Science.gov

Sample records for acute rho kinase

  1. Rho-Associated Kinase Activity Is an Independent Predictor of Cardiovascular Events in Acute Coronary Syndrome

    PubMed Central

    Kajikawa, Masato; Noma, Kensuke; Nakashima, Ayumu; Maruhashi, Tatsuya; Iwamoto, Yumiko; Matsumoto, Takeshi; Iwamoto, Akimichi; Oda, Nozomu; Hidaka, Takayuki; Kihara, Yasuki; Aibara, Yoshiki; Chayama, Kazuaki; Sasaki, Shota; Kato, Masaya; Dote, Keigo; Goto, Chikara; Liao, James K.; Higashi, Yukihito

    2016-01-01

    Rho-associated kinases play an important role in a variety of cellular functions. Although Rho-associated kinase activity has been shown to be an independent predictor for future cardiovascular events in a general population, there is no information on Rho-associated kinase activity in patients with acute coronary syndrome. We evaluated leukocyte Rho-associated kinase activity by Western blot analysis in 73 patients with acute coronary syndrome and 73 age- and gender-matched control subjects. Rho-associated kinase activity within 2 hours of acute coronary syndrome onset was higher in patients with acute coronary syndrome than in the control subjects (0.95±0.55 versus 0.69±0.31; P<0.001). Rho-associated kinase activity promptly increased from 0.95±0.55 to 1.11±0.81 after 3 hours and reached a peak of 1.21±0.76 after 1 day (P=0.03 and P=0.03, respectively) and then gradually decreased to 0.83±0.52 after 7 days, 0.78±0.42 after 14 days, and 0.72±0.30 after 6 months (P=0.22, P=0.29, and P=0.12, respectively). During a median follow-up period of 50.8 months, 31 first major cardiovascular events (death from cardiovascular causes, myocardial infarction, ischemic stroke, and coronary revascularization) occurred. After adjustment for age, sex, cardiovascular risk factors, and concomitant treatment with statins, increased Rho-associated kinase activity was associated with increasing risk of first major cardiovascular events (hazard ratio, 4.56; 95% confidence interval, 1.98–11.34; P<0.001). These findings suggest that Rho-associated kinase activity is dramatically changed after acute coronary syndrome and that Rho-associated kinase activity could be a useful biomarker to predict cardiovascular events in Japanese patients with acute coronary syndrome. PMID:26283039

  2. Rho kinase inhibition following traumatic brain injury in mice promotes functional improvement and acute neuron survival but has little effect on neurogenesis, glial responses or neuroinflammation.

    PubMed

    Bye, Nicole; Christie, Kimberly J; Turbic, Alisa; Basrai, Harleen S; Turnley, Ann M

    2016-05-01

    Inhibition of the Rho/Rho kinase pathway has been shown to be beneficial in a variety of neural injuries and diseases. In this manuscript we investigate the role of Rho kinase inhibition in recovery from traumatic brain injury using a controlled cortical impact model in mice. Mice subjected to a moderately severe TBI were treated for 1 or 4weeks with the Rho kinase inhibitor Y27632, and functional outcomes and neuronal and glial cell responses were analysed at 1, 7 and 35days post-injury. We hypothesised that Y27632-treated mice would show functional improvement, with augmented recruitment of neuroblasts from the SVZ and enhanced survival of newborn neurons in the pericontusional cortex, with protection against neuronal degeneration, neuroinflammation and modulation of astrocyte reactivity and blood-brain-barrier permeability. While Rho kinase inhibition enhanced recovery of motor function after trauma, there were no substantial increases in the recruitment of DCX(+) neuroblasts or the number of BrdU(+) or EdU(+) labelled newborn neurons in the pericontusional cortex of Y27632-treated mice. Inhibition of Rho kinase significantly reduced the number of degenerating cortical neurons at 1day post-injury compared to saline controls but had no longer term effect on neuronal degeneration, with only modest effects on astrocytic reactivity and macrophage/microglial responses. Overall, this study showed that Rho kinase contributes to acute neurodegenerative processes in the injured cortex but does not play a significant role in SVZ neural precursor cell-derived adult neurogenesis, glial responses or blood-brain barrier permeability following a moderately severe brain injury. PMID:26896832

  3. RhoA/Rho kinase in spinal cord injury

    PubMed Central

    Wu, Xiangbing; Xu, Xiao-ming

    2016-01-01

    A spinal cord injury refers to an injury to the spinal cord that is caused by a trauma instead of diseases. Spinal cord injury includes a primary mechanical injury and a much more complex secondary injury process involving inflammation, oxidation, excitotoxicity, and cell death. During the secondary injury, many signal pathways are activated and play important roles in mediating the pathogenesis of spinal cord injury. Among them, the RhoA/Rho kinase pathway plays a particular role in mediating spinal degeneration and regeneration. In this review, we will discuss the role and mechanism of RhoA/Rho kinase-mediated spinal cord pathogenesis, as well as the potential of targeting RhoA/Rho kinase as a strategy for promoting both neuroprotection and axonal regeneration. PMID:26981071

  4. Rho Kinases and Cardiac Remodeling.

    PubMed

    Shimizu, Toru; Liao, James K

    2016-06-24

    Hypertensive cardiac remodeling is characterized by left ventricular hypertrophy and interstitial fibrosis, which can lead to heart failure with preserved ejection fraction. The Rho-associated coiled-coil containing kinases (ROCKs) are members of the serine/threonine protein kinase family, which mediates the downstream effects of the small GTP-binding protein RhoA. There are 2 isoforms: ROCK1 and ROCK2. They have different functions in different types of cells and tissues. There is growing evidence that ROCKs contribute to the development of cardiovascular diseases, including cardiac fibrosis, hypertrophy, and subsequent heart failure. Recent experimental studies using ROCK inhibitors, such as fasudil, have shown the benefits of ROCK inhibition in cardiac remodeling. Mice lacking each ROCK isoform also exhibit reduced myocardial fibrosis in a variety of pathological models of cardiac remodeling. Indeed, clinical studies with fasudil have suggested that ROCKs could be potential novel therapeutic targets for cardiovascular diseases. In this review, we summarize the current understanding of the roles of ROCKs in the development of cardiac fibrosis and hypertrophy and discuss their therapeutic potential for deleterious cardiac remodeling. (Circ J 2016; 80: 1491-1498). PMID:27251065

  5. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho.

    PubMed Central

    Matsui, T; Amano, M; Yamamoto, T; Chihara, K; Nakafuku, M; Ito, M; Nakano, T; Okawa, K; Iwamatsu, A; Kaibuchi, K

    1996-01-01

    The small GTP binding protein Rho is implicated in cytoskeletal responses to extracellular signals such as lysophosphatidic acid to form stress fibers and focal contacts. Here we have purified a Rho-interacting protein with a molecular mass of approximately 164 kDa (p164) from bovine brain. This protein bound to GTPgammaS (a non-hydrolyzable GTP analog).RhoA but not to GDP.RhoA or GTPgammaS.RhoA with a mutation in the effector domain (RhoAA37).p164 had a kinase activity which was specifically stimulated by GTPgammaS.RhoA. We obtained the cDNA encoding p164 on the basis of its partial amino acid sequences and named it Rho-associated kinase (Rho-kinase). Rho-kinase has a catalytic domain in the N-terminal portion, a coiled coil domain in the middle portion and a zinc finger-like motif in the C-terminal portion. The catalytic domain shares 72% sequence homology with that of myotonic dystrophy kinase and the coiled coil domain contains a Rho-interacting interface. When COS7 cells were cotransfected with Rho-kinase and activated RhoA, some Rho-kinase was recruited to membranes. Thus it is likely that Rho-kinase is a putative target serine/threonine kinase for Rho and serves as a mediator of the Rho-dependent signaling pathway. Images PMID:8641286

  6. Rho-kinase activation in leukocytes plays a pivotal role in myocardial ischemia/reperfusion injury.

    PubMed

    Kitano, Katsunori; Usui, Soichiro; Ootsuji, Hiroshi; Takashima, Shin-ichiro; Kobayashi, Daisuke; Murai, Hisayoshi; Furusho, Hiroshi; Nomura, Ayano; Kaneko, Shuichi; Takamura, Masayuki

    2014-01-01

    The Rho/Rho-kinase pathway plays an important role in many cardiovascular diseases such as hypertension, atherosclerosis, heart failure, and myocardial infarction. Although previous studies have shown that Rho-kinase inhibitors reduce ischemia/reperfusion (I/R) injury and cytokine production, the role of Rho-kinase in leukocytes during I/R injury is not well understood. Mice were subjected to 30-min ischemia and reperfusion. Rho-kinase activity was significantly greater in leukocytes subjected to myocardial I/R compared to the sham-operated mice. Administration of fasudil, a Rho-kinase inhibitor, significantly reduced the I/R-induced expression of the proinflammatory cytokines interleukin (IL)-6, C-C motif chemoattractant ligand 2 (CCL2), and tumor necrosis factor (TNF)-α, in leukocytes, compared with saline as the vehicle. Furthermore, fasudil decreased I/R-induced myocardial infarction/area at risk (IA) and I/R-induced leukocyte infiltration in the myocardium. Interestingly, IA in fasudil-administered mice with leukocyte depletion was similar to that in fasudil-administered mice. I/R also resulted in remarkable increases in the mRNA expression levels of the proinflammatory cytokines TNF-α, IL-6, and CCL2 in the heart. Inhibition of Rho-kinase activation in leukocytes has an important role in fasudil-induced cardioprotective effects. Hence, inhibition of Rho-kinase may be an additional therapeutic intervention for the treatment of acute coronary syndrome. PMID:24638037

  7. Rho-Kinase Activation in Leukocytes Plays a Pivotal Role in Myocardial Ischemia/Reperfusion Injury

    PubMed Central

    Kitano, Katsunori; Usui, Soichiro; Ootsuji, Hiroshi; Takashima, Shin-ichiro; Kobayashi, Daisuke; Murai, Hisayoshi; Furusho, Hiroshi; Nomura, Ayano; Kaneko, Shuichi; Takamura, Masayuki

    2014-01-01

    The Rho/Rho-kinase pathway plays an important role in many cardiovascular diseases such as hypertension, atherosclerosis, heart failure, and myocardial infarction. Although previous studies have shown that Rho-kinase inhibitors reduce ischemia/reperfusion (I/R) injury and cytokine production, the role of Rho-kinase in leukocytes during I/R injury is not well understood. Mice were subjected to 30-min ischemia and reperfusion. Rho-kinase activity was significantly greater in leukocytes subjected to myocardial I/R compared to the sham-operated mice. Administration of fasudil, a Rho-kinase inhibitor, significantly reduced the I/R-induced expression of the proinflammatory cytokines interleukin (IL)-6, C-C motif chemoattractant ligand 2 (CCL2), and tumor necrosis factor (TNF)-α, in leukocytes, compared with saline as the vehicle. Furthermore, fasudil decreased I/R-induced myocardial infarction/area at risk (IA) and I/R-induced leukocyte infiltration in the myocardium. Interestingly, IA in fasudil-administered mice with leukocyte depletion was similar to that in fasudil-administered mice. I/R also resulted in remarkable increases in the mRNA expression levels of the proinflammatory cytokines TNF-α, IL-6, and CCL2 in the heart. Inhibition of Rho-kinase activation in leukocytes has an important role in fasudil-induced cardioprotective effects. Hence, inhibition of Rho-kinase may be an additional therapeutic intervention for the treatment of acute coronary syndrome. PMID:24638037

  8. Rho A and the Rho kinase pathway regulate fibroblast contraction: Enhanced contraction in constitutively active Rho A fibroblast cells

    SciTech Connect

    Nobe, Koji; Nobe, Hiromi; Yoshida, Hiroko; Kolodney, Michael S.; Paul, Richard J.; Honda, Kazuo

    2010-08-20

    Research highlights: {yields} Mechanisms of fibroblast cell contraction in collagen matrix. {yields} Assessed an isometric force development using 3D-reconstituted-fibroblast fiber. {yields} Constitutively active Rho A induced the over-contraction of fibroblast cells. {yields} Rho A and Rho kinase pathway has a central role in fibroblast cell contraction. -- Abstract: Fibroblast cells play a central role in the proliferation phase of wound healing processes, contributing to force development. The intracellular signaling pathways regulating this non-muscle contraction are only partially understood. To study the relations between Rho A and contractile responses, constitutively active Rho A (CA-Rho A) fibroblast cells were reconstituted into fibers and the effects of calf serum (CS) on isometric force were studied. CS-induced force in CA-Rho A fibroblast fibers was twice as large as that in wild type (NIH 3T3) fibroblast fibers. During this response, the translocation of Rho A from the cytosol to the membrane was detected by Rho A activity assays and Western blot analysis. Pre-treatment with a Rho specific inhibitor (C3-exoenzyme) suppressed translocation as well as contraction. These results indicate that Rho A activation is essential for fibroblast contraction. The Rho kinase inhibitor ( (Y27632)) inhibited both NIH 3T3 and CA-Rho A fibroblast fiber contractions. Activation of Rho A is thus directly coupled with Rho kinase activity. We conclude that the translocation of Rho A from the cytosol to the membrane and the Rho kinase pathway can regulate wound healing processes mediated by fibroblast contraction.

  9. Rho kinase as a target for cerebral vascular disorders

    PubMed Central

    Bond, Lisa M; Sellers, James R; McKerracher, Lisa

    2015-01-01

    The development of novel pharmaceutical treatments for disorders of the cerebral vasculature is a serious unmet medical need. These vascular disorders are typified by a disruption in the delicate Rho signaling equilibrium within the blood vessel wall. In particular, Rho kinase overactivation in the smooth muscle and endothelial layers of the vessel wall results in cytoskeletal modifications that lead to reduced vascular integrity and abnormal vascular growth. Rho kinase is thus a promising target for the treatment of cerebral vascular disorders. Indeed, preclinical studies indicate that Rho kinase inhibition may reduce the formation/growth/rupture of both intracranial aneurysms and cerebral cavernous malformations. PMID:26062400

  10. Leptin augments coronary vasoconstriction and smooth muscle proliferation via a Rho-kinase-dependent pathway.

    PubMed

    Noblet, Jillian N; Goodwill, Adam G; Sassoon, Daniel J; Kiel, Alexander M; Tune, Johnathan D

    2016-05-01

    Leptin has been implicated as a key upstream mediator of pathways associated with coronary vascular dysfunction and disease. The purpose of this investigation was to test the hypothesis that leptin modifies the coronary artery proteome and promotes increases in coronary smooth muscle contraction and proliferation via influences on Rho kinase signaling. Global proteomic assessment of coronary arteries from lean swine cultured with obese concentrations of leptin (30 ng/mL) for 3 days revealed significant alterations in the coronary artery proteome (68 proteins) and identified an association between leptin treatment and calcium signaling/contraction (four proteins) and cellular growth and proliferation (35 proteins). Isometric tension studies demonstrated that both acute (30 min) and chronic (3 days, serum-free media) exposure to obese concentrations of leptin potentiated depolarization-induced contraction of coronary arteries. Inhibition of Rho kinase significantly reduced leptin-mediated increases in coronary artery contractions. The effects of leptin on the functional expression of Rho kinase were time-dependent, as acute treatment increased Rho kinase activity while chronic (3 day) exposure was associated with increases in Rho kinase protein abundance. Proliferation assays following chronic leptin administration (8 day, serum-containing media) demonstrated that leptin augmented coronary vascular smooth muscle proliferation and increased Rho kinase activity. Inhibition of Rho kinase significantly reduced these effects of leptin. Taken together, these findings demonstrate that leptin promotes increases in coronary vasoconstriction and smooth muscle proliferation and indicate that these phenotypic effects are associated with alterations in the coronary artery proteome and dynamic effects on the Rho kinase pathway. PMID:26975316

  11. Horse chestnut extract induces contraction force generation in fibroblasts through activation of Rho/Rho kinase.

    PubMed

    Fujimura, Tsutomu; Moriwaki, Shigeru; Hotta, Mitsuyuki; Kitahara, Takashi; Takema, Yoshinori

    2006-06-01

    Contraction forces generated by non-muscle cells such as fibroblasts play important roles in determining cell morphology, vasoconstriction, and/or wound healing. However, few factors that induce cell contraction forces are known, such as lysophosphatidic acid and thrombin. Our study analyzed various plant extracts for ingredients that induce generation of cell contraction forces in fibroblasts populating collagen gels. We found that an extract of Horse chestnut (Aesculus hippocastanum) is able to induce such contraction forces in fibroblasts. The involvement of actin polymerization and stress fiber formation in the force generation was suggested by inhibition of this effect by cytochalasin D and by Rhodamine phalloidin. Rho kinase inhibitors (Y27632 and HA1077) and a Rho inhibitor (exoenzyme C3) significantly inhibited the force generation induced by the Horse chestnut extract. H7, which inhibits Rho kinase as well as other protein kinases, also significantly inhibited induction of force generation. However, inhibitors of other protein kinases such as myosin light chain kinase (ML-9), protein kinase C (Calphostin), protein kinase A (KT5720), and tyrosine kinase (Genistein, Herbimycin A) had no effect on force generation induced by Horse chestnut extract. These results suggest that the Horse chestnut extract induces generation of contraction forces in fibroblasts through stress fiber formation followed by activation of Rho protein and Rho kinase but not myosin light chain kinase or other protein kinases. PMID:16754996

  12. Investigation of the association between Rho/Rho-kinase gene polymorphisms and systemic sclerosis.

    PubMed

    Pehlivan, Yavuz; Yolbas, Servet; Cetin, Gozde Yıldırım; Alibaz-Oner, Fatma; Cagatay, Yonca; Yilmaz, Neslihan; Oztuzcu, Serdar; Donmez, Salim; Ozgen, Metin; Koca, Suleyman Serdar; Pamuk, Omer Nuri; Sayarlıoglu, Mehmet; Kisacik, Bunyamin; Direskeneli, Haner; Demiryurek, Abdullah Tuncay; Onat, Ahmet Mesut

    2016-03-01

    Systemic sclerosis (SSc) is a disease characterized by inflammation, vascular abnormalities and fibrosis. The role of Rho/Rho-kinase pathway was demonstrated in the pathogenesis of fibrosis, inflammation and vascular abnormalities. This study was aimed to investigate the relation between SSc and Rho/Rho-kinase gene polymorphisms. The study included 339 patients with SSc and 302 healthy subjects who were apparently healthy and at similar age and gender. Genotype distributions and allele frequencies were detected by using Chi-square test or Fisher's exact Chi-square test between groups, and the haplotype analysis was applied using online program (SHEsis). Significant association was found in a polymorphism in the ROCK1 gene (rs35996865), a polymorphism in ROCK2 gene (rs10178332), a polymorphism in RhoA gene (rs2177268) and two polymorphisms in RhoC gene (rs11102522 and rs11538960) with SSc disease (p < 0.0022). In this study, association between SSc disease and Rho/Rho-kinase gene polymorphisms was investigated for the first time; significant associations between ROCK1, ROCK2, RhoA and RhoC gene polymorphisms and SSc disease were demonstrated. The results strongly suggest that this SNP may be an important risk factor for development of SSc. However, further validation of these findings in an independent cohort is necessary. PMID:26615410

  13. Rho/Rho-associated kinase pathway in glaucoma (Review).

    PubMed

    Wang, Jing; Liu, Xiaohong; Zhong, Yisheng

    2013-11-01

    The Rho/ROCK pathway plays important roles in the modulation of the cytoskeletal integrity of cells, the synthesis of extracellular matrix components in the aqueous humor outflow tissue and the permeability of Schlemm's canal endothelial cells. The activation of the Rho/ROCK pathway results in trabecular meshwork (TM) contraction, and the inhibition of this pathway would provoke relaxation of TM with subsequent increase in outflow facility and, thereby, decrease intraocular pressure (IOP). ROCK inhibitors also serve as potent anti‑scarring agents via inhibition of transdifferentiation of tenon fibroblasts into myofibroblasts. Furthermore, the RhoA/ROCK pathway is involved in optic nerve neuroprotection. Inactivation of Rho/ROCK signaling increase ocular blood flow, improve retinal ganglion cell (RGC) survival and promote RGC axon regeneration. Considering the IOP modulation, potent bleb anti-scarring effect and neuroprotective properties of ROCK inhibitors, the Rho/ROCK pathway is an attractive target for anti-glaucoma therapy, and it may be used for human therapy in the near future. PMID:24042317

  14. Analysis of pulmonary vasodilator responses to the Rho-kinase inhibitor fasudil in the anesthetized rat.

    PubMed

    Badejo, Adeleke M; Dhaliwal, Jasdeep S; Casey, David B; Gallen, Thomas B; Greco, Anthony J; Kadowitz, Philip J

    2008-11-01

    The small GTP-binding protein Rho and its downstream effector, Rho-kinase, are important regulators of vasoconstrictor tone. Rho-kinase is upregulated in experimental models of pulmonary hypertension, and Rho-kinase inhibitors decrease pulmonary arterial pressure in rodents with monocrotaline and chronic hypoxia-induced pulmonary hypertension. However, less is known about responses to fasudil when pulmonary vascular resistance is elevated on an acute basis by vasoconstrictor agents and ventilatory hypoxia. In the present study, intravenous injections of fasudil reversed pulmonary hypertensive responses to intravenous infusion of the thromboxane receptor agonist, U-46619 and ventilation with a 10% O(2) gas mixture and inhibited pulmonary vasoconstrictor responses to intravenous injections of angiotensin II, BAY K 8644, and U-46619 without prior exposure to agonists, which can upregulate Rho-kinase activity. The calcium channel blocker isradipine and fasudil had similar effects and in small doses had additive effects in blunting vasoconstrictor responses, suggesting parallel and series mechanisms in the lung. When pulmonary vascular resistance was increased with U-46619, fasudil produced similar decreases in pulmonary and systemic arterial pressure, whereas isradipine produced greater decreases in systemic arterial pressure. The hypoxic pressor response was enhanced by 5-10 mg/kg iv nitro-L-arginine methyl ester (L-NAME), and fasudil or isradipine reversed the pulmonary hypertensive response to hypoxia in control and in L-NAME-treated animals, suggesting that the response is mediated by Rho-kinase and L-type Ca(2+) channels. These results suggest that Rho-kinase is constitutively active in regulating baseline tone and vasoconstrictor responses in the lung under physiological conditions and that Rho-kinase inhibition attenuates pulmonary vasoconstrictor responses to agents that act by different mechanisms without prior exposure to the agonist. PMID:18689606

  15. Made to measure – keeping Rho kinase at a distance

    PubMed Central

    Truebestein, Linda; Elsner, Daniel J.; Leonard, Thomas A.

    2016-01-01

    ABSTRACT The Rho-associated coiled-coil containing kinases (ROCK) were first identified as effectors of the small GTPase RhoA, hence their nomenclature. Since their discovery, two decades ago, scientists have sought to unravel the structure, regulation, and function of these essential kinases. During that time, a consensus model has formed, in which ROCK activity is regulated via both Rho-dependent and independent mechanisms. However, recent findings have raised significant questions regarding this model. In their recent publication in Nature Communications, Truebestein and colleagues present the structure of a full-length Rho kinase for the first time. In contrast to previous reports, the authors could find no evidence for autoinhibition, RhoA binding, or regulation of kinase activity by phosphorylation. Instead, they propose that ROCK functions as a molecular ruler, in which the central coiled-coil bridges the membrane-binding regulatory domains to the kinase domains at a fixed distance from the plasma membrane. Here, we explore the consequences of the new findings, re-examine old data in the context of this model, and emphasize outstanding questions in the field. PMID:27070834

  16. Hyperosmotic stress activates Rho: differential involvement in Rho kinase-dependent MLC phosphorylation and NKCC activation.

    PubMed

    Di Ciano-Oliveira, Caterina; Sirokmány, Gábor; Szászi, Katalin; Arthur, William T; Masszi, András; Peterson, Mark; Rotstein, Ori D; Kapus, András

    2003-09-01

    Hyperosmotic stress initiates adaptive responses, including phosphorylation of myosin light chain (MLC) and concomitant activation of Na+-K+-Cl- cotransporter (NKCC). Because the small GTPase Rho is a key regulator of MLC phosphorylation, we investigated 1) whether Rho is activated by hyperosmotic stress, and if so, what the triggering factors are, and 2) whether the Rho/Rho kinase (ROK) pathway is involved in MLC phosphorylation and NKCC activation. Rho activity was measured in tubular epithelial cells by affinity pulldown assay. Hyperosmolarity induced rapid (<1 min) and sustained (>20 min) Rho activation that was proportional to the osmotic concentration and reversed within minutes upon restoration of isotonicity. Both decreased cell volume at constant ionic strength and elevated total ionic strength at constant cell volume were capable of activating Rho. Changes in [Na+] and [K+] at normal total salinity failed to activate Rho, and Cl- depletion did not affect the hyperosmotic response. Thus alterations in cellular volume and ionic strength but not individual ion concentrations seem to be the critical triggering factors. Hyperosmolarity induced mono- and diphosphorylation of MLC, which was abrogated by the Rho-family blocker Clostridium toxin B. ROK inhibitor Y-27632 suppressed MLC phosphorylation under isotonic conditions and prevented its rise over isotonic levels in hypertonically stimulated cells. ML-7 had a smaller inhibitory effect. In contrast, it abolished the hypertonic activation of NKCC, whereas Y-27632 failed to inhibit this response. Thus hyperosmolarity activates Rho, and Rho/ROK pathway contributes to basal and hyperosmotic MLC phosphorylation. However, the hypertonic activation of NKCC is ROK independent, implying that the ROK-dependent component of MLC phosphorylation can be uncoupled from NKCC activation. PMID:12748065

  17. Rho kinase as a therapeutic target in cardiovascular disease

    PubMed Central

    Surma, Michelle; Wei, Lei; Shi, Jianjian

    2011-01-01

    Rho kinase (ROCK) belongs to the AGC (PKA/PKG/PKC) family of serine/threonine kinases and is a major downstream effector of the small GTPase RhoA. ROCK plays central roles in the organization of the actin cytoskeleton and is involved in a wide range of fundamental cellular functions such as contraction, adhesion, migration, proliferation and gene expression. Two ROCK isoforms, ROCK1 a n d ROCK2, are assumed to be functionally redundant, based largely on the major common activators, the high degree of homology within the kinase domain and studies from overexpression with kinase constructs a n d chemical inhibitors (e.g., Y27632 a n d fasudil), which inhibit both ROCK1 and ROCK2. Extensive experimental a n d clinical studies support a critical role for the RhoA/ROCK pathway in the vascular bed in the pathogenesis of cardiovascular diseases, in which increased ROCK activity mediates vascular smooth muscle cell hypercontraction, endothelial dysfunction, inflammatory cell recruitment and vascular remodeling. Recent experimental studies, using ROCK inhibitors or genetic mouse models, indicate that the RhoA/ROCK pathway in myocardium contributes to cardiac remodeling induced by ischemic injury or persistent hypertrophic stress, thereby leading to cardiac decompensation and heart failure. This article, based on recent molecular, cellular and animal studies, focuses on the current understanding of ROCK signaling in cardiovascular diseases and in the pathogenesis of heart failure. PMID:21929346

  18. Involvement of Rho-kinase in experimental vascular endothelial dysfunction.

    PubMed

    Shah, Dhvanit I; Singh, Manjeet

    2006-02-01

    The present study has been designed to investigate the effect of fasudil (Rho-kinase inhibitor) in diabetes mellitus (DM) and hyperhomocyteinemia (HHcy) induced vascular endothelial dysfunction (VED). Streptozotocin (55 mg kg(-1), i.v., once only) and methionine (1.7% w/w, p.o., daily for 4 weeks) were administered to rats to produce DM (serum glucose >140 mg dl(-1)) and HHcy (serum homocysteine >10 microM) respectively. VED was assessed using isolated aortic ring, electron microscopy of thoracic aorta, and serum concentration of nitrite/nitrate. Serum thiobarbituric acid reactive substances (TBARS) concentration was estimated to assess oxidative stress. Atorvastatin has been employed in the present study as standard agent to improve vascular endothelial dysfunction. Fasudil (15 mg kg(-1) and 30 mg kg(-1), p.o., daily) and atorvastatin (30 mg kg(-1), p.o., daily) treatments significantly attenuated increase in serum glucose and homocysteine but their concentrations remained markedly higher than sham control value. Fasudil and atorvastatin treatments markedly prevented DM and HHcy-induced (i) attenuation of acetylcholine induced endothelium-dependent relaxation, (ii) impairment of vascular endothelial lining, (iii) decrease in serum nitrite/nitrate concentration, and (iv) increase in serum TBARS. It may be concluded that fasudil prevented DM and HHcy-induced VED partially by decreasing serum glucose and homocysteine concentration due to inhibition of Rho-kinase. Moreover, inhibition of Rho-kinase by fasudil and consequent prevention of oxidative stress may have directly improved VED in diabetic and hyperhomocysteinemic rats. The Rho-kinase appears to be a pivotal target site involved in DM and HHcy-induced VED. PMID:16444602

  19. Rho-kinase mediated cytoskeletal stiffness in skinned smooth muscle

    PubMed Central

    Lan, Bo; Wang, Lu; Zhang, Jenny; Pascoe, Chris D.; Norris, Brandon A.; Liu, Jeffrey C.-Y.; Solomon, Dennis; Paré, Peter D.; Deng, Linhong

    2013-01-01

    The structurally dynamic cytoskeleton is important in many cell functions. Large gaps still exist in our knowledge regarding what regulates cytoskeletal dynamics and what underlies the structural plasticity. Because Rho-kinase is an upstream regulator of signaling events leading to phosphorylation of many cytoskeletal proteins in many cell types, we have chosen this kinase as the focus of the present study. In detergent skinned tracheal smooth muscle preparations, we quantified the proteins eluted from the muscle cells over time and monitored the muscle's ability to respond to acetylcholine (ACh) stimulation to produce force and stiffness. In a partially skinned preparation not able to generate active force but could still stiffen upon ACh stimulation, we found that the ACh-induced stiffness was independent of calcium and myosin light chain phosphorylation. This indicates that the myosin light chain-dependent actively cycling crossbridges are not likely the source of the stiffness. The results also indicate that Rho-kinase is central to the ACh-induced stiffness, because inhibition of the kinase by H1152 (1 μM) abolished the stiffening. Furthermore, the rate of relaxation of calcium-induced stiffness in the skinned preparation was faster than that of ACh-induced stiffness, with or without calcium, suggesting that different signaling pathways lead to different means of maintenance of stiffness in the skinned preparation. PMID:24072407

  20. A molecular ruler regulates cytoskeletal remodelling by the Rho kinases

    PubMed Central

    Truebestein, Linda; Elsner, Daniel J.; Fuchs, Elisabeth; Leonard, Thomas A.

    2015-01-01

    The Rho-associated coiled-coil kinases (ROCK) are essential regulators of the actin cytoskeleton; however, the structure of a full-length ROCK is unknown and the mechanisms by which its kinase activity is controlled are not well understood. Here we determine the low-resolution structure of human ROCK2 using electron microscopy, revealing it to be a constitutive dimer, 120 nm in length, with a long coiled-coil tether linking the kinase and membrane-binding domains. We find, in contrast to previous reports, that ROCK2 activity does not appear to be directly regulated by binding to membranes, RhoA, or by phosphorylation. Instead, we show that changing the length of the tether modulates ROCK2 function in cells, suggesting that it acts as a molecular ruler. We present a model in which ROCK activity is restricted to a discrete region of the actin cytoskeleton, governed by the length of its coiled-coil. This represents a new type of spatial control, and hence a new paradigm for kinase regulation. PMID:26620183

  1. Rho-associated protein kinase modulates neurite extension by regulating microtubule remodeling and vinculin distribution

    PubMed Central

    Chen, Ke’en; Zhang, Wenbin; Chen, Jing; Li, Sumei; Guo, Guoqing

    2013-01-01

    Rho-associated protein kinase is an essential regulator of cytoskeletal dynamics during the process of neurite extension. However, whether Rho kinase regulates microtubule remodeling or the distribution of adhesive proteins to mediate neurite outgrowth remains unclear. By specifically modulating Rho kinase activity with pharmacological agents, we studied the morpho-dynamics of neurite outgrowth. We found that lysophosphatidic acid, an activator of Rho kinase, inhibited neurite outgrowth, which could be reversed by Y-27632, an inhibitor of Rho kinase. Meanwhile, reorganization of microtubules was noticed during these processes, as indicated by their significant changes in the soma and growth cone. In addition, exposure to lysophosphatidic acid led to a decreased membrane distribution of vinculin, a focal adhesion protein in neurons, whereas Y-27632 recruited vinculin to the membrane. Taken together, our data suggest that Rho kinase regulates rat hippocampal neurite growth and microtubule formation via a mechanism associated with the redistribution of vinculin. PMID:25206623

  2. Diabetes Causes Bone Marrow Endothelial Barrier Dysfunction by Activation of the RhoA–Rho-Associated Kinase Signaling Pathway

    PubMed Central

    Mangialardi, Giuseppe; Katare, Rajesh; Oikawa, Atsuhiko; Meloni, Marco; Reni, Carlotta; Emanueli, Costanza; Madeddu, Paolo

    2013-01-01

    Objective Diabetes mellitus causes bone marrow (BM) microangiopathy. This study aimed to investigate the mechanisms responsible for BM endothelial dysfunction in diabetes mellitus. Methods and Results The analysis of differentially expressed transcripts in BM endothelial cells (BMECs) from type-1 diabetic and nondiabetic mice showed an effect of diabetes mellitus on signaling pathways controlling cell death, migration, and cytoskeletal rearrangement. Type-1 diabetic-BMECs displayed high reactive oxygen species levels, increased expression and activity of RhoA and its associated protein kinases Rho-associated kinase 1/Rho-associated kinase 2, and reduced Akt phosphorylation/activity. Likewise, diabetes mellitus impaired Akt-related BMEC functions, such as migration, network formation, and angiocrine factor-releasing activity, and increased vascular permeability. Moreover, high glucose disrupted BMEC contacts through Src tyrosine kinase phosphorylation of vascular endothelial cadherin. These alterations were prevented by constitutively active Akt (myristoylated Akt), Rho-associated kinase inhibitor Y-27632, and Src inhibitors. Insulin replacement restored BMEC abundance, as assessed by flow cytometry analysis of the endothelial marker MECA32, and endothelial barrier function in BM of type-1 diabetic mice. Conclusion Redox-dependent activation of RhoA/Rho-associated kinase and Src/vascular endothelial cadherin signaling pathways, together with Akt inactivation, contribute to endothelial dysfunction in diabetic BM. Metabolic control is crucial for maintenance of endothelial cell homeostasis and endothelial barrier function in BM of diabetic mice. PMID:23307872

  3. Rho kinase signaling pathways during stretch in primary alveolar epithelia.

    PubMed

    DiPaolo, Brian C; Margulies, Susan S

    2012-05-15

    Alveolar epithelial cells (AECs) maintain integrity of the blood-gas barrier with actin-anchored intercellular tight junctions. Stretched type I-like AECs undergo magnitude- and frequency-dependent actin cytoskeletal remodeling into perijunctional actin rings. On the basis of published studies in human pulmonary artery endothelial cells (HPAECs), we hypothesize that RhoA activity, Rho kinase (ROCK) activity, and phosphorylation of myosin light chain II (MLC2) increase in stretched type I-like AECs in a manner that is dependent on stretch magnitude, and that RhoA, ROCK, or MLC2 activity inhibition will attenuate stretch-induced actin remodeling and preserve barrier properties. Primary type I-like AEC monolayers were stretched biaxially to create a change in surface area (ΔSA) of 12%, 25%, or 37% in a cyclic manner at 0.25 Hz for up to 60 min or left unstretched. Type I-like AECs were also treated with Rho pathway inhibitors (ML-7, Y-27632, or blebbistatin) and stained for F-actin or treated with the myosin phosphatase inhibitor calyculin-A and quantified for monolayer permeability. Counter to our hypothesis, ROCK activity and MLC2 phosphorylation decreased in type I-like AECs stretched to 25% and 37% ΔSA and did not change in monolayers stretched to 12% ΔSA. Furthermore, RhoA activity decreased in type I-like AECs stretched to 37% ΔSA. In contrast, MLC2 phosphorylation in HPAECs increased when HPAECs were stretched to 12% ΔSA but then decreased when they were stretched to 37% ΔSA, similar to type I-like AECs. Perijunctional actin rings were observed in unstretched type I-like AECs treated with the Rho pathway inhibitor blebbistatin. Myosin phosphatase inhibition increased MLC2 phosphorylation in stretched type I-like AECs but had no effect on monolayer permeability. In summary, stretch alters RhoA activity, ROCK activity, and MLC2 phosphorylation in a manner dependent on stretch magnitude and cell type. PMID:22287611

  4. Rho kinase signaling pathways during stretch in primary alveolar epithelia

    PubMed Central

    DiPaolo, Brian C.

    2012-01-01

    Alveolar epithelial cells (AECs) maintain integrity of the blood-gas barrier with actin-anchored intercellular tight junctions. Stretched type I-like AECs undergo magnitude- and frequency-dependent actin cytoskeletal remodeling into perijunctional actin rings. On the basis of published studies in human pulmonary artery endothelial cells (HPAECs), we hypothesize that RhoA activity, Rho kinase (ROCK) activity, and phosphorylation of myosin light chain II (MLC2) increase in stretched type I-like AECs in a manner that is dependent on stretch magnitude, and that RhoA, ROCK, or MLC2 activity inhibition will attenuate stretch-induced actin remodeling and preserve barrier properties. Primary type I-like AEC monolayers were stretched biaxially to create a change in surface area (ΔSA) of 12%, 25%, or 37% in a cyclic manner at 0.25 Hz for up to 60 min or left unstretched. Type I-like AECs were also treated with Rho pathway inhibitors (ML-7, Y-27632, or blebbistatin) and stained for F-actin or treated with the myosin phosphatase inhibitor calyculin-A and quantified for monolayer permeability. Counter to our hypothesis, ROCK activity and MLC2 phosphorylation decreased in type I-like AECs stretched to 25% and 37% ΔSA and did not change in monolayers stretched to 12% ΔSA. Furthermore, RhoA activity decreased in type I-like AECs stretched to 37% ΔSA. In contrast, MLC2 phosphorylation in HPAECs increased when HPAECs were stretched to 12% ΔSA but then decreased when they were stretched to 37% ΔSA, similar to type I-like AECs. Perijunctional actin rings were observed in unstretched type I-like AECs treated with the Rho pathway inhibitor blebbistatin. Myosin phosphatase inhibition increased MLC2 phosphorylation in stretched type I-like AECs but had no effect on monolayer permeability. In summary, stretch alters RhoA activity, ROCK activity, and MLC2 phosphorylation in a manner dependent on stretch magnitude and cell type. PMID:22287611

  5. AAMP Regulates Endothelial Cell Migration and Angiogenesis Through RhoA/Rho Kinase Signaling.

    PubMed

    Hu, Jianjun; Qiu, Juhui; Zheng, Yiming; Zhang, Tao; Yin, Tieying; Xie, Xiang; Wang, Guixue

    2016-05-01

    Angiogenesis is a complicated process including endothelial cell proliferation, migration and tube formation. AAMP plays a role in regulating cell migration of multiple cell types. The purpose of this study was to investigate whether AAMP regulates angiogenesis, and to clarify the role of AAMP in the VEGF-induced angiogenesis. We found that AAMP expressed in multiple cell types and mainly localized in cytoplasm and membrane in vascular endothelial cells. Using tube formation assay in vitro and aortic ring assay, siRNA-mediated knockdown and antibody blockade of AAMP impaired VEGF-induced endothelial cell tube formation and aortic ring angiogenic sprouting. Mechanistic studies showed that AAMP expression was significantly upregulated by VEGF in a concentration and time-dependent manner. Moreover, VEGF recruited AAMP to the cell membrane protrusions. AAMP regulates angiogenesis by mediating the spreading and migration of vascular endothelial cells. AAMP knock-down reduced VEGF-induced actin stress fibers and collagen gel contraction. Furthermore, we identified RhoA/Rho kinase signaling as an important factor that contributes to the action of AAMP in regulating endothelial cell migration and angiogenesis. Altogether, these data demonstrated the critical role of AAMP in angiogenesis and suggested blocking AAMP could serve as a potential therapeutic strategy for angiogenesis-related diseases. PMID:26350504

  6. Novel Insights into the Roles of Rho Kinase in Cancer.

    PubMed

    Wei, Lei; Surma, Michelle; Shi, Stephanie; Lambert-Cheatham, Nathan; Shi, Jianjian

    2016-08-01

    Rho-associated coiled-coil kinase (ROCK) is a major downstream effector of the small GTPase RhoA. The ROCK family, consisting of ROCK1 and ROCK2, plays a central role in the organization of the actin cytoskeleton, and is involved in a wide range of fundamental cellular functions such as contraction, adhesion, migration, proliferation, and apoptosis. Since the discovery of effective inhibitors such as fasudil and Y27632, the biological roles of ROCK have been extensively explored in numerous diseases, including cancer. Accumulating evidence supports the concept that ROCK plays important roles in tumor development and progression through regulating many key cellular functions associated with malignancy, including tumorigenicity, tumor growth, metastasis, angiogenesis, tumor cell apoptosis/survival and chemoresistance as well. This review focuses on the new advances of the most recent 5 years from the studies on the roles of ROCK in cancer development and progression; the discussion is mainly focused on the potential value of ROCK inhibitors in cancer therapy. PMID:26725045

  7. Rho kinase-mediated vasoconstriction in rat models of pulmonary hypertension.

    PubMed

    Oka, Masahiko; Homma, Noriyuki; McMurtry, Ivan F

    2008-01-01

    There is current controversy regarding whether vasoconstriction plays a significant role in the elevated pressure of severe, advanced stages of pulmonary hypertension. Results of acute vasodilator testing using conventional vasodilators in such patients suggest there is only a minor contribution of vasoconstriction. However, there is a possibility that these results may underestimate the contribution of vasoconstriction because the most effective vasodilators have not yet been tested. This issue has not been addressed even experimentally, due mainly to a lack of appropriate animal models. A few animal models that mimic the pathology of human severe pulmonary hypertension more closely (i.e., development of occlusive neointimal lesions in small pulmonary arteries/arterioles) have been introduced, including rat models of left lung pneumonectomy plus monocrotaline injection and vascular endothelial growth factor inhibition plus exposure to chronic hypoxia. We have observed that Rho kinase inhibitors, a novel class of potent vasodilators, reduce the high pulmonary artery pressure of these models acutely and markedly, suggesting that vasoconstriction can significantly be involved in pulmonary hypertension with severely remodeled (occluded) pulmonary vessels. This chapter describes methods used for evaluation of the involvement of Rho kinase-mediated vasoconstriction in rat models of pulmonary hypertension. PMID:18374166

  8. Rho-associated kinase inhibitors: a novel glaucoma therapy.

    PubMed

    Inoue, Toshihiro; Tanihara, Hidenobu

    2013-11-01

    The rho-associated kinase (ROCK) signaling pathway is activated via secreted bioactive molecules or via integrin activation after extracellular matrix binding. These lead to polymerization of actin stress fibers and formation of focal adhesions. Accumulating evidence suggests that actin cytoskeleton-modulating signals are involved in aqueous outflow regulation. Aqueous humor contains various biologically active factors, some of which are elevated in glaucomatous eyes. These factors affect aqueous outflow, in part, through ROCK signaling modulation. Various drugs acting on the cytoskeleton have also been shown to increase aqueous outflow by acting directly on outflow tissue. In vivo animal studies have shown that the trabecular meshwork (TM) actin cytoskeleton in glaucomatous eyes is more disorganized and more randomly oriented than in non-glaucomatous control eyes. In a previous study, we introduced ROCK inhibitors as a potential glaucoma therapy by showing that a selective ROCK inhibitor significantly lowered rabbit IOP. Rho-associated kinase inhibitors directly affect the TM and Schlemm's canal (SC), differing from the target sight of other glaucoma drugs. The TM is affected earlier and more strongly than ciliary muscle cells by ROCK inhibitors, largely because of pharmacological affinity differences stemming from regulatory mechanisms. Additionally, ROCK inhibitors disrupt tight junctions, result in F-actin depolymerization, and modulate intracellular calcium level, effectively increasing SC-cell monolayer permeability. Perfusion of an enucleated eye with a ROCK inhibitor resulted in wider empty spaces in the juxtacanalicular (JCT) area and more giant vacuoles in the endothelial cells of SC, while the endothelial lining of SC was intact. Interestingly, ROCK inhibitors also increase retinal blood flow by relaxing vascular smooth muscle cells, directly protecting neurons against various stresses, while promoting wound healing. These additional effects may help

  9. Blunted activation of Rho-kinase in yak pulmonary circulation.

    PubMed

    Ishizaki, Takeshi; Mizuno, Shiro; Sakai, Akio; Matsukawa, Shigeru; Kojonazarov, Baktybek; Zamirbek, Baiserkeev; Umeda, Yukihiro; Morikawa, Miwa; Anzai, Masaki; Ishizuka, Tamotsu; Aldashev, Almaz

    2015-01-01

    Yaks have adapted to high altitude and they do not develop hypoxic pulmonary hypertension. Although we previously identified the important role of augmented nitric oxide synthase activity in the yak pulmonary circulatory system, evidence of the direct involvement of Rho-kinase as a basal vascular tone regulator is lacking. Four domesticated male pure-bred yaks and four bulls that were born and raised at an altitude of 3000 m in the Tien-Shan mountains were studied at an altitude of 3,100 m. Mean pulmonary artery pressure (mPAP) was measured before and after fasudil (60 mg in 20 mL of saline) was intravenously administered using a Swan-Ganz catheter at a rate of 3.3 mL/min for 30 min. Fasudil decreased mPAP in bulls from 67.8±14.9 to 32.3±5.3 mmHg (P < 0.05) after 15 min and the level was maintained for 30 min, but it merely blunted mPAP in yaks from 28.2±4.5 to 25.1±11.1 and 23.2±2.7 mmHg after 5 and 30 min, respectively. These findings comprise the first evidence of a modest role of Rho-kinase in the maintenance of pulmonary artery pressure in the yak. PMID:25654121

  10. Blunted Activation of Rho-Kinase in Yak Pulmonary Circulation

    PubMed Central

    Sakai, Akio; Matsukawa, Shigeru; Zamirbek, Baiserkeev; Umeda, Yukihiro; Morikawa, Miwa; Anzai, Masaki; Ishizuka, Tamotsu; Aldashev, Almaz

    2015-01-01

    Yaks have adapted to high altitude and they do not develop hypoxic pulmonary hypertension. Although we previously identified the important role of augmented nitric oxide synthase activity in the yak pulmonary circulatory system, evidence of the direct involvement of Rho-kinase as a basal vascular tone regulator is lacking. Four domesticated male pure-bred yaks and four bulls that were born and raised at an altitude of 3000 m in the Tien-Shan mountains were studied at an altitude of 3,100 m. Mean pulmonary artery pressure (mPAP) was measured before and after fasudil (60 mg in 20 mL of saline) was intravenously administered using a Swan-Ganz catheter at a rate of 3.3 mL/min for 30 min. Fasudil decreased mPAP in bulls from 67.8±14.9 to 32.3±5.3 mmHg (P < 0.05) after 15 min and the level was maintained for 30 min, but it merely blunted mPAP in yaks from 28.2±4.5 to 25.1±11.1 and 23.2±2.7 mmHg after 5 and 30 min, respectively. These findings comprise the first evidence of a modest role of Rho-kinase in the maintenance of pulmonary artery pressure in the yak. PMID:25654121

  11. Targeting of Rho Kinase Ameliorates Impairment of Diabetic Endothelial Function in Intrarenal Artery

    PubMed Central

    Yin, Hongping; Ru, Hailong; Yu, Liping; Kang, Yanhua; Lin, Guohua; Liu, Chuanfei; Sun, Lixian; Shi, Liyun; Sun, Qinghua; Liu, Cuiqing

    2013-01-01

    Endothelial dysfunction in kidney vasculature is the initial and key element for nephropathy in diabetes mellitus. Accumulating evidence suggests the protective role of Rho kinase inhibitors in endothelial dysfunction via modulating eNOS activity and NO production. However, the role of Rho kinase in diabetes-related endothelial dysfunction in kidney vasculature and the relevant mechanisms remain unknown. We assessed whether pharmacological inhibition of Rho kinase attenuates endothelial dysfunction in intrarenal arteries from type 1 diabetic rats. Fasudil, a Rho kinase inhibitor effectively decreased the phosphorylated level of MYPT1 without affecting the expression of ROCKs in the kidney. Fasudil treatment showed no improvement in diabetes-related abnormality in metabolic indices, but it significantly ameliorated endothelial dysfunction in intrarenal arteries and lessened the mesangial matrix expansion in the kidney cortex. Mechanistically, superoxide production in the intrarenal artery and NOX4 member of NADPH oxidase in the renal cortex that contribute to diabetic nephropathy were also prevented by the Rho kinase inhibitor. In conclusion, the present results indicate that Rho kinase is involved in endothelial dysfunction in type 1 diabetes via enhancement of oxidative stress and provides new evidence for Rho kinase inhibitors as potential therapeutic agents for the treatment of diabetic nephropathy. PMID:24129169

  12. Activation of Rho-kinase in the brainstem enhances sympathetic drive in mice with heart failure.

    PubMed

    Ito, Koji; Kimura, Yoshikuni; Hirooka, Yoshitaka; Sagara, Yoji; Sunagawa, Kenji

    2008-11-01

    Rho-kinase is involved in the pathogenesis of hypertension and left ventricular remodelling after myocardial infarction (MI). In an earlier study, we had demonstrated that Rho-kinase in the brainstem contributes to hypertensive mechanisms via the sympathetic nervous system; however, it is not known whether Rho-kinase in the brainstem also contributes to sympathetic nerve activation after MI. Male Institute of Cancer Research mice (8-10 weeks old) were used for the study. Two days before coronary artery occlusion (MI group), the left ventricular function was estimated by echocardiography. Following this, Y-27632 (0.5 mM, 0.25 microL/h), a specific Rho-kinase inhibitor, or a vehicle was intracisternally infused in the mice using an osmotic mini-pump. Nine days after coronary artery occlusion, we evaluated the 24-hour urinary norepinephrine excretion (U-NE) as a marker of sympathetic nerve activity. Ten days after coronary artery occlusion, we measured organ weight and evaluated Rho-kinase activity in the brainstem by measuring the amount of phosphorylated ezrin/radixin/moesin proteins, one of the substrates of Rho-kinase. The control group underwent a sham operation. Rho-kinase activity, U-NE, and lungs and liver weight were significantly greater in the MI group compared with the control group. Left ventricular size increased and percent fractional shortening decreased in the MI group compared with the control group. Y-27632 significantly decreased Rho-kinase activity and attenuated the increase in U-NE after MI. These results demonstrate that Rho-kinase is activated in the brainstem after MI and that the activation of this pathway is involved in the resulting enhanced sympathetic drive. PMID:18762460

  13. Rho Kinase Pathway Alterations in the Brain and Leukocytes in Huntington's Disease.

    PubMed

    Narayanan, K Lakshmi; Chopra, Vanita; Rosas, H Diana; Malarick, Keith; Hersch, Steven

    2016-05-01

    Huntington's disease (HD) is a fatal neurodegenerative disease caused by an expanded polyglutamine tract in the huntingtin gene. Therapeutic approaches targeting mutant huntingtin (mtHtt) or its downstream toxic consequences are under development, including Rho kinase pathway inhibition. We investigated the messenger RNA (mRNA) expression of Rho kinase pathway genes, including RhoA (Ras homolog family member A), ROCK1 (Rho-associated kinase1), PRK2 (protein kinase C-related protein kinase 2), Profilin1, cofilin1, MYPT1 (myosin phosphatase target subunit 1), and LIMK1 (LIM domain kinase 1) in HD human blood leukocytes, postmortem brain, and in R6/2 HD mouse brain tissue using qPCR. RhoA, ROCK1, PRK2, Profilin1, cofilin1, and MYPT1 were significantly increased in HD blood compared to controls. In frontal cortex of HD postmortem brain tissue, the expression of RhoA, ROCK1, PRK2, Profilin1, and MYPT1 were also significantly increased. In the brain from 4-week-old R6/2 mice, the expression of Rock1, Prk2, Cofilin1, and MYPT1 was significantly increased while RhoA, Rock1, Profilin1, Cofilin1, and Mypt1 were increased and Limk1 mRNA decreased in 13-week-old R6/2 mice. Western blot analysis using human postmortem tissues for ROCK1 and Profilin1 demonstrated significantly increased protein levels, which correlated with the mRNA increases. Collectively, we have shown the panel of Rho kinase pathway genes to be highly altered in human HD blood, postmortem brain tissue, and in R6/2 mice. These studies confirm that HD upregulates the Rho kinase pathway and identifies mRNAs that could serve as peripheral markers in HD patients and translational markers in HD mouse models. PMID:25941073

  14. Involvement of inhibition of RhoA/Rho kinase signaling in simvastatin-induced amelioration of neuropathic pain.

    PubMed

    Ohsawa, Masahiro; Ishikura, Kei-Ichiro; Mutoh, Junpei; Hisa, Hiroaki

    2016-10-01

    Small molecular G-protein plays a key role in several diseases. This study was designed to reveal the role of RhoA signaling in the pathophysiology of neuropathic pain in mice. Partial sciatic nerve injury caused thermal hyperalgesia, mechanical allodynia, and increased plasma membrane translocation of RhoA in the lumber spinal cord. GFAP-immunoreactivity (ir), Iba-1-ir, and Rho kinase 2 (ROCK2-ir) was also increased in the ipsilateral spinal dorsal horn of nerve-ligated mice. Moreover, partial nerve ligation increased the expression of phosphorylated myristoylated alanine-rich protein kinase C substrate (MARCKS)-ir in the ipsilateral spinal dorsal horn. Daily intrathecal administration of simvastatin, beginning 3days before nerve injury, completely blocked all these changes in nerve-ligated mice. Pharmacological inhibition of ROCK also attenuated the increased expression of GFAP-ir and phosphorylated MARCKS-ir. Together, it is suggested that astrogliosis initiated by the activation of RhoA/ROCK signaling results in MARCKS phosphorylation in nerve terminals, which leads to hyperalgesia in neuropathic pain. Furthermore, simvastatin exerts antihyperalgesic and antiallodynic effects through the inhibition of spinal RhoA activation. PMID:27457035

  15. TUMOR NECROSIS FACTOR ALPHA DECREASES NOS3 EXPRESSION PRIMARILY VIA RHO/RHO KINASE IN THE THICK ASCENDING LIMB

    PubMed Central

    Ramseyer, Vanesa; Hong, Nancy; Garvin, Jeffrey L.

    2013-01-01

    Inappropriate Na+ reabsorption by thick ascending limbs (THALs) induces hypertension. Nitric oxide (NO) produced by NO synthase type 3 (NOS3 or eNOS) inhibits NaCl reabsorption by THALs. Tumor necrosis factor alpha (TNF-α) decreases NOS3 expression in endothelial cells and contributes to increases in blood pressure. However, the effects of TNF-α on THAL NOS3 and the signaling cascade are unknown. TNF-α activates several signaling pathways including Rho/Rho kinase (ROCK) which is known to reduce NOS3 expression in endothelial cells. Therefore, we hypothesized that TNF-α decreases NOS3 expression via Rho/ROCK in rat THAL primary cultures. THAL cells were incubated with either vehicle or 1 nmol/L TNF-α for 24 hrs and NOS3 expression was measured by Western blot. TNF-α decreased NOS3 expression by 51±6% (p<0.002) and blunted stimulus-induced NO production. A 10-minutes treatment with TNF-α stimulated RhoA activity by 60±23% (p<0.04). Inhibition of Rho GTPase with 0.05 μg/mL C3 exoenzyme blocked TNF-α-induced reductions in NOS3 expression by 30±8% (p<0.02). Inhibition of ROCK with 10 μmol/L H-1152 blocked TNF-α-induced decreases in NOS3 expression by 66±15 % (p<0.001). Simultaneous inhibition of Rho and ROCK had no additive effect. Myosin light chain kinase, NO, protein kinase C, mitogen-activated kinase kinase, c-Jun amino terminal kinases and Rac-1 were also not involved in TNF-α-induced decreases in NOS3 expression. We conclude that TNF-α decreases NOS3 expression primarily via Rho/ROCK in rat THALs. These data suggest that some of the beneficial effects of ROCK inhibitors in hypertension could be due to the mitigation of TNF-α-induced reduction in NOS3 expression. PMID:22566503

  16. Role of Rho kinase isoforms in murine allergic airway responses.

    PubMed

    Zhu, M; Liu, P-Y; Kasahara, D I; Williams, A S; Verbout, N G; Halayko, A J; Fedulov, A; Shoji, T; Williams, E S; Noma, K; Shore, S A; Liao, J K

    2011-10-01

    Inhibition of Rho-associated coiled-coil forming kinases (ROCKs) reduces allergic airway responses in mice. The purpose of this study was to determine the roles of the two ROCK isoforms, ROCK1 and ROCK2, in these responses. Wildtype (WT) mice and heterozygous ROCK1 and ROCK2 knockout mice (ROCK1(+/-) and ROCK2(+/-), respectively) were sensitised and challenged with ovalbumin. ROCK expression and activation were assessed by western blotting. Airway responsiveness was measured by forced oscillation. Bronchoalveolar lavage was performed and the lungs were fixed for histological assessment. Compared with WT mice, ROCK1 and ROCK2 expression were 50% lower in lungs of ROCK1(+/-) and ROCK2(+/-) mice, respectively, without changes in the other isoform. In WT lungs, ROCK activation increased after ovalbumin challenge and was sustained for several hours. This activation was reduced in ROCK1(+/-) and ROCK2(+/-) lungs. Airway responsiveness was comparable in WT, ROCK1(+/-), and ROCK2(+/-) mice challenged with PBS. Ovalbumin challenge caused airway hyperresponsiveness in WT, but not ROCK1(+/-) or ROCK2(+/-) mice. Lavage eosinophils and goblet cell hyperplasia were significantly reduced in ovalbumin-challenged ROCK1(+/-) and ROCK2(+/-) versus WT mice. Ovalbumin-induced changes in lavage interleukin-13, interleukin-5 and lymphocytes were also reduced in ROCK1(+/-) mice. In conclusion, both ROCK1 and ROCK2 are important in regulating allergic airway responses. PMID:21565918

  17. PAK4 promotes kinase-independent stabilization of RhoU to modulate cell adhesion

    PubMed Central

    Dart, Anna E.; Box, Gary M.; Court, William; Gale, Madeline E.; Brown, John P.; Pinder, Sarah E.; Eccles, Suzanne A.

    2015-01-01

    P21-activated kinase 4 (PAK4) is a Cdc42 effector protein thought to regulate cell adhesion disassembly in a kinase-dependent manner. We found that PAK4 expression is significantly higher in high-grade human breast cancer patient samples, whereas depletion of PAK4 modifies cell adhesion dynamics of breast cancer cells. Surprisingly, systematic analysis of PAK4 functionality revealed that PAK4-driven adhesion turnover is neither dependent on Cdc42 binding nor kinase activity. Rather, reduced expression of PAK4 leads to a concomitant loss of RhoU expression. We report that RhoU is targeted for ubiquitination by the Rab40A–Cullin 5 complex and demonstrate that PAK4 protects RhoU from ubiquitination in a kinase-independent manner. Overexpression of RhoU rescues the PAK4 depletion phenotype, whereas loss of RhoU expression reduces cell adhesion turnover and migration. These data support a new kinase-independent mechanism for PAK4 function, where an important role of PAK4 in cellular adhesions is to stabilize RhoU protein levels. Thus, PAK4 and RhoU cooperate to drive adhesion turnover and promote cell migration. PMID:26598620

  18. Rho GTPase/Rho Kinase Negatively Regulates Endothelial Nitric Oxide Synthase Phosphorylation through the Inhibition of Protein Kinase B/Akt in Human Endothelial Cells

    PubMed Central

    Ming, Xiu-Fen; Viswambharan, Hema; Barandier, Christine; Ruffieux, Jean; Kaibuchi, Kozo; Rusconi, Sandro; Yang, Zhihong

    2002-01-01

    Endothelial nitric oxide synthase (eNOS) is an important regulator of cardiovascular homeostasis by production of nitric oxide (NO) from vascular endothelial cells. It can be activated by protein kinase B (PKB)/Akt via phosphorylation at Ser-1177. We are interested in the role of Rho GTPase/Rho kinase (ROCK) pathway in regulation of eNOS expression and activation. Using adenovirus-mediated gene transfer in human umbilical vein endothelial cells (HUVECs), we show here that both active RhoA and ROCK not only downregulate eNOS gene expression as reported previously but also inhibit eNOS phosphorylation at Ser-1177 and cellular NO production with concomitant suppression of PKB activation. Moreover, coexpression of a constitutive active form of PKB restores the phosphorylation but not gene expression of eNOS in the presence of active RhoA. Furthermore, we show that thrombin inhibits eNOS phosphorylation, as well as expression via Rho/ROCK pathway. Expression of the active PKB reverses eNOS phosphorylation but has no effect on downregulation of eNOS expression induced by thrombin. Taken together, these data demonstrate that Rho/ROCK pathway negatively regulates eNOS phosphorylation through inhibition of PKB, whereas it downregulates eNOS expression independent of PKB. PMID:12446767

  19. Signals fly when kinases meet Rho-of-plants (ROP) small G-proteins.

    PubMed

    Fehér, Attila; Lajkó, Dézi Bianka

    2015-08-01

    Rho-type small GTP-binding plant proteins function as two-state molecular switches in cellular signalling. There is accumulating evidence that Rho-of-plants (ROP) signalling is positively controlled by plant receptor kinases, through the ROP guanine nucleotide exchange factor proteins. These signalling modules regulate cell polarity, cell shape, hormone responses, and pathogen defence, among other things. Other ROP-regulatory proteins might also be subjected to protein phosphorylation by cellular kinases (e.g., mitogen-activated protein kinases or calcium-dependent protein kinases), in order to integrate various cellular signalling pathways with ROP GTPase-dependent processes. In contrast to the role of kinases in upstream ROP regulation, much less is known about the potential link between ROP GTPases and downstream kinase signalling. In other eukaryotes, Rho-type G-protein-activated kinases are widespread and have a key role in many cellular processes. Recent data indicate the existence of structurally different ROP-activated kinases in plants, but their ROP-dependent biological functions still need to be validated. In addition to these direct interactions, ROPs may also indirectly control the activity of mitogen-activated protein kinases or calcium-dependent protein kinases. These kinases may therefore function as upstream as well as downstream kinases in ROP-mediated signalling pathways, such as the phosphatidylinositol monophosphate kinases involved in cell polarity establishment. PMID:26089155

  20. Impacts of Rho kinase inhibitor Fasudil on Rho/ROCK signaling pathway in rabbits with optic nerve injury

    PubMed Central

    Yu, Jianglong; Lin, Lin; Luan, Xinping; Jing, Xiepan; Maierab

    2015-01-01

    Objective: The aim of this study was to study the impacts of Rho kinase inhibitor Fasudil on expressions of Rho/ROCK signaling pathway associated genes in rabbits with optic nerve injury (ONI), and to explore the therapeutic mechanisms towards ONI. Methods: The rabbit ONI model was established, then the rabbits were divided into model group (treated with saline), control group (treated with dexamethasone, Dex), and intervention group (treated with Fasudil, Fas). The eyeball and optic nerve were sampled at 3, 7, 14 and 21 days after injury. The morphological changes of retina and optic nerve were observed. The expressions of RhoA, Caspase-3, Rock 2 and Nogo-A gene were determined by immunohistochemistry and real-time polymerase chain reaction (RT-PCR) methods. Results: At different time after injury, there were significant differences of RhoA, Caspase-3, Rock 2 and Nogo-A gene expression among three groups (P < 0.05). Conclusions: After ONI, Fas can decrease the expression of Caspase-3 gene, and down-regulate the expressions of Nogo-A and Rock 2 gene. Therefore, it can treat ONI through affecting the Rho/ROCK signaling pathway. PMID:26823796

  1. TNF causes changes in glomerular endothelial permeability and morphology through a Rho and myosin light chain kinase-dependent mechanism.

    PubMed

    Xu, Chang; Wu, Xiaoyan; Hack, Bradley K; Bao, Lihua; Cunningham, Patrick N

    2015-12-01

    A key function of the endothelium is to serve as a regulated barrier between tissue compartments. We have previously shown that tumor necrosis factor (TNF) plays a crucial role in lipopolysaccharide (LPS)-induced acute kidney injury, in part by causing injury to the renal endothelium through its receptor TNFR1. Here, we report that TNF increased permeability to albumin in primary culture mouse renal endothelial cells, as well as human glomerular endothelial cells. This process occurred in association with changes in the actin cytoskeleton and was associated with gaps between previously confluent cells in culture and decreases in the tight junction protein occludin. This process was dependent on myosin light chain activation, as seen by its prevention with Rho-associated kinase and myosin light chain kinase (MLCK) inhibitors. Surprisingly, permeability was not blocked by inhibition of apoptosis with caspase inhibitors. Additionally, we found that the renal glycocalyx, which plays an important role in barrier function, was also degraded by TNF in a Rho and MLCK dependent fashion. TNF treatment caused a decrease in the size of endothelial fenestrae, dependent on Rho and MLCK, although the relevance of this to changes in permeability is uncertain. In summary, TNF-induced barrier dysfunction in renal endothelial cells is crucially dependent upon the Rho/MLCK signaling pathway. PMID:26634902

  2. Signaling Pathways That Control Rho Kinase Activity Maintain the Embryonic Epicardial Progenitor State

    PubMed Central

    Artamonov, Mykhaylo V.; Jin, Li; Franke, Aaron S.; Momotani, Ko; Ho, Ruoya; Dong, Xiu Rong; Majesky, Mark W.; Somlyo, Avril V.

