Science.gov

Sample records for acute retinal ischemia

  1. Erythropoietin administration protects retinal neurons from acute ischemia-reperfusion injury

    PubMed Central

    Junk, Anna K.; Mammis, Antonios; Savitz, Sean I.; Singh, Manjeet; Roth, Steven; Malhotra, Samit; Rosenbaum, Pearl S.; Cerami, Anthony; Brines, Michael; Rosenbaum, Daniel M.

    2002-01-01

    Erythropoietin (EPO) plays an important role in the brain's response to neuronal injury. Systemic administration of recombinant human EPO (rhEPO) protects neurons from injury after middle cerebral artery occlusion, traumatic brain injury, neuroinflammation, and excitotoxicity. Protection is in part mediated by antiapoptotic mechanisms. We conducted parallel studies of rhEPO in a model of transient global retinal ischemia induced by raising intraocular pressure, which is a clinically relevant model for retinal diseases. We observed abundant expression of EPO receptor (EPO-R) throughout the ischemic retina. Neutralization of endogenous EPO with soluble EPO-R exacerbated ischemic injury, which supports a crucial role for an endogenous EPO/EPO-R system in the survival and recovery of neurons after an ischemic insult. Systemic administration of rhEPO before or immediately after retinal ischemia not only reduced histopathological damage but also promoted functional recovery as assessed by electroretinography. Exogenous EPO also significantly diminished terminal deoxynucleotidyltransferase-mediated dUTP end labeling labeling of neurons in the ischemic retina, implying an antiapoptotic mechanism of action. These results further establish EPO as a neuroprotective agent in acute neuronal ischemic injury. PMID:12130665

  2. Neuroglobin Protection in Retinal Ischemia

    PubMed Central

    Chan, Anita S.Y.; Saraswathy, Sindhu; Rehak, Matus; Ueki, Mari

    2012-01-01

    Purpose. Neuroglobin (Ngb) is a vertebrate globin that is predominantly expressed in the retina and brain. To explore the role of Ngb in retinal neuroprotection during ischemia reperfusion (IR), the authors examined the effect of Ngb overexpression in the retina in vivo by using Ngb-transgenic (Ngb-Tg) mice. Methods. Retinal IR was induced in Ngb overexpressing Ngb-Tg mice and wild type (WT) mice by cannulating the anterior chamber and transiently elevating the IOP for 60 minutes. After Day 7 of reperfusion, the authors evaluated Ngb mRNA and protein expression in nonischemic control as well as ischemic mice and its effect on retinal histology, mitochondrial oxidative stress, and apoptosis, using morphometry and immunohistochemistry, quantitative PCR analysis and Western blot techniques. Results. Ngb-Tg mice without ischemia overexpress Ngb mRNA 11.3-fold (SE ± 0.457, P < 0.05) higher than WT control mice, and this overexpression of Ngb protein was localized to the mitochondria of the ganglion cells, outer and inner plexiform layers, and photoreceptor inner segments. This overexpression of Ngb is associated with decreased mitochondrial DNA damage in Ngb-Tg mice with IR in comparison with WT. Ngb-Tg mice with IR also revealed significant preservation of retinal thickness, significantly less activated caspase 3 protein expression, and apoptosis in comparison with WT mice. Conclusions. Neuroglobin overexpression plays a neuroprotective role against retinal ischemia reperfusion injury due to decreasing of mitochondrial oxidative stress-mediated apoptosis. PMID:22167093

  3. Vitreal Ocygenation in Retinal Ischemia Reperfusion

    SciTech Connect

    Abdallab, Walid; AmeriMD, Hossein; Barron, Ernesto; ChaderPhD, Gerald; Greenbaum, Elias; Hinton, David E; Humayun, Mark S

    2011-01-01

    PURPOSE. To study the feasibility of anterior vitreal oxygenation for the treatment of acute retinal ischemia. METHODS. Twenty rabbits were randomized into an oxygenation group, a sham treatment group, and a no treatment group. Baseline electroretinography (ERG) and preretinal oxygen (PO2) measurements were obtained 3 to 5 days before surgery. Intraocular pressure was raised to 100 mm Hg for 90 minutes and then normalized. The oxygenation group underwent vitreal oxygenation for 30 minutes using intravitreal electrodes. The sham treatment group received inactive electrodes for 30 minutes while there was no intervention for the no treatment group. Preretinal PO2 in the posterior vitreous was measured 30 minutes after intervention or 30 minutes after reperfusion (no treatment group) and on postoperative days (d) 3, 6, 9, and 12. On d14, rabbits underwent ERG and were euthanatized.

  4. [Acute retinal necrosis].

    PubMed

    Lucke, K; Reinking, U; el-Hifnawi, E; Dennin, R H; Laqua, H

    1988-12-01

    The authors report on three patients with acute retinal necrosis who were treated with the virostatic agent Acyclovir and who underwent vitreoretinal surgery with silicone oil filling for total retinal detachment. In two eyes the retina was reattached, but useful vision was only preserved in one patient. Titers from blood and the vitreous, as well as microscopic findings in retinal biopsies, support the view that the necrosis is caused by a herpes simplex virus infection. After therapy with Acyclovir was instituted no further progression on the necrosis was observed. However, the development of retinal detachment could not be prevented. Early diagnosis and antiviral therapy are essential to improve the otherwise poor prognosis in this rare syndrome. PMID:3221657

  5. Retino-choroidal ischemia in central retinal vein occlusion

    PubMed Central

    Hussain, Nazimul; Hussain, Anjli

    2014-01-01

    A 41-year-old gentleman with insulin dependent diabetes had decreased vision in the right eye due to non-ischemic central retinal vein occlusion with macular edema. One month following intravitreal ranibizumab, he developed retino-choroidal ischemia with further loss of vision. Authors show the fluorescein angiographic transition from non-ischemic central retinal vein occlusion to retino-choroidal ischemia. PMID:25473353

  6. Vinpocetine modulates metabolic activity and function during retinal ischemia.

    PubMed

    Nivison-Smith, Lisa; O'Brien, Brendan J; Truong, Mai; Guo, Cindy X; Kalloniatis, Michael; Acosta, Monica L

    2015-05-01

    Vinpocetine protects against a range of degenerative conditions and insults of the central nervous system via multiple modes of action. Little is known, however, of its effects on metabolism. This may be highly relevant, as vinpocetine is highly protective against ischemia, a process that inhibits normal metabolic function. This study uses the ischemic retina as a model to characterize vinpocetine's effects on metabolism. Vinpocetine reduced the metabolic demand of the retina following ex vivo hypoxia and ischemia to normal levels based on lactate dehydrogenase activity. Vinpocetine delivered similar effects in an in vivo model of retinal ischemia-reperfusion, possibly through increasing glucose availability. Vinpocetine's effects on glucose also appeared to improve glutamate homeostasis in ischemic Müller cells. Other actions of vinpocetine following ischemia-reperfusion, such as reduced cell death and improved retinal function, were possibly a combination of the drug's actions on metabolism and other retinal pathways. Vinpocetine's metabolic effects appeared independent of its other known actions in ischemia, as it recovered retinal function in a separate metabolic model where the glutamate-to-glutamine metabolic pathway was inhibited in Müller cells. The results of this study indicate that vinpocetine mediates ischemic damage partly through altered metabolism and has potential beneficial effects as a treatment for ischemia of neuronal tissues. PMID:25696811

  7. ACUTE RETINAL ARTERIAL OCCLUSIVE DISORDERS

    PubMed Central

    Hayreh, Sohan Singh

    2011-01-01

    The initial section deals with basic sciences; among the various topics briefly discussed are the anatomical features of ophthalmic, central retinal and cilioretinal arteries which may play a role in acute retinal arterial ischemic disorders. Crucial information required in the management of central retinal artery occlusion (CRAO) is the length of time the retina can survive following that. An experimental study shows that CRAO for 97 minutes produces no detectable permanent retinal damage but there is a progressive ischemic damage thereafter, and by 4 hours the retina has suffered irreversible damage. In the clinical section, I discuss at length various controversies on acute retinal arterial ischemic disorders. Classification of acute retinal arterial ischemic disorders These are of 4 types: CRAO, branch retinal artery occlusion (BRAO), cotton wools spots and amaurosis fugax. Both CRAO and BRAO further comprise multiple clinical entities. Contrary to the universal belief, pathogenetically, clinically and for management, CRAO is not one clinical entity but 4 distinct clinical entities – non-arteritic CRAO, non-arteritic CRAO with cilioretinal artery sparing, arteritic CRAO associated with giant cell arteritis (GCA) and transient non-arteritic CRAO. Similarly, BRAO comprises permanent BRAO, transient BRAO and cilioretinal artery occlusion (CLRAO), and the latter further consists of 3 distinct clinical entities - non-arteritic CLRAO alone, non-arteritic CLRAO associated with central retinal vein occlusion and arteritic CLRAO associated with GCA. Understanding these classifications is essential to comprehend fully various aspects of these disorders. Central retinal artery occlusion The pathogeneses, clinical features and management of the various types of CRAO are discussed in detail. Contrary to the prevalent belief, spontaneous improvement in both visual acuity and visual fields does occur, mainly during the first 7 days. The incidence of spontaneous visual

  8. Prevalent misconceptions about acute retinal vascular occlusive disorders.

    PubMed

    Hayreh, Sohan Singh

    2005-07-01

    occlusion; (xix) branch retinal vein occlusion can cause neovascular glaucoma; (xx) in eyes with CRAO, the artery is usually not completely occluded; (xxi) CRAO is always either embolic or thrombotic in origin; (xxii) amaurosis fugax is always due to retinal ischemia secondary to transient retinal arterial embolism; (xxiii) asymptomatic plaque(s) in retinal arteries do not require a detailed evaluation; (xxiv) retinal function can improve even when acute retinal ischemia due to CRAO has lasted for 20h or more; (xxv) CRAO, like ischemic CRVO, can result in development of ocular neovascularization; (xxvi) panretinal photocoagulation is needed for "disc neovascularization" in CRAO; (xxvii) fibrinolytic agents are the treatment of choice in CRAO; (xxviii) there is no chance of an eye with retinal arterial occlusion having spontaneous visual improvement; (xxix) absence of any abnormality on Doppler evaluation of the carotid artery or echography of the heart always rules out those sites as the source of embolism; and (xxx) absence of an embolus in the retinal artery means the occlusion was not caused by an embolus. The major cause of all these misconceptions is the lack of a proper understanding of basic scientific facts related to the various diseases. The objective of this paper is to discuss these misconceptions, based on these scientific facts, to clarify the understanding of these blinding disorders, and to place their management on a rational, scientific basis. PMID:15845346

  9. Activation of Autophagy in a Rat Model of Retinal Ischemia following High Intraocular Pressure

    PubMed Central

    Piras, Antonio; Gianetto, Daniele; Conte, Daniele; Bosone, Alex; Vercelli, Alessandro

    2011-01-01

    Acute primary open angle glaucoma is an optic neuropathy characterized by the elevation of intraocular pressure, which causes retinal ischemia and neuronal death. Rat ischemia/reperfusion enhances endocytosis of both horseradish peroxidase (HRP) or fluorescent dextran into ganglion cell layer (GCL) neurons 24 h after the insult. We investigated the activation of autophagy in GCL-neurons following ischemia/reperfusion, using acid phosphatase (AP) histochemistry and immunofluorescence against LC3 and LAMP1. Retinal I/R lead to the appearance of AP-positive granules and LAMP1-positive vesicles 12 and 24 h after the insult, and LC3 labelling at 24 h, and induced a consistent retinal neuron death. At 48 h the retina was negative for autophagic markers. In addition, Western Blot analysis revealed an increase of LC3 levels after damage: the increase in the conjugated, LC3-II isoform is suggestive of autophagic activity. Inhibition of autophagy by 3-methyladenine partially prevented death of neurons and reduces apoptotic markers, 24 h post-lesion. The number of neurons in the GCL decreased significantly following I/R (I/R 12.21±1.13 vs controls 19.23±1.12 cells/500 µm); this decrease was partially prevented by 3-methyladenine (17.08±1.42 cells/500 µm), which potently inhibits maturation of autophagosomes. Treatment also prevented the increase in glial fibrillary acid protein immunoreactivity elicited by I/R. Therefore, targeting autophagy could represent a novel and promising treatment for glaucoma and retinal ischemia. PMID:21799881

  10. Diagnosis of acute cardiac ischemia.

    PubMed

    Pope, J Hector; Selker, Harry P

    2003-02-01

    A better understanding of coronary syndromes allow physicians to appreciate UAP and AMI as part of a continuum of ACI. ACI is a life-threatening condition whose identification can have major economic and therapeutic importance as far as threatening dysrhythmias and preventing or limiting myocardial infarction size. The identification of ACI continues to challenge the skill of even experienced clinicians, yet physicians continue (appropriately) to admit the overwhelming majority of patients with ACI; in the process, they admit many patients without acute ischemia [2], overestimating the likelihood of ischemia in low-risk patients because of magnified concern for this diagnosis for prognostic and therapeutic reasons. Studies of admitting practices from a decade ago have yielded useful clinical information but have shown that neither clinical symptoms nor the ECG could reliably distinguish most patients with ACI from those with other conditions. Most studies have evaluated the accuracy of various technologies for diagnosing ACI, yet only a few have evaluated the clinical impact of routine use. The prehospital 12-lead ECG has moderate sensitivity and specificity for the diagnosis of ACI. It has demonstrated a reduction of the mean time to thrombolysis by 33 minutes and short-term overall mortality in randomized trials. In the general ED setting, only the ACI-TIPI has demonstrated, in a large-scale multicenter clinical trial, a reduction in unnecessary hospitalizations without decreasing the rate of appropriate admission for patients with ACI. The Goldman chest pain protocol has good sensitivity for AMI but was not shown to result in any differences in hospitalization rate, length of stay, or estimated costs in the single clinical impact study performed. The protocol's applicability to patients with UAP has not been evaluated. Single measurement of biomarkers at presentation to the ED has poor sensitivity for AMI, although most biomarkers have high specificity. Serial

  11. Activation of autophagy and paraptosis in retinal ganglion cells after retinal ischemia and reperfusion injury in rats

    PubMed Central

    WEI, TING; KANG, QIANYAN; MA, BO; GAO, SHAN; LI, XUEYING; LIU, YONG

    2015-01-01

    Glaucoma is a neurodegenerative disease characterized by elevated intraocular pressure (IOP), which causes retinal ischemia and progressive neuronal death. Retinal ischemia/reperfusion (RIR) injury is a common clinical condition representing the main cause of irreversible visual field defects in humans. The aim of this study was to investigate whether non-apoptotic forms of programmed cell death (PCD) have an effect on RIR injury in an experimental model that replicates features of acute hypertensive glaucoma and to explore the possible underlying mechanisms. The activation of autophagy was investigated in retinal ganglion cells (RGCs) following RIR in comparison with a control group, using immunofluorescence against microtubule-associated protein 1 light chain 3 (LC3). RIR injury increased LC3 expression in the cytoplasm of RGCs in the ganglion cell layer (GCL) 6 h after the insult, and the increased expression was sustained throughout the experimental period. Following RIR insult, the number of neurons in the GCL significantly decreased. Ultra-structural analyses showed that double- or multiple-membrane autophagosomes were markedly accumulated in the cytoplasm of RGCs following IOP elevation. Since there are no known markers for paraptosis, its identification was based on morphological criteria. Electron microscopy (EM) analysis revealed severe structural alterations associated with cytoplasmatic vacuolization within the 6 h after RIR injury and RGC death. EM also revealed that vacuoles were derived predominantly from the progressive swelling of the endoplasmic reticulum (ER) and/or mitochondria in RGCs after RIR injury. The results provide novel evidence implicating an important role of autophagy and paraptosis in the pathogenesis of RIR injury. Autophagy and paraptosis take place during developmental cell death in the nervous system as well as in certain cases of neurodegeneration. Therefore, targeting autophagy and paraptosis could have therapeutic potential

  12. Mitogen-activated protein kinases in the porcine retinal arteries and neuroretina following retinal ischemia-reperfusion

    PubMed Central

    Gesslein, Bodil; Håkansson, Gisela; Carpio, Ronald; Gustafsson, Lotta; Perez, Maria-Thereza

    2010-01-01

    Purpose The aim of the present study was to examine changes in the expression of intracellular signal-transduction pathways, specifically mitogen-activated protein kinases, following retinal ischemia-reperfusion. Methods Retinal ischemia was induced by elevating the intraocular pressure in porcine eyes, followed by 5, 12, or 20 h of reperfusion. The results were compared to those of the sham- operated fellow eye. The retinal arteries and neuroretina were isolated separately and examined. Tissue morphology and DNA fragmentation were studied using histology. Extracellular signal-regulated kinase 1 and 2 (ERK1/2), p38, c-junNH2-terminal kinases (JNK), and c-jun protein and mRNA expression were examined using immunofluorescence staining, western blot, and real-time PCR techniques. Results Pyknotic cell nuclei, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, and glial fibrillary acidic protein mRNA expression were increased in ischemia, suggesting injury. Phosphorylated ERK1/2 protein levels were increased in the neuroretina following ischemia, while mRNA levels were unaltered. p38 protein and mRNA levels were not affected by ischemia. Immunofluorescence staining for phosphorylated p38 was especially intense in the retinal blood vessels, while only weak in the neuroretina. Phosphorylated JNK protein and mRNA were slightly decreased in ischemia. Phosphorylated c-jun protein and mRNA levels were higher in the neuroretina after ischemia-reperfusion. Conclusions Retinal ischemia-reperfusion alters expression of mitogen-activated protein kinases, particularly ERK1/2, in the neuroretina and retinal arteries. The development of pharmacological treatment targeting these intracellular transduction pathways may prevent injury to the eye following retinal circulatory failure. PMID:20300568

  13. [SURGICAL TREATMENT OF AN ACUTE MESENTERIAL ISCHEMIA].

    PubMed

    Shepehtko, E N; Garmash, D A; Kurbanov, A K; Marchenko, V O; Kozak, Yu S

    2016-04-01

    Experience of surgical treatment of 143 patients, suffering an acute mesenterial ischemia, was summarized. Isolated intestinal resection was performed in 41 patients (lethality 65.9%), intestinal resection with the mesenterial vessels thrombembolectomy--in 9 (lethality 33.3%). After performance of the combined intervention postoperative lethality was in two times lower, than after isolated intestinal resection. PMID:27434952

  14. Atypical Presentation of Ocular Toxoplasmosis: A Case Report of Exudative Retinal Detachment and Choroidal Ischemia

    PubMed Central

    Al-Zahrani, Yahya A.; Al-Dhibi, Hassan A.; Al-Abdullah, Abdulelah A.

    2016-01-01

    A 24-year-old healthy male presented with a chief complaint of blurred vision in the right eye for 1-week. Fundus examination indicated right exudative retinal detachment and choroidal ischemia. The patient responded well to anti-toxoplasmosis medications and steroids. Exudative retinal detachment and choroidal ischemia are atypical presentations of ocular toxoplasmosis. However, both conditions responded well to anti.parasitic therapy with steroid. PMID:26957857

  15. Atypical Presentation of Ocular Toxoplasmosis: A Case Report of Exudative Retinal Detachment and Choroidal Ischemia.

    PubMed

    Al-Zahrani, Yahya A; Al-Dhibi, Hassan A; Al-Abdullah, Abdulelah A

    2016-01-01

    A 24-year-old healthy male presented with a chief complaint of blurred vision in the right eye for 1-week. Fundus examination indicated right exudative retinal detachment and choroidal ischemia. The patient responded well to anti-toxoplasmosis medications and steroids. Exudative retinal detachment and choroidal ischemia are atypical presentations of ocular toxoplasmosis. However, both conditions responded well to anti.parasitic therapy with steroid. PMID:26957857

  16. Calpain-1 and calpain-2 play opposite roles in retinal ganglion cell degeneration induced by retinal ischemia/reperfusion injury.

    PubMed

    Wang, Yubin; Lopez, Dulce; Davey, Pinakin Gunvant; Cameron, D Joshua; Nguyen, Katherine; Tran, Jennifer; Marquez, Elizabeth; Liu, Yan; Bi, Xiaoning; Baudry, Michel

    2016-09-01

    Calpain has been shown to be involved in neurodegeneration, and in particular in retinal ganglion cell (RGC) death resulting from increased intraocular pressure (IOP) and ischemia. However, the specific roles of the two major calpain isoforms, calpain-1 and calpain-2, in RGC death have not been investigated. Here, we show that calpain-1 and calpain-2 were sequentially activated in RGC dendrites after acute IOP elevation. By combining the use of a selective calpain-2 inhibitor (C2I) and calpain-1 KO mice, we demonstrated that calpain-1 activity supported survival, while calpain-2 activity promoted cell death of RGCs after IOP elevation. Calpain-1 activation cleaved PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1) and activated the Akt pro-survival pathway, while calpain-2 activation cleaved striatal-enriched protein tyrosine phosphatase (STEP) and activated STEP-mediated pro-death pathway in RGCs after IOP elevation. Systemic or intravitreal C2I injection to wild-type mice 2h after IOP elevation promoted RGC survival and improved visual function. Our data indicate that calpain-1 and calpain-2 play opposite roles in high IOP-induced ischemic injury and that a selective calpain-2 inhibitor could prevent acute glaucoma-induced RGC death and blindness. PMID:27185592

  17. Effect of retinal ischemia on the non-image forming visual system.

    PubMed

    González Fleitas, María Florencia; Bordone, Melina; Rosenstein, Ruth E; Dorfman, Damián

    2015-03-01

    Retinal ischemic injury is an important cause of visual impairment. The loss of retinal ganglion cells (RGCs) is a key sign of retinal ischemic damage. A subset of RGCs expressing the photopigment melanopsin (mRGCs) regulates non-image-forming visual functions such as the pupillary light reflex (PLR), and circadian rhythms. We studied the effect of retinal ischemia on mRGCs and the non-image-forming visual system function. For this purpose, transient ischemia was induced by raising intraocular pressure to 120 mm Hg for 40 min followed by retinal reperfusion by restoring normal pressure. At 4 weeks post-treatment, animals were subjected to electroretinography and histological analysis. Ischemia induced a significant retinal dysfunction and histological alterations. At this time point, a significant decrease in the number of Brn3a(+) RGCs and in the anterograde transport from the retina to the superior colliculus and lateral geniculate nucleus was observed, whereas no differences in the number of mRGCs, melanopsin levels, and retinal projections to the suprachiasmatic nuclei and the olivary pretectal nucleus were detected. At low light intensity, a decrease in pupil constriction was observed in intact eyes contralateral to ischemic eyes, whereas at high light intensity, retinal ischemia did not affect the consensual PLR. Animals with ischemia in both eyes showed a conserved locomotor activity rhythm and a photoentrainment rate which did not differ from control animals. These results suggest that the non-image forming visual system was protected against retinal ischemic damage. PMID:25238585

  18. Ultrasound enhanced thrombolysis in acute arterial ischemia.

    PubMed

    Tsivgoulis, Georgios; Culp, William C; Alexandrov, Andrei V

    2008-08-01

    In vitro and animal studies have shown that thrombolysis with intravenous tissue plasminogen activator (tPA) can be enhanced with ultrasound. Ultrasound delivers mechanical pressure waves to the clot, thus exposing more thrombus surface to circulating drug. Moreover, intravenous gaseous microspheres with ultrasound have been shown to be a potential alternative to fibrinolytic agents to recanalize discrete peripheral thrombotic arterial occlusions or acute arteriovenous graft thromboses. Small phase I-II randomized and non-randomized clinical trials have shown promising results concerning the potential applications of ultrasound-enhanced thrombolysis in the setting of acute cerebral ischemia. CLOTBUST was an international four-center phase II trial, which demonstrated that, in patients with acute ischemic stroke, transcranial Doppler (TCD) monitoring augments tPA-induced arterial recanalization (sustained complete recanalization rates: 38% vs. 13%) with a non-significant trend toward an increased rate of clinical recovery from stroke, as compared with placebo. The rates of symptomatic intracerebral hemorrhage (sICH) were similar in the active and placebo group (4.8% vs. 4.8%). Smaller single-center clinical trials using transcranial color-coded sonography (TCCD) reported recanalization rates ranging from 27% to 64% and sICH rates of 0-18%. A separate clinical trial evaluating the safety and efficacy of therapeutic low-frequency ultrasound was discontinued because of a concerning sICH rate of 36% in the active group. To further enhance the ability of tPA to break up thrombi, current ongoing clinical trials include phase II studies of a single beam 2 MHz TCD with perflutren-lipid microspheres. Moreover, potential enhancement of intra-arterial tPA delivery is being clinically tested with 1.7-2.1 MHz pulsed wave ultrasound (EKOS catheter) in ongoing phase II-III clinical trials. Intravenous platelet-targeted microbubbles with low-frequency ultrasound are currently

  19. Minocycline prevents retinal inflammation and vascular permeability following ischemia-reperfusion injury

    PubMed Central

    2013-01-01

    Background Many retinal diseases are associated with vascular dysfunction accompanied by neuroinflammation. We examined the ability of minocycline (Mino), a tetracycline derivative with anti-inflammatory and neuroprotective properties, to prevent vascular permeability and inflammation following retinal ischemia-reperfusion (IR) injury, a model of retinal neurodegeneration with breakdown of the blood-retinal barrier (BRB). Methods Male Sprague–Dawley rats were subjected to 45 min of pressure-induced retinal ischemia, with the contralateral eye serving as control. Rats were treated with Mino prior to and following IR. At 48 h after reperfusion, retinal gene expression, cellular inflammation, Evan’s blue dye leakage, tight junction protein organization, caspase-3 activation, and DNA fragmentation were measured. Cellular inflammation was quantified by flow-cytometric evaluation of retinal tissue using the myeloid marker CD11b and leukocyte common antigen CD45 to differentiate and quantify CD11b+/CD45low microglia, CD11b+/CD45hi myeloid leukocytes and CD11bneg/CD45hi lymphocytes. Major histocompatibility complex class II (MHCII) immunoreactivity was used to determine the inflammatory state of these cells. Results Mino treatment significantly inhibited IR-induced retinal vascular permeability and disruption of tight junction organization. Retinal IR injury significantly altered mRNA expression for 21 of 25 inflammation- and gliosis-related genes examined. Of these, Mino treatment effectively attenuated IR-induced expression of lipocalin 2 (LCN2), serpin peptidase inhibitor clade A member 3 N (SERPINA3N), TNF receptor superfamily member 12A (TNFRSF12A), monocyte chemoattractant-1 (MCP-1, CCL2) and intercellular adhesion molecule-1 (ICAM-1). A marked increase in leukostasis of both myeloid leukocytes and lymphocytes was observed following IR. Mino treatment significantly reduced retinal leukocyte numbers following IR and was particularly effective in decreasing the

  20. Lower Hemoglobin Concentration Is Associated with Retinal Ischemia and the Severity of Diabetic Retinopathy in Type 2 Diabetes

    PubMed Central

    Traveset, Alicia; Rubinat, Esther; Ortega, Emilio; Alcubierre, Nuria; Vazquez, Beatriz; Hernández, Marta; Jurjo, Carmen; Espinet, Ramon; Ezpeleta, Juan Antonio; Mauricio, Didac

    2016-01-01

    Aims. To assess the association of blood oxygen-transport capacity variables with the prevalence of diabetic retinopathy (DR), retinal ischemia, and macular oedema in patients with type 2 diabetes mellitus (T2DM). Methods. Cross-sectional, case-control study (N = 312) with T2DM: 153 individuals with DR and 159 individuals with no DR. Participants were classified according to the severity of DR and the presence of retinal ischemia or macular oedema. Hematological variables were collected by standardized methods. Three logistic models were adjusted to ascertain the association between hematologic variables with the severity of DR and the presence of retinal ischemia or macular oedema. Results. Individuals with severe DR showed significantly lower hemoglobin, hematocrit, and erythrocyte levels compared with those with mild disease and in individuals with retinal ischemia and macular oedema compared with those without these disorders. Hemoglobin was the only factor that showed a significant inverse association with the severity of DR [beta-coefficient = −0.52, P value = 0.003] and retinal ischemia [beta-coefficient = −0.49, P value = 0.001]. Lower erythrocyte level showed a marginally significant association with macular oedema [beta-coefficient = −0.86, P value = 0.055]. Conclusions. In patients with DR, low blood oxygen-transport capacity was associated with more severe DR and the presence of retinal ischemia. Low hemoglobin levels may have a key role in the development and progression of DR. PMID:27200379

  1. Lower Hemoglobin Concentration Is Associated with Retinal Ischemia and the Severity of Diabetic Retinopathy in Type 2 Diabetes.

    PubMed

    Traveset, Alicia; Rubinat, Esther; Ortega, Emilio; Alcubierre, Nuria; Vazquez, Beatriz; Hernández, Marta; Jurjo, Carmen; Espinet, Ramon; Ezpeleta, Juan Antonio; Mauricio, Didac

    2016-01-01

    Aims. To assess the association of blood oxygen-transport capacity variables with the prevalence of diabetic retinopathy (DR), retinal ischemia, and macular oedema in patients with type 2 diabetes mellitus (T2DM). Methods. Cross-sectional, case-control study (N = 312) with T2DM: 153 individuals with DR and 159 individuals with no DR. Participants were classified according to the severity of DR and the presence of retinal ischemia or macular oedema. Hematological variables were collected by standardized methods. Three logistic models were adjusted to ascertain the association between hematologic variables with the severity of DR and the presence of retinal ischemia or macular oedema. Results. Individuals with severe DR showed significantly lower hemoglobin, hematocrit, and erythrocyte levels compared with those with mild disease and in individuals with retinal ischemia and macular oedema compared with those without these disorders. Hemoglobin was the only factor that showed a significant inverse association with the severity of DR [beta-coefficient = -0.52, P value = 0.003] and retinal ischemia [beta-coefficient = -0.49, P value = 0.001]. Lower erythrocyte level showed a marginally significant association with macular oedema [beta-coefficient = -0.86, P value = 0.055]. Conclusions. In patients with DR, low blood oxygen-transport capacity was associated with more severe DR and the presence of retinal ischemia. Low hemoglobin levels may have a key role in the development and progression of DR. PMID:27200379

  2. Methods for Acute and Subacute Murine Hindlimb Ischemia.

    PubMed

    Padgett, Michael E; McCord, Timothy J; McClung, Joseph M; Kontos, Christopher D

    2016-01-01

    Peripheral artery disease (PAD) is a leading cause of cardiovascular morbidity and mortality in developed countries, and animal models that reliably reproduce the human disease are necessary to develop new therapies for this disease. The mouse hindlimb ischemia model has been widely used for this purpose, but the standard practice of inducing acute limb ischemia by ligation of the femoral artery can result in substantial tissue necrosis, compromising investigators' ability to study the vascular and skeletal muscle tissue responses to ischemia. An alternative approach to femoral artery ligation is the induction of gradual femoral artery occlusion through the use of ameroid constrictors. When placed around the femoral artery in the same or different locations as the sites of femoral artery ligation, these devices occlude the artery over 1 - 3 days, resulting in more gradual, subacute ischemia. This results in less substantial skeletal muscle tissue necrosis, which may more closely mimic the responses seen in human PAD. Because genetic background influences outcomes in both the acute and subacute ischemia models, consideration of the mouse strain being studied is important in choosing the best model. This paper describes the proper procedure and anatomical placement of ligatures or ameroid constrictors on the mouse femoral artery to induce subacute or acute hindlimb ischemia in the mouse. PMID:27403963

  3. Methods for Acute and Subacute Murine Hindlimb Ischemia

    PubMed Central

    Padgett, Michael E.; McCord, Timothy J.; McClung, Joseph M.; Kontos, Christopher D.

    2016-01-01

    Peripheral artery disease (PAD) is a leading cause of cardiovascular morbidity and mortality in developed countries, and animal models that reliably reproduce the human disease are necessary to develop new therapies for this disease. The mouse hindlimb ischemia model has been widely used for this purpose, but the standard practice of inducing acute limb ischemia by ligation of the femoral artery can result in substantial tissue necrosis, compromising investigators' ability to study the vascular and skeletal muscle tissue responses to ischemia. An alternative approach to femoral artery ligation is the induction of gradual femoral artery occlusion through the use of ameroid constrictors. When placed around the femoral artery in the same or different locations as the sites of femoral artery ligation, these devices occlude the artery over 1-3 days, resulting in more gradual, subacute ischemia. This results in less substantial skeletal muscle tissue necrosis, which may more closely mimic the responses seen in human PAD. Because genetic background influences outcomes in both the acute and subacute ischemia models, consideration of the mouse strain being studied is important in choosing the best model. This paper describes the proper procedure and anatomical placement of ligatures or ameroid constrictors on the mouse femoral artery to induce subacute or acute hindlimb ischemia in the mouse. PMID:27403963

  4. Delayed Administration of Bone Marrow Mesenchymal Stem Cell Conditioned Medium Significantly Improves Outcome After Retinal Ischemia in Rats

    PubMed Central

    Dreixler, John C.; Poston, Jacqueline N.; Balyasnikova, Irina; Shaikh, Afzhal R.; Tupper, Kelsey Y.; Conway, Sineadh; Boddapati, Venkat; Marcet, Marcus M.; Lesniak, Maciej S.; Roth, Steven

    2014-01-01

    Purpose. Delayed treatment after ischemia is often unsatisfactory. We hypothesized that injection of bone marrow stem cell (BMSC) conditioned medium after ischemia could rescue ischemic retina, and in this study we characterized the functional and histological outcomes and mechanisms of this neuroprotection. Methods. Retinal ischemia was produced in adult Wistar rats by increasing intraocular pressure for 55 minutes. Conditioned medium (CM) from rat BMSCs or unconditioned medium (uCM) was injected into the vitreous 24 hours after the end of ischemia. Recovery was assessed 7 days after ischemia using electroretinography, at which time we euthanized the animals and then prepared 4-μm-thick paraffin-embedded retinal sections. TUNEL and Western blot were used to identify apoptotic cells and apoptosis-related gene expression 24 hours after injections; that is, 48 hours after ischemia. Protein content in CM versus uCM was studied using tandem mass spectrometry, and bioinformatics methods were used to model protein interactions. Results. Intravitreal injection of CM 24 hours after ischemia significantly improved retinal function and attenuated cell loss in the retinal ganglion cell layer. CM attenuated postischemic apoptosis and apoptosis-related gene expression. By spectral counting, 19 proteins that met stringent identification criteria were increased in the CM compared to uCM; the majority were extracellular matrix proteins that mapped into an interactional network together with other proteins involved in cell growth and adhesion. Conclusions. By restoring retinal function, attenuating apoptosis, and preventing retinal cell loss after ischemia, CM is a robust means of delayed postischemic intervention. We identified some potential candidate proteins for this effect. PMID:24699381

  5. Methane attenuates retinal ischemia/reperfusion injury via anti-oxidative and anti-apoptotic pathways.

    PubMed

    Liu, Lin; Sun, Qinglei; Wang, Ruobing; Chen, Zeli; Wu, Jiangchun; Xia, Fangzhou; Fan, Xian-Qun

    2016-09-01

    Retinal ischemia/reperfusion injury (IRI) may cause incurable visual impairment due to neural regeneration limits. Methane was shown to exert a protective effect against IRI in many organs. This study aims to explore the possible protective effects of methane-rich saline against retinal IRI in rat. Retinal IRI was performed on the right eyes of male Sprague-Dawley rats, which were immediately injected intraperitoneally with methane-saturated saline (25ml/kg). At one week after surgery, the number of retinal ganglion cells (RGCs), total retinal thickness, visual function were measured by hematoxylin and eosin staining, FluoroGold anterograde labeling and flash visual evoked potentials. The levels of 8-hydroxy-2-deoxyguanosine (8-OHdG), 4-Hydroxy-2-nonenal (4-HNE), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), caspase-3, caspase-9, B cell lymphoma/leukemia-2 (Bcl-2) and Bcl-2 associated X protein (Bax) in retinas were assessed by immunofluorescence staining, enzyme-linked immunosorbent assay and quantitative polymerase chain reaction. As expected, methane treatment significantly improved the retinal IRI-induced RGC loss, total retinal layer thinning and visual dysfunction. Moreover, methane treatment significantly reduced the levels of oxidative stress biomarkers (8-OHdG, 4-HNE, MDA) and increased the antioxidant enzyme activities (SOD, CAT, GPx) in the retinas with IRI. Meanwhile, methane treatment significantly increased the anti-apoptotic gene (Bcl-2) expression and decreased the pro-apoptotic gene (Bax) expression, accompanied by the suppression of caspase-3 and caspase-9 activity. Thus, these data demonstrated that methane can exert a neuroprotective role against retinal IRI through anti-oxidative and anti-apoptotic pathways. PMID:27208496

  6. Acute Variations in Retinal Vascular Oxygen Content in a Rabbit Model of Retinal Venous Occlusion

    PubMed Central

    Saati, Saloomeh; Martin, Gabriel; Chader, Gerald; Humayun, Mark S.

    2012-01-01

    Purpose To study the variation in intravascular oxygen saturation (oximetry) during an acute retinal vein occlusion (RVO) using hyperspectral computed tomographic spectroscopy based oximetry measurements. Methods Thirty rabbits were dilated and anesthetized for experiments. Baseline oximetry measurements were made using a custom-made hyperspectral computed tomographic imaging spectrometer coupled to a fundus camera. RVO were induced using argon green laser following an intravenous injection of Rose Bengal. RVO induction was confirmed by fluorescein angiography. Retinal oximetry measurements were repeated in arterial and venous branches one hour after RVO induction and up to 4 weeks afterwards. Comparison of retinal oximetry before and after vein occlusion was made using the Student T-test. Results One hour after RVO induction, we observed statistically significant reductions in the intravascular oxygen saturation in temporal retinal arteries (85.1±6.1% vs. 80.6±6.6%; p<0.0001) and veins (71.4±5.5% vs. 64.0±4.7%; p<0.0001). This decrease was reversible in animals that spontaneously recannulated the vein occlusion. There were no statistically significant differences in oxygen saturation in the nasal control arteries and veins before and after temporal vein RVO induction. Conclusions We demonstrate, for the first time, acute changes in the intravascular oxygen content of retinal vessels 1 hour after RVO. These changes are reversible upon spontaneous recannulation of retinal vessels. This study demonstrates that hyperspectral computer tomographic spectroscopy based oximetry can detect physiological variations in intravascular retinal oxygen saturation. The study also provides the first qualitative and quantitative evidence of the variation in retinal vascular oxygen content directly attributable to an acute retinal vein occlusion. PMID:23185567

  7. Retinal ganglion cell (RGC) programmed necrosis contributes to ischemia-reperfusion-induced retinal damage

    PubMed Central

    Dvoriantchikova, Galina; Degterev, Alexei; Ivanov, Dmitry

    2014-01-01

    Retinal ischemia–reperfusion (IR) injury remains a common cause of blindness and has a final pathway of retinal ganglion cell (RGC) death by apoptosis and necrosis. RGC apoptosis was intensively studied in IR injury, while RGC necrosis did not receive nearly enough consideration since it was viewed as an accidental and unregulated cellular event. However, there is evidence that necrosis, like apoptosis, can be implemented by a programmed mechanism. In this study, we tested the role of RGC programmed necrosis (necroptosis) in IR-induced retinal injury. We employed the mouse model of retinal IR injury for in vivo experiments. The oxygen and glucose deprivation (OGD) model was used as an IR model in vitro. Primary RGCs were isolated by an immunopanning technique. Necrostatin 1 (Nec1) was used to inhibit necroptosis in in vitro and in vivo experiments. The changes in gene expression were assessed by quantitative RT-PCR. The distribution of proteins in the retina and in RGC cultures was evaluated by immunohistochemistry and immunocytochemistry, respectively. Our data suggest that proteins (Ripk1 and Ripk3), which initiate necroptosis, were present in normal and ischemic RGCs. Treatment with Nec1 significantly reduced retinal damage after IR. Increased RGC survival and reduced RGC necrosis following OGD were observed in Nec1-treated cultures. We found significantly reduced expression of genes coding pro-inflammatory markers Il1b, Ccl5, Cxcl10, Nos2 and Cybb in Nec1-treated ischemic retinas. Thus, our findings suggest that RGC necroptosis contributes to retinal damage after IR through direct loss of cells and induction of associated inflammatory responses. PMID:24751757

  8. Upper Limb Ischemia: Clinical Experiences of Acute and Chronic Upper Limb Ischemia in a Single Center

    PubMed Central

    Bae, Miju; Chung, Sung Woon; Lee, Chung Won; Choi, Jinseok; Song, Seunghwan; Kim, Sang-pil

    2015-01-01

    Background Upper limb ischemia is less common than lower limb ischemia, and relatively few cases have been reported. This paper reviews the epidemiology, etiology, and clinical characteristics of upper limb ischemia and analyzes the factors affecting functional sequelae after treatment. Methods The records of 35 patients with acute and chronic upper limb ischemia who underwent treatment from January 2007 to December 2012 were retrospectively reviewed. Results The median age was 55.03 years, and the number of male patients was 24 (68.6%). The most common etiology was embolism of cardiac origin, followed by thrombosis with secondary trauma, and the brachial artery was the most common location for a lesion causing obstruction. Computed tomography angiography was the first-line diagnostic tool in our center. Twenty-eight operations were performed, and conservative therapy was implemented in seven cases. Five deaths (14.3%) occurred during follow-up. Twenty patients (57.1%) complained of functional sequelae after treatment. Functional sequelae were found to be more likely in patients with a longer duration of symptoms (odds ratio, 1.251; p=0.046) and higher lactate dehydrogenase (LDH) levels (odds ratio, 1.001; p=0.031). Conclusion An increased duration of symptoms and higher initial serum LDH levels were associated with the more frequent occurrence of functional sequelae. The prognosis of upper limb ischemia is associated with prompt and proper treatment and can also be predicted by initial serum LDH levels. PMID:26290835

  9. The High-Mobility Group Box-1 Nuclear Factor Mediates Retinal Injury after Ischemia Reperfusion

    PubMed Central

    Dvoriantchikova, Galina; Hernandez, Eleut; Grant, Jeff; Santos, Andrea Rachelle C.; Yang, Huan

    2011-01-01

    Purpose. High-mobility group protein B1 (Hmgb1) is released from necrotic cells and induces an inflammatory response. Although Hmgb1 has been implicated in ischemia/reperfusion (IR) injury of the brain, its role in IR injury of the retina remains unclear. Here, the authors provide evidence that Hmgb1 contributes to retinal damage after IR. Methods. Retinal IR injury was induced by unilateral elevation of intraocular pressure and the level of Hmgb1 in vitreous humor was analyzed 24 hours after reperfusion. To test the functional significance of Hmgb1 release, ischemic or normal retinas were treated with the neutralizing anti-Hmgb1 antibody or recombinant Hmgb1 protein respectively. To elucidate in which cell type Hmgb1 exerts its effect, primary retinal ganglion cell (RGC) cultures and glia RGC cocultures were treated with Hmgb1. To clarify the downstream signaling pathways involved in Hmgb1-induced effects in the ischemic retina, receptor for advanced glycation end products (Rage)-deficient mice (RageKO) were used. Results. Hmgb1 is accumulated in the vitreous humor 24 hours after IR. Inhibition of Hmgb1 activity with neutralizing antibody significantly decreased retinal damage after IR, whereas treatment of retinas or retinal cells with Hmgb1 induced a loss of RGCs. The analysis of RageKO versus wild-type mice showed significantly reduced expression of proinflammatory genes 24 hours after reperfusion and significantly increased survival of ganglion cell layer neurons 7 days after IR injury. Conclusions. These results suggest that an increased level of Hmgb1 and signaling via the Rage contribute to neurotoxicity after retinal IR injury. PMID:21828158

  10. Enhanced Endothelin-1 Mediated Vasoconstriction of the Ophthalmic Artery May Exacerbate Retinal Damage after Transient Global Cerebral Ischemia in Rat

    PubMed Central

    Blixt, Frank W.; Johansson, Sara Ellinor; Johnson, Leif; Haanes, Kristian Agmund; Warfvinge, Karin; Edvinsson, Lars

    2016-01-01

    Cerebral vasculature is often the target of stroke studies. However, the vasculature supplying the eye might also be affected by ischemia. The aim of the present study was to investigate if the transient global cerebral ischemia (GCI) enhances vascular effect of endothelin-1 (ET-1) and 5-hydroxytryptamine/serotonin (5-HT) on the ophthalmic artery in rats, leading to delayed retinal damage. This was preformed using myography on the ophthalmic artery, coupled with immunohistochemistry and electroretinogram (ERG) to assess the ischemic consequences on the retina. Results showed a significant increase of ET-1 mediated vasoconstriction at 48 hours post ischemia. The retina did not exhibit any morphological changes throughout the study. However, we found an increase of GFAP and vimentin expression at 72 hours and 7 days after ischemia, indicating Müller cell mediated gliosis. ERG revealed significantly decreased function at 72 hours, but recovered almost completely after 7 days. In conclusion, we propose that the increased contractile response via ET-1 receptors in the ophthalmic artery after 48 hours may elicit negative retinal consequences due to a second ischemic period. This may exacerbate retinal damage after ischemia as illustrated by the decreased retinal function and Müller cell activation. The ophthalmic artery and ET-1 mediated vasoconstriction may be a valid and novel therapeutic target after longer periods of ischemic insults. PMID:27322388

  11. One of the most urgent vascular circumstances: Acute limb ischemia

    PubMed Central

    Sahin, Muslum; Kirma, Cevat

    2013-01-01

    Acute limb ischemia is a sudden decrease in limb perfusion that threatens limb viability and requires urgent evaluation and management. Most of the causes of acute limb ischemia are thrombosis of a limb artery or bypass graft, embolism from the heart or a disease artery, dissection, and trauma. Assessment determines whether the limb is viable or irreversibly damaged. Prompt diagnosis and revascularization by means of catheter-based thrombolysis or thrombectomy and by surgery reduce the risk of limb loss and mortality. Amputation is performed in patients with irreversible damage. Despite urgent revascularization, amputation rate is 10%–15% in patients during hospitalization, mostly above the knee, and mortality within 1 year is 10%–15% due to the coexisting conditions. PMID:26770694

  12. Neuroprotection from Retinal Ischemia/Reperfusion Injury by NOX2 NADPH Oxidase Deletion

    PubMed Central

    Yokota, Harumasa; Narayanan, Subhadra P.; Zhang, Wenbo; Liu, Hua; Rojas, Modesto; Xu, Zhimin; Lemtalsi, Tahira; Nagaoka, Taiji; Yoshida, Akitoshi; Brooks, Steven E.; Caldwell, Robert W.

    2011-01-01

    Purpose. The aim of this study was to determine whether NOX2, one of the homologs of NADPH oxidase, plays a role in neuronal cell death during retinal ischemia. Methods. Ischemia reperfusion (I/R) injury was generated in C57/BL6 and NOX2−/− mice by increasing the intraocular pressure (IOP) to 110 mm Hg for 40 minutes followed by reperfusion. Quantitative PCR and Western blot analysis were performed to measure NOX2 expression. Reactive oxygen species (ROS) formation was assessed by dihydroethidium imaging of superoxide formation and Western blot analysis for tyrosine nitration. TUNEL assay was performed to determine cell death at 3 days after I/R. Survival of neurons within the ganglion cell layer (GCL) was assessed at 7 days after I/R by confocal morphometric imaging of retinal wholemounts immunostained with NeuN antibody. Activation of mitogen-activated protein kinases and nuclear factor κB (NF-κΒ) was measured by Western blot analysis. Results. NOX2 mRNA and protein and ROS were significantly increased in wild-type I/R retinas. This effect was associated with a 60% decrease in the number of GCL neurons and a 10-fold increase in TUNEL-positive cells compared with the fellow sham control eyes. Phosphorylation of ERK and NF-κB was significantly increased in wild-type I/R retinas. Each of these effects was markedly attenuated in the NOX2−/− retina (P < 0.01). Conclusions. These data demonstrate that the deletion of NOX2 can reduce I/R-induced cell death and preserve retinal GCL neurons after I/R injury. The neuronal cell injury caused by I/R is associated with the activation of ERK and NF-κB signaling mechanisms. PMID:21917939

  13. Progressive morphological changes and impaired retinal function associated with temporal regulation of gene expression after retinal ischemia/reperfusion injury in mice

    PubMed Central

    2013-01-01

    Retinal ischemia/reperfusion (I/R) injury is an important cause of visual impairment. However, questions remain on the overall I/R mechanisms responsible for progressive damage to the retina. In this study, we used a mouse model of I/R and characterized the pathogenesis by analyzing temporal changes of retinal morphology and function associated with changes in retinal gene expression. Transient ischemia was induced in one eye of C57BL/6 mice by raising intraocular pressure to 120 mmHg for 60 min followed by retinal reperfusion by restoring normal pressure. At various time points post I/R, retinal changes were monitored by histological assessment with H&E staining and by SD-OCT scanning. Retinal function was also measured by scotopic ERG. Temporal changes in retinal gene expression were analyzed using cDNA microarrays and real-time RT-PCR. In addition, retinal ganglion cells and gliosis were observed by immunohistochemistry. H&E staining and SD-OCT scanning showed an initial increase followed by a significant reduction of retinal thickness in I/R eyes accompanied with cell loss compared to contralateral control eyes. The greatest reduction in thickness was in the inner plexiform layer (IPL) and inner nuclear layer (INL). Retinal detachment was observed at days 3 and 7 post- I/R injury. Scotopic ERG a- and b-wave amplitudes and implicit times were significantly impaired in I/R eyes compared to contralateral control eyes. Microarray data showed temporal changes in gene expression involving various gene clusters such as molecular chaperones and inflammation. Furthermore, immunohistochemical staining confirmed Müller cell gliosis in the damaged retinas. The time-dependent changes in retinal morphology were significantly associated with functional impairment and altered retinal gene expression. We demonstrated that I/R-mediated morphological changes the retina closely associated with functional impairment as well as temporal changes in retinal gene expression. Our

  14. Herbal compound Naoshuantong capsule attenuates retinal injury in ischemia/reperfusion rat model by inhibiting apoptosis

    PubMed Central

    Huang, Chuangxin; Gao, Yang; Yu, Qiang; Feng, Liangqi

    2015-01-01

    Objectives: Ischemic ophthalmopathy threatens people’s lives and health. The herbal compound medication, Naoshuantong capsule, plays a critical role in the treatment of cardiac-cerebral vascular diseases; however, the roles and mechanisms of action of Naoshuantong capsule in ischemic ophthalmopathy is unknown. The objective of the present study was to determine the effect and mechanism of action of Naoshuantong capsule on ischemic ophthalmopathy in rats. Methods: In this study a rat model of ischemic ophthalmopathy was constructed using a high intra-ocular pressure-induced ischemia/reperfusion model. The effects of Naoshuantong capsule on ischemic ophthalmopathy were detected using electroretinography, and changes in retinal ultrastructure were examined by HE staining and electron microscopy. The mechanism of action of Naoshuantong capsule on ischemic ophthalmopathy was explored by immunofluorescence and real-time PCR. Results: Rat models of ischemic ophthalmopathy were successfully constructed by intra-ocular hypertension, which presented decreased amplitudes of the electroretinogram (ERG-b) wave and total retinal thickness, intracellular damage, increased expression of Bax and caspase 3, and decreased expression of Bcl-2. Treatment with Naoshuantong capsule attenuated the changes and damage to the ischemic retina in the rat model, inhibited the over-expression of Bax and caspase 3, and increased the expression of Bcl-2. Conclusion: Our study indicated that Naoshuantong capsule attenuates retinal damage in rat models of ischemic ophthalmopathy, possibly by inhibiting apoptosis. PMID:26550135

  15. Clinical Manifestation of Self-Limiting Acute Retinal Necrosis

    PubMed Central

    Brydak-Godowska, Joanna; Borkowski, Piotr; Szczepanik, Szymon; Moneta-Wielgoś, Joanna; Kęcik, Dariusz

    2014-01-01

    Background The purpose of this paper was to present a case series of self-limiting, peripheral acute retinal necrosis and to demonstrate efficacy of treatment with valacyclovir in patients resistant to acyclovir. The diagnosis was made on ophthalmoscopic examination and positive serum tests for herpes viruses. Material/Methods Ten patients (6F and 4M) aged 19–55 years were diagnosed and treated for self-limiting acute retinal necrosis (ARN). The following endpoints were reported: visual outcomes, clinical features, disease progression, treatment, and complications. Patients received only symptomatic treatment because they did not consent to vitreous puncture. Results Peripheral, mild retinitis was diagnosed in all eyes at baseline. Initially, all patients were treated with systemic acyclovir (800 mg, 5 times a day), prednisone (typically 40–60 mg/day), and aspirin in an outpatient setting. In 6 patients, treatment was discontinued at 6 months due to complete resolution of the inflammatory process. Four patients with immune deficiency showed signs and symptoms of chronic inflammation. Two patients did not respond to acyclovir (2 non-responders); however, those patients were successfully treated with valacyclovir. Complete resolution of inflammatory lesions was observed in 8 patients. In 2 patients, the disease progressed despite treatment – 1 female patient after kidney transplant who stopped the prescribed medications, and 1 male patient with SLE and antiphospholipid syndrome who experienced breakthrough symptoms on-treatment. He died due to cerebral venous sinus thrombosis. Neurological complications (encephalitis and meningitis) were observed in 2 female patients. Prophylactic laser photocoagulation was performed in 1 subject. Conclusions A series of cases of self-limiting acute retinal necrosis (ARN) is presented. This clinical form of ARN can resemble toxoplasmic retinitis in some cases. Oral antiviral medications provide an effective alternative to

  16. Emerging concepts in the management of acute retinal necrosis.

    PubMed

    Wong, Robert William; Jumper, J Michael; McDonald, H Richard; Johnson, Robert N; Fu, Arthur; Lujan, Brandon J; Cunningham, Emmett T

    2013-05-01

    Acute retinal necrosis (ARN), also known as Kirisawa-type uveitis, is an uncommon condition caused by infection of the retina by one of the herpes family of viruses, most typically varicella zoster virus or herpes simplex virus and less commonly cytomegalovirus. Clinical diagnosis can be challenging and is often aided by PCR-based analysis of ocular fluids. Treatment typically involves extended use of one or more antiviral agents. Long term retinal detachment risk is high. We review the literature on ARN and present an approach to the diagnosis and management of this serious condition. PMID:23235944

  17. Nonlinear Dynamic Theory of Acute Cell Injuries and Brain Ischemia

    NASA Astrophysics Data System (ADS)

    Taha, Doaa; Anggraini, Fika; Degracia, Donald; Huang, Zhi-Feng

    2015-03-01

    Cerebral ischemia in the form of stroke and cardiac arrest brain damage affect over 1 million people per year in the USA alone. In spite of close to 200 clinical trials and decades of research, there are no treatments to stop post-ischemic neuron death. We have argued that a major weakness of current brain ischemia research is lack of a deductive theoretical framework of acute cell injury to guide empirical studies. A previously published autonomous model based on the concept of nonlinear dynamic network was shown to capture important facets of cell injury, linking the concept of therapeutic to bistable dynamics. Here we present an improved, non-autonomous formulation of the nonlinear dynamic model of cell injury that allows multiple acute injuries over time, thereby allowing simulations of both therapeutic treatment and preconditioning. Our results are connected to the experimental data of gene expression and proteomics of neuron cells. Importantly, this new model may be construed as a novel approach to pharmacodynamics of acute cell injury. The model makes explicit that any pro-survival therapy is always a form of sub-lethal injury. This insight is expected to widely influence treatment of acute injury conditions that have defied successful treatment to date. This work is supported by NIH NINDS (NS081347) and Wayne State University President's Research Enhancement Award.

  18. Hybrid procedures for acute limb ischemia.

    PubMed

    de Donato, G; Setacci, F; Sirignano, P; Galzerano, G; Raucci, A; Palasciano, G; Setacci, C

    2010-12-01

    The most efficient treatment for acute arterial embolism is operative embolectomy using Fogarty's balloon catheter, especially if a single large artery is involved. Unfortunately, although the early surgical success of arterial thromboembolectomy often seems acceptable, the early clinical outcome still remains unsatisfactory. This may be related to the incomplete restoration of perfusion (i.e., residual thrombus in distal vessels not reached by the balloon catheter thromboembolectomy), propagation of residual thrombi or presence of underlying steno-occlusive lesions. In such a situation a meticulous intraoperative assessment of the adequacy of clot removal is decisive. Residual thrombus, chronic atherosclerotic disease and even vessel injuries secondary to balloon catheter passage can be corrected by endovascular techniques (hybrid procedures). The combination of surgical and endovascular options may overcome the limitations that characterize the traditional approach, and it is likely that in the future many treatments will be a mix of techniques that can be performed by vascular surgeons in the operating room or in a dedicated endovascular suite. This review article summarizes the hybrid treatment options for acute arterial occlusion caused by either embolism or local thrombosis. PMID:21124280

  19. Hybrid procedures for acute limb ischemia.

    PubMed

    Setacci, C; De Donato, G; Setacci, F; Sirignano, P; Galzerano, G

    2012-02-01

    The most efficient treatment for acute arterial embolism is operative embolectomy using Fogarty's balloon catheter, especially if a single large artery is involved. Unfortunately, although the early surgical success of arterial thromboembolectomy often seems acceptable, the early clinical outcome still remains unsatisfactory. This may be related to the incomplete restoration of perfusion (i.e. residual thrombus in distal vessels not reached by the balloon catheter thromboembolectomy), propagation of residual thrombi or presence of underlying steno-occlusive lesions. In such a situation a meticulous intraoperative assessment of the adequacy of clot removal is decisive. Residual thrombus, chronic atherosclerotic disease and even vessel injuries secondary to balloon catheter passage can be corrected by endovascular techniques (hybrid procedures). The combination of surgical and endovascular options may overcome the limitations that characterize the traditional approach, and it is likely that in the future many treatments will be a mix of techniques that can be performed by vascular surgeons in the operating room or in a dedicated endovascular suite. This review article summarizes the hybrid treatment options for acute arterial occlusion caused by either embolism or local thrombosis. PMID:22433732

  20. Thallium-201 myocardial scintigraphy in acute myocardial infarction and ischemia

    SciTech Connect

    Wackers, F.J.

    1982-04-01

    Thallium-201 scintigraphy provides a sensitive and reliable method of detecting acute myocardial infarction and ischemia when imaging is performed with understanding of the temporal characteristics and accuracy of the technique. The results of scintigraphy are related to the time interval between onset of symptoms and time of imaging. During the first 6 hr after chest pain almost all patients with acute myocardial infarction and approximately 50% of the patients with unstable angina will demonstrate /sup 201/TI pefusion defects. Delayed imaging at 2-4 hr will permit distinction between ischemia and infarction. In patients with acute myocardial infarction, the size of the perfusion defect accurately reflects the extent of the infarcted and/or jeopardized myocardium, which may be used for prognostic stratification. In view of the characteristics of /sup 201/TI scintigraphy, the most practical application of this technique is in patients in whom myocardial infarction has to be ruled out, and for early recognition of patients at high risk for complications.

  1. Adult midgut malrotation presented with acute bowel obstruction and ischemia

    PubMed Central

    Zengin, Akile; Uçar, Bercis İmge; Düzgün, Şükrü Aydın; Bayhan, Zülfü; Zeren, Sezgin; Yaylak, Faik; Şanal, Bekir; Bayhan, Nilüfer Araz

    2016-01-01

    Introduction Intestinal malrotation refers to the partial or complete failure of rotation of midgut around the superior mesenteric vessels in embryonic life. Arrested midgut rotation results due to narrow-based mesentery and increases the risk of twisting midgut and subsequent obstruction and necrosis. Presentation of case 40 years old female patient admitted to emergency service with acute abdomen and computerized tomography scan showed dilated large and small intestine segments with air-fluid levels and twisted mesentery around superior mesenteric artery and vein indicating “whirpool sign”. Discussion Malrotation in adults is a rare cause of midgut volvulus as though it should be considered in differential diagnosis in patients presented with acute abdomen and intestinal ischemia. Even though clinical symptoms are obscure, adult patients usually present with vomiting and recurrent abdominal pain due to chronic partial obstruction. Contrast enhanced radiograph has been shown to be the most accurate method. Typical radiological signs are corkscrew sign, which is caused by the dilatation of various duodenal segments at different levels and the relocation of duodenojejunal junction due to jejunum folding. As malrotation commonly causes intestinal obstruction, patients deserve an elective laparotomy. Conclusion Malrotation should be considered in differential diagnosis in patients presented with acute abdomen and intestinal ischemia. Surgical intervention should be prompt to limit morbidity and mortality. PMID:27015011

  2. Identification of Protein Network Alterations upon Retinal Ischemia-Reperfusion Injury by Quantitative Proteomics Using a Rattus norvegicus Model

    PubMed Central

    Tian, Han; Wang, Leilei; Cai, Ruiqi; Zheng, Ling; Guo, Lin

    2014-01-01

    Retinal ischemia is a common feature associated with several ocular diseases, including diabetic retinopathy. In this study, we investigated the effect of a retinal ischemia and reperfusion (I/R) injury on protein levels via a quantitative shotgun strategy using stable isotope dimethyl labeling combined with LC-MS/MS analysis. Based on the relative quantitation data of 1088 proteins, 234 proteins showed a greater than 1.5-fold change following I/R injury, 194 of which were up-regulated and 40 were down-regulated. Gene ontology analysis revealed that after I/R injury, there was an increase in the metabolic-process related proteins but a decline in cell communication, system process and transport-related proteins. A ribosome protein network and a secreted protein network consisting of many protease inhibitors were identified among the up-regulated proteins, despite a suppression of the mammalian target of rapamycin (mTOR) pathway following the I/R injury. A synaptic-related protein network was found to be significantly down-regulated, implicating a functional reduction of neurons following a retinal I/R injury. Our results provide new systems-biology clues for the study of retinal ischemia. PMID:25549249

  3. Role of C/EBP Homologous Protein in Retinal Ganglion Cell Death After Ischemia/Reperfusion Injury

    PubMed Central

    Nashine, Sonali; Liu, Yang; Kim, Byung-Jin; Clark, Abbot F.; Pang, Iok-Hou

    2015-01-01

    Purpose. To investigate the role of C/EBP homologous protein (CHOP), a proapoptotic protein, and the unfolded protein response (UPR) marker that is involved in endoplasmic reticulum (ER) stress-mediated apoptosis in mouse retinal ganglion cell (RGC) death following ischemia/reperfusion (I/R) injury. Methods. Retinal I/R injury was induced in adult C57BL/6J wild-type (WT) and CHOP knockout (Chop−/−) mice by raising IOP to 120 mm Hg for 60 minutes. Expression of CHOP and other UPR markers was studied by Western blot and immunohistochemistry. Retinal ganglion cell counts were performed in retinal flat mounts stained with an RGC marker. Retinal ganglion cell function was evaluated by scotopic threshold response (STR) electroretinography. Results. In WT mice, retinal CHOP was upregulated by 30% in I/R-injured eyes compared to uninjured eyes 3 days after injury (P < 0.05). Immunohistochemistry confirmed CHOP upregulation specifically in RGCs. CHOP knockout did not affect baseline RGC density or STR amplitude. Ischemia/reperfusion injury decreased RGC densities and STR amplitudes in both WT and Chop−/− mice. However, survival of RGCs in I/R-injured Chop−/− mouse was 48% higher (P < 0.05) than that in I/R-injured WT mouse 3 days after I/R injury. Similarly, RGC density was significantly higher in Chop−/− eyes at 7, 14, and 28 days after I/R injury. Scotopic threshold response amplitudes of Chop−/− mice were significantly higher at 3 and 7 days after I/R than those of WT mice. Conclusions. Absence of CHOP partially protects against RGC loss and reduction in retinal function after I/R injury, indicating that CHOP and, thus, ER stress play an important role in RGC apoptosis in retinal I/R injury. PMID:25414185

  4. Pentoxifylline in ischemia-induced acute kidney injury in rats.

    PubMed

    Okumura, Alice S; Rodrigues, Luiz Erlon; Martinelli, Reinaldo

    2009-01-01

    Ischemia is an important cause of acute kidney injury (AKI). Pentoxifylline has been shown to improve tissue oxygenation and endothelial function and inhibit proinflammatory cytokine production. The aim of this study was to evaluate a possible renal protective effect of pentoxifylline against ischemia by measuring mitochondrial respiratory metabolism as an index of cell damage. Rats were submitted to right nephrectomy. The left kidney was submitted to ischemia by clamping the renal artery for 45 minutes. Immediately after release of the clamp, 1 mL of a solution containing 20 mg of pentoxifylline/mL was injected intravenously, while a control group received 1 mL of normal saline intravenously. Five minutes after the injection, the left kidney was removed, homogenized, and subjected to refrigerated differential centrifugation. Mitochondrial respiratory metabolism was measured polarographically. The mitochondria isolated from the kidneys of saline-treated rats had an endogenous respiration of 9.20 +/- 1.0 etamol O(2)/mg protein/min compared to 8.9 +/- 1.4 etamol O(2)/mg protein/min in the pentoxifylline-treated rats (p > 0.05). When stimulated by sodium succinate, the respiratory metabolism increased in a similar fashion in both groups of animals: 17.9 +/- 2.3 and 18.1 +/- 2.1 etamol O(2)/mg protein/min in the untreated and pentoxifylline-treated groups, respectively (p > 0.05). In the present study, pentoxifylline was not found to exert any protective effect on the kidney. It is possible that at the time of pentoxifylline administration, the mitochondria had already been damaged by the process of ischemia, and its effect may have been insufficient to reverse cell damage. PMID:19925292

  5. Cryopreserved Mesenchymal Stromal Cells Maintain Potency in a Retinal Ischemia/Reperfusion Injury Model: Toward an off-the-shelf Therapy

    PubMed Central

    Gramlich, Oliver W.; Burand, Anthony J.; Brown, Alex J.; Deutsch, Riley J.; Kuehn, Markus H.; Ankrum, James A.

    2016-01-01

    The ability to use mesenchymal stromal cells (MSC) directly out of cryostorage would significantly reduce the logistics of MSC therapy by allowing on-site cryostorage of therapeutic doses of MSC at hospitals and clinics. Such a paradigm would be especially advantageous for the treatment of acute conditions such as stroke and myocardial infarction, which are likely to require treatment within hours after ischemic onset. Recently, several reports have emerged that suggest MSC viability and potency are damaged by cryopreservation. Herein we examine the effect of cryopreservation on human MSC viability, immunomodulatory potency, growth factor secretion, and performance in an ischemia/reperfusion injury model. Using modifications of established cryopreservation methods we developed MSC that retain >95% viability upon thawing, remain responsive to inflammatory signals, and are able to suppress activated human peripheral blood mononuclear cells. Most importantly, when injected into the eyes of mice 3 hours after the onset of ischemia and 2 hours after the onset of reperfusion, cryopreserved performed as well as fresh MSC to rescue retinal ganglion cells. Thus, our data suggests when viability is maintained throughout the cryopreservation process, MSC retain their therapeutic potency in both in vitro potency assays and an in vivo ischemia/reperfusion model. PMID:27212469

  6. Cryopreserved Mesenchymal Stromal Cells Maintain Potency in a Retinal Ischemia/Reperfusion Injury Model: Toward an off-the-shelf Therapy.

    PubMed

    Gramlich, Oliver W; Burand, Anthony J; Brown, Alex J; Deutsch, Riley J; Kuehn, Markus H; Ankrum, James A

    2016-01-01

    The ability to use mesenchymal stromal cells (MSC) directly out of cryostorage would significantly reduce the logistics of MSC therapy by allowing on-site cryostorage of therapeutic doses of MSC at hospitals and clinics. Such a paradigm would be especially advantageous for the treatment of acute conditions such as stroke and myocardial infarction, which are likely to require treatment within hours after ischemic onset. Recently, several reports have emerged that suggest MSC viability and potency are damaged by cryopreservation. Herein we examine the effect of cryopreservation on human MSC viability, immunomodulatory potency, growth factor secretion, and performance in an ischemia/reperfusion injury model. Using modifications of established cryopreservation methods we developed MSC that retain >95% viability upon thawing, remain responsive to inflammatory signals, and are able to suppress activated human peripheral blood mononuclear cells. Most importantly, when injected into the eyes of mice 3 hours after the onset of ischemia and 2 hours after the onset of reperfusion, cryopreserved performed as well as fresh MSC to rescue retinal ganglion cells. Thus, our data suggests when viability is maintained throughout the cryopreservation process, MSC retain their therapeutic potency in both in vitro potency assays and an in vivo ischemia/reperfusion model. PMID:27212469

  7. Treatment of acute limb ischemia with focus on endovascular techniques.

    PubMed

    Zeller, T; Tepe, G

    2009-05-01

    Acute limb ischemia is still the most frequent cause of major limb loss. Timely and fast revascularization is the key for limb salvage and patient survival. Large randomized trials showed equivalency of surgical and endovascular revascularization by means of local lysis with urokinase (TOPAS, STILE). New lytic agents and their modified application such as via a pulse spray catheter or combined with an ultrasound catheter and the combination with glycoprotein IIb/IIIa receptor antagonists have increased the efficacy and speed of thrombolysis. Recently, mechanical thrombectomy devices have become more widespread because intervention time and bleeding complications can be reduced. This review article summarizes the clinical presentation of and the treatment options for acute arterial occlusive disease caused either by embolism or local thrombosis. PMID:19588300

  8. Acute retinal necrosis secondary to herpes simplex virus type 2 with preexisting chorioretinal scarring.

    PubMed

    Moesen, Ingemarie; Khemka, Sneh; Ayliffe, William

    2008-01-01

    Acute retinal necrosis in children is a devastating disease that requires early diagnosis and treatment. The authors describe a rarely reported case of bilateral acute retinal necrosis in a child caused by neonatal herpes simplex virus type 2, where the presence of previous chorioretinal scarring made diagnosis challenging. PMID:18286969

  9. Successful Percutaneous Transluminal Angioplasty and Stenting in Acute Mesenteric Ischemia

    SciTech Connect

    Gartenschlaeger, Soeren Bender, Siegfried; Maeurer, Juergen; Schroeder, Ralf J.

    2008-03-15

    Acute mesenteric ischemia (AMI) is a life-threatening emergency. The complications are high by the time of diagnosis in most cases and therefore only few data on primary percutaneous intervention with percutaneous transluminal angioplasty (PTA) and stenting in AMI are available. We present the case of an 84-year-old woman who presented to our emergency department complaining of an acute worsening of pre-existing abdominal periumbilical pain, nausea, vomiting, and diarrhea. She had previously undergone percutaneous transluminal embolectomy for an acute occlusion of the left common femoral artery. Due to suspicion of intestinal infarction, conventional angiography of the aorta and the superior mesenteric artery (SMA) was performed and confirmed a proximal occlusion of the SMA. Percutaneous SMA recanalization with balloon dilation and subsequent stent implantation was carried out successfully. The abdominal symptoms subsided after this procedure. In AMI that is diagnosed early, endovascular stenting should be considered as an alternative treatment to the surgical approach that avoids the need for surgical bowel resection.

  10. Synergistic protective effects of escin and low‑dose glucocorticoids on blood‑retinal barrier breakdown in a rat model of retinal ischemia.

    PubMed

    Zhang, Fenglan; Li, Yuanbin; Zhang, Leiming; Mu, Guoying

    2013-05-01

    Escin, a natural mixture of triterpenoid saponins isolated from the seed of the horse chestnut (Aesculus hippocastanum), has been demonstrated to possess glucocorticoid (GC)‑like anti‑edematous and anti‑inflammatory effects. The aim of the present study was to investigate whether escin exhibits synergistic protective effects on blood‑retinal barrier (BRB) breakdown when combined with GCs in a rat model of retinal ischemia. Low concentrations of escin and triamcinolone acetonide (TA) alone did not affect BRB permeability. However, when administered together, low‑dose escin and TA significantly reduced BRB permeability following ischemia. Furthermore, low‑dose escin and TA alone did not affect the expression of occludin in the ischemic retina; however, when administered together, they significantly increased occludin expression in the ganglion cell layer of the ischemic retina. This indicates that escin and GCs have synergistic protective effects on BRB breakdown and the molecular mechanisms may be correlated with the upregulation of occludin. Therefore, the administration of escin may allow a reduction in the dose of GCs for the treatment of macular edema. The combination of escin with GCs is potentially a beneficial treatment method for BRB breakdown and warrants further investigation. PMID:23525122

  11. In vivo determination of acute myocardial ischemia based on photoacoustic imaging with a focused transducer

    NASA Astrophysics Data System (ADS)

    Li, Zhifang; Li, Hui; Chen, Haiyu; Xie, Wengming

    2011-07-01

    The location and ischemia extent are two important parameters for evaluating the acute myocardial ischemia (AMI). A focused-transducer-based photoacoustic imaging method was employed to assess time-dependent AMI. Our preliminary results show that the photoacoustic signal could identify the myocardium. The intensity and area of photoacoustic images of myocardium could be used for characterizing the ischemia extent and scope of myocardial ischemia. The results also imply that the intensity and area of photoacoustic images are the rapid fall of an exponential model with an increase of delaying time after the left anterior descending coronary artery (LAD) occlusion. These experimental results were consistent with the clinical characteristics. The findings suggest that the photoacoustic imaging be a potential tool for the real-time assessment of acute myocardial ischemia during surgical operation.

  12. Acute limb ischemia caused by incorrect deployment of a clip-based arterial closure device

    PubMed Central

    Dzieciuchowicz, Łukasz; Stefaniak, Karolina; Oszkinis, Grzegorz

    2016-01-01

    Failure of a vascular closure device most commonly results in a hemorrhage or pseudoaneurysm formation. In this paper a rare case of severe acute limb ischemia following incorrect deployment of a clip-based closure device (Starclose SE, Abbott Vascular) in a 31-year-old woman is presented. Symptoms of acute limb ischemia occurred at the start of the ambulation, 6 h after completion of the procedure. Because of the severity of ischemia the patient was treated surgically, and limb perfusion was successfully restored. An attempt of closure of an inadvertently punctured narrow superficial femoral artery was identified as the cause of this complication. PMID:27458492

  13. Inhibiting Matrix Metalloproteinase 3 Ameliorates Neuronal Loss in the Ganglion Cell Layer of Rats in Retinal Ischemia/Reperfusion.

    PubMed

    Hu, Tu; You, Qiuting; Chen, Dan; Tong, Jianbin; Shang, Lei; Luo, Jia; Qiu, Yi; Yu, Huimin; Zeng, Leping; Huang, Jufang

    2016-05-01

    It has been demonstrated that matrix metalloproteinase 3 (MMP3) is integrally involved in the neuronal degeneration of the central nervous system by promoting glial activation, neuronal apoptosis and damage to the brain-blood barrier. However, whether MMP3 also contributes to the neuronal degeneration induced by retinal ischemia/reperfusion is still uncertain. In the present study, we detected the cellular localization of MMP3 in adult rat retinae and explored the relationship of its expression with neuronal loss in the ganglion cell layer (GCL) in retinal ischemia/reperfusion. We found that MMP3 was widely expressed in many cells throughout the layers of the rat retinae, including Vertebrate neuron-specific nuclear protein (NeuN)-, parvalbumin-, calbindin-, protein kinase C-α-, glial fibrillary acidic protein-, glutamine synthetase- and CD11b-positive cells. Furthermore, all rats were treated with high intraocular pressure (HIOP) for 1 h (h) and sacrificed at 6 h, 1 day (d), 3 d, and 7 d after HIOP. Compared to the normal control, the expression of both proenzyme MMP3 and active MMP3 were significantly up-regulated after HIOP treatment without alteration of the laminar distribution pattern. Moreover, inhibiting MMP3 ameliorated the loss of NeuN-positive cells in the GCL following HIOP. In summary, our data demonstrates that MMP3 is expressed in multiple types of neurons and glial cells in normal rat retinae. Simultaneously, the up-regulation of its expression and activity are closely involved in neuronal loss in the GCL in retinal ischemia/reperfusion. PMID:26830289

  14. Antiviral selection in the management of acute retinal necrosis

    PubMed Central

    Tam, Patrick MK; Hooper, Claire Y; Lightman, Susan

    2010-01-01

    There is no consensus on the optimal antiviral regimen in the management of acute retinal necrosis, a disease caused by herpetic viruses with devastating consequences for the eye. The current gold standard is based on retrospective case series. Because the incidence of disease is low, few well-designed, randomized trials have evaluated treatment dosage and duration. Newer oral antiviral agents are emerging as alternatives to high-dose intravenous acyclovir, avoiding the need for inpatient intravenous treatment. Drug resistance is uncommon but may also be difficult to identify. Antiviral drugs have few side effects, but special attention needs to be paid to patients who have underlying renal disease, are pregnant or are immunocompromised. PMID:20169044

  15. Effect of hydrogen sulfide on inflammatory cytokines in acute myocardial ischemia injury in rats

    PubMed Central

    LIU, FANG; LIU, GUANG-JIE; LIU, NA; ZHANG, GANG; ZHANG, JIAN-XIN; LI, LAN-FANG

    2015-01-01

    Hydrogen sulfide (H2S) is believed to be involved in numerous physiological and pathophysiological processes, and now it is recognized as the third endogenous signaling gasotransmitter, following nitric oxide and carbon monoxide; however, the effects of H2S on inflammatory factors in acute myocardial ischemia injury in rats have not been clarified. In the present study, sodium hydrosulfide (NaHS) was used as the H2S donor. Thirty-six male Sprague Dawley rats were randomly divided into five groups: Sham, ischemia, ischemia + low-dose (0.78 mg/kg) NaHS, ischemia + medium-dose (1.56 mg/kg) NaHS, ischemia + high-dose (3.12 mg/kg) NaHS and ischemia + propargylglycine (PPG) (30 mg/kg). The rats in each group were sacrificed 6 h after the surgery for sample collection. Compared with the ischemia group, the cardiac damage in the rats in the ischemia + NaHS groups was significantly reduced, particularly in the high-dose group; in the ischemia + PPG group, the myocardial injury was aggravated compared with that in the ischemia group. Compared with the ischemia group, the levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) in the serum of rats in the ischemia + medium- and high-dose NaHS groups were significantly reduced, and the expression of intercellular adhesion molecule-1 (ICAM-1) mRNA and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) protein in the myocardial tissues of rats was significantly reduced. In the ischemia + PPG group, the TNF-α, IL-1β and IL-6 levels in the serum were significantly increased, the expression of ICAM-1 mRNA was increased, although without a significant difference, and the expression of NF-κB was increased. The findings of the present study provide novel evidence for the dual effects of H2S on acute myocardial ischemia injury via the modulation of inflammatory factors. PMID:25667680

  16. Compound 49b Restores Retinal Thickness and Reduces Degenerate Capillaries in the Rat Retina following Ischemia/Reperfusion

    PubMed Central

    Liu, Li; Jiang, Youde

    2016-01-01

    We have recently reported that Compound 49b, a novel β-adrenergic receptor agonist, can significantly reduce VEGF levels in retinal endothelial cells (REC) grown in diabetic-like conditions. In this study, we investigated whether Compound 49b could protect the retina under hypoxic conditions using the ischemia-reperfusion (I/R)-induced model in rats, as well REC cultured in hypoxic conditions. Some rats received 1mM topical Compound 49b for the 2 (5 rats each group) or 10 (4 rats in each group) days post-I/R. Analyses for retinal thickness and cell loss in the ganglion cell layer was done at 2 days post-I/R, while numbers of degenerate capillaries and pericyte ghosts were measured at 10 days post-I/R. Additionally, REC were cultured in normal oxygen or hypoxia (5% O2) only or treated with 50 nM Compound 49b for 12 hours. Twelve hours after Compound 49b exposure, cells were collected and analyzed for protein levels of insulin-like growth factor binding protein 3 (IGFBP-3), vascular endothelial cell growth factor (VEGF) and its receptor (KDR), angiopoietin 1 and its receptor Tie2 for Western blotting. Data indicate that exposure to I/R significantly decreased retinal thickness, with increasing numbers of degenerate capillaries and pericyte ghosts. Compound 49b treatment inhibited these retinal changes. In REC cultured in hypoxia, levels of IGFBP-3 were reduced, which were significantly increased by Compound 49b. Hypoxia significantly increased protein levels of VEGF, KDR, Angiopoiein 1, and Tie2, which were reduced following Compound 49b treatment. These data strongly suggested that Compound 49b protected the retina against I/R-induced injury. This provides additional support for a role of β-adrenergic receptor actions in the retina. PMID:27439004

  17. A method and technical equipment for an acute human trial to evaluate retinal implant technology

    NASA Astrophysics Data System (ADS)

    Hornig, Ralf; Laube, Thomas; Walter, Peter; Velikay-Parel, Michaela; Bornfeld, Norbert; Feucht, Matthias; Akguel, Harun; Rössler, Gernot; Alteheld, Nils; Lütke Notarp, Dietmar; Wyatt, John; Richard, Gisbert

    2005-03-01

    This paper reports on methods and technical equipment to investigate the epiretinal stimulation of the retina in blind human subjects in acute trials. Current is applied to the retina through a thin, flexible microcontact film (microelectrode array) with electrode diameters ranging from 50 to 360 µm. The film is mounted in a custom-designed surgical tool that is hand-held by the surgeon during stimulation. The eventual goal of the work is the development of a chronically implantable retinal prosthesis to restore a useful level of vision to patients who are blind with outer retinal degenerations, specifically retinitis pigmentosa and macular degeneration.

