodium ovale infection with fatal outcome.

    PubMed

    Lau, Yee-Ling; Lee, Wenn-Chyau; Tan, Lian-Huat; Kamarulzaman, Adeeba; Syed Omar, Sharifah Faridah; Fong, Mun-Yik; Cheong, Fei-Wen; Mahmud, Rohela

    2013-11-04

    Plasmodium ovale is one of the causative agents of human malaria. Plasmodium ovale infection has long been thought to be non-fatal. Due to its lower morbidity, P. ovale receives little attention in malaria research. Two Malaysians went to Nigeria for two weeks. After returning to Malaysia, they fell sick and were admitted to different hospitals. Plasmodium ovale parasites were identified from blood smears of these patients. The species identification was further confirmed with nested PCR. One of them was successfully treated with no incident of relapse within 12-month medical follow-up. The other patient came down with malaria-induced respiratory complication during the course of treatment. Although parasites were cleared off the circulation, the patient's condition worsened. He succumbed to multiple complications including acute respiratory distress syndrome and acute renal failure. Sequencing of the malaria parasite DNA from both cases, followed by multiple sequence alignment and phylogenetic tree construction suggested that the causative agent for both malaria cases was P. ovale curtisi. In this report, the differences between both cases were discussed, and the potential capability of P. ovale in causing severe complications and death as seen in this case report was highlighted. Plasmodium ovale is potentially capable of causing severe complications, if not death. Complete travel and clinical history of malaria patient are vital for successful diagnoses and treatment. Monitoring of respiratory and renal function of malaria patients, regardless of the species of malaria parasites involved is crucial during the course of hospital admission.

  16. Airway Memory CD4(+) T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses.

    PubMed

    Zhao, Jincun; Zhao, Jingxian; Mangalam, Ashutosh K; Channappanavar, Rudragouda; Fett, Craig; Meyerholz, David K; Agnihothram, Sudhakar; Baric, Ralph S; David, Chella S; Perlman, Stanley

    2016-06-21

    Two zoonotic coronaviruses (CoVs)-SARS-CoV and MERS-CoV-have crossed species to cause severe human respiratory disease. Here, we showed that induction of airway memory CD4(+) T cells specific for a conserved epitope shared by SARS-CoV and MERS-CoV is a potential strategy for developing pan-coronavirus vaccines. Airway memory CD4(+) T cells differed phenotypically and functionally from lung-derived cells and were crucial for protection against both CoVs in mice. Protection was dependent on interferon-γ and required early induction of robust innate and virus-specific CD8(+) T cell responses. The conserved epitope was also recognized in SARS-CoV- and MERS-CoV-infected human leukocyte antigen DR2 and DR3 transgenic mice, indicating potential relevance in human populations. Additionally, this epitope was cross-protective between human and bat CoVs, the progenitors for many human CoVs. Vaccine strategies that induce airway memory CD4(+) T cells targeting conserved epitopes might have broad applicability in the context of new CoVs and other respiratory virus outbreaks. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The effect of inhibition of PP1 and TNFα signaling on pathogenesis of SARS coronavirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Jason E.; Mitchell, Hugh D.; Gralinski, Lisa E.

    The complex interplay between viral replication and host immune response during infection remains poorly understood. While many viruses are known to employ antiimmune strategies to facilitate their replication, highly pathogenic virus infections can also cause an excessive immune response that exacerbates, rather than reduces pathogenicity. To investigate this dichotomy in severe acute respiratory syndrome coronavirus (SARS-CoV), we developed a transcriptional network model of SARS-CoV infection in mice and used the model to prioritize candidate regulatory targets for further investigation. We validated our predictions in 18 different knockout (KO) mouse strains, showing that network topology provides significant predictive power to identifymore » genes that are important for viral infection. We identified a novel player in the immune response to virus infection, Kepi, an inhibitory subunit of the protein phosphatase 1 (PP1) complex, which protects against SARS-CoV pathogenesis. We also found that receptors for the proinflammatory cytokine, tumor necrosis factor alpha (TNFα), promote pathogenesis through a parallel feed-forward circuit that promotes inflammation. These results are consistent with previous studies showing the role of over-stimulation of the inflammatory response to SARS-CoV in pathogenesis. We conclude that the critical balance between immune response and inflammation can be manipulated to improve the outcome of the infection. Further, our study provides two potential therapeutic strategies for mitigating the effects of SARS-CoV infection, and may provide insight into treatment strategies for Middle East Respiratory Syndrome Coronavirus (MERS-CoV).« less

  18. Development of a clinical definition for acute respiratory distress syndrome using the Delphi technique.

    PubMed

    Ferguson, Niall D; Davis, Aileen M; Slutsky, Arthur S; Stewart, Thomas E

    2005-06-01

    The objective of this study is to describe the implementation of formal consensus techniques in the development of a clinical definition for acute respiratory distress syndrome. A Delphi consensus process was conducted using e-mail. Sixteen panelists who were both researchers and opinion leaders were systematically recruited. The Delphi technique was performed over 4 rounds on the background of an explicit definition framework. Item generation was performed in round 1, item reduction in rounds 2 and 3, and definition evaluation in round 4. Explicit consensus thresholds were used throughout. Of the 16 panelists, 11 actually participated in developing a definition that met a priori consensus rules on the third iteration. New incorporations in the Delphi definition include the use of a standardized oxygenation assessment and the documentation of either a predisposing factor or decreased thoracic compliance. The panelists rated the Delphi definition as acceptable to highly acceptable (median score, 6; range, 5-7 on a 7-point Likert scale). We conclude that it is feasible to consider using formal consensus in the development of future definitions of acute respiratory distress syndrome. Testing of sensibility, reliability, and validity are needed for this preliminary definition; these test results should be incorporated into future iterations of this definition.

  19. Higher levels of spontaneous breathing reduce lung injury in experimental moderate acute respiratory distress syndrome.

    PubMed

    Carvalho, Nadja C; Güldner, Andreas; Beda, Alessandro; Rentzsch, Ines; Uhlig, Christopher; Dittrich, Susanne; Spieth, Peter M; Wiedemann, Bärbel; Kasper, Michael; Koch, Thea; Richter, Torsten; Rocco, Patricia R; Pelosi, Paolo; de Abreu, Marcelo Gama

    2014-11-01

    To assess the effects of different levels of spontaneous breathing during biphasic positive airway pressure/airway pressure release ventilation on lung function and injury in an experimental model of moderate acute respiratory distress syndrome. Multiple-arm randomized experimental study. University hospital research facility. Thirty-six juvenile pigs. Pigs were anesthetized, intubated, and mechanically ventilated. Moderate acute respiratory distress syndrome was induced by repetitive saline lung lavage. Biphasic positive airway pressure/airway pressure release ventilation was conducted using the airway pressure release ventilation mode with an inspiratory/expiratory ratio of 1:1. Animals were randomly assigned to one of four levels of spontaneous breath in total minute ventilation (n = 9 per group, 6 hr each): 1) biphasic positive airway pressure/airway pressure release ventilation, 0%; 2) biphasic positive airway pressure/airway pressure release ventilation, > 0-30%; 3) biphasic positive airway pressure/airway pressure release ventilation, > 30-60%, and 4) biphasic positive airway pressure/airway pressure release ventilation, > 60%. The inspiratory effort measured by the esophageal pressure time product increased proportionally to the amount of spontaneous breath and was accompanied by improvements in oxygenation and respiratory system elastance. Compared with biphasic positive airway pressure/airway pressure release ventilation of 0%, biphasic positive airway pressure/airway pressure release ventilation more than 60% resulted in lowest venous admixture, as well as peak and mean airway and transpulmonary pressures, redistributed ventilation to dependent lung regions, reduced the cumulative diffuse alveolar damage score across lungs (median [interquartile range], 11 [3-40] vs 18 [2-69]; p < 0.05), and decreased the level of tumor necrosis factor-α in ventral lung tissue (median [interquartile range], 17.7 pg/mg [8.4-19.8] vs 34.5 pg/mg [29.9-42.7]; p < 0

  20. Seroprevalence of SARS coronavirus antibody in household contacts.

    PubMed Central

    Lee, C-C; Chen, S-Y; Chang, I-J; Tsai, P-C; Lu, T-C; Wu, P-L; Chen, W-J; Huang, L-M; Chang, S-C

    2005-01-01

    Between March and July 2003, 671 cases of severe acute respiratory syndrome (SARS) were diagnosed in Taiwan with a total of 84 fatalities. After the epidemic, a serological survey was conducted involving the asymptomatic household contacts. Household contacts of 13 index patients were enrolled in the study. Contact history and clinical symptoms of the household contacts were recorded by standardized questionnaires. Blood samples of patients and household contacts were collected at least 28 days after symptom onset in the index patients or household exposure in the contacts for SARS-associated coronavirus (SARS-CoV) IgG testing. On the basis of this investigation, 29 persons (25 adults and 4 children) were identified as having had unprotected exposure to the index cases before infection-control practices were implemented. Laboratory evaluation of clinical specimens showed no evidence of transmission of SARS-CoV infection to any contacts. This investigation demonstrated that subclinical transmission among household contacts was low in the described setting. PMID:16274510

  1. Heat and moisture exchangers and heated humidifiers in acute lung injury/acute respiratory distress syndrome patients. Effects on respiratory mechanics and gas exchange.

    PubMed

    Morán, Indalecio; Bellapart, Judith; Vari, Alessandra; Mancebo, Jordi

    2006-04-01

    To compare, in acute lung injury/acute respiratory distress syndrome (ALI/ARDS) patients, the short-term effects of heat and moisture exchangers (HME) and heated humidifiers (HH) on gas exchange, and also on respiratory system mechanics when isocapnic conditions are met. Prospective open clinical study. Intensive Care Service. Seventeen invasively ventilated ALI/ARDS patients. The study was performed in three phases: (1) determinations were made during basal ventilatory settings with HME; (2) basal ventilatory settings were maintained and HME was replaced by an HH; (3) using the same HH, tidal volume (Vt) was decreased until basal PaCO2 levels were reached. FiO2, respiratory rate and PEEP were kept unchanged. Respiratory mechanics, Vdphys, gas exchange and hemodynamic parameters were obtained at each phase. By using HH instead of HME and without changing Vt, PaCO2 decreased from 46+/-9 to 40+/-8 mmHg (p<0.001) and Vdphys decreased from 352+/-63 to 310+/-74 ml (p<0.001). Comparing the first phase with the third, Vt decreased from 521+/-106 to 440+/-118 ml (p<0.001) without significant changes in PaCO2, Vd/Vt decreased from 0.69+/-0.11 to 0.62+/-0.12 (p<0.001), plateau airway pressure decreased from 25+/-6 to 21+/-6 cmH2O (p<0.001) and respiratory system compliance improved from 35+/-12 to 42+/-15 ml/cmH2O (p<0.001). PaO2 remained unchanged in the three phases. Reducing dead space with the use of HH decreases PaCO2 and more importantly, if isocapnic conditions are maintained by reducing Vt, this strategy improves respiratory system compliance and reduces plateau airway pressure.

  2. Factors Influencing Emergency Nurses' Burnout During an Outbreak of Middle East Respiratory Syndrome Coronavirus in Korea.

    PubMed

    Kim, Ji Soo; Choi, Jeong Sil

    2016-12-01

    Emergency department (ED) nurses suffer from persistent stress after experiencing the traumatic event of exposure to Middle East respiratory syndrome coronavirus (MERS-CoV), which can subsequently lead to burnout. This study aimed to assess ED nurses' burnout level during an outbreak of MERS-CoV and to identify influencing factors in order to provide basic information for lowering and preventing the level of burnout. Study participants were ED nurses working in eight hospitals designated for treating MERS-CoV-infected patients in Korea. We performed multiple regression analysis to explore the factors influencing burnout. The ED nurses' burnout was affected by job stress (β=0.59, p<.001), poor hospital resources for the treatment of MERS-CoV (β = -0.19, p<.001) and poor support from family and friends (β = -0.14, p<.05). These three variables explained 47.3% of the variance in burnout. ED nurses taking care of MERS-CoV-infected patients should be aware that burnout is higher for nurses in their divisions than nurses in other hospital departments and that job stress is the biggest influential factor of burnout. To be ready for the outbreak of emerging contagious diseases such as MERS-CoV, efforts and preparations should be made to reduce burnout. Job stress should be managed and resolved. Working conditions for mitigating job stress and systematic stress management programs should be provided, and hospital resources for the treatment of MERS-CoV need to be reinforced. Moreover, promoting support from family and friends is required. Copyright © 2016. Published by Elsevier B.V.

  3. Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus.

    PubMed

    Josset, Laurence; Menachery, Vineet D; Gralinski, Lisa E; Agnihothram, Sudhakar; Sova, Pavel; Carter, Victoria S; Yount, Boyd L; Graham, Rachel L; Baric, Ralph S; Katze, Michael G

    2013-04-30

    A novel human coronavirus (HCoV-EMC) was recently identified in the Middle East as the causative agent of a severe acute respiratory syndrome (SARS) resembling the illness caused by SARS coronavirus (SARS-CoV). Although derived from the CoV family, the two viruses are genetically distinct and do not use the same receptor. Here, we investigated whether HCoV-EMC and SARS-CoV induce similar or distinct host responses after infection of a human lung epithelial cell line. HCoV-EMC was able to replicate as efficiently as SARS-CoV in Calu-3 cells and similarly induced minimal transcriptomic changes before 12 h postinfection. Later in infection, HCoV-EMC induced a massive dysregulation of the host transcriptome, to a much greater extent than SARS-CoV. Both viruses induced a similar activation of pattern recognition receptors and the interleukin 17 (IL-17) pathway, but HCoV-EMC specifically down-regulated the expression of several genes within the antigen presentation pathway, including both type I and II major histocompatibility complex (MHC) genes. This could have an important impact on the ability of the host to mount an adaptive host response. A unique set of 207 genes was dysregulated early and permanently throughout infection with HCoV-EMC, and was used in a computational screen to predict potential antiviral compounds, including kinase inhibitors and glucocorticoids. Overall, HCoV-EMC and SARS-CoV elicit distinct host gene expression responses, which might impact in vivo pathogenesis and could orient therapeutic strategies against that emergent virus. Identification of a novel coronavirus causing fatal respiratory infection in humans raises concerns about a possible widespread outbreak of severe respiratory infection similar to the one caused by SARS-CoV. Using a human lung epithelial cell line and global transcriptomic profiling, we identified differences in the host response between HCoV-EMC and SARS-CoV. This enables rapid assessment of viral properties and the

  4. Classifying Acute Respiratory Distress Syndrome Severity: Correcting the Arterial Oxygen Partial Pressure to Fractional Inspired Oxygen at Altitude.

    PubMed

    Pérez-Padilla, Rogelio; Hernández-Cárdenas, Carmen Margarita; Lugo-Goytia, Gustavo

    2016-01-01

    In the well-known Berlin definition of acute respiratory distress syndrome (ARDS), there is a recommended adjustment for arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FIO2) at altitude, but without a reference as to how it was derived.

  5. Identification of information types and sources by the public for promoting awareness of Middle East respiratory syndrome coronavirus in Saudi Arabia.

    PubMed

    Hoda, Jradi

    2016-02-01

    Middle East Respiratory Syndrome (MERS) is a viral respiratory disease of serious consequences caused by MERS Coronavirus (MERS-CoV). Saudi communities still lack awareness of available protective measures to prevent the transmission of the virus. It is necessary to explore the current information-seeking strategies and preferences for communication tools among the Saudi population to promote dissemination of accurate information. Guided by McGuire's Input-Output Persuasion Model and focusing on input variables (receiver characteristics, sources, message, channel and destination), we explored the current information-seeking strategies and preferences for different communication tools among residents of Riyadh (n = 658). Preferred and sought-after information sources on MERS. Most participants in the sample were female (61.7%), and the majority (98.2%) had internet access at home. The internet was the most commonly used source of information (39.5%) and the most endorsed channel for a MERS awareness campaign. Physicians were the preferred source of information (45.6%), followed by other health care providers (31.3%). In univariate multinomial logistic regression models, males and individuals aged ≤27 years were more likely to seek information from the internet than from physicians. Residents of southern and western Riyadh preferred physicians as a credible source of information over the Ministry of Health. The results of this survey provide valuable information on how to reach this population and for understanding how to launch an effective MERS risk communication campaign in a Saudi population. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Short peptides derived from the interaction domain of SARS coronavirus nonstructural protein nsp10 can suppress the 2'-O-methyltransferase activity of nsp10/nsp16 complex.

    PubMed

    Ke, Min; Chen, Yu; Wu, Andong; Sun, Ying; Su, Ceyang; Wu, Hao; Jin, Xu; Tao, Jiali; Wang, Yi; Ma, Xiao; Pan, Ji-An; Guo, Deyin

    2012-08-01

    Coronaviruses are the etiological agents of respiratory and enteric diseases in humans and livestock, exemplified by the life-threatening severe acute respiratory syndrome (SARS) caused by SARS coronavirus (SARS-CoV). However, effective means for combating coronaviruses are still lacking. The interaction between nonstructural protein (nsp) 10 and nsp16 has been demonstrated and the crystal structure of SARS-CoV nsp16/10 complex has been revealed. As nsp10 acts as an essential trigger to activate the 2'-O-methyltransferase activity of nsp16, short peptides derived from nsp10 may have inhibitory effect on viral 2'-O-methyltransferase activity. In this study, we revealed that the domain of aa 65-107 of nsp10 was sufficient for its interaction with nsp16 and the region of aa 42-120 in nsp10, which is larger than the interaction domain, was needed for stimulating the nsp16 2'-O-methyltransferase activity. We further showed that two short peptides derived from the interaction domain of nsp10 could inhibit the 2'-O-methyltransferase activity of SARS-CoV nsp16/10 complex, thus providing a novel strategy and proof-of-principle study for developing peptide inhibitors against SARS-CoV. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: epidemiology, characteristics and public health implications.

    PubMed

    Kim, K H; Tandi, T E; Choi, J W; Moon, J M; Kim, M S

    2017-02-01

    Since the first case of Middle East respiratory syndrome coronavirus (MERS-CoV) in South Korea was reported on 20 th May 2015, there have been 186 confirmed cases, 38 deaths and 16,752 suspected cases. Previously published research on South Korea's MERS outbreak was limited to the early stages, when few data were available. Now that the outbreak has ended, albeit unofficially, a more comprehensive review is appropriate. Data were obtained through the MERS portal by the Ministry for Health and Welfare (MOHW) and Korea Centres for Disease Control and Prevention, press releases by MOHW, and reports by the MERS Policy Committee of the Korean Medical Association. Cases were analysed for general characteristics, exposure source, timeline and infection generation. Sex, age and underlying diseases were analysed for the 38 deaths. Beginning with the index case that infected 28 others, an in-depth analysis was conducted. The average age was 55 years, which was a little higher than the global average of 50 years. As in most other countries, more men than women were affected. The case fatality rate was 19.9%, which was lower than the global rate of 38.7% and the rate in Saudi Arabia (36.5%). In total, 184 patients were infected nosocomially and there were no community-acquired infections. The main underlying diseases were respiratory diseases, cancer and hypertension. The main contributors to the outbreak were late diagnosis, quarantine failure of 'super spreaders', familial care-giving and visiting, non-disclosure by patients, poor communication by the South Korean Government, inadequate hospital infection management, and 'doctor shopping'. The outbreak was entirely nosocomial, and was largely attributable to infection management and policy failures, rather than biomedical factors. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  8. Proteomic study of acute respiratory distress syndrome: current knowledge and implications for drug development

    PubMed Central

    Levitt, Joseph E.; Rogers, Angela J.

    2017-01-01

    The acute respiratory distress syndrome (ARDS) is a common cause of acute respiratory failure, and is associated with substantial mortality and morbidity. Dozens of clinical trials targeting ARDS have failed, with no drug specifically targeting lung injury in widespread clinical use. Thus, the need for drug development in ARDS is great. Targeted proteomic studies in ARDS have identified many key pathways in the disease, including inflammation, epithelial injury, endothelial injury or activation, and disordered coagulation and repair. Recent studies reveal the potential for proteomic changes to identify novel subphenotypes of ARDS patients who may be most likely to respond to therapy and could thus be targeted for enrollment in clinical trials. Nontargeted studies of proteomics in ARDS are just beginning and have the potential to identify novel drug targets and key pathways in the disease. Proteomics will play an important role in phenotyping of patients and developing novel therapies for ARDS in the future. PMID:27031735

  9. Acute respiratory distress syndrome and septic shock in a cat with disseminated toxoplasmosis.

    PubMed

    Evans, Natashia A; Walker, Julie M; Manchester, Alison C; Bach, Jonathan F

    2017-07-01

    To describe acute respiratory distress syndrome (ARDS) and septic shock in a cat with disseminated toxoplasmosis. A 2-year-old neutered male domestic shorthair cat was presented for acute respiratory distress. At the time of presentation it had been receiving cyclosporine for treatment of eosinophilic dermatitis. Thoracic radiographs revealed severe mixed nodular interstitial and alveolar patterns. An endotracheal wash was performed, which confirmed a diagnosis of pulmonary toxoplasmosis. Despite initial treatment with oxygen supplementation and intravenous clindamycin, the cat developed refractory hypoxemia and hypotension requiring mechanical ventilation and vasopressor support within 24 hours of hospital admission. Cardiac arrest occurred 56 hours after admission. Necropsy was performed and histopathology revealed protozoal organisms disseminated throughout the heart, lungs, liver, and brain. The clinical and necropsy findings presented here are consistent with ARDS secondary to disseminated toxoplasmosis in a cat. This is the first detailed report of ARDS in a cat. Toxoplasma titer testing and antimicrobial prophylaxis should be considered in cats prior to immunosuppressive treatment with cyclosporine. © Veterinary Emergency and Critical Care Society 2017.

  10. Detecting specific cytotoxic T lymphocytes against SARS-coronavirus with DimerX HLA-A2:Ig fusion protein.

    PubMed

    Wang, Yue-Dan; Chen, Wei Feng

    2004-11-01

    To assess specific cytotoxic T lymphocytes (CTLs) against Severe acute respiratory syndrome (SARS)-coronavirus, a modified DimerX flow cytometry assay was performed with peripheral blood mononuclear cell (PBMC) from HLA-A2+ SARS-recovered donors at different time points post disease. CD8+DimerX-S1203+ CTLs were detected in the PBMC from these donors up to 3 months after recovery. The percentages of CD8+DimerX-S1203+ cells paralleled the numbers of interferon-gamma-positive spots in an ELISPOT assay using the same antigenic peptide. In conclusion, DimerX-based flow cytometry staining may prove to be a real-time method to screen for CTL directed at epitopes from a newly identified virus.

  11. Prevalence of Diabetes in the 2009 Influenza A (H1N1) and the Middle East Respiratory Syndrome Coronavirus: A Systematic Review and Meta-Analysis.

    PubMed

    Badawi, Alaa; Ryoo, Seung Gwan

    2016-12-09

    Over the past two decades a number of severe acute respiratory infection outbreaks such as the 2009 influenza A (H1N1) and the Middle East respiratory syndrome coronavirus (MERS-CoV) have emerged and presented a considerable global public health threat. Epidemiologic evidence suggests that diabetic subjects are more susceptible to these conditions. However, the prevalence of diabetes in H1N1 and MERS-CoV has not been systematically described. The aim of this study is to conduct a systematic review and meta-analysis of published reports documenting the prevalence of diabetes in H1N1 and MERS-CoV and compare its frequency in the two viral conditions. Meta-analysis for the proportions of subjects with diabetes was carried out in 29 studies for H1N1 ( n =92,948) and 9 for MERS-CoV ( n =308). Average age of H1N1 patients (36.2±6.0 years) was significantly younger than that of subjects with MERS-CoV (54.3±7.4 years, P<0.05). Compared to MERS-CoV patients, subjects with H1N1 exhibited 3-fold lower frequency of cardiovascular diseases and 2- and 4-fold higher prevalence of obesity and immunosuppression, respectively. The overall prevalence of diabetes in H1N1 was 14.6% (95% CI: 12.3-17.0%; P<0.001), a 3.6-fold lower than in MERS-CoV (54.4%; 95% CI: 29.4-79.5; P<0.001). The prevalence of diabetes among H1N1 cases from Asia and North America was ~two-fold higher than those from South America and Europe. The prevalence of diabetes in MERS-CoV cases is higher than in H1N1. Regional comparisons suggest that an etiologic role of diabetes in MERS-CoV may exist distinctive from that in H1N1.

  12. Lung-Protective Ventilation With Low Tidal Volumes and the Occurrence of Pulmonary Complications in Patients Without Acute Respiratory Distress Syndrome: A Systematic Review and Individual Patient Data Analysis.

    PubMed

    Neto, Ary Serpa; Simonis, Fabienne D; Barbas, Carmen S V; Biehl, Michelle; Determann, Rogier M; Elmer, Jonathan; Friedman, Gilberto; Gajic, Ognjen; Goldstein, Joshua N; Linko, Rita; Pinheiro de Oliveira, Roselaine; Sundar, Sugantha; Talmor, Daniel; Wolthuis, Esther K; Gama de Abreu, Marcelo; Pelosi, Paolo; Schultz, Marcus J

    2015-10-01

    Protective mechanical ventilation with low tidal volumes is standard of care for patients with acute respiratory distress syndrome. The aim of this individual patient data analysis was to determine the association between tidal volume and the occurrence of pulmonary complications in ICU patients without acute respiratory distress syndrome and the association between occurrence of pulmonary complications and outcome in these patients. Individual patient data analysis. ICU patients not fulfilling the consensus criteria for acute respiratory distress syndrome at the onset of ventilation. Mechanical ventilation with low tidal volume. The primary endpoint was development of a composite of acute respiratory distress syndrome and pneumonia during hospital stay. Based on the tertiles of tidal volume size in the first 2 days of ventilation, patients were assigned to a "low tidal volume group" (tidal volumes ≤ 7 mL/kg predicted body weight), an "intermediate tidal volume group" (> 7 and < 10 mL/kg predicted body weight), and a "high tidal volume group" (≥ 10 mL/kg predicted body weight). Seven investigations (2,184 patients) were included. Acute respiratory distress syndrome or pneumonia occurred in 23% of patients in the low tidal volume group, in 28% of patients in the intermediate tidal volume group, and in 31% of the patients in the high tidal volume group (adjusted odds ratio [low vs high tidal volume group], 0.72; 95% CI, 0.52-0.98; p = 0.042). Occurrence of pulmonary complications was associated with a lower number of ICU-free and hospital-free days and alive at day 28 (10.0 ± 10.9 vs 13.8 ± 11.6 d; p < 0.01 and 6.1 ± 8.1 vs 8.9 ± 9.4 d; p < 0.01) and an increased hospital mortality (49.5% vs 35.6%; p < 0.01). Ventilation with low tidal volumes is associated with a lower risk of development of pulmonary complications in patients without acute respiratory distress syndrome.

  13. Coronavirus 229E-related pneumonia in immunocompromised patients.

    PubMed

    Pene, Frédéric; Merlat, Annabelle; Vabret, Astrid; Rozenberg, Flore; Buzyn, Agnès; Dreyfus, François; Cariou, Alain; Freymuth, François; Lebon, Pierre

    2003-10-01

    Coronaviruses strains 229E and OC43 have been associated with various respiratory illnesses ranging from the self-resolving common cold to severe pneumonia. Although chronic underlying conditions are major determinants of severe respiratory virus infections, few data about coronavirus-related pneumonia in immunocompromised patients are available. Here we report 2 well-documented cases of pneumonia related to coronavirus 229E, each with a different clinical presentation. Diagnosis was made on the basis of viral culture and electron microscopy findings that exhibited typical crown-like particles and through amplification of the viral genome by reverse transcriptase-polymerase chain reaction. On the basis of this report, coronaviruses should be considered as potential causative microorganisms of pneumonia in immunocompromised patients.

  14. Acute respiratory distress syndrome and acute renal failure from Plasmodium ovale infection with fatal outcome

    PubMed Central

    2013-01-01

    Background Plasmodium ovale is one of the causative agents of human malaria. Plasmodium ovale infection has long been thought to be non-fatal. Due to its lower morbidity, P. ovale receives little attention in malaria research. Methods Two Malaysians went to Nigeria for two weeks. After returning to Malaysia, they fell sick and were admitted to different hospitals. Plasmodium ovale parasites were identified from blood smears of these patients. The species identification was further confirmed with nested PCR. One of them was successfully treated with no incident of relapse within 12-month medical follow-up. The other patient came down with malaria-induced respiratory complication during the course of treatment. Although parasites were cleared off the circulation, the patient’s condition worsened. He succumbed to multiple complications including acute respiratory distress syndrome and acute renal failure. Results Sequencing of the malaria parasite DNA from both cases, followed by multiple sequence alignment and phylogenetic tree construction suggested that the causative agent for both malaria cases was P. ovale curtisi. Discussion In this report, the differences between both cases were discussed, and the potential capability of P. ovale in causing severe complications and death as seen in this case report was highlighted. Conclusion Plasmodium ovale is potentially capable of causing severe complications, if not death. Complete travel and clinical history of malaria patient are vital for successful diagnoses and treatment. Monitoring of respiratory and renal function of malaria patients, regardless of the species of malaria parasites involved is crucial during the course of hospital admission. PMID:24180319

  15. Outbreak of Middle East respiratory syndrome coronavirus in Saudi Arabia: a retrospective study.

    PubMed

    Aleanizy, Fadilah Sfouq; Mohmed, Nahla; Alqahtani, Fulwah Y; El Hadi Mohamed, Rania Ali

    2017-01-05

    The Middle East respiratory syndrome (MERS) is proposed to be a zoonotic disease. Dromedary camels have been implicated due to reports that some confirmed cases were exposed to camels. Risk factors for MERS coronavirus (MERS-CoV) infections in humans are incompletely understood. This study aimed to describe the demographic characteristics, mortality rate, clinical manifestations and comorbidities with confirmed cases of MERS-CoV. Retrospective chart review were performed to identify all laboratory-confirmed cases of MERS-CoV in Saudi Arabia who reported to the Ministry of Health (MOH) of Saudi Arabia and WHO between April 23, 2014 and August 31, 2015. Patients' charts were also reviewed for demographic information, mortality, comorbidities, clinical presentations, health care facility and presented with descriptive and comparative statistics using non parametric binomial test and Chi-square test. Confirmed cases of male patients (61.1%) exceeded those of female patients (38.9%). Infections among Saudi patients (62.6%) exceeded those among non-Saudi patients (37.4%; P = 0.001). The majority of the patients were aged 21-40 years (37.4%) or 41-60 years (35.8%); 43 (22.6%) were aged >61 years, and (8) 4.2% were aged 0-20 years. There was a difference in mortality between confirmed MERS-CoV cases (63.7% alive versus 36.3% dead cases, respectively). Furthermore, fever with cough and shortness of breath (SOB) (n = 39; 20.5%), fever with cough (n = 29; 15.3%), fever (n = 18; 9.5%), and fever with SOB (n = 13; 6.8%), were the most common clinical manifestations associated with confirmed MERS-CoV cases. MERS-CoV is considered an epidemic in Saudi Arabia. The results of the present study showed that the frequency of cases is higher among men than women, in Saudi patients than non-Saudi, and those between 21 to 60 years are most affected. Further studies are required to improve the surveillance associated with MERS-CoV to get definite and clear answers

  16. Patterns of Human Respiratory Viruses and Lack of MERS-Coronavirus in Patients with Acute Upper Respiratory Tract Infections in Southwestern Province of Saudi Arabia

    PubMed Central

    Alshrari, Ahmed S.; Badroon, Nassrin A.; Hassan, Ahmed M.; Alsubhi, Tagreed L.; Ejeeli, Saleh

    2017-01-01

    We undertook enhanced surveillance of those presenting with respiratory symptoms at five healthcare centers by testing all symptomatic outpatients between November 2013 and January 2014 (winter time). Nasal swabs were collected from 182 patients and screened for MERS-CoV as well as other respiratory viruses using RT-PCR and multiplex microarray. A total of 75 (41.2%) of these patients had positive viral infection. MERS-CoV was not detected in any of the samples. Human rhinovirus (hRV) was the most detected pathogen (40.9%) followed by non-MERS-CoV human coronaviruses (19.3%), influenza (Flu) viruses (15.9%), and human respiratory syncytial virus (hRSV) (13.6%). Viruses differed markedly depending on age in which hRV, Flu A, and hCoV-OC43 were more prevalent in adults and RSV, hCoV-HKU1, and hCoV-NL63 were mostly restricted to children under the age of 15. Moreover, coinfection was not uncommon in this study, in which 17.3% of the infected patients had dual infections due to several combinations of viruses. Dual infections decreased with age and completely disappeared in people older than 45 years. Our study confirms that MERS-CoV is not common in the southwestern region of Saudi Arabia and shows high diversity and prevalence of other common respiratory viruses. This study also highlights the importance and contribution of enhanced surveillance systems for better infection control. PMID:28348590

  17. Acute exacerbation of idiopathic pulmonary fibrosis: lessons learned from acute respiratory distress syndrome?

    PubMed

    Marchioni, Alessandro; Tonelli, Roberto; Ball, Lorenzo; Fantini, Riccardo; Castaniere, Ivana; Cerri, Stefania; Luppi, Fabrizio; Malerba, Mario; Pelosi, Paolo; Clini, Enrico

    2018-03-23

    Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung disease characterized by progressive loss of lung function and poor prognosis. The so-called acute exacerbation of IPF (AE-IPF) may lead to severe hypoxemia requiring mechanical ventilation in the intensive care unit (ICU). AE-IPF shares several pathophysiological features with acute respiratory distress syndrome (ARDS), a very severe condition commonly treated in this setting.A review of the literature has been conducted to underline similarities and differences in the management of patients with AE-IPF and ARDS.During AE-IPF, diffuse alveolar damage and massive loss of aeration occurs, similar to what is observed in patients with ARDS. Differently from ARDS, no studies have yet concluded on the optimal ventilatory strategy and management in AE-IPF patients admitted to the ICU. Notwithstanding, a protective ventilation strategy with low tidal volume and low driving pressure could be recommended similarly to ARDS. The beneficial effect of high levels of positive end-expiratory pressure and prone positioning has still to be elucidated in AE-IPF patients, as well as the precise role of other types of respiratory assistance (e.g., extracorporeal membrane oxygenation) or innovative therapies (e.g., polymyxin-B direct hemoperfusion). The use of systemic drugs such as steroids or immunosuppressive agents in AE-IPF is controversial and potentially associated with an increased risk of serious adverse reactions.Common pathophysiological abnormalities and similar clinical needs suggest translating to AE-IPF the lessons learned from the management of ARDS patients. Studies focused on specific therapeutic strategies during AE-IPF are warranted.