    2015-01-01

    This study identifies signaling pathways that play key roles in the formation and maintenance of epicardial cells, a source of progenitors for coronary smooth muscle cells (SMCs). After epithelial to mesenchymal transition (EMT), mesenchymal cells invade the myocardium to form coronary SMCs. RhoA/Rho kinase activity is required for EMT and for differentiation into coronary SMCs, whereas cAMP activity is known to inhibit EMT in epithelial cells by an unknown mechanism. We use outgrowth of epicardial cells from E9.5 isolated mouse proepicardium (PE) explants, wild type and Epac1 null E12.5 mouse heart explants, adult rat epicardial cells, and immortalized mouse embryonic epicardial cells as model systems to identify signaling pathways that regulate RhoA activity to maintain the epicardial progenitor state. We demonstrate that RhoA activity is suppressed in the epicardial progenitor state, that the cAMP-dependent Rap1 GTP exchange factor (GEF), Epac, known to down-regulate RhoA activity through activation of Rap1 GTPase activity increased, that Rap1 activity increased, and that expression of the RhoA antagonistic Rnd proteins known to activate p190RhoGAP increased and associated with p190RhoGAP. Finally, EMT is associated with increased p63RhoGEF and RhoGEF-H1 protein expression, increased GEF-H1 activity, with a trend in increased p63RhoGEF activity. EMT is suppressed by partial silencing of p63RhoGEF and GEF-H1. In conclusion, we have identified new signaling molecules that act together to control RhoA activity and play critical roles in the maintenance of coronary smooth muscle progenitor cells in the embryonic epicardium. We suggest that their eventual manipulation could promote revascularization after myocardial injury. PMID:25733666

  3. Structural basis for induced-fit binding of Rho-kinase to the inhibitor Y-27632.

    PubMed

    Yamaguchi, Hiroto; Miwa, Yukiko; Kasa, Miyuki; Kitano, Ken; Amano, Mutsuki; Kaibuchi, Kozo; Hakoshima, Toshio

    2006-09-01

    Rho-kinase is a main player in the regulation of cytoskeletal events and a promising drug target in the treatment of both vascular and neurological disorders. Here we report the crystal structure of the Rho-kinase catalytic domain in complex with the specific inhibitor Y-27632. Comparison with the structure of PKA bound to this inhibitor revealed a potential induced-fit binding mode that can be accommodated by the phosphate binding loop. This binding mode resembles to that observed in the Rho-kinase-fasudil complex. A structural database search indicated that a pocket underneath the phosphate-binding loop is present that favors binding to a small aromatic ring. Introduction of such a ring group might spawn a new modification scheme of pre-existing protein kinase inhibitors for improved binding capability. PMID:16891330

  4. Rho Kinase Enhances Contractions of Rat Mesenteric Collecting Lymphatics

    PubMed Central

    Kurtz, Kristine H.; Souza-Smith, Flavia M.; Moor, Andrea N.; Breslin, Jerome W.

    2014-01-01

    The mechanisms that control phasic and tonic contractions of lymphatic vessels are poorly understood. We hypothesized that rho kinase ROCK, previously shown to increase calcium (Ca2+) sensitivity in vascular smooth muscle, enhances lymphatic contractile activity in a similar fashion. Contractions of isolated rat mesenteric lymphatic vessels were observed at a luminal pressure of 2 cm H2O in a 37°C bath. The expression of ROCK in isolated rat mesenteric lymphatic vessels was assessed by Western blotting and confocal microscopy. The role of ROCK in contractile function was tested using two specific yet structurally distinct inhibitors: H1152 (0.1–10 μM) and Y-27632 (0.5–50 μM). In addition, lymphatics were transfected with constitutively active (ca)-ROCK protein (2 μg/ml) to assess gain of contractile function. Vessel diameter and the concentration of intracellular free Ca2+ ([Ca2+]i) were simultaneously measured in a subset of isolated lymphatics loaded with the Ca2+-sensing dye fura-2. The results show expression of both the ROCK1 and ROCK2 isoforms in lymphatic vessels. Inhibition of ROCK increased lymphatic end diastolic diameter and end systolic diameter in a concentration-dependent manner. Significant reductions in lymphatic tone and contraction amplitude were observed after treatment 1–10 μM H1152 or 25–50 μM Y-27632. H1152 (10 μM) also significantly reduced contraction frequency. Transient increases in [Ca2+]i preceded each phasic contraction, however this pattern was disrupted by either 10 μM H1152 or 50 μM Y-27632 in the majority of lymphatics studied. The significant decrease in tone caused by H1152 or Y-27632 was not associated with a significant change in the basal [Ca2+]i between transients. Transfection with ca-ROCK protein enhanced lymphatic tone, but was not associated with a significant change in basal [Ca2+]i. Our data suggest that ROCK mediates normal tonic constriction and influences phasic contractions in lymphatics. We propose

  5. Rho kinase enhances contractions of rat mesenteric collecting lymphatics.

    PubMed

    Kurtz, Kristine H; Souza-Smith, Flavia M; Moor, Andrea N; Breslin, Jerome W

    2014-01-01

    The mechanisms that control phasic and tonic contractions of lymphatic vessels are poorly understood. We hypothesized that rho kinase ROCK, previously shown to increase calcium (Ca2+) sensitivity in vascular smooth muscle, enhances lymphatic contractile activity in a similar fashion. Contractions of isolated rat mesenteric lymphatic vessels were observed at a luminal pressure of 2 cm H2O in a 37°C bath. The expression of ROCK in isolated rat mesenteric lymphatic vessels was assessed by Western blotting and confocal microscopy. The role of ROCK in contractile function was tested using two specific yet structurally distinct inhibitors: H1152 (0.1-10 μM) and Y-27632 (0.5-50 μM). In addition, lymphatics were transfected with constitutively active (ca)-ROCK protein (2 μg/ml) to assess gain of contractile function. Vessel diameter and the concentration of intracellular free Ca2+ ([Ca2+]i) were simultaneously measured in a subset of isolated lymphatics loaded with the Ca2+-sensing dye fura-2. The results show expression of both the ROCK1 and ROCK2 isoforms in lymphatic vessels. Inhibition of ROCK increased lymphatic end diastolic diameter and end systolic diameter in a concentration-dependent manner. Significant reductions in lymphatic tone and contraction amplitude were observed after treatment 1-10 μM H1152 or 25-50 μM Y-27632. H1152 (10 μM) also significantly reduced contraction frequency. Transient increases in [Ca2+]i preceded each phasic contraction, however this pattern was disrupted by either 10 μM H1152 or 50 μM Y-27632 in the majority of lymphatics studied. The significant decrease in tone caused by H1152 or Y-27632 was not associated with a significant change in the basal [Ca2+]i between transients. Transfection with ca-ROCK protein enhanced lymphatic tone, but was not associated with a significant change in basal [Ca2+]i. Our data suggest that ROCK mediates normal tonic constriction and influences phasic contractions in lymphatics. We propose that

  6. Quantitative Assessment of Local Collagen Matrix Remodeling in 3-D Culture: The Role of Rho Kinase

    PubMed Central

    Kim, Areum; Lakshman, Neema; Petroll, W.Matthew

    2007-01-01

    The purpose of this study was to quantitatively assess the role of Rho kinase in modulating the pattern and amount of local cell-induced collagen matrix remodeling. Human corneal fibroblasts were plated inside 100 μm thick fibrillar collagen matrices and cultured for 24 hours in media with or without the Rho kinase inhibitor Y-27632. Cells were then fixed and stained with phalloidin. Fluorescent (for f-actin) and reflected light (for collagen fibrils) 3-D optical section images were acquired using laser confocal microscopy. Fourier transform analysis was used to assess collagen fibril alignment, and 3-D cell morphology and local collagen density were measured using MetaMorph. Culture in serum-containing media induced significant global matrix contraction, which was inhibited by blocking Rho kinase (p < 0.001). Fibroblasts generally had a bipolar morphology and intracellular stress fibers. Collagen fibrils were compacted and aligned parallel to stress fibers and pseudopodia. When Rho kinase was inhibited, cells had a more cortical f-actin distribution and dendritic morphology. Both local collagen fibril density and alignment were significantly reduced (p<0.01). Overall, the data suggests that Rho kinase dependent contractile force generation leads to co-alignment of cells and collagen fibrils along the plane of greatest resistance, and that this process contributes to global matrix contraction. PMID:16978606

  7. Hyperoxia increases the elastic modulus of alveolar epithelial cells through Rho kinase.

    PubMed

    Wilhelm, Kristina R; Roan, Esra; Ghosh, Manik C; Parthasarathi, Kaushik; Waters, Christopher M

    2014-02-01

    Patients with acute lung injury are administered high concentrations of oxygen during mechanical ventilation, and while both hyperoxia and mechanical ventilation are necessary, each can independently cause additional injury. However, the precise mechanisms that lead to injury are not well understood. We hypothesized that alveolar epithelial cells may be more susceptible to injury caused by mechanical ventilation because hyperoxia causes cells to be stiffer due to increased filamentous actin (f-actin) formation via the GTPase RhoA and its effecter Rho kinase (ROCK). We examined cytoskeletal structures in cultured murine lung alveolar epithelial cells (MLE-12) under normoxic and hyperoxic (48 h) conditions. We also measured cell elasticity (E) using an atomic force microscope in the indenter mode. Hyperoxia caused increased f-actin stress fibers and bundle formation, an increase in g- and f-actin, an increase in nuclear area and a decrease in nuclear height, and cells became stiffer (higher E). Treatment with an inhibitor (Y-27632) of ROCK significantly decreased E and prevented the cytoskeletal changes, while it did not influence the nuclear height and area. Pre-exposure of cells to hyperoxia promoted detachment when cells were subsequently stretched cyclically, but the ROCK inhibitor prevented this effect. Hyperoxia caused thickening of vinculin focal adhesion plaques, and inhibition of ROCK reduced the formation of distinct focal adhesion plaques. Phosphorylation of focal adhesion kinase was significantly reduced by both hyperoxia and treatment with Y-27632. Hyperoxia caused increased cell stiffness and promoted cell detachment during stretch. These effects were ameliorated by inhibition of ROCK. PMID:24289040

  8. Sodium ferulate lowers portal pressure in rats with secondary biliary cirrhosis through the RhoA/Rho-kinase signaling pathway: A preliminary study

    PubMed Central

    WEI, LAI; YANG, JUAN; WANG, MIN; XU, SHENG-NAN; LIANG, HUA-MIN; ZHOU, QI

    2014-01-01

    Cirrhotic rats show higher expression levels of hepatic RhoA and Rho-kinase than normal healthy rats, and the activation of this signaling pathway leads to portal hypertension. Sodium ferulate (SF) has been shown to decrease the production of geranylgeranyl pyrophosphate (GGPP), a substance essential for RhoA activation. In the present study, to investigate the effects of SF on fibrosis, portal hypertension and the RhoA/Rho-kinase pathway, hepatic cirrhosis was induced in rats by bile duct ligation. Liver function and fibrogenesis-related biochemical parameters, the hepatic hydroxyproline content, the pathological characteristics of the liver sections and the levels of hepatic α-smooth muscle actin (α-SMA; by immunohistochemistry) were analyzed to assess effects of SF on hepatic fibrosis. In addition, hepatic RhoA, Rho-kinase and endothelial nitric oxide synthase (eNOS) expression was examined by immunohistochemistry. Apoptosis in the SF-treated and SF + GGPP-treated rat primary hepatic stellate cells (HSCs) and a human stellate cell line (LX-2) was examined by flow cytometry. Intrahepatic resistance and responsiveness to the α1-adrenoceptor agonist, methoxamine, were investigated by in situ liver perfusion. Treatment with SF did not affect fibrosis-related biochemical parameters or the hydroxyproline content; however, SF reduced the histological evidence of fibrosis and hepatocyte damage. The SF-treated rats had a significantly lower expression of α-SMA and Rho-kinase, as well as an increased hepatic eNOS content; however, SF did not affect RhoA expression. The SF-treated HSCs had a significantly increased apoptotic rate compared to the untreated rats. Following the addition of GGPP, the rate apoptotic rate decreased. SF reduced basal intrahepatic resistance and the responsiveness of hepatic vascular smooth muscle to methoxamine. Therefore, our data demonstrate that SF reduces fibrogenesis, decreases portal pressure in cirrhotic rats and inhibits the

  9. Myosin light chain kinase regulates cell polarization independently of membrane tension or Rho kinase

    PubMed Central

    Lou, Sunny S.; Diz-Muñoz, Alba; Weiner, Orion D.; Fletcher, Daniel A.

    2015-01-01

    Cells polarize to a single front and rear to achieve rapid actin-based motility, but the mechanisms preventing the formation of multiple fronts are unclear. We developed embryonic zebrafish keratocytes as a model system for investigating establishment of a single axis. We observed that, although keratocytes from 2 d postfertilization (dpf) embryos resembled canonical fan-shaped keratocytes, keratocytes from 4 dpf embryos often formed multiple protrusions despite unchanged membrane tension. Using genomic, genetic, and pharmacological approaches, we determined that the multiple-protrusion phenotype was primarily due to increased myosin light chain kinase (MLCK) expression. MLCK activity influences cell polarity by increasing myosin accumulation in lamellipodia, which locally decreases protrusion lifetime, limiting lamellipodial size and allowing for multiple protrusions to coexist within the context of membrane tension limiting protrusion globally. In contrast, Rho kinase (ROCK) regulates myosin accumulation at the cell rear and does not determine protrusion size. These results suggest a novel MLCK-specific mechanism for controlling cell polarity via regulation of myosin activity in protrusions. PMID:25918227

  10. Overactivation of the protein kinase C-signaling pathway suppresses the defects of cells lacking the Rho3/Rho4-GAP Rgd1p in Saccharomyces cerevisiae.

    PubMed Central

    de Bettignies, G; Thoraval, D; Morel, C; Peypouquet, M F; Crouzet, M

    2001-01-01

    The nonessential RGD1 gene encodes a Rho-GTPase activating protein for the Rho3 and Rho4 proteins in Saccharomyces cerevisiae. Previous studies have revealed genetic interactions between RGD1 and the SLG1 and MID2 genes, encoding two putative sensors for cell integrity signaling, and VRP1 encoding an actin and myosin interacting protein involved in polarized growth. To better understand the role of Rgd1p, we isolated multicopy suppressor genes of the cell lethality of the double mutant rgd1Delta mid2Delta. RHO1 and RHO2 encoding two small GTPases, MKK1 encoding one of the MAP-kinase kinases in the protein kinase C (PKC) pathway, and MTL1, a MID2-homolog, were shown to suppress the rgd1Delta defects strengthening the functional links between RGD1 and the cell integrity pathway. Study of the transcriptional activity of Rlm1p, which is under the control of Mpk1p, the last kinase of the PKC pathway, and follow-up of the PST1 transcription, which is positively regulated by Rlm1p, indicate that the lack of RGD1 function diminishes the PKC pathway activity. We hypothesize that the rgd1Delta inactivation, at least through the hyperactivation of the small GTPases Rho3p and Rho4p, alters the secretory pathway and/or the actin cytoskeleton and decreases activity of the PKC pathway. PMID:11779787

  11. Molecular mechanism for the regulation of rho-kinase by dimerization and its inhibition by fasudil.

    PubMed

    Yamaguchi, Hiroto; Kasa, Miyuki; Amano, Mutsuki; Kaibuchi, Kozo; Hakoshima, Toshio

    2006-03-01

    Rho-kinase is a key regulator of cytoskeletal events and a promising drug target in the treatment of vascular diseases and neurological disorders. Unlike other protein kinases, Rho-kinase requires both N- and C-terminal extension segments outside the kinase domain for activity, although the details of this requirement have been elusive. The crystal structure of an active Rho-kinase fragment containing the kinase domain and both the extensions revealed a head-to-head homodimer through the N-terminal extension forming a helix bundle that structurally integrates the C-terminal extension. This structural organization enables binding of the C-terminal hydrophobic motif to the N-terminal lobe, which defines the correct disposition of helix alphaC that is important for the catalytic activity. The bound inhibitor fasudil significantly alters the conformation and, consequently, the mode of interaction with the catalytic cleft that contains local structural changes. Thus, both kinase and drug conformational pliability and stability confer selectivity. PMID:16531242

  12. Focal Adhesion Kinase regulates cell-cell contact formation in epithelial cells via modulation of Rho

    SciTech Connect

    Playford, Martin P.; Vadali, Kavita; Cai Xinming; Burridge, Keith; Schaller, Michael D.

    2008-10-15

    Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase that plays a key role in cellular processes such as cell adhesion, migration, proliferation and survival. Recent studies have also implicated FAK in the regulation of cell-cell adhesion. Here, evidence is presented showing that siRNA-mediated suppression of FAK levels in NBT-II cells and expression of dominant negative mutants of FAK caused loss of epithelial cell morphology and inhibited the formation of cell-cell adhesions. Rac and Rho have been implicated in the regulation of cell-cell adhesions and can be regulated by FAK signaling. Expression of active Rac or Rho in NBT-II cells disrupted formation of cell-cell contacts, thus promoting a phenotype similar to FAK-depleted cells. The loss of intercellular contacts in FAK-depleted cells is prevented upon expression of a dominant negative Rho mutant, but not a dominant negative Rac mutant. Inhibition of FAK decreased tyrosine phosphorylation of p190RhoGAP and elevated the level of GTP-bound Rho. This suggests that FAK regulates cell-cell contact formation by regulation of Rho.

  13. RhoG regulates anoikis through a phosphatidylinositol 3-kinase-dependent mechanism

    SciTech Connect

    Yamaki, Nao; Negishi, Manabu; Katoh, Hironori . E-mail: hirokato@pharm.kyoto-u.ac.jp

    2007-08-01

    In normal epithelial cells, cell-matrix interaction is required for cell survival and proliferation, whereas disruption of this interaction causes epithelial cells to undergo apoptosis called anoikis. Here we show that the small GTPase RhoG plays an important role in the regulation of anoikis. HeLa cells are capable of anchorage-independent cell growth and acquire resistance to anoikis. We found that RNA interference-mediated knockdown of RhoG promoted anoikis in HeLa cells. Previous studies have shown that RhoG activates Rac1 and induces several cellular functions including promotion of cell migration through its effector ELMO and the ELMO-binding protein Dock180 that function as a Rac-specific guanine nucleotide exchange factor. However, RhoG-induced suppression of anoikis was independent of the ELMO- and Dock180-mediated activation of Rac1. On the other hand, the regulation of anoikis by RhoG required phosphatidylinositol 3-kinase (PI3K) activity, and constitutively active RhoG bound to the PI3K regulatory subunit p85{alpha} and induced the PI3K-dependent phosphorylation of Akt. Taken together, these results suggest that RhoG protects cells from apoptosis caused by the loss of anchorage through a PI3K-dependent mechanism, independent of its activation of Rac1.

  14. RhoG regulates anoikis through a phosphatidylinositol 3-kinase-dependent mechanism.

    PubMed

    Yamaki, Nao; Negishi, Manabu; Katoh, Hironori

    2007-08-01

    In normal epithelial cells, cell-matrix interaction is required for cell survival and proliferation, whereas disruption of this interaction causes epithelial cells to undergo apoptosis called anoikis. Here we show that the small GTPase RhoG plays an important role in the regulation of anoikis. HeLa cells are capable of anchorage-independent cell growth and acquire resistance to anoikis. We found that RNA interference-mediated knockdown of RhoG promoted anoikis in HeLa cells. Previous studies have shown that RhoG activates Rac1 and induces several cellular functions including promotion of cell migration through its effector ELMO and the ELMO-binding protein Dock180 that function as a Rac-specific guanine nucleotide exchange factor. However, RhoG-induced suppression of anoikis was independent of the ELMO- and Dock180-mediated activation of Rac1. On the other hand, the regulation of anoikis by RhoG required phosphatidylinositol 3-kinase (PI3K) activity, and constitutively active RhoG bound to the PI3K regulatory subunit p85alpha and induced the PI3K-dependent phosphorylation of Akt. Taken together, these results suggest that RhoG protects cells from apoptosis caused by the loss of anchorage through a PI3K-dependent mechanism, independent of its activation of Rac1. PMID:17570359

  15. Synthesis and biological evaluation of 4-quinazolinones as Rho kinase inhibitors.

    PubMed

    Fang, Xingang; Chen, Yen Ting; Sessions, E Hampton; Chowdhury, Sarwat; Vojkovsky, Tomas; Yin, Yan; Pocas, Jennifer R; Grant, Wayne; Schröter, Thomas; Lin, Li; Ruiz, Claudia; Cameron, Michael D; LoGrasso, Philip; Bannister, Thomas D; Feng, Yangbo

    2011-03-15

    Rho kinase (ROCK) is an attractive therapeutic target for various diseases including glaucoma, hypertension, and spinal cord injury. Herein, we report the development of a series of ROCK-II inhibitors based on 4-quinazolinone and quinazoline scaffolds. SAR studies at three positions of the quinazoline core led to the identification of analogs with high potency against ROCK-II and good selectivity over protein kinase A (PKA). PMID:21349713

  16. ARHGEF3 controls HDACi-induced differentiation via RhoA-dependent pathways in acute myeloid leukemias.

    PubMed

    D'Amato, Loredana; Dell'Aversana, Carmela; Conte, Mariarosaria; Ciotta, Alfonso; Scisciola, Lucia; Carissimo, Annamaria; Nebbioso, Angela; Altucci, Lucia

    2015-01-01

    Altered expression and activity of histone deacetylases (HDACs) have been correlated with tumorigenesis. Inhibitors of HDACs (HDACi) induce acetylation of histone and non-histone proteins affecting gene expression, cell cycle progression, cell migration, terminal differentiation and cell death. Here, we analyzed the regulation of ARHGEF3, a RhoA-specific guanine nucleotide exchange factor, by the HDACi MS275 (entinostat). MS275 is a well-known benzamide-based HDACi, which induces differentiation of the monoblastic-like human histiocytic lymphoma cell line U937 to monocytes/macrophages. Incubation of U937 cells with MS275 resulted in an up regulation of ARHGEF3, followed by a significant enhancement of the marker of macrophage differentiation CD68. ARHGEF3 protein is primarily nuclear, but MS275 treatment rapidly induced its translocation into the cytoplasm. ARHGEF3 cytoplasmic localization is associated with activation of the RhoA/Rho-associated Kinase (ROCK) pathway. In addition to cytoskeletal rearrangements orchestrated by RhoA, we showed that ARHGEF3/RhoA-dependent signals involve activation of SAPK/JNK and then Elk1 transcription factor. Importantly, MS275-induced CD68 expression was blocked by exposure of U937 cells to exoenzyme C3 transferase and Y27632, inhibitors of Rho and ROCK respectively. Moreover, ARHGEF3 silencing prevented RhoA activation leading to a reduction in SAPK/JNK phosphorylation, Elk1 activation and CD68 expression, suggesting a crucial role for ARHGEF3 in myeloid differentiation. Taken together, our results demonstrate that ARHGEF3 modulates acute myeloid leukemia differentiation through activation of RhoA and pathways directly controlled by small GTPase family proteins. The finding that GEF protein modulation by HDAC inhibition impacts on cell differentiation may be important for understanding the antitumor mechanism(s) by which HDACi treatment stimulates differentiation in cancer. PMID:25494542

  17. ARHGEF3 controls HDACi-induced differentiation via RhoA-dependent pathways in acute myeloid leukemias

    PubMed Central

    D’Amato, Loredana; Dell’Aversana, Carmela; Conte, Mariarosaria; Ciotta, Alfonso; Scisciola, Lucia; Carissimo, Annamaria; Nebbioso, Angela; Altucci, Lucia

    2015-01-01

    Altered expression and activity of histone deacetylases (HDACs) have been correlated with tumorigenesis. Inhibitors of HDACs (HDACi) induce acetylation of histone and non-histone proteins affecting gene expression, cell cycle progression, cell migration, terminal differentiation and cell death. Here, we analyzed the regulation of ARHGEF3, a RhoA-specific guanine nucleotide exchange factor, by the HDACi MS275 (entinostat). MS275 is a well-known benzamide-based HDACi, which induces differentiation of the monoblastic-like human histiocytic lymphoma cell line U937 to monocytes/macrophages. Incubation of U937 cells with MS275 resulted in an up regulation of ARHGEF3, followed by a significant enhancement of the marker of macrophage differentiation CD68. ARHGEF3 protein is primarily nuclear, but MS275 treatment rapidly induced its translocation into the cytoplasm. ARHGEF3 cytoplasmic localization is associated with activation of the RhoA/Rho-associated Kinase (ROCK) pathway. In addition to cytoskeletal rearrangements orchestrated by RhoA, we showed that ARHGEF3/RhoA-dependent signals involve activation of SAPK/JNK and then Elk1 transcription factor. Importantly, MS275-induced CD68 expression was blocked by exposure of U937 cells to exoenzyme C3 transferase and Y27632, inhibitors of Rho and ROCK respectively. Moreover, ARHGEF3 silencing prevented RhoA activation leading to a reduction in SAPK/JNK phosphorylation, Elk1 activation and CD68 expression, suggesting a crucial role for ARHGEF3 in myeloid differentiation. Taken together, our results demonstrate that ARHGEF3 modulates acute myeloid leukemia differentiation through activation of RhoA and pathways directly controlled by small GTPase family proteins. The finding that GEF protein modulation by HDAC inhibition impacts on cell differentiation may be important for understanding the antitumor mechanism(s) by which HDACi treatment stimulates differentiation in cancer. PMID:25494542

  18. Design, Synthesis, and Structure-Activity Relationships of Pyridine-Based Rho Kinase (ROCK) Inhibitors.

    PubMed

    Green, Jeremy; Cao, Jingrong; Bandarage, Upul K; Gao, Huai; Court, John; Marhefka, Craig; Jacobs, Marc; Taslimi, Paul; Newsome, David; Nakayama, Tomoko; Shah, Sundeep; Rodems, Steve

    2015-06-25

    The Rho kinases (ROCK1 and ROCK2) are highly homologous serine/threonine kinases that act on substrates associated with cellular motility, morphology, and contraction and are of therapeutic interest in diseases associated with cellular migration and contraction, such as hypertension, glaucoma, and erectile dysfunction. Beginning with compound 4, an inhibitor of ROCK1 identified through high-throughput screening, systematic exploration of SAR, and application of structure-based design, led to potent and selective ROCK inhibitors. Compound 37 represents significant improvements in inhibition potency, kinase selectivity, and CYP inhibition and possesses pharmacokinetics suitable for in vivo experimentation. PMID:26039570

  19. Infralimbic cortex Rho-kinase inhibition causes antidepressant-like activity in rats.

    PubMed

    Inan, Salim Yalcin; Soner, Burak Cem; Sahin, Ayse Saide

    2015-03-01

    Depression is one of the most common psychiatric disorders in the world; however, its mechanisms remain unclear. Recently, a new signal-transduction pathway, namely Rho/Rho-kinase signalling, has been suggested to be involved in diverse cellular events in the central nervous system; such as epilepsy, anxiety-related behaviors, regulation of dendritic and axonal morphology, antinociception, subarachnoid haemorrhage, spinal cord injury and amyotrophic lateral sclerosis. However there is no evidence showing the involvement of Rho-kinase pathway in depression. In addition, the infralimbic cortex, rodent equivalent to subgenual cingulate cortex has been shown to be responsible for emotional responses. Thus, in the present study, intracranial guide cannulae were stereotaxically implanted bilaterally into the infralimbic cortex, and the effects of repeated microinjections of a Rho-kinase (ROCK) inhibitor Y-27632 (10 nmol) were investigated in rats. Y-27632 significantly decreased immobility time and increased swimming and climbing behaviors when compared to fluoxetine (10 μg) and saline groups in the forced swim test. In addition, Y-27632 treatment did not affect spontaneous locomotor activity and forelimb use in the open-field and cylinder tests respectively; but it enhanced limb placing accuracy in the ladder rung walking test. Our results suggest that Y-27632 could be a potentially active antidepressant agent. PMID:25445474

  20. Focused Proteomics Revealed a Novel Rho-kinase Signaling Pathway in the Heart.

    PubMed

    Yura, Yoshimitsu; Amano, Mutsuki; Takefuji, Mikito; Bando, Tomohiro; Suzuki, Kou; Kato, Katsuhiro; Hamaguchi, Tomonari; Hasanuzzaman Shohag, Md; Takano, Tetsuya; Funahashi, Yasuhiro; Nakamuta, Shinichi; Kuroda, Keisuke; Nishioka, Tomoki; Murohara, Toyoaki; Kaibuchi, Kozo

    2016-08-23

    Protein phosphorylation plays an important role in the physiological regulation of cardiac function. Myocardial contraction and pathogenesis of cardiac diseases have been reported to be associated with adaptive or maladaptive protein phosphorylation; however, phosphorylation signaling in the heart is not fully elucidated. We recently developed a novel kinase-interacting substrate screening (KISS) method for exhaustive screening of protein kinase substrates, using mass spectrometry and affinity chromatography. First, we examined protein phosphorylation by extracellular signal-regulated kinase (ERK) and protein kinase A (PKA), which has been relatively well studied in cardiomyocytes. The KISS method showed that ERK and PKA mediated the phosphorylation of known cardiac-substrates of each kinase such as Rps6ka1 and cTnI, respectively. Using this method, we found about 330 proteins as Rho-kinase-mediated substrates, whose substrate in cardiomyocytes is unknown. Among them, CARP/Ankrd1, a muscle ankyrin repeat protein, was confirmed as a novel Rho-kinase-mediated substrate. We also found that non-phosphorylatable form of CARP repressed cardiac hypertrophy-related gene Myosin light chain-2v (MLC-2v) promoter activity, and decreased cell size of heart derived H9c2 myoblasts more efficiently than wild type-CARP. Thus, focused proteomics enable us to reveal a novel signaling pathway in the heart. PMID:27334702

  1. The Fer tyrosine kinase regulates interactions of Rho GDP-Dissociation Inhibitor α with the small GTPase Rac

    PubMed Central

    2010-01-01

    Background RhoGDI proteins are important regulators of the small GTPase Rac, because they shuttle Rac from the cytoplasm to membranes and also protect Rac from activation, deactivation and degradation. How the binding and release of Rac from RhoGDI is regulated is not precisely understood. Results We report that the non-receptor tyrosine kinase Fer is able to phosphorylate RhoGDIα and form a direct protein complex with it. This interaction is mediated by the C-terminal end of RhoGDIα. Activation of Fer by reactive oxygen species caused increased phosphorylation of RhoGDIα and pervanadate treatment further augmented this. Tyrosine phosphorylation of RhoGDIα by Fer prevented subsequent binding of Rac to RhoGDIα, but once a RhoGDIα-Rac complex was formed, the Fer kinase was not able to cause Rac release through tyrosine phosphorylation of preformed RhoGDIα-Rac complexes. Conclusions These results identify tyrosine phosphorylation of RhoGDIα by Fer as a mechanism to regulate binding of RhoGDIα to Rac. PMID:21122136

  2. Darapladib, a Lipoprotein-Associated Phospholipase A2 Inhibitor, Reduces Rho Kinase Activity in Atherosclerosis

    PubMed Central

    Xu, Dong-Ling; Liu, Xiao-Bo; Bi, Shao-jie; Zhao, Tong; Sui, Shu-Jian; Ji, Xiao-Ping

    2016-01-01

    Purpose Increased lipoprotein-associated phospholipase A2 (Lp-PLA2) activity and Rho kinase activity may be associated with atherosclerosis. The principal aim of this study was to examine whether darapladib (a selective Lp-PLA2 inhibitor) could reduce the elevated Lp-PLA2 and Rho kinase activity in atherosclerosis. Materials and Methods Studies were performed in male Sprague-Dawley rats. The atherosclerosis rats were prepared by feeding them with a high-cholesterol diet for 10 weeks. Low-dose darapladib (25 mg·kg-1·d-1) and high-dose darapladib (50 mg·kg-1·d-1) interventions were then administered over the course of 2 weeks. Results The serum levels of triglycerides, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), high-sensitivity C-reactive protein (hs-CRP), and Lp-PLA2, significantly increased in atherosclerosis model groups, as did Rho kinase activity and cardiomyocyte apoptosis (p<0.05 vs. sham group), whereas nitric oxide (NO) production was reduced. Levels of TC, LDL-C, CRP, Lp-PLA2, and Rho kinase activity were respectively reduced in darapladib groups, whereas NO production was enhanced. When compared to the low-dose darapladib group, the reduction of the levels of TC, LDL-C, CRP, and Lp-PLA2 was more prominent in the high-dose darapladib group (p<0.05), and the increase of NO production was more prominent (p<0.05). Cardiomyocyte apoptosis of the high-dose darapladib group was also significantly reduced compared to the low-dose darapladib group (p<0.05). However, there was no significant difference in Rho kinase activity between the low-dose darapladib group and the high-dose darapladib group (p>0.05). Conclusion Darapladib, a Lp-PLA2 inhibitor, leads to cardiovascular protection that might be mediated by its inhibition of both Rho kinase and Lp-PLA2 in atherosclerosis. PMID:26847282

  3. Selective glucocorticoid control of Rho kinase isoforms regulate cell-cell interactions

    PubMed Central

    Rubenstein, Nicola M.; Callahan, Joseph A.; Lo, Daniel H.; Firestone, Gary L.

    2007-01-01

    The two Rho kinase isoforms ROCK1 and ROCK2 are downstream effectors of the small GTPase RhoA, although relatively little is known about potential isoform specific functions or the selective control of their cellular activities. Using Con8 rat mammary epithelial cells, we show that the synthetic glucocorticoid dexamethasone strongly stimulates the level of ROCK2 protein, which accounts for the increase in total cellular ROCK2 activity, whereas, steroid treatment down-regulated ROCK1 specific kinase activity without altering ROCK1 protein levels. In Con8 cells, the glucocorticoid induced formation of tight junctions requires the steroid-mediated down-regulation RhoA and function of the RhoA antagonist Rnd3. Treatment with the ROCK inhibitor Y-27632 ablated both the glucocorticoid-induced and Rnd3-mediated stimulation in tight junction sealing. Taken together, our results demonstrate that the expression and activity of ROCK1 and ROCK2 can be uncoupled in a signal-dependent manner, and further implicate a new function for ROCK2 in the steroid control of tight junction dynamics. PMID:17240358

  4. Role of Rho-kinase and its inhibitors in pulmonary hypertension.

    PubMed

    Duong-Quy, Sy; Bei, Yihua; Liu, Zhongmin; Dinh-Xuan, Anh Tuan

    2013-03-01

    Pulmonary hypertension (PH) is an incurable disease with a dreadful survival rate. The disease is characterized by sustained vasoconstriction, progressive vascular remodeling, and irreversible right heart dysfunction. While hypoxic pulmonary vasoconstriction (HPV) is known to be the main pathophysiological factor causing the rise in pulmonary arterial pressure, biological mechanisms leading to HPV and vascular remodeling are multiple and complex and, as yet, incompletely understood. It is thought that molecular interactions and cross talks are involved in the pathogenesis of PH, perturbing the physiological balance between substances controlling vascular tone, cell growth and apoptosis. This balance is achieved by subtle interactions between factors acting as both vasodilators and inhibitors of cell growth like nitric oxide, prostacyclin, vasoactive intestinal peptide and molecules with potent vasoconstrictor and cell growth activities like endothelin-1. Recent in vivo studies showed that the Rho GTPase/RhoA pathway and its downstream effectors, the Rho-kinases (ROCK-1 and ROCK-2), had an important role in PH, due to its lasting effects on vasoconstriction and pulmonary cell proliferation leading to vascular remodeling. Beneficial effects obtained in vivo with Rho-kinase inhibitors (e.g.Y-27632 and fasudil) in experimental PH will hopefully lead to future clinical trials with new compounds selectively targeting this pathway, which is now proven to be detrimental when over-activated in both experimental animals and human patients. PMID:23261521

  5. The Rho kinase inhibitor Y-27632 facilitates the differentiation of bone marrow mesenchymal stem cells.

    PubMed

    Liu, Xiao; Zhang, Zhengzheng; Yan, Xianliang; Liu, He; Zhang, Licai; Yao, Aiming; Guo, Chengcheng; Liu, Xiaoyun; Xu, Tie

    2014-12-01

    The selective in vitro expansion and differentiation of multipotent stem cells are critical steps in cell-based regenerative therapies, but technical challenges have limited cell yield and thus the success of these potential treatments. The Rho GTPases and downstream Rho kinases (Rho coiled-coil kinases or ROCKs) are central regulators of cytoskeletal dynamics during the cell cycle and thus help determine the balance between stem cells self-renewal, lineage commitment, and apoptosis. Here, we examined if suppression of ROCK signaling enhances the efficacy of bone marrow-derived mesenchymal stem cells (BMSCs) differentiation into neurons and neuroglial cells. BMSCs were cultured in epidermal growth factor (EGF, 10 µg/l) and basic fibroblastic growth factor (bFGF, 10 µg/l) in the presence or absence of the Rho kinase inhibitor Y-27632 (10 µM). The expression levels of neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) were detected by immunofluorescence and Western blotting. The average number of NSE-positive cells increased from 83.20 ± 8.677 (positive ratio 0.2140 ± 0.0119) to 109.20 ± 8.430 (positive ratio 0.3193 ± 0.0161) per visual field in the presence of Y-27632, while GFAP-positive cell number increased from 96.30 ± 8.486 (positive ratio 0.18 ± 0.0152) to 107.50 ± 8.683 (positive ratio 0.27 ± 0.0115) (P < 0.05 for both). Both NSE and GFAP protein expression levels were enhanced significantly by Y-27632 treatment (NSE: 0.74 ± 0.05 vs. 1.03 ± 0.06; GFAP: 0.64 ± 0.08 vs. 0.97 ± 0.05, both P < 0.01) as indicated by Western blots. The Rho kinase inhibitor Y-27632 concomitant with EGF and bFGF stimulation promotes BMSC differentiation into neural cells. Control of Rho kinase activity may enhance the efficiency of stem cell-based treatments for neurodegenerative diseases. PMID:25178638

  6. Rho-associated kinase signalling and the cancer microenvironment: novel biological implications and therapeutic opportunities.

    PubMed

    Chin, Venessa T; Nagrial, Adnan M; Chou, Angela; Biankin, Andrew V; Gill, Anthony J; Timpson, Paul; Pajic, Marina

    2015-01-01

    The Rho/ROCK pathway is involved in numerous pivotal cellular processes that have made it an area of intense study in cancer medicine, however, Rho-associated coiled-coil containing protein kinase (ROCK) inhibitors are yet to make an appearance in the clinical cancer setting. Their performance as an anti-cancer therapy has been varied in pre-clinical studies, however, they have been shown to be effective vasodilators in the treatment of hypertension and post-ischaemic stroke vasospasm. This review addresses the various roles the Rho/ROCK pathway plays in angiogenesis, tumour vascular tone and reciprocal feedback from the tumour microenvironment and explores the potential utility of ROCK inhibitors as effective vascular normalising agents. ROCK inhibitors may potentially enhance the delivery and efficacy of chemotherapy agents and improve the effectiveness of radiotherapy. As such, repurposing of these agents as adjuncts to standard treatments may significantly improve outcomes for patients with cancer. A deeper understanding of the controlled and dynamic regulation of the key components of the Rho pathway may lead to effective use of the Rho/ROCK inhibitors in the clinical management of cancer. PMID:26507949

  7. The Rho guanine exchange factor RHGF-2 acts through the Rho-binding kinase LET-502 to mediate embryonic elongation in C. elegans.

    PubMed

    Chan, Benjamin G; Rocheleau, Simon K; Smit, Ryan B; Mains, Paul E

    2015-09-15

    Morphogenesis allows an organism to develop its final body shape. In Caenorhabditis elegans, a smooth muscle-like contraction of an actin/myosin network in the epidermis mediates the elongation of the worm embryo from a ball of cells into a long, thin worm. This process is controlled by two redundant pathways, one involving the small GTPase RHO-1 and its downstream effectors LET-502/Rho-binding kinase and MEL-11/myosin phosphatase, and another involving PAK-1/p21 activated kinase and FEM-2/PP2c phosphatase. Contraction occurs primarily in the lateral epidermal cells during elongation while the dorsal and ventral epidermal cells have a more passive role, and localized activity of a Rho GEF (guanine exchange factor) could contribute to this asymmetry. We found that loss of the C. elegans Rho GEF encoded by rhgf-2 results in arrest during early elongation. Genetically, rhgf-2 acts as an activator of let-502/Rho-binding kinase, in parallel to fem-2/PP2c phosphatase. Although expressed throughout the embryo, lateral cell-specific RHGF-2 expression can mediate elongation. The Rho GTPase activating protein (GAP) RGA-2 is known to inhibit contraction in the dorsal and ventral epidermis. Although rhgf-2 and rga-2 are individually lethal, the double mutant is viable with elongation still occurring in a let-502 dependent fashion. This indicates that LET-502/Rho-binding kinase has activity independent of the GEF and GAP. Finally, maternal LET-502 and MEL-11 are known to regulate the rate of cleavage furrow ingression in the early embryo and we show that maternal RHGF-2 also influences cleavage but RGA-2 does not. Thus while the LET-502/MEL-11 pathway is employed multiple times during embryogenesis, regulation by GEFs and GAPs differs at different points of the life cycle and fine tunes contractile function. PMID:26188247

  8. RhoA/rho kinase signaling reduces connexin43 expression in high glucose-treated glomerular mesangial cells with zonula occludens-1 involvement

    SciTech Connect

    Xie, Xi; Chen, Cheng; Huang, Kaipeng; Wang, Shaogui; Hao, Jie; Huang, Junying; Huang, Heqing

    2014-10-01

    RhoA/Rho kinase (ROCK) signaling has been suggested to be involved in diabetic nephropathy (DN) pathogenesis. Altered expression of connexin43 (Cx43) has been found in kidneys of diabetic animals. Both of them have been found to regulate nuclear factor kappa-B (NF-κB) activation in high glucose-treated glomerular mesangial cells (GMCs). The aim of this study was to investigate the relationship between RhoA/ROCK signaling and Cx43 in the DN pathogenesis. We found that upregulation of Cx43 expression inhibited NF-κB p65 nuclear translocation induced by RhoA/ROCK signaling in GMCs. Inhibition of RhoA/ROCK signaling attenuated the high glucose-induced decrease in Cx43. F-actin accumulation and an enhanced interaction between zonula occludens-1 (ZO-1) and Cx43 were observed in high glucose-treated GMCs. ZO-1 depletion or disruption of F-actin formation also inhibited the reduction in Cx43 protein levels induced by high glucose. In conclusion, activated RhoA/ROCK signaling induces Cx43 degradation in GMCs cultured in high glucose, depending on F-actin regulation. Increased F-actin induced by RhoA/ROCK signaling promotes the association between ZO-1 and Cx43, which possibly triggered Cx43 endocytosis, a mechanism of NF-κB activation in high glucose-treated GMCs. - Highlights: • RhoA/ROCK signaling induces Cx43 degradation in GMCs. • F-actin and ZO-1 have functions in the regulation of Cx43 by RhoA/ROCK signaling. • We reveal the relationship between RhoA/ROCK and Cx43 in the activation of NF-κB.

  9. A Method for Measuring Rho Kinase Activity in Tissues and Cells

    PubMed Central

    Liu, Ping-Yen; Liao, James K.

    2008-01-01

    The Rho-associated kinases (ROCKs) can regulate cell shape and function by modulating the actin cytoskeleton. ROCKs are serine-threonine protein kinases that can phosphorylate adducin, ezrin-radixin-moesin proteins, LIM kinase, and myosin light chain phosphatase. In the cardiovascular system, the RhoA/ROCK pathway has been implicated in angiogenesis, atherosclerosis, cerebral and coronary vasospasm, cerebral ischemia, hypertension, myocardial hypertrophy, and neointima formation after vascular injury. ROCKs consist of two isoforms: ROCK1 and ROCK2. They share overall 65% homology in their amino acid sequence and 92% homology in their amino kinase domains. However, these two isoforms have different subcellular localizations and exert biologically different functions. In particular, ROCK1 appears to be more important for immunological functions, whereas ROCK2 is more important for endothelial and vascular smooth muscle function. Thus, the ability to measure ROCK activity in tissues and cells would be important for understanding mechanisms underlying cardiovascular disease. This chapter describes a method for measuring ROCK activity in peripheral blood, tissues, and cells. PMID:18374165

  10. Simvastatin Increases Fibulin-2 Expression in Human Coronary Artery Smooth Muscle Cells via RhoA/Rho-Kinase Signaling Pathway Inhibition

    PubMed Central

    Serra, Noemí; Rosales, Roser; Masana, Lluís; Vallvé, Joan-Carles

    2015-01-01

    The composition and structure of the extracellular matrix (ECM) in the vascular wall and in the atherosclerotic plaque are important factors that determine plaque stability. Statins can stabilize atherosclerotic plaques by modulating ECM protein expression. Fibulins are important components of the ECM. We evaluated the in vitro effect of simvastatin on the expression of fibulin-1, -2, -4 and -5 in human coronary artery smooth muscle cells (SMCs) and the mechanisms involved. Cells were incubated with simvastatin (0.05–1 μM), mevalonate (100 and 200 μM), geranylgeranyl pyrophosphate (GGPP) (15 μM), farnesyl pyrophosphate (FPP) (15 μM), the Rho kinase (ROCK) inhibitor Y-27632 (15 and 20 μM), the Rac-1 inhibitor (another member of Rho family) NSC23766 (100 μM), arachidonic acid (a RhoA/ROCK activator, 25–100 μM) and other fatty acids that are not activators of RhoA/ROCK (25–100 μM). Gene expression was analyzed by quantitative real-time PCR, and fibulin protein levels were analyzed by western blotting and ELISA. Simvastatin induced a significant increase in mRNA and protein levels of fibulin-2 at 24 hours of incubation (p<0.05), but it did not affect fibulin-1, -4, and -5 expression. Mevalonate and GGPP were able to reverse simvastatin’s effect, while FPP did not. In addition, Y-27632, but not NSC23766, significantly increased fibulin-2 expression. Furthermore, activation of the RhoA/ROCK pathway with arachidonic acid decreased fibulin-2 mRNA. Simvastatin increased mRNA levels and protein expression of the ECM protein fibulin-2 through a RhoA and Rho-Kinase-mediated pathway. This increase could affect the composition and structure of the ECM. PMID:26207907

  11. Lipid-induced Muscle Insulin Resistance Is Mediated by GGPPS via Modulation of the RhoA/Rho Kinase Signaling Pathway.

    PubMed

    Tao, Weiwei; Wu, Jing; Xie, Bing-Xian; Zhao, Yuan-Yuan; Shen, Ning; Jiang, Shan; Wang, Xiu-Xing; Xu, Na; Jiang, Chen; Chen, Shuai; Gao, Xiang; Xue, Bin; Li, Chao-Jun

    2015-08-14

    Elevated circulating free fatty acid levels are important contributors to insulin resistance in the muscle and liver, but the underlying mechanisms require further elucidation. Here, we show that geranylgeranyl diphosphate synthase 1 (GGPPS), which is a branch point enzyme in the mevalonic acid pathway, promotes lipid-induced muscle insulin resistance through activation of the RhoA/Rho kinase signaling pathway. We have found that metabolic perturbation would increase GGPPS expression in the skeletal muscles of db/db mice and high fat diet-fed mice. To address the metabolic effects of GGPPS activity in skeletal muscle, we generated mice with specific GGPPS deletions in their skeletal muscle tissue. Heterozygous knock-out of GGPPS in the skeletal muscle improved systemic insulin sensitivity and glucose homeostasis in mice fed both normal chow and high fat diets. These metabolic alterations were accompanied by activated PI3K/Akt signaling and enhanced glucose uptake in the skeletal muscle. Further investigation showed that the free fatty acid-stimulated GGPPS expression in the skeletal muscle was able to enhance the geranylgeranylation of RhoA, which further induced the inhibitory phosphorylation of IRS-1 (Ser-307) by increasing Rho kinase activity. These results implicate a crucial role of the GGPPS/RhoA/Rho kinase/IRS-1 pathway in skeletal muscle, in which it mediates lipid-induced systemic insulin resistance in obese mice. Therefore, skeletal muscle GGPPS may represent a potential pharmacological target for the prevention and treatment of obesity-related type 2 diabetes. PMID:26112408

  12. Pharmacological inhibition of Rho-kinase (ROCK) signaling enhances cisplatin resistance in neuroblastoma cells.

    PubMed

    Street, Catharine A; Routhier, Alissa A; Spencer, Carrie; Perkins, Ashley L; Masterjohn, Katherine; Hackathorn, Alexander; Montalvo, John; Dennstedt, Emily A; Bryan, Brad A

    2010-11-01

    The role of the RhoA/Rho kinase (ROCK) signaling pathway in cell survival remains a very controversial issue, with its activation being pro-apoptotic in many cell types and anti-apoptotic in others. To test if ROCK inhibition contributes to tumor cell survival or death following chemotherapy, we treated cisplatin damaged neuroblastoma cells with a pharmacological ROCK inhibitor (Y27632) or sham, and monitored cell survival, accumulation of a chemoresistant phenotype, and in vivo tumor formation. Additionally, we assayed if ROCK inhibition altered the expression of genes known to be involved in cisplatin resistance. Our studies indicate that ROCK inhibition results in increased cell survival, acquired chemoresistance, and enhanced tumor survival following cisplatin cytotoxicity, due in part to altered expression of cisplatin resistance genes. These findings suggest that ROCK inhibition in combination with cisplatin chemotherapy may lead to enhanced tumor chemoresistance in neuroblastoma. PMID:20878077

  13. Pharmacological inhibition of Rho-kinase (ROCK) signaling enhances cisplatin resistance in neuroblastoma cells

    PubMed Central

    STREET, CATHARINE A.; ROUTHIER, ALISSA A.; SPENCER, CARRIE; PERKINS, ASHLEY L.; MASTERJOHN, KATHERINE; HACKATHORN, ALEXANDER; MONTALVO, JOHN; DENNSTEDT, EMILY A.; BRYAN, BRAD A.

    2011-01-01

    The role of the RhoA/Rho kinase (ROCK) signaling pathway in cell survival remains a very controversial issue, with its activation being pro-apoptotic in many cell types and anti-apoptotic in others. To test if ROCK inhibition contributes to tumor cell survival or death following chemotherapy, we treated cisplatin damaged neuroblastoma cells with a pharmacological ROCK inhibitor (Y27632) or sham, and monitored cell survival, accumulation of a chemoresistant phenotype, and in vivo tumor formation. Additionally, we assayed if ROCK inhibition altered the expression of genes known to be involved in cisplatin resistance. Our studies indicate that ROCK inhibition results in increased cell survival, acquired chemoresistance, and enhanced tumor survival following cisplatin cytotoxicity, due in part to altered expression of cisplatin resistance genes. These findings suggest that ROCK inhibition in combination with cisplatin chemotherapy may lead to enhanced tumor chemoresistance in neuroblastoma. PMID:20878077

  14. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase.

    PubMed Central

    Ishizaki, T; Maekawa, M; Fujisawa, K; Okawa, K; Iwamatsu, A; Fujita, A; Watanabe, N; Saito, Y; Kakizuka, A; Morii, N; Narumiya, S

    1996-01-01

    The small GTP-binding protein Rho functions as a molecular switch in the formation of focal adhesions and stress fibers, cytokinesis and transcriptional activation. The biochemical mechanism underlying these actions remains unknown. Using a ligand overlay assay, we purified a 160 kDa platelet protein that bound specifically to GTP-bound Rho. This protein, p160, underwent autophosphorylation at its serine and threonine residues and showed the kinase activity to exogenous substrates. Both activities were enhanced by the addition of GTP-bound Rho. A cDNA encoding p160 coded for a 1354 amino acid protein. This protein has a Ser/Thr kinase domain in its N-terminus, followed by a coiled-coil structure approximately 600 amino acids long, and a cysteine-rich zinc finger-like motif and a pleckstrin homology region in the C-terminus. The N-terminus region including a kinase domain and a part of coiled-coil structure showed strong homology to myotonic dystrophy kinase over 500 residues. When co-expressed with RhoA in COS cells, p160 was co-precipitated with the expressed Rho and its kinase activity was activated, indicating that p160 can associate physically and functionally with Rho both in vitro and in vivo. Images PMID:8617235

  15. A molecular mechanism of P-loop pliability of Rho-kinase investigated by molecular dynamic simulation.

    PubMed

    Gohda, Keigo; Hakoshima, Toshio

    2008-11-01

    Rho-kinase is a leading player in the regulation of cytoskeletal events involving smooth muscle contraction and neurite growth-cone collapse and retraction, and is a promising drug target in the treatment of both vascular and neurological disorders. Recent crystal structure of Rho-kinase complexed with a small-molecule inhibitor fasudil has revealed structural details of the ATP-binding site, which represents the target site for the inhibitor, and showed that the conserved phenylalanine on the P-loop occupies the pocket, resulting in an increase of protein-ligand contacts. Thus, the P-loop pliability is considered to play an important role in inhibitor binding affinity and specificity. In this study, we carried out a molecular dynamic simulation for Rho-kinase-fasudil complexes with two different P-loop conformations, i.e., the extended and folded conformations, in order to understand the P-loop pliability and dynamics at atomic level. A PKA-fasudil complex was also used for comparison. In the MD simulation, the flip-flop movement of the P-loop conformation starting either from the extended or folded conformation was not able to be observed. However, a significant conformational change in a long loop region covering over the P-loop, and also alteration of ionic interaction-manner of fasudil with acidic residues in the ATP binding site were shown only in the Rho-kinase-fasudil complex with the extended P-loop conformation, while Rho-kinase with the folded P-loop conformation and PKA complexes did not show large fluctuations, suggesting that the Rho-kinase-fasudil complex with the extended P-loop conformation represents a meta-stable state. The information of the P-loop pliability at atomic level obtained in this study could provide valuable clues to designing potent and/or selective inhibitors for Rho-kinase. PMID:18415022

  16. Capsaicinoids regulate airway anion transporters through Rho kinase- and cyclic AMP-dependent mechanisms.

    PubMed

    Hibino, Yoshitaka; Morise, Masahiro; Ito, Yasushi; Mizutani, Takefumi; Matsuno, Tadakatsu; Ito, Satoru; Hashimoto, Naozumi; Sato, Mitsuo; Kondo, Masashi; Imaizumi, Kazuyoshi; Hasegawa, Yoshinori

    2011-10-01

    To investigate the effects of capsaicinoids on airway anion transporters, we recorded and analyzed transepithelial currents in human airway epithelial Calu-3 cells. Application of capsaicin (100 μM) attenuated vectorial anion transport, estimated as short-circuit currents (I(SC)), before and after stimulation by forskolin (10 μM) with concomitant reduction of cytosolic cyclic AMP (cAMP) levels. The capsaicin-induced inhibition of I(SC) was also observed in the response to 8-bromo-cAMP (1 mM, a cell-permeable cAMP analog) and 3-isobutyl-1-methylxanthine (1 mM, an inhibitor of phosphodiesterases). The capsaicin-induced inhibition of I(SC) was attributed to suppression of bumetanide (an inhibitor of the basolateral Na(+)-K(+)-2 Cl(-) cotransporter 1)- and 4,4'-dinitrostilbene-2,2'-disulfonic acid (an inhibitor of basolateral HCO(3)(-)-dependent anion transporters)-sensitive components, which reflect anion uptake via basolateral cAMP-dependent anion transporters. In contrast, capsaicin potentiated apical Cl(-) conductance, which reflects conductivity through the cystic fibrosis transmembrane conductance regulator, a cAMP-regulated Cl(-) channel. All these paradoxical effects of capsaicin were mimicked by capsazepine. Forskolin application also increased phosphorylated myosin phosphatase target subunit 1, and the phosphorylation was prevented by capsaicin and capsazepine, suggesting that these capsaicinoids assume aspects of Rho kinase inhibitors. We also found that the increments in apical Cl(-) conductance were caused by conventional Rho kinase inhibitors, Y-27632 (20 μM) and HA-1077 (20 μM), with selective inhibition of basolateral Na(+)-K(+)-2 Cl(-) cotransporter 1. Collectively, capsaicinoids inhibit cAMP-mediated anion transport through down-regulation of basolateral anion uptake, paradoxically accompanied by up-regulation of apical cystic fibrosis transmembrane conductance regulator-mediated anion conductance. The latter is mediated by inhibition of Rho-kinase

  17. Impaired Corpus Cavernosum Relaxation Is Accompanied by Increased Oxidative Stress and Up-Regulation of the Rho-Kinase Pathway in Diabetic (Db/Db) Mice

    PubMed Central

    Priviero, Fernanda B. M.; Toque, Haroldo A. F.; Nunes, Kenia Pedrosa; Priolli, Denise G.; Webb, R. Clinton

    2016-01-01

    Basal release of nitric oxide from endothelial cells modulates contractile activity in the corpus cavernosum via inhibition of the RhoA/Rho-kinase signaling pathway. We aimed to investigate nitric oxide bioavailability, oxidative stress and the Rho-kinase pathway in the relaxation of the corpus cavernosum of an obese and diabetic model of mice (db/db mice). We hypothesized that in db/db mice impaired relaxation induced by Rho-kinase inhibitor is accompanied by diminished NO bioavailability, increased oxidative stress and upregulation of the RhoA/Rho-kinase signalling pathway. Cavernosal strips from male lean and non-diabetic db/+ and db/db mice were mounted in myographs and isometric force in response to Rho-kinase inhibitor Y-27632 was recorded. Enzyme activity and protein expression of oxidative stress markers and key molecules of the RhoA/Rho-kinase pathway were analyzed. The Rho-kinase inhibitor Y-27632 concentration-dependently caused corpus cavernosum relaxation and inhibited cavernosal contractions. Nonetheless, a rightward shift in the curves obtained in corpus cavernosum of db/db mice was observed. Compared to db/+, this strain presented increased active RhoA, higher MYPT-1 phosphorylation stimulated by phenylephrine, and increased expression of ROKα and Rho-GEFs. Further, we observed normal expression of endothelial and neuronal NOS in corpus cavernosum of db/db mice. However, nitrate/nitrate (NOx) levels were diminished, suggesting decreased NO bioavailability. We measured the oxidant status and observed increased lipid peroxidation, with decreased SOD activity and expression. In conclusion, our data demonstrate that in db/db mice, upregulation of the RhoA/Rho-kinase signalling pathway was accompanied by decreased NO bioavailability and increased oxidative stress contributing to impaired relaxation of the corpus cavermosum of db/db mice. PMID:27227463

  18. Rho-Associated Kinase Inhibitors Promote Microglial Uptake Via the ERK Signaling Pathway.

    PubMed

    Fu, Peicai; Tang, Ronghua; Yu, Zhiyuan; Li, Caihong; Chen, Xue; Xie, Minjie; Wang, Wei; Luo, Xiang

    2016-02-01

    Microglia are immunocompetent cells in the central nervous system that take up tissue debris and pathogens. Rho-associated kinase (ROCK) has been identified as an important regulator of uptake, proliferation, secretion, and differentiation in a number of cell types. Although ROCK plays critical roles in the microglial secretion of inflammatory factors, migration, and morphology, its effects on microglial uptake activity have not been well characterized. In the present study, we found that treatment of BV2 microglia and primary microglia with the ROCK inhibitors Y27632 and fasudil increased uptake activity and was associated with morphological changes. Furthermore, western blots showed that this increase in uptake activity was mediated through the extracellular-signal-regulated kinase (ERK) signaling cascade, indicating the importance of ROCK in regulating microglial uptake activity. PMID:26779919

  19. Rho kinase inhibition by fasudil in the striatal 6-hydroxydopamine lesion mouse model of Parkinson disease.

    PubMed

    Tatenhorst, Lars; Tönges, Lars; Saal, Kim-Ann; Koch, Jan C; Szegő, Éva M; Bähr, Mathias; Lingor, Paul

    2014-08-01

    Chronic degeneration of nigrostriatal projections, followed by nigral dopaminergic cell death, is a key feature of Parkinson disease (PD). This study examines the neuroprotective potential of the rho kinase inhibitor fasudil in the 6-hydroxydopamine (6-OHDA) mouse model of PD in vivo. C57Bl/6 mice were lesioned by striatal stereotactic injections with 4 μg of 6-OHDA and treated with fasudil 30 or 100 mg/kg body weight via drinking water. Motor behavior was tested biweekly; histologic and biochemical analyses were performed at 4 and 12 weeks after lesion. Motor behavior was severely impaired after 6-OHDA lesion and was not improved by fasudil treatment. Fasudil 100 mg/kg did not significantly increase the number of dopaminergic cells in the substantia nigra after 12 weeks versus lesion controls. Interestingly, however, high-performance liquid chromatography analysis of dopamine metabolites revealed that striatal levels of 3,4-dihydroxyphenylacetic acid were significantly increased after 12 weeks, suggesting a regenerative response. In contrast to recent findings in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin model, fasudil effects seem limited in this severe 6-OHDA model of PD. Nevertheless, high therapeutic concentrations of fasudil are suggestive of a proregenerative potential for dopaminergic neurons, making further evaluations of rho kinase inhibition as a proregenerative therapeutic strategy in PD promising. PMID:25003236

  20. Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells

    PubMed Central

    Cao, Weibiao

    2016-01-01

    Mechanisms of the progression from Barrett’s esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK) inhibitor Y27632 in BE mucosal biopsies and FLO-1 EA cells. In addition, acid treatment significantly increased the Rho kinase activity in FLO-1 cells. The acid-induced increase in NOX5-S expression and H2O2 production was significantly decreased by knockdown of Rho kinase ROCK2, but not by knockdown of ROCK1. Conversely, the overexpression of the constitutively active ROCK2, but not the constitutively active ROCK1, significantly enhanced the NOX5-S expression and H2O2 production. Moreover, the acid-induced increase in Rho kinase activity and in NOX5-S mRNA expression was blocked by the removal of calcium in both FLO-1 and OE33 cells. The calcium ionophore A23187 significantly increased the Rho kinase activity and NOX5-S mRNA expression. We conclude that acid-induced increase in NOX5-S expression and H2O2 production may depend on the activation of ROCK2, but not ROCK1, in EA cells. The acid-induced activation of Rho kinase may be mediated by the intracellular calcium increase. It is possible that persistent acid reflux present in BE patients may increase the intracellular calcium, activate ROCK2 and thereby upregulate NOX5-S. High levels of reactive oxygen species derived from NOX5-S may cause DNA damage and thereby contribute to the progression from BE to EA. PMID:26901778

  1. Extracellular signal regulated kinase and GEF-H1 mediate depolarization-induced Rho activation and paracellular permeability increase

    PubMed Central

    Waheed, Faiza; Speight, Pam; Kawai, Glenn; Dan, Qinghong; Kapus, András; Szászi, Katalin

    2011-01-01

    Plasma membrane depolarization activates the Rho/Rho kinase (ROK) pathway and thereby enhances myosin light chain (MLC) phosphorylation, which in turn is thought to be a key regulator of paracellular permeability. However, the upstream mechanisms that couple depolarization to Rho activation and permeability changes are unknown. Here we show that three different depolarizing stimuli (high extracellular [K+], the lipophilic cation tetraphenylphosphonium or L-alanine, which is taken up by electrogenic Na+-cotransport) all provoke robust phosphorylation of Extracellular Signal Regulated Kinase (ERK) in LLC-PK1 and MDCK cells. Importantly, inhibition of ERK prevented the depolarization-induced activation of Rho. Searching for the underlying mechanism, we have identified GEF-H1 as the ERK-regulated critical exchange factor, responsible for the depolarization-induced Rho activation. This conclusion is based on our findings that a) depolarization activated GEF-H1, but not p115RhoGEF; b) siRNA-mediated GEF-H1 silencing eliminated the activation of the Rho pathway; c) ERK inhibition prevented the activation of GEF-H1. Moreover, we found that the Na+/K+ pump inhibitor ouabain also caused ERK, GEF-H1 and Rho activation, partially due to its depolarizing effect. Regarding functional consequences of this newly identified pathway, we found that depolarization increased paracellular permeability in LLC-PK1 and MDCK cells, and this effect was mitigated by inhibiting myosin using blebbistatin or a dominant negative (phosphorylation-incompetent) MLC. Taken together, we propose, that the ERK/GEF-H1/Rho/ROK/pMLC pathway could be a central mechanism whereby electrogenic transmembrane transport processes control myosin phosphorylation and regulate paracellular transport in the tubular epithelium. PMID:20237148

  2. Cyclic stretch-induced stress fiber dynamics - Dependence on strain rate, Rho-kinase and MLCK

    SciTech Connect

    Lee, Chin-Fu; Haase, Candice; Deguchi, Shinji; Kaunas, Roland

    2010-10-22

    Research highlights: {yields} Cyclic stretch induces stress fiber disassembly, reassembly and fusion perpendicular to the direction of stretch. {yields} Stress fiber disassembly and reorientation were not induced at low stretch frequency. {yields} Stretch caused actin fiber formation parallel to stretch in distinct locations in cells treated with Rho-kinase and MLCK inhibitors. -- Abstract: Stress fiber realignment is an important adaptive response to cyclic stretch for nonmuscle cells, but the mechanism by which such reorganization occurs is not known. By analyzing stress fiber dynamics using live cell microscopy, we revealed that stress fiber reorientation perpendicular to the direction of cyclic uniaxial stretching at 1 Hz did not involve disassembly of the stress fiber distal ends located at focal adhesion sites. Instead, these distal ends were often used to assemble new stress fibers oriented progressively further away from the direction of stretch. Stress fiber disassembly and reorientation were not induced when the frequency of stretch was decreased to 0.01 Hz, however. Treatment with the Rho-kinase inhibitor (Y27632) reduced stress fibers to thin fibers located in the cell periphery which bundled together to form thick fibers oriented parallel to the direction of stretching at 1 Hz. In contrast, these thin fibers remained diffuse in cells subjected to stretch at 0.01 Hz. Cyclic stretch at 1 Hz also induced actin fiber formation parallel to the direction of stretch in cells treated with the myosin light chain kinase (MLCK) inhibitor ML-7, but these fibers were located centrally rather than peripherally. These results shed new light on the mechanism by which stress fibers reorient in response to cyclic stretch in different regions of the actin cytoskeleton.