  18. A method and technical equipment for an acute human trial to evaluate retinal implant technology.

    PubMed

    Hornig, Ralf; Laube, Thomas; Walter, Peter; Velikay-Parel, Michaela; Bornfeld, Norbert; Feucht, Matthias; Akguel, Harun; Rössler, Gernot; Alteheld, Nils; Lütke Notarp, Dietmar; Wyatt, John; Richard, Gisbert

    2005-03-01

    This paper reports on methods and technical equipment to investigate the epiretinal stimulation of the retina in blind human subjects in acute trials. Current is applied to the retina through a thin, flexible microcontact film (microelectrode array) with electrode diameters ranging from 50 to 360 microm. The film is mounted in a custom-designed surgical tool that is hand-held by the surgeon during stimulation. The eventual goal of the work is the development of a chronically implantable retinal prosthesis to restore a useful level of vision to patients who are blind with outer retinal degenerations, specifically retinitis pigmentosa and macular degeneration. PMID:15876648

  19. Acute Limb Ischemia from Sudden Thrombosis of an Abdominal Aortic Aneurysm

    PubMed Central

    Subram, Aswath N.; Duncan, J. Michael

    1982-01-01

    Thrombosis of a previously undiagnosed aneurysm of the abdominal aorta in a 64-year-old woman resulted in acute and severe ischemia in both legs. Prompt surgical resection of the aneurysm and restoration of aortic continuity with a fabric graft brought about complete resolution of her symptoms, with excellent functional results one year after the operation. Images PMID:15226820

  20. Acute and Chronic Hyperglycemia Elicit JIP1/JNK-Mediated Endothelial Vasodilator Dysfunction of Retinal Arterioles

    PubMed Central

    Hein, Travis W.; Xu, Wenjuan; Xu, Xin; Kuo, Lih

    2016-01-01

    Purpose Hyperglycemia, a hallmark of diabetes mellitus, is associated with retinal inflammation and impairment of endothelium-dependent nitric oxide (NO)–mediated dilation of retinal arterioles. However, molecular mechanisms involved in this diminished endothelial vasodilator function remain unclear. We examined whether inflammatory stress-activated kinases, c-Jun N-terminal kinase (JNK) and p38, contribute to retinal arteriolar dysfunction during exposure to acute and chronic hyperglycemia. Methods Retinal arterioles were isolated from streptozocin-induced diabetic pigs (2 weeks; chronic hyperglycemia, 471 ± 23 mg/dL) or age-matched control pigs (euglycemia, 79 ± 5 mg/dL), and then cannulated and pressurized for vasoreactivity study. For acute hyperglycemia study, vessels from nondiabetic pigs were exposed intraluminally to high glucose (25 mM ≈ 450 mg/dL) for 2 hours, and normal glucose (5 mM ≈ 90 mg/dL) served as the control. Results Endothelium-dependent vasodilation to bradykinin was reduced in a similar manner after exposure to acute or chronic hyperglycemia. Administration of NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) nearly abolished vasodilations either in control (euglycemia and normal glucose) or hyperglycemic (acute and chronic) vessels. Treatment of either acute or chronic hyperglycemic vessels with JNK inhibitor SP600125 or JNK-interacting protein-1 (JIP1) inhibitor BI-78D3, but not p38 inhibitor SB203580, preserved bradykinin-induced dilation in an L-NAME–sensitive manner. By contrast, endothelium-independent vasodilation to sodium nitroprusside was unaffected by acute or chronic hyperglycemia. Conclusions Activation of JIP1/JNK signaling in retinal arterioles during exposure to acute or chronic hyperglycemia leads to selective impairment of endothelium-dependent NO-mediated dilation. Therapeutic targeting of the vascular JNK pathway may improve retinal endothelial vasodilator function during early diabetes. PMID

  1. Association between retinal hemorrhagic pattern and macular perfusion status in eyes with acute branch retinal vein occlusion

    PubMed Central

    Muraoka, Yuki; Uji, Akihito; Tsujikawa, Akitaka; Murakami, Tomoaki; Ooto, Sotaro; Suzuma, Kiyoshi; Takahashi, Ayako; Iida, Yuto; Miwa, Yuko; Hata, Masayuki; Yoshimura, Nagahisa

    2016-01-01

    This prospective study included 63 eyes with acute branch retinal vein occlusion (BRVO) to evaluate the retinal hemorrhagic patterns at the posterior poles and explore their clinical relevance in macular perfusion differentiation. Retinal hemorrhagic patterns and macular perfusion status were evaluated via fundus photography and fluorescein angiography, respectively. Macular perfusion was judged as nonischemic in 30, ischemic in 28, and undeterminable in 5 among the 63 eyes. Predominant hemorrhagic patterns were flame-shaped in 39 (67.2%) and non-flame-shaped in 19 (32.8%) eyes. All 39 eyes with a flame-shaped hemorrhage showed a nonischemic macula. Of the 19 eyes classified as having a non-flame-shaped hemorrhage, 13 (68.4%) had an ischemic macula and 6 (31.6%) had a nonischemic macula (P < 0.001). Parallelism in eyes with a flame-shaped hemorrhage was higher than in those with a non-flame-shaped hemorrhage (P < 0.001), and in those with a nonischemic macula versus those with an ischemic macula (P < 0.001). The area under the curve for parallelism was 0.975 (P < 0.001), suggesting an accurate diagnostic parameter for macular perfusion differentiation. In conclusion, we objectively evaluated retinal hemorrhagic patterns at the posterior pole in BRVO using the parallelism method, which was useful in differentiating macular perfusion status. PMID:27334338

  2. Effects of curcumin on interleukin-23 and interleukin-17 expression in rat retina after retinal ischemia-reperfusion injury

    PubMed Central

    Zhang, Hai-Jiang; Xing, Yi-Qiao; Jin, Wei; Li, Dai; Wu, Kaili; Lu, Yi

    2015-01-01

    Objective: This study aimed to investigate the effect of curcumin on the retinal structure and the expressions of interleukin-23 (IL-23) and IL-17 in the rat retina after retinal ischemia-reperfusion injury (RIRI). Methods: 150 Sprague-Dawley rats were randomly divided into RIRI group (MG), low-dose curcumin group (LDCG) and high-dose curcumin group (HDCG), (n = 50 per group). RIRI was generated by anterior chamber perfusion of normal saline to the right eye. The left eye served as a normal control group (NCG). Rats in LDCG and HDCG received an intraperitoneal injection of 20 mg/kg/d and 100 mg/kg/d curcumin respectively, at 30 min before RIRI and once daily after RIRI. Results: The morphological changes in HDCG group were improved as compared to MG and LDCG groups. Immunohistochemistry showed that IL-23 and IL-17 were mainly expressed in the ganglion cell layer and the inner nuclear layer of the retina. Low IL-23 and IL-17 expressions were observed in NCG, but increased significantly in MG and LDCG groups. Western blot assay and ELISA also showed that IL-23 and IL-17 expressions increased significantly after RIRI (vs. NCG, P<0.01). Moreover, the IL-23 expression reached a peak at 24 h, whereas IL-17 expression peaked at 72 h after RIRI. Curcumin reduced IL-23 and IL-17 expressions significantly in a dose-dependent manner (vs. MG, P<0.01). Conclusion: The IL-23 and IL-17 expressions increase after RIRI and curcumin significantly reduces retinal IL-23 and IL-17 expressions in a dose-dependent manner and is able to prevent the RIRI induced damage to the retina. PMID:26464670

  3. Comparison of pre-treatment and post-treatment use of selenium in retinal ischemia reperfusion injury

    PubMed Central

    Yazici, Alper; Aksit, Hasan; Sari, Esin Sogutlu; Yay, Arzu; Erken, Haydar Ali; Aksit, Dilek; Cakmak, Harun; Seyrek, Kamil; Ermis, Sitki Samet

    2015-01-01

    AIM To investigate the effects of selenium in rat retinal ischemia reperfusion (IR) model and compare pre-treatment and post-treatment use. METHODS Selenium pre-treatment group (n=8) was treated with intraperitoneal (i.p.) selenium 0.5 mg/kg for 7d and terminated 24h after the IR injury. Selenium post-treatment group (n=8) was treated with i.p. selenium 0.5 mg/kg for 7d after the IR injury with termination at the end of the 7d period. Sham group (n=8) received i.p. saline injections identical to the selenium volume for 7d with termination 24h after the IR injury. Control group (n=8) received no intervention. Main outcome measures were retina superoxide dismutase (SOD), glutathione (GSH), total antioxidant status (TAS), malondialdehyde (MDA), DNA fragmentation levels, and immunohistological apoptosis evaluation. RESULTS Compared to the Sham group, selenium pre-treatment had a statistical difference in all parameters except SOD. Post-treatment selenium also resulted in statistical differences in all parameters except the MDA levels. When comparing selenium groups, the pre-treatment selenium group had a statistically higher success in reduction of markers of cell damage such as MDA and DNA fragmentation. In contrast, the post-selenium treatment group had resulted in statistically higher levels of GSH. Histologically both selenium groups succeeded to limit retinal thickening and apoptosis. Pre-treatment use was statistically more successful in decreasing apoptosis in ganglion cell layer compared to post-treatment use. CONCLUSION Selenium was successful in retinal protection in IR injuries. Pre-treatment efficacy was superior in terms of prevention of tissue damage and apoptosis. PMID:25938038

  4. Argon Inhalation Attenuates Retinal Apoptosis after Ischemia/Reperfusion Injury in a Time- and Dose-Dependent Manner in Rats

    PubMed Central

    Ulbrich, Felix; Schallner, Nils; Coburn, Mark; Loop, Torsten; Lagrèze, Wolf Alexander; Biermann, Julia; Goebel, Ulrich

    2014-01-01

    Purpose Retinal ischemia and reperfusion injuries (IRI) permanently affect neuronal tissue and function by apoptosis and inflammation due to the limited regenerative potential of neurons. Recently, evidence emerged that the noble gas Argon exerts protective properties, while lacking any detrimental or adverse effects. We hypothesized that Argon inhalation after IRI would exert antiapoptotic effects in the retina, thereby protecting retinal ganglion cells (RGC) of the rat's eye. Methods IRI was performed on the left eyes of rats (n = 8) with or without inhaled Argon postconditioning (25, 50 and 75 Vol%) for 1 hour immediately or delayed after ischemia (i.e. 1.5 and 3 hours). Retinal tissue was harvested after 24 hours to analyze mRNA and protein expression of Bcl-2, Bax and Caspase-3, NF-κB. Densities of fluorogold-prelabeled RGCs were analyzed 7 days after injury in whole-mounts. Histological tissue samples were prepared for immunohistochemistry and blood was analyzed regarding systemic effects of Argon or IRI. Statistics were performed using One-Way ANOVA. Results IRI induced RGC loss was reduced by Argon 75 Vol% inhalation and was dose-dependently attenuated by lower concentrations, or by delayed Argon inhalation (1504±300 vs. 2761±257; p<0.001). Moreover, Argon inhibited Bax and Bcl-2 mRNA expression significantly (Bax: 1.64±0.30 vs. 0.78±0.29 and Bcl-2: 2.07±0.29 vs. 0.99±0.22; both p<0.01), as well as caspase-3 cleavage (1.91±0.46 vs. 1.05±0.36; p<0.001). Expression of NF-κB was attenuated significantly. Immunohistochemistry revealed an affection of Müller cells and astrocytes. In addition, IRI induced leukocytosis was reduced significantly after Argon inhalation at 75 Vol%. Conclusion Immediate and delayed Argon postconditioning protects IRI induced apoptotic loss of RGC in a time- and dose-dependent manner, possibly mediated by the inhibition of NF-κB. Further studies need to evaluate Argon's possible role as a therapeutic option. PMID

  5. Alterations in protein expression and membrane properties during Müller cell gliosis in a murine model of transient retinal ischemia.

    PubMed

    Hirrlinger, Petra G; Ulbricht, Elke; Iandiev, Ianors; Reichenbach, Andreas; Pannicke, Thomas

    2010-03-12

    Retinal Müller glial cells are involved in K+ ion homeostasis of the tissue. Inwardly rectifying K(+) (Kir) channels play a decisive role in the process of spatial K+ buffering. It has been demonstrated that Kir-mediated currents of Müller cells are downregulated in various cases of retinal neurodegeneration. However, this has not yet been verified for any murine animal model. The aim of the present study was to investigate Müller cells after transient retinal ischemia in mice. High intraocular pressure was applied for 1h; the retina was analysed 1 week later. We studied protein expression in the tissue by immunohistochemistry, and membrane currents of isolated cells by patch-clamp experiments. We found the typical indicators of reactive gliosis such as upregulation of glial fibrillary acidic protein. Moreover, the membrane capacitance of isolated Müller cells was increased and the amplitudes of Kir-mediated currents were slightly, but significantly decreased. This murine high intraocular pressure model of transient retinal ischemia is proposed as a versatile tool for further studies on Müller cell functions in retinal degeneration. PMID:20132867

  6. Comparison of minimum-norm estimation and beamforming in electrocardiography with acute ischemia.

    PubMed

    Konttila, Teijo; Mäntynen, Ville; Stenroos, Matti

    2014-04-01

    In the electrocardiographic (ECG) inverse problem, the electrical activity of the heart is estimated from measured electrocardiogram. A model of thorax conductivities and a model of the cardiac generator is required for the ECG inverse problem. Limitations and errors in methods, models, and data will lead to errors in the estimates. However, in experimental applications, the use of limited or erroneous models is often inevitable due to necessary model simplifications and the difficulty of obtaining accurate 3D anatomical imaging data. In this work, we focus on two methods for solving the inverse problem of ECG in the case of acute ischemia: minimum-norm (MN) estimation and linearly constrained minimum-variance beamforming. We study how these methods perform with different sizes of ischemia and with erroneous conductivity models. The results indicate that the beamformer can localize small ischemia given an accurate model, but it cannot be used for estimating the size of ischemia. The MN estimator is tolerant to geometry errors and excels in estimating the size of ischemia, although the beamformer performs better with accurate model and small ischemia. PMID:24621883

  7. Investigation of ischemia modified albumin, oxidant and antioxidant markers in acute myocardial infarction

    PubMed Central

    Hazini, Ahmet; Işıldak, İbrahim; Alpdağtaş, Saadet; Önül, Abdullah; Şenel, Ünal; Kocaman, Tuba; Dur, Ali; Iraz, Mustafa; Uyarel, Hüseyin

    2015-01-01

    Introduction Acute myocardial infarction (AMI) is still one of the most common causes of death worldwide. In recent years, for diagnosis of myocardial ischemia, a new parameter, called ischemia modified albumin (IMA), which is thought to be more advantageous than common methods, has been researched. Aim In this study, systematic analysis of parameters considered to be related to myocardial ischemia has been performed, comparing between control and myocardial ischemia groups. Material and methods We selected 40 patients with AMI and 25 healthy controls for this study. Ischemia modified albumin levels, glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) antioxidant enzyme activities and non-enzymatic antioxidants such as retinol, α-tocopherol, β-carotene and ascorbic acid levels were investigated in both groups. Glutathione (GSH) and malondialdehyde (MDA) levels, which are indicators of oxidative stress, were compared between patient and control groups. Results Ischemia modified albumin levels were found significantly higher in the AMI diagnosed group when compared with controls. The MDA level was elevated in the patient group, whereas the GSH level was decreased. SOD, GPx and CAT enzyme levels were decreased in the patient group, where it could be presumed that oxidative stress causes the cardiovascular diseases. Conclusions Due to the increased oxidative stress, non-enzymatic and enzymatic antioxidant capacity was affected. Systematic investigation of parameters related to myocardial infarction has been performed, and it is believed that such parameters can contribute to protection and early diagnosis of AMI and understanding the mechanism of development of the disease. PMID:26677379

  8. Depressive Symptoms Are Associated with Mental Stress-Induced Myocardial Ischemia after Acute Myocardial Infarction

    PubMed Central

    Wei, Jingkai; Pimple, Pratik; Shah, Amit J.; Rooks, Cherie; Bremner, J. Douglas; Nye, Jonathon A.; Ibeanu, Ijeoma; Murrah, Nancy; Shallenberger, Lucy; Raggi, Paolo; Vaccarino, Viola

    2014-01-01

    Objectives Depression is an adverse prognostic factor after an acute myocardial infarction (MI), and an increased propensity toward emotionally-driven myocardial ischemia may play a role. We aimed to examine the association between depressive symptoms and mental stress-induced myocardial ischemia in young survivors of an MI. Methods We studied 98 patients (49 women and 49 men) age 38–60 years who were hospitalized for acute MI in the previous 6 months. Patients underwent myocardial perfusion imaging at rest, after mental stress (speech task), and after exercise or pharmacological stress. A summed difference score (SDS), obtained with observer-independent software, was used to quantify myocardial ischemia under both stress conditions. The Beck Depression Inventory-II (BDI-II) was used to measure depressive symptoms, which were analyzed as overall score, and as separate somatic and cognitive depressive symptom scores. Results There was a significant positive association between depressive symptoms and SDS with mental stress, denoting more ischemia. After adjustment for demographic and lifestyle factors, disease severity and medications, each incremental depressive symptom was associated with 0.14 points higher SDS. When somatic and cognitive depressive symptoms were examined separately, both somatic [β = 0.17, 95% CI: (0.04, 0.30), p = 0.01] and cognitive symptoms [β = 0.31, 95% CI: (0.07, 0.56), p = 0.01] were significantly associated with mental stress-induced ischemia. Depressive symptoms were not associated with ischemia induced by exercise or pharmacological stress. Conclusion Among young post-MI patients, higher levels of both cognitive and somatic depressive symptoms are associated with a higher propensity to develop myocardial ischemia with mental stress, but not with physical (exercise or pharmacological) stress. PMID:25061993

  9. Involvement of All-trans-retinal in Acute Light-induced Retinopathy of Mice*S⃞

    PubMed Central

    Maeda, Akiko; Maeda, Tadao; Golczak, Marcin; Chou, Steven; Desai, Amar; Hoppel, Charles L.; Matsuyama, Shigemi; Palczewski, Krzysztof

    2009-01-01

    Exposure to bright light can cause visual dysfunction and retinal photoreceptor damage in humans and experimental animals, but the mechanism(s) remain unclear. We investigated whether the retinoid cycle (i.e. the series of biochemical reactions required for vision through continuous generation of 11-cis-retinal and clearance of all-trans-retinal, respectively) might be involved. Previously, we reported that mice lacking two enzymes responsible for clearing all-trans-retinal, namely photoreceptor-specific ABCA4 (ATP-binding cassette transporter 4) and RDH8 (retinol dehydrogenase 8), manifested retinal abnormalities exacerbated by light and associated with accumulation of diretinoid-pyridinium-ethanolamine (A2E), a condensation product of all-trans-retinal and a surrogate marker for toxic retinoids. Now we show that these mice develop an acute, light-induced retinopathy. However, cross-breeding these animals with lecithin:retinol acyltransferase knock-out mice lacking retinoids within the eye produced progeny that did not exhibit such light-induced retinopathy until gavaged with the artificial chromophore, 9-cis-retinal. No significant ocular accumulation of A2E occurred under these conditions. These results indicate that this acute light-induced retinopathy requires the presence of free all-trans-retinal and not, as generally believed, A2E or other retinoid condensation products. Evidence is presented that the mechanism of toxicity may include plasma membrane permeability and mitochondrial poisoning that lead to caspase activation and mitochondria-associated cell death. These findings further understanding of the mechanisms involved in light-induced retinal degeneration. PMID:19304658

  10. Baicalein Protects Against Retinal Ischemia by Antioxidation, Antiapoptosis, Downregulation of HIF-1α, VEGF, and MMP-9 and Upregulation of HO-1

    PubMed Central

    Chuang, Min-Jay; Liu, Xiao-Qian; Ho, Li-Kang; Pan, Wynn H.T.; Zhang, Xiu-Mei; Liu, Chi-Ming; Tsai, Shen-Kou; Kong, Chi-Woon; Lee, Shou-Dong; Chen, Mi-Mi; Chao, Fang-Ping

    2013-01-01

    Abstract Purpose Retinal ischemia-associated ocular disorders are vision threatening. This study examined whether the flavonoid baicalein is able to protect against retinal ischemia/reperfusion. Methods Using rats, the intraocular pressure was raised to 120 mmHg for 60 min to induce retinal ischemia. In vitro, an ischemic-like insult, namely oxidative stress, was established by incubating dissociated retinal cells with 100 μM ascorbate and 5 μM FeSO4 (iron) for 1 h. The rats or the dissociated cells had been pretreated with baicalein (in vivo: 0.05 or 0.5 nmol; in vitro: 100 μM), vehicle (1% ethanol), or trolox (in vivo: 5 nmol; in vitro: 100 μM or 1 mM). The effects of these treatments on the retina or the retinal cells were evaluated by electrophysiology, immunohistochemistry, terminal deoxynucleotidyl-transferase-mediated dUTP nick end-labeling (TUNEL) staining, Western blotting, or in vitro dichlorofluorescein assay. In addition, real-time-polymerase chain reaction was used to assess the retinal expression of hypoxia-inducible factor-1α (HIF-1α), matrix metalloproteinase-9 (MMP-9), vascular endothelium growth factor (VEGF), and heme oxygenase-1 (HO-1). Results The retinal changes after ischemia included a decrease in the electroretinogram b-wave amplitude, a loss of choline acetyltransferase immunolabeling amacrine cell bodies/neuronal processes, an increase in vimentin immunoreactivity, which is a marker for Müller cells, an increase in apoptotic cells in the retinal ganglion cell layer linked to a decrease in the Bcl-2 protein, and changes in the mRNA levels of HIF-1α, VEGF, MMP-9, and HO-1. Of clinical importance, the ischemic detrimental effects were concentration dependently and/or significantly (0.05 nmol and/or 0.5 nmol) altered when baicalein was applied 15 min before retinal ischemia. Most of all, 0.5 nmol baicalein significantly reduced the upregulation of MMP-9; in contrast, 5 nmol trolox only had a weak

  11. The role of microglia and myeloid immune cells in acute cerebral ischemia

    PubMed Central

    Benakis, Corinne; Garcia-Bonilla, Lidia; Iadecola, Costantino; Anrather, Josef

    2015-01-01

    The immune response to acute cerebral ischemia is a major contributor to stroke pathobiology. The inflammatory response is characterized by the participation of brain resident cells and peripheral leukocytes. Microglia in the brain and monocytes/neutrophils in the periphery have a prominent role in initiating, sustaining and resolving post-ischemic inflammation. In this review we aim to summarize recent literature concerning the origins, fate and role of microglia, monocytes and neutrophils in models of cerebral ischemia and to discuss their relevance for human stroke. PMID:25642168

  12. [Intra-arterial fibrinolytic therapy for acute mesenteric ischemia].

    PubMed

    Michel, C; Laffy, P; Leblanc, G; Riou, J Y; Chaloum, S; Maklouf, M; Le Guen, O; Pitre, J

    2001-01-01

    We report a case of mesenteric ischemia secondary to embolic occlusion treated by percutaneous intra-arterial thrombolysis. Early initial radiographic evaluation included abdominal plain film, ultrasonography, abdominal CT, and arteriography. Only selective superior mesenteric artery angiography provided definite diagnosis. The duration of ischemic symptoms before thrombolysis was 6 hours. Post procedure angiogram at 12 hours showed complete resolution of the mesenteric arterial thrombus with clinical improvement. The most important criteria for patient survival is early diagnosis and immediate treatment. Direct infusion of urokinase into the superior mesentric artery may be an alternative to surgery in selected patients and particularly in patients without evidence of frank bowel necrosis. PMID:11223630

  13. Obestatin Accelerates the Recovery in the Course of Ischemia/Reperfusion-Induced Acute Pancreatitis in Rats

    PubMed Central

    Bukowczan, Jakub; Warzecha, Zygmunt; Ceranowicz, Piotr; Kuśnierz-Cabala, Beata; Tomaszewska, Romana

    2015-01-01

    Objective Several previous studies have shown that obestatin exhibits protective and regenerative effects in some organs including the stomach, kidney, and the brain. In the pancreas, pretreatment with obestatin inhibits the development of cerulein-induced acute pancreatitis, and promotes survival of pancreatic beta cells and human islets. However, no studies investigated the effect of obestatin administration following the onset of experimental acute pancreatitis. Aim The aim of this study was to evaluate the impact of obestatin therapy in the course of ischemia/reperfusion-induced pancreatitis. Moreover, we tested the influence of ischemia/reperfusion-induced acute pancreatitis and administration of obestatin on daily food intake and pancreatic exocrine secretion. Methods Acute pancreatitis was induced by pancreatic ischemia followed by reperfusion of the pancreas. Obestatin (8nmol/kg/dose) was administered intraperitoneally twice a day, starting 24 hours after the beginning of reperfusion. The effect of obestatin in the course of necrotizing pancreatitis was assessed between 2 and 14 days, and included histological, functional, and biochemical analyses. Secretory studies were performed on the third day after sham-operation or induction of acute pancreatitis in conscious rats equipped with chronic pancreatic fistula. Results Treatment with obestatin ameliorated morphological signs of pancreatic damage including edema, vacuolization of acinar cells, hemorrhages, acinar necrosis, and leukocyte infiltration of the gland, and led to earlier pancreatic regeneration. Structural changes were accompanied by biochemical and functional improvements manifested by accelerated normalization of interleukin-1β level and activity of myeloperoxidase and lipase, attenuation of the decrease in pancreatic DNA synthesis, and by an improvement of pancreatic blood flow. Induction of acute pancreatitis by pancreatic ischemia followed by reperfusion significantly decreased daily food

  14. Unilateral Renal Ischemia as a Model of Acute Kidney Injury and Renal Fibrosis in Cats.

    PubMed

    Schmiedt, C W; Brainard, B M; Hinson, W; Brown, S A; Brown, C A

    2016-01-01

    The objectives of this study were to define the acute and chronic effects of 1-hour unilateral in vivo renal ischemia on renal function and histology in cats. Twenty-one adult purpose-bred research cats were anesthetized, and 1 kidney underwent renal artery and vein occlusion for 1 hour. Serum creatinine and urea concentrations, urine protein:creatinine ratio, urine-specific gravity, glomerular filtration rate, hematocrit, platelet concentration and function, and white blood cell count were measured at baseline and variable time points after ischemia. Renal histopathology was evaluated on days 3, 6, 12, 21, 42, and 70 postischemia; changes in smooth muscle actin and interstitial collagen were examined. Following ischemia, whole animal glomerular filtration rate was significantly reduced (57% of baseline on day 6; P < .05). At the early time points, the ischemic kidneys exhibited severe acute epithelial necrosis accompanied by evidence of regeneration of tubules predominantly within the corticomedullary junction. At later periods, postischemic kidneys had evidence of tubular atrophy and interstitial inflammation with significantly more smooth muscle actin and interstitial collagen staining and interstitial fibrosis when compared with the contralateral control kidneys. This study characterizes the course of ischemic acute kidney injury in cats and demonstrates that ischemic acute kidney injury triggers chronic fibrosis, interstitial inflammation, and tubular atrophy in feline kidneys. These late changes are typical of those observed in cats with naturally occurring chronic kidney disease. PMID:26319781

  15. Analysis of temporal dynamics in imagery during acute limb ischemia and reperfusion

    NASA Astrophysics Data System (ADS)

    Irvine, John M.; Regan, John; Spain, Tammy A.; Caruso, Joseph D.; Rodriquez, Maricela; Luthra, Rajiv; Forsberg, Jonathon; Crane, Nicole J.; Elster, Eric

    2014-03-01

    Ischemia and reperfusion injuries present major challenges for both military and civilian medicine. Improved methods for assessing the effects and predicting outcome could guide treatment decisions. Specific issues related to ischemia and reperfusion injury can include complications arising from tourniquet use, such as microvascular leakage in the limb, loss of muscle strength and systemic failures leading to hypotension and cardiac failure. Better methods for assessing the viability of limbs/tissues during ischemia and reducing complications arising from reperfusion are critical to improving clinical outcomes for at-risk patients. The purpose of this research is to develop and assess possible prediction models of outcome for acute limb ischemia using a pre-clinical model. Our model relies only on non-invasive imaging data acquired from an animal study. Outcome is measured by pathology and functional scores. We explore color, texture, and temporal features derived from both color and thermal motion imagery acquired during ischemia and reperfusion. The imagery features form the explanatory variables in a model for predicting outcome. Comparing model performance to outcome prediction based on direct observation of blood chemistry, blood gas, urinalysis, and physiological measurements provides a reference standard. Initial results show excellent performance for the imagery-base model, compared to predictions based direct measurements. This paper will present the models and supporting analysis, followed by recommendations for future investigations.

  16. Involvement of microRNA-181a and Bim in a rat model of retinal ischemia-reperfusion injury

    PubMed Central

    He, Yu; Liu, Jin-Nan; Zhang, Jun-Jun; Fan, Wei

    2016-01-01

    AIM To investigate the changes in the expression of microRNA-181a (miR-181a) and Bim in a rat model of retinal ischemia-reperfusion (RIR), to explore their target relationship in RIR and their involvement in regulating apoptosis of retinal ganglion cells (RGCs). METHODS Target gene prediction for miR-181a was performed with the aid of bioinformatics and Bim was identified as a potential target gene of miR-181a. A rat model of RIR was created by increasing the intraocular pressure. RGCs in the flatmounted retinas were labeled with Brn3, a marker for alive RGCs, by immunofluorescent staining. The changes in the number of RGCs after RIR were recorded. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to determine the expression level of miR-181a in the retina. Bim/Brn3 double immunofluorescence was used to detect the localization of Bim. The expression of Bim in the retina was determined with the aids of Western blot and qRT-PCR. RESULTS Compared with the negative control group, the density of RGCs was significantly lower in the ischemia/reperfusion (I/R)-24h and I/R-72h groups (P<0.001). The expression level of miR-181a started to decrease at 0h after RIR, and further decreased at 24h and 72h compared with the negative control group (P<0.001). Bim was significantly upregulated at 12h after RIR (P<0.05) and reached peak at 24, 72h compared with the negative control group (P<0.01). Pearson correlation analysis showed that the expression level of Bim was negatively correlated with the expression level of miR-181a and the density of RGCs. CONCLUSION Bim may be a potential target gene of miR-181a. Both miR-181a and Bim are involved in RGCs death in RIR. RIR may promote RGCs apoptosis in the retina via downregulation of miR-181a and its inhibition on Bim expression. PMID:26949607

  17. Multi-detector CT features of acute intestinal ischemia and their prognostic correlations

    PubMed Central

    Moschetta, Marco; Telegrafo, Michele; Rella, Leonarda; Stabile Ianora, Amato Antonio; Angelelli, Giuseppe

    2014-01-01

    Acute intestinal ischemia is an abdominal emergency occurring in nearly 1% of patients presenting with acute abdomen. The causes can be occlusive or non occlusive. Early diagnosis is important to improve survival rates. In most cases of late or missed diagnosis, the mortality rate from intestinal infarction is very high, with a reported value ranging from 60% to 90%. Multi-detector computed tomography (MDCT) is a fundamental imaging technique that must be promptly performed in all patients with suspected bowel ischemia. Thanks to the new dedicated reconstruction program, its diagnostic potential is much improved compared to the past and currently it is superior to that of any other noninvasive technique. The increased spatial and temporal resolution, high-quality multi-planar reconstructions, maximum intensity projections, vessel probe, surface-shaded volume rending and tissue transition projections make MDCT the gold standard for the diagnosis of intestinal ischemia, with reported sensitivity, specificity, positive and negative predictive values of 64%-93%, 92%-100%, 90%-100% and 94%-98%, respectively. MDCT contributes to appropriate treatment planning and provides important prognostic information thanks to its ability to define the nature and extent of the disease. The purpose of this review is to examine the diagnostic and prognostic role of MDCT in bowel ischemia with special regard to the state of art new reconstruction software. PMID:24876917

  18. Pathophysiological roles of adrenomedullin-RAMP2 system in acute and chronic cerebral ischemia.

    PubMed

    Igarashi, Kyoko; Sakurai, Takayuki; Kamiyoshi, Akiko; Ichikawa-Shindo, Yuka; Kawate, Hisaka; Yamauchi, Akihiro; Toriyama, Yuichi; Tanaka, Megumu; Liu, Tian; Xian, Xian; Imai, Akira; Zhai, Liuyu; Owa, Shinji; Koyama, Teruhide; Uetake, Ryuichi; Ihara, Masafumi; Shindo, Takayuki

    2014-12-01

    The accessory protein RAMP2 is a component of the CLR/RAMP2 dimeric adrenomedullin (AM) receptor and is the primary determinant of the vascular functionality of AM. RAMP2 is highly expressed in the brain; however, its function there remains unclear. We therefore used heterozygous RAMP2 knockout (RAMP2+/-) mice, in which RAMP2 expression was reduced by half, to examine the actions of the endogenous AM-RAMP2 system in cerebral ischemia. To induce acute or chronic ischemia, mice were subjected to middle cerebral artery occlusion (MCAO) or bilateral common carotid artery stenosis (BCAS), respectively. In RAMP2+/- mice subjected to MCAO, recovery of cerebral blood flow (CBF) was slower than in WT mice. AM gene expression was upregulated after infarction in both genotypes, but the increase was greater in RAMP2+/- mice. Pathological analysis revealed severe nerve cell death and demyelination, and a higher level of oxidative stress in RAMP2+/- mice. In RAMP2+/- mice subjected to BCAS, recovery of cerebral perfusion was slower and less complete than in WT mice. In an 8-arm radial maze test, RAMP2+/- mice required more time to solve the maze and showed poorer reference memory. They also showed greater reductions in nerve cells and less compensatory capillary growth than WT mice. These results indicate the AM-RAMP2 system works to protect nerve cells from both acute and chronic cerebral ischemia by maintaining CBF, suppressing oxidative stress, and in the case of chronic ischemia, enhancing capillary growth. PMID:25252154

  19. Protection of Retinal Ganglion Cells and Retinal Vasculature by Lycium Barbarum Polysaccharides in a Mouse Model of Acute Ocular Hypertension

    PubMed Central

    Mi, Xue-Song; Feng, Qian; Lo, Amy Cheuk Yin; Chang, Raymond Chuen-Chung; Lin, Bin; Chung, Sookja Kim; So, Kwok-Fai

    2012-01-01

    Acute ocular hypertension (AOH) is a condition found in acute glaucoma. The purpose of this study is to investigate the protective effect of Lycium barbarum polysaccharides (LBP) and its protective mechanisms in the AOH insult. LBP has been shown to exhibit neuroprotective effect in the chronic ocular hypertension (COH) experiments. AOH mouse model was induced in unilateral eye for one hour by introducing 90 mmHg ocular pressure. The animal was fed with LBP solution (1 mg/kg) or vehicle daily from 7 days before the AOH insult till sacrifice at either day 4 or day 7 post insult. The neuroprotective effects of LBP on retinal ganglion cells (RGCs) and blood-retinal-barrier (BRB) were evaluated. In control AOH retina, loss of RGCs, thinning of IRL thickness, increased IgG leakage, broken tight junctions, and decreased density of retinal blood vessels were observed. However, in LBP-treated AOH retina, there was less loss of RGCs with thinning of IRL thickness, IgG leakage, more continued structure of tight junctions associated with higher level of occludin protein and the recovery of the blood vessel density when compared with vehicle-treated AOH retina. Moreover, we found that LBP provides neuroprotection by down-regulating RAGE, ET-1, Aβ and AGE in the retina, as well as their related signaling pathways, which was related to inhibiting vascular damages and the neuronal degeneration in AOH insults. The present study suggests that LBP could prevent damage to RGCs from AOH-induced ischemic injury; furthermore, through its effects on blood vessel protection, LBP would also be a potential treatment for vascular-related retinopathy. PMID:23094016

  20. Effects of central opiate and serotoninergic structures on heart rhythm during acute myocardial ischemia.

    PubMed

    Prokop'eva, E V; Pivovarov, Y I

    2001-12-01

    Electrostimulation of the central gray matter in the sylvian aqueduct and nucleus raphe magnus produced an antiarrhythmic effect during acute myocardial ischemia. Stimulation and blockade of opiate receptors in the central amygdaloid nucleus and lateral hypothalamus with dalargin and naloxone induced the same effect. Destruction of the central gray matter in the sylvian aqueduct and nucleus raphe magnus decreased electrical stability of ischemic myocardium. PMID:12152875

  1. National Heart Attack Alert Program position paper: chest pain centers and programs for the evaluation of acute cardiac ischemia.

    PubMed

    Zalenski, R J; Selker, H P; Cannon, C P; Farin, H M; Gibler, W B; Goldberg, R J; Lambrew, C T; Ornato, J P; Rydman, R J; Steele, P

    2000-05-01

    The National Heart Attack Alert Program (NHAAP), which is coordinated by the National Heart, Lung, and Blood Institute (NHLBI), promotes the early detection and optimal treatment of patients with acute myocardial infarction and other acute coronary ischemic syndromes. The NHAAP, having observed the development and growth of chest pain centers in emergency departments with special interest, created a task force to evaluate such centers and make recommendations pertaining to the management of patients with acute cardiac ischemia. This position paper offers recommendations to assist emergency physicians in EDs, including those with chest pain centers, in providing comprehensive care for patients with acute cardiac ischemia. PMID:10783408

  2. Oral Supplementation of Glucosamine Fails to Alleviate Acute Kidney Injury in Renal Ischemia-Reperfusion Damage

    PubMed Central

    Johnsen, Marc; Späth, Martin Richard; Denzel, Martin S.; Göbel, Heike; Kubacki, Torsten; Hoyer, Karla Johanna Ruth; Hinze, Yvonne; Benzing, Thomas; Schermer, Bernhard; Antebi, Adam; Burst, Volker; Müller, Roman-Ulrich

    2016-01-01

    Acute kidney injury is a leading contributor to morbidity and mortality in the ageing population. Proteotoxic stress response pathways have been suggested to contribute to the development of acute renal injury. Recent evidence suggests that increased synthesis of N-glycan precursors in the hexosamine pathway as well as feeding of animals with aminosugars produced in the hexosamine pathway may increase stress resistance through reducing proteotoxic stress and alleviate pathology in model organisms. As feeding of the hexosamine pathway metabolite glucosamine to aged mice increased their life expectancy we tested whether supplementation of this aminosugar may also protect mice from acute kidney injury after renal ischemia and reperfusion. Animals were fed for 4 weeks ad libitum with standard chow or standard chow supplemented with 0.5% N-acetylglucosamine. Preconditioning with caloric restriction for four weeks prior to surgery served as a positive control for protective dietary effects. Whereas caloric restriction demonstrated the known protective effect both on renal function as well as survival in the treated animals, glucosamine supplementation failed to promote any protection from ischemia-reperfusion injury. These data show that although hexosamine pathway metabolites have a proven role in enhancing protein quality control and survival in model organisms oral glucosamine supplementation at moderate doses that would be amenable to humans does not promote protection from ischemia-reperfusion injury of the kidney. PMID:27557097

  3. A prospective case-control study to investigate retinal microvascular changes in acute dengue infection

    PubMed Central

    Tan, Petrina; Lye, David C.; Yeo, Tun Kuan; Cheung, Carol Y.; Thein, Tun-Linn; Wong, Joshua G.; Agrawal, Rupesh; Li, Ling-Jun; Wong, Tien-Yin; Gan, Victor C.; Leo, Yee-Sin; Teoh, Stephen C.

    2015-01-01

    Dengue infection can affect the microcirculation by direct viral infection or activation of inflammation. We aimed to determine whether measured retinal vascular parameters were associated with acute dengue infection. Patients with acute dengue were recruited from Communicable Diseases Center, Singapore and age-gender-ethnicity matched healthy controls were selected from a population-based study. Retinal photographs were taken on recruitment and convalescence. A spectrum of quantitative retinal microvascular parameters (retinal vascular caliber, fractal dimension, tortuosity and branching angle) was measured using a semi-automated computer-based program. (Singapore I Vessel Assessment, version 3.0). We included 62 dengue patients and 127 controls. Dengue cases were more likely to have wider retinal arteriolar and venular calibers (158.3 μm vs 144.3 μm, p < 0.001; 227.7 μm vs 212.8 μm, p < 0.001; respectively), higher arteriolar and venular fractal dimensions (1.271 vs 1.249, p = 0.002; 1.268 vs. 1.230, p < 0.001, respectively), higher arteriolar and venular tortuosity (0.730 vs 0.546 [x104], p < 0.001; 0.849 vs 0.658 [x104], p < 0.001; respectively), compared to controls. Resolution of acute dengue coincided with decrease in retinal vascular calibers and venular fractal dimension. Dengue patients have altered microvascular network in the retina; these changes may reflect pathophysiological processes in the immune system. PMID:26603217

  4. A prospective case-control study to investigate retinal microvascular changes in acute dengue infection.

    PubMed

    Tan, Petrina; Lye, David C; Yeo, Tun Kuan; Cheung, Carol Y; Thein, Tun-Linn; Wong, Joshua G; Agrawal, Rupesh; Li, Ling-Jun; Wong, Tien-Yin; Gan, Victor C; Leo, Yee-Sin; Teoh, Stephen C

    2015-01-01

    Dengue infection can affect the microcirculation by direct viral infection or activation of inflammation. We aimed to determine whether measured retinal vascular parameters were associated with acute dengue infection. Patients with acute dengue were recruited from Communicable Diseases Center, Singapore and age-gender-ethnicity matched healthy controls were selected from a population-based study. Retinal photographs were taken on recruitment and convalescence. A spectrum of quantitative retinal microvascular parameters (retinal vascular caliber, fractal dimension, tortuosity and branching angle) was measured using a semi-automated computer-based program. (Singapore I Vessel Assessment, version 3.0). We included 62 dengue patients and 127 controls. Dengue cases were more likely to have wider retinal arteriolar and venular calibers (158.3 μm vs 144.3 μm, p < 0.001; 227.7 μm vs 212.8 μm, p < 0.001; respectively), higher arteriolar and venular fractal dimensions (1.271 vs 1.249, p = 0.002; 1.268 vs. 1.230, p < 0.001, respectively), higher arteriolar and venular tortuosity (0.730 vs 0.546 [x10(4)], p < 0.001; 0.849 vs 0.658 [x10(4)], p < 0.001; respectively), compared to controls. Resolution of acute dengue coincided with decrease in retinal vascular calibers and venular fractal dimension. Dengue patients have altered microvascular network in the retina; these changes may reflect pathophysiological processes in the immune system. PMID:26603217

  5. Massive Retinal Pigment Epithelial Detachment Following Acute Hypokalemic Quadriparesis in Dengue Fever

    PubMed Central

    Goel, Neha; Bhambhwani, Vishaal; Jain, Pooja; Ghosh, Basudeb

    2016-01-01

    Purpose: To describe an unusual retinal manifestation of dengue fever in an endemic region. Case Report: A 35 year old male presenting with acute onset decreased vision in his right eye, was found to have a massive retinal pigment epithelial detachment (PED) extending up to the vascular arcades. He had been diagnosed with acute hypokalemic quadriparesis in dengue fever in the preceding week, which had resolved following treatment. The patient was managed conservatively. At three months follow up, there was spontaneous flattening of the PEDs with improvement in visual acuity. Conclusion: Dengue fever complicated by acute hypokalemic quadriparesis can be associated with PED, which can be large. The condition resolves spontaneously and bears a good prognosis.

  6. Impairment of Neuronal Glutamate Uptake and Modulation of the Glutamate Transporter GLT-1 Induced by Retinal Ischemia

    PubMed Central

    Varano, Giuseppe Pasquale; Milanese, Marco; Adornetto, Annagrazia; Nucci, Carlo; Bonanno, Giambattista; Morrone, Luigi Antonio; Corasaniti, Maria Tiziana; Bagetta, Giacinto

    2013-01-01

    Excitotoxicity has been implicated in the retinal neuronal loss in several ocular pathologies including glaucoma. Dysfunction of Excitatory Amino Acid Transporters is often a key component of the cascade leading to excitotoxic cell death. In the retina, glutamate transport is mainly operated by the glial glutamate transporter GLAST and the neuronal transporter GLT-1. In this study we evaluated the expression of GLAST and GLT-1 in a rat model of acute glaucoma based on the transient increase of intraocular pressure (IOP) and characterized by high glutamate levels during the reperfusion that follows the ischemic event associated with raised IOP. No changes were reported in GLAST expression while, at neuronal level, a reduction of glutamate uptake and of transporter reversal-mediated glutamate release was observed in isolated retinal synaptosomes. This was accompanied by modulation of GLT-1 expression leading to the reduction of the canonical 65 kDa form and upregulation of a GLT-1-related 38 kDa protein. These results support a role for neuronal transporters in glutamate accumulation observed in the retina following an ischemic event and suggest the presence of a GLT-1 neuronal new alternative splice variant, induced in response to the detrimental stimulus. PMID:23936321

  7. Nonmydriatic retinal photography in the evaluation of acute neurologic conditions

    PubMed Central

    Bidot, Samuel; Bruce, Beau B.; Newman, Nancy J.; Biousse, Valérie

    2013-01-01

    Summary Ocular fundus examination is a fundamental component of the neurologic examination. Finding papilledema in headache patients or retinal arterial emboli in stroke patients can be extremely useful. Although examination of the ocular fundus with a direct ophthalmoscope is an important skill for all neurologists, it is rarely and unreliably performed. Nonmydriatic ocular fundus photography, which allows direct visualization of high-quality photographs of the ocular fundus, has been recently proposed for screening neurologic patients in urgent care settings such as emergency departments. This new technology has many potential applications in neurology, including e-transmission of images for remote interpretation. PMID:24353924

  8. N-acetylcysteine and acute retinal laser lesions in the colubrid snake eye

    NASA Astrophysics Data System (ADS)

    Elliott, William R., III; Rentmeister-Bryant, Heike K.; Barsalou, Norman; Beer, Jeremy; Zwick, Harry

    2004-07-01

    This study examined the role of oxidative stress and the effect of a single dose treatment with N-Acetylcysteine (NAC) on the temporal development of acute laser-induced retinal injury. We used the snake eye/Scanning Laser Ophthalmoscope (SLO) model, an in vivo, non-invasive ocular imaging technique, which has the ability to image cellular retinal detail and allows for studying morphological changes of retinal injury over time. For this study 12 corn-snakes (Elaphe g. guttata) received 5 laser exposures per eye, followed by either a single dose of the antioxidant NAC (150mg/kg, IP in sterile saline) or placebo. Laser exposures were made with a Nd: VO4 DPSS, 532nm laser, coaxially aligned to the SLO. Shuttered pulses were 20msec x 50 mW; 1mJ each. Retinal images were taken using a Rodenstock cSLO and were digitally recorded at 1, 6, 24-hrs, and at 3-wks post-exposure. Lesions were assessed by two raters blind to the conditions of the study yielding measures of damaged area and counts of missing or damaged photoreceptors. Treated eyes showed a significant beneficial effect overall, and these results suggest that oxidative stress plays a role in laser-induced retinal injury. The use of NAC or a similar antioxidant shows promise as a therapeutic tool.

  9. Incidence of acute myocardial infarction in patients with exercise-induced silent myocardial ischemia

    SciTech Connect

    Assey, M.E.; Walters, G.L.; Hendrix, G.H.; Carabello, B.A.; Usher, B.W.; Spann, J.F. Jr.

    1987-03-01

    Fifty-five patients with angiographically proved coronary artery disease (CAD) underwent Bruce protocol exercise stress testing with thallium-201 imaging. Twenty-seven patients (group I) showed myocardial hypoperfusion without angina pectoris during stress, which normalized at rest, and 28 patients (group II) had a similar pattern of reversible myocardial hypoperfusion but also had angina during stress. Patients were followed for at least 30 months. Six patients in group I had an acute myocardial infarction (AMI), 3 of whom died, and only 1 patient in group II had an AMI (p = 0.05), and did not die. Silent myocardial ischemia uncovered during exercise stress thallium testing may predispose to subsequent AMI. The presence of silent myocardial ischemia identified in this manner is of prognostic value, independent of angiographic variables such as extent of CAD and left ventricular ejection fraction.

  10. Ischemia-induced spreading depolarization in the retina.

    PubMed

    Srienc, Anja I; Biesecker, Kyle R; Shimoda, Angela M; Kur, Joanna; Newman, Eric A

    2016-09-01

    Cortical spreading depolarization is a metabolically costly phenomenon that affects the brain in both health and disease. Following severe stroke, subarachnoid hemorrhage, or traumatic brain injury, cortical spreading depolarization exacerbates tissue damage and enlarges infarct volumes. It is not known, however, whether spreading depolarization also occurs in the retina in vivo. We report now that spreading depolarization episodes are generated in the in vivo rat retina following retinal vessel occlusion produced by photothrombosis. The properties of retinal spreading depolarization are similar to those of cortical spreading depolarization. Retinal spreading depolarization waves propagate at a velocity of 3.0 ± 0.1 mm/min and are associated with a negative shift in direct current potential, a transient cessation of neuronal spiking, arteriole constriction, and a decrease in tissue O2 tension. The frequency of retinal spreading depolarization generation in vivo is reduced by administration of the NMDA antagonist MK-801 and the 5-HT(1D) agonist sumatriptan. Branch retinal vein occlusion is a leading cause of vision loss from vascular disease. Our results suggest that retinal spreading depolarization could contribute to retinal damage in acute retinal ischemia and demonstrate that pharmacological agents can reduce retinal spreading depolarization frequency after retinal vessel occlusion. Blocking retinal spreading depolarization generation may represent a therapeutic strategy for preserving vision in branch retinal vein occlusion patients. PMID:27389181

  11. Good visual outcome in an immunocompromised patient with bilateral acute retinal necrosis syndrome: A case report

    PubMed Central

    Marrocos de Aragão, Ricardo E.; Barreira, Ieda M.A.; Arrais, Barbara L.A.; Pereira, Leidiane A.; Ramos, Carine S.

    2013-01-01

    Acute retinal necrosis (ARN) is an uncommon necrotizing, fulminant retinopathy caused by the herpes simplex virus types 1 or 2 or by the varicella zoster vírus with visually devastating consequences. Generally it occurs in patients who are systemically healthy, but occasionally occurs in immunocompromised host. We report a case of bilateral ARN in a patient with AIDS with a good final visual outcome. PMID:25278806

  12. Acute Limb Ischemia: Surgical Thromboembolectomy and the Clinical Course of Arterial Revascularization at Ankle

    PubMed Central

    Shin, Ha Song; Kyoung, Kyu-Hyouck; Suh, Byoung Jo; Jun, Si-Youl; Park, Jong Kwon

    2013-01-01

    Surgical thromboembolectomy for acute limb ischemia using Fogarty catheter is basically a blind procedure. Therefore, the complete removal of thromboemboli in all calf arteries is difficult even if completion angiography or radiological intervention is performed. The purpose of this study is to identify whether limb salvage could be achieved if at least one ankle artery was revascularized by surgical thromboembolectomy. We also observed the effectiveness of below-knee popliteal approach. Over 1 year, surgical thromboembolectomy via below-knee popliteal artery was performed on 18 acutely ischemic limbs in 14 consecutive patients. All patients were diagnosed based on clinical symptoms and computed tomography (CT) angiography. Surgical thromboembolectomy was terminated when a pulse was detected by a handheld vascular Doppler device in at least one ankle artery after closing the arteriotomy. Patients were observed during postoperative anticoagulation therapy. Of the 14 patients, 1 died and 1 underwent amputation due to the already necrotized lesion in the foot. After 1 week of anticoagulation therapy, two or more arterial pulses were detected at the ankles in all 15 limbs from the remaining 12 patients. During the 6 to 18 months of follow-up, all 15 limbs were salvaged successfully. In acute limb ischemia, successful limb salvage could be achieved by the revascularization of at least one ankle artery by surgical thromboembolectomy with concomitant anticoagulation therapy. Below-knee popliteal approach is an effective method and is worth for further study compared with other approaches. PMID:24436594

  13. Role of endogenous testosterone in myocardial proinflammatory and proapoptotic signaling after acute ischemia-reperfusion.

    PubMed

    Wang, Meijing; Tsai, Ben M; Kher, Ajay; Baker, Lauren B; Wairiuko, G Mathenge; Meldrum, Daniel R

    2005-01-01

    Myocardial ischemia is the leading cause of death in both men and women; however, very little information exists regarding the effect of testosterone on the response of myocardium to acute ischemic injury. We hypothesized that testosterone may exert deleterious effects on myocardial inflammatory cytokine production, p38 MAPK activation, apoptotic signaling, and myocardial functional recovery after acute ischemia-reperfusion (I/R). To study this, isolated, perfused rat hearts (Langendorff) from adult males, castrated males, and males treated with a testosterone receptor blocker (flutamide) were subjected to 25 min of ischemia followed by 40 min of reperfusion. Myocardial contractile function (left ventricular developed pressure, left ventricular end-diastolic pressure, positive and negative first derivative of pressure) was continuously recorded. After reperfusion, hearts were analyzed for expression of tissue TNF-alpha, IL-1beta, and IL-6 (ELISA) and activation of p38 MAPK, caspase-1, caspase-3, caspase-11, and Bcl-2 (Western blot). All indices of postischemic myocardial functional recovery were significantly higher in castrated males or flutamide-treated males compared with untreated males. After I/R, castrated male and flutamide-treated male hearts had decreased TNF-alpha, IL-1beta, and IL-6; decreased activated p38 MAPK; decreased caspase-1, caspase-3, and caspase-11; and increased Bcl-2 expression compared with untreated males. These results show that blocking the testosterone receptor (flutamide) or depleting testosterone (castration) in normal males improves myocardial function after I/R. These effects may be attributed to the proinflammatory and/or the proapoptotic properties of endogenous testosterone. Further understanding may allow therapeutic manipulation of sex hormone signaling mechanisms in the treatment of acute I/R. PMID:15374831

  14. Acute Thrombotic Mesenteric Ischemia: Primary Endovascular Treatment in Eight Patients

    SciTech Connect

    Gagniere, Johan; Favrolt, Gregory; Alfidja, Agaiecha; Kastler, Adrian; Chabrot, Pascal; Cassagnes, Lucie; Buc, Emmanuel; Pezet, Denis; Boyer, Louis

    2011-10-15

    Introduction: The purpose of this study was to evaluate our experience with initial percutaneous transluminal angioplasty (PTA) {+-} stenting as valuable options in the acute setting. Methods: Between 2003 and 2008, eight patients with abdominal angio-MDCT-scan proven thrombotic AMI benefited from initial PTA {+-} stenting. We retrospectively assessed clinical and radiological findings and their management. Seven patients presented thrombosis of the superior mesenteric artery, and in one patient both mesenteric arteries were occluded. All patients underwent initial PTA and stenting, except one who had balloon PTA alone. One patient was treated by additional in situ thrombolysis. Results: Technical success was obtained in all patients. Three patients required subsequent surgery (37.5%), two of whom had severe radiological findings (pneumatosis intestinalis and/or portal venous gas). Two patients (25%) died: both had NIDD, an ASA score {>=}4, and severe radiologic findings. Satisfactory arterial patency was observed after a follow-up of 15 (range, 11-17) months in five patients who did not require subsequent surgery, four of whom had abdominal guarding but no severe CT scan findings. One patient had an ileocecal stenosis 60 days after the procedure. Conclusions: Initial PTA {+-} stenting is a valuable alternative to surgery for patients with thrombotic AMI even for those with clinical peritoneal irritation signs and/or severe radiologic findings. Early surgery is indicated if clinical condition does not improve after PTA. The decision of a subsequent surgery must be lead by early clinical status reevaluation. In case of underlying atherosclerotic lesion, stenting should be performed after initial balloon dilatation.

  15. Automaticity in acute ischemia: Bifurcation analysis of a human ventricular model

    NASA Astrophysics Data System (ADS)

    Bouchard, Sylvain; Jacquemet, Vincent; Vinet, Alain

    2011-01-01

    Acute ischemia (restriction in blood supply to part of the heart as a result of myocardial infarction) induces major changes in the electrophysiological properties of the ventricular tissue. Extracellular potassium concentration ([Ko+]) increases in the ischemic zone, leading to an elevation of the resting membrane potential that creates an “injury current” (IS) between the infarcted and the healthy zone. In addition, the lack of oxygen impairs the metabolic activity of the myocytes and decreases ATP production, thereby affecting ATP-sensitive potassium channels (IKatp). Frequent complications of myocardial infarction are tachycardia, fibrillation, and sudden cardiac death, but the mechanisms underlying their initiation are still debated. One hypothesis is that these arrhythmias may be triggered by abnormal automaticity. We investigated the effect of ischemia on myocyte automaticity by performing a comprehensive bifurcation analysis (fixed points, cycles, and their stability) of a human ventricular myocyte model [K. H. W. J. ten Tusscher and A. V. Panfilov, Am. J. Physiol. Heart Circ. Physiol.AJPHAP0363-613510.1152/ajpheart.00109.2006 291, H1088 (2006)] as a function of three ischemia-relevant parameters [Ko+], IS, and IKatp. In this single-cell model, we found that automatic activity was possible only in the presence of an injury current. Changes in [Ko+] and IKatp significantly altered the bifurcation structure of IS, including the occurrence of early-after depolarization. The results provide a sound basis for studying higher-dimensional tissue structures representing an ischemic heart.

  16. Protective effects of fenofibrate against acute lung injury induced by intestinal ischemia/reperfusion in mice

    PubMed Central

    Zhu, Qiankun; He, Guizhen; Wang, Jie; Wang, Yukang; Chen, Wei

    2016-01-01

    This experiment was conducted to evaluate whether pretreatment with fenofibrate could mitigate acute lung injury (ALI) in a mice model of intestinal ischemia/reperfusion (I/R). Male C57BL/6 mice were randomly assigned into three groups (n = 6): sham, intestinal I/R + vehicle, and intestinal I/R + fenofibrate. Intestinal I/R was achieved by clamping the superior mesenteric artery. Fenofibrate (100 mg/kg) or equal volume of vehicle was injected intraperitoneally 60 minutes before the ischemia. At the end of experiment, measurement of pathohistological score, inflammatory mediators and other markers were performed. In addition, a 24-hour survival experiment was conducted in intestinal I/R mice treated with fenofibrate or vehicle. The chief results were as anticipated. Pathohistological evaluation indicated that fenofibrate ameliorated the local intestine damage and distant lung injury. Pretreatment with fenofibrate significantly decreased inflammatory factors in both the intestine and the lung. Consistently, renal creatine levels and hepatic ALT levels were significantly decreased in the fenofibrate group. Moreover, serum systemic inflammatory response indicators were significantly alleviated in the fenofibrate group. In addition, fenofibrate administration significantly improved the survival rate. Collectively, our data indicated that pretreatment with fenofibrate prior to ischemia attenuated intestinal I/R injury and ALI. PMID:26902261

  17. Heterogeneity of epigenetic changes at ischemia/reperfusion- and endotoxin-induced acute kidney injury genes

    PubMed Central

    Mar, Daniel; Gharib, Sina A.; Zager, Richard A.; Johnson, Ali; Denisenko, Oleg; Bomsztyk, Karol

    2015-01-01

    Aberrant gene expression is a molecular hallmark of acute kidney injury (AKI). Since epigenetic processes control gene expression in a cell- and environment-defined manner, understanding the epigenetic pathways that regulate genes altered by AKI may open vital new insights into the complexities of disease pathogenesis and identify possible therapeutic targets. Here we used matrix chromatin immunoprecipitation and integrative analysis to study twenty key permissive and repressive epigenetic histone marks at transcriptionally induced Tnf, Ngal, Kim-1 and Icam-1 genes in mouse models of AKI; unilateral renal ischemia/reperfusion, lipopolysaccharide (LPS) and their synergistically injurious combination. Results revealed unexpected heterogeneity of transcriptional and epigenetic responses. Tnf and Ngal were transcriptionally upregulated in response to both treatments individually, and to combination treatment. Kim-1 was induced by ischemia/reperfusion and Icam-1 by LPS only. Epigenetic alterations at these genes exhibited distinct time-dependent changes that shared some similarities, such as reduction in repressive histone modifications, but also had major ischemia/reperfusion vs. endotoxin differences. Thus, diversity of changes at AKI genes in response to different insults indicates involvement of several epigenetic pathways. This could be exploited pharmacologically through rational-drug design to alter the course and improve clinical outcomes of this syndrome. PMID:26061546

  18. Acute myocardial ischemia in adults secondary to missed Kawasaki disease in childhood.

    PubMed

    Rizk, Sherif R Y; El Said, Galal; Daniels, Lori B; Burns, Jane C; El Said, Howaida; Sorour, Khaled A; Gharib, Soliman; Gordon, John B

    2015-02-15

    Coronary artery aneurysms that occur in 25% of untreated Kawasaki disease (KD) patients may remain clinically silent for decades and then thrombose resulting in myocardial infarction. Although KD is now the most common cause of acquired heart disease in children in Asia, the United States, and Western Europe, the incidence of KD in Egypt is unknown. We tested the hypothesis that young adults in Egypt presenting with acute myocardial ischemia may have coronary artery lesions because of KD in childhood. We reviewed a total of 580 angiograms of patients ≤40 years presenting with symptoms of myocardial ischemia. Coronary artery aneurysms were noted in 46 patients (7.9%), of whom 9 presented with myocardial infarction. The likelihood of antecedent KD as the cause of the aneurysms was classified as definite (n = 10), probable (n = 29), or equivocal (n = 7). Compared with the definite and probable groups, the equivocal group had more traditional cardiovascular risk factors, smaller sized aneurysms, and fewer coronary arteries affected. In conclusion, in a major metropolitan center in Egypt, 6.7% of adults aged ≤40 years who underwent angiography for evaluation of possible myocardial ischemia had lesions consistent with antecedent KD. Because of the unique therapeutic challenges associated with these lesions, adult cardiologists should be aware that coronary artery aneurysms in young adults may be because of missed KD in childhood. PMID:25555655

  19. Heterogeneity of epigenetic changes at ischemia/reperfusion- and endotoxin-induced acute kidney injury genes.

    PubMed

    Mar, Daniel; Gharib, Sina A; Zager, Richard A; Johnson, Ali; Denisenko, Oleg; Bomsztyk, Karol

    2015-10-01

    Aberrant gene expression is a molecular hallmark of acute kidney injury (AKI). As epigenetic processes control gene expression in a cell- and environment-defined manner, understanding the epigenetic pathways that regulate genes altered by AKI may open vital new insights into the complexities of disease pathogenesis and identify possible therapeutic targets. Here we used matrix chromatin immunoprecipitation and integrative analysis to study 20 key permissive and repressive epigenetic histone marks at transcriptionally induced Tnf, Ngal, Kim-1, and Icam-1 genes in mouse models of AKI; unilateral renal ischemia/reperfusion, lipopolysaccharide (LPS), and their synergistically injurious combination. Results revealed unexpected heterogeneity of transcriptional and epigenetic responses. Tnf and Ngal were transcriptionally upregulated in response to both treatments individually, and to combination treatment. Kim-1 was induced by ischemia/reperfusion and Icam-1 by LPS only. Epigenetic alterations at these genes exhibited distinct time-dependent changes that shared some similarities, such as reduction in repressive histone modifications, and also had major ischemia/reperfusion versus endotoxin differences. Thus, diversity of changes at AKI genes in response to different insults indicates involvement of several epigenetic pathways. This could be exploited pharmacologically through rational-drug design to alter the course and improve clinical outcomes of this syndrome. PMID:26061546

  20. Tramadol Alleviates Myocardial Injury Induced by Acute Hindlimb Ischemia Reperfusion in Rats

    PubMed Central

    Takhtfooladi, Hamed Ashrafzadeh; Asl, Adel Haghighi Khiabanian; Shahzamani, Mehran; Takhtfooladi, Mohammad Ashrafzadeh; Allahverdi, Amin; Khansari, Mohammadreza

    2015-01-01

    Background Organ injury occurs not only during periods of ischemia but also during reperfusion. It is known that ischemia reperfusion (IR) causes both remote organ and local injuries. Objective This study evaluated the effects of tramadol on the heart as a remote organ after acute hindlimb IR. Methods Thirty healthy mature male Wistar rats were allocated randomly into three groups: Group I (sham), Group II (IR), and Group III (IR + tramadol). Ischemia was induced in anesthetized rats by left femoral artery clamping for 3 h, followed by 3 h of reperfusion. Tramadol (20 mg/kg, intravenous) was administered immediately prior to reperfusion. At the end of the reperfusion, animals were euthanized, and hearts were harvested for histological and biochemical examination. Results The levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were higher in Groups I and III than those in Group II (p < 0.05). In comparison with other groups, tissue malondialdehyde (MDA) levels in Group II were significantly increased (p < 0.05), and this increase was prevented by tramadol. Histopathological changes, including microscopic bleeding, edema, neutrophil infiltration, and necrosis, were scored. The total injuryscore in Group III was significantly decreased (p < 0.05) compared with Group II. Conclusion From the histological and biochemical perspectives, treatment with tramadol alleviated the myocardial injuries induced by skeletal muscle IR in this experimental model. PMID:26039663

  1. A case of presumed acute retinal necrosis after intraocular foreign body injury.

    PubMed

    Park, Sung Who; Byon, Ik Soo; Park, Hyun Jun; Lee, Ji Eun; Oum, Boo Sup

    2013-01-01

    The aim of this study was to report a case of acute retinal necrosis (ARN) after intraocular foreign body removal. A 32-year-old male presented with visual loss in the left eye. He was hit by an iron fragment while he was hammering. An intraocular foreign body was found with corneal laceration and traumatic cataract. On the day he was injured, primary closure of the laceration, lensectomy, and vitrectomy were performed, and the foreign body was removed. The day after the operation, there was no sign of retinal detachment or retinitis. Two days after the operation, retinal necrosis and accompanying vitreous inflammation were noted in the far periphery. On day 3, the necrosis spread circumferentially and inflammation became more distinct. ARN was presumed and intravenous acyclovir was administered. The necrotic areas were reduced 2 days later, and were resolved in 1 month. The final visual acuity in his left eye was 20/20 after implantation of an intraocular lens. This case is the first report of ARN after penetrating injury and an intraocular foreign body. ARN may develop after open-globe injury. PMID:23658473

  2. Acute Retinal Necrosis Associated with Epstein-Barr Virus in a Patient Undergoing Immunosuppressive Therapy

    PubMed Central

    Oe, Chiaki; Hiraoka, Miki; Tanaka, Sachie; Ohguro, Hiroshi

    2016-01-01

    Acute retinal necrosis (ARN) is a rapidly progressive and severe retinitis resulting in a poor visual outcome. Infections caused by herpes viruses such as herpes simplex virus (HSV) types 1 and 2 or the varicella zoster virus (VZV) are known to be implicated in the development of ARN. In the present study, an 80-year-old female with ARN was examined. She had been affected with rheumatoid arthritis and had taken methotrexate for over 10 years. Her right eye showed clinical features of ARN, and her left eye showed mild retinitis. The genomic DNA in the aqueous humor and vitreous fluid from her right eye were analyzed by a comprehensive polymerase chain reaction (PCR) assay to screen infectious pathogens including viruses. The Epstein-Barr virus (EBV) was detected from both specimens, but neither HSV or VZV nor cytomegalovirus was detected. She underwent intraocular surgery following systemic corticosteroid and acyclovir applications. However, although the retinitis of her right eye was extinguished, the final visual outcome was blindness due to optic nerve atrophy. There are few reports indicating that EBV is associated with ARN development. The present findings suggest that EBV alone can be the causative agent of ARN. PMID:27194989

  3. [Acute ischemia and arterial mesenteric infarction in patients aged over 75. Apropos of a comparative series of 38 cases].

    PubMed

    Bronner, J F; Boissel, P

    1997-08-01

    We report our experience in a series of 20 patients over 75 years of age with acute mesenteric ischemia and mesenteric infarction. This series was compared with 18 patients under 75 used a control group for scores of specific aspects to acute mesenteric ischemia. Overall mortality (80% versus 55%) (p = 0.1) and desertion rate after exploratory laparotomy (60% versus 35%) were high in the elderly patients with advanced stage disease. There was also a female predominance (80% versus 44%, p < 0.05). PMID:9378793

  4. Hydrogen-rich saline reduces cell death through inhibition of DNA oxidative stress and overactivation of poly (ADP-ribose) polymerase-1 in retinal ischemia-reperfusion injury.

    PubMed

    Liu, Hongwei; Hua, Ning; Xie, Keliang; Zhao, Tingting; Yu, Yonghao

    2015-08-01

    Overactivation of poly (ADP-ribose) polymerase 1 (PARP-1), as a result of sustained DNA oxidation in ischemia-reperfusion injury, triggers programmed cell necrosis and apoptosis. The present study was conducted to demonstrate whether hydrogen-rich saline (HRS) has a neuroprotective effect on retinal ischemia reperfusion (RIR) injury through inhibition of PARP-1 activation. RIR was induced by transient elevation of intraocular pressure in rats. HRS (5 ml/kg) was administered peritoneally every day from the beginning of reperfusion in RIR rats until the rats were sacrificed. Retinal damage and cell death was determined using hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. DNA oxidative stress was evaluated by immunofluorescence staining of 8-hydroxy-2-deoxyguanosine. In addition, the expression of PARP-1 and caspase-3 was investigated by western blot analysis and/or immunohistochemical staining. The results demonstrated that HRS administration improved morphological alterations and reduced apoptosis following RIR injury. Furthermore, the present study found that HRS alleviated DNA oxidation and PARP-1 overactivation in RIR rats. HRS can protect RIR injury by inhibition of PARP-1, which may be involved in DNA oxidative stress and caspase-3-mediated apoptosis. PMID:25954991

  5. Hydrogen-rich saline reduces cell death through inhibition of DNA oxidative stress and overactivation of poly (ADP-ribose) polymerase-1 in retinal ischemia-reperfusion injury

    PubMed Central

    LIU, HONGWEI; HUA, NING; XIE, KELIANG; ZHAO, TINGTING; YU, YONGHAO

    2015-01-01

    Overactivation of poly (ADP-ribose) polymerase 1 (PARP-1), as a result of sustained DNA oxidation in ischemia-reperfusion injury, triggers programmed cell necrosis and apoptosis. The present study was conducted to demonstrate whether hydrogen-rich saline (HRS) has a neuroprotective effect on retinal ischemia reperfusion (RIR) injury through inhibition of PARP-1 activation. RIR was induced by transient elevation of intraocular pressure in rats. HRS (5 ml/kg) was administered peritoneally every day from the beginning of reperfusion in RIR rats until the rats were sacrificed. Retinal damage and cell death was determined using hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. DNA oxidative stress was evaluated by immunofluorescence staining of 8-hydroxy-2-deoxyguanosine. In addition, the expression of PARP-1 and caspase-3 was investigated by western blot analysis and/or immunohistochemical staining. The results demonstrated that HRS administration improved morphological alterations and reduced apoptosis following RIR injury. Furthermore, the present study found that HRS alleviated DNA oxidation and PARP-1 overactivation in RIR rats. HRS can protect RIR injury by inhibition of PARP-1, which may be involved in DNA oxidative stress and caspase-3-mediated apoptosis. PMID:25954991

  6. Acute Administration of Natural Honey Protects Isolated Heart in Normothermic Ischemia

    PubMed Central

    Gharekhani, Afshin; Najafi, Moslem; Ghavimi, Hamed

    2012-01-01

    This study intended to assess the efficacy of acute administration of natural honey on cardiac arrhythmias and infarct size when it is used during the normothermic ischemia in isolated rat heart. During 30 min of regional normothermic ischemia followed by 120 min of reperfusion, the isolated hearts were perfused by a modified drug free Krebs-Henseleit solution (control) or the solution containing 0.125, 0.25, 0.5 and 1% of freshly prepared natural honey (test groups), respectively. Cardiac arrhythmias were analyzed and determined through the recorded ECGs. The infarct size was measured using computerized planimetry package. At the ischemic phase, honey (0.25 and 0.5%) decreased the number and duration of ventricular tachycardia (VT), total number of ventricular ectopic beats (VEBs), duration and incidence of reversible ventricular fibrillation (VF) and total VF (p < 0.05 for all). During the reperfusion, concentrations of 0.125, 0.25 and 0.5% lowered the number of VT (p < 0.05), duration of reversible VF (p < 0.01) and total number of VEBs (p < 0.05). In addition, VT duration was reduced significantly with honey 0.125 and 0.25%. Moreover, the infarct size was 45.6 ± 3.4% in the control group, while the perfusion of honey (0.125, 0.25 and 0.5%) reduced it to 14.8 ± 5.1 (p < 0.001), 24.6 ± 7.3 (p < 0.01) and 31.4 ± 7.3% (p < 0.05), respectively. Regarding the results, it is concluded that the acute administration of natural honey in normothermic ischemia conditions can protect the rat heart as the reduction of infarct size and arrhythmias. Conceivably, the antioxidant and free radical scavenging activity, the reduction of necrotized tissue and the providence of rich energy source are more important mechanisms in cardioprotective effects of natural honey. PMID:24250562

  7. Diastolic Timed Vibrator: Noninvasive Pre-Hospitalization Treatment of Acute Coronary Ischemia.

    PubMed

    Marzencki, Marcin; Kajbafzadeh, Behrad; Khosrow-Khavar, Farzad; Tavakolian, Kouhyar; Kaminska, Bozena; Menon, Carlo

    2014-06-01

    The speed of intervention is one of the major factors in increasing the survival rate of patients suffering from acute coronary ischemia. The two principal techniques currently in use: pharmacological and interventional, can be employed to re-canalize coronary arteries, but the former is slow acting and often leads to incomplete reperfusion, while the latter requires specialized personnel in a hospital with a cardiac catheterization laboratory. In this paper, we introduce a novel method intended for pre-hospitalization treatment of patients with acute coronary ischemia that can be safely applied by a minimally trained individual prior to or during patient transportation to hospital. It consists in applying low frequency mechanical vibrations to the left intercostal space of patient's chest during diastole of the heart cycle, to induce vibrations of the heart and thus of the coronary arteries. Mechanical vibrations stimulate mixing of blood which improves drug delivery to the occlusion site, applies mechanical force on the clot leading to its faster dissolution and finally acts as a strong vasodilator in case of spasms. We introduce the principle of operation and the architecture of the Diastolic Timed Vibrator (DTV), including a custom ECG processing algorithm, vibration pattern generator and active braking methods. Experimental results demonstrate the functionality of the DTV device and pave way for in-vivo tests necessary for clinical confirmation of the proposed method. PMID:23934670

  8. Acute upper limb ischemia, a rare presentation of giant cell arteritis.

    PubMed

    Almeida-Morais, Luís; Galego, Sofia; Marques, Nélia; Pack, Tiago; Rodrigues, Hugo; Abreu, Rodolfo; Vasconcelos, Leonor; Marques, Hugo; Sousa Guerreiro, António

    2016-04-01

    Giant cell arteritis (GCA) is a systemic large vessel vasculitis, with extracranial arterial involvement described in 10-15% of cases, usually affecting the aorta and its branches. Patients with GCA are more likely to develop aortic aneurysms, but these are rarely present at the time of the diagnosis. We report the case of an 80-year-old Caucasian woman, who reported proximal muscle pain in the arms with morning stiffness of the shoulders for eight months. In the previous two months, she had developed worsening bilateral arm claudication, severe pain, cold extremities and digital necrosis. She had no palpable radial pulses and no measurable blood pressure. The patient had normochromic anemia, erythrocyte sedimentation rate of 120 mm/h, and a negative infectious and autoimmune workup. Computed tomography angiography revealed concentric wall thickening of the aorta extending to the aortic arch branches, particularly the subclavian and axillary arteries, which were severely stenotic, with areas of bilateral occlusion and an aneurysm of the ascending aorta (47 mm). Despite corticosteroid therapy there was progression to acute critical ischemia. She accordingly underwent surgical revascularization using a bilateral carotid-humeral bypass. After surgery, corticosteroid therapy was maintained and at six-month follow-up she was clinically stable with reduced inflammatory markers. GCA, usually a chronic benign vasculitis, presented exceptionally in this case as acute critical upper limb ischemia, resulting from a massive inflammatory process of the subclavian and axillary arteries, treated with salvage surgical revascularization. PMID:27006059

  9. Is long-term anticoagulation after acute thromboembolic limb ischemia always necessary?

    PubMed Central

    Forbes, Thomas L.; DeRose, Guy; Harris, Kenneth A.

    2002-01-01

    Objective After thromboembolectomy, patients with acute limb ischemia often receive anticoagulant therapy to prevent recurrent events. Patients with atrial fibrillation or cardiac thrombus have a higher risk of recurrent emboli than those without these risk factors. This study examines the importance of long-term anticoagulation in these 2 groups. Design A review of patients presenting with acute limb ischemia over a 5-year period (1994–1999). Setting A university-affiliated medical centre. Patients Fifty patients divided into 2 groups: 19 (38%) patients with atrial fibrillation (group 1) and 31 (62%) patients with no atrial fibrillation or cardiac thrombus (group 2) as confirmed by transthoracic echocardiography. Intervention All patients underwent surgical thromboembolectomy and received postoperative anticoagulant therapy. Outcome measures Mortality, limb loss, further thromboembolic events and bleeding complications as determined by telephone survey. Results There was a significant difference in 5-year survival (group 1, 84%; group 2, 64%) and early limb loss (group 1, 0%; group 2, 13%). Further thromboembolic events and bleeding complications were rare but were more common in group 1. In group 2 there were no instances of recurrent thromboemboli and no bleeding complications although only 39% of patients in this group were taking angicoagulants at the end of the study period. Conclusions Patients with extremity thromboemboli without atrial fibrillation or cardiac thrombus may not be at the same risk for recurrent events as those with these risk factors, and long-term anticoagulant therapy may not be as necessary in this group. PMID:12387535

  10. Ageing of the vitreous: From acute onset floaters and flashes to retinal detachment.

    PubMed

    Lumi, Xhevat; Hawlina, Marko; Glavač, Damjan; Facskó, Andrea; Moe, Morten C; Kaarniranta, Kai; Petrovski, Goran

    2015-05-01

    Floaters and flashes are most commonly symptoms of age-related degenerative changes in the vitreous body and posterior vitreous detachment. The etiology and pathogenesis of floaters' formation is still not well understood. Patients with acute-onset floaters, flashes and defects in their visual field, represent a medical emergency with the need for same day referral to an ophthalmologist. Indirect ophthalmoscopy with scleral indentation is needed in order to find possible retinal break(s), on-time treatment and prevention of retinal detachment. The molecular and genetic pathogenesis, as well as the epidemiology of the ageing changes of the vitreous is summarized here, with view on the several treatment modalities in relation to their success rate and side-effects. PMID:25841656

  11. Acute unilateral vision loss with optic disc oedema in retinitis pigmentosa.

    PubMed

    Patil-Chhablani, Preeti; Tyagi, Mudit; Kekunnaya, Ramesh; Narayanan, Raja

    2015-01-01

    A 36-year-old woman presented with acute vision loss and was found to have disc oedema and retinitis pigmentosa (RP). She presented with a history of acute, painless vision loss in her left eye over a period of 10 days. Her best-corrected visual acuity was 20/50, N6 in the right eye (OD) and 20/160, N6 in the left eye (OS). She was found to have a swollen optic disc and the examination of her fundus showed changes suggestive of RP. The diagnosis of RP was confirmed by electroretinogram, and after ruling out demyelinating changes in the central nervous system and other possible infectious causes of papillitis, she was treated with intravenous steroids followed by a course of oral steroid therapy. Following treatment, her visual acuity improved to 20/60. Acute vision loss may occur in patients with RP and prompt steroid therapy may result in partial visual recovery. PMID:26240107

  12. [Imaging of intestinal ischemia].

    PubMed

    Van Beers, B E; Danse, E; Hammer, F; Goffette, P

    2004-04-01

    Ischemic bowel disease includes acute and chronic mesenteric ischemia, and colon ischemia. Cross-sectional imaging, and more particularly computed tomography, has an increasing role in the detection of acute and chronic mesenteric ischemia. Vascular obstructions or stenoses and changes in the bowel wall can be observed. Functional information can be added with MRI by using sequences that are sensitive to oxygen saturation in the superior mesenteric vein. Arteriography remains the reference examination in patients with acute mesenteric ischemia. PMID:15184799

  13. Acute and chronic nociceptive phases observed in a rat hind paw ischemia/reperfusion model depend on different mechanisms.

    PubMed

    Klafke, J Z; da Silva, M A; Rossato, M F; de Prá, S Dal Toé; Rigo, F K; Walker, C I B; Bochi, G V; Moresco, R N; Ferreira, J; Trevisan, G

    2016-02-01

    Complex regional pain syndrome type 1 (CRPS1) may be evoked by ischemia/reperfusion, eliciting acute and chronic pain that is difficult to treat. Despite this, the underlying mechanism of CRPS1 has not been fully elucidated. Therefore, the goal of this study is to evaluate the involvement of inflammation, oxidative stress, and the transient receptor potential ankyrin 1 (TRPA1) channel, a chemosensor of inflammation and oxidative substances, in an animal model of chronic post-ischemia pain (CPIP). Male Wistar rats were subjected to 3 h hind paw ischemia/reperfusion (CPIP model). Different parameters of nociception, inflammation, ischemia, and oxidative stress were evaluated at 1 (acute) and 14 (chronic) days after CPIP. The effect of a TRPA1 antagonist and the TRPA1 immunoreactivity were also observed after CPIP. In the CPIP acute phase, we observed mechanical and cold allodynia; increased levels of tumor necrosis factor-α (hind paw), ischemia-modified albumin (IMA) (serum), protein carbonyl (hind paw and spinal cord), lactate (serum), and 4-hydroxy-2-nonenal (4-HNE, hind paw and spinal cord); and higher myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAGase) activities (hind paw). In the CPIP chronic phase, we detected mechanical and cold allodynia and increased levels of IMA (serum), protein carbonyl (hind paw and spinal cord), and 4-HNE (hind paw and spinal cord). TRPA1 antagonism reduced mechanical and cold allodynia 1 and 14 days after CPIP, but no change in TRPA1 immunoreactivity was observed. Different mechanisms underlie acute (inflammation and oxidative stress) and chronic (oxidative stress) phases of CPIP. TRPA1 activation may be relevant for CRPS1/CPIP-induced acute and chronic pain. PMID:26490459

  14. Detrimental role of pericyte Nox4 in the acute phase of brain ischemia.

    PubMed

    Nishimura, Ataru; Ago, Tetsuro; Kuroda, Junya; Arimura, Koichi; Tachibana, Masaki; Nakamura, Kuniyuki; Wakisaka, Yoshinobu; Sadoshima, Junichi; Iihara, Koji; Kitazono, Takanari

    2016-06-01

    Pericytes are mural cells abundantly present in cerebral microvessels and play important roles, including the formation and maintenance of the blood-brain barrier. Nox4 is a major source of reactive oxygen species in cardiovascular cells and modulate cellular functions, particularly under pathological conditions. In the present study, we found that the expression of Nox4 was markedly induced in microvascular cells, including pericytes, in peri-infarct areas after middle cerebral artery occlusion stroke models in mice. The upregulation of Nox4 was greater in a permanent middle cerebral artery occlusion model compared with an ischemia/reperfusion transient middle cerebral artery occlusion model. We performed permanent middle cerebral artery occlusion on mice with Nox4 overexpression in pericytes (Tg-Nox4). Infarct volume was significantly greater with enhanced reactive oxygen species production and blood-brain barrier breakdown in peri-infarct areas in Tg-Nox4, compared with littermate controls. In cultured brain pericytes, Nox4 was significantly upregulated by hypoxia and was promptly downregulated by reoxygenation. Phosphorylation of NFκB and production of matrix metalloproteinase 9 were significantly increased in both cultured pericytes overexpressing Nox4 and in peri-infarct areas in Tg-Nox4. Collectively, Nox4 is upregulated in pericytes in peri-infarct areas after acute brain ischemia and may enhance blood-brain barrier breakdown through activation of NFκB and matrix metalloproteinase 9, thereby causing enlargement of infarct volume. PMID:26661159

  15. ADAMTS13 deficiency exacerbates VWF-dependent acute myocardial ischemia/reperfusion injury in mice

    PubMed Central

    Gandhi, Chintan; Motto, David G.; Jensen, Melissa; Lentz, Steven R.