  18. Fifty Years of Research in ARDS. Respiratory Mechanics in Acute Respiratory Distress Syndrome.

    PubMed

    Henderson, William R; Chen, Lu; Amato, Marcelo B P; Brochard, Laurent J

    2017-10-01

    Acute respiratory distress syndrome is a multifactorial lung injury that continues to be associated with high levels of morbidity and mortality. Mechanical ventilation, although lifesaving, is associated with new iatrogenic injury. Current best practice involves the use of small Vt, low plateau and driving pressures, and high levels of positive end-expiratory pressure. Collectively, these interventions are termed "lung-protective ventilation." Recent investigations suggest that individualized measurements of pulmonary mechanical variables rather than population-based ventilation prescriptions may be used to set the ventilator with the potential to improve outcomes beyond those achieved with standard lung protective ventilation. This review outlines the measurement and application of clinically applicable pulmonary mechanical concepts, such as plateau pressures, driving pressure, transpulmonary pressures, stress index, and measurement of strain. In addition, the concept of the "baby lung" and the utility of dynamic in addition to static measures of pulmonary mechanical variables are discussed.

  19. The role of egg drop syndrome virus in acute respiratory disease of goslings.

    PubMed

    Ivanics, E; Palya, V; Glavits, R; Dan, A; Palfi, V; Revesz, T; Benko, M

    2001-06-01

    An outbreak of severe acute respiratory disease characterized by tracheitis and bronchitis was observed in young goslings on a large-scale goose farm in Hungary. Histological examination revealed amphophilic intranuclear inclusion bodies in the superficial epithelial cells of the trachea and bronchi. Adenovirus-like particles were detected by electron microscopy, and the virus isolated from the trachea and the lungs was identified as egg drop syndrome (EDS) virus by serological and genomic examination. The clinical and pathological signs were reproduced by intratracheal administration of the virus isolate to 1-day-old goslings free of EDS antibodies. The presence of EDS virus DNA in different organs of the naturally and experimentally infected goslings was detected by polymerase chain reaction. This is the first report on the involvement of EDS virus in severe respiratory disease of geese.

  20. Comparative Evaluation of Three Homogenization Methods for Isolating Middle East Respiratory Syndrome Coronavirus Nucleic Acids From Sputum Samples for Real-Time Reverse Transcription PCR.

    PubMed

    Sung, Heungsup; Yong, Dongeun; Ki, Chang Seok; Kim, Jae Seok; Seong, Moon Woo; Lee, Hyukmin; Kim, Mi Na

    2016-09-01

    Real-time reverse transcription PCR (rRT-PCR) of sputum samples is commonly used to diagnose Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Owing to the difficulty of extracting RNA from sputum containing mucus, sputum homogenization is desirable prior to nucleic acid isolation. We determined optimal homogenization methods for isolating viral nucleic acids from sputum. We evaluated the following three sputum-homogenization methods: proteinase K and DNase I (PK-DNase) treatment, phosphate-buffered saline (PBS) treatment, and N-acetyl-L-cysteine and sodium citrate (NALC) treatment. Sputum samples were spiked with inactivated MERS-CoV culture isolates. RNA was extracted from pretreated, spiked samples using the easyMAG system (bioMérieux, France). Extracted RNAs were then subjected to rRT-PCR for MERS-CoV diagnosis (DiaPlex Q MERS-coronavirus, SolGent, Korea). While analyzing 15 spiked sputum samples prepared in technical duplicate, false-negative results were obtained with five (16.7%) and four samples (13.3%), respectively, by using the PBS and NALC methods. The range of threshold cycle (Ct) values observed when detecting upE in sputum samples was 31.1-35.4 with the PK-DNase method, 34.7-39.0 with the PBS method, and 33.9-38.6 with the NALC method. Compared with the control, which were prepared by adding a one-tenth volume of 1:1,000 diluted viral culture to PBS solution, the ranges of Ct values obtained by the PBS and NALC methods differed significantly from the mean control Ct of 33.2 (both P<0.0001). The PK-DNase method is suitable for homogenizing sputum samples prior to RNA extraction.

  1. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research.

    PubMed

    Simmons, Graham; Zmora, Pawel; Gierer, Stefanie; Heurich, Adeline; Pöhlmann, Stefan

    2013-12-01

    The severe acute respiratory syndrome (SARS) pandemic revealed that zoonotic transmission of animal coronaviruses (CoV) to humans poses a significant threat to public health and warrants surveillance and the development of countermeasures. The activity of host cell proteases, which cleave and activate the SARS-CoV spike (S) protein, is essential for viral infectivity and constitutes a target for intervention. However, the identities of the proteases involved have been unclear. Pioneer studies identified cathepsins and type II transmembrane serine proteases as cellular activators of SARS-CoV and demonstrated that several emerging viruses might exploit these enzymes to promote their spread. Here, we will review the proteolytic systems hijacked by SARS-CoV for S protein activation, we will discuss their contribution to viral spread in the host and we will outline antiviral strategies targeting these enzymes. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses.'' Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Real-Time Reverse Transcription–Polymerase Chain Reaction Assay for SARS-associated Coronavirus

    PubMed Central

    Emery, Shannon L.; Bowen, Michael D.; Newton, Bruce R.; Winchell, Jonas M.; Meyer, Richard F.; Tong, Suxiang; Cook, Byron T.; Holloway, Brian P.; McCaustland, Karen A.; Rota, Paul A.; Bankamp, Bettina; Lowe, Luis E.; Ksiazek, Tom G.; Bellini, William J.; Anderson, Larry J.

    2004-01-01

    A real-time reverse transcription–polymerase chain reaction (RT-PCR) assay was developed to rapidly detect the severe acute respiratory syndrome–associated coronavirus (SARS-CoV). The assay, based on multiple primer and probe sets located in different regions of the SARS-CoV genome, could discriminate SARS-CoV from other human and animal coronaviruses with a potential detection limit of <10 genomic copies per reaction. The real-time RT-PCR assay was more sensitive than a conventional RT-PCR assay or culture isolation and proved suitable to detect SARS-CoV in clinical specimens. Application of this assay will aid in diagnosing SARS-CoV infection. PMID:15030703

  3. Analyses of Coronavirus Assembly Interactions with Interspecies Membrane and Nucleocapsid Protein Chimeras

    PubMed Central

    Kuo, Lili; Hurst-Hess, Kelley R.; Koetzner, Cheri A.

    2016-01-01

    ABSTRACT The coronavirus membrane (M) protein is the central actor in virion morphogenesis. M organizes the components of the viral membrane, and interactions of M with itself and with the nucleocapsid (N) protein drive virus assembly and budding. In order to further define M-M and M-N interactions, we constructed mutants of the model coronavirus mouse hepatitis virus (MHV) in which all or part of the M protein was replaced by its phylogenetically divergent counterpart from severe acute respiratory syndrome coronavirus (SARS-CoV). We were able to obtain viable chimeras containing the entire SARS-CoV M protein as well as mutants with intramolecular substitutions that partitioned M protein at the boundaries between the ectodomain, transmembrane domains, or endodomain. Our results show that the carboxy-terminal domain of N protein, N3, is necessary and sufficient for interaction with M protein. However, despite some previous genetic and biochemical evidence that mapped interactions with N to the carboxy terminus of M, it was not possible to define a short linear region of M protein sufficient for assembly with N. Thus, interactions with N protein likely involve multiple linearly discontiguous regions of the M endodomain. The SARS-CoV M chimera exhibited a conditional growth defect that was partially suppressed by mutations in the envelope (E) protein. Moreover, virions of the M chimera were markedly deficient in spike (S) protein incorporation. These findings suggest that the interactions of M protein with both E and S protein are more complex than previously thought. IMPORTANCE The assembly of coronavirus virions entails concerted interactions among the viral structural proteins and the RNA genome. One strategy to study this process is through construction of interspecies chimeras that preserve or disrupt particular inter- or intramolecular associations. In this work, we replaced the membrane (M) protein of the model coronavirus mouse hepatitis virus with its

  4. Coronavirus infection in intensively managed cattle with respiratory disease.

    PubMed

    Hick, P M; Read, A J; Lugton, I; Busfield, F; Dawood, K E; Gabor, L; Hornitzky, M; Kirkland, P D

    2012-10-01

    A detailed laboratory investigation identified bovine coronavirus (BCoV) as the aetiological agent in an outbreak of respiratory disease at a semi-intensive beef cattle feedlot in south-east Australia. The outbreak caused 30% morbidity in the resident population and also affected two cohorts of cattle that were newly introduced to the property. At slaughter, pulmonary consolidation and inflammatory lesions in the trachea were identified in 15 of 49 animals. Pasteurella multocida or Histophilus somni was cultured from 3 of 7 animals with lesions. Histopathological examination revealed multifocal non-suppurative bronchointerstitial pneumonia with formation of epithelial syncytial cells, sometimes associated with suppurative bronchopneumonia. BCoV was detected in nasal swabs and pulmonary lesions using real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) assay and virus isolation. There was serological evidence of previous exposure to bovine viral diarrhoea virus, bovine respiratory syncytial virus and bovine parainfluenza virus type 3, but not to bovine herpesvirus type 1. None of these viral pathogens or Mycoplasma bovis was identified by qRT-PCR. This is believed to be the first report of BCoV in association with bovine respiratory disease complex in Australia. © 2012 The Authors. Australian Veterinary Journal © 2012 Australian Veterinary Association.

  5. Comparison of Prevalence and Outcomes of Pediatric Acute Respiratory Distress Syndrome Using Pediatric Acute Lung Injury Consensus Conference Criteria and Berlin Definition.

    PubMed

    Gupta, Samriti; Sankar, Jhuma; Lodha, Rakesh; Kabra, Sushil K

    2018-01-01

    Our objective was to compare the prevalence and outcomes of pediatric acute respiratory distress syndrome using the Pediatric Acute Lung Injury Consensus Conference (PALICC) criteria and Berlin definitions. We screened case records of all children aged 1 month to 17 years of age admitted to the Pediatric Intensive Care Unit (PICU) over a 3-year period (2015-2017) for presence of any respiratory difficulty at admission or during PICU stay. We applied both PALICC and Berlin criteria to these patients. Data collection included definition and outcome related variables. Data were compared between the "PALICC only group" and the "Berlin with or without PALICC" group using Stata 11. Of a total of 615 admissions, 246 were identified as having respiratory difficulty at admission or during PICU stay. A total of 61 children (prevalence 9.9%; 95% CI: 7.8-12.4) fulfilled the definition of acute respiratory distress syndrome (ARDS) with either of the two criteria. While 60 children (98%) fulfilled PALICC criteria, only 26 children (43%) fulfilled Berlin definition. There was moderate agreement between the two definitions (Kappa: 0.51; 95% CI: 0.40-0.62; observed agreement 85%). Greater proportion of patients had severe ARDS in the "Berlin with or without PALICC group" as compared to the "PALICC only" group (50 vs. 19%). There was no difference between the groups with regard to key clinical outcomes such as duration of ventilation (7 vs. 8 days) or mortality [51.4 vs. 57.7%: RR (95% CI): 0.99 (0.64-1.5)]. In comparison to Berlin definition, the PALICC criteria identified more number of patients with ARDS. Proportion with severe ARDS and complications was greater in the "Berlin with or without PALICC" group as compared to the "PALICC only" group. There were no differences in clinical outcomes between the groups.

  6. 78 FR 42779 - Authorization of Emergency Use of an In Vitro Diagnostic for Detection of Middle East Respiratory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0754] Authorization of Emergency Use of an In Vitro Diagnostic for Detection of Middle East Respiratory Syndrome... Authorization) for an in vitro diagnostic device for detection of Middle East Respiratory Syndrome Coronavirus...

  7. Diagnostic delays in 537 symptomatic cases of Middle East respiratory syndrome coronavirus infection in Saudi Arabia.

    PubMed

    Ahmed, Anwar E

    2017-09-01

    Although the literature indicates that patient delays in seeking medical support for Middle East respiratory syndrome coronavirus (MERS-CoV) infections are associated with poor clinical outcomes, delays in the diagnosis itself remain poorly understood in these patients. This study aimed to determine the median time interval from symptom onset to a confirmed diagnosis and to identify the potential predictors of this interval in Saudi Arabian MERS patients. This was a retrospective study of patients with confirmed MERS who were publicly reported by the World Health Organization (WHO). Five hundred and thirty-seven symptomatic cases of MERS-CoV infection were included. The median time interval between symptom onset and confirmation of the MERS diagnosis was 4 days (interquartile range 2-7 days), ranging from 0 to 36 days. According to the negative binomial model, the unadjusted rate ratio (RR) of delays in the diagnosis was significantly higher in older patients (>65 years) (RR 1.42), non-healthcare workers (RR 1.74), patients with severe illness (RR 1.22), those with an unknown source of infection (RR 1.84), and those who had been in close contact with camels (RR 1.74). After accounting for confounders, the adjusted rate ratio (aRR) of delays in the diagnosis was independently associated with unknown source of infection (aRR 1.68) and close contact with camels (aRR 1.58). The time interval from symptom onset to diagnosis was greater in older patients, non-healthcare workers, patients with severe illness, patients with an unknown source of infection, and patients who had been in close contact with camels. The findings warrant educational interventions to raise general public awareness of the importance of early symptom notification. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Human-Dromedary Camel Interactions and the Risk of Acquiring Zoonotic Middle East Respiratory Syndrome Coronavirus Infection.

    PubMed

    Gossner, C; Danielson, N; Gervelmeyer, A; Berthe, F; Faye, B; Kaasik Aaslav, K; Adlhoch, C; Zeller, H; Penttinen, P; Coulombier, D

    2016-02-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) cases without documented contact with another human MERS-CoV case make up 61% (517/853) of all reported cases. These primary cases are of particular interest for understanding the source(s) and route(s) of transmission and for designing long-term disease control measures. Dromedary camels are the only animal species for which there is convincing evidence that it is a host species for MERS-CoV and hence a potential source of human infections. However, only a small proportion of the primary cases have reported contact with camels. Other possible sources and vehicles of infection include food-borne transmission through consumption of unpasteurized camel milk and raw meat, medicinal use of camel urine and zoonotic transmission from other species. There are critical knowledge gaps around this new disease which can only be closed through traditional field epidemiological investigations and studies designed to test hypothesis regarding sources of infection and risk factors for disease. Since the 1960s, there has been a radical change in dromedary camel farming practices in the Arabian Peninsula with an intensification of the production and a concentration of the production around cities. It is possible that the recent intensification of camel herding in the Arabian Peninsula has increased the virus' reproductive number and attack rate in camel herds while the 'urbanization' of camel herding increased the frequency of zoonotic 'spillover' infections from camels to humans. It is reasonable to assume, although difficult to measure, that the sensitivity of public health surveillance to detect previously unknown diseases is lower in East Africa than in Saudi Arabia and that sporadic human cases may have gone undetected there. © 2014 The Authors. Zoonoses and Public Health Published by Blackwell Verlag GmbH.

  9. Definition and epidemiology of acute respiratory distress syndrome

    PubMed Central

    Rezoagli, Emanuele; Fumagalli, Roberto

    2017-01-01

    Fifty years ago, Ashbaugh and colleagues defined for the first time the acute respiratory distress syndrome (ARDS), one among the most challenging clinical condition of the critical care medicine. The scientific community worked over the years to generate a unified definition of ARDS, which saw its revisited version in the Berlin definition, in 2014. Epidemiologic information about ARDS is limited in the era of the new Berlin definition, and wide differences are reported among countries all over the world. Despite decades of study in the field of lung injury, ARDS is still so far under-recognized, with 2 out of 5 cases missed by clinicians. Furthermore, although advances of ventilator strategies in the management of ARDS associated with outcome improvements—such as protective mechanical ventilation, lower driving pressure, higher PEEP levels and prone positioning—ARDS appears to be undertreated and mortality remains elevated up to 40%. In this review, we cover the history that led to the current worldwide accepted Berlin definition of ARDS and we summarize the recent data regarding ARDS epidemiology. PMID:28828357

  10. [Detection and clinical analysis of acute lower respiratory tract infection with human coronaviruses in children in Beijing area 2007-2015].

    PubMed

    Qian, Yi; Xie, Zhengde; Ren, Lili; Liu, Chunyan; Xiao, Yan; Xu, Baoping; Yang, Yan; Qian, Suyun; Geng, Rong; Shen, Kunling

    2015-09-01

    To investigate human coronaviruses (HCoVs) infection in children with acute lower respiratory tract infection(ALRTI)and to explore the clinical features of ALRTI caused by HCoVs in children. Totally 4 371 children with clinical diagnosis of ALRTI during the period from March 2007 to February 2015 seen in Beijing Children's Hospital were recruited into this study. Patients were divided into 4 groups by age, including 1 890 cases in < 1 year group, 788 cases in 1-3 years group, 553 cases in 3-6 years group, 1140 cases in ≥6 years group. One nasopharyngeal aspirate specimen was collected from each patient. RT-PCR methods were applied to detect 9 common respiratory viruses including HCoVs (including HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1), respiratory syncytial virus (RSV) and so on. Clinical features of ALRTI with single HCoVs infection were analyzed and compared with hospitalized ALRTI cases with single RSV infection in the same period. (1) Totally 2 895 cases were positive for at least one virus in this study in 4 371 ALRTI patients (positive rate 66.23%), in which 147 cases were positive for HCoVs infection (positive rate 3.36%). (2) Positive rates of HCoVs in each year from 2007 to 2014 were 6.11%, 3.79%, 4.69%, 4.31%, 2.38% 2.10%, 0.77% and 2.65%, respectively. The mean positive rates of HCoVs for each month from January to December were 2.53%, 2.12%, 3.63%, 6.68%, 1.53%, 3.77%, 3.92%, 3.00%, 2.15%, 5.26%, 3.01% and 2.80%. (3) Detection results of each subtypes of HCoVs in total 4 371 pediatric ALRTI patients were: 48 cases positive for HCoV-OC43(1.10%), 32 cases positive for HCoV-229E(0.73%), 25 cases positive for HCoV-NL63 (0.57%), 27 cases positive for HCoV-HKU1 (0.62%). (4) Positive rates of HCoVs infection in <1 year group, 1-3 years group, 3-6 years group and ≥ 6 years group were 4.13%, 5.08%, 2.71% and 1.23%, respectively. There were significant differences in positive rates of HCoV among groups (χ² = 27.218, P<0.01). (5) There were 16

  11. A novel swine model of ricin-induced acute respiratory distress syndrome.

    PubMed

    Katalan, Shahaf; Falach, Reut; Rosner, Amir; Goldvaser, Michael; Brosh-Nissimov, Tal; Dvir, Ayana; Mizrachi, Avi; Goren, Orr; Cohen, Barak; Gal, Yoav; Sapoznikov, Anita; Ehrlich, Sharon; Sabo, Tamar; Kronman, Chanoch

    2017-02-01

    Pulmonary exposure to the plant toxin ricin leads to respiratory insufficiency and death. To date, in-depth study of acute respiratory distress syndrome (ARDS) following pulmonary exposure to toxins is hampered by the lack of an appropriate animal model. To this end, we established the pig as a large animal model for the comprehensive study of the multifarious clinical manifestations of pulmonary ricinosis. Here, we report for the first time, the monitoring of barometric whole body plethysmography for pulmonary function tests in non-anesthetized ricin-treated pigs. Up to 30 h post-exposure, as a result of progressing hypoxemia and to prevent carbon dioxide retention, animals exhibited a compensatory response of elevation in minute volume, attributed mainly to a large elevation in respiratory rate with minimal response in tidal volume. This response was followed by decompensation, manifested by a decrease in minute volume and severe hypoxemia, refractory to oxygen treatment. Radiological evaluation revealed evidence of early diffuse bilateral pulmonary infiltrates while hemodynamic parameters remained unchanged, excluding cardiac failure as an explanation for respiratory insufficiency. Ricin-intoxicated pigs suffered from increased lung permeability accompanied by cytokine storming. Histological studies revealed lung tissue insults that accumulated over time and led to diffuse alveolar damage. Charting the decline in PaO2/FiO2 ratio in a mechanically ventilated pig confirmed that ricin-induced respiratory damage complies with the accepted diagnostic criteria for ARDS. The establishment of this animal model of pulmonary ricinosis should help in the pursuit of efficient medical countermeasures specifically tailored to deal with the respiratory deficiencies stemming from ricin-induced ARDS. © 2017. Published by The Company of Biologists Ltd.

  12. A novel swine model of ricin-induced acute respiratory distress syndrome

    PubMed Central

    Katalan, Shahaf; Falach, Reut; Rosner, Amir; Goldvaser, Michael; Brosh-Nissimov, Tal; Dvir, Ayana; Mizrachi, Avi; Goren, Orr; Cohen, Barak; Gal, Yoav; Sapoznikov, Anita; Ehrlich, Sharon; Kronman, Chanoch

    2017-01-01

    ABSTRACT Pulmonary exposure to the plant toxin ricin leads to respiratory insufficiency and death. To date, in-depth study of acute respiratory distress syndrome (ARDS) following pulmonary exposure to toxins is hampered by the lack of an appropriate animal model. To this end, we established the pig as a large animal model for the comprehensive study of the multifarious clinical manifestations of pulmonary ricinosis. Here, we report for the first time, the monitoring of barometric whole body plethysmography for pulmonary function tests in non-anesthetized ricin-treated pigs. Up to 30 h post-exposure, as a result of progressing hypoxemia and to prevent carbon dioxide retention, animals exhibited a compensatory response of elevation in minute volume, attributed mainly to a large elevation in respiratory rate with minimal response in tidal volume. This response was followed by decompensation, manifested by a decrease in minute volume and severe hypoxemia, refractory to oxygen treatment. Radiological evaluation revealed evidence of early diffuse bilateral pulmonary infiltrates while hemodynamic parameters remained unchanged, excluding cardiac failure as an explanation for respiratory insufficiency. Ricin-intoxicated pigs suffered from increased lung permeability accompanied by cytokine storming. Histological studies revealed lung tissue insults that accumulated over time and led to diffuse alveolar damage. Charting the decline in PaO2/FiO2 ratio in a mechanically ventilated pig confirmed that ricin-induced respiratory damage complies with the accepted diagnostic criteria for ARDS. The establishment of this animal model of pulmonary ricinosis should help in the pursuit of efficient medical countermeasures specifically tailored to deal with the respiratory deficiencies stemming from ricin-induced ARDS. PMID:28067630

  13. Acute Respiratory Distress Syndrome after the Use of Gadolinium Contrast Media.

    PubMed

    Park, Jihye; Byun, Il Hwan; Park, Kyung Hee; Lee, Jae-Hyun; Nam, Eun Ji; Park, Jung-Won

    2015-07-01

    Acute respiratory distress syndrome (ARDS) is a medical emergency that threatens life. To this day, ARDS is very rarely reported by iodine contrast media, and there is no reported case of ARDS induced by gadolinium contrast media. Here, we present a case with ARDS after the use of gadobutrol (Gadovist) as a magnetic resonance imaging (MRI) contrast medium. A 26 years old female without any medical history, including allergic diseases and without current use of drugs, visited the emergency room for abdominal pain. Her abdominopelvic computed tomography with iodine contrast media showed a right ovarian cyst and possible infective colitis. Eighty-three hours later, she underwent pelvis MRI after injection of 7.5 mL (0.1 mL/kg body weight) of gadobutrol (Gadovist) to evaluate the ovarian cyst. She soon presented respiratory difficulty, edema of the lips, nausea, and vomiting, and we could hear wheezing upon auscultation. She was treated with dexamethasone, epinephrine, and norepinephrine. Her chest X-ray showed bilateral central bat-wing consolidative appearance. Managed with mechanical ventilation, she was extubated 3 days later and discharged without complications.

  14. Coronaviruses in bats from Mexico

    PubMed Central

    Ojeda-Flores, R.; Rico-Chávez, O.; Navarrete-Macias, I.; Zambrana-Torrelio, C. M.; Rostal, M. K.; Epstein, J. H.; Tipps, T.; Liang, E.; Sanchez-Leon, M.; Sotomayor-Bonilla, J.; Aguirre, A. A.; Ávila-Flores, R.; Medellín, R. A.; Goldstein, T.; Suzán, G.; Daszak, P.

    2013-01-01

    Bats are reservoirs for a wide range of human pathogens including Nipah, Hendra, rabies, Ebola, Marburg and severe acute respiratory syndrome coronavirus (CoV). The recent implication of a novel beta (β)-CoV as the cause of fatal respiratory disease in the Middle East emphasizes the importance of surveillance for CoVs that have potential to move from bats into the human population. In a screen of 606 bats from 42 different species in Campeche, Chiapas and Mexico City we identified 13 distinct CoVs. Nine were alpha (α)-CoVs; four were β-CoVs. Twelve were novel. Analyses of these viruses in the context of their hosts and ecological habitat indicated that host species is a strong selective driver in CoV evolution, even in allopatric populations separated by significant geographical distance; and that a single species/genus of bat can contain multiple CoVs. A β-CoV with 96.5 % amino acid identity to the β-CoV associated with human disease in the Middle East was found in a Nyctinomops laticaudatus bat, suggesting that efforts to identify the viral reservoir should include surveillance of the bat families Molossidae/Vespertilionidae, or the closely related Nycteridae/Emballonuridae. While it is important to investigate unknown viral diversity in bats, it is also important to remember that the majority of viruses they carry will not pose any clinical risk, and bats should not be stigmatized ubiquitously as significant threats to public health. PMID:23364191

  15. [Management of acute respiratory distress syndrome in Midi-Pyrnees].

    PubMed

    Fuzier, R; Mercier-Fuzier, V; Chaminade, B; Georges, B; Decun, J F; Cougot, P; Ducassé, J L; Virenque, C

    2000-10-07

    To assess management of acute respiratory distress syndrome (ARDS) in Midi-Pyrénées, France. A prospective study using a questionnaire divided into 10 parts, definition, etiology, radiography, computed tomography, management, was conducted in 26 intensive care units in the Midi-Pyrénées. Management of ARDS in Midi-Pyrénées was comparted with management elsewhere as described in the literature. Overall participation rate was 73%. Disparities were found concerning the definition. Four etiologies accounted for 75% of all ARDS cases. Chest x-rays were used for positive diagnosis and thoracic scans for complications. Ventilatory and hemodynamic optimizations were the first line therapy used. Twenty-nine percent and 41% of the intensive care unites used nitric oxide and prone position respectively. There are differences between ARDS management in Midi-Pyrénées and that described in the current literature. Epidemiologic studies such as this one are necessary before publishing guidelines for the management of ARDS.

  16. Positioning of patients with acute respiratory distress syndrome: combining prone and upright makes sense.

    PubMed

    Richard, Jean-Christophe M; Lefebvre, Jean-Claude

    2011-01-01

    Positional strategies have been proposed for mechanically ventilated patients with acute respiratory distress syndrome. Despite different physiological mechanisms involved, oxygenation improvement has been demonstrated with both prone and upright positions. In the previous issue of Critical Care, Robak and colleagues reported the first study evaluating the short-term effects of combining prone and upright positioning. The combined positioning enhanced the response rate in terms of oxygenation. Other benefits, such as a reduction in ventilator-associated pneumonia and better enteral feeding tolerance, can potentially be expected.

  17. Antisynthetase syndrome (ASS) presenting as acute respiratory distress syndrome (ARDS) in a patient without myositis features.

    PubMed

    Kanchustambham, Venkat Kiran; Saladi, Swetha; Mahmoudassaf, Sarah; Patolia, Setu

    2016-12-09

    A woman aged 61 years presented to the emergency room with a 1-week history of dyspnoea on exertion and dry cough. X-ray of the chest showed diffuse interstitial opacities and was started on antibiotics and furosemide, and despite these measures, patient's respiratory status worsened, prompting endotracheal intubation. CT of the chest showed diffuse bilateral ground glass opacities and underwent bronchoscope with trans-bronchial biopsy that showed chronic bronchitis. Pt was empirically started on intravenous steroids due to concerns for interstitial lung disease (ILD). Autoimmune work up was sent and underwent video-assisted thoracoscopic surgery-guided biopsy of the lung that showed non-specific interstitial pattern with fibrosis. The patient was diagnosed as having antisynthetase syndrome with pulmonary involvement (ILD) as the cause of her acute respiratory failure. Azathioprine was started as steroid-sparing agent and was weaned off the ventilator to a tracheostomy collar and discharged to long-term rehabilitation centre. 2016 BMJ Publishing Group Ltd.

  18. Murine Coronavirus Ubiquitin-Like Domain Is Important for Papain-Like Protease Stability and Viral Pathogenesis

    PubMed Central

    Mielech, Anna M.; Deng, Xufang; Chen, Yafang; Kindler, Eveline; Wheeler, Dorthea L.; Mesecar, Andrew D.; Thiel, Volker; Perlman, Stanley

    2015-01-01

    ABSTRACT Ubiquitin-like domains (Ubls) now are recognized as common elements adjacent to viral and cellular proteases; however, their function is unclear. Structural studies of the papain-like protease (PLP) domains of coronaviruses (CoVs) revealed an adjacent Ubl domain in severe acute respiratory syndrome CoV, Middle East respiratory syndrome CoV, and the murine CoV, mouse hepatitis virus (MHV). Here, we tested the effect of altering the Ubl adjacent to PLP2 of MHV on enzyme activity, viral replication, and pathogenesis. Using deletion and substitution approaches, we identified sites within the Ubl domain, residues 785 to 787 of nonstructural protein 3, which negatively affect protease activity, and valine residues 785 and 787, which negatively affect deubiquitinating activity. Using reverse genetics, we engineered Ubl mutant viruses and found that AM2 (V787S) and AM3 (V785S) viruses replicate efficiently at 37°C but generate smaller plaques than wild-type (WT) virus, and AM2 is defective for replication at higher temperatures. To evaluate the effect of the mutation on protease activity, we purified WT and Ubl mutant PLP2 and found that the proteases exhibit similar specific activities at 25°C. However, the thermal stability of the Ubl mutant PLP2 was significantly reduced at 30°C, thereby reducing the total enzymatic activity. To determine if the destabilizing mutation affects viral pathogenesis, we infected C57BL/6 mice with WT or AM2 virus and found that the mutant virus is highly attenuated, yet it replicates sufficiently to elicit protective immunity. These studies revealed that modulating the Ubl domain adjacent to the PLP reduces protease stability and viral pathogenesis, revealing a novel approach to coronavirus attenuation. IMPORTANCE Introducing mutations into a protein or virus can have either direct or indirect effects on function. We asked if changes in the Ubl domain, a conserved domain adjacent to the coronavirus papain-like protease, altered

  19. Optimal support techniques when providing mechanical ventilation to patients with acute respiratory distress syndrome.

    PubMed

    Parissopoulos, Stelios; Mpouzika, Meropi DA; Timmins, Fiona

    2017-01-01

    Adult respiratory distress syndrome (ARDS) is a type of acute diffuse lung injury characterized by severe inflammation, increased pulmonary vascular permeability and a loss of aerated lung tissue. The effects of high fraction of inspired oxygen (FiO 2 ) include oxygen toxicity manifested by damage to the lung parenchyma in the acute phase of lung injury. There is still a high mortality rate among this group of patients, so clinically sensitive evidence-based interventions are paramount to maximize survival chances during critical care. The aim of this article is to explore the current opinion concerning optimal mechanical ventilation support techniques for patients with acute respiratory distress syndrome. A literature search of clinical trials and observation studies, reviews, discussion papers, meta-analyses and clinical guidelines written in English up to 2015, derived from the databases of Scopus, CINAHL, Cochrane Library databases and PubMed was conducted. Low tidal volume, pressure limitation and prone positioning in severe ARDS patients appear to be of some benefit. More research is required and further development and use of standardized protocols is an important strategy for reducing practice variations across disciplines, as well as giving clear guidelines to nurses practising in critical care. There is also evidence that this syndrome is under-diagnosed and the utilization of lung protective ventilation is still variable. It is important that nurses have underlying knowledge of both aetiology of ARDS and ventilation management, and that they monitor patients very closely. The adoption of a low tidal ventilation protocol, which is based on quality evidence guidelines, the value of rescue therapies and patient observation practices in the overall patient management, and the need to place emphasis on long-term patient outcomes, all these emerge as key factors for consideration and future research. However, there is also a need for more research that would

  20. Targeting Neutrophils to Prevent Malaria-Associated Acute Lung Injury/Acute Respiratory Distress Syndrome in Mice

    PubMed Central

    Soeiro-Pereira, Paulo V.; Gomes, Eliane; Neto, Antonio Condino; D' Império Lima, Maria R.; Alvarez, José M.; Portugal, Silvia; Epiphanio, Sabrina

    2016-01-01

    Malaria remains one of the greatest burdens to global health, causing nearly 500,000 deaths in 2014. When manifesting in the lungs, severe malaria causes acute lung injury/acute respiratory distress syndrome (ALI/ARDS). We have previously shown that a proportion of DBA/2 mice infected with Plasmodium berghei ANKA (PbA) develop ALI/ARDS and that these mice recapitulate various aspects of the human syndrome, such as pulmonary edema, hemorrhaging, pleural effusion and hypoxemia. Herein, we investigated the role of neutrophils in the pathogenesis of malaria-associated ALI/ARDS. Mice developing ALI/ARDS showed greater neutrophil accumulation in the lungs compared with mice that did not develop pulmonary complications. In addition, mice with ALI/ARDS produced more neutrophil-attracting chemokines, myeloperoxidase and reactive oxygen species. We also observed that the parasites Plasmodium falciparum and PbA induced the formation of neutrophil extracellular traps (NETs) ex vivo, which were associated with inflammation and tissue injury. The depletion of neutrophils, treatment with AMD3100 (a CXCR4 antagonist), Pulmozyme (human recombinant DNase) or Sivelestat (inhibitor of neutrophil elastase) decreased the development of malaria-associated ALI/ARDS and significantly increased mouse survival. This study implicates neutrophils and NETs in the genesis of experimentally induced malaria-associated ALI/ARDS and proposes a new therapeutic approach to improve the prognosis of severe malaria. PMID:27926944

  1. Novel Alphacoronaviruses and Paramyxoviruses Cocirculate with Type 1 and Severe Acute Respiratory System (SARS)-Related Betacoronaviruses in Synanthropic Bats of Luxembourg.

    PubMed

    Pauly, Maude; Pir, Jacques B; Loesch, Catherine; Sausy, Aurélie; Snoeck, Chantal J; Hübschen, Judith M; Muller, Claude P

    2017-09-15

    Several infectious disease outbreaks with high mortality in humans have been attributed to viruses that are thought to have evolved from bat viruses. In this study from Luxembourg, the genetic diversity and epidemiology of paramyxoviruses and coronaviruses shed by the bat species Rhinolophus ferrumequinum and Myotis emarginatus were evaluated. Feces collection ( n = 624) was performed longitudinally in a mixed-species colony in 2015 and 2016. In addition, feces ( n = 254) were collected cross-sectionally from six Myotis emarginatus colonies in 2016. By use of degenerate primers in a nested format, overall prevalences of 1.1% (10/878) and 4.9% (43/878) were determined for paramyxoviruses and coronaviruses. Sequences of the partial RNA-dependent RNA polymerase and spike glycoprotein genes of coronaviruses, as well as sequences of the partial L gene of paramyxoviruses, were obtained. Novel paramyxovirus and Alphacoronavirus strains were identified in different Myotis emarginatus colonies, and severe acute respiratory syndrome (SARS)-related Betacoronavirus strains were shed by Rhinolophus ferrumequinum Logistic regression revealed that the level of Alphacoronavirus shedding was highest in July (odds ratio, 2.8; P < 0.01), probably due to periparturient stress. Phylogenetic analyses point to close virus-host coevolution, and the high genetic similarity of the study strains suggests that the Myotis emarginatus colonies in Luxembourg are socially connected. Most interestingly, we show that bats also host Betacoronavirus 1 strains. The high similarity of the spike gene sequences of these viruses with mammalian Betacoronavirus 1 strains may be of concern. Both the SARS-related and Betacoronavirus 1 strains detected in bats in Luxembourg may cross the species barrier after a host adaptation process. IMPORTANCE Bats are a natural reservoir of a number of zoonotic pathogens. Several severe outbreaks in humans (e.g., a Nipah virus outbreak in Malaysia in 1998, and the almost

  2. Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity.