  3. PVP formulated Fullerene (C60) increases Rho-kinase dependent Vascular Tissue Contractility in Pregnant Sprague Dawley Rats

    PubMed Central

    Vidanapathirana, Achini K.; Thompson, Leslie C.; Mann, Erin. E.; Odom, Jillian T.; Holland, Nathan A.; Sumner, Susan J.; Han, Li; Lewin, Anita H.; Fennell, Timothy R.; Brown, Jared M.; Wingard, Christopher J.

    2014-01-01

    Pregnancy is a unique physiological state, in which C60 fullerene is reported to be distributed in both maternal and fetal tissues. Tissue distribution of C60 differs between pregnant and non-pregnant states, presumably due to functional changes in vasculature during pregnancy. We hypothesized that, polyvinylpyrorrolidone (PVP) formulated C60 (C60/PVP) increases vascular tissue contractility during pregnancy by increasing Rho-kinase activity. C60/PVP was administered intravenously to pregnant and non-pregnant female Sprague Dawley rats. Vascular responses were assessed using wire myography 24 hours post-exposure. Increased stress generation was observed in uterine artery, thoracic aorta and umbilical vein. Rho-Rho-kinase mediated force maintenance was increased in arterial segments from C60/PVP exposed pregnant rats when compared to PVP exposed rats. Our findings suggest that intravenous exposure to C60/PVP during pregnancy increases vascular tissue contractility of the uterine artery through elements of Rho-Rho-kinase signaling during late stages of pregnancy. PMID:25088243

  4. Sustained cutaneous vasoconstriction during and following cyrotherapy treatment: Role of oxidative stress and Rho kinase.

    PubMed

    Christmas, Kevin M; Patik, Jordan C; Khoshnevis, Sepideh; Diller, Kenneth R; Brothers, R Matthew

    2016-07-01

    Cryotherapy is a therapeutic technique using ice or cold water applied to the skin to reduce bleeding, inflammation, pain, and swelling following soft tissue trauma and injury. While beneficial, there are some side effects such as pronounced vasoconstriction and tissue ischemia that are sustained for hours post-treatment. This study tested the hypothesis that this vasoconstriction is mediated by 1) the Rho-kinase pathway and/or 2) elevated oxidative stress. 9 subjects were fitted with a commercially available cryotherapy unit with a water perfused bladder on the lateral portion of the right calf. Participants were instrumented with three microdialysis probes underneath the bladder. One site received lactated ringers (control site), one received the Rho-Kinase inhibitor Fasudil, and one received Ascorbic Acid. Skin temperature (Tskin) and cutaneous vascular conductance (CVC) was measured at each site. Subjects had 1°C water perfused through the bladder for 30min, followed by passive rewarming for 90min. Tskin fell from ~34°C to ~18.0°C during active cooling across all sites and this response was similar for all sites (P>0.05 for all comparisons). During passive rewarming Tskin rose to a similar degree in all sites (P>0.05 relative to the end of cooling). %CVC was reduced during active cooling in all sites; however, the magnitude of this response was blunted in the Fasudil site relative to control (P<0.001 for all comparisons) and min 25 and 30 of cooling in the Ascorbic Acid site (P<0.05). During passive rewarming %CVC at the control and Ascorbic Acid sites did not change such that values were similar to the end of cooling (P>0.05 for each comparison). %CVC at the Fasudil site remained elevated during passive rewarming such that values were higher compared to the control and Ascorbic Acid sites throughout the 90min of passive rewarming (P<0.001 main effect of Fasudil). These findings indicate that the Rho-kinase pathway contributes to pronounced vasoconstriction

  5. The Rho-kinase inhibitor HA-1077 suppresses proliferation/migration and induces apoptosis of urothelial cancer cells

    PubMed Central

    2014-01-01

    Background Activation of Rho, one of the small GTPases, and its major downstream target Rho-kinase (ROCK) promotes the development and metastasis of cancer. We previously showed that elevation of Rho and ROCK expression was associated with tumor invasion, metastasis, and an unfavorable prognosis in patients with urothelial cancer of the bladder or upper urinary tract. Methods We investigated the effects of a ROCK inhibitor on the growth, migration, and apoptosis of bladder cancer cells. We also examined phosphorylation of RhoA (RhoA activity) by measuring its GTP-bound active form and assessed the expression of ROCK to explore the underlying molecular mechanisms. Results Lysophosphatidic acid (LPA) and geranylgeraniol (GGOH) induced an increase of cell proliferation and migration in association with promotion of RhoA activity and upregulation of ROCK expression. The ROCK inhibitor fasudil (HA-1077) suppressed cell proliferation and migration, and also induced apoptosis in a dose-dependent manner. HA-1077 dramatically suppressed the expression of ROCK-I and ROCK-II, but did not affect RhoA activity. Conclusions These findings suggest that ROCK could be a potential molecular target for the treatment of urothelial cancer. PMID:24908363

  6. Regulation of gene expression by the small GTPase Rho through the ERK6 (p38γ) MAP kinase pathway

    PubMed Central

    Marinissen, Maria Julia; Chiariello, Mario; Gutkind, J. Silvio

    2001-01-01

    Small GTP-binding proteins of the Rho-family, Rho, Rac, and Cdc42, have been traditionally linked to the regulation of the cellular actin-based cytoskeleton. Rac and Cdc42 can also control the activity of JNK, thus acting in a molecular pathway transmitting extracellular signals to the nucleus. Interestingly, Rho can also regulate gene expression, albeit by a not fully understood mechanism. Here, we found that activated RhoA can stimulate c-jun expression and the activity of the c-jun promoter. As the complexity of the signaling pathways controlling the expression of c-jun has begun to be unraveled, this finding provided a unique opportunity to elucidate the biochemical routes whereby RhoA regulates nuclear events. We found that RhoA can initiate a linear kinase cascade leading to the activation of ERK6 (p38γ), a recently identified member of the p38 family of MAPKs. Furthermore, we present evidence that RhoA, PKN, MKK3/MKK6, and ERK6 (p38γ) are components of a novel signal transduction pathway involved in the regulation of gene expression and cellular transformation. PMID:11238375

  7. Inhibition of Rho-Associated Kinase 1/2 Attenuates Tumor Growth in Murine Gastric Cancer.

    PubMed

    Hinsenkamp, Isabel; Schulz, Sandra; Roscher, Mareike; Suhr, Anne-Maria; Meyer, Björn; Munteanu, Bogdan; Fuchser, Jens; Schoenberg, Stefan O; Ebert, Matthias P A; Wängler, Björn; Hopf, Carsten; Burgermeister, Elke

    2016-08-01

    Gastric cancer (GC) remains a malignant disease with high mortality. Patients are frequently diagnosed in advanced stages where survival prognosis is poor. Thus, there is high medical need to find novel drug targets and treatment strategies. Recently, the comprehensive molecular characterization of GC subtypes revealed mutations in the small GTPase RHOA as a hallmark of diffuse-type GC. RHOA activates RHO-associated protein kinases (ROCK1/2) which regulate cell contractility, migration and growth and thus may play a role in cancer. However, therapeutic benefit of RHO-pathway inhibition in GC has not been shown so far. The ROCK1/2 inhibitor 1-(5-isoquinoline sulfonyl)-homopiperazine (HA-1077, fasudil) is approved for cerebrovascular bleeding in patients. We therefore investigated whether fasudil (i.p., 10 mg/kg per day, 4 times per week, 4 weeks) inhibits tumor growth in a preclinical model of GC. Fasudil evoked cell death in human GC cells and reduced the tumor size in the stomach of CEA424-SV40 TAg transgenic mice. Small animal PET/CT confirmed preclinical efficacy. Mass spectrometry imaging identified a translatable biomarker for mouse GC and suggested rapid but incomplete in situ distribution of the drug to gastric tumor tissue. RHOA expression was increased in the neoplastic murine stomach compared with normal non-malignant gastric tissue, and fasudil reduced (auto) phosphorylation of ROCK2 at THR249 in vivo and in human GC cells in vitro. In sum, our data suggest that RHO-pathway inhibition may constitute a novel strategy for treatment of GC and that enhanced distribution of future ROCK inhibitors into tumor tissue may further improve efficacy. PMID:27566106

  8. Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis.

    PubMed

    Kümper, Sandra; Mardakheh, Faraz K; McCarthy, Afshan; Yeo, Maggie; Stamp, Gordon W; Paul, Angela; Worboys, Jonathan; Sadok, Amine; Jørgensen, Claus; Guichard, Sabrina; Marshall, Christopher J

    2016-01-01

    Rho-associated kinases 1 and 2 (ROCK1/2) are Rho-GTPase effectors that control key aspects of the actin cytoskeleton, but their role in proliferation and cancer initiation or progression is not known. Here, we provide evidence that ROCK1 and ROCK2 act redundantly to maintain actomyosin contractility and cell proliferation and that their loss leads to cell-cycle arrest and cellular senescence. This phenotype arises from down-regulation of the essential cell-cycle proteins CyclinA, CKS1 and CDK1. Accordingly, while the loss of either Rock1 or Rock2 had no negative impact on tumorigenesis in mouse models of non-small cell lung cancer and melanoma, loss of both blocked tumor formation, as no tumors arise in which both Rock1 and Rock2 have been genetically deleted. Our results reveal an indispensable role for ROCK, yet redundant role for isoforms 1 and 2, in cell cycle progression and tumorigenesis, possibly through the maintenance of cellular contractility. PMID:26765561

  9. Rho Kinases in Health and Disease: From Basic Science to Translational Research.

    PubMed

    Loirand, Gervaise

    2015-10-01

    Rho-associated kinases ROCK1 and ROCK2 are key regulators of actin cytoskeleton dynamics downstream of Rho GTPases that participate in the control of important physiologic functions, S including cell contraction, migration, proliferation, adhesion, and inflammation. Several excellent review articles dealing with ROCK function and regulation have been published over the past few years. Although a brief overview of general molecular, biochemical, and functional properties of ROCKs is included, an effort has been made to produce an original work by collecting and synthesizing recent studies aimed at translating basic discoveries from cell and experimental models into knowledge of human physiology, pathophysiological mechanisms, and medical therapeutics. This review points out the specificity and distinct roles of ROCK1 and ROCK2 isoforms highlighted in the last few years. Results obtained from genetically modified mice and genetic analysis in humans are discussed. This review also addresses the involvement of ROCKs in human diseases and the potential use of ROCK activity as a biomarker or a pharmacological target for specific inhibitors. PMID:26419448

  10. Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis

    PubMed Central

    Kümper, Sandra; Mardakheh, Faraz K; McCarthy, Afshan; Yeo, Maggie; Stamp, Gordon W; Paul, Angela; Worboys, Jonathan; Sadok, Amine; Jørgensen, Claus; Guichard, Sabrina

    2016-01-01

    Rho-associated kinases 1 and 2 (ROCK1/2) are Rho-GTPase effectors that control key aspects of the actin cytoskeleton, but their role in proliferation and cancer initiation or progression is not known. Here, we provide evidence that ROCK1 and ROCK2 act redundantly to maintain actomyosin contractility and cell proliferation and that their loss leads to cell-cycle arrest and cellular senescence. This phenotype arises from down-regulation of the essential cell-cycle proteins CyclinA, CKS1 and CDK1. Accordingly, while the loss of either Rock1 or Rock2 had no negative impact on tumorigenesis in mouse models of non-small cell lung cancer and melanoma, loss of both blocked tumor formation, as no tumors arise in which both Rock1 and Rock2 have been genetically deleted. Our results reveal an indispensable role for ROCK, yet redundant role for isoforms 1 and 2, in cell cycle progression and tumorigenesis, possibly through the maintenance of cellular contractility. DOI: http://dx.doi.org/10.7554/eLife.12203.001 PMID:26765561

  11. RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isoforms.

    PubMed

    Fritsch, Ralph; de Krijger, Inge; Fritsch, Kornelia; George, Roger; Reason, Beth; Kumar, Madhu S; Diefenbacher, Markus; Stamp, Gordon; Downward, Julian

    2013-05-23

    RAS proteins are important direct activators of p110α, p110γ, and p110δ type I phosphoinositide 3-kinases (PI3Ks), interacting via an amino-terminal RAS-binding domain (RBD). Here, we investigate the regulation of the ubiquitous p110β isoform of PI3K, implicated in G-protein-coupled receptor (GPCR) signaling, PTEN-loss-driven cancers, and thrombocyte function. Unexpectedly, RAS is unable to interact with p110β, but instead RAC1 and CDC42 from the RHO subfamily of small GTPases bind and activate p110β via its RBD. In fibroblasts, GPCRs couple to PI3K through Dock180/Elmo1-mediated RAC activation and subsequent interaction with p110β. Cells from mice carrying mutations in the p110β RBD show reduced PI3K activity and defective chemotaxis, and these mice are resistant to experimental lung fibrosis. These findings revise our understanding of the regulation of type I PI3K by showing that both RAS and RHO family GTPases directly regulate distinct ubiquitous PI3K isoforms and that RAC activates p110β downstream of GPCRs. PMID:23706742

  12. Rho-kinase-dependent actin turnover and actomyosin disassembly are necessary for mouse spinal neural tube closure

    PubMed Central

    Escuin, Sarah; Vernay, Bertrand; Savery, Dawn; Gurniak, Christine B.; Witke, Walter; Greene, Nicholas D. E.; Copp, Andrew J.

    2015-01-01

    ABSTRACT The cytoskeleton is widely considered essential for neurulation, yet the mouse spinal neural tube can close despite genetic and non-genetic disruption of the cytoskeleton. To investigate this apparent contradiction, we applied cytoskeletal inhibitors to mouse embryos in culture. Preventing actomyosin cross-linking, F-actin assembly or myosin II contractile activity did not disrupt spinal closure. In contrast, inhibiting Rho kinase (ROCK, for which there are two isoforms ROCK1 and ROCK2) or blocking F-actin disassembly prevented closure, with apical F-actin accumulation and adherens junction disturbance in the neuroepithelium. Cofilin-1-null embryos yielded a similar phenotype, supporting the hypothesis that there is a key role for actin turnover. Co-exposure to Blebbistatin rescued the neurulation defects caused by RhoA inhibition, whereas an inhibitor of myosin light chain kinase, ML-7, had no such effect. We conclude that regulation of RhoA, Rho kinase, LIM kinase and cofilin signalling is necessary for spinal neural tube closure through precise control of neuroepithelial actin turnover and actomyosin disassembly. In contrast, actomyosin assembly and myosin ATPase activity are not limiting for closure. PMID:26040287

  13. Fragment-Based and Structure-Guided Discovery and Optimization of Rho Kinase Inhibitors

    SciTech Connect

    Li, Rongshi; Martin, Mathew P.; Liu, Yan; Wang, Binglin; Patel, Ronil A.; Zhu, Jin-Yi; Sun, Nan; Pireddu, Roberta; Lawrence, Nicholas J.; Li, Jiannong; Haura, Eric B.; Sung, Shen-Shu; Guida, Wayne C.; Schonbrunn, Ernst; Sebti, Said M.

    2012-05-14

    Using high concentration biochemical assays and fragment-based screening assisted by structure-guided design, we discovered a novel class of Rho-kinase inhibitors. Compound 18 was equipotent for ROCK1 (IC{sub 50} = 650 nM) and ROCK2 (IC{sub 50} = 670 nM), whereas compound 24 was more selective for ROCK2 (IC{sub 50} = 100 nM) over ROCK1 (IC{sub 50} = 1690 nM). The crystal structure of the compound 18-ROCK1 complex revealed that 18 is a type 1 inhibitor that binds the hinge region in the ATP binding site. Compounds 18 and 24 inhibited potently the phosphorylation of the ROCK substrate MLC2 in intact human breast cancer cells.

  14. A Novel Function for p53: Regulation of Growth Cone Motility through Interaction with Rho Kinase

    PubMed Central

    Qin, Qingyu; Baudry, Michel; Liao, Guanghong; Noniyev, Albert; Galeano, James; Bi, Xiaoning

    2009-01-01

    The transcription factor p53 suppresses tumorgenesis by regulating cell proliferation and migration. We investigated whether p53 could also control cell motility in postmitotic neurons. P53 isoforms recognized by phospho-p53-specific (at Ser15) or “mutant” conformation specific antibodies were highly and specifically expressed in axons and axonal growth cones in primary hippocampal neurons. Inhibition of p53 function by inhibitors, siRNAs, or by dominant negative forms, induced axonal growth cone collapse, whereas p53 over-expression led to larger growth cones. Furthermore, deletion of the p53 nuclear export signal blocked its axonal distribution and induced growth cone collapse. P53 inhibition-induced axonal growth cone collapse was significantly reduced by the Rho kinase (ROCK) inhibitor, Y27632. Our results reveal a new function for p53 as a critical regulator of axonal growth cone behavior by suppressing ROCK activity. PMID:19386914

  15. Contractile responses of isolated equine digital arteries under hypoxic or hyperoxic conditions in vitro: role of reactive oxygen species and Rho kinase.

    PubMed

    Borer, K E; Bailey, S R; Harris, P A; Elliott, J

    2013-06-01

    The underlying pathophysiological triggers for equine acute laminitis are unknown, although digital vasoconstriction, ischaemia, hypoxia and reperfusion injury may be involved. The contractile responses of isolated equine digital arteries (EDAs), harvested from the hindlimbs of normal horses postmortem at an abattoir, were studied acutely (up to 3 h) under hyperoxic (95% oxygen, 5% CO2 ) and hypoxic (95% nitrogen, 5% CO2 ) conditions in organ baths. Phenylephrine (PHE; 10(-6) m), 5-hydroxytryptamine (5-HT; 10(-7) m) and high potassium (K(+) ; 118 mm) caused contraction in EDAs which was significantly (P<0.0001) enhanced under hypoxic conditions. In contrast, contraction stimulated by 9,11-dideoxy-9α,11α-epoxymethanoprostaglandin F2α (U44069; 3 × 10(-8) m) was not significantly enhanced by hypoxia (P=0.75). Hypoxia-enhanced contraction in response to K(+) was greater (P<0.03) in vessels with a functional endothelium than in vessels in which the endothelium was removed by rubbing. Fasudil (10(-6) to 10(-5) m), a Rho kinase inhibitor, and apocynin (10(-3) to 3 × 10(-3) m), an NADPH oxidase inhibitor, significantly (P ≤ 0.05) inhibited hypoxia-enhanced contraction in response to PHE and 5-HT. In conclusion, hypoxia-enhanced contraction occurred in EDAs. This appears to be partially mediated by reactive oxygen species produced by NAPDH oxidase, which activate Rho kinase to increase calcium sensitisation and enhance smooth muscle contraction. PMID:22762272

  16. Impact of Aldosterone-Producing Adenoma on Endothelial Function and Rho-Associated Kinase Activity in Patients With Primary Aldosteronism

    PubMed Central

    Matsumoto, Takeshi; Oki, Kenji; Kajikawa, Masato; Nakashima, Ayumu; Maruhashi, Tatsuya; Iwamoto, Yumiko; Iwamoto, Akimichi; Oda, Nozomu; Hidaka, Takayuki; Kihara, Yasuki; Kohno, Nobuoki; Chayama, Kazuaki; Goto, Chikara; Aibara, Yoshiki; Noma, Kensuke; Liao, James K.; Higashi, Yukihito

    2016-01-01

    The purpose of this study was to evaluate vascular function and activity of Rho-associated kinases in patients with primary aldosteronism. Vascular function, including flow-mediated vasodilation and nitroglycerine-induced vasodilation, and Rho-associated kinase activity in peripheral leukocytes were evaluated in 21 patients with aldosterone-producing adenoma, 23 patients with idiopathic hyperaldosteronism, and 40 age-, gender-, and blood pressure-matched patients with essential hypertension. Flow-mediated vasodilation was significantly lower in the aldosterone-producing adenoma group than in the idiopathic hyperaldosteronism and essential hypertension groups (3.2±2.0% vs. 4.6±2.3% and 4.4±2.2%, P<0.05, respectively), whereas there was no significant difference in flow-mediated vasodilation between the idiopathic hyperaldosteronism and essential hypertension groups. There was no significant difference in nitroglycerine-induced vasodilation in the three groups. Rho-associated kinase activity was higher in the aldosterone-producing adenoma group than in the idiopathic hyperaldosteronism and essential hypertension groups (1.29±0.57 vs. 1.00±0.46 and 0.81±0.36, P<0.05, respectively), whereas there was no significant difference in Rho-associated kinase activity between the idiopathic hyperaldosteronism and essential hypertension groups. Flow-mediated vasodilation correlated with age (r=−0.31, P<0.01), plasma aldosterone concentration (r=−0.35, P<0.01) and aldosterone to renin ratio (r=−0.34, P<0.01). Rho-associated kinase activity correlated with age (r=−0.24, P=0.04), plasma aldosterone concentration (r=0.33, P<0.01) and aldosterone to renin ratio (r=0.46, P<0.01). After adrenalectomy, flow-mediated vasodilation and Rho-associated kinase activity were restored in aldosterone-producing adenoma patients. Aldosterone-producing adenoma was associated with both endothelial dysfunction and increased Rho-associated kinase activity compared with those in

  17. Fluid-flow-induced mesenchymal stem cell migration: role of focal adhesion kinase and RhoA kinase sensors.

    PubMed

    Riehl, Brandon D; Lee, Jeong Soon; Ha, Ligyeom; Lim, Jung Yul

    2015-03-01

    The study of mesenchymal stem cell (MSC) migration under flow conditions with investigation of the underlying molecular mechanism could lead to a better understanding and outcome in stem-cell-based cell therapy and regenerative medicine. We used peer-reviewed open source software to develop methods for efficiently and accurately tracking, measuring and processing cell migration as well as morphology. Using these tools, we investigated MSC migration under flow-induced shear and tested the molecular mechanism with stable knockdown of focal adhesion kinase (FAK) and RhoA kinase (ROCK). Under steady flow, MSCs migrated following the flow direction in a shear stress magnitude-dependent manner, as assessed by root mean square displacement and mean square displacement, motility coefficient and confinement ratio. Silencing FAK in MSCs suppressed morphology adaptation capability and reduced cellular motility for both static and flow conditions. Interestingly, ROCK silencing significantly increased migration tendency especially under flow. Blocking ROCK, which is known to reduce cytoskeletal tension, may lower the resistance to skeletal remodelling during the flow-induced migration. Our data thus propose a potentially differential role of focal adhesion and cytoskeletal tension signalling elements in MSC migration under flow shear. PMID:25589570

  18. Fluid-flow-induced mesenchymal stem cell migration: role of focal adhesion kinase and RhoA kinase sensors

    PubMed Central

    Riehl, Brandon D.; Lee, Jeong Soon; Ha, Ligyeom; Lim, Jung Yul

    2015-01-01

    The study of mesenchymal stem cell (MSC) migration under flow conditions with investigation of the underlying molecular mechanism could lead to a better understanding and outcome in stem-cell-based cell therapy and regenerative medicine. We used peer-reviewed open source software to develop methods for efficiently and accurately tracking, measuring and processing cell migration as well as morphology. Using these tools, we investigated MSC migration under flow-induced shear and tested the molecular mechanism with stable knockdown of focal adhesion kinase (FAK) and RhoA kinase (ROCK). Under steady flow, MSCs migrated following the flow direction in a shear stress magnitude-dependent manner, as assessed by root mean square displacement and mean square displacement, motility coefficient and confinement ratio. Silencing FAK in MSCs suppressed morphology adaptation capability and reduced cellular motility for both static and flow conditions. Interestingly, ROCK silencing significantly increased migration tendency especially under flow. Blocking ROCK, which is known to reduce cytoskeletal tension, may lower the resistance to skeletal remodelling during the flow-induced migration. Our data thus propose a potentially differential role of focal adhesion and cytoskeletal tension signalling elements in MSC migration under flow shear. PMID:25589570

  19. Rho kinase and Ca2+ entry mediate increased pulmonary and systemic vascular resistance in L-NAME-treated rats.

    PubMed

    Dhaliwal, Jasdeep S; Casey, David B; Greco, Anthony J; Badejo, Adeleke M; Gallen, Thomas B; Murthy, Subramanyam N; Nossaman, Bobby D; Hyman, Albert L; Kadowitz, Philip J

    2007-11-01

    The small GTP-binding protein and its downstream effector Rho kinase play an important role in the regulation of vasoconstrictor tone. Rho kinase activation maintains increased pulmonary vascular tone and mediates the vasoconstrictor response to nitric oxide (NO) synthesis inhibition in chronically hypoxic rats and in the ovine fetal lung. However, the role of Rho kinase in mediating pulmonary vasoconstriction after NO synthesis inhibition has not been examined in the intact rat. To address this question, cardiovascular responses to the Rho kinase inhibitor fasudil were studied at baseline and after administration of an NO synthesis inhibitor. In the intact rat, intravenous injections of fasudil cause dose-dependent decreases in systemic arterial pressure, small decreases in pulmonary arterial pressure, and increases in cardiac output. L-NAME caused a significant increase in pulmonary and systemic arterial pressures and a decrease in cardiac output. The intravenous injections of fasudil after L-NAME caused dose-dependent decreases in pulmonary and systemic arterial pressure and increases in cardiac output, and the percent decreases in pulmonary arterial pressure in response to the lower doses of fasudil were greater than decreases in systemic arterial pressure. The Ca(++) entry blocker isradipine also decreased pulmonary and systemic arterial pressure in L-NAME-treated rats. Infusion of sodium nitroprusside restored pulmonary arterial pressure to baseline values after administration of L-NAME. These data provide evidence in support of the hypothesis that increases in pulmonary and systemic vascular resistance following L-NAME treatment are mediated by Rho kinase and Ca(++) entry through L-type channels, and that responses to L-NAME can be reversed by an NO donor. PMID:17766587

  20. E1AF/PEA3 activates the Rho/Rho-associated kinase pathway to increase the malignancy potential of non-small-cell lung cancer cells.

    PubMed

    Hakuma, Nobuyuki; Kinoshita, Ichiro; Shimizu, Yasushi; Yamazaki, Koichi; Yoshida, Koichi; Nishimura, Masaharu; Dosaka-Akita, Hirotoshi

    2005-12-01

    E1AF/PEA3, an Ets family transcription factor, is frequently overexpressed in non-small-cell lung cancers (NSCLCs). Overexpression of E1AF increases motility and invasion of VMRC-LCD and NCI-H226 NSCLC cells, which lack endogenous E1AF expression, and the effect is synergistically increased by hepatocyte growth factor (HGF). The small GTPase Rho/Rho-associated kinase (ROCK) pathway is also involved in motility and invasion. To determine the role of the Rho/ROCK pathway in malignant phenotypes induced by E1AF, we analyzed VMRC-LCD cells transfected with an E1AF expression vector (LCD-E1AF cells) or with empty vector (LCD-vector cells). LCD-E1AF cells had more GTP-bound (active) Rho than LCD-vector cells and Rho activation was synergistically increased by HGF. The Rho activation by E1AF and HGF was also shown in NCI-H226 cells. Phosphorylation of myosin light chain (MLC), a downstream effector of ROCK signaling, was higher in LCD-E1AF cells than in LCD-vector cells, especially under HGF treatment. A specific ROCK inhibitor, Y27632, strongly suppressed MLC phosphorylation, cell motility, and invasion. In nude mice implanted s.c. and intrapulmonarily, LCD-E1AF cells made more local tumors than LCD-vector cells (six of six versus one of seven mice and four of seven versus one of seven mice, respectively). Three of the four mice with lung tumors from LCD-E1AF cells had lymph node metastases whereas the mouse with LCD-vector tumors did not. LCD-E1AF tumors showed higher MLC phosphorylation than LCD-vector tumors. These results suggest that E1AF activates the Rho/ROCK pathway in an HGF-enhanced manner and its activation is important in E1AF-induced motility and invasion as well as tumorigenesis and metastasis in NSCLC cells. PMID:16322223

  1. Modulating Astrocyte Transition after Stroke to Promote Brain Rescue and Functional Recovery: Emerging Targets Include Rho Kinase

    PubMed Central

    Abeysinghe, Hima Charika S.; Phillips, Ellie L.; Chin-Cheng, Heung; Beart, Philip M.; Roulston, Carli L.

    2016-01-01

    Stroke is a common and serious condition, with few therapies. Whilst previous focus has been directed towards biochemical events within neurons, none have successfully prevented the progression of injury that occurs in the acute phase. New targeted treatments that promote recovery after stroke might be a better strategy and are desperately needed for the majority of stroke survivors. Cells comprising the neurovascular unit, including blood vessels and astrocytes, present an alternative target for supporting brain rescue and recovery in the late phase of stroke, since alteration in the unit also occurs in regions outside of the lesion. One of the major changes in the unit involves extensive morphological transition of astrocytes resulting in altered energy metabolism, decreased glutamate reuptake and recycling, and retraction of astrocyte end feed from both blood vessels and neurons. Whilst globally inhibiting transitional change in astrocytes after stroke is reported to result in further damage and functional loss, we discuss the available evidence to suggest that the transitional activation of astrocytes after stroke can be modulated for improved outcomes. In particular, we review the role of Rho-kinase (ROCK) in reactive gliosis and show that inhibiting ROCK after stroke results in reduced scar formation and improved functional recovery. PMID:26927079

  2. Modulating Astrocyte Transition after Stroke to Promote Brain Rescue and Functional Recovery: Emerging Targets Include Rho Kinase.

    PubMed

    Abeysinghe, Hima Charika S; Phillips, Ellie L; Chin-Cheng, Heung; Beart, Philip M; Roulston, Carli L

    2016-01-01

    Stroke is a common and serious condition, with few therapies. Whilst previous focus has been directed towards biochemical events within neurons, none have successfully prevented the progression of injury that occurs in the acute phase. New targeted treatments that promote recovery after stroke might be a better strategy and are desperately needed for the majority of stroke survivors. Cells comprising the neurovascular unit, including blood vessels and astrocytes, present an alternative target for supporting brain rescue and recovery in the late phase of stroke, since alteration in the unit also occurs in regions outside of the lesion. One of the major changes in the unit involves extensive morphological transition of astrocytes resulting in altered energy metabolism, decreased glutamate reuptake and recycling, and retraction of astrocyte end feed from both blood vessels and neurons. Whilst globally inhibiting transitional change in astrocytes after stroke is reported to result in further damage and functional loss, we discuss the available evidence to suggest that the transitional activation of astrocytes after stroke can be modulated for improved outcomes. In particular, we review the role of Rho-kinase (ROCK) in reactive gliosis and show that inhibiting ROCK after stroke results in reduced scar formation and improved functional recovery. PMID:26927079

  3. Amphetamine activates Rho GTPase signaling to mediate dopamine transporter internalization and acute behavioral effects of amphetamine.

    PubMed

    Wheeler, David S; Underhill, Suzanne M; Stolz, Donna B; Murdoch, Geoffrey H; Thiels, Edda; Romero, Guillermo; Amara, Susan G

    2015-12-22

    Acute amphetamine (AMPH) exposure elevates extracellular dopamine through a variety of mechanisms that include inhibition of dopamine reuptake, depletion of vesicular stores, and facilitation of dopamine efflux across the plasma membrane. Recent work has shown that the DAT substrate AMPH, unlike cocaine and other nontransported blockers, can also stimulate endocytosis of the plasma membrane dopamine transporter (DAT). Here, we show that when AMPH enters the cytoplasm it rapidly stimulates DAT internalization through a dynamin-dependent, clathrin-independent process. This effect, which can be observed in transfected cells, cultured dopamine neurons, and midbrain slices, is mediated by activation of the small GTPase RhoA. Inhibition of RhoA activity with C3 exotoxin or a dominant-negative RhoA blocks AMPH-induced DAT internalization. These actions depend on AMPH entry into the cell and are blocked by the DAT inhibitor cocaine. AMPH also stimulates cAMP accumulation and PKA-dependent inactivation of RhoA, thus providing a mechanism whereby PKA- and RhoA-dependent signaling pathways can interact to regulate the timing and robustness of AMPH's effects on DAT internalization. Consistent with this model, the activation of D1/D5 receptors that couple to PKA in dopamine neurons antagonizes RhoA activation, DAT internalization, and hyperlocomotion observed in mice after AMPH treatment. These observations support the existence of an unanticipated intracellular target that mediates the effects of AMPH on RhoA and cAMP signaling and suggest new pathways to target to disrupt AMPH action. PMID:26553986

  4. Amphetamine activates Rho GTPase signaling to mediate dopamine transporter internalization and acute behavioral effects of amphetamine

    PubMed Central

    Wheeler, David S.; Underhill, Suzanne M.; Stolz, Donna B.; Murdoch, Geoffrey H.; Thiels, Edda; Romero, Guillermo; Amara, Susan G.

    2015-01-01

    Acute amphetamine (AMPH) exposure elevates extracellular dopamine through a variety of mechanisms that include inhibition of dopamine reuptake, depletion of vesicular stores, and facilitation of dopamine efflux across the plasma membrane. Recent work has shown that the DAT substrate AMPH, unlike cocaine and other nontransported blockers, can also stimulate endocytosis of the plasma membrane dopamine transporter (DAT). Here, we show that when AMPH enters the cytoplasm it rapidly stimulates DAT internalization through a dynamin-dependent, clathrin-independent process. This effect, which can be observed in transfected cells, cultured dopamine neurons, and midbrain slices, is mediated by activation of the small GTPase RhoA. Inhibition of RhoA activity with C3 exotoxin or a dominant-negative RhoA blocks AMPH-induced DAT internalization. These actions depend on AMPH entry into the cell and are blocked by the DAT inhibitor cocaine. AMPH also stimulates cAMP accumulation and PKA-dependent inactivation of RhoA, thus providing a mechanism whereby PKA- and RhoA-dependent signaling pathways can interact to regulate the timing and robustness of AMPH’s effects on DAT internalization. Consistent with this model, the activation of D1/D5 receptors that couple to PKA in dopamine neurons antagonizes RhoA activation, DAT internalization, and hyperlocomotion observed in mice after AMPH treatment. These observations support the existence of an unanticipated intracellular target that mediates the effects of AMPH on RhoA and cAMP signaling and suggest new pathways to target to disrupt AMPH action. PMID:26553986

  5. Stimulation of ectopic bone formation in response to BMP-2 by Rho kinase inhibitor: a pilot study.

    PubMed

    Yoshikawa, Hideki; Yoshioka, Kiyoko; Nakase, Takanobu; Itoh, Kazuyuki

    2009-12-01

    The small GTPase Rho and Rho-associated protein kinase (Rho kinase, ROCK) signal participates in a variety of biological functions including vascular contraction, tumor invasion, and penile erection. Evidence also suggests Rho-ROCK is involved in signaling for mesenchymal cellular differentiation. However, whether it is involved in osteoblastic differentiation is unknown. We therefore asked whether Rho-ROCK signaling participates in recombinant human bone morphogenetic protein (rhBMP-2)-induced osteogenesis both in vitro and in vivo. Continuous delivery of a specific ROCK inhibitor (Y-27632) enhanced ectopic bone formation induced by rhBMP-2 impregnated into an atelocollagen carrier in mice without affecting systemic bone metabolism. Treatment with Y-27632 also enhanced the osteoblastic differentiation of cultured murine neonatal calvarial cells. These effects were associated with increased expression of BMP-4 gene. Expression of a dominant negative mutant of ROCK in ST2 cells promoted osteoblastic differentiation, while a constitutively active mutant of ROCK attenuated osteoblastic differentiation and the ROCK inhibitor reversed this phenotype. Thus, ROCK inhibits osteogenesis, and a ROCK inhibitor in combination with the local delivery of rhBMP/collagen composite may be clinically applicable for stimulating bone formation. PMID:19609629

  6. Rho-associated kinase (ROCK) inhibition reverses low cell activity on hydrophobic surfaces

    SciTech Connect

    Tian, Yu Shun; Kim, Hyun Jung; Kim, Hyun-Man

    2009-08-28

    Hydrophobic polymers do not offer an adequate scaffold surface for cells to attach, migrate, proliferate, and differentiate. Thus, hydrophobic scaffolds for tissue engineering have traditionally been physicochemically modified to enhance cellular activity. However, modifying the surface by chemical or physical treatment requires supplementary engineering procedures. In the present study, regulation of a cell signal transduction pathway reversed the low cellular activity on a hydrophobic surface without surface modification. Inhibition of Rho-associated kinase (ROCK) by Y-27632 markedly enhanced adhesion, migration, and proliferation of osteoblastic cells cultured on a hydrophobic polystyrene surface. ROCK inhibition regulated cell-cycle-related molecules on the hydrophobic surface. This inhibition also decreased expression of the inhibitors of cyclin-dependent kinases such as p21{sup cip1} and p27{sup kip1} and increased expression of cyclin A and D. These results indicate that defective cellular activity on the hydrophobic surface can be reversed by the control of a cell signal transduction pathway without physicochemical surface modification.

  7. Rho kinase II phosphorylation of the lipoprotein receptor LR11/SORLA alters amyloid-beta production.

    PubMed

    Herskowitz, Jeremy H; Seyfried, Nicholas T; Gearing, Marla; Kahn, Richard A; Peng, Junmin; Levey, Allan I; Lah, James J

    2011-02-25

    LR11, also known as SorLA, is a mosaic low-density lipoprotein receptor that exerts multiple influences on Alzheimer disease susceptibility. LR11 interacts with the amyloid-β precursor protein (APP) and regulates APP traffic and processing to amyloid-β peptide (Aβ). The functional domains of LR11 suggest that it can act as a cell surface receptor and as an intracellular sorting receptor for trans-Golgi network to endosome traffic. We show that LR11 over-expressed in HEK293 cells is radiolabeled following incubation of cells with [(32)P(i)]orthophosphate. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used to discover putative LR11 interacting kinases. Rho-associated coiled-coil containing protein kinase (ROCK) 2 was identified as a binding partner and a candidate kinase acting on LR11. LR11 and ROCK2 co-immunoprecipitate from post-mortem human brain tissue and drug inhibition of ROCK activity reduces LR11 phosphorylation in vivo. Targeted knockdown of ROCK2 with siRNA decreased LR11 ectodomain shedding while simultaneously increasing intracellular LR11 protein level. Site-directed mutagenesis of serine 2206 in the LR11 cytoplasmic tail reduced LR11 shedding, decreased LR11 phosphorylation in vitro, and abrogated LR11 mediated Aβ reduction. These findings provide direct evidence that LR11 is phosphorylated in vivo and indicate that ROCK2 phosphorylation of LR11 may enhance LR11 mediated processing of APP and amyloid production. PMID:21147781

  8. Rho-associated protein kinase inhibition enhances airway epithelial Basal-cell proliferation and lentivirus transduction.

    PubMed

    Horani, Amjad; Nath, Aditya; Wasserman, Mollie G; Huang, Tao; Brody, Steven L

    2013-09-01

    The identification of factors that regulate airway epithelial cell proliferation and differentiation are essential for understanding the pathophysiology of airway diseases. Rho-associated protein kinases (ROCKs) are downstream effector proteins of RhoA GTPase that direct the functions of cell cytoskeletal proteins. ROCK inhibition with Y27632 has been shown to enhance the survival and cloning of human embryonic stem cells and pluripotent cells in other tissues. We hypothesized that Y27632 treatment exerts a similar effect on airway epithelial basal cells, which function as airway epithelial progenitor cells. Treatment with Y27632 enhanced basal-cell proliferation in cultured human tracheobronchial and mouse tracheal epithelial cells. ROCK inhibition accelerated the maturation of basal cells, characterized by a diminution of the cell size associated with cell compaction and the expression of E-cadherin at cell-cell junctions. Transient treatment of cultured basal cells with Y27632 did not affect subsequent ciliated or mucous cell differentiation under air-liquid interface conditions, and allowed for the initial use of lower numbers of human or mouse primary airway epithelial cells than otherwise possible. Moreover, the use of Y27632 during lentivirus-mediated transduction significantly improved posttransduction efficiency and the selection of a transduced cell population, as determined by reporter gene expression. These findings suggest an important role for ROCKs in the regulation of proliferation and maturation of epithelial basal cells, and demonstrate that the inhibition of ROCK pathways using Y27632 provides an adjunctive tool for the in vitro genetic manipulation of airway epithelial cells by lentivirus vectors. PMID:23713995

  9. Rho-kinase inhibition improves vasodilator responsiveness during hyperinsulinemia in the metabolic syndrome.

    PubMed

    Schinzari, Francesca; Tesauro, Manfredi; Rovella, Valentina; Di Daniele, Nicola; Gentileschi, Paolo; Mores, Nadia; Campia, Umberto; Cardillo, Carmine

    2012-09-15

    In patients with the metabolic syndrome (MetS), the facilitatory effect of insulin on forearm vasodilator responsiveness to different stimuli is impaired. Whether the RhoA/Rho kinase (ROCK) pathway is involved in this abnormality is unknown. We tested the hypotheses that, in MetS patients, ROCK inhibition with fasudil restores insulin-stimulated vasodilator reactivity and that oxidative stress plays a role in this mechanism. Endothelium-dependent and -independent forearm blood flow responses to acetylcholine (ACh) and sodium nitroprusside (SNP), respectively, were assessed in MetS patients (n = 8) and healthy controls (n = 5) before and after the addition of fasudil (200 μg/min) to an intra-arterial infusion of insulin (0.1 mU/kg/min). In MetS patients (n = 5), fasudil was also infused without hyperinsulinemia. The possible involvement of oxidative stress in the effect of fasudil during hyperinsulinemia was investigated in MetS patients (n = 5) by infusing vitamin C (25 mg/min). In MetS patients, compared with saline, fasudil enhanced endothelium-dependent and -independent vasodilator responses during insulin infusion (P < 0.001 and P = 0.008, respectively), but not in the absence of hyperinsulinemia (P = 0.25 and P = 0.13, respectively). By contrast, fasudil did not affect vasoreactivity to ACh and SNP during hyperinsulinemia in controls (P = 0.11 and P = 0.56, respectively). In MetS patients, fasudil added to insulin and vitamin C did not further enhance vasodilation to ACh and SNP (P = 0.15 and P = 0.43, respectively). In the forearm circulation of patients with the MetS, ROCK inhibition by fasudil improves endothelium-dependent and -independent vasodilator responsiveness during hyperinsulinemia; increased oxidative stress seems to be involved in the pathophysiology of this phenomenon. PMID:22829585

  10. Cardiac glycoside-induced cell death and Rho/Rho kinase pathway: Implication of different regulation in cancer cell lines.

    PubMed

    Özdemir, Aysun; Şimay, Yaprak Dilber; İbişoğlu, Burçin; Yaren, Biljana; Bülbül, Döne; Ark, Mustafa

    2016-05-01

    Previously, we demonstrated that the Rho/ROCK pathway is involved in ouabain-induced apoptosis in HUVEC. In the current work, we investigated whether the Rho/ROCK pathway is functional during cardiac glycosides-induced cytotoxic effects in cancer cell lines, as well as in non-tumor cells. For that purpose, we evaluated the role of ROCK activation in bleb formation and cell migration over upstream and downstream effectors in addition to ROCK cleavage after cardiac glycosides treatment. All three cardiac glycosides (ouabain, digoxin and bufalin) induced cell death in HeLa and HepG2 cells and increased the formation of blebbing in HeLa cells. In contrast to our previous study, ROCK inhibitor Y27632 did not prevent bleb formation. Observation of ROCK II cleavage after ouabain, digoxin and oxaliplatin treatments in HeLa and/or HepG2 cells suggested that cleavage is independent of cell type and cell death induction. While inhibiting cleavage of ROCK II by the caspase inhibitors z-VAD-fmk, z-VDVAD-fmk and z-DEVD-fmk, evaluation of caspase 2 siRNA ineffectiveness on this truncation indicated that caspase-dependent ROCK II cleavage is differentially regulated in cancer cell lines. In HeLa cells, ouabain induced the activation of ROCK, although it did not induce phosphorylation of ERM, an upstream effector. While Y27632 inhibited the migration of HeLa cells, 10nM ouabain had no effect on cell migration. In conclusion, these findings indicate that the Rho/ROCK pathway is regulated differently in cancer cell lines compared to normal cells during cardiac glycosides-induced cell death. PMID:27017918

  11. Epidermal growth factor induces Ca(2+) sensitization through Rho-kinase-dependent phosphorylation of myosin phosphatase target subunit 1 in vascular smooth muscle.

    PubMed

    Sasahara, Tomoya; Okamoto, Hiroshi; Ohkura, Natsumi; Kobe, Asami; Yayama, Katsutoshi

    2015-09-01

    We previously found that the protein tyrosine phosphatase inhibitor orthovanadate evoked a vasoconstrictor effect in rat aortas via Rho-kinase-dependent inactivation of myosin light chain phosphatase (MLCP) downstream of epidermal growth factor (EGF) receptor signaling. To determine whether the direct activation of EGF receptor by EGF also induces Rho-kinase-dependent vasoconstriction, isometric tension changes were measured in rat aortic rings without endothelium. Although EGF did not produce a contractile effect, the Ca(2+)-induced force in Ca(2+)-depleted rings significantly increased after treatment with 100nM EGF, suggesting that EGF induces Ca(2+) sensitization by MLCP inactivation. In addition, EGF induced the activation of Rho-kinase and phosphorylation of myosin phosphatase target subunit 1 (MYPT1) in rat aortic smooth muscle cells (VSMCs). The effects of EGF on Ca(2+) sensitivity in aortas and MYPT1 phosphorylation in VSMCs were blocked by inhibitors of EGF receptor (AG1478), Rho-kinase (Y27632), extracellular signal-regulated kinase 1/2 (Erk1/2; FR180204), and mitogen/extracellular signal-regulated kinase (MEK; PD98059), but not by inhibitors of p38 kinase (SB203580) and c-Jun amino-terminal kinase (AS601245). EGF-induced Erk1/2 phosphorylation was not abrogated by the Rho-kinase inhibitor, suggesting that Rho-kinase-dependent phosphorylation of MYPT1 is downstream of EGF receptor/MEK/Erk1/2 signaling. These results suggest that EGF induces Ca(2+) sensitization in vascular smooth muscle by Rho-kinase-dependent inactivation of MLCP mediated by the EGF receptor/MEK/Erk1/2 pathway. PMID:26004531

  12. The Function of Rho-Associated Kinases ROCK1 and ROCK2 in the Pathogenesis of Cardiovascular Disease

    PubMed Central

    Hartmann, Svenja; Ridley, Anne J.; Lutz, Susanne

    2015-01-01

    Rho-associated kinases ROCK1 and ROCK2 are serine/threonine kinases that are downstream targets of the small GTPases RhoA, RhoB, and RhoC. ROCKs are involved in diverse cellular activities including actin cytoskeleton organization, cell adhesion and motility, proliferation and apoptosis, remodeling of the extracellular matrix and smooth muscle cell contraction. The role of ROCK1 and ROCK2 has long been considered to be similar; however, it is now clear that they do not always have the same functions. Moreover, depending on their subcellular localization, activation, and other environmental factors, ROCK signaling can have different effects on cellular function. With respect to the heart, findings in isoform-specific knockout mice argue for a role of ROCK1 and ROCK2 in the pathogenesis of cardiac fibrosis and cardiac hypertrophy, respectively. Increased ROCK activity could play a pivotal role in processes leading to cardiovascular diseases such as hypertension, pulmonary hypertension, angina pectoris, vasospastic angina, heart failure, and stroke, and thus ROCK activity is a potential new biomarker for heart disease. Pharmacological ROCK inhibition reduces the enhanced ROCK activity in patients, accompanied with a measurable improvement in medical condition. In this review, we focus on recent findings regarding ROCK signaling in the pathogenesis of cardiovascular disease, with a special focus on differences between ROCK1 and ROCK2 function. PMID:26635606

  13. Shear stress–induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases

    PubMed Central

    Wojciak-Stothard, Beata; Ridley, Anne J.

    2003-01-01

    Shear stress induces endothelial polarization and migration in the direction of flow accompanied by extensive remodeling of the actin cytoskeleton. The GTPases RhoA, Rac1, and Cdc42 are known to regulate cell shape changes through effects on the cytoskeleton and cell adhesion. We show here that all three GTPases become rapidly activated by shear stress, and that each is important for different aspects of the endothelial response. RhoA was activated within 5 min after stimulation with shear stress and led to cell rounding via Rho-kinase. Subsequently, the cells respread and elongated within the direction of shear stress as RhoA activity returned to baseline and Rac1 and Cdc42 reached peak activation. Cell elongation required Rac1 and Cdc42 but not phosphatidylinositide 3-kinases. Cdc42 and PI3Ks were not required to establish shear stress–induced polarity although they contributed to optimal migration speed. Instead, Rho and Rac1 regulated directionality of cell movement. Inhibition of Rho or Rho-kinase did not affect the cell speed but significantly increased cell displacement. Our results show that endothelial cells reorient in response to shear stress by a two-step process involving Rho-induced depolarization, followed by Rho/Rac-mediated polarization and migration in the direction of flow. PMID:12719476

  14. Linking phenotype to kinase: identification of a novel benzoxaborole hinge-binding motif for kinase inhibition and development of high-potency rho kinase inhibitors.

    PubMed

    Akama, Tsutomu; Dong, Chen; Virtucio, Charlotte; Sullivan, David; Zhou, Yasheen; Zhang, Yong-Kang; Rock, Fernando; Freund, Yvonne; Liu, Liang; Bu, Wei; Wu, Anne; Fan, Xiao-Qing; Jarnagin, Kurt

    2013-12-01

    Benzoxaboroles are a novel class of drug-like compounds that have been rich sources of novel inhibitors for various enzymes and of new drugs. While examining benzoxaborole activity in phenotypic screens, our attention was attracted by the (aminomethylphenoxy)benzoxaborole family, which potently inhibited Toll-like receptor-stimulated cytokine secretion from leukocytes. After considering their structure-activity relationships and the central role of kinases in leukocyte biology, we performed a kinome-wide screen to investigate the members of the (aminomethylphenoxy)benzoxaborole family. This technique identified Rho-activated kinase (ROCK) as a target. We showed competitive behavior, with respect to ATP, and then determined the ROCK2-drug cocrystal structure. The drug occupies the ATP site in which the oxaborole moiety provides hydrogen bond donors and acceptors to the hinge, and the aminomethyl group interacts with the magnesium/ATP-interacting aspartic acid common to protein kinases. The series exhibits excellent selectivity against most of the kinome, with greater than 15-fold selectivity against the next best member of the AGC protein kinase subfamily. Medicinal chemistry efforts with structure-based design resulted in a compound with a Ki of 170 nM. Cellular studies revealed strong enzyme inhibition rank correlation with suppression of intracellular phosphorylation of a ROCK substrate. The biochemical potencies of these compounds also translated to functional activity, causing smooth muscle relaxation in rat aorta and guinea pig trachea. The series exhibited oral availability and one member reduced rat blood pressure, consistent with ROCK's role in smooth muscle contraction. Thus, the benzoxaborole moiety represents a novel hinge-binding kinase scaffold that may have potential for therapeutic use. PMID:24049062

  15. Neurite outgrowth resistance to rho kinase inhibitors in PC12 Adh cell.

    PubMed

    Yin, Hua; Hou, Xiaolin; Tao, Tingrui; Lv, Xiaoman; Zhang, Luyong; Duan, Weigang

    2015-05-01

    Rho kinase (ROCK) inhibitor is a promising agent for neural injury disorders, which mechanism is associated with neurite outgrowth. However, neurite outgrowth resistance occurred when PC12 Adh cell was treated with ROCK inhibitors for a longer time. PC12 Adh cells were treated with ROCK inhibitor Y27632 or NGF for different durations. Neurite outgrowth resistance occurred when PC12 Adh cell exposed to Y27632 (33 µM) for 3 or more days, but not happen when exposed to nerve growth factor (NGF, 100 ng/mL). The gene expression in the PC12 Adh cells treated with Y27632 (33 µM) or NGF (100 ng/mL) for 2 or 4 days was assayed by gene microarray, and the reliability of the results were confirmed by real-time RT-PCR. Cluster analysis proved that the gene expression profile of PC12 Adh cell treated with Y27632 for 4 days was different from that treated with Y27632 for 2 days and those treated with NGF for 2 and 4 days, respectively. Pathway analysis hinted that the neurite outgrowth resistance could be associated with up-regulation of inflammatory pathways, especially rno04610 (complement and coagulation cascades), and down-regulation of cell cycle pathways, especially rno04110. PMID:25571866

  16. Aorta-derived mesoangioblasts differentiate into the oligodendrocytes by inhibition of the Rho kinase signaling pathway.

    PubMed

    Wang, Lei; Kamath, Anant; Frye, Janie; Iwamoto, Gary A; Chun, Ju Lan; Berry, Suzanne E

    2012-05-01

    Mesoangioblasts are vessel-derived stem cells that differentiate into mesodermal derivatives. We have isolated postnatal aorta-derived mesoangioblasts (ADMs) that differentiate into smooth, skeletal, and cardiac muscle, and adipocytes, and regenerate damaged skeletal muscle in a murine model for Duchenne muscular dystrophy. We report that the marker profile of ADM is similar to that of mesoangioblasts isolated from embryonic dorsal aorta, postnatal bone marrow, and heart, but distinct from mesoangioblasts derived from skeletal muscle. We also demonstrate that ADM differentiate into myelinating glial cells. ADM localize to peripheral nerve bundles in regenerating muscles and exhibit morphology and marker expression of mature Schwann cells, and myelinate axons. In vitro, ADM spontaneously express markers of oligodendrocyte progenitors, including the chondroitin sulphate proteoglycan NG2, nestin, platelet-derived growth factor (PDGF) receptor α, the A2B5 antigen, thyroid hormone nuclear receptor α, and O4. Pharmacological inhibition of Rho kinase (ROCK) initiated process extension by ADM, and when combined with insulin-like growth factor 1, PDGF, and thyroid hormone, enhanced ADM expression of oligodendrocyte precursor markers and maturation into the oligodendrocyte lineage. ADM injected into the right lateral ventricle of the brain migrate to the corpus callosum, and cerebellar white matter, where they express components of myelin. Because ADM differentiate or mature into cell types of both mesodermal and ectodermal origin, they may be useful for treatment of a variety of degenerative diseases, or repair and regeneration of multiple cell types in severely damaged tissue. PMID:21793703

  17. Long-term culture of human odontoma-derived cells with a Rho kinase inhibitor.

    PubMed

    Uzawa, Katsuhiro; Kasamatsu, Atsushi; Saito, Tomoaki; Takahara, Toshikazu; Minakawa, Yasuyuki; Koike, Kazuyuki; Yamatoji, Masanobu; Nakashima, Dai; Higo, Morihiro; Sakamoto, Yosuke; Shiiba, Masashi; Tanzawa, Hideki

    2016-09-10

    Because of cellular senescence/apoptosis, no effective culture systems are available to maintain replication of cells from odontogenic tumors especially for odontoma, and, thus, the ability to isolate human odontoma-derived cells (hODCs) for functional studies is needed. The current study was undertaken to develop an approach to isolate hODCs and fully characterize the cells in vitro. The hODCs were cultured successfully with a Rho-associated protein kinase inhibitor (Y-27632) for an extended period with stabilized lengths of the telomeres to sustain a similar phenotype/property as the primary tumoral cells. While the hODCs showed stable long-term expansion with expression of major dental epithelial markers including dentin sialophosphoprotein (DSPP) even in the three-dimensional microenvironment, they lack the specific markers for the characteristics of stem cells. Moreover, cells from dental pulp showed significant up-regulation of DSPP when co-cultured with the hODCs, while control fibroblasts with the hODCs did not. Taken together, we propose that the hODCs can be isolated and expanded over the long term with Y-27632 to investigate not only the development of the hODCs but also other types of benign human tumors. PMID:27514999

  18. Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction

    PubMed Central

    Okumura, Naoki; Sakamoto, Yuji; Fujii, Keita; Kitano, Junji; Nakano, Shinichiro; Tsujimoto, Yuki; Nakamura, Shin-ichiro; Ueno, Morio; Hagiya, Michio; Hamuro, Junji; Matsuyama, Akifumi; Suzuki, Shingo; Shiina, Takashi; Kinoshita, Shigeru; Koizumi, Noriko

    2016-01-01

    The corneal endothelium maintains corneal transparency; consequently, its dysfunction causes severe vision loss. Tissue engineering-based therapy, as an alternative to conventional donor corneal transplantation, is anticipated to provide a less invasive and more effective therapeutic modality. We conducted a preclinical study for cell-based therapy in a primate model and demonstrated regeneration of the corneal endothelium following injection of cultured monkey corneal endothelial cells (MCECs) or human CECs (HCECs), in combination with a Rho kinase (ROCK) inhibitor, Y-27632, into the anterior chamber. We also evaluated the safety and efficacy of Good Manufacturing Practice (GMP)-grade HCECs, similar to those planned for use as transplant material for human patients in a clinical trial, and we showed that the corneal endothelium was regenerated without adverse effect. We also showed that CEC engraftment is impaired by limited substrate adhesion, which is due to actomyosin contraction induced by dissociation-induced activation of ROCK/MLC signaling. Inclusion of a ROCK inhibitor improves efficiency of engraftment of CECs and enables cell-based therapy for treating corneal endothelial dysfunction as a clinically relevant therapy. PMID:27189516

  19. Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction.

    PubMed

    Okumura, Naoki; Sakamoto, Yuji; Fujii, Keita; Kitano, Junji; Nakano, Shinichiro; Tsujimoto, Yuki; Nakamura, Shin-Ichiro; Ueno, Morio; Hagiya, Michio; Hamuro, Junji; Matsuyama, Akifumi; Suzuki, Shingo; Shiina, Takashi; Kinoshita, Shigeru; Koizumi, Noriko

    2016-01-01

    The corneal endothelium maintains corneal transparency; consequently, its dysfunction causes severe vision loss. Tissue engineering-based therapy, as an alternative to conventional donor corneal transplantation, is anticipated to provide a less invasive and more effective therapeutic modality. We conducted a preclinical study for cell-based therapy in a primate model and demonstrated regeneration of the corneal endothelium following injection of cultured monkey corneal endothelial cells (MCECs) or human CECs (HCECs), in combination with a Rho kinase (ROCK) inhibitor, Y-27632, into the anterior chamber. We also evaluated the safety and efficacy of Good Manufacturing Practice (GMP)-grade HCECs, similar to those planned for use as transplant material for human patients in a clinical trial, and we showed that the corneal endothelium was regenerated without adverse effect. We also showed that CEC engraftment is impaired by limited substrate adhesion, which is due to actomyosin contraction induced by dissociation-induced activation of ROCK/MLC signaling. Inclusion of a ROCK inhibitor improves efficiency of engraftment of CECs and enables cell-based therapy for treating corneal endothelial dysfunction as a clinically relevant therapy. PMID:27189516

  20. Topical delivery of a Rho-kinase inhibitor to the cornea via mucoadhesive film.

    PubMed

    Chan, Wendy; Akhbanbetova, Alina; Quantock, Andrew J; Heard, Charles M

    2016-08-25

    The application of inhibitors of the Rho kinase pathway (ROCK inhibitors) to the surface of the eye in the form of eyedrops has beneficial effects which aid the recovery of diseased or injured endothelial cells that line the inner surface of the cornea. The aim of this study was to test the plausibility of delivering a selective ROCK inhibitor, Y-27632, to the cornea using a thin polymeric film. Mucoadhesive polymeric thin films were prepared incorporating Y-27632 and diffusional release into PBS was determined. Topical ocular delivery from the applied film was investigated using freshly excised porcine eyes and eyedrops of equivalent concentration acted as comparators; after 24h the formulations were removed and the corneas extracted. Drug-loaded thin polymeric films, with high clarity and pliability were produced. ROCK inhibitor Y-27632 was weakly retained within the film, with release attaining equilibrium after 1h. This in turn facilitated its rapid ocular delivery, and an approximately three-fold greater penetration of Y-27632 into cryoprobe-treated corneas was observed from the thin film (p<0.01) compared to eyedrops. These findings support the further development of ROCK inhibitor delivery to the cornea via release from thin mucoadhesive films to treat vision loss cause by corneal endothelial dysfunction. PMID:27196964

  1. Rho2 Palmitoylation Is Required for Plasma Membrane Localization and Proper Signaling to the Fission Yeast Cell Integrity Mitogen-Activated Protein Kinase Pathway

    PubMed Central

    Sánchez-Mir, Laura; Franco, Alejandro; Martín-García, Rebeca; Madrid, Marisa; Vicente-Soler, Jero; Soto, Teresa; Gacto, Mariano; Pérez, Pilar

    2014-01-01

    The fission yeast small GTPase Rho2 regulates morphogenesis and is an upstream activator of the cell integrity pathway, whose key element, mitogen-activated protein kinase (MAPK) Pmk1, becomes activated by multiple environmental stimuli and controls several cellular functions. Here we demonstrate that farnesylated Rho2 becomes palmitoylated in vivo at cysteine-196 within its carboxyl end and that this modification allows its specific targeting to the plasma membrane. Unlike that of other palmitoylated and prenylated GTPases, the Rho2 control of morphogenesis and Pmk1 activity is strictly dependent upon plasma membrane localization and is not found in other cellular membranes. Indeed, artificial plasma membrane targeting bypassed the Rho2 need for palmitoylation in order to signal. Detailed functional analysis of Rho2 chimeras fused to the carboxyl end from the essential GTPase Rho1 showed that GTPase palmitoylation is partially dependent on the prenylation context and confirmed that Rho2 signaling is independent of Rho GTP dissociation inhibitor (GDI) function. We further demonstrate that Rho2 is an in vivo substrate for DHHC family acyltransferase Erf2 palmitoyltransferase. Remarkably, Rho3, another Erf2 target, negatively regulates Pmk1 activity in a Rho2-independent fashion, thus revealing the existence of cross talk whereby both GTPases antagonistically modulate the activity of this MAPK cascade. PMID:24820419

  2. Statins and Selective Inhibition of Rho Kinase Protect Small Conductance Calcium-Activated Potassium Channel Function (KCa2.3) in Cerebral Arteries

    PubMed Central

    Jimenez-Altayo, Francesc; Cottrell, Graeme S.

    2012-01-01

    Background In rat middle cerebral and mesenteric arteries the KCa2.3 component of endothelium-dependent hyperpolarization (EDH) is lost following stimulation of thromboxane (TP) receptors, an effect that may contribute to the endothelial dysfunction associated with cardiovascular disease. In cerebral arteries, KCa2.3 loss is associated with NO synthase inhibition, but is restored if TP receptors are blocked. The Rho/Rho kinase pathway is central for TP signalling and statins indirectly inhibit this pathway. The possibility that Rho kinase inhibition and statins sustain KCa2.3 hyperpolarization was investigated in rat middle cerebral arteries (MCA). Methods MCAs were mounted in a wire myograph. The PAR2 agonist, SLIGRL was used to stimulate EDH responses, assessed by simultaneous measurement of smooth muscle membrane potential and tension. TP expression was assessed with rt-PCR and immunofluorescence. Results Immunofluorescence detected TP in the endothelial cell layer of MCA. Vasoconstriction to the TP agonist, U46619 was reduced by Rho kinase inhibition. TP receptor stimulation lead to loss of KCa2.3 mediated hyperpolarization, an effect that was reversed by Rho kinase inhibitors or simvastatin. KCa2.3 activity was lost in L-NAME-treated arteries, but was restored by Rho kinase inhibition or statin treatment. The restorative effect of simvastatin was blocked after incubation with geranylgeranyl-pyrophosphate to circumvent loss of isoprenylation. Conclusions Rho/Rho kinase signalling following TP stimulation and L-NAME regulates endothelial cell KCa2.3 function. The ability of statins to prevent isoprenylation and perhaps inhibit of Rho restores/protects the input of KCa2.3 to EDH in the MCA, and represents a beneficial pleiotropic effect of statin treatment. PMID:23056429

  3. RhoA regulates invasion of glioma cells via the c-Jun NH2-terminal kinase pathway under hypoxia.

    PubMed

    Tong, Jiao Jian; Yan, Zhang; Jian, Ren; Tao, Huang; Hui, Ouyang Tao; Jian, Chen

    2012-09-01

    The purpose of this study was to investigate the mechanism of glioma cell invasion in hypoxic conditions. We demonstrated that hypoxia increased cell invasion, matrix metalloproteinase-2 (MMP2) activity and time-dependent expression of hypoxia inducible factor-1α (HIF-1α) in human glioma cells. These data suggest that MMP2 may play a significant role in tumor invasion in hypoxic conditions. We investigated the mechanisms involved in the increased MMP2 activity and cell invasion in hypoxic conditions. Increased expression of phospho-Jun NH2-terminal kinase (p-JNK) and phospho-c-Jun (p-c-Jun) in glioma cells induced by hypoxia was detected. Furthermore, this effect may be reduced by inhibiting the JNK signaling pathway. We found that inhibition of RhoA geranylgeranylation by geranylgeranyltransferase inhibitor-2147 (GGTI-2147) or knockdown of RhoA by siRNA against RhoA reduced the expression of p-JNK and p-c-Jun, and decreased MMP2 activity and glioma cell invasion in hypoxic conditions. These data suggest a link among RhoA, JNK, c-Jun and MMP2 activity that is functionally involved in the increased glioma cell invasion induced by hypoxia. PMID:23741249

  4. The effects of ripasudil (K-115), a Rho kinase inhibitor, on activation of human conjunctival fibroblasts.

    PubMed

    Futakuchi, Akiko; Inoue, Toshihiro; Fujimoto, Tomokazu; Inoue-Mochita, Miyuki; Kawai, Motofumi; Tanihara, Hidenobu

    2016-08-01

    The most common cause of glaucoma surgery failure is scar formation induced by activation of wound-healing responses and resultant fibrosis at the surgical site. We investigated the effects of ripasudil, a Rho kinase inhibitor, on activation of human conjunctival fibroblasts (HConF). HConF were pretreated with different concentrations of ripasudil for 1 h before addition of transforming growth factor (TGF)-β2, followed by incubation for 48 h. TGF-β2-treated fibroblasts exhibited a significant increase in expression of α-smooth muscle actin (α-SMA), a marker of fibroblast-to-myofibroblast differentiation, and this increase was significantly suppressed, in a dose-dependent manner, by pretreatment with ripasudil. Ripasudil pretreatment also significantly attenuated TGF-β2-induced fibronectin production and collagen gel contraction. TGF-β2 increased both the number of viable cells and the number of cells in the G2/M phase of the cell cycle; these effects were attenuated by pretreatment with ripasudil. In addition, we explored the effects of ripasudil on stimulation of HConF by activated macrophages. Human monocytic cell line THP-1 cells were differentiated into M1 or M2 macrophage-like cells, and HConF were treated with conditioned media derived from these macrophages in the presence or absence of ripasudil. Conditioned medium from M2 macrophage-like cells induced a significant increase in α-SMA expression, viable cell numbers, and gel contraction, all of which were significantly suppressed by ripasudil. Thus, overall, ripasudil attenuated activation of human conjunctival fibroblasts. Ripasudil may be of therapeutic utility, preventing excessive scarring after glaucoma filtration surgery. PMID:27394186

  5. Inhibition of Rho Kinase (ROCK) Leads to Increased Cerebral Blood Flow and Stroke Protection

    PubMed Central

    Rikitake, Yoshiyuki; Kim, Hyung-Hwan; Huang, Zhihong; Seto, Minoru; Yano, Kazuo; Asano, Toshio; Moskowitz, Michael A.; Liao, James K.