    2012-01-01

    Epidemiologic studies suggest that elevated VWF levels and reduced ADAMTS13 activity in the plasma are risk factors for myocardial infarction. However, it remains unknown whether the ADAMTS13-VWF axis plays a causal role in the pathophysiology of myocardial infarction. In the present study, we tested the hypothesis that ADAMTS13 reduces VWF-mediated acute myocardial ischemia/reperfusion (I/R) injury in mice. Infarct size, neutrophil infiltration, and myocyte apoptosis in the left ventricular area were quantified after 30 minutes of ischemia and 23.5 hours of reperfusion injury. Adamts13−/− mice exhibited significantly larger infarcts concordant with increased neutrophil infiltration and myocyte apoptosis compared with wild-type (WT) mice. In contrast, Vwf−/− mice exhibited significantly reduced infarct size, neutrophil infiltration, and myocyte apoptosis compared with WT mice, suggesting a detrimental role for VWF in myocardial I/R injury. Treating WT or Adamts13−/− mice with neutralizing Abs to VWF significantly reduced infarct size compared with control Ig–treated mice. Finally, myocardial I/R injury in Adamts13−/−/Vwf−/− mice was similar to that in Vwf−/− mice, suggesting that the exacerbated myocardial I/R injury observed in the setting of ADAMTS13 deficiency is VWF dependent. These findings reveal that ADAMTS13 and VWF are causally involved in myocardial I/R injury. PMID:22983446

  16. Unilateral Renal Ischemia-Reperfusion as a Robust Model for Acute to Chronic Kidney Injury in Mice

    PubMed Central

    Le Clef, Nathalie; Verhulst, Anja; D’Haese, Patrick C.; Vervaet, Benjamin A.

    2016-01-01

    Acute kidney injury (AKI) is an underestimated, yet important risk factor for development of chronic kidney disease (CKD). Even after initial total recovery of renal function, some patients develop progressive and persistent deterioration of renal function and these patients are more likely to progress to end-stage renal disease (ESRD). Animal models are indispensable for unravelling the mechanisms underlying this progression towards CKD and ESRD and for the development of new therapeutic strategies in its prevention or treatment. Ischemia (i.e. hypoperfusion after surgery, bleeding, dehydration, shock, or sepsis) is a major aetiology in human AKI, yet unilateral ischemia-reperfusion is a rarely used animal model for research on CKD and fibrosis. Here, we demonstrate in C57Bl/6J mice, by both histology and gene expression, that unilateral ischemia-reperfusion without contralateral nephrectomy is a very robust model to study the progression from acute renal injury to long-term tubulo-interstitial fibrosis, i.e. the histopathological hallmark of CKD. Furthermore, we report that the extent of renal fibrosis, in terms of Col I, TGFβ, CCN2 and CCN3 expression and collagen I immunostaining, increases with increasing body temperature during ischemia and ischemia-time. Thus, varying these two main determinants of ischemic injury allows tuning the extent of the long-term fibrotic outcome in this model. Finally, in order to cover the whole practical finesse of ischemia-reperfusion and allow model and data transfer, we provide a referenced overview on crucial technical issues (incl. anaesthesia, analgesia, and pre- and post-operative care) with the specific aim of putting starters in the right direction of implementing ischemia in their research and stimulate them, as well as the community, to have a critical view on ischemic literature data. PMID:27007127

  17. Unilateral Renal Ischemia-Reperfusion as a Robust Model for Acute to Chronic Kidney Injury in Mice.

    PubMed

    Le Clef, Nathalie; Verhulst, Anja; D'Haese, Patrick C; Vervaet, Benjamin A

    2016-01-01

    Acute kidney injury (AKI) is an underestimated, yet important risk factor for development of chronic kidney disease (CKD). Even after initial total recovery of renal function, some patients develop progressive and persistent deterioration of renal function and these patients are more likely to progress to end-stage renal disease (ESRD). Animal models are indispensable for unravelling the mechanisms underlying this progression towards CKD and ESRD and for the development of new therapeutic strategies in its prevention or treatment. Ischemia (i.e. hypoperfusion after surgery, bleeding, dehydration, shock, or sepsis) is a major aetiology in human AKI, yet unilateral ischemia-reperfusion is a rarely used animal model for research on CKD and fibrosis. Here, we demonstrate in C57Bl/6J mice, by both histology and gene expression, that unilateral ischemia-reperfusion without contralateral nephrectomy is a very robust model to study the progression from acute renal injury to long-term tubulo-interstitial fibrosis, i.e. the histopathological hallmark of CKD. Furthermore, we report that the extent of renal fibrosis, in terms of Col I, TGFβ, CCN2 and CCN3 expression and collagen I immunostaining, increases with increasing body temperature during ischemia and ischemia-time. Thus, varying these two main determinants of ischemic injury allows tuning the extent of the long-term fibrotic outcome in this model. Finally, in order to cover the whole practical finesse of ischemia-reperfusion and allow model and data transfer, we provide a referenced overview on crucial technical issues (incl. anaesthesia, analgesia, and pre- and post-operative care) with the specific aim of putting starters in the right direction of implementing ischemia in their research and stimulate them, as well as the community, to have a critical view on ischemic literature data. PMID:27007127

  18. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury

    SciTech Connect

    Chen, Lijuan; Wang, Yingjie; Pan, Yaohua; Zhang, Lan; Shen, Chengxing; Qin, Gangjian; Ashraf, Muhammad; Weintraub, Neal; Ma, Genshan; Tang, Yaoliang

    2013-02-15

    Highlights: ► Cardiac progenitor-derived (CPC) Exosomes protect H9C2 from apoptosis in vitro. ► CPC-exosomes protect cardiomyoyctes from MI/R induced apoptosis in vivo. ► CPC-exosomes were taken up by H9C2 with high efficiency using PKH26 labeling. ► miR-451, one of GATA4-responsive miRNA cluster, is enriched in CPC-exosomes. -- Abstract: Background: Cardiac progenitors (CPC) mediate cardioprotection via paracrine effects. To date, most of studies focused on secreted paracrine proteins. Here we investigated the CPC-derived-exosomes on protecting myocardium from acute ischemia/reperfusion (MI/R) injury. Methods and results: CPC were isolated from mouse heart using two-step protocol. Exosomes were purified from conditional medium, and confirmed by electron micrograph and Western blot using CD63 as a marker. qRT-PCR shows that CPC-exosomes have high level expression of GATA4-responsive-miR-451. Exosomes were ex vivo labeled with PKH26, We observed exosomes can be uptaken by H9C2 cardiomyoblasts with high efficiency after 12 h incubation. CPC-exosomes protect H9C2 from oxidative stress by inhibiting caspase 3/7 activation invitro. In vivo delivery of CPC-exosomes in an acute mouse myocardial ischemia/reperfusion model inhibited cardiomyocyte apoptosis by about 53% in comparison with PBS control (p < 0.05). Conclusion: Our results suggest, for the first time, the CPC-exosomes can be used as a therapeutic vehicle for cardioprotection, and highlights a new perspective for using non-cell exosomes for cardiac disease.

  19. Hyperoxic preconditioning fails to confer additional protection against ischemia-reperfusion injury in acute diabetic rat heart

    PubMed Central

    Pourkhalili, Khalil; Hajizadeh, Sohrab; Akbari, Zahra; Dehaj, Mansour Esmaili; Akbarzadeh, Samad; Alizadeh, Alimohammad

    2012-01-01

    Experimental studies show that detrimental effects of ischemia-reperfusion (I/R) injury can be attenuated by hyperoxic preconditioning in normal hearts, however, there are few studies about hyperoxia effects in diseased myocardium. The present study was designed to assess the cardioprotective effects of hyperoxia pretreatment (≥ 95 % O2) in acute diabetic rat hearts. Normal and one week acute diabetic rats were either exposed to 60 (H60) and 180 (H180) min of hyperoxia or exposed to normal atmospheric air (21 % O2). Then hearts were isolated immediately and subjected to 30 min of regional ischemia followed by 120 min of reperfusion. Infarct size, cardiomyocyte apoptosis, enzymes release and ischemia induced arrhythmias were determined. Heart of diabetic control rats had less infarct size and decreased LDH and CK-MB release compared to normal hearts. 60 and 180 min of hyperoxia reduced myocardial infarct size and enzymes release in normal hearts. 180 min of hyperoxia also decreased cardiomyocytes apoptosis in normal state. On the other hand, protective values of hyperoxia were not significantly different in diabetic hearts. Moreover, hyperoxia reduced severity of ventricular arrhythmias in normal rat hearts whereas; it did not confer any additional antiarrhythmic protection in diabetic hearts. These findings suggest that diabetic hearts are less susceptible to ischemia-induced arrhythmias and infarction. Hyperoxia greatly protects rat hearts against I/R injury in normal hearts, however, it could not provide added cardioprotective effects in acute phase of diabetes.

  20. Early detection of acute transmural myocardial ischemia by the phasic systolic-diastolic changes of local tissue electrical impedance.

    PubMed

    Jorge, Esther; Amorós-Figueras, Gerard; García-Sánchez, Tomás; Bragós, Ramón; Rosell-Ferrer, Javier; Cinca, Juan

    2016-02-01

    Myocardial electrical impedance is influenced by the mechanical activity of the heart. Therefore, the ischemia-induced mechanical dysfunction may cause specific changes in the systolic-diastolic pattern of myocardial impedance, but this is not known. This study aimed to analyze the phasic changes of myocardial resistivity in normal and ischemic conditions. Myocardial resistivity was measured continuously during the cardiac cycle using 26 different simultaneous excitation frequencies (1 kHz-1 MHz) in 7 anesthetized open-chest pigs. Animals were submitted to 30 min regional ischemia by acute left anterior descending coronary artery occlusion. The electrocardiogram, left ventricular (LV) pressure, LV dP/dt, and aortic blood flow were recorded simultaneously. Baseline myocardial resistivity depicted a phasic pattern during the cardiac cycle with higher values at the preejection period (4.19 ± 1.09% increase above the mean, P < 0.001) and lower values during relaxation phase (5.01 ± 0.85% below the mean, P < 0.001). Acute coronary occlusion induced two effects on the phasic resistivity curve: 1) a prompt (5 min ischemia) holosystolic resistivity rise leading to a bell-shaped waveform and to a reduction of the area under the LV pressure-impedance curve (1,427 ± 335 vs. 757 ± 266 Ω·cm·mmHg, P < 0.01, 41 kHz) and 2) a subsequent (5-10 min ischemia) progressive mean resistivity rise (325 ± 23 vs. 438 ± 37 Ω·cm at 30 min, P < 0.01, 1 kHz). The structural and mechanical myocardial dysfunction induced by acute coronary occlusion can be recognized by specific changes in the systolic-diastolic myocardial resistivity curve. Therefore these changes may become a new indicator (surrogate) of evolving acute myocardial ischemia. PMID:26608340

  1. Low Energy Shock Wave Therapy Induces Angiogenesis in Acute Hind-Limb Ischemia via VEGF Receptor 2 Phosphorylation

    PubMed Central

    Holfeld, Johannes; Tepeköylü, Can; Blunder, Stefan; Lobenwein, Daniela; Kirchmair, Elke; Dietl, Marion; Kozaryn, Radoslaw; Lener, Daniela; Theurl, Markus; Paulus, Patrick; Kirchmair, Rudolf; Grimm, Michael

    2014-01-01

    Objectives Low energy shock waves have been shown to induce angiogenesis, improve left ventricular ejection fraction and decrease angina symptoms in patients suffering from chronic ischemic heart disease. Whether there is as well an effect in acute ischemia was not yet investigated. Methods Hind-limb ischemia was induced in 10–12 weeks old male C57/Bl6 wild-type mice by excision of the left femoral artery. Animals were randomly divided in a treatment group (SWT, 300 shock waves at 0.1 mJ/mm2, 5 Hz) and untreated controls (CTR), n = 10 per group. The treatment group received shock wave therapy immediately after surgery. Results Higher gene expression and protein levels of angiogenic factors VEGF-A and PlGF, as well as their receptors Flt-1 and KDR have been found. This resulted in significantly more vessels per high-power field in SWT compared to controls. Improvement of blood perfusion in treatment animals was confirmed by laser Doppler perfusion imaging. Receptor tyrosine kinase profiler revealed significant phosphorylation of VEGF receptor 2 as an underlying mechanism of action. The effect of VEGF signaling was abolished upon incubation with a VEGFR2 inhibitor indicating that the effect is indeed VEGFR 2 dependent. Conclusions Low energy shock wave treatment induces angiogenesis in acute ischemia via VEGF receptor 2 stimulation and shows the same promising effects as known from chronic myocardial ischemia. It may therefore develop as an adjunct to the treatment armentarium of acute muscle ischemia in limbs and myocardium. PMID:25093816

  2. Acute Humanin Therapy Attenuates Myocardial Ischemia and Reperfusion Injury in Mice

    PubMed Central

    Muzumdar, Radhika H.; Huffman, Derek M.; Calvert, John W.; Jha, Saurabh; Weinberg, Yoni; Cui, Lingguang; Nemkal, Anjana; Atzmon, Gil; Klein, Laura; Gundewar, Susheel; Ji, Sang Yong; Lavu, Madhav; Predmore, Benjamin L.; Lefer, David J.

    2010-01-01

    Objective Humanin, an endogenous anti-apoptotic peptide, has previously been shown to protect against Alzheimer’s disease and a variety of cellular insults. We evaluated the effects of a potent analog of humanin, HNG, in an in vivo murine model of myocardial ischemia and reperfusion (MI-R). Methods Male C57BL6/J mice (8–10 week old) were subjected to 45 min of left coronary artery occlusion followed by 24 hr reperfusion. HNG or vehicle was administered intra-peritoneally one hour prior or at the time of reperfusion. The extent of myocardial infarction per area-at-risk was evaluated at 24 hrs using Evans Blue dye and 2,3,5 triphenyltetrazolium chloride (TTC) staining. Left ventricular (LV) function was evaluated at one week post ischemia using high-resolution, 2- D echocardiography (VisualSonics Vevo 770). Myocardial cell signaling pathways and apoptotic markers were assessed at various time points (0–24 hrs) following reperfusion. Cardiomyocyte survival and apoptosis in response to HNG were assessed in vitro. Results HNG reduced infarct size relative to the area-at-risk in a dose dependent fashion, with a maximal reduction at the dose of 2 mg/kg. HNG therapy enhanced LV ejection fraction and preserved post-ischemic LV dimensions (end-diastolic and end-systolic), resulting in improved cardiac function. Treatment with HNG significantly increased the expression of pAMPK and p-eNOS in the heart and attenuated Bax and Bcl-2 levels following MI-R. HNG improved cardiomyocyte survival and decreased apoptosis in response to daunorubicin in vitro. Conclusions These data show that HNG provides cardioprotection in a mouse model of MI-R potentially through activation of AMPK-eNOS mediated signaling and regulation of apoptotic factors. HNG may represent a novel agent for the treatment of acute myocardial infarction. PMID:20651283

  3. [Prognosis of acute ischemia of the lower limbs in patients over 80 years of age. A prospective study].

    PubMed

    Batt, M; Daune, B; Puch, J; Hassen-Khodja, R; Avril, G; Declemy, S; Le Bas, P

    1990-12-01

    To demonstrate the importance of age in the prognosis of acute lower limb ischemia, a prospective study was performed in 137 patients over 24 months. Group I contained 75 patients aged under 80 years and group II 62 patients aged over 80 years. Risk factors and previous history were equally distributed in the two groups. The level of arterial blockage and the treatment were comparable in the two groups. Mortality was higher in group II than in group I (p less than 0.01). In both groups deaths were principally due to cardiac causes and a revascularisation syndrome. Amputation at thigh level was more common in group II (p less than 0.01). Mortality was higher in group II for combined thigh level amputation and cardiac or coronary insufficiency (p less than 0.05). This study demonstrated that, in terms of prognosis of acute lower limb ischemia, the critical threshold is 80 years. PMID:2099941

  4. Neonatal herpes simplex virus type-1 central nervous system disease with acute retinal necrosis.

    PubMed

    Fong, Choong Yi; Aye, Aye Mya Min; Peyman, Mohammadreza; Nor, Norazlin Kamal; Visvaraja, Subrayan; Tajunisah, Iqbal; Ong, Lai Choo

    2014-04-01

    We report a case of neonatal herpes simplex virus (HSV)-1 central nervous system disease with bilateral acute retinal necrosis (ARN). An infant was presented at 17 days of age with focal seizures. Cerebrospinal fluid polymerase chain reaction was positive for HSV-1 and brain magnetic resonance imaging showed cerebritis. While receiving intravenous acyclovir therapy, the infant developed ARN with vitreous fluid polymerase chain reaction positive for HSV-1 necessitating intravitreal foscarnet therapy. This is the first reported neonatal ARN secondary to HSV-1 and the first ARN case presenting without external ocular or cutaneous signs. Our report highlights that infants with neonatal HSV central nervous system disease should undergo a thorough ophthalmological evaluation to facilitate prompt diagnosis and immediate treatment of this rapidly progressive sight-threatening disease. PMID:24378951

  5. Endovascular Therapy as a Primary Revascularization Modality in Acute Mesenteric Ischemia

    SciTech Connect

    Kärkkäinen, Jussi M.; Lehtimäki, Tiina T. Saari, Petri; Hartikainen, Juha; Rantanen, Tuomo Paajanen, Hannu; Manninen, Hannu

    2015-10-15

    PurposeTo evaluate endovascular therapy (EVT) as the primary revascularization method for acute mesenteric ischemia (AMI).MethodsA retrospective review was performed on all consecutive patients treated for AMI during a 5-year period (January 2009 to December 2013). EVT was attempted in all patients referred for emergent revascularization. Surgical revascularization was performed selectively after failure of EVT. Patient characteristics, clinical presentation, and outcomes were studied. Failures and complications of EVT were recorded.ResultsFifty patients, aged 79 ± 9 years (mean ± SD), out of 66 consecutive patients with AMI secondary to embolic or thrombotic obstruction of the superior mesenteric artery were referred for revascularization. The etiology of AMI was embolism in 18 (36 %) and thrombosis in 32 (64 %) patients. EVT was technically successful in 44 (88 %) patients. Mortality after successful or failed EVT was 32 %. The rates of emergency laparotomy, bowel resection, and EVT-related complication were 40, 34, and 10 %, respectively. Three out of six patients with failure of EVT were treated with surgical bypass. EVT failure did not significantly affect survival.ConclusionsEVT is feasible in most cases of AMI, with favorable patient outcome and acceptable complication rate.

  6. Protease-activated receptor 4 deficiency offers cardioprotection after acute ischemia reperfusion injury.

    PubMed

    Kolpakov, Mikhail A; Rafiq, Khadija; Guo, Xinji; Hooshdaran, Bahman; Wang, Tao; Vlasenko, Liudmila; Bashkirova, Yulia V; Zhang, Xiaoxiao; Chen, Xiongwen; Iftikhar, Sahar; Libonati, Joseph R; Kunapuli, Satya P; Sabri, Abdelkarim

    2016-01-01

    Protease-activated receptor (PAR)4 is a low affinity thrombin receptor with less understood function relative to PAR1. PAR4 is involved in platelet activation and hemostasis, but its specific actions on myocyte growth and cardiac function remain unknown. This study examined the role of PAR4 deficiency on cardioprotection after myocardial ischemia-reperfusion (IR) injury in mice. When challenged by in vivo or ex vivo IR, PAR4 knockout (KO) mice exhibited increased tolerance to injury, which was manifest as reduced infarct size and a more robust functional recovery compared to wild-type mice. PAR4 KO mice also showed reduced cardiomyocyte apoptosis and putative signaling shifts in survival pathways in response to IR. Inhibition of PAR4 expression in isolated cardiomyocytes by shRNA offered protection against thrombin and PAR4-agonist peptide-induced apoptosis, while overexpression of wild-type PAR4 significantly enhanced the susceptibility of cardiomyocytes to apoptosis, even under low thrombin concentrations. Further studies implicate Src- and epidermal growth factor receptor-dependent activation of JNK on the proapoptotic effect of PAR4 in cardiomyocytes. These findings reveal a pivotal role for PAR4 as a regulator of cardiomyocyte survival and point to PAR4 inhibition as a therapeutic target offering cardioprotection after acute IR injury. PMID:26643815

  7. Selective Cyclooxygenase-2 Inhibition Protects Against Myocardial Damage in Experimental Acute Ischemia

    PubMed Central

    Carnieto, Alberto; Dourado, Paulo Magno Martins; da Luz, Protásio Lemos; Chagas, Antonio Carlos Palandri

    2009-01-01

    BACKGROUND Acute myocardial infarction is associated with tissue inflammation. Early coronary reperfusion clearly improves the outcome but may help propagate the inflammatory response and enhance tissue damage. Cyclooxygenase-2 is an enzyme that catalyzes the initial step in the formation of inflammatory prostaglandins from arachidonic acid. Cyclooxygenase-2 levels are increased when ischemic cardiac events occur. The overall function of COX-2 in the inflammatory process generated by myocardial ischemic damage has not yet been elucidated. GOAL The objective of this study was to determine whether a selective cyclooxygenase-2 inhibitor (rofecoxib) could alter the evolution of acute myocardial infarction after reperfusion. METHODS AND RESULTS This study was performed with 48 mongrel dogs divided into two groups: controls and those treated with the drug. All animals were prepared for left anterior descending coronary artery occlusion. The dogs then underwent 180 minutes of coronary occlusion, followed by 30 minutes of reperfusion. Blood samples were collected from the venous sinus immediately before coronary occlusion and after 30 minutes of reperfusion for measurements of CPK-MB, CPK-MBm and troponin I. During the experiment we observed the mean blood pressure, heart rate and coronary flow. The coronary flow and heart rate did not change, but in the control group, there was blood pressure instability, in addition to maximal levels of CPK-MB post-infarction. The same results were observed for CPK-MBm and troponin I. CONCLUSION In a canine model of myocardial ischemia-reperfusion, selective inhibition of Cyclooxygenase-2 with rofecoxib was not associated with early detrimental effects on the hemodynamic profile or the gross extent of infarction; in fact, it may be beneficial by limiting cell necrosis. PMID:19330252

  8. Core-shell hybrid liposomal vesicles loaded with panax notoginsenoside: preparation, characterization and protective effects on global cerebral ischemia/reperfusion injury and acute myocardial ischemia in rats

    PubMed Central

    Zhang, Jing; Han, Xizhen; Li, Xiang; Luo, Yun; Zhao, Haiping; Yang, Ming; Ni, Bin; Liao, Zhenggen

    2012-01-01

    Purpose: Novel panax notoginsenoside-loaded core-shell hybrid liposomal vesicles (PNS-HLV) were developed to resolve the restricted bioavailability of PNS and to enhance its protective effects in vivo on oral administration. Methods: Physicochemical characterizations of PNS-HLV included assessment of morphology, particle size and zeta potential, encapsulation efficiency (EE%), stability and in vitro release study. In addition, to evaluate its oral treatment potential, we compared the effect of PNS-HLV on global cerebral ischemia/reperfusion and acute myocardial ischemia injury with those of PNS solution, conventional PNS-loaded nanoparticles, and liposomes. Results: In comparison with PNS solution, conventional PNS-loaded nanoparticles and liposomes, PNS-HLV was stable for at least 12 months at 4°C. Satisfactory improvements in the EE% of notoginsenoside R1, ginsenoside Rb1, and ginsenoside Rg1 were shown with the differences in EE% shortened and the greater controlled drug release profiles were exhibited from PNS-HLV. The improvements in the physicochemical properties of HLV contributed to the results that PNS-HLV was able to significantly inhibit the edema of brain and reduce the infarct volume, while it could markedly inhibit H2O2, modified Dixon agar, and serum lactate dehydrogenase, and increase superoxide dismutase (P < 0.05). Conclusion: The results of the present study imply that HLV has promising prospects for improving free drug bioactivity on oral administration. PMID:22915851

  9. [Acute and chronic limb ischemia in endurance athletes - a serious diagnosis of exercise-induced lower limb pain].

    PubMed

    Regus, Susanne; Lang, Werner

    2016-07-01

    Lower extremity pain due to acute or chronic ischemia in high performance endurance athletes is an often forgotten differential diagnosis. A variety of symptoms constitues a multi-disciplinary challenge. Intermittent claudication or acute ischemia are clinical symptoms indicative of this vascular disease. The most important basic methods of investigation are anamnesis and clinical examination. Furthermore, the determination of the ankle-brachial index (ABI) and duplexsonography should be considered. In addition, modern cross-sectional imaging techniques such as computed tomography angiography (CTA) or magnetic resonance angiography (MRA) are recommended. In case of suspect findings, the digital substraction angiography (DSA) represents a high resolution image technique for illustration of the vessel lumen. If necessary, interventional therapy (balloon angioplasty or clot lysing) can be performed simultaneously. Surgical revision remains the gold-standard of therapy and the fastest way in which athletes regain maximum performance abilities. Correct diagnosis of lower limb ischemia affecting endurance athletes should be performed without delays. Determining the ankle-brachial index following maximal exertion represents the most important diagnostic tool. Surgical treatment techniques as decompression and revascularisation provide the best long-term results. PMID:27464284

  10. Successful Thrombolysis and Spasmolysis of Acute Leg Ischemia after Accidental Intra-arterial Injection of Dissolved Flunitrazepam Tablets

    SciTech Connect

    Radeleff, B. Stampfl, U.; Sommer, C.-M.; Bellemann, N.; Hyhlik-Duerr, A.; Weber, M.-A.; Boeckler, D.; Kauczor, H.-U.

    2011-10-15

    A 37-year-old man with known intravenous drug abuse presented in the surgical ambulatory care unit with acute leg ischemia after accidental intra-arterial injection of dissolved flunitrazepam tablets into the right femoral artery. A combination of anticoagulation, vasodilatation, and local selective and superselective thrombolysis with urokinase was performed to salvage the leg. As a result of the severe ischemia-induced pain, the patient had to be monitored over the complete therapy period on the intensive care unit with permanent administration of intravenous fluid and analgetics. We describe the presenting symptoms and the interventional technique, and we discuss the recent literature regarding the management of accidental intra-arterial injection of dissolved flunitrazepam tablets.

  11. Dipyridamole attenuates ischemia reperfusion induced acute kidney injury through adenosinergic A1 and A2A receptor agonism in rats.

    PubMed

    Puri, Nikkita; Mohey, Vinita; Singh, Manjinder; Kaur, Tajpreet; Pathak, Devendra; Buttar, Harpal Singh; Singh, Amrit Pal

    2016-04-01

    Dipyridamole (DYP) is an anti-platelet agent with marked vasodilator, anti-oxidant, and anti-inflammatory activity. The present study investigated the role of adenosine receptors in DYP-mediated protection against ischemia reperfusion-induced acute kidney injury (AKI) in rats. The rats were subjected to bilateral renal ischemia for 40 min followed by reperfusion for 24 h. The renal damage induced by ischemia reperfusion injury (IRI) was assessed by measuring creatinine clearance, blood urea nitrogen, uric acid, plasma potassium, fractional excretion of sodium, and microproteinuria in rats. The oxidative stress in renal tissues was assessed by quantification of thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. The hematoxylin-eosin staining was carried out to observe histopathological changes in renal tissues. DYP (10 and 30 mg/kg, intraperitoneal, i.p.) was administered 30 min before subjecting the rats to renal IRI. In separate groups, caffeine (50 mg/kg, i.p.), an adenosinergic A1 and A2A receptor antagonist was administered with and without DYP treatment before subjecting the rats to renal IRI. The ischemia reperfusion-induced AKI was demonstrated by significant changes in serum as well as urinary parameters, enhanced oxidative stress, and histopathological changes in renal tissues. The administration of DYP demonstrated protection against AKI. The prior treatment with caffeine abolished DYP-mediated reno-protection suggesting role of A1 and A2A adenosine receptors in DYP-mediated reno-protection in rats. It is concluded that adenosine receptors find their definite involvement in DYP-mediated anti-oxidative and reno-protective effect against ischemia reperfusion-induced AKI. PMID:26728617

  12. Quantitative T(1rho) and magnetization transfer magnetic resonance imaging of acute cerebral ischemia in the rat.

    PubMed

    Mäkelä, Heidi I; Kettunen, Mikko I; Gröhn, Olli H J; Kauppinen, Risto A

    2002-05-01

    It has been previously shown that T1 in the rotating frame (T(1rho)) is a very sensitive and early marker of cerebral ischemia and that, interestingly, it can provide prognostic information about the degree of subsequent neuronal damage. In the present study the authors have quantified T(1rho) together with the rate and other variables of magnetization transfer (MT) associated with spin interactions between the bulk and semisolid macromolecular pools by means of Z spectroscopy, to examine the possible overlap of mechanisms affecting these magnetic resonance imaging contrasts. Substantial prolongation of cerebral T(1rho) was observed minutes after induction of ischemia, this change progressing in a time-dependent manner. Difference Z spectra (contralateral nonischemic minus ischemic brain tissue) showed a significant positive reminder in the time points from 0.5 to 3 hours after induction of ischemia, the polarity of this change reversing by 24 hours. Detailed analysis of the MT variables showed that the initial Z spectral changes were due to concerted increase in the maximal MT (+3%) and amount of MT (+4%). Interestingly, the MT rates derived either from the entire frequency range of Z spectra or the time constant for the first-order forward exchange (k(sat)) were unchanged at this time, these variables reducing only one day after induction of ischemia. The authors conclude that T(1rho) changes in the acute phase of ischemia coincide with both elevated maximal MT and amount of MT. These changes occur independent of the overall MT rate and in the absence of net water gain to the tissue, whereas in the consolidating infarction the decrease in the rate and amount of MT, as well as the extensive prolongation of T(1rho), are associated with water accumulation. PMID:11973427

  13. High-dose methylprednisolone treatment of laser-induced retinal injury exacerbates acute inflammation and long-term scarring

    NASA Astrophysics Data System (ADS)

    Schuschereba, Steven T.; Cross, Michael E.; Scales, David K.; Pizarro, Jose M.; Edsall, Peter R.; Stuck, Bruce E.; Marshall, John

    1999-06-01

    Purpose. To evaluate therapeutics for attenuating retinal laser injury. Methods. New Zealand Red rabbits (n=76) were pretreated (IV) with either a single dose of hydroxyethyl starch conjugated deferoxamine (HES-DFO, n=29) (6.1 ml/kg, 16.4 mg/ml) or methylprednisolone sodium succinate (MP, n=22) (30 mg/kg, followed by taper of 30, 20, 20, and 10 mg/kg/day for a total of 5d). Controls were untreated (n=25). Fifteen min later, animals were irradiated with a multiline cw argon laser (285 mW, 10 msec pulse durations, 16 lesions/eye). Funduscopy, fluorescein angiography, histology, and morphometry were performed at 10 min, 1h, 3h, 24h, 1 mo, and 6 mo after irradiation. Leukocytes were counted at lesion centers for retinal and choroidal compartments at 1, 3, and 24h. Results. At 3h, percent area incrase for the lesions was highest for MP (44%) and lowest for HES-DFO (16%)(p<0.05). In hemorrhagic lesions, MP treatment resulted in the highest increase of retinal neotrophils by 24h (p<0.05), and by 1 and 6 mo extensive chorio-retinal scarring occurred in nonhemorrhagic and hemorrhagic lesions. Also, no benefit was demonstrated on sparing of photoreceptors with MP treatment. Conclusions. Treatment of laser-induced retinal injury with methylprednisolone (MP) exacerbates acute inflammation and long-term chorio-retinal scarring; however, hydroxyethyl starch conjugated deferoxamine therapy ameliorates these aspects of injury. Data suggest caution in the use of MP therapy for laser injuries.

  14. JNK Inhibition Reduced Retinal Ganglion Cell Death after Ischemia/Reperfusion In Vivo and after Hypoxia In Vitro.

    PubMed

    Produit-Zengaffinen, Nathalie; Favez, Tatiana; Pournaras, Constantin J; Schorderet, Daniel F

    2016-01-01

    Mitogen-activated protein kinases (MAPKs) are key regulators that have been linked to cell survival and death. Among the main classes of MAPKs, c-jun N-terminal kinase (JNK) has been shown to mediate cell stress responses associated with apoptosis. In Vitro, hypoxia induced a significant increase in 661W cell death that paralleled increased activity of JNK and c-jun. 661W cells cultured in presence of the inhibitor of JNK (D-JNKi) were less sensitive to hypoxia-induced cell death. In vivo, elevation in intraocular pressure (IOP) in the rat promoted cell death that correlated with modulation of JNK activation. In vivo inhibition of JNK activation with D-JNKi resulted in a significant and sustained decrease in apoptosis in the ganglion cell layer, the inner nuclear layer and the photoreceptor layer. These results highlight the protective effect of D-JNKi in ischemia/reperfusion induced cell death of the retina. PMID:26427475

  15. Acute retinal necrosis in the United Kingdom: results of a prospective surveillance study

    PubMed Central

    Cochrane, T F; Silvestri, G; McDowell, C; Foot, B; McAvoy, C E

    2012-01-01

    Background To determine the incidence of acute retinal necrosis (ARN) in the United Kingdom and to describe the demographics, management, and visual outcome in these patients. Methods This was a prospective study carried out by the British Ophthalmological Surveillance Unit (BOSU) between September 2007 and October 2008. Initial and 6-month questionnaires were sent to UK ophthalmologists who reported cases of ARN via the monthly BOSU report card system. Results In all, 45 confirmed cases (52 eyes) of ARN were reported in the 14-month study period, giving a minimum incidence of 0.63 cases per million population per year. There were 20 females and 25 males. Age ranged from 10 to 94 years. Eight patients had a history of herpetic CNS disease. Aqueous sampling was carried out in 13 patients, vitreous in 27, and cerebrospinal fluid (CSF) in 4. Varicella-zoster virus followed by herpes simplex were the most common causative agents. Treatment in 76% of the cases was with intravenous antivirals; however, 24% received only oral antivirals. In all, 47% of patients had intravitreal antiviral therapy. Visual outcome at 6 months was <6/60 in 48% of the affected eyes. Conclusion The minimum incidence of ARN in the UK is 0.63 cases per million. Patients with a history of herpetic CNS disease should be warned to immediately report any visual symptoms. There is increased use of oral and intravitreal antivirals in initial treatment. PMID:22281865

  16. Protective Effects of Berberine on Isoproterenol-Induced Acute Myocardial Ischemia in Rats through Regulating HMGB1-TLR4 Axis

    PubMed Central

    Zhang, Tianzhu; Yang, Shihai; Du, Juan

    2014-01-01

    Berberine, an isoquinoline alkaloid originally isolated from the Chinese herb Coptis chinensis (Huanglian), has been shown to display a wide array of pharmacological activities. The present study was to investigate the effects of berberine against myocardial ischemia produced in rats by isoproterenol. 50 male Sprague-Dawley rats were randomized equally into five groups: a control group, an untreated model group, berberine (30, 60 mg/kg) treatment, or propranolol (30 mg/kg). Rats were treated for 12 days and then given isoproterenol, 85 mg/kg for 2 consecutive days by subcutaneous injection. ST-segment elevation was measured after the last administration. Serum levels of creatine kinase isoenzyme (CK-MB), lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) were measured after the rats were sacrificed. The hearts were excised for determining heart weight index, microscopic examination, high mobility group box 1 (HMGB1), toll-like receptor (TLR4), prodeath protein (Bax), antideath protein (Bcl-2), and tumor necrosis factor (TNF-α) protein were determined by western blot. Berberine decreased the ST elevation induced by acute myocardial ischemia, and decreased serum levels of CK-MB, LDH, TNF-α, and IL-6. Berberine increased total superoxide dismutase (T-SOD) activity and decreased malondialdehyde (MDA) content in myocardial tissue. Berberine can regulate HMGB1-TLR4 axis to protect myocardial ischemia. PMID:25477998

  17. Acute Administration of n-3 Rich Triglyceride Emulsions Provides Cardioprotection in Murine Models after Ischemia-Reperfusion

    PubMed Central

    Zirpoli, Hylde; Abdillahi, Mariane; Quadri, Nosirudeen; Ananthakrishnan, Radha; Wang, Lingjie; Rosario, Rosa; Zhu, Zhengbin; Deckelbaum, Richard J.; Ramasamy, Ravichandran

    2015-01-01

    Dietary n-3 fatty acids (FAs) may reduce cardiovascular disease risk. We questioned whether acute administration of n-3 rich triglyceride (TG) emulsions could preserve cardiac function and decrease injury after ischemia/reperfusion (I/R) insult. We used two different experimental models: in vivo, C57BL/6 mice were exposed to acute occlusion of the left anterior descending coronary artery (LAD), and ex-vivo, C57BL/6 murine hearts were perfused using Langendorff technique (LT). In the LAD model, mice treated with n-3 TG emulsion (1.5g/kg body weight), immediately after ischemia and 1h later during reperfusion, significantly reduced infarct size and maintained cardiac function (p<0.05). In the LT model, administration of n-3 TG emulsion (300mgTG/100ml) during reperfusion significantly improved functional recovery (p<0.05). In both models, lactate dehydrogenase (LDH) levels, as a marker of injury, were significantly reduced by n-3 TG emulsion. To investigate the mechanisms by which n-3 FAs protects hearts from I/R injury, we investigated changes in key pathways linked to cardioprotection. In the ex-vivo model, we showed that n-3 FAs increased phosphorylation of AKT and GSK3β proteins (p<0.05). Acute n-3 TG emulsion treatment also increased Bcl-2 protein level and reduced an autophagy marker, Beclin-1 (p<0.05). Additionally, cardioprotection by n-3 TG emulsion was linked to changes in PPARγ protein expression (p<0.05). Rosiglitazone and p-AKT inhibitor counteracted the positive effect of n-3 TG; GSK3β inhibitor plus n-3 TG significantly inhibited LDH release. We conclude that acute n-3 TG injection during reperfusion provides cardioprotection. This may prove to be a novel acute adjunctive reperfusion therapy after treating patients with myocardial infarction. PMID:25559887

  18. Sigma-1 receptor stimulation protects retinal ganglion cells from ischemia-like insult through the activation of extracellular-signal-regulated kinases 1/2.

    PubMed

    Mueller, Brett H; Park, Yong; Ma, Hai-Ying; Dibas, Adnan; Ellis, Dorette Z; Clark, Abbot F; Yorio, Thomas

    2014-11-01

    Sigma-1 receptor (σ-1) activation and mitogen-activated protein kinases (MAPKs) have been shown to protect retinal ganglion cells (RGCs) from cell death. The purpose of this study was to determine if σ-1 receptor stimulation with pentazocine could promote neuroprotection under conditions of an ischemia-like insult (oxygen glucose deprivation (OGD)) through the phosphorylation of extracellular signal regulated kinase (pERK)1/2. Primary RGCs were isolated from P3-P7 Sprague-Dawley rats and purified by sequential immunopanning using Thy1.1 antibodies. RGCs were cultured for 7 days before subjecting the cells to an OGD insult (0.5% oxygen in glucose-free medium) for 6 h. During the OGD, RGCs were treated with pentazocine (σ-1 receptor agonist) with or without BD 1047 (σ-1 receptor antagonist). In other experiments, primary RGCs were treated with pentazocine in the presence or absence of an MEK1/2 inhibitor, PD098059. Cell survival/death was assessed by staining with the calcein-AM/ethidium homodimer reagent. Levels of pERK1/2, total ERK1/2, and beta tubulin expression were determined by immunoblotting and immunofluorescence staining. RGCs subjected to OGD for 6 h induced 50% cell death in primary RGCs (p < 0.001) and inhibited pERK1/2 expression by 65% (p < 0.001). Cell death was attenuated when RGCs were treated with pentazocine under OGD (p < 0.001) and pERK1/2 expression was increased by 1.6 fold (p < 0.05) compared to OGD treated RGCs without pentazocine treatment. The co-treatment of PD098059 (MEK1/2 inhibitor) with pentazocine significantly abolished the protective effects of pentazocine on the RGCs during this OGD insult. Activation of the σ-1 receptor is a neuroprotective target that can protect RGCs from an ischemia-like insult. These results also established a direct relationship between σ-1 receptor stimulation and the neuroprotective effects of the ERK1/2 pathway in purified RGCs subjected to OGD. These findings suggest that activation of

  19. Effectiveness of the Use of Near-Infrared Spectroscopy to Treat Acute Type A Aortic Dissection Complicated with Limb Ischemia: Report of a Case

    PubMed Central

    Nakajima, Kousuke; Chikazawa, Genta; Hiraoka, Arudo; Totsugawa, Toshinori; Sakaguchi, Taichi; Yoshitaka, Hidenori

    2015-01-01

    We report an effectiveness of the use of near-infrared spectroscopy to evaluate the limb perfusion, which helps to continuously measure the tissue oxygen index of bilateral legs in treating acute type A aortic dissection complicated with limb ischemia. A 62-year-old man underwent total arch replacement for acute type A aortic dissection with limb ischemia. Intraoperative retrograde true lumen perfusion via bilateral femoral arteries during cardiopulmonary bypass improved ischemic condition of bilateral legs before the resection of primary intimal tear, and the use of near-infrared spectroscopy made it possible to assess additional revascularizations to the lower limbs were required or not. PMID:26421076

  20. In Vivo Imaging of Retinal Hypoxia in a Model of Oxygen-Induced Retinopathy

    PubMed Central

    Uddin, Md. Imam; Evans, Stephanie M.; Craft, Jason R.; Capozzi, Megan E.; McCollum, Gary W.; Yang, Rong; Marnett, Lawrence J.; Uddin, Md. Jashim; Jayagopal, Ashwath; Penn, John S.

    2016-01-01

    Ischemia-induced hypoxia elicits retinal neovascularization and is a major component of several blinding retinopathies such as retinopathy of prematurity (ROP), diabetic retinopathy (DR) and retinal vein occlusion (RVO). Currently, noninvasive imaging techniques capable of detecting and monitoring retinal hypoxia in living systems do not exist. Such techniques would greatly clarify the role of hypoxia in experimental and human retinal neovascular pathogenesis. In this study, we developed and characterized HYPOX-4, a fluorescence-imaging probe capable of detecting retinal-hypoxia in living animals. HYPOX-4 dependent in vivo and ex vivo imaging of hypoxia was tested in a mouse model of oxygen-induced retinopathy (OIR). Predicted patterns of retinal hypoxia were imaged by HYPOX-4 dependent fluorescence activity in this animal model. In retinal cells and mouse retinal tissue, pimonidazole-adduct immunostaining confirmed the hypoxia selectivity of HYPOX-4. HYPOX-4 had no effect on retinal cell proliferation as indicated by BrdU assay and exhibited no acute toxicity in retinal tissue as indicated by TUNEL assay and electroretinography (ERG) analysis. Therefore, HYPOX-4 could potentially serve as the basis for in vivo fluorescence-based hypoxia-imaging techniques, providing a tool for investigators to understand the pathogenesis of ischemic retinopathies and for physicians to address unmet clinical needs. PMID:27491345

  1. In Vivo Imaging of Retinal Hypoxia in a Model of Oxygen-Induced Retinopathy.

    PubMed

    Uddin, Md Imam; Evans, Stephanie M; Craft, Jason R; Capozzi, Megan E; McCollum, Gary W; Yang, Rong; Marnett, Lawrence J; Uddin, Md Jashim; Jayagopal, Ashwath; Penn, John S

    2016-01-01

    Ischemia-induced hypoxia elicits retinal neovascularization and is a major component of several blinding retinopathies such as retinopathy of prematurity (ROP), diabetic retinopathy (DR) and retinal vein occlusion (RVO). Currently, noninvasive imaging techniques capable of detecting and monitoring retinal hypoxia in living systems do not exist. Such techniques would greatly clarify the role of hypoxia in experimental and human retinal neovascular pathogenesis. In this study, we developed and characterized HYPOX-4, a fluorescence-imaging probe capable of detecting retinal-hypoxia in living animals. HYPOX-4 dependent in vivo and ex vivo imaging of hypoxia was tested in a mouse model of oxygen-induced retinopathy (OIR). Predicted patterns of retinal hypoxia were imaged by HYPOX-4 dependent fluorescence activity in this animal model. In retinal cells and mouse retinal tissue, pimonidazole-adduct immunostaining confirmed the hypoxia selectivity of HYPOX-4. HYPOX-4 had no effect on retinal cell proliferation as indicated by BrdU assay and exhibited no acute toxicity in retinal tissue as indicated by TUNEL assay and electroretinography (ERG) analysis. Therefore, HYPOX-4 could potentially serve as the basis for in vivo fluorescence-based hypoxia-imaging techniques, providing a tool for investigators to understand the pathogenesis of ischemic retinopathies and for physicians to address unmet clinical needs. PMID:27491345

  2. Acute Left Arm Ischemia Associated with Floating Thrombus in the Proximal Descending Aorta: Combined Endovascular and Surgical Therapy

    SciTech Connect

    Fanelli, F.; Gazzetti, M.; Boatta, E.; Ruggiero, M.; Lucatelli, P.; Speziale, F.

    2011-02-15

    Free floating thrombus in the proximal descending aorta is an uncommon and dangerous condition that can be associated with acute peripheral embolization. The few cases described were solved with surgical and/or medical therapy. We report the case of a patient with acute left arm ischemia secondary to the presence of floating thrombus in the proximal descending aorta extending into the left subclavian artery, solved with combined endovascular and surgical therapy. Treatment was successfully performed with thrombembolectomy combined with temporary deployment, into the descending aorta, of a Wallstent in a 'basket-fashion' to avoid distal embolization secondary to thrombus fragmentation. At 1 year follow-up the patient remained symptom-free.

  3. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia

    PubMed Central

    Pedata, Felicita; Pugliese, Anna Maria; Coppi, Elisabetta; Dettori, Ilaria; Maraula, Giovanna; Cellai, Lucrezia; Melani, Alessia

    2014-01-01

    The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke. PMID:25165414

  4. [Application of retinal oximeter in ophthalmology].

    PubMed

    Li, Jing; Ma, Jianmin; Wang, Ningli

    2015-11-01

    Retinal oximeter is a new machine which has been used in the diagnose, treatment and research of several ophthalmic diseases for recent years. It allows ophthalmologists to gain retinal oxygen saturation directly. Therefore, retinal oximeter might be useful for ophthalmologists to understand ophthalmic diseases more deeper and clarify the impact of ischemia on retinal function. It has been reported in the literatures that retinal oximeter has potentially useful diagnostic and therapeutic indications in various eye diseases such as diabetic retinopathy, central retinal vein and artery occlusion, retinitis pigmentosa, glaucomatous optic neuropathy, et al. In this thesis, the application of retinal oximeter in ophthalmology is reviewed. PMID:26850588

  5. Extract of grapefruit-seed reduces acute pancreatitis induced by ischemia/reperfusion in rats: possible implication of tissue antioxidants.

    PubMed

    Dembinski, A; Warzecha, Z; Konturek, S J; Ceranowicz, P; Dembinski, M; Pawlik, W W; Kusnierz-Cabala, B; Naskalski, J W

    2004-12-01

    Grapefruit seed extract (GSE) has been shown to exert antibacterial, antifungal and antioxidant activity possibly due to the presence of naringenin, the flavonoid with cytoprotective action on the gastric mucosa. No study so far has been undertaken to determine whether this GSE is also capable of preventing acute pancreatic damage induced by ischemia/reperfusion (I/R), which is known to result from reduction of anti-oxidative capability of pancreatic tissue, and whether its possible preventive effect involves an antioxidative action of this biocomponent. In this study carried out on rats with acute hemorrhagic pancreatitis induced by 30 min partial pancreatic ischemia followed by 6 h of reperfusion, the GSE or vehicle (vegetable glycerin) was applied intragastrically in gradually increasing amounts (50-500 microl) 30 min before I/R. Pretreatment with GSE decreased the extent of pancreatitis with maximal protective effect of GSE at the dose 250 microl. GSE reduced the pancreatitis-evoked increase in serum lipase and poly-C specific ribonuclease activity, and attenuated the marked fall in pancreatic blood flow and pancreatic DNA synthesis. GSE administered alone increased significantly pancreatic tissue content of lipid peroxidation products, malondialdehyde and 4-hydroxyalkens, and when administered before I/R, GSE reduced the pancreatitis-induced lipid peroxidation. We conclude that GSE exerts protective activity against I/R-induced pancreatitis probably due to the activation of antioxidative mechanisms in the pancreas and the improvement of pancreatic blood flow. PMID:15613745

  6. A 25-Year-Old Man with Exudative Retinal Detachments and Infiltrates without Hematological or Neurological Findings Found to Have Relapsed Precursor T-Cell Acute Lymphoblastic Leukemia

    PubMed Central

    Johnson, Jordan S.; Lopez, James S.; Kavanaugh, Arthur Scott; Liang, Chanping; Mata, Douglas A.

    2015-01-01

    Background Precursor T-cell acute lymphoblastic leukemia (pre-T-ALL) may cause ocular pathologies such as cotton-wool spots, retinal hemorrhage, and less commonly, retinal detachment or leukemic infiltration of the retina itself. However, these findings are typically accompanied by the pathognomonic hematological signs of acute leukemia. Case Presentation In this case report and review of the literature, we describe a particularly unusual case of a 25-year-old man who presented to our hospital with bilateral exudative retinal detachments associated with posterior pole thickening without any hematological or neurological findings. The patient, who had a history of previously treated pre-T-ALL in complete remission, was found to have leukemia cell infiltration on retinal biopsy. Conclusion Our case underscores the fact that the ophthalmologist may be the first provider to detect the relapse of previously treated leukemia, and that ophthalmic evaluation is critical for detecting malignant ocular infiltrates. PMID:26483676

  7. Clinical characteristics of silent myocardial ischemia diagnosed with adenosine stress 99mTc-tetrofosmin myocardial scintigraphy in Japanese patients with acute cerebral infarction.

    PubMed

    Nomura, Tetsuya; Kusaba, Tetsuro; Kodama, Naotoshi; Terada, Kensuke; Urakabe, Yota; Nishikawa, Susumu; Keira, Natsuya; Matsubara, Hiroaki; Tatsumi, Tetsuya

    2013-01-01

    It is well known that silent myocardial ischemia (SMI) often complicates patients with cerebral infarction and that stroke patients often die of ischemic heart disease. Therefore, it is considered important to treat myocardial ischemia in stroke patients. This study investigated SMI complicating Japanese patients with fresh stroke, using (99m)Tc-tetrofosmin myocardial scintigraphy with pharmacologic stress testing to elucidate their clinical manifestations. This study included 41 patients (26 men, mean age 76.0 ± 10.7 years) with acute cerebral infarction and no history of coronary artery disease. All patients underwent (99m)Tc-tetrofosmin myocardial scintigraphy with intravenous administration of adenosine to diagnose SMI. Of the 41 patients, myocardial ischemia was confirmed in 17 patients (41.5%). Atherosclerotic etiology was the major cause of stroke in the ischemia(+) group and embolic origin was the major cause in the ischemia(-) group. Patients with myocardial ischemia had a higher incidence of diabetes mellitus (52.9 vs 20.8%; P = 0.0323) and more than two conventional cardiovascular risk factors (64.7 vs 25.0%; P = 0.0110) compared with the nonischemic patients. Infarction subtype of atherosclerotic origin was an independent positive predictor of asymptomatic myocardial ischemia in patients with stroke. These findings indicate that the prevalence of asymptomatic myocardial ischemia is relatively high, especially in patients with stroke of atherosclerotic origin. Therefore, it is beneficial for us to narrow the target population who are at the highest risk when screening for SMI in Japanese patients with acute cerebral infarction. PMID:22124530

  8. Acute Central Retinal Vein Occlusion Secondary to Reactive Thrombocytosis after Splenectomy

    PubMed Central

    Oncel Acir, Nursen; Borazan, Mehmet

    2014-01-01

    The diagnosis and treatment of central retinal vein occlusion was reported in a young patient. Central retinal vein occlusion was probably related to secondary to reactive thrombocytosis after splenectomy. The patient was treated with steroids for papilledema and administered coumadin and aspirin. The symptoms resolved, and the findings returned to normal within three weeks. Current paper emphasizes that, besides other well-known thrombotic events, reactive thrombocytosis after splenectomy may cause central retinal vein occlusion, which may be the principal symptom of this risky complication. Thus, it can be concluded that followup for thrombocytosis and antithrombotic treatment, when necessary, are essential for these cases. PMID:25276452

  9. ELECTROCARDIOGRAPHIC RESPONSES OF RAT FETUSES WITH CLAMPED OR INTACT UMBILICAL CORDS TO ACUTE MATERNAL UTERINE ISCHEMIA

    EPA Science Inventory

    Uterine ischemia results in severe cardiac disturbances in the fetus. It has been postulated that these effects are due to interaction with the ischemic uterus or placenta and not due to hypoxia or build up of metabolites in the fetus. The fetal cardiac responses to uterine clamp...

  10. Acute stress exposure preceding transient global brain ischemia exacerbates the decrease in cortical remodeling potential in the rat retrosplenial cortex.

    PubMed

    Kutsuna, Nobuo; Yamashita, Akiko; Eriguchi, Takashi; Oshima, Hideki; Suma, Takeshi; Sakatani, Kaoru; Yamamoto, Takamitsu; Yoshino, Atsuo; Katayama, Yoichi

    2014-01-01

    Doublecortin (DCX)-immunoreactive (-ir) cells are candidates that play key roles in adult cortical remodeling. We have previously reported that DCX-ir cells decrease after stress exposure or global brain ischemia (GBI) in the cingulate cortex (Cg) of rats. Herein, we investigate whether the decrease in DCX-ir cells is exacerbated after GBI due to acute stress exposure preconditioning. Twenty rats were divided into 3 groups: acute stress exposure before GBI (Group P), non-stress exposure before GBI (Group G), and controls (Group C). Acute stress or GBI was induced by a forced swim paradigm or by transient bilateral common carotid artery occlusion, respectively. DCX-ir cells were investigated in the anterior cingulate cortex (ACC) and retrosplenial cortex (RS). The number of DCX-ir cells per unit area (mm(2)) decreased after GBI with or without stress preconditioning in the ACC and in the RS (ANOVA followed by a Tukey-type test, P<0.001). Moreover, compared to Group G, the number in Group P decreased significantly in RS (P<0.05), though not significantly in ACC. Many of the DCX-ir cells were co-localized with the GABAergic neuronal marker parvalbumin. The present study indicates that cortical remodeling potential of GABAergic neurons of Cg decreases after GBI, and moreover, the ratio of the decrease is exacerbated by acute stress preconditioning in the RS. PMID:24257103

  11. Effects of acute versus post-acute systemic delivery of neural progenitor cells on neurological recovery and brain remodeling after focal cerebral ischemia in mice

    PubMed Central

    Doeppner, T R; Kaltwasser, B; Teli, M K; Bretschneider, E; Bähr, M; Hermann, D M

    2014-01-01

    Intravenous transplantation of neural progenitor cells (NPCs) induces functional recovery after stroke, albeit grafted cells are not integrated into residing neural networks. However, a systematic analysis of intravenous NPC delivery at acute and post-acute time points and their long-term consequences does not exist. Male C57BL6 mice were exposed to cerebral ischemia, and NPCs were intravenously grafted on day 0, on day 1 or on day 28. Animals were allowed to survive for up to 84 days. Mice and tissues were used for immunohistochemical analysis, flow cytometry, ELISA and behavioral tests. Density of grafted NPCs within the ischemic hemisphere was increased when cells were transplanted on day 28 as compared with transplantation on days 0 or 1. Likewise, transplantation on day 28 yielded enhanced neuronal differentiation rates of grafted cells. Post-ischemic brain injury, however, was only reduced when NPCs were grafted at acute time points. On the contrary, reduced post-ischemic functional deficits due to NPC delivery were independent of transplantation paradigms. NPC-induced neuroprotection after acute cell delivery was due to stabilization of the blood–brain barrier (BBB), reduction in microglial activation and modulation of both peripheral and central immune responses. On the other hand, post-acute NPC transplantation stimulated post-ischemic regeneration via enhanced angioneurogenesis and increased axonal plasticity. Acute NPC delivery yields long-term neuroprotection via enhanced BBB integrity and modulation of post-ischemic immune responses, whereas post-acute NPC delivery increases post-ischemic angioneurogenesis and axonal plasticity. Post-ischemic functional recovery, however, is independent of NPC delivery timing, which offers a broad therapeutic time window for stroke treatment. PMID:25144721

  12. Effects of acute versus post-acute systemic delivery of neural progenitor cells on neurological recovery and brain remodeling after focal cerebral ischemia in mice.

    PubMed

    Doeppner, T R; Kaltwasser, B; Teli, M K; Bretschneider, E; Bähr, M; Hermann, D M

    2014-01-01

    Intravenous transplantation of neural progenitor cells (NPCs) induces functional recovery after stroke, albeit grafted cells are not integrated into residing neural networks. However, a systematic analysis of intravenous NPC delivery at acute and post-acute time points and their long-term consequences does not exist. Male C57BL6 mice were exposed to cerebral ischemia, and NPCs were intravenously grafted on day 0, on day 1 or on day 28. Animals were allowed to survive for up to 84 days. Mice and tissues were used for immunohistochemical analysis, flow cytometry, ELISA and behavioral tests. Density of grafted NPCs within the ischemic hemisphere was increased when cells were transplanted on day 28 as compared with transplantation on days 0 or 1. Likewise, transplantation on day 28 yielded enhanced neuronal differentiation rates of grafted cells. Post-ischemic brain injury, however, was only reduced when NPCs were grafted at acute time points. On the contrary, reduced post-ischemic functional deficits due to NPC delivery were independent of transplantation paradigms. NPC-induced neuroprotection after acute cell delivery was due to stabilization of the blood-brain barrier (BBB), reduction in microglial activation and modulation of both peripheral and central immune responses. On the other hand, post-acute NPC transplantation stimulated post-ischemic regeneration via enhanced angioneurogenesis and increased axonal plasticity. Acute NPC delivery yields long-term neuroprotection via enhanced BBB integrity and modulation of post-ischemic immune responses, whereas post-acute NPC delivery increases post-ischemic angioneurogenesis and axonal plasticity. Post-ischemic functional recovery, however, is independent of NPC delivery timing, which offers a broad therapeutic time window for stroke treatment. PMID:25144721

  13. Therapeutic effect of liposomal prostaglandin E1 in acute lower limb ischemia as an adjuvant to hybrid procedures

    PubMed Central

    LI, JIANLIN; WANG, BING; WANG, YUE; WU, FEI; LI, PANFENG; LI, YANG; ZHAO, LEI; CUI, WENJUN; DING, YU; AN, QIAN; SI, JIANGTAO

    2013-01-01

    Prostaglandin E1 (PGE1) is widely used in the treatment of limb ischemia for its potent vasodilatory and antiplatelet effects. In order to assess the curative effect of liposomal PGE1 (lipo-PGE1) as an adjuvant to surgery in patients with acute lower limb ischemia (ALLI), 204 patients who underwent hybrid procedures (operative thromboembolectomy or bypass and necessary endovascular interventions) for ALLI were randomly divided into a blank control group and a lipo-PGE1 group (intravenous infusion of 20 μg/day for 12–14 consecutive days following surgery). Patients were followed-up for 6 months after surgical revascularization for clinical events. The primary study endpoint, which was the combined incidence of perioperative (30 days) mortality (POM) and major adverse limb events (MALE; amputation or major intervention), was significantly reduced in patients treated with lipo-PGE1 (5.1% compared with 13.2% in the control group). The overall incidence of clinical events, including POM, MALE and major adverse cardiovascular events, was significantly reduced in patients receiving lipo-PGE1 (8.2%) compared with the controls (20.8%). Hybrid procedures are an improved method for treating ALLI and may remedy underlying lesions of vessels following thromboembolectomy. PMID:23837069

  14. Clinical and multimodal imaging characteristics of acute Vogt-Koyanagi-Harada disease unassociated with clinically evident exudative retinal detachment.

    PubMed

    Attia, Sonia; Khochtali, Sana; Kahloun, Rim; Ammous, Dhiaeddine; Jelliti, Bechir; Ben Yahia, Salim; Zaouali, Sonia; Khairallah, Moncef

    2016-02-01

    The purpose of this study was to describe the clinical and multimodal imaging findings in acute Vogt-Koyanagi-Harada (VKH) disease without clinically evident exudative retinal detachment (ERD). We retrospectively reviewed the charts of 18 patients (36 eyes), diagnosed with acute VKH disease without clinically evident ERD. All patients underwent complete ophthalmic examination, fundus photography, optical coherence tomography (OCT), B-scan ultrasonography, fluorescein angiography (FA), and indocyanine green angiography (ICGA). Of 18 patients, twelve (66.7 %) were female and 6 (33.3 %) were male. Mean age was 39 years (range, 23-60). Ten patients had been referred with an erroneous diagnosis of primary optic nerve disorder (8; 44.4 %) or isolated anterior uveitis (2; 11.1 %). Anterior chamber or vitreous inflammatory reaction was noted in 22 eyes (61.1 %), each. Fundus findings included optic disc swelling in 30 eyes (83.3 %), retinal striae in 20 eyes (55.5 %), and yellowish deep lesions in 3 eyes (8.3 %). OCT showed a shallow, localized subclinical ERD in 18 eyes (50 %), and retinal pigment epithelial folds in 23 eyes (63.9 %). B-scan ultrasonography showed diffuse, low- to medium-reflective choroidal thickening in all eyes. FA disclosed delayed choroidal perfusion in at least one eye of all patients (100 %), mild pinpoint leakage in 21 eyes (58.3 %), optic disc hyperfluorescence in 35 eyes (97.2 %) and choroidal folds in 13 eyes (36.1 %). ICGA findings included delayed choroidal perfusion in 24 eyes (66.7 %), decrease in the number of large choroidal vessels in 36 eyes (100 %), fuzzy choroidal vessels in 35 eyes (97.2 %), and hypofluorescent dark dots in 28 eyes (77.8 %). The association of bilateral optic disc edema with retinal striae and intraocular inflammatory reaction highly suggests acute VKH disease. A multimodal imaging approach including fundus photography, OCT, B-scan ultrasonography, FA, and ICGA provides important clues for the definite diagnosis and

  15. Ginsenoside Rd alleviates mouse acute renal ischemia/reperfusion injury by modulating macrophage phenotype

    PubMed Central

    Ren, Kaixi; Jin, Chao; Ma, Pengfei; Ren, Qinyou; Jia, Zhansheng; Zhu, Daocheng

    2015-01-01

    Background Ginsenoside Rd (GSRd), a main component of the root of Panax ginseng, exhibits anti-inflammation functions and decreases infarct size in many injuries and ischemia diseases such as focal cerebral ischemia. M1 Macrophages are regarded as one of the key inflammatory cells having functions for disease progression. Methods To investigate the effect of GSRd on renal ischemia/reperfusion injury (IRI) and macrophage functional status, and their regulatory role on mouse polarized macrophages in vitro, GSRd (10–100 mg/kg) and vehicle were applied to mice 30 min before renal IRI modeling. Renal functions were reflected by blood serum creatinine and blood urea nitrogen level and histopathological examination. M1 polarized macrophages infiltration was identified by flow cytometry analysis and immunofluorescence staining with CD11b+, iNOS+/interleukin-12/tumor necrosis factor-α labeling. For the in vitro study, GSRd (10–100 μg/mL) and vehicle were added in the culture medium of M1 macrophages to assess their regulatory function on polarization phenotype. Results In vivo data showed a protective role of GSRd at 50 mg/kg on Day 3. Serum level of serum creatinine and blood urea nitrogen significantly dropped compared with other groups. Reduced renal tissue damage and M1 macrophage infiltration showed on hematoxylin–eosin staining and flow cytometry and immunofluorescence staining confirmed this improvement. With GSRd administration, in vitro cultured M1 macrophages secreted less inflammatory cytokines such as interleukin-12 and tumor necrosis factor-α. Furthermore, macrophage polarization-related pancake-like morphology gradually changed along with increasing concentration of GSRd in the medium. Conclusion These findings demonstrate that GSRd possess a protective function against renal ischemia/reperfusion injury via downregulating M1 macrophage polarization. PMID:27158241

  16. Acute hand ischemia after unintentional intraarterial injection of drugs: is catheter-directed thrombolysis useful?

    PubMed

    Breguet, Romain; Terraz, Sylvain; Righini, Marc; Didier, Dominique

    2014-06-01

    Unintentional intraarterial injections are rare but may have devastating consequences. No consensus on treatment has been established owing to the wide variety of possible injected substances, incomplete understanding of the underlying pathophysiology, and the absence of case-controlled, prospective human studies. The aim of the present study and literature review was to evaluate the benefit of intraarterial thrombolysis combined with systemic anticoagulation therapy when an artery of the upper extremity is accidentally punctured and ischemia of the hand ensues. PMID:24857945

  17. Pharmacological protection of mitochondrial function mitigates acute limb ischemia/reperfusion injury.

    PubMed

    Bi, Wei; Bi, Yue; Gao, Xiang; Yan, Xin; Zhang, Yanrong; Harris, Jackie; Legalley, Thomas D; Gibson, K Michael; Bi, Lanrong

    2016-08-15

    We describe several novel curcumin analogues that possess both anti-inflammatory antioxidant properties and thrombolytic activities. The therapeutic efficacy of these curcumin analogues was verified in a mouse ear edema model, a rat arterial thrombosis assay, a free radical scavenging assay performed in PC12 cells, and in both in vitro and in vivo ischemia/reperfusion models. Our findings suggest that their protective effects partially reside in maintenance of optimal mitochondrial function. PMID:27390069

  18. Neuroprotective Effects of Isosteviol Sodium Injection on Acute Focal Cerebral Ischemia in Rats

    PubMed Central

    Hu, Hui; Sun, Xiao ou; Tian, Fang; Zhang, Hao; Liu, Qing; Tan, Wen

    2016-01-01

    Previous report has indicated that isosteviol has neuroprotective effects. However, isosteviol was administered preventively before ischemia and the inclusion criteria were limited. In the present study, a more soluble and injectable form of isosteviol sodium (STVNA) was administered intravenously hours after transient or permanent middle cerebral artery occlusion (tMCAO or pMCAO) to investigate its neuroprotective effects in rats. The rats were assessed for neurobehavioral deficits 24 hours after ischemia and sacrificed for infarct volume quantification and histology evaluation. STVNA 10 mg·kg−1 can significantly reduce the infarct volumes compared with vehicle in animals subjected to tMCAO and is twice as potent as previously reported. Additionally, the therapeutic window study showed that STVNA could reduce the infarct volume compared with the vehicle group when administered 4 hours after reperfusion. A similar effect was also observed in animals treated 4 hours after pMCAO. Assessment of neurobehavioral deficits after 24 hours showed that STVNA treatment significantly reduced neurobehavioral impairments. The number of restored NeuN-labeled neurons was increased and the number of TUNEL positive cells was reduced in animals that received STVNA treatment compared with vehicle group. All of these findings suggest that STVNA might provide therapeutic benefits against cerebral ischemia-induced injury. PMID:27047634

  19. Neuroprotective Effects of Isosteviol Sodium Injection on Acute Focal Cerebral Ischemia in Rats.

    PubMed

    Hu, Hui; Sun, Xiao Ou; Tian, Fang; Zhang, Hao; Liu, Qing; Tan, Wen

    2016-01-01

    Previous report has indicated that isosteviol has neuroprotective effects. However, isosteviol was administered preventively before ischemia and the inclusion criteria were limited. In the present study, a more soluble and injectable form of isosteviol sodium (STVNA) was administered intravenously hours after transient or permanent middle cerebral artery occlusion (tMCAO or pMCAO) to investigate its neuroprotective effects in rats. The rats were assessed for neurobehavioral deficits 24 hours after ischemia and sacrificed for infarct volume quantification and histology evaluation. STVNA 10 mg·kg(-1) can significantly reduce the infarct volumes compared with vehicle in animals subjected to tMCAO and is twice as potent as previously reported. Additionally, the therapeutic window study showed that STVNA could reduce the infarct volume compared with the vehicle group when administered 4 hours after reperfusion. A similar effect was also observed in animals treated 4 hours after pMCAO. Assessment of neurobehavioral deficits after 24 hours showed that STVNA treatment significantly reduced neurobehavioral impairments. The number of restored NeuN-labeled neurons was increased and the number of TUNEL positive cells was reduced in animals that received STVNA treatment compared with vehicle group. All of these findings suggest that STVNA might provide therapeutic benefits against cerebral ischemia-induced injury. PMID:27047634

  20. Protective effect of Xuebijing injection against acute lung injury induced by left ventricular ischemia/reperfusion in rabbits

    PubMed Central

    JI, MINGLI; WANG, YUXIA; WANG, LEI; CHEN, LIPING; LI, JING

    2016-01-01

    Xuebijing (XBJ) is a Chinese herbal preparation. Previous studies have demonstrated that XBJ injection is able to inhibit the uncontrolled release of endogenous inflammatory mediators, attenuate inflammation, and alleviate organ damage. However, there are no relevant reports on the protective effect of XBJ against left ventricular ischemia/reperfusion (I/R)-induced acute lung injury (ALI). Therefore, the aim of the present study was to evaluate the protective effect of XBJ on ALI induced by left ventricular I/R, and provide evidence for the clinical application of XBJ. In the present study, 120 healthy rabbits of mixed gender were randomly assigned to a normal control group, ischemia group, I/R group (I/RG) and XBJ-injection treatment group (TG). In addition, each group was further divided into three subgroups (n=10/subgroup), namely, 30 min pre-ischemia, 30 min post-ischemia and 30 min post-reperfusion subgroups. Blood samples (5 ml) were collected from the jugularis externa and carotis communis of the rabbits at the three time points, and a blood gas analyzer was used to measure the arterial partial pressure of oxygen (PaO2) and carbon dioxide (PaCO2). Following sacrifice, the lungs of the rabbits were removed and a bronchoalveolar lavage (BAL) was immediately performed. An enzyme-linked immunosorbent assay was used to measure the expression levels of tumor necrosis factor-α (TNF-α) in the BAL fluid (BALF) and peripheral blood. In addition, the lower lobe of the right lung was removed in order to measure the protein expression levels of intercellular adhesion molecule-1 (ICAM-1) and TNF-α. The results demonstrated that in the rabbits of the TG PaO2 was increased, PaCO2 was decreased, the lung tissue congestion edema was attenuated, the expression levels of TNF-α in the peripheral blood and BALF were reduced and the protein expression levels of ICAM-1 and TNF-α in the lung tissue samples were decreased, as compared with those in the I/RG rabbits. These

  1. The TRIF-dependent signaling pathway is not required for acute cerebral ischemia/reperfusion injury in mice

    SciTech Connect

    Hua, Fang; Wang, Jun; Sayeed, Iqbal; Ishrat, Tauheed; Atif, Fahim; Stein, Donald G.

    2009-12-18

    TIR domain-containing adaptor protein (TRIF) is an adaptor protein in Toll-like receptor (TLR) signaling pathways. Activation of TRIF leads to the activation of interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-{kappa}B). While studies have shown that TLRs are implicated in cerebral ischemia/reperfusion (I/R) injury and in neuroprotection against ischemia afforded by preconditioning, little is known about TRIF's role in the pathological process following cerebral I/R. The present study investigated the role that TRIF may play in acute cerebral I/R injury. In a mouse model of cerebral I/R induced by transient middle cerebral artery occlusion, we examined the activation of NF-{kappa}B and IRF3 signaling in ischemic cerebral tissue using ELISA and Western blots. Neurological function and cerebral infarct size were also evaluated 24 h after cerebral I/R. NF-{kappa}B activity and phosphorylation of the inhibitor of kappa B (I{kappa}B{alpha}) increased in ischemic brains, but IRF3, inhibitor of {kappa}B kinase complex-{epsilon} (IKK{epsilon}), and TANK-binding kinase1 (TBK1) were not activated after cerebral I/R in wild-type (WT) mice. Interestingly, TRIF deficit did not inhibit NF-{kappa}B activity or p-I{kappa}B{alpha} induced by cerebral I/R. Moreover, although cerebral I/R induced neurological and functional impairments and brain infarction in WT mice, the deficits were not improved and brain infarct size was not reduced in TRIF knockout mice compared to WT mice. Our results demonstrate that the TRIF-dependent signaling pathway is not required for the activation of NF-{kappa}B signaling and brain injury after acute cerebral I/R.

  2. Successful Endovascular Repair of an Iatrogenic Perforation of the Superficial Femoral Artery Using Self-Expanding Nitinol Supera Stents in a Patient with Acute Thromboembolic Limb Ischemia.

    PubMed

    Eisele, Tom; Muenz, Benedikt M; Korosoglou, Grigorios

    2016-01-01

    The treatment of acute thromboembolic limb ischemia includes well-established surgical thrombectomy procedures and, in recent times, also percutaneous rotational thrombectomy using Straub Rotarex® system. This modality not only enables efficient treatment of such thrombotic occlusion but also in rare cases may imply the risk of perforation of the occluded artery. Herein, we report the case of a perforation of the superficial femoral artery (SFA) in an elderly female patient with thromboembolic limb ischemia. The perforation was successfully treated by implantation of self-expanding nitinol Supera stents and without the need for implantation of a stent graft. PMID:27213074

  3. Successful Endovascular Repair of an Iatrogenic Perforation of the Superficial Femoral Artery Using Self-Expanding Nitinol Supera Stents in a Patient with Acute Thromboembolic Limb Ischemia

    PubMed Central

    Eisele, Tom; Muenz, Benedikt M.

    2016-01-01

    The treatment of acute thromboembolic limb ischemia includes well-established surgical thrombectomy procedures and, in recent times, also percutaneous rotational thrombectomy using Straub Rotarex® system. This modality not only enables efficient treatment of such thrombotic occlusion but also in rare cases may imply the risk of perforation of the occluded artery. Herein, we report the case of a perforation of the superficial femoral artery (SFA) in an elderly female patient with thromboembolic limb ischemia. The perforation was successfully treated by implantation of self-expanding nitinol Supera stents and without the need for implantation of a stent graft. PMID:27213074

  4. N-11C-Methyl-Dopamine PET Imaging of Sympathetic Nerve Injury in a Swine Model of Acute Myocardial Ischemia: A Comparison with 13N-Ammonia PET

    PubMed Central

    Zhou, Weina; Wang, Xiangcheng; He, Yulin; Nie, Yongzhen; Zhang, Guojian; Wang, Cheng; Wang, Chunmei; Wang, Xuemei

    2016-01-01

    Objective. Using a swine model of acute myocardial ischemia, we sought to validate N-11C-methyl-dopamine (11C-MDA) as an agent capable of imaging cardiac sympathetic nerve injury. Methods. Acute myocardial ischemia was surgically generated in Chinese minipigs. ECG and serum enzyme levels were used to detect the presence of myocardial ischemia. Paired 11C-MDA PET and 13N-ammonia PET scans were performed at baseline, 1 day, and 1, 3, and 6 months after surgery to relate cardiac sympathetic nerve injury to blood perfusion. Results. Seven survived the surgical procedure. The ECG-ST segment was depressed, and levels of the serum enzymes increased. Cardiac uptake of tracer was quantified as the defect volume. Both before and immediately after surgery, the images obtained with 11C-MDA and 13N-ammonia were similar. At 1 to 6 months after surgery, however, 11C-MDA postsurgical left ventricular myocardial defect volume was significantly greater compared to 13N-ammonia. Conclusions. In the Chinese minipig model of acute myocardial ischemia, the extent of the myocardial defect as visualized by 11C-MDA is much greater than would be suggested by blood perfusion images, and the recovery from myocardial sympathetic nerve injury is much slower than the restoration of blood perfusion. 11C-MDA PET may provide additional biological information during recovery from ischemic heart disease. PMID:27034950

  5. Acetylation: A Lysine Modification with Neuroprotective Effects in Ischemic Retinal Degeneration

    PubMed Central

    Alsarraf, Oday; Fan, Jie; Dahrouj, Mohammad; Chou, C. James; Menick, Donald R.; Crosson, Craig E.

    2014-01-01

    Purpose Neuroretinal ischemic injury contributes to several degenerative diseases in the eye and the resulting pathogenic processes involving a series of necrotic and apoptotic events. This study investigates the time and extent of changes in acetylation, and whether this influences function and survival of neuroretinal cells following injury. Methods Studies evaluated the time course of changes in histone deacetylase (HDAC) activity, histone-H3 acetylation and caspase-3 activation levels as well as retinal morphology and function (electroretinography) following ischemia. In addition, the effect of two HDAC inhibitors, trichostatin-A and valproic acid were also investigated. Results In normal eyes, retinal ischemia produced a significant increase in HDAC activity within 2 hours that was followed by a corresponding significant decrease in protein acetylation by 4 hours. Activated caspase-3 levels were significantly elevated by 24 hours. Treatment with HDAC inhibitors blocked the early decrease in protein acetylation and activation of caspase-3. Retinal immunohistochemistry demonstrated that systemic administration of trichostatin-A or valproic acid, resulted in hyperacetylation of all retinal layers after systemic treatment. In addition, HDAC inhibitors provided a significant functional and structural neuroprtection at seven days following injury relative to vehicle-treated eyes. Conclusions These results provide evidence that increases in HDAC activity is an early event following retinal ischemia, and are accompanied by corresponding decreases in acetylation in advance of caspase-3 activation. In addition to preserving acetylation status, the administration of HDAC inhibitors suppressed caspase activation and provided structural and functional neuroprotection in model of ischemic retinal injury. Taken together these data provide evidence that decrease in retinal acetylation status is a central event in ischemic retinal injury, and the hyperacetylation induced by

  6. Acetylation: a lysine modification with neuroprotective effects in ischemic retinal degeneration.

    PubMed

    Alsarraf, Oday; Fan, Jie; Dahrouj, Mohammad; Chou, C James; Menick, Donald R; Crosson, Craig E

    2014-10-01

    Neuroretinal ischemic injury contributes to several degenerative diseases in the eye and the resulting pathogenic processes involving a series of necrotic and apoptotic events. This study investigates the time and extent of changes in acetylation, and whether this influences function and survival of neuroretinal cells following injury. Studies evaluated the time course of changes in histone deacetylase (HDAC) activity, histone-H3 acetylation and caspase-3 activation levels as well as retinal morphology and function (electroretinography) following ischemia. In addition, the effect of two HDAC inhibitors, trichostatin-A and valproic acid were also investigated. In normal eyes, retinal ischemia produced a significant increase in HDAC activity within 2 h that was followed by a corresponding significant decrease in protein acetylation by 4 h. Activated caspase-3 levels were significantly elevated by 24 h. Treatment with HDAC inhibitors blocked the early decrease in protein acetylation and activation of caspase-3. Retinal immunohistochemistry demonstrated that systemic administration of trichostatin-A or valproic acid, resulted in hyperacetylation of all retinal layers after systemic treatment. In addition, HDAC inhibitors provided a significant functional and structural neuroprotection at seven days following injury relative to vehicle-treated eyes. These results provide evidence that increases in HDAC activity is an early event following retinal ischemia, and are accompanied by corresponding decreases in acetylation in advance of caspase-3 activation. In addition to preserving acetylation status, the administration of HDAC inhibitors suppressed caspase activation and provided structural and functional neuroprotection in model of ischemic retinal injury. Taken together these data provide evidence that decrease in retinal acetylation status is a central event in ischemic retinal injury, and the hyperacetylation induced by HDAC inhibition can provide acute

  7. Silent Ischemia

    MedlinePlus

    ... Vulnerable Plaque Silent Ischemia | Share Related terms: ischemia, restricted blood flow Ischemia is a condition where the flow of ... used to diagnose silent ischemia: An exercise stress test can show blood flow through your coronary arteries in response to exercise. ...

  8. Concentrated Ambient Particles Alter Myocardial Blood Flow during Acute Ischemia in Conscious Canines

    PubMed Central

    Bartoli, Carlo R.; Wellenius, Gregory A.; Coull, Brent A.; Akiyama, Ichiro; Diaz, Edgar A.; Lawrence, Joy; Okabe, Kazunori; Verrier, Richard L.; Godleski, John J.

    2009-01-01

    Background Experimental and observational studies have demonstrated that short-term exposure to ambient particulate matter (PM) exacerbates myocardial ischemia. Objectives We conducted this study to investigate the effects of concentrated ambient particles (CAPs) on myocardial blood flow during myocardial ischemia in chronically instrumented conscious canines. Methods Eleven canines were instrumented with a balloon occluder around the left anterior descending coronary artery and catheters for determination of myocardial blood flow using fluorescent microspheres. Telemetric electrocardiographic and blood pressure monitoring was available for four of these animals. After recovery, we exposed animals by inhalation to 5 hr of either filtered air or CAPs (mean concentration ± SD, 349.0 ± 282.6 μg/m3) in a crossover protocol. We determined myocardial blood flow during a 5-min coronary artery occlusion immediately after each exposure. Data were analyzed using mixed models for repeated measures. The primary analysis was based on four canines that completed the protocol. Results CAPs exposure decreased total myocardial blood flow during coronary artery occlusion by 0.12 mL/min/g (p < 0.001) and was accompanied by a 13% (p < 0.001) increase in coronary vascular resistance. Rate–pressure product, an index of myocardial oxygen demand, did not differ by exposure (p = 0.90). CAPs effects on myocardial blood flow were significantly more pronounced in myocardium within or near the ischemic zone versus more remote myocardium (p interaction < 0.001). Conclusions These results suggest that PM exacerbates myocardial ischemia by increased coronary vascular resistance and decreased myocardial perfusion. Further studies are needed to elucidate the mechanism of these effects. PMID:19337504

  9. β-Dystroglycan cleavage by matrix metalloproteinase-2/-9 disturbs aquaporin-4 polarization and influences brain edema in acute cerebral ischemia.