    PubMed

    Stobart, Christopher C; Sexton, Nicole R; Munjal, Havisha; Lu, Xiaotao; Molland, Katrina L; Tomar, Sakshi; Mesecar, Andrew D; Denison, Mark R

    2013-12-01

    Human coronaviruses (CoVs) such as severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) cause epidemics of severe human respiratory disease. A conserved step of CoV replication is the translation and processing of replicase polyproteins containing 16 nonstructural protein domains (nsp's 1 to 16). The CoV nsp5 protease (3CLpro; Mpro) processes nsp's at 11 cleavage sites and is essential for virus replication. CoV nsp5 has a conserved 3-domain structure and catalytic residues. However, the intra- and intermolecular determinants of nsp5 activity and their conservation across divergent CoVs are unknown, in part due to challenges in cultivating many human and zoonotic CoVs. To test for conservation of nsp5 structure-function determinants, we engineered chimeric betacoronavirus murine hepatitis virus (MHV) genomes encoding nsp5 proteases of human and bat alphacoronaviruses and betacoronaviruses. Exchange of nsp5 proteases from HCoV-HKU1 and HCoV-OC43, which share the same genogroup, genogroup 2a, with MHV, allowed for immediate viral recovery with efficient replication albeit with impaired fitness in direct competition with wild-type MHV. Introduction of MHV nsp5 temperature-sensitive mutations into chimeric HKU1 and OC43 nsp5 proteases resulted in clear differences in viability and temperature-sensitive phenotypes compared with MHV nsp5. These data indicate tight genetic linkage and coevolution between nsp5 protease and the genomic background and identify differences in intramolecular networks regulating nsp5 function. Our results also provide evidence that chimeric viruses within coronavirus genogroups can be used to test nsp5 determinants of function and inhibition in common isogenic backgrounds and cell types.

  3. Pulmonary gas exchange in acute respiratory failure.

    PubMed

    Rodriguez-Roisin, R

    1994-01-01

    The principal function of the lung is to facilitate the exchange of the respiratory gases, oxygen (O2) and carbon dioxide (CO2). When the lung fails as a gas exchanger respiratory failure ensues. Clinically, it is generally accepted that an arterial oxygen tension (PaO2) of less than 60 mmHg or a PaCO2 of greater than 50 mmHg, or both, whilst breathing room air are values consistent with the concept of respiratory failure. This article will deal, firstly, with some basic aspects of the physiology of pulmonary gas exchange and more specifically on the measurement of ventilation-perfusion (VA/Q) relationships, the most influential factor determining hypoxaemia. The second part highlights the most important findings on pulmonary gas exchange in the adult respiratory distress syndrome (ARDS) and other common acute respiratory failure conditions, such as pneumonia, acute exacerbation of chronic obstructive pulmonary disease (COPD) and status asthmaticus, based on the data obtained by means of the multiple inert gas elimination approach, a technique which gives a detailed picture of VA/Q ratio distributions.

  4. Neonatal respiratory distress syndrome

    MedlinePlus

    Hyaline membrane disease (HMD); Infant respiratory distress syndrome; Respiratory distress syndrome in infants; RDS - infants ... improves slowly after that. Some infants with severe respiratory distress syndrome will die. This most often occurs ...

  5. Comparative Evaluation of Three Homogenization Methods for Isolating Middle East Respiratory Syndrome Coronavirus Nucleic Acids From Sputum Samples for Real-Time Reverse Transcription PCR

    PubMed Central

    Yong, Dongeun; Ki, Chang-Seok; Kim, Jae-Seok; Seong, Moon-Woo; Lee, Hyukmin

    2016-01-01

    Background Real-time reverse transcription PCR (rRT-PCR) of sputum samples is commonly used to diagnose Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Owing to the difficulty of extracting RNA from sputum containing mucus, sputum homogenization is desirable prior to nucleic acid isolation. We determined optimal homogenization methods for isolating viral nucleic acids from sputum. Methods We evaluated the following three sputum-homogenization methods: proteinase K and DNase I (PK-DNase) treatment, phosphate-buffered saline (PBS) treatment, and N-acetyl-L-cysteine and sodium citrate (NALC) treatment. Sputum samples were spiked with inactivated MERS-CoV culture isolates. RNA was extracted from pretreated, spiked samples using the easyMAG system (bioMérieux, France). Extracted RNAs were then subjected to rRT-PCR for MERS-CoV diagnosis (DiaPlex Q MERS-coronavirus, SolGent, Korea). Results While analyzing 15 spiked sputum samples prepared in technical duplicate, false-negative results were obtained with five (16.7%) and four samples (13.3%), respectively, by using the PBS and NALC methods. The range of threshold cycle (Ct) values observed when detecting upE in sputum samples was 31.1–35.4 with the PK-DNase method, 34.7–39.0 with the PBS method, and 33.9–38.6 with the NALC method. Compared with the control, which were prepared by adding a one-tenth volume of 1:1,000 diluted viral culture to PBS solution, the ranges of Ct values obtained by the PBS and NALC methods differed significantly from the mean control Ct of 33.2 (both P<0.0001). Conclusions The PK-DNase method is suitable for homogenizing sputum samples prior to RNA extraction. PMID:27374711

  6. Lung recruitment manoeuvres are effective in regaining lung volume and oxygenation after open endotracheal suctioning in acute respiratory distress syndrome

    PubMed Central

    Dyhr, Thomas; Bonde, Jan; Larsson, Anders

    2003-01-01

    Introduction Lung collapse is a contributory factor in the hypoxaemia that is observed after open endotracheal suctioning (ETS) in patients with acute lung injury and acute respiratory distress syndrome. Lung recruitment (LR) manoeuvres may be effective in rapidly regaining lung volume and improving oxygenation after ETS. Materials and method A prospective, randomized, controlled study was conducted in a 15-bed general intensive care unit at a university hospital. Eight consecutive mechanically ventilated patients with acute lung injury or acute respiratory distress syndrome were included. One of two suctioning procedures was performed in each patient. In the first procedure, ETS was performed followed by LR manoeuvre and reconnection to the ventilator with positive end-expiratory pressure set at 1 cmH2O above the lower inflexion point, and after 60 min another ETS (but without LR manoeuvre) was performed followed by reconnection to the ventilator with similar positive end-expiratory pressure; the second procedure was the same as the first but conducted in reverse order. Before (baseline) and over 25 min following each ETS procedure, partial arterial oxygen tension (PaO2) and end-expiratory lung volume were measured. Results After ETS, PaO2 decreased by 4.3(0.9–9.7)kPa (median and range; P < 0.005). After LR manoeuvre, PaO2 recovered to baseline. Without LR manoeuvre, PaO2 was reduced (P = 0.05) until 7 min after ETS. With LR manoeuvre end-expiratory lung volume was unchanged after ETS, whereas without LR manoeuvre end-expiratory lung volume was still reduced (approximately 10%) at 5 and 15 min after ETS (P = 0.01). Discussion A LR manoeuvre immediately following ETS was, as an adjunct to positive end-expiratory pressure, effective in rapidly counteracting the deterioration in PaO2 and lung volume caused by open ETS in ventilator-treated patients with acute lung injury or acute respiratory distress syndrome. PMID:12617741

  7. Cell Host Response to Infection with Novel Human Coronavirus EMC Predicts Potential Antivirals and Important Differences with SARS Coronavirus

    PubMed Central

    Josset, Laurence; Menachery, Vineet D.; Gralinski, Lisa E.; Agnihothram, Sudhakar; Sova, Pavel; Carter, Victoria S.; Yount, Boyd L.; Graham, Rachel L.; Baric, Ralph S.; Katze, Michael G.

    2013-01-01

    ABSTRACT A novel human coronavirus (HCoV-EMC) was recently identified in the Middle East as the causative agent of a severe acute respiratory syndrome (SARS) resembling the illness caused by SARS coronavirus (SARS-CoV). Although derived from the CoV family, the two viruses are genetically distinct and do not use the same receptor. Here, we investigated whether HCoV-EMC and SARS-CoV induce similar or distinct host responses after infection of a human lung epithelial cell line. HCoV-EMC was able to replicate as efficiently as SARS-CoV in Calu-3 cells and similarly induced minimal transcriptomic changes before 12 h postinfection. Later in infection, HCoV-EMC induced a massive dysregulation of the host transcriptome, to a much greater extent than SARS-CoV. Both viruses induced a similar activation of pattern recognition receptors and the interleukin 17 (IL-17) pathway, but HCoV-EMC specifically down-regulated the expression of several genes within the antigen presentation pathway, including both type I and II major histocompatibility complex (MHC) genes. This could have an important impact on the ability of the host to mount an adaptive host response. A unique set of 207 genes was dysregulated early and permanently throughout infection with HCoV-EMC, and was used in a computational screen to predict potential antiviral compounds, including kinase inhibitors and glucocorticoids. Overall, HCoV-EMC and SARS-CoV elicit distinct host gene expression responses, which might impact in vivo pathogenesis and could orient therapeutic strategies against that emergent virus. PMID:23631916

  8. Chest sonography: a useful tool to differentiate acute cardiogenic pulmonary edema from acute respiratory distress syndrome

    PubMed Central

    Copetti, Roberto; Soldati, Gino; Copetti, Paolo

    2008-01-01

    Background Differential diagnosis between acute cardiogenic pulmonary edema (APE) and acute lung injury/acute respiratory distress syndrome (ALI/ARDS) may often be difficult. We evaluated the ability of chest sonography in the identification of characteristic pleuropulmonary signs useful in the diagnosis of ALI/ARDS and APE. Methods Chest sonography was performed on admission to the intensive care unit in 58 consecutive patients affected by ALI/ARDS or by acute pulmonary edema (APE). Results Ultrasound examination was focalised on finding in the two groups the presence of: 1) alveolar-interstitial syndrome (AIS) 2) pleural lines abnormalities 3) absence or reduction of "gliding" sign 4) "spared areas" 5) consolidations 6) pleural effusion 7) "lung pulse". AIS was found in 100% of patients with ALI/ARDS and in 100% of patients with APE (p = ns). Pleural line abnormalities were observed in 100% of patients with ALI/ARDS and in 25% of patients with APE (p < 0.0001). Absence or reduction of the 'gliding sign' was observed in 100% of patients with ALI/ARDS and in 0% of patients with APE. 'Spared areas' were observed in 100% of patients with ALI/ARDS and in 0% of patients with APE (p < 0.0001). Consolidations were present in 83.3% of patients with ALI/ARDS in 0% of patients with APE (p < 0.0001). A pleural effusion was present in 66.6% of patients with ALI/ARDS and in 95% of patients with APE (p < 0.004). 'Lung pulse' was observed in 50% of patients with ALI/ARDS and in 0% of patients with APE (p < 0.0001). All signs, except the presence of AIS, presented a statistically significant difference in presentation between the two syndromes resulting specific for the ultrasonographic characterization of ALI/ARDS. Conclusion Pleuroparenchimal patterns in ALI/ARDS do find a characterization through ultrasonographic lung scan. In the critically ill the ultrasound demonstration of a dyshomogeneous AIS with spared areas, pleural line modifications and lung consolidations is

  9. Fifty Years of Research in ARDS. Is Acute Respiratory Distress Syndrome a Preventable Disease?

    PubMed

    Yadav, Hemang; Thompson, B Taylor; Gajic, Ognjen

    2017-03-15

    Despite significant advances in our understanding and management of patients with acute respiratory distress syndrome (ARDS), the morbidity and mortality from ARDS remains high. Given the limited number of effective treatments for established ARDS, the strategic focus of ARDS research has shifted toward identifying patients with or at high risk of ARDS early in the course of the underlying illness, when strategies to reduce the development and progression of ARDS and associated organ failures can be systematically evaluated. In this review, we summarize the rationale, current evidence, and future directions in ARDS prevention.

  10. Inactivation of Ebola virus and Middle East respiratory syndrome coronavirus in platelet concentrates and plasma by ultraviolet C light and methylene blue plus visible light, respectively.

    PubMed

    Eickmann, Markus; Gravemann, Ute; Handke, Wiebke; Tolksdorf, Frank; Reichenberg, Stefan; Müller, Thomas H; Seltsam, Axel

    2018-05-06

    Ebola virus (EBOV) and Middle East respiratory syndrome coronavirus (MERS-CoV) have been identified as potential threats to blood safety. This study investigated the efficacy of the THERAFLEX UV-Platelets and THERAFLEX MB-Plasma pathogen inactivation systems to inactivate EBOV and MERS-CoV in platelet concentrates (PCs) and plasma, respectively. PCs and plasma were spiked with high titers of cell culture-derived EBOV and MERS-CoV, treated with various light doses of ultraviolet C (UVC; THERAFLEX UV-Platelets) or methylene blue (MB) plus visible light (MB/light; THERAFLEX MB-Plasma), and assessed for residual viral infectivity. UVC reduced EBOV (≥4.5 log) and MERS-CoV (≥3.7 log) infectivity in PCs to the limit of detection, and MB/light decreased EBOV (≥4.6 log) and MERS-CoV (≥3.3 log) titers in plasma to nondetectable levels. Both THERAFLEX UV-Platelets (UVC) and THERAFLEX MB-Plasma (MB/light) effectively reduce EBOV and MERS-CoV infectivity in platelets and plasma, respectively. © 2018 AABB.

  11. Clinical review: Lung imaging in acute respiratory distress syndrome patients - an update

    PubMed Central

    2013-01-01

    Over the past 30 years lung imaging has greatly contributed to the current understanding of the pathophysiology and the management of acute respiratory distress syndrome (ARDS). In the past few years, in addition to chest X-ray and lung computed tomography, newer functional lung imaging techniques, such as lung ultrasound, positron emission tomography, electrical impedance tomography and magnetic resonance, have been gaining a role as diagnostic tools to optimize lung assessment and ventilator management in ARDS patients. Here we provide an updated clinical review of lung imaging in ARDS over the past few years to offer an overview of the literature on the available imaging techniques from a clinical perspective. PMID:24238477

  12. Acute Respiratory Distress Syndrome after Onyx Embolization of Arteriovenous Malformation

    PubMed Central

    Tawil, Isaac; Carlson, Andrew P.; Taylor, Christopher L.

    2011-01-01

    Purpose. We report a case of a 60-year-old male who underwent sequential Onyx embolizations of a cerebral arteriovenous malformation (AVM) which we implicate as the most likely etiology of subsequent acute respiratory distress syndrome (ARDS). Methods. Case report and literature review. Results. Shortly after the second Onyx embolization procedure, the patient declined from respiratory failure secondary to pulmonary edema. Clinical entities typically responsible for pulmonary edema including cardiac failure, renal failure, iatrogenic volume overload, negative-pressure pulmonary edema, and infectious etiologies were evaluated and excluded. The patient required mechanical ventilatory support for several days, delaying operative resection. The patient met clinical and radiographic criteria for ARDS. After excluding other etiologies of ARDS, we postulate that ARDS developed as a result of Onyx administration. The Onyx copolymer is dissolved in dimethyl sulfoxide (DMSO), a solvent excreted through the lungs and has been implicated in transient pulmonary side effects. Additionally, a direct toxic effect of the Onyx copolymer is postulated. Conclusion. Onyx embolization and DMSO toxicity are implicated as the etiology of ARDS given the lack of other inciting factors and the close temporal relationship. A strong physiologic rationale provides further support. Clinicians should consider this uncommon but important complication. PMID:21687580

  13. T-cell immunity of SARS-CoV: Implications for vaccine development against MERS-CoV.

    PubMed

    Liu, William J; Zhao, Min; Liu, Kefang; Xu, Kun; Wong, Gary; Tan, Wenjie; Gao, George F

    2017-01-01

    Over 12 years have elapsed since severe acute respiratory syndrome (SARS) triggered the first global alert for coronavirus infections. Virus transmission in humans was quickly halted by public health measures and human infections of SARS coronavirus (SARS-CoV) have not been observed since. However, other coronaviruses still pose a continuous threat to human health, as exemplified by the recent emergence of Middle East respiratory syndrome (MERS) in humans. The work on SARS-CoV widens our knowledge on the epidemiology, pathophysiology and immunology of coronaviruses and may shed light on MERS coronavirus (MERS-CoV). It has been confirmed that T-cell immunity plays an important role in recovery from SARS-CoV infection. Herein, we summarize T-cell immunological studies of SARS-CoV and discuss the potential cross-reactivity of the SARS-CoV-specific immunity against MERS-CoV, which may provide useful recommendations for the development of broad-spectrum vaccines against coronavirus infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Middle East respiratory syndrome.

    PubMed

    Zumla, Alimuddin; Hui, David S; Perlman, Stanley

    2015-09-05

    Middle East respiratory syndrome (MERS) is a highly lethal respiratory disease caused by a novel single-stranded, positive-sense RNA betacoronavirus (MERS-CoV). Dromedary camels, hosts for MERS-CoV, are implicated in direct or indirect transmission to human beings, although the exact mode of transmission is unknown. The virus was first isolated from a patient who died from a severe respiratory illness in June, 2012, in Jeddah, Saudi Arabia. As of May 31, 2015, 1180 laboratory-confirmed cases (483 deaths; 40% mortality) have been reported to WHO. Both community-acquired and hospital-acquired cases have been reported with little human-to-human transmission reported in the community. Although most cases of MERS have occurred in Saudi Arabia and the United Arab Emirates, cases have been reported in Europe, the USA, and Asia in people who travelled from the Middle East or their contacts. Clinical features of MERS range from asymptomatic or mild disease to acute respiratory distress syndrome and multiorgan failure resulting in death, especially in individuals with underlying comorbidities. No specific drug treatment exists for MERS and infection prevention and control measures are crucial to prevent spread in health-care facilities. MERS-CoV continues to be an endemic, low-level public health threat. However, the virus could mutate to have increased interhuman transmissibility, increasing its pandemic potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Clinical review: Exogenous surfactant therapy for acute lung injury/acute respiratory distress syndrome - where do we go from here?

    PubMed Central

    2012-01-01

    Acute lung injury and acute respiratory distress syndrome (ARDS) are characterised by severe hypoxemic respiratory failure and poor lung compliance. Despite advances in clinical management, morbidity and mortality remains high. Supportive measures including protective lung ventilation confer a survival advantage in patients with ARDS, but management is otherwise limited by the lack of effective pharmacological therapies. Surfactant dysfunction with quantitative and qualitative abnormalities of both phospholipids and proteins are characteristic of patients with ARDS. Exogenous surfactant replacement in animal models of ARDS and neonatal respiratory distress syndrome shows consistent improvements in gas exchange and survival. However, whilst some adult studies have shown improved oxygenation, no survival benefit has been demonstrated to date. This lack of clinical efficacy may be related to disease heterogeneity (where treatment responders may be obscured by nonresponders), limited understanding of surfactant biology in patients or an absence of therapeutic effect in this population. Crucially, the mechanism of lung injury in neonates is different from that in ARDS: surfactant inhibition by plasma constituents is a typical feature of ARDS, whereas the primary pathology in neonates is the deficiency of surfactant material due to reduced synthesis. Absence of phenotypic characterisation of patients, the lack of an ideal natural surfactant material with adequate surfactant proteins, coupled with uncertainty about optimal timing, dosing and delivery method are some of the limitations of published surfactant replacement clinical trials. Recent advances in stable isotope labelling of surfactant phospholipids coupled with analytical methods using electrospray ionisation mass spectrometry enable highly specific molecular assessment of phospholipid subclasses and synthetic rates that can be utilised for phenotypic characterisation and individualisation of exogenous surfactant

  16. Prone positioning ventilation for treatment of acute lung injury and acute respiratory distress syndrome.

    PubMed

    Lan, Mei-juan; He, Xiao-di

    2009-08-01

    Patients who are diagnosed with acute lung injury/acute respiratory distress syndrome (ALI/ARDS) usually have ventilation-perfusion mismatch, severe decrease in lung capacity, and gas exchange abnormalities. Health care workers have implemented various strategies in an attempt to compensate for these pathological alterations. By rotating patients with ALI/ARDS between the supine and prone position, it is possible to achieve a significant improvement in PaO2/FiO2, decrease shunting and therefore improve oxygenation without use of expensive, invasive and experimental procedures. Prone positioning is a safe and effective way to improve ventilation when conventional strategies fail to initiate a patient response. Because a specific cure for ARDS is not available, the goal is to support the patients with therapies that cause the least amount of injury while the lungs have an opportunity to heal. Based on current data, a trial of prone positioning ventilation should be offered to the patients who have ALI/ARDS in the early course of the disease. Published studies exhibit substantial heterogeneity in clinical results, suggesting that an adequately sized study optimizing the duration of proning ventilation strategy is warranted to enable definitive conclusions to be drawn.

  17. Evaluation of bovine coronavirus antibody levels, virus shedding, and respiratory disease incidence throughout the beef cattle production cycle

    USDA-ARS?s Scientific Manuscript database

    Objective- Determine how levels of serum antibody to bovine coronavirus (BCV) are related to virus shedding patterns and respiratory disease incidence in beef calves at various production stages. Animals- 890 crossbred beef calves from four separately managed herds at the U.S. Meat Animal Research C...

  18. Survey of Clinical Laboratory Practices for 2015 Middle East Respiratory Syndrome Coronavirus Outbreak in the Republic of Korea.

    PubMed

    Lee, Mi-Kyung; Kim, Sinyoung; Kim, Mi-Na; Kweon, Oh Joo; Lim, Yong Kwan; Ki, Chang-Seok; Kim, Jae-Seok; Seong, Moon-Woo; Sung, Heungsup; Yong, Dongeun; Lee, Hyukmin; Choi, Jong-Rak; Kim, Jeong-Ho

    2016-03-01

    It is crucial to understand the current status of clinical laboratory practices for the largest outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infections in the Republic of Korea to be well prepared for future emerging infectious diseases. We conducted a survey of 49 clinical laboratories in medical institutions and referral medical laboratories. A short questionnaire to survey clinical laboratory practices relating to MERS-CoV diagnostic testing was sent by email to the directors and clinical pathologists in charge of the clinical laboratories performing MERS-CoV testing. The survey focused on testing volume, reporting of results, resources, and laboratory safety. A total of 40 clinical laboratories responded to the survey. A total of 27,009 MERS-CoV real-time reverse transcription PCR (rRT-PCR) tests were performed. Most of the specimens were sputum (73.5%). The median turnaround time (TAT) was 5.29 hr (first and third quartile, 4.11 and 7.48 hr) in 26 medical institutions. The median TAT of more than a half of the laboratories (57.7%) was less than 6 hr. Many laboratories were able to perform tests throughout the whole week. Laboratory biosafety preparedness included class II biosafety cabinets (100%); separated pre-PCR, PCR, and post-PCR rooms (88.6%); negative pressure pretreatment rooms (48.6%); and negative pressure sputum collection rooms (20.0%). Clinical laboratories were able to quickly expand their diagnostic capacity in response to the 2015 MERS-CoV outbreak. Our results show that clinical laboratories play an important role in the maintenance and enhancement of laboratory response in preparation for future emerging infections.

  19. Survey of Clinical Laboratory Practices for 2015 Middle East Respiratory Syndrome Coronavirus Outbreak in the Republic of Korea

    PubMed Central

    Lee, Mi-Kyung; Kim, Sinyoung; Kim, Mi-Na; Kweon, Oh Joo; Lim, Yong Kwan; Ki, Chang-Seok; Kim, Jae-Seok; Seong, Moon-Woo; Sung, Heungsup; Yong, Dongeun; Lee, Hyukmin; Choi, Jong-Rak

    2016-01-01

    Background It is crucial to understand the current status of clinical laboratory practices for the largest outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infections in the Republic of Korea to be well prepared for future emerging infectious diseases. Methods We conducted a survey of 49 clinical laboratories in medical institutions and referral medical laboratories. A short questionnaire to survey clinical laboratory practices relating to MERS-CoV diagnostic testing was sent by email to the directors and clinical pathologists in charge of the clinical laboratories performing MERS-CoV testing. The survey focused on testing volume, reporting of results, resources, and laboratory safety. Results A total of 40 clinical laboratories responded to the survey. A total of 27,009 MERS-CoV real-time reverse transcription PCR (rRT-PCR) tests were performed. Most of the specimens were sputum (73.5%). The median turnaround time (TAT) was 5.29 hr (first and third quartile, 4.11 and 7.48 hr) in 26 medical institutions. The median TAT of more than a half of the laboratories (57.7%) was less than 6 hr. Many laboratories were able to perform tests throughout the whole week. Laboratory biosafety preparedness included class II biosafety cabinets (100%); separated pre-PCR, PCR, and post-PCR rooms (88.6%); negative pressure pretreatment rooms (48.6%); and negative pressure sputum collection rooms (20.0%). Conclusions Clinical laboratories were able to quickly expand their diagnostic capacity in response to the 2015 MERS-CoV outbreak. Our results show that clinical laboratories play an important role in the maintenance and enhancement of laboratory response in preparation for future emerging infections. PMID:26709263

  20. Efficacy of severe acute respiratory syndrome vaccine based on a nonhuman primate adenovirus in the presence of immunity against human adenovirus.

    PubMed

    Zhi, Yan; Figueredo, Joanita; Kobinger, Gary P; Hagan, Heather; Calcedo, Roberto; Miller, James R; Gao, Guangping; Wilson, James M

    2006-05-01

    Replication-deficient human adenovirus type 5 (AdH5) vectors can induce strong transgene product-specific cellular and humoral responses. However, many adult humans have neutralizing antibodies (NAbs) against AdH5 as a result of natural infection with this virus. Therefore, a chimpanzee adenovirus C7 (AdC7) vector was developed to circumvent interference by preexisting immunity to AdH5. This study evaluated the impact of preexisting immunity to human adenovirus on the efficacy of adenovirus-based vaccines against the coronavirus that causes severe acute respiratory syndrome (SARS-CoV). Efficacy was assessed after intramuscular injection of the vector into mice and was measured as the frequency of SARS-CoV-specific T cells and NAbs against SARS-CoV. Immunogenicity of the AdH5-based vaccine was significantly attenuated or completely abolished when the preexisting anti-AdH5 NAb titer was higher than 40. Because 27% of human serum samples from the United States tested so far have an anti-AdH5 NAb titer higher than 40, our results suggested that a significant percentage of humans with preexisting anti-AdH5 immunity would not be candidates for vaccination with an AdH5-based genetic vaccine. In contrast, preexisting anti-AdH5 NAbs have a minimal effect on the potency of the AdC7-based genetic vaccine. Taken together, our studies warrant the further development of AdC7 as a vaccine carrier for human trials.

  1. Structural model of the SARS coronavirus E channel in LMPG micelles.

    PubMed

    Surya, Wahyu; Li, Yan; Torres, Jaume

    2018-06-01

    Coronaviruses (CoV) cause common colds in humans, but are also responsible for the recent Severe Acute, and Middle East, respiratory syndromes (SARS and MERS, respectively). A promising approach for prevention are live attenuated vaccines (LAVs), some of which target the envelope (E) protein, which is a small membrane protein that forms ion channels. Unfortunately, detailed structural information is still limited for SARS-CoV E, and non-existent for other CoV E proteins. Herein, we report a structural model of a SARS-CoV E construct in LMPG micelles with, for the first time, unequivocal intermolecular NOEs. The model corresponding to the detergent-embedded region is consistent with previously obtained orientational restraints obtained in lipid bilayers and in vivo escape mutants. The C-terminal domain is mostly α-helical, and extramembrane intermolecular NOEs suggest interactions that may affect the TM channel conformation. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Prescribing Patterns of Drugs in Acute Respiratory Distress Syndrome (ARDS): An Observational Study

    PubMed Central

    Rao, Shobitha; Chogtu, Bharti

    2015-01-01

    Introduction: Acute respiratory distress syndrome (ARDS) is characterized by acute respiratory failure and is associated with wide range of clinical disorders. Controversy prevails over the pharmacological intervention in this disease. The aim of the study was to observe the prescribing pattern of drugs in patients with ARDS managed at a tertiary care hospital. Materials and Methods: This observational study was conducted at tertiary care hospital in India. Data of patients admitted from January 2010 to December 2012 was collected. Patients aged more than 18 years admitted in ICU, who were diagnosed to have ARDS during the study period, were included. A total of 150 patients of ARDS were selected. Data was collected as per the pre designed proforma and it included patients’ age, gender, clinical disorders precipitating ARDS, prescribing pattern of drugs and outcome. The data of the subjects was collected till discharge from hospital or death. Results: Infection was the cause of ARDS in 81.3% (n=122) of subjects. Antibiotics were prescribed in all the subjects and beta-lactams were prescribed in 97.3% (n=146). 41.3% (n=62) were prescribed corticosteroids, 39.3% (n=59) diuretics and 89.3% (n=134) intravenous fluids. Conclusion: The outcome of patients on different pharmacological treatment did not show any statistically significant difference. PMID:25859465

  3. Achieving a golden mean: mechanisms by which coronaviruses ensure synthesis of the correct stoichiometric ratios of viral proteins.

    PubMed

    Plant, Ewan P; Rakauskaite, Rasa; Taylor, Deborah R; Dinman, Jonathan D

    2010-05-01

    In retroviruses and the double-stranded RNA totiviruses, the efficiency of programmed -1 ribosomal frameshifting is critical for ensuring the proper ratios of upstream-encoded capsid proteins to downstream-encoded replicase enzymes. The genomic organizations of many other frameshifting viruses, including the coronaviruses, are very different, in that their upstream open reading frames encode nonstructural proteins, the frameshift-dependent downstream open reading frames encode enzymes involved in transcription and replication, and their structural proteins are encoded by subgenomic mRNAs. The biological significance of frameshifting efficiency and how the relative ratios of proteins encoded by the upstream and downstream open reading frames affect virus propagation has not been explored before. Here, three different strategies were employed to test the hypothesis that the -1 PRF signals of coronaviruses have evolved to produce the correct ratios of upstream- to downstream-encoded proteins. Specifically, infectious clones of the severe acute respiratory syndrome (SARS)-associated coronavirus harboring mutations that lower frameshift efficiency decreased infectivity by >4 orders of magnitude. Second, a series of frameshift-promoting mRNA pseudoknot mutants was employed to demonstrate that the frameshift signals of the SARS-associated coronavirus and mouse hepatitis virus have evolved to promote optimal frameshift efficiencies. Finally, we show that a previously described frameshift attenuator element does not actually affect frameshifting per se but rather serves to limit the fraction of ribosomes available for frameshifting. The findings of these analyses all support a "golden mean" model in which viruses use both programmed ribosomal frameshifting and translational attenuation to control the relative ratios of their encoded proteins.

  4. Recognition of Lys48-Linked Di-ubiquitin and Deubiquitinating Activities of the SARS Coronavirus Papain-like Protease.

    PubMed

    Békés, Miklós; van der Heden van Noort, Gerbrand J; Ekkebus, Reggy; Ovaa, Huib; Huang, Tony T; Lima, Christopher D

    2016-05-19

    Deubiquitinating enzymes (DUBs) recognize and cleave linkage-specific polyubiquitin (polyUb) chains, but mechanisms underlying specificity remain elusive in many cases. The severe acute respiratory syndrome (SARS) coronavirus papain-like protease (PLpro) is a DUB that cleaves ISG15, a two-domain Ub-like protein, and Lys48-linked polyUb chains, releasing diUb(Lys48) products. To elucidate this specificity, we report the 2.85 Å crystal structure of SARS PLpro bound to a diUb(Lys48) activity-based probe. SARS PLpro binds diUb(Lys48) in an extended conformation via two contact sites, S1 and S2, which are proximal and distal to the active site, respectively. We show that specificity for polyUb(Lys48) chains is predicated on contacts in the S2 site and enhanced by an S1-S1' preference for a Lys48 linkage across the active site. In contrast, ISG15 specificity is dominated by contacts in the S1 site. Determinants revealed for polyUb(Lys48) specificity should prove useful in understanding PLpro deubiquitinating activities in coronavirus infections. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Animal origins of SARS coronavirus: possible links with the international trade in small carnivores.

    PubMed Central

    Bell, Diana; Roberton, Scott; Hunter, Paul R

    2004-01-01

    The search for animal host origins of severe acute respiratory syndrome (SARS) coronavirus has so far remained focused on wildlife markets, restaurants and farms within China. A significant proportion of this wildlife enters China through an expanding regional network of illegal, international wildlife trade. We present the case for extending the search for ancestral coronaviruses and their hosts across international borders into countries such as Vietnam and Lao People's Democratic Republic, where the same guilds of species are found on sale in similar wildlife markets or food outlets. The three species that have so far been implicated, a viverrid, a mustelid and a canid, are part of a large suite of small carnivores distributed across this region currently overexploited by this international wildlife trade. A major lesson from SARS is that the underlying roots of newly emergent zoonotic diseases may lie in the parallel biodiversity crisis of massive species loss as a result of overexploitation of wild animal populations and the destruction of their natural habitats by increasing human populations. To address these dual threats to the long-term future of biodiversity, including man, requires a less anthropocentric and more interdisciplinary approach to problems that require the combined research expertise of ecologists, conservation biologists, veterinarians, epidemiologists, virologists, as well as human health professionals. PMID:15306396

  6. Animal origins of SARS coronavirus: possible links with the international trade in small carnivores.

    PubMed

    Bell, Diana; Roberton, Scott; Hunter, Paul R

    2004-07-29

    The search for animal host origins of severe acute respiratory syndrome (SARS) coronavirus has so far remained focused on wildlife markets, restaurants and farms within China. A significant proportion of this wildlife enters China through an expanding regional network of illegal, international wildlife trade. We present the case for extending the search for ancestral coronaviruses and their hosts across international borders into countries such as Vietnam and Lao People's Democratic Republic, where the same guilds of species are found on sale in similar wildlife markets or food outlets. The three species that have so far been implicated, a viverrid, a mustelid and a canid, are part of a large suite of small carnivores distributed across this region currently overexploited by this international wildlife trade. A major lesson from SARS is that the underlying roots of newly emergent zoonotic diseases may lie in the parallel biodiversity crisis of massive species loss as a result of overexploitation of wild animal populations and the destruction of their natural habitats by increasing human populations. To address these dual threats to the long-term future of biodiversity, including man, requires a less anthropocentric and more interdisciplinary approach to problems that require the combined research expertise of ecologists, conservation biologists, veterinarians, epidemiologists, virologists, as well as human health professionals.