    2009-01-01

    Background and Purpose Endothelium-derived nitric oxide (NO) plays a pivotal role in vascular protection. The Rho kinase (ROCK) inhibitor, hydroxyfasudil, prevents the downregulation of endothelial NO synthase (eNOS) under hypoxic conditions. However, it is unknown whether inhibition of ROCK can attenuate ischemia-induced endothelial dysfunction and tissue damage in vivo. Methods Human vascular endothelial cells were treated with increasing concentrations of hydroxyfasudil (0.1 to 100 μmol/L) and eNOS expression and activity were measured. To determine the physiological relevance of eNOS regulation by ROCK, we administered fasudil, which is metabolized to hydroxyfasudil in vivo, to mice for 2 days before subjecting them to middle cerebral artery occlusion. Cerebral blood flow, cerebral infarct size, and neurologic deficit were measured. Results In a concentration-dependent manner, hydroxyfasudil increased eNOS mRNA and protein expression, resulting in a 1.9- and 1.6-fold increase, respectively, at 10 μmol/L (P<0.05 for both). This correlated with a 1.5- and 2.3-fold increase in eNOS activity and NO production, respectively (P<0.05 for both). Fasudil increased cerebral blood flow to both ischemic and nonischemic brain areas, reduced cerebral infarct size by 33%, and improved neurologic deficit score by 37% (P<0.05). This correlated with inhibition of brain and vascular ROCK activity and increased eNOS expression and activity. Another ROCK inhibitor, Y-27632, also showed similar effects. The neuroprotective effects of fasudil were absent in eNOS-deficient mice. Conclusions These findings indicate that the neuroprotective effect of ROCK inhibition is mediated by endothelium-derived NO and suggest that ROCK may be an important therapeutic target for ischemic stroke. PMID:16141422

  6. Melatonin decreases breast cancer metastasis by modulating Rho-associated kinase protein-1 expression

    PubMed Central

    Borin, Thaiz Ferraz; Arbab, Ali Syed; Gelaleti, Gabriela Bottaro; Ferreira, Lívia Carvalho; Moschetta, Marina Gobbe; Jardim-Perassi, Bruna Victorasso; Iskander, ASM; Varma, Nadimpalli Ravi S.; Shankar, Adarsh; Coimbra, Verena Benedick; Fabri, Vanessa Alves; de Oliveira, Juliana Garcia; de Campos Zuccari, Debora Aparecida Pires

    2016-01-01

    The occurrence of metastasis, an important breast cancer prognostic factor, depends on cell migration/invasion mechanisms, which can be controlled by regulatory and effector molecules such as Rho-associated kinase protein (ROCK-1). Increased expression of this protein promotes tumor growth and metastasis, which can be restricted by ROCK-1 inhibitors. Melatonin has shown oncostatic, antimetastatic, and anti-angiogenic effects and can modulate ROCK-1 expression. Metastatic and nonmetastatic breast cancer cell lines were treated with melatonin as well as with specific ROCK-1 inhibitor (Y27632). Cell viability, cell migration/invasion, and ROCK-1 gene expression and protein expression were determined in vitro. In vivo lung metastasis study was performed using female athymic nude mice treated with either melatonin or Y27832 for 2 and 5 wk. The metastases were evaluated by X-ray computed tomography and single photon emission computed tomography (SPECT) and by immunohistochemistry for ROCK-1 and cytokeratin proteins. Melatonin and Y27632 treatments reduced cell viability and invasion/migration of both cell lines and decreased ROCK-1 gene expression in metastatic cells and protein expression in nonmetastatic cell line. The numbers of ‘hot’ spots (lung metastasis) identified by SPECT images were significantly lower in treated groups. ROCK-1 protein expression also was decreased in metastatic foci of treated groups. Melatonin has shown to be effective in controlling metastatic breast cancer in vitro and in vivo, not only via inhibition of the proliferation of tumor cells but also through direct antagonism of metastatic mechanism of cells rendered by ROCK-1 inhibition. When Y27632 was used, the effects were similar to those found with melatonin treatment. PMID:26292662

  7. Mechano-reciprocity is maintained between physiological boundaries by tuning signal flux through the Rho-associated protein kinase.

    PubMed

    Boyle, Sarah T; Samuel, Michael S

    2016-07-01

    The mechanical properties of the ECM strongly influence the behavior of all cell types within a given tissue. Increased matrix tension promotes epithelial cell proliferation by engaging mitogenic mechanotransduction signaling including the Salvador/Warts/Hippo, PI 3-kinase, Rho, Wnt and MAP kinase pathways. The Rho signaling pathways in particular are capable of increasing intra-cellular tension by elevating the production and contractility of the actomyosin cytoskeleton, which counteracts tension changes within the matrix in a process termed mechano-reciprocity. We have discovered that Rho-ROCK signaling increases the production of ECM through paracrine signaling between the epithelium and fibroblasts and also the remodeling of the ECM by regulating focal adhesion dynamics in fibroblasts. These two phenomena together cause increased ECM tension. Enhanced mechano-reciprocity results in ever-increasing intra- and extra-cellular tension in a vicious cycle that promotes cell proliferation and tumor progression. These insights reveal that inhibiting mechano-reciprocity, reducing ECM tension and targeting cancer-associated fibroblasts in a coordinated fashion has potential as cancer therapy. PMID:27168253

  8. Substituted 2H-isoquinolin-1-ones as potent Rho-kinase inhibitors: part 3, aryl substituted pyrrolidines.

    PubMed

    Bosanac, Todd; Hickey, Eugene R; Ginn, John; Kashem, Mohammed; Kerr, Steven; Kugler, Stanley; Li, Xiang; Olague, Alan; Schlyer, Sabine; Young, Erick R R

    2010-06-15

    The discovery and SAR of a series of beta-aryl substituted pyrrolidine 2H-isoquinolin-1-one inhibitors of Rho-kinase (ROCK) derived from 2 is herein described. SAR studies have shown that aryl groups in the beta-position are optimal for potency. Our efforts focused on improving the ROCK potency of this isoquinolone class of inhibitors which led to the identification of pyrrolidine 32 which demonstrated a 10-fold improvement in aortic ring (AR) potency over 2. PMID:20471253

  9. Interventional Transcatheter Closure Ameliorates the Leukocyte Rho Kinase Activities among Patients with Patent Ductus Arteriosus

    PubMed Central

    Hsieh, Min-Ling; Liu, Ping-Yen; Wu, Jing-Ming; Liao, James K.; Wang, Jieh-Neng

    2015-01-01

    Background Patent ductus arteriosus (PDA) causes increased pulmonary blood flow, which can lead to pulmonary arterial hypertension (PAH). Rho-associated coiled-coil containing protein kinase (ROCK) may play an important pathophysiological role in PAH. We hypothesized that the increased pulmonary artery (PA) flow from PDA could activate ROCK. Methods Patients who received a PDA transcatheter closure in our hospital were consecutively enrolled in this study. Basic demographics and clinical hemodynamic data of the study participants were recorded. Then, ROCK activity was measured before and after the PDA occlusion procedure. ROCK activity was defined as the phosphorylation ratio of myosin-binding subunit by Western blot measurement. We also sub-divided patients into the coil group and occluder group based on the occlusion device used in each patient’s procedure. Results From January 2009 to December 2011, 25 patients with a median age of 2.3 years, ranging from 10 months to 72 years were enrolled. The mean PDA size was 0.31 ± 0.14 cm, the mean Qp/Qs shunt was 1.54 ± 0.41, and the mean systolic pulmonary artery pressure was 26.9 ± 10.3 mmHg. There were 10 patients (one boy and nine girls) in the coil group and 15 patients (four boys and eleven girls) in the occluder group. Following the closure of the PDA, ROCK activity significantly decreased (1.78 ± 2.25 vs. 0.77 ± 0.69, p < 0.01). There was a strong correlation between the leukocyte ROCK activity with the systolic PA pressure (y = 5.4608x + 22.54, R2 = 0.5539, p < 0.05), but not the Qp/Qs value. Both subgroups showed significant changes of ROCK activity after the procedure. Interestingly, when comparing the coil group with the occluder group, the decrease in ROCK activity was more apparent in the occluder group. Conclusions The findings of this study indicated that ROCK activity is higher in patients with PDA and correlates with PA pressure. The decrease in ROCK activity following the device closure suggests

  10. LIPOXIN A4 MEDIATES AORTIC CONTRACTION VIA RHOA/RHO KINASE, ENDOTHELIAL DYSFUNCTION AND REACTIVE OXYGEN SPECIES

    PubMed Central

    Wenceslau, Camilla Ferreira; McCarthy, Cameron G.; Szasz, Theodora; Webb, R. Clinton

    2015-01-01

    Background Lipoxin A4 (LXA4) is a biologically active product generated from arachidonic acid by lipoxygenase action. The production of lipoxins is enhanced by aspirin through acetylation of cyclooxygenase-2, via a mechanism known as “aspirin-triggered lipoxin”. LXA4 has both anti-inflammatory and proinflammatory actions, the latter being related with reocclusion and restenosis after coronary angioplasty in patients treated with aspirin. However, little is known of the actions of LXA4 on the vasculature. We hypothesized that LXA4 promotes contractile responses and contributes to endothelial dysfunction. Methods We used aorta from Wistar rats to assess vascular function. Reactive oxygen species (ROS) production and contractile and regulatory proteins were investigated. Results LXA4 induced concentration-dependent contractions via formyl peptide receptor-2 activation and both RhoA/Rho kinase inhibitor and ROS scavenger decreased this contraction. Also, endothelium removal, and COX-2 and NAD(P)H oxidase inhibitors attenuate the LXA4-induced contraction. LXA4 potentiated phenylephrine-induced contraction and inhibited acetylcholine-induced relaxation. In the presence of LXA4, ROS production was increased and protein expression of RhoA, phospho-myosin light chain, COX-2 and p67phox was higher. Conclusion LXA4 has a functional role in the vasculature and may contribute to further vascular damage in conditions where its production is exacerbated, such as in angioplasty-associated complications treated with aspirin. PMID:25612650

  11. Inhibition of Rho-Associated Protein Kinase Increases the Angiogenic Potential of Mesenchymal Stem Cell Aggregates via Paracrine Effects.

    PubMed

    Hong, Soyoung; Lee, Jae Yeon; Hwang, Changmo; Shin, Jennifer H; Park, Yongdoo

    2016-02-01

    The aggregation of multiple cells, such as mesenchymal condensation, is an important biological process in skeletal muscle development, osteogenesis, and adipogenesis. Due to limited in vivo study model systems, a simple and effective in vitro three-dimensional (3D) aggregation system is required to study the mechanisms of multicellular aggregation and its applications. We first generated controlled mesenchymal stem cell (MSC) aggregates using a bioprinting technique to monitor their aggregation and sprouting. We induced the angiogenic potential of the MSCs through chemical inhibition of the Rho/Rho-associated protein kinase (ROCK) pathway, which led to hairy sprouting in the aggregates. The angiogenic potential of this 3D construct was then tested by subcutaneously implanting the Matrigel with 3D MSC aggregates in a rat. Treatment of 3D MSCs with the ROCK inhibitor, Y27632, increased their angiogenic activity in vivo. The gene expressions and histological staining indicated that angiogenesis and neovascularization were mainly regulated by the paracrine factors secreted from human 3D MSC constructs. Our results demonstrate the enhancement of the angiogenic potential of the MSC constructs through the secretion of vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF) by the inhibition of the Rho/ROCK pathway. PMID:26592750

  12. Morelloflavone, a biflavonoid, inhibits tumor angiogenesis by targeting rho GTPases and extracellular signal-regulated kinase signaling pathways.

    PubMed

    Pang, Xiufeng; Yi, Tingfang; Yi, Zhengfang; Cho, Sung Gook; Qu, Weijing; Pinkaew, Decha; Fujise, Ken; Liu, Mingyao

    2009-01-15

    Morelloflavone, a biflavonoid extracted from Garcinia dulcis, has shown antioxidative, antiviral, and anti-inflammatory properties. However, the function and the mechanism of this compound in cancer treatment and tumor angiogenesis have not been elucidated to date. In this study, we postulated that morelloflavone might have the ability to inhibit angiogenesis, the pivotal step in tumor growth, invasiveness, and metastasis. We showed that morelloflavone could inhibit vascular endothelial growth factor (VEGF)-induced cell proliferation, migration, invasion, and capillary-like tube formation of primary cultured human umbilical vascular endothelial cells in a dose-dependent manner. Morelloflavone effectively inhibited microvessel sprouting of endothelial cells in the mouse aortic ring assay and the formation of new blood microvessels induced by VEGF in the mouse Matrigel plug assay. Furthermore, morelloflavone inhibited tumor growth and tumor angiogenesis of prostate cancer cells (PC-3) in xenograft mouse tumor model in vivo, suggesting that morelloflavone inhibited tumorigenesis by targeting angiogenesis. To understand the underlying mechanism of morelloflavone on the inhibitory effect of tumor growth and angiogenesis, we showed that morelloflavone could inhibit the activation of both RhoA and Rac1 GTPases but have little effect on the activation of Cdc42 GTPase. Additionally, morelloflavone inhibited the phosphorylation and activation of Raf/mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase/ERK pathway kinases without affecting VEGF receptor 2 activity. Together, our results indicate that morelloflavone exerts antiangiogenic action by targeting the activation of Rho-GTPases and ERK signaling pathways. These findings are the first to reveal the novel functions of morelloflavone in tumor angiogenesis and its molecular basis for the anticancer action. PMID:19147565

  13. Behavioural effects of basal ganglia rho-kinase inhibition in the unilateral 6-hydroxydopamine rat model of Parkinson's disease.

    PubMed

    Inan, Salim Yalcin; Soner, Burak Cem; Sahin, Ayse Saide

    2016-08-01

    Parkinson's disease (PD) is one of the most common neurodegenerative disorders, which affects more than six million people in the world. While current available pharmacological therapies for PD in the early stages of the disease usually improve motor symptoms, they cause side effects, such as fluctuations and dyskinesias in the later stages. In this later stage, high frequency deep brain stimulation of the subthalamic nucleus (STN-DBS) is a treatment option which is most successful to treat drug resistant advanced PD. It has previously been demonstrated that activation of Rho/Rho-kinase pathway is involved in the dopaminergic cell degeneration which is one of the main characteristics of PD pathology. In addition, the involvement of this pathway has been suggested in diverse cellular events in the central nervous system; such as epilepsy, anxiety-related behaviors, regulation of dendritic and axonal morphology, antinociception, subarachnoid haemorrhage, spinal cord injury and amyotrophic lateral sclerosis. However, up to date, to our knowledge there are no previous reports showing the beneficial effects of the potent Rho-kinase inhibitor Y-27632 in the 6-hydroxydopamine (6-OHDA) rat model of PD. Therefore, in the present study, we investigated the behavioural effects of basal ganglia Y-27632 microinjections in this PD model. Our results indicated that basal ganglia Y-27632 microinjections significantly decreased the number of contralateral rotations-induced by apomorphine, significantly increased line crossings in the open-field test, contralateral forelimb use in the limb-use asymmetry test and contralateral tape playing time in the somatosensory asymmetry test, which may suggest that Y-27632 could be a potentially active antiparkinsonian agent. PMID:26996632

  14. KSHV-TK is a tyrosine kinase that disrupts focal adhesions and induces Rho-mediated cell contraction

    PubMed Central

    Gill, Michael B; Turner, Rachel; Stevenson, Philip G; Way, Michael

    2015-01-01

    Paradoxically, the thymidine kinase (TK) encoded by Kaposi sarcoma-associated herpesvirus (KSHV) is an extremely inefficient nucleoside kinase, when compared to TKs from related herpesviruses. We now show that KSHV-TK, in contrast to HSV1-TK, associates with the actin cytoskeleton and induces extensive cell contraction followed by membrane blebbing. These dramatic changes in cell morphology depend on the auto-phosphorylation of tyrosines 65, 85 and 120 in the N-terminus of KSHV-TK. Phosphorylation of tyrosines 65/85 and 120 results in an interaction with Crk family proteins and the p85 regulatory subunit of PI3-Kinase, respectively. The interaction of Crk with KSHV-TK leads to tyrosine phoshorylation of this cellular adaptor. Auto-phosphorylation of KSHV-TK also induces a loss of FAK and paxillin from focal adhesions, resulting in activation of RhoA-ROCK signalling to myosin II and cell contraction. In the absence of FAK or paxillin, KSHV-TK has no effect on focal adhesion integrity or cell morphology. Our observations demonstrate that by acting as a tyrosine kinase, KSHV-TK modulates signalling and cell morphology. PMID:25471072

  15. Activation of ErbB2 and Downstream Signalling via Rho Kinases and ERK1/2 Contributes to Diabetes-Induced Vascular Dysfunction

    PubMed Central

    Akhtar, Saghir; Yousif, Mariam H. M.; Dhaunsi, Gursev S.; Sarkhouh, Fatma; Chandrasekhar, Bindu; Attur, Sreeja; Benter, Ibrahim F.

    2013-01-01

    Diabetes mellitus leads to vascular complications but the underlying signalling mechanisms are not fully understood. Here, we examined the role of ErbB2 (HER2/Neu), a transmembrane receptor tyrosine kinase of the ErbB/EGFR (epidermal growth factor receptor) family, in mediating diabetes-induced vascular dysfunction in an experimental model of type 1 diabetes. Chronic treatment of streptozotocin-induced diabetic rats (1 mg/kg/alt diem) or acute, ex-vivo (10−6, 10−5 M) administration of AG825, a specific inhibitor of ErbB2, significantly corrected the diabetes-induced hyper-reactivity of the perfused mesenteric vascular bed (MVB) to the vasoconstrictor, norephinephrine (NE) and the attenuated responsiveness to the vasodilator, carbachol. Diabetes led to enhanced phosphorylation of ErbB2 at multiple tyrosine (Y) residues (Y1221/1222, Y1248 and Y877) in the MVB that could be attenuated by chronic AG825 treatment. Diabetes- or high glucose-mediated upregulation of ErbB2 phosphorylation was coupled with activation of Rho kinases (ROCKs) and ERK1/2 in MVB and in cultured vascular smooth muscle cells (VSMC) that were attenuated upon treatment with either chronic or acute AG825 or with anti-ErbB2 siRNA. ErbB2 likley heterodimerizes with EGFR, as evidenced by increased co-association in diabetic MVB, and further supported by our finding that ERK1/2 and ROCKs are common downstream effectors since their activation could also be blocked by AG1478. Our results show for the first time that ErbB2 is an upstream effector of ROCKs and ERK1/2 in mediating diabetes-induced vascular dysfunction. Thus, potential strategies aimed at modifying actions of signal transduction pathways involving ErbB2 pathway may prove to be beneficial in treatment of diabetes-induced vascular complications. PMID:23826343

  16. Inhibition of the Rho/Rho kinase pathway prevents lipopolysaccharide-induced hyperalgesia and the release of TNF-α and IL-1β in the mouse spinal cord

    PubMed Central

    Wang, Cunjin; Song, Siyuan; Zhang, Yang; Ge, Yali; Fang, Xiangzhi; Huang, Tianfeng; Du, Jin; Gao, Ju

    2015-01-01

    Administration of lipopolysaccharide (LPS) by various routes produces profound inflammatory pain hypersensitivity. However, the molecular events that induce this response remain largely uncharacterized. In the present study, we sought to elucidate the role of the Rho/Rho kinase (ROCK) pathway in the release of tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β) following injection of LPS into the mouse paw, which is associated with nociceptive behavior. The spinal cord of LPS-treated mice showed increased active GTP-bound RhoA and upregulation of ROCK2 and c-fos compared to the normal saline group. Furthermore, the inflammation-related cytokines TNF-α and IL-1β were markedly increased in the spinal dorsal horn after intraplantar injection of LPS. However, the latter effects were prevented by prophylactic intrathecal administration of the Rho inhibitor (C3 exoenzyme) or the ROCK inhibitor (Y27632). Collectively, our results suggest that the Rho/ROCK signaling pathway plays a critical role in LPS-induced inflammatory pain and that this pathway is coincident with the release of the pro-nociceptive cytokines TNF-α and IL-1β, which produces hyperalgesia. PMID:26416580

  17. Analysis of responses to the Rho-kinase inhibitor Y-27632 in the pulmonary and systemic vascular bed of the rat.

    PubMed

    Casey, David B; Badejo, Adeleke M; Dhaliwal, Jasdeep S; Sikora, James L; Fokin, Alex; Golwala, Neel H; Greco, Anthony J; Murthy, Subramanyam N; Nossaman, Bobby D; Hyman, Albert L; Kadowitz, Philip J

    2010-07-01

    Responses to the Rho kinase inhibitor Y-27632 were investigated in the anesthetized rat. Under baseline conditions intravenous injections of Y-27632 decreased pulmonary and systemic arterial pressures and increased cardiac output. The decreases in pulmonary arterial pressures were enhanced when baseline tone was increased with U-46619, and under elevated tone conditions Y-27632 produced similar percent decreases in pulmonary and systemic arterial pressures. Injections of Y-27632 prevented and reversed the hypoxic pulmonary vasoconstrictor response. The increase in pulmonary arterial pressure in response to ventilation with a 10% O(2)-90% N(2) gas mixture was not well maintained during the period of hypoxic exposure. Treatment with the nitric oxide (NO) synthase (NOS) inhibitor nitro-l-arginine methyl ester (l-NAME) increased pulmonary arterial pressure and prevented the decline or fade in the hypoxic pulmonary vasoconstrictor response. The hypoxic pulmonary vasoconstrictor response was reversed by Y-27632 in control and in l-NAME-treated animals. The Rho kinase inhibitor attenuated increases in pulmonary arterial pressures in response to intravenous injections of serotonin, angiotensin II, and Bay K 8644. Y-27632, sodium nitrite, and BAY 41-8543, a guanylate cyclase stimulator, decreased pulmonary and systemic arterial pressures and vascular resistances in monocrotaline-treated rats. These data suggest that Rho kinase is involved in the regulation of baseline tone and in the mediation of pulmonary vasoconstrictor responses. The present data suggest that the hypoxic pulmonary vasoconstrictor response is modulated by the release of NO that mediates the nonsustained component of the response in the anesthetized rat. These data suggest that Rho kinase and NOS play important roles in the regulation of vasoconstrictor tone in physiological and pathophysiological states and that monocrotaline-induced pulmonary hypertension can be reversed by agents that inhibit Rho kinase

  18. Analysis of responses to the Rho-kinase inhibitor Y-27632 in the pulmonary and systemic vascular bed of the rat

    PubMed Central

    Casey, David B.; Badejo, Adeleke M.; Dhaliwal, Jasdeep S.; Sikora, James L.; Fokin, Alex; Golwala, Neel H.; Greco, Anthony J.; Murthy, Subramanyam N.; Nossaman, Bobby D.; Hyman, Albert L.

    2010-01-01

    Responses to the Rho kinase inhibitor Y-27632 were investigated in the anesthetized rat. Under baseline conditions intravenous injections of Y-27632 decreased pulmonary and systemic arterial pressures and increased cardiac output. The decreases in pulmonary arterial pressures were enhanced when baseline tone was increased with U-46619, and under elevated tone conditions Y-27632 produced similar percent decreases in pulmonary and systemic arterial pressures. Injections of Y-27632 prevented and reversed the hypoxic pulmonary vasoconstrictor response. The increase in pulmonary arterial pressure in response to ventilation with a 10% O2-90% N2 gas mixture was not well maintained during the period of hypoxic exposure. Treatment with the nitric oxide (NO) synthase (NOS) inhibitor nitro-l-arginine methyl ester (l-NAME) increased pulmonary arterial pressure and prevented the decline or fade in the hypoxic pulmonary vasoconstrictor response. The hypoxic pulmonary vasoconstrictor response was reversed by Y-27632 in control and in l-NAME-treated animals. The Rho kinase inhibitor attenuated increases in pulmonary arterial pressures in response to intravenous injections of serotonin, angiotensin II, and Bay K 8644. Y-27632, sodium nitrite, and BAY 41-8543, a guanylate cyclase stimulator, decreased pulmonary and systemic arterial pressures and vascular resistances in monocrotaline-treated rats. These data suggest that Rho kinase is involved in the regulation of baseline tone and in the mediation of pulmonary vasoconstrictor responses. The present data suggest that the hypoxic pulmonary vasoconstrictor response is modulated by the release of NO that mediates the nonsustained component of the response in the anesthetized rat. These data suggest that Rho kinase and NOS play important roles in the regulation of vasoconstrictor tone in physiological and pathophysiological states and that monocrotaline-induced pulmonary hypertension can be reversed by agents that inhibit Rho kinase

  19. Cardiovascular effects of a novel potent and highly selective azaindole-based inhibitor of Rho-kinase

    PubMed Central

    Kast, R; Schirok, H; Figueroa-Pérez, S; Mittendorf, J; Gnoth, M J; Apeler, H; Lenz, J; Franz, J K; Knorr, A; Hütter, J; Lobell, M; Zimmermann, K; Münter, K; Augstein, K H; Ehmke, H; Stasch, J P

    2007-01-01

    Background and purpose: Rho-kinase (ROCK) has been implicated in the pathophysiology of altered vasoregulation leading to hypertension. Here we describe the pharmacological characterization of a potent, highly selective and orally active ROCK inhibitor, the derivative of a class of azaindoles, azaindole 1(6-chloro-N 4-{3,5-difluoro-4-[(3-methyl-1H-pyrrolo[2,3-b]pyridin-4-yl)oxy]-phenyl}pyrimidine-2,4-diamine). Experimental approach: Pharmacological characterization of azaindole 1was performed with human recombinant ROCK in vitro. Vasodilator activity was determined using isolated vessels in vitro and different animal models in vivo. Key results: This compound inhibited the ROCK-1 and ROCK-2 isoenzymes with IC50 s of 0.6 and 1.1 nM in an ATP-competitive manner. Although ATP-competitive, azaindole 1was inactive against 89 kinases (IC50>10 μM) and showed only weak activity against an additional 21 different kinases (IC50=1 - 10 μM). Only the kinases TRK und FLT3 were inhibited by azaindole 1in the sub-micromolar range, albeit with IC50 values of 252 and 303 nM, respectively. In vivo, azaindole 1lowered blood pressure dose-dependently after i.v. administration in anaesthetized normotensive rats. In conscious normotensive and spontaneously hypertensive rats azaindole 1induced a dose-dependent decrease in blood pressure after oral administration without inducing a significant reflex increase in heart rate. In anaesthetized dogs, azaindole 1induced vasodilatation with a moderately elevated heart rate. Conclusions and implications: Azaindole 1is representative of a new class of selective and potent ROCK inhibitors and is a valuable tool for the elucidation of the role of ROCK in the cardiovascular system. PMID:17934515

  20. Cinnamyl alcohol attenuates vasoconstriction by activation of K+ channels via NO-cGMP-protein kinase G pathway and inhibition of Rho-kinase

    PubMed Central

    Kang, Yun Hwan; Yang, In Jun; Morgan, Kathleen G.

    2012-01-01

    Cinnamyl alcohol (CAL) is known as an antipyretic, and a recent study showed its vasodilatory activity without explaining the mechanism. Here we demonstrate the vasodilatory effect and the mechanism of action of CAL in rat thoracic aorta. The change of tension in aortic strips treated with CAL was measured in an organ bath system. In addition, vascular strips or human umbilical vein endothelial cells (HUVECs) were used for biochemical experiments such as Western blot and nitrite and cyclic guanosine monophosphate (cGMP) measurements. CAL attenuated the vasoconstriction of phenylephrine (PE, 1 µM)-precontracted aortic strips in an endothelium-dependent manner. CAL-induced vasorelaxation was inhibited by pretreatment with NG-nitro-L-arginine methyl ester (L-NAME; 10-4 M), methylene blue (MB; 10-5 M) and 1 H-[1,2,4]-oxadiazolole-[4,3-a] quinoxalin-10one, (ODQ; 10-6 or 10-7 M) in the endothelium-intact aortic strips. Atrial natriuretic peptide (ANP; 10-8 or 10-9 M) did not affect the vasodilatory effect of CAL. The phosphorylation of endothelial nitric oxide synthase (eNOS) and generation of nitric oxide (NO) were stimulated by CAL treatment in HUVECs and inhibited by treatment with L-NAME. In addition, cGMP and PKG1 activation in aortic strips treated with CAL were also significantly inhibited by L-NAME. Furthermore, CAL relaxed Rho-kinase activator calpeptin-precontracted aortic strips, and the vasodilatory effect of CAL was inhibited by the ATP-sensitive K+ channel inhibitor glibenclamide (Gli; 10-5 M) and the voltage-dependent K+ channel inhibitor 4-aminopyridine (4-AP; 2 × 10-4 M). These results suggest that CAL induces vasorelaxation by activating K+ channels via the NO-cGMP-PKG pathway and the inhibition of Rho-kinase. PMID:23178275

  1. Treatment with a Rho Kinase Inhibitor Improves Survival from Graft-Versus-Host Disease in Mice after MHC-Haploidentical Hematopoietic Cell Transplantation

    PubMed Central

    Iyengar, Sujatha; Zhan, Caixin; Lu, Jordan; Korngold, Robert; Schwartz, David H.

    2014-01-01

    Acute graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic cell transplantation (HCT) and the main cause of nonrelapse mortality during the first 100 days post-transplant. Although GVHD can be prevented by extensive removal of mature donor T cells from the donor hematopoietic stem cell population, doing so eliminates any potential allogeneic graft-versus-tumor (GVT) effect also mediated by donor T cells and results in unacceptable rates of cancer relapse. One potential solution to this problem of separating GVHD development from a GVT response is to prevent T cell–mediated GVHD in the intestinal tract (IT) while preserving systemic antihost alloreactivity of donor T cells that target residual tumor cells expressing host alloantigens. We examined the ability of the anti-inflammatory rho kinase inhibitor, fasudil, given orally and intraperitoneally, to prevent GVHD in a C3H → B6C3F1 mouse model of MHC-haploidentical bone marrow transplantation. Fasudil-treated recipients of anti-thy-1 mAb + C′ treated bone marrow (ATBM) cells plus T cells had a 73% 90-day survival compared with 25% among untreated ATBM + T cell recipients (P < .0001). Severe initial weight loss was similar in the 2 groups, but less diarrhea was observed among treated animals, and fasudil-treated survivors recovered more weight than untreated survivors. Skin inflammation occurred and resolved between weeks 2 and 8 with similar severity and kinetics in both treated and untreated surviving animals, indicating persistent alloreactivity. Day 10 posttransplantation splenocytes from fasudil-treated mice, containing mature donor T cells, and day 98 splenocytes, containing mature donor and de novo thymus-derived T cells, exhibited alloreactivity against host parental antigens, as assessed by in vitro IFN-γ production and rounds of allostimulated proliferation, respectively. These data support the idea that targeted treatment of the IT with rho kinase inhibitors can

  2. Mutations in CIT, encoding citron rho-interacting serine/threonine kinase, cause severe primary microcephaly in humans.

    PubMed

    Shaheen, Ranad; Hashem, Amal; Abdel-Salam, Ghada M H; Al-Fadhli, Fatima; Ewida, Nour; Alkuraya, Fowzan S

    2016-10-01

    Primary microcephaly is a clinical phenotype in which the head circumference is significantly reduced at birth due to abnormal brain development, primarily at the cortical level. Despite the marked genetic heterogeneity, most primary microcephaly-linked genes converge on mitosis regulation. Two consanguineous families segregating the phenotype of severe primary microcephaly, spasticity and failure to thrive had overlapping autozygomes in which exome sequencing identified homozygous splicing variants in CIT that segregate with the phenotype within each family. CIT encodes citron, an effector of the Rho signaling that is required for cytokinesis specifically in proliferating neuroprogenitors, as well as for postnatal brain development. In agreement with the critical role assigned to the kinase domain in effecting these biological roles, we show that both splicing variants predict variable disruption of this domain. The striking phenotypic overlap between CIT-mutated individuals and the knockout mice and rats that are specifically deficient in the kinase domain supports the proposed causal link between CIT mutation and primary microcephaly in humans. PMID:27503289

  3. Exogenous nitric oxide inhibits Rho-associated kinase activity in patients with angina pectoris: a randomized controlled trial

    PubMed Central

    Maruhashi, Tatsuya; Noma, Kensuke; Fujimura, Noritaka; Kajikawa, Masato; Matsumoto, Takeshi; Hidaka, Takayuki; Nakashima, Ayumu; Kihara, Yasuki; Liao, James K; Higashi, Yukihito

    2016-01-01

    The RhoA/Rho-associated kinase (ROCK) pathway has a key physiological role in the pathogenesis of atherosclerosis. Increased ROCK activity is associated with cardiovascular diseases. Endogenous nitric oxide (NO) has an anti-atherosclerotic effect, whereas the exogenous NO-mediated cardiovascular effect still remains controversial. The purpose of this study was to evaluate the effect of exogenous NO on ROCK activity in patients with angina pectoris. This is a prospective, open-label, randomized, controlled study. A total of 30 patients with angina pectoris were randomly assigned to receive 40 mg day−1 of isosorbide mononitrate (n = 15, 12 men and 3 women, mean age of 63 ± 12 years, isosorbide mononitrate group) or conventional treatment (n = 15, 13 men and 2 women, mean age of 64 ± 13 years, control group) for 12 weeks. ROCK activity in peripheral leukocytes was measured by western blot analysis. ROCK activities at 4 and 12 weeks after treatment were decreased in the isosorbide mononitrate group (0.82 ± 0.33 at 0 week, 0.62 ± 0.20 at 4 weeks, 0.61 ± 0.19 at 12 weeks, n = 15 in each group, P < 0.05, respectively) but not altered in the control group. ROCK1 and ROCK2 expression levels were similar in all treatment periods in the two groups. These findings suggest that the administration of exogenous NO can inhibit ROCK activity, indicating that the usage of exogenous NO could have a protective effect in patients with angina pectoris. PMID:25740292

  4. Orthovanadate-induced vasocontraction is mediated by the activation of Rho-kinase through Src-dependent transactivation of epidermal growth factor receptor

    PubMed Central

    Yayama, Katsutoshi; Sasahara, Tomoya; Ohba, Hisaaki; Funasaka, Ayaka; Okamoto, Hiroshi

    2014-01-01

    Orthovanadate (OVA), a protein tyrosine phosphatase (PTPase) inhibitor, exerts contractile effects on smooth muscle in a Rho-kinase-dependent manner, but the precise mechanisms are not elucidated. The aim of this study was to determine the potential roles of Src and epidermal growth factor receptor (EGFR) in the OVA-induced contraction of rat aortas and the phosphorylation of myosin phosphatase target subunit 1 (MYPT1; an index of Rho-kinase activity) in vascular smooth muscle cells (VSMCs). Aortic contraction by OVA was significantly blocked not only by Rho kinase inhibitors Y-27632 [R-[+]-trans-N-[4-pyridyl]-4-[1-aminoethyl]-cyclohexanecarboxamide] and hydroxyfasudil [1-(1-hydroxy-5-isoquinolinesulfonyl)homopiperazine] but also by Src inhibitors PP2 [4-amino-3-(4-chlorophenyl)-1-(t-butyl)-1H-pyrazolo[3,4-d]pyrimidine] and Src inhibitor No. 5 [4-(3′-methoxy-6′-chloro-anilino)-6-methoxy-7(morpholino-3-propoxy)-quinazoline], and the EGFR inhibitors AG1478 [4-(3-chloroanilino)-6,7-dimethoxyquinazoline] and EGFR inhibitor 1 [cyclopropanecarboxylic acid-(3-(6-(3-trifluoromethyl-phenylamino)-pyrimidin-4-ylamino)-phenyl)-amide]. OVA induced rapid increases in the phosphorylation of MYPT1 (Thr-853), Src (Tyr-416), and EGFR (Tyr-1173) in VSMCs, and Src inhibitors abolished these effects. OVA-induced Src phosphorylation was abrogated by Src inhibitors, but not affected by inhibitors of EGFR and Rho-kinase. Inhibitors of Src and EGFR, but not Rho-kinase, also blocked OVA-induced EGFR phosphorylation. Furthermore, a metalloproteinase inhibitor TAPI-0 [N-(R)-[2-(hydroxyaminocarbonyl) methyl]-4-methylpentanoyl-l-naphthylalanyl-l-alanine amide] and an inhibitor of heparin-binding EGF (CRM 197) not only abrogated the OVA-induced aortic contraction, but also OVA-induced EGFR and MYPT1 phosphorylation, suggesting the involvement of EGFR transactivation. OVA also induced EGFR phosphorylation at Tyr-845, one of residues phosphorylated by Src. These results suggest that OVA

  5. Quantitative T(1rho) and magnetization transfer magnetic resonance imaging of acute cerebral ischemia in the rat.

    PubMed

    Mäkelä, Heidi I; Kettunen, Mikko I; Gröhn, Olli H J; Kauppinen, Risto A

    2002-05-01

    It has been previously shown that T1 in the rotating frame (T(1rho)) is a very sensitive and early marker of cerebral ischemia and that, interestingly, it can provide prognostic information about the degree of subsequent neuronal damage. In the present study the authors have quantified T(1rho) together with the rate and other variables of magnetization transfer (MT) associated with spin interactions between the bulk and semisolid macromolecular pools by means of Z spectroscopy, to examine the possible overlap of mechanisms affecting these magnetic resonance imaging contrasts. Substantial prolongation of cerebral T(1rho) was observed minutes after induction of ischemia, this change progressing in a time-dependent manner. Difference Z spectra (contralateral nonischemic minus ischemic brain tissue) showed a significant positive reminder in the time points from 0.5 to 3 hours after induction of ischemia, the polarity of this change reversing by 24 hours. Detailed analysis of the MT variables showed that the initial Z spectral changes were due to concerted increase in the maximal MT (+3%) and amount of MT (+4%). Interestingly, the MT rates derived either from the entire frequency range of Z spectra or the time constant for the first-order forward exchange (k(sat)) were unchanged at this time, these variables reducing only one day after induction of ischemia. The authors conclude that T(1rho) changes in the acute phase of ischemia coincide with both elevated maximal MT and amount of MT. These changes occur independent of the overall MT rate and in the absence of net water gain to the tissue, whereas in the consolidating infarction the decrease in the rate and amount of MT, as well as the extensive prolongation of T(1rho), are associated with water accumulation. PMID:11973427

  6. The Rho Kinases: Critical Mediators of Multiple Profibrotic Processes and Rational Targets for New Therapies for Pulmonary Fibrosis

    PubMed Central

    Knipe, Rachel S.; Tager, Andrew M.

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by progressive lung scarring, short median survival, and limited therapeutic options, creating great need for new pharmacologic therapies. IPF is thought to result from repetitive environmental injury to the lung epithelium, in the context of aberrant host wound healing responses. Tissue responses to injury fundamentally involve reorganization of the actin cytoskeleton of participating cells, including epithelial cells, fibroblasts, endothelial cells, and macrophages. Actin filament assembly and actomyosin contraction are directed by the Rho-associated coiled-coil forming protein kinase (ROCK) family of serine/threonine kinases (ROCK1 and ROCK2). As would therefore be expected, lung ROCK activation has been demonstrated in humans with IPF and in animal models of this disease. ROCK inhibitors can prevent fibrosis in these models, and more importantly, induce the regression of already established fibrosis. Here we review ROCK structure and function, upstream activators and downstream targets of ROCKs in pulmonary fibrosis, contributions of ROCKs to profibrotic cellular responses to lung injury, ROCK inhibitors and their efficacy in animal models of pulmonary fibrosis, and potential toxicities of ROCK inhibitors in humans, as well as involvement of ROCKs in fibrosis in other organs. As we discuss, ROCK activation is required for multiple profibrotic responses, in the lung and multiple other organs, suggesting ROCK participation in fundamental pathways that contribute to the pathogenesis of a broad array of fibrotic diseases. Multiple lines of evidence therefore indicate that ROCK inhibition has great potential to be a powerful therapeutic tool in the treatment of fibrosis, both in the lung and beyond. PMID:25395505

  7. Adjustable passive stiffness in mouse bladder: regulated by Rho kinase and elevated following partial bladder outlet obstruction.

    PubMed

    Speich, John E; Southern, Jordan B; Henderson, Sheree; Wilson, Cameron W; Klausner, Adam P; Ratz, Paul H

    2012-04-15

    Detrusor smooth muscle (DSM) contributes to bladder wall tension during filling, and bladder wall deformation affects the signaling system that leads to urgency. The length-passive tension (L-T(p)) relationship in rabbit DSM can adapt with length changes over time and exhibits adjustable passive stiffness (APS) characterized by a L-T(p) curve that is a function of both activation and strain history. Muscle activation with KCl, carbachol (CCh), or prostaglandin E(2) at short muscle lengths can increase APS that is revealed by elevated pseudo-steady-state T(p) at longer lengths compared with prior T(p) measurements at those lengths, and APS generation is inhibited by the Rho Kinase (ROCK) inhibitor H-1152. In the current study, mouse bladder strips exhibited both KCl- and CCh-induced APS. Whole mouse bladders demonstrated APS which was measured as an increase in pressure during passive filling in calcium-free solution following CCh precontraction compared with pressure during filling without precontraction. In addition, CCh-induced APS in whole mouse bladder was inhibited by H-1152, indicating that ROCK activity may regulate bladder compliance during filling. Furthermore, APS in whole mouse bladder was elevated 2 wk after partial bladder outlet obstruction, suggesting that APS may be relevant in diseases affecting bladder mechanics. The presence of APS in mouse bladder will permit future studies of APS regulatory pathways and potential alterations of APS in disease models using knockout transgenetic mice. PMID:22205227

  8. The interaction between Shroom3 and Rho-kinase is required for neural tube morphogenesis in mice.

    PubMed

    Das, Debamitra; Zalewski, Jenna K; Mohan, Swarna; Plageman, Timothy F; VanDemark, Andrew P; Hildebrand, Jeffrey D

    2014-01-01

    Shroom3 is an actin-associated regulator of cell morphology that is required for neural tube closure, formation of the lens placode, and gut morphogenesis in mice and has been linked to chronic kidney disease and directional heart looping in humans. Numerous studies have shown that Shroom3 likely regulates these developmental processes by directly binding to Rho-kinase and facilitating the assembly of apically positioned contractile actomyosin networks. We have characterized the molecular basis for the neural tube defects caused by an ENU-induced mutation that results in an arginine-to-cysteine amino acid substitution at position 1838 of mouse Shroom3. We show that this substitution has no effect on Shroom3 expression or localization but ablates Rock binding and renders Shroom3 non-functional for the ability to regulate cell morphology. Our results indicate that Rock is the major downstream effector of Shroom3 in the process of neural tube morphogenesis. Based on sequence conservation and biochemical analysis, we predict that the Shroom-Rock interaction is highly conserved across animal evolution and represents a signaling module that is utilized in a variety of biological processes. PMID:25171888

  9. Eukaryotic Translation Initiation Factor 5A (EIF5A) Regulates Pancreatic Cancer Metastasis by Modulating RhoA and Rho-associated Kinase (ROCK) Protein Expression Levels.

    PubMed

    Fujimura, Ken; Choi, Sunkyu; Wyse, Meghan; Strnadel, Jan; Wright, Tracy; Klemke, Richard

    2015-12-11

    Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers with an overall survival rate of less than 5%. The poor patient outcome in PDAC is largely due to the high prevalence of systemic metastasis at the time of diagnosis and lack of effective therapeutics that target disseminated cells. The fact that the underlying mechanisms driving PDAC cell migration and dissemination are poorly understood have hindered drug development and compounded the lack of clinical success in this disease. Recent evidence indicates that mutational activation of K-Ras up-regulates eIF5A, a component of the cellular translational machinery that is critical for PDAC progression. However, the role of eIF5A in PDAC cell migration and metastasis has not been investigated. We report here that pharmacological inhibition or genetic knockdown of eIF5A reduces PDAC cell migration, invasion, and metastasis in vitro and in vivo. Proteomic profiling and bioinformatic analyses revealed that eIF5A controls an integrated network of cytoskeleton-regulatory proteins involved in cell migration. Functional interrogation of this network uncovered a critical RhoA/ROCK signaling node that operates downstream of eIF5A in invasive PDAC cells. Importantly, eIF5A mediates PDAC cell migration and invasion by modulating RhoA/ROCK protein expression levels. Together our findings implicate eIF5A as a cytoskeletal rheostat controlling RhoA/ROCK protein expression during PDAC cell migration and metastasis. Our findings also implicate the eIF5A/RhoA/ROCK module as a potential new therapeutic target to treat metastatic PDAC cells. PMID:26483550

  10. Inhibition of Rho-associated protein kinase increases the ratio of formation of blastocysts from single human blastomeres

    PubMed Central

    HUANG, SUNXING; DING, CHENHUI; MAI, QINGYUN; XU, YANWEN; ZHOU, CANQUAN

    2016-01-01

    Y-27632 is a specific inhibitor of Rho-associated protein kinases (ROCKs), which are downstream effectors of Rho GTPase. The present study aimed to determine the effect of the specific ROCK inhibitor, Y-27632, on fresh human embryos and on single blastomeres obtained from discarded human embryos. A total of 784 poor-quality embryos were included, of which 526 were allocated to blastocyst culture directly and the remaining 258 were allocated to blastomere isolation. Embryos and single blastomeres were cultured either with, or without, Y-27632. Embryonic development was observed and recorded daily from day 5 onwards. Y-27632 did not affect the ratio of blastocyst formation or the quality of the human embryos. The duration of blastocyst formation was compared between the two groups in the embryo culture. On day 5, the blastocyst formation ratio in the experimental group was 11.4% (26/228), which was significantly (P=0.015) lower than the corresponding rate (19.7%; 44/223) in the control group. Survival analysis of the blastocyst formation duration showed that the median formation duration in the experimental group was significantly higher than that of the control group. The present study also obtained 1,192 blastomeres from 258 discarded day 3 embryos, and sibling blastomeres of similar sizes were equally allocated to experimental and control groups (n=596 in each). Treatment with Y-27632 increased the blastocyst formation ratio of human individual blastomeres, with 82 blastocysts of 596 blastomeres (13.8%), and 51 blastocysts of 596 blastomeres (8.6%) formed in the presence and absence of Y-27632, respectively (P=0.004). Compared with the control group, the mRNA and protein expression levels of E-cadherin in the blastocysts from blastomeres were enhanced by Y-27632 (P=0.022). In conclusion, the present study demonstrated that Y-27632 has different effects on the cleavage-stage of embryos and single blastomeres. Y-27632 increases the ratio of formation of blastocysts

  11. The effects of knockdown of rho-associated kinase 1 and zipper-interacting protein kinase on gene expression and function in cultured human arterial smooth muscle cells.

    PubMed

    Deng, Jing-Ti; Wang, Xiu-Ling; Chen, Yong-Xiang; O'Brien, Edward R; Gui, Yu; Walsh, Michael P

    2015-01-01

    Rho-associated kinase (ROCK) and zipper-interacting protein kinase (ZIPK) have been implicated in diverse physiological functions. ROCK1 phosphorylates and activates ZIPK suggesting that at least some of these physiological functions may require both enzymes. To test the hypothesis that sequential activation of ROCK1 and ZIPK is commonly involved in regulatory pathways, we utilized siRNA to knock down ROCK1 and ZIPK in cultured human arterial smooth muscle cells (SMC). Microarray analysis using a whole-transcript expression chip identified changes in gene expression induced by ROCK1 and ZIPK knockdown. ROCK1 knockdown affected the expression of 553 genes, while ZIPK knockdown affected the expression of 390 genes. A high incidence of regulation of transcription regulator genes was observed in both knockdowns. Other affected groups included transporters, kinases, peptidases, transmembrane and G protein-coupled receptors, growth factors, phosphatases and ion channels. Only 76 differentially expressed genes were common to ROCK1 and ZIPK knockdown. Ingenuity Pathway Analysis identified five pathways shared between the two knockdowns. We focused on cytokine signaling pathways since ROCK1 knockdown up-regulated 5 and down-regulated 4 cytokine genes, in contrast to ZIPK knockdown, which affected the expression of only two cytokine genes (both down-regulated). IL-6 gene expression and secretion of IL-6 protein were up-regulated by ROCK1 knockdown, whereas ZIPK knockdown reduced IL-6 mRNA expression and IL-6 protein secretion and increased ROCK1 protein expression, suggesting that ROCK1 may inhibit IL-6 secretion. IL-1β mRNA and protein levels were increased in response to ROCK1 knockdown. Differences in the effects of ROCK1 and ZIPK knockdown on cell cycle regulatory genes suggested that ROCK1 and ZIPK regulate the cell cycle by different mechanisms. ROCK1, but not ZIPK knockdown reduced the viability and inhibited proliferation of vascular SMC. We conclude that ROCK1 and

  12. The Effects of Knockdown of Rho-Associated Kinase 1 and Zipper-Interacting Protein Kinase on Gene Expression and Function in Cultured Human Arterial Smooth Muscle Cells

    PubMed Central

    Deng, Jing-Ti; Wang, Xiu-Ling; Chen, Yong-Xiang; O’Brien, Edward R.; Gui, Yu; Walsh, Michael P.

    2015-01-01

    Rho-associated kinase (ROCK) and zipper-interacting protein kinase (ZIPK) have been implicated in diverse physiological functions. ROCK1 phosphorylates and activates ZIPK suggesting that at least some of these physiological functions may require both enzymes. To test the hypothesis that sequential activation of ROCK1 and ZIPK is commonly involved in regulatory pathways, we utilized siRNA to knock down ROCK1 and ZIPK in cultured human arterial smooth muscle cells (SMC). Microarray analysis using a whole-transcript expression chip identified changes in gene expression induced by ROCK1 and ZIPK knockdown. ROCK1 knockdown affected the expression of 553 genes, while ZIPK knockdown affected the expression of 390 genes. A high incidence of regulation of transcription regulator genes was observed in both knockdowns. Other affected groups included transporters, kinases, peptidases, transmembrane and G protein-coupled receptors, growth factors, phosphatases and ion channels. Only 76 differentially expressed genes were common to ROCK1 and ZIPK knockdown. Ingenuity Pathway Analysis identified five pathways shared between the two knockdowns. We focused on cytokine signaling pathways since ROCK1 knockdown up-regulated 5 and down-regulated 4 cytokine genes, in contrast to ZIPK knockdown, which affected the expression of only two cytokine genes (both down-regulated). IL-6 gene expression and secretion of IL-6 protein were up-regulated by ROCK1 knockdown, whereas ZIPK knockdown reduced IL-6 mRNA expression and IL-6 protein secretion and increased ROCK1 protein expression, suggesting that ROCK1 may inhibit IL-6 secretion. IL-1β mRNA and protein levels were increased in response to ROCK1 knockdown. Differences in the effects of ROCK1 and ZIPK knockdown on cell cycle regulatory genes suggested that ROCK1 and ZIPK regulate the cell cycle by different mechanisms. ROCK1, but not ZIPK knockdown reduced the viability and inhibited proliferation of vascular SMC. We conclude that ROCK1 and

  13. Microtubule-dependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rho- and p21-activated kinases

    PubMed Central

    Robert, Amélie; Herrmann, Harald; Davidson, Michael W.; Gelfand, Vladimir I.

    2014-01-01

    Intermediate filaments (IFs) form a dense and dynamic network that is functionally associated with microtubules and actin filaments. We used the GFP-tagged vimentin mutant Y117L to study vimentin-cytoskeletal interactions and transport of vimentin filament precursors. This mutant preserves vimentin interaction with other components of the cytoskeleton, but its assembly is blocked at the unit-length filament (ULF) stage. ULFs are easy to track, and they allow a reliable and quantifiable analysis of movement. Our results show that in cultured human vimentin-negative SW13 cells, 2% of vimentin-ULFs move along microtubules bidirectionally, while the majority are stationary and tightly associated with actin filaments. Rapid motor-dependent transport of ULFs along microtubules is enhanced ≥5-fold by depolymerization of actin cytoskeleton with latrunculin B. The microtubule-dependent transport of vimentin ULFs is further regulated by Rho-kinase (ROCK) and p21-activated kinase (PAK): ROCK inhibits ULF transport, while PAK stimulates it. Both kinases act on microtubule transport independently of their effects on actin cytoskeleton. Our study demonstrates the importance of the actin cytoskeleton to restrict IF transport and reveals a new role for PAK and ROCK in the regulation of IF precursor transport.—Robert, A., Herrmann, H., Davidson, M. W., and Gelfand, V. I. Microtubule-dependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rho- and p21-activated kinases. PMID:24652946

  14. Vasomodulatory effect of novel peroxovanadate compounds on rat aorta: Role of rho kinase and nitric oxide/cGMP pathway.

    PubMed

    Khanna, Vivek; Jain, Manish; Barthwal, Manoj Kumar; Kalita, Diganta; Boruah, Jeena Jyoti; Das, Siva Prasad; Islam, Nashreen S; Ramasarma, Tangirala; Dikshit, Madhu

    2011-09-01

    The present study was undertaken to assess the role of reactive oxygen species (ROS) in rat aortic ring vasoreactivity and integrity by using various peroxovanadate (pV) compounds. All the pV compounds (1nM-300 μM) used in the present study exerted concentration-dependent contractions on endothelium intact rat aortic rings. All compounds with an exception of DPV-asparagine (DPV-asn) significantly altered vascular integrity as shown by diminished KCl responses. Phenylephrine (PE)-mediated contractions (3nM-300 μM) were unaltered in the presence of these compounds. Acetylcholine (Ach)-mediated relaxation in PE (1μM) pre-contracted rings was significantly reduced in presence of diperoxovanadate (DPV), poly (sodium styrene sulfonate-co-maleate)-pV (PSS-CoM-pV) and poly (sodium styrene 4-sulfonate)-pV (PSS-pV). However, no significant change in Ach-mediated responses was observed in the presence of poly (acrylate)-pV (PAA-pV) and DPV-asn. DPV-asn was thus chosen to further elucidate mechanism involved in peroxide mediated modulation of vasoreactivity. DPV-asn (30nM - 300 μM) exerted significantly more stable contractions, that was found to be catalase (100U/ml) resistant in comparison with H(2)O(2) (30nM-300 μM) in endothelium intact aortic rings. These contractile responses were found to be dependent on extracellular Ca(2+) and were significantly inhibited in presence of ROS scavenger N-acetylcysteine (100 μM). Intracellular calcium chelation by BAPTA-AM (10μM) had no significant effect on DPV-asn (30nM-300 μM) mediated contraction. Pretreatment of aortic rings by rho-kinase inhibitor Y-27632 (10μM) significantly inhibited DPV-asn-mediated vasoconstriction indicating role of voltage-dependent Ca(2+) influx and downstream activation of rho-kinase. The small initial relaxant effect obtained on addition of DPV-asn (30nM-1 μM) in PE (1 μM) pre-contracted endothelium intact rings, was prevented in the presence of guanylate cyclase inhibitor, methylene blue (10

  15. The role of Rho-kinases in IL-1β release through phagocytosis of fibrous particles in human monocytes.

    PubMed

    Kanno, Sanae; Hirano, Seishiro; Chiba, Shoetsu; Takeshita, Hiroshi; Nagai, Tomonori; Takada, Meri; Sakamoto, Kana; Mukai, Toshiji

    2015-01-01

    Long fibers, such as asbestos and carbon nanotubes (CNTs), are more potent activators of inflammatory and genotoxicity than short or tangled fibers. Fibrous particles trigger interleukin (IL)-1β secretion and cause inflammatory diseases through NLRP3 inflammasomes in phagocytotic cells. However, the mechanism involved in fibrous particle-induced inflammation has not been well documented. In this study, we focused on GTPase effector Rho-kinases (ROCK1, and 2), which are known to be involved in a wide range of cellular functions such as adhesion, regulation of cytoskeleton, and phagocytosis. We examined whether ROCKs are associated with multi-walled CNT (MWCNT)- or asbestos-induced IL-1β secretion in human monocytic THP-1 cells using a selective inhibitor and small interfering RNA. THP-1 cells were differentiated to macrophages by PMA and were exposed to MWCNTs, crocidolite asbestos or lipopolysaccharide (LPS) in the presence or absence of Y27632 (ROCK inhibitor) or Z-YVAD (caspase-1 inhibitor). Exposure of the cells to MWCNTs or asbestos provoked IL-1β secretion, but this secretion was suppressed by both Y27632 and Z-YVAD, whereas LPS-induced IL-1β secretion was inhibited only by Z-YVAD and not by Y27632. siRNA designed for knockdown of both ROCK1 and ROCK2 suppressed MWCNT- and asbestos-induced IL-1β secretion, but did not change LPS-induced IL-1β secretion. Moreover, Y27632 suppressed pro-IL-1β protein levels and the release of activated-cathepsin B and activated-caspase-1 induced by MWCNTs or asbestos. In contrast, LPS-induced pro-IL-1β protein was not suppressed by Y27632. These results suggest that ROCKs are involved in fibrous particle-induced inflammasome responses in THP-1 cells. PMID:24760326

  16. Reflex vasoconstriction in aged human skin increasingly relies on Rho kinase-dependent mechanisms during whole body cooling

    PubMed Central

    Jennings, John D.; Holowatz, Lacy A.; Kenney, W. Larry

    2009-01-01

    Primary human aging may be associated with augmented Rho kinase (ROCK)-mediated contraction of vascular smooth muscle and ROCK-mediated inhibition of nitric oxide synthase (NOS). We hypothesized that the contribution of ROCK to reflex vasoconstriction (VC) is greater in aged skin. Cutaneous VC was elicited by 1) whole body cooling [mean skin temperature (Tsk) = 30.5°C] and 2) local norepinephrine (NE) infusion (1 × 10−6 M). Four microdialysis fibers were placed in the forearm skin of eight young (Y) and eight older (O) subjects for infusion of 1) Ringer solution (control), 2) 3 mM fasudil (ROCK inhibition), 3) 20 mM NG-nitro-l-arginine methyl ester (NOS inhibition), and 4) both ROCK + NOS inhibitors. Red cell flux was measured by laser-Doppler flowmetry over each site. Cutaneous vascular conductance (CVC) was calculated as flux/mean arterial pressure and normalized to baseline CVC (%ΔCVCbaseline). VC was reduced at the control site in O during cooling (Y, −34 ± 3; and O, −18 ± 3%ΔCVCbaseline; P < 0.001) and NE infusion (Y, −53 ± 4, and O, −41 ± 9%ΔCVCbaseline; P = 0.006). Fasudil attenuated VC in both age groups during mild cooling; however, this reduction remained only in O but not in Y skin during moderate cooling (Y, −30 ± 5; and O, −7 ± 1%ΔCVCbaseline; P = 0.016) and was not altered by NOS inhibition. Fasudil blunted NE-mediated VC in both age groups (Y, −23 ± 4; and O, −7 ± 3%ΔCVCbaseline; P < 0.01). Cumulatively, these data indicate that reflex VC is more reliant on ROCK in aged skin such that approximately half of the total VC response to whole body cooling is ROCK dependent. PMID:19717729

  17. Effect of aldosterone-producing adenoma on endothelial function and Rho-associated kinase activity in patients with primary aldosteronism.

    PubMed

    Matsumoto, Takeshi; Oki, Kenji; Kajikawa, Masato; Nakashima, Ayumu; Maruhashi, Tatsuya; Iwamoto, Yumiko; Iwamoto, Akimichi; Oda, Nozomu; Hidaka, Takayuki; Kihara, Yasuki; Kohno, Nobuoki; Chayama, Kazuaki; Goto, Chikara; Aibara, Yoshiki; Noma, Kensuke; Liao, James K; Higashi, Yukihito

    2015-04-01

    The purpose of this study was to evaluate vascular function and activity of Rho-associated kinases (ROCKs) in patients with primary aldosteronism. Vascular function, including flow-mediated vasodilation (FMD) and nitroglycerine-induced vasodilation, and ROCK activity in peripheral leukocytes were evaluated in 21 patients with aldosterone-producing adenoma (APA), 23 patients with idiopathic hyperaldosteronism (IHA), and 40 age-, sex-, and blood pressure-matched patients with essential hypertension (EHT). FMD was significantly lower in the APA group than in the IHA and EHT groups (3.2±2.0% versus 4.6±2.3% and 4.4±2.2%; P<0.05, respectively), whereas there was no significant difference in FMD between the IHA and EHT groups. There was no significant difference in nitroglycerine-induced vasodilation in the 3 groups. ROCK activity was higher in the APA group than in the IHA and EHT groups (1.29±0.57 versus 1.00±0.46 and 0.81±0.36l; P<0.05, respectively), whereas there was no significant difference in ROCK activity between the IHA and EHT groups. FMD correlated with age (r=-0.31; P<0.01), plasma aldosterone concentration (r=-0.35; P<0.01), and aldosterone:renin ratio (r=-0.34; P<0.01). ROCK activity correlated with age (r=-0.24; P=0.04), plasma aldosterone concentration (r=0.33; P<0.01), and aldosterone:renin ratio (r=0.46; P<0.01). After adrenalectomy, FMD and ROCK activity were restored in patients with APA. APA was associated with both endothelial dysfunction and increased ROCK activity compared with those in IHA and EHT. APA may have a higher risk of future cardiovascular events. PMID:25624340

  18. Intravitreal Injection of a Rho-Kinase Inhibitor (Fasudil) for Recent-Onset Nonarteritic Anterior Ischemic Optic Neuropathy.

    PubMed

    Sanjari, Nasrin; Pakravan, Mohammad; Nourinia, Ramin; Esfandiari, Hamed; Hafezi-Moghadam, Ali; Zandi, Souska; Nakao, Shintaro; Shah-Heidari, Mohamamad-Hassan; Jamali, Arsia; Yaseri, Mehdi; Ahmadieh, Hamid

    2016-06-01

    This study evaluated the effects of intravitreal injection of fasudil (IVF), a Rho-kinase inhibitor, in cases of recent-onset nonarteritic anterior ischemic optic neuropathy (NAION). In this interventional case series, 13 eyes of 13 patients diagnosed with NAION within 14 days of onset were included. The affected eyes received a 0.025 mg/0.05 mL IVF. Functional and structural outcomes were assessed 1 and 3 months following treatment. Best corrected visual acuity (BCVA) was the main outcome measured, with mean deviation (MD) index of the VF test and peripapillary retinal nerve fiber layer thickness as secondary measures. There was a statistically significant improvement in the patients' BCVA 1 and 3 months following IVF; BCVA improved from 1.69 ± 0.55 logMAR at baseline to 0.98 ± 0.47 and 0.93 ± 0.51 logMAR at 1 and 3 months, respectively (P = .004). The change in BCVA was not significant between month 1 and month 3 (P = .22). Peripapillary retinal nerve fiber layer thickness decreased from 173.5 ± 29.28 µm in the baseline evaluation to 85.8 ± 8.8 µm at 1 month, and 62.9 ± 5.97 µm at 3 months (P = .003). MD values changed from 24.60 ± 3.80 to 21.0 ± 6.10 and 20.5 ± 6.50 at 1 and 3 months, respectively (P = .007 and .005, respectively). This pilot study suggests that IVF may be an effective treatment for patients with recent-onset NAION. Larger studies are required to establish the therapeutic role of fasudil for NAION. PMID:26444290

  19. Rho-kinase signaling controls nucleocytoplasmic shuttling of class IIa Histone Deacetylase (HDAC7) and transcriptional activation of orphan nuclear receptor NR4A1

    SciTech Connect

    Compagnucci, Claudia; Barresi, Sabina; Petrini, Stefania; Bertini, Enrico; Zanni, Ginevra

    2015-04-03

    Rho-kinase (ROCK) has been well documented to play a key role in RhoA-induced actin remodeling. ROCK activation results in myosin light chain (MLC) phosphorylation either by direct action on MLC kinase (MLCK) or by inhibition of MLC phosphatase (MLCP), modulating actin–myosin contraction. We found that inhibition of the ROCK pathway in induced pluripotent stem cells, leads to nuclear export of HDAC7 and transcriptional activation of the orphan nuclear receptor NR4A1 while in cells with constitutive ROCK hyperactivity due to loss of function of the RhoGTPase activating protein Oligophrenin-1 (OPHN1), the orphan nuclear receptor NR4A1 is downregulated. Our study identify a new target of ROCK signaling via myosin phosphatase subunit (MYPT1) and Histone Deacetylase (HDAC7) at the nuclear level and provide new insights in the cellular functions of ROCK. - Highlights: • ROCK regulates nucleocytoplasmic shuttling of HDAC7 via phosphorylation of MYPT1. • Nuclear export of HDAC7 and upregulation of NR4A1 occurs with low ROCK activity. • High levels of ROCK activity due to OPHN1 loss of function downregulate NR4A1.