    PubMed

    Yan, W; Zhao, X; Chen, H; Zhong, D; Jin, J; Qin, Q; Zhang, H; Ma, S; Li, G

    2016-06-21

    Dystroglycan (DG) is widely expressed in various tissues, and throughout the cerebral microvasculature. It consists of two subunits, α-DG and β-DG, and the cleavage of the latter by matrix metalloproteinase (MMP)-2 and -9 underlies a number of physiological and pathological processes. However, the involvement of MMP-2/-9-mediated β-DG cleavage in cerebral ischemia remains uncertain. In astrocytes, DG is crucial for maintaining the polarization of aquaporin-4 (AQP4), which plays a role in the regulation of cytotoxic and vasogenic edema. The present study aimed to explore the effects of MMP-2/-9-mediated β-DG cleavage on AQP4 polarization and brain edema in acute cerebral ischemia. A model of cerebral ischemia was established via permanent middle cerebral artery occlusion (pMCAO) in male C57BL/6 mice. Western blotting, real-time polymerase chain reaction (PCR), immunohistochemical staining, immunofluorescent staining, electron microscopy, and light microscopy were used. Captopril was applied as a selective MMP-2/-9 inhibitor. Recombinant mouse MMP (rmMMP)-2 and -9 were used in an in vitro cleavage experiment. The present study demonstrated evidence of β-DG cleavage by MMP-2/-9 in pMCAO mouse brains; this cleavage was implicated in AQP4 redistribution and brain edema in cerebral ischemia. In addition, captopril exacerbated cytotoxic edema and ameliorated vasogenic edema at 24h after pMCAO, and alleviated brain edema and neurological deficit at 48h and 72h. In conclusion, this study provides novel insight into the effects of MMP-2/-9-mediated β-DG cleavage in acute cerebral ischemia. Such findings might facilitate the development of a therapeutic strategy for the optimization of MMP-2/-9 targeted treatment in cerebral ischemia. PMID:27038751

  10. Effect of infliximab on acute hepatic ischemia/reperfusion injury in rats

    PubMed Central

    Yucel, Ahmet Fikret; Pergel, Ahmet; Aydin, Ibrahim; Alacam, Hasan; Karabicak, Ilhan; Kesicioglu, Tugrul; Tumkaya, Levent; Kalkan, Yildiray; Ozer, Ender; Arslan, Zakir; Sehitoglu, Ibrahim; Sahin, Dursun Ali

    2015-01-01

    This study aimed to investigate the hepatoprotective and antioxidant effects of infliximab (IFX) against liver ischemia/reperfusion (I/R) injury in rats. A total of 30 male Wistar albino rats were divided into three groups: sham, I/R, and I/R+IFX. IFX was given at a dose of 3 mg/kg for three days before I/R. Rat livers were subjected to 60 min of ischemia followed by 90 h of reperfusion. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), TNF-α, malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) levels were measured in the serum. The liver was removed to evaluate the histopathologic changes. The I/R group had a significant increase in AST, ALT, MDA, and TNF-α levels, and a decrease in GSH-Px activity compared with the sham group. The use of IFX significantly reduced the ALT, AST, MDA and TNF-α levels and significantly increased GSH-Px activity. IFX attenuated the histopathologic changes. IFX has a protective effect on liver I/R injury. This liver protective effect may be related to antioxidant and anti-TNF-α effects. We propose that, for the relief of liver injury subsequent to transplantation, liver resection, trauma, and shock, tentative treatments can be incorporated with IFX, which is already approved for clinical use. PMID:26885068

  11. Retinitis Pigmentosa

    MedlinePlus

    ... Action You are here Home › Retinal Diseases Listen Retinitis Pigmentosa What is retinitis pigmentosa? What are the symptoms? ... available? Are there any related diseases? What is retinitis pigmentosa? Retinitis pigmentosa (RP) refers to a group of ...

  12. Comparison of Acute Alterations in Left Ventricular Relaxation and Diastolic Chamber Stiffness Induced by Hypoxia and Ischemia

    PubMed Central

    Serizawa, Takashi; Vogel, W. Mark; Apstein, Carl S.; Grossman, William

    1981-01-01

    To clarify conflicting reports concerning the effects of ischemia on left ventricular chamber stiffness, we compared the effects of hypoxia at constant coronary perfusion with those of global ischemia on left ventricular diastolic chamber stiffness using isolated, perfused rabbit hearts in which the left ventricle was contracting isovolumically. Since chamber volume was held constant, increases in left ventricular end diastolic pressure (LVEDP) reflected increases in chamber stiffness. At a control coronary flow rate (30 ml/min), 2 min of hypoxia and pacing tachycardia (4.0 Hz) produced major increases in postpacing LVEDP (10±1 to 24±3 mm Hg, P < 0.01) and the relaxation time constant, T, (40±4 to 224±37 ms, P < 0.001), while percent lactate extraction ratio became negative (+ 18±2 to −48±15%, P < 0.001). Coronary perfusion pressure decreased (72±5 to 52±3 mm Hg, P < 0.01), and since coronary flow was held constant, the fall in coronary perfusion pressure reflected coronary dilation and a decrease in coronary vascular resistance. Following an average of 71±6s reoxygenation and initial heart rate (2.0 Hz), LVEDP and relaxation time constant T returned to control. Hypoxia alone (without pacing tachycardia) produced similar although less marked changes (LVEDP, 10±1 to 20±3 mm Hg; and T, 32±3 to 119±22 ms; P < 0.01 for both) and there was a strong correlation between LVEDP and T (r = 0.82, P < 0.001). When a similar degree of coronary vasodilatation was induced with adenosine, no change in LVEDP occurred, indicating that the increase in end diastolic pressure observed during hypoxia was not secondary to vascular engorgement, but due to an acute effect of hypoxia on the diastolic behavior of the ventricular myocardium. In contrast, global ischemia produced by low coronary flow (12−15 ml/min) resulted in a decrease in LVEDP, as well as a marked fall in left ventricular systolic pressure. In 14 global ischemia experiments, pacing tachycardia led to a

  13. Downregulation of organic anion transporters in rat kidney under ischemia/reperfusion-induced acute [corrected] renal failure.

    PubMed

    Matsuzaki, T; Watanabe, H; Yoshitome, K; Morisaki, T; Hamada, A; Nonoguchi, H; Kohda, Y; Tomita, K; Inui, K; Saito, H

    2007-03-01

    The effect of acute renal failure (ARF) induced by ischemia/reperfusion (I/R) of rat kidney on the expression of organic anion transporters (OATs) was examined. The level of serum indoxyl sulfate (IS), a uremic toxin and substrate of OATs in renal tubules, shows a marked increase with the progression of ARF. However, this increase was significantly attenuated by ingestion of cobalt. The level of mRNA and protein of both rOAT1 and rOAT3 were markedly depressed in the ischemic kidney. The uptake of p-aminohippuric acid (PAH) and estrone sulfate (ES) by renal slices of ischemic rats was significantly reduced compared to control rats. Renal slices taken from ischemic rats treated with cobalt displayed significantly elevated levels of ES uptake. Cobalt intake did not affect PAH uptake, indicating the functional restoration of rOAT3 but not rOAT1. The expression of Na(+)/K(+)-ATPase was markedly depressed in the ischemic kidney, suggesting that the inward Na(+) gradient in renal tubular cells had collapsed, thereby reducing the outward gradient of alpha-ketoglutarate, a driving force of both rOATs. The decreased expression of Na(+)/K(+)-ATPase was significantly restored by cobalt treatment. Our results suggest that the downregulation of renal rOAT1 and rOAT3 could be responsible for the increase in serum IS level of ischemic rats. Cobalt treatment has a significant protective effect on ischemia-induced ARF, being accompanied by the restoration of rOAT3 and/or Na(+)/K(+)-ATPase function. PMID:17245393

  14. Ischemia-reperfusion rat model of acute pancreatitis: protein carbonyl as a putative early biomarker of pancreatic injury.

    PubMed

    Schanaider, Alberto; de Carvalho, Thales Penna; de Oliveira Coelho, Simone; Renteria, Juan Miguel; Eleuthério, Elis Cristina Araújo; Castelo-Branco, Morgana Teixeira Lima; Madi, Kalil; Baetas-da-Cruz, Wagner; de Souza, Heitor Siffert Pereira

    2015-08-01

    Acute pancreatitis (AP) is an inflammatory disorder that can affect adjacent and/or remote organs. Some evidence indicates that the production of reactive oxygen species is able to induce AP. Protein carbonyl (PC) derivatives, which can also be generated through oxidative cleavage mechanisms, have been implicated in several diseases, but there is little or no information on this biomarker in AP. We investigated the association between some inflammatory mediators and PC, with the severity of ischemia-reperfusion AP. Wistar rats (n = 56) were randomly assigned in the following groups : control; sham, 15- or 180-min clamping of splenic artery, with 24 or 72 h of follow-up. The relationships between serum level of PC and thiobarbituric acid reactive species (TBARS) to myeloperoxidase (MPO) activity in tissue homogenates and to cytokines in culture supernatants of pancreatic samples were analyzed. MPO activity was related to the histology scores and increased in all clamping groups. Tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin-6 were higher in the 180-min groups. Significant correlations were found between MPO activity and the concentrations of TNF-α and IL-1β. PC levels increased in the 15-min to 24-h group. TBARS levels were not altered substantially. MPO activity and TNF-α and IL-1β concentrations in pancreatic tissue are correlated with AP severity. Serum levels of PC appear to begin to rise early in the course of the ischemia-reperfusion AP and are no longer detected at later stages in the absence of severe pancreatitis. These data suggest that PC can be an efficient tool for the diagnosis of early stages of AP. PMID:24934325

  15. BOTH ENDOGENOUS AND EXOGENOUS TESTOSTERONE DECREASE MYOCARDIAL STAT3 ACTIVATION AND SOCS3 EXPRESSION FOLLOWING ACUTE ISCHEMIA AND REPERFUSION

    PubMed Central

    Wang, Meijing; Wang, Yue; Abarbanell, Aaron; Tan, Jiangjing; Weil, Brent; Herrmann, Jeremy; Meldrum, Daniel R.

    2009-01-01

    Background Signal transducer and activator of transduction 3 (STAT3) pathway has been shown to be cardioprotective. We observed decreased STAT3/suppressor of cytokine signaling 3 (SOCS3) in male hearts, which was associated with worse post-ischemic myocardial function compared to females. However, it is unclear whether this down-regulation of myocardial STAT3/SOCS3 is due to testosterone in males. We hypothesized that following ischemia/reperfusion (I/R): 1) endogenous testosterone decreases myocardial STAT3 and SOCS3 in males; 2) administration of exogenous testosterone reduces myocardial STAT3/SOCS3 in female and castrated male hearts. Methods To study this, hearts from I/R injury (Langendorff) were homogenized and assessed for phosphorylated-STAT3 (p-STAT3), total-STAT3 (T-STAT3), SOCS3 and GAPDH by western blot. Groups: age-matched adult males, females, castrated males, males with androgen receptor blocker-flutamide implantation, females and castrated males with chronic (3-week) 5alpha-dihydrotestosterone (DHT) release pellet implantation or acute (5-minute) testosterone infusion (ATI) prior to ischemia (n=5–9/group). Results Castration or flutamide treatment significantly increased SOCS3 expression in male hearts after I/R. However, only castration increased myocardial STAT3 activation. Notably, DHT replacement or ATI markedly decreased myocardial STAT3/SOCS3 in castrated males and females subjected to I/R. Conclusion These results suggest that endogenous and exogenous testosterone decrease myocardial STAT3 activation and SOCS3 expression following I/R. This represents the initial demonstration of testosterone-downregulated STAT3/SOCS3 signaling in myocardium. PMID:19628067

  16. Selenium Pretreatment for Mitigation of Ischemia/Reperfusion Injury in Cardiovascular Surgery: Influence on Acute Organ Damage and Inflammatory Response.

    PubMed

    Steinbrenner, Holger; Bilgic, Esra; Pinto, Antonio; Engels, Melanie; Wollschläger, Lena; Döhrn, Laura; Kellermann, Kristine; Boeken, Udo; Akhyari, Payam; Lichtenberg, Artur

    2016-08-01

    Ischemia/reperfusion injury (IRI) contributes to morbidity and mortality after cardiovascular surgery requiring cardiopulmonary bypass (CPB) and deep hypothermic circulatory arrest (DHCA). Multi-organ damage is associated with substantial decreases of blood selenium (Se) levels in patients undergoing cardiac surgery with CPB. We compared the influence of a dietary surplus of Se and pretreatment with ebselen, a mimic of the selenoenzyme glutathione peroxidase, on IRI-induced tissue damage and inflammation. Male Wistar rats were fed either a Se-adequate diet containing 0.3 ppm Se or supplemented with 1 ppm Se (as sodium selenite) for 5 weeks. Two other groups of Se-adequate rats received intraperitoneal injection of ebselen (30 mg/kg) or DMSO (solvent control) before surgery. The animals were connected to a heart-lung-machine and underwent 45 min of global ischemia during circulatory arrest at 16 °C, followed by re-warming and reperfusion. Selenite and ebselen suppressed IRI-induced leukocytosis and the increase in plasma levels of tissue damage markers (AST, ALT, LDH, troponin) during surgery but did not prevent the induction of proinflammatory cytokines (IL-6, TNF-α). Both Se compounds affected phosphorylation and expression of proteins related to stress response and inflammation: Ebselen increased phosphorylation of STAT3 transcription factor in the heart and decreased phosphorylation of ERK1/2 MAP kinases in the lungs. Selenite decreased ERK1/2 phosphorylation and HSP-70 expression in the heart. Pretreatment with selenite or ebselen protected against acute IRI-induced tissue damage during CPB and DHCA. Potential implications of their different actions with regard to molecular stress markers on the recovery after surgery represent promising targets for further investigation. PMID:27192987

  17. Increased Risk of Acute Angle Closure in Retinitis Pigmentosa: A Population-Based Case-Control Study

    PubMed Central

    Ko, Yu-Chieh; Liu, Chia-Jen; Hwang, De-Kuang; Chen, Tzeng-Ji; Liu, Catherine J.

    2014-01-01

    Purpose To investigate the association between retinitis pigmentosa (RP) and acute angle closure during a 15-year follow-up period. Methods Using the Taiwan Longitudinal Health Insurance Database 2000, we identified 382 RP patients based on the diagnostic code of RP (International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) 362.74) made during 1996–2010, excluding subjects under age of 20 years at diagnosis or subjects undergoing lens extraction before the index date. The control group included 3820 randomly selected non-RP subjects matched with the RP patients in age, gender and the index date of diagnosis. The incidence of acute angle closure during the study period was observed based on an ICD-9-CM code of 365.22. Cochran-Mantel-Haenszel test was used to determine the odds ratio (OR) of having acute angle closure in RP patients. Results The mean age at the diagnosis of RP was 51.1years (standard deviation [SD] 16.7). Acute angle closure occurred in 5 RP patients (1.3%) and in 15 controls (0.4%). The mean age with the acute angle closure was 53.3 years (SD 8.0) in RP patients and 64.6 years (SD 8.4) in controls (P = 0.015). After adjusting for age, gender and comorbid disorders, RP patients had 3.64-fold (95% confidence interval [CI], 1.29–10.25, P<0.001) greater odds of having acute angle closure. After stratification for gender and age, the risk of acute angle closure in RP was higher in patients under age of 60 years (adjusted OR 11.84; 95% CI, 2.84–49.48) and male patients (adjusted OR 19.36; 95% CI, 3.43–109.40)(both P = 0.001). Conclusions RP patients had increased risk of acute angle closure than controls. Contrary to the fact that angle closure disease is more prevalent in elderly females in general population, acute angle closure attack occurred earlier in life and the risk was higher in males among RP patients. PMID:25222486

  18. Hydrogen gas reduced acute hyperglycemia-enhanced hemorrhagic transformation in a focal ischemia rat model.

    PubMed

    Chen, C H; Manaenko, A; Zhan, Y; Liu, W W; Ostrowki, R P; Tang, J; Zhang, J H

    2010-08-11

    Hyperglycemia is one of the major factors for hemorrhagic transformation after ischemic stroke. In this study, we tested the effect of hydrogen gas on hemorrhagic transformation in a rat focal cerebral ischemia model. Sprague-Dawley rats (n=72) were divided into the following groups: sham; sham treated with hydrogen gas (H(2)); Middle Cerebral Artery Occlusion (MCAO); and MCAO treated with H(2) (MCAO+H(2)). All rats received an injection of 50% dextrose (6 ml/kg i.p.) and underwent MCAO 15 min later. Following a 90 min ischemic period, hydrogen was inhaled for 2 h during reperfusion. We measured the level of blood glucose at 0 h, 0.5 h, 4 h, and 6 h after dextrose injection. Infarct and hemorrhagic volumes, neurologic score, oxidative stress (evaluated by measuring the level of 8 Hydroxyguanosine (8OHG), 4-Hydroxy-2-Nonenal (HNE) and nitrotyrosine), and matrix metalloproteinase (MMP)-2/MMP-9 activity were measured at 24 h after ischemia. We found that hydrogen inhalation for 2 h reduced infarct and hemorrhagic volumes and improved neurological functions. This effect of hydrogen was accompanied by a reduction of the expression of 8OHG, HNE, and nitrotyrosine and the activity of MMP-9. Furthermore, a reduction of the blood glucose level from 500+/-32.51 to 366+/-68.22 mg/dl at 4 h after dextrose injection was observed in hydrogen treated animals. However, the treatment had no significant effect on the expression of ZO-1, occludin, collagen IV or aquaporin4 (AQP4). In conclusion, hydrogen gas reduced brain infarction, hemorrhagic transformation, and improved neurological function in rats. The potential mechanisms of decreased oxidative stress and glucose levels after hydrogen treatment warrant further investigation. PMID:20423721

  19. Mesenchymal stem cells attenuate acute ischemia-reperfusion injury in a rat model

    PubMed Central

    LU, WEIFENG; SI, YI; DING, JIANYONG; CHEN, XIAOLI; ZHANG, XIANGMAN; DONG, ZHIHUI; FU, WEIGUO

    2015-01-01

    Ischemia-reperfusion injury (IRI) following lung transplantation is associated with increased pulmonary inflammatory responses during reperfusion. Mesenchymal stem cells (MSCs) may be able to modulate inflammatory responses in IRI. The aim of the present study was to evaluate the beneficial effects of an intravenous infusion of bone marrow-derived MSCs (BMSCs) in a rat model of pulmonary IRI. IRI was induced in male Lewis rats by 1-h ischemia followed by 2-h reperfusion. The rats received phosphate-buffered saline (PBS) or BMSC infusion at the onset of reperfusion. Pulmonary injury was determined based on the mean blood oxygenation, lung edema and vascular permeability, and performing histopathological examination. Pulmonary inflammation was also evaluated through the examination of the levels of inflammatory cytokines. Compared with the PBS infusion, the BMSC infusion significantly preserved lung function, reduced lung edema and pulmonary microvascular permeability, and decreased the total injury score in rats with IRI. The mRNA levels of the pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6, were significantly reduced, while the expression of anti-inflammatory cytokine IL-10 was increased in the rats receiving BMSC infusion. The levels of cytokine-induced neutrophil chemoattractant-1, IL-1β, and TNF-α in bronchoalveolar lavage fluid were also markedly reduced following BMCS infusion. In conclusion, the present results suggested that BMSC infusion exerts protective effects against pulmonary IRI by alleviating IRI-induced inflammation. These findings provide experimental evidence for the treatment of pulmonary IRI using BMSC cell therapy. PMID:26668605

  20. Hydrogen Gas Reduced Acute Hyperglycemia-Enhanced Hemorrhagic Transformation in a Focal Ischemia Rat Model

    PubMed Central

    CHEN, C.H.; ANATOL, M.; ZHAN, Y.; LIU, W.W.; OSTROWKI, R.P.; TANG, JIPING; ZHANG, J. H.

    2010-01-01

    Hyperglycemia is one of the major factors for hemorrhagic transformation after ischemic stroke. In this study, we tested hydrogen gas on hemorrhagic transformation in a rat focal cerebral ischemia model. Sprague–Dawley rats (n=72) were divided into the following groups: sham; sham treated with hydrogen gas (H2); Middle Cerebral Artery Occlusion (MCAO); and MCAO treated with H2 (MCAO+H2). All the rats received an injection of 50% dextrose (6ml/kg intraperitoneally) and underwent MCAO 15 min later. Following a 90 min ischemic period, hydrogen was inhaled for 2 hr during reperfusion. We measured the level of blood glucose at 0 hr, 0.5 hr, 4 hr, and 6 hr after dextrose injection. Infarct and hemorrhagic volumes, neurologic score, oxidative stress (evaluating by the level of 8OHG, HNE and nitrotyrosine), MMP-2/MMP-9 activity were measured at 24 hr after ischemia. We found that hydrogen inhalation for 2 hr reduced infarct and hemorrhagic volumes and improved neurological functions. This effect of hydrogen is accompanied by a reduction of the expressions of 8OHG, HNE, nitrotyrosine and the activity of MMP-9. Furthermore, a reduction of the blood glucose level from 500±32.51 to 366±68.22 mg/dl at 4 hr after dextrose injection was observed in hydrogen treated animals. However, the treatment had no significant effect on the expression of ZO-1, occluding, collagen IV or AQP4. In conclusion, hydrogen gas reduced the infarction, hemorrhagic transformation, and improved neurological functions in rat. The potential mechanisms of decreased oxidative stress and glucose levels after hydrogen treatment warrant further investigation. PMID:20423721

  1. Ukrain (NSC 631570) ameliorates intestinal ischemia-reperfusion-induced acute lung injury by reducing oxidative stress

    PubMed Central

    Kocak, Cengiz; Kocak, Fatma Emel; Akcilar, Raziye; Akcilar, Aydin; Savran, Bircan; Zeren, Sezgin; Bayhan, Zulfu; Bayat, Zeynep

    2016-01-01

    Intestinal ischemia-reperfusion (I/R) causes severe destruction in remote organs. Lung damage is a frequently seen complication after intestinal I/R. Ukrain (NSC 631570) is a synthetic thiophosphate derivative of alkaloids from the extract of the celandine (Chelidonium majus L.) plant. We investigated the effect of Ukrain in animals with lung injury induced by intestinal I/R. Adult male Spraque-Dawley rats were randomly divided into four groups: control, Ukrain, I/R, I/R with Ukrain. Before intestinal I/R was induced, Ukrain was administered intraperitoneally at a dose of 7.0 mg/body weight. After 1 h ischemia and 2 h reperfusion period, lung tissues were excised. Tissue levels of total oxidative status (TOS), total antioxidant status (TAS) were measured and oxidative stress indices (OSI) were calculated. Lung tissues were also examined histopathologically. TOS and OSI levels markedly increased and TAS levels decreased in the I/R group compared to the control group (P < 0.05). TOS and OSI levels markedly decreased and TAS levels increased in the I/R with Ukrain group compared with the group subjected to IR only (P < 0.05). Severe hemorrhage, alveolar septal thickening, and leukocyte infiltration were observed in the I/R group. In the I/R with Ukrain group, morphologic changes occurring as a result of lung damage attenuated and histopathological scores reduced compared to the I/R group (P < 0.05). Our results suggest that Ukrain pretreatment could reduce lung injury induced by intestinal I/R induced via anti-inflammatory and antioxidant effects. PMID:26773189

  2. Effect of collateral flow on epicardial and endocardial lysosomal hydrolases in acute myocardial ischemia.

    PubMed Central

    Gottwik, M G; Kirk, E S; Hoffstein, S; Weglicki, W B

    1975-01-01

    Early changes in lysosomal enzymes must occur if their role is significant in irreversible myocardial injury. Therefore, we ligated the anterior descending coronary artery in 14 dogs and after 60 min excised epicardial and endocardial samples from the ischemic and adjacent normal heart. The collateral flow measured with radioactive microspheres in the endocardial samples averaged 19% of control. The muscle was disrupted and fractionated by ultracentrifugation into nuclear pellet (NP), heavy lysosomal pellet (HL), light lysosomal pellet (LL), microsomal pellet (M) and supernate (S). Electron microscopy demonstrated changes characteristic of sichemia in whole tissues and sedimented fractions. Acid phosphatase reaction product was present in residual bodies in the HL fraction and membrane-bound vesicles in the LL fraction and in the intact tissue. Significant decreases in the specific activity of N-acetyl-beta-glucosaminidase and beta-glucuronidase occurred in the endocardial LL fraction, while significant increases in both were found in the ts fraction (P less than 0.05). Losses of acid phosphatase occurred in both LL and S fractions. Moreover, decreases of total N-acetyl-beta-glucosaminidase in the HL fraction and of total beta-glucuronidase and acid phosphatase in the LL fraction were positively correlated (P less than 0.01) with the degree of ischemia measured with radioactive microspheres. Only insignificant enzymatic changes were found when the collateral flow was greater than 40%, and the differences were less significant in epicardial samples where the flow averaged 29%. The early loss of enzymes from the lysosomal fractions in severe ischemia suggests a role for lysosomal hydrolases in the necrosis that follows coronary occlusion. Images PMID:1159094

  3. Delayed diagnosis of ocular syphilis that manifested as retinal vasculitis and acute posterior multifocal placoid epitheliopathy.

    PubMed

    Park, Jong Hoon; Joe, Soo Geun; Yoon, Young Hee

    2013-11-01

    A 55-year-old female presented with bilateral progressive retinal vasculitis. She was on systemic and intravitreal steroids on the basis of uveitis work-up result (negative result including rapid plasma reagin), but her visual acuity continued to deteriorate to light perception only. Ocular examination showed retinal vasculitis, multiple yellow placoid lesions and severe macula edema in both eyes. Repeated work-up revealed positivity of fluorescent treponemal antibody-absorption in serum and subsequently in cerebrospinal fluid. Ocular syphilis was diagnosed. And intravenous penicillin G resulted in rapid resolution of vasculitis and macular edema. To avoid delay in the diagnosis of ocular syphilis, high index of suspicion and repeating serological tests (including both treponemal and non-treponemal tests) are warranted. PMID:24145569

  4. Treatment of Acute Lower Limb Ischemia Following the Use of the Duett Sealing Device: Report of Three Cases and Review of the Literature

    SciTech Connect

    Katsouras, C.S.; Michalis, L.K. Leontaridis, I.; Kolettis, T.; Naka, K.K.; Goudevenos, J.A.; Rees, M.R.; Sideris, D.A.

    2004-09-15

    Three cases of local thrombolysis in the treatment of acute lower limb ischemia complicating the utilization of the Duett sealing device are presented. Routine usage of several vascular closure devices after cardiac catheterization and percutaneous coronary intervention (PCI) has been adopted in our institution during the last 3 years (September 1999 to April 2003). The Duett closure device has been used in 420 patients (post-coronary angiography, 359; post-PCI, 61). Three patients (0.7%) demonstrated acute leg ischemia caused by inadvertent intravascular administration of the sealing material related to this device. All three were treated successfully by catheter-directed local thrombolysis (tissue plasminogen activator 5 mg bolus followed initially by 1 mg/hr and consequently by 0.5-1.0 mg/hr depending upon the development of significant hematoma and lasting for 24 hr). In conclusion, interventional treatment using local thrombolysis should be the first-line treatment in acute lower limb ischemia complicating the utilization of the Duett sealing device.

  5. SDF-1/CXCR4 mediates acute protection of cardiac function through myocardial STAT3 signaling following global ischemia/reperfusion injury

    PubMed Central

    Huang, Chunyan; Gu, Hongmei; Zhang, Wenjun; Manukyan, Mariuxi C.; Shou, Weinian

    2011-01-01

    Stromal cell-derived factor-1α (SDF-1) has been reported to mediate cardioprotection through the mobilization of stem cells into injured tissue and an increase in local angiogenesis after myocardial infarction. However, little is known regarding whether SDF-1 induces acute protection following global myocardial ischemia/reperfusion (I/R) injury and if so, by what molecular mechanism. SDF-1 binding to its cognate receptor CXCR4 has been shown to activate STAT3 in a variety of cells. STAT3 is a cardioprotective factor and may mediate SDF-1/CXCR4-induced acute protection. We hypothesized that SDF-1 would improve myocardial function through CXCR4-increased STAT3 activation following acute I/R. Isolated mouse hearts were subjected to 25-min global ischemia/40-min reperfusion and divided into groups of 1) vehicle; 2) SDF-1; 3) AMD3100, a CXCR4 inhibitor; 4) SDF-1 + AMD3100; 5) Stattic, a STAT3 inhibitor; 6) SDF-1 + Stattic; 7) cardiomyocyte-restricted ablation of STAT3 (STAT3KO); 8) STAT3KO + SDF-1; 9) Ly294002, an inhibitor of the Akt pathway; and 10) SDF-1 + Ly294002. Reagents were infused into hearts within 5 min before ischemia. SDF-1 administration significantly improved postischemic myocardial functional recovery in a dose-dependent manner. Additionally, pretreatment with SDF-1 reduced cardiac apoptotic signaling and increased myocardial STAT3 activation following acute I/R. Inhibition of the SDF-1 receptor CXCR4 neutralized these protective effects by SDF-1 in hearts subjected to I/R. Notably, inhibition of the STAT3 pathway or use of STAT3KO hearts abolished SDF-1-induced acute protection following myocardial I/R. Our results represent the first evidence that the SDF-1/CXCR4 axis upregualtes myocardial STAT3 activation and, thereby, mediates acute cardioprotection in response to global I/R. PMID:21821779

  6. Retinal Cell Degeneration in Animal Models

    PubMed Central

    Niwa, Masayuki; Aoki, Hitomi; Hirata, Akihiro; Tomita, Hiroyuki; Green, Paul G.; Hara, Akira

    2016-01-01

    The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced), autoimmune (experimental autoimmune encephalomyelitis), mechanical stress (optic nerve crush-induced, light-induced) and ischemia (transient retinal ischemia-induced). The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage. PMID:26784179

  7. A pilot study with monosialoganglioside GM1 on acute cerebral ischemia.

    PubMed

    Giraldi, C; Masi, M C; Manetti, M; Carabelli, E; Martini, A

    1990-06-01

    Reported here are the results of an open controlled study on the use of GM1 in cases of ischemic strokes in its acute phase. A statistically significant improvement was observed in cases treated with GM1 for neurological deficits (assessed by Mathew's rating scale, modified by Fritz-Werner) at 21, 60 and 120 days and for disability at 120 days. PMID:2206015

  8. High Homocysteine and Blood Pressure Related to Poor Outcome of Acute Ischemia Stroke in Chinese Population

    PubMed Central

    Liu, Changjiang; Zhao, Liang; Zhou, Mo; Sun, Wenjie; Xu, Tan; Tong, Weijun

    2014-01-01

    Objectives To assess the association between plasma homocysteine (Hcy), blood pressure (BP) and poor outcome at hospital discharge among acute ischemic stroke patients, and if high Hcy increases the risk of poor outcome based on high BP status in a northern Chinese population. Methods Between June 1, 2009 and May 31, 2013, a total of 3695 acute ischemic stroke patients were recruited from three hospitals in northern Chinese cities. Demographic characteristics, lifestyle risk factors, medical history, and other clinical characteristics were recorded for all subjects. Poor outcome was defined as a discharge modified Rankin Scale (mRS) score ≥3 or death. The association between homocysteine concentration, admission blood pressure, and risk of poor outcome following acute ischemic stroke was analyzed by using multivariate non-conditional logistic regression models. Results Compared with those in the lowest quartile of Hcy concentration in a multivariate-adjusted model, those in the highest quartile of Hcy concentration had increased risk of poor outcome after acute ischemic stroke, (OR = 1.33, P<0.05). The dose-response relationship between Hcy concentration and risk of poor outcome was statistically significant (p-value for trend  = 0.027). High BP was significantly associated with poor outcome following acute ischemic stroke (adjusted OR = 1.44, 95%CI, 1.19–1.74). Compared with non-high BP with nhHcy, in a multivariate-adjusted model, the ORs (95% CI) of non-high BP with hHcy, high BP with nhHcy, and high BP with hHcy to poor outcome were 1.14 (0.85–1.53), 1.37 (1.03–1.84) and 1.70 (1.29–2.34), respectively. Conclusion The present study suggested that high plasma Hcy and blood pressure were independent risk factors for prognosis of acute ischemic stroke, and hHcy may further increase the risk of poor outcome among patients with high blood pressure. Additionally, the results indicate that high Hcy with high BP may cause increased susceptibility

  9. Acute myocardial infarction and myocardial ischemia-reperfusion injury: a comparison

    PubMed Central

    Hashmi, Satwat; Al-Salam, Suhail

    2015-01-01

    Myocardial infarction (MI) denotes the death of cardiac myocytes due to extended ischemia. Myocardial reperfusion is the restoration of coronary blood flow after a period of coronary occlusion. Reperfusion has the potential to salvage ischemic myocardium but paradoxically can cause injury, a phenomenon called as ‘reperfusion injury’ (IR). Standard histologic, immunohistochemical and Elisa techniques were used to study the histopathologic, oxidative, apoptotic and inflammatory changes in MI and IR. The IL-6 levels in the LV of the MI group were significantly raised as compared to the IR group (P=0.0008). Plasma IL-6 was also significantly increased in the MI group as compared to the IR group (P=0.031). MI model was also associated with increase in the neutrophil polymorphs number in the infarction related myocardium as compared to the re-perfused myocardium. A significant increase in troponin I level in the MI group as compared to the IR group is also seen (P=0.0001). Our IR model showed enhanced pro-apoptotic mediators like cleaved caspase-3 (P=0.005) and cytochrome c in the myocardium as compared to the MI model. In conclusion, myocardial damage in MI is mainly due to ischemic necrosis and inflammatory mechanisms while apoptosis is the main mechanism of cell death in IR in addition to limited ischemic necrosis. PMID:26464621

  10. Nafamostat mesilate protects against acute cerebral ischemia via blood-brain barrier protection.

    PubMed

    Wang, Jing; Li, Chenhui; Chen, Tao; Fang, Yinquan; Shi, Xinzhong; Pang, Tao; Zhang, Luyong; Liao, Hong

    2016-06-01

    Serine proteases, such as thrombin, are contributors to the disruption of the blood-brain barrier (BBB) and exacerbate brain damage during ischemic stroke, for which the current clinical therapy remains unsatisfactory. However, the effect of nafamostat mesilate (NM), a synthetic serine protease inhibitor, on BBB disruption following cerebral ischemia is unknown. Here, we investigated the in vivo effect of NM on BBB integrity in rats subjected to transient middle cerebral artery occlusion (MCAO) and explored the possible mechanism in an in vitro BBB model comprising rat brain microvascular endothelial cells and astrocytes after oxygen and glucose deprivation (OGD) in the presence of thrombin. The results showed that NM treatment remarkably attenuated transient MCAO-induced brain infarcts, brain oedema and motor dysfunction in addition to BBB disruption, which might be related to changes in tight junction protein expression and localization. Meanwhile, NM preserved BBB integrity and alleviated the changes in tight junction protein expression and localization and cytoskeleton rearrangement in rat brain microvascular endothelial cells via thrombin inhibition. Our findings suggest that NM treatment can preserve BBB integrity through the inhibition of thrombin, which might be correlated with the regulation of PKCα/RhoA/MLC2 pathway components. PMID:26861077

  11. Do antioxidant vitamins reduce infarct size following acute myocardial ischemia/reperfusion?

    PubMed

    Bellows, S D; Hale, S L; Simkhovich, B Z; Kay, G L; Kloner, R A

    1995-02-01

    There is controversy concerning the ability of antioxidant vitamins to reduce myocardial infarct size. We sought to determine whether a brief prophylactic treatment of vitamin C or vitamin C plus Trolox (a water-soluble form of vitamin E) could reduce myocardial infarct size in an experimental model. We used an anesthetized open-chest rabbit model in which a branch of the circumflex coronary artery was ligated for 30 minutes followed by 4 hours of reperfusion. Experiments were performed in a randomized and blinded fashion. An IV injection of normal saline pH balanced to 7.4 (control group n = 15), vitamin C (150 mg/kg, n = 14), or vitamin C plus Trolox (150 mg/kg plus 100 mg/kg, respectively, n = 15) was administered prior to coronary occlusion. Collateral blood flow during coronary occlusion was measured by radioactive microspheres, myocardial risk zone (AR) was assessed by blue dye injection, and myocardial infarct size (AN) was assessed by triphenyltetrazolium chloride staining. All rabbits received comparable ischemic insult: Collateral blood flow and AR were similar among all three groups. Infarct size, measured as a percent of AR, did not differ significantly among the controls (21%), vitamin C (29%), or the vitamin C plus Trolox (18%) groups. Therefore, in this ischemia/reperfusion model, antioxidant vitamins did not alter myocardial infarct size. PMID:7540423

  12. Evolution of blood-brain barrier damage associated with changes in brain metabolites following acute ischemia.

    PubMed

    Yan, Gen; Xuan, Yinghua; Dai, Zhuozhi; Zhang, Guishan; Xu, Haiyun; Mikulis, David; Wu, Renhua

    2015-11-11

    Stroke is a serious medical condition that requires emergency care. In the case of ischemic stroke, ischemia may lead to damage to the blood-brain barrier (BBB); the damage in turn may exacerbate the condition. Therefore, noninvasive detection of BBB damage represents a challenge for experimental and clinical researchers. In this study, we assessed the onset of BBB disruption by means of T1-weighted images with administration of the contrast enhancement agent gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) and related BBB breakdown to brain metabolite changes in proton magnetic resonance spectrum (H-MRS) in the infarcted site following middle cerebral artery occlusion (MCAO) in rats. It was shown that MCAO for 30 min and 1.5 h caused no Gd-DTPA signal change in the T1-weighted images, whereas MCAO for 1 h significantly altered some of H-MRS brain metabolites, suggesting that brain metabolite changes occurred earlier than BBB damage after ischemic stroke. MCAO for 2 h caused BBB breakdown, which was related to changes in the levels of some brain metabolites detected by H-MRS. Between the second and the third hour after MCAO, brain metabolite changes continued as the result of BBB breakdown and the concurrent overperfusion to the infarcted site, which may ameliorate the metabolite changes, thus compensating for the functional failures of the brain after stroke. PMID:26366833

  13. Study of T-wave morphology parameters based on Principal Components Analysis during acute myocardial ischemia

    NASA Astrophysics Data System (ADS)

    Baglivo, Fabricio Hugo; Arini, Pedro David

    2011-12-01

    Electrocardiographic repolarization abnormalities can be detected by Principal Components Analysis of the T-wave. In this work we studied the efect of signal averaging on the mean value and reproducibility of the ratio of the 2nd to the 1st eigenvalue of T-wave (T21W) and the absolute and relative T-wave residuum (TrelWR and TabsWR) in the ECG during ischemia induced by Percutaneous Coronary Intervention. Also, the intra-subject and inter-subject variability of T-wave parameters have been analyzed. Results showed that TrelWR and TabsWR evaluated from the average of 10 complexes had lower values and higher reproducibility than those obtained from 1 complex. On the other hand T21W calculated from 10 complexes did not show statistical diferences versus the T21W calculated on single beats. The results of this study corroborate that, with a signal averaging technique, the 2nd and the 1st eigenvalue are not afected by noise while the 4th to 8th eigenvalues are so much afected by this, suggesting the use of the signal averaged technique before calculation of absolute and relative T-wave residuum. Finally, we have shown that T-wave morphology parameters present high intra-subject stability.

  14. A New Approach Using Manganese-Enhanced MRI to Diagnose Acute Mesenteric Ischemia in a Rabbit Model: Initial Experience

    PubMed Central

    Cheng, Cheng; Kuang, Lian-qin; Zhang, Yu-long; Cheng, Hai-yun; Min, Jia-yan; Wang, Yi

    2015-01-01

    Purpose. Manganese-enhanced MRI (MEMRI) has been applied to a wide range of biological and disease research. The purpose of the study was to use MEMRI to diagnose the acute mesenteric ischemia (AMI). Methods. The institutional experimental animal ethics committee approved this study. To optimize the dose of Mn2+ infusion, a dose-dependent curve was obtained using Mn2+-enhanced T1 map MRI by an intravenous infusion 2.5–20 nmol/g body weight (BW) of 50 nmol/L MnCl2. The eighteen animals were divided into control, sham-operated, and AMI groups. AMI models were performed by ligating the superior mesenteric artery (SMA). T1 values were measured on T1 maps in regions of the small intestinal wall and relaxation rate (ΔR1) was calculated. Results. A nonlinear relationship between infused MnCl2 solution dose and increase in small intestinal wall ΔR1 was observed. Control animal exhibited significant Mn2+ clearance over time at the dose of 15 nmol/g BW. In the AMI model, ΔR1 values (0.95 ± 0.13) in the small intestinal wall were significantly lower than in control group (2.05 ± 0.19) after Mn2+ infusion (P < 0.01). Conclusion. The data suggest that MEMRI shows potential as a diagnostic technique that is directly sensitive to the poor or absent perfusion in AMI. PMID:26693487

  15. Molecular magnetic resonance imaging of acute vascular cell adhesion molecule-1 expression in a mouse model of cerebral ischemia.

    PubMed

    Hoyte, Lisa C; Brooks, Keith J; Nagel, Simon; Akhtar, Asim; Chen, Ruoli; Mardiguian, Sylvie; McAteer, Martina A; Anthony, Daniel C; Choudhury, Robin P; Buchan, Alastair M; Sibson, Nicola R

    2010-06-01

    The pathogenesis of stroke is multifactorial, and inflammation is thought to have a critical function in lesion progression at early time points. Detection of inflammatory processes associated with cerebral ischemia would be greatly beneficial in both designing individual therapeutic strategies and monitoring outcome. We have recently developed a new approach to imaging components of the inflammatory response, namely endovascular adhesion molecule expression on the brain endothelium. In this study, we show specific imaging of vascular cell adhesion molecule (VCAM)-1 expression in a mouse model of middle cerebral artery occlusion (MCAO), and a reduction in this inflammatory response, associated with improved behavioral outcome, as a result of preconditioning. The spatial extent of VCAM-1 expression is considerably greater than the detectable lesion using diffusion-weighted imaging (25% versus 3% total brain volume), which is generally taken to reflect the core of the lesion at early time points. Thus, VCAM-1 imaging seems to reveal both core and penumbral regions, and our data implicate VCAM-1 upregulation and associated inflammatory processes in the progression of penumbral tissue to infarction. Our findings indicate that such molecular magnetic resonance imaging (MRI) approaches could be important clinical tools for patient evaluation, acute monitoring of therapy, and design of specific treatment strategies. PMID:20087364

  16. Mechanism of Mitochondrial Connexin43′s Protection of the Neurovascular Unit under Acute Cerebral Ischemia-Reperfusion Injury

    PubMed Central

    Hou, Shuai; Shen, Ping-Ping; Zhao, Ming-Ming; Liu, Xiu-Ping; Xie, Hong-Yan; Deng, Fang; Feng, Jia-Chun

    2016-01-01

    We observed mitochondrial connexin43 (mtCx43) expression under cerebral ischemia-reperfusion (I/R) injury, analyzed its regulation, and explored its protective mechanisms. Wistar rats were divided into groups based on injections received before middle cerebral artery occlusion (MCAO). Cerebral infarction volume was detected by 2,3,5-triphenyltetrazolim chloride staining, and cell apoptosis was observed by transferase dUTP nick end labeling. We used transmission electron microscopy to observe mitochondrial morphology and determined superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. MtCx43, p-mtCx43, protein kinase C (PKC), and p-PKC expression were detected by Western blot. Compared with those in the IR group, cerebral infarction volumes in the carbenoxolone (CBX) and diazoxide (DZX) groups were obviously smaller, and the apoptosis indices were down-regulated. Mitochondrial morphology was damaged after I/R, especially in the IR and 5-hydroxydecanoic acid (5-HD) groups. Similarly, decreased SOD activity and increased MDA were observed after MCAO; CBX, DZX, and phorbol-12-myristate-13-acetate (PMA) reduced mitochondrial functional injury. Expression of mtCx43 and p-mtCx43 and the p-Cx43/Cx43 ratio were significantly lower in the IR group than in the sham group. These abnormalities were ameliorated by CBX, DZX, and PMA. MtCx43 may protect the neurovascular unit from acute cerebral IR injury via PKC activation induced by mitoKATP channel agonists. PMID:27164087

  17. AT1 receptor antagonism before ischemia prevents the transition of acute kidney injury to chronic kidney disease.

    PubMed

    Rodríguez-Romo, Roxana; Benítez, Kenia; Barrera-Chimal, Jonatan; Pérez-Villalva, Rosalba; Gómez, Arturo; Aguilar-León, Diana; Rangel-Santiago, Jesús F; Huerta, Sara; Gamba, Gerardo; Uribe, Norma; Bobadilla, Norma A

    2016-02-01

    Despite clinical recovery of patients from an episode of acute kidney injury (AKI), progression to chronic kidney disease (CKD) is possible on long-term follow-up. However, mechanisms of this are poorly understood. Here, we determine whether activation of angiotensin-II type 1 receptors during AKI triggers maladaptive mechanisms that lead to CKD. Nine months after AKI, male Wistar rats develop CKD characterized by renal dysfunction, proteinuria, renal hypertrophy, glomerulosclerosis, tubular atrophy, and tubulointerstitial fibrosis. Renal injury was associated with increased oxidative stress, inflammation, α-smooth muscle actin expression, and activation of transforming growth factor β; the latter mainly found in epithelial cells. Although administration of losartan prior to the initial ischemic insult did not prevent or reduce AKI severity, it effectively prevented eventual CKD. Three days after AKI, renal dysfunction, tubular structural injury, and elevation of urinary biomarkers were present. While the losartan group had similar early renal injury, renal perfusion was completely restored as early as day 3 postischemia. Further, there was increased vascular endothelial growth factor expression and an early activation of hypoxia-inducible factor 1 α, a transcription factor that regulates expression of many genes that help reduce renal injury. Thus, AT1 receptor antagonism prior to ischemia prevented AKI to CKD transition by improving early renal blood flow recovery, lesser inflammation, and increased hypoxia-inducible factor 1 α activity. PMID:26509589

  18. Rapamycin Treatment of Healthy Pigs Subjected to Acute Myocardial Ischemia-Reperfusion Injury Attenuates Cardiac Functions and Increases Myocardial Necrosis

    PubMed Central

    Lassaletta, Antonio D; Elmadhun, Nassrene Y; Zanetti, Arthus V D; Feng, Jun; Anduaga, Javier; Gohh, Reginald Y.; Sellke, Frank W; Bianchi, Cesario

    2013-01-01

    Background The Mechanistic Target of Rapamycin (mTOR) pathway is a major regulator of cell immunity and metabolism. mTOR is a well-known suppressor of tissue rejection in organ transplants, however, it has other non-immune functions including in the cardiovascular system, where it is a regulator of heart hypertrophy and locally, in coated vascular stents, inhibits vascular wall cell growth and hence neointimal formation/restenosis. Because the mTOR pathway plays major roles in normal cell growth, metabolism and survival, we hypothesized that inhibiting it with rapamycin, prior to an acute myocardial ischemia-reperfusion injury (IRI), would confer cardioprotection by virtue of slowing down cardiac function and metabolism. Methods Yorkshire pigs received orally either placebo or 4 mg/day rapamycin for 7 days before the IRI. All animals underwent median sternotomy and the mid-left anterior descending coronary artery was occluded for 60 min followed by 120 min of reperfusion. Left ventricular pressure-volume data was collected throughout the operation. The ischemic and infarcted areas were determined by monastral blue and triphenyltetrazolium chloride staining, respectively and plasma cardiac troponin I concentration. mTOR kinase activities were monitored in remote cardiac tissue by western blotting with specific antibodies against specific substrates phosphorylating sites. Results Rapamycin pre-treatement impaired endothelial-dependent vasorelaxation, attenuated cardiac function during IRI, and increased myocardial necrosis. Western blotting confirmed effective inhibition of myocardial mTOR kinase activities. Conclusions Pre-treatment of healthy pigs with rapamycin prior to acute myocardial IRI is associated with decreased cardiac function and higher myocardial necrosis. PMID:24266948

  19. Neuroprotective Effect of Resveratrol on Acute Brain Ischemia Reperfusion Injury by Measuring Annexin V, p53, Bcl-2 Levels in Rats

    PubMed Central

    Kizmazoglu, Ceren; Aydin, Hasan Emre; Sevin, Ismail Ertan; Yüceer, Nurullah; Atasoy, Metin Ant

    2015-01-01

    Background Cerebral ischemia is as a result of insufficient cerebral blood flow for cerebral metabolic functions. Resveratrol is a natural phytoalexin that can be extracted from grape's skin and had potent role in treating the cerebral ischemia. Apoptosis, a genetically programmed cellular event which occurs after ischemia and leads to biochemical and morphological changes in cells. There are some useful markers for apoptosis like Bcl-2, bax, and p53. The last reports, researchers verify the apoptosis with early markers like Annexin V. Methods We preferred in this experimental study a model of global cerebral infarction which was induced by bilateral common carotid artery occlusion method. Rats were randomly divided into 4 groups : sham, ischemia-reperfusion (I/R), I/R plus 20 mg/kg resveratrol and I/R plus 40 mg/kg resveratrol. Statistical analysis was performed using Sigmastat 3.5 ve IBM SPSS Statistics 20. We considered a result significant when p<0.001. Results After administration of resveratrol, Bcl-2 and Annexin levels were significantly increased (p<0.001). Depending on the dose of resveratrol, Bcl2 levels increased, p53 levels decreased but Annexin V did not effected. P53 levels were significantly increased in ishemia group, so apoptosis is higher compared to other groups. Conclusion In the acute period, Annexin V levels misleading us because the apoptotic cell counts could not reach a certain level. Therefore we should support our results with bcl-2 and p53. PMID:26819684

  20. The Kynurenine Pathway in the Acute and Chronic Phases of Cerebral Ischemia

    PubMed Central

    Cuartero, María Isabel; de la Parra, Juan; García-Culebras, Alicia; Ballesteros, Iván; Lizasoain, Ignacio; Moro, María Ángeles

    2016-01-01

    Kynurenines are a wide range of catabolites which derive from tryptophan through the “Kynurenine Pathway” (KP). In addition to its peripheral role, increasing evidence shows a role of the KP in the central nervous system (CNS), mediating both physiological and pathological functions. Indeed, an imbalance in this route has been associated with several neurodegenerative disorders such as Alzheimer’s and Huntington’s diseases. Altered KP catabolism has also been described during both acute and chronic phases of stroke; however the contribution of the KP to the pathophysiology of acute ischemic damage and of post-stroke disorders during the chronic phase including depression and vascular dementia, and the exact mechanisms implicated in the regulation of the KP after stroke are not well established yet. A better understanding of the regulation and activity of the KP after stroke could provide new pharmacological tools in both acute and chronic phases of stroke. In this review, we will make an overview of CNS modulation by the KP. We will detail the KP contribution in the ischemic damage, how the unbalance of the KP might trigger an alteration of the cognitive function after stroke as well as potential targets for the development of new drugs. PMID:25248805

  1. Doxycycline inhibits proinflammatory cytokines but not acute cerebral cytogenesis after hypoxia–ischemia in neonatal rats

    PubMed Central

    Jantzie, Lauren L.; Todd, Kathryn G.

    2010-01-01

    Background Neonatal hypoxia–ischemia (HI) is a major cause of perinatal brain injury and is associated with a spectrum of neuropsychiatric disorders. Although very few treatment options are currently available, doxycycline (DOXY) has been reported to be neuroprotective in neontatal HI. Our objective was to investigate the effects of DOXY on neonatal brain development in normal and HI rat pups. We hypothesized that DOXY would inhibit microglial activation but that developmentally important processes, including cytogenesis and trophic responses, would not be impaired. Methods To investigate the putative neurodevelopmental consequences of DOXY administration in a clinically relevant animal model of HI, we performed a time-course analysis such that postnatal rat pups received DOXY (10 mg/kg) or vehicle immediately before HI (n ≥ 6). We then assessed cytogenesis, proinflammatory cytokines, brain-derived neurotrophic factor (BDNF) and matrix metalloproteinases regionally and longitudinally. Results We found that DOXY significantly inhibits neuroinflammation in the frontal cortex, striatum and hippocampus; decreases interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α); and augments BDNF following HI. In addition, DOXY-treated pups have significantly fewer 2-bromo-5-deoxyuridine (BrdU)-positive cells in the subventricular zone 6 hours post-HI. However, DOXY does not persistently affect cytogenesis in the subventricular zone or dentate gyrus up to 7 days post-HI. The BrdU-positive cells not expressing markers for mature neurons colabel with nestin, an intermediate filament protein typical of neuronal precursors. Limitations Our study investigates “acute” neurodevelopment over the first 7 days of life after HI injury. Further long-term investigations into adulthood are underway. Conclusion Taken together, our results suggest the putative clinical potential of DOXY in the management of neonatal cerebral HI injury. PMID:20040243

  2. Changes in Metabolic Profiles during Acute Kidney Injury and Recovery following Ischemia/Reperfusion

    PubMed Central

    Wei, Qingqing; Xiao, Xiao; Fogle, Paul; Dong, Zheng

    2014-01-01

    Changes of metabolism have been implicated in renal ischemia/reperfusion injury (IRI). However, a global analysis of the metabolic changes in renal IRI is lacking and the association of the changes with ischemic kidney injury and subsequent recovery are unclear. In this study, mice were subjected to 25 minutes of bilateral renal IRI followed by 2 hours to 7 days of reperfusion. Kidney injury and subsequent recovery was verified by serum creatinine and blood urea nitrogen measurements. The metabolome of plasma, kidney cortex, and medulla were profiled by the newly developed global metabolomics analysis. Renal IRI induced overall changes of the metabolome in plasma and kidney tissues. The changes started in renal cortex, followed by medulla and plasma. In addition, we identified specific metabolites that may contribute to early renal injury response, perturbed energy metabolism, impaired purine metabolism, impacted osmotic regulation and the induction of inflammation. Some metabolites, such as 3-indoxyl sulfate, were induced at the earliest time point of renal IRI, suggesting the potential of being used as diagnostic biomarkers. There was a notable switch of energy source from glucose to lipids, implicating the importance of appropriate nutrition supply during treatment. In addition, we detected the depressed polyols for osmotic regulation which may contribute to the loss of kidney function. Several pathways involved in inflammation regulation were also induced. Finally, there was a late induction of prostaglandins, suggesting their possible involvement in kidney recovery. In conclusion, this study demonstrates significant changes of metabolome kidney tissues and plasma in renal IRI. The changes in specific metabolites are associated with and may contribute to early injury, shift of energy source, inflammation, and late phase kidney recovery. PMID:25191961

  3. Neuroprotective and Antiapoptotic Activity of Lineage-Negative Bone Marrow Cells after Intravitreal Injection in a Mouse Model of Acute Retinal Injury

    PubMed Central

    Machalińska, Anna; Pius-Sadowska, Ewa; Kawa, Miłosz P.; Paczkowska, Edyta; Rudnicki, Michał; Lejkowska, Renata; Baumert, Bartłomiej; Wiszniewska, Barbara; Machaliński, Bogusław

    2015-01-01

    We investigated effects of bone marrow-derived, lineage-negative cell (Lin−BMC) transplantation in acute retinal injury. Lin−BMCs were intravitreally injected into murine eyes at 24 h after NaIO3-induced injury. Morphology, function, and expression of apoptosis-related genes, including brain-derived neurotrophic factor (BDNF) and its receptor, were assessed in retinas at 7 days, 28 days, and 3 months after transplantation. Moreover, global gene expression at day 7 was analyzed by RNA arrays. We observed that Lin−BMCs integrated into outer retinal layers improving morphological retinal structure and induced molecular changes such as downregulation of proapoptotic caspase-3 gene, a decrease in BAX/BCL-2 gene ratio, and significant elevation of BDNF expression. Furthermore, transplanted Lin−BMCs differentiated locally into cells with a macrophage-like phenotype. Finally, Lin−BMCs treatment was associated with generation of two distinct transcriptomic patterns. The first relates to downregulated genes associated with regulation of neuron cell death and apoptosis, response to oxidative stress/hypoxia and external stimuli, and negative regulation of cell proliferation. The second relates to upregulated genes associated with neurological system processes and sensory perception. Collectively, our data demonstrate that transplanted Lin−BMCs exert neuroprotective function against acute retinal injury and this effect may be associated with their antiapoptotic properties and ability to express neurotrophic factors. PMID:25810725

  4. Neuroprotective and antiapoptotic activity of lineage-negative bone marrow cells after intravitreal injection in a mouse model of acute retinal injury.

    PubMed

    Machalińska, Anna; Rogińska, Dorota; Pius-Sadowska, Ewa; Kawa, Miłosz P; Paczkowska, Edyta; Rudnicki, Michał; Lejkowska, Renata; Baumert, Bartłomiej; Wiszniewska, Barbara; Machaliński, Bogusław

    2015-01-01

    We investigated effects of bone marrow-derived, lineage-negative cell (Lin(-)BMC) transplantation in acute retinal injury. Lin(-)BMCs were intravitreally injected into murine eyes at 24 h after NaIO3-induced injury. Morphology, function, and expression of apoptosis-related genes, including brain-derived neurotrophic factor (BDNF) and its receptor, were assessed in retinas at 7 days, 28 days, and 3 months after transplantation. Moreover, global gene expression at day 7 was analyzed by RNA arrays. We observed that Lin(-)BMCs integrated into outer retinal layers improving morphological retinal structure and induced molecular changes such as downregulation of proapoptotic caspase-3 gene, a decrease in BAX/BCL-2 gene ratio, and significant elevation of BDNF expression. Furthermore, transplanted Lin(-)BMCs differentiated locally into cells with a macrophage-like phenotype. Finally, Lin(-)BMCs treatment was associated with generation of two distinct transcriptomic patterns. The first relates to downregulated genes associated with regulation of neuron cell death and apoptosis, response to oxidative stress/hypoxia and external stimuli, and negative regulation of cell proliferation. The second relates to upregulated genes associated with neurological system processes and sensory perception. Collectively, our data demonstrate that transplanted Lin(-)BMCs exert neuroprotective function against acute retinal injury and this effect may be associated with their antiapoptotic properties and ability to express neurotrophic factors. PMID:25810725

  5. [Severe pulmonary embolism and acute lower limb ischemia complicating peripartum cardiomyopathy successfully treated by streptokinase].

    PubMed

    Yaméogo, N V; Kaboré, E; Seghda, A; Kagambèga, L J; Kaboré, H P; Millogo, G R C; Kologo, K J; Kambiré, Y; Bama, A; Toguyeni, B J Y; Samadoulougou, A K; Zabsonré, P

    2016-02-01

    Peripartum cardiomyopathy is a cardiac disease at high thromboembolism potential. The authors report a case of peripartum cardiomyopathy admitted for congestive heart failure. Echocardiography found a dilated cardiomyopathy with severely impaired left ventricular systolic function and biventricular thrombi. During hospitalization his condition was complicated by severe bilateral pulmonary embolism and left lower limb arterial acute thrombosis. The treatment consisted of thrombolysis with streptokinase associated with dobutamine (in addition to the conventional treatment of heart failure and bromocriptine). The outcome was favorable, marked by pulmonary and lower limb arterial unblocking. PMID:25623958

  6. Neuroprotective effect of osthole against acute ischemic stroke on middle cerebral ischemia occlusion in rats.

    PubMed

    Chao, Xiaodong; Zhou, Jun; Chen, Tao; Liu, Wenbo; Dong, Wenpeng; Qu, Yan; Jiang, Xiaofan; Ji, Xituan; Zhen, Haining; Fei, Zhou

    2010-12-01

    Osthole, a natural coumarin derivative, has taken considerable attention because of its diverse pharmacological functions. It has been reported to be useful in the treatment of chronic cerebral hypoperfusion and neuronal damage. In the present study, we examined the neuroprotective effect of osthole and its potential mechanisms against acute ischemic stroke induced by middle cerebral artery occlusion (MCAO) in rats. The rats were pretreated with osthole 10, 20 and 40 mg/kg 30 min before MCAO. The neuroprotective effect of osthole against acute ischemic stroke was evaluated by neurological deficit score (NDS), dry-wet weight and 2,3,5-triphenyltetrazolium chloride (TTC) staining. The contents of malondialdehyde (MDA) and glutathione (GSH), activity of myeloperoxidase (MPO) and the level of interleukin (IL)-1β and IL-8 after 2h of MCAO in rats were detected to investigate its anti-oxidative action and anti-inflammatory property. Pretreatment with osthole significantly increased in GSH, and decreased the volume of infarction, NDS, edema, MDA, MPO, IL-1β and IL-8 compared with rats in the MCAO group at 24h after MCAO. The study suggests the neuroprotective effect of osthole in the MCAO model of rats. The anti-oxidative action and anti-inflammatory property of osthole may contribute to a beneficial effect against stroke. PMID:20869955

  7. Dissecting the Effects of Ischemia and Reperfusion on the Coronary Microcirculation in a Rat Model of Acute Myocardial Infarction

    PubMed Central

    Hollander, Maurits R.; de Waard, Guus A.; Konijnenberg, Lara S. F.; Meijer-van Putten, Rosalie M. E.; van den Brom, Charissa E.; Paauw, Nanne; de Vries, Helga E.; van de Ven, Peter M.; Aman, Jurjan; Van Nieuw-Amerongen, Geerten P.; Hordijk, Peter L.; Niessen, Hans W. M.; Horrevoets, Anton J. G.; Van Royen, Niels

    2016-01-01

    Background Microvascular injury (MVI) after coronary ischemia-reperfusion is associated with high morbidity and mortality. Both ischemia and reperfusion are involved in MVI, but to what degree these phases contribute is unknown. Understanding the etiology is essential for the development of new potential therapies. Methods and Findings Rats were divided into 3 groups receiving either 30 minutes ischemia, 90 minutes ischemia or 30 minutes ischemia followed by 60 minutes reperfusion. Subsequently hearts were ex-vivo perfused in a Langendorff-model. Fluorescence and electron microscopy was used for analysis of capillary density, vascular permeability and ultrastructure. Most MVI was observed after 30 minutes ischemia followed by 60 minutes reperfusion. In comparison to the 30’ and 90’ ischemia group, wall thickness decreased (207.0±74 vs 407.8±75 and 407.5±71, p = 0.02). Endothelial nuclei in the 30’-60’ group showed irreversible damage and decreased chromatin density variation (50.5±9.4, 35.4±7.1 and 23.7±3.8, p = 0.03). Cell junction density was lowest in the 30’-60’ group (0.15±0.02 vs 2.5±0.6 and 1.8±0.7, p<0.01). Microsphere extravasation was increased in both the 90’ ischemia and 30’-60’ group. Conclusions Ischemia alone for 90 minutes induces mild morphological changes to the coronary microcirculation, with increased vascular permeability. Ischemia for 30 minutes, followed by 60 minutes of reperfusion, induces massive MVI. This shows the direct consequences of reperfusion on the coronary microcirculation. These data imply that a therapeutic window exists to protect the microcirculation directly upon coronary revascularization. PMID:27391645

  8. Damage patterns of retinal nerve fiber layer in acute and chronic intraocular pressure elevation in primary angle closure glaucoma

    PubMed Central

    Liu, Xing; Li, Mei; Zhong, Yi-Min; Xiao, Hui; Huang, Jing-Jing; Kong, Xiang-Yun

    2010-01-01

    AIM To observe the differences of damage patterns of retinal nerve fiber layer (RNFL) between acute and chronic intraocular pressure (IOP) elevation in primary angle closure glaucoma (PACG) using optical coherence tomography (OCT). METHODS Twenty-four patients (48 eyes) with unilateral acute PACG (APACG) attack in the 6 months after admission and 36 patients (64 eyes) with chronic PACG (CPACG) were included in this prospective study. For all cases, IOP has been controlled under 21mmHg after treatment. Using stratus OCT, the RNFL thickness was assessed in eyes with PACG within 3 days, 2 weeks, 1, 3 and 6 months after IOP was controlled. Repeated measures ANOVA was used to examine the changes of RNFL thickness at different time after IOP being controlled in both acute attack eyes and unaffected fellow eyes of APACG and eyes with CPACG. RESULTS The mean RNFL thickness for the APACG-attacked eyes increased significantly within 3 days (121.49±23.84)µm after acute onset and then became thinner along with time [(107.22±24.72)µm at 2 weeks,(93.58±18.37)µm at 1 month, (84.10±19.89)µm at 3 months and (78.98±19.17)µm at 6 months]. In APACG-attacked eyes, there were significant differences of average RNFL thickness at 5 different times after IOP was controlled (P<0.001). In the APACG unaffected fellow eyes and CPACG eyes, there were no significant differences in mean RNFL thickness at 5 different times(F=0.450, P=0.104 in APACG unaffected fellow eyes and F=1.558, P=0.200 in CPACG eyes). There was significant difference for interaction between time periods and groups (F=1.912, P=0.003). CONCLUSION RNFL damage patterns are different under different IOP elevated courses. In APACG, RNFL was found to be swollen and thickening right after acute attack and then becomes thinning and atrophy along with the time, while RNFL was found to be diffused thinness in CPACG. PMID:22553541

  9. The Use of the 'Preclosure' Technique for Antegrade Aspiration Thrombectomy with Large Catheters in Acute Limb Ischemia

    SciTech Connect

    Funke, C. Pfiffner, R.; Husmann, M.; Pfammatter, T.

    2013-04-15

    This study was designed to assess retrospectively short- and mid-term outcomes of the use of a suture-mediated closure device to close the antegrade access in patients undergoing percutaneous aspiration thrombectomy with large catheters for acute leg ischemia. Between November 2005 and February 2010, a suture-mediated active closure system (ProGlide{sup Registered-Sign} 6F, Abbott) was placed before arterial sheath (mean 9 F, range 6-12 F) introduction in 101 patients (74 men, 73 %, mean age 70.1 {+-} 12.6 years standard deviation). Data regarding mortality, complications, and factors contributing to vascular complications at the access site was collected for 6 month after the intervention to detect device-related problems. As a coincidence, 77 patients had follow-up visits for a duplex ultrasound. There were a total of 19 vascular complications (19 %) at the puncture site, all of which were of hemorrhagic nature and none of which consisted of vessel occlusion. Two major outcome complications (2 %) occurred. A retroperitoneal hematoma and a serious inguinal bleeding required additive treatment and did not result in permanent sequelae. Nine cases involved death of which eight were not attributable to the closure and one remained unclear. Successful closure was achieved in 95 patients (94 %); additional manual compression was sufficient in the majority of the remaining patients. Numerous factors contributing to vascular complications were encountered. With acceptable short- and mid-term outcomes, the 'preclose' technique can be a reliable option for the closure of a large antegrade femoral access even for patients at a high risk of vascular complications, such as those undergoing aspiration thrombectomy.

  10. Correlations among copeptin, ischemia-modified albumin, and the extent of myocardial injury in patients with acute carbon monoxide poisoning.

    PubMed

    Li, J; Wang, J S; Xie, Z X; Wang, W Z; Wang, L; Ma, G Y; Li, Y Q; Wang, P

    2015-01-01

    This study evaluated the relationships among copeptin, ischemia-modified albumin (IMA), and extent of myocardial injury in patients with acute carbon monoxide poisoning (ACOP). A total of 110 patients with different degrees of ACOP were selected as the poisoning group, and 30 healthy individuals as the control group. The levels of troponin I (cTnI), IMA, and copeptin were detected. Based on the presence of complications, the patients were assigned to the complication (26 patients) or non-complication (84 patients) group. Levels of cTnI, IMA, and copeptin were compared among the control, complication, and non-complication groups. Compared with the control group, in the 2 h after admission, the IMA levels decreased and copeptin levels increased in the poisoning group; these changes were more significant in patients with severe ACOP than in those with mild ACOP, and the difference was statistically significant (P < 0.05). There were no differences in the IMA and copeptin levels between the groups 7 days after admission; the cTnI levels increased more significantly in patients with severe ACOP than in patients with mild and moderate ACOP, and the differences were statistically significant (P < 0.05). In the complication group, at 7 days after admission, the IMA levels decreased whereas the copeptin and cTnI levels were significantly higher than in the non-complication group, with a statistically significant difference (P < 0.05). IMA was negatively correlated with copeptin. IMA and copeptin detection is clinically useful in the early diagnosis and prognosis of ACOP-related myocardial injury and in guiding early clinical drug application. PMID:26345979

  11. Experimental occlusion of the central artery of the retina. IV: Retinal tolerance time to acute ischaemia.

    PubMed Central

    Hayreh, S. S.; Weingeist, T. A.

    1980-01-01

    Ophthalmoscopic, fluorescein angiographic, electrophysiological, and morphological studies on 63 eyes of rhesus monkeys with acute transient experimental occlusion of the central artery of the retina (OCAR) showed that the retina suffered irreparable damage after ischaemia of 105 minutes but recovered well after ischaemia of 97-98 minutes. The tolerance time of the brain to acute transient ischaemia is many times shorter than that of the retina. The metabolism of ischaemic neurones (in the retina and brain) is discussed with a view to explaining this difference, and also the various factors possibly responsible for the retina's longer tolerance to ischaemia, as compared to the brain. PMID:7426553

  12. Altered membrane physiology in Müller glial cells after transient ischemia of the rat retina.

    PubMed

    Pannicke, Thomas; Uckermann, Ortrud; Iandiev, Ianors; Biedermann, Bernd; Wiedemann, Peter; Perlman, Ido; Reichenbach, Andreas; Bringmann, Andreas

    2005-04-01

    Inwardly rectifying K+ (Kir) channels have been implicated in the mediation of retinal K+ homeostasis by Muller glial cells. To assess possible involvement of altered glial K+ channel expression in ischemia-reperfusion injury, transient retinal ischemia was induced in rat eyes. Acutely isolated Muller cells from postischemic retinae displayed a fast downregulation of their Kir currents, which began within 1 day and reached a maximum at 3 days of reperfusion, with a peak decrease to 20% as compared with control. This strong decrease of Kir currents was accompanied by an increase of the incidence of cells which displayed depolarization-evoked fast transient (A-type) K+ currents. While no cell from untreated control rats expressed A-type K+ currents, all cells investigated from 3- and 7-day postischemic retinae displayed such currents. An increased incidence of cells displaying fast transient Na+ currents was observed at 7 days after ischemia. These results suggest a role of altered glial Kir channel expression in postischemic neuronal degeneration via disturbance of retinal K+ siphoning. PMID:15593100

  13. Retinal vein occlusion and the risk of acute myocardial infarction development: a 12-year nationwide cohort study

    PubMed Central

    Rim, Tyler Hyungtaek; Han, John Seungsoo; Oh, Jaewon; Kim, Dong Wook; Kang, Seok-Min; Chung, Eun Jee

    2016-01-01

    The goal of this study was to evaluate the risk of developing acute myocardial infarction (AMI) following retinal vein occlusion (RVO). A retrospective cohort study was performed from the National Health Insurance Service and comprised 1,025,340 random subjects who were followed from 2002 to 2013. Patients with RVO in 2002 were excluded. The RVO group was composed of patients who received an initial RVO diagnosis between January 2003 and December 2007 (n = 1677). The comparison group was selected (five patients per RVO patient; n = 8367) using propensity score matching according to sociodemographic factors and the year of enrolment. Each patient was tracked until 2013. The Cox proportional hazard regression model was used. AMI developed in 7.6% of the RVO group and 5.3% of the comparison group (p < 0.001) for 7.7 median follow-up periods. RVO increased the risk of AMI development [hazard ratio (HR) = 1.25; 95% Confidence Interval (CI) 1.02 to 1.52]. In the subgroup analysis, RVO patients aged <65 years and the males within this age group had an adjusted HR of 1.47 (95% CI 1.10 to 1.98) and an adjusted HR of 2.00 (95% CI 1.38 to 2.91) for AMI development, respectively. RVO was significantly associated with AMI development. PMID:26924150

  14. Hyperglycemia attenuates acute permeability response to advanced glycation end products in retinal microvasculature.

    PubMed

    Warboys, C M; Fraser, P A

    2010-07-01

    Increased microvascular permeability contributes to the development of diabetic retinopathy and is associated with hyperglycemia and accumulation of advanced glycation end products (AGEs). The isolated perfused retina preparation was used to investigate the effects of hyperglycemia (HG) on the permeability response to AGEs. Retinae were dissected from rats, and the vasculature perfused with sulforhodamine B fluorescent dye and permeability of venular capillaries was determined from the rate of decrease of fluorescence gradient across a vessel during stasis. The resting permeability was very high in streptozotocin treated and some obese Zucker fatty diabetic rats, but low in others. The permeability response to glycated albumin (which is free radical-dependent) in these animals was reduced for a range of concentrations compared to the lean controls. The effects of 15 min 25 mM glucose (HG) superfusion on the retinal microvascular permeability response to 5 microM AGE-BSA was studied in non-diabetic Wistar rats. HG itself had no effect on permeability, but reduced the response to AGE-BSA from 1.02+/-0.08x10(-6) cm s(-1) to 0.31+/-0.07x10(-6) cm s(-1). The response to bradykinin (also free radical-dependent) was not affected by HG. This suggests that chronic exposure to HG down-regulates the signalling pathways activated in response to RAGE stimulation. PMID:20302881

  15. Receptor mediated disruption of retinal pigment epithelium function in acute glycated-albumin exposure.

    PubMed

    Dahrouj, Mohammad; Desjardins, Danielle M; Liu, Yueying; Crosson, Craig E; Ablonczy, Zsolt

    2015-08-01

    Diabetic macular edema (DME) is a major cause of visual impairment. Although DME is generally believed to be a microvascular disease, dysfunction of the retinal pigment epithelium (RPE) can also contribute to its development. Advanced glycation end-products (AGE) are thought to be one of the key factors involved in the pathogenesis of diabetes in the eye, and we have previously demonstrated a rapid breakdown of RPE function following glycated-albumin (Glyc-alb, a common AGE mimetic) administration in monolayer cultures of fetal human RPE cells. Here we present new evidence that this response is attributed to apically oriented AGE receptors (RAGE). Moreover, time-lapse optical coherence tomography in Dutch-belted rabbits 48 h post intravitreal Glyc-alb injections demonstrated a significant decrease in RPE-mediated fluid resorption in vivo. In both the animal and tissue culture models, the response to Glyc-alb was blocked by the relatively selective RAGE antagonist, FPS-ZM1 and was also inhibited by ZM323881, a relatively selective vascular endothelial growth factor receptor 2 (VEGF-R2) antagonist. Our data establish that the Glyc-alb-induced breakdown of RPE function is mediated via specific RAGE and VEGF-R2 signaling both in vitro and in vivo. These results are consistent with the notion that the RPE is a key player in the pathogenesis of DME. PMID:26070987

  16. The effects of the fibrin-derived peptide Bbeta(15-42) in acute and chronic rodent models of myocardial ischemia-reperfusion.

    PubMed

    Zacharowski, Kai; Zacharowski, Paula A; Friedl, Peter; Mastan, Parissa; Koch, Alexander; Boehm, Olaf; Rother, Russell P; Reingruber, Sonja; Henning, Rainer; Emeis, Jef J; Petzelbauer, Peter

    2007-06-01

    Many compounds have been shown to prevent reperfusion injury in various animal models, although to date, translation into clinic has revealed several obstacles. Therefore, the National Heart, Lung, and Blood Institute convened a working group to discuss reasons for such failure. As a result, the concept of adequately powered, blinded, randomized studies for preclinical development of a compound has been urged. We investigated the effects of a fibrin-derived peptide Bbeta(15-42) in acute and chronic rodent models of ischemia-reperfusion at three different study centers (Universities of Dusseldorf and Vienna, TNO Biomedical Research). A total of 187 animals were used, and the peptide was compared with the free radical scavenger Tempol, CD18 antibody, alpha-C5 antibody, and the golden standard, ischemic preconditioning. We show that Bbeta(15-42) robustly and reproducibly reduced infarct size in all models of ischemia-reperfusion. Moreover, the peptide significantly reduced plasma levels of the cytokines interleukin 1beta, tumor necrosis factor alpha, and interleukin 6. In rodents, Bbeta(15-42) inhibits proinflammatory cytokine release and is cardioprotective during ischemia-reperfusion injury. PMID:17505302

  17. Acute posterior multifocal placoid pigment epitheliopathy-retinal "white dot syndrome".

    PubMed

    Grković, Desanka; Oros, Ana; Bedov, Tatjana; Karadžić, Jelena; Gvozdenović, Ljiljana; Jovanović, Sandra

    2013-02-01

    Acute posterior multifocal placoid pigment epitheliopathy- APMPPE is an acquired idiopathic inflammatory disease of the chorioretina. This case report presents a typical clinical manifestation of a very rare condition: a twenty ive-year old female complained of a sudden bilateral decrease of vision. She reported lu-like symptoms and taking antibiotics therapy. Fundus examination revealed numerous discrete yellow-white lesions at posterior pole involving the macula. After a period of 7 days oral prednisone treatment she was completely recovered. Usage of steroids is recommended for treating APMPPE in cases where macula is involved and in recurrent cases. PMID:23348193

  18. Radiological Evaluation of Bowel Ischemia.

    PubMed

    Dhatt, Harpreet S; Behr, Spencer C; Miracle, Aaron; Wang, Zhen Jane; Yeh, Benjamin M

    2015-11-01

    Intestinal ischemia, which refers to insufficient blood flow to the bowel, is a potentially catastrophic entity that may require emergent intervention or surgery in the acute setting. Although the clinical signs and symptoms of intestinal ischemia are nonspecific, computed tomography (CT) findings can be highly suggestive in the correct clinical setting. In our article, we review the CT diagnosis of arterial, venous, and nonocclusive intestinal ischemia. We discuss the vascular anatomy, pathophysiology of intestinal ischemia, CT techniques for optimal imaging, key and ancillary radiological findings, and differential diagnosis. PMID:26526436

  19. Effects of Intravenous and Catheter Directed Thrombolytic Therapy with Recombinant Tissue Plasminogen Activator (Alteplase) in Non-Traumatic Acute Limb Ischemia; A Randomized Double-Blind Clinical Trial

    PubMed Central

    Saroukhani, Abbas; Ravari, Hassan; Pezeshki Rad, Masoud

    2015-01-01

    Objective: To evaluate the efficacy and safety of intravenous and catheter directed thrombolysis by recombinant tissue plasminogen activator (Alteplase) in the patients with non-traumatic acute limb ischemia (ALI). Methods: This was a randomized clinical trial being performed between 2009 and 2011 in Mashhad University of Medical Sciences. We included those patients who were<75 years, with symptoms of less than 14 days duration, ALI of grade IIa and IIb (according to Rutherford classification) and absence of distal run off. Baseline assessment of peripheral circulation performed in all the patients. Patients were randomly assigned to undergo intravenous (n=18) or catheter directed thrombolysis (n=20) with Alteplase. The primary endpoint of the study was improvement of clinical status measured by Rutherford classification, ankle brachial index (ABI), visual analogue scale (VAS) score measured at 1, 3 and 6 months. The secondary endpoint of the study was complete or near complete recanalization of the occluded artery. Results: A total number of 38 patients with mean age of 54.13±13.5 years were included in the study. There were 23 (60.5%) men and 15 (39.5%) women among the patients. Overall 3 (7.9%) patients had upper and 35 (92.1%) lower extremity ischemia. There was no significant difference between two study groups. None of the patients experienced major therapeutic side effects. Both ABI and VAS score improved in patients who have received first dose of t-PA within 24-hourof ALI. There was no significant difference between two study groups regarding the 6-month clinical grade (p=0.088), VAS score (p=0.316) and ABI (p=0.360). The angiographic improvement was significantly higher in CDT group (p<0.001). Conclusion: Intravenous and catheter directed thrombolysis with t-PA is a safe and effective method in treatment of acute arteriolar ischemia of extremities. However there both intravenous thrombolysis and CDT are comparable regarding the clinical outcome. PMID

  20. Acute Ischemia of Extremity as a First Manifestation of Peripheral Artery Leiomyosarcoma: Report of a Case and Review of the Literature.

    PubMed

    Voulalas, Grigorios; Giannakakis, Sotirios; Maltezos, Chrisostomos

    2016-07-01

    Leiomyosarcoma is an aggressive soft tissue sarcoma derived from smooth muscle cells. Of all soft tissue sarcomas, approximately 5-10% are leiomyosarcomas. Vascular leiomyosarcoma constitutes about 2% of all leiomyosarcomas and involves veins 5 times more than arteries. When they arise from a major blood vessel, symptoms of vascular compromise or leg edema may be present. Because they are rare, definite diagnosis is often delayed. We present the case of an 88-year-old man who was admitted to our department with acute limb ischemia stage 4 according to Rutherford's criteria. His personal medical history included arterial hypertension under medication with nonspecific conduction disturbances showed in the electrocardiography. The duplex scan revealed the presence of thrombotic material to the distal superficial femoral and popliteal artery, whereas the presence of popliteal artery aneurysm was excluded. After the initial diagnostic approach, he underwent 2 unsuccessful embolectomy procedures. During the amputation procedure, a 6-cm mass was palpated in the popliteal fossa, and it was excised. The immunohistopathologic study revealed a grade 3 according to the French Federation Nationale des Centers de Lutte Contre le Cancer classification leiomyosarcoma. The patient was discharged 10 days later and referred to an oncologic center. He returned 6 months later with edema of the amputated limb and inguinal lymphadenopathy. Specimen of the inguinal lymph nodes was sent for histopathologic examination, which indicated the recurrence of the disease. Leiomyosarcomas should be taken into consideration in elderly patients presenting with acute limb ischemia. PMID:26923155

  1. VANISHING RETINAL DETACHMENT

    PubMed Central

    2015-01-01

    Purpose: The purpose of this report is to describe a case of rhegmatogenous retinal detachment in the setting of chronic kidney disease that exhibited complete retinal reattachment after serial hemodialysis. Methods: Retrospective case report. Results: A 58-year-old woman with acute vision loss was found to have a macula-involving rhegmatogenous retinal detachment. Due to chronic kidney disease, she continued with routinely scheduled hemodialysis for 1 week until surgical clearance was obtained. Preoperative examination revealed complete reattachment of the retina with a persistent retinal tear. Barrier laser was applied to the tear and the retina remained attached until the most recent follow-up 8 months later. The workup of alternate etiologies was unrevealing. Conclusion: This case describes a temporal association between hemodialysis and resolution of subretinal fluid due to rhegmatogenous retinal detachment. A potential causal linkage is suggested based on shifting fluid dynamics associated with hemodialysis. A shift in treatment paradigm is not advised. PMID:26352323

  2. Endoplasmic reticulum stress-regulated CXCR3 pathway mediates inflammation and neuronal injury in acute glaucoma

    PubMed Central

    Ha, Y; Liu, H; Xu, Z; Yokota, H; Narayanan, S P; Lemtalsi, T; Smith, S B; Caldwell, R W; Caldwell, R B; Zhang, W

    2015-01-01

    Acute glaucoma is a leading cause of irreversible blindness in East Asia. The mechanisms underlying retinal neuronal injury induced by a sudden rise in intraocular pressure (IOP) remain obscure. Here we demonstrate that the activation of CXCL10/CXCR3 axis, which mediates the recruitment and activation of inflammatory cells, has a critical role in a mouse model of acute glaucoma. The mRNA and protein expression levels of CXCL10 and CXCR3 were significantly increased after IOP-induced retinal ischemia. Blockade of the CXCR3 pathway by deleting CXCR3 gene significantly attenuated ischemic injury-induced upregulation of inflammatory molecules (interleukin-1β and E-selectin), inhibited the recruitment of microglia/monocyte to the superficial retina, reduced peroxynitrite formation, and prevented the loss of neurons within the ganglion cell layer. In contrast, intravitreal delivery of CXCL10 increased leukocyte recruitment and retinal cell apoptosis. Inhibition of endoplasmic reticulum (ER) stress with chemical chaperones partially blocked ischemic injury-induced CXCL10 upregulation, whereas induction of ER stress with tunicamycin enhanced CXCL10 expression in retina and primary retinal ganglion cells. Interestingly, deleting CXCR3 attenuated ER stress-induced retinal cell death. In conclusion, these results indicate that ER stress-medicated activation of CXCL10/CXCR3 pathway has an important role in retinal inflammation and neuronal injury after high IOP-induced ischemia. PMID:26448323

  3. Cytomegalovirus retinitis

    MedlinePlus

    ... to prevent its return. Alternative Names Cytomegalovirus retinitis Images Eye CMV retinitis CMV (cytomegalovirus) References Crumpacker CS. ... 5. Read More Antibody HIV/AIDS Immune response Retinal detachment Systemic WBC count Update Date 12/10/ ...