  7. Viral Co-Infections in Pediatric Patients Hospitalized with Lower Tract Acute Respiratory Infections.

    PubMed

    Cebey-López, Miriam; Herberg, Jethro; Pardo-Seco, Jacobo; Gómez-Carballa, Alberto; Martinón-Torres, Nazareth; Salas, Antonio; Martinón-Sánchez, José María; Gormley, Stuart; Sumner, Edward; Fink, Colin; Martinón-Torres, Federico

    2015-01-01

    Molecular techniques can often reveal a broader range of pathogens in respiratory infections. We aim to investigate the prevalence and age pattern of viral co-infection in children hospitalized with lower tract acute respiratory infection (LT-ARI), using molecular techniques. A nested polymerase chain reaction approach was used to detect Influenza (A, B), metapneumovirus, respiratory syncytial virus (RSV), parainfluenza (1-4), rhinovirus, adenovirus (A-F), bocavirus and coronaviruses (NL63, 229E, OC43) in respiratory samples of children with acute respiratory infection prospectively admitted to any of the GENDRES network hospitals between 2011-2013. The results were corroborated in an independent cohort collected in the UK. A total of 204 and 97 nasopharyngeal samples were collected in the GENDRES and UK cohorts, respectively. In both cohorts, RSV was the most frequent pathogen (52.9% and 36.1% of the cohorts, respectively). Co-infection with multiple viruses was found in 92 samples (45.1%) and 29 samples (29.9%), respectively; this was most frequent in the 12-24 months age group. The most frequently observed co-infection patterns were RSV-Rhinovirus (23 patients, 11.3%, GENDRES cohort) and RSV-bocavirus / bocavirus-influenza (5 patients, 5.2%, UK cohort). The presence of more than one virus in pediatric patients admitted to hospital with LT-ARI is very frequent and seems to peak at 12-24 months of age. The clinical significance of these findings is unclear but should warrant further analysis.

  8. Therapeutic Efficacy of the Small Molecule GS-5734 against Ebola virus in Rhesus Monkeys

    DTIC Science & Technology

    2016-03-02

    distribution to sanctuary sites for viral 46 replication including testes, eye , and brain. In a rhesus monkey model of EVD, once daily 47...including respiratory syncytial virus (RSV), Junin virus (JUNV), Lassa fever virus 121 (LASV) and Middle East respiratory syndrome virus (MERS), with...yellow fever virus, dengue virus type 2), parainfluenza type 3, and severe 124 acute respiratory syndrome (SARS) associated coronavirus but little or

  9. Development of Fluorescent Reverse Transcription Loop-mediated Isothermal Amplification (RT-LAMP) using Quenching Probes for the Detection of the Middle East Respiratory Syndrome Coronavirus.

    PubMed

    Shirato, Kazuya; Semba, Shohei; El-Kafrawy, Sherif A; Hassan, Ahmed M; Tolah, Ahmed M; Takayama, Ikuyo; Kageyama, Tsutomu; Notomi, Tsugunori; Kamitani, Wataru; Matsuyama, Shutoku; Azhar, Esam Ibraheem

    2018-05-12

    Clinical detection of Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) in patients is achieved using genetic diagnostic methods, such as real-time RT-PCR assay. Previously, we developed a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for the detection of MERS-CoV [Virol J. 2014. 11:139]. Generally, amplification of RT-LAMP is monitored by the turbidity induced by precipitation of magnesium pyrophosphate with newly synthesized DNA. However, this mechanism cannot completely exclude the possibility of unexpected reactions. Therefore, in this study, fluorescent RT-LAMP assays using quenching probes (QProbes) were developed specifically to monitor only primer-derived signals. Two primer sets (targeting nucleocapsid and ORF1a sequences) were constructed to confirm MERS cases by RT-LAMP assay only. Our data indicate that both primer sets were capable of detecting MERS-CoV RNA to the same level as existing genetic diagnostic methods, and that both were highly specific with no cross-reactivity observed with other respiratory viruses. These primer sets were highly efficient in amplifying target sequences derived from different MERS-CoV strains, including camel MERS-CoV. In addition, the detection efficacy of QProbe RT-LAMP was comparable to that of real-time RT-PCR assay using clinical specimens from patients in Saudi Arabia. Altogether, these results indicate that QProbe RT-LAMP assays described here can be used as powerful diagnostic tools for rapid detection and surveillance of MERS-CoV infections. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Prone positioning in the patient who has acute respiratory distress syndrome: the art and science.

    PubMed

    Vollman, Kathleen M

    2004-09-01

    Acute respiratory distress syndrome (ARDS) remains a significant contributor to the morbidity and mortality of patients in the ICU. A variety of treatments are used to support the lung of the patient who has ARDS and improve gas exchange during the acute injury phase. It seems, however, that the simple, safe, and noninvasive act of prone positioning of the critically ill patient who has ARDS may improve gas exchange while preventing potential complications of high positive end-expiratory pressure, volutrauma, and oxygen toxicity. This article provides the critical care nurse with the physiologic rationale for use of the prone position, indications and contraindications for use, safe strategies for prone positioning, and care techniques and monitoring methods of the patient who is in the prone position.

  11. Biosafety level 3 laboratory for autopsies of patients with severe acute respiratory syndrome: principles, practices, and prospects.

    PubMed

    Li, Ling; Gu, Jiang; Shi, Xicheng; Gong, Encong; Li, Xingwang; Shao, Hongquan; Shi, Xueying; Jiang, Huijun; Gao, Xiaoqiang; Cheng, Daiyun; Guo, Lizhu; Wang, Hao; Shi, Xiaohong; Wang, Peizhi; Zhang, Qianying; Shen, Bing

    2005-09-15

    During the outbreak of the emergent severe acute respiratory syndrome (SARS) infection, >30% of the approximately 8000 infected persons were health care workers. The highly infectious nature of SARS coronavirus (SARS-CoV) compelled our pathologists to consider biosafety issues in the autopsy room and for tissue processing procedures. A specially designed biosafety level 3 (BSL-3) autopsy laboratory was constructed and divided into a clean area, a semicontaminated area, a contaminated area, and 2 buffer zones. High-efficiency particulate air filters were placed in the air supply and exhaust systems. Laminar air flow was from the clean areas to the less clean areas. The negative pressures of the contaminated, semicontaminated, and clean areas were approximately -50 pa, -25 pa, and -5 pa, respectively. Personal protective equipment, including gas mask, impermeable protective clothing, and 3 layers of gloves worn during autopsies; the equipment was decontaminated before it was allowed to exit the facility. Strict BSL-3 practices were followed. When a given concentration of particulate sarin simulant was introduced into the contaminated area, it could not be detected in either the semicontaminated area or clean area, and particles >0.3 microm in size were not detected in the exhaust air. A total of 16 complete postmortem examinations for probable and suspected SARS were performed during a 2-month period. Of these, 7 reported confirmed cases of SARS. None of the 23 pathologists and technicians who participated in these autopsies was infected with SARS-CoV. Our experience suggests that BSL-3 laboratory operating principles should be among the special requirements for performing autopsies of contaminated bodies and that they can safeguard the clinicians and the environment involved in these procedures.

  12. Mechanical ventilation in acute respiratory distress syndrome: The open lung revisited.

    PubMed

    Amado-Rodríguez, L; Del Busto, C; García-Prieto, E; Albaiceta, G M

    2017-12-01

    Acute respiratory distress syndrome (ARDS) is still related to high mortality and morbidity rates. Most patients with ARDS will require ventilatory support. This treatment has a direct impact upon patient outcome and is associated to major side effects. In this regard, ventilator-associated lung injury (VALI) is the main concern when this technique is used. The ultimate mechanisms of VALI and its management are under constant evolution. The present review describes the classical mechanisms of VALI and how they have evolved with recent findings from physiopathological and clinical studies, with the aim of analyzing the clinical implications derived from them. Lastly, a series of knowledge-based recommendations are proposed that can be helpful for the ventilator assisted management of ARDS at the patient bedside. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  13. Respiratory viruses and bacteria among pilgrims during the 2013 Hajj.

    PubMed

    Benkouiten, Samir; Charrel, Rémi; Belhouchat, Khadidja; Drali, Tassadit; Nougairede, Antoine; Salez, Nicolas; Memish, Ziad A; Al Masri, Malak; Fournier, Pierre-Edouard; Raoult, Didier; Brouqui, Philippe; Parola, Philippe; Gautret, Philippe

    2014-11-01

    Pilgrims returning from the Hajj might contribute to international spreading of respiratory pathogens. Nasal and throat swab specimens were obtained from 129 pilgrims in 2013 before they departed from France and before they left Saudi Arabia, and tested by PCR for respiratory viruses and bacteria. Overall, 21.5% and 38.8% of pre-Hajj and post-Hajj specimens, respectively, were positive for ≥1 virus (p = 0.003). One third (29.8%) of the participants acquired ≥1 virus, particularly rhinovirus (14.0%), coronavirus E229 (12.4%), and influenza A(H3N2) virus (6.2%) while in Saudi Arabia. None of the participants were positive for the Middle East respiratory syndrome coronavirus. In addition, 50.0% and 62.0% of pre-Hajj and post-Hajj specimens, respectively, were positive for Streptococcus pneumoniae (p = 0.053). One third (36.3%) of the participants had acquired S. pneumoniae during their stay. Our results confirm high acquisition rates of rhinovirus and S. pneumoniae in pilgrims and highlight the acquisition of coronavirus E229.

  14. Respiratory Viruses and Bacteria among Pilgrims during the 2013 Hajj

    PubMed Central

    Benkouiten, Samir; Charrel, Rémi; Belhouchat, Khadidja; Drali, Tassadit; Nougairede, Antoine; Salez, Nicolas; Memish, Ziad A.; al Masri, Malak; Fournier, Pierre-Edouard; Raoult, Didier; Brouqui, Philippe; Parola, Philippe

    2014-01-01

    Pilgrims returning from the Hajj might contribute to international spreading of respiratory pathogens. Nasal and throat swab specimens were obtained from 129 pilgrims in 2013 before they departed from France and before they left Saudi Arabia, and tested by PCR for respiratory viruses and bacteria. Overall, 21.5% and 38.8% of pre-Hajj and post-Hajj specimens, respectively, were positive for ≥1 virus (p = 0.003). One third (29.8%) of the participants acquired ≥1 virus, particularly rhinovirus (14.0%), coronavirus E229 (12.4%), and influenza A(H3N2) virus (6.2%) while in Saudi Arabia. None of the participants were positive for the Middle East respiratory syndrome coronavirus. In addition, 50.0% and 62.0% of pre-Hajj and post-Hajj specimens, respectively, were positive for Streptococcus pneumoniae (p = 0.053). One third (36.3%) of the participants had acquired S. pneumoniae during their stay. Our results confirm high acquisition rates of rhinovirus and S. pneumoniae in pilgrims and highlight the acquisition of coronavirus E229. PMID:25341199

  15. Fifty Years of Research in ARDS. Gas Exchange in Acute Respiratory Distress Syndrome.

    PubMed

    Radermacher, Peter; Maggiore, Salvatore Maurizio; Mercat, Alain

    2017-10-15

    Acute respiratory distress syndrome (ARDS) is characterized by severe impairment of gas exchange. Hypoxemia is mainly due to intrapulmonary shunt, whereas increased alveolar dead space explains the alteration of CO 2 clearance. Assessment of the severity of gas exchange impairment is a requisite for the characterization of the syndrome and the evaluation of its severity. Confounding factors linked to hemodynamic status can greatly influence the relationship between the severity of lung injury and the degree of hypoxemia and/or the effects of ventilator settings on gas exchange. Apart from situations of rescue treatment, targeting optimal gas exchange in ARDS has become less of a priority compared with prevention of injury. A complex question for clinicians is to understand when improvement in oxygenation and alveolar ventilation is related to a lower degree or risk of injury for the lungs. In this regard, a full understanding of gas exchange mechanism in ARDS is imperative for individualized symptomatic support of patients with ARDS.

  16. Acute respiratory distress syndrome: the Berlin Definition.

    PubMed

    Ranieri, V Marco; Rubenfeld, Gordon D; Thompson, B Taylor; Ferguson, Niall D; Caldwell, Ellen; Fan, Eddy; Camporota, Luigi; Slutsky, Arthur S

    2012-06-20

    The acute respiratory distress syndrome (ARDS) was defined in 1994 by the American-European Consensus Conference (AECC); since then, issues regarding the reliability and validity of this definition have emerged. Using a consensus process, a panel of experts convened in 2011 (an initiative of the European Society of Intensive Care Medicine endorsed by the American Thoracic Society and the Society of Critical Care Medicine) developed the Berlin Definition, focusing on feasibility, reliability, validity, and objective evaluation of its performance. A draft definition proposed 3 mutually exclusive categories of ARDS based on degree of hypoxemia: mild (200 mm Hg < PaO2/FIO2 ≤ 300 mm Hg), moderate (100 mm Hg < PaO2/FIO2 ≤ 200 mm Hg), and severe (PaO2/FIO2 ≤ 100 mm Hg) and 4 ancillary variables for severe ARDS: radiographic severity, respiratory system compliance (≤40 mL/cm H2O), positive end-expiratory pressure (≥10 cm H2O), and corrected expired volume per minute (≥10 L/min). The draft Berlin Definition was empirically evaluated using patient-level meta-analysis of 4188 patients with ARDS from 4 multicenter clinical data sets and 269 patients with ARDS from 3 single-center data sets containing physiologic information. The 4 ancillary variables did not contribute to the predictive validity of severe ARDS for mortality and were removed from the definition. Using the Berlin Definition, stages of mild, moderate, and severe ARDS were associated with increased mortality (27%; 95% CI, 24%-30%; 32%; 95% CI, 29%-34%; and 45%; 95% CI, 42%-48%, respectively; P < .001) and increased median duration of mechanical ventilation in survivors (5 days; interquartile [IQR], 2-11; 7 days; IQR, 4-14; and 9 days; IQR, 5-17, respectively; P < .001). Compared with the AECC definition, the final Berlin Definition had better predictive validity for mortality, with an area under the receiver operating curve of 0.577 (95% CI, 0.561-0.593) vs 0.536 (95% CI, 0

  17. Community Case Clusters of Middle East Respiratory Syndrome Coronavirus in Hafr Al-Batin, Kingdom of Saudi Arabia: A Descriptive Genomic study

    PubMed Central

    Memish, Ziad A.; Cotten, Matthew; Watson, Simon J.; Kellam, Paul; Zumla, Alimuddin; Alhakeem, Rafat F.; Assiri, Abdullah; Rabeeah, Abdullah A. Al; Al-Tawfiq, Jaffar A.

    2014-01-01

    Summary The Middle East respiratory syndrome coronavirus (MERS-CoV) was first described in September 2012 and to date 86 deaths from a total of 206 cases of MERS-CoV infection have been reported to the WHO. Camels have been implicated as the reservoir of MERS-CoV, but the exact source and mode of transmission for most patients remain unknown. During a 3 month period, June to August 2013, there were 12 positive MERS-CoV cases reported from the Hafr Al-Batin region district in the north east region of the Kingdom of Saudi Arabia. In addition to the different regional camel festivals in neighboring countries, Hafr Al-Batin has the biggest camel market in the entire Kingdom and hosts an annual camel festival. Thus, we conducted a detailed epidemiological, clinical and genomic study to ascertain common exposure and transmission patterns of all cases of MERS-CoV reported from Hafr Al-Batin. Analysis of previously reported genetic data indicated that at least two of the infected contacts could not have been directly infected from the index patient and alternate source should be considered. While camels appear as the likely source, other sources have not been ruled out. More detailed case control studies with detailed case histories, epidemiological information and genomic analysis are being conducted to delineate the missing pieces in the transmission dynamics of MERS-CoV outbreak. PMID:24699184

  18. Community case clusters of Middle East respiratory syndrome coronavirus in Hafr Al-Batin, Kingdom of Saudi Arabia: a descriptive genomic study.

    PubMed

    Memish, Ziad A; Cotten, Matthew; Watson, Simon J; Kellam, Paul; Zumla, Alimuddin; Alhakeem, Rafat F; Assiri, Abdullah; Rabeeah, Abdullah A Al; Al-Tawfiq, Jaffar A

    2014-06-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV) was first described in September 2012 and to date 86 deaths from a total of 206 cases of MERS-CoV infection have been reported to the WHO. Camels have been implicated as the reservoir of MERS-CoV, but the exact source and mode of transmission for most patients remain unknown. During a 3 month period, June to August 2013, there were 12 positive MERS-CoV cases reported from the Hafr Al-Batin region district in the north east region of the Kingdom of Saudi Arabia. In addition to the different regional camel festivals in neighboring countries, Hafr Al-Batin has the biggest camel market in the entire Kingdom and hosts an annual camel festival. Thus, we conducted a detailed epidemiological, clinical and genomic study to ascertain common exposure and transmission patterns of all cases of MERS-CoV reported from Hafr Al-Batin. Analysis of previously reported genetic data indicated that at least two of the infected contacts could not have been directly infected from the index patient and alternate source should be considered. While camels appear as the likely source, other sources have not been ruled out. More detailed case control studies with detailed case histories, epidemiological information and genomic analysis are being conducted to delineate the missing pieces in the transmission dynamics of MERS-CoV outbreak. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Extensive Viable Middle East Respiratory Syndrome (MERS) Coronavirus Contamination in Air and Surrounding Environment in MERS Isolation Wards.

    PubMed

    Kim, Sung-Han; Chang, So Young; Sung, Minki; Park, Ji Hoon; Bin Kim, Hong; Lee, Heeyoung; Choi, Jae-Phil; Choi, Won Suk; Min, Ji-Young

    2016-08-01

    The largest outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) outside the Middle East occurred in South Korea in 2015 and resulted in 186 laboratory-confirmed infections, including 36 (19%) deaths. Some hospitals were considered epicenters of infection and voluntarily shut down most of their operations after nearly half of all transmissions occurred in hospital settings. However, the ways that MERS-CoV is transmitted in healthcare settings are not well defined. We explored the possible contribution of contaminated hospital air and surfaces to MERS transmission by collecting air and swabbing environmental surfaces in 2 hospitals treating MERS-CoV patients. The samples were tested by viral culture with reverse transcription polymerase chain reaction (RT-PCR) and immunofluorescence assay (IFA) using MERS-CoV Spike antibody, and electron microscopy (EM). The presence of MERS-CoV was confirmed by RT-PCR of viral cultures of 4 of 7 air samples from 2 patients' rooms, 1 patient's restroom, and 1 common corridor. In addition, MERS-CoV was detected in 15 of 68 surface swabs by viral cultures. IFA on the cultures of the air and swab samples revealed the presence of MERS-CoV. EM images also revealed intact particles of MERS-CoV in viral cultures of the air and swab samples. These data provide experimental evidence for extensive viable MERS-CoV contamination of the air and surrounding materials in MERS outbreak units. Thus, our findings call for epidemiologic investigation of the possible scenarios for contact and airborne transmission, and raise concern regarding the adequacy of current infection control procedures. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  20. The Nucleocapsid Protein of Coronaviruses Acts as a Viral Suppressor of RNA Silencing in Mammalian Cells.

    PubMed

    Cui, Lei; Wang, Haiying; Ji, Yanxi; Yang, Jie; Xu, Shan; Huang, Xingyu; Wang, Zidao; Qin, Lei; Tien, Po; Zhou, Xi; Guo, Deyin; Chen, Yu

    2015-09-01

    RNA interference (RNAi) is a process of eukaryotic posttranscriptional gene silencing that functions in antiviral immunity in plants, nematodes, and insects. However, recent studies provided strong supports that RNAi also plays a role in antiviral mechanism in mammalian cells. To combat RNAi-mediated antiviral responses, many viruses encode viral suppressors of RNA silencing (VSR) to facilitate their replication. VSRs have been widely studied for plant and insect viruses, but only a few have been defined for mammalian viruses currently. We identified a novel VSR from coronaviruses, a group of medically important mammalian viruses including Severe acute respiratory syndrome coronavirus (SARS-CoV), and showed that the nucleocapsid protein (N protein) of coronaviruses suppresses RNAi triggered by either short hairpin RNAs or small interfering RNAs in mammalian cells. Mouse hepatitis virus (MHV) is closely related to SARS-CoV in the family Coronaviridae and was used as a coronavirus replication model. The replication of MHV increased when the N proteins were expressed in trans, while knockdown of Dicer1 or Ago2 transcripts facilitated the MHV replication in mammalian cells. These results support the hypothesis that RNAi is a part of the antiviral immunity responses in mammalian cells. IMPORTANCE RNAi has been well known to play important antiviral roles from plants to invertebrates. However, recent studies provided strong supports that RNAi is also involved in antiviral response in mammalian cells. An important indication for RNAi-mediated antiviral activity in mammals is the fact that a number of mammalian viruses encode potent suppressors of RNA silencing. Our results demonstrate that coronavirus N protein could function as a VSR through its double-stranded RNA binding activity. Mutational analysis of N protein allowed us to find out the critical residues for the VSR activity. Using the MHV-A59 as the coronavirus replication model, we showed that ectopic expression

  1. Herpes simplex type 1 pneumonitis and acute respiratory distress syndrome in a patient with chronic lymphatic leukemia: a case report.

    PubMed

    Luginbuehl, Miriam; Imhof, Alexander; Klarer, Alexander

    2017-11-23

    Pulmonary pathogenicity of herpes simplex virus type 1 in patients in intensive care without classic immunosuppression as well as the necessity of antiviral treatment in the case of herpes simplex virus detection in respiratory specimens in these patients is controversial. We present a case of acute respiratory distress syndrome in a patient with stable chronic lymphatic leukemia not requiring treatment, in whom we diagnosed herpes simplex virus type 1 bronchopneumonitis based on herpes simplex virus type 1 detection in bronchoalveolar lavage fluid and clinical response to antiviral treatment. A 72-year-old white man presented with symptoms of lower respiratory tract infection. His medical history was significant for chronic lymphatic leukemia, which had been stable without treatment, arterial hypertension, multiple squamous cell carcinomas of the scalp, and alcohol overuse. Community-acquired pneumonia was suspected and appropriate broad-spectrum antibacterial treatment was initiated. Within a few hours, rapid respiratory deterioration led to cardiac arrest. He was successfully resuscitated, but developed acute respiratory distress syndrome. Furthermore, he remained febrile and inflammation markers remained elevated despite antibacterial treatment. Polymerase chain reaction from bronchoalveolar lavage fluid and viral culture from tracheobronchial secretions tested positive for herpes simplex virus type 1. We initiated antiviral treatment with acyclovir. Concomitantly we further escalated the antibacterial treatment, although no bacterial pathogen had been isolated at any point. Defervescence occurred rapidly and his C-reactive protein and leukocyte levels decreased. He was successfully weaned from mechanical ventilation, transferred to the ward, and eventually discharged to home. Herpes simplex virus should be considered a cause for lower respiratory tract infection in critically ill patients, especially in the setting of an underlying disease.

  2. Turning Crisis into Opportunity: Nature of Science and Scientific Inquiry as Illustrated in the Scientific Research on Severe Acute Respiratory Syndrome

    ERIC Educational Resources Information Center

    Wong, Siu Ling; Kwan, Jenny; Hodson, Derek; Yung, Benny Hin Wai

    2009-01-01

    Interviews with key scientists who had conducted research on Severe Acute Respiratory Syndrome (SARS), together with analysis of media reports, documentaries and other literature published during and after the SARS epidemic, revealed many interesting aspects of the nature of science (NOS) and scientific inquiry in contemporary scientific research…

  3. The spectrum of respiratory pathogens among returning Hajj pilgrims: myths and reality.

    PubMed

    Gautret, Phillipe; Benkouiten, Samir; Al-Tawfiq, Jaffar A; Memish, Ziad A

    2016-06-01

    Enhanced surveillance systems have been implemented recently in many countries in order to rapidly detect and investigate any possible cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection among travellers returning from the Middle East, including notably Hajj pilgrims. According to the available surveillance data, only a few sporadic travel-associated MERS-CoV cases have been reported outside the Arabian Peninsula so far, mainly in Europe, North Africa, and Asia. These have resulted in no cases, or limited numbers of secondary cases except in Korea. The vast majority of viral respiratory infections in pilgrims returning home have been due to seasonal influenza viruses, rhinoviruses, and other known coronaviruses distinct from the MERS coronavirus. Influenza vaccination should be a priority for all Hajj pilgrims, as recommended by experts. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Statistical analysis plan for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART). A randomized controlled trial

    PubMed Central

    Damiani, Lucas Petri; Berwanger, Otavio; Paisani, Denise; Laranjeira, Ligia Nasi; Suzumura, Erica Aranha; Amato, Marcelo Britto Passos; Carvalho, Carlos Roberto Ribeiro; Cavalcanti, Alexandre Biasi

    2017-01-01

    Background The Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) is an international multicenter randomized pragmatic controlled trial with allocation concealment involving 120 intensive care units in Brazil, Argentina, Colombia, Italy, Poland, Portugal, Malaysia, Spain, and Uruguay. The primary objective of ART is to determine whether maximum stepwise alveolar recruitment associated with PEEP titration, adjusted according to the static compliance of the respiratory system (ART strategy), is able to increase 28-day survival in patients with acute respiratory distress syndrome compared to conventional treatment (ARDSNet strategy). Objective To describe the data management process and statistical analysis plan. Methods The statistical analysis plan was designed by the trial executive committee and reviewed and approved by the trial steering committee. We provide an overview of the trial design with a special focus on describing the primary (28-day survival) and secondary outcomes. We describe our data management process, data monitoring committee, interim analyses, and sample size calculation. We describe our planned statistical analyses for primary and secondary outcomes as well as pre-specified subgroup analyses. We also provide details for presenting results, including mock tables for baseline characteristics, adherence to the protocol and effect on clinical outcomes. Conclusion According to best trial practice, we report our statistical analysis plan and data management plan prior to locking the database and beginning analyses. We anticipate that this document will prevent analysis bias and enhance the utility of the reported results. Trial registration ClinicalTrials.gov number, NCT01374022. PMID:28977255

  5. 78 FR 33842 - Determination and Declaration Regarding Emergency Use of In Vitro Diagnostics for Detection of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... In Vitro Diagnostics for Detection of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) AGENCY... Middle East respiratory syndrome coronavirus (MERS-CoV). On the basis of this determination, she also... detection of Middle East respiratory syndrome coronavirus (MERS-CoV) pursuant to section 564 of the FD&C Act...

  6. E-mail-based symptomatic surveillance combined with self-collection of nasal swabs: a new tool for acute respiratory infection epidemiology.

    PubMed

    Akmatov, Manas K; Krebs, Stephan; Preusse, Matthias; Gatzemeier, Anja; Frischmann, Ursula; Schughart, Klaus; Pessler, Frank

    2011-11-01

    We examined the feasibility of combining communication by e-mail and self-collection of nasal swabs for the prospective detection of acute respiratory infections in a non-medical setting. The study was conducted among a convenience sample of employees (n=53) at a research institution (December 2009-April 2010). Real-time data on the occurrence of acute respiratory symptoms and a nasal self-swab were collected prospectively, with automated weekly e-mails as a reminder mechanism. Reverse transcription polymerase chain reaction (RT-PCR) was used to detect respiratory viral pathogens in the swabs. Fifty-one out of 53 participants completed the study. The study design was well accepted. Thirty (∼57%) participants reported at least one episode of acute respiratory infection and returned the nasal swab during the study period (eight participants reported two episodes). The majority had no difficulties taking the self-swab and preferred this to swabbing by study personnel. Most participants obtained and returned the swabs within the recommended time. Viral respiratory pathogens were detected in 19 of 38 swabs (50%), with coronaviruses 229E/NL63 and OC43 and rhinoviruses A and B constituting 17 positive swabs (89%). Combining e-mail-based symptomatic surveillance with nasal self-swabbing promises to be a powerful tool for the real-time identification of incident cases of acute respiratory infections and the associated pathogens in population-based studies. Copyright © 2011 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  7. Isolation and phenotypic characteristics of microparticles in acute respiratory distress syndrome

    PubMed Central

    Li, Hongxia; Meng, Xiangyu; Gao, Yue; Cai, Shaohua

    2015-01-01

    Objective: To investigate the alterations of microparticles in acute respiratory distress syndrome (ARDS) in rats. Methods: 18 Wistar male rats were randomly divided into three groups: no intervention, sham (saline control) group and ARDS group (LPS induced). Blood was collected from abdominal aorta and microparticles were extracted through multiple rounds of centrifugation. Particles were analyzed by flow cytometry and transmission electron microscope. Results: The circulating concentration of total microparticles of rats with ARDS induced by lipopolysaccharide (LPS) did not change compared with other two groups. However, ARDS rats expressed higher concentration of leukocyte- and endothelium- derived microparticles in the three groups. Conclusion: Our results indicate that leukocyte and endothelial cell-derived particles may play an important role in ARDS. Thus it is important not only to monitor total microparticle levels but also the phenotypes, which may contribute to the prevention and early treatment of ARDS. PMID:25973049

  8. Differentiation between human coronaviruses NL63 and 229E using a novel double-antibody sandwich enzyme-linked immunosorbent assay based on specific monoclonal antibodies.

    PubMed

    Sastre, Patricia; Dijkman, Ronald; Camuñas, Ana; Ruiz, Tamara; Jebbink, Maarten F; van der Hoek, Lia; Vela, Carmen; Rueda, Paloma

    2011-01-01

    Human coronaviruses (HCoVs) are responsible for respiratory tract infections ranging from common colds to severe acute respiratory syndrome. HCoV-NL63 and HCoV-229E are two of the four HCoVs that circulate worldwide and are close phylogenetic relatives. HCoV infections can lead to hospitalization of children, elderly individuals, and immunocompromised patients. Globally, approximately 5% of all upper and lower respiratory tract infections in hospitalized children are caused by HCoV-229E and HCoV-NL63. The latter virus has recently been associated with the childhood disease croup. Thus, differentiation between the two viruses is relevant for epidemiology studies. The aim of this study was to develop a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) as a potential tool for identification and differentiation between HCoV-NL63 and HCoV-229E. The nucleocapsid (N) proteins of HCoV-NL63 and HCoV-229E were expressed in an Escherichia coli system and used to immunize mice in order to obtain monoclonal antibodies (MAbs) specific for each virus. Three specific MAbs to HCoV-NL63, one MAb specific to HCoV-229E, and four MAbs that recognized both viruses were obtained. After their characterization, three MAbs were selected in order to develop a differential DAS-ELISA. The described assay could detect up to 3 ng/ml of N protein and 50 50% tissue culture infective doses/ml of virus stock. No cross-reactivity with other human coronaviruses or closely related animal coronaviruses was found. The newly developed DAS-ELISA was species specific, and therefore, it could be considered a potential tool for detection and differentiation of HCoV-NL63 and HCoV-229E infections.

  9. Viral Co-Infections in Pediatric Patients Hospitalized with Lower Tract Acute Respiratory Infections

    PubMed Central

    Cebey-López, Miriam; Herberg, Jethro; Pardo-Seco, Jacobo; Gómez-Carballa, Alberto; Martinón-Torres, Nazareth; Salas, Antonio; Martinón-Sánchez, José María; Gormley, Stuart; Sumner, Edward; Fink, Colin; Martinón-Torres, Federico

    2015-01-01

    Background Molecular techniques can often reveal a broader range of pathogens in respiratory infections. We aim to investigate the prevalence and age pattern of viral co-infection in children hospitalized with lower tract acute respiratory infection (LT-ARI), using molecular techniques. Methods A nested polymerase chain reaction approach was used to detect Influenza (A, B), metapneumovirus, respiratory syncytial virus (RSV), parainfluenza (1–4), rhinovirus, adenovirus (A—F), bocavirus and coronaviruses (NL63, 229E, OC43) in respiratory samples of children with acute respiratory infection prospectively admitted to any of the GENDRES network hospitals between 2011–2013. The results were corroborated in an independent cohort collected in the UK. Results A total of 204 and 97 nasopharyngeal samples were collected in the GENDRES and UK cohorts, respectively. In both cohorts, RSV was the most frequent pathogen (52.9% and 36.1% of the cohorts, respectively). Co-infection with multiple viruses was found in 92 samples (45.1%) and 29 samples (29.9%), respectively; this was most frequent in the 12–24 months age group. The most frequently observed co-infection patterns were RSV—Rhinovirus (23 patients, 11.3%, GENDRES cohort) and RSV—bocavirus / bocavirus—influenza (5 patients, 5.2%, UK cohort). Conclusion The presence of more than one virus in pediatric patients admitted to hospital with LT-ARI is very frequent and seems to peak at 12–24 months of age. The clinical significance of these findings is unclear but should warrant further analysis. PMID:26332375

  10. Candidate genes and pathogenesis investigation for sepsis-related acute respiratory distress syndrome based on gene expression profile.

    PubMed

    Wang, Min; Yan, Jingjun; He, Xingxing; Zhong, Qiang; Zhan, Chengye; Li, Shusheng

    2016-04-18

    Acute respiratory distress syndrome (ARDS) is a potentially devastating form of acute inflammatory lung injury as well as a major cause of acute respiratory failure. Although researchers have made significant progresses in elucidating the pathophysiology of this complex syndrome over the years, the absence of a universal detail disease mechanism up until now has led to a series of practical problems for a definitive treatment. This study aimed to predict some genes or pathways associated with sepsis-related ARDS based on a public microarray dataset and to further explore the molecular mechanism of ARDS. A total of 122 up-regulated DEGs and 91 down-regulated differentially expressed genes (DEGs) were obtained. The up- and down-regulated DEGs were mainly involved in functions like mitotic cell cycle and pathway like cell cycle. Protein-protein interaction network of ARDS analysis revealed 20 hub genes including cyclin B1 (CCNB1), cyclin B2 (CCNB2) and topoisomerase II alpha (TOP2A). A total of seven transcription factors including forkhead box protein M1 (FOXM1) and 30 target genes were revealed in the transcription factor-target gene regulation network. Furthermore, co-cited genes including CCNB2-CCNB1 were revealed in literature mining for the relations ARDS related genes. Pathways like mitotic cell cycle were closed related with the development of ARDS. Genes including CCNB1, CCNB2 and TOP2A, as well as transcription factors like FOXM1 might be used as the novel gene therapy targets for sepsis related ARDS.

  11. Synthetic peptides coupled to the surface of liposomes effectively induce SARS coronavirus-specific cytotoxic T lymphocytes and viral clearance in HLA-A*0201 transgenic mice.

    PubMed

    Ohno, Satoshi; Kohyama, Shunsuke; Taneichi, Maiko; Moriya, Osamu; Hayashi, Hidenori; Oda, Hiroshi; Mori, Masahito; Kobayashi, Akiharu; Akatsuka, Toshitaka; Uchida, Tetsuya; Matsui, Masanori

    2009-06-12

    We investigated whether the surface-linked liposomal peptide was applicable to a vaccine based on cytotoxic T lymphocytes (CTLs) against severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV). We first identified four HLA-A*0201-restricted CTL epitopes derived from SARS-CoV using HLA-A*0201 transgenic mice and recombinant adenovirus expressing predicted epitopes. These peptides were coupled to the surface of liposomes, and inoculated into mice. Two of the liposomal peptides were effective for peptide-specific CTL induction, and one of them was efficient for the clearance of vaccinia virus expressing epitopes of SARS-CoV, suggesting that the surface-linked liposomal peptide might offer an effective CTL-based vaccine against SARS.

  12. Achieving a Golden Mean: Mechanisms by Which Coronaviruses Ensure Synthesis of the Correct Stoichiometric Ratios of Viral Proteins▿

    PubMed Central

    Plant, Ewan P.; Rakauskaitė, Rasa; Taylor, Deborah R.; Dinman, Jonathan D.