  20. Adipocyte-Specific Mineralocorticoid Receptor Overexpression in Mice Is Associated With Metabolic Syndrome and Vascular Dysfunction: Role of Redox-Sensitive PKG-1 and Rho Kinase.

    PubMed

    Nguyen Dinh Cat, Aurelie; Antunes, Tayze T; Callera, Glaucia E; Sanchez, Ana; Tsiropoulou, Sofia; Dulak-Lis, Maria G; Anagnostopoulou, Aikaterini; He, Ying; Montezano, Augusto C; Jaisser, Frederic; Touyz, Rhian M

    2016-08-01

    Mineralocorticoid receptor (MR) expression is increased in adipose tissue from obese individuals and animals. We previously demonstrated that adipocyte-MR overexpression (Adipo-MROE) in mice is associated with metabolic changes. Whether adipocyte MR directly influences vascular function in these mice is unknown. We tested this hypothesis in resistant mesenteric arteries from Adipo-MROE mice using myography and in cultured adipocytes. Molecular mechanisms were probed in vessels/vascular smooth muscle cells and adipose tissue/adipocytes and focused on redox-sensitive pathways, Rho kinase activity, and protein kinase G type-1 (PKG-1) signaling. Adipo-MROE versus control-MR mice exhibited reduced vascular contractility, associated with increased generation of adipocyte-derived hydrogen peroxide, activation of vascular redox-sensitive PKG-1, and downregulation of Rho kinase activity. Associated with these vascular changes was increased elastin content in Adipo-MROE. Inhibition of PKG-1 with Rp-8-Br-PET-cGMPS normalized vascular contractility in Adipo-MROE. In the presence of adipocyte-conditioned culture medium, anticontractile effects of the adipose tissue were lost in Adipo-MROE mice but not in control-MR mice. In conclusion, adipocyte-MR upregulation leads to impaired contractility with preserved endothelial function and normal blood pressure. Increased elasticity may contribute to hypocontractility. We also identify functional cross talk between adipocyte MR and arteries and describe novel mechanisms involving redox-sensitive PKG-1 and Rho kinase. Our results suggest that adipose tissue from Adipo-MROE secrete vasoactive factors that preferentially influence vascular smooth muscle cells rather than endothelial cells. Our findings may be important in obesity/adiposity where adipocyte-MR expression/signaling is amplified and vascular risk increased. PMID:27207514

  1. hCLOCK Causes Rho-Kinase-Mediated Endothelial Dysfunction and NF-κB-Mediated Inflammatory Responses

    PubMed Central

    Tang, Xiao; Guo, Daqiao; Lin, Changpo; Shi, Zhenyu; Qian, Ruizhe; Fu, Weiguo; Liu, Jianjun; Li, Xu; Fan, Longhua

    2015-01-01

    Background. The human Circadian Locomotor Output Cycle protein Kaput (CLOCK) gene was originally discovered as a regulator of essential human daily rhythms. This seemingly innocuous gene was then found to be associated with a multitude of human malignancies, via several biochemical pathways. We aimed to further investigate the role of hCLOCK in the hypoxia-oxidative stress response system at the biochemical level. Methods. Expression levels of Rho GTPases were measured in normoxic and hypoxic states. The effect of hCLOCK on the hypoxic response was evaluated with the use of a retroviral shRNA vector system, a Rho inhibitor, and a ROS scavenger by analyzing expression levels of hCLOCK, Rho GTPases, and NF-κB pathway effectors. Finally, in vitro ROS production and tube formation in HUVECs were assessed. Results. Hypoxia induces ROS production via hCLOCK. hCLOCK activates the RhoA and NF-κB signaling pathways. Conversely, inhibition of hCLOCK deactivates these pathways. Furthermore, inhibition of RhoA or decreased levels of ROS attenuate these pathways, but inhibition of RhoA does not lead to decreased levels of ROS. Overall findings show that hypoxia increases the expression of hCLOCK, which leads to ROS production, which then activates the RhoA and NF-κB pathways. Conclusion. Our findings suggest that hypoxic states induce vascular oxidative damage and inflammation via hCLOCK-mediated production of ROS, with subsequent activation of the RhoA and NF-κB pathways. PMID:26583060

  2. Inhibition of Rho-associated kinase blocks agonist-induced Ca2+ sensitization of myosin phosphorylation and force in guinea-pig ileum

    PubMed Central

    Swärd, Karl; Dreja, Karl; Susnjar, Marija; Hellstrand, Per; Hartshorne, David J; Walsh, Michael P

    2000-01-01

    Ca2+ sensitization of smooth muscle contraction involves the small GTPase RhoA, inhibition of myosin light chain phosphatase (MLCP) and enhanced myosin regulatory light chain (LC20) phosphorylation. A potential effector of RhoA is Rho-associated kinase (ROK).The role of ROK in Ca2+ sensitization was investigated in guinea-pig ileum.Contraction of permeabilized muscle strips induced by GTPγS at pCa 6.5 was inhibited by the kinase inhibitors Y-27632, HA1077 and H-7 with IC50 values that correlated with the known Ki values for inhibition of ROK. GTPγS also increased LC20 phosphorylation and this was prevented by HA1077. Contraction and LC20 phosphorylation elicited at pCa 5.75 were, however, unaffected by HA1077.Pre-treatment of intact tissue strips with HA1077 abolished the tonic component of carbachol-induced contraction and the sustained elevation of LC20 phosphorylation, but had no effect on the transient or sustained increase in [Ca2+]i induced by carbachol.LC20 phosphorylation and contraction dynamics suggest that the ROK-mediated increase in LC20 phosphorylation is due to MLCP inhibition, not myosin light chain kinase activation.In the absence of Ca2+, GTPγS stimulated 35S incorporation from [35S]ATPγS into the myosin targeting subunit of MLCP (MYPT). The enhanced thiophosphorylation was inhibited by HA1077. No thiophosphorylation of LC20 was detected.These results indicate that ROK mediates agonist-induced increases in myosin phosphorylation and force by inhibiting MLCP activity through phosphorylation of MYPT. Under Ca2+-free conditions, ROK does not appear to phosphorylate LC20in situ, in contrast to its ability to phosphorylate myosin in vitro. In particular, ROK activation is essential for the tonic phase of agonist-induced contraction. PMID:10618150

  3. Rho-Associated Kinase Inhibitor (Y-27632) Attenuates Doxorubicin-Induced Apoptosis of Human Cardiac Stem Cells

    PubMed Central

    Kan, Lijuan; Smith, Aubrie; Chen, Miao; Ledford, Benjamin T.; Fan, Huimin; Liu, Zhongmin; He, Jia-Qiang

    2015-01-01

    Background Recent clinical trials using c-kit+ human cardiac stem cells (CSCs) demonstrated promising results in increasing cardiac function and improving quality of life. However, CSC efficiency is low, likely due to limited cell survival and engraftment after transplantation. The Rho-associated protein kinase (ROCK) inhibitor, Y-27632, significantly increased cell survival rate, adhesion, and migration in numerous types of cells, including stem cells, suggesting a common feature of the ROCK-mediated apoptotic pathway that may also exist in human CSCs. In this study, we examine the hypothesis that pretreatment of human CSCs with Y-27632 protects cells from Doxorubicin (Dox) induced apoptosis. Methods and Results c-kit+ CSCs were cultured in CSC medium for 3–5 days followed by 48hr treatment with 0 to 10μM Y-27632 alone, 0 to 1.0μM Dox alone, or Y-27632 followed by Dox (48hrs). Cell viability, toxicity, proliferation, morphology, migration, Caspase-3 activity, expression levels of apoptotic-related key proteins and c-kit+ were examined. Results showed that 48hr treatment with Y-27632 alone did not result in great changes in c-kit+ expression, proliferation, Caspase-3 activity, or apoptosis; however cell viability was significantly increased and cell migration was promoted. These effects likely involve the ROCK/Actin pathways. In contrast, 48hr treatment with Dox alone dramatically increased Caspase-3 activity, resulting in cell death. Although Y-27632 alone did not affect the expression levels of apoptotic-related key factors (p-Akt, Akt, Bcl-2, Bcl-xl, Bax, cleaved Caspase-3, and Caspase-3) under basal conditions, it significantly inhibited the Dox-induced increase in cleaved Caspase-3 and reduced cell death under Dox treatment. Conclusions We conclude that preconditioning human CSCs with Y-27632 significantly reduces Dox-induced cell death and possibly involves the cleaved Caspase-3 and ROCK/Actin pathways. The beneficial effects of Y-27632 may be applied to

  4. A chemically defined culture medium containing Rho kinase inhibitor Y-27632 for the fabrication of stratified squamous epithelial cell grafts

    SciTech Connect

    Aslanova, Afag; Takagi, Ryo; Yamato, Masayuki; Okano, Teruo; Yamamoto, Masakazu

    2015-05-01

    With the development of a culture method for stratified squamous epithelial cells, tissue-engineered epithelial cell sheets have been successfully applied as clinical cell grafts. However, the implementation of these cell sheets without the use of any animal-derived materials is highly desirable. In this study, Rho-associated protein kinase inhibitor Y-27632 was used to develop a chemically defined culture medium for the fabrication of stratified epithelial cell grafts consisting of human epidermal and oral keratinocytes, and the proliferation activity, cell morphology, and gene expressions of the keratinocytes were analyzed. The results of a colorimetric assay indicated that Y-27632 significantly promoted the proliferation of the keratinocytes in culture media both with and without fetal bovine serum (FBS), although there were no indications of Y-27632 efficacy on cell morphology and stratification of the keratinocytes in culture medium without any animal-derived materials. The results of quantitative RT-PCR revealed that gene expressions correlated with cell adhesion, cell–cell junction, proliferation markers, and stem/progenitor markers in cultured keratinocytes were not strongly affected by the addition of Y-27632 to the culture medium. Moreover, gene expressions of differentiation markers in stratified keratinocytes cultured in medium without FBS were nearly identical to those of keratinocytes co-cultured with 3T3 feeder cells. Interestingly, the expressions of differentiation markers in cultured stratified keratinocytes were suppressed by FBS, whereas they were reconstructed by either co-culture of a 3T3 feeder layer or addition of Y-27632 into the culture medium containing FBS. These findings indicate that Y-27632 is a useful supplement for the development of a chemically defined culture medium for fabrication of stratified epithelial cell grafts for clinical applications for the purpose of developing the culture medium with a lower risk of pathogen

  5. Knockout of the PKN Family of Rho Effector Kinases Reveals a Non-redundant Role for PKN2 in Developmental Mesoderm Expansion

    PubMed Central

    Quétier, Ivan; Marshall, Jacqueline J.T.; Spencer-Dene, Bradley; Lachmann, Sylvie; Casamassima, Adele; Franco, Claudio; Escuin, Sarah; Worrall, Joseph T.; Baskaran, Priththivika; Rajeeve, Vinothini; Howell, Michael; Copp, Andrew J.; Stamp, Gordon; Rosewell, Ian; Cutillas, Pedro; Gerhardt, Holger; Parker, Peter J.; Cameron, Angus J.M.

    2016-01-01

    Summary In animals, the protein kinase C (PKC) family has expanded into diversely regulated subgroups, including the Rho family-responsive PKN kinases. Here, we describe knockouts of all three mouse PKN isoforms and reveal that PKN2 loss results in lethality at embryonic day 10 (E10), with associated cardiovascular and morphogenetic defects. The cardiovascular phenotype was not recapitulated by conditional deletion of PKN2 in endothelial cells or the developing heart. In contrast, inducible systemic deletion of PKN2 after E7 provoked collapse of the embryonic mesoderm. Furthermore, mouse embryonic fibroblasts, which arise from the embryonic mesoderm, depend on PKN2 for proliferation and motility. These cellular defects are reflected in vivo as dependence on PKN2 for mesoderm proliferation and neural crest migration. We conclude that failure of the mesoderm to expand in the absence of PKN2 compromises cardiovascular integrity and development, resulting in lethality. PMID:26774483

  6. Knockout of the PKN Family of Rho Effector Kinases Reveals a Non-redundant Role for PKN2 in Developmental Mesoderm Expansion.

    PubMed

    Quétier, Ivan; Marshall, Jacqueline J T; Spencer-Dene, Bradley; Lachmann, Sylvie; Casamassima, Adele; Franco, Claudio; Escuin, Sarah; Worrall, Joseph T; Baskaran, Priththivika; Rajeeve, Vinothini; Howell, Michael; Copp, Andrew J; Stamp, Gordon; Rosewell, Ian; Cutillas, Pedro; Gerhardt, Holger; Parker, Peter J; Cameron, Angus J M

    2016-01-26

    In animals, the protein kinase C (PKC) family has expanded into diversely regulated subgroups, including the Rho family-responsive PKN kinases. Here, we describe knockouts of all three mouse PKN isoforms and reveal that PKN2 loss results in lethality at embryonic day 10 (E10), with associated cardiovascular and morphogenetic defects. The cardiovascular phenotype was not recapitulated by conditional deletion of PKN2 in endothelial cells or the developing heart. In contrast, inducible systemic deletion of PKN2 after E7 provoked collapse of the embryonic mesoderm. Furthermore, mouse embryonic fibroblasts, which arise from the embryonic mesoderm, depend on PKN2 for proliferation and motility. These cellular defects are reflected in vivo as dependence on PKN2 for mesoderm proliferation and neural crest migration. We conclude that failure of the mesoderm to expand in the absence of PKN2 compromises cardiovascular integrity and development, resulting in lethality. PMID:26774483

  7. LIM-kinase 2 induces formation of stress fibres, focal adhesions and membrane blebs, dependent on its activation by Rho-associated kinase-catalysed phosphorylation at threonine-505.

    PubMed Central

    Amano, T; Tanabe, K; Eto, T; Narumiya, S; Mizuno, K

    2001-01-01

    LIM-kinase 1 and 2 (LIMK1 and LIMK2) phosphorylate cofilin and induce actin cytoskeletal reorganization. LIMK1 is activated by Rho-associated, coiled-coil-forming protein kinase (ROCK) and p21-activated kinase 1 (PAK1), but activation mechanisms and cellular functions of LIMK2 have remained to be determined. We report here that LIMK1 and LIMK2 phosphorylate both cofilin and actin-depolymerizing factor (ADF) specifically at Ser-3 and exhibit partially distinct substrate specificity when tested using site-directed cofilin mutants as substrates. We also show that LIMK2 is activated by ROCK by phosphorylation at Thr-505 within the activation loop. Wild-type LIMK2, but not its mutant (T505V) with replacement of Thr-505 by Val, was activated by ROCK in vitro and in vivo. LIMK2 mutants with replacement of Thr-505 by one or two Glu residues (T505E or T505EE) increased the kinase activity about 3.6-fold but were not further activated by ROCK. When expressed in HeLa cells, wild-type LIMK2, but not the T505V mutant, induced the formation of stress fibres, focal adhesions and membrane blebs. Furthermore, inhibitors of Rho and ROCK significantly suppressed LIMK2-induced stress fibres and membrane blebs. These results suggest that LIMK2 functions downstream of the Rho-ROCK signalling pathway and plays a role in reorganization of actin filaments and membrane structures, by phosphorylating cofilin/ADF proteins. PMID:11171090

  8. A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury.

    PubMed

    Fehlings, Michael G; Theodore, Nicholas; Harrop, James; Maurais, Gilles; Kuntz, Charles; Shaffrey, Chris I; Kwon, Brian K; Chapman, Jens; Yee, Albert; Tighe, Allyson; McKerracher, Lisa

    2011-05-01

    Multiple lines of evidence have validated the Rho pathway as important in controlling the neuronal response to growth inhibitory proteins after central nervous system (CNS) injury. A drug called BA-210 (trademarked as Cethrin(®)) blocks activation of Rho and has shown promise in pre-clinical animal studies in being used to treat spinal cord injury (SCI). This is a report of a Phase I/IIa clinical study designed to test the safety and tolerability of the drug, and the neurological status of patients following the administration of a single dose of BA-210 applied during surgery following acute SCI. Patients with thoracic (T2-T12) or cervical (C4-T1) SCI were sequentially recruited for this dose-ranging (0.3 mg to 9 mg Cethrin), multi-center study of 48 patients with complete American Spinal Injury Association assessment (ASIA) A. Vital signs; clinical laboratory tests; computed tomography (CT) scans of the spine, head, and abdomen; magnetic resonance imaging (MRI) of the spine, and ASIA assessment were performed in the pre-study period and in follow-up periods out to 1 year after treatment. The treatment-emergent adverse events that were reported were typical for a population of acute SCI patients, and no serious adverse events were attributed to the drug. The pharmacokinetic analysis showed low levels of systemic exposure to the drug, and there was high inter-patient variability. Changes in ASIA motor scores from baseline were low across all dose groups in thoracic patients (1.8±5.1) and larger in cervical patients (18.6±19.3). The largest change in motor score was observed in the cervical patients treated with 3 mg of Cethrin in whom a 27.3±13.3 point improvement in ASIA motor score at 12 months was observed. Approximately 6% of thoracic patients converted from ASIA A to ASIA C or D compared to 31% of cervical patients and 66% for the 3-mg cervical cohort. Although the patient numbers are small, the observed motor recovery in this open-label trial

  9. Influence of Rho kinase inhibitor Fasudil on late endothelial progenitor cells in peripheral blood of COPD patients with pulmonary artery hypertension.

    PubMed

    Liu, Pei; Zhang, Hongmei; Tang, Yijun; Sheng, Chunfeng; Liu, Jianxin; Zeng, Yanjun

    2014-02-01

    The objective of our work was to investigate the influence of Fasudil, a Rho inhibitor on the number and function of the late endothelial progenitor cells in peripheral blood of chronic obstructive pulmonary diseases (COPD) patients with pulmonary artery hypertension. Eighty COPD patients with pulmonary artery hypertension were selected and divided into two groups: the treatment group and the control group, which had 40 patients respectively. The control group received routine treatment, including oxygen uptake, anti-infection and phlegm dissolving. The treatment group received the Fasudil in addition to the routine treatment. The changes on the number and function of the late endothelial progenitor cells in peripheral blood of the patients before and after the treatment were compared between the two groups. The changes on the pulmonary artery pressure were also compared. The number of the late endothelial progenitor cells in peripheral blood of the treatment group increased and the function was enhanced. The pulmonary artery pressure was reduced. The difference before and after the treatment and with the control group was statistically significant (p<0.05). The changes on the number and function of the late endothelial progenitor cells in peripheral blood and the pulmonary artery pressure before and after the treatment of the control group were not statistically significant (p>0.05). The Rho-kinase inhibitor Fasudil increased the number and enhanced the function of the late endothelial progenitor cells in peripheral blood of COPD patients with pulmonary artery hypertension. PMID:24579970

  10. Role of L-type Ca(2+) channels, sarcoplasmic reticulum and Rho kinase in rat basilar artery contractile properties in a new model of subarachnoid hemorrhage.

    PubMed

    Egea-Guerrero, Juan José; Murillo-Cabezas, Francisco; Muñoz-Sánchez, María Ángeles; Vilches-Arenas, Angel; Porras-González, Cristina; Castellano, Antonio; Ureña, Juan; González-Montelongo, María del Carmen

    2015-09-01

    We have previously described that L-type Ca(2+) channels' (LTCCs) activation and metabotropic Ca(2+) release from the sarcoplasmic reticulum (SR) regulate RhoA/Rho kinase (ROCK) activity and sustained arterial contraction. We have investigated whether this signaling pathway can be altered in a new experimental model of subarachnoid hemorrhage (SAH). For this purpose, arterial reactivity was evaluated on days 1 to 5 after surgery. A significant increase of basal tone, measured 4 and 60min after normalization, was observed on day 5 after SAH and at 60min on days 2 and 3 after SAH. This phenomenon was suppressed with LTCCs and ROCK inhibitors. We have also studied arterial rings vasoreactivity in response to high K(+) solutions. Interestingly, there were no significant differences in the phasic component of the high K(+)-induced contraction between sham and SAH groups, whereas a significant increase in the sustained contraction was observed on day 5 after SAH. This latter component was sensitive to fasudil, and selectively reduced by low nifedipine concentration, and phospholipase C and SR-ATPase inhibitors. Therefore, our data suggest that the metabotropic function of LTCCs is potentiated in SAH. Our results could provide a new strategy to optimize the pharmacological treatment of this pathological process. PMID:25937251

  11. A novel trigger for cholesterol-dependent smooth muscle contraction mediated by the sphingosylphosphorylcholine-Rho-kinase pathway in the rat basilar artery: a mechanistic role for lipid rafts

    PubMed Central

    Shirao, Satoshi; Yoneda, Hiroshi; Shinoyama, Mizuya; Sugimoto, Kazutaka; Koizumi, Hiroyasu; Ishihara, Hideyuki; Oka, Fumiaki; Sadahiro, Hirokazu; Nomura, Sadahiro; Fujii, Masami; Tamechika, Masakatsu; Kagawa, Yoshiteru; Owada, Yuji; Suzuki, Michiyasu

    2015-01-01

    Hyperlipidemia is a risk factor for abnormal cerebrovascular events. Rafts are cholesterol-enriched membrane microdomains that influence signal transduction. We previously showed that Rho-kinase-mediated Ca2+ sensitization of vascular smooth muscle (VSM) induced by sphingosylphosphorylcholine (SPC) has a pivotal role in cerebral vasospasm. The goals of the study were to show SPC-Rho-kinase-mediated VSM contraction in vivo and to link this effect to cholesterol and rafts. The SPC-induced VSM contraction measured using a cranial window model was reversed by Y-27632, a Rho-kinase inhibitor, in rats fed a control diet. The extent of SPC-induced contraction correlated with serum total cholesterol. Total cholesterol levels in the internal carotid artery (ICA) were significantly higher in rats fed a cholesterol diet compared with a control diet or a β-cyclodextrin diet, which depletes VSM cholesterol. Western blotting and real-time PCR revealed increases in flotillin-1, a raft marker, and flotillin-1 mRNA in the ICA in rats fed a cholesterol diet, but not in rats fed the β-cyclodextrin diet. Depletion of cholesterol decreased rafts in VSM cells, and prevention of an increase in cholesterol by β-cyclodextrin inhibited SPC-induced contraction in a cranial window model. These results indicate that cholesterol potentiates SPC-Rho-kinase-mediated contractions of importance in cerebral vasospasm and are compatible with a role for rafts in this process. PMID:25605290

  12. Protein Kinase C and Acute Respiratory Distress Syndrome

    PubMed Central

    Mondrinos, Mark J.; Kennedy, Paul A.; Lyons, Melanie; Deutschman, Clifford S.; Kilpatrick, Laurie E.

    2013-01-01

    The Acute Respiratory Distress Syndrome (ARDS) is a major public health problem and a leading source of morbidity in Intensive Care Units (ICUs). Lung tissue in patients with ARDS is characterized by inflammation, with exuberant neutrophil infiltration, activation and degranulation that is thought to initiate tissue injury through the release of proteases and oxygen radicals. Treatment of ARDS is supportive primarily because the underlying pathophysiology is poorly understood. This gap in knowledge must be addressed in order to identify urgently needed therapies. Recent research efforts in anti-inflammatory drug development have focused on identifying common control points in multiple signaling pathways. The protein kinase C (PKC) serine-threonine kinases are master regulators of proinflammatory signaling hubs, making them attractive therapeutic targets. Pharmacological inhibition of broad spectrum PKC activity and, more importantly, of specific PKC isoforms (as well as deletion of PKCs in mice) exerts protective effects in various experimental models of lung injury. Furthermore, PKC isoforms have been implicated in inflammatory processes that may be involved in the pathophysiologic changes that result in ARDS, including activation of innate immune and endothelial cells, neutrophil trafficking to the lung, regulation of alveolar epithelial barrier functions and control of neutrophil pro-inflammatory and pro-survival signaling. This review focuses on the mechanistic involvement of PKC isoforms in the pathogenesis of ARDS and highlights the potential of developing new therapeutic paradigms based on the selective inhibition (or activation) of specific PKC isoforms. PMID:23572089

  13. Doxycycline reduces the migration of tuberous sclerosis complex-2 null cells - effects on RhoA-GTPase and focal adhesion kinase

    PubMed Central

    Ng, Ho Yin; Oliver, Brian Gregory George; Burgess, Janette Kay; Krymskaya, Vera P; Black, Judith Lee; Moir, Lyn M

    2015-01-01

    Lymphangioleiomyomatosis (LAM) is associated with dysfunction of the tuberous sclerosis complex (TSC) leading to enhanced cell proliferation and migration. This study aims to examine whether doxycycline, a tetracycline antibiotic, can inhibit the enhanced migration of TSC2-deficient cells, identify signalling pathways through which doxycycline works and to assess the effectiveness of combining doxycycline with rapamycin (mammalian target of rapamycin complex 1 inhibitor) in controlling cell migration, proliferation and wound closure. TSC2-positive and TSC2-negative mouse embryonic fibroblasts (MEF), 323-TSC2-positive and 323-TSC2-null MEF and Eker rat uterine leiomyoma (ELT3) cells were treated with doxycycline or rapamycin alone, or in combination. Migration, wound closure and proliferation were assessed using a transwell migration assay, time-lapse microscopy and manual cell counts respectively. RhoA-GTPase activity, phosphorylation of p70S6 kinase (p70S6K) and focal adhesion kinase (FAK) in TSC2-negative MEF treated with doxycycline were examined using ELISA and immunoblotting techniques. The enhanced migration of TSC2-null cells was reduced by doxycycline at concentrations as low as 20 pM, while the rate of wound closure was reduced at 2–59 μM. Doxycycline decreased RhoA-GTPase activity and phosphorylation of FAK in these cells but had no effect on the phosphorylation of p70S6K, ERK1/2 or AKT. Combining doxycycline with rapamycin significantly reduced the rate of wound closure at lower concentrations than achieved with either drug alone. This study shows that doxycycline inhibits TSC2-null cell migration. Thus doxycycline has potential as an anti-migratory agent in the treatment of diseases with TSC2 dysfunction. PMID:26282580

  14. Rho-associated protein kinase 1 (ROCK1) is increased in Alzheimer's disease and ROCK1 depletion reduces amyloid-β levels in brain.

    PubMed

    Henderson, Benjamin W; Gentry, Erik G; Rush, Travis; Troncoso, Juan C; Thambisetty, Madhav; Montine, Thomas J; Herskowitz, Jeremy H

    2016-08-01

    Alzheimer's disease (AD) is the leading cause of dementia and mitigating amyloid-β (Aβ) levels may serve as a rational therapeutic avenue to slow AD progression. Pharmacologic inhibition of the Rho-associated protein kinases (ROCK1 and ROCK2) is proposed to curb Aβ levels, and mechanisms that underlie ROCK2's effects on Aβ production are defined. How ROCK1 affects Aβ generation remains a critical barrier. Here, we report that ROCK1 protein levels were elevated in mild cognitive impairment due to AD (MCI) and AD brains compared to controls. Aβ42 oligomers marginally increased ROCK1 and ROCK2 protein levels in neurons but strongly induced phosphorylation of Lim kinase 1 (LIMK1), suggesting that Aβ42 activates ROCKs. RNAi depletion of ROCK1 or ROCK2 suppressed endogenous Aβ40 production in neurons, and Aβ40 levels were reduced in brains of ROCK1 heterozygous knock-out mice compared to wild-type littermate controls. ROCK1 knockdown decreased amyloid precursor protein (APP), and treatment with bafilomycin accumulated APP levels in neurons depleted of ROCK1. These observations suggest that reduction of ROCK1 diminishes Aβ levels by enhancing APP protein degradation. Collectively, these findings support the hypothesis that both ROCK1 and ROCK2 are therapeutic targets to combat Aβ production in AD. Mitigating amyloid-β (Aβ) levels is a rational strategy for Alzheimer's disease (AD) treatment, however, therapeutic targets with clinically available drugs are lacking. We hypothesize that Aβ accumulation in mild cognitive impairment because of AD (MCI) and AD activates the RhoA/ROCK pathway which in turn fuels production of Aβ. Escalation of this cycle over the course of many years may contribute to the buildup of amyloid pathology in MCI and/or AD. PMID:27246255

  15. Doxycycline reduces the migration of tuberous sclerosis complex-2 null cells - effects on RhoA-GTPase and focal adhesion kinase.

    PubMed

    Ng, Ho Yin; Oliver, Brian Gregory George; Burgess, Janette Kay; Krymskaya, Vera P; Black, Judith Lee; Moir, Lyn M

    2015-11-01

    Lymphangioleiomyomatosis (LAM) is associated with dysfunction of the tuberous sclerosis complex (TSC) leading to enhanced cell proliferation and migration. This study aims to examine whether doxycycline, a tetracycline antibiotic, can inhibit the enhanced migration of TSC2-deficient cells, identify signalling pathways through which doxycycline works and to assess the effectiveness of combining doxycycline with rapamycin (mammalian target of rapamycin complex 1 inhibitor) in controlling cell migration, proliferation and wound closure. TSC2-positive and TSC2-negative mouse embryonic fibroblasts (MEF), 323-TSC2-positive and 323-TSC2-null MEF and Eker rat uterine leiomyoma (ELT3) cells were treated with doxycycline or rapamycin alone, or in combination. Migration, wound closure and proliferation were assessed using a transwell migration assay, time-lapse microscopy and manual cell counts respectively. RhoA-GTPase activity, phosphorylation of p70S6 kinase (p70S6K) and focal adhesion kinase (FAK) in TSC2-negative MEF treated with doxycycline were examined using ELISA and immunoblotting techniques. The enhanced migration of TSC2-null cells was reduced by doxycycline at concentrations as low as 20 pM, while the rate of wound closure was reduced at 2-59 μM. Doxycycline decreased RhoA-GTPase activity and phosphorylation of FAK in these cells but had no effect on the phosphorylation of p70S6K, ERK1/2 or AKT. Combining doxycycline with rapamycin significantly reduced the rate of wound closure at lower concentrations than achieved with either drug alone. This study shows that doxycycline inhibits TSC2-null cell migration. Thus doxycycline has potential as an anti-migratory agent in the treatment of diseases with TSC2 dysfunction. PMID:26282580

  16. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    SciTech Connect

    Magno, Aaron L.; Ingley, Evan; Brown, Suzanne J.; Conigrave, Arthur D.; Ratajczak, Thomas; Ward, Bryan K.

    2011-09-09

    Highlights: {yields} A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. {yields} The second zinc finger of LIM domain 1 of testin is critical for interaction. {yields} Testin bound to a region of the receptor tail important for cell signalling. {yields} Testin and receptor interaction was confirmed in mammalian (HEK293) cells. {yields} Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  17. Rho-kinase inhibition attenuates calcium-induced contraction in β-escin but not Triton X-100 permeabilized rabbit femoral artery.

    PubMed

    Clelland, Lyndsay J; Browne, Brendan M; Alvarez, Silvina M; Miner, Amy S; Ratz, Paul H

    2011-09-01

    K+-depolarization (KCl) of smooth muscle has long been known to cause Ca2+-dependent contraction, but only recently has this G protein-coupled receptor (GPCR)-independent stimulus been associated with rhoA kinase (ROCK)-dependent myosin light chain (MLC) phosphatase inhibition and Ca2+ sensitization. This study examined effects of ROCK inhibition on the concentration-response curves (CRCs) generated in femoral artery by incrementally adding increasing concentrations of KCl to intact tissues, and Ca2+ to tissues permeabilized with Triton X-100, β-escin and α-toxin. For a comparison, tissue responses were assessed also in the presence of protein kinase C (PKC) and MLC kinase inhibition. The ROCK inhibitor H-1152 induced a strong concentration-dependent inhibition of a KCl CRC. A relatively low GF-109203X concentration (1 μM) sufficient to inhibit conventional PKC isotypes also inhibited the KCl CRC but did not affect the maximum tension. ROCK inhibitors had no effect on the Ca2+ CRC induced in Triton X-100 or α-toxin permeabilized tissues, but depressed the maximum contraction induced in β-escin permeabilized tissue. GF-109203X at 1 μM depressed the maximum Ca2+-dependent contraction induced in α-toxin permeabilized tissue and had no effect on the Ca2+ CRC induced in Triton X-100 permeabilized tissue. The MLC kinase inhibitor wortmannin (1 μM) strongly depression the Ca2+ CRCs in tissues permeabilized with Triton X-100, α-toxin and β-escin. H-1152 inhibited contractions induced by a single exposure to a submaximum [Ca2+] (pCa 6) in both rabbit and mouse femoral arteries. These data indicate that β-escin permeabilized muscle preserves GPCR-independent, Ca2+- and ROCK-dependent, Ca2+ sensitization. PMID:21706258

  18. Central Rho kinase inhibition restores baroreflex sensitivity and angiotensin II type 1 receptor protein imbalance in conscious rabbits with chronic heart failure.

    PubMed

    Haack, Karla K V; Gao, Lie; Schiller, Alicia M; Curry, Pamela L; Pellegrino, Peter R; Zucker, Irving H

    2013-03-01

    The small GTPase RhoA and its associated kinase ROCKII are involved in vascular smooth muscle cell contraction and endothelial NO synthase mRNA destabilization. Overactivation of the RhoA/ROCKII pathway is implicated in several pathologies, including chronic heart failure (CHF), and may contribute to the enhanced sympathetic outflow seen in CHF as a result of decreased NO availability. Thus, we hypothesized that central ROCKII blockade would improve the sympathovagal imbalance in a pacing rabbit model of CHF in an NO-dependent manner. CHF was induced by rapid ventricular pacing and characterized by an ejection fraction of ≤45%. Animals were implanted with an intracerbroventricular cannula and osmotic minipump (rate, 1 μL/h) containing sterile saline, 1.5 µg/kg per day fasudil (Fas, a ROCKII inhibitor) for 4 days or Fas+100 µg/kg per day Nω-Nitro-l-arginine methyl ester hydrochloride, a NO synthase inhibitor. Arterial baroreflex control was assessed by intravenous infusion of sodium nitroprusside and phenylephrine. Fas infusion significantly lowered resting heart rate by decreasing sympathetic and increasing vagal tone. Furthermore, Fas improved baroreflex gain in CHF in an NO-dependent manner. In CHF Fas animals, the decrease in heart rate in response to intravenous metoprolol was similar to Sham and was reversed by Nω-Nitro-l-arginine methyl ester hydrochloride. Fas decreased angiotensin II type 1 receptor and phospho-ERM protein expression and increased endothelial NO synthase expression in the brain stem of CHF animals. These data strongly suggest that central ROCKII activation contributes to cardiac sympathoexcitation in the setting of CHF and that central Fas restores vagal and sympathetic tone in an NO-dependent manner. ROCKII may be a new central therapeutic target in the setting of CHF. PMID:23283363

  19. DL0805-2, a novel indazole derivative, relaxes angiotensin II-induced contractions of rat aortic rings by inhibiting Rho kinase and calcium fluxes

    PubMed Central

    Yuan, Tian-yi; Chen, Yu-cai; Zhang, Hui-fang; Li, Li; Jiao, Xiao-zhen; Xie, Ping; Fang, Lian-hua; Du, Guan-hua

    2016-01-01

    Aim: DL0805-2 [N-(1H-indazol-5-yl)-1-(4-methylbenzyl) pyrrolidine-3-carboxamide] is a DL0805 derivative with more potent vasorelaxant activity and lower toxicity. This study was conducted to investigate the vasorelaxant mechanisms of DL0805-2 on angiotensin II (Ang II)-induced contractions of rat thoracic aortic rings in vitro. Methods: Rat thoracic aortic rings and rat aortic vascular smooth muscle cells (VSMCs) were pretreated with DL0805-2, and then stimulated with Ang II. The tension of the aortic rings was measured through an isometric force transducer. Ang II-induced protein phosphorylation, ROS production and F-actin formation were assessed with Western blotting and immunofluorescence assays. Intracellular free Ca2+ concentrations were detected with Fluo-3 AM. Results: Pretreatment with DL0805-2 (1–100 μmol/L) dose-dependently inhibited the constrictions of the aortic rings induced by a single dose of Ang II (10−7 mol/L) or accumulative addition of Ang II (10−10–10−7 mol/L). The vasodilatory effect of DL0805-2 was independent of endothelium. In the aortic rings, pretreatment with DL0805-2 (1, 3, and 10 μmol/L) suppressed Ang II-induced Ca2+ influx and intracellular Ca2+ mobilization, and Ang II-induced phosphorylation of two substrates of Rho kinase (MLC and MYPT1). In VSMCs, pretreatment with DL0805-2 (1, 3, and 10 μmol/L) also suppressed Ang II-induced Ca2+ fluxes and phosphorylation of MLC and MYPT1. In addition, pretreatment with DL0805-2 attenuated ROS production and F-actin formation in the cells. Conclusion: DL0805-2 exerts a vasodilatory action in rat aortic rings through inhibiting the Rho/ROCK pathway and calcium fluxes. PMID:27041459

  20. Protective effect of a novel Rho kinase inhibitor WAR-5 in experimental autoimmune encephalomyelitis by modulating inflammatory response and neurotrophic factors.

    PubMed

    Li, Yan-hua; Yu, Jie-zhong; Xin, Yan-le; Feng, Ling; Chai, Zhi; Liu, Jian-chun; Zhang, Hong-zhen; Zhang, Guang-Xian; Xiao, Bao-guo; Ma, Cun-gen

    2015-10-01

    The Rho-kinase (ROCK) inhibitor Fasudil has proven beneficial in experimental autoimmune encephalomyelitis (EAE). Given the small safety window of Fasudil, we are looking for novel ROCK inhibitors, which have similar or stronger effect on EAE with greater safety. In this study, we report that WAR-5, a Y-27632 derivative, alleviates the clinical symptoms, attenuates myelin damage and reduces CNS inflammatory responses in EAE C57BL/6 mice at an extent similar to Fasudil, while exhibits less vasodilator and adverse reaction in vivo. WAR-5 inhibits ROCK activity, and selectively suppresses the expression of ROCK II in spleen, brain and spinal cord of EAE mice, especially in spinal cord, accompanied by decreased expression of Nogo. WAR-5 also regulates the imbalance of Th1/Th17 T cells and regulatory T cells, inhibits inflammatory microenvironment induced with NF-κB-IL-1β pathway. Importantly, WAR-5 converts M1 toward M2 microglia/macrophages that are positively correlated with BDNF and NT-3 production. Taken together, WAR-5 exhibits therapeutic potential in EAE by more selectively inhibits ROCK II, with a greater safety than Fasudil, and is worthy of further clinical study to clarify its clinical value. PMID:26112093

  1. Involvement of the H1 histamine receptor, p38 MAP kinase, MLCK, and Rho/ROCK in histamine-induced endothelial barrier dysfunction

    PubMed Central

    Adderley, Shaquria P.; Zhang, Xun E.; Breslin, Jerome W.

    2015-01-01

    Objective The mechanisms by which histamine increases microvascular permeability remain poorly understood. We tested the hypothesis that H1 receptor activation disrupts the endothelial barrier and investigated potential downstream signals. Methods We used confluent endothelial cell (EC) monolayers, assessing transendothelial electrical resistance (TER) as an index of barrier function. Human umbilical vein EC (HUVEC), cardiac microvascular EC (HCMEC), and dermal microvascular EC (HDMEC) were compared. Receptor expression was investigated using Western blotting, immunofluorescence (IF) confocal microscopy and RT-PCR. Receptor function and downstream signaling pathways were tested using pharmacologic antagonists and inhibitors, respectively. Results We identified H1-H4 receptors on all three EC types. H1 antagonists did not affect basal TER but prevented the histamine-induced decrease in TER. Blockade of H2 or H3 attenuated the histamine response only in HDMEC, while inhibition of H4 attenuated the response only in HUVEC. Combined inhibition of both PKC and PI3K caused exaggerated histamine-induced barrier dysfunction in HDMEC, whereas inhibition of p38 MAP kinase attenuated the histamine response in all three EC types. Inhibition of RhoA, ROCK, or MLCK also prevented the histamine-induced decrease in TER in HDMEC. Conclusion The data suggest that multiple signaling pathways contribute to histamine-induced endothelial barrier dysfunction via the H1 receptor. PMID:25582918

  2. Rho-kinase inhibitor targeting the liver prevents ischemia/reperfusion injury in the steatotic liver without major systemic adversity in rats.

    PubMed

    Kuroda, Shintaro; Tashiro, Hirotaka; Kimura, Yasuhiro; Hirata, Kaori; Tsutada, Misaki; Mikuriya, Yoshihiro; Kobayashi, Tsuyoshi; Amano, Hironobu; Tanaka, Yuka; Ohdan, Hideki

    2015-01-01

    Rho-kinase (ROCK) inhibitors improve liver blood flow after ischemia/reperfusion (IR) injury, especially in the setting of steatosis, by decreasing the resistance of intrahepatic microcirculation through hepatic stellate cell (HSC) relaxation. However, the systemic administration of ROCK inhibitors causes severe hypotension; therefore, liver-specific ROCK inhibition is required. Here, we tested vitamin A (VA)-coupled liposomes carrying the ROCK inhibitor Y-27632 for targeted HSCs in steatotic rats. Rat livers with steatosis induced by a choline-deficient diet were subjected to IR injury. The delivery site and effect of the ROCK inhibitor were investigated. After liposomal Y-27632 injection, the survival rate after IR, the liver blood flow, the portal perfused pressure, and the hemodynamics were investigated. Immunohistochemical studies showed VA-coupled liposome accumulation in livers. Liposomal Y-27632 was 100-fold more effective in inhibiting HSC activation than free Y-27632. Liposomal Y-27632 improved the survival rate after IR injury, the liver blood flow, and the portal perfusion pressure without severe hypotension. In contrast, untargeted Y-27632 elicited severe systemic hypotension. We conclude that VA-coupled liposomes carrying the ROCK inhibitor yield enhanced drug accumulation in the liver and thus mitigate IR injury in the steatotic liver and reduce major systemic adversity. PMID:25307969

  3. The Rho kinase inhibitor azaindole-1 has long-acting vasodilator activity in the pulmonary vascular bed of the intact chest rat.

    PubMed

    Pankey, Edward A; Byun, Ryuk J; Smith, William B; Bhartiya, Manish; Bueno, Franklin R; Badejo, Adeleke M; Stasch, Johannes-Peter; Murthy, Subramanyam N; Nossaman, Bobby D; Kadowitz, Philip J

    2012-07-01

    Responses to a selective azaindole-based Rho kinase (ROCK) inhibitor (azaindole-1) were investigated in the rat. Intravenous injections of azaindole-1 (10-300 µg/kg), produced small decreases in pulmonary arterial pressure and larger decreases in systemic arterial pressure without changing cardiac output. Responses to azaindole-1 were slow in onset and long in duration. When baseline pulmonary vascular tone was increased with U46619 or L-NAME, the decreases in pulmonary arterial pressure in response to the ROCK inhibitor were increased. The ROCK inhibitor attenuated the increase in pulmonary arterial pressure in response to ventilatory hypoxia. Azaindole-1 decreased pulmonary and systemic arterial pressures in rats with monocrotaline-induced pulmonary hypertension. These results show that azaindole-1 has significant vasodilator activity in the pulmonary and systemic vascular beds and that responses are larger, slower in onset, and longer in duration when compared with the prototypical agent fasudil. Azaindole-1 reversed hypoxic pulmonary vasoconstriction and decreased pulmonary and systemic arterial pressures in a similar manner in rats with monocrotaline-induced pulmonary hypertension. These data suggest that ROCK is involved in regulating baseline tone in the pulmonary and systemic vascular beds, and that ROCK inhibition will promote vasodilation when tone is increased by diverse stimuli including treatment with monocrotaline. PMID:22591047

  4. Pim kinases modulate resistance to FLT3 tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia

    PubMed Central

    Green, Alexa S.; Maciel, Thiago T.; Hospital, Marie-Anne; Yin, Chae; Mazed, Fetta; Townsend, Elizabeth C.; Pilorge, Sylvain; Lambert, Mireille; Paubelle, Etienne; Jacquel, Arnaud; Zylbersztejn, Florence; Decroocq, Justine; Poulain, Laury; Sujobert, Pierre; Jacque, Nathalie; Adam, Kevin; So, Jason C. C.; Kosmider, Olivier; Auberger, Patrick; Hermine, Olivier; Weinstock, David M.; Lacombe, Catherine; Mayeux, Patrick; Vanasse, Gary J.; Leung, Anskar Y.; Moura, Ivan C.; Bouscary, Didier; Tamburini, Jerome

    2015-01-01

    ABSTRACT Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is frequently detected in acute myeloid leukemia (AML) patients and is associated with a dismal long-term prognosis. FLT3 tyrosine kinase inhibitors provide short-term disease control, but relapse invariably occurs within months. Pim protein kinases are oncogenic FLT3-ITD targets expressed in AML cells. We show that increased Pim kinase expression is found in relapse samples from AML patients treated with FLT3 inhibitors. Ectopic Pim-2 expression induces resistance to FLT3 inhibition in both FLT3-ITD–induced myeloproliferative neoplasm and AML models in mice. Strikingly, we found that Pim kinases govern FLT3-ITD signaling and that their pharmacological or genetic inhibition restores cell sensitivity to FLT3 inhibitors. Finally, dual inhibition of FLT3 and Pim kinases eradicates FLT3-ITD+ cells including primary AML cells. Concomitant Pim and FLT3 inhibition represents a promising new avenue for AML therapy. PMID:26601252

  5. RhoA as a Mediator of Clinically Relevant Androgen Action in Prostate Cancer Cells

    PubMed Central

    Schmidt, Lucy J.; Duncan, Kelly; Yadav, Neelu; Regan, Kevin M.; Verone, Alissa R.; Lohse, Christine M.; Pop, Elena A.; Attwood, Kristopher; Wilding, Gregory; Mohler, James L.; Sebo, Thomas J.; Tindall, Donald J.

    2012-01-01

    Recently, we have identified serum response factor (SRF) as a mediator of clinically relevant androgen receptor (AR) action in prostate cancer (PCa). Genes that rely on SRF for androgen responsiveness represent a small fraction of androgen-regulated genes, but distinguish benign from malignant prostate, correlate with aggressive disease, and are associated with biochemical recurrence. Thus, understanding the mechanism(s) by which SRF conveys androgen regulation to its target genes may provide novel opportunities to target clinically relevant androgen signaling. Here, we show that the small GTPase ras homolog family member A (RhoA) mediates androgen-responsiveness of more than half of SRF target genes. Interference with expression of RhoA, activity of the RhoA effector Rho-associated coiled-coil containing protein kinase 1 (ROCK), and actin polymerization necessary for nuclear translocation of the SRF cofactor megakaryocytic acute leukemia (MAL) prevented full androgen regulation of SRF target genes. Androgen treatment induced RhoA activation, increased the nuclear content of MAL, and led to MAL recruitment to the promoter of the SRF target gene FHL2. In clinical specimens RhoA expression was higher in PCa cells than benign prostate cells, and elevated RhoA expression levels were associated with aggressive disease features and decreased disease-free survival after radical prostatectomy. Overexpression of RhoA markedly increased the androgen-responsiveness of select SRF target genes, in a manner that depends on its GTPase activity. The use of isogenic cell lines and a xenograft model that mimics the transition from androgen-stimulated to castration-recurrent PCa indicated that RhoA levels are not altered during disease progression, suggesting that RhoA expression levels in the primary tumor determine disease aggressiveness. Androgen-responsiveness of SRF target genes in castration-recurrent PCa cells continued to rely on AR, RhoA, SRF, and MAL and the presence of

  6. Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-beta-mediated Smad-dependent growth inhibition of human breast carcinoma cells in vivo.

    PubMed

    Kamaraju, Anil K; Roberts, Anita B

    2005-01-14

    TGF-beta is a multifunctional cytokine known to exert its biological effects through a variety of signaling pathways of which Smad signaling is considered to be the main mediator. At present, the Smad-independent pathways, their interactions with each other, and their roles in TGF-beta-mediated growth inhibitory effects are not well understood. To address these questions, we have utilized a human breast cancer cell line MCF10CA1h and demonstrate that p38 MAP kinase and Rho/ROCK pathways together with Smad2 and Smad3 are necessary for TGF-beta-mediated growth inhibition of this cell line. We show that Smad2/3 are indispensable for TGF-beta-mediated growth inhibition, and that both p38 and Rho/ROCK pathways affect the linker region phosphorylation of Smad2/3. Further, by using Smad3 mutated at the putative phosphorylation sites in the linker region, we demonstrate that phosphorylation at Ser203 and Ser207 residues is required for the full transactivation potential of Smad3, and that these residues are targets of the p38 and Rho/ROCK pathways. We demonstrate that activation of the p38 MAP kinase pathway is necessary for the full transcriptional activation potential of Smad2/Smad3 by TGF-beta, whereas activity of Rho/ROCK is necessary for both down-regulation of c-Myc protein and up-regulation of p21waf1 protein, directly interfering with p21waf1 transcription. Our results not only implicate Rho/ROCK and p38 MAPK pathways as necessary for TGF-beta-mediated growth inhibition, but also demonstrate their individual contributions and the basis for their cooperation with each other. PMID:15520018

  7. Fasudil, a Rho-kinase inhibitor, prevents intima-media thickening in a partially ligated carotid artery mouse model: Effects of fasudil in flow-induced vascular remodeling

    PubMed Central

    Zhang, Xiangyu; Zhang, Tao; Gao, Fu; Li, Qingle; Shen, Chenyang; Li, Yankui; Li, Wei; Zhang, Xiaoming

    2015-01-01

    Vascular remodeling in response to hemodynamic alterations is a physiological process that requires coordinated signaling between endothelial, inflammatory and vascular smooth muscle cells (VSMCs). Extensive experimental and clinical studies have indicated the critical role of the Ras homolog gene family, member A/Rho-associated kinase (ROCK) signaling pathway in the pathogenesis of cardiovascular disease, where ROCK activation has been demonstrated to promote inflammation and remodeling through inducing the expression of proinflammatory cytokines and adhesion molecules in endothelial cells and VSMCs. However, the role of ROCK in flow-induced vascular remodeling has not been fully defined. The current study aimed to investigate the effect of the ROCK signaling pathway in flow-induced vascular remodeling by comparing the responses to partial carotid artery ligation in mice treated with fasudil (a ROCK inhibitor) and untreated mice. Intima-media thickness and neointima formation were evaluated by morphology. VSMC proliferation and inflammation of the vessel wall were assessed by immunohistochemistry. In addition, the expression levels of ROCK and the downstream effectors of ROCK, myosin light chain (MLC) and phosphorylated-MLC (p-MLC), were quantified by western blot analysis. Following a reduction in blood flow, ROCK1 and p-MLC expression increased in the untreated left common carotid arteries (LCA). Fasudil-treated mice developed a significantly smaller intima-media thickness compared with the untreated mice. Quantitative immunohistochemistry of the fasudil-treated LCA indicated that there was a reduction in proliferation when compared with untreated vessels. There were fewer CD45+ cells observed in the fasudil-treated LCA compared with the untreated LCA. In conclusion, the expression of ROCK was enhanced in flow-induced carotid artery remodeling and ROCK inhibition as a result of fasudil treatment may attenuate flow-induced carotid artery remodeling. PMID:26458725

  8. Effect of Anacyclus pyrethrum on pentylenetetrazole-induced kindling, spatial memory, oxidative stress and rho-kinase II expression in mice.

    PubMed

    Pahuja, Monika; Mehla, Jogender; Reeta, K H; Tripathi, Manjari; Gupta, Yogendra Kumar

    2013-03-01

    Anacyclus pyrethrum (A. pyrethrum) has been reported to exhibit anticonvulsant activity. In the present study, the effect of hydro-alcoholic extract of A. pyrethrum root (HEAP) on pentylenetetrazole (PTZ) induced kindling, spatial memory, oxidative stress and rho kinase (ROCK II) was assessed. Male albino mice (25-30 g) were used in the study. PTZ (35 mg/kg, i.p. on alternate days) was injected to induce kindling and PTZ (70 mg/kg, i.p) challenge was given 7 days post-kindling. HEAP was administered orally daily in the doses of 100, 250 and 500 mg/kg along with PTZ injections during the kindling process and continued till PTZ challenge post kindling. Spatial memory was assessed using Morris water maze test. Oxidative stress parameters [malondialdehyde (MDA) and reduced glutathione (GSH)] and ROCK II expression were estimated in whole brain at the end of the study. Pre-treatment with HEAP (250 and 500 mg/kg) showed significant increase in the myoclonic jerk latency and delay in the development of kindling. A significant decrease in mortality was observed at higher doses of HEAP (250 and 500 mg/kg). Pre-treatment with HEAP significantly increased the number of platform crossings and decreased the escape latency, as opposed to the PTZ group, thus showing protection against memory deficit. HEAP pre-treatment also attenuated the oxidative stress induced by PTZ kindling. PTZ induced kindling increased the ROCK II expression whereas, HEAP pre-treatment attenuated the increase in ROCK II expression. To conclude, HEAP pre-treatment showed antiepileptic effect and also showed protection against cognitive impairment by decreasing oxidative stress and ROCK II expression in PTZ kindled mice. PMID:23242789

  9. Morphological Changes of Human Corneal Endothelial Cells after Rho-Associated Kinase Inhibitor Eye Drop (Ripasudil) Administration: A Prospective Open-Label Clinical Study

    PubMed Central

    Okumura, Naoki; Suganami, Hideki; Kinoshita, Shigeru

    2015-01-01

    Purpose To investigate the effect and safety of a selective Rho kinase inhibitor, ripasudil 0.4% eye drops, on corneal endothelial cells of healthy subjects. Design Prospective, interventional case series. Methods In this study, 6 healthy subjects were administered ripasudil 0.4% in the right eye twice daily for 1 week. Morphological changes and corneal endothelial cell density were examined by noncontact and contact specular microscopy. Central corneal thickness and corneal volume of 5 mm-diameter area of center cornea were analyzed by Pentacam Scheimpflug topography. All the above measurements were conducted in both eyes before administration, 1.5 and 6 hours after the initial administration on day 0; and in the same manner after the final administration on day 7. Results By noncontact specular microscopy, indistinct cell borders with pseudo guttae were observed, but by contact specular microscopy, morphological changes of corneal endothelial cells were mild and pseudo guttae was not observed after single and repeated administration of ripasudil in all subjects. These changes resolved prior to the next administration, and corneal endothelial cell density, central corneal thickness and corneal volume were not changed throughout the study period. Conclusion Transient morphological changes of corneal endothelial cells such as indistinct cell borders with pseudo guttae were observed by noncontact specular microscopy in healthy subjects after ripasudil administration. Corneal edema was not observed and corneal endothelial cell density did not decrease after 1 week repetitive administration. These morphological changes were reversible and corneal endothelial cell morphology returned to normal prior to the next administration. Trial Registration JAPIC Clinical Trials Information 142705 PMID:26367375

  10. Role of Rho Kinase Inhibition in the Protective Effect of Fasudil and Simvastatin Against 3-Nitropropionic Acid-Induced Striatal Neurodegeneration and Mitochondrial Dysfunction in Rats.

    PubMed

    Ahmed, Lamiaa A; Darwish, Hebatallah A; Abdelsalam, Rania M; Amin, HebatAllah A

    2016-08-01

    3-Nitropropionic acid (3-NP)-induced neurotoxicity is an experimental model which mimics the pathology and motor abnormalities seen in Huntington's disease (HD) in human. The present investigation was directed to estimate the role of rho kinase (ROCK) inhibition in the possible protective effect of fasudil and simvastatin in 3-NP-induced striatal neurodegeneration in rats. Animals were injected s.c. with 3-NP (20 mg/kg/day) for 1 week with or without administration of fasudil (10 mg/kg/day, p.o.) or simvastatin (20 mg/kg/day, p.o.). At the end of experiment, motor and behavioral abnormalities were evaluated. Animals were then sacrificed for measurement of mitochondrial membrane potential as well as succinate dehydrogenase (SDH) and caspase-3 activities in striatum. Moreover, tumor necrosis factor-alpha (TNF-α) level and protein expressions of proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), ROCK, phosphorylated-Akt (p-Akt), endothelial and inducible nitric oxide synthase (eNOS and iNOS), Bax, and Bcl-2 were estimated. Finally, histological changes as demonstrated by striatum injury score, glial activation, and percentage of altered mitochondria were assessed. Both fasudil and simvastatin effectively inhibited 3-NP-induced behavioral, biochemical, and histological changes through inhibition of ROCK activity. However, fasudil provided more amelioration in histological changes, mitochondrial membrane potential and SDH activity in addition to p-Akt and PGC-1α protein expressions. The present study highlights a significant role of ROCK/p-Akt/eNOS pathway in the protective effects of fasudil and simvastatin on neurotoxicity and mitochondrial dysfunction induced by 3-NP in rats. Thus, specific inhibition of ROCK may be considered a promising new approach in the management of HD. PMID:26169112

  11. ABL kinase mutation and relapse in 4 pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia cases.

    PubMed

    Aoe, Michinori; Shimada, Akira; Muraoka, Michiko; Washio, Kana; Nakamura, Yoshimi; Takahashi, Takahide; Imada, Masahide; Watanabe, Toshiyuki; Okada, Ken; Nishiuchi, Ritsuo; Miyamura, Takako; Chayama, Kosuke; Shibakura, Misako; Oda, Megumi; Morishima, Tsuneo

    2014-01-01

    The tyrosine kinase inhibitor (TKI) imatinib mesylate (IM) revolutionized the treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph-ALL), which had showed poor prognosis before the dawn of IM treatment. However, if Ph-ALL patients showed IM resistance due to ABL kinase mutation, second-generation TKI, dasatinib or nilotinib, was recommended. We treated 4 pediatric Ph-ALL patients with both IM and bone marrow transplantation (BMT); however, 3 relapsed. We retrospectively examined the existence of ABL kinase mutation using PCR and direct sequencing methods, but there was no such mutation in all 4 diagnostic samples. Interestingly, two relapsed samples from patients who were not treated with IM before relapse did not show ABL kinase mutation and IM was still effective even after relapse. On the other hand, one patient who showed resistance to 3 TKI acquired dual ABL kinase mutations, F359C at the IM-resistant phase and F317I at the dasatinib-resistant phase, simultaneously. In summary, Ph-ALL patients relapsed with or without ABL kinase mutation. Furthermore, ABL kinase mutation was only found after IM treatment, so an IM-resistant clone might have been selected during the IM treatment and intensive chemotherapy. The appropriate combination of TKI and BMT must be discussed to cure Ph-ALL patients. PMID:24652384

  12. Calcium/calmodulin-dependent protein kinase IV mediates acute nicotine-induced antinociception in acute thermal pain tests

    PubMed Central

    Jackson, Kia J.; Damaj, M. Imad

    2014-01-01

    Calcium activated second messengers such as calcium/calmodulin-dependent protein kinase II have been implicated in drug-induced antinociception. The less abundant calcium activated second messenger, calcium/calmodulin-dependent protein kinase IV (CaMKIV), mediates emotional responses to pain and tolerance to morphine analgesia; however its role in nicotine-mediated antinociception is currently unknown. The goal of this study was to evaluate the role of CaMKIV in the acute effects of nicotine, primarily acute nicotine- induced antinociception. CaMKIV knockout (−/−), heterozygote (+/−), and wild-type (+/+) mice were injected with various doses of nicotine and evaluated in a battery of tests, including the tail-flick and hot-plate tests for antinociception, body temperature, and locomotor activity. Our results show a genotype-dependent reduction in tail-flick and hot- plate latency in CaMKIV (+/−) and (−/−) mice after acute nicotine treatment, while no difference was observed between genotypes in the body temperature and locomotor activity assessments. The results of this study support a role for CaMKIV in acute nicotine-induced spinal and supraspinal pain mechanisms, and further implicate involvement of calcium-dependent mechanisms in drug-induced antinociception. PMID:24196027

  13. Decorin induces rapid secretion of thrombospondin-1 in basal breast carcinoma cells via inhibition of Ras homolog gene family, member A/Rho-associated coiled-coil containing protein kinase 1.

    PubMed

    Neill, Thomas; Jones, Holly R; Crane-Smith, Zoe; Owens, Rick T; Schaefer, Liliana; Iozzo, Renato V

    2013-05-01

    Pathological neovascularization relies on an imbalance between potent proangiogenic agents and equally effective antiangiogenic cues. Collectively, these factors contribute to an angiogenic niche within the tumor microenvironment. Oncogenic events and hypoxia contribute to augmented levels of angiokines, and thereby activate the so-called angiogenic switch to promote aggressive tumorigenic and metastatic growth. Soluble decorin functions as a paracrine pan-inhibitor of receptor tyrosine kinases, such as Met and epidermal growth factor receptor, and thus is capable of suppressing angiogenesis under normoxia. This leads to noncanonical repression of hypoxia-inducible factor 1-alpha and vascular endothelial growth factor A (VEGFA), and concurrent induction of thrombospondin-1. The substantial induction of endogenous tumor cell-derived thrombospondin-1, a potent antiangiogenic effector, led us to the discovery of an unexpected secretory phenotype occurring very rapidly (within 5 min) after decorin treatment of the triple-negative basal breast carcinoma cell line MDA-MB-231. Surprisingly, the effect was not mediated by Met receptor antagonism, as initially hypothesized, but required epidermal growth factor receptor signaling to achieve swift and robust thrombospondin-1 release. Furthermore, this effect was ultimately dependent on the prompt degradation of Ras homolog gene family member A, via the 26S proteasome, leading to direct inactivation of Rho-associated coiled-coil containing protein kinase 1. The latter led to derepression of thrombospondin-1 secretion. Collectively, these data provide a novel mechanistic role for Rho-associated coiled-coil containing protein kinase 1, in addition to providing the first conclusive evidence of decorin exclusively targeting a receptor tyrosine kinase to achieve a specific effect. The overall effects of soluble decorin on the tumor microenvironment would cause an immediately-early as well as a sustained antiangiogenic response

  14. Neuronal Apoptosis Induced by Selective Inhibition of Rac GTPase versus Global Suppression of Rho Family GTPases Is Mediated by Alterations in Distinct Mitogen-activated Protein Kinase Signaling Cascades*

    PubMed Central

    Stankiewicz, Trisha R.; Ramaswami, Sai Anandi; Bouchard, Ron J.; Aktories, Klaus; Linseman, Daniel A.

    2015-01-01

    Rho family GTPases play integral roles in neuronal differentiation and survival. We have shown previously that Clostridium difficile toxin B (ToxB), an inhibitor of RhoA, Rac1, and Cdc42, induces apoptosis of cerebellar granule neurons (CGNs). In this study, we compared the effects of ToxB to a selective inhibitor of the Rac-specific guanine nucleotide exchange factors Tiam1 and Trio (NSC23766). In a manner similar to ToxB, selective inhibition of Rac induces CGN apoptosis associated with enhanced caspase-3 activation and reduced phosphorylation of the Rac effector p21-activated kinase. In contrast to ToxB, caspase inhibitors do not protect CGNs from targeted inhibition of Rac. Also dissimilar to ToxB, selective inhibition of Rac does not inhibit MEK1/2/ERK1/2 or activate JNK/c-Jun. Instead, targeted inhibition of Rac suppresses distinct MEK5/ERK5, p90Rsk, and Akt-dependent signaling cascades known to regulate the localization and expression of the Bcl-2 homology 3 domain-only protein Bad. Adenoviral expression of a constitutively active mutant of MEK5 is sufficient to attenuate neuronal cell death induced by selective inhibition of Rac with NSC23766 but not apoptosis induced by global inhibition of Rho GTPases with ToxB. Collectively, these data demonstrate that global suppression of Rho family GTPases with ToxB causes a loss of MEK1/2/ERK1/2 signaling and activation of JNK/c-Jun, resulting in diminished degradation and enhanced transcription of the Bcl-2 homology 3 domain-only protein Bim. In contrast, selective inhibition of Rac induces CGN apoptosis by repressing unique MEK5/ERK5, p90Rsk, and Akt-dependent prosurvival pathways, ultimately leading to enhanced expression, dephosphorylation, and mitochondrial localization of proapoptotic Bad. PMID:25666619

  15. Neuronal apoptosis induced by selective inhibition of Rac GTPase versus global suppression of Rho family GTPases is mediated by alterations in distinct mitogen-activated protein kinase signaling cascades.