  4. The neuroprotective effect of hyperbaric oxygen treatment on laser-induced retinal damage in rats

    NASA Astrophysics Data System (ADS)

    Vishnevskia-Dai, Victoria; Belokopytov, Mark; Dubinsky, Galina; Nachum, Gal; Avni, Isaac; Belkin, Michael; Rosner, Mordechai

    2005-04-01

    Retinal damage induced by mechanical trauma, ischemia or laser photocoagulation increases considerably by secondary degeneration processes. The spread of damage may be ameliorated by neuroprotection that is aimed at reducing the extent of the secondary degeneration and promote healing processes. Hyperbaric oxygen (HBO) treatment consists of inspiration of oxygen at higher than one absolute atmospheric pressure. Improved neural function was observed in patients with acute brain trauma or ischemia treated with HBO. This study was designed to evaluate the neuroprotective effect of hyperbaric oxygen (HBO) on laser induced retinal damage in a rat model. Standard argon laser lesions were created in 25 pigmented rats divided into three groups: Ten rats were treated immediately after the irradiation with HBO three times during the first 24 hr followed by 12 consecutive daily treatments. Five rats received a shorter treatment regimen of 10 consecutive HBO treatments. The control group (10 rats) underwent the laser damage with no additional treatment. The retinal lesions were evaluated 20 days after the injury. All outcome measures were improved by the longer HBO treatment (P<0.01). The shorter HBO treatment was less effective, showing an increase only in nuclei density at the central area of lesion (P< 0.01). Hyperbaric oxygen seems to exert a neuroprotective effect on laser-induced retinal damage in a rat model. In the range of HBO exposures studied, longer exposure provides more neuroprotection. These results encourage further evaluation of the potential therapeutic use of hyperbaric oxygen in diseases and injuries of the retina.

  5. Hepatic ischemia

    MedlinePlus

    Hepatic ischemia is a condition in which the liver does not get enough blood or oxygen, causing injury to ... pressure from any condition can lead to hepatic ischemia. Such conditions may include: Abnormal heart rhythms Dehydration ...

  6. Acute Mesenteric Ischemia

    MedlinePlus

    ... Drug Information, Search Drug Names, Generic and Brand Natural Products, Search Drug Interactions Pill Identifier News & Commentary ALL NEWS > Resources First Aid Videos Figures Images Audio Pronunciations The ...

  7. Retinal ischemic injury rescued by sodium 4-phenylbutyrate in a rat model.

    PubMed

    Jeng, Yung-Yue; Lin, Nien-Ting; Chang, Pen-Heng; Huang, Yuan-Ping; Pang, Victor Fei; Liu, Chen-Hsuan; Lin, Chung-Tien

    2007-03-01

    Retinal ischemia is a common cause of visual impairment for humans and animals. Herein, the neuroprotective effects of phenylbutyrate (PBA) upon retinal ischemic injury were investigated using a rat model. Retinal ganglion cells (RGCs) were retrograde labeled with the fluorescent tracer fluorogold (FG) applied to the superior collicoli of test Sprague-Dawley rats. High intraocular pressure and retinal ischemia were induced seven days subsequent to such FG labeling. A dose of either 100 or 400 mg/kg PBA was administered intraperitoneally to test rats at two time points, namely 30 min prior to the induction of retinal ischemia and 1 h subsequent to the cessation of the procedure inducing retinal ischemia. The test-rat retinas were collected seven days subsequent to the induction of retinal ischemia, and densities of surviving RGCs were estimated by counting FG-labeled RGCs within the retina. Histological analysis revealed that ischemic injury caused the loss of retinal RGCs and a net decrease in retinal thickness. For PBA-treated groups, almost 100% of the RGCs were preserved by a pre-ischemia treatment with PBA (at a dose of either 100 or 400 mg/kg), while post-ischemia treatment of RGCs with PBA did not lead to the preservation of RGCs from ischemic injury by PBA as determined by the counting of whole-mount retinas. Pre-ischemia treatment of RGCs with PBA (at a dose of either 100 or 400 mg/kg) significantly reduced the level of ischemia-associated loss of thickness of the total retina, especially the inner retina, and the inner plexiform layer of retina. Besides, PBA treatment significantly reduced the ischemia-induced loss of cells in the ganglion-cell layer of the retina. Taken together, these results suggest that PBA demonstrates a marked neuroprotective effect upon high intraocular pressure-induced retinal ischemia when the PBA is administered prior to ischemia induction. PMID:17178414

  8. [Morphological characteristics of the changes in the skeletal muscle tissue in acute experimental ischemia of the extremities].

    PubMed

    Savel'ev, V S; Chekareva, G A; Mishnev, O D; Bogdanov, O A

    1985-05-01

    A comprehensive morphological study of the ischemic skeletal muscles of the limbs was performed in experiments on dogs. Ischemia of the muscle tissue was induced by artificial embolic occlusion of the terminal part of the aorta. A quantitative functional and morphological study revealed serious disturbances in metabolism of the skeletal muscle that was subjected to a 6-hour ischemia. Depression of aerobic metabolism, ineffectiveness of anaerobic glycolysis (a spare pathway of the synthesis of macroergic substances), a dramatic lowering of ATPase activity, and activation of acid phosphatase in experiments of such a duration are important signs of a probably compromised adaptation process and irreversibility of the lesions in the tissue. The data should be taken into consideration in determining the optimal periods of the blood flow recovery in the limbs. Morphological changes in muscle fibers under ischemia progress with an increase in the experiment duration (up to 9 and 12 h). An important morphological sign of ischemia is a disturbed typification of muscle fibers. PMID:4005420

  9. Rapid regression of exudative maculopathy in idiopathic retinitis, vasculitis, aneurysms and neuroretinitis syndrome after intravitreal ranibizumab.

    PubMed

    Marín-Lambíes, Cristina; Gallego-Pinazo, Roberto; Salom, David; Navarrete, Javier; Díaz-Llopis, Manuel

    2012-05-01

    The idiopathic retinitis, vasculitis, aneurysms and neuroretinitis syndrome is a rare retinal vascular disorder characterized by multiple leaking aneurysmal dilations, retinal vasculitis, neuroretinitis and peripheral vascular ischemia. Visual loss mainly occurs due to the development of retinal neovascularization and/or exudative maculopathy. Although the treatment of choice has not yet been established, retinal photocoagulation seems to be the best option to control the disease and to prevent its progression. Herein, we report a case of idiopathic retinitis, vasculitis, aneurysms and neuroretinitis syndrome with both retinal neovascularization and macular exudation successfully managed with intravitreal ranibizumab (Lucentis(®)) as adjunctive therapy to retinal photocoagulation. PMID:22949913

  10. Suppression of hypoxia-inducible factor-1alpha and its downstream genes reduces acute hyperglycemia-enhanced hemorrhagic transformation in a rat model of cerebral ischemia.

    PubMed

    Chen, Chunhua; Ostrowski, Robert P; Zhou, Changman; Tang, Jiping; Zhang, John H

    2010-07-01

    We evaluated a role of hypoxia-inducible factor-1alpha (HIF-1alpha) and its downstream genes in acute hyperglycemia-induced hemorrhagic transformation in a rat model of focal cerebral ischemia. Male Sprague-Dawley rats weighing 280-300 g (n = 105) were divided into sham, 90 min middle cerebral artery occlusion (MCAO), MCAO plus HIF-1alpha inhibitors, 2-methoxyestradiol (2ME2) or 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), groups. Rats received an injection of 50% dextrose (6 ml/kg intraperitoneally) at 15 min before MCAO. HIF-1alpha inhibitors were administered at the onset of reperfusion. The animals were examined for neurological deficits and sacrificed at 6, 12, 24, and 72 hr following MCAO. The cerebral tissues were collected for histology, zymography, and Western blot analysis. The expression of HIF-1alpha was increased in ischemic brain tissues after MCAO and reduced by HIF-1alpha inhibitors. In addition, 2ME2 reduced the expression of vascular endothelial growth factor (VEGF) and the elevation of active matrix metalloproteinase-2 and -9 (MMP-2/MMP-9) in the ipsilateral hemisphere. Both 2ME2 and YC-1 reduced infarct volume and ameliorated neurological deficits. However, only 2ME2 attenuated hemorrhagic transformation in the ischemic territory. In conclusion, the inhibition of HIF-1alpha and its downstream genes attenuates hemorrhagic conversion of cerebral infarction and ameliorates neurological deficits after focal cerebral ischemia. PMID:20155812

  11. Mechanisms of electroacupuncture effects on acute cerebral ischemia/reperfusion injury: possible association with upregulation of transforming growth factor beta 1

    PubMed Central

    Wang, Wen-biao; Yang, Lai-fu; He, Qing-song; Li, Tong; Ma, Yi-yong; Zhang, Ping; Cao, Yi-sheng

    2016-01-01

    Electroacupuncture at the head acupoints Baihui (GV20) and Shuigou (GV26) improves recovery of neurological function following ischemic cerebrovascular events, but its mechanism remains incompletely understood. We hypothesized that the action of electroacupuncture at these acupoints is associated with elevated serum levels of transforming growth factor beta 1 (TGF-β1). To test this, we established a rat model of cerebral ischemia by middle cerebral artery occlusion. Electroacupuncture was performed at Baihui and Shuigou with a “disperse-dense” wave at an alternating frequency of 2 and 150 Hz, and at a constant intensity of 3 mA. Each electroacupuncture session lasted 30 minutes and was performed every 12 hours for 3 days. Neurological severity scores were lower in injured rats after acupuncture than in those not subjected to treatment. Furthermore, serum level of TGF-β1 was greater after electroacupuncture than after no treatment. Our results indicate that electroacupuncture at Baihui and Shuigou increases the serum level of TGF-β1 in rats with acute cerebral ischemia/reperfusion injury, and exerts neuroprotective effects.

  12. Intestinal ischemia in neonates and children.

    PubMed

    Jeican, Ionuţ Isaia; Ichim, Gabriela; Gheban, Dan

    2016-01-01

    The article reviews the intestinal ischemia theme on newborn and children. The intestinal ischemia may be either acute - intestinal infarction (by vascular obstruction or by reduced mesenteric blood flow besides the occlusive mechanism), either chronic. In neonates, acute intestinal ischemia may be caused by aortic thrombosis, volvulus or hypoplastic left heart syndrome. In children, acute intestinal ischemia may be caused by fibromuscular dysplasia, volvulus, abdominal compartment syndrome, Burkitt lymphoma, dermatomyositis (by vascular obstruction) or familial dysautonomia, Addison's disease, situs inversus abdominus (intraoperative), burns, chemotherapy administration (by nonocclusive mesenteric ischemia). Chronic intestinal ischemia is a rare condition in pediatrics and can be seen in abdominal aortic coarctation or hypoplasia, idiopathic infantile arterial calcinosis. PMID:27547054

  13. Intestinal ischemia in neonates and children

    PubMed Central

    JEICAN, IONUŢ ISAIA; ICHIM, GABRIELA; GHEBAN, DAN

    2016-01-01

    The article reviews the intestinal ischemia theme on newborn and children. The intestinal ischemia may be either acute - intestinal infarction (by vascular obstruction or by reduced mesenteric blood flow besides the occlusive mechanism), either chronic. In neonates, acute intestinal ischemia may be caused by aortic thrombosis, volvulus or hypoplastic left heart syndrome. In children, acute intestinal ischemia may be caused by fibromuscular dysplasia, volvulus, abdominal compartment syndrome, Burkitt lymphoma, dermatomyositis (by vascular obstruction) or familial dysautonomia, Addison’s disease, situs inversus abdominus (intraoperative), burns, chemotherapy administration (by nonocclusive mesenteric ischemia). Chronic intestinal ischemia is a rare condition in pediatrics and can be seen in abdominal aortic coarctation or hypoplasia, idiopathic infantile arterial calcinosis. PMID:27547054

  14. DIGE proteome analysis reveals suitability of ischemic cardiac in vitro model for studying cellular response to acute ischemia and regeneration.

    PubMed

    Haas, Sina; Jahnke, Heinz-Georg; Moerbt, Nora; von Bergen, Martin; Aharinejad, Seyedhossein; Andrukhova, Olena; Robitzki, Andrea A

    2012-01-01

    Proteomic analysis of myocardial tissue from patient population is suited to yield insights into cellular and molecular mechanisms taking place in cardiovascular diseases. However, it has been limited by small sized biopsies and complicated by high variances between patients. Therefore, there is a high demand for suitable model systems with the capability to simulate ischemic and cardiotoxic effects in vitro, under defined conditions. In this context, we established an in vitro ischemia/reperfusion cardiac disease model based on the contractile HL-1 cell line. To identify pathways involved in the cellular alterations induced by ischemia and thereby defining disease-specific biomarkers and potential target structures for new drug candidates we used fluorescence 2D-difference gel electrophoresis. By comparing spot density changes in ischemic and reperfusion samples we detected several protein spots that were differentially abundant. Using MALDI-TOF/TOF-MS and ESI-MS the proteins were identified and subsequently grouped by functionality. Most prominent were changes in apoptosis signalling, cell structure and energy-metabolism. Alterations were confirmed by analysis of human biopsies from patients with ischemic cardiomyopathy.With the establishment of our in vitro disease model for ischemia injury target identification via proteomic research becomes independent from rare human material and will create new possibilities in cardiac research. PMID:22384053

  15. DIGE Proteome Analysis Reveals Suitability of Ischemic Cardiac In Vitro Model for Studying Cellular Response to Acute Ischemia and Regeneration

    PubMed Central

    Haas, Sina; Jahnke, Heinz-Georg; Moerbt, Nora; von Bergen, Martin; Aharinejad, Seyedhossein; Andrukhova, Olena; Robitzki, Andrea A.

    2012-01-01

    Proteomic analysis of myocardial tissue from patient population is suited to yield insights into cellular and molecular mechanisms taking place in cardiovascular diseases. However, it has been limited by small sized biopsies and complicated by high variances between patients. Therefore, there is a high demand for suitable model systems with the capability to simulate ischemic and cardiotoxic effects in vitro, under defined conditions. In this context, we established an in vitro ischemia/reperfusion cardiac disease model based on the contractile HL-1 cell line. To identify pathways involved in the cellular alterations induced by ischemia and thereby defining disease-specific biomarkers and potential target structures for new drug candidates we used fluorescence 2D-difference gel electrophoresis. By comparing spot density changes in ischemic and reperfusion samples we detected several protein spots that were differentially abundant. Using MALDI-TOF/TOF-MS and ESI-MS the proteins were identified and subsequently grouped by functionality. Most prominent were changes in apoptosis signalling, cell structure and energy-metabolism. Alterations were confirmed by analysis of human biopsies from patients with ischemic cardiomyopathy. With the establishment of our in vitro disease model for ischemia injury target identification via proteomic research becomes independent from rare human material and will create new possibilities in cardiac research. PMID:22384053

  16. Effects of Neuroglobin Overexpression on Acute Brain Injury and Long-Term Outcomes After Focal Cerebral Ischemia

    PubMed Central

    Wang, Xiaoying; Liu, Jianxiang; Zhu, Haihao; Tejima, Emiri; Tsuji, Kiyoshi; Murata, Yoshihiro; Atochin, Dmitriy N.; Huang, Paul L.; Zhang, Chenggang; Lo, Eng H.

    2009-01-01

    Background and Purpose Emerging data suggest that neuroglobin (Ngb) may protect against hypoxic/ischemic neuronal insults. However, the underlying mechanisms in vivo and implications for long-term outcomes are still not well understood. Methods Using our newly created Ngb overexpressing transgenic (Ngb-Tg) mice, we measured brain infarction on day 1 and day 14 after transient focal cerebral ischemia and performed neurobehavioral assessments in sensorimotor deficits on days 1, 3, 7, and 14. To test the hypothesis that Ngb may play a role in reducing oxidative stress after stroke, intracellular malondialdehyde levels were measured and compared in Ngb-Tg and wild-type mice. Results Increased Ngb mRNA and protein levels were identified in Ngb-Tg brains. Malondialdehyde levels in ischemic hemispheres of Ngb-Tg were significantly reduced compared with wild-type controls at 8 hours and 22 hours after transient focal cerebral ischemia. Compared with wild-type controls, brain infarction volumes 1 day and 14 days after transient focal cerebral ischemia were significantly reduced in Ngb-Tg mice. However, there were no significant improvements in sensorimotor deficits for up to 14 days after stroke in Ngb-Tg mice compared with wild-type controls. Conclusions Ngb reduces tissue infarction and markers of oxidative stress after stroke. Tissue protection by overexpressing Ngb can be sustained for up to 2 weeks. PMID:18403737

  17. [Thoracic Endovascular Aortic Repair Following Axillo-femoral Bypass in a Patient with Stanford B Acute Aortic Dissection Accompanied by Abdominal Visceral Ischemia;Report of a Case].

    PubMed

    Nishimoto, Takayuki; Bonkohara, Yukihiro; Azuma, Takashi; Iijima, Masaki; Higashidate, Masafumi

    2016-09-01

    A 60-year-old woman was transfer-red to the emergency department of our medical center with worsening chest and back pain. Computed tomography revealed Stanford type B aortic dissection. There was a false lumen from the distal arch to the abdominal aorta just above the celiac artery. Although she was at 1st treated conservatively, she abruptly developed acute renal failure and lower limb ischemia because of an enlarged false lumen, and emergency axillo-femoral bypass surgery was performed with an 8 mm tube graft. However, renal failure gradually worsened, which necessitated continuous hemodiafiltration was performed. Thoracic endovascular aortic repair was then performed, and her renal function recovered. PMID:27586321

  18. Inhibition of P38 MAPK Downregulates the Expression of IL-1β to Protect Lung from Acute Injury in Intestinal Ischemia Reperfusion Rats

    PubMed Central

    Zheng, De-Yi; Zhou, Min; Jin, Jiao; He, Mu; Wang, Yi; Du, Jiao; Xiao, Xiang-Yang; Li, Ping-Yang; Ye, Ai-Zhu; Liu, Jia; Wang, Ting-Hua

    2016-01-01

    Acute lung injury (ALI) induced by intestinal ischemia/reperfusion (II/R) has high incidence and mortality, in which IL-1β was essential for the full development of ALI. However, the detailed regulating mechanism for this phenomenon remains to be unclear. The purpose of this study was to investigate whether inhibition of P38 MAPK could downregulate the expression of IL-1β to protect lung from acute injury in II/R rats. Here, we found that the level of pulmonary edema at 16 hours after operation (hpo) was obviously enhanced compared to that in 8hpo and sham groups. Immunofluorescent staining demonstrated that IL-1β and P38 MAPK were detected in lung tissues. And rats with II/R have the highest translation level for IL-1β and phosphorylation of P38 MAPK in lung tissues at 16hpo compared with 8hpo and sham groups. Moreover, administration of SB239063, an inhibitor of P38 α and β, could effectively downregulate the expressions of IL-1β and protects lung tissues from injury in II/R rats. Our findings indicate that the inhibition of P38 α and β may downregulate the expression of IL-1β to protect lung from acute injury in II/R, which could be used as a potential target for reducing ALI induced by II/R in the future clinical trial. PMID:26980948

  19. Renoprotective effect of paricalcitol via a modulation of the TLR4-NF-κB pathway in ischemia/reperfusion-induced acute kidney injury

    SciTech Connect

    Lee, Jae-Won Kim, Sun Chul Ko, Yoon Sook Lee, Hee Young Cho, Eunjung Kim, Myung-Gyu Jo, Sang-Kyung Cho, Won Yong Kim, Hyoung Kyu

    2014-02-07

    Highlights: • Paricalcitol. • Attenuation of renal inflammation. • Modulation of TLR4-NF-κB signaling. - Abstract: Background: The pathophysiology of ischemic acute kidney injury (AKI) is thought to include a complex interplay between vascular endothelial cell dysfunction, inflammation, and tubular cell damage. Several lines of evidence suggest a potential anti-inflammatory effect of vitamin D in various kidney injury models. In this study, we investigated the effect of paricalcitol, a synthetic vitamin D analog, on renal inflammation in a mouse model of ischemia/reperfusion (I/R) induced acute kidney injury (AKI). Methods: Paricalcitol was administered via intraperitoneal (IP) injection at 24 h before ischemia, and then I/R was performed through bilateral clamping of the renal pedicles. Twenty-four hours after I/R, mice were sacrificed for the evaluation of injury and inflammation. Additionally, an in vitro experiment using HK-2 cells was also performed to examine the direct effect of paricalcitol on tubular cells. Results: Pre-treatment with paricalcitol attenuated functional deterioration and histological damage in I/R induced AKI, and significantly decreased tissue neutrophil and macrophage infiltration and the levels of chemokines, the pro-inflammatory cytokine interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). It also decreased IR-induced upregulation of Toll-like receptor 4 (TLR4), and nuclear translocation of p65 subunit of NF-κB. Results from the in vitro study showed pre-treatment with paricalcitol suppressed the TNF-α-induced depletion of cytosolic IκB in HK-2 cells. Conclusion: These results demonstrate that pre-treatment with paricalcitol has a renoprotective effect in ischemic AKI, possibly by suppressing TLR4-NF-κB mediated inflammation.

  20. Brimonidine Blocks Glutamate Excitotoxicity-Induced Oxidative Stress and Preserves Mitochondrial Transcription Factor A in Ischemic Retinal Injury

    PubMed Central

    Lee, Dongwook; Kim, Keun-Young; Noh, You Hyun; Chai, Stephen; Lindsey, James D.; Ellisman, Mark H.; Weinreb, Robert N.; Ju, Won-Kyu

    2012-01-01

    Glutamate excitotoxicity-induced oxidative stress have been linked to mitochondrial dysfunction in retinal ischemia and optic neuropathies including glaucoma. Brimonindine (BMD), an alpha 2-adrenergic receptor agonist, contributes to the neuroprotection of retinal ganglion cells (RGCs) against glutamate excitotoxicity or oxidative stress. However, the molecular mechanisms of BMD-associated mitochondrial preservation in RGC protection against glutamate excitotoxicity-induced oxidative stress following retinal ischemic injury remain largely unknown. Here, we tested whether activation of alpha 2 adrenergic receptor by systemic BMD treatment blocks glutamate excitotoxicity-induced oxidative stress, and preserves the expression of mitochondrial transcription factor A (Tfam) and oxidative phosphorylation (OXPHOS) complex in ischemic retina. Sprague-Dawley rats received BMD (1 mg/kg/day) or vehicle (0.9% saline) systemically and then transient ischemia was induced by acute intraocular pressure elevation. Systemic BMD treatment significantly increased RGC survival at 4 weeks after ischemia. At 24 hours, BMD significantly decreased Bax expression but increased Bcl-xL and phosphorylated Bad protein expression in ischemic retina. Importantly. BMD significantly blocked the upregulations of N-methyl-D-aspartate receptors 1 and 2A protein expression, as well as of SOD2 protein expression in ischemic retina at 24 hours. During the early neurodegeneration following ischemic injury (12–72 hours), Tfam and OXPHOS complex protein expression were significantly increased in vehicle-treated retina. At 24 hours after ischemia, Tfam immunoreactivity was increased in the outer plexiform layer, inner nuclear layer, inner plexiform layer and ganglion cell layer. Further, Tfam protein was expressed predominantly in RGCs. Finally, BMD preserved Tfam immunoreactivity in RGCs as well as Tfam/OXPHOS complex protein expression in the retinal extracts against ischemic injury. Our findings suggest

  1. THE ROLE OF TNF-α RECEPTORS p55 AND p75 IN ACUTE MYOCARDIAL ISCHEMIA/REPERFUSION INJURY AND LATE PRECONDITIONING

    PubMed Central

    Flaherty, Michael P.; Guo, Yiru; Tiwari, Sumit; Rezazadeh, Arash; Hunt, Greg; Sanganalmath, Santosh K.; Tang, Xian-Liang; Bolli, Roberto; Dawn, Buddhadeb

    2008-01-01

    The specific role of TNF-α receptor I (TNFR-I, p55) and II (TNFR-II, p75) in myocardial ischemic injury remains unclear. Using genetically engineered mice, we examined the relative effects of TNF-α signaling via p55 and p75 in acute myocardial ischemia/reperfusion injury under basal conditions and in late preconditioning (PC). Wild-type (WT) (C57BL/6 and B6,129) mice and mice lacking TNF-α (TNF-α−/−), p55 (p55−/−), p75 (p75−/−), or both receptors (p55−/−/p75−/−) underwent 30 min of coronary occlusion and 24 h of reperfusion with or without six cycles of 4-min coronary occlusion/4-min reperfusion (O/R) 24 h earlier (ischemic PC). Six cycles of O/R reduced infarct size 24 h later in WT mice, indicating a late PC effect. This late PC-induced infarct-sparing effect was abolished not only in TNF-α−/− and p55−/−/p75−/− mice, but also in p55−/− and p75−/− mice, indicating that TNF-α signaling via both p55 and p75 is necessary for the development of protection. In nonpreconditioned TNF-α−/−, p55−/−/p75−/−, and p75−/− mice, infarct size was similar to strain-matched WT mice. In contrast, infarct size in nonpreconditioned p55−/− mice was reduced compared with nonpreconditioned WT mice. We conclude that (i) unopposed p75 signaling (in the absence of p55) reduces infarct size following acute ischemia/reperfusion injury in naïve myocardium, whereas unopposed p55 signaling (in the absence of p75) has no effect; and (ii) the development of the infarct-sparing effects of the late phase of PC requires nonredundant signaling via both p55 and p75 receptors. These findings reveal a fundamental, heretofore unrecognized, difference between the two TNF-α receptors in the setting of myocardial ischemia/reperfusion injury: that is, both p55 and p75 are necessary for the development of protection during late PC, but only signaling via p75 is protective in nonpreconditioned myocardium. PMID:18824172

  2. Assessment of visual function and retinal structure following acute light exposure in the light sensitive T4R rhodopsin mutant dog.

    PubMed

    Iwabe, Simone; Ying, Gui-Shuang; Aguirre, Gustavo D; Beltran, William A

    2016-05-01

    The effect of acute exposure to various intensities of white light on visual behavior and retinal structure was evaluated in the T4R RHO dog, a naturally-occurring model of autosomal dominant retinitis pigmentosa due to a mutation in the Rhodopsin gene. A total of 14 dogs (ages: 4-5.5 months) were used in this study: 3 homozygous mutant RHO(T4R/T4R), 8 heterozygous mutant RHO(T4R/+), and 3 normal wild-type (WT) dogs. Following overnight dark adaptation, the left eyes were acutely exposed to bright white light with a monocular Ganzfeld dome, while the contralateral right eye was shielded. Each of the 3 homozygous (RHO(T4R/T4R)) mutant dogs had a single unilateral light exposure (LE) to a different (low, moderate, and high) dose of white light (corneal irradiance/illuminance: 0.1 mW/cm(2), 170 lux; 0.5 mW/cm(2), 820 lux; or 1 mW/cm(2), 1590 lux) for 1 min. All 8 heterozygous (RHO(T4R/+)) mutant dogs were exposed once to the same moderate dose of light. The 3 WT dogs had their left eyes exposed 1, 2, or 3 times to the same highest dose of light. Visual function prior to LE and at 2 weeks and 33 weeks after exposure was objectively assessed in the RHO(T4R/T4R) and WT dogs by using an obstacle-avoidance course. Transit time through the obstacle course was measured under different scotopic to photopic ambient illuminations. Morphological retinal changes were evaluated by non-invasive in vivo cSLO/sdOCT imaging and histology before and at several time-points (2-36 weeks) after light exposure. The analysis of the transit time through the obstacle course showed that no differences were observed in any of mutant or WT dogs at 2 weeks and 33 weeks post LE. The RHO(T4R/T4R) retina exposed to the lowest dose of white light showed no obvious changes in ONL thickness at 2 weeks, but mild decrease was noted 36 weeks after LE. The RHO(T4R/T4R) retina that received a moderate dose (showed an obvious decrease in ONL thickness along the superior and temporal meridians at 2

  3. ASSESSMENT OF VISUAL FUNCTION AND RETINAL STRUCTURE FOLLOWING ACUTE LIGHT EXPOSURE IN THE LIGHT SENSITIVE T4R RHODOPSIN MUTANT DOG

    PubMed Central

    Iwabe, Simone; Ying, Gui-Shuang; Aguirre, Gustavo D.; Beltran, William A.

    2016-01-01

    The effect of acute exposure to various intensities of white light on visual behavior and retinal structure was evaluated in the T4R RHO dog, a naturally-occurring model of autosomal dominant retinitis pigmentosa due to a mutation in the Rhodopsin gene. A total of 14 dogs (ages: 4–5.5 months) were used in this study: 3 homozygous mutant RHOT4R/T4R, 8 heterozygous mutant RHOT4R/+, and 3 normal wild-type (WT) dogs. Following overnight dark adaptation, the left eyes were acutely exposed to bright white light with a monocular Ganzfeld dome, while the contralateral right eye was shielded. Each of the 3 homozygous (RHOT4R/T4R) mutant dogs had a single unilateral light exposure (LE) to a different (low, moderate, and high) dose of white light (corneal irradiance/illuminance: 0.1 mW/cm2, 170 lux; 0.5 mW/cm2, 820 lux; or 1 mW/cm2, 1590 lux) for 1min. All 8 heterozygous (RHOT4R/+) mutant dogs were exposed once to the same moderate dose of light. The 3 WT dogs had their left eyes exposed 1, 2, or 3 times to the same highest dose of light. Visual function prior to LE and at 2 weeks and 33 weeks after exposure was objectively assessed in the RHOT4R/T4R and WT dogs by using an obstacle-avoidance course. Transit time through the obstacle course was measured under different scotopic to photopic ambient illuminations. Morphological retinal changes were evaluated by non-invasive in vivo cSLO/sdOCT imaging and histology before and at several time-points (2–36 weeks) after light exposure. The analysis of the transit time through the obstacle course showed that no differences were observed in any of mutant or WT dogs at 2 weeks and 33 weeks post LE. The RHOT4R/T4R retina exposed to the lowest dose of white light showed no obvious changes in ONL thickness at 2 weeks, but mild decrease was noted 36 weeks after LE. The RHOT4R/T4R retina that received a moderate dose (showed an obvious decrease in ONL thickness along the superior and temporal meridians at 2 weeks post LE with more

  4. Retinitis Pigmentosa.

    ERIC Educational Resources Information Center

    Carr, Ronald E.

    1979-01-01

    The author describes the etiology of retinitis pigmentosa, a visual dysfunction which results from progressive loss of the retinal photoreceptors. Sections address signs and symptoms, ancillary findings, heredity, clinical diagnosis, therapy, and research. (SBH)

  5. Effects of captopril, telmisartan and bardoxolone methyl (CDDO-Me) in ischemia-reperfusion-induced acute kidney injury in rats: an experimental comparative study.

    PubMed

    Kocak, Cengiz; Kocak, Fatma Emel; Akcilar, Raziye; Bayat, Zeynep; Aras, Bekir; Metineren, Mehmet Huseyin; Yucel, Mehmet; Simsek, Hasan

    2016-02-01

    Renal ischemia-reperfusion (IR) injury is one of the most common causes of acute kidney injury. This study investigated the effects of captopril (CAP), telmisartan (TEL) and bardoxolone methyl (BM) in animals with renal IR injury. Adult male Wistar-Albino rats were divided into six groups: control, vehicle, IR, IR with CAP, IR with TEL and IR with BM. Before IR was induced, drugs were administered by oral gavage. After a 60-min ischemia and a 120-min reperfusion period, bilateral nephrectomies were performed. Serum urea, creatinine, neutrophil gelatinase-associated lipocalin (NGAL) levels, tissue total oxidant status (TOS), total antioxidant status (TAS), total thiol (TT), asymmetric dimethylarginine (ADMA) levels, superoxide dismutase (SOD) activity and glutathione peroxidase (GSH-Px) activity were measured. Tissue mRNA expression levels of peroxisome proliferator-activated receptor-ɣ (PPAR-ɣ), nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were analyzed. In addition, renal tissues were evaluated histopathologically and immunohistochemically. All tested drugs reduced renal damage, apoptosis, urea, creatinine, NGAL, TOS, nitric oxide (NO) and ADMA levels, NF-κB, inducible nitric oxide synthase (iNOS) and endothelin-1 (ET-1) expressions (P < 0.001). All tested drugs increased SOD activity, GSH-Px activity, TAS levels, TT levels, endothelial nitric oxide synthase (eNOS) expression, dimethylarginine dimethylaminohydrolases (DDAHs) expression, Nrf2 expression and PPAR-ɣ expression (P < 0.001, P < 0.003). These results suggest that CAP, TEL and BM pretreatment could reduce renal IR injury via anti-inflammatory, antioxidant and anti-apoptotic effects. PMID:26515498

  6. The Long-Term Consumption of Ginseng Extract Reduces the Susceptibility of Intermediate-Aged Hearts to Acute Ischemia Reperfusion Injury

    PubMed Central

    Luo, Pei; Dong, Gengting; Liu, Liang; Zhou, Hua

    2015-01-01

    susceptibility of intermediate-aged hearts to acute ischemia reperfusion injury in rats. These effects might be mediated through the activation of Akt/eNOS, suppression of Erk/caspase 7 and upregulation of Sirt1 and Sirt3 in intermediate-aged rats. PMID:26650753

  7. [Ascaris lumbricoides in the nasogastric tube after operation on a patient with the diagnosis of acute mesenteric ischemia: case report].

    PubMed

    Çiçek, Ayşegül Çopur; Gündoğdu, Deniz; Direkel, Sahin; Öztürk, Çinar

    2013-01-01

    Ascaris lumbricoides is a comman intestinal helminths in humans. It is a parasite which commonly affects society with a low socioeconomic status, especially in tropical and rural areas. Ascaris lumbricoides infestation can lead to serious complications because of the mobility of the worms. The parasite can cause a variety of complications like intestinal obstruction, perforation, biliary obstruction, pancreatitis, peritonitis, liver abscess, cholangiohepatitis, volvulus, and gangrene, etc. A 59-year-old female patient hospitalized with the diagnosis of mesenteric ischemia was operated on for jejunal resection. On the 6th postoperative day, a worm was noticed emerging through the nasogastric tube. Ascaris lumbricoides was determined as a result of the examination microbiology laboratory. The patient was treated successfully with one dose of albendazole 200 mg 1x2. Our case describes a clinical situation of ascariasis observed after jejunal resection and emphasizes the importance of remaining aware of this rare complication of ascariasis. PMID:24192626

  8. The effect of acute stress exposure on ischemia and reperfusion injury in rat heart: role of oxytocin.

    PubMed

    Moghimian, Maryam; Faghihi, Mahdieh; Karimian, Seyed Morteza; Imani, Alireza

    2012-07-01

    Previous studies showed the protective effects of oxytocin (OT) on myocardial injury in ischemic and reperfused rat heart. Moreover, exposure to various stressors not only evokes sudden cardiovascular effects but also triggers the release of OT in the rat. The present study was aimed to evaluate the possible cardioprotective effects of endogenous OT released in response to stress (St), and effects of administration of exogenous OT on the ischemic-reperfused isolated heart of rats previously exposed to St. Wistar rats were divided into six groups: ischemia/reperfusion (IR); St: rats exposed to swim St for 10 min before anesthesia; St+atosiban (ATO): an OT receptor antagonist, was administered (1.5 mg/kg i.p.) prior to St; St+OT: OT was administered (0.03 mg/kg i.p.) prior to St; OT: OT was administrated prior to anesthesia; ATO was given prior to anesthesia. Isolated hearts were perfused with Krebs buffer solution by the Langendorff method and subjected to 30 min of regional ischemia followed by 60 min of reperfusion. The infarct size (IS) and creatine kinase MB isoenzyme (CK-MB) and lactate dehydrogenase (LDH) in coronary effluent were measured. Hemodynamic parameters were recorded throughout the experiment. The plasma concentrations of OT and corticosterone were significantly increased by St. Unexpectedly St decreased IR injury compared with the IR alone group. OT administration significantly inhibited myocardial injury, and administration of ATO with St abolished recovery of the rate pressure product, and increased IS and levels of CK-MB and LDH. These findings indicate that activation of cardiac OT receptors by OT released in response to St may participate in cardioprotection and inhibition of myocardial IR injury. PMID:22044052

  9. Contrast echocardiography in acute myocardial ischemia. III. An in vivo comparison of the extent of abnormal wall motion with the area at risk for necrosis.

    PubMed

    Kaul, S; Pandian, N G; Gillam, L D; Newell, J B; Okada, R D; Weyman, A E

    1986-02-01

    To define the in vivo relation between abnormal wall motion and the area at risk for necrosis after acute coronary occlusion, 11 open chest dogs were studied. Five dogs underwent left anterior descending coronary artery occlusion and six underwent left circumflex artery occlusion. Area at risk was defined at five short-axis levels (mitral valve, chordal, high and low papillary muscle and apex) using myocardial contrast echocardiography. Wall motion was measured in the cycles preceding injection of contrast medium. Two observers used two different methods to measure wall motion. In method A, end-diastolic to end-systolic fractional radial change for each of 32 endocardial targets was determined. The extent of abnormal wall motion was then calculated using three definitions of wall motion abnormality: akinesia/dyskinesia, fractional inward endocardial excursion of less than 10%, and fractional inward endocardial excursion of less than 20%. In method B, the information from the entire systolic contraction sequence was analyzed and correlated with a normal contraction pattern. The best linear correlation between area at risk (AR) and abnormal wall motion (AWM) was achieved using method B and expressed by the following linear regression: AWM = 0.92 AR + 3.0 (r = 0.92, p less than 0.0001, SEE = 1.7%). Of the three definitions of abnormality used in method A, the best correlation was achieved between area at risk and less than 10% inward endocardial excursion and was expressed by the following polynomial regression: AWM = -0.01 AR2 + 1.5 AR -0.14 (r = 0.92, p less than 0.001, SEE = 1.7%). These data demonstrate that there is a definite relation between area at risk and abnormal wall motion but that this relation varies depending on the method used to analyze wall motion. However, wall motion during acute ischemia is also influenced by the loading conditions of the heart. Because these may vary in a manner that is independent of the ischemic process, measurement of both

  10. Intravenous Administration of Cilostazol Nanoparticles Ameliorates Acute Ischemic Stroke in a Cerebral Ischemia/Reperfusion-Induced Injury Model

    PubMed Central

    Nagai, Noriaki; Yoshioka, Chiaki; Ito, Yoshimasa; Funakami, Yoshinori; Nishikawa, Hiroyuki; Kawabata, Atsufumi

    2015-01-01

    It was reported that cilostazol (CLZ) suppressed disruption of the microvasculature in ischemic areas. In this study, we have designed novel injection formulations containing CLZ nanoparticles using 0.5% methylcellulose, 0.2% docusate sodium salt, and mill methods (CLZnano dispersion; particle size 81 ± 59 nm, mean ± S.D.), and investigated their toxicity and usefulness in a cerebral ischemia/reperfusion-induced injury model (MCAO/reperfusion mice). The pharmacokinetics of injections of CLZnano dispersions is similar to that of CLZ solutions prepared with 2-hydroxypropyl-β-cyclodextrin, and no changes in the rate of hemolysis of rabbit red blood cells, a model of cell injury, were observed with CLZnano dispersions. In addition, the intravenous injection of 0.6 mg/kg CLZnano dispersions does not affect the blood pressure and blood flow, and the 0.6 mg/kg CLZnano dispersions ameliorate neurological deficits and ischemic stroke in MCAO/reperfusion mice. It is possible that the CLZnano dispersions will provide effective therapy for ischemic stroke patients, and that injection preparations of lipophilic drugs containing drug nanoparticles expand their therapeutic usage. PMID:26690139

  11. Cardioprotective effect of VEGF and venom VEGF-like protein in acute myocardial ischemia in mice: effect on mitochondrial function.

    PubMed

    Messadi, Erij; Aloui, Zohra; Belaidi, Elise; Vincent, Marie-Pascale; Couture-Lepetit, Elisabeth; Waeckel, Ludovic; Decorps, Johanna; Bouby, Nadine; Gasmi, Ammar; Karoui, Habib; Ovize, Michel; Alhenc-Gelas, François; Richer, Christine

    2014-03-01

    Coronary endothelial dysfunction is involved in cardiac ischemia-reperfusion (IR) injury. Vascular endothelial growth factor (VEGF) activates endothelial cells and exerts cardioprotective effects in isolated hearts. The recently discovered viper venom protein called increasing capillary permeability protein (ICPP) exerts VEGF-like effects in endothelial cells. We examined whether VEGF or ICPP can influence IR outcome in vivo in mice. Dosages of VEGF and ICPP were determined by preliminary blood pressure study. In IR, both the proteins administered intravenously at reperfusion reduced infarct size (IS) by 57% for VEGF and 52% for ICPP (P < 0.01). Pretreatment with a selective VEGFR2 receptor antagonist abolished the reduction in IS. VEGF and ICPP induced ERK phosphorylation in the myocardium. IR triggered mitochondrial pore opening and impaired mitochondrial respiratory function. These effects of IR were prevented by VEGF or ICPP, which increased mitochondrial calcium retention capacity by 37% compared with saline (P < 0.05) and improved mitochondrial respiratory function (by 71% and 65%, respectively for state 3, and 51% and 38% for state 4, P < 0.01 for VEGF). Thus, intravenous administration of VEGF or ICPP at reperfusion largely reduces IS in IR, through stimulation of VEGFR2 receptors. This effect is mediated, at least in part, by improvement of IR-induced mitochondrial dysfunction. PMID:24220315

  12. CaM Kinase II mediates maladaptive post-infarct remodeling and pro-inflammatory chemoattractant signaling but not acute myocardial ischemia/reperfusion injury

    PubMed Central

    Weinreuter, Martin; Kreusser, Michael M; Beckendorf, Jan; Schreiter, Friederike C; Leuschner, Florian; Lehmann, Lorenz H; Hofmann, Kai P; Rostosky, Julia S; Diemert, Nathalie; Xu, Chang; Volz, Hans Christian; Jungmann, Andreas; Nickel, Alexander; Sticht, Carsten; Gretz, Norbert; Maack, Christoph; Schneider, Michael D; Gröne, Hermann-Josef; Müller, Oliver J; Katus, Hugo A; Backs, Johannes

    2014-01-01

    CaMKII was suggested to mediate ischemic myocardial injury and adverse cardiac remodeling. Here, we investigated the roles of different CaMKII isoforms and splice variants in ischemia/reperfusion (I/R) injury by the use of new genetic CaMKII mouse models. Although CaMKIIδC was upregulated 1 day after I/R injury, cardiac damage 1 day after I/R was neither affected in CaMKIIδ-deficient mice, CaMKIIδ-deficient mice in which the splice variants CaMKIIδB and C were re-expressed, nor in cardiomyocyte-specific CaMKIIδ/γ double knockout mice (DKO). In contrast, 5 weeks after I/R, DKO mice were protected against extensive scar formation and cardiac dysfunction, which was associated with reduced leukocyte infiltration and attenuated expression of members of the chemokine (C-C motif) ligand family, in particular CCL3 (macrophage inflammatory protein-1α, MIP-1α). Intriguingly, CaMKII was sufficient and required to induce CCL3 expression in isolated cardiomyocytes, indicating a cardiomyocyte autonomous effect. We propose that CaMKII-dependent chemoattractant signaling explains the effects on post-I/R remodeling. Taken together, we demonstrate that CaMKII is not critically involved in acute I/R-induced damage but in the process of post-infarct remodeling and inflammatory processes. PMID:25193973

  13. Protective effects of p-nitro caffeic acid phenethyl ester on acute myocardial ischemia-reperfusion injury in rats

    PubMed Central

    DU, QIN; HAO, CHUNZHI; GOU, JING; LI, XIAOLI; ZOU, KAILI; HE, XIAOYAN; LI, ZHUBO

    2016-01-01

    Myocardial ischemia-reperfusion (IR) causes widespread cardiomyocyte dysfunction, including apoptosis and necrosis. The present study aimed to investigate the possible cardioprotective effects of p-nitro caffeic acid phenethyl ester (CAPE-NO2) on myocardial IR-induced injury in vivo. To generate a rat model of myocardial IR, the left anterior descending coronary artery was occluded for 30 min, followed by reperfusion for 2 h. The rats were administered either the sham treatment (the sham and IR control groups) or the therapeutic agents [the caffeic acid phenethyl ester (CAPE) and CAPE-NO2 groups] 10 min prior to the occlusion. Myocardial IR-induced injury is characterized by: A significant increase in the levels of myocardial enzymes, including creatine kinase, lactate dehydrogenase and aspartate transaminase; a marked increase in intercellular adhesion molecule 1 expression levels, lipid peroxidation products and inflammatory mediators; and a significant decrease in myocardial antioxidants, including catalase, total superoxide dismutase and glutathione peroxidase. In the present study, pretreatment with CAPE-NO2 significantly ameliorated these changes, and decreased the infarct size, as compared with the IR control group (10.32±3.8 vs. 35.65±5.4%). Furthermore, western blotting demonstrated that pretreatment with CAPE-NO2 downregulated the myocardial IR-induced protein expression levels of B-cell lymphoma-2 (Bcl-2)-associated X protein (Bax), cleaved caspase-3, P38 and the Bax/Bcl-2 ratio. CAPE-NO2 also upregulated the myocardial IR-induced expression levels of Bcl-2, phosphoinositide-3-kinase, phosphorylated Akt and mammalian target of rapamycin. In conclusion, the results of the present study indicated that CAPE-NO2 demonstrated improved cardioprotective effects, as compared with CAPE; therefore, CAPE-NO2 may represent a novel approach to pharmacological cardioprotection. PMID:27073461

  14. Ischemia-modified albumin levels in the prediction of acute critical neurological findings in carbon monoxide poisoning.

    PubMed

    Daş, Murat; Çevik, Yunsur; Erel, Özcan; Çorbacioğlu, Şeref Kerem

    2016-04-01

    The aim of the study was to determine whether serum ischemia-modified albumin (IMA) levels in patients with carbon monoxide (CO) poisoning were higher compared with a control group of healthy volunteers. In addition, the study sought to determine if there was a correlation between serum IMA levels and carboxyhemoglobin (COHB) levels and other critical neurological findings (CNFs). In this prospective study, the IMA levels of 100 patients with CO poisoning and 50 control individuals were compared. In addition, the IMA and COHB levels were analyzed according to absence or presence CNFs in patients with CO poisoning. The levels of IMA (mg/dL) on admittance, and during the 1(st) hour and 3(rd) hour, in patients with CO poisoning (49.90 ± 35.43, 30.21 ± 14.81, and 21.87 ± 6.03) were significantly higher, compared with the control individuals (17.30 ± 2.88). The levels of IMA in the 6(th) hour were not higher compared with control individuals. The levels of IMA on admittance, and during the 1(st) hour, 3(rd) hour, and 6(th) hour, and COHB (%) levels in patients who had CNFs were higher compared with IMA levels and COHB levels in patients who had no CNFs (p < 0.001). However, when the multivariate model was created, it was observed that IMA level on admittance was a poor indicator for prediction of CNFs (odds ratio = 1.05; 95% confidence interval, 1.01-1.08). We therefore concluded that serum IMA levels could be helpful in the diagnosis of CO poisoning. However, we believe that IMA levels cannot be used to predict which patients will develop CNFs due to CO poisoning. PMID:27185603

  15. A framework for classification and segmentation of branch retinal artery occlusion in SD-OCT

    NASA Astrophysics Data System (ADS)

    Guo, Jingyun; Shi, Fei; Zhu, Weifang; Chen, Haoyu; Chen, Xinjian

    2016-03-01

    Branch retinal artery occlusion (BRAO) is an ocular emergency which could lead to blindness. Quantitative analysis of BRAO region in the retina is very needed to assessment of the severity of retinal ischemia. In this paper, a fully automatic framework was proposed to classify and segment BRAO based on 3D spectral-domain optical coherence tomography (SD-OCT) images. To the best of our knowledge, this is the first automatic 3D BRAO segmentation framework. First, a support vector machine (SVM) based classifier is designed to differentiate BRAO into acute phase and chronic phase, and the two types are segmented separately. To segment BRAO in chronic phase, a threshold-based method is proposed based on the thickness of inner retina. While for segmenting BRAO in acute phase, a two-step segmentation is performed, which includes the bayesian posterior probability based initialization and the graph-search-graph-cut based segmentation. The proposed method was tested on SD-OCT images of 23 patients (12 of acute and 11 of chronic phase) using leave-one-out strategy. The overall classification accuracy of SVM classifier was 87.0%, and the TPVF and FPVF for acute phase were 91.1%, 5.5%; for chronic phase were 90.5%, 8.7%, respectively.

  16. Acute Preconditioning of Cardiac Progenitor Cells with Hydrogen Peroxide Enhances Angiogenic Pathways Following Ischemia-Reperfusion Injury

    PubMed Central

    Pendergrass, Karl D.; Boopathy, Archana V.; Seshadri, Gokulakrishnan; Maiellaro-Rafferty, Kathryn; Che, Pao Lin; Brown, Milton E.

    2013-01-01

    There are a limited number of therapies available to prevent heart failure following myocardial infarction. One novel therapy that is currently being pursued is the implantation of cardiac progenitor cells (CPCs); however, their responses to oxidative stress during differentiation have yet to be elucidated. The objective of this study was to determine the effect of hydrogen peroxide (H2O2) treatment on CPC differentiation in vitro, as well as the effect of H2O2 preconditioning before implantation following ischemia-reperfusion (I/R) injury. CPCs were isolated and cloned from adult rat hearts, and then cultured in the absence or presence of H2O2 for 2 or 5 days. CPC survival was assessed with Annexin V, and cellular differentiation was evaluated through mRNA expression for cardiogenic genes. We found that 100 μM H2O2 decreased serum withdrawal-induced apoptosis by at least 45% following both 2 and 5 days of treatment. Moreover, 100 μM H2O2 treatment for 2 days significantly increased endothelial and smooth muscle markers compared to time-matched untreated CPCs. However, continued H2O2 treatment significantly decreased these markers. Left ventricular cardiac function was assessed 28 days after I/R and I/R with the implantation of Luciferase/GFP+ CPCs, which were preconditioned with 100 μM H2O2 for 2 days. Hearts implanted with Luciferase/GFP+ CPCs had significant improvement in both positive and negative dP/dT over I/R. Furthermore, cardiac fibrosis was significantly decreased in the preconditioned cells versus both I/R alone and I/R with control cells. We also observed a significant increase in endothelial cell density in the preconditioned CPC hearts compared to untreated CPC hearts, which also coincided with a higher density of Luciferase+ vessels. These findings suggest that preconditioning of CPCs with H2O2 for 2 days stimulates neoangiogenesis in the peri-infarct area following I/R injury and could be a viable therapeutic option to prevent heart

  17. A framework for retinal layer intensity analysis for retinal artery occlusion patient based on 3D OCT

    NASA Astrophysics Data System (ADS)

    Liao, Jianping; Chen, Haoyu; Zhou, Chunlei; Chen, Xinjian

    2014-03-01

    Occlusion of retinal artery leads to severe ischemia and dysfunction of retina. Quantitative analysis of the reflectivity in the retina is very needed to quantitative assessment of the severity of retinal ischemia. In this paper, we proposed a framework for retinal layer intensity analysis for retinal artery occlusion patient based on 3D OCT images. The proposed framework consists of five main steps. First, a pre-processing step is applied to the input OCT images. Second, the graph search method was applied to segment multiple surfaces in OCT images. Third, the RAO region was detected based on texture classification method. Fourth, the layer segmentation was refined using the detected RAO regions. Finally, the retinal layer intensity analysis was performed. The proposed method was tested on tested on 27 clinical Spectral domain OCT images. The preliminary results show the feasibility and efficacy of the proposed method.

  18. Intravenous high mobility group box 1 upregulates the expression of HIF-1α in the myocardium via a protein kinase B-dependent pathway in rats following acute myocardial ischemia

    PubMed Central

    YAO, HENG-CHEN; ZHOU, MIN; ZHOU, YAN-HONG; WANG, LAN-HUA; ZHANG, DE-YONG; HAN, QIAN-FENG; LIU, TAO; WU, LEI; TIAN, KE-LI; ZHANG, MEI

    2016-01-01

    The effects of intravenous high mobility group box 1 (HMGB1) on myocardial ischemia/reperfusion (I/R) injury remains to be elucidated. The purpose of the present study was to investigate the effects of intravenous HMGB1 on the expression of hypoxia inducible factor-1α (HIF-1α) in the myocardium of rats following acute myocardial ischemia, and to examine the effects of intravenous HMGB1 on myocardial I/R injury. Male Wistar rats were divided into the following groups: Sham operation group (n=10), a group exposed to ischemia for 30 min and reperfusion for 4 h (I/R group) as a control (n=10), an HMGB group, in which 100 ng/kg HMGB was administered intravenously 30 min prior to ischemia (n=10), an LY group, in whic LY294002, an inhibitor of phosphoinositide 3-kinase (PI3K), was administered intravenously (0.3 mg/kg) 40 min prior to ischemia (n=10), and the HMGB1+LY group, in which HMGB1 (100 ng/kg) and LY294002 (0.3 mg/kg) were administered intravenously 30 min and 40 min prior to ischemia, respectively (n=10). The serum levels of cardiac troponin I (cTnI) and tumor necrosis factor-α (TNF-α), and myocardial infarct size were measured. The expression levels of phosphorylated Akt and HIF-1α were investigated using western blot analyses. The results showed that pre-treatment with HMGB1 significantly decreased serum levels of cTnI, and TNF-α, and reduced myocardial infarct size following 4 h reperfusion (all P<0.05). HMGB1 also increased the expression levels of HIF-1α and p-Akt induced by I/R (P<0.05). LY294002 was found to eliminate the effects of intravenous HMGB1 on myocardial I/R injury (P<0.05). These results suggest that intravenous pre-treatment with HMGB1 may exert its cardioprotective effects via the upregulation of the myocardial expression of HIF-1α, which may be regulated by the PI3K/Akt signaling pathway, in rats following acute myocardial I/R. PMID:26648172

  19. Plastic Change along the Intact Crossed Pathway in Acute Phase of Cerebral Ischemia Revealed by Optical Intrinsic Signal Imaging

    PubMed Central

    Guo, Xiaoli; He, Yongzhi; Lu, Hongyang; Li, Yao; Su, Xin; Jiang, Ying; Tong, Shanbao

    2016-01-01

    The intact crossed pathway via which the contralesional hemisphere responds to the ipsilesional somatosensory input has shown to be affected by unilateral stroke. The aim of this study was to investigate the plasticity of the intact crossed pathway in response to different intensities of stimulation in a rodent photothrombotic stroke model. Using optical intrinsic signal imaging, an overall increase of the contralesional cortical response was observed in the acute phase (≤48 hours) after stroke. In particular, the contralesional hyperactivation is more prominent under weak stimulations, while a strong stimulation would even elicit a depressed response. The results suggest a distinct stimulation-response pattern along the intact crossed pathway after stroke. We speculate that the contralesional hyperactivation under weak stimulations was due to the reorganization for compensatory response to the weak ipsilateral somatosensory input. PMID:27144032

  20. The Golden Hour and Acute Brain Ischemia: Presenting Features and Lytic Therapy in Over 30,000 Patients Arriving Within 60 Minutes of Onset

    PubMed Central

    Saver, Jeffrey L.; Smith, Eric E.; Fonarow, Gregg C.; Reeves, Mathew J.; Zhao, Xin; Olson, DaiWai M.; Schwamm, Lee H

    2010-01-01

    Background The benefit of intravenous thrombolytic therapy in acute brain ischemia is strongly time dependent. Methods The Get with the Guidelines-Stroke (GWTG-Stroke) database was analyzed to characterize ischemic stroke patients arriving to hospital Emergency Departments (EDs) within 60 minutes of last known well time from 4/1/2003-12/30/2007. Results During the 4.75 year study period, among 253,148 ischemic stroke patients arriving directly by ambulance or private vehicle to 905 hospital EDs, 106,924 (42.2%) had documented exact last known well times. Onset to door time was ≤ 60 minutes in 30,220 (28.3%), 61-180 minutes in 33,858 (31.7%), and >180 minutes in 42,846 (40.1%). Features most strongly distinguishing ≤ 60, 61-180, and > 180 minutes arriving patients were: greater stroke severity (median NIHSS 8.0 vs 6.0 vs 4.0, p <.0001) and more frequent arrival by ambulance (79.0%. vs 72.2% vs 55.0%, p <.0001). Compared with 61-180 minute arrivers, golden hour patients received IV thrombolytic therapy more frequently (27.1% vs 12.9%, OR 2.51, 95% CI 2.41-2.61, p <.0001), but door to needle time (DTN) was longer (mean 90.6 vs 76.7 minutes, p <.0001). DTN ≤ 60 minutes was achieved in 18.3% of golden hour patients. Conclusions At GWTG-Stroke hospital EDs, more than one quarter of patients with documented onset time, and at least one eighth of all ischemic stroke patients, arrive within 1 hour of onset, where they receive thrombolytic therapy more frequently but more slowly than late arrivers. These findings support public health initiates to increase early presentation and shorten door to needle times in patients arriving within the “golden hour.” PMID:20522809

  1. G Protein-Coupled Estrogen Receptor 1 Mediates Acute Estrogen-Induced Cardioprotection via MEK/ERK/GSK-3β Pathway after Ischemia/Reperfusion

    PubMed Central

    Kabir, Mohammad E.; Singh, Harpreet; Lu, Rong; Olde, Bjorn; Leeb-Lundberg, L. M. Fredrik; Bopassa, Jean Chrisostome

    2015-01-01

    Three types of estrogen receptors (ER) exist in the heart, Esr1, Esr2 and the G protein-coupled estrogen receptor 1, Gper1. However, their relative importance in mediating estrogen protective action is unknown. We found that, in the male mouse ventricle, Gper1 transcripts are three- and seventeen-fold more abundant than Esr1 and Esr2 mRNAs, respectively. Analysis of the three ER knockouts (Esr1-/-, Esr2-/- and Gper1-/-) showed that only the Gper1-/- hearts lost their ability to be protected by 40 nM estrogen as measured by heart function, infarct size and mitochondrial Ca2+ overload, an index of mitochondrial permeability transition pore (mPTP) activity. Analysis of Akt, ERK1/2 and GSK-3β salvage kinases uncovered Akt and ERK1/2 transient activation by estrogen whose phosphorylation increased during the first 5 min of non-ischemic perfusion. All these increase in phosphorylation effects were abrogated in Gper1-/-. Inhibition of MEK1/2/ERK1/2 (1 μM U0126) and PI-3K/Akt (10 μM LY294002) signaling showed that the MEK1/2/ERK1/2 pathway via GSK-3β exclusively was responsible for cardioprotection as an addition of U0126 prevented estrogen-induced GSK-3β increased phosphorylation, resistance to mitochondrial Ca2+-overload, functional recovery and protection against infarction. Further, inhibiting PKC translocation (1 μM chelerythrin-chloride) abolished estrogen-induced cardioprotection. These data indicate that estrogen-Gper1 acute coupling plays a key role in cardioprotection against ischemia/reperfusion injury in male mouse via a cascade involving PKC translocation, ERK1/2/GSK-3β phosphorylation leading to the inhibition of the mPTP opening. PMID:26356837

  2. Upregulation of miR-21 by Ghrelin Ameliorates Ischemia/Reperfusion-Induced Acute Kidney Injury by Inhibiting Inflammation and Cell Apoptosis.

    PubMed

    Zhang, Wanzhe; Shu, Liliang

    2016-08-01

    Renal ischemia-reperfusion (I/R) injury can be caused by cardiac surgery, renal vascular obstruction, and kidney transplantation, mainly leading to acute kidney injury (AKI), which is complicated by lack of effective preventative and therapeutic strategies. Ghrelin has recently been reported to possess anti-inflammatory properties in several types of cells; however, little attention has been given to the role of ghrelin in I/R-induced AKI. The aim of this study is to explore the role of ghrelin in I/R-induced AKI. In this study, an I/R-induced rat AKI model and a hypoxia-induced NRK-52E cell I/R model were successfully constructed. Ghrelin expression was increased significantly in these rat and cell models. After enhancing ghrelin level by injecting exogenous ghrelin into rats or transfecting a ghrelin-pcDNA3.1 vector into renal tubular epithelial cells, we observed that I/R-induced AKI can be ameliorated by ghrelin, as shown by alterations in histology, as well as changes in serum creatinine (SCr) level, cell apoptosis, and the levels of inflammatory factors. Based on the importance of microRNA-21 (miR-21) in renal disease and the modulation effect of ghrelin on miR-21 in gastric epithelial cells, we tested whether miR-21 participates in the protective effect of ghrelin on I/R-induced AKI. Ghrelin could upregulate the PI3K/AKT signaling pathway by increasing the miR-21 level, which led to the protective effect of ghrelin on I/R-induced AKI by inhibiting the inflammatory response and renal tubular epithelial cell apoptosis. Our research identifies that ghrelin can ameliorate I/R-induced AKI by upregulating miR-21, which advances the understanding of mechanisms by which ghrelin ameliorates I/R-induced AKI. PMID:27152763

  3. Administration of SB239063, a potent p38 MAPK inhibitor, alleviates acute lung injury induced by intestinal ischemia reperfusion in rats associated with AQP4 downregulation.

    PubMed

    Xiong, Liu-Lin; Tan, Yan; Ma, Hong-Yu; Dai, Ping; Qin, Yan-Xia; Yang, Rui-Ai; Xu, Yan-Yan; Deng, Zheng; Zhao, Wei; Xia, Qin-Jie; Wang, Ting-Hua; Zhang, Yun-Hui

    2016-09-01

    Acute lung injury (ALI), induced by intestinal ischemia reperfusion (II/R) injury, is characterized by pulmonary edema and inflammation. Aquaporin 4 (AQP4), has been pointed out recently involving in edema development. Previous studies have shown that p38 mitogen activated protein kinase (MAPK) activation resulted in lung inflammation, while p38 MAPK inhibitor can alleviate the pathology injury of lung tissue. However, the regulated mechanism of p38 MAPK in ALI induced by II/R is unclear. In this study, we established II/R rats' model by clamping the superior mesenteric artery (SMA) and coeliac artery (CA) for 40min and subsequent reperfusion for 16h, 24h, 48h. Subsequently, SB239063, a specific inhibitor of the activity of p38 MAPK, was injected (10mg/kg) intraperitoneally 60min before the operation. The severity of ALI was determined by histology analysis (HE staining and ALI scoring) and lung edema (lung wet/dry weight ratio) assessment. Western blot (WB) was applied to detect the expression level of AQP4 and phosphorylated (P)-p38 MAPK, and the localization of AQP4 was detected by immunofluorescent staining (IF). We found that AQP4 could express in the lung tissue. II/R could significantly induce lung injury, confirmed by lung injury scores and lung wet/dry weight ratios. The level of P-p38 MAPK and AQP4 were largely up-regulated in lung tissues. Moreover, inhibition of p38 MAPK activity could effectively down-regulate AQP4 expression and diminish the severity of II/R-induced ALI. These novel findings suggest that inhibition of p38 MAPK function should be a potential strategy for the prevention or treatment of ALI, by targeting AQP4 in future clinic trial. PMID:27236300

  4. Time-dependent retinal ganglion cell loss, microglial activation and blood-retina-barrier tightness in an acute model of ocular hypertension.

    PubMed

    Trost, A; Motloch, K; Bruckner, D; Schroedl, F; Bogner, B; Kaser-Eichberger, A; Runge, C; Strohmaier, C; Klein, B; Aigner, L; Reitsamer, H A

    2015-07-01

    Glaucoma is a group of neurodegenerative diseases characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, and is the second leading cause of blindness worldwide. Elevated intraocular pressure is a well known risk factor for the development of glaucomatous optic neuropathy and pharmacological or surgical lowering of intraocular pressure represents a standard procedure in glaucoma treatment. However, the treatment options are limited and although lowering of intraocular pressure impedes disease progression, glaucoma cannot be cured by the currently available therapy concepts. In an acute short-term ocular hypertension model in rat, we characterize RGC loss, but also microglial cell activation and vascular alterations of the retina at certain time points. The combination of these three parameters might facilitate a better evaluation of the disease progression, and could further serve as a new model to test novel treatment strategies at certain time points. Acute ocular hypertension (OHT) was induced by the injection of magnetic microbeads into the rat anterior chamber angle (n = 22) with magnetic position control, leading to constant elevation of IOP. At certain time points post injection (4d, 7d, 10d, 14d and 21d), RGC loss, microglial activation, and microvascular pericyte (PC) coverage was analyzed using immunohistochemistry with corresponding specific markers (Brn3a, Iba1, NG2). Additionally, the tightness of the retinal vasculature was determined via injections of Texas Red labeled dextran (10 kDa) and subsequently analyzed for vascular leakage. For documentation, confocal laser-scanning microscopy was used, followed by cell counts, capillary length measurements and morphological and statistical analysis. The injection of magnetic microbeads led to a progressive loss of RGCs at the five time points investigated (20.07%, 29.52%, 41.80%, 61.40% and 76.57%). Microglial cells increased in number and displayed an activated morphology

  5. [Myocardial responses to ischemia].

    PubMed

    Borisenko, V G; Gubareva, E A; Kade, A Kh

    2010-01-01

    The paper details the types of a myocardial response to impaired blood flow, such as myocardial stunning, hibernation, ischemic preconditioning, warm-up phenomenon, ischemic postconditioning, remodeling, and infarction. According to the pathogenesis, the authors identify several types of myocardial dysfunction in transient ischemic attack--uptake, delivery; and a mixed one. It is concluded the myocardial response to damage depends on a combination of influencing factors, a number of pathophysiological processes starting in the acute phase of ischemia achieve its peak in the late period. PMID:20564927

  6. Extravasation into brain and subsequent spread beyond the ischemic core of a magnetic resonance contrast agent following a step-down infusion protocol in acute cerebral ischemia

    PubMed Central

    2014-01-01

    Background Limiting expansion of the ischemic core lesion by reinstating blood flow and protecting the penumbral cells is a priority in acute stroke treatment. However, at present, methods are not available for effective drug delivery to the ischemic penumbra. To address these issues this study compared the extravasation and subsequent interstitial spread of a magnetic resonance contrast agent (MRCA) beyond the ischemic core into the surrounding brain in a rat model of ischemia-reperfusion for bolus injection and step-down infusion (SDI) protocols. Methods Male Wistar rats underwent middle cerebral artery (MCA) occlusion for 3 h followed by reperfusion. Perfusion-diffusion mismatched regions indicating the extent of spread were identified by measuring cerebral blood flow (CBF) deficits by arterial spin-labeled magnetic resonance imaging and the extent of the ischemic core by mapping the apparent diffusion coefficient (ADC) of water with diffusion-weighted imaging. Vascular injury was assessed via MRCA, gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) penetration, by Look-Locker T1-weighted MR imaging after either a bolus injection (n = 8) or SDI (n = 6). Spatial and temporal expansion of the MRCA front during a 25 min imaging period was measured from images obtained at 2.5 min intervals. Results The mean ADC lesion was 20 ± 7% of the hemispheric area whereas the CBF deficit area was 60 ± 16%, with the difference between the areas suggesting the possible presence of a penumbra. The bolus injection led to MRCA enhancement with an area that initially spread into the ischemic core and then diminished over time. The SDI produced a gradual increase in the area of MRCA enhancement that slowly enlarged to occupy the core, eventually expanded beyond it into the surrounding tissue and then plateaued. The integrated area from SDI extravasation was significantly larger than that for the bolus (p = 0.03). The total number of pixels covered by the

  7. Retinal Prosthesis

    PubMed Central

    Weiland, James D.; Humayun, Mark S.

    2015-01-01

    Retinal prosthesis have been translated from the laboratory to the clinical over the past two decades. Currently, two devices have regulatory approval for the treatment of retinitis pigmentosa. These devices provide partial sight restoration and patients use this improved vision in their everyday lives. Improved mobility and object detection are some of the more notable findings from the clinical trials. However, significant vision restoration will require both better technology and improved understanding of the interaction between electrical stimulation and the retina. This paper reviews the recent clinical trials, highlights technology breakthroughs that will contribute to next generation of retinal prostheses. PMID:24710817

  8. Foveomacular retinitis.

    PubMed Central

    Kuming, B S

    1986-01-01

    A group of patients is described who developed the clinical features of foveomacular retinitis. No causative factors were isolated, and all patients strongly denied any type of sun gazing. It is possible that there is a group of patients who have the features of foveomacular retinitis but have not had any direct exposure to the sun. These patients would then constitute a primary type of foveomacular retinitis, as opposed to a secondary type which has a known cause and is synonymous with solar retinopathy. Images PMID:3790482

  9. Tolerance of the Human Kidney to Isolated Controlled Ischemia

    PubMed Central

    Weinberg, Joel M.; Ercole, Barbara; Torkko, Kathleen C.; Hilton, William; Bennett, Michael; Devarajan, Prasad; Venkatachalam, Manjeri A.

    2013-01-01

    Tolerance of the human kidney to ischemia is controversial. Here, we prospectively studied the renal response to clamp ischemia and reperfusion in humans, including changes in putative biomarkers of AKI. We performed renal biopsies before, during, and after surgically induced renal clamp ischemia in 40 patients undergoing partial nephrectomy. Ischemia duration was >30 minutes in 82.5% of patients. There was a mild, transient increase in serum creatinine, but serum cystatin C remained stable. Renal functional changes did not correlate with ischemia duration. Renal structural changes were much less severe than observed in animal models that used similar durations of ischemia. Other biomarkers were only mildly elevated and did not correlate with renal function or ischemia duration. In summary, these data suggest that human kidneys can safely tolerate 30–60 minutes of controlled clamp ischemia with only mild structural changes and no acute functional loss. PMID:23411786

  10. Acute TrkB inhibition rescues phenobarbital-resistant seizures in a mouse model of neonatal ischemia.

    PubMed

    Kang, S K; Johnston, M V; Kadam, S D

    2015-11-01

    Neonatal seizures are commonly associated with hypoxic-ischemic encephalopathy. Phenobarbital (PB) resistance is common and poses a serious challenge in clinical management. Using a newly characterized neonatal mouse model of ischemic seizures, this study investigated a novel strategy for rescuing PB resistance. A small-molecule TrkB antagonist, ANA12, used to selectively and transiently block post-ischemic BDNF-TrkB signaling in vivo, determined whether rescuing TrkB-mediated post-ischemic degradation of the K(+)-Cl(-) co-transporter (KCC2) rescued PB-resistant seizures. The anti-seizure efficacy of ANA12 + PB was quantified by (i) electrographic seizure burden using acute continuous video-electroencephalograms and (ii) post-treatment expression levels of KCC2 and NKCC1 using Western blot analysis in postnatal day (P)7 and P10 CD1 pups with unilateral carotid ligation. ANA12 significantly rescued PB-resistant seizures at P7 and improved PB efficacy at P10. A single dose of ANA12 + PB prevented the post-ischemic degradation of KCC2 for up to 24 h. As anticipated, ANA12 by itself had no anti-seizure properties and was unable to prevent KCC2 degradation at 24 h without follow-on PB. This indicates that unsubdued seizures can independently lead to KCC2 degradation via non-TrkB-dependent pathways. This study, for the first time as a proof-of-concept, reports the potential therapeutic value of KCC2 modulation for the management of PB-resistant seizures in neonates. Future investigations are required to establish the mechanistic link between ANA12 and the prevention of KCC2 degradation. PMID:26452067

  11. Bird eyes distinguish summer from winter: Retinal response to acute photoperiod change in the night-migratory redheaded bunting.

    PubMed

    Majumdar, Gaurav; Yadav, Garima; Rani, Sangeeta; Kumar, Vinod

    2015-10-01

    Eyes are the part of the circadian timekeeping system but not involved in the photoperiod regulated seasonal physiology in songbirds. Here, two experiments tested whether eyes detect and respond to seasonal change in the photoperiod environment, by examining gene and protein expressions in the retinas of redheaded buntings exposed to a single long day (LD, 16L:8D), with controls on short days (SD, 8L:16D). In the first experiment, mRNA expression of genes implicated in the light perception (opsins, rhodopsin, neuropsin, melanopsin, peropsin) and photoperiod induction (eya3, tsh-β, dio2, dio3) was measured at hours 15 and 19 (hour 0 = light on) on the first long day. There was a significant increase in the eya3, tsh-β and dio2 mRNA expression, albeit with a temporal difference, and decrease in the neuropsin mRNA expression in buntings on the first long day. There was no change in the dio3, rhodopsin, melanopsin and peropsin mRNA expressions on exposure to long days. The second experiment immunohistochemically examined the eya3, tsh-β and rhodopsin peptide expressions. eya3 was expressed in both light conditions, but with a significant higher levels in the retinal photoreceptor layer (PRL) under LD, as compared to SD. Similarly, tsh-β was expressed in the PRL of LD retinas only. Rhodopsin levels were not significantly different between SD and LD conditions, however. These results for the first time show photoperiod-dependent molecular switches in the bunting retina, similar to the well documented thyroid hormone response genes based molecular cascades in the avian hypothalamus. PMID:26219493

  12. Retinal Disorders

    MedlinePlus

    ... be serious enough to cause blindness. Examples are Macular degeneration - a disease that destroys your sharp, central vision Diabetic eye disease Retinal detachment - a medical emergency, when the retina is ... children. Macular pucker - scar tissue on the macula Macular hole - ...

  13. Retinal Detachment

    MedlinePlus

    ... immediately. Treatment How is retinal detachment treated? Small holes and tears are treated with laser surgery or ... laser surgery tiny burns are made around the hole to “weld” the retina back into place. Cryopexy ...

  14. Retinal Stimulation on Rabbit Using Complementary Metal Oxide Semiconductor Based Multichip Flexible Stimulator toward Retinal Prosthesis

    NASA Astrophysics Data System (ADS)

    Tokuda, Takashi; Asano, Ryosuke; Sugitani, Sachie; Taniyama, Mari; Terasawa, Yasuo; Nunoshita, Masahiro; Nakauchi, Kazuaki; Fujikado, Takashi; Tano, Yasuo; Ohta, Jun

    2008-04-01

    The Functionality of a complementary metal oxide semiconductor (CMOS) LSI-based, multichip flexible retinal stimulator was demonstrated in retinal stimulation experiments on rabbits. A 1×4-configured multichip stimulator was fabricated for application to experiments on animals. An experimental procedure including surgical operations was developed, and retinal stimulation was performed with the fabricated multichip stimulator. Neural responses on the visual cortex were successfully evoked by the fabricated stimulator. The stimulator is confirmed to be applicable to acute animal experiments.

  15. Current perspectives of herpesviral retinitis and choroiditis.

    PubMed

    Madhavan, H N; Priya, K; Biswas, J

    2004-10-01

    Vision-threatening viral retinitis are primarily caused by members of the herpesvirus family. The biology and molecular characterization of herpesviruses, clinical presentations of retinopathies, pathology and pathogenesis including the host responses, epidemiology and the laboratory methods of aetiological diagnosis of these diseases are described. Clinical syndromes are acute retinal necrosis (ARN), progressive outer retinal necrosis (PORN), cytomegalovirus (CMV) retinitis, multifocal choroiditis and serpiginous choroiditis besides other viral retinopathies. Herpes simplex virus (HSV) retinitis is more common in immunocompetent persons while varicella zoster virus (VZV) affects both immunocompetent and immunosuppressed patients equally. CMV retinitis is most common among patients with AIDS. The currently employed laboratory methods of antigen detection, virus isolation and antibody detection by enzyme linked immuno-sorbent assay (ELISA) have low sensitivity. Polymerase chain reaction (PCR) has increased the value of diagnosis due to its high clinical sensitivity and absolute specificity in detection of herpesviruses in intraocular specimens. PMID:16295367

  16. Retinal abnormalities in β-thalassemia major.

    PubMed

    Bhoiwala, Devang L; Dunaief, Joshua L

    2016-01-01

    Patients with beta (β)-thalassemia (β-TM: β-thalassemia major, β-TI: β-thalassemia intermedia) have a variety of complications that may affect all organs, including the eye. Ocular abnormalities include retinal pigment epithelial degeneration, angioid streaks, venous tortuosity, night blindness, visual field defects, decreased visual acuity, color vision abnormalities, and acute visual loss. Patients with β-thalassemia major are transfusion dependent and require iron chelation therapy to survive. Retinal degeneration may result from either retinal iron accumulation from transfusion-induced iron overload or retinal toxicity induced by iron chelation therapy. Some who were never treated with iron chelation therapy exhibited retinopathy, and others receiving iron chelation therapy had chelator-induced retinopathy. We will focus on retinal abnormalities present in individuals with β-thalassemia major viewed in light of new findings on the mechanisms and manifestations of retinal iron toxicity. PMID:26325202

  17. A synergistic role of ischemia modified albumin and high-sensitivity troponin T in the early diagnosis of acute coronary syndrome

    PubMed Central

    Mehta, Mihir D.; Marwah, Simbita A.; Ghosh, S.; Shah, Hitesh N.; Trivedi, Amit P.; Haridas, N.

    2015-01-01

    Aim: The aim was to evaluate the role of high sensitivity troponin T and ischemia modified albumin (IMA) and in the early diagnosis of acute coronary syndrome (ACS). Materials and Methods: This was a cross-sectional study that comprised of 120 individuals of which 75 were cases and 45 healthy controls. On the basis of clinical history and 12-lead electrocardiogram, initial diagnosis of ACS was made in the cases. High sensitive cardiac troponin T (hs-cTnT) and IMA were measured in all the individuals. Results: Levels of IMA were significantly higher in patients of ACS as compared to those in control group (means: 101.83 [95% confidence interval (CI): 91.96–111.70] vs. 41.11 [95% CI: 38.55–43.67]). By taking the cut-off as >65.23 U/mL for IMA, which was obtained from receiver operating characteristic (ROC) curve, the sensitivity was 91.3%, specificity was 81.1%, positive predictive value (PPV) was 74.4%, and negative predictive value (NPV) was 93.9%. Positive likelihood ratio was 4.83 while negative likelihood ratio was 0.11, whereas the corresponding values in case of hs-cTnT were 95.6% (95% CI: 85.2–99.5), 61.3% (95% CI: 49.5–72.6), 59.7%, 95.8%, 2.47 and 0.07 by taking cut-off as >14 pg/mL. The area under the ROC curves (AUC) of IMA and hs-cTnT at 0–6 h were 0.932 (95% CI: 0.87–0.97, P < 0.001) and 0.797 (95% CI: 0.71–0.86, P < 0.001), respectively. The logistic model combining the two markers yielded sensitivity, specificity, PPV, and NPV of 95.7%, 81.1%, 88.6%, and 92.5% respectively. Conclusion: hs-cTnT and IMA may be useful tools for risk stratification of ACS and can be used together with better accuracy in the early diagnosis of ACS. PMID:26985418

  18. Retinal Vessel Analysis (RVA) in the Context of Subarachnoid Hemorrhage - A Proof of Concept Study

    PubMed Central

    Weiss, Miriam; Clusmann, Hans; Fuest, Matthias; Mueller, Marguerite; Brockmann, Marc Alexander; Vilser, Walthard; Schmidt-Trucksäss, Arno; Hoellig, Anke; Seiz, Marcel; Thomé, Claudius; Kotliar, Konstantin; Schubert, Gerrit Alexander

    2016-01-01

    Background Timely detection of impending delayed cerebral ischemia after subarachnoid hemorrhage (SAH) is essential to improve outcome, but poses a diagnostic challenge. Retinal vessels as an embryological part of the intracranial vasculature are easily accessible for analysis and may hold the key to a new and non-invasive monitoring technique. This investigation aims to determine the feasibility of standardized retinal vessel analysis (RVA) in the context of SAH. Methods In a prospective pilot study, we performed RVA in six patients awake and cooperative with SAH in the acute phase (day 2–14) and eight patients at the time of follow-up (mean 4.6±1.7months after SAH), and included 33 age-matched healthy controls. Data was acquired using a manoeuvrable Dynamic Vessel Analyzer (Imedos Systems UG, Jena) for examination of retinal vessel dimension and neurovascular coupling. Results Image quality was satisfactory in the majority of cases (93.3%). In the acute phase after SAH, retinal arteries were significantly dilated when compared to the control group (124.2±4.3MU vs 110.9±11.4MU, p<0.01), a difference that persisted to a lesser extent in the later stage of the disease (122.7±17.2MU, p<0.05). Testing for neurovascular coupling showed a trend towards impaired primary vasodilation and secondary vasoconstriction (p = 0.08, p = 0.09 resp.) initially and partial recovery at the time of follow-up, indicating a relative improvement in a time-dependent fashion. Conclusion RVA is technically feasible in patients with SAH and can detect fluctuations in vessel diameter and autoregulation even in less severely affected patients. Preliminary data suggests potential for RVA as a new and non-invasive tool for advanced SAH monitoring, but clinical relevance and prognostic value will have to be determined in a larger cohort. PMID:27388619

  19. The Effect of Iloprost and N-Acetylcysteine on Skeletal Muscle Injury in an Acute Aortic Ischemia-Reperfusion Model: An Experimental Study

    PubMed Central

    Tiryakioglu, Osman; Erkoc, Kamuran; Tunerir, Bulent; Uysal, Onur; Altin, H. Firat; Gunes, Tevfik; Aydin, Selim

    2015-01-01

    Objective. The objective of this study was to examine the effects of iloprost and N-acetylcysteine (NAC) on ischemia-reperfusion (IR) injuries to the gastrocnemius muscle, following the occlusion-reperfusion period in the abdominal aorta of rats. Materials and Methods. Forty male Sprague-Dawley rats were randomly divided into four equal groups. Group 1: control group. Group 2 (IR): aorta was occluded. The clamp was removed after 1 hour of ischemia. Blood samples and muscle tissue specimens were collected following a 2-hour reperfusion period. Group 3 (IR + iloprost): during a 1-hour ischemia period, iloprost infusion was initiated from the jugular catheter. During a 2-hour reperfusion period, the iloprost infusion continued. Group 4 (IR + NAC): similar to the iloprost group. Findings. The mean total oxidant status, CK, and LDH levels were highest in Group 2 and lowest in Group 1. The levels of these parameters in Group 3 and Group 4 were lower compared to Group 2 and higher compared to Group 1 (P < 0.05). The histopathological examination showed that Group 3 and Group 4, compared to Group 2, had preserved appearance with respect to hemorrhage, necrosis, loss of nuclei, infiltration, and similar parameters. Conclusion. Iloprost and NAC are effective against ischemia-reperfusion injury and decrease ischemia-related tissue injury. PMID:25834818

  20. Time Profile of Viral DNA in Aqueous Humor Samples of Patients Treated for Varicella-Zoster Virus Acute Retinal Necrosis by Use of Quantitative Real-Time PCR

    PubMed Central

    Bernheim, D.; Germi, R.; Labetoulle, M.; Romanet, J. P.; Morand, P.