    2010-01-01

    In retroviruses and the double-stranded RNA totiviruses, the efficiency of programmed −1 ribosomal frameshifting is critical for ensuring the proper ratios of upstream-encoded capsid proteins to downstream-encoded replicase enzymes. The genomic organizations of many other frameshifting viruses, including the coronaviruses, are very different, in that their upstream open reading frames encode nonstructural proteins, the frameshift-dependent downstream open reading frames encode enzymes involved in transcription and replication, and their structural proteins are encoded by subgenomic mRNAs. The biological significance of frameshifting efficiency and how the relative ratios of proteins encoded by the upstream and downstream open reading frames affect virus propagation has not been explored before. Here, three different strategies were employed to test the hypothesis that the −1 PRF signals of coronaviruses have evolved to produce the correct ratios of upstream- to downstream-encoded proteins. Specifically, infectious clones of the severe acute respiratory syndrome (SARS)-associated coronavirus harboring mutations that lower frameshift efficiency decreased infectivity by >4 orders of magnitude. Second, a series of frameshift-promoting mRNA pseudoknot mutants was employed to demonstrate that the frameshift signals of the SARS-associated coronavirus and mouse hepatitis virus have evolved to promote optimal frameshift efficiencies. Finally, we show that a previously described frameshift attenuator element does not actually affect frameshifting per se but rather serves to limit the fraction of ribosomes available for frameshifting. The findings of these analyses all support a “golden mean” model in which viruses use both programmed ribosomal frameshifting and translational attenuation to control the relative ratios of their encoded proteins. PMID:20164235

  13. Differentiation between Human Coronaviruses NL63 and 229E Using a Novel Double-Antibody Sandwich Enzyme-Linked Immunosorbent Assay Based on Specific Monoclonal Antibodies ▿

    PubMed Central

    Sastre, Patricia; Dijkman, Ronald; Camuñas, Ana; Ruiz, Tamara; Jebbink, Maarten F.; van der Hoek, Lia; Vela, Carmen; Rueda, Paloma

    2011-01-01

    Human coronaviruses (HCoVs) are responsible for respiratory tract infections ranging from common colds to severe acute respiratory syndrome. HCoV-NL63 and HCoV-229E are two of the four HCoVs that circulate worldwide and are close phylogenetic relatives. HCoV infections can lead to hospitalization of children, elderly individuals, and immunocompromised patients. Globally, approximately 5% of all upper and lower respiratory tract infections in hospitalized children are caused by HCoV-229E and HCoV-NL63. The latter virus has recently been associated with the childhood disease croup. Thus, differentiation between the two viruses is relevant for epidemiology studies. The aim of this study was to develop a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) as a potential tool for identification and differentiation between HCoV-NL63 and HCoV-229E. The nucleocapsid (N) proteins of HCoV-NL63 and HCoV-229E were expressed in an Escherichia coli system and used to immunize mice in order to obtain monoclonal antibodies (MAbs) specific for each virus. Three specific MAbs to HCoV-NL63, one MAb specific to HCoV-229E, and four MAbs that recognized both viruses were obtained. After their characterization, three MAbs were selected in order to develop a differential DAS-ELISA. The described assay could detect up to 3 ng/ml of N protein and 50 50% tissue culture infective doses/ml of virus stock. No cross-reactivity with other human coronaviruses or closely related animal coronaviruses was found. The newly developed DAS-ELISA was species specific, and therefore, it could be considered a potential tool for detection and differentiation of HCoV-NL63 and HCoV-229E infections. PMID:21084464

  14. Adult onset Still's disease accompanied by acute respiratory distress syndrome: A case report.

    PubMed

    Xi, Xiao-Tu; Wang, Mao-Jie; Huang, Run-Yue; Ding, Bang-Han

    2016-09-01

    Adult onset Still's disease (AOSD) is a systemic inflammatory disorder characterized by rash, leukocytosis, fever and arthralgia/arthritis. The most common pulmonary manifestations associated with AOSD are pulmonary infiltrates and pleural effusion. The present study describes a 40-year-old male with AOSD who developed fever, sore throat and shortness of breath. Difficulty breathing promptly developed, and the patient was diagnosed with acute respiratory distress syndrome (ARDS). The patient did not respond to antibiotics, including imipenem, vancomycin, fluconazole, moxifloxacin, penicillin, doxycycline and meropenem, but was sensitive to glucocorticoid treatment, including methylprednisolone sodium succinate. ARDS accompanied by AOSD has been rarely reported in the literature. In conclusion, in a patient with ARDS who does not respond to antibiotic treatment, the involvement of AOSD should be considered.

  15. Cryopreserved, Xeno-Free Human Umbilical Cord Mesenchymal Stromal Cells Reduce Lung Injury Severity and Bacterial Burden in Rodent Escherichia coli-Induced Acute Respiratory Distress Syndrome.

    PubMed

    Curley, Gerard F; Jerkic, Mirjana; Dixon, Steve; Hogan, Grace; Masterson, Claire; O'Toole, Daniel; Devaney, James; Laffey, John G

    2017-02-01

    Although mesenchymal stem/stromal cells represent a promising therapeutic strategy for acute respiratory distress syndrome, clinical translation faces challenges, including scarcity of bone marrow donors, and reliance on bovine serum during mesenchymal stem/stromal cell proliferation. We wished to compare mesenchymal stem/stromal cells from human umbilical cord, grown in xeno-free conditions, with mesenchymal stem/stromal cells from human bone marrow, in a rat model of Escherichia coli pneumonia. In addition, we wished to determine the potential for umbilical cord-mesenchymal stem/stromal cells to reduce E. coli-induced oxidant injury. Randomized animal study. University research laboratory. Male Sprague-Dawley rats. Acute respiratory distress syndrome was induced in rats by intratracheal instillation of E. coli (1.5-2 × 10 CFU/kg). "Series 1" compared the effects of freshly thawed cryopreserved umbilical cord-mesenchymal stem/stromal cells with bone marrow-mesenchymal stem/stromal cells on physiologic indices of lung injury, cellular infiltration, and E. coli colony counts in bronchoalveolar lavage. "Series 2" examined the effects of cryopreserved umbilical cord-mesenchymal stem/stromal cells on survival, as well as measures of injury, inflammation and oxidant stress, including production of reactive oxidative species, reactive oxidative species scavenging by superoxide dismutase-1 and superoxide dismutase-2. In "Series 1," animals subjected to E. coli pneumonia who received umbilical cord-mesenchymal stem/stromal cells had improvements in oxygenation, respiratory static compliance, and wet-to-dry ratios comparable to bone marrow-mesenchymal stem/stromal cell treatment. E. coli colony-forming units in bronchoalveolar lavage were reduced in both cell therapy groups, despite a reduction in bronchoalveolar lavage neutrophils. In series 2, umbilical cord-mesenchymal stem/stromal cells enhanced animal survival and decreased alveolar protein and proinflammatory

  16. Low-Tidal-Volume Ventilation in the Acute Respiratory Distress Syndrome

    PubMed Central

    Malhotra, Atul

    2008-01-01

    A 55-year-old man who is 178 cm tall and weighs 95 kg is hospitalized with community-acquired pneumonia and progressively severe dyspnea. His arterial oxygen saturation while breathing 100% oxygen through a face mask is 76%; a chest radiograph shows diffuse alveolar infiltrates with air bronchograms. He is intubated and receives mechanical ventilation; ventilator settings include a tidal volume of 1000 ml, a positive end-expiratory pressure (PEEP) of 5 cm of water, and a fraction of inspired oxygen (FiO2) of 0.8. With these settings, peak airway pressure is 50 to 60 cm of water, plateau airway pressure is 38 cm of water, partial pressure of arterial oxygen is 120 mm Hg, partial pressure of carbon dioxide is 37 mm Hg, and arterial blood pH is 7.47. The diagnosis of the acute respiratory distress syndrome (ARDS) is made. An intensive care specialist evaluates the patient and recommends changing the current ventilator settings and implementing a low-tidal-volume ventilation strategy. PMID:17855672

  17. [Role of noninvasive mechanical ventilation in patients with severe avian influenza A (H7N9) complicated with acute respiratory distress syndrome].

    PubMed

    Luo, Haili; Wang, Shaohong; Shen, Feng; Yuan, Tongmei; Pan, Xianguo; Liu, Jingtao; Yao, Ling; Wu, Juncheng; Long, Xuemei

    2018-05-01

    Human infection with avian influenza A (H7N9) is an acute contagious respiratory disease. Acute respiratory distress syndrome (ARDS) is a common complication in patients with severe avian influenza A (H7N9), for whom mechanical ventilation (MV) is an important supportive method. A patient, suffered from severe avian influenza A (H7N9) and complicated with ARDS, was admitted to the Second Affiliated Hospital of Guizhou Medical University in January 2017. With very intensive care for oxygenation, respiration and consciousness, and monitoring, she was successfully cured by comprehensive managements, among which noninvasive mechanical ventilation (NIV) was the major respiratory support method. The result demonstrate that, in patients with conscious state, satisfied expectoration ability and relatively good cooperation, and with close observation of oxygenation and respiratory rate, NIV may be accepted as an effective method for patient with ARDS caused by severe avian influenza A (H7N9).

  18. Esophageal and transpulmonary pressures in acute respiratory failure*

    PubMed Central

    Talmor, Daniel; Sarge, Todd; O’Donnell, Carl R.; Ritz, Ray; Malhotra, Atul; Lisbon, Alan; Loring, Stephen H.

    2008-01-01

    Objective Pressure inflating the lung during mechanical ventilation is the difference between pressure applied at the airway opening (Pao) and pleural pressure (Ppl). Depending on the chest wall’s contribution to respiratory mechanics, a given positive end-expiratory and/or end-inspiratory plateau pressure may be appropriate for one patient but inadequate or potentially injurious for another. Thus, failure to account for chest wall mechanics may affect results in clinical trials of mechanical ventilation strategies in acute respiratory distress syndrome. By measuring esophageal pressure (Pes), we sought to characterize influence of the chest wall on Ppl and transpulmonary pressure (PL) in patients with acute respiratory failure. Design Prospective observational study. Setting Medical and surgical intensive care units at Beth Israel Deaconess Medical Center. Patients Seventy patients with acute respiratory failure. Interventions: Placement of esophageal balloon-catheters. Measurements and Main Results Airway, esophageal, and gastric pressures recorded at end-exhalation and end-inflation Pes averaged 17.5 ± 5.7 cm H2O at end-expiration and 21.2 ± 7.7 cm H2O at end-inflation and were not significantly correlated with body mass index or chest wall elastance. Estimated PL was 1.5 ± 6.3 cm H2O at end-expiration, 21.4 ± 9.3 cm H2O at end-inflation, and 18.4 ± 10.2 cm H2O (n = 40) during an end-inspiratory hold (plateau). Although PL at end-expiration was significantly correlated with positive end-expiratory pressure (p < .0001), only 24% of the variance in PL was explained by Pao (R2 = .243), and 52% was due to variation in Pes. Conclusions In patients in acute respiratory failure, elevated esophageal pressures suggest that chest wall mechanical properties often contribute substantially and unpredictably to total respiratory impedance, and therefore Pao may not adequately predict PL or lung distention. Systematic use of esophageal manometry has the potential to

  19. Clinical Practice Guideline of Acute Respiratory Distress Syndrome

    PubMed Central

    Cho, Young-Jae; Moon, Jae Young; Shin, Ein-Soon; Kim, Je Hyeong; Jung, Hoon; Park, So Young; Kim, Ho Cheol; Sim, Yun Su; Rhee, Chin Kook; Lim, Jaemin; Lee, Seok Jeong; Lee, Won-Yeon; Lee, Hyun Jeong; Kwak, Sang Hyun; Kang, Eun Kyeong; Chung, Kyung Soo

    2016-01-01

    There is no well-stated practical guideline for mechanically ventilated patients with or without acute respiratory distress syndrome (ARDS). We generate strong (1) and weak (2) grade of recommendations based on high (A), moderate (B) and low (C) grade in the quality of evidence. In patients with ARDS, we recommend low tidal volume ventilation (1A) and prone position if it is not contraindicated (1B) to reduce their mortality. However, we did not support high-frequency oscillatory ventilation (1B) and inhaled nitric oxide (1A) as a standard treatment. We also suggest high positive end-expiratory pressure (2B), extracorporeal membrane oxygenation as a rescue therapy (2C), and neuromuscular blockage for 48 hours after starting mechanical ventilation (2B). The application of recruitment maneuver may reduce mortality (2B), however, the use of systemic steroids cannot reduce mortality (2B). In mechanically ventilated patients, we recommend light sedation (1B) and low tidal volume even without ARDS (1B) and suggest lung protective ventilation strategy during the operation to lower the incidence of lung complications including ARDS (2B). Early tracheostomy in mechanically ventilated patients can be performed only in limited patients (2A). In conclusion, of 12 recommendations, nine were in the management of ARDS, and three for mechanically ventilated patients. PMID:27790273

  20. Identification of a Lineage D Betacoronavirus in Cave Nectar Bats (Eonycteris spelaea) in Singapore and an Overview of Lineage D Reservoir Ecology in SE Asian Bats.

    PubMed

    Mendenhall, I H; Borthwick, S; Neves, E S; Low, D; Linster, M; Liang, B; Skiles, M; Jayakumar, J; Han, H; Gunalan, V; Lee, B P Y-H; Okahara, K; Wang, L-F; Maurer-Stroh, S; Su, Y C F; Smith, G J D

    2017-12-01

    Coronaviruses are a diverse group of viruses that infect mammals and birds. Bats are reservoirs for several different coronaviruses in the Alphacoronavirus and Betacoronavirus genera. They also appear to be the natural reservoir for the ancestral viruses that generated the severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus outbreaks. Here, we detected coronavirus sequences in next-generation sequence data created from Eonycteris spelaea faeces and urine. We also screened by PCR urine samples, faecal samples and rectal swabs collected from six species of bats in Singapore between 2011 and 2014, all of which were negative. The phylogenetic analysis indicates this novel strain is most closely related to lineage D Betacoronaviruses detected in a diverse range of bat species. This is the second time that coronaviruses have been detected in cave nectar bats, but the first coronavirus sequence data generated from this species. Bat species from which this group of coronaviruses has been detected are widely distributed across SE Asia, South Asia and Southern China. They overlap geographically, often share roosting sites and have been witnessed to forage on the same plant. The addition of sequence data from this group of viruses will allow us to better understand coronavirus evolution and host specificity. © 2016 Blackwell Verlag GmbH.

  1. Nation-wide surveillance of human acute respiratory virus infections between 2013 and 2015 in Korea.

    PubMed

    Kim, Jeong-Min; Jung, Hee-Dong; Cheong, Hyang-Min; Lee, Anna; Lee, Nam-Joo; Chu, Hyuk; Lee, Joo-Yeon; Kim, Sung Soon; Choi, Jang-Hoon

    2018-07-01

    The prevalence of eight respiratory viruses detected in patients with acute respiratory infections (ARIs) in Korea was investigated through analysis of data recorded by the Korea Influenza and Respiratory Viruses Surveillance System (KINRESS) from 2013 to 2015. Nasal aspirate and throat swabs specimens were collected from 36 915 patients with ARIs, and viral nucleic acids were detected by real-time (reverse-transcription) polymerase chain reaction for eight respiratory viruses, including human respiratory syncytial viruses (HRSVs), influenza viruses (IFVs), human parainfluenza viruses (HPIVs), human coronaviruses (HCoVs), human rhinovirus (HRV), human adenovirus (HAdV), human bocavirus (HBoV), and human metapneumovirus (HMPV). The overall positive rate of patient specimens was 49.4% (18 236/36 915), 5% of which carried two or more viruses simultaneously. HRV (15.6%) was the most predominantly detected virus, followed by IFVs (14.6%), HAdV (7.5%), HPIVs (5.8%), HCoVs (4.2%), HRSVs (3.6%), HBoV (1.9%), and HMPV (1.6%). Most of the ARIs were significantly correlated with clinical symptoms of fever, cough, and runny nose. Although HRV and HAdV were frequently detected throughout the year in patients, other respiratory viruses showed apparent seasonality. HRSVs and IFVs were the major causative agents of acute respiratory diseases in infants and young children. Overall, this study demonstrates a meaningful relationship between viral infection and typical manifestations of known clinical features as well as seasonality, age distribution, and co-infection among respiratory viruses. Therefore, these data could provide useful information for public health management and to enhance patient care for primary clinicians. © 2018 Wiley Periodicals, Inc.

  2. Case characteristics among Middle East respiratory syndrome coronavirus outbreak and non-outbreak cases in Saudi Arabia from 2012 to 2015

    PubMed Central

    Alhamlan, F S; Majumder, M S; Brownstein, J S; Hawkins, J; Al-Abdely, H M; Alzahrani, A; Obaid, D A; Al-Ahdal, M N; BinSaeed, A

    2017-01-01

    Objectives As of 1 November 2015, the Saudi Ministry of Health had reported 1273 cases of Middle East respiratory syndrome (MERS); among these cases, which included 9 outbreaks at several hospitals, 717 (56%) patients recovered, 14 (1%) remain hospitalised and 543 (43%) died. This study aimed to determine the epidemiological, demographic and clinical characteristics that distinguished cases of MERS contracted during outbreaks from those contracted sporadically (ie, non-outbreak) between 2012 and 2015 in Saudi Arabia. Design Data from the Saudi Ministry of Health of confirmed outbreak and non-outbreak cases of MERS coronavirus (CoV) infections from September 2012 through October 2015 were abstracted and analysed. Univariate and descriptive statistical analyses were conducted, and the time between disease onset and confirmation, onset and notification and onset and death were examined. Results A total of 1250 patients (aged 0–109 years; mean, 50.825 years) were reported infected with MERS-CoV. Approximately two-thirds of all MERS cases were diagnosed in men for outbreak and non-outbreak cases. Healthcare workers comprised 22% of all MERS cases for outbreak and non-outbreak cases. Nosocomial infections comprised one-third of all Saudi MERS cases; however, nosocomial infections occurred more frequently in outbreak than non-outbreak cases (p<0.001). Patients contracting MERS during an outbreak were significantly more likely to die of MERS (p<0.001). Conclusions To date, nosocomial infections have fuelled MERS outbreaks. Given that the Kingdom of Saudi Arabia is a worldwide religious travel destination, localised outbreaks may have massive global implications and effective outbreak preventive measures are needed. PMID:28082362

  3. Open lung approach vs acute respiratory distress syndrome network ventilation in experimental acute lung injury.

    PubMed

    Spieth, P M; Güldner, A; Carvalho, A R; Kasper, M; Pelosi, P; Uhlig, S; Koch, T; Gama de Abreu, M

    2011-09-01

    Setting and strategies of mechanical ventilation with positive end-expiratory pressure (PEEP) in acute lung injury (ALI) remains controversial. This study compares the effects between lung-protective mechanical ventilation according to the Acute Respiratory Distress Syndrome Network recommendations (ARDSnet) and the open lung approach (OLA) on pulmonary function and inflammatory response. Eighteen juvenile pigs were anaesthetized, mechanically ventilated, and instrumented. ALI was induced by surfactant washout. Animals were randomly assigned to mechanical ventilation according to the ARDSnet protocol or the OLA (n=9 per group). Gas exchange, haemodynamics, pulmonary blood flow (PBF) distribution, and respiratory mechanics were measured at intervals and the lungs were removed after 6 h of mechanical ventilation for further analysis. PEEP and mean airway pressure were higher in the OLA than in the ARDSnet group [15 cmH(2)O, range 14-18 cmH(2)O, compared with 12 cmH(2)O; 20.5 (sd 2.3) compared with 18 (1.4) cmH(2)O by the end of the experiment, respectively], and OLA was associated with improved oxygenation compared with the ARDSnet group after 6 h. OLA showed more alveolar overdistension, especially in gravitationally non-dependent regions, while the ARDSnet group was associated with more intra-alveolar haemorrhage. Inflammatory mediators and markers of lung parenchymal stress did not differ significantly between groups. The PBF shifted from ventral to dorsal during OLA compared with ARDSnet protocol [-0.02 (-0.09 to -0.01) compared with -0.08 (-0.12 to -0.06), dorsal-ventral gradients after 6 h, respectively]. According to the OLA, mechanical ventilation improved oxygenation and redistributed pulmonary perfusion when compared with the ARDSnet protocol, without differences in lung inflammatory response.

  4. Middle East Respiratory Syndrome (MERS)

    MedlinePlus

    ... Controls Cancel Submit Search The CDC Middle East Respiratory Syndrome (MERS) Note: Javascript is disabled or is ... Recommend on Facebook Tweet Share Compartir Middle East Respiratory Syndrome (MERS) is viral respiratory illness that was ...

  5. Acute organophosphorus poisoning complicated by acute coronary syndrome.

    PubMed

    Pankaj, Madhu; Krishna, Kavita

    2014-07-01

    We report a case of 30 year old alcoholic male admitted with vomiting, drowsiness, limb weakness and fasciculations after alleged history of consumption of 30 ml of chlorpyriphos insecticide. He had low serum cholinesterase levels. With standard treatment for organophosphorus poisoning (OPP), he improved gradually until day 5, when he developed neck and limb weakness and respiratory distress. This intermediate syndrome was treated with oximes, atropine and artificial ventilation. During treatment, his ECG showed fresh changes of ST elevation. High CPK & CPK-MB levels, septal hypokinesia on 2D echo suggested acute coronary syndrome. Coronary angiography was postponed due to his bedridden and obtunded status. The patient finally recovered fully by day 15 and was discharged. Acute coronary syndrome is a rare occurrence in OP poisoning. The present case thus emphasises the need for careful electrocardiographic and enzymatic monitoring of all patients of organophosphorus poisoning to prevent potential cardiac complication which can prove fatal.

  6. Extracorporeal life support for patients with acute respiratory distress syndrome: report of a Consensus Conference

    PubMed Central

    2014-01-01

    The influenza H1N1 epidemics in 2009 led a substantial number of people to develop severe acute respiratory distress syndrome and refractory hypoxemia. In these patients, extracorporeal membrane oxygenation was used as rescue oxygenation therapy. Several randomized clinical trials and observational studies suggested that extracorporeal membrane oxygenation associated with protective mechanical ventilation could improve outcome, but its efficacy remains uncertain. Organized by the Société de Réanimation de Langue Française (SRLF) in conjunction with the Société Française d’Anesthésie et de Réanimation (SFAR), the Société de Pneumologie de Langue Française (SPLF), the Groupe Francophone de Réanimation et d’Urgences Pédiatriques (GFRUP), the Société Française de Perfusion (SOFRAPERF), the Société Française de Chirurgie Thoracique et Cardiovasculaire (SFCTV) et the Sociedad Española de Medecina Intensiva Critica y Unidades Coronarias (SEMICYUC), a Consensus Conference was held in December 2013 and a jury of 13 members wrote 65 recommendations to answer the five following questions regarding the place of extracorporeal life support for patients with acute respiratory distress syndrome: 1) What are the available techniques?; 2) Which patients could benefit from extracorporeal life support?; 3) How to perform extracorporeal life support?; 4) How and when to stop extracorporeal life support?; 5) Which organization should be recommended? To write the recommendations, evidence-based medicine (GRADE method), expert panel opinions, and shared decisions taken by all the thirteen members of the jury of the Consensus Conference were taken into account. PMID:24936342

  7. Acute respiratory and cardiovascular admissions after a public smoking ban in Geneva, Switzerland.

    PubMed

    Humair, Jean-Paul; Garin, Nicolas; Gerstel, Eric; Carballo, Sebastian; Carballo, David; Keller, Pierre-Frédéric; Guessous, Idris

    2014-01-01

    Many countries have introduced legislations for public smoking bans to reduce the harmful effects of exposure to tobacco smoke. Smoking bans cause significant reductions in admissions for acute coronary syndromes but their impact on respiratory diseases is unclear. In Geneva, Switzerland, two popular votes led to a stepwise implementation of a state smoking ban in public places, with a temporary suspension. This study evaluated the effect of this smoking ban on hospitalisations for acute respiratory and cardiovascular diseases. This before and after intervention study was conducted at the University Hospitals of Geneva, Switzerland, across 4 periods with different smoking legislations. It included 5,345 patients with a first hospitalisation for acute coronary syndrome, ischemic stroke, acute exacerbation of chronic obstructive pulmonary disease, pneumonia and acute asthma. The main outcomes were the incidence rate ratios (IRR) of admissions for each diagnosis after the final ban compared to the pre-ban period and adjusted for age, gender, season, influenza epidemic and secular trend. Hospitalisations for acute exacerbation of chronic obstructive pulmonary disease significantly decreased over the 4 periods and were lowest after the final ban (IRR=0.54 [95%CI: 0.42-0.68]). We observed a trend in reduced admissions for acute coronary syndromes (IRR=0.90 [95%CI: 0.80-1.00]). Admissions for ischemic stroke, asthma and pneumonia did not significantly change. A legislative smoking ban was followed by a strong decrease in hospitalisations for acute exacerbation of chronic obstructive pulmonary disease and a trend for reduced admissions for acute coronary syndrome. Smoking bans are likely to be very beneficial for patients with chronic obstructive pulmonary disease.

  8. Acute Respiratory and Cardiovascular Admissions after a Public Smoking Ban in Geneva, Switzerland

    PubMed Central

    Humair, Jean-Paul; Garin, Nicolas; Gerstel, Eric; Carballo, Sebastian; Carballo, David; Keller, Pierre-Frédéric; Guessous, Idris

    2014-01-01

    Background Many countries have introduced legislations for public smoking bans to reduce the harmful effects of exposure to tobacco smoke. Smoking bans cause significant reductions in admissions for acute coronary syndromes but their impact on respiratory diseases is unclear. In Geneva, Switzerland, two popular votes led to a stepwise implementation of a state smoking ban in public places, with a temporary suspension. This study evaluated the effect of this smoking ban on hospitalisations for acute respiratory and cardiovascular diseases. Methods This before and after intervention study was conducted at the University Hospitals of Geneva, Switzerland, across 4 periods with different smoking legislations. It included 5,345 patients with a first hospitalisation for acute coronary syndrome, ischemic stroke, acute exacerbation of chronic obstructive pulmonary disease, pneumonia and acute asthma. The main outcomes were the incidence rate ratios (IRR) of admissions for each diagnosis after the final ban compared to the pre-ban period and adjusted for age, gender, season, influenza epidemic and secular trend. Results Hospitalisations for acute exacerbation of chronic obstructive pulmonary disease significantly decreased over the 4 periods and were lowest after the final ban (IRR = 0.54 [95%CI: 0.42–0.68]). We observed a trend in reduced admissions for acute coronary syndromes (IRR = 0.90 [95%CI: 0.80–1.00]). Admissions for ischemic stroke, asthma and pneumonia did not significantly change. Conclusions A legislative smoking ban was followed by a strong decrease in hospitalisations for acute exacerbation of chronic obstructive pulmonary disease and a trend for reduced admissions for acute coronary syndrome. Smoking bans are likely to be very beneficial for patients with chronic obstructive pulmonary disease. PMID:24599156

  9. Recent directions in personalised acute respiratory distress syndrome medicine.

    PubMed

    Jabaudon, Matthieu; Blondonnet, Raiko; Audard, Jules; Fournet, Marianne; Godet, Thomas; Sapin, Vincent; Constantin, Jean-Michel

    2018-06-01

    Acute respiratory distress syndrome (ARDS) is heterogeneous by definition and patient response varies depending on underlying biology and their severity of illness. Although ARDS subtypes have been identified with different prognoses in past studies, the concept of phenotypes or endotypes does not extend to the clinical definition of ARDS. This has possibly hampered the development of therapeutic interventions that target select biological mechanisms of ARDS. Recently, a major advance may have been achieved as it may now be possible to identify ARDS subtypes that may confer different responses to therapy. The aim of personalised medicine is to identify, select, and test therapies that are most likely to be associated with a favourable outcome in a specific patient. Several promising approaches to ARDS subtypes capable of predicting therapeutic response, and not just prognosis, are highlighted in this perspective paper. An overview is also provided of current and future directions regarding the provision of personalised ARDS medicine. The importance of delivering the right care, at the right time, to the right patient, is emphasised. Copyright © 2018 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.

  10. Acute Respiratory Failure in Cardiac Transplant Recipients.

    PubMed

    Komurcu, Ozgur; Ozdemirkan, Aycan; Camkiran Firat, Aynur; Zeyneloglu, Pinar; Sezgin, Atilla; Pirat, Arash

    2015-11-01

    This study sought to evaluate the incidence, risk factors, and outcomes of acute respiratory failure in cardiac transplant recipients. Cardiac transplant recipients >15 years of age and readmitted to the intensive care unit after cardiac transplant between 2005 and 2015 were included. Thirty-nine patients were included in the final analyses. Patients with acute respiratory failure and without acute respiratory failure were compared. The most frequent causes of readmission were routine intensive care unit follow-up after endomyocardial biopsy, heart failure, sepsis, and pneumonia. Patients who were readmitted to the intensive care unit were further divided into 2 groups based on presence of acute respiratory failure. Patients' ages and body weights did not differ between groups. The groups were not different in terms of comorbidities. The admission sequential organ failure assessment scores were higher in patients with acute respiratory failure. Patients with acute respiratory failure were more likely to use bronchodilators and n-acetylcysteine before readmission. Mean peak inspiratory pressures were higher in patients in acute respiratory failure. Patients with acute respiratory failure developed sepsis more frequently and they were more likely to have hypotension. Patients with acute respiratory failure had higher values of serum creatinine before admission to intensive care unit and in the first day of intensive care unit. Patients with acute respiratory failure had more frequent bilateral opacities on chest radiographs and positive blood and urine cultures. Duration of intensive care unit and hospital stays were not statistically different between groups. Mortality in patients with acute respiratory failure was 76.5% compared with 0% in patients without acute respiratory failure. A significant number of cardiac transplant recipients were readmitted to the intensive care unit. Patients presenting with acute respiratory failure on readmission more frequently

  11. Low Tidal Volume Ventilation in Patients without Acute Respiratory Distress Syndrome: A Paradigm Shift in Mechanical Ventilation

    PubMed Central

    Lipes, Jed; Bojmehrani, Azadeh; Lellouche, Francois

    2012-01-01

    Protective ventilation with low tidal volume has been shown to reduce morbidity and mortality in patients suffering from acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Low tidal volume ventilation is associated with particular clinical challenges and is therefore often underutilized as a therapeutic option in clinical practice. Despite some potential difficulties, data have been published examining the application of protective ventilation in patients without lung injury. We will briefly review the physiologic rationale for low tidal volume ventilation and explore the current evidence for protective ventilation in patients without lung injury. In addition, we will explore some of the potential reasons for its underuse and provide strategies to overcome some of the associated clinical challenges. PMID:22536499

  12. Influenza and other respiratory virus infections in outpatients with medically attended acute respiratory infection during the 2011-12 influenza season.

    PubMed

    Zimmerman, Richard K; Rinaldo, Charles R; Nowalk, Mary Patricia; Gk, Balasubramani; Thompson, Mark G; Moehling, Krissy K; Bullotta, Arlene; Wisniewski, Stephen

    2014-07-01

    Respiratory tract infections are a major cause of outpatient visits, yet only a portion is tested to determine the etiologic organism. Multiplex reverse transcriptase polymerase chain reaction (MRT-PCR) assays for detection of multiple viruses are being used increasingly in clinical settings. During January-April 2012, outpatients with acute respiratory illness (≤ 7 days) were tested for influenza using singleplex RT-PCR (SRT-PCR). A subset was assayed for 18 viruses using MRT-PCR to compare detection of influenza and examine the distribution of viruses and characteristics of patients using multinomial logistic regression. Among 662 participants (6 months-82 years), detection of influenza was similar between the MRT-PCR and SRT-PCR (κ = 0.83). No virus was identified in 267 (40.3%) samples. Commonly detected viruses were human rhinovirus (HRV, 15.4%), coronavirus (CoV, 10.4%), respiratory syncytial virus (RSV, 8.4%), human metapneumovirus (hMPV, 8.3%), and influenza (6%). Co-detections were infrequent (6.9%) and most commonly occurred among those <18 years old. In regression analyses, compared with non-viral illnesses, RSV and hMPV were significantly more frequent in children and less frequent in 18- to 49-year-olds than in those ≥ 50 years (P = 0.01), fever was more common in hMPV and influenza infections (P = 0.008), nasal congestion was more frequent in CoV, HRV, hMPV, influenza and RSV infections (P = 0.001), and body mass index was higher among those with influenza (P = 0.036). Using MRT-PCR, a viral etiology was found in three-fifths of patients with medically attended outpatient visits for acute respiratory illness during the influenza season; co-detected viruses were infrequent. Symptoms varied by viral etiology. © 2014 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  13. High reproduction number of Middle East respiratory syndrome coronavirus in nosocomial outbreaks: mathematical modelling in Saudi Arabia and South Korea.

    PubMed

    Choi, S; Jung, E; Choi, B Y; Hur, Y J; Ki, M

    2018-06-01

    Effective countermeasures against emerging infectious diseases require an understanding of transmission rate and basic reproduction number (R 0 ). R 0 for severe acute respiratory syndrome is generally considered to be >1, whereas that for Middle East respiratory syndrome (MERS) is considered to be <1. However, this does not explain the large-scale outbreaks of MERS that occurred in Kingdom of Saudi Arabia (KSA) and South Korean hospitals. To estimate R 0 in nosocomial outbreaks of MERS. R 0 was estimated using the incidence decay with an exponential adjustment model. The KSA and Korean outbreaks were compared using a line listing of MERS cases compiled using publicly available sources. Serial intervals to estimate R 0 were assumed to be six to eight days. Study parameters [R 0 and countermeasures (d)] were estimated by fitting a model to the cumulative incidence epidemic curves using Matlab. The estimated R 0 in Korea was 3.9 in the best-fit model, with a serial interval of six days. The first outbreak cluster in a hospital in Pyeongtaek had an R 0 of 4.04, and the largest outbreak cluster in a hospital in Samsung had an R 0 of 5.0. Assuming a six-day serial interval, the KSA outbreaks in Jeddah and Riyadh had R 0 values of 3.9 and 1.9, respectively. R 0 for the nosocomial MERS outbreaks in KSA and South Korea was estimated to be in the range of 2-5, which is significantly higher than the previous estimate of <1. Therefore, more comprehensive countermeasures are needed to address these infections. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  14. Etiology of Acute Respiratory Infections in Infants: A Prospective Birth Cohort Study.