    PubMed

    Stankiewicz, Trisha R; Ramaswami, Sai Anandi; Bouchard, Ron J; Aktories, Klaus; Linseman, Daniel A

    2015-04-10

    Rho family GTPases play integral roles in neuronal differentiation and survival. We have shown previously that Clostridium difficile toxin B (ToxB), an inhibitor of RhoA, Rac1, and Cdc42, induces apoptosis of cerebellar granule neurons (CGNs). In this study, we compared the effects of ToxB to a selective inhibitor of the Rac-specific guanine nucleotide exchange factors Tiam1 and Trio (NSC23766). In a manner similar to ToxB, selective inhibition of Rac induces CGN apoptosis associated with enhanced caspase-3 activation and reduced phosphorylation of the Rac effector p21-activated kinase. In contrast to ToxB, caspase inhibitors do not protect CGNs from targeted inhibition of Rac. Also dissimilar to ToxB, selective inhibition of Rac does not inhibit MEK1/2/ERK1/2 or activate JNK/c-Jun. Instead, targeted inhibition of Rac suppresses distinct MEK5/ERK5, p90Rsk, and Akt-dependent signaling cascades known to regulate the localization and expression of the Bcl-2 homology 3 domain-only protein Bad. Adenoviral expression of a constitutively active mutant of MEK5 is sufficient to attenuate neuronal cell death induced by selective inhibition of Rac with NSC23766 but not apoptosis induced by global inhibition of Rho GTPases with ToxB. Collectively, these data demonstrate that global suppression of Rho family GTPases with ToxB causes a loss of MEK1/2/ERK1/2 signaling and activation of JNK/c-Jun, resulting in diminished degradation and enhanced transcription of the Bcl-2 homology 3 domain-only protein Bim. In contrast, selective inhibition of Rac induces CGN apoptosis by repressing unique MEK5/ERK5, p90Rsk, and Akt-dependent prosurvival pathways, ultimately leading to enhanced expression, dephosphorylation, and mitochondrial localization of proapoptotic Bad. PMID:25666619

  16. Inhibiting Polo-like kinase 1 causes growth reduction and apoptosis in pediatric acute lymphoblastic leukemia cells

    PubMed Central

    Hartsink-Segers, Stefanie A.; Exalto, Carla; Allen, Matthew; Williamson, Daniel; Clifford, Steven C.; Horstmann, Martin; Caron, Huib N.; Pieters, Rob; Den Boer, Monique L.

    2013-01-01

    This study investigated Polo-like kinase 1, a mitotic regulator often over-expressed in solid tumors and adult hematopoietic malignancies, as a potential new target in the treatment of pediatric acute lymphoblastic leukemia. Polo-like kinase 1 protein and Thr210 phosphorylation levels were higher in pediatric acute lymphoblastic leukemia (n=172) than in normal bone marrow mononuclear cells (n=10) (P<0.0001). High Polo-like kinase 1 protein phosphorylation, but not expression, was associated with a lower probability of event-free survival (P=0.042) and was a borderline significant prognostic factor (P=0.065) in a multivariate analysis including age and initial white blood cell count. Polo-like kinase 1 was necessary for leukemic cell survival, since short hairpin-mediated Polo-like kinase 1 knockdown in acute lymphoblastic leukemia cell lines inhibited cell proliferation by G2/M cell cycle arrest and induced apoptosis through caspase-3 and poly (ADP-ribose) polymerase cleavage. Primary patient cells with a high Polo-like kinase 1 protein expression were sensitive to the Polo-like kinase 1-specific inhibitor NMS-P937 in vitro, whereas cells with a low expression and normal bone marrow cells were resistant. This sensitivity was likely not caused by Polo-like kinase 1 mutations, since only one new mutation (Ser335Arg) was found by 454-sequencing of 38 pediatric acute lymphoblastic leukemia cases. This mutation did not affect Polo-like kinase 1 expression or NMS-P937 sensitivity. Together, these results indicate a pivotal role for Polo-like kinase 1 in pediatric acute lymphoblastic leukemia and show potential for Polo-like kinase 1-inhibiting drugs as an addition to current treatment strategies for cases expressing high Polo-like kinase 1 levels. PMID:23753023

  17. Comparison of the value of novel rapid measurement of myoglobin, creatine kinase, and creatine kinase-MB with the electrocardiogram for the diagnosis of acute myocardial infarction.

    PubMed Central

    Lee, H. S.; Cross, S. J.; Garthwaite, P.; Dickie, A.; Ross, I.; Walton, S.; Jennings, K.

    1994-01-01

    OBJECTIVE--To determine whether serum myoglobin, creatine kinase, and creatine kinase-MB measured at admission by rapid, compact, and easy to use automated quantitative analysers (results within 10 min) helped the early identification of acute myocardial infarction. The results were compared with the data obtained from the electrocardiograms recorded at admission. DESIGN--A prospective study. SETTING--Coronary care unit. PATIENTS--94 consecutive patients with suspected myocardial infarction. Myocardial infarction was subsequently confirmed in 44 patients and excluded in 50. METHODS--All admission serum myoglobin, creatine kinase, and creatine kinase-MB were measured by clinical staff using analysers in the coronary care unit. An admission electrocardiogram was obtained from all patients. RESULTS--The sensitivity, specificity, and predictive accuracy for diagnosing myocardial infarction were: electrocardiogram 68%, 100%, and 85%; myoglobin 57%, 100%, and 80%; creatine kinase (threshold of 190 U/l) 34%, 98%, and 68%; creatine kinase-MB (threshold of 25 U/l) 43%, 100%, and 73%. When the electrocardiographic and myoglobin data were combined the sensitivity improved to 91%, diagnostic accuracy to 96%, with specificity of 100%. The results for the electrocardiogram and creatine kinase-MB were 80%, 90%, 100% respectively and those for the electrocardiogram with creatine kinase were 80%, 89%, 98% respectively. CONCLUSIONS--Admission myoglobin, creatine kinase, and creatine kinase-MB measurements were not as useful as the electrocardiogram for the diagnosis of acute myocardial infarction. Combining the electrocardiogram and myoglobin data substantially improved the sensitivity and predictive accuracy for the diagnosis of acute myocardial infarction. PMID:8198879

  18. Acute toxicity of doxorubicin on isolated perfused heart: response of kinases regulating energy supply.

    PubMed

    Tokarska-Schlattner, Malgorzata; Zaugg, Michael; da Silva, Rafaela; Lucchinetti, Eliana; Schaub, Marcus C; Wallimann, Theo; Schlattner, Uwe

    2005-07-01

    Doxorubicin (DXR) is a widely used and efficient anticancer drug. However, its application is limited by the risk of severe cardiotoxicity. Impairment of cardiac high-energy phosphate homeostasis is an important manifestation of both acute and chronic DXR cardiotoxic action. Using the Langendorff model of the perfused rat heart, we characterized the acute effects of 1-h perfusion with 2 or 20 microM DXR on two key kinases in cardiac energy metabolism, creatine kinase (CK) and AMP-activated protein kinase (AMPK), and related them to functional responses of the perfused heart and structural integrity of the contractile apparatus as well as drug accumulation in cardiomyocytes. DXR-induced changes in CK were dependent on the isoenzyme, with a shift in protein levels of cytosolic isoenzymes from muscle-type CK to brain-type CK, and a destabilization of octamers of the mitochondrial isoenzyme (sarcometric mitochondrial CK) accompanied by drug accumulation in mitochondria. Interestingly, DXR rapidly reduced the protein level and phosphorylation of AMPK as well as phosphorylation of its target, acetyl-CoA-carboxylase. AMPK was strongly affected already at 2 microM DXR, even before substantial cardiac dysfunction occurred. Impairment of CK isoenzymes was mostly moderate but became significant at 20 microM DXR. Only at 2 microM DXR did upregulation of brain-type CK compensate for inactivation of other isoenzymes. These results suggest that an impairment of kinase systems regulating cellular energy homeostasis is involved in the development of DXR cardiotoxicity. PMID:15764680

  19. Rho proteins crosstalk via RhoGDIalpha

    PubMed Central

    Stultiens, Audrey; Ho, T. T. Giang; Nusgens, Betty V.; Colige, Alain C.

    2012-01-01

    The small GTPases of the Rho family are key signaling molecules regulating a plethora of biological pathways. They can exert diverse, sometimes opposite, contributions to specific cellular processes explaining why their regulation and their crosstalk must be finely tuned. Several mechanisms driving crosstalk between Rho GTPases have been described in the literature. They implicate proteins regulating their activity or common downstream effectors. Among the proteins regulating Rho GTPases cycling, RhoGDIs were viewed until very recently as passive inhibitors. Here, we will focus on recent data supporting a role for RhoGDIalpha in the crosstalk between RhoGTPases and present our results suggesting that “preferential” RhoGDIalpha-mediated crosstalk takes place between closely related Rho GTPases. PMID:22482023

  20. Spatio-temporal co-ordination of RhoA, Rac1 and Cdc42 activation during prototypical edge protrusion and retraction dynamics

    PubMed Central

    Martin, Katrin; Reimann, Andreas; Fritz, Rafael D.; Ryu, Hyunryul; Jeon, Noo Li; Pertz, Olivier

    2016-01-01

    The three canonical Rho GTPases RhoA, Rac1 and Cdc42 co-ordinate cytoskeletal dynamics. Recent studies indicate that all three Rho GTPases are activated at the leading edge of motile fibroblasts, where their activity fluctuates at subminute time and micrometer length scales. Here, we use a microfluidic chip to acutely manipulate fibroblast edge dynamics by applying pulses of platelet-derived growth factor (PDGF) or the Rho kinase inhibitor Y-27632 (which lowers contractility). This induces acute and robust membrane protrusion and retraction events, that exhibit stereotyped cytoskeletal dynamics, allowing us to fairly compare specific morphodynamic states across experiments. Using a novel Cdc42, as well as previously described, second generation RhoA and Rac1 biosensors, we observe distinct spatio-temporal signaling programs that involve all three Rho GTPases, during protrusion/retraction edge dynamics. Our results suggest that Rac1, Cdc42 and RhoA regulate different cytoskeletal and adhesion processes to fine tune the highly plastic edge protrusion/retraction dynamics that power cell motility. PMID:26912264

  1. Investigation of whether the acute hemolysis associated with Rho(D) immune globulin intravenous (human) administration for treatment of immune thrombocytopenic purpura is consistent with the acute hemolytic transfusion reaction model

    PubMed Central

    Gaines, Ann Reed; Lee-Stroka, Hallie; Byrne, Karen; Scott, Dorothy E.; Uhl, Lynne; Lazarus, Ellen; Stroncek, David F.

    2012-01-01

    BACKGROUND Immune thrombocytopenic purpura and secondary thrombocytopenia patients treated with Rho(D) immune globulin intravenous (human; anti-D IGIV) have experienced acute hemolysis, which is inconsistent with the typical presentation of extravascular hemolysis—the presumed mechanism of action of anti-D IGIV. Although the mechanism of anti-D-IGIV–associated acute hemolysis has not been established, the onset, signs/symptoms, and complications appear consistent with the intravascular hemolysis of acute hemolytic transfusion reactions (AHTRs). In transfusion medicine, the red blood cell (RBC) antigen-antibody incompatibility(-ies) that precipitate AHTRs can be detected in vitro with compatibility testing. Under the premise that anti-D-IGIV–associated acute hemolysis results from RBC antigen-antibody–mediated complement activation, this study evaluated whether the incompatibility(-ies) could be detected in vitro with a hemolysin assay, which would support the AHTR model as the hemolytic mechanism. STUDY DESIGN AND METHODS Seven anti-D IGIV lots were tested to determine the RBC antibody identities in those lots, including four lots that had been implicated in acute hemolytic episodes. Hemolysin assays were performed that tested each of 73 RBC specimens against each lot, including the RBCs of one patient who had experienced acute hemolysis after anti-D IGIV administration. RESULTS Only two anti-D IGIV lots contained RBC antibodies beyond those expected. No hemolysis endpoint was observed in any of the hemolysin assays. CONCLUSION Although the findings did not support the AHTR model, the results are reported to contribute knowledge about the mechanism of anti-D-IGIV–associated acute hemolysis and to prompt continued investigation into cause(s), prediction, and prevention of this potentially serious adverse event. PMID:19220820

  2. Therapeutic targeting of Polo-like kinase-1 and Aurora kinases in T-cell acute lymphoblastic leukemia

    PubMed Central

    Spartà, Antonino Maria; Bressanin, Daniela; Chiarini, Francesca; Lonetti, Annalisa; Cappellini, Alessandra; Evangelisti, Cecilia; Evangelisti, Camilla; Melchionda, Fraia; Pession, Andrea; Bertaina, Alice; Locatelli, Franco; McCubrey, James A; Martelli, Alberto M

    2014-01-01

    Polo-like kinases (PLKs) and Aurora kinases (AKs) act as key cell cycle regulators in healthy human cells. In cancer, these protein kinases are often overexpressed and dysregulated, thus contributing to uncontrolled cell proliferation and growth. T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous malignancy arising in the thymus from T-cell progenitors. Primary chemoresistant and relapsed T-ALL patients have yet a poor outcome, therefore novel therapies, targeting signaling pathways important for leukemic cell proliferation, are required. Here, we demonstrate the potential therapeutic effects of BI6727, MK-5108, and GSK1070916, three selective inhibitors of PLK1, AK-A, and AK-B/C, respectively, in a panel of T-ALL cell lines and primary cells from T-ALL patients. The drugs were both cytostatic and cytotoxic to T-ALL cells by inducing G2/M-phase arrest and apoptosis. The drugs retained part of their pro-apoptotic activity in the presence of MS-5 bone marrow stromal cells. Moreover, we document for the first time that BI6727 perturbed both the PI3K/Akt/mTORC2 and the MEK/ERK/mTORC1 signaling pathways, and that a combination of BI6727 with specific inhibitors of the aforementioned pathways (MK-2206, CCI-779) displayed significantly synergistic cytotoxic effects. Taken together, our findings indicate that PLK1 and AK inhibitors display the potential for being employed in innovative therapeutic strategies for improving T-ALL patient outcome. PMID:24874015

  3. Kinase Domain Point Mutations in Ph+ Acute Lymphoblastic Leukemia (ALL) Emerge Following Therapy with BCR-ABL Kinase Inhibitors

    PubMed Central

    Jones, Dan; Thomas, Deborah; Yin, C. Cameron; O'Brien, Susan; Cortes, Jorge E.; Jabbour, Elias; Breeden, Megan; Giles, Francis J.; Zhao, Weiqiang; Kantarjian, Hagop M.

    2008-01-01

    Background BCR-ABL kinase domain (KD) mutations are detected in approximately 45% of imatinib-resistant CML. Patterns of KD mutations in Philadelphia chromosome (Ph)+ acute lymphoblastic leukemia (ALL) are less well-studied. Methods We assessed KD mutations in relapsed Ph+ ALL following treatments that included one or more kinase inhibitors (n = 24) or no prior KI therapy (n = 12). Results ABL KD mutations were detected by direct sequencing in 15 of 17 (88%) relapsed Ph+ ALL with prior imatinib (n = 16) or dasatinib (n = 1) treatment, and in 6 of 7 (86%) resistant/relapsed tumors treated with 2 or more KIs, compared with 0 of 12 relapsed Ph+ ALL never treated with KI. A restricted set of mutations was seen, mostly Y253H and T315I, detected on average 13 months following KI initiation, and mutations were not detected in the initial tumor samples prior to KI therapy in 12 patients assessed. Using a more sensitive pyrosequencing method, we did not detect mutations at codons 315 and 253 in the diagnostic samples from these 12 patients or in 30 Ph+ ALL patients who never relapsed. Conclusions ABL KD mutations, especially at codons 315 and 253, emerge upon relapse in the vast majority of patients with Ph+ ALL receiving maintenance KI therapy. Ongoing KI exposure may thus alter the patterns of relapse and favor outgrowth of clones with KI-resistant mutations. PMID:18615627

  4. Conditional deletion of FAK in mice endothelium disrupts lung vascular barrier function due to destabilization of RhoA and Rac1 activities

    PubMed Central

    Schmidt, Tracy Thennes; Tauseef, Mohammad; Yue, Lili; Bonini, Marcelo G.; Gothert, Joachim; Shen, Tang-Long; Guan, Jun-Lin; Predescu, Sanda; Sadikot, Ruxana

    2013-01-01

    Loss of lung-fluid homeostasis is the hallmark of acute lung injury (ALI). Association of catenins and actin cytoskeleton with vascular endothelial (VE)-cadherin is generally considered the main mechanism for stabilizing adherens junctions (AJs), thereby preventing disruption of lung vascular barrier function. The present study identifies endothelial focal adhesion kinase (FAK), a nonreceptor tyrosine kinase that canonically regulates focal adhesion turnover, as a novel AJ-stabilizing mechanism. In wild-type mice, induction of ALI by intraperitoneal administration of lipopolysaccharide or cecal ligation and puncture markedly decreased FAK expression in lungs. Using a mouse model in which FAK was conditionally deleted only in endothelial cells (ECs), we show that loss of EC-FAK mimicked key features of ALI (diffuse lung hemorrhage, increased transvascular albumin influx, edema, and neutrophil accumulation in the lung). EC-FAK deletion disrupted AJs due to impairment of the fine balance between the activities of RhoA and Rac1 GTPases. Deletion of EC-FAK facilitated RhoA's interaction with p115-RhoA guanine exchange factor, leading to activation of RhoA. Activated RhoA antagonized Rac1 activity, destabilizing AJs. Inhibition of Rho kinase, a downstream effector of RhoA, reinstated normal endothelial barrier function in FAK−/− ECs and lung vascular integrity in EC-FAK−/− mice. Our findings demonstrate that EC-FAK plays an essential role in maintaining AJs and thereby lung vascular barrier function by establishing the normal balance between RhoA and Rac1 activities. PMID:23771883

  5. Conditional deletion of FAK in mice endothelium disrupts lung vascular barrier function due to destabilization of RhoA and Rac1 activities.

    PubMed

    Schmidt, Tracy Thennes; Tauseef, Mohammad; Yue, Lili; Bonini, Marcelo G; Gothert, Joachim; Shen, Tang-Long; Guan, Jun-Lin; Predescu, Sanda; Sadikot, Ruxana; Mehta, Dolly

    2013-08-15

    Loss of lung-fluid homeostasis is the hallmark of acute lung injury (ALI). Association of catenins and actin cytoskeleton with vascular endothelial (VE)-cadherin is generally considered the main mechanism for stabilizing adherens junctions (AJs), thereby preventing disruption of lung vascular barrier function. The present study identifies endothelial focal adhesion kinase (FAK), a nonreceptor tyrosine kinase that canonically regulates focal adhesion turnover, as a novel AJ-stabilizing mechanism. In wild-type mice, induction of ALI by intraperitoneal administration of lipopolysaccharide or cecal ligation and puncture markedly decreased FAK expression in lungs. Using a mouse model in which FAK was conditionally deleted only in endothelial cells (ECs), we show that loss of EC-FAK mimicked key features of ALI (diffuse lung hemorrhage, increased transvascular albumin influx, edema, and neutrophil accumulation in the lung). EC-FAK deletion disrupted AJs due to impairment of the fine balance between the activities of RhoA and Rac1 GTPases. Deletion of EC-FAK facilitated RhoA's interaction with p115-RhoA guanine exchange factor, leading to activation of RhoA. Activated RhoA antagonized Rac1 activity, destabilizing AJs. Inhibition of Rho kinase, a downstream effector of RhoA, reinstated normal endothelial barrier function in FAK-/- ECs and lung vascular integrity in EC-FAK-/- mice. Our findings demonstrate that EC-FAK plays an essential role in maintaining AJs and thereby lung vascular barrier function by establishing the normal balance between RhoA and Rac1 activities. PMID:23771883

  6. Rho-Kinase–Mediated Contraction of Isolated Stress Fibers

    PubMed Central

    Katoh, Kazuo; Kano, Yumiko; Amano, Mutsuki; Onishi, Hirofumi; Kaibuchi, Kozo; Fujiwara, Keigi

    2001-01-01

    It is widely accepted that actin filaments and the conventional double-headed myosin interact to generate force for many types of nonmuscle cell motility, and that this interaction occurs when the myosin regulatory light chain (MLC) is phosphorylated by MLC kinase (MLCK) together with calmodulin and Ca2+. However, recent studies indicate that Rho-kinase is also involved in regulating the smooth muscle and nonmuscle cell contractility. We have recently isolated reactivatable stress fibers from cultured cells and established them as a model system for actomyosin-based contraction in nonmuscle cells. Here, using isolated stress fibers, we show that Rho-kinase mediates MLC phosphorylation and their contraction in the absence of Ca2+. More rapid and extensive stress fiber contraction was induced by MLCK than was by Rho-kinase. When the activity of Rho-kinase but not MLCK was inhibited, cells not only lost their stress fibers and focal adhesions but also appeared to lose cytoplasmic tension. Our study suggests that actomyosin-based nonmuscle contractility is regulated by two kinase systems: the Ca2+-dependent MLCK and the Rho-kinase systems. We propose that Ca2+ is used to generate rapid contraction, whereas Rho-kinase plays a major role in maintaining sustained contraction in cells. PMID:11331307

  7. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia | Office of Cancer Genomics

    Cancer.gov

    Publication Abstract:  Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is characterized by a gene-expression profile similar to that of BCR-ABL1-positive ALL, alterations of lymphoid transcription factor genes, and a poor outcome. The frequency and spectrum of genetic alterations in Ph-like ALL and its responsiveness to tyrosine kinase inhibition are undefined, especially in adolescents and adults. We performed genomic profiling of 1725 patients with precursor B-cell ALL and detailed genomic analysis of 154 patients with Ph-like ALL.

  8. RhoGDI-1 modulation of the activity of monomeric RhoGTPase RhoA regulates endothelial barrier function in mouse lungs.

    PubMed

    Gorovoy, Matvey; Neamu, Radu; Niu, Jiaxin; Vogel, Stephen; Predescu, Dan; Miyoshi, Jun; Takai, Yoshimi; Kini, Vidisha; Mehta, Dolly; Malik, Asrar B; Voyno-Yasenetskaya, Tatyana

    2007-07-01

    Rho family GTPases have been implicated in the regulation of endothelial permeability via their actions on actin cytoskeletal organization and integrity of interendothelial junctions. In cell culture studies, activation of RhoA disrupts interendothelial junctions and increases endothelial permeability, whereas activation of Rac1 and Cdc42 enhances endothelial barrier function by promoting the formation of restrictive junctions. The primary regulators of Rho proteins, guanine nucleotide dissociation inhibitors (GDIs), form a complex with the GDP-bound form of the Rho family of monomeric G proteins, and thus may serve as a nodal point regulating the activation state of RhoGTPases. In the present study, we addressed the in vivo role of RhoGDI-1 in regulating pulmonary microvascular permeability using RhoGDI-1(-/-) mice. We observed that basal endothelial permeability in lungs of RhoGDI-1(-/-) mice was 2-fold greater than wild-type mice. This was the result of opening of interendothelial junctions in lung microvessels which are normally sealed. The activity of RhoA (but not of Rac1 or Cdc42) was significantly increased in RhoGDI-1(-/-) lungs as well as in cultured endothelial cells on downregulation of RhoGDI-1 with siRNA, consistent with RhoGDI-1-mediated modulation RhoA activity. Thus, RhoGDI-1 by repressing RhoA activity regulates lung microvessel endothelial barrier function in vivo. In this regard, therapies augmenting endothelial RhoGDI-1 function may be beneficial in reestablishing the endothelial barrier and lung fluid balance in lung inflammatory diseases such as acute respiratory distress syndrome. PMID:17525371

  9. A Novel Glycogen Synthase Kinase-3 Inhibitor Optimized for Acute Myeloid Leukemia Differentiation Activity.

    PubMed

    Hu, Sophia; Ueda, Masumi; Stetson, Lindsay; Ignatz-Hoover, James; Moreton, Stephen; Chakrabarti, Amit; Xia, Zhiqiang; Karan, Goutam; de Lima, Marcos; Agrawal, Mukesh K; Wald, David N

    2016-07-01

    Standard therapies used for the treatment of acute myeloid leukemia (AML) are cytotoxic agents that target rapidly proliferating cells. Unfortunately, this therapeutic approach has limited efficacy and significant toxicity and the majority of AML patients still die of their disease. In contrast to the poor prognosis of most AML patients, most individuals with a rare subtype of AML, acute promyelocytic leukemia, can be cured by differentiation therapy using regimens containing all-trans retinoic acid. GSK3 has been previously identified as a therapeutic target in AML where its inhibition can lead to the differentiation and growth arrest of leukemic cells. Unfortunately, existing GSK3 inhibitors lead to suboptimal differentiation activity making them less useful as clinical AML differentiation agents. Here, we describe the discovery of a novel GSK3 inhibitor, GS87. GS87 was discovered in efforts to optimize GSK3 inhibition for AML differentiation activity. Despite GS87's dramatic ability to induce AML differentiation, kinase profiling reveals its high specificity in targeting GSK3 as compared with other kinases. GS87 demonstrates high efficacy in a mouse AML model system and unlike current AML therapeutics, exhibits little effect on normal bone marrow cells. GS87 induces potent differentiation by more effectively activating GSK3-dependent signaling components including MAPK signaling as compared with other GSK3 inhibitors. GS87 is a novel GSK3 inhibitor with therapeutic potential as a differentiation agent for non-promyelocytic AML. Mol Cancer Ther; 15(7); 1485-94. ©2016 AACR. PMID:27196775

  10. Knockdown of Burton's tyrosine kinase confers potent protection against sepsis-induced acute lung injury.

    PubMed

    Zhou, Panyu; Ma, Bing; Xu, Shuogui; Zhang, Shijie; Tang, Hongtai; Zhu, Shihui; Xiao, Shichu; Ben, Daofeng; Xia, Zhaofan

    2014-11-01

    Sepsis is a common and critical complication in surgical patients that often leads to multiple organ failure syndrome (MOFS), including acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Despite intensive supportive care and treatment modalities, the mortality of these patients remains high. In this study, we investigated the role of Burton's tyrosine kinase (BTK), a member of the Btk/Tec family of cytoplasmic tyrosine kinases, in the pathogenesis of sepsis, and evaluated the protective effect of in vivo Btk RNA interference in a mouse model of cecal ligation and puncture (CLP)-induced sepsis. After intratracheal injection of Btk siRNA, the mice were then subjected to CLP to induce sepsis. The results demonstrated that this approach conferred potent protection against sepsis-induced ALI, as evidenced by a significant reduction in pathological scores, epithelial cell apoptosis, pulmonary edema, vascular permeability, and the expression of inflammatory cytokines and neutrophil infiltration in the lung tissues of septic mice. In addition, RNA interference of Btk significantly suppressed p-38 and iNOS signaling pathways in transduced alveolar macrophages in vitro. These results identify a novel role for BTK in lethal sepsis and provide a potential new therapeutic approach to sepsis and ALI. PMID:24906236

  11. Steroidogenic Acute Regulatory Protein Overexpression Correlates with Protein Kinase A Activation in Adrenocortical Adenoma.

    PubMed

    Zhou, Weiwei; Wu, Luming; Xie, Jing; Su, Tingwei; Jiang, Lei; Jiang, Yiran; Cao, Yanan; Liu, Jianmin; Ning, Guang; Wang, Weiqing

    2016-01-01

    The association of pathological features of cortisol-producing adrenocortical adenomas (ACAs) with somatic driver mutations and their molecular classification remain unclear. In this study, we explored the association between steroidogenic acute regulatory protein (StAR) expression and the driver mutations activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling to identify the pathological markers of ACAs. Immunohistochemical staining for StAR and mutations in the protein kinase cAMP-activated catalytic subunit alpha (PRKACA), protein kinase cAMP-dependent type I regulatory subunit alpha (PRKAR1A) and guanine nucleotide binding protein, alpha stimulating (GNAS) genes were examined in 97 ACAs. The association of StAR expression with the clinical and mutational features of the ACAs was analyzed. ACAs with mutations in PRKACA, GNAS, and PRKAR1A showed strong immunopositive staining for StAR. The concordance between high StAR expression and mutations activating cAMP/PKA signaling in the ACAs was 99.0%. ACAs with high expression of StAR had significantly smaller tumor volume (P < 0.001) and higher urinary cortisol per tumor volume (P = 0.032) than those with low expression of StAR. Our findings suggest that immunohistochemical staining for StAR is a reliable pathological approach for the diagnosis and classification of ACAs with cAMP/PKA signaling-activating mutations. PMID:27606678

  12. Preclinical efficacy of maternal embryonic leucine-zipper kinase (MELK) inhibition in acute myeloid leukemia.

    PubMed

    Alachkar, Houda; Mutonga, Martin B G; Metzeler, Klaus H; Fulton, Noreen; Malnassy, Gregory; Herold, Tobias; Spiekermann, Karsten; Bohlander, Stefan K; Hiddemann, Wolfgang; Matsuo, Yo; Stock, Wendy; Nakamura, Yusuke

    2014-12-15

    Maternal embryonic leucine-zipper kinase (MELK), which was reported to be frequently up-regulated in various types of solid cancer, plays critical roles in formation and maintenance of cancer stem cells. However, little is known about the relevance of this kinase in hematologic malignancies. Here we report characterization of possible roles of MELK in acute myeloid leukemia (AML). MELK is expressed in AML cell lines and AML blasts with higher levels in less differentiated cells. MELK is frequently upregulated in AML with complex karyotypes and is associated with worse clinical outcome. MELK knockdown resulted in growth inhibition and apoptosis of leukemic cells. Hence, we investigated the potent anti-leukemia activity of OTS167, a small molecule MELK kinase inhibitor, in AML, and found that the compound induced cell differentiation and apoptosis as well as decreased migration of AML cells. MELK expression was positively correlated with the expression of FOXM1 as well as its downstream target genes. Furthermore, MELK inhibition resulted in downregulation of FOXM1 activity and the expression of its downstream targets. Taken together, and given that OTS167 is undergoing a phase I clinical trial in solid cancer, our study warrants clinical evaluation of this compound as a novel targeted therapy for AML patients. PMID:25365263

  13. Sphingosine kinase 1 dependent protein kinase C-δ activation plays an important role in acute liver failure in mice

    PubMed Central

    Lei, Yan-Chang; Yang, Ling-Ling; Li, Wen; Luo, Pan

    2015-01-01

    AIM: To investigate the role of protein kinase C (PKC)-δ activation in the pathogenesis of acute liver failure (ALF) in a well-characterized mouse model of D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced ALF. METHODS: BALB/c mice were randomly assigned to five groups, and ALF was induced in mice by intraperitoneal injection of D-GaIN (600 mg/kg) and LPS (10 μg/kg). Kaplan-Meier method was used for survival analysis. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels at different time points within one week were determined using a multiparameteric analyzer. Serum levels of high-mobility group box 1 (HMGB1), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10 as well as nuclear factor (NF)-κB activity were determined by enzyme-linked immunosorbent assay. Hepatic morphological changes at 36 h after ALF induction were assessed by hematoxylin and eosin staining. Expression of PKC-δ in liver tissue and peripheral blood mononuclear cells (PBMCs) was analyzed by Western blot. RESULTS: The expression and activation of PKC-δ were up-regulated in liver tissue and PBMCs of mice with D-GalN/LPS-induced ALF. Inhibition of PKC-δ activation with rottlerin significantly increased the survival rates and decreased serum ALT/AST levels at 6, 12 and 24 h compared with the control group (P < 0.001). Rottlerin treatment also significantly decreased serum levels of HMGB1 at 6, 12, and 24 h, TNF-α, IL-6 and IL-1 β at 12 h compared with the control group (P < 0.01). The inflammatory cell infiltration and necrosis in liver tissue were also decreased in the rottlerin treatment group. Furthermore, sphingosine kinase 1 (SphK1) dependent PKC-δ activation played an important role in promoting NF-κB activation and inflammatory cytokine production in ALF. CONCLUSION: SphK1 dependent PKC-δ activation plays an important role in promoting NF-κB activation and inflammatory response in ALF, and inhibition of PKC-δ activation might be

  14. Rho GTPase and Shroom direct planar polarized actomyosin contractility during convergent extension.

    PubMed

    Simões, Sérgio de Matos; Mainieri, Avantika; Zallen, Jennifer A

    2014-02-17

    Actomyosin contraction generates mechanical forces that influence cell and tissue structure. During convergent extension in Drosophila melanogaster, the spatially regulated activity of the myosin activator Rho-kinase promotes actomyosin contraction at specific planar cell boundaries to produce polarized cell rearrangement. The mechanisms that direct localized Rho-kinase activity are not well understood. We show that Rho GTPase recruits Rho-kinase to adherens junctions and is required for Rho-kinase planar polarity. Shroom, an asymmetrically localized actin- and Rho-kinase-binding protein, amplifies Rho-kinase and myosin II planar polarity and junctional localization downstream of Rho signaling. In Shroom mutants, Rho-kinase and myosin II achieve reduced levels of planar polarity, resulting in decreased junctional tension, a disruption of multicellular rosette formation, and defective convergent extension. These results indicate that Rho GTPase activity is required to establish a planar polarized actomyosin network, and the Shroom actin-binding protein enhances myosin contractility locally to generate robust mechanical forces during axis elongation. PMID:24535826

  15. Critical role of c‐jun (NH2) terminal kinase in paracetamol‐ induced acute liver failure

    PubMed Central

    Henderson, Neil C; Pollock, Katharine J; Frew, John; Mackinnon, Alison C; Flavell, Richard A; Davis, Roger J; Sethi, Tariq; Simpson, Kenneth J

    2007-01-01

    Background Acute hepatic failure secondary to paracetamol poisoning is associated with high mortality. C‐jun (NH2) terminal kinase (JNK) is a member of the mitogen‐activated protein kinase family and is a key intracellular signalling molecule involved in controlling the fate of cells. Aim To examine the role of JNK in paracetamol‐induced acute liver failure (ALF). Methods A previously developed mouse model of paracetamol poisoning was used to examine the role of JNK in paracetamol‐induced ALF. Results Paracetamol‐induced hepatic JNK activation both in human and murine paracetamol hepatotoxicity and in our murine model preceded the onset of hepatocyte death. JNK inhibition in vivo (using two JNK inhibitors with different mechanisms of action) markedly reduced mortality in murine paracetamol hepatotoxicity, with a significant reduction in hepatic necrosis and apoptosis. In addition, delayed administration of the JNK inhibitor was more effective than N‐acetylcysteine after paracetamol poisoning in mice. JNK inhibition was not protective in acute carbon tetrachloride‐mediated or anti‐Fas antibody‐mediated hepatic injury, suggesting specificity for the role of JNK in paracetamol hepatotoxicity. Furthermore, disruption of the JNK1 or JNK2 genes did not protect against paracetamol‐induced hepatic damage. Pharmacological JNK inhibition had no effect on paracetamol metabolism, but markedly inhibited hepatic tumour necrosis foctor α (TNF α) production after paracetamol poisoning. Conclusions These data demonstrated a central role for JNK in the pathogenesis of paracetamol‐induced liver failure, thereby identifying JNK as an important therapeutic target in the treatment of paracetamol hepatotoxicity. PMID:17185352

  16. Overcoming MDR-associated chemoresistance in HL-60 acute myeloid leukemia cells by targeting sphingosine kinase-1.

    PubMed

    Bonhoure, E; Pchejetski, D; Aouali, N; Morjani, H; Levade, T; Kohama, T; Cuvillier, O

    2006-01-01

    We examined the involvement of sphingosine kinase-1, a critical regulator of the sphingolipid balance, in susceptibility to antineoplastic agents of either sensitive or multidrug-resistant acute myeloid leukemia cells. Contrary to parental HL-60 cells, doxorubicin and etoposide failed to trigger apoptosis in chemoresistant HL-60/Doxo and HL-60NP16 cells overexpressing MRP1 and MDR1, respectively. Chemosensitive HL-60 cells displayed sphingosine kinase-1 inhibition coupled with ceramide generation. In contrast, chemoresistant HL-60/ Doxo and HL-60/VP16 had sustained sphingosine kinase-1 activity and did not produce ceramide during treatment. Enforced expression of sphingosine kinase-1 in chemosensitive HL-60 cells resulted in marked inhibition of apoptosis that was mediated by blockade of mitochondrial cytochrome c efflux hence suggesting a control of apoptosis at the pre-mitochondrial level. Incubation with cell-permeable ceramide of chemoresistant cells led to a sphingosine kinase-1 inhibition and apoptosis both prevented by sphingosine kinase-1 over-expression. Furthermore, F-12509a, a new sphingosine kinase inhibitor, led to ceramide accumulation, decrease in sphingosine 1-phosphate content and caused apoptosis equally in chemosensitive and chemoresistant cell lines that is inhibited by adding sphingosine 1-phosphate or overexpressing sphingosine kinase-1. F-12509a induced classical apoptosis hallmarks namely nuclear fragmentation, caspase-3 cleavage as well as downregulation of antiapoptotic XIAP, and release of cytochrome c and SMAC/Diablo. PMID:16281067

  17. Targetable Kinase-Activating Lesions in Ph-like Acute Lymphoblastic Leukemia

    PubMed Central

    Roberts, K.G.; Li, Y.; Payne-Turner, D.; Harvey, R.C.; Yang, Y.-L.; Pei, D.; McCastlain, K.; Ding, L.; Lu, C.; Song, G.; Ma, J.; Becksfort, J.; Rusch, M.; Chen, S.-C.; Easton, J.; Cheng, J.; Boggs, K.; Santiago-Morales, N.; Iacobucci, I.; Fulton, R.S.; Wen, J.; Valentine, M.; Cheng, C.; Paugh, S.W.; Devidas, M.; Chen, I-M.; Reshmi, S.; Smith, A.; Hedlund, E.; Gupta, P.; Nagahawatte, P.; Wu, G.; Chen, X.; Yergeau, D.; Vadodaria, B.; Mulder, H.; Winick, N.J.; Larsen, E.C.; Carroll, W.L.; Heerema, N.A.; Carroll, A.J.; Grayson, G.; Tasian, S.K.; Moore, A.S.; Keller, F.; Frei-Jones, M.; Whitlock, J.A.; Raetz, E.A.; White, D.L.; Hughes, T.P.; Auvil, J.M. Guidry; Smith, M.A.; Marcucci, G.; Bloomfield, C.D.; Mrózek, K.; Kohlschmidt, J.; Stock, W.; Kornblau, S.M.; Konopleva, M.; Paietta, E.; Pui, C.-H.; Jeha, S.; Relling, M.V.; Evans, W.E.; Gerhard, D.S.; Gastier-Foster, J.M.; Mardis, E.; Wilson, R.K.; Loh, M.L.; Downing, J.R.; Hunger, S.P.; Willman, C.L.; Zhang, J.; Mullighan, C.G.

    2014-01-01

    BACKGROUND Philadelphia chromosome–like acute lymphoblastic leukemia (Ph-like ALL) is characterized by a gene-expression profile similar to that of BCR–ABL1–positive ALL, alterations of lymphoid transcription factor genes, and a poor outcome. The frequency and spectrum of genetic alterations in Ph-like ALL and its responsiveness to tyrosine kinase inhibition are undefined, especially in adolescents and adults. METHODS We performed genomic profiling of 1725 patients with precursor B-cell ALL and detailed genomic analysis of 154 patients with Ph-like ALL. We examined the functional effects of fusion proteins and the efficacy of tyrosine kinase inhibitors in mouse pre-B cells and xenografts of human Ph-like ALL. RESULTS Ph-like ALL increased in frequency from 10% among children with standard-risk ALL to 27% among young adults with ALL and was associated with a poor outcome. Kinase-activating alterations were identified in 91% of patients with Ph-like ALL; rearrangements involving ABL1, ABL2, CRLF2, CSF1R, EPOR, JAK2, NTRK3, PDGFRB, PTK2B, TSLP, or TYK2 and sequence mutations involving FLT3, IL7R, or SH2B3 were most common. Expression of ABL1, ABL2, CSF1R, JAK2, and PDGFRB fusions resulted in cytokine-independent proliferation and activation of phosphorylated STAT5. Cell lines and human leukemic cells expressing ABL1, ABL2, CSF1R, and PDGFRB fusions were sensitive in vitro to dasatinib, EPOR and JAK2 rearrangements were sensitive to ruxolitinib, and the ETV6–NTRK3 fusion was sensitive to crizotinib. CONCLUSIONS Ph-like ALL was found to be characterized by a range of genomic alterations that activate a limited number of signaling pathways, all of which may be amenable to inhibition with approved tyrosine kinase inhibitors. Trials identifying Ph-like ALL are needed to assess whether adding tyrosine kinase inhibitors to current therapy will improve the survival of patients with this type of leukemia. (Funded by the American Lebanese Syrian Associated Charities and

  18. BCL6 enables Ph+ acute lymphoblastic leukemia cells to survive BCR-ABL1 kinase inhibition

    PubMed Central

    Duy, Cihangir; Hurtz, Christian; Shojaee, Seyedmehdi; Cerchietti, Leandro; Geng, Huimin; Swaminathan, Srividya; Klemm, Lars; Kweon, Soo-mi; Nahar, Rahul; Braig, Melanie; Park, Eugene; Kim, Yong-mi; Hofmann, Wolf-Karsten; Herzog, Sebastian; Jumaa, Hassan; Koeffler, H Phillip; Yu, J. Jessica; Heisterkamp, Nora; Graeber, Thomas G.; Wu, Hong; Ye, B. Hilda; Melnick, Ari; Müschen, Markus

    2011-01-01

    Tyrosine kinase inhibitors (TKI) are widely used to treat patients with leukemia driven by BCR-ABL11 and other oncogenic tyrosine kinases2,3. Recent efforts focused on the development of more potent TKI that also inhibit mutant tyrosine kinases4,5. However, even effective TKI typically fail to eradicate leukemia-initiating cells6–8, which often cause recurrence of leukemia after initially successful treatment. Here we report on the discovery of a novel mechanism of drug-resistance, which is based on protective feedback signaling of leukemia cells in response to TKI-treatment. We identified BCL6 as a central component of this drug-resistance pathway and demonstrate that targeted inhibition of BCL6 leads to eradication of drug-resistant and leukemia-initiating subclones. BCL6 is a known proto-oncogene that is often translocated in diffuse large B cell lymphoma (DLBCL)9. In response to TKI-treatment, BCR-ABL1 acute lymphoblastic leukemia (ALL) cells upregulate BCL6 protein levels by ~90-fold, i.e. to similar levels as in DLBCL (Fig. 1a). Upregulation of BCL6 in response to TKI-treatment represents a novel defense mechanism, which enables leukemia cells to survive TKI-treatment: Previous work suggested that TKI-mediated cell death is largely p53-independent. Here we demonstrate that BCL6 upregulation upon TKI-treatment leads to transcriptional inactivation of the p53 pathway. BCL6-deficient leukemia cells fail to inactivate p53 and are particularly sensitive to TKI-treatment. BCL6−/− leukemia cells are poised to undergo cellular senescence and fail to initiate leukemia in serial transplant recipients. A combination of TKI-treatment and a novel BCL6 peptide inhibitor markedly increased survival of NOD/SCID mice xenografted with patient-derived BCR-ABL1 ALL cells. We propose that dual targeting of oncogenic tyrosine kinases and BCL6-dependent feedback (Supplementary Fig. 1) represents a novel strategy to eradicate drug-resistant and leukemia-initiating subclones in

  19. RUNX1 regulates phosphoinositide 3-kinase/AKT pathway: role in chemotherapy sensitivity in acute megakaryocytic leukemia

    PubMed Central

    Edwards, Holly; Xie, Chengzhi; LaFiura, Katherine M.; Dombkowski, Alan A.; Buck, Steven A.; Boerner, Julie L.; Taub, Jeffrey W.; Matherly, Larry H.

    2009-01-01

    RUNX1 (AML1) encodes the core binding factor α subunit of a heterodimeric transcription factor complex which plays critical roles in normal hematopoiesis. Translocations or down-regulation of RUNX1 have been linked to favorable clinical outcomes in acute leukemias, suggesting that RUNX1 may also play critical roles in chemotherapy responses in acute leukemias; however, the molecular mechanisms remain unclear. The median level of RUNX1b transcripts in Down syndrome (DS) children with acute megakaryocytic leukemia (AMkL) were 4.4-fold (P < .001) lower than that in non-DS AMkL cases. Short hairpin RNA knockdown of RUNX1 in a non-DS AMkL cell line, Meg-01, resulted in significantly increased sensitivity to cytosine arabinoside, accompanied by significantly decreased expression of PIK3CD, which encodes the δ catalytic subunit of the survival kinase, phosphoinositide 3 (PI3)–kinase. Transcriptional regulation of PIK3CD by RUNX1 was further confirmed by chromatin immunoprecipitation and promoter reporter gene assays. Further, a PI3-kinase inhibitor, LY294002, and cytosine arabinoside synergized in antileukemia effects on Meg-01 and primary pediatric AMkL cells. Our results suggest that RUNX1 may play a critical role in chemotherapy response in AMkL by regulating the PI3-kinase/Akt pathway. Thus, the treatment of AMkL may be improved by integrating PI3-kinase or Akt inhibitors into the chemotherapy of this disease. PMID:19638627

  20. Evaluation of Improved Glycogen Synthase Kinase-3α Inhibitors in Models of Acute Myeloid Leukemia

    PubMed Central

    Neumann, Theresa; Benajiba, Lina; Göring, Stefan; Stegmaier, Kimberly; Schmidt, Boris

    2016-01-01

    The challenge for Glycogen Synthase Kinase-3 (GSK-3) inhibitor design lies in achieving high selectivity for one isoform over the other. The therapy of certain diseases, such as acute myeloid leukemia (AML) may require α-isoform specific targeting. The scorpion shaped GSK-3 inhibitors developed by our group achieved the highest GSK-3α selectivity reported so far, but suffered from insufficient aqueous solubility. This work presents the solubility-driven optimization of our isoform-selective inhibitors using a scorpion shaped lead. Among 15 novel compounds, compound 27 showed high activity against GSK-3α/β with the highest GSK-3α selectivity reported to date. Compound 27 was profiled for bioavailability and toxicity in a zebrafish embryo phenotype assay. Selective GSK-3α targeting in AML cell lines was achieved with compound 27, resulting in a strong differentiation phenotype and colony formation impairment, confirming the potential of GSK-3α inhibition in AML therapy. PMID:26496242

  1. Aberrant Mer receptor tyrosine kinase expression contributes to leukemogenesis in acute myeloid leukemia

    PubMed Central

    Lee-Sherick, A B; Eisenman, K M; Sather, S; McGranahan, A; Armistead, P M; McGary, C S; Hunsucker, S A; Schlegel, J; Martinson, H; Cannon, C; Keating, A K; Earp, H S; Liang, X; DeRyckere, D; Graham, D K

    2013-01-01

    Acute myeloid leukemia (AML) continues to be extremely difficult to treat successfully, and the unacceptably low overall survival rates mandate that we assess new potential therapies to ameliorate poor clinical response to conventional therapy. Abnormal tyrosine kinase activation in AML has been associated with poor prognosis and provides strategic targets for novel therapy development. We found that Mer receptor tyrosine kinase was over-expressed in a majority of pediatric (29/36, 80%) and adult (10/10, 100%) primary AML patient blasts at the time of diagnosis, and 100% of patient samples at the time of relapse. Mer was also found to be expressed in 12 of 14 AML cell lines (86%). In contrast, normal bone marrow myeloid precursors expressed little to no Mer. Following AML cell line stimulation with Gas6, a Mer ligand, we observed activation of prosurvival and proliferative signaling pathways, including phosphorylation of ERK1/2, p38, MSK1, CREB, ATF1, AKT and STAT6. To assess the phenotypic role of Mer in AML, two independent short-hairpin RNA (shRNA) constructs were used to decrease Mer expression in the AML cell lines Nomo-1 and Kasumi-1. Reduction of Mer protein levels significantly increased rates of myeloblast apoptosis two to threefold in response to serum starvation. Furthermore, myeloblasts with knocked-down Mer demonstrated decreased colony formation by 67–87%, relative to control cell lines (P<0.01). NOD-SCID-gamma mice transplanted with Nomo-1 myeloblasts with reduced levels of Mer had a significant prolongation in survival compared with mice transplanted with the parental or control cell lines (median survival 17 days in parental and control cell lines, versus 32–36 days in Mer knockdown cell lines, P<0.0001). These data suggest a role for Mer in acute myeloid leukemogenesis and indicate that targeted inhibition of Mer may be an effective therapeutic strategy in pediatric and adult AML. PMID:23474756

  2. Aberrant Mer receptor tyrosine kinase expression contributes to leukemogenesis in acute myeloid leukemia.

    PubMed

    Lee-Sherick, A B; Eisenman, K M; Sather, S; McGranahan, A; Armistead, P M; McGary, C S; Hunsucker, S A; Schlegel, J; Martinson, H; Cannon, C; Keating, A K; Earp, H S; Liang, X; DeRyckere, D; Graham, D K

    2013-11-14

    Acute myeloid leukemia (AML) continues to be extremely difficult to treat successfully, and the unacceptably low overall survival rates mandate that we assess new potential therapies to ameliorate poor clinical response to conventional therapy. Abnormal tyrosine kinase activation in AML has been associated with poor prognosis and provides strategic targets for novel therapy development. We found that Mer receptor tyrosine kinase was over-expressed in a majority of pediatric (29/36, 80%) and adult (10/10, 100%) primary AML patient blasts at the time of diagnosis, and 100% of patient samples at the time of relapse. Mer was also found to be expressed in 12 of 14 AML cell lines (86%). In contrast, normal bone marrow myeloid precursors expressed little to no Mer. Following AML cell line stimulation with Gas6, a Mer ligand, we observed activation of prosurvival and proliferative signaling pathways, including phosphorylation of ERK1/2, p38, MSK1, CREB, ATF1, AKT and STAT6. To assess the phenotypic role of Mer in AML, two independent short-hairpin RNA (shRNA) constructs were used to decrease Mer expression in the AML cell lines Nomo-1 and Kasumi-1. Reduction of Mer protein levels significantly increased rates of myeloblast apoptosis two to threefold in response to serum starvation. Furthermore, myeloblasts with knocked-down Mer demonstrated decreased colony formation by 67-87%, relative to control cell lines (P<0.01). NOD-SCID-gamma mice transplanted with Nomo-1 myeloblasts with reduced levels of Mer had a significant prolongation in survival compared with mice transplanted with the parental or control cell lines (median survival 17 days in parental and control cell lines, versus 32-36 days in Mer knockdown cell lines, P<0.0001). These data suggest a role for Mer in acute myeloid leukemogenesis and indicate that targeted inhibition of Mer may be an effective therapeutic strategy in pediatric and adult AML. PMID:23474756

  3. Pre-clinical Evaluation of Tyrosine Kinase Inhibitors for Treatment of Acute Leukemia

    PubMed Central

    Christoph, Sandra; Lee-Sherick, Alisa B.; Sather, Susan; DeRyckere, Deborah; Graham, Douglas K.

    2013-01-01

    Receptor tyrosine kinases have been implicated in the development and progression of many cancers, including both leukemia and solid tumors, and are attractive druggable therapeutic targets. Here we describe an efficient four-step strategy for pre-clinical evaluation of tyrosine kinase inhibitors (TKIs) in the treatment of acute leukemia. Initially, western blot analysis is used to confirm target inhibition in cultured leukemia cells. Functional activity is then evaluated using clonogenic assays in methylcellulose or soft agar cultures. Experimental compounds that demonstrate activity in cell culture assays are evaluated in vivo using NOD-SCID-gamma (NSG) mice transplanted orthotopically with human leukemia cell lines. Initial in vivo pharmacodynamic studies evaluate target inhibition in leukemic blasts isolated from the bone marrow. This approach is used to determine the dose and schedule of administration required for effective target inhibition. Subsequent studies evaluate the efficacy of the TKIs in vivo using luciferase expressing leukemia cells, thereby allowing for non-invasive bioluminescent monitoring of leukemia burden and assessment of therapeutic response using an in vivo bioluminescence imaging system. This strategy has been effective for evaluation of TKIs in vitro and in vivo and can be applied for identification of molecularly-targeted agents with therapeutic potential or for direct comparison and prioritization of multiple compounds. PMID:24084362

  4. Gold nanoparticles enhance the effect of tyrosine kinase inhibitors in acute myeloid leukemia therapy

    PubMed Central

    Petrushev, Bobe; Boca, Sanda; Simon, Timea; Berce, Cristian; Frinc, Ioana; Dima, Delia; Selicean, Sonia; Gafencu, Grigore-Aristide; Tanase, Alina; Zdrenghea, Mihnea; Florea, Adrian; Suarasan, Sorina; Dima, Liana; Stanciu, Raluca; Jurj, Ancuta; Buzoianu, Anca; Cucuianu, Andrei; Astilean, Simion; Irimie, Alexandru; Tomuleasa, Ciprian; Berindan-Neagoe, Ioana

    2016-01-01

    Background and aims Every year, in Europe, acute myeloid leukemia (AML) is diagnosed in thousands of adults. For most subtypes of AML, the backbone of treatment was introduced nearly 40 years ago as a combination of cytosine arabinoside with an anthracycline. This therapy is still the worldwide standard of care. Two-thirds of patients achieve complete remission, although most of them ultimately relapse. Since the FLT3 mutation is the most frequent, it serves as a key molecular target for tyrosine kinase inhibitors (TKIs) that inhibit FLT3 kinase. In this study, we report the conjugation of TKIs onto spherical gold nanoparticles. Materials and methods The internalization of TKI-nanocarriers was proved by the strongly scattered light from gold nanoparticles and was correlated with the results obtained by transmission electron microscopy and dark-field microscopy. The therapeutic effect of the newly designed drugs was investigated by several methods including cell counting assay as well as the MTT assay. Results We report the newly described bioconjugates to be superior when compared with the drug alone, with data confirmed by state-of-the-art analyses of internalization, cell biology, gene analysis for FLT3-IDT gene, and Western blotting to assess degradation of the FLT3 protein. Conclusion The effective transmembrane delivery and increased efficacy validate its use as a potential therapeutic. PMID:26929621

  5. Pyruvate Kinase M2: A Novel Biomarker for the Early Detection of Acute Kidney Injury.

    PubMed

    Cheon, Ji Hyun; Kim, Sun Young; Son, Ji Yeon; Kang, Ye Rim; An, Ji Hye; Kwon, Ji Hoon; Song, Ho Sub; Moon, Aree; Lee, Byung Mu; Kim, Hyung Sik

    2016-01-01

    The identification of biomarkers for the early detection of acute kidney injury (AKI) is clinically important. Acute kidney injury (AKI) in critically ill patients is closely associated with increased morbidity and mortality. Conventional biomarkers, such as serum creatinine (SCr) and blood urea nitrogen (BUN), are frequently used to diagnose AKI. However, these biomarkers increase only after significant structural damage has occurred. Recent efforts have focused on identification and validation of new noninvasive biomarkers for the early detection of AKI, prior to extensive structural damage. Furthermore, AKI biomarkers can provide valuable insight into the molecular mechanisms of this complex and heterogeneous disease. Our previous study suggested that pyruvate kinase M2 (PKM2), which is excreted in the urine, is a sensitive biomarker for nephrotoxicity. To appropriately and optimally utilize PKM2 as a biomarker for AKI requires its complete characterization. This review highlights the major studies that have addressed the diagnostic and prognostic predictive power of biomarkers for AKI and assesses the potential usage of PKM2 as an early biomarker for AKI. We summarize the current state of knowledge regarding the role of biomarkers and the molecular and cellular mechanisms of AKI. This review will elucidate the biological basis of specific biomarkers that will contribute to improving the early detection and diagnosis of AKI. PMID:26977258

  6. Pyruvate Kinase M2: A Novel Biomarker for the Early Detection of Acute Kidney Injury

    PubMed Central

    Cheon, Ji Hyun; Kim, Sun Young; Son, Ji Yeon; Kang, Ye Rim; An, Ji Hye; Kwon, Ji Hoon; Song, Ho Sub; Moon, Aree; Lee, Byung Mu; Kim, Hyung Sik

    2016-01-01

    The identification of biomarkers for the early detection of acute kidney injury (AKI) is clinically important. Acute kidney injury (AKI) in critically ill patients is closely associated with increased morbidity and mortality. Conventional biomarkers, such as serum creatinine (SCr) and blood urea nitrogen (BUN), are frequently used to diagnose AKI. However, these biomarkers increase only after significant structural damage has occurred. Recent efforts have focused on identification and validation of new noninvasive biomarkers for the early detection of AKI, prior to extensive structural damage. Furthermore, AKI biomarkers can provide valuable insight into the molecular mechanisms of this complex and heterogeneous disease. Our previous study suggested that pyruvate kinase M2 (PKM2), which is excreted in the urine, is a sensitive biomarker for nephrotoxicity. To appropriately and optimally utilize PKM2 as a biomarker for AKI requires its complete characterization. This review highlights the major studies that have addressed the diagnostic and prognostic predictive power of biomarkers for AKI and assesses the potential usage of PKM2 as an early biomarker for AKI. We summarize the current state of knowledge regarding the role of biomarkers and the molecular and cellular mechanisms of AKI. This review will elucidate the biological basis of specific biomarkers that will contribute to improving the early detection and diagnosis of AKI. PMID:26977258

  7. Effects of glucagon-like peptide-1 on advanced glycation endproduct-induced aortic endothelial dysfunction in streptozotocin-induced diabetic rats: possible roles of Rho kinase- and AMP kinase-mediated nuclear factor κB signaling pathways.

    PubMed

    Tang, Song-Tao; Zhang, Qiu; Tang, Hai-Qin; Wang, Chang-Jiang; Su, Huan; Zhou, Qing; Wei, Wei; Zhu, Hua-Qing; Wang, Yuan

    2016-07-01

    Interaction between advanced glycation endproducts (AGEs) and receptor for AGEs (RAGE) as well as downstream pathways leads to vascular endothelial dysfunction in diabetes. Glucagon-like peptide-1 (GLP-1) has been reported to attenuate endothelial dysfunction in the models of atherosclerosis. However, whether GLP-1 exerts protective effects on aortic endothelium in diabetic animal model and the underlying mechanisms are still not well defined. Experimental diabetes was induced through administration with combination of high-fat diet and intraperitoneal injection of streptozotocin. Rats were randomly divided into four groups, including controls, diabetes, diabetes + sitagliptin (30 mg/kg/day), diabetes + exenatide (3 μg/kg/12 h). Eventually, endothelial damage, markers of inflammation and oxidative stress, were measured. After 12 weeks administration, diabetic rats received sitagliptin and exenatide showed significant elevation of serum NO level and reduction of ET-1 as well as inflammatory cytokines levels. Moreover, sitagliptin and exenatide significantly inhibited aortic oxidative stress level and improved aortic endothelial function in diabetic rats. Importantly, these drugs inhibited the protein expression level in AGE/RAGE-induced RhoA/ROCK/NF-κB/IκBα signaling pathways and activated AMPK in diabetic aorta. Finally, the target proteins of p-eNOS, iNOS, and ET-1, which reflect endothelial function, were also changed by these drugs. Our present study indicates that sitagliptin and exenatide administrations can improve endothelial function in diabetic aorta. Of note, RAGE/RhoA/ROCK and AMPK mediated NF-κB signaling pathways may be the intervention targets of these drugs to protect aortic endothelium. PMID:26758998

  8. Phosphorylation and Activation of RhoA by ERK in Response to Epidermal Growth Factor Stimulation.

    PubMed

    Tong, Junfeng; Li, Laiji; Ballermann, Barbara; Wang, Zhixiang

    2016-01-01

    The small GTPase RhoA has been implicated in various cellular activities, including the formation of stress fibers, cell motility, and cytokinesis. In addition to the canonical GTPase cycle, recent findings have suggested that phosphorylation further contributes to the tight regulation of Rho GTPases. Indeed, RhoA is phosphorylated on serine 188 (188S) by a number of protein kinases. We have recently reported that Rac1 is phosphorylated on threonine 108 (108T) by extracellular signal-regulated kinases (ERK) in response to epidermal growth factor (EGF) stimulation. Here, we provide evidence that RhoA is phosphorylated by ERK on 88S and 100T in response to EGF stimulation. We show that ERK interacts with RhoA and that this interaction is dependent on the ERK docking site (D-site) at the C-terminus of RhoA. EGF stimulation enhanced the activation of the endogenous RhoA. The phosphomimetic mutant, GFP-RhoA S88E/T100E, when transiently expressed in COS-7 cells, displayed higher GTP-binding than wild type RhoA. Moreover, the expression of GFP-RhoA S88E/T100E increased actin stress fiber formation in COS-7 cells, which is consistent with its higher activity. In contrast to Rac1, phosphorylation of RhoA by ERK does not target RhoA to the nucleus. Finally, we show that regardless of the phosphorylation status of RhoA and Rac1, substitution of the RhoA PBR with the Rac1 PBR targets RhoA to the nucleus and substitution of Rac1 PBR with RhoA PBR significantly reduces the nuclear localization of Rac1. In conclusion, ERK phosphorylates RhoA on 88S and 100T in response to EGF, which upregulates RhoA activity. PMID:26816343

  9. Phosphorylation and Activation of RhoA by ERK in Response to Epidermal Growth Factor Stimulation

    PubMed Central

    Tong, Junfeng; Li, Laiji; Ballermann, Barbara; Wang, Zhixiang

    2016-01-01

    The small GTPase RhoA has been implicated in various cellular activities, including the formation of stress fibers, cell motility, and cytokinesis. In addition to the canonical GTPase cycle, recent findings have suggested that phosphorylation further contributes to the tight regulation of Rho GTPases. Indeed, RhoA is phosphorylated on serine 188 (188S) by a number of protein kinases. We have recently reported that Rac1 is phosphorylated on threonine 108 (108T) by extracellular signal-regulated kinases (ERK) in response to epidermal growth factor (EGF) stimulation. Here, we provide evidence that RhoA is phosphorylated by ERK on 88S and 100T in response to EGF stimulation. We show that ERK interacts with RhoA and that this interaction is dependent on the ERK docking site (D-site) at the C-terminus of RhoA. EGF stimulation enhanced the activation of the endogenous RhoA. The phosphomimetic mutant, GFP-RhoA S88E/T100E, when transiently expressed in COS-7 cells, displayed higher GTP-binding than wild type RhoA. Moreover, the expression of GFP-RhoA S88E/T100E increased actin stress fiber formation in COS-7 cells, which is consistent with its higher activity. In contrast to Rac1, phosphorylation of RhoA by ERK does not target RhoA to the nucleus. Finally, we show that regardless of the phosphorylation status of RhoA and Rac1, substitution of the RhoA PBR with the Rac1 PBR targets RhoA to the nucleus and substitution of Rac1 PBR with RhoA PBR significantly reduces the nuclear localization of Rac1. In conclusion, ERK phosphorylates RhoA on 88S and 100T in response to EGF, which upregulates RhoA activity. PMID:26816343

  10. Identification of novel kinase fusion transcripts in paediatric B cell precursor acute lymphoblastic leukaemia with IKZF1 deletion.

    PubMed

    Yano, Mio; Imamura, Toshihiko; Asai, Daisuke; Kiyokawa, Nobutaka; Nakabayashi, Kazuhiko; Matsumoto, Kenji; Deguchi, Takao; Hashii, Yoshiko; Honda, Yu-ko; Hasegawa, Daiichiro; Sasahara, Yoji; Ishii, Mutsuo; Kosaka, Yoshiyuki; Kato, Koji; Shima, Midori; Hori, Hiroki; Yumura-Yagi, Keiko; Hara, Junichi; Oda, Megumi; Horibe, Keizo; Ichikawa, Hitoshi; Sato, Atsushi

    2015-12-01

    Activating tyrosine kinase mutations or cytokine receptor signalling alterations have attracted attention as therapeutic targets for high-risk paediatric acute lymphoblastic leukaemia (ALL). We identified two novel kinase fusions, OFD1-JAK2 and NCOR1-LYN, in paediatric ALL patients with IKZF1 deletion, by mRNA sequencing. The patient with CSF2RA-CRLF2 also harboured IGH-EPOR. All these patients had high-risk features, such as high initial white blood cell counts and initial poor response to prednisolone. The functional analysis of these novel fusions is on-going to determine whether these genetic alterations can be targeted by drugs. PMID:26404892

  11. Concurrent targeting Akt and sphingosine kinase 1 by A-674563 in acute myeloid leukemia cells.

    PubMed

    Xu, Lin; Zhang, Yanan; Gao, Meng; Wang, Guangping; Fu, Yunfeng

    2016-04-15

    Akt signaling plays a pivotal role in acute myeloid leukemia (AML) development and progression. In the present study, we evaluated the potential anti-AML activity by a novel Akt kinase inhibitor A-674563. Our results showed that A-674563 dose-dependently inhibited survival and proliferation of U937 AML cells and six lines of human AML progenitor cells, yet sparing human peripheral blood mononuclear leukocytes (PBMCs). A-674563 activated caspase-3/9 and apoptosis in the AML cells. Reversely, the pan-caspase inhibitor z-VAD-CHO dramatically alleviated A-674563-induced AML cell apoptosis and cytotoxicity. For the molecular study, we showed that A-674563 blocked Akt activation in U937 cells and human AML progenitor cells. Further, A-674563 decreased sphingosine kinase 1 (SphK1) activity in above AML cells to deplete pro-survival sphingosine-1-phosphate (S1P) and boost pro-apoptotic ceramide production. Such an effect on SphK1 signaling by A-674563 appeared independent of Akt blockage. Significantly, K6PC-5, a novel SphK1 activator, or supplement with S1P attenuated A-674563-induced ceramide production, and subsequent U937 cell death and apoptosis. Importantly, intraperitoneal injection of A-674563 at well-tolerated doses suppressed U937 leukemic xenograft tumor growth in nude mice, whiling significantly improving the animal survival. The results of the current study demonstrate that A-674563 exerts potent anti-leukemic activity in vitro and in vivo, possibly via concurrent targeting Akt and SphK1 signalings. PMID:26920060

  12. Clinical significance of thymidine kinase in Egyptian children with acute lymphoblastic leukemia

    PubMed Central

    Hagag, Adel A.; Saad, Mohamed A.; Mohamed, Sohair A.