    2013-01-01

    The objective of this study was to evaluate the kinetics of varicella-zoster virus (VZV) loads using quantitative PCR (qPCR) in patients treated for acute retinal necrosis (ARN). Six patients (52 ± 13 years old) with ARN syndrome were consecutively studied. Aqueous humor (AH) was sampled from both eyes of all patients for qPCR evaluation. The patients were treated with intravenous acyclovir and intravitreal injections of antiviral drugs. The mean follow-up time was 17.6 ± 16.4 months. Main outcome measures were the numbers of viral genome copies in the AH, assessed using real-time qPCR with hydrolysis probe technology with a threshold of detection of 200 copies/ml. Two main portions of the viral load curves were observed for each patient: a plateau phase (27.8 ± 24.9 days) and a decrease in the number of viral genome copies. The mean baseline viral load was 3.4 × 107 ± 4.45 × 107 copies/ml (6 × 106 to 1.2 × 108 copies/ml). The viral load decreased according to a logarithmic model, with a 50% reduction obtained in 3 ± 0.7 days. There was a significant viral load (>102 copies/ml) at 50 days after the onset of treatment, despite antiviral drugs. qPCR use demonstrated reproducible VZV DNA kinetics with a two-phase evolution: a plateau followed by a logarithmic decrease. These data suggest that high-dosage antiviral therapy administered for the conventional 10-day duration is insufficient for most patients. This series of patients responded with a similar decrease in viral load once treatment was initiated, and the data from these patients may be used to predict the responses of future patients. PMID:23637296

  1. Time profile of viral DNA in aqueous humor samples of patients treated for varicella-zoster virus acute retinal necrosis by use of quantitative real-time PCR.

    PubMed

    Bernheim, D; Germi, R; Labetoulle, M; Romanet, J P; Morand, P; Chiquet, C

    2013-07-01

    The objective of this study was to evaluate the kinetics of varicella-zoster virus (VZV) loads using quantitative PCR (qPCR) in patients treated for acute retinal necrosis (ARN). Six patients (52 ± 13 years old) with ARN syndrome were consecutively studied. Aqueous humor (AH) was sampled from both eyes of all patients for qPCR evaluation. The patients were treated with intravenous acyclovir and intravitreal injections of antiviral drugs. The mean follow-up time was 17.6 ± 16.4 months. Main outcome measures were the numbers of viral genome copies in the AH, assessed using real-time qPCR with hydrolysis probe technology with a threshold of detection of 200 copies/ml. Two main portions of the viral load curves were observed for each patient: a plateau phase (27.8 ± 24.9 days) and a decrease in the number of viral genome copies. The mean baseline viral load was 3.4 × 10(7) ± 4.45 × 10(7) copies/ml (6 × 10(6) to 1.2 × 10(8) copies/ml). The viral load decreased according to a logarithmic model, with a 50% reduction obtained in 3 ± 0.7 days. There was a significant viral load (>102 copies/ml) at 50 days after the onset of treatment, despite antiviral drugs. qPCR use demonstrated reproducible VZV DNA kinetics with a two-phase evolution: a plateau followed by a logarithmic decrease. These data suggest that high-dosage antiviral therapy administered for the conventional 10-day duration is insufficient for most patients. This series of patients responded with a similar decrease in viral load once treatment was initiated, and the data from these patients may be used to predict the responses of future patients. PMID:23637296

  2. Retinal vascular changes are a marker for cerebral vascular diseases

    PubMed Central

    Moss, Heather E.

    2016-01-01

    The retinal circulation is a potential marker of cerebral vascular disease because it shares origin and drainage with the intracranial circulation and because it can be directly visualized using ophthalmoscopy. Cross sectional and cohort studies have demonstrated associations between chronic retinal and cerebral vascular disease, acute retinal and cerebral vascular disease and chronic retinal vascular disease and acute cerebral vascular disease. In particular, certain qualitative features of retinopathy, retinal artery occlusion and increased retinal vein caliber are associated with concurrent and future cerebrovascular events. These associations persist after accounting for confounding variables known to be disease-causing in both circulations, which supports the potential use of retinal vasculature findings to stratify individuals with regards to cerebral vascular disease risk. PMID:26008809

  3. Microsystems Technology for Retinal Implants

    NASA Astrophysics Data System (ADS)

    Weiland, James

    2005-03-01

    The retinal prosthesis is targeted to treat age-related macular degeneration, retinitis pigmentosa, and other outer retinal degenerations. Simulations of artificial vision have predicted that 600-1000 individual pixels will be needed if a retinal prosthesis is to restore function such as reading large print and face recognition. An implantable device with this many electrode contacts will require microsystems technology as part of its design. An implantable retinal prosthesis will consist of several subsystems including an electrode array and hermetic packaging. Microsystems and microtechnology approaches are being investigated as possible solutions for these design problems. Flexible polydimethylsiloxane (PDMS) substrate electrode arrays and silicon micromachined electrode arrays are under development. Inactive PDMS electrodes have been implanted in 3 dogs to assess mechanical biocompatibility. 3 dogs were followed for 6 months. The implanted was securely fastened to the retina with a single retinal tack. No post-operative complications were evident. The array remained within 100 microns of the retinal surface. Histological evaluation showed a well preserved retina underneath the electrode array. A silicon device with electrodes suspended on micromachined springs has been implanted in 4 dogs (2 acute implants, 2 chronic implants). The device, though large, could be inserted into the eye and positioned on the retina. Histological analysis of the retina from the spring electrode implants showed that spring mounted posts penetrated the retina, thus the device will be redesigned to reduce the strength of the springs. These initial implants will provide information for the designers to make the next generation silicon device. We conclude that microsystems technology has the potential to make possible a retinal prosthesis with 1000 individual contacts in close proximity to the retina.

  4. Retinal detachment

    MedlinePlus

    ... of the first symptoms of new flashes of light and floaters. ... diabetes. See your eye care specialist once a year. You may need more frequent visits if you have risk factors for retinal detachment. Be alert to symptoms of new flashes of light and floaters.

  5. Purinergic signaling in retinal degeneration and regeneration.

    PubMed

    Reichenbach, Andreas; Bringmann, Andreas

    2016-05-01

    Purinergic signaling is centrally involved in mediating the degeneration of the injured and diseased retina, the induction of retinal gliosis, and the protection of the retinal tissue from degeneration. Dysregulated calcium signaling triggered by overactivation of P2X7 receptors is a crucial step in the induction of neuronal and microvascular cell death under pathogenic conditions like ischemia-hypoxia, elevated intraocular pressure, and diabetes, respectively. Overactivation of P2X7 plays also a pathogenic role in inherited and age-related photoreceptor cell death and in the age-related dysfunction and degeneration of the retinal pigment epithelium. Gliosis of micro- and macroglial cells, which is induced and/or modulated by purinergic signaling and associated with an impaired homeostatic support to neurons, and the ATP-mediated propagation of retinal gliosis from a focal injury into the surrounding noninjured tissue are involved in inducing secondary cell death in the retina. On the other hand, alterations in the glial metabolism of extracellular nucleotides, resulting in a decreased level of ATP and an increased level of adenosine, may be neuroprotective in the diseased retina. Purinergic signals stimulate the proliferation of retinal glial cells which contributes to glial scarring which has protective effects on retinal degeneration and adverse effects on retinal regeneration. Pharmacological modulation of purinergic receptors, e.g., inhibition of P2X and activation of adenosine receptors, may have clinical importance for the prevention of photoreceptor, neuronal, and microvascular cell death in diabetic retinopathy, retinitis pigmentosa, age-related macular degeneration, and glaucoma, respectively, for the clearance of retinal edema, and the inhibition of dysregulated cell proliferation in proliferative retinopathies. This article is part of a Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'. PMID:25998275

  6. Retinal Detachment Vision Simulator

    MedlinePlus

    ... Retina Treatment Retinal Detachment Vision Simulator Retinal Detachment Vision Simulator Mar. 01, 2016 How does a detached or torn retina affect your vision? If a retinal tear is occurring, you may ...

  7. The surgical treatment of chronic intestinal ischemia.

    PubMed Central

    Eklof, B; Hoevels, J; Ihse, I

    1978-01-01

    The mortality in acute intestinal ischemia is high, and 50% of such patients have previous attacks of abdominal angina due to chronic intestinal ischemia. Vascular reconstruction is remarkably successful in relieving the symptoms of chronic intesintal ischemia and for this reason angiographic examination is recommended in all patients in whom chronic intestinal ischemia is suspected. If the diagnosis is established by arteriography with appropriate supporting evidence, vascular reconstruction should be performed. Images Fig. 1a and b. Fig. 2a and b. Fig. 3b and c. Fig. 4a. Fig. 4b. Fig. 5b. Fig. 6. Fig. 7a. Fig. 7b and c. Fig. 8a and b. Fig. 9a. Fig. 9b. Fig. 9c. PMID:637591

  8. Mesenteric artery ischemia

    MedlinePlus

    ... ischemia is often seen in people who have hardening of the arteries in other parts of the ... long-term (chronic) mesenteric artery ischemia caused by hardening of the arteries ( atherosclerosis ): Abdominal pain after eating ...

  9. Repeated early thrombolysis in cervical spinal cord ischemia.

    PubMed

    Etgen, Thorleif; Höcherl, Constanze

    2016-07-01

    Specific therapy of acute spinal ischemia is not established. We report the first case of an MRI-verified cervical spinal ischemia treated by thrombolysis and review the literature. A 72-year old woman with right-sided motor hemiparesis and trunk ataxia was treated by intravenous thrombolysis with full recovery. Three days later she developed again a severe right-sided sensorimotor hemiparesis and a second off-label intravenous thrombolysis was repeated. Magnetic resonance imaging revealed a right-sided posterior-lateral cervical spinal ischemia. Spinal ischemia may clinically present with a cerebral-stroke-like picture challenging diagnostic and therapeutic procedure. Systemic thrombolysis might be a treatment option in acute spinal ischemia. In addition, early repeated systemic thrombolysis may be considered in selected strokes. PMID:26762860

  10. Acid-sensing ion channel 1a is involved in retinal ganglion cell death induced by hypoxia

    PubMed Central

    Tan, Jian; Xu, Yipin; Wang, Hao; Sheng, Minjie; Wang, Fang

    2011-01-01

    Purpose Loss of retinal ganglion cells (RGCs) during retinal ischemia is the potentially blinding mechanism that underlies several sight-threatening disorders. Fluctuations in extracellular pH are associated with such pathological conditions. It has been demonstrated that the retina is a functionally distinct region of central neurons that are known to contain acid-sensing ion channels (ASICs), which are depolarizing conductance channels directly activated by protons. This study was conducted to determine whether ASIC1a channels in RGCs are essential for ischemia-induced cell death. Methods Expression of ASIC1a channels was detected in primary cultures of rat RGCs and in retinal sections. The patch-clamp technique in the conventional whole-cell configuration was used to examine the currents evoked by acid in the cultured RGCs. Intracellular Ca2+ ([Ca2+]i) elevation was detected by Ca2+ imaging. Furthermore, hypoxia-induced cell death in RGC cultures was measured by methyl thiazolyl tetrazolium assay. Results RGCs expressed a high density of ASIC1a channels. The expression and function of ASIC1a channels were upregulated after hypoxia in cultured RGCs. Ratiometric Ca2+ imaging showed that RGCs responding to a drop in pH presented an increase in the concentration of (Ca2+)i. Acute blockade of ASIC1a channels with the specific inhibitor amiloride or psalmotoxin 1 reduced RGC death in vitro. Conclusions Based on these novel findings, we conclude that ASIC1a plays a role in RGC death induced by hypoxia. Therefore, neuroprotective strategies in glaucoma could include tools to improve the ability of these neurons to survive the cytotoxic consequences of ASIC1a activation. PMID:22194656

  11. Tetrandrine protects mouse retinal ganglion cells from ischemic injury

    PubMed Central

    Li, Weiyi; Yang, Chen; Lu, Jing; Huang, Ping; Barnstable, Colin J; Zhang, Chun; Zhang, Samuel S

    2014-01-01

    This study aimed to determine the protective effects of tetrandrine (Tet) on murine ischemia-injured retinal ganglion cells (RGCs). For this, we used serum deprivation cell model, glutamate and hydrogen peroxide (H2O2)-induced RGC-5 cell death models, and staurosporine-differentiated neuron-like RGC-5 in vitro. We also investigated cell survival of purified primary-cultured RGCs treated with Tet. An in vivo retinal ischemia/reperfusion model was used to examine RGC survival after Tet administration 1 day before ischemia. We found that Tet affected RGC-5 survival in a dose- and time-dependent manner. Compared to dimethyl sulfoxide treatment, Tet increased the numbers of RGC-5 cells by 30% at 72 hours. After 48 hours, Tet protected staurosporine-induced RGC-5 cells from serum deprivation-induced cell death and significantly increased the relative number of cells cultured with 1 mM H2O2 (P<0.01). Several concentrations of Tet significantly prevented 25-mM-glutamate-induced cell death in a dose-dependent manner. Tet also increased primary RGC survival after 72 and 96 hours. Tet administration (10 μM, 2 μL) 1 day before retinal ischemia showed RGC layer loss (greater survival), which was less than those in groups with phosphate-buffered saline intravitreal injection plus ischemia in the central (P=0.005, n=6), middle (P=0.018, n=6), and peripheral (P=0.017, n=6) parts of the retina. Thus, Tet conferred protective effects on serum deprivation models of staurosporine-differentiated neuron-like RGC-5 cells and primary cultured murine RGCs. Furthermore, Tet showed greater in vivo protective effects on RGCs 1 day after ischemia. Tet and ciliary neurotrophic factor maintained the mitochondrial transmembrane potential (ΔΨm) of primary cultured RGCs and inhibited the expression of activated caspase-3 and bcl-2 in ischemia/reperfusion-insult retinas. PMID:24711693

  12. Acute coronary care 1986

    SciTech Connect

    Califf, R.M.; Wagner, G.S.

    1985-01-01

    This book contains 22 chapters. Some of the titles are: The measurement of acute myocardial infarct size by CT; Magnetic resonance imaging for evaluation of myocardial ischemia and infarction; Poistron imaging in the evaluation of ischemia and myocardial infarction; and New inotropic agents.

  13. Caffeoylquinic Acid Derivatives Extract of Erigeron multiradiatus Alleviated Acute Myocardial Ischemia Reperfusion Injury in Rats through Inhibiting NF-KappaB and JNK Activations.

    PubMed

    Zhang, Zhifeng; Liu, Yuan; Ren, Xuecong; Zhou, Hua; Wang, Kaishun; Zhang, Hao; Luo, Pei

    2016-01-01

    Erigeron multiradiatus (Lindl.) Benth. has been used in Tibet folk medicine to treat various inflammatory diseases. The aim of this study was to investigate antimyocardial ischemia and reperfusion (I/R) injury effect of caffeoylquinic acids derivatives of E. multiradiatus (AE) in vivo and to explain underling mechanism. AE was prepared using the whole plant of E. multiradiatus and contents of 6 caffeoylquinic acids determined through HPLC analysis. Myocardial I/R was induced by left anterior descending coronary artery occlusion for 30 minutes followed by 24 hours of reperfusion in rats. AE administration (10, 20, and 40 mg/kg) inhibited I/R-induced injury as indicated by decreasing myocardial infarct size, reducing of CK and LDH activities, and preventing ST-segment depression in dose-dependent manner. AE decreased cardiac tissue levels of proinflammatory factors TNF-α and IL-6 and attenuated leukocytes infiltration. AE was further demonstrated to significantly inhibit I-κB degradation, nuclear translocation of p-65 and phosphorylation of JNK. Our results suggested that cardioprotective effect of AE could be due to suppressing myocardial inflammatory response and blocking NF-κB and JNK activation pathway. Thus, caffeoylquinic acids might be the active compounds in E. multiradiatus on myocardial ischemia and be a potential natural drug for treating myocardial I/R injury. PMID:27516722

  14. Caffeoylquinic Acid Derivatives Extract of Erigeron multiradiatus Alleviated Acute Myocardial Ischemia Reperfusion Injury in Rats through Inhibiting NF-KappaB and JNK Activations

    PubMed Central

    Liu, Yuan; Ren, Xuecong; Wang, Kaishun; Zhang, Hao

    2016-01-01

    Erigeron multiradiatus (Lindl.) Benth. has been used in Tibet folk medicine to treat various inflammatory diseases. The aim of this study was to investigate antimyocardial ischemia and reperfusion (I/R) injury effect of caffeoylquinic acids derivatives of E. multiradiatus (AE) in vivo and to explain underling mechanism. AE was prepared using the whole plant of E. multiradiatus and contents of 6 caffeoylquinic acids determined through HPLC analysis. Myocardial I/R was induced by left anterior descending coronary artery occlusion for 30 minutes followed by 24 hours of reperfusion in rats. AE administration (10, 20, and 40 mg/kg) inhibited I/R-induced injury as indicated by decreasing myocardial infarct size, reducing of CK and LDH activities, and preventing ST-segment depression in dose-dependent manner. AE decreased cardiac tissue levels of proinflammatory factors TNF-α and IL-6 and attenuated leukocytes infiltration. AE was further demonstrated to significantly inhibit I-κB degradation, nuclear translocation of p-65 and phosphorylation of JNK. Our results suggested that cardioprotective effect of AE could be due to suppressing myocardial inflammatory response and blocking NF-κB and JNK activation pathway. Thus, caffeoylquinic acids might be the active compounds in E. multiradiatus on myocardial ischemia and be a potential natural drug for treating myocardial I/R injury. PMID:27516722

  15. Intravitreal injection of forskolin, homotaurine, and L-carnosine affords neuroprotection to retinal ganglion cells following retinal ischemic injury

    PubMed Central

    Adornetto, Annagrazia; Cavaliere, Federica; Varano, Giuseppe Pasquale; Rusciano, Dario; Morrone, Luigi Antonio; Corasaniti, Maria Tiziana; Bagetta, Giacinto; Nucci, Carlo

    2015-01-01

    Purpose Retinal ganglion cell (RGC) death is the final event leading to visual impairment in glaucoma; therefore, identification of neuroprotective strategies able to slow down or prevent the process is one of the main challenges for glaucoma research. The purpose of this study was to evaluate the neuroprotective potential of RGC death induced by the in vivo transient increase in intraocular pressure (IOP) of a combined treatment with forskolin, homotaurine, and L-carnosine. Forskolin (7beta-acetoxy-8, 13-epoxy-1a, 6β, 9a-trihydroxy-labd-14-en-11-one) is an activator of adenylate cyclase that decreases IOP by reducing aqueous humor production and functions as a neuroprotector due to its neurotrophin-stimulating activity. Homotaurine is a natural aminosulfonate compound endowed with neuromodulatory effects, while the dipeptide L-carnosine is known for its antioxidant properties. Methods Retinal ischemia was induced in the right eye of adult male Wistar rats by acutely increasing the IOP. Forskolin, homotaurine, and L-carnosine were intravitreally injected and RGC survival evaluated following retrograde labeling with FluoroGold. Total and phosphorylated Akt and glycogen synthase kinase-3β (GSK-3β) protein levels, as well as calpain activity, were analyzed with western blot. Protein kinase A (PKA) was inhibited by intravitreal injection of H89. Results A synergic neuroprotective effect on RGC survival was observed following the combined treatment with forskolin, homotaurine, and L-carnosine compared to forskolin alone. The observed neuroprotection was associated with reduced calpain activity, upregulation of phosphoinositide 3-kinase (PI3K)/Akt pathway, and inhibition of GSK-3β but was independent from PKA activation and distinct from the hypotensive effects of forskolin. Conclusions A multidrug/multitarget approach, by interfering with several pathways involved in RGC degeneration, may be promising to achieve glaucoma neuroprotection. PMID:26167113

  16. A New Therapeutic Modality for Acute Myocardial Infarction: Nanoparticle-Mediated Delivery of Pitavastatin Induces Cardioprotection from Ischemia-Reperfusion Injury via Activation of PI3K/Akt Pathway and Anti-Inflammation in a Rat Model

    PubMed Central

    Nagaoka, Kazuhiro; Matoba, Tetsuya; Mao, Yajing; Nakano, Yasuhiro; Ikeda, Gentaro; Egusa, Shizuka; Tokutome, Masaki; Nagahama, Ryoji; Nakano, Kaku; Sunagawa, Kenji; Egashira, Kensuke

    2015-01-01

    Aim There is an unmet need to develop an innovative cardioprotective modality for acute myocardial infarction (AMI), for which the effectiveness of interventional reperfusion therapy is hampered by myocardial ischemia-reperfusion (IR) injury. Pretreatment with statins before ischemia is shown to reduce MI size in animals. However, no benefit was found in animals and patients with AMI when administered at the time of reperfusion, suggesting insufficient drug targeting into the IR myocardium. Here we tested the hypothesis that nanoparticle-mediated targeting of pitavastatin protects the heart from IR injury. Methods and Results In a rat IR model, poly(lactic acid/glycolic acid) (PLGA) nanoparticle incorporating FITC accumulated in the IR myocardium through enhanced vascular permeability, and in CD11b-positive leukocytes in the IR myocardium and peripheral blood after intravenous treatment. Intravenous treatment with PLGA nanoparticle containing pitavastatin (Pitavastatin-NP, 1 mg/kg) at reperfusion reduced MI size after 24 hours and ameliorated left ventricular dysfunction 4-week after reperfusion; by contrast, pitavastatin alone (as high as 10 mg/kg) showed no therapeutic effects. The therapeutic effects of Pitavastatin-NP were blunted by a PI3K inhibitor wortmannin, but not by a mitochondrial permeability transition pore inhibitor cyclosporine A. Pitavastatin-NP induced phosphorylation of Akt and GSK3β, and inhibited inflammation and cardiomyocyte apoptosis in the IR myocardium. Conclusions Nanoparticle-mediated targeting of pitavastatin induced cardioprotection from IR injury by activation of PI3K/Akt pathway and inhibition of inflammation and cardiomyocyte death in this model. This strategy can be developed as an innovative cardioprotective modality that may advance currently unsatisfactory reperfusion therapy for AMI. PMID:26167913

  17. [Platelets, atherothrombosis, antiplatelet drugs and cerebral ischemia].

    PubMed

    Bousser, Marie-Germaine

    2013-02-01

    Platelets play a much more important role in myocardial ischemia than in cerebral ischemia, because atherothrombosis - the underlying cause of the vast majority of myocardial infarcts - is responsible for only 25-30% of cerebral infarcts. Aspirin is the only effective antiplatelet drug for primary prevention of ischemic events, especially those affecting the heart. For secondary prevention of cerebral infarction, clopidogrel and the combination of aspirin with extended-release dipyridamole are both marginally better than aspirin alone, but aspirin remains the gold standard worldwide because of its remarkable cost/benefit/tolerability ratio. The clopidogrel-aspirin combination is to be avoided because of the risk of hemorrhage, particularly in the brain and gastrointestinal tract. Revascularization strategies and the choice of antiplatelet drugs for the acute phase of myocardial and cerebral ischemia are very different, consisting of endovascular treatment and aggressive platelet inhibition for coronary infarcts, versus intravenous thrombolysis and / or aspirin for cerebral infarcts. None of the new antiplatelet drugs used in acute coronary syndromes has so far been studied in acute cerebral ischemia. PMID:24919368

  18. Oxidative activation of CaMKIIδ in acute myocardial ischemia/reperfusion injury: A role of angiotensin AT1 receptor-NOX2 signaling axis.

    PubMed

    Rajtik, Tomas; Carnicka, Slavka; Szobi, Adrian; Giricz, Zoltan; O-Uchi, Jin; Hassova, Veronika; Svec, Pavel; Ferdinandy, Peter; Ravingerova, Tanya; Adameova, Adriana

    2016-01-15

    During ischemia/reperfusion (IR), increased activation of angiotensin AT1 receptors recruits NADPH oxidase 2 (NOX2) which contributes to oxidative stress. It is unknown whether this stimulus can induce oxidative activation of Ca(2+)/calmodulin-dependent protein kinase IIδ (CaMKIIδ) leading into the aggravation of cardiac function and whether these effects can be prevented by angiotensin AT1 receptors blockade. Losartan, a selective AT1 blocker, was used. Its effects were compared with effects of KN-93, an inhibitor of CaMKIIδ. Global IR was induced in Langendorff-perfused rat hearts. Protein expression was evaluated by immunoblotting and lipoperoxidation was measured by TBARS assay. Losartan improved LVDP recovery by 25%; however, it did not reduce reperfusion arrhythmias. Oxidized CaMKIIδ (oxCaMKIIδ) was downregulated at the end of reperfusion compared to before ischemia and losartan did not change these levels. Phosphorylation of CaMKIIδ mirrored the pattern of changes in oxCaMKIIδ levels. Losartan did not prevent the higher lipoperoxidation due to IR and did not influence NOX2 expression. Inhibition of CaMKII ameliorated cardiac IR injury; however, this was not accompanied with changes in the levels of either active form of CaMKIIδ in comparison to the angiotensin AT1 receptor blockade. In spite of no changes of oxCaMKIIδ, increased cardiac recovery of either therapy was abolished when combined together. This study showed that oxidative activation of CaMKIIδ is not elevated at the end of R phase. NOX2-oxCAMKIIδ signaling is unlikely to be involved in cardioprotective action of angiotensin AT1 receptor blockade which is partially abolished by concomitant CaMKII inhibition. PMID:26694801

  19. Anti-inflammatory and antioxidant effects of curcumin on acute lung injury in a rodent model of intestinal ischemia reperfusion by inhibiting the pathway of NF-Kb

    PubMed Central

    Fan, Zhe; Yao, Jihong; Li, Yang; Hu, Xiaowei; Shao, Huizhu; Tian, Xiaofeng

    2015-01-01

    Objective: To investigate the anti-inflammatory and antioxidant effect of curcumin on lung lesion induced by intestinal ischemia reperfusion injury (IIR). Methods: Rats were divided into four groups: sham, intestinal IIR (IIR), 1 mg/kg of curcumin treatment group (1 mg/kg), and 5 mg/kg of curcumin treatment group (5 mg/kg). Curcumin was given respectively (1 mg/kg and 5 mg/kg) following the above doses. IIR was produced by 1 h of intestinal ischemia followed by 2 h of reperfusion. Rats were sacrificed at the end of reperfusion and lung tissues were collected for biochemical and histopathological examination in 4 groups. Lung tissues histology and bronchoalveolar lavage fluid (BALF) protein were assayed. Serum IL-6, lung superoxide dismutase (SOD) and myeloperoxidase (MPO) were measured. The expression level of NF-κB and ICAM-1 (including immunohistochemical analysis and western blot analysis) were also measured. Results: Lung tissue injury induced by IIR was obviously observed through pathology and BALF protein. MPO activity, IL-6 level and ICAM-1 expression were significantly increased with the elevation of NF-κB, simultaneously, SOD activity was decreased. With Treatment of curcumin, pathology and BALF protein of lung tissue were improved clearly. Inflammatory indexes (MPO activity, IL-6 level and ICAM-1) were improved and antioxidant index (SOD activity) was enhanced paralleled with NF-κB. Conclusion: Using curcumin effectively prevented IIR-induced lung injury. Anti-inflammatory and antioxidant effects of curcumin could be observed by inhibiting the pathway of NF-κB. PMID:26097529

  20. Toll-like receptor 2 mediates mesenchymal stem cell-associated myocardial recovery and VEGF production following acute ischemia-reperfusion injury

    PubMed Central

    Abarbanell, Aaron M.; Wang, Yue; Herrmann, Jeremy L.; Weil, Brent R.; Poynter, Jeffrey A.; Manukyan, Mariuxi C.

    2010-01-01

    Toll-like receptor 2 (TLR2), a key component of the innate immune system, is linked to inflammation and myocardial dysfunction after ischemia-reperfusion injury (I/R). Treatment of the heart with mesenchymal stem cells (MSCs) is known to improve myocardial recovery after I/R in part by paracrine factors such as VEGF. However, it is unknown whether TLR2 activation on the MSCs affects MSC-mediated myocardial recovery and VEGF production. We hypothesized that the knockout of TLR2 on the MSCs (TLR2KO MSCs) would 1) improve MSC-mediated myocardial recovery and 2) increase myocardial and MSC VEGF release. With the isolated heart perfusion system, Sprague-Dawley rat hearts were subjected to I/R and received one of three intracoronary treatments: vehicle, male wild-type MSCs (MWT MSCs), or TL2KO MSCs. All treatments were performed immediately before ischemia, and heart function was measured continuously. Postreperfusion, heart homogenates were analyzed for myocardial VEGF production. Contrary to our hypothesis, only MWT MSC treatment significantly improved the recovery of left ventricular developed pressure and the maximal positive and negative values of the first derivative of pressure. In addition, VEGF production was greatest in hearts treated with MWT MSCs. To investigate MSC production of VEGF, MSCs were activated with TNF in vitro and the supernatants collected for ELISA. In vitro basal levels of MSC VEGF production were similar. However, with TNF activation, MWT MSCs produced significantly more VEGF, whereas activated TLR2KO MSC production of VEGF was unchanged. Finally, we observed that MWT MSCs proliferated more rapidly than TLR2KO MSCs. These data indicate that TLR2 may be essential to MSC-mediated myocardial recovery and VEGF production. PMID:20173040

  1. A basic study on molecular hydrogen (H2) inhalation in acute cerebral ischemia patients for safety check with physiological parameters and measurement of blood H2 level

    PubMed Central

    2012-01-01

    Background In animal experiments, use of molecular hydrogen ( H2) has been regarded as quite safe and effective, showing benefits in multiple pathological conditions such as ischemia-reperfusion injury of the brain, heart, kidney and transplanted tissues, traumatic and surgical injury of the brain and spinal cord, inflammation of intestine and lung , degenerative striatonigral tissue and also in many other situations. However, since cerebral ischemia patients are in old age group, the safety information needs to be confirmed. For the feasibility of H2 treatment in these patients, delivery of H2 by inhalation method needs to be checked for consistency. Methods Hydrogen concentration (HC) in the arterial and venous blood was measured by gas chromatography on 3 patients, before, during and after 4% (case 1) and 3% (case2,3) H2 gas inhalation with simultaneous monitoring of physiological parameters. For a consistency study, HC in the venous blood of 10 patients were obtained on multiple occasions at the end of 30-min H2 inhalation treatment. Results The HC gradually reached a plateau level in 20 min after H2 inhalation in the blood, which was equivalent to the level reported by animal experiments. The HC rapidly decreased to 10% of the plateau level in about 6 min and 18 min in arterial and venous blood, respectively after H2 inhalation was discontinued. Physiological parameters on these 3 patients were essentially unchanged by use of hydrogen. The consistency study of 10 patients showed the HC at the end of 30-min inhalation treatment was quite variable but the inconsistency improved with more attention and encouragement. Conclusion H2 inhalation of at least 3% concentration for 30 min delivered enough HC, equivalent to the animal experiment levels, in the blood without compromising the safety. However, the consistency of H2 delivery by inhalation needs to be improved. PMID:22916706

  2. Endogenous and Synthetic Cannabinoids as Therapeutics in Retinal Disease.

    PubMed

    Kokona, Despina; Georgiou, Panagiota-Christina; Kounenidakis, Mihalis; Kiagiadaki, Foteini; Thermos, Kyriaki

    2016-01-01

    The functional significance of cannabinoids in ocular physiology and disease has been reported some decades ago. In the early 1970s, subjects who smoked Cannabis sativa developed lower intraocular pressure (IOP). This led to the isolation of phytocannabinoids from this plant and the study of their therapeutic effects in glaucoma. The main treatment of this disease to date involves the administration of drugs mediating either the decrease of aqueous humour synthesis or the increase of its outflow and thus reduces IOP. However, the reduction of IOP is not sufficient to prevent visual field loss. Retinal diseases, such as glaucoma and diabetic retinopathy, have been defined as neurodegenerative diseases and characterized by ischemia-induced excitotoxicity and loss of retinal neurons. Therefore, new therapeutic strategies must be applied in order to target retinal cell death, reduction of visual acuity, and blindness. The aim of the present review is to address the neuroprotective and therapeutic potential of cannabinoids in retinal disease. PMID:26881135

  3. Endogenous and Synthetic Cannabinoids as Therapeutics in Retinal Disease

    PubMed Central

    Kokona, Despina; Georgiou, Panagiota-Christina; Kounenidakis, Mihalis; Kiagiadaki, Foteini; Thermos, Kyriaki

    2016-01-01

    The functional significance of cannabinoids in ocular physiology and disease has been reported some decades ago. In the early 1970s, subjects who smoked Cannabis sativa developed lower intraocular pressure (IOP). This led to the isolation of phytocannabinoids from this plant and the study of their therapeutic effects in glaucoma. The main treatment of this disease to date involves the administration of drugs mediating either the decrease of aqueous humour synthesis or the increase of its outflow and thus reduces IOP. However, the reduction of IOP is not sufficient to prevent visual field loss. Retinal diseases, such as glaucoma and diabetic retinopathy, have been defined as neurodegenerative diseases and characterized by ischemia-induced excitotoxicity and loss of retinal neurons. Therefore, new therapeutic strategies must be applied in order to target retinal cell death, reduction of visual acuity, and blindness. The aim of the present review is to address the neuroprotective and therapeutic potential of cannabinoids in retinal disease. PMID:26881135

  4. Branch retinal vein occlusion.

    PubMed

    Hamid, Sadaf; Mirza, Sajid Ali; Shokh, Ishrat

    2008-01-01

    Retinal vein occlusions (RVO) are the second commonest sight threatening vascular disorder. Branch retinal vein occlusion (BRVO) and central retinal vein occlusion (CRVO) are the two basic types of vein occlusion. Branch retinal vein occlusion is three times more common than central retinal vein occlusion and- second only to diabetic retinopathy as the most common retinal vascular cause of visual loss. The origin of branch retinal vein occlusion undoubtedly includes both systemic factors such as hypertension and local anatomic factors such as arteriovenous crossings. Branch retinal vein occlusion causes a painless decrease in vision, resulting in misty or distorted vision. Current treatment options don't address the underlying aetiology of branch retinal vein occlusion. Instead they focus on treating sequelae of the occluded venous branch, such as macular oedema, vitreous haemorrhage and traction retinal detachment from neovascularization. Evidences suggest that the pathogenesis of various types of retinal vein occlusion, like many other ocular vascular occlusive disorders, is a multifactorial process and there is no single magic bullet that causes retinal vein occlusion. A comprehensive management of patients with retinal vascular occlusions is necessary to correct associated diseases or predisposing abnormalities that could lead to local recurrences or systemic event. Along with a review of the literature, a practical approach for the management of retinal vascular occlusions is required, which requires collaboration between the ophthalmologist and other physicians: general practitioner, cardiologist, internist etc. as appropriate according to each case. PMID:19385476

  5. Retinal pathways influence temporal niche

    PubMed Central

    Doyle, Susan E.; Yoshikawa, Tomoko; Hillson, Holly; Menaker, Michael

    2008-01-01

    In mammals, light input from the retina entrains central circadian oscillators located in the suprachiasmatic nuclei (SCN). The phase of circadian activity rhythms with respect to the external light:dark cycle is reversed in diurnal and nocturnal species, although the phase of SCN rhythms relative to the light cycle remains unchanged. Neural mechanisms downstream from the SCN are therefore believed to determine diurnality or nocturnality. Here, we report a switch from nocturnal to diurnal entrainment of circadian activity rhythms in double-knockout mice lacking the inner-retinal photopigment melanopsin (OPN4) and RPE65, a key protein used in retinal chromophore recycling. These mice retained only a small amount of rod function. The change in entrainment phase of Rpe65−/−;Opn4−/− mice was accompanied by a reversal of the rhythm of clock gene expression in the SCN and a reversal in acute masking effects of both light and darkness on activity, suggesting that the nocturnal to diurnal switch is due to a change in the neural response to light upstream from the SCN. A switch from nocturnal to diurnal activity rhythms was also found in wild-type mice transferred from standard intensity light:dark cycles to light:dark cycles in which the intensity of the light phase was reduced to scotopic levels. These results reveal a novel mechanism by which changes in retinal input can mediate acute temporal-niche switching. PMID:18695249

  6. Unilateral Ischemic Maculopathy Associated with Cytomegalovirus Retinitis in Patients with AIDS: Optical Coherence Tomography Findings.

    PubMed

    Arevalo, J Fernando; Garcia, Reinaldo A; Arevalo, Fernando A; Fernandez, Carlos F

    2015-01-01

    To describe the clinical and optical coherence tomography (OCT) characteristics of ischemic maculopathy in two patients with acquired immunodeficiency syndrome (AIDS). Two patients with AIDS and cytomegalovirus (CMV) retinitis developed ischemic maculopathy. Both patients presented with central visual loss and active granular CMV retinitis. The presence of opacification of the superficial retina in the macular area and intraretinal edema suggested the diagnosis. Fluorescein angiography changes were similar in the two cases with enlargement of the foveal avascular zone and late staining of juxtafoveal vessels. OCT changes were suggestive of retinal ischemia: Increased reflectivity from the inner retinal layer and decreased backscattering from the retinal photoreceptors due to fluid and retinal edema. Ischemic maculopathy may cause a severe and permanent decrease in vision in AIDS patients. Fluorescein angiography and OCT should be considered in any patient with AIDS and unexplained visual loss. The mechanism of ischemic maculopathy may be multifactorial. PMID:27051496

  7. Unilateral Ischemic Maculopathy Associated with Cytomegalovirus Retinitis in Patients with AIDS: Optical Coherence Tomography Findings

    PubMed Central

    Arevalo, J. Fernando; Garcia, Reinaldo A.; Arevalo, Fernando A.; Fernandez, Carlos F.

    2015-01-01

    To describe the clinical and optical coherence tomography (OCT) characteristics of ischemic maculopathy in two patients with acquired immunodeficiency syndrome (AIDS). Two patients with AIDS and cytomegalovirus (CMV) retinitis developed ischemic maculopathy. Both patients presented with central visual loss and active granular CMV retinitis. The presence of opacification of the superficial retina in the macular area and intraretinal edema suggested the diagnosis. Fluorescein angiography changes were similar in the two cases with enlargement of the foveal avascular zone and late staining of juxtafoveal vessels. OCT changes were suggestive of retinal ischemia: Increased reflectivity from the inner retinal layer and decreased backscattering from the retinal photoreceptors due to fluid and retinal edema. Ischemic maculopathy may cause a severe and permanent decrease in vision in AIDS patients. Fluorescein angiography and OCT should be considered in any patient with AIDS and unexplained visual loss. The mechanism of ischemic maculopathy may be multifactorial. PMID:27051496

  8. Metamorphopsia Associated with Branch Retinal Vein Occlusion

    PubMed Central

    Manabe, Koichiro; Tsujikawa, Akitaka; Osaka, Rie; Nakano, Yuki; Fujita, Tomoyoshi; Shiragami, Chieko; Hirooka, Kazuyuki; Uji, Akihito; Muraoka, Yuki

    2016-01-01

    Purpose To apply M-CHARTS for quantitative measurements of metamorphopsia in eyes with acute branch retinal vein occlusion (BRVO) and to elucidate the pathomorphology that causes metamorphopsia. Methods This prospective study consisted of 42 consecutive patients (42 eyes) with acute BRVO. Both at baseline and one month after treatment with ranibizumab, metamorphopsia was measured with M-CHARTS, and the retinal morphological changes were examined with optical coherence tomography. Results At baseline, metamorphopsia was detected in the vertical and/or horizontal directions in 29 (69.0%) eyes; the mean vertical and horizontal scores were 0.59 ± 0.57 and 0.52 ± 0.67, respectively. The maximum inner retinal thickness showed no association with the M-CHARTS score, but the M-CHARTS score was correlated with the total foveal thickness (r = 0.43, p = 0.004), the height of serous retinal detachment (r = 0.31, p = 0.047), and the maximum outer retinal thickness (r = 0.36, p = 0.020). One month after treatment, both the inner and outer retinal thickness substantially decreased. However, metamorphopsia persisted in 26 (89.7%) of 29 eyes. The posttreatment M-CHARTS score was not correlated with any posttreatment morphological parameters. However, the posttreatment M-CHARTS score was weakly correlated with the baseline total foveal thickness (r = 0.35. p = 0.024) and closely correlated with the baseline M-CHARTS score (r = 0.78, p < 0.001). Conclusions Metamorphopsia associated with acute BRVO was quantified using M-CHARTS. Initial microstructural changes in the outer retina from acute BRVO may primarily account for the metamorphopsia. PMID:27123642

  9. PKC/MAPK signaling suppression by retinal pericyte conditioned medium prevents retinal endothelial cell proliferation.

    PubMed

    Kondo, Tetsu; Hosoya, Ken-Ichi; Hori, Satoko; Tomi, Masatoshi; Ohtsuki, Sumio; Terasaki, Tetsuya

    2005-05-01

    Little is known about the regulation mechanism of endothelial cell proliferation by retinal pericytes. The purpose of this study was to elucidate the suppression mechanism of retinal capillary endothelial cell growth by soluble factors derived from retinal pericytes. Conditioned medium of retinal pericytes (rPCT1-CM) suppressed ischemia-induced retinal neovascularization. The growth and DNA synthesis of TR-iBRB2 cells, a conditionally immortalized rat retinal capillary endothelial cell line, were suppressed in a concentration-dependent manner by concentrated rPCT1-CM. The number of human cultured endothelial cells was also reduced by rPCT1-CM. These results provide the first evidence that CM from the cultivation of pericytes alone can inhibit retinal neovascularization in vivo and in vitro. Although the growth reduction of TR-iBRB2 cells was only partly reversed by treatment of rPCT1-CM with antibodies to transforming growth factor-beta1, it was completely lost by heat-treatment of rPCT1-CM, suggesting that anti-angiogenic factors are soluble proteins. The levels of expression of G1/S-phase-related proteins, such as cyclin D1, cyclin-dependent kinase (cdk)4, cdk6, and proliferating cell nuclear antigen, were reduced and a cdk inhibitor, p21(Cip1), was induced in rPCT1-CM-treated TR-iBRB2 cells. Moreover, phosphorylated p44/42 mitogen-activated protein kinase (p44/42 MAPK) in TR-iBRB2 cells was reduced by rPCT1-CM treatment and phosphorylated protein kinase C (PKC)alpha/betaII, which is upstream of p44/42 MAPK, was also suppressed. In conclusion, CM from retinal pericytes suppresses PKC-p44/42 MAPK signaling, inhibits endothelial cell growth, and prevents retinal neovascularization. Anti-angiogenic factors derived from retinal pericytes are likely to play a critical role in the regulation of retinal endothelial cell growth. PMID:15499572

  10. Cardioprotective Effects of Total Flavonoids Extracted from Xinjiang Sprig Rosa rugosa against Acute Ischemia/Reperfusion-Induced Myocardial Injury in Isolated Rat Heart.

    PubMed

    Hou, Xuejiao; Han, Jichun; Yuan, Changsheng; Ren, Huanhuan; Zhang, Ya; Zhang, Tao; Xu, Lixia; Zheng, Qiusheng; Chen, Wen

    2016-01-01

    This study evaluated the antioxidative and cardioprotective effects of total flavonoids extracted from Xinjiang sprig Rosa rugosa on ischemia/reperfusion (I/R) injury using an isolated Langendorff rat heart model. The possible mechanism of Xinjiang sprig rose total flavonoid (XSRTF) against I/R injury was also studied. XSRTF (5, 10, and 20 µg/mL) dissolved in Krebs-Henseleit buffer was administered to isolated rat heart. The XSRTF showed remarkable scavenging effects against 1,1-diphenyl-2-picrylhydrazyl, hydroxyl, and superoxide anion radicals in vitro. XSRTF pretreatment improved the heart rate, increased LVDP, and decreased CK and LDH levels in coronary flow. This pretreatment also increased SOD activity and GSH/GSSG ratio but decreased MDA, TNF-α, and CRP levels and IL-8 and IL-6 activities. The infarct size and cell apoptosis in the hearts from the XSRTF-treated group were lower than those in the hearts from the I/R group. Therefore, the cardioprotective effects of XSRTF may be attributed to its antioxidant, antiapoptotic, and anti-inflammatory activities. PMID:25617974

  11. Ventricular premature beats on Holter monitoring in patients admitted with chest pain, in whom acute myocardial infarction is not confirmed. The prognostic value and relationship to scars or ischemia on thallium-201 scintigraphy

    SciTech Connect

    Madsen, J.K.; Sorensen, J.N.; Kromann-Andersen, B.; Kjeldgaard, K.M.; Christoffersen, K.; van Duijvendijk, K.; Reiber, J.H.

    1987-05-01

    Ambulatory 24-h Holter monitoring was carried out in 198 patients who had been admitted because of suspected acute myocardial infarction (AMI) due to chest pain, but in whom AMI was not confirmed. During a follow-up period of 12-24 months (median 14 months) 16 cardiac events (i.e., nonfatal AMI or cardiac death) occurred. Ventricular premature beats (VPBs) were found in 65.2% of the patients, complex VPBs in 28.8%. Pairs of VPBs which were seen in 10.0% of the patients were the only important type of VPBs significantly related to an impaired prognosis. Thallium-201 scintigraphy was performed in 144 of the patients. VPBs were significantly related to scar formation (i.e., to permanent defects, but not to ischemia, specifically, to transient defects). It is concluded that ventricular arrhythmias in this patient category indicate presence of chronic ischemic heart disease, and that pairs of VPBs seem to identify patients at risk for cardiac events.

  12. Association of Diabetic Macular Nonperfusion With Outer Retinal Disruption on Optical Coherence Tomography

    PubMed Central

    Scarinci, Fabio; Jampol, Lee M.; Linsenmeier, Robert A.; Fawzi, Amani A.

    2015-01-01

    IMPORTANCE Diabetic macular nonperfusion leads to decreased perifoveal capillary blood flow, which in turn causes chronic ischemia of the retinal tissue. Using point-to-point correlation between spectral-domain optical coherence tomography (SD-OCT) and nonperfusion on fluorescein angiography, we observed that retinal capillary nonperfusion is associated with photoreceptor compromise on OCT. This study highlights a new concept of a possible contribution of the retinal deep capillary plexus to photoreceptor compromise in diabetic retinopathy in the absence of diabetic macular edema. OBJECTIVE To report outer retinal structural changes associated with enlargement of the foveal avascular zone and/or capillary nonperfusion in the macular area of diabetic patients. DESIGN, SETTING, AND PARTICIPANTS Retrospective observational cross-sectional study in 9 patients who were diagnosed as having diabetic retinopathy without diabetic macular edema and underwent fluorescein angiography and SD-OCT for diabetic retinopathy from July 8, 2014, to December 1, 2014, at a tertiary academic referral center. This analysis was conducted between December 2, 2014, and January 31, 2015. MAIN OUTCOMES AND MEASURES Outer retinal changes on SD-OCT in areas of macular ischemia. RESULTS The study included 13 eyes of 9 diabetic patients (4 men and 5 women aged 34–58 years) with a mean duration of diabetes mellitus of 14.5 years. Nine eyes showed outer retinal disruption revealed by SD-OCT that colocalized to areas of enlargement of the foveal avascular zone and macular capillary nonperfusion. Four fellow eyes with normal foveal avascular zones did not show any retinal changes on SD-OCT. CONCLUSIONS AND RELEVANCE Macular ischemia in diabetic patients can be associated with photoreceptor compromise. The presence of disruption of the photoreceptors on OCT in diabetic patients can be a manifestation of underlying capillary nonperfusion in eyes without diabetic macular edema. Ischemia at the deep

  13. EEG Monitoring in Cerebral Ischemia: Basic Concepts and Clinical Applications.

    PubMed

    van Putten, Michel J A M; Hofmeijer, Jeannette

    2016-06-01

    EEG is very sensitive to changes in neuronal function resulting from ischemia. The authors briefly review essentials of EEG generation and the effects of ischemia on the underlying neuronal processes. They discuss the differential sensitivity of various neuronal processes to energy limitations, including synaptic disturbances. The clinical applications reviewed include continuous EEG monitoring during carotid surgery and acute ischemic stroke, and EEG monitoring for prognostication after cardiac arrest. PMID:27258443

  14. The dose-response effect of acute intravenous transplantation of human umbilical cord blood cells on brain damage and spatial memory deficits in neonatal hypoxia-ischemia.

    PubMed

    de Paula, S; Greggio, S; Marinowic, D R; Machado, D C; DaCosta, J Costa

    2012-05-17

    Despite the beneficial effects of cell-based therapies on brain repair shown in most studies, there has not been a consensus regarding the optimal dose of human umbilical cord blood cells (HUCBC) for neonatal hypoxia-ischemia (HI). In this study, we compared the long-term effects of intravenous administration of HUCBC at three different doses on spatial memory and brain morphological changes after HI in newborn Wistar rats. In addition, we tested whether the transplanted HUCBC migrate to the injured brain after transplantation. Seven-day-old animals underwent right carotid artery occlusion and were exposed to 8% O(2) inhalation for 2 h. After 24 h, randomly selected animals were assigned to four different experimental groups: HI rats administered with vehicle (HI+vehicle), HI rats treated with 1×10(6) (HI+low-dose), 1×10(7) (HI+medium-dose), and 1×10(8) (HI+high-dose) HUCBC into the jugular vein. A control group (sham-operated) was also included in this study. After 8 weeks of transplantation, spatial memory performance was assessed using the Morris water maze (MWM), and subsequently, the animals were euthanized for brain morphological analysis using stereological methods. In addition, we performed immunofluorescence and polymerase chain reaction (PCR) analyses to identify HUCBC in the rat brain 7 days after transplantation. The MWM test showed a significant spatial memory recovery at the highest HUCBC dose compared with HI+vehicle rats (P<0.05). Furthermore, the brain atrophy was also significantly lower in the HI+medium- and high-dose groups compared with the HI+vehicle animals (P<0.01; 0.001, respectively). In addition, HUCBC were demonstrated to be localized in host brains by immunohistochemistry and PCR analyses 7 days after intravenous administration. These results revealed that HUCBC transplantation has the dose-dependent potential to promote robust tissue repair and stable cognitive improvement after HI brain injury. PMID:22441035

  15. Mechanisms of Liver Injury. II. Mechanisms of neutrophil-induced liver cell injury during hepatic ischemia-reperfusion and other acute inflammatory conditions.

    PubMed

    Jaeschke, Hartmut

    2006-06-01

    Polymorphonuclear leukocytes (neutrophils) are a vital part of the innate immune response to microbial infections and tissue trauma, e.g., ischemia-reperfusion injury, in many organs including the liver. However, an excessive inflammatory response can lead to a dramatic aggravation of the existing injury. To design interventions, which selectively target the detrimental effects of neutrophils, a detailed understanding of the pathophysiology is critical. Systemic or local exposure to proinflammatory mediators causes activation and priming of neutrophils for reactive oxygen formation and recruits them into the vascular beds of the liver without causing tissue injury. However, generation of a chemotactic signal from the parenchyma will trigger extravasation and an attack on target cells (e.g., hepatocytes). Adhesion to the target induces degranulation with release of proteases and formation of reactive oxygen species including hydrogen peroxide and hypochlorous acid, which can diffuse into hepatocytes and induce an intracellular oxidant stress and mitochondrial dysfunction. Various neutrophil-derived proteases are involved in transmigration and cell toxicity but can also promote the inflammatory response by processing of proinflammatory mediators. In addition, necrotic cells release mediators, e.g., high-mobility group box-1, which further promotes neutrophilic hepatitis and tissue damage. On the basis of these evolving insights into the mechanisms of neutrophil-mediated liver damage, the most selective strategies appear not to interfere with the cytotoxic potential of neutrophils, but rather strengthen the target cells' defense mechanisms including enhancement of the intracellular antioxidant defense systems, activation of cell survival pathways, or initiation of cell cycle activation and regeneration. PMID:16687579

  16. Acute treatment with Danshen-Gegen decoction protects the myocardium against ischemia/reperfusion injury via the redox-sensitive PKCɛ/mK(ATP) pathway in rats.

    PubMed

    Chiu, Po Yee; Wong, Sze Man; Leung, Hoi Yan; Leong, Pou Kuan; Chen, Na; Zhou, Limin; Zuo, Zhong; Lam, Philip Y; Ko, Kam Ming

    2011-08-15

    Danshen-Gegen (DG) decoction, an herbal formulation comprising Radix Salvia Miltiorrhiza and Radix Puerariae Lobatae, is prescribed for the treatment of coronary heart disease in Chinese medicine. Experimental and clinical studies have demonstrated that DG decoction can reduce the extent of atherosclerosis. In the present study, using an ex vivo rat model of myocardial ischemia/reperfusion (I/R) injury, we investigated the myocardial preconditioning effect of an aqueous DG extract prepared from an optimized weight-to-weight ratio of Danshen and Gegen. Short-term treatment with DG extract at a daily dose of 1 g/kg and 2 g/kg for 3 days protected against myocardial I/R injury in rats. The cardioprotection afforded by DG pretreatment was paralleled by enhancements in mitochondrial antioxidant status and membrane structural integrity, as well as a decrease in the sensitivity of mitochondria to Ca²⁺-stimulated permeability transition in vitro, particularly under I/R conditions. Short-term treatment with the DG extract also enhanced the translocation of PKCɛ from the cytosol to mitochondria in rat myocardium, and this translocation was inhibited by α-tocopherol co-treatment with DG extract in rats. Short-term DG treatment may precondition the myocardium via a redox-sensitive PKCɛ/mK(ATP) pathway, with resultant inhibition of the mitochondrial permeability transition through the opening of mitochondrial K(ATP) channels. Our results suggest that clinical studies examining the effectiveness of DG extract given prophylactically in affording protection against myocardial I/R injury would be warranted. PMID:21855786

  17. Dynamic, in vivo, real-time detection of retinal oxidative status in a model of elevated intraocular pressure using a novel, reversibly responsive, profluorescent nitroxide probe.

    PubMed

    Rayner, Cassie L; Gole, Glen A; Bottle, Steven E; Barnett, Nigel L

    2014-12-01

    Changes to the redox status of biological systems have been implicated in the pathogenesis of a wide variety of disorders including cancer, Ischemia-reperfusion (I/R) injury and neurodegeneration. In times of metabolic stress e.g. ischaemia/reperfusion, reactive oxygen species (ROS) production overwhelms the intrinsic antioxidant capacity of the cell, damaging vital cellular components. The ability to quantify ROS changes in vivo, is therefore essential to understanding their biological role. Here we evaluate the suitability of a novel reversible profluorescent probe containing a redox-sensitive nitroxide moiety (methyl ester tetraethylrhodamine nitroxide, ME-TRN), as an in vivo, real-time reporter of retinal oxidative status. The reversible nature of the probe's response offers the unique advantage of being able to monitor redox changes in both oxidizing and reducing directions in real time. After intravitreal administration of the ME-TRN probe, we induced ROS production in rat retina using an established model of complete, acute retinal ischaemia followed by reperfusion. After restoration of blood flow, retinas were imaged using a Micron III rodent fundus fluorescence imaging system, to quantify the redox-response of the probe. Fluorescent intensity declined during the first 60 min of reperfusion. The ROS-induced change in probe fluorescence was ameliorated with the retinal antioxidant, lutein. Fluorescence intensity in non-Ischemia eyes did not change significantly. This new probe and imaging technology provide a reversible and real-time response to oxidative changes and may allow the in vivo testing of antioxidant therapies of potential benefit to a range of diseases linked to oxidative stress. PMID:25447708

  18. Genetic pediatric retinal diseases

    PubMed Central

    Say, Emil Anthony T.

    2014-01-01

    Hereditary pediatric retinal diseases are a diverse group of disorders with pathologies affecting different cellular structures or retinal development. Many can mimic typical pediatric retinal disease such as retinopathy of prematurity, vitreous hemorrhage, retinal detachment and cystoid macular edema. Multisystem involvement is frequently seen in hereditary pediatric retinal disease. A thorough history coupled with a good physical examination can oftentimes lead the ophthalmologist or pediatrician to the correct genetic test and correct diagnosis. In some instances, evaluation of parents or siblings may be required to determine familial involvement when the history is inconclusive or insufficient and clinical suspicion is high.

  19. Role of retinal metabolism in methanol-induced retinal toxicity

    SciTech Connect

    Garner, C.D. |; Lee, E.W.; Terzo, T.S.; Louis-Ferdinand, R.T.

    1995-08-01

    Methanol is a toxicant that causes systemic and ocular toxicity after acute exposure. The folate-reduced (FR) rat is an excellent animal model that mimics characteristic human methanol toxic responses. The present study examines the role of the methanol metabolites formaldehyde and formate in the initiation of methanol-induced retinal toxicity. After a single oral dose of 3.0 g/kg methanol, blood methanol concentrations were not significantly different in FR rats compared with folate-sufficient (FS) (control) rats. However, FR rats treated with 3.0 g/kg methanol displayed elevated blood (14.6 mM) and vitreous humor (19.5 mM) formate levels and abnormal electroretinograms (loss of b-wave) 48 h postdose. FR rats pretreated with disulfiram (DSF) prior to 3.0 g/kg methanol treatment failed to display these symptoms. Formaldehyde was not detected in blood or vitreous humor with or without DSF treatment, suggesting that formate is the toxic metabolite in methanol-induced retinal toxicity. Additionally, creating a blood formate profile (14.2 mM at 48 h) similar to that observed in methanol-treated rats by iv infusion of pH-buffered formate does not alter the electroretinogram as is observed with methanol treatment. These data suggest that intraretinal metabolism of methanol is necessary for the formate-mediated initiation of methanol-induced retinal toxicity. 31 refs., 5 figs., 2 tabs.

  20. Improving patient selection for endovascular treatment of acute cerebral ischemia: a review of the literature and an external validation of the Houston IAT and THRIVE predictive scoring systems.

    PubMed

    Ishkanian, Amy A; McCullough-Hicks, Margy E; Appelboom, Geoffrey; Piazza, Matthew A; Hwang, Brian Y; Bruce, Samuel S; Hannan, Lindsay M; Connolly, E Sander; Lavine, Sean D; Meyers, Philip M

    2011-06-01

    Outcome after intraarterial therapy (IAT) for acute ischemic stroke remains variable, suggesting that improved patient selection is needed to better identify patients likely to benefit from treatment. The authors evaluate the predictive accuracies of the Houston IAT (HIAT) and the Totaled Health Risks in Vascular Events (THRIVE) scores in an independent cohort and review the existing literature detailing additional predictive factors to be used in patient selection for IAT. They reviewed their center's endovascular records from January 2004 to July 2010 and identified patients who had acute ischemic stroke and underwent IAT. They calculated individual HIAT and THRIVE scores using patient age, admission National Institutes of Health Stroke Scale (NIHSS) score, admission glucose level, and medical history. The scores' predictive accuracies for good outcome (discharge modified Rankin Scale score ≤ 3) were analyzed using receiver operating characteristics analysis. The THRIVE score predicts poor outcome after IAT with reasonable accuracy and may perform better than the HIAT score. Nevertheless, both measures may have significant clinical utility; further validation in larger cohorts that accounts for differences in patient demographic characteristics, variation in time-to-treatment, and center preferences with respect to IAT modalities is needed. Additional patient predictive factors have been reported but not yet incorporated into predictive scales; the authors suggest the need for additional data analysis to determine the independent predictive value of patient admission NIHSS score, age, admission hyperglycemia, patient comorbidities, thrombus burden, collateral flow, time to treatment, and baseline neuroimaging findings. PMID:21631231

  1. Inferior retinal light exposure is more effective than superior retinal exposure in suppressing melatonin in humans

    NASA Technical Reports Server (NTRS)

    Glickman, Gena; Hanifin, John P.; Rollag, Mark D.; Wang, Jenny; Cooper, Howard; Brainard, George C.

    2003-01-01

    Illumination of different areas of the human retina elicits differences in acute light-induced suppression of melatonin. The aim of this study was to compare changes in plasma melatonin levels when light exposures of equal illuminance and equal photon dose were administered to superior, inferior, and full retinal fields. Nine healthy subjects participated in the study. Plexiglass eye shields were modified to permit selective exposure of the superior and inferior halves of the retinas of each subject. The Humphrey Visual Field Analyzer was used both to confirm intact full visual fields and to quantify exposure of upper and lower visual fields. On study nights, eyes were dilated, and subjects were exposed to patternless white light for 90 min between 0200 and 0330 under five conditions: (1) full retinal exposure at 200 lux, (2) full retinal exposure at 100 lux, (3) inferior retinal exposure at 200 lux, (4) superior retinal exposure at 200 lux, and (5) a dark-exposed control. Plasma melatonin levels were determined by radioimmunoassay. ANOVA demonstrated a significant effect of exposure condition (F = 5.91, p < 0.005). Post hoc Fisher PLSD tests showed significant (p < 0.05) melatonin suppression of both full retinal exposures as well as the inferior retinal exposure; however, superior retinal exposure was significantly less effective in suppressing melatonin. Furthermore, suppression with superior retinal exposure was not significantly different from that of the dark control condition. The results indicate that the inferior retina contributes more to the light-induced suppression of melatonin than the superior retina at the photon dosages tested in this study. Findings suggest a greater sensitivity or denser distribution of photoreceptors in the inferior retina are involved in light detection for the retinohypothalamic tract of humans.

  2. Interventions for asymptomatic retinal breaks and lattice degeneration for preventing retinal detachment

    PubMed Central

    Wilkinson, Charles P

    2015-01-01

    Background Asymptomatic retinal breaks and lattice degeneration are visible lesions that are risk factors for later retinal detachment. Retinal detachments occur when fluid in the vitreous cavity passes through tears or holes in the retina and separates the retina from the underlying retinal pigment epithelium. Creation of an adhesion surrounding retinal breaks and lattice degeneration, with laser photocoagulation or cryotherapy, has been recommended as an effective means of preventing retinal detachment. This therapy is of value in the management of retinal tears associated with the symptoms of flashes and floaters and persistent vitreous traction upon the retina in the region of the retinal break, because such symptomatic retinal tears are associated with a high rate of progression to retinal detachment. Retinal tears and holes unassociated with acute symptoms and lattice degeneration are significantly less likely to be the sites of retinal breaks that are responsible for later retinal detachment. Nevertheless, treatment of these lesions frequently is recommended, in spite of the fact that the effectiveness of this therapy is unproven. Objectives The objective of this review was to assess the effectiveness and safety of techniques used to treat asymptomatic retinal breaks and lattice degeneration for the prevention of retinal detachment. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 2), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to February 2014), EMBASE (January 1980 to February 2014), PubMed (January 1948 to February 2014), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in

  3. Unilateral Partial Nephrectomy with Warm Ischemia Results in Acute Hypoxia Inducible Factor 1-Alpha (HIF-1α) and Toll-Like Receptor 4 (TLR4) Overexpression in a Porcine Model

    PubMed Central

    Zhang, Zhiyong; Haimovich, Beatrice; Kwon, Young Suk; Lu, Tyler; Fyfe-Kirschner, Billie; Olweny, Ephrem Odoy

    2016-01-01

    Purpose Ischemia/reperfusion (I/R) during partial nephrectomy (PN) contributes to acute kidney injury (AKI), which is inaccurately assessed using existent clinical markers of renal function. We evaluated I/R-related changes in expression in hypoxia inducible factor 1α (HIF-1α) and toll-like receptor 4 (TLR4), within kidney tissue and peripheral blood leukocytes (PBL) in a porcine model of PN. Materials and Methods Three adult pigs each underwent unilateral renal hilar cross clamping for 180 min followed by a 15 min reperfusion. The contralateral kidney served as control. Biopsies of clamped kidneys were obtained at baseline (time 0), every 60 min during the hypoxic phase, and post-reperfusion. Control kidneys were biopsied once at 180 min. Peripheral blood was sampled at time 0, every 30 min during the hypoxic phase, and post-reperfusion. HIF-1α and TLR4 expression in kidney tissue and PBL were analyzed by Western blotting. I/R-related histological changes were assessed. Results Expression of HIF-1α in clamped kidneys and PBL was below detection level at baseline, rising to detectable levels after 60 min of hypoxia, and continuing to rise throughout the hypoxic and reperfusion phases. Expression of TLR-4 in clamped kidneys followed a similar trend with initial detection after 30–60 min of hypoxia. Control kidneys exhibited no change in HIF-1α or TLR-4 expression. I/R-related histologic changes were minimal, primarily mild tubular dilatation. Conclusions In a porcine model of PN, HIF-1α and TLR4 exhibited robust, I/R-related increases in expression in kidney tissue and PBL. Further studies investigating these molecules as potential markers of AKI are warranted. PMID:27149666

  4. The Role of the Endothelin System in the Vascular Dysregulation Involved in Retinitis Pigmentosa

    PubMed Central

    Sorrentino, Francesco Saverio; Bonifazzi, Claudio; Perri, Paolo

    2015-01-01

    Retinitis pigmentosa is a clinical and genetic group of inherited retinal disorders characterized by alterations of photoreceptors and retinal pigment epithelium leading to a progressive concentric visual field restriction, which may bring about severe central vision impairment. Haemodynamic studies in patients with retinitis pigmentosa have demonstrated ocular blood flow abnormalities both in retina-choroidal and in retroocular vascular system. Moreover, several investigations have studied the augmentation of endothelin-1 plasma levels systemically in the body and locally in the eye. This might account for vasoconstriction and ischemia, typical in vascular dysregulation syndrome, which can be considered an important factor of reduction of the ocular blood flow in subjects affected by retinitis pigmentosa. PMID:26613048

  5. Genetics Home Reference: retinitis pigmentosa

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions retinitis pigmentosa retinitis pigmentosa Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Retinitis pigmentosa is a group of related eye disorders that ...

  6. Short-Term and Two-Year Rate of Recurrent Cerebrovascular Events in Patients with Acute Cerebral Ischemia of Undetermined Aetiology, with and without a Patent Foramen Ovale

    PubMed Central

    Di Legge, Silvia; Sallustio, Fabrizio; De Marchis, Emiliano; Rossi, Costanza; Koch, Giacomo; Diomedi, Marina; Borzi, Mauro; Romeo, Francesco; Stanzione, Paolo

    2011-01-01

    Purpose. We investigated stroke recurrence in patients with acute ischemic stroke of undetermined aetiology, with or without a patent foramen ovale (PFO). Methods. Consecutive stroke patients underwent to Transcranial Doppler and Transesophageal Echocardiography for PFO detection. Secondary stroke prevention was based on current guidelines. Results. PFO was detected in 57/129 (44%) patients. The rate of recurrent stroke did not significantly differ between patients with and without a PFO: 0.0% versus 1.4% (1 week), 1.7% versus 2.7% (1 month), and 3.5% versus 4.2% (3 months), respectively. The 2-year rates were 10.4% (5/48) in medically treated PFO and 8.3% (6/72) in PFO-negative patients (P = 0.65), with a relative risk of 1.25. No recurrent events occurred in 9 patients treated with percutaneous closure of PFO. Conclusion. PFO was not associated with increased rate of recurrent stroke. Age-related factors associated with stroke recurrence in cryptogenic stroke should be taken into account when patients older than 55 years are included in PFO studies. PMID:22389838

  7. The retinal ciliopathies.

    PubMed

    Adams, N A; Awadein, Ahmed; Toma, Hassanain S

    2007-09-01

    While the functions of many of the proteins located in or associated with the photoreceptor cilia are poorly understood, disruption of the function of these proteins may result in a wide variety of phenotypes ranging from isolated retinal degeneration to more pleiotropic phenotypes. Systemic findings include neurosensory hearing loss, developmental delay, situs-inversus, infertility, disorders of limb and digit development, obesity, kidney disease, liver disease, and respiratory disease. The concept of "retinal ciliopathies" brings to attention the importance of further molecular analysis of this organelle as well as provides a potential common target for therapies for these disorders. The retinal ciliopathies include retinitis pigmentosa, macular degeneration, cone-dystrophy, cone-rod dystrophy, Leber congenital amaurosis, as well as retinal degenerations associated with Usher syndrome, primary ciliary dyskinesia, Senior-Loken syndrome, Joubert syndrome, Bardet-Biedl syndrome, Laurence-Moon syndrome, McKusick-Kaufman syndrome, and Biemond syndrome. Mutations for these disorders have been found in retinitis pigmentosa-1 (RP1), retinitis pigmentosa GTPase regulator (RPGR), retinitis pigmentosa GTPase regulator interacting protein (RPGR-IP), as well as the Usher, Bardet-Biedl, and nephronophthisis genes. Other systemic disorders associated with retinal degenerations that may also involve ciliary abnormalities include: Alstrom, Edwards-Sethi, Ellis-van Creveld, Jeune, Meckel-Gruber, Orofaciodigital Type 9, and Gurrieri syndromes. Understanding these conditions as ciliopathies may help the ophthalmologist to recognize associations between seemingly unrelated diseases and have a high degree of suspicion that a systemic finding may be present. PMID:17896309

  8. Fluorometry of ischemia reperfusion injury in rat lungs in vivo

    NASA Astrophysics Data System (ADS)

    Sepehr, R.; Staniszewski, K.; Jacobs, E. R.; Audi, S.; Ranji, Mahsa

    2013-02-01

    Previously we demonstrated the utility of optical fluorometry to evaluate lung tissue mitochondrial redox state in isolated perfused rats lungs under various chemically-induced respiratory states. The objective of this study was to evaluate the effect of acute ischemia on lung tissue mitochondrial redox state in vivo using optical fluorometry. Under ischemic conditions, insufficient oxygen supply to the mitochondrial chain should reduce the mitochondrial redox state calculated from the ratio of the auto-fluorescent mitochondrial metabolic coenzymes NADH (Nicotinamide Adenine Dinucleotide) and FAD (Flavoprotein Adenine Dinucleotide). The chest of anesthetized, and mechanically ventilated Sprague-Dawley rat was opened to induce acute ischemia by clamping the left hilum to block both blood flow and ventilation to one lung for approximately 10 minutes. NADH and FAD fluorescent signals were recorded continuously in a dark room via a fluorometer probe placed on the pleural surface of the left lung. Acute ischemia caused a decrease in FAD and an increase in NADH, which resulted in an increase in the mitochondrial redox ratio (RR=NADH/FAD). Restoration of blood flow and ventilation by unclamping the left hilum returned the RR back to its baseline. These results (increase in RR under ischemia) show promise for the fluorometer to be used in a clinical setting for evaluating the effect of pulmonary ischemia-reperfusion on lung tissue mitochondrial redox state in real time.

  9. Plasma Kallikrein Mediates Retinal Vascular Dysfunction and Induces Retinal Thickening in Diabetic Rats

    PubMed Central

    Clermont, Allen; Chilcote, Tamie J.; Kita, Takeshi; Liu, Jia; Riva, Priscilla; Sinha, Sukanto; Feener, Edward P.

    2011-01-01

    OBJECTIVE Plasma kallikrein (PK) has been identified in vitreous fluid obtained from individuals with diabetic retinopathy and has been implicated in contributing to retinal vascular dysfunction. In this report, we examined the effects of PK on retinal vascular functions and thickness in diabetic rats. RESEARCH DESIGN AND METHODS We investigated the effects of a selective PK inhibitor, ASP-440, and C1 inhibitor (C1-INH), the primary physiological inhibitor of PK, on retinal vascular permeability (RVP) and hemodynamics in rats with streptozotocin-induced diabetes. The effect of intravitreal PK injection on retinal thickness was examined by spectral domain optical coherence tomography. RESULTS Systemic continuous administration of ASP-440 for 4 weeks initiated at the time of diabetes onset inhibited RVP by 42% (P = 0.013) and 83% (P < 0.001) at doses of 0.25 and 0.6 mg/kg per day, respectively. Administration of ASP-440 initiated 2 weeks after the onset of diabetes ameliorated both RVP and retinal blood flow abnormalities in diabetic rats measured at 4 weeks’ diabetes duration. Intravitreal injection of C1-INH similarly decreased impaired RVP in rats with 2 weeks’ diabetes duration. Intravitreal injection of PK increased both acute RVP and sustained focal RVP (24 h postinjection) to a greater extent in diabetic rats compared with nondiabetic control rats. Intravitreal injection of PK increased retinal thickness compared with baseline to a greater extent (P = 0.017) in diabetic rats (from 193 ± 10 μm to 223 ± 13 μm) compared with nondiabetic rats (from 182 ± 8 μm to 193 ± 9 μm). CONCLUSIONS These results show that PK contributes to retinal vascular dysfunctions in diabetic rats and that the combination of diabetes and intravitreal injection of PK in rats induces retinal thickening. PMID:21444925

  10. Diosmin Protects Rat Retina from Ischemia/Reperfusion Injury

    PubMed Central

    Tong, Nianting; Zhang, Zhenzhen; Gong, Yuanyuan; Yin, Lili

    2012-01-01

    Abstract Objective Diosmin, a natural flavone glycoside, possesses antioxidant activity and has been used to alleviate ischemia/reperfusion (I/R) injury. The aim of this study was to clarify whether the administration of diosmin has a protective effect against I/R injury induced using the high intraocular pressure (IOP) model in rat retina, and to determine the possible antioxidant mechanisms involved. Methods Retinal I/R injury was induced in the rats by elevating the IOP to 110 mmHg for 60 min. Diosmin (100 mg/kg) or vehicle solution was administered intragastrically 30 min before the onset of ischemia and then daily after I/R injury until the animals were sacrificed. The levels of malondialdehyde (MDA) and the activities of total-superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in the retinal tissues were determined 24 h after I/R injury. At 7 days post-I/R injury, electroretinograms (ERGs) were recorded, and the density of surviving retinal ganglion cells (RGCs) was estimated by counting retrograde tracer-labeled cells in whole-mounted retinas. Retinal histological changes were also examined and quantified using light microscopy. Results Diosmin significantly decreased the MDA levels and increased the activities of T-SOD, GSH-Px, and CAT in the retina of rats compared with the ischemia group (P<0.05), and suppressed the I/R-induced reduction in the a- and b-wave amplitudes of the ERG (P<0.05). The thickness of the entire retina, inner nuclear layer, inner plexiform layer, and outer retinal layer and the number of cells in the ganglion cell layer were significantly less after I/R injury (P<0.05), and diosmin remarkably ameliorated these changes on retinal morphology. Diosmin also attenuated the I/R-induced loss of RGCs of the rat retina (P<0.05). Conclusion Diosmin protected the retina from I/R injury, possibly via a mechanism involving the regulation of oxidative parameters. PMID:22509733

  11. Crocetin, a carotenoid derivative, inhibits retinal ischemic damage in mice.

    PubMed

    Ishizuka, Fumiya; Shimazawa, Masamitsu; Umigai, Naofumi; Ogishima, Hiromi; Nakamura, Shinsuke; Tsuruma, Kazuhiro; Hara, Hideaki

    2013-03-01

    Crocetin, an aglycone of crocin, is found both in the saffron crocus (Crocus starus L.) and in gardenia fruit (Gardenia jasminoides Ellis). We evaluated the protective effects of crocetin against the retinal ischemia induced by 5h unilateral ligation of both the pterygopalatine artery (PPA) and the external carotid artery (ECA) in anesthetized mice. The effects of crocetin (20mg/kg, p.o.) on ischemia/reperfusion-induced retinal damage were examined by histological, electrophysiological, and anti-apoptotic analyses. Data for anti-apoptotic analysis was obtained by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Using immunohistochemistry and immunoblotting, the protective mechanism mediating the effects of crocetin was evaluated by examining crocetin's effects on the expression of 8-hydroxy-2-deoxyguanosine (8-OHdG; used as a marker of oxidative stress) and on phosphorylations of mitogen-activated protein kinases [MAPK; viz. extracellular signal-regulated protein kinases (ERK), c-Jun N-terminal kinases (JNK) and p38], and the redox-sensitive transcription factors nuclear factor-kappa B (NF-κB) and c-Jun. The histological analysis revealed that ischemia/reperfusion (I/R) decreased the cell number in the ganglion cell layer (GCL) and the thickness of inner nuclear layer (INL), and that crocetin inhibited GCL and INL. ERG measurements revealed that crocetin prevented the I/R-induced reductions in a- and b-wave amplitudes seen at 5 days after I/R. In addition, crocetin decreased the numbers of TUNEL-positive cells and 8-OHdG-positive cells, and the phosphorylation levels of p38, JNK, NF-κB, and c-Jun present in the retina after I/R. These findings indicate that crocetin prevented ischemia-induced retinal damage through its inhibition of oxidative stress. PMID:23428630

  12. Carotid endarterectomy and prevention of cerebral ischemia in symptomatic carotid stenosis

    SciTech Connect

    Mayberg, M.R.; Eskridge, J.; Winn, H.R.; Eskridge, J. ); Wilson, S.E. ); Yatsu, F. ); Weiss, D.G. ); Messina, L. ); Hershey, L.A. ); Colling, C. ); Deykin, D. )

    1991-12-18

    The objective of this study was to determine whether carotid endarterectomy provides protection against subsequent cerebral ischemia in men with ischemic symptoms in the distribution of significant ipsilateral internal carotid artery stenosis. The study group was comprised of men who presented within 120 days of onset of symptoms that were consistent with transient ischemic attacks, transient monocular blindness, or recent small completed strokes between July 1988 and February 1991. Among 5,000 patients screened, 189 individuals were randomized with angiographic internal carotid artery stenosis greater than 50% ipsilateral to the presenting symptoms. Forty-eight eligible patients who refused entry were followed up outside of the trial. For a selected cohort of men with symptoms of cerebral or retinal ischemia in the distribution of a high-grade internal carotid artery stenosis, carotid endarterectomy can effectively reduce the risk of subsequent ipsilateral cerebral ischemia. The risk of cerebral ischemia in this subgroup of patients is considerably higher than previously estimated.

  13. Hollow organ abdominal ischemia, part II: clinical features, etiology, imaging findings and management.

    PubMed

    Ricci, Zina J; Mazzariol, Fernanda S; Kaul, Bindu; Oh, Sarah K; Chernyak, Victoria; Flusberg, Milana; Stein, Marjorie W; Rozenblit, Alla M

    2016-01-01

    Acute hollow organ ischemia commonly presents with acute pain prompting radiologic evaluation and almost always requires urgent treatment. Despite different risk factors and anatomic differences, ischemia is commonly due to low flow states but can also be due to arterial and venous occlusion. Radiologic diagnosis is critical as many present with nonspecific symptoms. Contrast-enhanced computed tomography (CT) is the modality of choice. Magnetic resonance imaging (MRI) is preferred in suspected appendicitis in pregnant patients and is superior in biliary necrosis. This article provides a pictorial review of the CT/MRI features of hollow abdominal organ ischemia while highlighting key clinical features, pathogenesis, and management. PMID:27317221

  14. Neuroprotection after cerebral ischemia

    PubMed Central

    Namura, Shobu; Ooboshi, Hiroaki; Liu, Jialing; Yenari, Midori A.

    2013-01-01

    Cerebral ischemia, a focal or global insufficiency of blood flow to the brain, can arise through multiple mechanisms, including thrombosis and arterial hemorrhage. Ischemia is a major driver of stroke, one of the leading causes of morbidity and mortality worldwide. While the general etiology of cerebral ischemia and stroke has been known for some time, the conditions have only recently been considered treatable. This report describes current research in this field seeking to fully understand the pathomechanisms underlying stroke; to characterize the brain’s intrinsic injury, survival, and repair mechanisms; to identify putative drug targets as well as cell-based therapies; and to optimize the delivery of therapeutic agents to the damaged cerebral tissue. PMID:23488559

  15. The PI3K/Akt, p38MAPK, and JAK2/STAT3 signaling pathways mediate the protection of SO2 against acute lung injury induced by limb ischemia/reperfusion in rats.

    PubMed

    Zhao, Yan-Rui; Wang, Dong; Liu, Yang; Shan, Lei; Zhou, Jun-Lin

    2016-05-01

    Sulfur dioxide (SO2) is naturally synthesized by glutamate-oxaloacetate transaminase (GOT) from L-cysteine in mammalian cells. We found that SO2 may have a protective effect on acute lung injury (ALI) induced by limb ischemia/reperfusion (I/R) in rats. The PI3K/Akt, p38MAPK, and JAK2/STAT3 pathways are crucial in cell signaling transduction. The present study aims to verify the role of SO2 on limb I/R-induced ALI, and investigate whether PI3K/Akt, p38MAPK, and JAK2/STAT3 pathways were involved, as well as the relationship among the three pathways; we used specific inhibitors (LY294002, SB03580, and Stattic) to block them, respectively. The experimental methods of Western, ELISA, TUNEL, etc., were used to test the results. In the I/R group, the parameters of lung injury (MDA, MPO, TUNEL, cytokines) increased significantly, but the administration of Na2SO3/NaHSO3 attenuated the damage in the lung. The Western results showed that the rat's lung exist expression of P-STAT3, P-AKT, and P-p38 proteins. After I/R, P-STAT3, P-Akt, and P-p38 proteins expression all increased. After using Na2SO3/NaHSO3, P-Akt, and P-p38 proteins expression increased, but P-STAT3 protein expression decreased. We also found a strange phenomenon; compared to the I/R + SO2 group, the administration of stattic, P-p38 protein expression showed no change, but P-Akt protein expression increased (p < 0.05). In conclusion, SO2 has a protective effect on rats with limb I/R-induced ALI. The JAK2/STAT3, PI3K/Akt, and p38MAPK pathways are likely all involved in the process, and the JAK2/STAT3 pathway may have an impact on the P13K/Akt pathway. PMID:26541157

  16. Differential Diagnosis of Retinal Vasculitis

    PubMed Central

    Abu El-Asrar, Ahmed M.; Herbort, Carl P.; Tabbara, Khalid F.