    PubMed

    Kumar, Prawin; Medigeshi, Guruprasad R; Mishra, Vishnu S; Islam, Mojahidul; Randev, Shivani; Mukherjee, Aparna; Chaudhry, Rama; Kapil, Arti; Ram Jat, Kana; Lodha, Rakesh; Kabra, Sushil K

    2017-01-01

    There is paucity of studies on etiology of acute respiratory infections (ARI) in infants. The objective of this study is to document incidence and etiology of ARI in infants, their seasonal variability and association of clinical profile with etiology. A birth cohort was followed for the first year of life; for each episode of ARI, nasopharyngeal aspirates were collected to identify the causative respiratory virus(es) using multiplex real-time polymerase chain reaction assay. For lower respiratory tract infections blood culture, serum procalcitonin, serum antibodies to Mycoplasma and Chlamydia and urinary Streptococcus pneumoniae antigen were also assayed. A total of 503 ARI episodes were documented in 310 infants for an incidence rate of 1.8 episodes per infant per year. Of these, samples were processed in 395 episodes (upper respiratory tract infection: 377; lower respiratory tract infection: 18). One or more viruses were detected in 250 (63.3%) episodes and viral coinfections in 72 (18.2%) episodes. Rhinovirus was the most common virus [105 (42%)] followed by respiratory syncytial virus [50 (20%)], parainfluenza virus [42 (16.8%)] and coronavirus [44 (17.6%)]. In lower respiratory tract infections, viral infections were detected in 12 (66.7%) episodes, bacterial infections in 17 (94.4%) episodes and mixed bacterial-viral infections in 8 (44.4%) episodes. Peak incidence of viruses was observed during February-March and September-November. There was no significant difference in symptom duration with virus types. In this cohort of infants, ARI incidence was 1.8 episodes per year per infant; 95% were upper respiratory tract infections. Viruses were identified in 63.3% episodes, and the most common viruses detected were rhinovirus, respiratory syncytial virus and parainfluenza virus.

  15. Pulmonary hypertension due to acute respiratory distress syndrome

    PubMed Central

    Ñamendys-Silva, S.A.; Santos-Martínez, L.E.; Pulido, T.; Rivero-Sigarroa, E.; Baltazar-Torres, J.A.; Domínguez-Cherit, G.; Sandoval, J.

    2014-01-01

    Our aims were to describe the prevalence of pulmonary hypertension in patients with acute respiratory distress syndrome (ARDS), to characterize their hemodynamic cardiopulmonary profiles, and to correlate these parameters with outcome. All consecutive patients over 16 years of age who were in the intensive care unit with a diagnosis of ARDS and an in situ pulmonary artery catheter for hemodynamic monitoring were studied. Pulmonary hypertension was diagnosed when the mean pulmonary artery pressure was >25 mmHg at rest with a pulmonary artery occlusion pressure or left atrial pressure <15 mmHg. During the study period, 30 of 402 critically ill patients (7.46%) who were admitted to the ICU fulfilled the criteria for ARDS. Of the 30 patients with ARDS, 14 met the criteria for pulmonary hypertension, a prevalence of 46.6% (95% CI; 28-66%). The most common cause of ARDS was pneumonia (56.3%). The overall mortality was 36.6% and was similar in patients with and without pulmonary hypertension. Differences in patients' hemodynamic profiles were influenced by the presence of pulmonary hypertension. The levels of positive end-expiratory pressure and peak pressure were higher in patients with pulmonary hypertension, and the PaCO2 was higher in those who died. The level of airway pressure seemed to influence the onset of pulmonary hypertension. Survival was determined by the severity of organ failure at admission to the intensive care unit. PMID:25118626

  16. Risk of global spread of Middle East respiratory syndrome coronavirus (MERS-CoV) via the air transport network.

    PubMed

    Gardner, Lauren M; Chughtai, Abrar A; MacIntyre, C Raina

    2016-06-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) emerged from the Kingdom of Saudi Arabia (KSA) in 2012 and has since spread to 26 countries. All cases reported so far have either been in the Middle East or linked to the region through passenger air travel, with the largest outbreak outside KSA occurring in South Korea. Further international spread is likely due to the high travel volumes of global travel, as well as the occurrence of large annual mass gathering such as the Haj and Umrah pilgrimages that take place in the region. In this study, a transport network modelling framework was used to quantify the risk of MERS-CoV spreading internationally via air travellers. All regions connected to MERS-CoV affected countries via air travel are considered, and the countries at highest risk of travel-related importations of MERS-CoV were identified, ranked and compared with actual spread of MERS cases. The model identifies all countries that have previously reported a travel acquired case to be in the top 50 at-risk countries. India, Pakistan and Bangladesh are the highest risk countries which have yet to report a case, and should be prepared for the possibility of (pilgrims and general) travellers returning infected with MERS-CoV. In addition, the UK, Egypt, Turkey and the USA are at risk of more cases. We have demonstrated a risk-analysis approach, using travel patterns, to prioritize countries at highest risk for MERS-CoV importations. In order to prevent global outbreaks such as the one seen in South Korea, it is critical for high-risk countries to be prepared and have appropriate screening and triage protocols in place to identify travel-related cases of MERS-CoV. The results from the model can be used by countries to prioritize their airport and hospital screening and triage protocols. © International Society of Travel Medicine, 2016. All rights reserved. Published by Oxford University Press. For permissions, please e-mail: journals.permissions@oup.com.

  17. Fatality risks for nosocomial outbreaks of Middle East respiratory syndrome coronavirus in the Middle East and South Korea.

    PubMed

    Sha, Jianping; Li, Yuan; Chen, Xiaowen; Hu, Yan; Ren, Yajin; Geng, Xingyi; Zhang, Zhiruo; Liu, Shelan

    2017-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) was first isolated in 2012. The largest known outbreak outside the Middle East occurred in South Korea in 2015. As of 29 June 2016, 1769 laboratory-confirmed cases (630 deaths; 35.6 % case fatality rate [CFR]) had been reported from 26 countries, particularly in the Middle East. However, the CFR for hospital outbreaks was higher than that of family clusters in the Middle East and Korea. Here, we compared the mortality rates for 51 nosocomial outbreaks in the Middle East and one outbreak of MERS-CoV in South Korea. Our findings showed the CFR in the Middle East was much higher than that in South Korea (25.9 % [56/216] vs. 13.8 % [24/174], p = 0.003). Infected individuals who died were, on average, older than those who survived in both the Middle East (64 years [25-98] vs. 46 years [2-85], p = 0.000) and South Korea (68 years [49-82] vs. 53.5 years [16-87], p = 0.000). Similarly, the co-morbidity rates for the fatal cases were statistically higher than for the nonfatal cases in both the Middle East (64.3 % [36/56] vs. 28.1 % [45/160], p = 0.000) and South Korea (45.8 % [11/24] vs. 12.0 % [18/150], p = 0.000). The median number of days from onset to confirmation of infection in the fatal cases was longer than that for survivors from the Middle East (8 days [1-47] vs. 4 days [0-14], p = 0.009). Thus, older age, pre-existing concurrent diseases, and delayed confirmation increase the odds of a fatal outcome in nosocomial MERS-CoV outbreaks in the Middle East and South Korea.

  18. Efficacy of prone position in acute respiratory distress syndrome patients: A pathophysiology-based review

    PubMed Central

    Koulouras, Vasilios; Papathanakos, Georgios; Papathanasiou, Athanasios; Nakos, Georgios

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is a syndrome with heterogeneous underlying pathological processes. It represents a common clinical problem in intensive care unit patients and it is characterized by high mortality. The mainstay of treatment for ARDS is lung protective ventilation with low tidal volumes and positive end-expiratory pressure sufficient for alveolar recruitment. Prone positioning is a supplementary strategy available in managing patients with ARDS. It was first described 40 years ago and it proves to be in alignment with two major ARDS pathophysiological lung models; the “sponge lung” - and the “shape matching” -model. Current evidence strongly supports that prone positioning has beneficial effects on gas exchange, respiratory mechanics, lung protection and hemodynamics as it redistributes transpulmonary pressure, stress and strain throughout the lung and unloads the right ventricle. The factors that individually influence the time course of alveolar recruitment and the improvement in oxygenation during prone positioning have not been well characterized. Although patients’ response to prone positioning is quite variable and hard to predict, large randomized trials and recent meta-analyses show that prone position in conjunction with a lung-protective strategy, when performed early and in sufficient duration, may improve survival in patients with ARDS. This pathophysiology-based review and recent clinical evidence strongly support the use of prone positioning in the early management of severe ARDS systematically and not as a rescue maneuver or a last-ditch effort. PMID:27152255

  19. The immediate effects of the severe acute respiratory syndrome (SARS) epidemic on childbirth in Taiwan.

    PubMed

    Lee, Cheng-Hua; Huang, Nicole; Chang, Hong-Jen; Hsu, Yea-Jen; Wang, Mei-Chu; Chou, Yiing-Jenq

    2005-04-04

    When an emerging infectious disease like severe acute respiratory syndrome (SARS) strikes suddenly, many wonder the public's overwhelming fears of SARS may deterred patients from seeking routine care from hospitals and/or interrupt patient's continuity of care. In this study, we sought to estimate the influence of pregnant women's fears of severe acute respiratory syndrome (SARS) on their choice of provider, mode of childbirth, and length of stay (LOS) for the delivery during and after the SARS epidemic in Taiwan. The National Health Insurance data from January 01, 2002 to December 31, 2003 were used. A population-based descriptive analysis was conducted to assess the changes in volume, market share, cesarean rate, and average LOS for each of the 4 provider levels, before, during and after the SARS epidemic. Compared to the pre-SARS period, medical centers and regional hospitals dropped 5.2% and 4.1% in market share for childbirth services during the peak SARS period, while district hospitals and clinics increased 2.1% and 7.1%, respectively. For changes in cesarean rates, only a significantly larger increase was observed in medical centers (2.2%) during the peak SARS period. In terms of LOS, significant reductions in average LOS were observed in all hospital levels except for clinics. Average LOS was shortened by 0.21 days in medical centers (5.6%), 0.21 days in regional hospitals (5.8%), and 0.13 days in district hospitals (3.8%). The large amount of patients shifting from the maternity wards of more advanced hospitals to those of less advanced hospitals, coupled with the substantial reduction in their length of maternity stay due to their fears of SARS could also lead to serious concerns for quality of care, especially regarding a patient's accessibility to quality providers and continuity of care.

  20. The immediate effects of the severe acute respiratory syndrome (SARS) epidemic on childbirth in Taiwan

    PubMed Central

    Lee, Cheng-Hua; Huang, Nicole; Chang, Hong-Jen; Hsu, Yea-Jen; Wang, Mei-Chu; Chou, Yiing-Jenq

    2005-01-01

    Background When an emerging infectious disease like severe acute respiratory syndrome (SARS) strikes suddenly, many wonder the public's overwhelming fears of SARS may deterred patients from seeking routine care from hospitals and/or interrupt patient's continuity of care. In this study, we sought to estimate the influence of pregnant women's fears of severe acute respiratory syndrome (SARS) on their choice of provider, mode of childbirth, and length of stay (LOS) for the delivery during and after the SARS epidemic in Taiwan. Methods The National Health Insurance data from January 01, 2002 to December 31, 2003 were used. A population-based descriptive analysis was conducted to assess the changes in volume, market share, cesarean rate, and average LOS for each of the 4 provider levels, before, during and after the SARS epidemic. Results Compared to the pre-SARS period, medical centers and regional hospitals dropped 5.2% and 4.1% in market share for childbirth services during the peak SARS period, while district hospitals and clinics increased 2.1% and 7.1%, respectively. For changes in cesarean rates, only a significantly larger increase was observed in medical centers (2.2%) during the peak SARS period. In terms of LOS, significant reductions in average LOS were observed in all hospital levels except for clinics. Average LOS was shortened by 0.21 days in medical centers (5.6%), 0.21 days in regional hospitals (5.8%), and 0.13 days in district hospitals (3.8%). Conclusion The large amount of patients shifting from the maternity wards of more advanced hospitals to those of less advanced hospitals, coupled with the substantial reduction in their length of maternity stay due to their fears of SARS could also lead to serious concerns for quality of care, especially regarding a patient's accessibility to quality providers and continuity of care. PMID:15804368

  1. Case characteristics among Middle East respiratory syndrome coronavirus outbreak and non-outbreak cases in Saudi Arabia from 2012 to 2015.

    PubMed

    Alhamlan, F S; Majumder, M S; Brownstein, J S; Hawkins, J; Al-Abdely, H M; Alzahrani, A; Obaid, D A; Al-Ahdal, M N; BinSaeed, A

    2017-01-12

    As of 1 November 2015, the Saudi Ministry of Health had reported 1273 cases of Middle East respiratory syndrome (MERS); among these cases, which included 9 outbreaks at several hospitals, 717 (56%) patients recovered, 14 (1%) remain hospitalised and 543 (43%) died. This study aimed to determine the epidemiological, demographic and clinical characteristics that distinguished cases of MERS contracted during outbreaks from those contracted sporadically (ie, non-outbreak) between 2012 and 2015 in Saudi Arabia. Data from the Saudi Ministry of Health of confirmed outbreak and non-outbreak cases of MERS coronavirus (CoV) infections from September 2012 through October 2015 were abstracted and analysed. Univariate and descriptive statistical analyses were conducted, and the time between disease onset and confirmation, onset and notification and onset and death were examined. A total of 1250 patients (aged 0-109 years; mean, 50.825 years) were reported infected with MERS-CoV. Approximately two-thirds of all MERS cases were diagnosed in men for outbreak and non-outbreak cases. Healthcare workers comprised 22% of all MERS cases for outbreak and non-outbreak cases. Nosocomial infections comprised one-third of all Saudi MERS cases; however, nosocomial infections occurred more frequently in outbreak than non-outbreak cases (p<0.001). Patients contracting MERS during an outbreak were significantly more likely to die of MERS (p<0.001). To date, nosocomial infections have fuelled MERS outbreaks. Given that the Kingdom of Saudi Arabia is a worldwide religious travel destination, localised outbreaks may have massive global implications and effective outbreak preventive measures are needed. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Lower Respiratory Tract Infection and Short-Term Outcome in Patients With Acute Respiratory Distress Syndrome.

    PubMed

    Zampieri, Fernando G; Póvoa, Pedro; Salluh, Jorge I; Rodriguez, Alejandro; Valade, Sandrine; Andrade Gomes, José; Reignier, Jean; Molinos, Elena; Almirall, Jordi; Boussekey, Nicolas; Socias, Lorenzo; Ramirez, Paula; Viana, William N; Rouzé, Anahita; Nseir, Saad; Martin-Loeches, Ignacio

    2018-01-01

    To assess whether ventilator-associated lower respiratory tract infections (VA-LRTIs) are associated with mortality in critically ill patients with acute respiratory distress syndrome (ARDS). Post hoc analysis of prospective cohort study including mechanically ventilated patients from a multicenter prospective observational study (TAVeM study); VA-LRTI was defined as either ventilator-associated tracheobronchitis (VAT) or ventilator-associated pneumonia (VAP) based on clinical criteria and microbiological confirmation. Association between intensive care unit (ICU) mortality in patients having ARDS with and without VA-LRTI was assessed through logistic regression controlling for relevant confounders. Association between VA-LRTI and duration of mechanical ventilation and ICU stay was assessed through competing risk analysis. Contribution of VA-LRTI to a mortality model over time was assessed through sequential random forest models. The cohort included 2960 patients of which 524 fulfilled criteria for ARDS; 21% had VA-LRTI (VAT = 10.3% and VAP = 10.7%). After controlling for illness severity and baseline health status, we could not find an association between VA-LRTI and ICU mortality (odds ratio: 1.07; 95% confidence interval: 0.62-1.83; P = .796); VA-LRTI was also not associated with prolonged ICU length of stay or duration of mechanical ventilation. The relative contribution of VA-LRTI to the random forest mortality model remained constant during time. The attributable VA-LRTI mortality for ARDS was higher than the attributable mortality for VA-LRTI alone. After controlling for relevant confounders, we could not find an association between occurrence of VA-LRTI and ICU mortality in patients with ARDS.

  3. Dual hit lipopolysaccharide & oleic acid combination induced rat model of acute lung injury/acute respiratory distress syndrome.

    PubMed

    Hagawane, T N; Gaikwad, R V; Kshirsagar, N A

    2016-05-01

    Despite advances in therapy and overall medical care, acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) management remains a problem. Hence the objective of this study was to develop a rat model that mimics human ALI/ARDS. Four groups of Wistar rats, 48 per group were treated with (i) intratracheal (IT) lipopolysaccharide (LPS) (5 mg/kg) dissolved in normal saline (NS), (ii) intravenous (iv) oleic acid (OA) (250 μl/kg) suspension in bovine serum albumin (BSA), (iii) dual hit: IT LPS (2 mg/kg) dissolved in NS and iv OA (100 μl/kg) and (iv) control group: IT NS and iv BSA. From each group at set periods of time various investigations like chest x-rays, respiratory rate (RR), tidal volume (TV), total cell count, differential cell count, total protein count and cytokine levels in bronchoalveolar lavage fluid (BALF), lung wet/dry weight ratio and histopathological examination were done. It was noted that the respiratory rate, and tumour necrosis factor-α (TNF-α) levels were significantly higher at 4 h in the dual hit group as compared to LPS, OA and control groups. Interleukin-6 (IL-6) levels were significantly higher in the dual hit group as compared to LPS at 8 and 24 h, OA at 8 h and control (at all time intervals) group. IL-1β levels were significantly higher in LPS and dual hit groups at all time intervals, but not in OA and control groups. The injury induced in dual hit group was earlier and more sustained as compared to LPS and OA alone. The lung pathology and changes in respiration functions produced by the dual hit model were closer to the diagnostic criteria of ALI/ARDS in terms of clinical manifestations and pulmonary injury and the injury persisted longer as compared to LPS and OA single hit model. Therefore, the ARDS model produced by the dual hit method was closer to the diagnostic criteria of ARDS in terms of clinical manifestations and pulmonary injury.

  4. A Mouse Model for Betacoronavirus Subgroup 2c Using a Bat Coronavirus Strain HKU5 Variant

    PubMed Central

    Agnihothram, Sudhakar; Yount, Boyd L.; Donaldson, Eric F.; Huynh, Jeremy; Menachery, Vineet D.; Gralinski, Lisa E.; Graham, Rachel L.; Becker, Michelle M.; Tomar, Sakshi; Scobey, Trevor D.; Osswald, Heather L.; Whitmore, Alan; Gopal, Robin; Ghosh, Arun K.; Mesecar, Andrew; Zambon, Maria; Heise, Mark; Denison, Mark R.; Baric, Ralph S.

    2014-01-01

    ABSTRACT Cross-species transmission of zoonotic coronaviruses (CoVs) can result in pandemic disease outbreaks. Middle East respiratory syndrome CoV (MERS-CoV), identified in 2012, has caused 182 cases to date, with ~43% mortality, and no small animal model has been reported. MERS-CoV and Pipistrellus bat coronavirus (BtCoV) strain HKU5 of Betacoronavirus (β-CoV) subgroup 2c share >65% identity at the amino acid level in several regions, including nonstructural protein 5 (nsp5) and the nucleocapsid (N) protein, which are significant drug and vaccine targets. BtCoV HKU5 has been described in silico but has not been shown to replicate in culture, thus hampering drug and vaccine studies against subgroup 2c β-CoVs. We report the synthetic reconstruction and testing of BtCoV HKU5 containing the severe acute respiratory syndrome (SARS)-CoV spike (S) glycoprotein ectodomain (BtCoV HKU5-SE). This virus replicates efficiently in cell culture and in young and aged mice, where the virus targets airway and alveolar epithelial cells. Unlike some subgroup 2b SARS-CoV vaccines that elicit a strong eosinophilia following challenge, we demonstrate that BtCoV HKU5 and MERS-CoV N-expressing Venezuelan equine encephalitis virus replicon particle (VRP) vaccines do not cause extensive eosinophilia following BtCoV HKU5-SE challenge. Passage of BtCoV HKU5-SE in young mice resulted in enhanced virulence, causing 20% weight loss, diffuse alveolar damage, and hyaline membrane formation in aged mice. Passaged virus was characterized by mutations in the nsp13, nsp14, open reading frame 5 (ORF5) and M genes. Finally, we identified an inhibitor active against the nsp5 proteases of subgroup 2c β-CoVs. Synthetic-genome platforms capable of reconstituting emerging zoonotic viral pathogens or their phylogenetic relatives provide new strategies for identifying broad-based therapeutics, evaluating vaccine outcomes, and studying viral pathogenesis. PMID:24667706

  5. Concise Review: Mesenchymal Stromal Cell‐Based Approaches for the Treatment of Acute Respiratory Distress and Sepsis Syndromes

    PubMed Central

    Soeder, Yorick; Dahlke, Marc H.

    2017-01-01

    Abstract Despite extensive research on candidate pharmacological treatments and a significant and increasing prevalence, sepsis syndrome, and acute respiratory distress syndrome (ARDS) remain areas of unmet clinical need. Preclinical studies examining mesenchymal stromal cell (MSCs) based‐therapies have provided compelling evidence of potential benefit; however, the precise mechanism by which MSCs exert a therapeutic influence, and whether MSC application is efficacious in humans, remains unknown. Detailed evaluation of the limited number of human trials so far completed is further hampered as a result of variations in trial design and biomarker selection. This review provides a concise summary of current preclinical and clinical knowledge of MSCs as a cell therapy for sepsis syndrome and ARDS. The challenges of modeling such heterogeneous and rapidly progressive disease states are considered and we discuss how lessons from previous studies of pharmacological treatments for sepsis syndrome and ARDS might be used to inform and refine the design of the next generation of MSC clinical trials. Stem Cells Translational Medicine 2017;6:1141–1151 PMID:28186706

  6. [Respiratory infections, Down's syndrome and congenital heart disease: the CIVIC 21 study].

    PubMed

    Medrano López, C; García-Guereta Silva, L; Lirio Casero, J; García Pérez, J

    2009-07-01

    We compare hospitalisation rates for acute respiratory tract infection in children younger than 24 months with significant congenital heart disease without Down's syndrome with those with Down's syndrome with or without congenital heart disease. This was an epidemiological, multicentre (53 Spanish hospitals), observational and prospective study, from October 2006 to April 2007. A total of 1085 patients were followed-up, of which 806 did not have Down's syndrome and 279 with Down's syndrome: 135 with significant, 38 with non significant and 105 without congenital heart disease. A total of 147 patients (13.1%; 95% CI, 11.2-15.2%) required hospitalisation due to respiratory infection. Rates in patients without and with Down's syndrome were 11% vs 19.1%. In the Down's group, 26.3% had no significant, a 23% had significant and 11.4% had no congenital heart disease. The main diagnosis was bronchiolitis (59.4%). An infectious agent was found in 36.2% cases. The specific admission rate due to respiratory syncytial virus was 4.4%, with differences in children without vs with Down's syndrome (3.2% vs 7.8%). In the Down's patients we found rates of 15.8%, 9.3% and 3% in the non-significant, significant and no congenital heart disease. Immunoprophylaxis against respiratory syncytial virus rates were 83.4% vs 39.9% in no Down's versus Down's syndrome patients. No differences were found in hospital stay or the severity. Hospital admission rates due to respiratory infection, and specifically respiratory syncytial virus, were higher in the Down's patients, particularly in the group with no significant congenital heart disease and low immunoprophylaxis against respiratory syncytial virus.

  7. Acute Chest Syndrome in Children with Sickle Cell Disease

    PubMed Central

    Bakshi, Nitya; Krishnamurti, Lakshmanan

    2017-01-01

    Acute chest syndrome (ACS) is a frequent cause of acute lung disease in children with sickle cell disease (SCD). Patients may present with ACS or may develop this complication during the course of a hospitalization for acute vaso-occlusive crises (VOC). ACS is associated with prolonged hospitalization, increased risk of respiratory failure, and the potential for developing chronic lung disease. ACS in SCD is defined as the presence of fever and/or new respiratory symptoms accompanied by the presence of a new pulmonary infiltrate on chest X-ray. The spectrum of clinical manifestations can range from mild respiratory illness to acute respiratory distress syndrome. The presence of severe hypoxemia is a useful predictor of severity and outcome. The etiology of ACS is often multifactorial. One of the proposed mechanisms involves increased adhesion of sickle red cells to pulmonary microvasculature in the presence of hypoxia. Other commonly associated etiologies include infection, pulmonary fat embolism, and infarction. Infection is a common cause in children, whereas adults usually present with pain crises. Several risk factors have been identified in children to be associated with increased incidence of ACS. These include younger age, severe SCD genotypes (SS or Sβ0 thalassemia), lower fetal hemoglobin concentrations, higher steady-state hemoglobin levels, higher steady-state white blood cell counts, history of asthma, and tobacco smoke exposure. Opiate overdose and resulting hypoventilation can also trigger ACS. Prompt diagnosis and management with intravenous fluids, analgesics, aggressive incentive spirometry, supplemental oxygen or respiratory support, antibiotics, and transfusion therapy, are key to the prevention of clinical deterioration. Bronchodilators should be considered if there is history of asthma or in the presence of acute bronchospasm. Treatment with hydroxyurea should be considered for prevention of recurrent episodes. This review evaluates the

  8. Acute Chest Syndrome in Children with Sickle Cell Disease.

    PubMed

    Jain, Shilpa; Bakshi, Nitya; Krishnamurti, Lakshmanan

    2017-12-01

    Acute chest syndrome (ACS) is a frequent cause of acute lung disease in children with sickle cell disease (SCD). Patients may present with ACS or may develop this complication during the course of a hospitalization for acute vaso-occlusive crises (VOC). ACS is associated with prolonged hospitalization, increased risk of respiratory failure, and the potential for developing chronic lung disease. ACS in SCD is defined as the presence of fever and/or new respiratory symptoms accompanied by the presence of a new pulmonary infiltrate on chest X-ray. The spectrum of clinical manifestations can range from mild respiratory illness to acute respiratory distress syndrome. The presence of severe hypoxemia is a useful predictor of severity and outcome. The etiology of ACS is often multifactorial. One of the proposed mechanisms involves increased adhesion of sickle red cells to pulmonary microvasculature in the presence of hypoxia. Other commonly associated etiologies include infection, pulmonary fat embolism, and infarction. Infection is a common cause in children, whereas adults usually present with pain crises. Several risk factors have been identified in children to be associated with increased incidence of ACS. These include younger age, severe SCD genotypes (SS or Sβ 0 thalassemia), lower fetal hemoglobin concentrations, higher steady-state hemoglobin levels, higher steady-state white blood cell counts, history of asthma, and tobacco smoke exposure. Opiate overdose and resulting hypoventilation can also trigger ACS. Prompt diagnosis and management with intravenous fluids, analgesics, aggressive incentive spirometry, supplemental oxygen or respiratory support, antibiotics, and transfusion therapy, are key to the prevention of clinical deterioration. Bronchodilators should be considered if there is history of asthma or in the presence of acute bronchospasm. Treatment with hydroxyurea should be considered for prevention of recurrent episodes. This review evaluates the

  9. Propagation prevention: a complementary mechanism for "lung protective" ventilation in acute respiratory distress syndrome.

    PubMed

    Marini, John J; Gattinoni, Luciano

    2008-12-01

    To describe the clinical implications of an often neglected mechanism through which localized acute lung injury may be propagated and intensified. Experimental and clinical evidence from the medical literature relevant to the airway propagation hypothesis and its consequences. The diffuse injury that characterizes acute respiratory distress syndrome is often considered a process that begins synchronously throughout the lung, mediated by inhaled or blood-borne noxious agents. Relatively little attention has been paid to possibility that inflammatory lung injury may also begin focally and propagate sequentially via the airway network, proceeding mouth-ward from distal to proximal. Were this true, modifications of ventilatory pattern and position aimed at geographic containment of the injury process could help prevent its generalization and limit disease severity. The purposes of this communication are to call attention to this seldom considered mechanism for extending lung injury that might further justify implementation of low tidal volume/high positive end-expiratory pressure ventilatory strategies for lung protection and to suggest additional therapeutic measures implied by this broadened conceptual paradigm.

  10. Respiratory chain inhibition: one more feature to propose MPTP intoxication as a Leigh syndrome model.

    PubMed

    Da Costa, Barbara; Dumon, Elodie; Le Moigno, Laurence; Bodard, Sylvie; Castelnau, Pierre; Letellier, Thierry; Rocher, Christophe

    2016-10-01

    1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxicated mice have been widely used to model the loss of dopaminergic neurons. As this treatment leads to basal ganglia degeneration, it was proposed that MPTP mice could be used as a model of Leigh syndrome. However, this mitochondrial pathology is biochemically characterized by a respiratory chain dysfunction. To determine if MPTP can affect in vivo mitochondria function, we measured the activities of mitochondrial respiratory chain complexes in several tissues. Our results show that MPTP affects mainly mitochondrial respiratory chain complex IV, as found in Leigh Syndrome, confirming that acute MPTP intoxicated mice are a good model of Leigh Syndrome.

  11. Replication and Shedding of MERS-CoV in Upper Respiratory Tract of Inoculated Dromedary Camels

    PubMed Central

    Adney, Danielle R.; van Doremalen, Neeltje; Brown, Vienna R.; Bushmaker, Trenton; Scott, Dana; de Wit, Emmie; Munster, Vincent J.

    2014-01-01

    In 2012, a novel coronavirus associated with severe respiratory disease in humans emerged in the Middle East. Epidemiologic investigations identified dromedary camels as the likely source of zoonotic transmission of Middle East respiratory syndrome coronavirus (MERS-CoV). Here we provide experimental support for camels as a reservoir for MERS-CoV. We inoculated 3 adult camels with a human isolate of MERS-CoV and a transient, primarily upper respiratory tract infection developed in each of the 3 animals. Clinical signs of the MERS-CoV infection were benign, but each of the camels shed large quantities of virus from the upper respiratory tract. We detected infectious virus in nasal secretions through 7 days postinoculation, and viral RNA up to 35 days postinoculation. The pattern of shedding and propensity for the upper respiratory tract infection in dromedary camels may help explain the lack of systemic illness among naturally infected camels and the means of efficient camel-to-camel and camel-to-human transmission. PMID:25418529

  12. Body temperature and mortality in patients with acute respiratory distress syndrome.

    PubMed

    Schell-Chaple, Hildy M; Puntillo, Kathleen A; Matthay, Michael A; Liu, Kathleen D

    2015-01-01

    Little is known about the relationship between body temperature and outcomes in patients with acute respiratory distress syndrome (ARDS). A better understanding of this relationship may provide evidence for fever suppression or warming interventions, which are commonly applied in practice. To examine the relationship between body temperature and mortality in patients with ARDS. Secondary analysis of body temperature and mortality using data from the ARDS Network Fluid and Catheter Treatment Trial (n = 969). Body temperature at baseline and on study day 2, primary cause of ARDS, severity of illness, and 90-day mortality were analyzed by using multiple logistic regression. Mean baseline temperature was 37.5°C (SD, 1.1°C; range, 27.2°C-40.7°C). At baseline, fever (≥ 38.3°C) was present in 23% and hypothermia (< 36°C) in 5% of the patients. Body temperature was a significant predictor of 90-day mortality after primary cause of ARDS and score on the Acute Physiology and Chronic Health Evaluation III were adjusted for. Higher temperature was associated with decreased mortality: for every 1°C increase in baseline temperature, the odds of death decreased by 15% (odds ratio, 0.85; 95% CI, 0.73-0.98, P = .03). When patients were divided into 5 temperature groups, mortality was lower with higher temperature (P for trend = .02). Early in ARDS, fever is associated with improved survival rates. Fever in the acute phase response to lung injury and its relationship to recovery may be an important factor in determining patients' outcome and warrants further study. ©2015 American Association of Critical-Care Nurses.

  13. Body Temperature and Mortality in Patients with Acute Respiratory Distress Syndrome

    PubMed Central

    Schell-Chaple, Hildy M.; Puntillo, Kathleen A.; Matthay, Michael A.; Liu, Kathleen D.

    2015-01-01

    Background Little is known about the relationship between body temperature and outcomes in patients with acute respiratory distress syndrome (ARDS). A better understanding of this relationship may provide evidence for fever suppression or warming interventions, which are commonly applied in practice. Objective To examine the relationship between body temperature and mortality in patients with ARDS. Methods Secondary analysis of body temperature and mortality using data from the ARDS Network Fluid and Catheter Treatment Trial (n =969). Body temperature at baseline and on study day 2, primary cause of ARDS, severity of illness, and 90-day mortality were analyzed by using multiple logistic regression. Results Mean baseline temperature was 37.5°C (SD, 1.1°C; range, 27.2°C-40.7°C). At baseline, fever (≥ 38.3°C) was present in 23% and hypothermia (< 36°C) in 5% of the patients. Body temperature was a significant predictor of 90-day mortality after primary cause of ARDS and score on the Acute Physiology and Chronic Health Evaluation III were adjusted for. Higher temperature was associated with decreased mortality: for every 1°C increase in baseline temperature, the odds of death decreased by 15% (odds ratio, 0.85; 95% CI, 0.73-0.98, P = .03). When patients were divided into 5 temperature groups, mortality was lower with higher temperature (P for trend=.02). Conclusions Early in ARDS, fever is associated with improved survival rates. Fever in the acute phase response to lung injury and its relationship to recovery may be an important factor in determining patients' outcome and warrants further study. PMID:25554550

  14. Structures of Two Coronavirus Main Proteases: Implications for Substrate Binding and Antiviral Drug Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Xiaoyu; Yu, Hongwei; Yang, Haitao

    Coronaviruses (CoVs) can infect humans and multiple species of animals, causing a wide spectrum of diseases. The coronavirus main protease (M{sup pro}), which plays a pivotal role in viral gene expression and replication through the proteolytic processing of replicase polyproteins, is an attractive target for anti-CoV drug design. In this study, the crystal structures of infectious bronchitis virus (IBV) MP{sup pro} and a severe acute respiratory syndrome CoV (SARS-CoV) M{sup pro} mutant (H41A), in complex with an N-terminal autocleavage substrate, were individually determined to elucidate the structural flexibility and substrate binding of M{sup pro}. A monomeric form of IBV M{supmore » pro} was identified for the first time in CoV M{sup pro} structures. A comparison of these two structures to other available M{sup pro} structures provides new insights for the design of substrate-based inhibitors targeting CoV M{sup pro}s. Furthermore, a Michael acceptor inhibitor (named N3) was cocrystallized with IBV M{sup pro} and was found to demonstrate in vitro inactivation of IBV M{sup pro} and potent antiviral activity against IBV in chicken embryos. This provides a feasible animal model for designing wide-spectrum inhibitors against CoV-associated diseases. The structure-based optimization of N3 has yielded two more efficacious lead compounds, N27 and H16, with potent inhibition against SARS-CoV M{sup pro}.« less

  15. [Nosocomial infections due to human coronaviruses in the newborn].

    PubMed

    Gagneur, A; Legrand, M C; Picard, B; Baron, R; Talbot, P J; de Parscau, L; Sizun, J

    2002-01-01

    Human coronaviruses, with two known serogroups named 229-E and OC-43, are enveloped positive-stranded RNA viruses. The large RNA is surrounded by a nucleoprotein (protein N). The envelop contains 2 or 3 glycoproteins: spike protein (or protein S), matrix protein (or protein M) and a hemagglutinin (or protein HE). Their pathogen role remains unclear because their isolation is difficult. Reliable and rapid methods as immunofluorescence with monoclonal antibodies and reverse transcription-polymerase chain reaction allow new researches on epidemiology. Human coronaviruses can survive for as long as 6 days in suspension and 3 hours after drying on surfaces, suggesting that they could be a source of hospital-acquired infections. Two prospective studies conducted in a neonatal and paediatric intensive care unit demonstrated a significant association of coronavirus-positive nasopharyngal samples with respiratory illness in hospitalised preterm neonates. Positive samples from staff suggested either a patient-to-staff or a staff-to-patient transmission. No cross-infection were observed from community-acquired respiratory-syncitial virus or influenza-infected children to neonates. Universal precautions with hand washing and surface desinfection could be proposed to prevent coronavirus transmission.