    2015-01-01

    Background: Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy, representing one-third of pediatric cancers. Thymidine kinase-1 (TK-1) is expressed in proliferating cells so elevated TK-1 indicates active tumor growth. Objective: To study the clinical significance of TK-1 in children with ALL. Patients and Methods: This study was carried out on 40 children with newly diagnosed ALL who were admitted to Oncology Unit, Pediatric department, Tanta University (26 males and 14 females) with their ages ranged from 4 to 10 years and 30 healthy children of matched age and sex as a control group. For all patients the following were done: Complete blood picture, bone marrow examination, immunophenotyping and TK-1 serum levels. Results: Mean TK-1 level was significantly higher in patients at diagnosis than controls and significantly higher in patients with unfavorable outcome than patients with favorable outcome. Mean TK-1 level was significantly higher in patients in relapse than patients in remission and controls. No significant differences in mean TK-1 level between patients in remission and controls. There were statistically significant differences in disease free survival and overall survival between patients with favorable and unfavorable outcome. Conclusion: From this study we concluded that TK is a helpful marker in diagnosis and follow-up of patients with ALL. Recommendations: Thymidine kinase-1 should be routinely assessed at diagnosis and during follow-up in ALL patients for better diagnostic and prognostic assessment and should be taken in consideration in designing future therapeutic strategies based on patients-specific risk factors. PMID:25992345

  13. Philadelphia chromosome-positive leukemia stem cells in acute lymphoblastic leukemia and tyrosine kinase inhibitor therapy

    PubMed Central

    Thomas, Xavier

    2012-01-01

    Leukemia stem cells (LSCs), which constitute a minority of the tumor bulk, are functionally defined on the basis of their ability to transfer leukemia into an immunodeficient recipient animal. The presence of LSCs has been demonstrated in acute lymphoblastic leukemia (ALL), of which ALL with Philadelphia chromosome-positive (Ph+). The use of imatinib, a tyrosine kinase inhibitor (TKI), as part of front-line treatment and in combination with cytotoxic agents, has greatly improved the proportions of complete response and molecular remission and the overall outcome in adults with newly diagnosed Ph+ ALL. New challenges have emerged with respect to induction of resistance to imatinib via Abelson tyrosine kinase mutations. An important recent addition to the arsenal against Ph+ leukemias in general was the development of novel TKIs, such as nilotinib and dasatinib. However, in vitro experiments have suggested that TKIs have an antiproliferative but not an antiapoptotic or cytotoxic effect on the most primitive ALL stem cells. None of the TKIs in clinical use target the LSC. Second generation TKI dasatinib has been shown to have a more profound effect on the stem cell compartment but the drug was still unable to kill the most primitive LSCs. Allogeneic stem cell transplantation (SCT) remains the only curative treatment available for these patients. Several mechanisms were proposed to explain the resistance of LSCs to TKIs in addition to mutations. Hence, TKIs may be used as a bridge to SCT rather than monotherapy or combination with standard chemotherapy. Better understanding the biology of Ph+ ALL will open new avenues for effective management. In this review, we highlight recent findings relating to the question of LSCs in Ph+ ALL. PMID:22993661

  14. Activity of the Aurora Kinase inhibitor VX-680 against Bcr/Abl positive acute lymphoblastic leukemias

    PubMed Central

    Fei, Fei; Stoddart, Sonia; Groffen, John; Heisterkamp, Nora

    2010-01-01

    The emergence of resistance to tyrosine kinase inhibitors due to point mutations in Bcr/Abl is a challenging problem for Philadelphia-chromosome positive (Ph-positive) acute lymphoblastic leukemia (ALL) patients, especially for those with the T315I mutation, against which neither nilotinib or dasatinib shows significant activity. VX-680 is a pan-Aurora kinase inhibitor active against all Bcr/Abl proteins but has not been extensively examined in preclinical models of Ph-positive ALL. Here, we have tested VX-680 for treatment of Bcr/Abl positive ALL when leukemic cells are protected by the presence of stroma. Under these conditions, VX-680 showed significant effects on primary human Ph-positive ALL cells both with and without the T315I mutation, including ablation of tyrosine phosphorylation downstream of Bcr/Abl, decreased viability and induction of apoptosis. However, drug treatment of human Ph-positive ALL cells for 3 days followed by drug removal allowed the outgrowth of abnormal cells 21 days later, and upon culture of mouse Bcr/Abl ALL cells on stroma with lower concentrations of VX-680, drug-resistant cells emerged. Combined treatment of human ALL cells lacking the T315I mutation with both VX-680 and dasatinib caused significantly more cytotoxicity than each drug alone. We suggest that use of VX-680 together with a second effective drug as first-line treatment for Ph-positive ALL is likely to be safer and more useful than second-line treatment with VX-680 as monotherapy for drug-resistant T315I Ph-positive ALL. PMID:20388735

  15. Hydroxysafflor yellow A suppress oleic acid-induced acute lung injury via protein kinase A

    SciTech Connect

    Wang, Chaoyun; Huang, Qingxian; Wang, Chunhua; Zhu, Xiaoxi; Duan, Yunfeng; Yuan, Shuai; Bai, Xianyong

    2013-11-01

    Inflammation response and oxidative stress play important roles in acute lung injury (ALI). Activation of the cAMP/protein kinase A (PKA) signaling pathway may attenuate ALI by suppressing immune responses and inhibiting the generation of reactive oxygen species (ROS). Hydroxysafflor yellow A (HSYA) is a natural flavonoid compound that reduces oxidative stress and inflammatory cytokine-mediated damage. In this study, we examined whether HSYA could protect the lungs from oleic acid (OA)-induced injury, which was used to mimic ALI, and determined the role of the cAMP/PKA signaling pathway in this process. Arterial oxygen tension (PaO{sub 2}), carbon dioxide tension, pH, and the PaO{sub 2}/fraction of inspired oxygen ratio in the blood were detected using a blood gas analyzer. We measured wet/dry lung weight ratio and evaluated tissue morphology. The protein and inflammatory cytokine levels in the bronchoalveolar lavage fluid and serum were determined using enzyme-linked immunoassay. The activities of superoxide dismutase, glutathione peroxidase, PKA, and nicotinamide adenine dinucleotide phosphate oxidase, and the concentrations of cAMP and malondialdehyde in the lung tissue were detected using assay kits. Bcl-2, Bax, caspase 3, and p22{sup phox} levels in the lung tissue were analyzed using Western blotting. OA increased the inflammatory cytokine and ROS levels and caused lung dysfunction by decreasing cAMP synthesis, inhibiting PKA activity, stimulating caspase 3, and reducing the Bcl-2/Bax ratio. H-89 increased these effects. HSYA significantly increased the activities of antioxidant enzymes, inhibited the inflammatory response via cAMP/PKA pathway activation, and attenuated OA-induced lung injury. Our results show that the cAMP/PKA signaling pathway is required for the protective effect of HSYA against ALI. - Highlights: • Oleic acid (OA) cause acute lung injury (ALI) via inhibiting cAMP/PKA signal pathway. • Blocking protein kinase A (PKA) activation may

  16. The prognostic impact of germline 46/1 haplotype of Janus kinase 2 in cytogenetically normal acute myeloid leukemia

    PubMed Central

    Nahajevszky, Sarolta; Andrikovics, Hajnalka; Batai, Arpad; Adam, Emma; Bors, Andras; Csomor, Judit; Gopcsa, Laszlo; Koszarska, Magdalena; Kozma, Andras; Lovas, Nora; Lueff, Sandor; Matrai, Zoltan; Meggyesi, Nora; Sinko, Janos; Sipos, Andrea; Varkonyi, Andrea; Fekete, Sandor; Tordai, Attila; Masszi, Tamas

    2011-01-01

    Background Prognostic risk stratification according to acquired or inherited genetic alterations has received increasing attention in acute myeloid leukemia in recent years. A germline Janus kinase 2 haplotype designated as the 46/1 haplotype has been reported to be associated with an inherited predisposition to myeloproliferative neoplasms, and also to acute myeloid leukemia with normal karyotype. The aim of this study was to assess the prognostic impact of the 46/1 haplotype on disease characteristics and treatment outcome in acute myeloid leukemia. Design and Methods Janus kinase 2 rs12343867 single nucleotide polymorphism tagging the 46/1 haplotype was genotyped by LightCycler technology applying melting curve analysis with the hybridization probe detection format in 176 patients with acute myeloid leukemia under 60 years diagnosed consecutively and treated with curative intent. Results The morphological subtype of acute myeloid leukemia with maturation was less frequent among 46/1 carriers than among non-carriers (5.6% versus 17.2%, P=0.018, cytogenetically normal subgroup: 4.3% versus 20.6%, P=0.031), while the morphological distribution shifted towards the myelomonocytoid form in 46/1 haplotype carriers (28.1% versus 14.9%, P=0.044, cytogenetically normal subgroup: 34.0% versus 11.8%, P=0.035). In cytogenetically normal cases of acute myeloid leukemia, the 46/1 carriers had a considerably lower remission rate (78.7% versus 94.1%, P=0.064) and more deaths in remission or in aplasia caused by infections (46.8% versus 23.5%, P=0.038), resulting in the 46/1 carriers having shorter disease-free survival and overall survival compared to the 46/1 non-carriers. In multivariate analysis, the 46/1 haplotype was an independent adverse prognostic factor for disease-free survival (P=0.024) and overall survival (P=0.024) in patients with a normal karyotype. Janus kinase 2 46/1 haplotype had no impact on prognosis in the subgroup with abnormal karyotype. Conclusions Janus

  17. Structure of the Toxoplasma gondii ROP18 Kinase Domain Reveals a Second Ligand Binding Pocket Required for Acute Virulence*

    PubMed Central

    Lim, Daniel; Gold, Daniel A.; Julien, Lindsay; Rosowski, Emily E.; Niedelman, Wendy; Yaffe, Michael B.; Saeij, Jeroen P. J.

    2013-01-01

    At least a third of the human population is infected with the intracellular parasite Toxoplasma gondii, which contributes significantly to the disease burden in immunocompromised and neutropenic hosts and causes serious congenital complications when vertically transmitted to the fetus. Genetic analyses have identified the Toxoplasma ROP18 Ser/Thr protein kinase as a major factor mediating acute virulence in mice. ROP18 is secreted into the host cell during the invasion process, and its catalytic activity is required for the acute virulence phenotype. However, its precise molecular function and regulation are not fully understood. We have determined the crystal structure of the ROP18 kinase domain, which is inconsistent with a previously proposed autoinhibitory mechanism of regulation. Furthermore, a sucrose molecule bound to our structure identifies an additional ligand-binding pocket outside of the active site cleft. Mutational analysis confirms an important role for this pocket in virulence. PMID:24129568

  18. High-Throughput Screening for Small Molecule Inhibitors of LARG-Stimulated RhoA Nucleotide Binding via a Novel Fluorescence Polarization Assay

    PubMed Central

    Evelyn, Chris R.; Ferng, Timothy; Rojas, Rafael J.; Larsen, Martha J.; Sondek, John; Neubig, Richard R.

    2009-01-01

    Guanine nucleotide-exchange factors (GEFs) stimulate guanine nucleotide exchange and the subsequent activation of Rho-family proteins in response to extracellular stimuli acting upon cytokine, tyrosine kinase, adhesion, integrin, and G-protein coupled receptors (GPCRs). Upon Rho activation, several downstream events occur, such as morphological and cytokskeletal changes, motility, growth, survival, and gene transcription. The RhoGEF Leukemia-Associated RhoGEF (LARG) is a member of the Regulators of G-protein Signaling Homology Domain (RH) family of GEFs originally identified as a result of chromosomal translocation in acute myeloid leukemia. Using a novel fluorescence polarization guanine nucleotide binding assay utilizing BODIPY-Texas Red-GTPγS (BODIPY-TR-GTPγS), we performed a ten-thousand compound high-throughput screen for inhibitors of LARG-stimulated RhoA nucleotide binding. Five compounds identified from the high-throughput screen were confirmed in a non-fluorescent radioactive guanine nucleotide binding assay measuring LARG-stimulated [35S] GTPγS binding to RhoA, thus ruling out non-specific fluorescent effects. All five compounds selectively inhibited LARG-stimulated RhoA [35S] GTPγS binding, but had little to no effect upon RhoA or Gαo [35S] GTPγS binding. Therefore, these five compounds should serve as promising starting points for the development of small molecule inhibitors of LARG-mediated nucleotide exchange as both pharmacological tools and therapeutics. In addition, the fluorescence polarization guanine nucleotide binding assay described here should serve as a useful approach for both high-throughput screening and general biological applications. PMID:19196702

  19. Intestinal Epithelial Cell Tyrosine Kinase 2 Transduces IL-22 Signals To Protect from Acute Colitis.

    PubMed

    Hainzl, Eva; Stockinger, Silvia; Rauch, Isabella; Heider, Susanne; Berry, David; Lassnig, Caroline; Schwab, Clarissa; Rosebrock, Felix; Milinovich, Gabriel; Schlederer, Michaela; Wagner, Michael; Schleper, Christa; Loy, Alexander; Urich, Tim; Kenner, Lukas; Han, Xiaonan; Decker, Thomas; Strobl, Birgit; Müller, Mathias

    2015-11-15

    In the intestinal tract, IL-22 activates STAT3 to promote intestinal epithelial cell (IEC) homeostasis and tissue healing. The mechanism has remained obscure, but we demonstrate that IL-22 acts via tyrosine kinase 2 (Tyk2), a member of the Jak family. Using a mouse model for colitis, we show that Tyk2 deficiency is associated with an altered composition of the gut microbiota and exacerbates inflammatory bowel disease. Colitic Tyk2(-/-) mice have less p-STAT3 in colon tissue and their IECs proliferate less efficiently. Tyk2-deficient primary IECs show reduced p-STAT3 in response to IL-22 stimulation, and expression of IL-22-STAT3 target genes is reduced in IECs from healthy and colitic Tyk2(-/-) mice. Experiments with conditional Tyk2(-/-) mice reveal that IEC-specific depletion of Tyk2 aggravates colitis. Disease symptoms can be alleviated by administering high doses of rIL-22-Fc, indicating that Tyk2 deficiency can be rescued via the IL-22 receptor complex. The pivotal function of Tyk2 in IL-22-dependent colitis was confirmed in Citrobacter rodentium-induced disease. Thus, Tyk2 protects against acute colitis in part by amplifying inflammation-induced epithelial IL-22 signaling to STAT3. PMID:26432894

  20. Tyrosine kinase inhibitors in Ph+ acute lymphoblastic leukaemia: facts and perspectives.

    PubMed

    Malagola, Michele; Papayannidis, Cristina; Baccarani, Michele

    2016-04-01

    Two tyrosine kinase inhibitors (TKIs), imatinib and dasatinib, are registered for the treatment of Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukaemia (ALL) in adults. Other two TKIs (nilotinib and ponatinib) have been tested in the second-line, can offer an alternative in the patients who fail the first-line, and can acquire a role also in the first-line. Here, we provide a summary of the reports of TKIs, used alone, and in combination with chemotherapy. TKIs are very effective alone and with corticosteroids and are likely to improve substantially the outcome when they are combined with standard or dose-adapted chemotherapy. While the complete haematologic remission rate is always very high, close to 100 %, the cytogenetic and molecular remission rates are lower, so that TKIs are still considered as a complement to chemotherapy and as a bridge to allogeneic stem cell transplantation (allo-SCT). However, many patients relapse before transplant, and many patients still relapse, even if they have been submitted to allo-SCT. A proper use of TKIs, the introduction of ponatinib, and of "new generation" TKIs should improve further on the outcome of Ph+ ALL. PMID:26891878

  1. Mer receptor tyrosine kinase is a therapeutic target in pre–B-cell acute lymphoblastic leukemia

    PubMed Central

    Linger, Rachel M. A.; Lee-Sherick, Alisa B.; DeRyckere, Deborah; Cohen, Rebecca A.; Jacobsen, Kristen M.; McGranahan, Amy; Brandão, Luis N.; Winges, Amanda; Sawczyn, Kelly K.; Liang, Xiayuan; Keating, Amy K.; Tan, Aik Choon; Earp, H. Shelton

    2013-01-01

    Acute lymphoblastic leukemia (ALL) is currently treated with an intense regimen of chemotherapy yielding cure rates near 85%. However, alterations to treatment strategies using available drugs are unlikely to provide significant improvement in survival or decrease therapy-associated toxicities. Here, we report ectopic expression of the Mer receptor tyrosine kinase in pre–B-cell ALL (B-ALL) cell lines and pediatric patient samples. Inhibition of Mer in B-ALL cell lines decreased activation of AKT and MAPKs and led to transcriptional changes, including decreased expression of antiapoptotic PRKCB gene and increase in proapoptotic BAX and BBC3 genes. Further, Mer inhibition promoted chemosensitization, decreased colony-forming potential in clonogenic assays, and delayed disease onset in a mouse xenograft model of leukemia. Our results identify Mer as a potential therapeutic target in B-ALL and suggest that inhibitors of Mer may potentiate lymphoblast killing when used in combination with chemotherapy. This strategy could reduce minimal residual disease and/or allow for chemotherapy dose reduction, thereby leading to improved event-free survival and reduced therapy-associated toxicity for patients with B-ALL. Additionally, Mer is aberrantly expressed in numerous other malignancies suggesting that this approach may have broad applications. PMID:23861246

  2. Mer receptor tyrosine kinase is a therapeutic target in pre-B-cell acute lymphoblastic leukemia.

    PubMed

    Linger, Rachel M A; Lee-Sherick, Alisa B; DeRyckere, Deborah; Cohen, Rebecca A; Jacobsen, Kristen M; McGranahan, Amy; Brandão, Luis N; Winges, Amanda; Sawczyn, Kelly K; Liang, Xiayuan; Keating, Amy K; Tan, Aik Choon; Earp, H Shelton; Graham, Douglas K

    2013-08-29

    Acute lymphoblastic leukemia (ALL) is currently treated with an intense regimen of chemotherapy yielding cure rates near 85%. However, alterations to treatment strategies using available drugs are unlikely to provide significant improvement in survival or decrease therapy-associated toxicities. Here, we report ectopic expression of the Mer receptor tyrosine kinase in pre-B-cell ALL (B-ALL) cell lines and pediatric patient samples. Inhibition of Mer in B-ALL cell lines decreased activation of AKT and MAPKs and led to transcriptional changes, including decreased expression of antiapoptotic PRKCB gene and increase in proapoptotic BAX and BBC3 genes. Further, Mer inhibition promoted chemosensitization, decreased colony-forming potential in clonogenic assays, and delayed disease onset in a mouse xenograft model of leukemia. Our results identify Mer as a potential therapeutic target in B-ALL and suggest that inhibitors of Mer may potentiate lymphoblast killing when used in combination with chemotherapy. This strategy could reduce minimal residual disease and/or allow for chemotherapy dose reduction, thereby leading to improved event-free survival and reduced therapy-associated toxicity for patients with B-ALL. Additionally, Mer is aberrantly expressed in numerous other malignancies suggesting that this approach may have broad applications. PMID:23861246

  3. Comparison of fecal pyruvate kinase isoform M2 and calprotectin in acute diarrhea in hospitalized children

    PubMed Central

    Czub, Elzbieta; Nowak, Jan K.; Moczko, Jerzy; Lisowska, Aleksandra; Banaszkiewicz, Aleksandra; Banasiewicz, Tomasz; Walkowiak, Jaroslaw

    2014-01-01

    Fecal concentrations of pyruvate kinase isoform M2 (M2-PK) and calprotectin (FC) serve as biomarkers of inflammation of gastrointestinal mucosa. The value of M2-PK in discriminating between patients with viral and bacterial acute diarrhea (AD) is currently unknown. We analyzed M2-PK and FC concentrations in fifty hospitalized children with AD (29 of which were caused by rotavirus and 21 by Salmonella enteritidis) as well as 32 healthy subjects. There was no difference in the areas under the receiver operating characteristic curves plotted for the two tests in differentiating rotaviral from bacterial AD. The sensitivity and specificity of M2-PK at optimal cut-off (20 U/g) were 75.9% and 71.4%, respectively. M2-PK and FC had similar values in distinguishing between children with AD caused by rotavirus and Salmonella enteritidis. The performance of both tests in hospitalized patients did not meet the needs of everyday clinical practice. Moreover, no advantage of fecal tests over the measurement of CRP was documented. PMID:24759699

  4. Intestinal Epithelial Cell Tyrosine Kinase 2 Transduces IL-22 Signals To Protect from Acute Colitis

    PubMed Central

    Hainzl, Eva; Rauch, Isabella; Heider, Susanne; Berry, David; Lassnig, Caroline; Schwab, Clarissa; Rosebrock, Felix; Milinovich, Gabriel; Schlederer, Michaela; Wagner, Michael; Schleper, Christa; Loy, Alexander; Urich, Tim; Kenner, Lukas; Han, Xiaonan; Decker, Thomas; Strobl, Birgit

    2015-01-01

    In the intestinal tract, IL-22 activates STAT3 to promote intestinal epithelial cell (IEC) homeostasis and tissue healing. The mechanism has remained obscure, but we demonstrate that IL-22 acts via tyrosine kinase 2 (Tyk2), a member of the Jak family. Using a mouse model for colitis, we show that Tyk2 deficiency is associated with an altered composition of the gut microbiota and exacerbates inflammatory bowel disease. Colitic Tyk2−/− mice have less p-STAT3 in colon tissue and their IECs proliferate less efficiently. Tyk2-deficient primary IECs show reduced p-STAT3 in response to IL-22 stimulation, and expression of IL-22–STAT3 target genes is reduced in IECs from healthy and colitic Tyk2−/− mice. Experiments with conditional Tyk2−/− mice reveal that IEC-specific depletion of Tyk2 aggravates colitis. Disease symptoms can be alleviated by administering high doses of rIL-22–Fc, indicating that Tyk2 deficiency can be rescued via the IL-22 receptor complex. The pivotal function of Tyk2 in IL-22–dependent colitis was confirmed in Citrobacter rodentium–induced disease. Thus, Tyk2 protects against acute colitis in part by amplifying inflammation-induced epithelial IL-22 signaling to STAT3. PMID:26432894

  5. N-terminus-mediated dimerization of ROCK-I is required for RhoE binding and actin reorganization.

    PubMed

    Garg, Ritu; Riento, Kirsi; Keep, Nicholas; Morris, Jonathan D H; Ridley, Anne J

    2008-04-15

    ROCK-I (Rho-associated kinase 1) is a serine/threonine kinase that can be activated by RhoA and inhibited by RhoE. ROCK-I has an N-terminal kinase domain, a central coiled-coil region and a RhoA-binding domain near the C-terminus. We have previously shown that RhoE binds to the N-terminal 420 amino acids of ROCK-I, which includes the kinase domain as well as N-terminal and C-terminal extensions. In the present study, we show that N-terminus-mediated dimerization of ROCK-I is required for RhoE binding. The central coiled-coil domain can also dimerize ROCK-I in cells, but this is insufficient in the absence of the N-terminus to allow RhoE binding. The kinase activity of ROCK-I(1-420) is required for dimerization and RhoE binding; however, inclusion of part of the coiled-coil domain compensates for lack of kinase activity, allowing RhoE to bind. N-terminus-mediated dimerization is also required for ROCK-I to induce the formation of stellate actin stress fibres in cells. These results indicate that dimerization via the N-terminus is critical for ROCK-I function in cells and for its regulation by RhoE. PMID:18215121

  6. Anesthetic Sevoflurane Causes Rho-Dependent Filopodial Shortening in Mouse Neurons

    PubMed Central

    Zimering, Jeffrey H.; Dong, Yuanlin; Fang, Fang; Huang, Lining; Zhang, Yiying; Xie, Zhongcong

    2016-01-01

    Early postnatal anesthesia causes long-lasting learning and memory impairment in rodents, however, evidence for a specific neurotoxic effect on early synaptogenesis has not been demonstrated. Drebrin A is an actin binding protein whose localization in dendritic protrusions serves an important role in dendritic spine morphogenesis, and is a marker for early synaptogenesis. We therefore set out to investigate whether clinically-relevant concentrations of anesthetic sevoflurane, widely- used in infants and children, alters dendritic morphology in cultured fetal day 16 mouse hippocampal neurons. After 7 days in vitro, mouse hippocampal neurons were exposed to four hours of 3% sevoflurane in 95% air/5% CO2 or control condition (95% air/5% CO2). Neurons were fixed in 4% paraformaldehyde and stained with Alexa Fluor555-Phalloidin, and/or rabbit anti-mouse drebrin A/E antibodies which permitted subcellular localization of filamentous (F)-actin and/or drebrin immunoreactivity, respectively. Sevoflurane caused acute significant length-shortening in filopodia and thin dendritic spines in days-in-vitro 7 neurons, an effect which was completely rescued by co-incubating neurons with ten micromolar concentrations of the selective Rho kinase inhibitor Y27632. Filopodia and thin spine recovered in length two days after sevoflurane exposure. Yet cluster-type filopodia (a precursor to synaptic filopodia) were persistently significantly decreased in number on day-in-vitro 9, in part owing to preferential localization of drebrin immunoreactivity to dendritic shafts versus filopodial stalks. These data suggest that sevoflurane induces F-actin depolymerization leading to acute, reversible length-shortening in dendritic protrusions through a mechanism involving (in part) activation of RhoA/Rho kinase signaling and impairs localization of drebrin A to filopodia required for early excitatory synapse formation. PMID:27441369

  7. Src kinases play a novel dual role in acute pancreatitis affecting severity but no role in stimulated enzyme secretion.

    PubMed

    Nuche-Berenguer, Bernardo; Ramos-Álvarez, Irene; Jensen, R T

    2016-06-01

    In pancreatic acinar cells, the Src family of kinases (SFK) is involved in the activation of several signaling cascades that are implicated in mediating cellular processes (growth, cytoskeletal changes, apoptosis). However, the role of SFKs in various physiological responses such as enzyme secretion or in pathophysiological processes such as acute pancreatitis is either controversial, unknown, or incompletely understood. To address this, in this study, we investigated the role/mechanisms of SFKs in acute pancreatitis and enzyme release. Enzyme secretion was studied in rat dispersed pancreatic acini, in vitro acute-pancreatitis-like changes induced by supramaximal COOH-terminal octapeptide of cholecystokinin (CCK). SFK involvement assessed using the chemical SFK inhibitor (PP2) with its inactive control, 4-amino-7-phenylpyrazol[3,4-d]pyrimidine (PP3), under experimental conditions, markedly inhibiting SFK activation. In CCK-stimulated pancreatic acinar cells, activation occurred of trypsinogen, various MAP kinases (p42/44, JNK), transcription factors (signal transducer and activator of transcription-3, nuclear factor-κB, activator protein-1), caspases (3, 8, and 9) inducing apoptosis, LDH release reflective of necrosis, and various chemokines secreted (monocyte chemotactic protein-1, macrophage inflammatory protein-1α, regulated on activation, normal T cell expressed and secreted). All were inhibited by PP2, not by PP3, except caspase activation leading to apoptosis, which was increased, and trypsin activation, which was unaffected, as was CCK-induced amylase release. These results demonstrate SFK activation is playing a dual role in acute pancreatitis, inhibiting apoptosis and promoting necrosis as well as chemokine/cytokine release inducing inflammation, leading to more severe disease, as well as not affecting secretion. Thus, our studies indicate that SFK is a key mediator of inflammation and pancreatic acinar cell death in acute pancreatitis, suggesting it

  8. Description of a novel Janus kinase 3 P132A mutation in acute megakaryoblastic leukemia and demonstration of previously reported Janus kinase 3 mutations in normal subjects.

    PubMed

    Riera, Ludovica; Lasorsa, Elena; Bonello, Lisa; Sismondi, Francesca; Tondat, Fabrizio; Di Bello, Cristiana; Di Celle, Paola Francia; Chiarle, Roberto; Godio, Laura; Pich, Achille; Facchetti, Fabio; Ponzoni, Maurilio; Marmont, Filippo; Zanon, Carlo; Bardelli, Alberto; Inghirami, Giorgio

    2011-09-01

    Gain-of-function (GOF) mutations of Janus kinase 2 (JAK2) are frequently seen in myeloproliferative disorders (MPDs). Meanwhile, JAK3 activating substitutions have been found in a few megakaryocytic cell lines and in primary myeloid leukemia (AMKL). Here, we sought to discover novel leukemogenetic mutations in de novo acute myeloid leukemia of non-Down syndrome (N-DS) by DNA sequencing. A total of 191 normal Caucasian individuals were studied to define single nucleotide polymorphisms (SNPs) within the JH2 and JH6 domains. Although known activating substitutions were observed in rare cases of acute myeloid leukemia (AML) (V722I [2/134] or P132T [1/119]), all samples were wild-type (WT) for the oncogenic A572V (119/119). Interestingly, a novel homozygous mutation (P132A) was discovered in a patient with acute megakaryoblastic leukemia and in vivo studies demonstrated that its ectopic expression was oncogenic in a mouse xenotransplant model. This study defines a novel JAK3 mutation among patients with N-DS AML and demonstrates that normal individuals can also display germline JAK3 substitutions, previously proven to have oncogenic properties, in vitro and in vivo. The discovery of these substitutions in normal donors encourages future studies to define new risk factors among patients with MPDs. PMID:21599579

  9. Targeting the Wee1 Kinase for Treatment of Pediatric Down Syndrome Acute Myeloid Leukemia

    PubMed Central

    Caldwell, J. Timothy; Edwards, Holly; Buck, Steven A.; Ge, Yubin; Taub, Jeffrey W.

    2014-01-01

    Background Most Down syndrome children with acute myeloid leukemia (DS-AML) have an overall excellent prognosis, however, patients who suffer an induction failure or relapse, have an extremely poor prognosis. Hence, new therapies need to be developed for this subgroup of DS-AML patients. One new therapeutic approach is preventing cell cycle checkpoint activation by inhibiting the upstream kinase wee1 with the first-in-class inhibitor MK-1775 in combination with the standard genotoxic agent cytarabine (AraC). Procedure Using the clinically relevant DS-AML cell lines CMK and CMY, as well as ex vivo primary DS-AML patient samples, the ability of MK-1775 to enhance the cytotoxicity of AraC was investigated with MTT assays. The mechanism by which MK-1775 enhanced AraC cytotoxicity was investigated in the cell lines using Western blots to probe CDK1 and H2AX phosphorylation and flow cytometry to determine apoptosis, cell cycle arrest, DNA damage, and aberrant mitotic entry. Results MK-1775 alone had modest single-agent activity, however, MK-1775 was able to synergize with AraC in causing proliferation arrest in both cell lines and primary patient samples, and enhance AraC-induced apoptosis. MK-1775 was able to decrease inhibitory CDK1(Y15) phosphorylation at the relatively low concentration of 100 nM after only 4 hours. Furthermore, it was able to enhance DNA damage induced by AraC and partially abrogate cell cycle arrest. Importantly, the DNA damage enhancement appeared in early S-phase. Conclusions MK-1775 is able to enhance the cytotoxicity of AraC in DS-AML cells and presents a promising new treatment approach for DS-AML. PMID:24962331

  10. Involvement of protein kinase C and Src tyrosine kinase in acute tolerance to ethanol inhibition of spinal NMDA-induced pressor responses in rats

    PubMed Central

    Hsieh, W-K; Lin, H-H; Lai, C-C

    2009-01-01

    Background and purpose: The present study was carried out to examine the role of protein kinases in the development of acute tolerance to the effects of ethanol on spinal N-methyl-D-aspartate (NMDA) receptor-mediated pressor responses during prolonged ethanol exposure. Experimental approach: Blood pressure responses induced by intrathecal injection of NMDA were recorded. The levels of several phosphorylated residues on NMDA receptor NR1 (GluN1) (NR1) and NMDA receptor NR2B (GluN2B) (NR2B) subunits were determined by immunohistochemistry and Western blot analysis. Key results: Ethanol inhibited spinal NMDA-induced pressor responses at 10 min, but the inhibition was significantly reduced at 40 min following continuous infusion. This effect was dose-dependently blocked by chelerythrine [a protein kinase C (PKC) inhibitor, 1–1000 pmol] or PP2 (a Src family tyrosine kinase inhibitor, 1–100 pmol) administered intrathecally 10 min following ethanol infusion. A significant increase in the immunoreactivity of phosphoserine 896 of NR1 subunits (pNR1-Ser896) and phosphotyrosine 1336 of NR2B subunits (pNR2B-Tyr1336) was found in neurons of intermediolateral cell column during the development of tolerance. Levels of pNR1-Ser896 and pNR2B-Tyr1336 were also significantly increased in lateral horn regions of the spinal cord slices incubated with ethanol for 40 min in vitro. The increases in pNR1-Ser896 and pNR2B-Tyr1336 levels were inhibited by post-treatment with chelerythrine and PP2, respectively, both in the in vivo and in vitro studies. Conclusions and implications: The results suggest that activation of PKC and Src tyrosine kinase during prolonged ethanol exposure leading to increases in the levels of pNR1-Ser896 and pNR2B-Tyr1336 may contribute to acute tolerance to inhibition by ethanol of NMDA receptor function. PMID:19703167

  11. Tension on JAM-A activates RhoA via GEF-H1 and p115 RhoGEF

    PubMed Central

    Scott, David W.; Tolbert, Caitlin E.; Burridge, Keith

    2016-01-01

    Junctional adhesion molecule A (JAM-A) is a broadly expressed adhesion molecule that regulates cell–cell contacts and facilitates leukocyte transendothelial migration. The latter occurs through interactions with the integrin LFA-1. Although we understand much about JAM-A, little is known regarding the protein’s role in mechanotransduction or as a modulator of RhoA signaling. We found that tension imposed on JAM-A activates RhoA, which leads to increased cell stiffness. Activation of RhoA in this system depends on PI3K-mediated activation of GEF-H1 and p115 RhoGEF. These two GEFs are further regulated by FAK/ERK and Src family kinases, respectively. Finally, we show that phosphorylation of JAM-A at Ser-284 is required for RhoA activation in response to tension. These data demonstrate a direct role of JAM-A in mechanosignaling and control of RhoA and implicate Src family kinases in the regulation of p115 RhoGEF. PMID:26985018

  12. Crocetin ester improves myocardial ischemia via Rho/ROCK/NF-κB pathway.

    PubMed

    Huang, Zhiheng; Nan, Chen; Wang, Hanqing; Su, Qiang; Xue, Wenda; Chen, Yanyan; Shan, Xin; Duan, Jinao; Chen, Gang; Tao, Weiwei

    2016-09-01

    Crocetin ester (CE) is the active ingredient of Crocus sativus L. stigmas and Gardenia jasminoides Ellis fruit. The main purpose of the present study was to investigate the protective effect of CE on isoproterenol (ISO)-induced acute myocardial ischemia (AMI) through Rho/ROCK/NF-κB pathway and explore its underlying mechanism. Administration of CE (25 and 50mg/kg) could significantly reduce the serum contents of pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6). In addition, pretreatment with CE attenuated the contents of creatine kinase (CK), malondialdehyde (MDA) and the activities of lactate dehydrogenase (LDH), superoxide dismutase (SOD) in serum. Treatment with CE also improved the histopathological alteration and decreased the ST elevation. Furthermore, CE could ameliorate the cardiac expressions of Cu, Zn-superoxide dismutase (SOD1), MDA5, Rho, ROCK, p-IκB and p-NF-κBp65 in ISO-induced rats. It was assumed that CE might be a new therapeutic candidate for the treatment of AMI possibly through the inhibition of Rho/ROCK/NF-κB pathway. PMID:27285672

  13. Analysis of Pulmonary Vasodilator Responses to SB-772077-B [4-(7-((3-Amino-1-pyrrolidinyl)carbonyl)-1-ethyl-1H-imidazo(4,5-c)pyridin-2-yl)-1,2,5-oxadiazol-3-amine], a Novel Aminofurazan-Based Rho Kinase Inhibitor

    PubMed Central

    Dhaliwal, Jasdeep S.; Badejo, Adeleke M.; Casey, David B.; Murthy, Subramanyam N.; Kadowitz, Philip J.

    2009-01-01

    The effects of SB-772077-B [4-(7-((3-amino-1-pyrrolidinyl)carbonyl)-1-ethyl-1H-imidazo(4,5-c)pyridin-2-yl)-1,2,5-oxadiazol-3-amine], an aminofurazan-based Rho kinase inhibitor, on the pulmonary vascular bed and on monocrotaline-induced pulmonary hypertension were investigated in the rat. The intravenous injections of SB-772077-B decreased pulmonary and systemic arterial pressures and increased cardiac output. The decreases in pulmonary arterial pressure were enhanced when pulmonary vascular resistance was increased by U46619 [9,11-dideoxy-11α,9α-epoxymethanoprostaglandin F2α], hypoxia, or Nω-nitro-l-arginine methyl ester. SB-772077-B was more potent than Y-27632 [trans-4-[(1R)-1-aminoethyl]-N-4-pyridinyl-cyclohexanecarboxamide dihydrochloride] or fasudil [5-(1,4-diazepane-1-sulfonyl)isoquinoline] in decreasing pulmonary and systemic arterial pressures. The results with SB-772077-B, fasudil, and Y-27632 suggest that Rho kinase is constitutively active and is involved in the regulation of baseline tone and vasoconstrictor responses. Chronic treatment with SB-772077-B attenuated the increase in pulmonary arterial pressure induced by monocrotaline. The intravenous injection of SB-772077-B decreased pulmonary and systemic arterial pressures in rats with monocrotaline-induced pulmonary hypertension. The decreases in pulmonary arterial pressure in response to SB-772077-B in monocrotaline-treated rats were smaller than responses in U46619-infused animals, and the analysis of responses suggests that approximately 60% of the pulmonary hypertensive response is mediated by a Rho kinase-sensitive mechanism. The observation that Rho kinase inhibitors decrease pulmonary arterial pressure when pulmonary vascular resistance is increased by interventions such as hypoxia, U46619, angiotensin II, nitric-oxide synthase inhibition, and Bay K 8644 [S-(-)-1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-[trifluoromethyl]phenyl)-3-pyridine carboxylic acid methyl ester] suggest that the

  14. Analysis of pulmonary vasodilator responses to SB-772077-B [4-(7-((3-amino-1-pyrrolidinyl)carbonyl)-1-ethyl-1H-imidazo(4,5-c)pyridin-2-yl)-1,2,5-oxadiazol-3-amine], a novel aminofurazan-based Rho kinase inhibitor.

    PubMed

    Dhaliwal, Jasdeep S; Badejo, Adeleke M; Casey, David B; Murthy, Subramanyam N; Kadowitz, Philip J

    2009-07-01

    The effects of SB-772077-B [4-(7-((3-amino-1-pyrrolidinyl)carbonyl)-1-ethyl-1H-imidazo(4,5-c)pyridin-2-yl)-1,2,5-oxadiazol-3-amine], an aminofurazan-based Rho kinase inhibitor, on the pulmonary vascular bed and on monocrotaline-induced pulmonary hypertension were investigated in the rat. The intravenous injections of SB-772077-B decreased pulmonary and systemic arterial pressures and increased cardiac output. The decreases in pulmonary arterial pressure were enhanced when pulmonary vascular resistance was increased by U46619 [9,11-dideoxy-11alpha,9alpha-epoxymethanoprostaglandin F(2alpha)], hypoxia, or N(omega)-nitro-L-arginine methyl ester. SB-772077-B was more potent than Y-27632 [trans-4-[(1R)-1-aminoethyl]-N-4-pyridinyl-cyclohexanecarboxamide dihydrochloride] or fasudil [5-(1,4-diazepane-1-sulfonyl)isoquinoline] in decreasing pulmonary and systemic arterial pressures. The results with SB-772077-B, fasudil, and Y-27632 suggest that Rho kinase is constitutively active and is involved in the regulation of baseline tone and vasoconstrictor responses. Chronic treatment with SB-772077-B attenuated the increase in pulmonary arterial pressure induced by monocrotaline. The intravenous injection of SB-772077-B decreased pulmonary and systemic arterial pressures in rats with monocrotaline-induced pulmonary hypertension. The decreases in pulmonary arterial pressure in response to SB-772077-B in monocrotaline-treated rats were smaller than responses in U46619-infused animals, and the analysis of responses suggests that approximately 60% of the pulmonary hypertensive response is mediated by a Rho kinase-sensitive mechanism. The observation that Rho kinase inhibitors decrease pulmonary arterial pressure when pulmonary vascular resistance is increased by interventions such as hypoxia, U46619, angiotensin II, nitric-oxide synthase inhibition, and Bay K 8644 [S-(-)-1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-[trifluoromethyl]phenyl)-3-pyridine carboxylic acid methyl ester] suggest

  15. Merestinib blocks Mnk kinase activity in acute myeloid leukemia progenitors and exhibits antileukemic effects in vitro and in vivo.

    PubMed

    Kosciuczuk, Ewa M; Saleiro, Diana; Kroczynska, Barbara; Beauchamp, Elspeth M; Eckerdt, Frank; Blyth, Gavin T; Abedin, Sameem M; Giles, Francis J; Altman, Jessica K; Platanias, Leonidas C

    2016-07-21

    Mitogen-activated protein kinase interacting protein kinases (Mnks) play important roles in the development and progression of acute myeloid leukemia (AML) by regulating eukaryotic translation initiation factor 4E (eIF4E) activation. Inhibiting Mnk1/2-induced phosphorylation of eIF4E may represent a unique approach for the treatment of AML. We provide evidence for antileukemic effects of merestinib, an orally bioavailable multikinase inhibitor with suppressive effects on Mnk activity. Our studies show that merestinib effectively blocks eIF4E phosphorylation in AML cells and suppresses primitive leukemic progenitors from AML patients in vitro and in an AML xenograft model in vivo. Our findings provide evidence for potent preclinical antileukemic properties of merestinib and support its clinical development for the treatment of patients with AML. PMID:27307295

  16. Faster O2 uptake kinetics in canine skeletal muscle in situ after acute creatine kinase inhibition

    PubMed Central

    Grassi, Bruno; Rossiter, Harry B; Hogan, Michael C; Howlett, Richard A; Harris, James E; Goodwin, Matthew L; Dobson, John L; Gladden, L Bruce

    2011-01-01

    Creatine kinase (CK) plays a key role both in energy provision and in signal transduction for the increase in skeletal muscle O2 uptake () at exercise onset. The effects of acute CK inhibition by iodoacetamide (IA; 5 mm) on kinetics were studied in isolated canine gastrocnemius muscles in situ (n = 6) during transitions from rest to 3 min of electrically stimulated contractions eliciting ∼70% of muscle peak , and were compared to control (Ctrl) conditions. In both IA and Ctrl muscles were pump-perfused with constantly elevated blood flows. Arterial and venous [O2] were determined at rest and every 5–7 s during contractions. was calculated by Fick's principle. Muscle biopsies were obtained at rest and after ∼3 min of contractions. Muscle force was measured continuously. There was no fatigue in Ctrl (final force/initial force (fatigue index, FI) = 0.97 ± 0.06 (x ± s.d.)), whereas in IA force was significantly lower during the first contractions, slightly recovered at 15–20 s and then decreased (FI 0.67 ± 0.17). [Phosphocreatine] was not different in the two conditions at rest, and decreased during contractions in Ctrl, but not in IA. at 3 min was lower in IA (4.7 ± 2.9 ml 100 g−1 min−1) vs. Ctrl (16.6 ± 2.5 ml 100 g−1 min−1). The time constant (τ) of kinetics was faster in IA (8.1 ± 4.8 s) vs. Ctrl (16.6 ± 2.6 s). A second control condition (Ctrl-Mod) was produced by modelling a response that accounted for the ‘non-square’ force profile in IA, which by itself could have influenced kinetics. However, τ in IA was faster than in Ctrl-Mod (13.8 ± 2.8 s). The faster kinetics due to IA suggest that in mammalian skeletal muscle in situ, following contractions onset, temporal energy buffering by CK slows the kinetics of signal transduction for the activation of oxidative phosphorylation. PMID:21059760

  17. Rho Signaling Participates in Membrane Fluidity Homeostasis

    PubMed Central

    Lockshon, Daniel; Olsen, Carissa Perez; Brett, Christopher L.; Chertov, Andrei; Merz, Alexey J.; Lorenz, Daniel A.; Van Gilst, Marc R.; Kennedy, Brian K.

    2012-01-01

    Preservation of both the integrity and fluidity of biological membranes is a critical cellular homeostatic function. Signaling pathways that govern lipid bilayer fluidity have long been known in bacteria, yet no such pathways have been identified in eukaryotes. Here we identify mutants of the yeast Saccharomyces cerevisiae whose growth is differentially influenced by its two principal unsaturated fatty acids, oleic and palmitoleic acid. Strains deficient in the core components of the cell wall integrity (CWI) pathway, a MAP kinase pathway dependent on both Pkc1 (yeast's sole protein kinase C) and Rho1 (the yeast RhoA-like small GTPase), were among those inhibited by palmitoleate yet stimulated by oleate. A single GEF (Tus1) and a single GAP (Sac7) of Rho1 were also identified, neither of which participate in the CWI pathway. In contrast, key components of the CWI pathway, such as Rom2, Bem2 and Rlm1, failed to influence fatty acid sensitivity. The differential influence of palmitoleate and oleate on growth of key mutants correlated with changes in membrane fluidity measured by fluorescence anisotropy of TMA-DPH, a plasma membrane-bound dye. This work provides the first evidence for the existence of a signaling pathway that enables eukaryotic cells to control membrane fluidity, a requirement for division, differentiation and environmental adaptation. PMID:23071506

  18. Evidence for a role of mitogen-activated protein kinases in the treatment of experimental acute pancreatitis

    PubMed Central

    Irrera, Natasha; Bitto, Alessandra; Interdonato, Monica; Squadrito, Francesco; Altavilla, Domenica

    2014-01-01

    Acute pancreatitis (AP) is an inflammatory disease characterized by acute inflammation and necrosis of the pancreatic parenchyma. AP is often associated with organ failure, sepsis, and high mortality. The pathogenesis of AP is still not well understood. In recent years several papers have highlighted the cellular and molecular events of acute pancreatitis. Pancreatitis is initiated by activation of digestive enzymes within the acinar cells that are involved in autodigestion of the gland, followed by a massive infiltration of neutrophils and macrophages and release of inflammatory mediators, responsible for the local and systemic inflammatory response. The hallmark of AP is parenchymal cell necrosis that represents the cause of the high morbidity and mortality, so that new potential therapeutic approaches are indispensable for the treatment of patients at high risk of complications. However, not all factors that determine the onset and course of the disease have been explained. Aim of this article is to review the role of mitogen-activated protein kinases in pathogenesis of acute pancreatitis. PMID:25469021

  19. Axon growth inhibition by RhoA/ROCK in the central nervous system

    PubMed Central

    Fujita, Yuki; Yamashita, Toshihide

    2014-01-01

    Rho kinase (ROCK) is a serine/threonine kinase and a downstream target of the small GTPase Rho. The RhoA/ROCK pathway is associated with various neuronal functions such as migration, dendrite development, and axonal extension. Evidence from animal studies reveals that RhoA/ROCK signaling is involved in various central nervous system (CNS) diseases, including optic nerve and spinal cord injuries, stroke, and neurodegenerative diseases. Given that RhoA/ROCK plays a critical role in the pathophysiology of CNS diseases, the development of therapeutic agents targeting this pathway is expected to contribute to the treatment of CNS diseases. The RhoA/ROCK pathway mediates the effects of myelin-associated axon growth inhibitors—Nogo, myelin-associated glycoprotein (MAG), oligodendrocyte-myelin glycoprotein (OMgp), and repulsive guidance molecule (RGM). Blocking RhoA/ROCK signaling can reverse the inhibitory effects of these molecules on axon outgrowth, and promotes axonal sprouting and functional recovery in animal models of CNS injury. To date, several RhoA/ROCK inhibitors have been under development or in clinical trials as therapeutic agents for neurological disorders. In this review, we focus on the RhoA/ROCK signaling pathway in neurological disorders. We also discuss the potential therapeutic approaches of RhoA/ROCK inhibitors for various neurological disorders. PMID:25374504

  20. Chemically Diverse Group I p21-Activated Kinase (PAK) Inhibitors Impart Acute Cardiovascular Toxicity with a Narrow Therapeutic Window.

    PubMed

    Rudolph, Joachim; Murray, Lesley J; Ndubaku, Chudi O; O'Brien, Thomas; Blackwood, Elizabeth; Wang, Weiru; Aliagas, Ignacio; Gazzard, Lewis; Crawford, James J; Drobnick, Joy; Lee, Wendy; Zhao, Xianrui; Hoeflich, Klaus P; Favor, David A; Dong, Ping; Zhang, Haiming; Heise, Christopher E; Oh, Angela; Ong, Christy C; La, Hank; Chakravarty, Paroma; Chan, Connie; Jakubiak, Diana; Epler, Jennifer; Ramaswamy, Sreemathy; Vega, Roxanne; Cain, Gary; Diaz, Dolores; Zhong, Yu

    2016-06-01

    p21-activated kinase 1 (PAK1) has an important role in transducing signals in several oncogenic pathways. The concept of inhibiting this kinase has garnered significant interest over the past decade, particularly for targeting cancers associated with PAK1 amplification. Animal studies with the selective group I PAK (pan-PAK1, 2, 3) inhibitor G-5555 from the pyrido[2,3-d]pyrimidin-7-one class uncovered acute toxicity with a narrow therapeutic window. To attempt mitigating the toxicity, we introduced significant structural changes, culminating in the discovery of the potent pyridone side chain analogue G-9791. Mouse tolerability studies with this compound, other members of this series, and compounds from two structurally distinct classes revealed persistent toxicity and a correlation of minimum toxic concentrations and PAK1/2 mediated cellular potencies. Broad screening of selected PAK inhibitors revealed PAK1, 2, and 3 as the only overlapping targets. Our data suggest acute cardiovascular toxicity resulting from the inhibition of PAK2, which may be enhanced by PAK1 inhibition, and cautions against continued pursuit of pan-group I PAK inhibitors in drug discovery. PMID:27167326

  1. Inhibition of Rho A activity causes pemphigus skin blistering

    PubMed Central

    Waschke, Jens; Spindler, Volker; Bruggeman, Paola; Zillikens, Detlef; Schmidt, Gudula; Drenckhahn, Detlev

    2006-01-01

    The autoimmune blistering skin diseases pemphigus vulgaris (PV) and pemphigus foliaceus (PF) are mainly caused by autoantibodies against desmosomal cadherins. In this study, we provide evidence that PV–immunoglobulin G (IgG) and PF-IgG induce skin blistering by interference with Rho A signaling. In vitro, pemphigus IgG caused typical hallmarks of pemphigus pathogenesis such as epidermal blistering in human skin, cell dissociation, and loss of desmoglein 1 (Dsg 1)–mediated binding probed by laser tweezers. These changes were accompanied by interference with Rho A activation and reduction of Rho A activity. Pemphigus IgG–triggered keratinocyte dissociation and Rho A inactivation were p38 mitogen-activated protein kinase dependent. Specific activation of Rho A by cytotoxic necrotizing factor-y abolished all pemphigus-triggered effects, including keratin retraction and release of Dsg 3 from the cytoskeleton. These data demonstrate that Rho A is involved in the regulation of desmosomal adhesion, at least in part by maintaining the cytoskeletal anchorage of desmosomal proteins. This may open the possibility of pemphigus treatment with the epidermal application of Rho A agonists. PMID:17130286

  2. Scambio, a novel guanine nucleotide exchange factor for Rho

    PubMed Central

    Curtis, Christina; Hemmeryckx, Bianca; Haataja, Leena; Senadheera, Dinithi; Groffen, John; Heisterkamp, Nora

    2004-01-01

    Background Small GTPases of the Rho family are critical regulators of various cellular functions including actin cytoskeleton organization, activation of kinase cascades and mitogenesis. For this reason, a major objective has been to understand the mechanisms of Rho GTPase regulation. Here, we examine the function of a novel protein, Scambio, which shares homology with the DH-PH domains of several known guanine nucleotide exchange factors for Rho family members. Results Scambio is located on human chromosome 14q11.1, encodes a protein of around 181 kDa, and is highly expressed in both heart and skeletal muscle. In contrast to most DH-PH-domain containing proteins, it binds the activated, GTP-bound forms of Rac and Cdc42. However, it fails to associate with V14RhoA. Immunofluorescence studies indicate that Scambio and activated Rac3 colocalize in membrane ruffles at the cell periphery. In accordance with these findings, Scambio does not activate either Rac or Cdc42 but rather, stimulates guanine nucleotide exchange on RhoA and its close relative, RhoC. Conclusion Scambio associates with Rac in its activated conformation and functions as a guanine nucleotide exchange factor for Rho. PMID:15107133

  3. The Rho Kappa Spirit

    ERIC Educational Resources Information Center

    McCullagh, Mary T.

    2012-01-01

    Many years ago, Christopher Columbus High School opened a chapter of Rho Kappa, the Social Studies Honor Society developed through the Florida Council for the Social Studies (FCSS). As department chair and member of FCSS, the author was thrilled to be able to offer their students opportunities in the Honor Society for the Social Studies. They…

  4. Down-Regulation of Ribosomal S6 kinase RPS6KA6 in Acute Myeloid Leukemia Patients

    PubMed Central

    Rafiee, Mohammad; Keramati, Mohammad Reza; Ayatollahi, Hosein; Sadeghian, Mohammad Hadi; Barzegar, Mohieddin; Asgharzadeh, Ali; Alinejad, Mohsen

    2016-01-01

    Objective Signaling pathways such as extracellular regulated kinase/mitogen activated protein kinase (ERK/MAPK) have increased activity in leukemia. Ribosomal 6 kinase (RSK4) is a factor downstream of the MAPK/ERK pathway and an important tumor suppressor which inhibits ERK trafficking. Decrease in RSK4 expression has been reported in some malignancies, which leads to an increase in growth and proliferation and eventually poor prognosis. In this study we measured RSK4 expression rate in acute myeloid leukemia (AML). Materials and Methods This cross-sectional study was undertaken in 2013-2014 at Ghaem Hospital in Mashhad, Iran, on 40 AML patients and 10 non-AML patients as the control group. The expression rate was measured by real-time polymerase change reaction (PCR) and employing the ΔΔCT method. Data were analyzed using Mann-Whitney and Spearman tests using SPSS (version 11.5). Results Expression rate of RSK4 was significantly decreased in the AML group in comparison with the non-AML group (P<0.001). There was also a significant decrease in RSK4 expression in AML with t(15;17) in comparison to other translocations (P=0.004). Conclusion We detected a down-regulation of RSK4 in AML patients. This may lead to an increase in the activity of the ERK/MPAK pathway and exacerbate leukemogenesis or the prognosis of the patients. PMID:27540520

  5. Insulin sensitivity is related to fat oxidation and protein kinase C activity in children with acute burn injury

    PubMed Central

    Cree, Melanie G.; Zwetsloot, Jennifer J.; Herndon, David N.; Newcomer, Bradley R.; Fram, Ricki Y.; Angel, Carlos; Green, Justin M.; Dohm, Gerald L.; Sun, Dayoung; Aarsland, Asle; Wolfe, Robert R.

    2014-01-01

    Objective Impaired fatty acid oxidation occurs with type 2 diabetes and is associated with accumulations of intracellular lipids, which may increase diacylglycerol, stimulate protein kinase C activity and inactivate insulin signaling. Glucose and fat metabolism are altered in burn patients, but have never been related to intracellular lipids or insulin signaling. Methods Thirty children sustaining >40% total body surface area burns were studied acutely with glucose and palmitate tracer infusions and a hyper-insulinemic euglycemic clamp. Muscle triglyceride, diacylglycerol, fatty acyl CoA and insulin signaling were measured. Liver and muscle triglyceride levels were measured with magnetic resonance spectroscopy. Muscle samples from healthy children were controls for diacylglycerol concentrations. Results Insulin sensitivity was reduced and correlated with whole body palmitate β-oxidation (P=0.004). Muscle insulin signaling was not stimulated by hyper-insulinemia. Tissue triglyceride concentrations and activated protein kinase C-β were elevated, whereas the concentration of diacylglycerol was similar to the controls. Free fatty acid profiles of muscle triglyceride did not match diacylglycerol. Conclusions Insulin resistance following burn injury is accompanied by decreased insulin signaling and increased protein kinase C-β activation. The best metabolic predictor of insulin resistance in burned patients was palmitate oxidation. PMID:18535477

  6. Role of the RhoA/ROCK pathway in high-altitude associated neonatal pulmonary hypertension in lambs.

    PubMed

    Lopez, Nandy C; Ebensperger, German; Herrera, Emilio A; Reyes, Roberto V; Calaf, Gloria; Cabello, Gertrudis; Moraga, Fernando A; Beñaldo, Felipe A; Diaz, Marcela; Parer, Julian T; Llanos, Anibal J

    2016-06-01

    Exposure to high-altitude chronic hypoxia during pregnancy may cause pulmonary hypertension in neonates, as a result of vasoconstriction and vascular remodeling. We hypothesized that susceptibility to pulmonary hypertension, due to an augmented expression and activity of the RhoA/Rho-kinase (ROCK) pathway in these neonates, can be reduced by daily administration of fasudil, a ROCK inhibitor. We studied 10 highland newborn lambs with conception, gestation, and birth at 3,600 m in Putre, Chile. Five highland controls (HLC) were compared with 5 highland lambs treated with fasudil (HL-FAS; 3 mg·kg(-1)·day(-1) iv for 10 days). Ten lowland controls were studied in Lluta (50 m; LLC). During the 10 days of fasudil daily administration, the drug decreased pulmonary arterial pressure (PAP) and resistance (PVR), basally and during a superimposed episode of acute hypoxia. HL-FAS small pulmonary arteries showed diminished muscular area and a reduced contractile response to the thromboxane analog U46619 compared with HLC. Hypoxia, but not fasudil, changed the protein expression pattern of the RhoA/ROCKII pathway. Moreover, HL-FAS lungs expressed less pMYPT1(T850) and pMYPT1T(696) than HLC, with a potential increase of the myosin light chain phosphatase activity. Finally, hypoxia induced RhoA, ROCKII, and PKG mRNA expression in PASMCs of HLC, but fasudil reduced them (HL-FAS) similarly to LLC. We conclude that fasudil decreases the function of the RhoA/ROCK pathway, reducing the PAP and PVR in chronically hypoxic highland neonatal lambs. The inhibition of ROCKs by fasudil may offer a possible therapeutic tool for the pulmonary hypertension of the neonates. PMID:26911462

  7. GPER inhibits diabetes-mediated RhoA activation to prevent vascular endothelial dysfunction.

    PubMed

    Li, Zilin; Cheng, Liang; Liang, Hongliang; Duan, Weixun; Hu, Jing; Zhi, Weiwei; Yang, Jinbao; Liu, Zhenhua; Zhao, Minggao; Liu, Jincheng

    2016-02-01

    The effect of estrogen receptors on diabetes-induced vascular dysfunction is critical, but ambiguous. Individuals with diabetic vascular disease may require estrogen receptor-specific targeted therapy in the future. The G protein-coupled estrogen receptor (GPER) has beneficial effects on vascular function. However, its fundamental mechanisms are unclear. The RhoA/Rho-kinase pathway contributes to diabetic vascular complications, whereas estrogen can suppress Rho-kinase function. Thus, we assumed that GPER inhibits diabetes-mediated RhoA activation to prevent vascular dysfunction. We further investigated the underlying mechanisms involved in this process. Vascular endothelial cells and ex vivo cultured ovariectomized (OVX) C57BL/6 mouse aortae were treated with high glucose (HG) alone or in combination with GPER agonist (G1). G1 treatment was also administered to OVX db/db mice for 8 weeks. An ex-vivo isovolumic myograph was used to analyze the endothelium-dependent vasodilation and endothelium-independent contraction of mouse aortae. Apoptosis, oxidative stress, and inflammation were attenuated in G1-pretreated vascular endothelial cells. G1 significantly decreased the phosphorylation of inhibitory endothelial nitric oxide (NO) synthase residue threonine 495 (eNOS Thr495), inhibited RhoA expression, and increased NO production. Additionally, G1 rescued the impaired endothelium-dependent relaxation and inhibited RhoA activation in the thoracic aorta of OVX db/db mice and ex-vivo cultured OVX C57BL/6 mouse aortae treated with HG. Estrogens acting via GPER could protect vascular endothelium, and GPER activation might elicit ERα-independent effect to inhibit RhoA/Rho-kinase pathway. Additionally, GPER activation might reduce vascular smooth muscle contraction by inhibiting RhoA activation. Thus, the results of the present study suggest a new therapeutic paradigm for end-stage vascular dysfunction by inhibiting RhoA/Rho-kinase pathway via GPER activation. PMID:26785611

  8. Treatment of human pre-B acute lymphoblastic leukemia with the Aurora kinase inhibitor PHA-739358 (Danusertib)

    PubMed Central

    2012-01-01

    Background Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemias (Ph-positive ALL) with clinically approved inhibitors of the Bcr/Abl tyrosine kinase frequently results in the emergence of a leukemic clone carrying the T315I mutation in Bcr/Abl, which confers resistance to these drugs. PHA-739358, an Aurora kinase inhibitor, was reported to inhibit the Bcr/Abl T315I mutant in CML cells but no preclinical studies have examined this in detail in human ALL. Results We compared the sensitivity of human Bcr/Abl T315I, Bcr/Abl wild type and non-Bcr/Abl ALL cells to this drug. PHA-739358 inhibited proliferation and induced apoptosis independently of Bcr/Abl, the T315I mutation, or presence of the tumor suppressor p53, but the degree of effectiveness varied between different ALL samples. Since short-term treatment with a single dose of drug only transiently inhibited proliferation, we tested combination treatments of PHA-739358 with the farnesyltransferase inhibitor Lonafarnib, with vincristine and with dasatinib. All combinations reduced viability and cell numbers compared to treatment with a single drug. Clonogenic assays showed that 25 nM PHA-739358 significantly reduced the colony growth potential of Ph-positive ALL cells, and combined treatment with a second drug abrogated colony growth in this assay. PHA-739358 further effectively blocked Bcr/Abl tyrosine kinase activity and Aurora kinase B in vivo, and mice transplanted with human Bcr/Abl T315I ALL cells treated with a 3x 7-day cycle of PHA-739358 as mono-treatment had significantly longer survival. Conclusions PHA-739358 represents an alternative drug for the treatment of both Ph-positive and negative ALL, although combined treatment with a second drug may be needed to eradicate the leukemic cells. PMID:22721004

  9. Non–Muscle Myosin Light Chain Kinase Isoform Is a Viable Molecular Target in Acute Inflammatory Lung Injury

    PubMed Central

    Mirzapoiazova, Tamara; Moitra, Jaideep; Moreno-Vinasco, Liliana; Sammani, Saad; Turner, Jerry R.; Chiang, Eddie T.; Evenoski, Carrie; Wang, Ting; Singleton, Patrick A.; Huang, Yong; Lussier, Yves A.; Watterson, D. Martin; Dudek, Steven M.; Garcia, Joe G. N.

    2011-01-01

    Acute lung injury (ALI) and mechanical ventilator-induced lung injury (VILI), major causes of acute respiratory failure with elevated morbidity and mortality, are characterized by significant pulmonary inflammation and alveolar/vascular barrier dysfunction. Previous studies highlighted the role of the non–muscle myosin light chain kinase isoform (nmMLCK) as an essential element of the inflammatory response, with variants in the MYLK gene that contribute to ALI susceptibility. To define nmMLCK involvement further in acute inflammatory syndromes, we used two murine models of inflammatory lung injury, induced by either an intratracheal administration of lipopolysaccharide (LPS model) or mechanical ventilation with increased tidal volumes (the VILI model). Intravenous delivery of the membrane-permeant MLC kinase peptide inhibitor, PIK, produced a dose-dependent attenuation of both LPS-induced lung inflammation and VILI (∼50% reductions in alveolar/vascular permeability and leukocyte influx). Intravenous injections of nmMLCK silencing RNA, either directly or as cargo within angiotensin-converting enzyme (ACE) antibody–conjugated liposomes (to target the pulmonary vasculature selectively), decreased nmMLCK lung expression (∼70% reduction) and significantly attenuated LPS-induced and VILI-induced lung inflammation (∼40% reduction in bronchoalveolar lavage protein). Compared with wild-type mice, nmMLCK knockout mice were significantly protected from VILI, with significant reductions in VILI-induced gene expression in biological pathways such as nrf2-mediated oxidative stress, coagulation, p53-signaling, leukocyte extravasation, and IL-6–signaling. These studies validate nmMLCK as an attractive target for ameliorating the adverse effects of dysregulated lung inflammation. PMID:20139351

  10. The crystal structure of the RhoA–AKAP-Lbc DH–PH domain complex

    PubMed Central

    Abdul Azeez, Kamal R.; Knapp, Stefan; Fernandes, João M. P.; Klussmann, Enno; Elkins, Jonathan M.

    2014-01-01

    The RhoGEF (Rho GTPase guanine-nucleotide-exchange factor) domain of AKAP-Lbc (A-kinase-anchoring protein-Lbc, also known as AKAP13) catalyses nucleotide exchange on RhoA and is involved in the development of cardiac hypertrophy. The RhoGEF activity of AKAP-Lbc has also been implicated in cancer. We have determined the X-ray crystal structure of the complex between RhoA–GDP and the AKAP-Lbc RhoGEF [DH (Dbl-homologous)–PH (pleckstrin homology)] domain to 2.1 Å (1 Å=0.1 nm) resolution. The structure reveals important differences compared with related RhoGEF proteins such as leukaemia-associated RhoGEF. Nucleotide-exchange assays comparing the activity of the DH–PH domain to the DH domain alone showed no role for the PH domain in nucleotide exchange, which is explained by the RhoA–AKAP-Lbc structure. Comparison with a structure of the isolated AKAP-Lbc DH domain revealed a change in conformation of the N-terminal ‘GEF switch’ region upon binding to RhoA. Isothermal titration calorimetry showed that AKAP-Lbc has only micromolar affinity for RhoA, which combined with the presence of potential binding pockets for small molecules on AKAP-Lbc, raises the possibility of targeting AKAP-Lbc with GEF inhibitors. PMID:25186459

  11. ALTERED PHOSPHORYLATION OF MAP KINASE AFTER ACUTE EXPOSURE TO PCB153.

    EPA Science Inventory

    Long-term potentiation (LTP) is a model of synaptic plasticity believed to encompass the physiological substrate of memory. The mitogen-activated protein kinase (ERK1/2) signalling cascade contributes to synaptic plasticity and to long-term memory formation. Learning and LTP st...