    2009-01-01

    Retinal vaculitis is a sight-threatening inflammatory eye condition that involves the retinal vessels. Detection of retinal vasculitis is made clinically, and confirmed with the help of fundus fluorescein angiography. Active vascular disease is characterized by exudates around retinal vessels resulting in white sheathing or cuffing of the affected vessels. In this review, a practical approach to the diagnosis of retinal vasculitis is discussed based on ophthalmoscopic and fundus fluorescein angiographic findings. PMID:20404987

  17. Murine Model of Intestinal Ischemia-reperfusion Injury.

    PubMed

    Gubernatorova, Ekaterina O; Perez-Chanona, Ernesto; Koroleva, Ekaterina P; Jobin, Christian; Tumanov, Alexei V

    2016-01-01

    Intestinal ischemia is a life-threatening condition associated with a broad range of clinical conditions including atherosclerosis, thrombosis, hypotension, necrotizing enterocolitis, bowel transplantation, trauma and chronic inflammation. Intestinal ischemia-reperfusion (IR) injury is a consequence of acute mesenteric ischemia, caused by inadequate blood flow through the mesenteric vessels, resulting in intestinal damage. Reperfusion following ischemia can further exacerbate damage of the intestine. The mechanisms of IR injury are complex and poorly understood. Therefore, experimental small animal models are critical for understanding the pathophysiology of IR injury and the development of novel therapies. Here we describe a mouse model of acute intestinal IR injury that provides reproducible injury of the small intestine without mortality. This is achieved by inducing ischemia in the region of the distal ileum by temporally occluding the peripheral and terminal collateral branches of the superior mesenteric artery for 60 min using microvascular clips. Reperfusion for 1 hr, or 2 hr after injury results in reproducible injury of the intestine examined by histological analysis. Proper position of the microvascular clips is critical for the procedure. Therefore the video clip provides a detailed visual step-by-step description of this technique. This model of intestinal IR injury can be utilized to study the cellular and molecular mechanisms of injury and regeneration. PMID:27213580

  18. Retinal vascular regeneration.

    PubMed

    Otani, Atsushi; Friedlander, Martin

    2005-01-01

    We discuss the potential use of stem cells for therapeutic angiogenesis in the treatment of retinal diseases. We demonstrate that the clinical utility of these EPC may be not limited in the treatment of ischemic retinal diseases but may also have application for the treatment of retinal degenerative disorders and for a form of cell-based gene therapy. One of the greatest potential benefits of bone marrow derived EPC therapy is the possible use of autologous grafts. Nonetheless, potential toxicities and unregulated cell growth will need to be carefully evaluated before this approach is brought to the clinics. PMID:15804843

  19. Late Lower Extremity Ischemia due to Thrombi in an Occluded Graft after Axillary-Femoral Artery Bypass

    PubMed Central

    Nishizaki, Kazuhiko; Yasukawa, Motoaki; Seki, Toshio

    2013-01-01

    We experienced a rare case of acute ischemia of the lower extremity due to embolism caused by an occluded prosthetic graft late after axillary-femoral artery bypass. A 67-year-old woman developed acute right lower extremity ischemia 7 years after axillary-femoral artery bypass, which had been performed for lower limb ischemia as a complication of acute aortic dissection (Stanford B). The graft was occluded, and the native vessel had re-canalized by the time of the present admission. She was successfully treated by disconnection of the graft followed by revascularization. PMID:23641293

  20. Experimental Branch Retinal Vein Occlusion Induces Upstream Pericyte Loss and Vascular Destabilization

    PubMed Central

    Dominguez, Elisa; Raoul, William; Calippe, Bertrand; Sahel, José-Alain; Guillonneau, Xavier; Paques, Michel; Sennlaub, Florian

    2015-01-01

    Aims Branch retinal vein occlusion (BRVO) leads to extensive vascular remodeling and is important cause of visual impairment. Although the vascular morphological changes following experimental vein occlusion have been described in a variety of models using angiography, the underlying cellular events are ill defined. Methods and Results We here show that laser-induced experimental BRVO in mice leads to a wave of TUNEL-positive endothelial cell (EC) apoptosis in the upstream vascular network associated with a transient edema and hemorrhages. Subsequently, we observe an induction of EC proliferation within the dilated vein and capillaries, detected by EdU incorporation, and the edema resolves. However, the pericytes of the upstream capillaries are severely reduced, which was associated with continuing EC apoptosis and proliferation. The vascular remodeling was associated with increased expression of TGFβ, TSP-1, but also FGF2 expression. Exposure of the experimental animals to hypoxia, when pericyte (PC) dropout had occurred, led to a dramatic increase in endothelial cell proliferation, confirming the vascular instability induced by the experimental BRVO. Conclusion Experimental BRVO leads to acute endothelial cells apoptosis and increased permeability. Subsequently the upstream vascular network remains destabilized, characterized by pericyte dropout, un-physiologically high endothelial cells turnover and sensitivity to hypoxia. These early changes might pave the way for capillary loss and subsequent chronic ischemia and edema that characterize the late stage disease. PMID:26208283

  1. Manipulations of core temperatures in ischemia-reperfusion lung injury in rabbits.

    PubMed

    Chang, Hung; Huang, Kun-Lun; Li, Min-Hui; Hsu, Ching-Wang; Tsai, Shih-Hung; Chu, Shi-Jye

    2008-01-01

    The present study was designed to determine the effect of various core temperatures on acute lung injury induced by ischemia-reperfusion (I/R) in our isolated rabbit lung model. Typical acute lung injury was successfully induced by 30 min of ischemia followed by 90 min of reperfusion observation. The I/R elicited a significant increase in pulmonary arterial pressure, microvascular permeability (measured by using the capillary filtration coefficient, Kfc), Delta Kfc ratio, lung weight gain and the protein concentration of the bronchoalveolar lavage fluid. Mild hypothermia significantly attenuated acute lung injury induced by I/R, all parameters having decreased significantly (p<0.05); conversely, mild hyperthermia did not further exacerbate acute lung injury. These experimental data suggest that mild hypothermia significantly ameliorated acute lung injury induced by ischemia-reperfusion in rabbits. PMID:17629529

  2. Association between Anger and Mental Stress-Induced Myocardial Ischemia

    PubMed Central

    Pimple, Pratik; Shah, Amit; Rooks, Cherie; Bremner, J. Douglas; Nye, Jonathon; Ibeanu, Ijeoma; Murrah, Nancy; Shallenberger, Lucy; Kelley, Mary; Raggi, Paolo; Vaccarino, Viola

    2014-01-01

    Background Mental stress-induced myocardial ischemia is associated with adverse prognosis in coronary artery disease patients. Anger is thought to be a trigger of acute coronary syndromes and is associated with increased cardiovascular risk; however, little direct evidence exists for a link between anger and myocardial ischemia. Methods [99mTc]sestamibi single-photon emission tomography was performed at rest, after mental stress (a social stressor with a speech task), and after exercise/pharmacological stress. Summed scores of perfusion abnormalities were obtained by observer-independent software. A summed difference score, the difference between stress and rest scores, was used to quantify myocardial ischemia under both stress conditions. The Spielberger's State-Trait Anger Expression Inventory was used to assess different anger dimensions. Results The mean age was 50 years, 50% were female and 60% were non-white. After adjusting for demographic factors, smoking, coronary artery disease severity, depressive and anxiety symptoms, each interquartile range increment in state-anger score was associated with 0.36 units adjusted increase in ischemia as measured by the summed difference score (95% CI: 0.14-0.59); the corresponding association for trait-anger was 0.95 (95% CI: 0.21-1.69). Anger expression scales were not associated ischemia. None of the anger dimensions were related to ischemia during exercise/pharmacological stress. Conclusion Anger, both as an emotional state and as a personality trait, is significantly associated with propensity to develop myocardial ischemia during mental stress, but not during exercise/pharmacological stress. Patients with this psychological profile may be at increased risk for silent ischemia induced by emotional stress and this may translate into worse prognosis. PMID:25497256

  3. Reprogramming of adult rod photoreceptors prevents retinal degeneration

    PubMed Central

    Montana, Cynthia L.; Kolesnikov, Alexander V.; Shen, Susan Q.; Myers, Connie A.; Kefalov, Vladimir J.; Corbo, Joseph C.

    2013-01-01

    A prime goal of regenerative medicine is to direct cell fates in a therapeutically useful manner. Retinitis pigmentosa is one of the most common degenerative diseases of the eye and is associated with early rod photoreceptor death followed by secondary cone degeneration. We hypothesized that converting adult rods into cones, via knockdown of the rod photoreceptor determinant Nrl, could make the cells resistant to the effects of mutations in rod-specific genes, thereby preventing secondary cone loss. To test this idea, we engineered a tamoxifen-inducible allele of Nrl to acutely inactivate the gene in adult rods. This manipulation resulted in reprogramming of rods into cells with a variety of cone-like molecular, histologic, and functional properties. Moreover, reprogramming of adult rods achieved cellular and functional rescue of retinal degeneration in a mouse model of retinitis pigmentosa. These findings suggest that elimination of Nrl in adult rods may represent a unique therapy for retinal degeneration. PMID:23319618

  4. Retinal vein occlusion

    MedlinePlus

    ... Berrocal MH, Rodriguez FJ, et al. Pan-American Collaborative Retina Study Group (PACORES). Comparison of two doses ... retinal vein occlusion: results from the Pan-American Collaborative Retina Study Group at 6 months of follow- ...

  5. Preservation of retinal structure and function after cilioretinal artery occlusion: a case report.

    PubMed

    Brown, Craig J

    2016-01-01

    Cilioretinal artery occlusion is a cause of sudden, often catastrophic loss of central vision. There are no established effective treatments. Recently, a patient presented 24 hours after a cilioretinal artery occlusion, following a cardiac catheterization prior to which her blood thinners had been discontinued. Lacking an effective way to address the severe retinal ischemic oxidative stress, she was offered, under compassionate use, a multivitamin complex designed to address retinal ischemia and oxidative stress. Significant components of this product are L-methylfolate and n-acetyl cysteine. The patient experienced a rapid unexpected improvement in vision and preservation of retinal structure, suggesting that marked improvement in retinal artery occlusions outcomes may be possible as late as 24 hours postocclusion. This is the third reported case of cilioretinal artery occlusion associated with cardiac catheterization. PMID:26929671

  6. Preservation of retinal structure and function after cilioretinal artery occlusion: a case report

    PubMed Central

    Brown, Craig J

    2016-01-01

    Cilioretinal artery occlusion is a cause of sudden, often catastrophic loss of central vision. There are no established effective treatments. Recently, a patient presented 24 hours after a cilioretinal artery occlusion, following a cardiac catheterization prior to which her blood thinners had been discontinued. Lacking an effective way to address the severe retinal ischemic oxidative stress, she was offered, under compassionate use, a multivitamin complex designed to address retinal ischemia and oxidative stress. Significant components of this product are L-methylfolate and n-acetyl cysteine. The patient experienced a rapid unexpected improvement in vision and preservation of retinal structure, suggesting that marked improvement in retinal artery occlusions outcomes may be possible as late as 24 hours postocclusion. This is the third reported case of cilioretinal artery occlusion associated with cardiac catheterization. PMID:26929671

  7. Retinal detachment in pseudophakia.

    PubMed

    Galin, M A; Poole, T A; Obstbaum, S A

    1979-07-01

    In a series of cataract patients excluding myopic individuals, under age 60 years, and cases in which vitreous loss occurred, retinal detachment was no less frequent after intracapsular cataract extraction and Sputnik iris supported lenses than in controls. Both groups were followed up for a minimum of two years. The detachments predominantly occurred from retinal breaks in areas of the retina that looked normal preoperatively. PMID:464014

  8. Giant retinal tears.

    PubMed

    Shunmugam, Manoharan; Ang, Ghee Soon; Lois, Noemi

    2014-01-01

    A giant retinal tear (GRT) is a full-thickness neurosensory retinal break that extends circumferentially around the retina for three or more clock hours in the presence of a posteriorly detached vitreous. Its incidence in large population-based studies has been estimated as 1.5% of rhegmatogenous retinal detachments, with a significant male preponderance, and bilaterality in 12.8%. Most GRTs are idiopathic, with trauma, hereditary vitreoretinopathies and high myopia each being causative in decreasing frequency. The vast majority of GRTs are currently managed with a pars plana vitrectomy; the use of adjunctive circumferential scleral buckling is debated, but no studies have shown a clear anatomical or visual advantage with its use. Similarly, silicone oil tamponade does not influence long-term outcomes when compared with gas. Primary and final retinal reattachment rates are achieved in 88% and 95% of patients, respectively. Even when the retina remains attached, however, visual recovery may be limited. Furthermore, fellow eyes of patients with a GRT are at higher risk of developing retinal tears and retinal detachment. Prophylactic treatment under these circumstances may be considered but there is no firm evidence of its efficacy at the present time. PMID:24138895

  9. Finite element modeling of retinal prosthesis mechanics

    NASA Astrophysics Data System (ADS)

    Basinger, B. C.; Rowley, A. P.; Chen, K.; Humayun, M. S.; Weiland, J. D.

    2009-10-01

    Epiretinal prostheses used to treat degenerative retina diseases apply stimulus via an electrode array fixed to the ganglion cell side of the retina. Mechanical pressure applied by these arrays to the retina, both during initial insertion and throughout chronic use, could cause sufficient retinal damage to reduce the device's effectiveness. In order to understand and minimize potential mechanical damage, we have used finite element analysis to model mechanical interactions between an electrode array and the retina in both acute and chronic loading configurations. Modeling indicates that an acute tacking force distributes stress primarily underneath the tack site and heel edge of the array, while more moderate chronic stresses are distributed more evenly underneath the array. Retinal damage in a canine model chronically implanted with a similar array occurred in correlating locations, and model predictions correlate well with benchtop eyewall compression tests. This model provides retinal prosthesis researchers with a tool to optimize the mechanical electrode array design, but the techniques used here represent a unique effort to combine a modifiable device and soft biological tissues in the same model and those techniques could be extended to other devices that come into mechanical contact with soft neural tissues.

  10. The evolving concept of physiological ischemia training vs. ischemia preconditioning.

    PubMed

    Ni, Jun; Lu, Hongjian; Lu, Xiao; Jiang, Minghui; Peng, Qingyun; Ren, Caili; Xiang, Jie; Mei, Chengyao; Li, Jianan

    2015-11-01

    Ischemic heart diseases are the leading cause of death with increasing numbers of patients worldwide. Despite advances in revascularization techniques, angiogenic therapies remain highly attractive. Physiological ischemia training, which is first proposed in our laboratory, refers to reversible ischemia training of normal skeletal muscles by using a tourniquet or isometric contraction to cause physiologic ischemia for about 4 weeks for the sake of triggering molecular and cellular mechanisms to promote angiogenesis and formation of collateral vessels and protect remote ischemia areas. Physiological ischemia training therapy augments angiogenesis in the ischemic myocardium by inducing differential expression of proteins involved in energy metabolism, cell migration, protein folding, and generation. It upregulates the expressions of vascular endothelial growth factor, and induces angiogenesis, protects the myocardium when infarction occurs by increasing circulating endothelial progenitor cells and enhancing their migration, which is in accordance with physical training in heart disease rehabilitation. These findings may lead to a new approach of therapeutic angiogenesis for patients with ischemic heart diseases. On the basis of the promising results in animal studies, studies were also conducted in patients with coronary artery disease without any adverse effect in vivo, indicating that physiological ischemia training therapy is a safe, effective and non-invasive angiogenic approach for cardiovascular rehabilitation. Preconditioning is considered to be the most protective intervention against myocardial ischemia-reperfusion injury to date. Physiological ischemia training is different from preconditioning. This review summarizes the preclinical and clinical data of physiological ischemia training and its difference from preconditioning. PMID:26664354

  11. Progressive outer retinal necrosis-like retinitis in immunocompetent hosts.

    PubMed

    Chawla, Rohan; Tripathy, Koushik; Gogia, Varun; Venkatesh, Pradeep

    2016-01-01

    We describe two young immunocompetent women presenting with bilateral retinitis with outer retinal necrosis involving posterior pole with centrifugal spread and multifocal lesions simulating progressive outer retinal necrosis (PORN) like retinitis. Serology was negative for HIV and CD4 counts were normal; however, both women were on oral steroids at presentation for suspected autoimmune chorioretinitis. The retinitis in both eyes responded well to oral valaciclovir therapy. However, the eye with the more fulminant involvement developed retinal detachment with a loss of vision. Retinal atrophy was seen in the less involved eye with preservation of vision. Through these cases, we aim to describe a unique evolution of PORN-like retinitis in immunocompetent women, which was probably aggravated by a short-term immunosuppression secondary to oral steroids. PMID:27511757

  12. The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats

    PubMed Central

    Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat

    2015-01-01

    Objective The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Methods Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. Results The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (p<0.05). Catalase and superoxide dismutase levels of the kefir group were significantly higher than ischemia group (p<0.05). In histopathological samples, the kefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (p<0.05). In immunohistochemical staining, hipoxia-inducible factor-1α and caspase 3 immunopositive neurons were significantly decreased in kefir group compared with ischemia group (p<0.05). The neurological deficit scores of kefir group were significantly higher than ischemia group at 24 h (p<0.05). Conclusion Our study revealed that kefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future. PMID:26113960

  13. Photovoltaic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Loudin, James; Mathieson, Keith; Kamins, Ted; Wang, Lele; Galambos, Ludwig; Huie, Philip; Sher, Alexander; Harris, James; Palanker, Daniel

    2011-03-01

    Electronic retinal prostheses seek to restore sight to patients suffering from retinal degenerative disorders. Implanted electrode arrays apply patterned electrical stimulation to surviving retinal neurons, producing visual sensations. All current designs employ inductively coupled coils to transmit power and/or data to the implant. We present here the design and initial testing of a photovoltaic retinal prosthesis fabricated with a pixel density of up to 177 pixels/mm2. Photodiodes within each pixel of the subretinal array directly convert light to stimulation current, avoiding the use of bulky coil implants, decoding electronics, and wiring, and thereby reducing surgical complexity. A goggles-mounted camera captures the visual scene and transmits the data stream to a pocket processor. The resulting images are projected into the eyes by video goggles using pulsed, near infrared (~900 nm) light. Prostheses with three pixel densities (15, 55, and 177 pix/mm2) are being fabricated, and tests indicate a charge injection limit of 1.62 mC/cm2 at 25Hz. In vitro tests of the photovoltaic retinal stimulation using a 512-element microelectrode array have recorded stimulated spikes from the ganglion cells, with latencies in the 1-100ms range, and with peak irradiance stimulation thresholds varying from 0.1 to 1 mW/mm2. With 1ms pulses at 25Hz the average irradiance is more than 100 times below the IR retinal safety limit. Elicited retinal response disappeared upon the addition of synaptic blockers, indicating that the inner retina is stimulated rather than the ganglion cells directly, and raising hopes that the prosthesis will preserve some of the retina's natural signal processing.

  14. Case report of optic disc drusen with simultaneous peripapillary subretinal hemorrhage and central retinal vein occlusion.

    PubMed

    Law, David Zhiwei; Yang, Francine Pei Lin; Teoh, Stephen Charn Beng

    2014-01-01

    A 52-year-old Chinese gentleman presented with right eye floaters and photopsia over one week. His visual acuities were 20/20 bilaterally. Posterior segment examination showed a right eye swollen optic disc and central retinal vein occlusion (CRVO) associated with an area of subretinal hemorrhage adjacent to the optic disc. Fundus fluorescein (FA) and indocyanine green angiographies (ICGA) of the right eye did not demonstrate choroidal neovascularization (CNV), polypoidal choroidal vasculopathy (PCV), or retinal ischemia. Ultrasound B-scan revealed optic disc drusen (ODD). In view of good vision and absence of CNV, he was managed conservatively with spontaneous resolution after two months. Commonly, ODD may directly compress and mechanically rupture subretinal vessels at the optic disc, resulting in peripapillary subretinal hemorrhage, as was likely the case in our patient. Mechanical impairment of peripapillary circulation also results in retinal ischemia and may trigger the development of choroidal neovascularization (CNV) and/or polypoidal choroidal vasculopathy (PCV), leading to subretinal haemorrhage. Compromise in central venous outflow with increased retinal central venous pressure from the direct mechanical effects of enlarging ODD results in central retinal vein occlusion (CRVO). Patients with subretinal hemorrhage and CRVO from ODD should be monitored closely for the development of potentially sight-threatening complications. PMID:25544921

  15. Hyperspectral retinal imaging with a spectrally tunable light source

    NASA Astrophysics Data System (ADS)

    Francis, Robert P.; Zuzak, Karel J.; Ufret-Vincenty, Rafael

    2011-03-01

    Hyperspectral retinal imaging can measure oxygenation and identify areas of ischemia in human patients, but the devices used by current researchers are inflexible in spatial and spectral resolution. We have developed a flexible research prototype consisting of a DLP®-based spectrally tunable light source coupled to a fundus camera to quickly explore the effects of spatial resolution, spectral resolution, and spectral range on hyperspectral imaging of the retina. The goal of this prototype is to (1) identify spectral and spatial regions of interest for early diagnosis of diseases such as glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR); and (2) define required specifications for commercial products. In this paper, we describe the challenges and advantages of using a spectrally tunable light source for hyperspectral retinal imaging, present clinical results of initial imaging sessions, and describe how this research can be leveraged into specifying a commercial product.

  16. Non-occlusive mesenteric ischemia.

    PubMed

    Lock, G; Schölmerich, J

    1995-07-01

    Non-occlusive disease of the mesentery is still a rather underdiagnosed and underestimated condition. It is associated with circumstances that may compromise circulation or the intake of drugs that may lower mesenteric blood flow. Pathophysiologically, a "low flow syndrome" of mesenteric circulation is followed by vasoconstriction; a reperfusion injury may contribute to the ischemic injury. Histopathological changes vary between superficial localized lesions and transmural gangrene. Diagnosis within the initial 24 hours of the development of symptoms is crucial for prognosis but remains a difficult task. Clinical presentation, laboratory tests and ultrasound lack specificity; the role of duplex ultrasound, tonometry and reflectance spectophotometry is still under evaluation. Mesenteric angiography remains the only reliable diagnostic tool and should be applied early in all patients in whom acute mesenteric ischemia is a real possibility. Therapy is aimed at the rapid correction of predisposing and precipitating factors and an effective treatment of mesenteric vasoconstriction. Treatment of choice is a papaverine infusion into the superior mesenteric artery via an angiography catheter. Patients with peritoneal signs have to be treated surgically. PMID:7590571

  17. Hemorrhagic Occlusive Retinal Vasculitis After First Eye Cataract Surgery Without Subsequent Second Eye Involvement.

    PubMed

    Balducci, Nicole; Savini, Giacomo; Barboni, Piero; Ducoli, Pietro; Ciardella, Antonio

    2016-08-01

    A case of monocular postoperative hemorrhagic occlusive retinal vasculitis (HORV) after uncomplicated bilateral cataract surgery is described. HORV is a severe syndrome that leads to painless visual loss after uncomplicated cataract surgery. The same surgical procedure was adopted in both eyes except for the use of intracameral vancomycin, which was injected only in the eye that developed HORV. Diffuse retinal ischemia with vascular sheathing and intraretinal hemorrhages were detected during the fourth postoperative day. Despite treatment, the patient developed severe neovascular glaucoma. This case supports the causative role of vancomycin in the pathogenesis of HORV and suggests avoiding it for chemoprophylaxis. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:764-766.]. PMID:27548454

  18. Probabilistic retinal vessel segmentation

    NASA Astrophysics Data System (ADS)

    Wu, Chang-Hua; Agam, Gady

    2007-03-01

    Optic fundus assessment is widely used for diagnosing vascular and non-vascular pathology. Inspection of the retinal vasculature may reveal hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. Due to various imaging conditions retinal images may be degraded. Consequently, the enhancement of such images and vessels in them is an important task with direct clinical applications. We propose a novel technique for vessel enhancement in retinal images that is capable of enhancing vessel junctions in addition to linear vessel segments. This is an extension of vessel filters we have previously developed for vessel enhancement in thoracic CT scans. The proposed approach is based on probabilistic models which can discern vessels and junctions. Evaluation shows the proposed filter is better than several known techniques and is comparable to the state of the art when evaluated on a standard dataset. A ridge-based vessel tracking process is applied on the enhanced image to demonstrate the effectiveness of the enhancement filter.

  19. Assessment of Myocardial Ischemia with Cardiovascular Magnetic Resonance

    PubMed Central

    Heydari, Bobak; Jerosch-Herold, Michael; Kwong, Raymond Y.

    2014-01-01

    Assessment of myocardial ischemia in symptomatic patients remains a common and challenging clinical situation faced by physicians. Risk stratification by presence of ischemia provides important utility for both prognostic assessment and management. Unfortunately, current noninvasive modalities possess numerous limitations and have limited prognostic capacity. More recently, ischemia assessment by cardiovascular magnetic resonance (CMR) has been shown to be a safe, available, and potentially cost-effective alternative with both high diagnostic and prognostic accuracy. Cardiovascular magnetic resonance has numerous advantages over other noninvasive methods, including high temporal and spatial resolution, relatively few contraindications, and absence of ionizing radiation. Furthermore, studies assessing the clinical utility and cost effectiveness of CMR in the short-term setting for patients without evidence of an acute myocardial infarction have also demonstrated favorable results. This review will cover techniques of ischemia assessment with CMR by both stress-induced wall motion abnormalities as well as myocardial perfusion imaging. The diagnostic and prognostic performance studies will also be reviewed, and the use of CMR for ischemia assessment will be compared with other commonly used noninvasive modalities. PMID:22014487

  20. Retinal lesions in septicemia.

    PubMed

    Neudorfer, M; Barnea, Y; Geyer, O; Siegman-Igra, Y

    1993-12-15

    We explored the association between septicemia and specific retinal lesions in a prospective controlled study. Hemorrhages, cotton-wool spots, or Roth's spots were found in 24 of 101 septicemic patients (24%), compared to four of 99 age- and gender-matched control patients (4%) (P = .0002). There was no significant association between types of organisms or focus of infection and the presence of specific lesions. Histologic examination of affected eyes disclosed cytoid bodies in the nerve fiber layer without inflammation. A definite association between septicemia and retinal lesions was found and indicates the need for routine ophthalmoscopy in septicemic patients. PMID:8250076

  1. Pathway to Retinal Oximetry

    PubMed Central

    Beach, James

    2014-01-01

    Events and discoveries in oxygen monitoring over the past two centuries are presented as the background from which oximetry of the human retina evolved. Achievements and the people behind them are discussed, showing parallels between the work in tissue measurements and later in the eye. Developments in the two-wavelength technique for oxygen saturation measurements in retinal vessels are shown to exploit the forms of imaging technology available over time. The last section provides a short summary of the recent research in retinal diseases using vessel oximetry. PMID:25237591

  2. [Effect of phenibut and its composition with nicotinic acid on hemostasis in rats with brain ischemia].

    PubMed

    Tiurenkov, I N; Volotova, E V; Kurkin, D V; Litvinov, A A; Tarasov, A S

    2012-01-01

    It is shown that, in rats with global cerebral ischemia modeled by a complete irreversible occlusion of the common carotid artery and forced hypotension, the hemostasis is characterized by a shift toward hypercoagulation. A single preventive introduction of phenibut and, to a greater degree, a composition of phenibut with nicotinic acid, in rats with acute cerebral ischemia reduced the extent of disturbances in the hemostasis system of experimental animals. PMID:22702103

  3. Critical ischemia time in a model of spinal cord section. A study performed on dogs

    PubMed Central

    Garcia Martinez, David; Rosales Corral, Sergio A.; Flores Soto, Mario E.; Velarde Silva, Gustavo; Portilla de Buen, Eliseo

    2006-01-01

    Vascular changes after acute spinal cord trauma are important factors that predispose quadriplegia, in most cases irreversible. Repair of the spinal blood flow helps the spinal cord recovery. The average time to arrive and perform surgery is 3 h in most cases. It is important to determine the critical ischemia time in order to offer better functional prognosis. A spinal cord section and vascular clamping of the spinal anterior artery at C5–C6 model was used to determine critical ischemia time. The objective was to establish a critical ischemia time in a model of acute spinal cord section. Four groups of dogs were used, anterior approach and vascular clamp of spinal anterior artery with 1, 2, 3, and 4 h of ischemia and posterior hemisection of spinal cord at C5–C6 was performed. Clinical evaluation was made during 12 weeks and morphological evaluation at the end of this period. We obtained a maximal neurological coordination at 23 days average. Two cases showed sequels of right upper limb paresis at 1 and 3 ischemia hours. There was nerve conduction delay of 56% at 3 h of ischemia. Morphological examination showed 25% of damaged area. The VIII and IX Rexed’s laminae were the most affected. The critical ischemia time was 3 h. Dogs with 4 h did not exhibit any recovery. PMID:17024402

  4. Solid organ abdominal ischemia, part I: clinical features, etiology, imaging findings, and management.

    PubMed

    Ricci, Zina J; Oh, Sarah K; Stein, Marjorie W; Kaul, Bindu; Flusberg, Milana; Chernyak, Victoria; Rozenblit, Alla M; Mazzariol, Fernanda A

    2016-01-01

    Solid organ abdominal ischemia commonly presents with acute pain prompting radiologic evaluation and often requires urgent treatment. Despite different risk factors and anatomic differences, most solid organ ischemia is due to arterial or venous occlusion and, less frequently, a low-flow state. Radiologic diagnosis is critical, as clinical presentations are often nonspecific. Contrast-enhanced computed tomography (CT) is the modality of choice (except in adnexal torsion) with magnetic resonance imaging (MRI) useful in equivocal cases or follow-up of ischemic disease. This article will provide a pictorial review of the CT and MRI features of solid abdominal organ ischemia while highlighting key clinical features, etiology, and management. PMID:27317217

  5. [Protective effect of lornoxicam on development of myocardial infarction in rats under conditions of ischemia and ischemia-reperfusion].

    PubMed

    Gavrilova, S A; Lipina, T V; Zagidullin, T R; Fominykh, E S; Golubeva, A V; Varenik, E N; Parnes, E Ia; Semenov, P A

    2008-01-01

    Activation of inflammation and enzyme cyclooxygenase with formation of proinflammatory prostaglandins is a key element of development of myocardial infarction in patients with acute coronary syndrome. Basing on literature data and own experience we suggested that single intravenous injection of 230 mg/kg of nonselective inhibitor of type 1 and 2 cyclooxygenase lornaxicam in the phase of initialization of inflammation 20 min after onset of ischemia would lead to reduction of myocardial infarction volume in rats in irreversible ischemia and ischemia with subsequent reperfusion. The conducted study allowed to reveal that administration of lornoxicam in recommended for human use dose lowered mortality of animals and increased number of capillaries per one cardiomyocyte in case of irreversible coronary artery occlusion. In ischemia-reperfusion as in irreversible myocardial ischemia lornoxicam reduced volume of necrosis and degree of thinning of left ventricular wall in the region of infarction, and lowered volume of connective tissue in periinfarction zone of the myocardium in remote period. PMID:19076093

  6. Pulmonary leukosequestration induced by hind limb ischemia.

    PubMed Central

    Anner, H; Kaufman, R P; Kobzik, L; Valeri, C R; Shepro, D; Hechtman, H B

    1987-01-01

    Lower torso ischemia leads to acute respiratory failure, an event associated with the accumulation of inflammatory cells in the lungs. This study tests whether ischemia-induced eicosanoid synthesis leads to polymorphonuclear leukocyte (PMN) accumulation in the lungs. Anesthetized rats (N = 51) were randomized into five groups: nonischemic sham rats (N = 10); the remaining four groups were rats made ischemic for 4 hours with bilateral thigh tourniquets treated just before tourniquet release with saline vehicle (N = 17): the thromboxane (Tx) synthase inhibitor OKY-046 (Ono Pharmaceutica, Osaka, Japan) 2 mg/kg intravenously every 2 hours (N = 8); the lipoxygenase inhibitor diethylcarbamazine (DEC) (Sigma, St. Louis, MO) 0.2 mg/kg/min intravenously (N = 8); the platelet-activating factor receptor antagonist SRI (Sandoz Inc., East Hanover, NJ) 63-072 3 mg/kg intravenously every 30 minutes (N = 8). Four hours after ischemia, plasma TxB2 levels in the ischemic placebo-treated group was 3570 +/- 695 pg/mL, compared with 495 +/- 73 pg/mL in sham rats (p less than 0.001). Lung microscopy showed foci of proteinaceous exudate in alveoli and 121 +/- 10 PMN/20 high power fields (HPF) compared with 59 +/- 9 PMN/20 HPF in the sham group (p less than 0.001). One day after ischemia PMN accumulations remained elevated at 119 PMN/20 HPF. Pretreatment with OKY-046 led to reduced TxB2 levels of 149 +/- 17 pg/mL, normal lung histology, and 83 +/- 13 PMN/20 HPF, a value similar to that of the sham group and lower than that of the placebo-treated group (p less than 0.05). Treatment with DEC yielded TxB2 levels of 1419 +/- 492 pg/mL, which was lower than that of the placebo group (p less than 0.05) but higher than that of the sham group (p less than 0.05). Microscopy showed normal lungs with 79 +/- 7 PMN/20 HPF lower than the placebo group (p less than 0.05). SRI 63-072 did not inhibit Tx synthesis or leukosequestration in the lungs. Platelet counts decreased in all groups relative to sham

  7. Ischemia causes muscle fatigue.

    PubMed

    Murthy, G; Hargens, A R; Lehman, S; Rempel, D M

    2001-05-01

    The purpose of this investigation was to determine whether ischemia, which reduces oxygenation in the extensor carpi radialis (ECR) muscle, causes a reduction in muscle force production. In eight subjects, muscle oxygenation (TO2) of the right ECR was measured noninvasively and continuously using near infrared spectroscopy (NIRS) while muscle twitch force was elicited by transcutaneous electrical stimulation (1 Hz, 0.1 ms). Baseline measurements of blood volume, muscle oxygenation and twitch force were recorded continuously, then a tourniquet on the upper arm was inflated to one of five different pressure levels: 20, 40, 60 mm Hg (randomized order) and diastolic (69 +/- 9.8 mm Hg) and systolic (106 +/- 12.8 mm Hg) blood pressures. Each pressure level was maintained for 3-5 min, and was followed by a recovery period sufficient to allow measurements to return to baseline. For each respective tourniquet pressure level, mean TO2 decreased from resting baseline (100% TO2) to 99 +/- 1.2% (SEM), 96 +/- 1.9%, 93 +/- 2.8%, 90 +/- 2.5%, and 86 +/- 2.7%, and mean twitch force decreased from resting baseline (100% force) to 99 +/- 0.7% (SEM), 96 +/- 2.7%, 93 +/- 3.1%, 88 +/- 3.2%, and 86 +/- 2.6%. Muscle oxygenation and twitch force at 60 mm Hg tourniquet compression and above were significantly lower (P < 0.05) than baseline value. Reduced twitch force was correlated in a dose-dependent manner with reduced muscle oxygenation (r = 0.78, P < 0.001). Although the correlation does not prove causation, the results indicate that ischemia leading to a 7% or greater reduction in muscle oxygenation causes decreased muscle force production in the forearm extensor muscle. Thus, ischemia associated with a modest decline in TO2 causes muscle fatigue. PMID:11398857

  8. Ischemia causes muscle fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D. M.

    2001-01-01

    The purpose of this investigation was to determine whether ischemia, which reduces oxygenation in the extensor carpi radialis (ECR) muscle, causes a reduction in muscle force production. In eight subjects, muscle oxygenation (TO2) of the right ECR was measured noninvasively and continuously using near infrared spectroscopy (NIRS) while muscle twitch force was elicited by transcutaneous electrical stimulation (1 Hz, 0.1 ms). Baseline measurements of blood volume, muscle oxygenation and twitch force were recorded continuously, then a tourniquet on the upper arm was inflated to one of five different pressure levels: 20, 40, 60 mm Hg (randomized order) and diastolic (69 +/- 9.8 mm Hg) and systolic (106 +/- 12.8 mm Hg) blood pressures. Each pressure level was maintained for 3-5 min, and was followed by a recovery period sufficient to allow measurements to return to baseline. For each respective tourniquet pressure level, mean TO2 decreased from resting baseline (100% TO2) to 99 +/- 1.2% (SEM), 96 +/- 1.9%, 93 +/- 2.8%, 90 +/- 2.5%, and 86 +/- 2.7%, and mean twitch force decreased from resting baseline (100% force) to 99 +/- 0.7% (SEM), 96 +/- 2.7%, 93 +/- 3.1%, 88 +/- 3.2%, and 86 +/- 2.6%. Muscle oxygenation and twitch force at 60 mm Hg tourniquet compression and above were significantly lower (P < 0.05) than baseline value. Reduced twitch force was correlated in a dose-dependent manner with reduced muscle oxygenation (r = 0.78, P < 0.001). Although the correlation does not prove causation, the results indicate that ischemia leading to a 7% or greater reduction in muscle oxygenation causes decreased muscle force production in the forearm extensor muscle. Thus, ischemia associated with a modest decline in TO2 causes muscle fatigue.

  9. Oligodendrogenesis after cerebral ischemia

    PubMed Central

    Zhang, Ruilan; Chopp, Michael; Zhang, Zheng Gang

    2013-01-01

    Neural stem cells in the subventricular zone (SVZ) of the lateral ventricle of adult rodent brain generate oligodendrocyte progenitor cells (OPCs) that disperse throughout the corpus callosum and striatum where some of OPCs differentiate into mature oligodendrocytes. Studies in animal models of stroke demonstrate that cerebral ischemia induces oligodendrogenesis during brain repair processes. This article will review evidence of stroke-induced proliferation and differentiation of OPCs that are either resident in white matter or are derived from SVZ neural progenitor cells and of therapies that amplify endogenous oligodendrogenesis in ischemic brain. PMID:24194700

  10. Adenosine A3 receptor activation is neuroprotective against retinal neurodegeneration.

    PubMed

    Galvao, Joana; Elvas, Filipe; Martins, Tiago; Cordeiro, M Francesca; Ambrósio, António Francisco; Santiago, Ana Raquel

    2015-11-01

    Death of retinal neural cells, namely retinal ganglion cells (RGCs), is a characteristic of several retinal neurodegenerative diseases. Although the role of adenosine A3 receptor (A3R) in neuroprotection is controversial, A3R activation has been reported to afford protection against several brain insults, with few studies in the retina. In vitro models (retinal neural and organotypic cultures) and animal models [ischemia-reperfusion (I-R) and partial optic nerve transection (pONT)] were used to study the neuroprotective properties of A3R activation against retinal neurodegeneration. The A3R selective agonist (2-Cl-IB-MECA, 1 μM) prevented apoptosis (TUNEL(+)-cells) induced by kainate and cyclothiazide (KA + CTZ) in retinal neural cultures (86.5 ± 7.4 and 37.2 ± 6.1 TUNEL(+)-cells/field, in KA + CTZ and KA + CTZ + 2-Cl-IB-MECA, respectively). In retinal organotypic cultures, 2-Cl-IB-MECA attenuated NMDA-induced cell death, assessed by TUNEL (17.3 ± 2.3 and 8.3 ± 1.2 TUNEL(+)-cells/mm(2) in NMDA and NMDA+2-Cl-IB-MECA, respectively) and PI incorporation (ratio DIV4/DIV2 3.3 ± 0.3 and 1.3 ± 0.1 in NMDA and NMDA+2-Cl-IB-MECA, respectively) assays. Intravitreal 2-Cl-IB-MECA administration afforded protection against I-R injury decreasing the number of TUNEL(+) cells by 72%, and increased RGC survival by 57%. Also, intravitreal administration of 2-Cl-IB-MECA inhibited apoptosis (from 449.4 ± 37.8 to 207.6 ± 48.9 annexin-V(+)-cells) and RGC loss (from 1.2 ± 0.6 to 8.1 ± 1.7 cells/mm) induced by pONT. This study demonstrates that 2-Cl-IB-MECA is neuroprotective to the retina, both in vitro and in vivo. Activation of A3R may have great potential in the management of retinal neurodegenerative diseases characterized by RGC death, as glaucoma and diabetic retinopathy, and ischemic diseases. PMID:26297614

  11. Early retinal inflammatory biomarkers in the middle cerebral artery occlusion model of ischemic stroke

    PubMed Central

    Ritzel, Rodney M.; Pan, Sarah J.; Verma, Rajkumar; Wizeman, John; Crapser, Joshua; Patel, Anita R.; Lieberman, Richard; Mohan, Royce

    2016-01-01

    Purpose The transient middle cerebral artery occlusion (MCAO) model of stroke is one of the most commonly used models to study focal cerebral ischemia. This procedure also results in the simultaneous occlusion of the ophthalmic artery that supplies the retina. Retinal cell death is seen days after reperfusion and leads to functional deficits; however, the mechanism responsible for this injury has not been investigated. Given that the eye may have a unique ocular immune response to an ischemic challenge, this study examined the inflammatory response to retinal ischemia in the MCAO model. Methods Young male C57B/6 mice were subjected to 90-min transient MCAO and were euthanized at several time points up to 7 days. Transcription of inflammatory cytokines was measured with quantitative real-time PCR, and immune cell activation (e.g., phagocytosis) and migration were assessed with ophthalmoscopy and flow cytometry. Results Observation of the affected eye revealed symptoms consistent with Horner’s syndrome. Light ophthalmoscopy confirmed the reduced blood flow of the retinal arteries during occlusion. CX3CR1-GFP reporter mice were then employed to evaluate the extent of the ocular microglia and monocyte activation. A significant increase in green fluorescent protein (GFP)-positive macrophages was seen throughout the ischemic area compared to the sham and contralateral control eyes. RT–PCR revealed enhanced expression of the monocyte chemotactic molecule CCL2 early after reperfusion followed by a delayed increase in the proinflammatory cytokine TNF-α. Further analysis of peripheral leukocyte recruitment by flow cytometry determined that monocytes and neutrophils were the predominant immune cells to infiltrate at 72 h. A transient reduction in retinal microglia numbers was also observed, demonstrating the ischemic sensitivity of these cells. Blood–eye barrier permeability to small and large tracer molecules was increased by 72 h. Retinal microglia exhibited enhanced

  12. β1 Integrin-Focal Adhesion Kinase (FAK) Signaling Modulates Retinal Ganglion Cell (RGC) Survival

    PubMed Central

    Santos, Andrea Rachelle C.; Corredor, Raul G.; Obeso, Betty Albo; Trakhtenberg, Ephraim F.; Wang, Ying; Ponmattam, Jamie; Dvoriantchikova, Galina; Ivanov, Dmitry; Shestopalov, Valery I.; Goldberg, Jeffrey L.; Fini, Mary Elizabeth; Bajenaru, Michaela Livia

    2012-01-01

    Extracellular matrix (ECM) integrity in the central nervous system (CNS) is essential for neuronal homeostasis. Signals from the ECM are transmitted to neurons through integrins, a family of cell surface receptors that mediate cell attachment to ECM. We have previously established a causal link between the activation of the matrix metalloproteinase-9 (MMP-9), degradation of laminin in the ECM of retinal ganglion cells (RGCs), and RGC death in a mouse model of retinal ischemia-reperfusion injury (RIRI). Here we investigated the role of laminin-integrin signaling in RGC survival in vitro, and after ischemia in vivo. In purified primary rat RGCs, stimulation of the β1 integrin receptor with laminin, or agonist antibodies enhanced RGC survival in correlation with activation of β1 integrin’s major downstream regulator, focal adhesion kinase (FAK). Furthermore, β1 integrin binding and FAK activation were required for RGCs’ survival response to laminin. Finally, in vivo after RIRI, we observed an up-regulation of MMP-9, proteolytic degradation of laminin, decreased RGC expression of β1 integrin, FAK and Akt dephosphorylation, and reduced expression of the pro-survival molecule bcl-xL in the period preceding RGC apoptosis. RGC death was prevented, in the context of laminin degradation, by maintaining β1 integrin activation with agonist antibodies. Thus, disruption of homeostatic RGC-laminin interaction and signaling leads to cell death after retinal ischemia, and maintaining integrin activation may be a therapeutic approach to neuroprotection. PMID:23118988

  13. Calpain-mediated cleavage of Beclin-1 and autophagy deregulation following retinal ischemic injury in vivo

    PubMed Central

    Russo, R; Berliocchi, L; Adornetto, A; Varano, G P; Cavaliere, F; Nucci, C; Rotiroti, D; Morrone, L A; Bagetta, G; Corasaniti, M T

    2011-01-01

    Autophagy is the major intracellular degradation pathway that regulates long-lived proteins and organelles turnover. This process occurs at basal levels in all cells but it is rapidly upregulated in response to starvation and cellular stress. Although being recently implicated in neurodegeneration, it remains still unclear whether autophagy has a detrimental or protective role. In this study, we investigated the dynamics of the autophagic process in retinal tissue that has undergone transient ischemia, an experimental model that recapitulates features of ocular pathologies, including glaucoma, anterior ischemic optic neuropathy and retinal vessels occlusion. Retinal ischemia, induced in adult rats by increasing the intraocular pressure, was characterized by a reduction in the phosphatidylethanolamine-modified form of LC3 (LC3II) and by a significant decrease in Beclin-1. The latter event was associated with a proteolytic cleavage of Beclin-1, leading to the accumulation of a 50-kDa fragment. This event was prevented by intravitreal treatment with the non-competitive N-methyl-D-aspartate antagonist MK801 and calpain inhibitors or by calpain knockdown. Blockade of autophagy by pharmacological inhibition or Beclin-1 silencing in RGC-5 increased cell death, suggesting a pro-survival role of the autophagic process in this neuronal cell type. Altogether, our results provide original evidence for calpain-mediated cleavage of Beclin-1 and deregulation of basal autophagy in the rat retina that has undergone ocular ischemia/reperfusion injury. PMID:21490676

  14. Meningocele-induced positional syncope and retinal hemorrhage.

    PubMed

    Bekavac, Ivo; Halloran, John I

    2003-05-01

    Meningocele is recognized as a rare, usually asymptomatic condition not associated with acute neurologic symptoms. We herein describe the case of a patient with a longstanding history of a lower back "mass" and recurrent syncope who became acutely unresponsive and developed bilateral retinal hemorrhages when she was placed in the supine position to undergo carotid sonography. MR imaging revealed a large, dorsal lumbar meningocele. The episode likely was caused by acutely increased intracranial pressure caused by displacement of CSF from the meningocele intracranially. PMID:12748081

  15. The Unfolded Protein Response in Retinal Vascular Diseases: Implications and Therapeutic Potential Beyond Protein Folding

    PubMed Central

    Zhang, Sarah X.; Ma, Jacey H.; Bhatta, Maulasri; Fliesler, Steven J.; Wang, Joshua J.

    2015-01-01

    Angiogenesis is a complex, step-wise process of new vessel formation that is involved in both normal embryonic development as well as postnatal pathological processes, such as cancer, cardiovascular disease, and diabetes. Aberrant blood vessel growth, also known as neovascularization, in the retina and the choroid is a major cause of vision loss in severe eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinopathy of prematurity, and central and branch retinal vein occlusion. Yet, retinal neovascularization is causally and dynamically associated with vasodegeneration, ischemia, and vascular remodeling in retinal tissues. Understanding the mechanisms of retinal neovascularization is an urgent unmet need for developing new treatments for these devastating diseases. Accumulating evidence suggests a vital role for the unfolded protein response (UPR) in regulation of angiogenesis, in part through coordinating the secretion of pro-angiogenic growth factors, such as VEGF, and modulating endothelial cell survival and activity. Herein, we summarize current research in the context of endoplasmic reticulum (ER) stress and UPR signaling in retinal angiogenesis and vascular remodeling, highlighting potential implications of targeting these stress response pathways in the prevention and treatment of retinal vascular diseases that result in visual deficits and blindness. PMID:25529848

  16. Fibrinogen and rhegmatogenous retinal detachment: a pilot prospective study

    PubMed Central

    Theocharis, IP

    2010-01-01

    Purpose: To examine the correlation, if any, between fibrinogen plasma levels (FPL) and the clinical features of rhegmatogenous retinal detachment (RRD). Methods: FPL were measured preoperatively in 33 patients with primary RRD. Patient characteristics and detachment features such as the numbers of breaks and the extent of the detachment were recorded; Results: No statistically significant correlation was found between FPL and the number of breaks. A statistically significant correlation was found between FPL and the extent of the RRD, even if the influence of the number of breaks was excluded. Conclusions: FPL correlate with retinal detachment extent, which implicates an acute inflammatory response to detachment traumatic phenomenon or a role of the fibrinogen molecule in retinal adhesiveness. PMID:20186280

  17. Nampt/PBEF/visfatin serum levels: a new biomarker for retinal blood vessel occlusions

    PubMed Central

    Kaja, Simon; Shah, Anna A; Haji, Shamim A; Patel, Krishna B; Naumchuk, Yuliya; Zabaneh, Alexander; Gerdes, Bryan C; Kunjukunju, Nancy; Sabates, Nelson R; Cassell, Michael A; Lord, Ron K; Pikey, Kevin P; Poulose, Abraham; Koulen, Peter

    2015-01-01

    The main objective of the study was to quantify serum levels of nicotinamide phosphoribosyltransferase (Nampt/pre-B-Cell colony-enhancing factor 1/visfatin) in subjects with a history of retinal vascular occlusions (RVOs), disease conditions characterized by pronounced ischemia, and metabolic energy deficits. A case–control study of 18 subjects with a history of RVO as well as six healthy volunteers is presented. Serum Nampt levels were quantified using a commercially available enzyme-linked immunosorbent assay kit. Serum Nampt levels were 79% lower in patients with a history of RVO compared with that in healthy volunteers (P<0.05). There was no statistically significant difference among the types of RVOs, specifically branch retinal vein occlusions (n=7), central retinal vein occlusions (n=5), hemiretinal vein occlusions (n=3), and central retinal artery occlusions (n=3; P=0.69). Further studies are needed to establish the temporal kinetics of Nampt expression and to determine whether Nampt may represent a novel biomarker to identify at-risk populations, or whether it is a druggable target with the potential to ameliorate the long-term complications associated with the condition, ie, macular edema, macular ischemia, neovascularization, and permanent loss of vision. PMID:25897200

  18. Ischemia detection from morphological QRS angle changes.

    PubMed

    Romero, Daniel; Martínez, Juan Pablo; Laguna, Pablo; Pueyo, Esther

    2016-07-01

    In this paper, an ischemia detector is presented based on the analysis of QRS-derived angles. The detector has been developed by modeling ischemic effects on the QRS angles as a gradual change with a certain transition time and assuming a Laplacian additive modeling error contaminating the angle series. Both standard and non-standard leads were used for analysis. Non-standard leads were obtained by applying the PCA technique over specific lead subsets to represent different potential locations of the ischemic zone. The performance of the proposed detector was tested over a population of 79 patients undergoing percutaneous coronary intervention in one of the major coronary arteries (LAD (n  =  25), RCA (n  =  16) and LCX (n  =  38)). The best detection performance, obtained for standard ECG leads, was achieved in the LAD group with values of sensitivity and specificity of [Formula: see text], [Formula: see text], followed by the RCA group with [Formula: see text], Sp  =  94.4 and the LCX group with [Formula: see text], [Formula: see text], notably outperforming detection based on the ST series in all cases, with the same detector structure. The timing of the detected ischemic events ranged from 30 s up to 150 s (mean  =  66.8 s) following the start of occlusion. We conclude that changes in the QRS angles can be used to detect acute myocardial ischemia. PMID:27243441

  19. Understanding STAT3 signaling in cardiac ischemia.

    PubMed

    O'Sullivan, K E; Breen, E P; Gallagher, H C; Buggy, D J; Hurley, J P

    2016-05-01

    Cardiovascular disease is the leading cause of death worldwide. It remains one of the greatest challenges to global health and will continue to dominate mortality trends in the future. Acute myocardial infarction results in 7.4 million deaths globally per annum. Current management strategies are centered on restoration of coronary blood flow via percutaneous coronary intervention, coronary artery bypass grafting and administration of anti-platelet agents. Such myocardial reperfusion accounts for 40-50 % of the final infarct size in most cases. Signaling transducer and activator of transcription 3 (STAT3) has been shown to have cardioprotective effects via canonical and non-canonical activation and modulation of mitochondrial and transcriptional responses. A significant body of in vitro and in vivo evidence suggests that activation of the STAT3 signal transduction pathway results in a cardio protective response to ischemia and attempts have been made to modulate this with therapeutic effect. Not only is STAT3 important for cardiomyocyte function, but it also modulates the cardiac microenvironment and communicates with cardiac fibroblasts. To this end, we here review the current evidence supporting the manipulation of STAT3 for therapeutic benefit in cardiac ischemia and identify areas for future research. PMID:27017613

  20. Retinal Detachment: Torn or Detached Retina Diagnosis

    MedlinePlus

    ... Eye Health / Eye Health A-Z Detached or Torn Retina Sections Retinal Detachment: What Is a Torn ... Retina Treatment Retinal Detachment Vision Simulator Retinal Detachment: Torn or Detached Retina Diagnosis Written by: Kierstan Boyd ...

  1. Retinal Detachment: Torn or Detached Retina Symptoms

    MedlinePlus

    ... Eye Health / Eye Health A-Z Detached or Torn Retina Sections Retinal Detachment: What Is a Torn ... Retina Treatment Retinal Detachment Vision Simulator Retinal Detachment: Torn or Detached Retina Symptoms Written by: Kierstan Boyd ...

  2. Uveitic angle closure glaucoma in a patient with inactive cytomegalovirus retinitis and immune recovery uveitis.

    PubMed

    Goldberg, Daniel E; Freeman, William R

    2002-01-01

    We report a case of uveitic acute angle closure glaucoma in a patient with acquired immunodeficiency syndrome (AIDS) associated with inactive cytomegalovirus retinitis and immune recovery vitritis. We conducted a long-term, follow-up examination of a 47-year-old male with AIDS and inactive cytomegalovirus retinitis caused by immune recovery on highly active antiretroviral therapy (HAART). We found vitritis and ultimate development of uveitic glaucoma in the postoperative periods following repair of retinal detachment and extracapsular cataract extraction with intraocular lens implant. An episode of acute angle closure secondary to posterior synechiae and iris bombé subsequently developed, requiring peripheral laser iridotomy. Immune recovery in the setting of inactive cytomegalovirus retinitis can result in intraocular inflammation severe enough to cause angle closure glaucoma and profound ocular morbidity. PMID:12358297

  3. Small Animal Retinal Imaging

    NASA Astrophysics Data System (ADS)

    Choi, WooJhon; Drexler, Wolfgang; Fujimoto, James G.

    Developing and validating new techniques and methods for small animal imaging is an important research area because there are many small animal models of retinal diseases such as diabetic retinopathy, age-related macular degeneration, and glaucoma [1-6]. Because the retina is a multilayered structure with distinct abnormalities occurring in different intraretinal layers at different stages of disease progression, there is a need for imaging techniques that enable visualization of these layers individually at different time points. Although postmortem histology and ultrastructural analysis can be performed for investigating microscopic changes in the retina in small animal models, this requires sacrificing animals, which makes repeated assessment of the same animal at different time points impossible and increases the number of animals required. Furthermore, some retinal processes such as neurovascular coupling cannot be fully characterized postmortem.

  4. Relief of Mesenteric Ischemia by Z-Stent Placement into the Superior Mesenteric Artery Compressed by the False Lumen of an Aortic Dissection

    SciTech Connect

    Yamakado, Koichiro; Takeda, Kan; Nomura, Yoshiyuki; Kato, Noriyuki; Hirano, Tadanori; Matsumura, Kaname; Nakagawa, Tsuyoshi; Yuasa, Hiroshi; Yada, Isao

    1998-01-15

    In a 58-year-old man acute aortic dissection compromised the origin of the superior mesenteric artery (SMA), resulting in mesenteric ischemia. After failed balloon angioplasty a Gianturco Z-stent was placed. The stenosis improved immediately, followed by resolution of the clinical signs of mesenteric ischemia. SMA flow was well preserved 1 year after stenting.

  5. Inherited Retinal Degenerative Disease Registry

    ClinicalTrials.gov

    2016-03-21

    Eye Diseases Hereditary; Retinal Disease; Achromatopsia; Bardet-Biedl Syndrome; Bassen-Kornzweig Syndrome; Batten Disease; Best Disease; Choroidal Dystrophy; Choroideremia; Cone Dystrophy; Cone-Rod Dystrophy; Congenital Stationary Night Blindness; Enhanced S-Cone Syndrome; Fundus Albipunctatus; Goldmann-Favre Syndrome; Gyrate Atrophy; Juvenile Macular Degeneration; Kearns-Sayre Syndrome; Leber Congenital Amaurosis; Refsum Syndrome; Retinitis Pigmentosa; Retinitis Punctata Albescens; Retinoschisis; Rod-Cone Dystrophy; Rod Dystrophy; Rod Monochromacy; Stargardt Disease; Usher Syndrome

  6. Alterations of Retinal Vasculature in Cystathionine–β-Synthase Heterozygous Mice

    PubMed Central

    Tawfik, Amany; Markand, Shanu; Al-Shabrawey, Mohamed; Mayo, Jamie N.; Reynolds, Jason; Bearden, Shawn E.; Ganapathy, Vadivel; Smith, Sylvia B.

    2015-01-01

    Mild to moderate hyperhomocysteinemia is prevalent in humans and is implicated in neurovascular diseases, including recently in certain retinal diseases. Herein, we used hyperhomocysteinemic mice deficient in the Cbs gene encoding cystathionine–β-synthase (Cbs+/−) to evaluate retinal vascular integrity. The Cbs+/+ (wild type) and Cbs+/− (heterozygous) mice (aged 16 to 52 weeks) were subjected to fluorescein angiography and optical coherence tomography to assess vasculature in vivo. Retinas harvested for cryosectioning or flat mount preparations were subjected to immunofluorescence microscopy to detect blood vessels (isolectin-B4), angiogenesis [anti-vascular endothelial growth factor (VEGF) and anti-CD105], gliosis [anti-glial fibrillary acidic protein (GFAP)], pericytes (anti-neural/glial antigen 2), blood-retinal barrier [anti–zonula occludens protein 1 (ZO-1) and anti-occludin], and hypoxia [anti–pimonidazole hydrochloride (Hypoxyprobe-1)]. Levels of VEGF, GFAP, ZO-1, and occludin were determined by immunoblotting. Results of these analyses showed a mild vascular phenotype in young mice, which progressed with age. Fluorescein angiography revealed progressive neovascularization and vascular leakage in Cbs+/− mice; optical coherence tomography confirmed new vessels in the vitreous by 1 year. Immunofluorescence microscopy demonstrated vascular patterns consistent with ischemia, including a capillary-free zone centrally and new vessels with capillary tufts midperipherally in older mice. This was associated with increased VEGF, CD105, and GFAP and decreased ZO-1/occludin levels in the Cbs+/− retinas. Retinal vein occlusion was observed in some Cbs+/− mouse retinas. We conclude that mild to moderate elevation of homocysteine in Cbs+/− mice is accompanied by progressive alterations in retinal vasculature characterized by ischemia, neovascularization, incompetent blood-retinal barrier, and vascular occlusion. PMID:25016930

  7. [News in Retinal Imaging].

    PubMed

    Werkmeister, R; Schmidl, D; Garhöfer, G; Schmetterer, L

    2015-09-01

    New developments in retinal imaging have revolutionised ophthalmology in recent years. In particular, optical coherence tomography (OCT) provides highly resolved and well reproducible images and has rung in a new era in ophthalmological imaging. The technology was introduced in the early 1990 s, and has rapidly developed. There have been improvements in resolution, sensitivity and processing speed. There have also been developments in functional processing. OCT angiography is the first application in routine clinical work. PMID:26372783

  8. Glutamatergic Retinal Waves

    PubMed Central

    Kerschensteiner, Daniel

    2016-01-01

    Spontaneous activity patterns propagate through many parts of the developing nervous system and shape the wiring of emerging circuits. Prior to vision, waves of activity originating in the retina propagate through the lateral geniculate nucleus (LGN) of the thalamus to primary visual cortex (V1). Retinal waves have been shown to instruct the wiring of ganglion cell axons in LGN and of thalamocortical axons in V1 via correlation-based plasticity rules. Across species, retinal waves mature in three stereotypic stages (I–III), in which distinct circuit mechanisms give rise to unique activity patterns that serve specific functions in visual system refinement. Here, I review insights into the patterns, mechanisms, and functions of stage III retinal waves, which rely on glutamatergic signaling. As glutamatergic waves spread across the retina, neighboring ganglion cells with opposite light responses (ON vs. OFF) are activated sequentially. Recent studies identified lateral excitatory networks in the inner retina that generate and propagate glutamatergic waves, and vertical inhibitory networks that desynchronize the activity of ON and OFF cells in the wavefront. Stage III wave activity patterns may help segregate axons of ON and OFF ganglion cells in the LGN, and could contribute to the emergence of orientation selectivity in V1. PMID:27242446

  9. [Acute blood pressure elevations].

    PubMed

    Chamontin, B; Amar, J; Chollet, F; Rouge, P; Bonetti-d'Esteve, L; Guittard, J; Salvador, M

    2000-11-01

    Blood pressure (BP) elevations may correspond to different clinical situations. Hypertensives emergencies are situations that require immediate reduction in BP because of acute or rapidly progressing target organ damage: accelerated malignant hypertension, hypertensive encephalopathy, acute myocardial infarction, acute aortic dissection, acute left ventricular failure, and eclampsia. Hypertensive urgencies are those with marked elevated BP in which it is desirable to reduce BP progressively within few hours, such as severe hypertension, progressive target organ damage, perioperative hypertension. Cerebrovascular accidents have to be individualized. In most patients in the immediate post-stroke period, BP should not be lowered. Caution is advised in lowering BP in these patients because excessive falls may precipitate cerebral ischemia. In situations without symptoms or progressive target organ it is necessary to exclude proximate causes of elevated BP such as pain and elevated BP alone rarely requires antihypertensive treatment. Among parenteral antihypertensive (AH) drugs labetalol, nicardipine, urapidil, and nitroprussiate are generally used, and the choice of AH drug depends on the clinical situation. It is not required to normalize BP immediately but to reduce mean BP no more than 25%, then toward 160/100 mmHg as recommended by JNC VI, in order to avoid an impairment of renal, cerebral or coronary ischemia. Oral long-acting dihydropyridines are often subsequently administrated, except in myocardial ischemia. Therapeutic attitudes vary considerably according to the clinical situation: abstention, immediate decrease or progressive decrease in BP have to be decided. PMID:11190294

  10. Purinergic signalling in brain ischemia.

    PubMed

    Pedata, Felicita; Dettori, Ilaria; Coppi, Elisabetta; Melani, Alessia; Fusco, Irene; Corradetti, Renato; Pugliese, Anna Maria

    2016-05-01

    Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia a primary damage due to the early massive increase of extracellular glutamate is followed by activation of resident immune cells, i.e microglia, and production or activation of inflammation mediators. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. Extracellular concentrations of ATP and adenosine in the brain increase dramatically during ischemia in concentrations able to stimulate their respective specific P2 and P1 receptors. Both ATP P2 and adenosine P1 receptor subtypes exert important roles in ischemia. Although adenosine exerts a clear neuroprotective effect through A1 receptors during ischemia, the use of selective A1 agonists is hampered by undesirable peripheral effects. Evidence up to now in literature indicate that A2A receptor antagonists provide protection centrally by reducing excitotoxicity, while agonists at A2A (and possibly also A2B) and A3 receptors provide protection by controlling massive infiltration and neuroinflammation in the hours and days after brain ischemia. Among P2X receptors most evidence indicate that P2X7 receptor contribute to the damage induced by the ischemic insult due to intracellular Ca(2+) loading in central cells and facilitation of glutamate release. Antagonism of P2X7 receptors might represent a new treatment to attenuate brain damage and to promote proliferation and maturation of brain immature resident cells that can promote tissue repair following cerebral ischemia. Among P2Y receptors, antagonists of P2Y12 receptors are of value because of their antiplatelet activity and possibly because of additional anti-inflammatory effects. Moreover strategies that modify adenosine or ATP concentrations at injury sites might be of value to limit damage after ischemia. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and

  11. Retinal Thickening and Photoreceptor Loss in HIV Eyes without Retinitis

    PubMed Central

    Arcinue, Cheryl A.; Bartsch, Dirk-Uwe; El-Emam, Sharif Y.; Ma, Feiyan; Doede, Aubrey; Sharpsten, Lucie; Gomez, Maria Laura; Freeman, William R.

    2015-01-01

    Purpose To determine the presence of structural changes in HIV retinae (i.e., photoreceptor density and retinal thickness in the macula) compared with age-matched HIV-negative controls. Methods Cohort of patients with known HIV under CART (combination Antiretroviral Therapy) treatment were examined with a flood-illuminated retinal AO camera to assess the cone photoreceptor mosaic and spectral-domain optical coherence tomography (SD-OCT) to assess retinal layers and retinal thickness. Results Twenty-four eyes of 12 patients (n = 6 HIV-positive and 6 HIV-negative) were imaged with the adaptive optics camera. In each of the regions of interest studied (nasal, temporal, superior, inferior), the HIV group had significantly less mean cone photoreceptor density compared with age-matched controls (difference range, 4,308–6,872 cones/mm2). A different subset of forty eyes of 20 patients (n = 10 HIV-positive and 10 HIV-negative) was included in the retinal thickness measurements and retinal layer segmentation with the SD-OCT. We observed significant thickening in HIV positive eyes in the total retinal thickness at the foveal center, and in each of the three horizontal B-scans (through the macular center, superior, and inferior to the fovea). We also noted that the inner retina (combined thickness from ILM through RNFL to GCL layer) was also significantly thickened in all the different locations scanned compared with HIV-negative controls. Conclusion Our present study shows that the cone photoreceptor density is significantly reduced in HIV retinae compared with age-matched controls. HIV retinae also have increased macular retinal thickness that may be caused by inner retinal edema secondary to retinovascular disease in HIV. The interaction of photoreceptors with the aging RPE, as well as possible low-grade ocular inflammation causing diffuse inner retinal edema, may be the key to the progressive vision changes in HIV-positive patients without overt retinitis. PMID:26244973

  12. TLR9 Mediates Remote Liver Injury following Severe Renal Ischemia Reperfusion

    PubMed Central

    Bakker, Pieter J.; Scantlebery, Angelique M.; Butter, Loes M.; Claessen, Nike; Teske, Gwendoline J. D.; van der Poll, Tom; Florquin, Sandrine; Leemans, Jaklien C.

    2015-01-01

    Ischemia reperfusion injury is a common cause of acute kidney injury and is characterized by tubular damage. Mitochondrial DNA is released upon severe tissue injury and can act as a damage-associated molecular pattern via the innate immune receptor TLR9. Here, we investigated the role of TLR9 in the context of moderate or severe renal ischemia reperfusion injury using wild-type C57BL/6 mice or TLR9KO mice. Moderate renal ischemia induced renal dysfunction but did not decrease animal well-being and was not regulated by TLR9. In contrast, severe renal ischemia decreased animal well-being and survival in wild-type mice after respectively one or five days of reperfusion. TLR9 deficiency improved animal well-being and survival. TLR9 deficiency did not reduce renal inflammation or tubular necrosis. Rather, severe renal ischemia induced hepatic injury as seen by increased plasma ALAT and ASAT levels and focal hepatic necrosis which was prevented by TLR9 deficiency and correlated with reduced circulating mitochondrial DNA levels and plasma LDH. We conclude that TLR9 does not mediate renal dysfunction following either moderate or severe renal ischemia. In contrast, our data indicates that TLR9 is an important mediator of hepatic injury secondary to ischemic acute kidney injury. PMID:26361210

  13. [Cerebral ischemia in young adults].

    PubMed

    Berlit, P; Endemann, B; Vetter, P

    1991-08-01

    An overview is given over etiology and prognosis of cerebral ischemias until the age of 40. In a time period of 19 years, 168 patients were diagnosed with cerebral ischemia until the age of 40 (91 females, 77 males). The most frequent etiology is premature atherosclerosis in patients with vascular risk factors (up to 50%). Cardiogenic embolism is responsible for 1 to 34% of the cases: cardiac valve diseases and endocarditis being the most frequent sources. In 2 to 19% a vasculitis is diagnosed. While infectious arteritis is especially frequent in countries of the third world, immunovasculitides are common in Europe and the USA. Noninflammatory vasculopathies include spontaneous or traumatic dissection, fibromuscular dysplasia and vascular malformations. A migrainous stroke is especially frequent in female smokers with intake of oral contraceptives. During pregnancy both sinus thrombosis and arterial ischemia occur. Hematologic causes for ischemia are polycythemia, thrombocytosis and genetic diseases (sickle cell anemia, AT3-deficiency). Cerebral ischemia may occur in connection with the ingestion of ergot-derivates. The prognosis of cerebral ischemia in young adults is better than in older stroke-patients. PMID:1937340

  14. Selective ROCK2 inhibition in focal cerebral ischemia

    PubMed Central

    Hyun Lee, Jeong; Zheng, Yi; von Bornstadt, Daniel; Wei, Ying; Balcioglu, Aygul; Daneshmand, Ali; Yalcin, Nilufer; Yu, Esther; Herisson, Fanny; Atalay, Yahya B; Kim, Maya H; Ahn, Yong-Joo; Balkaya, Mustafa; Sweetnam, Paul; Schueller, Olivier; Poyurovsky, Masha V; Kim, Hyung-Hwan; Lo, Eng H; Furie, Karen L; Ayata, Cenk

    2014-01-01

    Objective Rho-associated kinase (ROCK) is a key regulator of numerous processes in multiple cell types relevant in stroke pathophysiology. ROCK inhibitors have improved outcome in experimental models of acute ischemic or hemorrhagic stroke. However, the relevant ROCK isoform (ROCK1 or ROCK2) in acute stroke is not known. Methods We characterized the pharmacodynamic and pharmacokinetic profile, and tested the efficacy and safety of a novel selective ROCK2 inhibitor KD025 (formerly SLx-2119) in focal cerebral ischemia models in mice. Results KD025 dose-dependently reduced infarct volume after transient middle cerebral artery occlusion. The therapeutic window was at least 3 h from stroke onset, and the efficacy was sustained for at least 4 weeks. KD025 was at least as efficacious in aged, diabetic or female mice, as in normal adult males. Concurrent treatment with atorvastatin was safe, but not additive or synergistic. KD025 was also safe in a permanent ischemia model, albeit with diminished efficacy. As one mechanism of protection, KD025 improved cortical perfusion in a distal middle cerebral artery occlusion model, implicating enhanced collateral flow. Unlike isoform-nonselective ROCK inhibitors, KD025 did not cause significant hypotension, a dose-limiting side effect in acute ischemic stroke. Interpretation Altogether, these data show that KD025 is efficacious and safe in acute focal cerebral ischemia in mice, implicating ROCK2 as the relevant isoform in acute ischemic stroke. Data suggest that selective ROCK2 inhibition has a favorable safety profile to facilitate clinical translation. PMID:24466563

  15. Protective effect of magnesium acetyltaurate against endothelin-induced retinal and optic nerve injury.

    PubMed

    Arfuzir, N N N; Lambuk, L; Jafri, A J A; Agarwal, R; Iezhitsa, I; Sidek, S; Agarwal, P; Bakar, N S; Kutty, M K; Yusof, A P Md; Krasilnikova, A; Spasov, A; Ozerov, A; Mohd Ismail, N

    2016-06-14

    Vascular dysregulation has long been recognized as an important pathophysiological factor underlying the development of glaucomatous neuropathy. Endothelin-1 (ET1) has been shown to be a key player due to its potent vasoconstrictive properties that result in retinal ischemia and oxidative stress leading to retinal ganglion cell (RGC) apoptosis and optic nerve (ON) damage. In this study we investigated the protective effects of magnesium acetyltaurate (MgAT) against retinal cell apoptosis and ON damage. MgAT was administered intravitreally prior to, along with or after administration of ET1. Seven days post-injection, animals were euthanized and retinae were subjected to morphometric analysis, TUNEL and caspase-3 staining. ON sections were stained with toluidine blue and were graded for neurodegenerative effects. Oxidative stress was also estimated in isolated retinae. Pre-treatment with MgAT significantly lowered ET1-induced retinal cell apoptosis as measured by retinal morphometry and TUNEL staining. This group of animals also showed significantly lesser caspase-3 activation and significantly reduced retinal oxidative stress compared to the animals that received intravitreal injection of only ET1. Additionally, the axonal degeneration in ON was markedly reduced in MgAT pretreated animals. The animals that received MgAT co- or post-treatment with ET1 also showed improvement in all parameters; however, the effects were not as significant as observed in MgAT pretreated animals. The current study showed that the intravitreal pre-treatment with MgAT reduces caspase-3 activation and prevents retinal cell apoptosis and axon loss in ON induced by ET1. This protective effect of ET1 was associated with reduced retinal oxidative stress. PMID:27012609

  16. 3-N-butylphthalide improves neuronal morphology after chronic cerebral ischemia.

    PubMed

    Zhao, Wanhong; Luo, Chao; Wang, Jue; Gong, Jian; Li, Bin; Gong, Yingxia; Wang, Jun; Wang, Hanqin

    2014-04-01

    3-N-butylphthalide is an effective drug for acute ischemic stroke. However, its effects on chronic cerebral ischemia-induced neuronal injury remain poorly understood. Therefore, this study ligated bilateral carotid arteries in 15-month-old rats to simulate chronic cerebral ischemia in aged humans. Aged rats were then intragastrically administered 3-n-butylphthalide. 3-N-butylphthalide administration improved the neuronal morphology in the cerebral cortex and hippocampus of rats with chronic cerebral ischemia, increased choline acetyltransferase activity, and decreased malondialdehyde and amyloid beta levels, and greatly improved cognitive function. These findings suggest that 3-n-butylphthalide alleviates oxidative stress caused by chronic cerebral ischemia, improves cholinergic function, and inhibits amyloid beta accumulation, thereby improving cerebral neuronal injury and cognitive deficits. PMID:25206879

  17. Retinal Failure in Diabetes: a Feature of Retinal Sensory Neuropathy.

    PubMed

    Gray, Ellyn J; Gardner, Thomas W

    2015-12-01

    Physiologic adaptations mediate normal responses to short-term and long-term stresses to ensure organ function. Organ failure results if adaptive responses fail to resolve persistent stresses or maladaptive reactions develop. The retinal neurovascular unit likewise undergoes adaptive responses to diabetes resulting in a retinal sensory neuropathy analogous to other sensory neuropathies. Vision-threatening diabetic retinal neuropathy results from unremitting metabolic and inflammatory stresses, leading to macular edema and proliferative diabetic retinopathy, states of "retinal failure." Current regulatory strategies focus primarily on the retinal failure stages, but new diagnostic modalities and understanding of the pathophysiology of diabetic retinopathy may facilitate earlier treatment to maintain vision in persons with diabetes. PMID:26458378

  18. Perceptual Fading without Retinal Adaptation

    ERIC Educational Resources Information Center

    Hsieh, Po-Jang; Colas, Jaron T.

    2012-01-01

    A retinally stabilized object readily undergoes perceptual fading and disappears from consciousness. This startling phenomenon is commonly believed to arise from local bottom-up sensory adaptation to edge information that occurs early in the visual pathway, such as in the lateral geniculate nucleus of the thalamus or retinal ganglion cells. Here…

  19. High resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Loudin, Jim; Dinyari, Rostam; Huie, Phil; Butterwick, Alex; Peumans, Peter; Palanker, Daniel

    2009-02-01

    Electronic retinal prostheses seek to restore sight in patients with retinal degeneration by delivering pulsed electric currents to retinal neurons via an array of microelectrodes. Most implants use inductive or optical transmission of information and power to an intraocular receiver, with decoded signals subsequently distributed to retinal electrodes through an intraocular cable. Surgical complexity could be minimized by an "integrated" prosthesis, in which both power and data are delivered directly to the stimulating array without any discrete components or cables. We present here an integrated retinal prosthesis system based on a photodiode array implant. Video frames are processed and imaged onto the retinal implant by a video goggle projection system operating at near-infrared wavelengths (~ 900 nm). Photodiodes convert light into pulsed electric current, with charge injection maximized by specially optimized series photodiode circuits. Prostheses of three different pixel densities (16 pix/mm2, 64 pix/mm2, and 256 pix/mm2) have been designed, simulated, and prototyped. Retinal tissue response to subretinal implants made of various materials has been investigated in RCS rats. The resulting prosthesis can provide sufficient charge injection for high resolution retinal stimulation without the need for implantation of any bulky discrete elements such as coils or tethers. In addition, since every pixel functions independently, pixel arrays may be placed separately in the subretinal space, providing visual stimulation to a larger field of view.

  20. Retinal Imaging and Image Analysis

    PubMed Central

    Abràmoff, Michael D.; Garvin, Mona K.; Sonka, Milan

    2011-01-01

    Many important eye diseases as well as systemic diseases manifest themselves in the retina. While a number of other anatomical structures contribute to the process of vision, this review focuses on retinal imaging and image analysis. Following a brief overview of the most prevalent causes of blindness in the industrialized world that includes age-related macular degeneration, diabetic retinopathy, and glaucoma, the review is devoted to retinal imaging and image analysis methods and their clinical implications. Methods for 2-D fundus imaging and techniques for 3-D optical coherence tomography (OCT) imaging are reviewed. Special attention is given to quantitative techniques for analysis of fundus photographs with a focus on clinically relevant assessment of retinal vasculature, identification of retinal lesions, assessment of optic nerve head (ONH) shape, building retinal atlases, and to automated methods for population screening for retinal diseases. A separate section is devoted to 3-D analysis of OCT images, describing methods for segmentation and analysis of retinal layers, retinal vasculature, and 2-D/3-D detection of symptomatic exudate-associated derangements, as well as to OCT-based analysis of ONH morphology and shape. Throughout the paper, aspects of image acquisition, image analysis, and clinical relevance are treated together considering their mutually interlinked relationships. PMID:21743764

  1. Quantitative analysis of retinal OCT.

    PubMed

    Sonka, Milan; Abràmoff, Michael D

    2016-10-01

    Clinical acceptance of 3-D OCT retinal imaging brought rapid development of quantitative 3-D analysis of retinal layers, vasculature, retinal lesions as well as facilitated new research in retinal diseases. One of the cornerstones of many such analyses is segmentation and thickness quantification of retinal layers and the choroid, with an inherently 3-D simultaneous multi-layer LOGISMOS (Layered Optimal Graph Image Segmentation for Multiple Objects and Surfaces) segmentation approach being extremely well suited for the task. Once retinal layers are segmented, regional thickness, brightness, or texture-based indices of individual layers can be easily determined and thus contribute to our understanding of retinal or optic nerve head (ONH) disease processes and can be employed for determination of disease status, treatment responses, visual function, etc. Out of many applications, examples provided in this paper focus on image-guided therapy and outcome prediction in age-related macular degeneration and on assessing visual function from retinal layer structure in glaucoma. PMID:27503080

  2. Balanced oxidative status by nesfatin-1 in intestinal ischemia-reperfusion

    PubMed Central

    Ayada, Ceylan; Toru, Ümran; Genç, Osman; Akcılar, Raziye; Şahin, Server

    2015-01-01

    Objective: Ischemia causes reversible or irreversible cell or tissue damage and reperfusion can exaggerate cellular damage. Microvascular dysfunction is induced and causes enhanced fluid filtration in capillaries. At the acute phase of reperfusion more oxygen radicals are activated. Nesfatin-1 protects brain against oxidative damage and heart against ischemia/reperfusion damage. In our study, we aimed to investigate the acute effect of chronic peripheral nesfatin-1 administration in intestinal ischemia/reperfusion created rats. Method: Two-months-old, 28 Wistar Albino male rats, weighing an average of 200-250 g, were used and randomly divided into four experimental groups (n=7) as; Laparotomy, Ischemia/Reperfusion, Nesfatin-1+Laparotomy, Nesfatin-1+Ischemia/Reperfusion. Serum levels of total oxidant status (TOS) and total antioxidant status (TAS) were determined by colorimetric measurement method. The plasma levels of endotelin-1 and endothelial nitric oxide syntheses (eNOS) were analyzed by rat ELISA assay kits. Results: Plasma levels of endothelin-1 significantly increased, plasma level of eNOS, serum levels of TOS and TAS significantly decreased in nesfatin-1 applied groups. Additionally, The oxidative stress index (OSI) parameters decreased significantly in three groups compared to laparotomy. Conclusion: Chronic peripheral nesfatin-1 administration can decrease eNOS level and OSI at the acute phase of ischemia/reperfusion. We suppose that it can be protective for ischemia/reperfusion injury by balancing oxidant capacity. On the other hand, this effect of nesfatin-1 is not related with micro-circular compensation and increases anti-oxidant capacity. PMID:26064221

  3. [Intrinsically Photosensitive Retinal Ganglion Cells].

    PubMed

    Skorkovská, K; Skorkovská, Š

    2015-06-01

    Recently discovered intrinsically photosensitive melanopsin-containing retinal ganglion cells contribute to circadian photoentrainment and pupillary constriction; recent works have also brought new evidence for their accessory role in the visual system in humans. Pupil light reaction driven by individual photoreceptors can be isolated by means of the so called chromatic pupillography. The use of chromatic stimuli to elicit different pupillary responses may become an objective clinical pupil test in the detection of retinal diseases and in assessing new therapeutic approaches particularly in hereditary retinal degenerations like retinitis pigmentosa. In advanced stages of disease, the pupil light reaction is even more sensitive than standard electroretinography for detecting residual levels of photoreceptor activity. This review summarizes current knowledge on intrinsically photosensitive retinal cells and highlights its possible implications for clinical practice. PMID:26201360

  4. Retinal connectivity and primate vision

    PubMed Central

    Lee, Barry B.; Martin, Paul R.; Grünert, Ulrike

    2012-01-01

    The general principles of retinal organization are now well known. It may seem surprising that retinal organization in the primate, which has a complex visual behavioral repertoire, appears relatively simple. In this review, we primarily consider retinal structure and function in primate species. Photoreceptor distribution and connectivity are considered as are connectivity in the outer and inner retina. One key issue is the specificity of retinal connections; we suggest that the retina shows connectional specificity but this is seldom complete, and we consider here the functional consequences of imprecise wiring. Finally, we consider how retinal systems can be linked to psychophysical descriptions of different channels, chromatic and luminance, which are proposed to exist in the primate visual system. PMID:20826226

  5. Retinal connectivity and primate vision.

    PubMed

    Lee, Barry B; Martin, Paul R; Grünert, Ulrike

    2010-11-01

    The general principles of retinal organization are now well known. It may seem surprising that retinal organization in the primate, which has a complex visual behavioral repertoire, appears relatively simple. In this review, we primarily consider retinal structure and function in primate species. Photoreceptor distribution and connectivity are considered as are connectivity in the outer and inner retina. One key issue is the specificity of retinal connections; we suggest that the retina shows connectional specificity but this is seldom complete, and we consider here the functional consequences of imprecise wiring. Finally, we consider how retinal systems can be linked to psychophysical descriptions of different channels, chromatic and luminance, which are proposed to exist in the primate visual system. PMID:20826226

  6. Oxidative and inflammatory biomarkers of ischemia and reperfusion injuries.

    PubMed

    Halladin, Natalie Løvland

    2015-04-01

    Ischemia-reperfusion injuries occur when the blood supply to an organ or tissue is temporarily cut-off and then restored. Even though the restoration of blood flow is absolutely essential in preventing tissue death, the reperfusion of oxygenated blood to the oxygen-deprived areas may in itself augment the tissue damage in excess of that produced by the ischemia alone. The process of ischemia-reperfusion is multifactorial and there are several mechanisms involved in the pathogenesis. Ample evidence shows that the injury is in part caused by an excessive generation of reactive oxygen species or free radicals. The free radicals consequently initiate an inflammatory response, which in some cases may affect distant organs, thus causing remote organ injuries. Ischemia-reperfusion injuries are a common complication in many diseases (acute myocardial infarctions, stroke) or surgical settings (transplantations, tourniquet-related surgery) and they have potential detrimental and disabling consequences. The tolerance of ischemia-reperfusion has proven to be time-of-day-dependent and the size of myocardial infarctions has proven to be significantly higher when occurring in the dark-to-light period. This period is characterized by and coincides with a rapid decrease in the plasma levels of the hormone melatonin. Melatonin is the body's most potent antioxidant and is capable of both direct free radical scavenging and indirect optimization of other anti-oxidant enzymes. It also possesses anti-inflammatory properties and is known to inhibit the mitochondrial permeability transition pore during reperfusion. This inhibiting property has been shown to be of great importance in reducing ischemia-reperfusion injuries. Furthermore, melatonin is a relatively non-toxic molecule, which has proven to be safe for use in clinical trials. Thus, there is compelling evidence of melatonin's effect in reducing ischemia-reperfusion injuries in many experimental studies, but the number of human

  7. [Multifocal Vitelliform Retinal Lesion].