  16. Excretion and detection of SARS coronavirus and its nucleic acid from digestive system

    PubMed Central

    Wang, Xin-Wei; Li, Jin-Song; Guo, Ting-Kai; Zhen, Bei; Kong, Qing-Xin; Yi, Bin; Li, Zhong; Song, Nong; Jin, Min; Wu, Xiao-Ming; Xiao, Wen-Jun; Zhu, Xiu-Mei; Gu, Chang-Qing; Yin, Jing; Wei, Wei; Yao, Wei; Liu, Chao; Li, Jian-Feng; Ou, Guo-Rong; Wang, Min-Nian; Fang, Tong-Yu; Wang, Gui-Jie; Qiu, Yao-Hui; Wu, Huai-Huan; Chao, Fu-Huan; Li, Jun-Wen

    2005-01-01

    AIM: To study whether severe acute respiratory syndrome coronavirus (SARS-CoV) could be excreted from digestive system. METHODS: Cell culture and semi-nested RT-PCR were used to detect SARS-CoV and its RNA from 21 stool and urine samples, and a kind of electropositive filter media particles was used to concentrate the virus in 10 sewage samples from two hospitals receiving SARS patients in Beijing in China. RESULTS: It was demonstrated that there was no live SARS-CoV in all samples collected, but the RNA of SARS-CoV could be detected in seven stool samples from SARS patients with any one of the symptoms of fever, malaise, cough, or dyspnea, in 10 sewage samples before disinfection and 3 samples after disinfection from the two hospitals. The RNA could not be detected in urine and stool samples from patients recovered from SARS. CONCLUSION: Nucleic acid of SARS-CoV can be excreted through the stool of patients into sewage system, and the possibility of SARS-CoV transmitting through digestive system cannot be excluded. PMID:16038039

  17. Phagocytic cells contribute to the antibody-mediated elimination of pulmonary-infected SARS coronavirus.

    PubMed

    Yasui, Fumihiko; Kohara, Michinori; Kitabatake, Masahiro; Nishiwaki, Tetsu; Fujii, Hideki; Tateno, Chise; Yoneda, Misako; Morita, Kouichi; Matsushima, Kouji; Koyasu, Shigeo; Kai, Chieko

    2014-04-01

    While the 2002-2003 outbreak of severe acute respiratory syndrome (SARS) resulted in 774 deaths, patients who were affected with mild pulmonary symptoms successfully recovered. The objective of the present work was to identify, using SARS coronavirus (SARS-CoV) mouse infection models, immune factors responsible for clearing of the virus. The elimination of pulmonary SARS-CoV infection required the activation of B cells by CD4(+) T cells. Furthermore, passive immunization (post-infection) with homologous (murine) anti-SARS-CoV antiserum showed greater elimination efficacy against SARS-CoV than that with heterologous (rabbit) antiserum, despite the use of equivalent titers of neutralizing antibodies. This distinction was mediated by mouse phagocytic cells (monocyte-derived infiltrating macrophages and partially alveolar macrophages, but not neutrophils), as demonstrated both by adoptive transfer from donors and by immunological depletion of selected cell types. These results indicate that the cooperation of anti-SARS-CoV antibodies and phagocytic cells plays an important role in the elimination of SARS-CoV. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA.

    PubMed

    Ferron, François; Subissi, Lorenzo; Silveira De Morais, Ana Theresa; Le, Nhung Thi Tuyet; Sevajol, Marion; Gluais, Laure; Decroly, Etienne; Vonrhein, Clemens; Bricogne, Gérard; Canard, Bruno; Imbert, Isabelle

    2018-01-09

    Coronaviruses (CoVs) stand out among RNA viruses because of their unusually large genomes (∼30 kb) associated with low mutation rates. CoVs code for nsp14, a bifunctional enzyme carrying RNA cap guanine N7-methyltransferase (MTase) and 3'-5' exoribonuclease (ExoN) activities. ExoN excises nucleotide mismatches at the RNA 3'-end in vitro, and its inactivation in vivo jeopardizes viral genetic stability. Here, we demonstrate for severe acute respiratory syndrome (SARS)-CoV an RNA synthesis and proofreading pathway through association of nsp14 with the low-fidelity nsp12 viral RNA polymerase. Through this pathway, the antiviral compound ribavirin 5'-monophosphate is significantly incorporated but also readily excised from RNA, which may explain its limited efficacy in vivo. The crystal structure at 3.38 Å resolution of SARS-CoV nsp14 in complex with its cofactor nsp10 adds to the uniqueness of CoVs among RNA viruses: The MTase domain presents a new fold that differs sharply from the canonical Rossmann fold.

  19. Injection sclerotherapy for haemorrhoids causing adult respiratory distress syndrome.

    PubMed

    Rashid, Muhammad Misbah; Murtaza, Badar; Gondal, Zafar Iqbal; Mehmood, Arshad; Shah, Shahzad Saleem; Abbasi, Muhammad Hanif; Tamimy, Muhammad Sarmad; Kazmi, Syed Tahawwar Mujtaba

    2006-05-01

    A young lady with first-degree haemorrhoids was administered injection sclerotherapy with 5% phenol in almond oil. Soon after the injection, she developed syncope and later signs and symptoms of acute respiratory distress syndrome (ARDS). She was kept on ventilatory support for 4 days, made a smooth recovery and was successfully weaned off from the ventilator.

  20. Simvastatin in the acute respiratory distress syndrome.

    PubMed

    McAuley, Daniel F; Laffey, John G; O'Kane, Cecilia M; Perkins, Gavin D; Mullan, Brian; Trinder, T John; Johnston, Paul; Hopkins, Philip A; Johnston, Andrew J; McDowell, Cliona; McNally, Christine

    2014-10-30

    Studies in animals and in vitro and phase 2 studies in humans suggest that statins may be beneficial in the treatment of the acute respiratory distress syndrome (ARDS). This study tested the hypothesis that treatment with simvastatin would improve clinical outcomes in patients with ARDS. In this multicenter, double-blind clinical trial, we randomly assigned (in a 1:1 ratio) patients with an onset of ARDS within the previous 48 hours to receive enteral simvastatin at a dose of 80 mg or placebo once daily for a maximum of 28 days. The primary outcome was the number of ventilator-free days to day 28. Secondary outcomes included the number of days free of nonpulmonary organ failure to day 28, mortality at 28 days, and safety. The study recruited 540 patients, with 259 patients assigned to simvastatin and 281 to placebo. The groups were well matched with respect to demographic and baseline physiological variables. There was no significant difference between the study groups in the mean (±SD) number of ventilator-free days (12.6±9.9 with simvastatin and 11.5±10.4 with placebo, P=0.21) or days free of nonpulmonary organ failure (19.4±11.1 and 17.8±11.7, respectively; P=0.11) or in mortality at 28 days (22.0% and 26.8%, respectively; P=0.23). There was no significant difference between the two groups in the incidence of serious adverse events related to the study drug. Simvastatin therapy, although safe and associated with minimal adverse effects, did not improve clinical outcomes in patients with ARDS. (Funded by the U.K. National Institute for Health Research Efficacy and Mechanism Evaluation Programme and others; HARP-2 Current Controlled Trials number, ISRCTN88244364.).

  1. Management of respiratory distress syndrome: an update.

    PubMed

    Rodriguez, Ricardo J

    2003-03-01

    Respiratory distress syndrome is the most common respiratory disorder in preterm infants. Over the last decade, because of improvements in neonatal care and increased use of antenatal steroids and surfactant replacement therapy, mortality from respiratory distress syndrome has dropped substantially. However, respiratory morbidity, primarily bronchopulmonary dysplasia, remains unacceptably high. The management of respiratory distress syndrome in preterm infants is based on various modalities of respiratory support and the application of fundamental principles of neonatal care. To obtain best results, a multidisciplinary approach is crucial. This review discusses surfactant replacement therapy and some of the current strategies in ventilatory management of preterm infants with respiratory distress syndrome. Copyright 2003 Daedalus Enterprises

  2. Human herpesviruses respiratory infections in patients with acute respiratory distress (ARDS).

    PubMed

    Bonizzoli, Manuela; Arvia, Rosaria; di Valvasone, Simona; Liotta, Francesco; Zakrzewska, Krystyna; Azzi, Alberta; Peris, Adriano

    2016-08-01

    Acute respiratory distress syndrome (ARDS) is today a leading cause of hospitalization in intensive care unit (ICU). ARDS and pneumonia are closely related to critically ill patients; however, the etiologic agent is not always identified. The presence of human herpes simplex virus 1, human cytomegalovirus and Epstein-Barr virus in respiratory samples of critically ill patients is increasingly reported even without canonical immunosuppression. The main aim of this study was to better understand the significance of herpesviruses finding in lower respiratory tract of ARDS patients hospitalized in ICU. The presence of this group of herpesviruses, in addition to the research of influenza viruses and other common respiratory viruses, was investigated in respiratory samples from 54 patients hospitalized in ICU, without a known microbiological causative agent. Moreover, the immunophenotype of each patient was analyzed. Herpesviruses DNA presence in the lower respiratory tract seemed not attributable to an impaired immunophenotype, whereas a significant correlation was observed between herpesviruses positivity and influenza virus infection. A higher ICU mortality was significantly related to the presence of herpesvirus infection in the lower respiratory tract as well as to impaired immunophenotype, as patients with poor outcome showed severe lymphopenia, affecting in particular T (CD3+) cells, since the first days of ICU hospitalization. In conclusion, these results indicate that herpesviruses lower respiratory tract infection, which occurs more frequently following influenza virus infection, can be a negative prognostic marker. An independent risk factor for ICU patients with ARDS is an impaired immunophenotype.

  3. Molecular Mapping of the RNA Cap 2′-O-Methyltransferase Activation Interface between Severe Acute Respiratory Syndrome Coronavirus nsp10 and nsp16*

    PubMed Central

    Lugari, Adrien; Betzi, Stephane; Decroly, Etienne; Bonnaud, Emmanuel; Hermant, Aurélie; Guillemot, Jean-Claude; Debarnot, Claire; Borg, Jean-Paul; Bouvet, Mickaël; Canard, Bruno; Morelli, Xavier; Lécine, Patrick

    2010-01-01

    Several protein-protein interactions within the SARS-CoV proteome have been identified, one of them being between non-structural proteins nsp10 and nsp16. In this work, we have mapped key residues on the nsp10 surface involved in this interaction. Alanine-scanning mutagenesis, bioinformatics, and molecular modeling were used to identify several “hot spots,” such as Val42, Met44, Ala71, Lys93, Gly94, and Tyr96, forming a continuous protein-protein surface of about 830 Å2, bearing very conserved amino acids among coronaviruses. Because nsp16 carries RNA cap 2′-O-methyltransferase (2′O-MTase) activity only in the presence of its interacting partner nsp10 (Bouvet, M., Debarnot, C., Imbert, I., Selisko, B., Snijder, E. J., Canard, B., and Decroly, E. (2010) PLoS Pathog. 6, e1000863), functional consequences of mutations on this surface were evaluated biochemically. Most changes that disrupted the nsp10-nsp16 interaction without structural perturbations were shown to abrogate stimulation of nsp16 RNA cap 2′O-MTase activity. More strikingly, the Y96A mutation abrogates stimulation of nsp16 2′O-MTase activity, whereas Y96F overstimulates it. Thus, the nsp10-nsp16 interface may represent an attractive target for antivirals against human and animal pathogenic coronaviruses. PMID:20699222

  4. Respiratory Complications of Organophosphorus Nerve Agent and Insecticide Poisoning. Implications for Respiratory and Critical Care

    PubMed Central

    Hulse, Elspeth J.; Davies, James O. J.; Simpson, A. John; Sciuto, Alfred M.

    2014-01-01

    Organophosphorus (OP) compound poisoning is a major global public health problem. Acute OP insecticide self-poisoning kills over 200,000 people every year, the majority from self-harm in rural Asia. Highly toxic OP nerve agents (e.g., sarin) are a significant current terrorist threat, as shown by attacks in Damascus during 2013. These anticholinesterase compounds are classically considered to cause an acute cholinergic syndrome with decreased consciousness, respiratory failure, and, in the case of insecticides, a delayed intermediate syndrome that requires prolonged ventilation. Acute respiratory failure, by central and peripheral mechanisms, is the primary cause of death in most cases. However, preclinical and clinical research over the last two decades has indicated a more complex picture of respiratory complications after OP insecticide poisoning, including onset of delayed neuromuscular junction dysfunction during the cholinergic syndrome, aspiration causing pneumonia and acute respiratory distress syndrome, and the involvement of solvents in OP toxicity. The treatment of OP poisoning has not changed over the last 50 years. However, a better understanding of the multiple respiratory complications of OP poisoning offers additional therapeutic opportunities. PMID:25419614

  5. Recognition of the murine coronavirus genomic RNA packaging signal depends on the second RNA-binding domain of the nucleocapsid protein.

    PubMed

    Kuo, Lili; Koetzner, Cheri A; Hurst, Kelley R; Masters, Paul S

    2014-04-01

    The coronavirus nucleocapsid (N) protein forms a helical ribonucleoprotein with the viral positive-strand RNA genome and binds to the principal constituent of the virion envelope, the membrane (M) protein, to facilitate assembly and budding. Besides these structural roles, N protein associates with a component of the replicase-transcriptase complex, nonstructural protein 3, at a critical early stage of infection. N protein has also been proposed to participate in the replication and selective packaging of genomic RNA and the transcription and translation of subgenomic mRNA. Coronavirus N proteins contain two structurally distinct RNA-binding domains, an unusual characteristic among RNA viruses. To probe the functions of these domains in the N protein of the model coronavirus mouse hepatitis virus (MHV), we constructed mutants in which each RNA-binding domain was replaced by its counterpart from the N protein of severe acute respiratory syndrome coronavirus (SARS-CoV). Mapping of revertants of the resulting chimeric viruses provided evidence for extensive intramolecular interactions between the two RNA-binding domains. Through analysis of viral RNA that was packaged into virions we identified the second of the two RNA-binding domains as a principal determinant of MHV packaging signal recognition. As expected, the interaction of N protein with M protein was not affected in either of the chimeric viruses. Moreover, the SARS-CoV N substitutions did not alter the fidelity of leader-body junction formation during subgenomic mRNA synthesis. These results more clearly delineate the functions of N protein and establish a basis for further exploration of the mechanism of genomic RNA packaging. This work describes the interactions of the two RNA-binding domains of the nucleocapsid protein of a model coronavirus, mouse hepatitis virus. The main finding is that the second of the two domains plays an essential role in recognizing the RNA structure that allows the selective

  6. Epidemiological investigation of Middle East respiratory syndrome coronavirus in dromedary camel farms linked with human infection in Abu Dhabi Emirate, United Arab Emirates.

    PubMed

    Muhairi, Salama Al; Hosani, Farida Al; Eltahir, Yassir M; Mulla, Mariam Al; Yusof, Mohammed F; Serhan, Wissam S; Hashem, Farouq M; Elsayed, Elsaeid A; Marzoug, Bahaaeldin A; Abdelazim, Assem S

    2016-12-01

    The objective of this research was to investigate the prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) infection primarily in dromedary camel farms and the relationship of those infections with infections in humans in the Emirate of Abu Dhabi. Nasal swabs from 1113 dromedary camels (39 farms) and 34 sheep (1 farm) and sputum samples from 2 MERS-CoV-infected camel farm owners and 1 MERS-CoV-infected sheep farm owner were collected. Samples from camels and humans underwent real-time reverse-transcription quantitative PCR screening to detect MERS-CoV. In addition, sequencing and phylogenetic analysis of partially characterized MERS-CoV genome fragments obtained from camels were performed. Among the 40 farms, 6 camel farms were positive for MERS-CoV; the virus was not detected in the single sheep farm. The maximum duration of viral shedding from infected camels was 2 weeks after the first positive test result as detected in nasal swabs and in rectal swabs obtained from infected calves. Three partial camel sequences characterized in this study (open reading frames 1a and 1ab, Spike1, Spike2, and ORF4b) together with the corresponding regions of previously reported MERS-CoV sequence obtained from one farm owner were clustering together within the larger MERS-CoV sequences cluster containing human and camel isolates reported for the Arabian Peninsula. Data provided further evidence of the zoonotic potential of MERS-CoV infection and strongly suggested that camels may have a role in the transmission of the virus to humans.

  7. Severe acute respiratory distress syndrome caused by unintentional sewing machine lubricant ingestion: A case report.

    PubMed

    Kishore, Sunil; Chandelia, Sudha; Patharia, Neha; Swarnim

    2016-11-01

    Sewing machine oil ingestion is rare but is possible due to its availability at home. Chemically, it belongs to hydrocarbon family which is toxic if aspirated, owing to their physical properties such as high volatility and low viscosity. On the contrary, sewing machine lubricant has high viscosity and low volatility which makes it aspiration less likely. The main danger of hydrocarbon ingestion is chemical pneumonitis which may be as severe as acute respiratory distress syndrome (ARDS). We report a case of a 5-year-old girl with accidental ingestion of sewing machine lubricant oil, who subsequently developed ARDS refractory to mechanical ventilation. There was much improvement with airway pressure release ventilation mode of ventilation, but the child succumbed to death due to pulmonary hemorrhage.

  8. Severe acute respiratory distress syndrome caused by unintentional sewing machine lubricant ingestion: A case report

    PubMed Central

    Kishore, Sunil; Chandelia, Sudha; Patharia, Neha; Swarnim

    2016-01-01

    Sewing machine oil ingestion is rare but is possible due to its availability at home. Chemically, it belongs to hydrocarbon family which is toxic if aspirated, owing to their physical properties such as high volatility and low viscosity. On the contrary, sewing machine lubricant has high viscosity and low volatility which makes it aspiration less likely. The main danger of hydrocarbon ingestion is chemical pneumonitis which may be as severe as acute respiratory distress syndrome (ARDS). We report a case of a 5-year-old girl with accidental ingestion of sewing machine lubricant oil, who subsequently developed ARDS refractory to mechanical ventilation. There was much improvement with airway pressure release ventilation mode of ventilation, but the child succumbed to death due to pulmonary hemorrhage. PMID:27994384

  9. A BDNF loop-domain mimetic acutely reverses spontaneous apneas and respiratory abnormalities during behavioral arousal in a mouse model of Rett syndrome

    PubMed Central

    Kron, Miriam; Lang, Min; Adams, Ian T.; Sceniak, Michael; Longo, Frank; Katz, David M.

    2014-01-01

    Reduced levels of brain-derived neurotrophic factor (BDNF) are thought to contribute to the pathophysiology of Rett syndrome (RTT), a severe neurodevelopmental disorder caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2). In Mecp2 mutant mice, BDNF deficits have been associated with breathing abnormalities, a core feature of RTT, as well as with synaptic hyperexcitability within the brainstem respiratory network. Application of BDNF can reverse hyperexcitability in acute brainstem slices from Mecp2-null mice, suggesting that therapies targeting BDNF or its receptor, TrkB, could be effective at acute reversal of respiratory abnormalities in RTT. Therefore, we examined the ability of LM22A-4, a small-molecule BDNF loop-domain mimetic and TrkB partial agonist, to modulate synaptic excitability within respiratory cell groups in the brainstem nucleus tractus solitarius (nTS) and to acutely reverse abnormalities in breathing at rest and during behavioral arousal in Mecp2 mutants. Patch-clamp recordings in Mecp2-null brainstem slices demonstrated that LM22A-4 decreases excitability at primary afferent synapses in the nTS by reducing the amplitude of evoked excitatory postsynaptic currents and the frequency of spontaneous and miniature excitatory postsynaptic currents. In vivo, acute treatment of Mecp2-null and -heterozygous mutants with LM22A-4 completely eliminated spontaneous apneas in resting animals, without sedation. Moreover, we demonstrate that respiratory dysregulation during behavioral arousal, a feature of human RTT, is also reversed in Mecp2 mutants by acute treatment with LM22A-4. Together, these data support the hypothesis that reduced BDNF signaling and respiratory dysfunction in RTT are linked, and establish the proof-of-concept that treatment with a small-molecule structural mimetic of a BDNF loop domain and a TrkB partial agonist can acutely reverse abnormal breathing at rest and in response to behavioral arousal

  10. A facile inhibitor screening of SARS coronavirus N protein using nanoparticle-based RNA oligonucleotide.

    PubMed

    Roh, Changhyun

    2012-01-01

    Hundreds of million people worldwide have been infected with severe acute respiratory syndrome (SARS), and the rate of global death from SARS has remarkably increased. Hence, the development of efficient drug treatments for the biological effects of SARS is highly needed. We have previously shown that quantum dots (QDs)-conjugated RNA oligonucleotide is sensitive to the specific recognition of the SARS-associated coronavirus (SARS-CoV) nucleocapsid (N) protein. In this study, we found that a designed biochip could analyze inhibitors of the SARS-CoV N protein using nanoparticle-based RNA oligonucleotide. Among the polyphenolic compounds examined, (-)-catechin gallate and (-)-gallocatechin gallate demonstrated a remarkable inhibition activity on SARS-CoV N protein. (-)-catechin gallate and (-)-gallocatechin gallate attenuated the binding affinity in a concentrated manner as evidenced by QDs-conjugated RNA oligonucleotide on a designed biochip. At a concentration of 0.05 μg mL(-1), (-)-catechin gallate and (-)-gallocatechin gallate showed more than 40% inhibition activity on a nanoparticle-based RNA oligonucleotide biochip system.

  11. Identifying Monoclonal Antibodies that Potently Inhibit MERS-CoV | Center for Cancer Research

    Cancer.gov

    The Middle East respiratory syndrome coronavirus (MERS-CoV), first isolated in September 2012, infects cells lining the human airway, causing severe flu-like symptoms that, in some cases, lead to death. As of July 2, 2014, 824 confirmed cases of MERS-CoV infection, including at least 286 related deaths, have been reported to the World Health Organization. While there are currently no effective therapies against the virus, monoclonal antibodies (MAbs) may be a promising candidate. Having previously developed MAbs against other viruses, including the related severe acute respiratory syndrome coronavirus or SARS-CoV, Dimiter Dimitrov, Ph.D., of CCR’s Laboratory of Experimental Immunology (LEI), and his colleagues decided to pan a library of antigen binding fragments (Fab) for activity against MERS-CoV.

  12. A Quasi-Experimental, Before-After Trial Examining the Impact of an Emergency Department Mechanical Ventilator Protocol on Clinical Outcomes and Lung-Protective Ventilation in Acute Respiratory Distress Syndrome.

    PubMed

    Fuller, Brian M; Ferguson, Ian T; Mohr, Nicholas M; Drewry, Anne M; Palmer, Christopher; Wessman, Brian T; Ablordeppey, Enyo; Keeperman, Jacob; Stephens, Robert J; Briscoe, Cristopher C; Kolomiets, Angelina A; Hotchkiss, Richard S; Kollef, Marin H

    2017-04-01

    To evaluate the impact of an emergency department mechanical ventilation protocol on clinical outcomes and adherence to lung-protective ventilation in patients with acute respiratory distress syndrome. Quasi-experimental, before-after trial. Emergency department and ICUs of an academic center. Mechanically ventilated emergency department patients experiencing acute respiratory distress syndrome while in the emergency department or after admission to the ICU. An emergency department ventilator protocol which targeted variables in need of quality improvement, as identified by prior work: 1) lung-protective tidal volume, 2) appropriate setting of positive end-expiratory pressure, 3) oxygen weaning, and 4) head-of-bed elevation. A total of 229 patients (186 preintervention group, 43 intervention group) were studied. In the emergency department, the intervention was associated with significant changes (p < 0.01 for all) in tidal volume, positive end-expiratory pressure, respiratory rate, oxygen administration, and head-of-bed elevation. There was a reduction in emergency department tidal volume from 8.1 mL/kg predicted body weight (7.0-9.1) to 6.4 mL/kg predicted body weight (6.1-6.7) and an increase in lung-protective ventilation from 11.1% to 61.5%, p value of less than 0.01. The intervention was associated with a reduction in mortality from 54.8% to 39.5% (odds ratio, 0.38; 95% CI, 0.17-0.83; p = 0.02) and a 3.9 day increase in ventilator-free days, p value equals to 0.01. This before-after study of mechanically ventilated patients with acute respiratory distress syndrome demonstrates that implementing a mechanical ventilator protocol in the emergency department is feasible and associated with improved clinical outcomes.

  13. A new horizon for the use of non-invasive ventilation in patients with acute respiratory distress syndrome.

    PubMed

    Carron, Michele

    2016-09-01

    Non-invasive ventilation (NIV) has assumed an important role in the management of acute respiratory failure (ARF). NIV, compared with standard medical therapy, improves survival and reduces complications in selected patients with ARF. NIV represents the first-line intervention for some forms of ARF, such as chronic obstructive pulmonary disease (COPD) exacerbations and acute cardiogenic pulmonary edema. The use of NIV is also well supported for immunocompromised patients who are at high risk for infectious complications from endotracheal intubation. Selection of appropriate patients is crucial for optimizing NIV success rates. Appropriate ventilator settings, a well-fitting and comfortable interface, and a team skilled and experienced in managing NIV are key components to its success. In a recent issue of the Journal of the American Medical Association , Patel et al . reported the results of their single-center trial of 83 patients with acute respiratory distress syndrome (ARDS) who were randomly assigned to NIV delivered via a helmet or face mask. Patients assigned to the helmet group exhibited a significantly lower intubation rate and were more likely to survive through 90 days. This perspective reviews the findings of this trial in the context of current clinical practice and in light of data from the literature focused on the potential reasons for success of NIV delivered through a helmet compared to face mask. The implications for early management of patients with ARDS are likewise discussed.

  14. Ocular Tropism of Respiratory Viruses

    PubMed Central

    Rota, Paul A.; Tumpey, Terrence M.

    2013-01-01

    SUMMARY Respiratory viruses (including adenovirus, influenza virus, respiratory syncytial virus, coronavirus, and rhinovirus) cause a broad spectrum of disease in humans, ranging from mild influenza-like symptoms to acute respiratory failure. While species D adenoviruses and subtype H7 influenza viruses are known to possess an ocular tropism, documented human ocular disease has been reported following infection with all principal respiratory viruses. In this review, we describe the anatomical proximity and cellular receptor distribution between ocular and respiratory tissues. All major respiratory viruses and their association with human ocular disease are discussed. Research utilizing in vitro and in vivo models to study the ability of respiratory viruses to use the eye as a portal of entry as well as a primary site of virus replication is highlighted. Identification of shared receptor-binding preferences, host responses, and laboratory modeling protocols among these viruses provides a needed bridge between clinical and laboratory studies of virus tropism. PMID:23471620

  15. Severe Acute Respiratory Syndrome (SARS): loud clang of the Leper's bell.

    PubMed

    Levett, Jeffrey

    2003-12-01

    Severe acute respiratory syndrome (SARS) or the "Chinese Chernobyl" emerged against an alarming background of rising infectious disease in poor rural China and to a backdrop of interregional and global polarization of population well-being and vulnerability. SARS has added its own dissonant note to "health disturbance", caused fear and panic and disrupted international commerce. Its emergence should be perceived as a disturbing alarm that underscores the need to strengthen public health and facilitate construction of a human security "umbrella" in the event of future disasters. Although SARS has produced a relatively insignificant level of damage when compared to other threats, its long-term effects on health should not be underestimated, based on its unexpected appearance and still unknown properties. This essay presents a qualitative flowchart that follows SARS from its origin in China to the accumulation of global damage. Two future scenarios were formulated, covering a worse-case outcome and containment outcome, which currently appears to be the case. In the event of the worst-case scenario it is doubtful whether any health service in Europe could cope. In either case, the development of a European Union Center for Disease Control is mandatory.

  16. Transmission of severe acute respiratory syndrome in dynamical small-world networks

    NASA Astrophysics Data System (ADS)

    Masuda, Naoki; Konno, Norio; Aihara, Kazuyuki

    2004-03-01

    The outbreak of severe acute respiratory syndrome (SARS) is still threatening the world because of a possible resurgence. In the current situation that effective medical treatments such as antiviral drugs are not discovered yet, dynamical features of the epidemics should be clarified for establishing strategies for tracing, quarantine, isolation, and regulating social behavior of the public at appropriate costs. Here we propose a network model for SARS epidemics and discuss why superspreaders emerged and why SARS spread especially in hospitals, which were key factors of the recent outbreak. We suggest that superspreaders are biologically contagious patients, and they may amplify the spreads by going to potentially contagious places such as hospitals. To avoid mass transmission in hospitals, it may be a good measure to treat suspected cases without hospitalizing them. Finally, we indicate that SARS probably propagates in small-world networks associated with human contacts and that the biological nature of individuals and social group properties are factors more important than the heterogeneous rates of social contacts among individuals. This is in marked contrast with epidemics of sexually transmitted diseases or computer viruses to which scale-free network models often apply.

  17. Cross-sectional surveillance of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels and other mammals in Egypt, August 2015 to January 2016

    PubMed Central

    Ali, Mohamed; El-Shesheny, Rabeh; Kandeil, Ahmed; Shehata, Mahmoud; Elsokary, Basma; Gomaa, Mokhtar; Hassan, Naglaa; El Sayed, Ahmed; El-Taweel, Ahmed; Sobhy, Heba; Oludayo, Fasina Folorunso; Dauphin, Gwenaelle; El Masry, Ihab; Wolde, Abebe Wossene; Daszak, Peter; Miller, Maureen; VonDobschuetz, Sophie; Gardner, Emma; Morzaria, Subhash; Lubroth, Juan; Makonnen, Yilma Jobre

    2017-01-01

    A cross-sectional study was conducted in Egypt to determine the prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) in imported and resident camels and bats, as well as to assess possible transmission of the virus to domestic ruminants and equines. A total of 1,031 sera, 1,078 nasal swabs, 13 rectal swabs, and 38 milk samples were collected from 1,078 camels in different types of sites. In addition, 145 domestic animals and 109 bats were sampled. Overall, of 1,031 serologically-tested camels, 871 (84.5%) had MERS-CoV neutralising antibodies. Seroprevalence was significantly higher in imported (614/692; 88.7%) than resident camels (257/339; 5.8%) (p < 0.05). Camels from Sudan (543/594; 91.4%) had a higher seroprevalence than those from East Africa (71/98; 72.4%) (p < 0.05). Sampling site and age were also associated with MERS-CoV seroprevalence (p < 0.05). All tested samples from domestic animals and bats were negative for MERS-CoV antibodies except one sheep sample which showed a 1:640 titre. Of 1,078 camels, 41 (3.8%) were positive for MERS-CoV genetic material. Sequences obtained were not found to cluster with clade A or B MERS-CoV sequences and were genetically diverse. The presence of neutralising antibodies in one sheep apparently in contact with seropositive camels calls for further studies on domestic animals in contact with camels. PMID:28333616

  18. Acute respiratory distress syndrome mimickers lacking common risk factors of the Berlin definition.

    PubMed

    Gibelin, Aude; Parrot, Antoine; Maitre, Bernard; Brun-Buisson, Christian; Mekontso Dessap, Armand; Fartoukh, Muriel; de Prost, Nicolas

    2016-02-01

    Some patients presenting with acute respiratory failure and meeting the Berlin criteria for acute respiratory distress syndrome (ARDS) lack exposure to common risk factors (CRF). These so-called ARDS mimickers often lack histological diffuse alveolar damage. We aimed to describe such ARDS mimickers lacking CRF (ARDS CRF-) in comparison with others (ARDS CRF+). Retrospective study including all patients receiving invasive mechanical ventilation for ARDS admitted to the intensive care units (ICUs) of two tertiary care centers from January 2003 to December 2012. The prevalence of ARDS CRF- was 7.5 % (95 % CI [5.5-9.5]; n = 50/665). On the basis of medical history, bronchoalveolar lavage fluid cytology, and chest CT scan patterns, four etiological categories were identified: immune (n = 18; 36 %), drug-induced (n = 13; 26 %), malignant (n = 7; 14 %), and idiopathic (n = 12; 24 %). Although the ARDS CRF- patients had a lower logistic organ dysfunction score (4 [3-8] vs. 10 [6-13]; p < 0.0001) and less often shock upon ICU admission (44 vs. 80 %; p < 0.0001) than their counterparts, their overall ICU mortality rate was very high (66 % [46-74]), and the absence of CRF remained associated with ICU mortality by multivariable logistic regression analysis (adjusted OR = 2.06; 95 % CI [1.02-4.18]; p = 0.044). Among ARDS CRF- patients, the presence of potentially reversible lung lesions with corticosteroids (aOR = 0.14; 95 % CI [0.03-0.62]) was associated with ICU survival. The absence of CRF among patients with ARDS is common and associated with a higher risk of mortality. For such atypical ARDS, a complete diagnostic workup, including bronchoalveolar lavage fluid cytology and chest CT scan patterns, should be performed to identify those patients who might benefit from specific therapies, including corticosteroids.

  19. Clinical outcomes of current medical approaches for Middle East respiratory syndrome: A systematic review and meta-analysis.

    PubMed

    Morra, Mostafa Ebraheem; Van Thanh, Le; Kamel, Mohamed Gomaa; Ghazy, Ahmed Abdelmotaleb; Altibi, Ahmed M A; Dat, Lu Minh; Thy, Tran Ngoc Xuan; Vuong, Nguyen Lam; Mostafa, Mostafa Reda; Ahmed, Sarah Ibrahim; Elabd, Sahar Samy; Fathima, Samreen; Le Huy Vu, Tran; Omrani, Ali S; Memish, Ziad A; Hirayama, Kenji; Huy, Nguyen Tien

    2018-05-01

    Middle East respiratory syndrome (MERS) is a respiratory disease caused by MERS coronavirus. Because of lack of vaccination, various studies investigated the therapeutic efficacy of antiviral drugs and supportive remedies. A systematic literature search from 10 databases was conducted and screened for relevant articles. Studies reporting information about the treatment of MERS coronavirus infection were extracted and analyzed. Despite receiving treatment with ribavirin plus IFN, the case fatality rate was as high as 71% in the IFN-treatment group and exactly the same in patients who received supportive treatment only. Having chronic renal disease, diabetes mellitus and hypertension increased the risk of mortality (P < .05), and chronic renal disease is the best parameter to predict the mortality. The mean of survival days from onset of illness to death was 46.6 (95% CI, 30.5-62.6) for the IFN group compared with 18.8 (95% CI, 10.3-27.4) for the supportive-only group (P = .001). Delay in starting treatment, older age group, and preexisting comorbidities are associated with worse outcomes. In conclusion, there is no difference between IFN treatment and supportive treatment for MERS patients in terms of mortality. However, ribavirin and IFN combination might have efficacious effects with timely administration and monitoring of adverse events. Large-scale prospective randomized studies are required to assess the role of antiviral drugs for the treatment of this high mortality infection. Copyright © 2018 John Wiley & Sons, Ltd.