    PubMed

    Streicher, T; Špirková, J; Ilavská, M

    2015-06-01

    The authors present retrospective follow up of patient with bilateral multifocal vitelliform retinal lesion during the 18 years period. At this time, spontaneous improvement of objective picture on retina and subjective visual troubles was observed. It is probable, that this case is a part of the same symptom complex as a variant of Best´s hereditary disease. This conclusion was based on initial stadium of phenotypical expressivity and additional evaluations. The course and outcomes of visual functions were different. The hereditary transmission was not confirmed. PMID:26201364

  8. Dictionary-Driven Ischemia Detection From Cardiac Phase-Resolved Myocardial BOLD MRI at Rest.

    PubMed

    Bevilacqua, Marco; Dharmakumar, Rohan; Tsaftaris, Sotirios A

    2016-01-01

    Cardiac Phase-resolved Blood-Oxygen-Level Dependent (CP-BOLD) MRI provides a unique opportunity to image an ongoing ischemia at rest. However, it requires post-processing to evaluate the extent of ischemia. To address this, here we propose an unsupervised ischemia detection (UID) method which relies on the inherent spatio-temporal correlation between oxygenation and wall motion to formalize a joint learning and detection problem based on dictionary decomposition. Considering input data of a single subject, it treats ischemia as an anomaly and iteratively learns dictionaries to represent only normal observations (corresponding to myocardial territories remote to ischemia). Anomaly detection is based on a modified version of One-class Support Vector Machines (OCSVM) to regulate directly the margins by incorporating the dictionary-based representation errors. A measure of ischemic extent (IE) is estimated, reflecting the relative portion of the myocardium affected by ischemia. For visualization purposes an ischemia likelihood map is created by estimating posterior probabilities from the OCSVM outputs, thus obtaining how likely the classification is correct. UID is evaluated on synthetic data and in a 2D CP-BOLD data set from a canine experimental model emulating acute coronary syndromes. Comparing early ischemic territories identified with UID against infarct territories (after several hours of ischemia), we find that IE, as measured by UID, is highly correlated (Pearson's r=0.84) with respect to infarct size. When advances in automated registration and segmentation of CP-BOLD images and full coverage 3D acquisitions become available, we hope that this method can enable pixel-level assessment of ischemia with this truly non-invasive imaging technique. PMID:26292338

  9. Calcium preconditioning triggers neuroprotection in retinal ganglion cells

    PubMed Central

    Brandt, Sean K.; Weatherly, Monique E.; Ware, Lillian; Linn, David M.; Linn, Cindy L.

    2010-01-01

    In the mammalian retina, excitotoxicity has been shown to be involved in apoptotic retinal ganglion cell (RGC) death and is associated with certain retinal disease states including glaucoma, diabetic retinopathy and retinal ischemia. Previous studies from this lab (Wehrwein et al., 2004) have demonstrated that acetylcholine (ACh) and nicotine protects against glutamate-induced excitotoxicity in isolated adult pig RGCs through nicotinic acetylcholine receptors (nAChRs). Activation of nAChRs in these RGCs triggers cell survival signaling pathways and inhibits apoptotic enzymes (Asomugha et al., 2010). However, the link between binding of nAChRs and activation of neuroprotective pathways is unknown. In this study, we examine the hypothesis that calcium permeation through nAChR channels is required for ACh-induced neuroprotection against glutamate-induced excitotoxicity in isolated pig RGCs. RGCs were isolated from other retinal tissue using a two step panning technique and cultured for 3 days under different conditions. In some studies, calcium imaging experiments were performed using the fluorescent calcium indicator, fluo-4, and demonstrated that calcium permeates the nAChR channels located on pig RGCs. In other studies, the extracellular calcium concentration was altered to determine the effect on nicotine-induced neuroprotection. Results support the hypothesis that calcium is required for nicotine-induced neuroprotection in isolated pig RGCs. Lastly, studies were performed to analyze the effects of preconditioning on glutamate-induced excitotoxicity and neuroprotection. In these studies, a preconditioning dose of calcium was introduced to cells using a variety of mechanisms before a large glutamate insult was applied to cells. Results from these studies support the hypothesis that preconditioning cells with a relatively low level of calcium before an excitotoxic insult leads to neuroprotection. In the future, these results could provide important information

  10. Early markers for myocardial ischemia and sudden cardiac death.

    PubMed

    Sabatasso, Sara; Mangin, Patrice; Fracasso, Tony; Moretti, Milena; Docquier, Mylène; Djonov, Valentin

    2016-09-01

    The post-mortem diagnosis of acute myocardial ischemia remains a challenge for both clinical and forensic pathologists. We performed an experimental study (ligation of left anterior descending coronary artery in rats) in order to identify early markers of myocardial ischemia, to further apply to forensic and clinical pathology in cases of sudden cardiac death. Using immunohistochemistry, Western blots, and gene expression analyses, we investigated a number of markers, selected among those which are currently used in emergency departments to diagnose myocardial infarction and those which are under investigation in basic research and autopsy pathology studies on cardiovascular diseases. The study was performed on 44 adult male Lewis rats, assigned to three experimental groups: control, sham-operated, and operated. The durations of ischemia ranged between 5 min and 24 h. The investigated markers were troponins I and T, myoglobin, fibronectin, C5b-9, connexin 43 (dephosphorylated), JunB, cytochrome c, and TUNEL staining. The earliest expressions (≤30 min) were observed for connexin 43, JunB, and cytochrome c, followed by fibronectin (≤1 h), myoglobin (≤1 h), troponins I and T (≤1 h), TUNEL (≤1 h), and C5b-9 (≤2 h). By this investigation, we identified a panel of true early markers of myocardial ischemia and delineated their temporal evolution in expression by employing new technologies for gene expression analysis, in addition to traditional and routine methods (such as histology and immunohistochemistry). Moreover, for the first time in the autopsy pathology field, we identified, by immunohistochemistry, two very early markers of myocardial ischemia: dephosphorylated connexin 43 and JunB. PMID:27392959

  11. Activation of Bone Marrow-Derived Microglia Promotes Photoreceptor Survival in Inherited Retinal Degeneration

    PubMed Central

    Sasahara, Manabu; Otani, Atsushi; Oishi, Akio; Kojima, Hiroshi; Yodoi, Yuko; Kameda, Takanori; Nakamura, Hajime; Yoshimura, Nagahisa

    2008-01-01

    The role of microglia in neurodegeneration is controversial, although microglial activation in the retina has been shown to provide an early response against infection, injury, ischemia, and degeneration. Here we show that endogenous bone marrow (BM)-derived microglia play a protective role in vascular and neural degeneration in the retinitis pigmentosa model of inherited retinal degeneration. BM-derived cells were recruited to the degenerating retina where they differentiated into microglia and subsequently localized to the degenerating vessels and neurons. Inhibition of stromal-derived factor-1 in the retina reduced the number of BM-derived microglia and accelerated the rate of neurovascular degeneration. Systemic depletion of myeloid progenitors also accelerated the degenerative process. Conversely, activation of BM-derived myeloid progenitors by systemic administration of both granulocyte colony-stimulating factor and erythropoietin resulted in the deceleration of retinal degeneration and the promotion of cone cell survival. These data indicate that BM-derived microglia may play a protective role in retinitis pigmentosa. Functional activation of BM-derived myeloid progenitors by cytokine therapy may provide a novel strategy for the treatment of inherited retinal degeneration and other neurodegenerative diseases, regardless of the underlying genetic defect. PMID:18483210

  12. Recent Clinical Applications of Laser Speckle Flowgraphy in Eyes with Retinal Disease.

    PubMed

    Kunikata, Hiroshi; Nakazawa, Toru

    2016-01-01

    Retinal diseases related to ischemia, such as diabetic retinopathy, are the main cause of blindness worldwide. However, the pathogenesis of these diseases remains unclear, as does the time course of associated changes in ocular blood flow. Laser speckle flowgraphy (LSFG), which uses the laser speckle phenomenon to detect and quantify ocular circulation, is a promising candidate for a noninvasive method to measure ocular blood flow in living eyes. A recently developed LSFG measurement parameter, mean blur rate (MBR), can serve as a quantitative and reproducible index of retinal blood cell velocity. Mean blur rate can be used in the study of retinal diseases to evaluate microcirculation in the retinal vessels, choroid, and optic nerve head. In addition to overall MBR (MA), LSFG measurements of optic nerve head microcirculation can be divided into vessel-area MBR (MV) and tissue-area MBR (MT). Absolute values for MT have been shown to be linearly correlated with capillary blood flow, regardless of fundus pigmentation. Recently, there has been an increasing number of reports on the clinical applications of LSFG in retinal disease. PMID:26649761

  13. Animal models of cerebral ischemia

    NASA Astrophysics Data System (ADS)

    Khodanovich, M. Yu.; Kisel, A. A.

    2015-11-01

    Cerebral ischemia remains one of the most frequent causes of death and disability worldwide. Animal models are necessary to understand complex molecular mechanisms of brain damage as well as for the development of new therapies for stroke. This review considers a certain range of animal models of cerebral ischemia, including several types of focal and global ischemia. Since animal models vary in specificity for the human disease which they reproduce, the complexity of surgery, infarct size, reliability of reproduction for statistical analysis, and adequate models need to be chosen according to the aim of a study. The reproduction of a particular animal model needs to be evaluated using appropriate tools, including the behavioral assessment of injury and non-invasive and post-mortem control of brain damage. These problems also have been summarized in the review.

  14. Rodent models of cerebral ischemia

    SciTech Connect

    Ginsberg, M.D.; Busto, R. )

    1989-12-01

    The use of physiologically regulated, reproducible animal models is crucial to the study of ischemic brain injury--both the mechanisms governing its occurrence and potential therapeutic strategies. Several laboratory rodent species (notably rats and gerbils), which are readily available at relatively low cost, are highly suitable for the investigation of cerebral ischemia and have been widely employed for this purpose. We critically examine and summarize several rodent models of transient global ischemia, resulting in selective neuronal injury within vulnerable brain regions, and focal ischemia, typically giving rise to localized brain infarction. We explore the utility of individual models and emphasize the necessity for meticulous experimental control of those variables that modulate the severity of ischemic brain injury.169 references.

  15. Clinical use of the combined Sclarovsky Birnbaum Severity and Anderson Wilkins Acuteness scores from the pre-hospital ECG in ST-segment elevation myocardial infarction.

    PubMed

    Fakhri, Yama; Schoos, Mikkel M; Clemmensen, Peter; Sejersten, Maria

    2014-01-01

    This review summarizes the electrocardiographic changes during an evolving ST segment elevation myocardial infarction and discusses associated electrocardiographic scores and the potential use of these indices in clinical practice, in particular the ECG scores developed by Anderson and Wilkins estimating the acuteness of myocardial ischemia and Sclarovsky-Birnbaum's grades of ischemia evaluating the severity of ongoing ischemia. PMID:24792905

  16. Blood Pressure Modifies Retinal Susceptibility to Intraocular Pressure Elevation

    PubMed Central

    He, Zheng; Nguyen, Christine T. O.; Armitage, James A.; Vingrys, Algis J.; Bui, Bang V.

    2012-01-01

    Primary open angle glaucoma affects more than 67 million people. Elevated intraocular pressure (IOP) is a risk factor for glaucoma and may reduce nutrient availability by decreasing ocular perfusion pressure (OPP). An interaction between arterial blood pressure and IOP determines OPP; but the exact contribution that these factors have for retinal function is not fully understood. Here we sought to determine how acute modifications of arterial pressure will affect the susceptibility of neuronal function and blood flow to IOP challenge. Anaesthetized (ketamine:xylazine) Long-Evan rats with low (∼60 mmHg, sodium nitroprusside infusion), moderate (∼100 mmHg, saline), or high levels (∼160 mmHg, angiotensin II) of mean arterial pressure (MAP, n = 5–10 per group) were subjected to IOP challenge (10–120 mmHg, 5 mmHg steps every 3 minutes). Electroretinograms were measured at each IOP step to assess bipolar cell (b-wave) and inner retinal function (scotopic threshold response or STR). Ocular blood flow was measured using laser-Doppler flowmetry in groups with similar MAP level and the same IOP challenge protocol. Both b-wave and STR amplitudes decreased with IOP elevation. Retinal function was less susceptible to IOP challenge when MAP was high, whereas the converse was true for low MAP. Consistent with the effects on retinal function, higher IOP was needed to attenuated ocular blood flow in animals with higher MAP. The susceptibility of retinal function to IOP challenge can be ameliorated by acute high BP, and exacerbated by low BP. This is partially mediated by modifications in ocular blood flow. PMID:22359566

  17. Selective retinal therapy with a continuous line scanning laser

    NASA Astrophysics Data System (ADS)

    Paulus, Yannis M.; Jain, ATul; Gariano, Ray F.; Nomoto, Hiroyuki; Schuele, Georg; Sramek, Christopher; Charalel, Resmi; Palanker, Daniel

    2010-02-01

    This study evaluates the effects of exposure duration, beam diameter, and power on the safety, selectivity, and healing of retinal lesions created using a continuous line scanning laser. A 532 nm laser (PASCALTM) with retinal beam diameters of 40 and 66 μm was applied to 60 eyes of 30 Dutch-Belted rabbits. Retinal exposure duration varied from 15 to 60 μs. Lesions were acutely assessed by ophthalmoscopy and fluorescein angiography (FA). RPE flatmounts were evaluated with live-dead fluorescent assay (LD). Histological analysis was performed at 1 hour, 1 and 3 days, 1 and 2 weeks, and 1 and 2 months following laser treatment. Ophthalmoscopic visibility (OV) of the lesions corresponded to photoreceptor damage on histological analysis at 1 hour. In subvisible lesions, FA and LD yielded similar thresholds of RPE damage. The ratios of the threshold of rupture and of OV to FA visibility (measures of safety and selectivity) increased with decreasing duration and beam diameter. Above the threshold of OV, histology showed focal RPE damage and photoreceptor loss at one day without inner retinal effects. By one week, continuity of photoreceptor and RPE layers was restored. By 1 month, photoreceptors appeared normal while hypertrophy and hyperpigmentation of the RPE persisted. Retinal therapy with a fast scanning continuous laser achieves selective targeting of the RPE and, at higher power, of the photoreceptors. The damage zone in the photoreceptor layer is quickly filled-in, likely due to photoreceptor migration from adjacent zones. Continuous scanning laser can treat large retinal areas within standard eye fixation time.

  18. Adenosine triphosphate-induced photoreceptor death and retinal remodeling in rats

    PubMed Central

    Vessey, Kirstan A; Greferath, Ursula; Aplin, Felix P; Jobling, Andrew I; Phipps, Joanna A; Ho, Tracy; De Iongh, Robbert U; Fletcher, Erica L

    2014-01-01

    Many common causes of blindness involve the death of retinal photoreceptors, followed by progressive inner retinal cell remodeling. For an inducible model of retinal degeneration to be useful, it must recapitulate these changes. Intravitreal administration of adenosine triphosphate (ATP) has recently been found to induce acute photoreceptor death. The aim of this study was to characterize the chronic effects of ATP on retinal integrity. Five-week-old, dark agouti rats were administered 50 mM ATP into the vitreous of one eye and saline into the other. Vision was assessed using the electroretinogram and optokinetic response and retinal morphology investigated via histology. ATP caused significant loss of visual function within 1 day and loss of 50% of the photoreceptors within 1 week. At 3 months, 80% of photoreceptor nuclei were lost, and total photoreceptor loss occurred by 6 months. The degeneration and remodeling were similar to those found in heritable retinal dystrophies and age-related macular degeneration and included inner retinal neuronal loss, migration, and formation of new synapses; Müller cell gliosis, migration, and scarring; blood vessel loss; and retinal pigment epithelium migration. In addition, extreme degeneration and remodeling events, such as neuronal and glial migration outside the neural retina and proliferative changes in glial cells, were observed. These extreme changes were also observed in the 2-year-old P23H rhodopsin transgenic rat model of retinitis pigmentosa. This ATP-induced model of retinal degeneration may provide a valuable tool for developing pharmaceutical therapies or for testing electronic implants aimed at restoring vision. J. Comp. Neurol. 522:2928–2950, 2014. © 2014 Wiley Periodicals, Inc. PMID:24639102

  19. Age and diabetes related changes of the retinal capillaries: An ultrastructural and immunohistochemical study.

    PubMed

    Bianchi, Enrica; Ripandelli, Guido; Taurone, Samanta; Feher, Janos; Plateroti, Rocco; Kovacs, Illes; Magliulo, Giuseppe; Orlando, Maria Patrizia; Micera, Alessandra; Battaglione, Ezio; Artico, Marco

    2016-03-01

    Normal human aging and diabetes are associated with a gradual decrease of cerebral flow in the brain with changes in vascular architecture. Thickening of the capillary basement membrane and microvascular fibrosis are evident in the central nervous system of elderly and diabetic patients. Current findings assign a primary role to endothelial dysfunction as a cause of basement membrane (BM) thickening, while retinal alterations are considered to be a secondary cause of either ischemia or exudation. The aim of this study was to reveal any initial retinal alterations and variations in the BM of retinal capillaries during diabetes and aging as compared to healthy controls. Moreover, we investigated the potential role of vascular endothelial growth factor (VEGF) and pro-inflammatory cytokines in diabetic retina.Transmission electron microscopy (TEM) was performed on 46 enucleated human eyes with particular attention to alterations of the retinal capillary wall and Müller glial cells. Inflammatory cytokines expression in the retina was investigated by immunohistochemistry.Our electron microscopy findings demonstrated that thickening of the BM begins primarily at the level of the glial side of the retina during aging and diabetes. The Müller cells showed numerous cytoplasmic endosomes and highly electron-dense lysosomes which surrounded the retinal capillaries. Our study is the first to present morphological evidence that Müller cells start to deposit excessive BM material in retinal capillaries during aging and diabetes. Our results confirm the induction of pro-inflammatory cytokines TNF-α and IL-1β within the retina as a result of diabetes.These observations strongly suggest that inflammatory cytokines and changes in the metabolism of Müller glial cells rather than changes in of endothelial cells may play a primary role in the alteration of retinal capillaries BM during aging and diabetes. PMID:26604209

  20. Activation of Neuropeptide Y Receptors Modulates Retinal Ganglion Cell Physiology and Exerts Neuroprotective Actions In Vitro

    PubMed Central

    Martins, João; Elvas, Filipe; Brudzewsky, Dan; Martins, Tânia; Kolomiets, Bogdan; Tralhão, Pedro; Gøtzsche, Casper R.; Cavadas, Cláudia; Castelo-Branco, Miguel; Woldbye, David P. D.; Picaud, Serge; Santiago, Ana R.

    2015-01-01

    Neuropeptide Y (NPY) is expressed in mammalian retina but the location and potential modulatory effects of NPY receptor activation remain largely unknown. Retinal ganglion cell (RGC) death is a hallmark of several retinal degenerative diseases, particularly glaucoma. Using purified RGCs and ex vivo rat retinal preparations, we have measured RGC intracellular free calcium concentration ([Ca2+]i) and RGC spiking activity, respectively. We found that NPY attenuated the increase in the [Ca2+]i triggered by glutamate mainly via Y1 receptor activation. Moreover, (Leu31, Pro34)−NPY, a Y1/Y5 receptor agonist, increased the initial burst response of OFF-type RGCs, although no effect was observed on RGC spontaneous spiking activity. The Y1 receptor activation was also able to directly modulate RGC responses by attenuating the NMDA-induced increase in RGC spiking activity. These results suggest that Y1 receptor activation, at the level of inner or outer plexiform layers, leads to modulation of RGC receptive field properties. Using in vitro cultures of rat retinal explants exposed to NMDA, we found that NPY pretreatment prevented NMDA-induced cell death. However, in an animal model of retinal ischemia-reperfusion injury, pretreatment with NPY or (Leu31, Pro34)−NPY was not able to prevent apoptosis or rescue RGCs. In conclusion, we found modulatory effects of NPY application that for the first time were detected at the level of RGCs. However, further studies are needed to evaluate whether NPY neuroprotective actions detected in retinal explants can be translated into animal models of retinal degenerative diseases. PMID:26311075

  1. PIMASERTIB AND SEROUS RETINAL DETACHMENTS

    PubMed Central

    AlAli, Alaa; Bushehri, Ahmad; Park, Jonathan C.; Krema, Hatem

    2016-01-01

    Purpose: To report a case of multifocal serous retinal detachments associated with pimasertib. Methods: The authors report a 26-year-old patient who developed bilateral multifocal serous retinal detachments appearing 2 days after starting pimasertib (as part of a clinical trial investigating its use in low-grade metastatic ovarian cancer) and rapidly resolving 3 days after stopping it. Conclusion: The mechanism of MEK inhibitor induced visual toxicity remains unclear. The pathophysiology of multifocal serous retinal detachments as a complication of pimasertib is still poorly understood. PMID:26444523

  2. Genetic Ablation of Pannexin1 Protects Retinal Neurons from Ischemic Injury

    PubMed Central

    Dvoriantchikova, Galina; Ivanov, Dmitry; Barakat, David; Grinberg, Alexander; Wen, Rong; Slepak, Vladlen Z.; Shestopalov, Valery I.

    2012-01-01

    Pannexin1 (Panx1) forms large nonselective membrane channel that is implicated in paracrine and inflammatory signaling. In vitro experiments suggested that Panx1 could play a key role in ischemic death of hippocampal neurons. Since retinal ganglion cells (RGCs) express high levels of Panx1 and are susceptible to ischemic induced injury, we hypothesized that Panx1 contributes to rapid and selective loss of these neurons in ischemia. To test this hypothesis, we induced experimental retinal ischemia followed by reperfusion in live animals with the Panx1 channel genetically ablated either in the entire mouse (Panx1 KO), or only in neurons using the conditional knockout (Panx1 CKO) technology. Here we report that two distinct neurotoxic processes are induced in RGCs by ischemia in the wild type mice but are inactivated in Panx1KO and Panx1 CKO animals. First, the post-ischemic permeation of RGC plasma membranes is suppressed, as assessed by dye transfer and calcium imaging assays ex vivo and in vitro. Second, the inflammasome-mediated activation of caspase-1 and the production of interleukin-1β in the Panx1 KO retinas are inhibited. Our findings indicate that post-ischemic neurotoxicity in the retina is mediated by previously uncharacterized pathways, which involve neuronal Panx1 and are intrinsic to RGCs. Thus, our work presents the in vivo evidence for neurotoxicity elicited by neuronal Panx1, and identifies this channel as a new therapeutic target in ischemic pathologies. PMID:22384122

  3. Controversies in cardiovascular care: silent myocardial ischemia

    NASA Technical Reports Server (NTRS)

    Hollenberg, N. K.

    1987-01-01

    The objective evidence of silent myocardial ischemia--ischemia in the absence of classical chest pain--includes ST-segment shifts (usually depression), momentary left ventricular failure, and perfusion defects on scintigraphic studies. Assessment of angina patients with 24-hour ambulatory monitoring may uncover episodes of silent ischemia, the existence of which may give important information regarding prognosis and may help structure a more effective therapeutic regimen. The emerging recognition of silent ischemia as a significant clinical entity may eventually result in an expansion of current therapy--not only to ameliorate chest pain, but to minimize or eliminate ischemia in the absence of chest pain.

  4. Stenting in Acute Lower Limb Arterial Occlusions

    SciTech Connect

    Raja, Jowad; Munneke, Graham; Morgan, Robert; Belli, Anna-Maria

    2008-07-15

    Management of critical limb ischemia of acute onset includes surgical embolectomy, bypass grafting, aspiration thrombectomy, thrombolysis, and mechanical thrombectomy followed by treatment of the underlying cause. We present our experience with the use of stents to treat acute embolic/thrombotic occlusions in one iliac and three femoropopliteal arteries. Although this is a small case series, excellent immediate and midterm results suggest that stenting of acute occlusions of the iliac, superficial femoral, and popliteal arteries is a safe and effective treatment option.

  5. Slit Modulates Cerebrovascular Inflammation and Mediates Neuroprotection Against Global Cerebral Ischemia

    PubMed Central

    Altay, Tamer; McLaughlin, BethAnn; Wu, Jane Y.; Park, T.S.; Gidday, Jeffrey M.

    2008-01-01

    Cerebrovascular inflammation contributes to secondary brain injury following ischemia. Recent in vitro studies of cell migration and molecular guidance mechanisms have indicated that the Slit family of secreted proteins can exert repellant effects on leukocyte recruitment in response to chemoattractants. Utilizing intravital microscopy, we addressed the role of Slit in modulating leukocyte dynamics in the mouse cortical venular microcirculation in vivo following TNFα application or global cerebral ischemia. We also studied whether Slit affected neuronal survival in the mouse global ischemia model as well as in mixed neuronal-glial cultures subjected to oxygen-glucose deprivation. We found that systemically administered Slit significantly attenuated cerebral microvessel leukocyte-endothelial adherence occurring 4 h after TNFα and 24 h after global cerebral ischemia. Administration of RoboN, the soluble receptor for Slit, exacerbated the acute chemotactic response to TNFα. These findings are indicative of a tonic repellant effect of endogenous Slit in brain under acute proinflammatory conditions. Three days of continuous systemic administration of Slit following global ischemia significantly attenuated the delayed neuronal death of hippocampal CA1 pyramidal cells. Moreover, Slit abrogated neuronal death in mixed neuronal-glial cultures exposed to oxygen-glucose deprivation. The ability of Slit to reduce the recruitment of immune cells to ischemic brain and to provide cytoprotective effects suggests that this protein may serve as a novel anti-inflammatory and neuroprotective target for stroke therapy. PMID:17714707

  6. Flexible retinal electrode array

    DOEpatents

    Okandan, Murat; Wessendorf, Kurt O.; Christenson, Todd R.

    2006-10-24

    An electrode array which has applications for neural stimulation and sensing. The electrode array can include a large number of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. The electrode array can be formed from a combination of bulk and surface micromachining, with electrode tips that can include an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis where the electrodes can be tailored to provide a uniform gentle contact pressure with optional sensing of this contact pressure at one or more of the electrodes.

  7. Building retinal connectomes.

    PubMed

    Marc, Robert E; Jones, Bryan W; Lauritzen, J Scott; Watt, Carl B; Anderson, James R

    2012-08-01

    Understanding vertebrate vision depends on knowing, in part, the complete network graph of at least one representative retina. Acquiring such graphs is the business of synaptic connectomics, emerging as a practical technology due to improvements in electron imaging platform control, management software for large-scale datasets, and availability of data storage. The optimal strategy for building complete connectomes uses transmission electron imaging with 2 nm or better resolution, molecular tags for cell identification, open-access data volumes for navigation, and annotation with open-source tools to build 3D cell libraries, complete network diagrams and connectivity databases. The first forays into retinal connectomics have shown that even nominally well-studied cells have much richer connection graphs than expected. PMID:22498714

  8. Sum of effects of myocardial ischemia followed by electrically induced tachycardia on myocardial function

    PubMed Central

    Díez, José Luis; Hernándiz, Amparo; Cosín-Aguilar, Juan; Aguilar, Amparo; Portolés, Manuel

    2013-01-01

    Background The alteration of contractile function after tachyarrhythmia ceases is influenced by the type of prior ischemia (acute coronary syndrome or ischemia inherent in a coronary revascularization procedure). We aimed to analyze cardiac dysfunction in an acute experimental model of supraphysiological heart rate preceded by different durations and types of ischemia. Material/Methods Twenty-four pigs were included in: (S1) series of ventricular pacing; (S2, A and B) series with 10 or 20 min, respectively, of coronary occlusion previous to ventricular pacing; S3 with 20 brief, repeated ischemia/reperfusion processes prior to ventricular pacing and; (S4) control series. Overall cardiac function parameters and regional myocardial contractility at the apex and base of the left ventricle were recorded, as were oxidative stress markers (glutathione and lipid peroxide serum levels). Left ventricular pacing at 60% over baseline heart rate was performed for 2 h followed by 1 h of recovery. Results High ventricular pacing rates preceded by short, repeated periods of coronary ischemia/reperfusion resulted in worse impairment of overall cardiac and regional function that continued to be altered 1 h after tachycardia ceased. There was significant reduction of stroke volume (26.9±5.3 basal vs. 16±6.2 ml; p<0.05), LVP; dP/dt and LAD flow (13.1±1.5 basal vs. 8.4±1.6 ml/min; p<0.05); the base contractility remained altered when recovering compared to baseline (base SF: 5.6±2.8 vs. 2.2±0.7%; p<0.05); and LPO levels were higher than less aggressive series at the end of recovery. Conclusions Ischemia and tachycardia accumulate their effects, with increased cardiac involvement depending on the type of ischemia. PMID:23722244

  9. NONICHEMIC CENTRAL RETINAL VEIN OCCLUSION ASSOCIATED WITH HEREDITARY THROMBOPHYLIA.

    PubMed

    Fişuş, Andreea Dana; Pop, Doina Suzana; Rusu, Monica Blanka; Vultur, Florina; Horvath, Karin Ursula

    2015-01-01

    Retinal vein occlusion (RVO) is the second most common retinal vein disease with significant visual loss via thrombus or compression of vein wall. Thrombophilia is the predisposition to vascular thrombosis with the existence of genetic defect that leads to blood hypercoagulability. This report describes the case of a 55 year old male patient, with an active life who presented himself at the emergency room with acute visual lose, insidious and progressive visual field constriction, without any known history of neurological or vascular diseases. The examinations revealed unilateral optic nerve head edema, the fluorescein angiography was specific for nonischemic central retinal vein occlusion CRVO complicated with macular edema. Blood examinations has emphasized the presence of the heterozygous mutation A1298C in the methylenetetrahydrofolate reductase gene (MTHFR), the only one presented from the thrombophilia screen panel and a slightly elevated cholesterol level. During the follow-up period, the patient received anti-VEGF treatment (Bevacizumab, 3x 0.1 ml intravitreal injections) with improved visual acuity and amendment of macular edema. The complex etiology calls for interdisciplinary approach to determine better the cause of this ophthalmological disease. Although studies have found a correlation between some thrombophilia mutations and retinal vein occlusion, more studies that contain a larger number of patients are necessary in order to determine the final role of these gene variants. PMID:26978887

  10. Nutrition and retinal degenerations.

    PubMed

    Berson, E L

    2000-01-01

    Considerable progress has been made in the understanding and management of degenerative diseases of the retina involving photoreceptors. Nutritional approaches to treatment have proved successful in the case of the common forms of retinitis pigmentosa (supplementation with vitamin A), Bassen-Kornzweig disease (supplementation with vitamins A, E, and K), gyrate atrophy (low-protein, low-arginine diet and/or supplementation with vitamin B6), and Refsum disease (low-phytol, low-phytanic acid diet). The night blindness associated with Sorsby fundus dystrophy can be reversed over the short term with vitamin A. A significant trend for decreased risk for advanced or exudative ARMD has been reported among those whose diets contain a higher content of carotenoids, such as spinach and collard greens. A randomized trial is in progress to determine whether beta-carotene, vitamin C, and vitamin E as well as trace minerals, particularly zinc, will modify the course of ARMD. The difficulties that patients with retinal degenerations face as a result of their diminishing vision, sometimes over decades, cannot be underestimated. Nutritional therapy has proved effective in modifying the course of a number of these conditions; the therapeutic benefit of nutritional modification in diseases that have a genetic basis is of particular interest. Further research is warranted to determine the mechanisms by which these treatments provide their benefit as well as to identify other conditions that may yield to nutritional intervention. Risk-factor analyses of well-defined populations followed over time with food-frequency questionnaires in conjunction with careful assessments of visual function may reveal other dietary constituents that can modify the course of degenerative diseases of the retina. PMID:11064860

  11. A case of atypical progressive outer retinal necrosis after highly active antiretroviral therapy.

    PubMed

    Woo, Se Joon; Yu, Hyeong Gon; Chung, Hum

    2004-06-01

    This is a report of an atypical case of progressive outer retinal necrosis (PORN) and the effect of highly active antiretroviral therapy (HAART) on the clinical course of viral retinitis in an acquired immunodeficiency syndrome (AIDS) patient. A 22-year-old male patient infected with human immunodeficiency virus (HIV) presented with unilaterally reduced visual acuity and a dense cataract. After cataract extraction, retinal lesions involving the peripheral and macular areas were found with perivascular sparing and the mud-cracked, characteristic appearance of PORN. He was diagnosed as having PORN based on clinical features and was given combined antiviral treatment. With concurrent HAART, the retinal lesions regressed, with the regression being accelerated by further treatment with intravenous acyclovir and ganciclovir. This case suggests that HAART may change the clinical course of PORN in AIDS patients by improving host immunity. PORN should be included in the differential diagnosis of acute unilateral cataract in AIDS patients. PMID:15255240

  12. Molecular genetics of retinitis pigmentosa.

    PubMed Central

    Farber, D. B.; Heckenlively, J. R.; Sparkes, R. S.; Bateman, J. B.

    1991-01-01

    Retinitis pigmentosa is a model for the study of genetic diseases. Its genetic heterogeneity is reflected in the different forms of inheritance (autosomal dominant, autosomal recessive, or X-linked) and, in a few families, in the presence of mutations in the visual pigment rhodopsin. Clinical and molecular genetic studies of these disorders are discussed. Animal models of retinal degeneration have been investigated for many years with the hope of gaining insight into the cause of photoreceptor cell death. Recently, the genes responsible for two of these animal disorders, the rds and rd mouse genes, have been isolated and characterized. The retinal degeneration of the rd mouse is presented in detail. The possible involvement of human analogues of these mouse genes in human retinal diseases is being investigated. Images PMID:1771877

  13. Noninvasive Multimodal Imaging to Predict Recovery of Locomotion after Extended Limb Ischemia

    PubMed Central

    Radowsky, Jason S.; Caruso, Joseph D.; Luthra, Rajiv; Bradley, Matthew J.; Elster, Eric A.; Forsberg, Jonathan A.; Crane, Nicole J.

    2015-01-01

    Acute limb ischemia is a common cause of morbidity and mortality following trauma both in civilian centers and in combat related injuries. Rapid determination of tissue viability and surgical restoration of blood flow are desirable, but not always possible. We sought to characterize the response to increasing periods of hind limb ischemia in a porcine model such that we could define a period of critical ischemia (the point after which irreversible neuromuscular injury occurs), evaluate non-invasive methods for characterizing that ischemia, and establish a model by which we could predict whether or not the animal’s locomotion would return to baselines levels post-operatively. Ischemia was induced by either application of a pneumatic tourniquet or vessel occlusion (performed by clamping the proximal iliac artery and vein at the level of the inguinal ligament). The limb was monitored for the duration of the procedure with both 3-charge coupled device (3CCD) and infrared (IR) imaging for tissue oxygenation and perfusion, respectively. The experimental arms of this model are effective at inducing histologically evident muscle injury with some evidence of expected secondary organ damage, particularly in animals with longer ischemia times. Noninvasive imaging data shows excellent correlation with post-operative functional outcomes, validating its use as a non-invasive means of viability assessment, and directly monitors post-occlusive reactive hyperemia. A classification model, based on partial-least squares discriminant analysis (PLSDA) of imaging variables only, successfully classified animals as “returned to normal locomotion” or “did not return to normal locomotion” with 87.5% sensitivity and 66.7% specificity after cross-validation. PLSDA models generated from non-imaging data were not as accurate (AUC of 0.53) compared the PLSDA model generated from only imaging data (AUC of 0.76). With some modification, this limb ischemia model could also serve as a

  14. Retinal oxygen extraction in humans

    NASA Astrophysics Data System (ADS)

    Werkmeister, René M.; Schmidl, Doreen; Aschinger, Gerold; Doblhoff-Dier, Veronika; Palkovits, Stefan; Wirth, Magdalena; Garhöfer, Gerhard; Linsenmeier, Robert A.; Leitgeb, Rainer A.; Schmetterer, Leopold

    2015-10-01

    Adequate function of the retina is dependent on proper oxygen supply. In humans, the inner retina is oxygenated via the retinal circulation. We present a method to calculate total retinal oxygen extraction based on measurement of total retinal blood flow using dual-beam bidirectional Doppler optical coherence tomography and measurement of oxygen saturation by spectrophotometry. These measurements were done on 8 healthy subjects while breathing ambient room air and 100% oxygen. Total retinal blood flow was 44.3 ± 9.0 μl/min during baseline and decreased to 18.7 ± 4.2 μl/min during 100% oxygen breathing (P < 0.001) resulting in a pronounced decrease in retinal oxygen extraction from 2.33 ± 0.51 μl(O2)/min to 0.88 ± 0.14 μl(O2)/min during breathing of 100% oxygen. The method presented in this paper may have significant potential to study oxygen metabolism in hypoxic retinal diseases such as diabetic retinopathy.

  15. General pathophysiology in retinal degeneration.

    PubMed

    Wert, Katherine J; Lin, Jonathan H; Tsang, Stephen H

    2014-01-01

    Retinal degeneration, including that seen in age-related macular degeneration and retinitis pigmentosa (RP), is the most common form of neural degenerative disease in the world. There is great genetic and allelic heterogeneity of the various retinal dystrophies. Classifications of these diseases can be ambiguous, as there are similar clinical presentations in retinal degenerations arising from different genetic mechanisms. As would be expected, alterations in the activity of the phototransduction cascade, such as changes affecting the renewal and shedding of the photoreceptor OS, visual transduction, and/or retinol metabolism have a great impact on the health of the retina. Mutations within any of the molecules responsible for these visual processes cause several types of retinal and retinal pigment epithelium degenerative diseases. Apoptosis has been implicated in the rod cell loss seen in a mouse model of RP, but the precise mechanisms that connect the activation of these pathways to the loss of phosphodiesterase (PDE6β) function has yet to be defined. Additionally, the activation of apoptosis by CCAAT/-enhancer-binding protein homologous protein (CHOP), after activation of the unfolded protein response pathway, may be responsible for cell death, although the mechanism remains unknown. However, the mechanisms of cell death after loss of function of PDE6, which is a commonly studied mammalian model in research, may be generalizable to loss of function of different key proteins involved in the phototransduction cascade. PMID:24732759

  16. General Pathophysiology in Retinal Degeneration

    PubMed Central

    Wert, Katherine J.; Lin, Jonathan H.; Tsang, Stephen H.

    2015-01-01

    Retinal degeneration, including that seen in age-related macular degeneration and retinitis pigmentosa (RP), is the most common form of neural degenerative disease in the world. There is great genetic and allelic heterogeneity of the various retinal dystrophies. Classifications of these diseases can be ambiguous, as there are similar clinical presentations in retinal degenerations arising from different genetic mechanisms. As would be expected, alterations in the activity of the phototransduction cascade, such as changes affecting the renewal and shedding of the photoreceptor OS, visual transduction, and/ or retinol metabolism have a great impact on the health of the retina. Mutations within any of the molecules responsible for these visual processes cause several types of retinal and retinal pigment epithelium degenerative diseases. Apoptosis has been implicated in the rod cell loss seen in a mouse model of RP, but the precise mechanisms that connect the activation of these pathways to the loss of phosphodiesterase (PDE6β) function has yet to be defined. Additionally, the activation of apoptosis by CCAAT/-enhancer-binding protein homologous protein (CHOP), after activation of the unfolded protein response pathway, may be responsible for cell death, although the mechanism remains unknown. However, the mechanisms of cell death after loss of function of PDE6, which is a commonly studied mammalian model in research, may be generalizable to loss of function of different key proteins involved in the phototransduction cascade. PMID:24732759

  17. The mechanics of retinal detachment

    NASA Astrophysics Data System (ADS)

    Chou, Tom; Siegel, Michael

    2013-03-01

    We present a model of the mechanical and fluid forces associated with exudative retinal detachments where the retinal photoreceptor cells separate typically from the underlying retinal pigment epithelium (RPE). By computing the total fluid volume flow arising from transretinal, vascular, and retinal pigment epithelium (RPE) pump currents, we determine the conditions under which the subretinal fluid pressure exceeds the maximum yield stress holding the retina and RPE together, giving rise to an irreversible, extended retinal delamination. We also investigate localized, blister-like retinal detachments by balancing mechanical tension in the retina with both the retina-RPE adhesion energy and the hydraulic pressure jump across the retina. For detachments induced by traction forces, we find a critical radius beyond which the blister is unstable to growth. Growth of a detached blister can also be driven by inflamed tissue within which e.g., the hydraulic conductivities of the retina or choroid increase, the RPE pumps fail, or the adhesion properties change. We determine the parameter regimes in which the blister either becomes unstable to growth, remains stable and finite-sized, or shrinks, allowing possible healing. This work supported by the Army Research Office through grant 58386MA

  18. Cytomegalovirus retinitis mimicking intraocular lymphoma.

    PubMed

    Gooi, Patrick; Farmer, James; Hurley, Bernard; Brodbaker, Elliott

    2008-12-01

    We present a case of an unusual retinal infiltrate requiring retinal biopsy for definitive diagnosis. A 62-year-old man with treated lymphoma presented with decreased vision in the right eye associated with a white retinal lesion, which extended inferonasally from an edematous disc. Intraocular lymphoma was considered as a diagnosis; thus, the patient was managed with vitrectomy and retinal biopsy. Cytological analysis of the vitreous aspirate could not rule out a lymphoproliferative disorder. The microbial analysis was negative. Histology of the lesion showed extensive necrosis and large cells with prominent nucleoli. To rule out lymphoma, a battery of immunostains was performed and all were negative. However the limited amount of tissue was exhausted in the process. Subsequently, a hematoxylin and eosin (H/E) slide was destained, on which a CMV immunostain was performed. This revealed positivity in the nuclei and intranuclear inclusions within the large atypical cells. A diagnosis of CMV retinitis was made. Retinal biopsy may provide a definitive diagnosis and direct patient care toward intravenous gancyclovir in the case of CMV or toward radiation and chemotherapy for intraocular lymphoma. When faced with a limited amount of tissue, destaining regular H/E slides is a possible avenue to performing additional immunohistochemical studies. PMID:19668455

  19. Retinal oxygen extraction in humans.

    PubMed

    Werkmeister, René M; Schmidl, Doreen; Aschinger, Gerold; Doblhoff-Dier, Veronika; Palkovits, Stefan; Wirth, Magdalena; Garhöfer, Gerhard; Linsenmeier, Robert A; Leitgeb, Rainer A; Schmetterer, Leopold

    2015-01-01

    Adequate function of the retina is dependent on proper oxygen supply. In humans, the inner retina is oxygenated via the retinal circulation. We present a method to calculate total retinal oxygen extraction based on measurement of total retinal blood flow using dual-beam bidirectional Doppler optical coherence tomography and measurement of oxygen saturation by spectrophotometry. These measurements were done on 8 healthy subjects while breathing ambient room air and 100% oxygen. Total retinal blood flow was 44.3 ± 9.0 μl/min during baseline and decreased to 18.7 ± 4.2 μl/min during 100% oxygen breathing (P < 0.001) resulting in a pronounced decrease in retinal oxygen extraction from 2.33 ± 0.51 μl(O2)/min to 0.88 ± 0.14 μl(O2)/min during breathing of 100% oxygen. The method presented in this paper may have significant potential to study oxygen metabolism in hypoxic retinal diseases such as diabetic retinopathy. PMID:26503332

  20. Retinal oxygen extraction in humans

    PubMed Central

    Werkmeister, René M.; Schmidl, Doreen; Aschinger, Gerold; Doblhoff-Dier, Veronika; Palkovits, Stefan; Wirth, Magdalena; Garhöfer, Gerhard; Linsenmeier, Robert A.; Leitgeb, Rainer A.; Schmetterer, Leopold

    2015-01-01

    Adequate function of the retina is dependent on proper oxygen supply. In humans, the inner retina is oxygenated via the retinal circulation. We present a method to calculate total retinal oxygen extraction based on measurement of total retinal blood flow using dual-beam bidirectional Doppler optical coherence tomography and measurement of oxygen saturation by spectrophotometry. These measurements were done on 8 healthy subjects while breathing ambient room air and 100% oxygen. Total retinal blood flow was 44.3 ± 9.0 μl/min during baseline and decreased to 18.7 ± 4.2 μl/min during 100% oxygen breathing (P < 0.001) resulting in a pronounced decrease in retinal oxygen extraction from 2.33 ± 0.51 μl(O2)/min to 0.88 ± 0.14 μl(O2)/min during breathing of 100% oxygen. The method presented in this paper may have significant potential to study oxygen metabolism in hypoxic retinal diseases such as diabetic retinopathy. PMID:26503332

  1. Expansion of first-in-class drug candidates that sequester toxic all-trans-retinal and prevent light-induced retinal degeneration.

    PubMed

    Zhang, Jianye; Dong, Zhiqian; Mundla, Sreenivasa Reddy; Hu, X Eric; Seibel, William; Papoian, Ruben; Palczewski, Krzysztof; Golczak, Marcin

    2015-01-01

    All-trans-retinal, a retinoid metabolite naturally produced upon photoreceptor light activation, is cytotoxic when present at elevated levels in the retina. To lower its toxicity, two experimentally validated methods have been developed involving inhibition of the retinoid cycle and sequestration of excess of all-trans-retinal by drugs containing a primary amine group. We identified the first-in-class drug candidates that transiently sequester this metabolite or slow down its production by inhibiting regeneration of the visual chromophore, 11-cis-retinal. Two enzymes are critical for retinoid recycling in the eye. Lecithin:retinol acyltransferase (LRAT) is the enzyme that traps vitamin A (all-trans-retinol) from the circulation and photoreceptor cells to produce the esterified substrate for retinoid isomerase (RPE65), which converts all-trans-retinyl ester into 11-cis-retinol. Here we investigated retinylamine and its derivatives to assess their inhibitor/substrate specificities for RPE65 and LRAT, mechanisms of action, potency, retention in the eye, and protection against acute light-induced retinal degeneration in mice. We correlated levels of visual cycle inhibition with retinal protective effects and outlined chemical boundaries for LRAT substrates and RPE65 inhibitors to obtain critical insights into therapeutic properties needed for retinal preservation. PMID:25538117

  2. Expansion of First-in-Class Drug Candidates That Sequester Toxic All-Trans-Retinal and Prevent Light-Induced Retinal Degeneration

    PubMed Central

    Zhang, Jianye; Dong, Zhiqian; Mundla, Sreenivasa Reddy; Hu, X. Eric; Seibel, William; Papoian, Ruben

    2015-01-01

    All-trans-retinal, a retinoid metabolite naturally produced upon photoreceptor light activation, is cytotoxic when present at elevated levels in the retina. To lower its toxicity, two experimentally validated methods have been developed involving inhibition of the retinoid cycle and sequestration of excess of all-trans-retinal by drugs containing a primary amine group. We identified the first-in-class drug candidates that transiently sequester this metabolite or slow down its production by inhibiting regeneration of the visual chromophore, 11-cis-retinal. Two enzymes are critical for retinoid recycling in the eye. Lecithin:retinol acyltransferase (LRAT) is the enzyme that traps vitamin A (all-trans-retinol) from the circulation and photoreceptor cells to produce the esterified substrate for retinoid isomerase (RPE65), which converts all-trans-retinyl ester into 11-cis-retinol. Here we investigated retinylamine and its derivatives to assess their inhibitor/substrate specificities for RPE65 and LRAT, mechanisms of action, potency, retention in the eye, and protection against acute light-induced retinal degeneration in mice. We correlated levels of visual cycle inhibition with retinal protective effects and outlined chemical boundaries for LRAT substrates and RPE65 inhibitors to obtain critical insights into therapeutic properties needed for retinal preservation. PMID:25538117

  3. Spinal cord ischemia resulting in paraplegia following extrapleural pneumonectomy.

    PubMed

    Ural, Kelly; Jakob, Kyle; Lato, Scott; Gilly, George; Landreneau, Rodney

    2014-08-01

    A patient undergoing radical extrapleural pneumonectomy for epithelioid malignant mesothelioma developed acute paraplegia postoperatively related to long-segment spinal cord ischemia. The usual area of concern for this complication is the T9 to T12 area where the artery of Adamkiewicz is most likely to originate. In this patient, there was ligation of only upper thoracic, ipsilateral segmental arteries from the T3 to T6 level, yet he still developed paraplegia. Our hypothesis is variant mid-thoracic vascular anatomy. Previously unreported, to our knowledge, this should be understood as a rare complication of this surgery. PMID:25091760

  4. Celiac axis stenosis and lethal liver ischemia after pancreaticoduodenectomy.

    PubMed

    Lipska, Ludmila; Visokai, Vladimir; Levy, Miroslav; Koznar, Boris; Zaruba, Pavel

    2009-01-01

    Celiac axis stenosis can lead to a fatal hepatic ischemia after pancreaticoduodenectomy unless a simultaneous revascularisation of the celiac circulation is performed. In the present study are reported three cases of celiac axis stenosis, all of which had histologically confirmed periampullary cancer. Case 1: a 50-year-old male with a history of myocardial infarction and liver steatosis; visceral arteriography prior to the surgery demonstrated a celiac axis stenosis. Whipple operation was performed. After removing the specimen, no signs of liver ischemia were found (liver was cholestatic) and pulsation of the hepatic artery was strong. The patient died on the second postoperative day after an abrupt irreversible cardiac arrest. Autopsy proved acute severe hepatic ischemia. Case 2: a 64-year-old female. Preoperative visceral angiography showed significant celiac axis stenosis. As a first step of surgery the root of the celiac trunk was exposed, a fibrotic ring around it was divided. Standard D1 pylorus preserving pancreaticoduodenectomy was performed. Case 3: a 58-year-old female without preoperative angiography, indicated for surgery. After an occlusion test of the gastroduodenal artery the liver became ischemic. Division of the fibrotic ring around celiac axis was performed together with a standard D1 pylorus preserving pancreaticoduodenectomy. No postoperative complications were reported in both case 2 and 3. PMID:19760970

  5. Animal models of cerebral ischemia for evaluation of drugs.

    PubMed

    Gupta, Y K; Briyal, Seema

    2004-10-01

    Stroke is a major cause of death and disability worldwide. The resulting burden on the society continues to grow, with increase in the incidence of stroke. Brain attack is a term introduced to describe the acute presentation of stroke, which emphasizes the need for urgent action to remedy the situation. Though a large number of therapeutic agents like thrombolytics, NMDA receptor antagonists, calcium channel blockers and antioxidants, have been used or being evaluated, there remains a large gap between the benefits by these agents and properties an ideal drug for stroke should offer. In recent years much attention is being paid towards the exploration of herbal preparation, antioxidant agents and combination therapies including COX-2 inhibitors in experimental model of stroke. For better evaluation of the drugs and enhancement of their predictability from animal experimentation to clinical settings, it has been realized that the selection of animal models, the parameters to be evaluated should be critically assessed. Focal and global cerebral ischemia represents diseases that are common in the human population. Understanding the mechanisms of injury and neuroprotection in these diseases is important to learn new target sites to treat ischemia. There are many animal models available to investigate injury mechanisms and neuroprotective strategies. In this article we attempted to summarize commonly explored animal models of focal and global cerebral ischemia and evaluate their advantages and limitations. PMID:15907047

  6. Acute chylous peritonitis due to acute pancreatitis.

    PubMed

    Georgiou, Georgios K; Harissis, Haralampos; Mitsis, Michalis; Batsis, Haralampos; Fatouros, Michalis

    2012-04-28

    We report a case of acute chylous ascites formation presenting as peritonitis (acute chylous peritonitis) in a patient suffering from acute pancreatitis due to hypertriglyceridemia and alcohol abuse. The development of chylous ascites is usually a chronic process mostly involving malignancy, trauma or surgery, and symptoms arise as a result of progressive abdominal distention. However, when accumulation of "chyle" occurs rapidly, the patient may present with signs of peritonitis. Preoperative diagnosis is difficult since the clinical picture usually suggests hollow organ perforation, appendicitis or visceral ischemia. Less than 100 cases of acute chylous peritonitis have been reported. Pancreatitis is a rare cause of chyloperitoneum and in almost all of the cases chylous ascites is discovered some days (or even weeks) after the onset of symptoms of pancreatitis. This is the second case in the literature where the patient presented with acute chylous peritonitis due to acute pancreatitis, and the presence of chyle within the abdominal cavity was discovered simultaneously with the establishment of the diagnosis of pancreatitis. The patient underwent an exploratory laparotomy for suspected perforated duodenal ulcer, since, due to hypertriglyceridemia, serum amylase values appeared within the normal range. Moreover, abdominal computed tomography imaging was not diagnostic for pancreatitis. Following abdominal lavage and drainage, the patient was successfully treated with total parenteral nutrition and octreotide. PMID:22563182

  7. Non-Specific Inhibition of Ischemia- and Acidosis-Induced Intracellular Calcium Elevations and Membrane Currents by α-Phenyl-N-tert-butylnitrone, Butylated Hydroxytoluene and Trolox

    PubMed Central

    Katnik, Christopher; Cuevas, Javier

    2014-01-01

    Ischemia, and subsequent acidosis, induces neuronal death following brain injury. Oxidative stress is believed to be a key component of this neuronal degeneration. Acute chemical ischemia (azide in the absence of external glucose) and acidosis (external media buffered to pH 6.0) produce increases in intracellular calcium concentration ([Ca2+]i) and inward membrane currents in cultured rat cortical neurons. Two α-tocopherol analogues, trolox and butylated hydroxytoluene (BHT), and the spin trapping molecule α-Phenyl-N-tert-butylnitrone (PBN) were used to determine the role of free radicals in these responses. PBN and BHT inhibited the initial transient increases in [Ca2+]i, produced by ischemia, acidosis and acidic ischemia and increased steady state levels in response to acidosis and the acidic ischemia. BHT and PBN also potentiated the rate at which [Ca2+]i increased after the initial transients during acidic ischemia. Trolox inhibited peak and sustained increases in [Ca2+]i during ischemia. BHT inhibited ischemia induced initial inward currents and trolox inhibited initial inward currents activated by acidosis and acidic ischemia. Given the inconsistent results obtained using these antioxidants, it is unlikely their effects were due to elimination of free radicals. Instead, it appears these compounds have non-specific effects on the ion channels and exchangers responsible for these responses. PMID:24583849

  8. Non-specific inhibition of ischemia- and acidosis-induced intracellular calcium elevations and membrane currents by α-phenyl-N-tert-butylnitrone, butylated hydroxytoluene and trolox.

    PubMed

    Katnik, Christopher; Cuevas, Javier

    2014-01-01

    Ischemia, and subsequent acidosis, induces neuronal death following brain injury. Oxidative stress is believed to be a key component of this neuronal degeneration. Acute chemical ischemia (azide in the absence of external glucose) and acidosis (external media buffered to pH 6.0) produce increases in intracellular calcium concentration ([Ca2+]i) and inward membrane currents in cultured rat cortical neurons. Two α-tocopherol analogues, trolox and butylated hydroxytoluene (BHT), and the spin trapping molecule α-Phenyl-N-tert-butylnitrone (PBN) were used to determine the role of free radicals in these responses. PBN and BHT inhibited the initial transient increases in [Ca2+]i, produced by ischemia, acidosis and acidic ischemia and increased steady state levels in response to acidosis and the acidic ischemia. BHT and PBN also potentiated the rate at which [Ca2+]i increased after the initial transients during acidic ischemia. Trolox inhibited peak and sustained increases in [Ca2+]i during ischemia. BHT inhibited ischemia induced initial inward currents and trolox inhibited initial inward currents activated by acidosis and acidic ischemia. Given the inconsistent results obtained using these antioxidants, it is unlikely their effects were due to elimination of free radicals. Instead, it appears these compounds have non-specific effects on the ion channels and exchangers responsible for these responses. PMID:24583849

  9. Fatal subarachnoid hemorrhage following ischemia in vertebrobasilar dolichoectasia.

    PubMed

    Sokolov, Arseny A; Husain, Shakir; Sztajzel, Roman; Croquelois, Alexandre; Lobrinus, Johannes A; Thaler, David; Städler, Claudio; Hungerbühler, Hansjörg; Caso, Valeria; Rinkel, Gabriel J; Michel, Patrik

    2016-07-01

    Vertebrobasilar dolichoectasia (VBD) is a chronic disorder with various cerebrovascular and compressive manifestations, involving subarachnoid hemorrhage (SAH). Occurrence of SAH shortly after worsening of clinical VBD symptoms has occasionally been reported. The goal of the study was to examine this association, in particular its pathophysiology, clinical precursor signs, time course, and outcome.To this end, in a retrospective multicenter study, we analyzed 20 patients with VBD and SAH in regard to preceding clinical symptoms, presence of vertebrobasilar thrombosis and ischemia, outcome and neuropathological correlates.Median age of the 7 female and 13 male patients was 70 years (interquartile range [IQR] 18.3 years). Fourteen patients (70%) presented with new or acutely worsening posterior fossa signs at a median of 3 days prior to SAH (IQR 2, range 0.5-14). A thrombus within the VBD was detected in 12 patients (60%). Thrombus formation was associated with clinical deterioration (χ = 4.38, P = 0.04) and ponto-cerebellar ischemia (χ = 8.09, P = 0.005). During follow-up after SAH, 13 patients (65%) died, after a median survival time of 24 hours (IQR 66.2, range 2-264 hours), with a significant association between proven ponto-cerebellar ischemia and case fatality (χ = 6.24, P = 0.01).The data establish an association between clinical deterioration in patients with VBD, vertebrobasilar ischemia, and subsequent SAH. Antithrombotic treatment after deterioration appears controversial and SAH outcome is frequently fatal. Our data also indicate a short window of 3 days that may allow for evaluating interventional treatment, preferably within randomized trials. PMID:27399083

  10. Retinal AO OCT

    NASA Astrophysics Data System (ADS)

    Zawadzki, Robert J.; Miller, Donald T.

    The last two decades have witnessed extraordinary advances in optical technology to image noninvasively and at high resolution the posterior segment of the eye. Two of the most impactful technological advancements over this period have arguably been optical coherence tomography (OCT) and adaptive optics (AO). The strengths of these technologies complement each other and when combined have been shown to provide unprecedented, micron-scale resolution (<3 μm) in all three dimensions and sensitivity to image the cellular retina in the living eye. This powerful extension of OCT, that is AO-OCT, is the focus of this chapter. It presents key aspects of designing and implementing AO-OCT systems. Particular attention is devoted to the relevant optical properties of the eye that ultimately define these systems, AO componentry and operation tailored for ophthalmic use, and of course use of the latest technologies and methods in OCT for ocular imaging. It surveys the wide range of AO-OCT designs that have been developed for retinal imaging, with AO integrated into every major OCT design configuration. Finally, it reviews the scientific and clinical studies reported to date that show the exciting potential of AO-OCT to image the microscopic retina and fundus in ways not previously possible with other noninvasive methods and a look to future developments in this rapidly growing field.

  11. Temperature controlled retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Schlott, Kerstin; Koinzer, Stefan; Baade, Alexander; Birngruber, Reginald; Roider, Johann; Brinkmann, Ralf

    2013-06-01

    Retinal photocoagulation lacks objective dosage in clinical use, thus the commonly applied lesions are too deep and strong, associated with pain reception and the risk of visual field defects and induction of choroidal neovascularisations. Optoacoustics allows real-time non-invasive temperature measurement in the fundus during photocoagulation by applying short probe laser pulses additionally to the treatment radiation, which excite the emission of ultrasonic waves. Due to the temperature dependence of the Grüneisen parameter, the amplitudes of the ultrasonic waves can be used to derive the temperature of the absorbing tissue. By measuring the temperatures in real-time and automatically controlling the irradiation by feedback to the treatment laser, the strength of the lesions can be defined. Different characteristic functions for the time and temperature dependent lesion sizes were used as rating curves for the treatment laser, stopping the irradiation automatically after a desired lesion size is achieved. The automatically produced lesion sizes are widely independent of the adjusted treatment laser power and individual absorption. This study was performed on anaesthetized rabbits and is a step towards a clinical trial with automatically controlled photocoagulation.

  12. Color Doppler imaging of retinal diseases.

    PubMed

    Dimitrova, Galina; Kato, Satoshi

    2010-01-01

    Color Doppler imaging (CDI) is a widely used method for evaluating ocular circulation that has been used in a number of studies on retinal diseases. CDI assesses blood velocity parameters by using ultrasound waves. In ophthalmology, these assessments are mainly performed on the retrobulbar blood vessels: the ophthalmic, the central retinal, and the short posterior ciliary arteries. In this review, we discuss CDI use for the assessment of retinal diseases classified into the following: vascular diseases, degenerations, dystrophies, and detachment. The retinal vascular diseases that have been investigated by CDI include diabetic retinopathy, retinal vein occlusions, retinal artery occlusions, ocular ischemic conditions, and retinopathy of prematurity. Degenerations and dystrophies included in this review are age-related macular degeneration, myopia, and retinitis pigmentosa. CDI has been used for the differential diagnosis of retinal detachment, as well as the evaluation of retrobulbar circulation in this condition. CDI is valuable for research and is a potentially useful diagnostic tool in the clinical setting. PMID:20385332

  13. Photon Echoes from Retinal Proteins

    NASA Astrophysics Data System (ADS)

    Johnson, Philip James Maddigan

    This thesis focuses on the ultrafast isomerization reaction of retinal in both rhodopsin and bacteriorhodopsin, examples of sensory and energy transduction proteins that exploit the same photoactive chromophore for two very different functions. In bacteriorhodopsin, retinal isomerizes from an all-trans to 13-cis conformation as the primary event in light- driven proton pumping. In the visual pigment rhodopsin, the retinal chromophore isomerizes from an 11-cis to all-trans geometry as the primary step leading to our sense of vision. This diversity of function for nominally identical systems raises the question as to just how optimized are these proteins to arrive at such drastically different functions? Previous work has employed transient absorption spectroscopy to probe retinal protein photochemistry, but many of the relevant electronic and nuclear dynamics of isomerization are masked by inhomogeneous broadening effects and strong spectral overlap between reactant and photoproduct states. This work exploits the unique properties of two-dimensional photon echo spectroscopy to deconvolve inhomogeneous broadening and spectral overlap effects and fully reveal the dynamics that direct retinal isomerization in proteins. In bacteriorhodopsin, vibrational coupling to the reaction coordinate results in a surface crossing event prior to the conventional conical intersection associated with isomerization to the J intermediate. In rhodopsin, however, a similarly early vibrationally-mediated barrier crossing event is observed, resulting in spectral signals consistent with the known photoproduct state appearing an order of magnitude faster than determined from conventional transient absorption measurements. The competing overlapping spectral signals that obscured the initial dynamics when probed with transient absorption spectroscopy are now clearly resolved with two-dimensional photon echo spectroscopy. These experiments illustrate the critical role of the protein in directing

  14. Leg ischemia post-varicocelectomy

    PubMed Central

    Al-Wahbi, Abdullah M; Elmoukaied, Shaza

    2016-01-01

    Varicocelectomy is the most commonly performed operation for the treatment of male infertility. Many surgical approaches are used as each of them has advantages over the other and is preferred by surgeons. Vascular injury has never been reported as a complication of varicocelectomy apart from testicular artery injury. We present a 36-year-old male who developed leg ischemia post-varicocelectomy due to common femoral artery injury. He was successfully treated by using a vein graft. PMID:27022305

  15. Automated retinal robotic laser system.

    PubMed

    Barrett, S F; Wright, C H; Jerath, M R; Lewis, R S; Dillard, B C; Rylander, H G; Welch, A J

    1995-01-01

    Researchers at the University of Texas and the USAF Academy have worked toward the development of a retinal robotic laser system. The overall goal of this ongoing project is to precisely place and control the depth of laser lesions for the treatment of various retinal diseases such as diabetic retinopathy and retinal tears. Separate low speed prototype subsystems have been developed to control lesion depth using lesion reflectance feedback parameters and lesion placement using retinal vessels as tracking landmarks. Both subsystems have been successfully demonstrated in vivo on pigmented rabbits using an argon continuous wave laser. Recent efforts have concentrated on combining the two subsystems into a single prototype capable of simultaneously controlling both lesion depth and placement. We have designated this combined system CALOSOS for Computer Aided Laser Optics System for Ophthalmic Surgery. Following the dual-use concept, this system is being adapted for clinical use as a retinal treatment system as well as a research tool for military laser-tissue interaction studies. PMID:7654990

  16. Predictive Modeling of Cardiac Ischemia

    NASA Technical Reports Server (NTRS)

    Anderson, Gary T.

    1996-01-01

    The goal of the Contextual Alarms Management System (CALMS) project is to develop sophisticated models to predict the onset of clinical cardiac ischemia before it occurs. The system will continuously monitor cardiac patients and set off an alarm when they appear about to suffer an ischemic episode. The models take as inputs information from patient history and combine it with continuously updated information extracted from blood pressure, oxygen saturation and ECG lines. Expert system, statistical, neural network and rough set methodologies are then used to forecast the onset of clinical ischemia before it transpires, thus allowing early intervention aimed at preventing morbid complications from occurring. The models will differ from previous attempts by including combinations of continuous and discrete inputs. A commercial medical instrumentation and software company has invested funds in the project with a goal of commercialization of the technology. The end product will be a system that analyzes physiologic parameters and produces an alarm when myocardial ischemia is present. If proven feasible, a CALMS-based system will be added to existing heart monitoring hardware.

  17. Thrombolysis and neuroprotection in cerebral ischemia.

    PubMed

    Gutiérrez, M; Díez Tejedor, E; Alonso de Leciñana, M; Fuentes, B; Carceller, F; Roda, J M

    2006-01-01

    Stroke is a major cause of death and disability worldwide. The resulting burden on society grows with the increase in the incidence of stroke. The term brain attack was introduced to describe the acute presentation of stroke and emphasize the need for urgent action to remedy the situation. Though a large number of therapeutic agents, like thrombolytics, NMDA receptor antagonists, calcium channel blockers and antioxidants, have been used or are being evaluated, there is still a large gap between the benefits of these agents and the properties of an ideal drug for stroke. So far, only thrombolysis with rtPA within a 3-hour time window has been shown to improve the outcome of patients with ischemic stroke. Understanding the mechanisms of injury and neuroprotection in these diseases is important to target news sites for treating ischemia. Better evaluation of the drugs and increased similarity between the results of animal experimentation and in the clinical setting requires critical assessment of the selection of animal models and the parameters to be evaluated. Our laboratory has employed a rat embolic stroke model to investigate the combination of rtPA with citicoline as compared to monotherapy alone and investigated whether neuroprotection should be provided before or after thrombolysis in order to achieve a greater reduction of ischemic brain damage. PMID:16651822

  18. Calpain system and its involvement in myocardial ischemia and reperfusion injury

    PubMed Central

    Neuhof, Christiane; Neuhof, Heinz

    2014-01-01

    Calpains are ubiquitous non-lysosomal Ca2+-dependent cysteine proteases also present in myocardial cytosol and mitochondria. Numerous experimental studies reveal an essential role of the calpain system in myocardial injury during ischemia, reperfusion and postischemic structural remodelling. The increasing Ca2+-content and Ca2+-overload in myocardial cytosol and mitochondria during ischemia and reperfusion causes an activation of calpains. Upon activation they are able to injure the contractile apparatus and impair the energy production by cleaving structural and functional proteins of myocytes and mitochondria. Besides their causal involvement in acute myocardial dysfunction they are also involved in structural remodelling after myocardial infarction by the generation and release of proapoptotic factors from mitochondria. Calpain inhibition can prevent or attenuate myocardial injury during ischemia, reperfusion, and in later stages of myocardial infarction. PMID:25068024

  19. [Unusual retinal abnormality: retinal hemorrhages related to scurvy].

    PubMed

    Errera, M-H; Dupas, B; Man, H; Gualino, V; Gaudric, A; Massin, P

    2011-03-01

    A diet restricted to rice and boiled fruit and vegetables leads to vitamin C deficiency. We describe the third case, to our knowledge, of retinal hemorrhages related to scurvy. Reduced bilateral visual acuity in a 50-year-old patient was associated with macrocytic anemia, denutrition, and cutaneous ecchymoses. Oral vitamin C treatment provided subjective clinical improvement and regression of the retinal hemorrhages on fundus examination, with no side effects. Vitamin C plays an important role in collagen stability in vascular and bone walls. PMID:21392843

  20. Renal ischemia/reperfusion injury; from pathophysiology to treatment

    PubMed Central

    Malek, Maryam; Nematbakhsh, Mehdi

    2015-01-01

    Ischemia/reperfusion injury (IRI) is caused by a sudden temporary impairment of the blood flow to the particular organ. IRI usually is associated with a robust inflammatory and oxidative stress response to hypoxia and reperfusion which disturbs the organ function. Renal IR induced acute kidney injury (AKI) contributes to high morbidity and mortality rate in a wide range of injuries. Although the pathophysiology of IRI is not completely understood, several important mechanisms resulting in kidney failure have been mentioned. In ischemic kidney and subsequent of re-oxygenation, generation of reactive oxygen species (ROS) at reperfusion phase initiates a cascade of deleterious cellular responses leading to inflammation, cell death, and acute kidney failure. Better understanding of the cellular pathophysiological mechanisms underlying kidney injury will hopefully result in the design of more targeted therapies to prevent and treatment the injury. In this review, we summarize some important potential mechanisms and therapeutic approaches in renal IRI. PMID:26060833

  1. Transcorneal Electrical Stimulation Therapy for Retinal Disease

    ClinicalTrials.gov

    2012-05-03

    Retinitis Pigmentosa; Macula Off; Primary Open Angle Glaucoma; Hereditary Macular Degeneration; Treated Retina Detachment; Retinal Artery Occlusion; Retinal Vein Occlusion; Non-Arthritic-Anterior-Ischemic Optic-Neuropathy; Hereditary Autosomal Dominant Optic Atrophy; Dry Age Related Macular Degeneration; Ischemic Macula Edema

  2. Simulation and optimization of pulsed radio frequency irradiation scheme for chemical exchange saturation transfer (CEST) MRI-demonstration of pH-weighted pulsed-amide proton CEST MRI in an animal model of acute cerebral ischemia.

    PubMed

    Sun, Phillip Zhe; Wang, Enfeng; Cheung, Jerry S; Zhang, Xiaoan; Benner, Thomas; Sorensen, A Gregory

    2011-10-01

    Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is capable of measuring dilute labile protons and microenvironmental properties. However, the CEST contrast is dependent upon experimental conditions-particularly, the radiofrequency (RF) irradiation scheme. Although continuous-wave RF irradiation has been used conventionally, the limited RF pulse duration or duty cycle of most clinical systems requires the use of pulsed RF irradiation. Here, the conventional numerical simulation is extended to describe pulsed-CEST MRI contrast as a function of RF pulse parameters (i.e., RF pulse duration and flip angle) and labile proton properties (i.e., exchange rate and chemical shift). For diamagnetic CEST agents undergoing slow or intermediate chemical exchange, simulation shows a linear regression relationship between the optimal mean RF power of pulsed-CEST MRI and continuous-wave-CEST MRI. The optimized pulsed-CEST contrast is approximately equal to that of continuous-wave-CEST MRI for exchange rates less than 50 s(-1), as confirmed experimentally using a multicompartment pH phantom. In the acute stroke animals, we showed that pulsed- and continuous-wave-amide proton CEST MRI demonstrated similar contrast. In summary, our study elucidated the RF irradiation dependence of pulsed-CEST MRI contrast, providing useful insights to guide its experimental optimization and quantification. PMID:21437977

  3. Simulation and optimization of pulsed radio frequency (RF) irradiation scheme for chemical exchange saturation transfer (CEST) MRI – demonstration of pH-weighted pulsed-amide proton CEST MRI in an animal model of acute cerebral ischemia

    PubMed Central

    Sun, Phillip Zhe; Wang, Enfeng; Cheung, Jerry S.; Zhang, Xiaoan; Benner, Thomas; Sorensen, A Gregory

    2011-01-01

    Chemical exchange saturation transfer (CEST) MRI is capable of measuring dilute labile protons and microenvironment properties; however, the CEST contrast is also dependent upon experimental conditions, particularly, the RF irradiation scheme. Although continuous-wave (CW) RF irradiation has been conventionally utilized, the RF pulse duration or duty cycle are limited on most clinical systems, for which pulsed RF irradiation must be chosen. Here, conventional numerical simulation was extended to describe pulsed-CEST MRI contrast as a function of RF pulse parameters (i.e., RF pulse duration and flip angle) and labile proton properties (i.e., exchange rate and chemical shift). For diamagnetic CEST agents undergoing slow/intermediate chemical exchange, our simulation showed a linear regression relationship between the optimal mean RF power for pulsed-CEST MRI and that of CW-CEST MRI. Worth noting, the optimized pulsed-CEST contrast was approximately equal to that of CW-CEST MRI for exchange rates below 50 s−1, as confirmed experimentally using a multi-compartment pH phantom. Moreover, acute stroke animals were imaged with both pulsed- and CW- amide protons CEST MRI, which showed similar contrast. In summary, our study elucidated the RF irradiation dependence of pulsed-CEST MRI contrast, providing useful insights to guide its experimental optimization and quantification. PMID:21437977

  4. Bumetanide promotes neural precursor cell regeneration and dendritic development in the hippocampal dentate gyrus in the chronic stage of cerebral ischemia

    PubMed Central

    Xu, Wang-shu; Sun, Xuan; Song, Cheng-guang; Mu, Xiao-peng; Ma, Wen-ping; Zhang, Xing-hu; Zhao, Chuan-sheng

    2016-01-01

    Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic stage of cerebral ischemia. We established a rat model of cerebral ischemia by injecting endothelin-1 in the left cortical motor area and left corpus striatum. Seven days later, bumetanide 200 µg/kg/day was injected into the lateral ventricle for 21 consecutive days with a mini-osmotic pump. Results demonstrated that the number of neuroblasts cells and the total length of dendrites increased, escape latency reduced, and the number of platform crossings increased in the rat hippocampal dentate gyrus in the chronic stage of cerebral ischemia. These findings suggest that bumetanide promoted neural precursor cell regeneration, dendritic development and the recovery of cognitive function, and protected brain tissue in the chronic stage of ischemia. PMID:27335557

  5. Clinical Trials in Retinal Dystrophies

    PubMed Central

    Grob, Seanna R.; Finn, Avni; Papakostas, Thanos D.; Eliott, Dean

    2016-01-01

    Research development is burgeoning for genetic and cellular therapy for retinal dystrophies. These dystrophies are the focus of many research efforts due to the unique biology and accessibility of the eye, the transformative advances in ocular imaging technology that allows for in vivo monitoring, and the potential benefit people would gain from success in the field – the gift of renewed sight. Progress in the field has revealed the immense complexity of retinal dystrophies and the challenges faced by researchers in the development of this technology. This study reviews the current trials and advancements in genetic and cellular therapy in the treatment of retinal dystrophies and also discusses the current and potential future challenges. PMID:26957839

  6. Retinal spot size with wavelength

    NASA Astrophysics Data System (ADS)

    Rockwell, Benjamin A.; Hammer, Daniel X.; Kennedy, Paul K.; Amnotte, Rodney E.; Eilert, Brent; Druessel, Jeffrey J.; Payne, Dale J.; Phillips, Shana L.; Stolarski, David J.; Noojin, Gary D.; Thomas, Robert J.; Cain, Clarence P.

    1997-06-01

    We have made an indirect in-vivo determination of spot size focusing in the rhesus monkey model. Measurement of the laser induced breakdown threshold both in-vitro and in-vivo allow correlation and assignment of a spot size after focusing through the living eye. We discuss and analyze the results and show how trends in minimum visible lesion data should be assessed in light of chromatic aberration. National laser safety standards are based on minimal visual lesion (MVL) threshold studies in different animal models. The energy required for a retinal lesion depends upon may parameters including wavelength and retinal spot size. We attempt to explain trends in reported MVL threshold studies using a model of the eye which allows calculation of changes in retinal spot size due to chromatic aberration.

  7. Diabetes and Retinal Vascular Dysfunction

    PubMed Central

    Shin, Eui Seok; Sorenson, Christine M.; Sheibani, Nader

    2014-01-01

    Diabetes predominantly affects the microvascular circulation of the retina resulting in a range of structural changes unique to this tissue. These changes ultimately lead to altered permeability, hyperproliferation of endothelial cells and edema, and abnormal vascularization of the retina with resulting loss of vision. Enhanced production of inflammatory mediators and oxidative stress are primary insults with significant contribution to the pathogenesis of diabetic retinopathy (DR). We have determined the identity of the retinal vascular cells affected by hyperglycemia, and have delineated the cell autonomous impact of high glucose on function of these cells. We discuss some of the high glucose specific changes in retinal vascular cells and their contribution to retinal vascular dysfunction. This knowledge provides novel insight into the molecular and cellular defects contributing to the development and progression of diabetic retinopathy, and will aid in the development of innovative, as well as target specific therapeutic approaches for prevention and treatment of DR. PMID:25667739

  8. Exploring the retinal connectome

    PubMed Central

    Anderson, James R.; Jones, Bryan W.; Watt, Carl B.; Shaw, Margaret V.; Yang, Jia-Hui; DeMill, David; Lauritzen, James S.; Lin, Yanhua; Rapp, Kevin D.; Mastronarde, David; Koshevoy, Pavel; Grimm, Bradley; Tasdizen, Tolga; Whitaker, Ross

    2011-01-01

    Purpose A connectome is a comprehensive description of synaptic connectivity for a neural domain. Our goal was to produce a connectome data set for the inner plexiform layer of the mammalian retina. This paper describes our first retinal connectome, validates the method, and provides key initial findings. Methods We acquired and assembled a 16.5 terabyte connectome data set RC1 for the rabbit retina at ≈2 nm resolution using automated transmission electron microscope imaging, automated mosaicking, and automated volume registration. RC1 represents a column of tissue 0.25 mm in diameter, spanning the inner nuclear, inner plexiform, and ganglion cell layers. To enhance ultrastructural tracing, we included molecular markers for 4-aminobutyrate (GABA), glutamate, glycine, taurine, glutamine, and the in vivo activity marker, 1-amino-4-guanidobutane. This enabled us to distinguish GABAergic and glycinergic amacrine cells; to identify ON bipolar cells coupled to glycinergic cells; and to discriminate different kinds of bipolar, amacrine, and ganglion cells based on their molecular signatures and activity. The data set was explored and annotated with Viking, our multiuser navigation tool. Annotations were exported to additional applications to render cells, visualize network graphs, and query the database. Results Exploration of RC1 showed that the 2 nm resolution readily recapitulated well known connections and revealed several new features of retinal organization: (1) The well known AII amacrine cell pathway displayed more complexity than previously reported, with no less than 17 distinct signaling modes, including ribbon synapse inputs from OFF bipolar cells, wide-field ON cone bipolar cells and rod bipolar cells, and extensive input from cone-pathway amacrine cells. (2) The axons of most cone bipolar cells formed a distinct signal integration compartment, with ON cone bipolar cell axonal synapses targeting diverse cell types. Both ON and OFF bipolar cells receive

  9. Retinal Image Quality During Accommodation

    PubMed Central

    López-Gil, N.; Martin, J.; Liu, T.; Bradley, A.; Díaz-Muñoz, D.; Thibos, L.

    2013-01-01

    Purpose We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Methods Subjects viewed a monochromatic (552nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Results Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Conclusions Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily produce a reliably measurable loss of image quality or clinically significant loss of visual performance, probably because of increased depth-of-focus due to pupil constriction. When retinal image quality is close to maximum achievable (given the eye’s higher-order aberrations), acuity is also near maximum. A combination of accommodative lag, reduced image quality, and reduced

  10. Retinal Optical Coherence Tomography Imaging

    NASA Astrophysics Data System (ADS)

    Drexler, Wolfgang; Fujimoto, James G.

    The eye is essentially transparent, transmitting light with only minimal optical attenuation and scattering providing easy optical access to the anterior segment as well as the retina. For this reason, ophthalmic and especially retinal imaging has been not only the first but also most successful clinical application for optical coherence tomography (OCT). This chapter focuses on the development of OCT technology for retinal imaging. OCT has significantly improved the potential for early diagnosis, understanding of retinal disease pathogenesis, as well as monitoring disease progression and response to therapy. Development of ultrabroad bandwidth light sources and high-speed detection techniques has enabled significant improvements in ophthalmic OCT imaging performance, demonstrating the potential of three-dimensional, ultrahigh-resolution OCT (UHR OCT) to perform noninvasive optical biopsy of the living human retina, i.e., the in vivo visualization of microstructural, intraretinal morphology in situ approaching the resolution of conventional histopathology. Significant improvements in axial resolution and speed not only enable three-dimensional rendering of retinal volumes but also high-definition, two-dimensional tomograms, topographic thickness maps of all major intraretinal layers, as well as volumetric quantification of pathologic intraretinal changes. These advances in OCT technology have also been successfully applied in several animal models of retinal pathologies. The development of light sources emitting at alternative wavelengths, e.g., around #1,060 nm, not only enabled three-dimensional OCT imaging with enhanced choroidal visualization but also improved OCT performance in cataract patients due to reduced scattering losses in this wavelength region. Adaptive optics using deformable mirror technology, with unique high stroke to correct higher-order ocular aberrations, with specially designed optics to compensate chromatic aberration of the human eye, in

  11. New Wrinkles in Retinal Densitometry

    PubMed Central

    Masella, Benjamin D.; Hunter, Jennifer J.; Williams, David R.

    2014-01-01

    Purpose. Retinal densitometry provides objective information about retinal function. But, a number of factors, including retinal reflectance changes that are not directly related to photopigment depletion, complicate its interpretation. We explore these factors and suggest a method to minimize their impact. Methods. An adaptive optics scanning light ophthalmoscope (AOSLO) was used to measure changes in photoreceptor reflectance in monkeys before and after photopigm