  20. Recent Transmission of a Novel Alphacoronavirus, Bat Coronavirus HKU10, from Leschenault's Rousettes to Pomona Leaf-Nosed Bats: First Evidence of Interspecies Transmission of Coronavirus between Bats of Different Suborders

    PubMed Central

    Lau, Susanna K. P.; Li, Kenneth S. M.; Tsang, Alan K. L.; Shek, Chung-Tong; Wang, Ming; Choi, Garnet K. Y.; Guo, Rongtong; Wong, Beatrice H. L.; Poon, Rosana W. S.; Lam, Carol S. F.; Wang, Sylvia Y. H.; Fan, Rachel Y. Y.; Chan, Kwok-Hung; Zheng, Bo-Jian

    2012-01-01

    Although coronaviruses are known to infect various animals by adapting to new hosts, interspecies transmission events are still poorly understood. During a surveillance study from 2005 to 2010, a novel alphacoronavirus, BatCoV HKU10, was detected in two very different bat species, Ro-BatCoV HKU10 in Leschenault's rousettes (Rousettus leschenaulti) (fruit bats in the suborder Megachiroptera) in Guangdong and Hi-BatCoV HKU10 in Pomona leaf-nosed bats (Hipposideros pomona) (insectivorous bats in the suborder Microchiroptera) in Hong Kong. Although infected bats appeared to be healthy, Pomona leaf-nosed bats carrying Hi-BatCoV HKU10 had lower body weights than uninfected bats. To investigate possible interspecies transmission between the two bat species, the complete genomes of two Ro-BatCoV HKU10 and six Hi-BatCoV HKU10 strains were sequenced. Genome and phylogenetic analyses showed that Ro-BatCoV HKU10 and Hi-BatCoV HKU10 represented a novel alphacoronavirus species, sharing highly similar genomes except in the genes encoding spike proteins, which had only 60.5% amino acid identities. Evolution of the spike protein was also rapid in Hi-BatCoV HKU10 strains from 2005 to 2006 but stabilized thereafter. Molecular-clock analysis dated the most recent common ancestor of all BatCoV HKU10 strains to 1959 (highest posterior density regions at 95% [HPDs], 1886 to 2002) and that of Hi-BatCoV HKU10 to 1986 (HPDs, 1956 to 2004). The data suggested recent interspecies transmission from Leschenault's rousettes to Pomona leaf-nosed bats in southern China. Notably, the rapid adaptive genetic change in BatCoV HKU10 spike protein by ∼40% amino acid divergence after recent interspecies transmission was even greater than the ∼20% amino acid divergence between spike proteins of severe acute respiratory syndrome-related Rhinolophus bat coronavirus (SARSr-CoV) in bats and civets. This study provided the first evidence for interspecies transmission of coronavirus between bats of

  1. Amyloid associated with elastin-staining laminar aggregates in the lungs of patients diagnosed with acute respiratory distress syndrome

    PubMed Central

    Fan, Kang; Nagle, William A

    2002-01-01

    Background The heterogeneity of conditions underlying respiratory distress, whether classified clinically as acute lung injury (ALI) or the more severe acute respiratory distress syndrome (ARDS), has hampered efforts to identify and more successfully treat these patients. Examination of postmortem lungs among cases clinically diagnosed as ARDS identified a cohort that showed a consistent morphology at the light and electron microscope levels, and featured pathognomonic structures which we termed elastin-staining laminar structures (ELS). Methods Postmortem tissues were stained using the Verhoeff-Van Gieson procedure for elastic fibers, and with Congo red for examination under a polarizing microscope. Similar samples were examined by transmission EM. Results The pathognomonic ELS presented as ordered molecular aggregates when stained using the Verhoeff-van Gieson technique for elastic fibers. In several postmortem lungs, the ELS also displayed apple-green birefringence after staining with Congo red, suggesting the presence of amyloid. Remarkably, most of the postmortem lungs with ELS exhibited no significant acute inflammatory cellular response such as neutrophilic reaction, and little evidence of widespread edema except for focal intra-alveolar hemorrhage. Conclusions Postmortem lungs that exhibit the ELS constitute a morphologically-identifiable subgroup of ARDS cases. The ordered nature of the ELS, as indicated by both elastin and amyloid stains, together with little morphological evidence of inflammation or edema, suggests that this cohort of ARDS may represent another form of conformational disease. If this hypothesis is confirmed, it will require a new approach in the diagnosis and treatment of patients who exhibit this form of acute lung injury. PMID:12377106

  2. Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein

    PubMed Central

    Torres, Jaume; Maheswari, Uma; Parthasarathy, Krupakar; Ng, Lifang; Liu, Ding Xiang; Gong, Xiandi

    2007-01-01

    The coronavirus responsible for the severe acute respiratory syndrome (SARS-CoV) contains a small envelope protein, E, with putative involvement in host cell apoptosis and virus morphogenesis. It has been suggested that E protein can form a membrane destabilizing transmembrane (TM) hairpin, or homooligomerize to form a regular TM α-helical bundle. We have shown previously that the topology of the α-helical putative TM domain of E protein (ETM), flanked by two lysine residues at C and N termini to improve solubility, is consistent with a regular TM α-helix, with orientational parameters in lipid bilayers that are consistent with a homopentameric model. Herein, we show that this peptide, reconstituted in lipid bilayers, shows sodium conductance. Channel activity is inhibited by the anti-influenza drug amantadine, which was found to bind our preparation with moderate affinity. Results obtained from single or double mutants indicate that the organization of the transmembrane pore is consistent with our previously reported pentameric α-helical bundle model. PMID:17766393

  3. Diagnosis of acute respiratory distress syndrome by exhaled breath analysis

    PubMed Central

    2018-01-01

    The acute respiratory distress syndrome (ARDS) is a complication of critical illness that is characterized by acute onset, protein rich, pulmonary edema. There is no treatment for ARDS, other than the reduction of additional ventilator induced lung injury. Prediction or earlier recognition of ARDS could result in preventive measurements and might decrease mortality and morbidity. Exhaled breath contains volatile organic compounds (VOCs), a collection of hundreds of small molecules linked to several physiological and pathophysiological processes. Analysis of exhaled breath through gas-chromatography and mass-spectrometry (GC-MS) has resulted in an accurate diagnosis of ARDS in several studies. Most identified markers are linked to lipid peroxidation. Octane is one of the few markers that was validated as a marker of ARDS and is pathophysiologically likely to be increased in ARDS. None of the currently studied breath analysis methods is directly applicable in clinical practice. Two steps have to be taken before any breath test can be allowed into the intensive care unit. External validation in a multi-center study is a prerequisite for any of the candidate breath markers and the breath test should outperform clinical prediction scores. Second, the technology for breath analysis should be adapted so that it is available at a decentralized lab inside the intensive care unit and can be operated by trained nurses, in order to reduce the analysis time. In conclusion, exhaled analysis might be used for the early diagnosis and prediction of ARDS in the near future but several obstacles have to be taken in the coming years. Most of the candidate markers can be linked to lipid peroxidation. Only octane has been validated in a temporal external validation cohort and is, at this moment, the top-ranking breath biomarker for ARDS. PMID:29430450

  4. Self-Reported Mental Health Predicts Acute Respiratory Infection.

    PubMed

    Maxwell, Lizzie; Barrett, Bruce; Chase, Joseph; Brown, Roger; Ewers, Tola

    2015-06-01

    Poor mental health conditions, including stress and depression, have been recognized as a risk factor for the development of acute respiratory infection. Very few studies have considered the role of general mental health in acute respiratory infection occurrence. The aim of this analysis is to determine if overall mental health, as assessed by the mental component of the Short Form 12 Health Survey, predicts incidence, duration, or severity of acute respiratory infection. Data utilized for this analysis came from the National Institute of Health-funded Meditation or Exercise for Preventing Acute Respiratory Infection (MEPARI) and MEPARI-2 randomized controlled trials examining the effects of meditation or exercise on acute respiratory infection among adults aged > 30 years in Madison, Wisconsin. A Kendall tau rank correlation compared the Short Form 12 mental component, completed by participants at baseline, with acute respiratory infection incidence, duration, and area-under-the-curve (global) severity, as assessed by the Wisconsin Upper Respiratory Symptom Survey. Participants were recruited from Madison, Wis, using advertisements in local media. Short Form 12 mental health scores significantly predicted incidence (P = 0.037) of acute respiratory infection, but not duration (P = 0.077) or severity (P = 0.073). The Positive and Negative Affect Schedule (PANAS) negative emotion measure significantly predicted global severity (P = 0.036), but not incidence (P = 0.081) or duration (P = 0.125). Mindful Attention Awareness Scale scores significantly predicted incidence of acute respiratory infection (P = 0.040), but not duration (P = 0.053) or severity (P = 0.70). The PHQ-9, PSS-10, and PANAS positive measures did not show significant predictive associations with any of the acute respiratory infection outcomes. Self-reported overall mental health, as measured by the mental component of Short Form 12, predicts acute respiratory infection incidence.

  5. Incidence of respiratory viruses in Peruvian children with acute respiratory infections.

    PubMed

    del Valle Mendoza, Juana; Cornejo-Tapia, Angela; Weilg, Pablo; Verne, Eduardo; Nazario-Fuertes, Ronald; Ugarte, Claudia; del Valle, Luis J; Pumarola, Tomás

    2015-06-01

    Acute respiratory infections are responsible for high morbi-mortality in Peruvian children. However, the etiological agents are poorly identified. This study, conducted during the pandemic outbreak of H1N1 influenza in 2009, aims to determine the main etiological agents responsible for acute respiratory infections in children from Lima, Peru. Nasopharyngeal swabs collected from 717 children with acute respiratory infections between January 2009 and December 2010 were analyzed by multiplex RT-PCR for 13 respiratory viruses: influenza A, B, and C virus; parainfluenza virus (PIV) 1, 2, 3, and 4; and human respiratory syncytial virus (RSV) A and B, among others. Samples were also tested with direct fluorescent-antibodies (DFA) for six respiratory viruses. RT-PCR and DFA detected respiratory viruses in 240 (33.5%) and 85 (11.9%) cases, respectively. The most common etiological agents were RSV-A (15.3%), followed by influenza A (4.6%), PIV-1 (3.6%), and PIV-2 (1.8%). The viruses identified by DFA corresponded to RSV (5.9%) and influenza A (1.8%). Therefore, respiratory syncytial viruses (RSV) were found to be the most common etiology of acute respiratory infections. The authors suggest that active surveillance be conducted to identify the causative agents and improve clinical management, especially in the context of possible circulation of pandemic viruses. © 2015 Wiley Periodicals, Inc.

  6. Identification of novel inhibitors of the SARS coronavirus main protease 3CLpro.

    PubMed

    Bacha, Usman; Barrila, Jennifer; Velazquez-Campoy, Adrian; Leavitt, Stephanie A; Freire, Ernesto

    2004-05-04

    SARS (severe acute respiratory syndrome) is caused by a newly discovered coronavirus. A key enzyme for the maturation of this virus and, therefore, a target for drug development is the main protease 3CL(pro) (also termed SARS-CoV 3CL(pro)). We have cloned and expressed in Escherichia coli the full-length SARS-CoV 3CL(pro) as well as a truncated form containing only the catalytic domains. The recombinant proteins have been characterized enzymatically using a fluorescently labeled substrate; their structural stability in solution has been determined by differential scanning calorimetry, and novel inhibitors have been discovered. Expression of the catalytic region alone yields a protein with a reduced catalytic efficiency consistent with the proposed regulatory role of the alpha-helical domain. Differential scanning calorimetry indicates that the alpha-helical domain does not contribute to the structural stability of the catalytic domains. Analysis of the active site cavity reveals the presence of subsites that can be targeted with specific chemical functionalities. In particular, a cluster of serine residues (Ser139, Ser144, and Ser147) was identified near the active site cavity and was susceptible to being targeted by compounds containing boronic acid. This cluster is highly conserved in similar proteases from other coronaviruses, defining an attractive target for drug development. It was found that bifunctional aryl boronic acid compounds were particularly effective at inhibiting the protease, with inhibition constants as strong as 40 nM. Isothermal titration microcalorimetric experiments indicate that these inhibitors bind reversibly to 3CL(pro) in an enthalpically favorable fashion, implying that they establish strong interactions with the protease molecule, thus defining attractive molecular scaffolds for further optimization.

  7. Cytokine Release Syndrome After Chimeric Antigen Receptor T Cell Therapy for Acute Lymphoblastic Leukemia.

    PubMed

    Fitzgerald, Julie C; Weiss, Scott L; Maude, Shannon L; Barrett, David M; Lacey, Simon F; Melenhorst, J Joseph; Shaw, Pamela; Berg, Robert A; June, Carl H; Porter, David L; Frey, Noelle V; Grupp, Stephan A; Teachey, David T

    2017-02-01

    Initial success with chimeric antigen receptor-modified T cell therapy for relapsed/refractory acute lymphoblastic leukemia is leading to expanded use through multicenter trials. Cytokine release syndrome, the most severe toxicity, presents a novel critical illness syndrome with limited data regarding diagnosis, prognosis, and therapy. We sought to characterize the timing, severity, and intensive care management of cytokine release syndrome after chimeric antigen receptor-modified T cell therapy. Retrospective cohort study. Academic children's hospital. Thirty-nine subjects with relapsed/refractory acute lymphoblastic leukemia treated with chimeric antigen receptor-modified T cell therapy on a phase I/IIa clinical trial (ClinicalTrials.gov number NCT01626495). All subjects received chimeric antigen receptor-modified T cell therapy. Thirteen subjects with cardiovascular dysfunction were treated with the interleukin-6 receptor antibody tocilizumab. Eighteen subjects (46%) developed grade 3-4 cytokine release syndrome, with prolonged fever (median, 6.5 d), hyperferritinemia (median peak ferritin, 60,214 ng/mL), and organ dysfunction. Fourteen (36%) developed cardiovascular dysfunction treated with vasoactive infusions a median of 5 days after T cell therapy. Six (15%) developed acute respiratory failure treated with invasive mechanical ventilation a median of 6 days after T cell therapy; five met criteria for acute respiratory distress syndrome. Encephalopathy, hepatic, and renal dysfunction manifested later than cardiovascular and respiratory dysfunction. Subjects had a median of 15 organ dysfunction days (interquartile range, 8-20). Treatment with tocilizumab in 13 subjects resulted in rapid defervescence (median, 4 hr) and clinical improvement. Grade 3-4 cytokine release syndrome occurred in 46% of patients following T cell therapy for relapsed/refractory acute lymphoblastic leukemia. Clinicians should be aware of expanding use of this breakthrough therapy and

  8. Understanding the T cell immune response in SARS coronavirus infection

    PubMed Central

    Janice Oh, Hsueh-Ling; Ken-En Gan, Samuel; Bertoletti, Antonio; Tan, Yee-Joo

    2012-01-01

    The severe acute respiratory syndrome (SARS) epidemic started in late 2002 and swiftly spread across 5 continents with a mortality rate of around 10%. Although the epidemic was eventually controlled through the implementation of strict quarantine measures, there continues a need to investigate the SARS coronavirus (SARS-CoV) and develop interventions should it re-emerge. Numerous studies have shown that neutralizing antibodies against the virus can be found in patients infected with SARS-CoV within days upon the onset of illness and lasting up to several months. In contrast, there is little data on the kinetics of T cell responses during SARS-CoV infection and little is known about their role in the recovery process. However, recent studies in mice suggest the importance of T cells in viral clearance during SARS-CoV infection. Moreover, a growing number of studies have investigated the memory T cell responses in recovered SARS patients. This review covers the available literature on the emerging importance of T cell responses in SARS-CoV infection, particularly on the mapping of cytotoxic T lymphocyte (CTL) epitopes, longevity, polyfunctionality and human leukocyte antigen (HLA) association as well as their potential implications on treatment and vaccine development. PMID:26038429

  9. Understanding the T cell immune response in SARS coronavirus infection.

    PubMed

    Janice Oh, Hsueh-Ling; Ken-En Gan, Samuel; Bertoletti, Antonio; Tan, Yee-Joo

    2012-09-01

    The severe acute respiratory syndrome (SARS) epidemic started in late 2002 and swiftly spread across 5 continents with a mortality rate of around 10%. Although the epidemic was eventually controlled through the implementation of strict quarantine measures, there continues a need to investigate the SARS coronavirus (SARS-CoV) and develop interventions should it re-emerge. Numerous studies have shown that neutralizing antibodies against the virus can be found in patients infected with SARS-CoV within days upon the onset of illness and lasting up to several months. In contrast, there is little data on the kinetics of T cell responses during SARS-CoV infection and little is known about their role in the recovery process. However, recent studies in mice suggest the importance of T cells in viral clearance during SARS-CoV infection. Moreover, a growing number of studies have investigated the memory T cell responses in recovered SARS patients. This review covers the available literature on the emerging importance of T cell responses in SARS-CoV infection, particularly on the mapping of cytotoxic T lymphocyte (CTL) epitopes, longevity, polyfunctionality and human leukocyte antigen (HLA) association as well as their potential implications on treatment and vaccine development.

  10. Active screening and surveillance in the United Kingdom for Middle East respiratory syndrome coronavirus in returning travellers and pilgrims from the Middle East: a prospective descriptive study for the period 2013-2015.

    PubMed

    Atabani, Sowsan F; Wilson, Steven; Overton-Lewis, Clare; Workman, Judith; Kidd, I Michael; Petersen, Eskild; Zumla, Alimuddin; Smit, Erasmus; Osman, Husam

    2016-06-01

    Over 25000 pilgrims from the UK visit Saudi Arabia every year for the Umrah and Hajj pilgrimages. The recent outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) in South Korea and the continuing reports of MERS-CoV cases from Saudi Arabia highlight the need for active surveillance for MERS-CoV in returning pilgrims or travellers from the Middle East. Public Health England Birmingham Laboratory (PHEBL) is one of a few selected UK public health laboratories responsible for MERS-CoV screening in travellers returning to the UK from the Middle East who present to hospital with severe respiratory symptoms. The results of the PHEBL MERS-CoV screening and surveillance over the past 3 years is presented. UK travellers/pilgrims who returned from the Middle East and presented to a hospital with respiratory symptoms were studied over the period February 1, 2013 to December 31, 2015. Patients with respiratory symptoms, who satisfied the Public Health England MERS-CoV case algorithm, were tested for MERS-CoV and other respiratory tract viruses on admission to hospital. Two hundred and two patients suspected of having MERS-CoV were tested. None of them had a laboratory-confirmed MERS-CoV infection. A viral aetiology was detected in half (50.3%) of the cases, with rhinoviruses, influenza A (H1N1 and H3N2), and influenza B being most frequent. Peak testing occurred following the annual Hajj season and in other periods of raised national awareness. Respiratory tract infections in travellers/pilgrims returning to the UK from the Middle East are mainly due to rhinoviruses, influenza A, and influenza B. Whilst MERS-CoV was not detected in the 202 patients studied, heightened awareness of the possibility of MERS-CoV and continuous proactive surveillance are essential to rapidly identify cases of MERS-CoV and other seasonal respiratory tract viruses such as avian influenza, in patients presenting to hospital. Early identification and isolation may prevent outbreaks in

  11. Histopathology of Middle East respiratory syndrome coronovirus (MERS-CoV) infection - clinicopathological and ultrastructural study.

    PubMed

    Alsaad, Khaled O; Hajeer, Ali H; Al Balwi, Mohammed; Al Moaiqel, Mohammed; Al Oudah, Nourah; Al Ajlan, Abdulaziz; AlJohani, Sameera; Alsolamy, Sami; Gmati, Giamal E; Balkhy, Hanan; Al-Jahdali, Hamdan H; Baharoon, Salim A; Arabi, Yaseen M

    2018-02-01

    The pathogenesis, viral localization and histopathological features of Middle East respiratory syndrome - coronavirus (MERS-CoV) in humans are not described sufficiently. The aims of this study were to explore and define the spectrum of histological and ultrastructural pathological changes affecting various organs in a patient with MERS-CoV infection and represent a base of MERS-CoV histopathology. We analysed the post-mortem histopathological findings and investigated localisation of viral particles in the pulmonary and extrapulmonary tissue by transmission electron microscopic examination in a 33-year-old male patient of T cell lymphoma, who acquired MERS-CoV infection. Tissue needle biopsies were obtained from brain, heart, lung, liver, kidney and skeletal muscle. All samples were collected within 45 min from death to reduce tissue decomposition and artefact. Histopathological examination showed necrotising pneumonia, pulmonary diffuse alveolar damage, acute kidney injury, portal and lobular hepatitis and myositis with muscle atrophic changes. The brain and heart were histologically unremarkable. Ultrastructurally, viral particles were localised in the pneumocytes, pulmonary macrophages, renal proximal tubular epithelial cells and macrophages infiltrating the skeletal muscles. The results highlight the pulmonary and extrapulmonary pathological changes of MERS-CoV infection and provide the first evidence of the viral presence in human renal tissue, which suggests tissue trophism for MERS-CoV in kidney. © 2017 John Wiley & Sons Ltd.

  12. Progress in global surveillance and response capacity 10 years after severe acute respiratory syndrome.

    PubMed

    Braden, Christopher R; Dowell, Scott F; Jernigan, Daniel B; Hughes, James M

    2013-06-01

    Ten years have elapsed since the World Health Organization issued its first global alert for an unexplained illness named severe acute respiratory syndrome (SARS). The anniversary provides an opportunity to reflect on the international response to this new global microbial threat. While global surveillance and response capacity for public health threats have been strengthened, critical gaps remain. Of 194 World Health Organization member states that signed on to the International Health Regulations (2005), <20% had achieved compliance with the core capacities required by the deadline in June 2012. Lessons learned from the global SARS outbreak highlight the need to avoid complacency, strengthen efforts to improve global capacity to address the next pandemic using all available 21st century tools, and support research to develop new treatment options, countermeasures, and insights while striving to address the global inequities that are the root cause of many of these challenges.

  13. High-frequency oscillatory ventilation for cardiac surgery children with severe acute respiratory distress syndrome.

    PubMed

    Li, Shengli; Wang, Xu; Li, Shoujun; Yan, Jun

    2013-08-01

    Acute respiratory distress syndrome (ARDS) in children after open heart surgery, although uncommon, can be a significant source of morbidity. Because high-frequency oscillatory ventilation (HFOV) had been used successfully with pediatric patients who had no congenital heart defects, this therapy was used in our unit. This report aims to describe a single-center experience with HFOV in the management of ARDS after open heart surgery with respect to mortality. This retrospective clinical study was conducted in a pediatric intensive care unit. From October 2008 to August 2012, 64 of 10,843 patients with refractory ARDS who underwent corrective surgery at our institution were ventilated with HFOV. Patients with significant uncorrected residual lesions were not included. No interventions were performed. The patients were followed up until hospital discharge. The main outcome measure was survival to hospital discharge. Severe ARDS was defined as acute-onset pulmonary failure with bilateral pulmonary infiltrates and an oxygenation index (OI) higher than 13 despite maximal ventilator settings. The indication for HFOV was acute severe ARDS unresponsive to optimal conventional treatment. The variables recorded and subjected to multivariate analysis were patient demographics, underlying disease, clinical data, and ventilator parameters and their association with hospital mortality. Nearly 10,843 patients underwent surgery during the study period, and the ARDS incidence rate was 0.76 % (83/10,843), with 64 patients (77 %, 64/83) receiving HFOV. No significant changes in systemic or central venous pressure were associated with initiation and maintenance of HFOV. The complications during HFOV included pneumothorax for 22 patients. The overall in-hospital mortality rate was 39 % (25/64). Multiple regression analyses indicated that pulmonary hypertension and recurrent respiratory tract infections (RRTIs) before surgery were independent predictors of in-hospital mortality. The

  14. Cross-reactive antibodies in convalescent SARS patients' sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests.

    PubMed

    Chan, Kwok-Hung; Chan, Jasper Fuk-Woo; Tse, Herman; Chen, Honglin; Lau, Candy Choi-Yi; Cai, Jian-Piao; Tsang, Alan Ka-Lun; Xiao, Xincai; To, Kelvin Kai-Wang; Lau, Susanna Kar-Pui; Woo, Patrick Chiu-Yat; Zheng, Bo-Jiang; Wang, Ming; Yuen, Kwok-Yung

    2013-08-01

    A severe acute respiratory syndrome (SARS)-like disease due to a novel betacoronavirus, human coronavirus EMC (HCoV-EMC), has emerged recently. HCoV-EMC is phylogenetically closely related to Tylonycteris-bat-coronavirus-HKU4 and Pipistrellus-bat-coronavirus-HKU5 in Hong Kong. We conducted a seroprevalence study on archived sera from 94 game-food animal handlers at a wild life market, 28 SARS patients, and 152 healthy blood donors in Southern China to assess the zoonotic potential and evidence for intrusion of HCoV-EMC and related viruses into humans. Anti-HCoV-EMC and anti-SARS-CoV antibodies were detected using screening indirect immunofluorescence (IF) and confirmatory neutralizing antibody tests. Two (2.1%) animal handlers had IF antibody titer of ≥ 1:20 against both HCoV-EMC and SARS-CoV with neutralizing antibody titer of <1:10. No blood donor had antibody against either virus. Surprisingly, 17/28 (60.7%) of SARS patients had significant IF antibody titers with 7/28 (25%) having anti-HCoV-EMC neutralizing antibodies at low titers which significantly correlated with that of HCoV-OC43. Bioinformatics analysis demonstrated a significant B-cell epitope overlapping the heptad repeat-2 region of Spike protein. Virulence of SARS-CoV over other betacoronaviruses may boost cross-reactive neutralizing antibodies against other betacoronaviruses. Convalescent SARS sera may contain cross-reactive antibodies against other betacoronaviruses and confound seroprevalence study for HCoV-EMC. Copyright © 2013 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  15. Lung Recruitment Assessed by Respiratory Mechanics and Computed Tomography in Patients with Acute Respiratory Distress Syndrome. What Is the Relationship?

    PubMed

    Chiumello, Davide; Marino, Antonella; Brioni, Matteo; Cigada, Irene; Menga, Federica; Colombo, Andrea; Crimella, Francesco; Algieri, Ilaria; Cressoni, Massimo; Carlesso, Eleonora; Gattinoni, Luciano

    2016-06-01

    The assessment of lung recruitability in patients with acute respiratory distress syndrome (ARDS) may be important for planning recruitment maneuvers and setting positive end-expiratory pressure (PEEP). To determine whether lung recruitment measured by respiratory mechanics is comparable with lung recruitment measured by computed tomography (CT). In 22 patients with ARDS, lung recruitment was assessed at 5 and 15 cm H2O PEEP by using respiratory mechanics-based methods: (1) increase in gas volume between two pressure-volume curves (P-Vrs curve); (2) increase in gas volume measured and predicted on the basis of expected end-expiratory lung volume and static compliance of the respiratory system (EELV-Cst,rs); as well as by CT scan: (3) decrease in noninflated lung tissue (CT [not inflated]); and (4) decrease in noninflated and poorly inflated tissue (CT [not + poorly inflated]). The P-Vrs curve recruitment was significantly higher than EELV-Cst,rs recruitment (423 ± 223 ml vs. 315 ± 201 ml; P < 0.001), but these measures were significantly related to each other (R(2) = 0.93; P < 0.001). CT (not inflated) recruitment was 77 ± 86 g and CT (not + poorly inflated) was 80 ± 67 g (P = 0.856), and these measures were also significantly related to each other (R(2) = 0.20; P = 0.04). Recruitment measured by respiratory mechanics was 54 ± 28% (P-Vrs curve) and 39 ± 25% (EELV-Cst,rs) of the gas volume at 5 cm H2O PEEP. Recruitment measured by CT scan was 5 ± 5% (CT [not inflated]) and 6 ± 6% (CT [not + poorly inflated]) of lung tissue. Respiratory mechanics and CT measure-under the same term, "recruitment"-two different entities. The respiratory mechanics-based methods include gas entering in already open pulmonary units that improve their mechanical properties at higher PEEP. Consequently, they can be used to assess the overall improvement of inflation. The CT scan measures the amount of collapsed

  16. The effects of prone position ventilation in patients with acute respiratory distress syndrome. A systematic review and metaanalysis.

    PubMed

    Mora-Arteaga, J A; Bernal-Ramírez, O J; Rodríguez, S J

    2015-01-01

    Prone position ventilation has been shown to improve oxygenation and ventilatory mechanics in patients with acute respiratory distress syndrome. We evaluated whether prone ventilation reduces the risk of mortality in adult patients with acute respiratory distress syndrome versus supine ventilation. A metaanalysis of randomized controlled trials comparing patients in supine versus prone position was performed. A search was conducted of the Pubmed, Embase, Cochrane Library, and LILACS databases. Mortality, hospital length of stay, days of mechanical ventilation and adverse effects were evaluated. Seven randomized controlled trials (2,119 patients) were included in the analysis. The prone position showed a nonsignificant tendency to reduce mortality (OR: 0.76; 95%CI: 0.54 to 1.06; P=.11, I(2) 63%). When stratified by subgroups, a significant decrease was seen in the risk of mortality in patients ventilated with low tidal volume (OR: 0.58; 95%CI: 0.38 to 0.87; P=.009, I(2) 33%), prolonged pronation (OR: 0.6; 95%CI: 0.43 to 0.83; p=.002, I(2) 27%), start within the first 48hours of disease evolution (OR 0.49; 95%CI 0.35 to 0.68; P=.0001, I(2) 0%) and severe hypoxemia (OR: 0.51: 95%CI: 0.36 to 1.25; P=.0001, I(2) 0%). Adverse effects associated with pronation were the development of pressure ulcers and endotracheal tube obstruction. Prone position ventilation is a safe strategy and reduces mortality in patients with severely impaired oxygenation. It should be started early, for prolonged periods, and should be associated to a protective ventilation strategy. Copyright © 2014 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  17. Collection and Testing of Respiratory Samples

    ClinicalTrials.gov

    2017-04-03

    QIAGEN ResPlex II Advanced Panel; Influenza A; Respiratory Syncytial Virus Infections; Infection Due to Human Parainfluenza Virus 1; Parainfluenza Type 2; Parainfluenza Type 3; Parainfluenza Type 4; Human Metapneumovirus A/B; Rhinovirus; Coxsackie Virus/Echovirus; Adenovirus Types B/C/E; Coronavirus Subtypes 229E; Coronavirus Subtype NL63; Coronavirus Subtype OC43; Coronavirus Subtype HKU1; Human Bocavirus; Artus Influenza A/B RT-PCR Test; Influenza B

  18. Adult Onset Still’s Disease Presenting with Acute Respiratory Distress Syndrome: Case Report and Review of the Literature

    PubMed Central

    Dua, Anisha B.; Manadan, Augustine M.; Case, John P.

    2013-01-01

    Introduction: Adult-onset Still’s disease (AOSD) is a systemic inflammatory disorder characterized by rash, leukocytosis, fevers, and arthralgias. Pulmonary involvement has been reported rarely in AOSD, but acute respiratory distress syndrome (ARDS) is extremely rare and potentially fatal and must be recognized as potential manifestation of underlying AOSD. Methods: We present a case of AOSD manifested by ARDS and review the previously reported cases in Medline/Pub med. Results: Including this case, 19 cases of AOSD complicated with ARDS have been reported in the literature. Conclusions: It is important to recognize ARDS as a manifestation of AOSD so that proper diagnostic and therapeutic management can be initiated promptly. PMID:24459537

  19. Extracorporeal Life Support for Severe Acute Respiratory Distress Syndrome in Adults

    PubMed Central

    Hemmila, Mark R.; Rowe, Stephen A.; Boules, Tamer N.; Miskulin, Judiann; McGillicuddy, John W.; Schuerer, Douglas J.; Haft, Jonathan W.; Swaniker, Fresca; Arbabi, Saman; Hirschl, Ronald B.; Bartlett, Robert H.

    2004-01-01

    Objective: Severe acute respiratory distress syndrome (ARDS) is associated with a high level of mortality. Extracorporeal life support (ECLS) during severe ARDS maintains oxygen and carbon dioxide gas exchange while providing an optimal environment for recovery of pulmonary function. Since 1989, we have used a protocol-driven algorithm for treatment of severe ARDS, which includes the use of ECLS when standard therapy fails. The objective of this study was to evaluate our experience with ECLS in adult patients with severe ARDS with respect to mortality and morbidity. Methods: We reviewed our complete experience with ELCS in adults from January 1, 1989, through December 31, 2003. Severe ARDS was defined as acute onset pulmonary failure, with bilateral infiltrates on chest x-ray, and PaO2/fraction of inspired oxygen (FiO2) ratio ≤100 or A-aDO2 >600 mm Hg despite maximal ventilator settings. The indication for ECLS was acute severe ARDS unresponsive to optimal conventional treatment. The technique of ECLS included veno-venous or veno-arterial vascular access, lung “rest” at low FiO2 and inspiratory pressure, minimal anticoagulation, and optimization of systemic oxygen delivery. Results: During the study period, ECLS was used for 405 adult patients age 17 or older. Of these 405 patients, 255 were placed on ECLS for severe ARDS refractory to all other treatment. Sixty-seven percent were weaned off ECLS, and 52% survived to hospital discharge. Multivariate logistic regression analysis identified the following pre-ELCS variables as significant independent predictors of survival: (1) age (P = 0.01); (2) gender (P = 0.048); (3) pH ≤7.10 (P = 0.01); (4) PaO2/FiO2 ratio (P = 0.03); and (5) days of mechanical ventilation (P < 0.001). None of the patients who survived required permanent mechanical ventilation or supplemental oxygen therapy. Conclusion: Extracorporeal life support for severe ARDS in adults is a successful therapeutic option in those patients who do not

  20. Driving pressure and survival in the acute respiratory distress syndrome.

    PubMed

    Amato, Marcelo B P; Meade, Maureen O; Slutsky, Arthur S; Brochard, Laurent; Costa, Eduardo L V; Schoenfeld, David A; Stewart, Thomas E; Briel, Matthias; Talmor, Daniel; Mercat, Alain; Richard, Jean-Christophe M; Carvalho, Carlos R R; Brower, Roy G

    2015-02-19

    Mechanical-ventilation strategies that use lower end-inspiratory (plateau) airway pressures, lower tidal volumes (VT), and higher positive end-expiratory pressures (PEEPs) can improve survival in patients with the acute respiratory distress syndrome (ARDS), but the relative importance of each of these components is uncertain. Because respiratory-system compliance (CRS) is strongly related to the volume of aerated remaining functional lung during disease (termed functional lung size), we hypothesized that driving pressure (ΔP=VT/CRS), in which VT is intrinsically normalized to functional lung size (instead of predicted lung size in healthy persons), would be an index more strongly associated with survival than VT or PEEP in patients who are not actively breathing. Using a statistical tool known as multilevel mediation analysis to analyze individual data from 3562 patients with ARDS enrolled in nine previously reported randomized trials, we examined ΔP as an independent variable associated with survival. In the mediation analysis, we estimated the isolated effects of changes in ΔP resulting from randomized ventilator settings while minimizing confounding due to the baseline severity of lung disease. Among ventilation variables, ΔP was most strongly associated with survival. A 1-SD increment in ΔP (approximately 7 cm of water) was associated with increased mortality (relative risk, 1.41; 95% confidence interval [CI], 1.31 to 1.51; P<0.001), even in patients receiving "protective" plateau pressures and VT (relative risk, 1.36; 95% CI, 1.17 to 1.58; P<0.001). Individual changes in VT or PEEP after randomization were not independently associated with survival; they were associated only if they were among the changes that led to reductions in ΔP (mediation effects of ΔP, P=0.004 and P=0.001, respectively). We found that ΔP was the ventilation variable that best stratified risk. Decreases in ΔP owing to changes in ventilator settings were strongly associated with