  12. The role of the Rho/ROCK signaling pathway in inhibiting axonal regeneration in the central nervous system.

    PubMed

    Liu, Jing; Gao, Hong-Yan; Wang, Xiao-Feng

    2015-11-01

    The Rho/Rho-associated coiled-coil containing protein kinase (Rho/ROCK) pathway is a major signaling pathway in the central nervous system, transducing inhibitory signals to block regeneration. After central nervous system damage, the main cause of impaired regeneration is the presence of factors that strongly inhibit regeneration in the surrounding microenvironment. These factors signal through the Rho/ROCK signaling pathway to inhibit regeneration. Therefore, a thorough understanding of the Rho/ROCK signaling pathway is crucial for advancing studies on regeneration and repair of the injured central nervous system. PMID:26807132

  13. The role of the Rho/ROCK signaling pathway in inhibiting axonal regeneration in the central nervous system

    PubMed Central

    Liu, Jing; Gao, Hong-yan; Wang, Xiao-feng

    2015-01-01

    The Rho/Rho-associated coiled-coil containing protein kinase (Rho/ROCK) pathway is a major signaling pathway in the central nervous system, transducing inhibitory signals to block regeneration. After central nervous system damage, the main cause of impaired regeneration is the presence of factors that strongly inhibit regeneration in the surrounding microenvironment. These factors signal through the Rho/ROCK signaling pathway to inhibit regeneration. Therefore, a thorough understanding of the Rho/ROCK signaling pathway is crucial for advancing studies on regeneration and repair of the injured central nervous system. PMID:26807132

  14. Suppression of Mitochondrial Biogenesis through Toll-Like Receptor 4–Dependent Mitogen-Activated Protein Kinase Kinase/Extracellular Signal-Regulated Kinase Signaling in Endotoxin-Induced Acute Kidney Injury

    PubMed Central

    Smith, Joshua A.; Stallons, L. Jay; Collier, Justin B.; Chavin, Kenneth D.

    2015-01-01

    Although disruption of mitochondrial homeostasis and biogenesis (MB) is a widely accepted pathophysiologic feature of sepsis-induced acute kidney injury (AKI), the molecular mechanisms responsible for this phenomenon are unknown. In this study, we examined the signaling pathways responsible for the suppression of MB in a mouse model of lipopolysaccharide (LPS)-induced AKI. Downregulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a master regulator of MB, was noted at the mRNA level at 3 hours and protein level at 18 hours in the renal cortex, and was associated with loss of renal function after LPS treatment. LPS-mediated suppression of PGC-1α led to reduced expression of downstream regulators of MB and electron transport chain proteins along with a reduction in renal cortical mitochondrial DNA content. Mechanistically, Toll-like receptor 4 (TLR4) knockout mice were protected from renal injury and disruption of MB after LPS exposure. Immunoblot analysis revealed activation of tumor progression locus 2/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (TPL-2/MEK/ERK) signaling in the renal cortex by LPS. Pharmacologic inhibition of MEK/ERK signaling attenuated renal dysfunction and loss of PGC-1α, and was associated with a reduction in proinflammatory cytokine (e.g., tumor necrosis factor-α [TNF-α], interleukin-1β) expression at 3 hours after LPS exposure. Neutralization of TNF-α also blocked PGC-1α suppression, but not renal dysfunction, after LPS-induced AKI. Finally, systemic administration of recombinant tumor necrosis factor-α alone was sufficient to produce AKI and disrupt mitochondrial homeostasis. These findings indicate an important role for the TLR4/MEK/ERK pathway in both LPS-induced renal dysfunction and suppression of MB. TLR4/MEK/ERK/TNF-α signaling may represent a novel therapeutic target to prevent mitochondrial dysfunction and AKI produced by sepsis. PMID:25503387

  15. Arachidonic acid stimulates formation of a novel complex containing nucleolin and RhoA.

    PubMed

    Garcia, Melissa C; Williams, Jason; Johnson, Katina; Olden, Kenneth; Roberts, John D

    2011-02-18

    Arachidonic acid (AA) stimulates cell adhesion through a p38 mitogen activated protein kinase-mediated RhoA signaling pathway. Here we report that a proteomic screen following AA-treatment identified nucleolin, a multifunctional nucleolar protein, in a complex with the GTPase, RhoA, that also included the Rho kinase, ROCK. AA-stimulated cell adhesion was inhibited by expression of nucleolin-targeted shRNA and formation of the multiprotein complex was blocked by expression of dominant-negative RhoA. AA-treatment also induced ROCK-dependent serine phosphorylation of nucleolin and translocation of nucleolin from the nucleus to the cytoplasm, where it appeared to co-localize with RhoA. These data suggest the existence of a new signaling pathway through which the location and post-translational state of nucleolin are modulated. PMID:21281639

  16. OXIDATIVE STRESS PARTICIPATES IN ACUTE LUNG INJURY AND ACTIVATION OF MITOGEN ACTIVATED PROTEIN KINASES (MAPK) FOLLOWING AIR POLLUTION PARTICLE EXPOSURE (PM)

    EPA Science Inventory

    OXIDATIVE STRESS PARTICIPATES IN ACUTE LUNG INJURY AND ACTIVATION OF MITOGEN ACTIVATED PROTEIN KINASES (MAPK) FOLLOWING AIR POLLUTION PARTICLE EXPOSURE (PM). E S Roberts1, R Jaskot2, J Richards2, and K L Dreher2. 1College of Veterinary Medicine, NC State University, Raleigh, NC a...

  17. TrkB-T1 regulates the RhoA signaling and actin cytoskeleton in glioma cells

    SciTech Connect

    Ohira, Koji; Homma, Koichi J.; Hirai, Hirohisa; Nakamura, Shun; Hayashi, Motoharu . E-mail: hayashi@pri.kyoto-u.ac.jp

    2006-04-14

    Recently, the truncated TrkB receptor, T1, has been reported to be involved in the control of cell morphology via the regulation of Rho proteins, through which T1 binds Rho guanine nucleotide dissociation inhibitor (Rho GDI) 1 and dissociates it in a brain-derived neurotrophic factor (BDNF)-dependent manner. However, it is unclear whether T1 signaling regulates the downstream of Rho signaling and the actin cytoskeleton. In this study, we investigated this question using C6 rat glioma cells, which express T1 endogenously. Rho GDI1 was dissociated from T1 in a BDNF-dependent manner, which also causes decreases in the activities of Rho-signaling molecules such as RhoA, Rho-associated kinase, p21-activated kinase, and extracellular-signal regulated kinase1/2. Moreover, BDNF treatment resulted in the disappearance of stress fibers in the cells treated with lysophosphatidic acid, an activator of RhoA, and in morphological changes in cells. Furthermore, a competitive assay with cyan fluorescent protein fusion proteins of T1-specific sequences reduced the effects of BDNF. These results suggest that T1 regulates the Rho-signaling pathways and the actin cytoskeleton.

  18. Rho GTPase–independent regulation of mitotic progression by the RhoGEF Net1

    PubMed Central

    Menon, Sarita; Oh, Wonkyung; Carr, Heather S.; Frost, Jeffrey A.

    2013-01-01

    Neuroepithelial transforming gene 1 (Net1) is a RhoA-subfamily–specific guanine nucleotide exchange factor that is overexpressed in multiple human cancers and is required for proliferation. Molecular mechanisms underlying its role in cell proliferation are unknown. Here we show that overexpression or knockdown of Net1 causes mitotic defects. Net1 is required for chromosome congression during metaphase and generation of stable kinetochore microtubule attachments. Accordingly, inhibition of Net1 expression results in spindle assembly checkpoint activation. The ability of Net1 to control mitosis is independent of RhoA or RhoB activation, as knockdown of either GTPase does not phenocopy effects of Net1 knockdown on nuclear morphology, and effects of Net1 knockdown are effectively rescued by expression of catalytically inactive Net1. We also observe that Net1 expression is required for centrosomal activation of p21-activated kinase and its downstream kinase Aurora A, which are critical regulators of centrosome maturation and spindle assembly. These results identify Net1 as a novel regulator of mitosis and indicate that altered expression of Net1, as occurs in human cancers, may adversely affect genomic stability. PMID:23864709

  19. Characterization of pediatric Philadelphia-negative B-cell precursor acute lymphoblastic leukemia with kinase fusions in Japan.

    PubMed

    Imamura, T; Kiyokawa, N; Kato, M; Imai, C; Okamoto, Y; Yano, M; Ohki, K; Yamashita, Y; Kodama, Y; Saito, A; Mori, M; Ishimaru, S; Deguchi, T; Hashii, Y; Shimomura, Y; Hori, T; Kato, K; Goto, H; Ogawa, C; Koh, K; Taki, T; Manabe, A; Sato, A; Kikuta, A; Adachi, S; Horibe, K; Ohara, A; Watanabe, A; Kawano, Y; Ishii, E; Shimada, H

    2016-01-01

    Recent studies revealed that a substantial proportion of patients with high-risk B-cell precursor acute lymphoblastic leukemia (BCP-ALL) harbor fusions involving tyrosine kinase and cytokine receptors, such as ABL1, PDGFRB, JAK2 and CRLF2, which are targeted by tyrosine kinase inhibitors (TKIs). In the present study, transcriptome analysis or multiplex reverse transcriptase-PCR analysis of 373 BCP-ALL patients without recurrent genetic abnormalities identified 29 patients with kinase fusions. Clinically, male predominance (male/female: 22/7), older age at onset (mean age at onset: 8.8 years) and a high white blood cell count at diagnosis (mean: 94 200/μl) reflected the predominance of National Cancer Institute high-risk (NCI-HR) patients (NCI-standard risk/HR: 8/21). Genetic analysis identified three patients with ABL1 rearrangements, eight with PDGFRB rearrangements, two with JAK2 rearrangements, three with IgH-EPOR and one with NCOR1-LYN. Of the 14 patients with CRLF2 rearrangements, two harbored IgH-EPOR and PDGFRB rearrangements. IKZF1 deletion was present in 16 of the 22 patients. The 5-year event-free and overall survival rates were 48.6±9.7% and 73.5±8.6%, respectively. The outcome was not satisfactory without sophisticated minimal residual disease-based stratification. Furthermore, the efficacy of TKIs combined with conventional chemotherapy without allogeneic hematopoietic stem cell transplantation in this cohort should be determined. PMID:27176795

  20. Overexpression of protein kinase C ɛ improves retention and survival of transplanted mesenchymal stem cells in rat acute myocardial infarction

    PubMed Central

    He, H; Zhao, Z-H; Han, F-S; Liu, X-H; Wang, R; Zeng, Y-J

    2016-01-01

    We assessed the effects of protein kinase C ɛ (PKCɛ) for improving stem cell therapy for acute myocardial infarction (AMI). Primary mesenchymal stem cells (MSCs) were harvested from rat bone marrow. PKCɛ-overexpressed MSCs and control MSCs were transplanted into infarct border zones in a rat AMI model. MSCs and PKCɛ distribution and expression of principal proteins involved in PKCɛ signaling through the stromal cell-derived factor 1 (SDF-1)/CXC chemokine receptor type 4 (CXCR4) axis and the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) pathway were analyzed by immunofluorescence and western blot 1 day after transplantation. Echocardiographic measurements and histologic studies were performed at 4 weeks after transplantation, and MSC survival, expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), transforming growth factor β (TGFβ), cardiac troponin I (cTnI), von Willebrand factor (vWF), smooth muscle actin (SMA) and factor VIII and apoptosis in infarct border zones were assessed. Rat heart muscles retained more MSCs and SDF-1, CXCR4, PI3K and phosphorylated AKT increased with PKCɛ overexpression 1 day after transplantation. MSC survival and VEGF, bFGF, TGFβ, cTnI, vWF, SMA and factor VIII expression increased in animals with PKCɛ-overexpressed MSCs at 4 weeks after transplantation and cardiac dysfunction and remodeling improved. Infarct size and apoptosis decreased as well. Inhibitory actions of CXCR4 or PI3K partly attenuated the effects of PKCɛ. Activation of PKCɛ may improve retention, survival and differentiation of transplanted MSCs in myocardia. Augmentation of PKCɛ expression may enhance the therapeutic effects of stem cell therapy for AMI. PMID:26775707

  1. Characterization of pediatric Philadelphia-negative B-cell precursor acute lymphoblastic leukemia with kinase fusions in Japan

    PubMed Central

    Imamura, T; Kiyokawa, N; Kato, M; Imai, C; Okamoto, Y; Yano, M; Ohki, K; Yamashita, Y; Kodama, Y; Saito, A; Mori, M; Ishimaru, S; Deguchi, T; Hashii, Y; Shimomura, Y; Hori, T; Kato, K; Goto, H; Ogawa, C; Koh, K; Taki, T; Manabe, A; Sato, A; Kikuta, A; Adachi, S; Horibe, K; Ohara, A; Watanabe, A; Kawano, Y; Ishii, E; Shimada, H

    2016-01-01

    Recent studies revealed that a substantial proportion of patients with high-risk B-cell precursor acute lymphoblastic leukemia (BCP-ALL) harbor fusions involving tyrosine kinase and cytokine receptors, such as ABL1, PDGFRB, JAK2 and CRLF2, which are targeted by tyrosine kinase inhibitors (TKIs). In the present study, transcriptome analysis or multiplex reverse transcriptase–PCR analysis of 373 BCP-ALL patients without recurrent genetic abnormalities identified 29 patients with kinase fusions. Clinically, male predominance (male/female: 22/7), older age at onset (mean age at onset: 8.8 years) and a high white blood cell count at diagnosis (mean: 94 200/μl) reflected the predominance of National Cancer Institute high-risk (NCI-HR) patients (NCI-standard risk/HR: 8/21). Genetic analysis identified three patients with ABL1 rearrangements, eight with PDGFRB rearrangements, two with JAK2 rearrangements, three with IgH-EPOR and one with NCOR1-LYN. Of the 14 patients with CRLF2 rearrangements, two harbored IgH-EPOR and PDGFRB rearrangements. IKZF1 deletion was present in 16 of the 22 patients. The 5-year event-free and overall survival rates were 48.6±9.7% and 73.5±8.6%, respectively. The outcome was not satisfactory without sophisticated minimal residual disease-based stratification. Furthermore, the efficacy of TKIs combined with conventional chemotherapy without allogeneic hematopoietic stem cell transplantation in this cohort should be determined. PMID:27176795

  2. Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia

    PubMed Central

    Xiang, Zhifu; Walgren, Richard; Zhao, Yu; Kasai, Yumi; Miner, Tracie; Ries, Rhonda E.; Lubman, Olga; Fremont, Daved H.; McLellan, Michael D.; Payton, Jacqueline E.; Westervelt, Peter; DiPersio, John F.; Link, Daniel C.; Walter, Matthew J.; Graubert, Timothy A.; Watson, Mark; Baty, Jack; Heath, Sharon; Shannon, William D.; Nagarajan, Rakesh; Bloomfield, Clara D.; Mardis, Elaine R.; Wilson, Richard K.; Ley, Timothy J.

    2008-01-01

    Activating mutations in tyrosine kinase (TK) genes (eg, FLT3 and KIT) are found in more than 30% of patients with de novo acute myeloid leukemia (AML); many groups have speculated that mutations in other TK genes may be present in the remaining 70%. We performed high-throughput resequencing of the kinase domains of 26 TK genes (11 receptor TK; 15 cytoplasmic TK) expressed in most AML patients using genomic DNA from the bone marrow (tumor) and matched skin biopsy samples (“germline”) from 94 patients with de novo AML; sequence variants were validated in an additional 94 AML tumor samples (14.3 million base pairs of sequence were obtained and analyzed). We identified known somatic mutations in FLT3, KIT, and JAK2 TK genes at the expected frequencies and found 4 novel somatic mutations, JAK1V623A, JAK1T478S, DDR1A803V, and NTRK1S677N, once each in 4 respective patients of 188 tested. We also identified novel germline sequence changes encoding amino acid substitutions (ie, nonsynonymous changes) in 14 TK genes, including TYK2, which had the largest number of nonsynonymous sequence variants (11 total detected). Additional studies will be required to define the roles that these somatic and germline TK gene variants play in AML pathogenesis. PMID:18270328

  3. RhoGDI2 antagonizes ovarian carcinoma growth, invasion and metastasis

    PubMed Central

    Stevens, Ellen V; Banet, Natalie; Onesto, Cercina; Plachco, Ana; Alan, Jamie K; Nikolaishvili-Feinberg, Nana; Midkiff, Bentley R; Kuan, Pei Fen; Liu, Jinsong; Miller, C Ryan; Vigil, Dominico; Graves, Lee M

    2011-01-01

    Previous studies described functional roles for Rho GDP dissociation inhibitor 2 (RhoGDI2) in bladder, gastric and breast cancers. However, only limited expression and no functional analyses have been done for RhoGDI2 in ovarian cancer. We determined RhoGDI2 protein expression and function in ovarian cancer. First, protein gel blot analysis was performed to determine the expression levels of RhoGDI2 in ovarian cells lines. RhoGDI2 but not RhoGDI1 protein expression levels varied widely in ovarian carcinoma cell lines, with elevated levels seen in Ras-transformed ovarian epithelial cells. Next, immunohistochemistry was performed to detect RhoGDI2 expression in patient samples of ovarian cysts and ovarian cancer with known histological subtype, stage, grade and outcome. RhoGDI2 protein was significantly overexpressed in high-grade compared with low-grade ovarian cancers, correlated with histological subtype, and did not correlate with stage of ovarian cancer nor between carcinomas and benign cysts. Unexpectedly, stable suppression of RhoGDI2 protein expression in HeyA8 ovarian cancer cells increased anchorage-independent growth and Matrigel invasion in vitro and in tail-vein lung colony metastatic growth in vivo. Finally, we found that RhoGDI2 stably-associated preferentially with Rac1 and suppression of RhoGDI2 expression resulted in decreased Rac1 activity and Rac-associated JNK and p38 mitogenactivated protein kinase signaling. RhoGDI2 antagonizes the invasive and metastatic phenotype of HeyA8 ovarian cancer cells. In summary, our results suggest significant cell context differences in RhoGDI2 function in cancer cell growth. PMID:22145092

  4. RhoGAPs and Rho GTPases in platelets.

    PubMed

    Elvers, Margitta

    2016-08-01

    Platelet cytoskeletal reorganization is essential for platelet adhesion and thrombus formation in hemostasis and thrombosis. The Rho GTPases RhoA, Rac1 and Cdc42 are the main players in cytoskeletal dynamics of platelets responsible for the formation of filopodia and lamellipodia to strongly increase the platelet surface upon activation. They are involved in platelet activation and aggregate formation including platelet secretion, integrin activation and arterial thrombus formation. The activity of Rho GTPases is tightly controlled by different proteins such as GTPase-activating proteins (GAPs). GAPs stimulate GTP hydrolysis to terminate Rho signaling. The role and impact of GAPs in platelets is not well-defined and many of the RhoGAPs identified are not known to be present in platelets or to have any function in platelets. The recently identified RhoGAPs Oligophrenin1 (OPHN1) and Nadrin regulate the activity of RhoA, Rac1 and Cdc42 and subsequent platelet cytoskeletal reorganization, platelet activation and thrombus formation. In the last years, the analysis of genetically modified mice helped to gain the understanding of Rho GTPases and their regulators in cytoskeletal rearrangements and other Rho mediated cellular processes in platelets. PMID:25639730

  5. NUP214-ABL1-mediated cell proliferation in T-cell acute lymphoblastic leukemia is dependent on the LCK kinase and various interacting proteins

    PubMed Central

    De Keersmaecker, Kim; Porcu, Michaël; Cox, Luk; Girardi, Tiziana; Vandepoel, Roel; de Beeck, Joyce Op; Gielen, Olga; Mentens, Nicole; Bennett, Keiryn L.; Hantschel, Oliver

    2014-01-01

    The NUP214-ABL1 fusion protein is a constitutively active protein tyrosine kinase that is found in 6% of patients with T-cell acute lymphoblastic leukemia and that promotes proliferation and survival of T-lymphoblasts. Although NUP214-ABL1 is sensitive to ABL1 kinase inhibitors, development of resistance to these compounds is a major clinical problem, underlining the need for additional drug targets in the sparsely studied NUP214-ABL1 signaling network. In this work, we identify and validate the SRC family kinase LCK as a protein whose activity is absolutely required for the proliferation and survival of T-cell acute lymphoblastic leukemia cells that depend on NUP214-ABL1 activity. These findings underscore the potential of SRC kinase inhibitors and of the dual ABL1/SRC kinase inhibitors dasatinib and bosutinib for the treatment of NUP214-ABL1-positive T-cell acute lymphoblastic leukemia. In addition, we used mass spectrometry to identify protein interaction partners of NUP214-ABL1. Our results strongly support that the signaling network of NUP214-ABL1 is distinct from that previously reported for BCR-ABL1. Moreover, we found that three NUP214-ABL1-interacting proteins, MAD2L1, NUP155, and SMC4, are strictly required for the proliferation and survival of NUP214-ABL1-positive T-cell acute lymphoblastic leukemia cells. In conclusion, this work identifies LCK, MAD2L1, NUP155 and SMC4 as four new potential drug targets in NUP214-ABL1-positive T-cell acute lymphoblastic leukemia. PMID:23872305

  6. Rho-signaling pathways in chronic myelogenous leukemia.

    PubMed

    Kuzelová, Katerina; Hrkal, Zbynēk

    2008-12-01

    Chronic myelogenous leukemia (CML) is a hematological malignancy that is characteristic by as expansion of myeloid cells and their premature release into the circulation. The molecular cause of CML is the fusion oncoprotein Bcr-Abl whose constitutive tyrosine-kinase (TK) activity maintains enhanced signaling through multiple signal transduction pathways and confers proliferative and survival advantage to CML cells. These effects can be largely suppressed by TK inhibitor Imatinib mesylate, currently the leading drug in CML treatment. However, Bcr-Abl contains also additional functional domains, in particular a DBL homology (DH) domain with guanine-exchange function (GEF) which can activate small GTPases of Rho family and a Src-homology3 (SH3) domain which recruits other proteins with GEF activity. Bcr-Abl affects among others the RhoA/ROCK/LIM/cofilin pathway that regulates the actin cytoskeleton assembly and thereby the cellular adhesion and migration. This review deals in detail with the known points of interference between Bcr-Abl and Rho kinase pathways and with the effects of Imatinib mesylate on Rho signaling and cell adhesion to the extracellular matrix (ECM) components. The potential protein targets related to Bcr-Abl non-kinase activity are discussed. PMID:19075636

  7. [Effects of acute hypobaric hypoxia and exhaustive exercise on AMP-activated protein kinase phosphorylation in rat skeletal muscle].

    PubMed

    Yang, Tao; Huang, Qing-Yuan; Shan, Fa-Bo; Guan, Li-Bin; Cai, Ming-Chun

    2012-04-25

    The present study was aimed to explore the changes of phosphorylated AMP-activated protein kinase (pAMPK) level in skeletal muscle after exposure to acute hypobaric hypoxia and exhaustive exercise. Thirty-two male Sprague-Dawley (SD) rats were randomly divided into sea level and high altitude groups. The rats in high altitude group were submitted to simulated 5 000 m of high altitude in a hypobaric chamber for 24 h, and sea level group was maintained at normal conditions. All the rats were subjected to exhaustive swimming exercise. The exhaustion time was recorded. Before and after the exercise, blood lactate and glycogen content in skeletal muscle were determined; AMPK and pAMPK levels in skeletal muscle were detected by Western blot. The results showed that the exhaustion time was significantly decreased after exposure to high altitude. At the moment of exhaustion, high altitude group had lower blood lactate concentration and higher surplus glycogen content in gastrocnemius compared with sea level group. Exhaustive exercise significantly increased the pAMPK/AMPK ratio in rat skeletal muscles from both sea level and high altitude groups. However, high altitude group showed lower pAMPK/AMPK ratio after exhaustion compared to sea level group. These results suggest that, after exposure to acute hypobaric hypoxia, the decrement in exercise capacity may not be due to running out of glycogen, accumulation of lactate or disturbance in energy status in skeletal muscle. PMID:22513470

  8. Pyruvate dehydrogenase kinase 2 and 4 gene deficiency attenuates nociceptive behaviors in a mouse model of acute inflammatory pain.

    PubMed

    Jha, Mithilesh Kumar; Rahman, Md Habibur; Park, Dong Ho; Kook, Hyun; Lee, In-Kyu; Lee, Won-Ha; Suk, Kyoungho

    2016-09-01

    Pyruvate dehydrogenase (PDH) kinases (PDKs) 1-4, expressed in peripheral and central tissues, regulate the activity of the PDH complex (PDC). The PDC is an important mitochondrial gatekeeping enzyme that controls cellular metabolism. The role of PDKs in diverse neurological disorders, including neurometabolic aberrations and neurodegeneration, has been described. Implications for a role of PDKs in inflammation and neurometabolic coupling led us to investigate the effect of genetic ablation of PDK2/4 on nociception in a mouse model of acute inflammatory pain. Deficiency in Pdk2 and/or Pdk4 in mice led to attenuation of formalin-induced nociceptive behaviors (flinching, licking, biting, or lifting of the injected paw). Likewise, the pharmacological inhibition of PDKs substantially diminished the nociceptive responses in the second phase of the formalin test. Furthermore, formalin-provoked paw edema formation and mechanical and thermal hypersensitivities were significantly reduced in Pdk2/4-deficient mice. Formalin-driven neutrophil recruitment at the site of inflammation, spinal glial activation, and neuronal sensitization were substantially lessened in the second or late phase of the formalin test in Pdk2/4-deficient animals. Overall, our results suggest that PDK2/4 can be a potential target for the development of pharmacotherapy for the treatment of acute inflammatory pain. © 2016 Wiley Periodicals, Inc. PMID:26931482

  9. Novel Roles for Protein Kinase Cδ-dependent Signaling Pathways in Acute Hypoxic Stress-induced Autophagy*S⃞

    PubMed Central

    Chen, Jo-Lin; Lin, Her H.; Kim, Kwang-Jin; Lin, Anning; Forman, Henry J.; Ann, David K.

    2008-01-01

    Macroautophagy, a tightly orchestrated intracellular process for bulk degradation of cytoplasmic proteins or organelles, is believed to be essential for cell survival or death in response to stress conditions. Recent observations indicate that autophagy is an adaptive response in cells subjected to prolonged hypoxia. However, the signaling mechanisms that activate autophagy under acute hypoxic stress are not clearly understood. In this study, we show that acute hypoxic stress by treatment with 1% O2 or desferroxamine, a hypoxia-mimetic agent, of cells renders a rapid induction of LC3-II level changes and green fluorescent protein-LC3 puncta accumulation, hallmarks of autophagic processing, and that this process involves protein kinase Cδ (PKCδ), and occurs prior to the induction of BNIP3 (Bcl-2/adenovirus E1B 19-kDa interacting protein 3). Interestingly, hypoxic stress leads to a rapid and transient activation of JNK in Pa-4 or mouse embryo fibroblast cells. Acute hypoxic stress-induced changes in LC3-II level and JNK activation are attenuated in Pa-4 cells by dominant negative PKCδKD or in mouse embryo fibroblast/PKCδ-null cells. Intriguingly, the requirement of PKCδ is not apparent for starvation-induced autophagy. The importance of PKCδ in hypoxic stress-induced adaptive responses is further supported by our findings that inhibition of PKCδ-facilitated autophagy by 3-methyladenine or Atg5 knock-out renders a greater prevalence of cell death following prolonged desferroxamine treatment, whereas PKCδ- or JNK1-deficient cells exhibit resistance to extended hypoxic exposure. These results uncover dual roles of PKCδ-dependent signaling in the cell fate determination upon hypoxic exposure. PMID:18836180

  10. A novel role for RhoA GTPase in the regulation of airway smooth muscle contraction.

    PubMed

    Zhang, Wenwu; Huang, Youliang; Wu, Yidi; Gunst, Susan J

    2015-02-01

    Recent studies have demonstrated a novel molecular mechanism for the regulation of airway smooth muscle (ASM) contraction by RhoA GTPase. In ASM tissues, both myosin light chain (MLC) phosphorylation and actin polymerization are required for active tension generation. RhoA inactivation dramatically suppresses agonist-induced tension development and completely inhibits agonist-induced actin polymerization, but only slightly reduces MLC phosphorylation. The inhibition of MLC phosphatase does not reverse the effects of RhoA inactivation on contraction or actin polymerization. Thus, RhoA regulates ASM contraction through its effects on actin polymerization rather than MLC phosphorylation. Contractile stimulation of ASM induces the recruitment and assembly of paxillin, vinculin, and focal adhesion kinase (FAK) into membrane adhesion complexes (adhesomes) that regulate actin polymerization by catalyzing the activation of cdc42 GTPase by the G-protein-coupled receptor kinase-interacting target (GIT) - p21-activated kinase (PAK) - PAK-interacting exchange factor (PIX) complex. Cdc42 is a necessary and specific activator of the actin filament nucleation activator, N-WASp. The recruitment and activation of paxillin, vinculin, and FAK is prevented by RhoA inactivation, thus preventing cdc42 and N-WASp activation. We conclude that RhoA regulates ASM contraction by catalyzing the assembly and activation of membrane adhesome signaling modules that regulate actin polymerization, and that the RhoA-mediated assembly of adhesome complexes is a fundamental step in the signal transduction process in response to a contractile agonist. PMID:25531582

  11. LIM kinase 1 promotes endothelial barrier disruption and neutrophil infiltration in mouse lungs

    PubMed Central

    Gorovoy, Matvey; Han, Jingyan; Pan, Haiyun; Welch, Emily; Neamu, Radu; Jia, Zhengping; Predescu, Dan; Vogel, Stephen; Minshall, Richard; Ye, Richard D.; Malik, Asrar B.; Voyno-Yasenetskaya, Tatyana

    2013-01-01

    Rationale Disruption of endothelial barrier function and neutrophil-mediated injury are two major mechanisms underlying the pathophysiology of sepsis-induced acute lung injury (ALI). Recently we reported that endotoxin induced activation of RhoA in mice lungs that led to the disruption of endothelial barrier and lung edema formation; however the molecular mechanism of this phenomenon remained unknown. Objective We reasoned that LIMK1, which participates in the regulation of endothelial cell contractility and is activated by RhoA/Rho kinase pathway, could mediate RhoA-dependent disruption of endothelial barrier function in mouse lungs during ALI. And if that is the case, then attenuation of endothelial cell contractility by down-regulating LIMK1 may lead to the enhancement of endothelial barrier function, which could protect mice from endotoxin-induced ALI. Methods and Results Here we report that LIMK1 deficiency in mice significantly reduced mortality induced by endotoxin. Data showed that lung edema formation, lung microvascular permeability, and neutrophil infiltration into the lungs were suppressed in limk1−/− mice. Conclusions We identified that improvement of endothelial barrier function along with impaired neutrophil chemotaxis were the underlying mechanisms that reduced severity of ALI in limk1−/− mice, pointing to a new therapeutic target for diseases associated with acute inflammation of the lungs. PMID:19679840

  12. Evaluation of checkpoint kinase targeting therapy in acute myeloid leukemia with complex karyotype.

    PubMed

    Didier, Christine; Demur, Cécile; Grimal, Fanny; Jullien, Denis; Manenti, Stéphane; Ducommun, Bernard

    2012-03-01

    There has been considerable interest in targeting cell cycle checkpoints particularly in emerging and alternative anticancer strategies. Here, we show that checkpoint abrogation by AZD7762, a potent and selective CHK1/2 kinase inhibitor enhances genotoxic treatment efficacy in immature KG1a leukemic cell line and in AML patient samples, particularly those with a complex karyotype, which display major genomic instability and chemoresistance. Furthermore, these data suggest that constitutive DNA-damage level might be useful markers to select AML patients susceptible to receive checkpoint inhibitor in combination with conventional chemotherapy. Moreover, this study demonstrates for the first time that AZD7762 inhibitor targets the CD34(+)CD38(-)CD123(+) primitive leukemic progenitors, which are responsible for the majority of AML patients relapse. Finally, CHK1 inhibition does not seem to affect clonogenic potential of normal hematopoietic progenitors. PMID:22258035

  13. Cycling Rho for tissue contraction.

    PubMed

    Teo, Jessica L; Yap, Alpha S

    2016-08-29

    Cell contractility, driven by the RhoA GTPase, is a fundamental determinant of tissue morphogenesis. In this issue, Mason et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201603077) reveal that cyclic inactivation of RhoA, mediated by its antagonist, C-GAP, is essential for effective contractility to occur. PMID:27551059

  14. RhoB controls endothelial barrier recovery by inhibiting Rac1 trafficking to the cell border.

    PubMed

    Marcos-Ramiro, Beatriz; García-Weber, Diego; Barroso, Susana; Feito, Jorge; Ortega, María C; Cernuda-Morollón, Eva; Reglero-Real, Natalia; Fernández-Martín, Laura; Durán, Maria C; Alonso, Miguel A; Correas, Isabel; Cox, Susan; Ridley, Anne J; Millán, Jaime

    2016-05-01

    Endothelial barrier dysfunction underlies chronic inflammatory diseases. In searching for new proteins essential to the human endothelial inflammatory response, we have found that the endosomal GTPase RhoB is up-regulated in response to inflammatory cytokines and expressed in the endothelium of some chronically inflamed tissues. We show that although RhoB and the related RhoA and RhoC play additive and redundant roles in various aspects of endothelial barrier function, RhoB specifically inhibits barrier restoration after acute cell contraction by preventing plasma membrane extension. During barrier restoration, RhoB trafficking is induced between vesicles containing RhoB nanoclusters and plasma membrane protrusions. The Rho GTPase Rac1 controls membrane spreading and stabilizes endothelial barriers. We show that RhoB colocalizes with Rac1 in endosomes and inhibits Rac1 activity and trafficking to the cell border during barrier recovery. Inhibition of endosomal trafficking impairs barrier reformation, whereas induction of Rac1 translocation to the plasma membrane accelerates it. Therefore, RhoB-specific regulation of Rac1 trafficking controls endothelial barrier integrity during inflammation. PMID:27138256

  15. Cucurbitacin I elicits the formation of actin/phospho-myosin II co-aggregates by stimulation of the RhoA/ROCK pathway and inhibition of LIM-kinase.

    PubMed

    Sari-Hassoun, Meryem; Clement, Marie-Jeanne; Hamdi, Imane; Bollot, Guillaume; Bauvais, Cyril; Joshi, Vandana; Toma, Flavio; Burgo, Andrea; Cailleret, Michel; Rosales-Hernández, Martha Cecilia; Macias Pérez, Martha Edith; Chabane-Sari, Daoudi; Curmi, Patrick A

    2016-02-15

    Cucurbitacins are cytotoxic triterpenoid sterols isolated from plants. One of their earliest cellular effect is the aggregation of actin associated with blockage of cell migration and division that eventually lead to apoptosis. We unravel here that cucurbitacin I actually induces the co-aggregation of actin with phospho-myosin II. This co-aggregation most probably results from the stimulation of the Rho/ROCK pathway and the direct inhibition of the LIMKinase. We further provide data that suggest that the formation of these co-aggregates is independent of a putative pro-oxidant status of cucurbitacin I. The results help to understand the impact of cucurbitacins on signal transduction and actin dynamics and open novel perspectives to use it as drug candidates for cancer research. PMID:26707799

  16. Critical role of c-jun N-terminal protein kinase in promoting mitochondrial dysfunction and acute liver injury

    PubMed Central

    Jang, Sehwan; Yu, Li-Rong; Abdelmegeed, Mohamed A.; Gao, Yuan; Banerjee, Atrayee; Song, Byoung-Joon

    2015-01-01

    The mechanism by which c-Jun N-terminal protein kinase (JNK) promotes tissue injury is poorly understood. Thus we aimed at studying the roles of JNK and its phospho-target proteins in mouse models of acute liver injury. Young male mice were exposed to a single dose of CCl4 (50 mg/kg, IP) and euthanized at different time points. Liver histology, blood alanine aminotransferase, and other enzyme activities were measured in CCl4-exposed mice without or with the highly-specific JNK inhibitors. Phosphoproteins were purified from control or CCl4-exposed mice and analyzed by differential mass-spectrometry followed by further characterizations of immunoprecipitation and activity measurements. JNK was activated within 1 h while liver damage was maximal at 24 h post-CCl4 injection. Markedly increased phosphorylation of many mitochondrial proteins was observed between 1 and 8 h following CCl4 exposure. Pretreatment with the selective JNK inhibitor SU3327 or the mitochondria-targeted antioxidant mito-TEMPO markedly reduced the levels of p-JNK, mitochondrial phosphoproteins and liver damage in CCl4-exposed mice. Differential proteomic analysis identified many phosphorylated mitochondrial proteins involved in anti-oxidant defense, electron transfer, energy supply, fatty acid oxidation, etc. Aldehyde dehydrogenase, NADH-ubiquinone oxidoreductase, and α-ketoglutarate dehydrogenase were phosphorylated in CCl4-exposed mice but dephosphorylated after SU3327 pretreatment. Consistently, the suppressed activities of these enzymes were restored by SU3327 pretreatment in CCl4-exposed mice. These data provide a novel mechanism by which JNK, rapidly activated by CCl4, promotes mitochondrial dysfunction and acute hepatotoxicity through robust phosphorylation of numerous mitochondrial proteins. PMID:26491845

  17. Hydrosulfide attenuates acute myocardial ischemic injury through the glycogen synthase kinase-3β/β-catenin signaling pathway

    PubMed Central

    GE, NING; LIU, CHAO; LI, GUOFENG; XIE, LIJUN; ZHANG, QINZENG; LI, LIPING; HAO, NA; ZHANG, JIANXIN

    2016-01-01

    The endogenous signaling gasotransmitter, hydrosulfide (H2S), has been shown to exert cardioprotective effects against acute myocardial infarction (AMI) due to ischemic injury. However, the mechanisms responsible for these effects are not yet fully understood. In this study, we investigated whether sodium hydrogen sulfide (NaHS), an H2S donor, attenuates acute myocardial ischemic injury through glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling. For this purpose, we utilized an in vivo rat model of AMI by occluding the left anterior descending coronary artery. NaHS (0.39, 0.78 or 1.56 mg/kg, intraperitoneally), the GSK-3β inhibitor, SB216763 (0.6 mg/kg, intravenously), or 1% dimethylsulfoxide (2 ml/kg, intravenously) were administered to the rats. The results demonstrated that the administration of medium- and high-dose NaHS and SB216763 significantly improved rat cardiac function, as evidenced by an increase in the mean arterial pressure, left ventricular developed pressure, contraction and relaxation rates, as well as a decrease in left ventricular end-diastolic pressure. In addition, the administration of NaHS and SB216763 attenuated myocardial injury as reflected by a decrease in apoptotic cell death and in the serum lactate dehydrogenase concentrations, and prevented myocardial structural changes. The administration of NaHS and SB216763 increased the concentrations of phosphorylated (p-)GSK-3β, the p-GSK-3β/t-GSK-3β ratio and downstream protein β-catenin. Moreover, western blot and immunohistochemical analyses of apoptotic signaling pathway proteins further established the cardioprotective potential of NaHS, as reflected by the upregulation of Bcl-2 expression, the downregulation of Bax expression, and a decrease in the number of TUNEL-positive stained cells. These findings suggest that hydrosulfide exerts cardioprotective effects against AMI-induced apoptosis through the GSK-3β/β-catenin signaling pathway. PMID:27035393

  18. The hypotensive effect of acute and chronic AMP-activated protein kinase activation in normal and hyperlipidemic mice

    PubMed Central

    Greig, Fiona H.; Ewart, Marie-Ann; McNaughton, Eilidh; Cooney, Josephine; Spickett, Corinne M.; Kennedy, Simon

    2015-01-01

    AMP-activated protein kinase (AMPK) is present in the arterial wall and is activated in response to cellular stressors that raise AMP relative to ADP/ATP. Activation of AMPK in vivo lowers blood pressure but the influence of hyperlipidemia on this response has not been studied. ApoE−/− mice on high fat diet for 6 weeks and age-matched controls were treated with the AMPK activator, AICAR daily for two weeks. Under anesthesia, the carotid artery was cannulated for blood pressure measurements. Aortic tissue was removed for in vitro functional experiments and AMPK activity was measured in artery homogenates by Western blotting. ApoE−/− mice had significantly raised mean arterial pressure; chronic AICAR treatment normalized this but had no effect in normolipidemic mice, whereas acute administration of AICAR lowered mean arterial pressure in both groups. Chronic AICAR treatment increased phosphorylation of AMPK and its downstream target acetyl-CoA carboxylase in normolipidemic but not ApoE−/− mice. In aortic rings, AMPK activation induced vasodilation and an anticontractile effect, which was attenuated in ApoE−/− mice. This study demonstrates that hyperlipidemia dysregulates the AMPK pathway in the arterial wall but this effect can be reversed by AMPK activation, possibly through improving vessel compliance. PMID:26196300

  19. mTOR kinase inhibitors synergize with histone deacetylase inhibitors to kill B-cell acute lymphoblastic leukemia cells.

    PubMed

    Beagle, Brandon R; Nguyen, Duc M; Mallya, Sharmila; Tang, Sarah S; Lu, Mengrou; Zeng, Zhihong; Konopleva, Marina; Vo, Thanh-Trang; Fruman, David A

    2015-02-10

    High activity of the mechanistic target of rapamycin (mTOR) is associated with poor prognosis in pre-B-cell acute lymphoblastic leukemia (B-ALL), suggesting that inhibiting mTOR might be clinically useful. However, emerging data indicate that mTOR inhibitors are most effective when combined with other target agents. One strategy is to combine with histone deacetylase (HDAC) inhibitors, since B-ALL is often characterized by epigenetic changes that silence the expression of pro-apoptotic factors. Here we tested combinations of mTOR and pan-HDAC inhibitors on B-ALL cells, including both Philadelphia chromosome-positive (Ph+) and non-Ph cell lines. We found that mTOR kinase inhibitors (TOR-KIs) synergize with HDAC inhibitors to cause apoptosis in B-ALL cells and the effect is greater when compared to rapamycin plus HDAC inhibitors. The combination of TOR-KIs with the clinically approved HDAC inhibitor vorinostat increased apoptosis in primary pediatric B-ALL cells in vitro. Mechanistically, TOR-KI and HDAC inhibitor combinations increased expression of pro-death genes, including targets of the Forkhead Box O (FOXO) transcription factors, and increased sensitivity to apoptotic triggers at the mitochondria. These findings suggest that targeting epigenetic factors can unmask the cytotoxic potential of TOR-KIs towards B-ALL cells. PMID:25576920

  20. Arf1 and Arf6 Promote Ventral Actin Structures formed by acute Activation of Protein Kinase C and Src

    PubMed Central

    Caviston, Juliane P.; Cohen, Lee Ann; Donaldson, Julie G.

    2016-01-01

    Arf proteins regulate membrane traffic and organelle structure. Although Arf6 is known to initiate actin-based changes in cell surface architecture, Arf1 may also function at the plasma membrane. Here we show that acute activation of protein kinase C (PKC) induced by the phorbol ester PMA led to the formation of motile actin structures on the ventral surface of Beas-2b cells, a lung bronchial epithelial cell line. Ventral actin structures also formed in PMA-treated HeLa cells that had elevated levels of Arf activation. For both cell types, formation of the ventral actin structures was enhanced by expression of active forms of either Arf1 or Arf6, and by the expression of guanine nucleotide exchange factors that activate these Arfs. By contrast, formation of these structures was blocked by inhibitors of PKC and Src, and required phosphatidylinositol 4, 5-bisphosphate, Rac, Arf6 and Arf1. Furthermore, expression of ASAP1, an Arf1 GTPase activating protein (GAP) was more effective at inhibiting the ventral actin structures than was ACAP1, an Arf6 GAP. This study adds to the expanding role for Arf1 in the periphery and identifies a requirement for Arf1, a “Golgi Arf”, in the reorganization of the cortical actin cytoskeleton on ventral surfaces, against the substratum. PMID:24916416

  1. FLT3 kinase inhibitor TTT-3002 overcomes both activating and drug resistance mutations in FLT3 in acute myeloid leukemia

    PubMed Central

    Ma, Hayley S.; Nguyen, Bao; Duffield, Amy S.; Li, Li; Galanis, Allison; Williams, Allen B.; Brown, Patrick A.; Levis, Mark J.; Leahy, Daniel J.; Small, Donald

    2014-01-01

    There have been a number of clinical trials testing the efficacy of FLT3 tyrosine kinase inhibitors (TKIs) in acute myeloid leukemia (AML). patients harboring a constitutively activating mutation in FLT3 However, there has been limited efficacy, most often due to inadequate achievement of FLT3 inhibition through a variety of mechanisms In a previous study, TTT-3002 was identified as a novel FLT3 inhibitor with the most potent activity to date against FLT3 internal tandem duplication (FLT3/ITD) mutations Here the activity of TTT-3002 is demonstrated against a broad spectrum of FLT3 activating point mutations (FLT3/PMs), including the most frequently occurring D835 mutations The compound is also active against a number of point mutations selected for in FLT3/ITD alleles that confer resistance to other TKIs, including the F691L gatekeeper mutation TTT-3002 maintains activity against relapsed AML patient samples that are resistant to sorafenib and AC220 Studies utilizing human plasma samples from healthy donors and AML patients indicate that TTT-3002 is only moderately protein bound compared to several other TKIs currently in clinical trials Tumor burden of mice in a FLT3 TKI-resistant transplant model is significantly improved by oral dosing of TTT-3002 Therefore, TTT-3002 has demonstrated preclinical potential as a promising new FLT3 TKI that may overcome some of the limitations of other TKIs in the treatment of FLT3-mutant AML PMID:25060518

  2. Acute regulation by insulin of phosphatidylinositol-3-kinase, Rad, Glut 4, and lipoprotein lipase mRNA levels in human muscle.

    PubMed

    Laville, M; Auboeuf, D; Khalfallah, Y; Vega, N; Riou, J P; Vidal, H

    1996-07-01

    We have investigated the acute regulation by insulin of the mRNA levels of nine genes involved in insulin action, in muscle biopsies obtained before and at the end of a 3-h euglycemic hyperinsulinemic clamp. Using reverse transcription-competitive PCR, we have measured the mRNAs encoding the two insulin receptor variants, the insulin receptor substrate-1, the p85alpha subunit of phosphatidylinositol-3-kinase, Ras associated to diabetes (Rad), the glucose transporter Glut 4, glycogen synthase, 6-phosphofructo-l-kinase, lipoprotein lipase, and the hormone-sensitive lipase. Insulin infusion induced a significant increase in the mRNA level of Glut 4 (+56 +/- 13%), Rad (+96 +/- 25%), the p85alpha subunit of phosphatidylinositol-3-kinase (+92 +/- 18%) and a decrease in the lipoprotein lipase mRNA level (-49 +/- 5%), while the abundance of the other mRNAs was unaffected. The relative expression of the two insulin receptor variants was not modified. These results demonstrate an acute coordinated regulation by insulin of the expression of genes coding key proteins involved in its action in human skeletal muscle and suggest that Rad and the p85alpha regulatory subunit of phosphatidylinositol-3-kinase can be added to the list of the genes controlled by insulin. PMID:8690802

  3. Acute Severe Animal Model of Muscle-Specific Kinase Myasthenia: Combined Postsynaptic and Presynaptic Changes

    PubMed Central

    Richman, David P.; Nishi, Kayoko; Morell, Stuart W.; Chang, Jolene Mi; Ferns, Michael J.; Wollmann, Robert L.; Maselli, Ricardo A.; Schnier, Joachim; Agius, Mark A.

    2014-01-01

    Objective To determine the pathogenesis of anti-muscle-specific kinase (MuSK) myasthenia, a newly described severe form of myasthenia gravis associated with MuSK antibodies, characterized by focal muscle weakness and wasting, and absence of acetylcholine receptor antibodies; also to determine whether antibodies to MuSK, a crucial protein in the formation of the neuromuscular junction (NMJ) during development, can induce disease in the mature NMJ. Design/Methods Lewis rats were immunized with a single injection of a newly discovered splicing variant of MuSK, MuSK 60, which has been demonstrated to be expressed primarily in the mature NMJ. Animals were assessed clinically, serologically and by repetitive stimulation of median nerve. Muscle tissue was examined immunohistochemically and by electron microscopy. Results Animals immunized with 100ug of MuSK 60 develop severe progressive weakness, starting at day 16, with 100% mortality by day 27. The weakness is associated with high MuSK antibody titers, weight loss, axial muscle wasting and decrementing compound muscle action potentials. Light and electron microscopy demonstrate fragmented NMJs with varying degrees of postsynaptic muscle endplate destruction along with abnormal nerve terminals, lack of registration between endplates and nerve terminals, local axon sprouting and extrajunctional dispersion of cholinesterase activity. Conclusions These findings: 1) support the role of MuSK antibodies in the human disease; 2) demonstrate the role of MuSK, not only in the development of the NMJ, but also in the maintenance of the mature synapse; and 3) demonstrate involvement in this disease of both pre- and post-synaptic components of the NMJ. PMID:22158720

  4. Hypermethylation of the spleen tyrosine kinase promoter in T-lineage acute lymphoblastic leukemia.

    PubMed

    Goodman, Patricia A; Burkhardt, Nicole; Juran, Brian; Tibbles, Heather E; Uckun, Faith M

    2003-04-24

    Sequence analysis of the noncoding first exon (exon 1) of the Syk gene demonstrated the presence of a previously cloned CpG island (GenBank #Z 65706). Transient transfection analysis in Daudi cells demonstrated promoter activity (18-fold increase over parental luciferase plasmid) for a 348 bp BstXI-BsrBI fragment containing this island. This region exhibits a high GC content (approximately 75%), contains several SP1 binding sites and a potential initiator sequence, but lacks a strong TATA consensus. Bisulfite sequencing and methylation-specific PCR (MSP) of this region demonstrated that the Syk promoter CpG island was largely unmethylated in B-lineage leukemia cell lines, control peripheral blood cells, human thymocytes and CD3(+) T lymphocytes. However, dense methylation was seen in four T-lineage leukemia cell lines, Jurkat, H9, Molt 3 and HUT 78. MSP screening of leukemia cells from six T-lineage acute lymphoblastic leukemia (ALL) patients demonstrated methylation of the Syk promoter CpG island in one T-lineage ALL patient. Promoter methylation was correlated with reduced to absent expression of Syk mRNA and SYK protein in the T-lineage leukemia cell lines. Treatment of the leukemia lines Ha and Molt 3, with the methylation inhibitor, 5-aza-2'-deoxycytidine (5-aza-CdR) resulted in increased Syk mRNA expression. The presence of a methylated promoter sequence in these T-lineage leukemia cell lines and in one T-lineage patient suggests a potential role for SYK as a tumor suppressor in T-ALL. PMID:12717427

  5. Simvastatin Attenuates Neuropathic Pain by Inhibiting the RhoA/LIMK/Cofilin Pathway.

    PubMed

    Qiu, Y; Chen, W Y; Wang, Z Y; Liu, F; Wei, M; Ma, C; Huang, Y G

    2016-09-01

    Neuropathic pain occurs due to deleterious changes in the nervous system caused by a lesion or dysfunction. Currently, neuropathic pain management is unsatisfactory and remains a challenge in clinical practice. Studies have suggested that actin cytoskeleton remodeling may be associated with neural plasticity and may involve a nociceptive mechanism. Here, we found that the RhoA/LIM kinase (LIMK)/cofilin pathway, which regulates actin dynamics, was activated after chronic constriction injury (CCI) of the sciatic nerve. Treatments that reduced RhoA/LIMK/cofilin pathway activity, including simvastatin, the Rho kinase inhibitor Y-27632, and the synthetic peptide Tat-S3, attenuated actin filament disruption in the dorsal root ganglion and CCI-induced neuropathic pain. Over-activation of the cytoskeleton caused by RhoA/LIMK/cofilin pathway activation may produce a scaffold for the trafficking of nociceptive signaling factors, leading to chronic neuropathic pain. Here, we found that simvastatin significantly decreased the ratio of membrane/cytosolic RhoA, which was significantly increased after CCI, by inhibiting the RhoA/LIMK/cofilin pathway. This effect was highly dependent on the function of the cytoskeleton as a scaffold for signal trafficking. We conclude that simvastatin attenuated neuropathic pain in rats subjected to CCI by inhibiting actin-mediated intracellular trafficking to suppress RhoA/LIMK/cofilin pathway activity. PMID:27216618

  6. The Rho-guanine nucleotide exchange factor PDZ-RhoGEF governs susceptibility to diet-induced obesity and type 2 diabetes

    PubMed Central

    Chang, Ying-Ju; Pownall, Scott; Jensen, Thomas E; Mouaaz, Samar; Foltz, Warren; Zhou, Lily; Liadis, Nicole; Woo, Minna; Hao, Zhenyue; Dutt, Previn; Bilan, Philip J; Klip, Amira; Mak, Tak; Stambolic, Vuk

    2015-01-01

    Adipose tissue is crucial for the maintenance of energy and metabolic homeostasis and its deregulation can lead to obesity and type II diabetes (T2D). Using gene disruption in the mouse, we discovered a function for a RhoA-specific guanine nucleotide exchange factor PDZ-RhoGEF (Arhgef11) in white adipose tissue biology. While PDZ-RhoGEF was dispensable for a number of RhoA signaling-mediated processes in mouse embryonic fibroblasts, including stress fiber formation and cell migration, it's deletion led to a reduction in their proliferative potential. On a whole organism level, PDZ-RhoGEF deletion resulted in an acute increase in energy expenditure, selectively impaired early adipose tissue development and decreased adiposity in adults. PDZ-RhoGEF-deficient mice were protected from diet-induced obesity and T2D. Mechanistically, PDZ-RhoGEF enhanced insulin/IGF-1 signaling in adipose tissue by controlling ROCK-dependent phosphorylation of the insulin receptor substrate-1 (IRS-1). Our results demonstrate that PDZ-RhoGEF acts as a key determinant of mammalian metabolism and obesity-associated pathologies. DOI: http://dx.doi.org/10.7554/eLife.06011.001 PMID:26512886

  7. The Rho-guanine nucleotide exchange factor PDZ-RhoGEF governs susceptibility to diet-induced obesity and type 2 diabetes.

    PubMed

    Chang, Ying-Ju; Pownall, Scott; Jensen, Thomas E; Mouaaz, Samar; Foltz, Warren; Zhou, Lily; Liadis, Nicole; Woo, Minna; Hao, Zhenyue; Dutt, Previn; Bilan, Philip J; Klip, Amira; Mak, Tak; Stambolic, Vuk

    2015-01-01

    Adipose tissue is crucial for the maintenance of energy and metabolic homeostasis and its deregulation can lead to obesity and type II diabetes (T2D). Using gene disruption in the mouse, we discovered a function for a RhoA-specific guanine nucleotide exchange factor PDZ-RhoGEF (Arhgef11) in white adipose tissue biology. While PDZ-RhoGEF was dispensable for a number of RhoA signaling-mediated processes in mouse embryonic fibroblasts, including stress fiber formation and cell migration, it's deletion led to a reduction in their proliferative potential. On a whole organism level, PDZ-RhoGEF deletion resulted in an acute increase in energy expenditure, selectively impaired early adipose tissue development and decreased adiposity in adults. PDZ-RhoGEF-deficient mice were protected from diet-induced obesity and T2D. Mechanistically, PDZ-RhoGEF enhanced insulin/IGF-1 signaling in adipose tissue by controlling ROCK-dependent phosphorylation of the insulin receptor substrate-1 (IRS-1). Our results demonstrate that PDZ-RhoGEF acts as a key determinant of mammalian metabolism and obesity-associated pathologies. PMID:26512886

  8. Activator-inhibitor coupling between Rho signaling and actin assembly make the cell cortex an excitable medium

    PubMed Central

    Bement, William M.; Leda, Marcin; Moe, Alison M.; Kita, Angela M.; Larson, Matthew E.; Golding, Adriana E.; Pfeuti, Courtney; Su, Kuan-Chung; Miller, Ann L.; Goryachev, Andrew B.; von Dassow, George

    2016-01-01

    Animal cell cytokinesis results from patterned activation of the small GTPase Rho, which directs assembly of actomyosin in the equatorial cortex. Cytokinesis is restricted to a portion of the cell cycle following anaphase onset in which the cortex is responsive to signals from the spindle. We show that shortly after anaphase onset oocytes and embryonic cells of frogs and echinoderms exhibit cortical waves of Rho activity and F-actin polymerization. The waves are modulated by cyclin-dependent kinase 1 (Cdk1) activity and require the Rho GEF (guanine nucleotide exchange factor), Ect2. Surprisingly, during wave propagation, while Rho activity elicits F-actin assembly, F-actin subsequently inactivates Rho. Experimental and modeling results show that waves represent excitable dynamics of a reaction diffusion system with Rho as the activator and F-actin the inhibitor. We propose that cortical excitability explains fundamental features of cytokinesis including its cell cycle regulation. PMID:26479320

  9. Activator-inhibitor coupling between Rho signalling and actin assembly makes the cell cortex an excitable medium.

    PubMed

    Bement, William M; Leda, Marcin; Moe, Alison M; Kita, Angela M; Larson, Matthew E; Golding, Adriana E; Pfeuti, Courtney; Su, Kuan-Chung; Miller, Ann L; Goryachev, Andrew B; von Dassow, George

    2015-11-01

    Animal cell cytokinesis results from patterned activation of the small GTPase Rho, which directs assembly of actomyosin in the equatorial cortex. Cytokinesis is restricted to a portion of the cell cycle following anaphase onset in which the cortex is responsive to signals from the spindle. We show that shortly after anaphase onset oocytes and embryonic cells of frogs and echinoderms exhibit cortical waves of Rho activity and F-actin polymerization. The waves are modulated by cyclin-dependent kinase 1 (Cdk1) activity and require the Rho GEF (guanine nucleotide exchange factor), Ect2. Surprisingly, during wave propagation, although Rho activity elicits F-actin assembly, F-actin subsequently inactivates Rho. Experimental and modelling results show that waves represent excitable dynamics of a reaction-diffusion system with Rho as the activator and F-actin the inhibitor. We propose that cortical excitability explains fundamental features of cytokinesis including its cell cycle regulation. PMID:26479320

  10. RhoA/ROCK-dependent pathway is required for TLR2-mediated IL-23 production in human synovial macrophages: suppression by cilostazol.

    PubMed

    Park, So Youn; Lee, Sung Won; Lee, Won Suk; Rhim, Byung Yong; Lee, Seung Jin; Kwon, Sang Mo; Hong, Ki Whan; Kim, Chi Dae

    2013-11-01

    IL-23 is produced by antigen presenting cells and plays critical roles in immune response in rheumatoid arthritis. In this study, we investigated whether the RhoA/Rho-kinase pathway is required to elevate TLR2-mediated IL-23 production in synovial macrophages from patients with rheumatoid arthritis (RA), and then examined the suppressive effect of cilostazol on these pathways. IL-23 production was elevated by lipoteichoic acid (LTA), a TLR2 ligand, and this elevation was more prominent in RA macrophages than in those from peripheral blood of normal control. LTA increased the activation of RhoA in association with increased the nuclear translocation of NF-κB and its DNA-binding activity. Pretreatment of RA macrophages with the pharmacological inhibitors exoenzyme C3 (RhoA), Y27632 (Rho-kinase) or BAY11-7082 (NF-κB) inhibited IL-23 production by LTA. Inhibition of the RhoA/Rho-kinase pathway by these drugs attenuated NF-κB activation. Cilostazol suppressed the TLR2-mediated activation of RhoA, decreased NF-κB activity with down-regulated IL-23 production, and these effects were reversed by Rp-cAMPS, as an inhibitor of cAMP-dependent protein kinase. The expression of IL-23, which colocalized with CD68⁺ cells in knee joint of CIA mice, was significantly attenuated by cilostazol along with the decreased severity of arthritis. Taken together, the RhoA/Rho-kinase pathway signals TLR2-stimulated IL-23 production in synovial fluid macrophages via activation of NF-κB. Thus it is summarized that cilostazol suppresses TLR2-mediated IL-23 production by suppressing RhoA pathway via cAMP-dependent protein kinase activation. PMID:23973526

  11. Response of AMP-activated protein kinase and energy metabolism to acute nitrite exposure in the Nile tilapia Oreochromis niloticus.

    PubMed

    Xu, Zhixin; Li, Erchao; Xu, Chang; Gan, Lei; Qin, Jian G; Chen, Liqiao

    2016-08-01

    Adenosine monophosphate-activated protein kinase (AMPK) is a prevalent mammalian energy metabolism sensor, but little is known about its role as an energy sensor in fish experiencing stress. We aimed to study AMPK in Oreochromis niloticus on both the molecular and the physical level. We found that the cDNAs encoding the AMPKα1 and AMPKα2 variants of the O. niloticus catalytic α subunit were 1753bp and 2563 bp long and encoded 571 and 557 amino acids, respectively. Both the AMPKα1 and the AMPKα2 isoform possess structural features similar to mammalian AMPKα, including a phosphorylation site at Thr172 in the N-terminus, and exhibit high homology with other fish and vertebrate AMPKα sequences (81.3%-98.1%). mRNA encoding the AMPKα isoforms was widely expressed in various tissues with distinctive patterns. AMPKα1 and AMPKα2 were primarily expressed in the intestines and brain, respectively. Under acute nitrite challenge, the mRNA encoding the AMPKα isoforms, as well as AMPK activity, changed over time. Its recovery period in freshwater, combined with the fact that it is highly conserved, suggests that fish AMPK, like its mammalian orthologues, acts as an energy metabolism sensor. Furthermore, subsequent decreases in AMPK mRNA levels and activity suggested that its action was transient but efficient. Physically, glucose, lactic acid and TGs in plasma, as well as energy materials in the hepatopancreas and muscle, were significantly altered over time, indicating changes in energy metabolism during the experimental period. These data have enabled us to characterize energy utilization in O. niloticus and further illustrate the role of fish AMPK as an energy sensor. This study provides new insight into energy metabolism and sensing by AMPK in teleost and necessitates further study of the multiple physiologic roles of AMPK in fish. PMID:27262938

  12. Phase I trial of volasertib, a Polo-like kinase inhibitor, in Japanese patients with acute myeloid leukemia.

    PubMed

    Kobayashi, Yukio; Yamauchi, Takahiro; Kiyoi, Hitoshi; Sakura, Toru; Hata, Tomoko; Ando, Kiyoshi; Watabe, Aiko; Harada, Akiko; Taube, Tillmann; Miyazaki, Yasushi; Naoe, Tomoki

    2015-11-01

    This phase I trial conducted in Japanese patients with acute myeloid leukemia evaluated the safety, maximum tolerated dose and pharmacokinetics of volasertib (BI 6727), a selective Polo-like kinase inhibitor. The primary endpoints were the maximum tolerated dose of volasertib and the incidence of dose-limiting toxicities. Secondary endpoints were best response and remission duration. Other endpoints included safety and pharmacokinetics. Patients who were ineligible for standard induction therapy or with relapsed or refractory disease received volasertib monotherapy as a 2-h infusion on days 1 and 15 of a 28-day cycle, with dose escalation following a 3 + 3 design. A total of 19 patients were treated with three volasertib doses: 350, 400 and 450 mg. One patient receiving volasertib 450 mg reported a dose-limiting toxicity of grade 4 abnormal liver function test and 450 mg was determined as the maximum tolerated dose. The most frequently reported adverse events were febrile neutropenia (78.9%), decreased appetite (42.1%), nausea and rash (36.8% each), and sepsis, fatigue, hypokalemia, stomatitis and epistaxis (26.3% each). Best responses were complete remission (n = 3), complete remission with incomplete blood count recovery (n = 3) and partial remission (n = 1). The median remission duration of the six patients with complete remission or complete remission with incomplete blood count recovery was 85 days (range 56-358). Volasertib exhibited multi-compartmental pharmacokinetic behavior with a fast distribution after the end of infusion followed by slower elimination phases. Volasertib monotherapy was clinically manageable with acceptable adverse events and anti-leukemic activity. PMID:26471242

  13. Protein tyrosine kinase regulates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking induced by acute hypoxia in cultured brainstem neurons.

    PubMed

    Wang, H; Yu, L C; Li, Y C

    2016-01-01

    This study was performed to investigate the modulation effect of protein tyrosine kinase on postsynaptic a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking induced by acute hypoxia in cultured brainstem neurons. The cultured neurons were exposed to 1% O2 and the expression of AMPA receptor subunit GluR2 on the cell surface was significantly increased, while total GluR2 was not markedly changed. Furthermore, the hypoxia-induced increase in GluR2 expression on the cell surface was partially blocked by the protein tyrosine kinase membrane-permeable inhibitor genistein. In contrast, both the protein tyrosine kinase agonist nerve growth factor and protein tyrosine phosphatase inhibitor vanadate promoted the hypoxia-induced increase of GluR2 expression on cell surface. Moreover, GluR2 could be phosphorylated by tyrosine under normoxia and hypoxia conditions in vitro on brainstem neurons, and tyrosine phosphorylation of GluR2 was significantly stronger under hypoxia conditions. Our results indicate that acute hypoxia induces the AMPA receptor subunit GluR2 to rapidly migrate to the cell membrane to modify the strength of the synapse. This study indicates that tyrosine phosphorylation of the receptor is an important pathway regulating the rapid migration of GluR2 in the postsynaptic domain induced by hypoxia. PMID:27525851

  14. Localization of RHO-4 Indicates Differential Regulation of Conidial versus Vegetative Septation in the Filamentous Fungus Neurospora crassa▿ †

    PubMed Central

    Rasmussen, Carolyn G.; Glass, N. Louise

    2007-01-01

    rho-4 mutants of the filamentous fungus Neurospora crassa lack septa and asexual spores (conidia) and grow slowly. In this report, localization of green fluorescent protein-tagged RHO-4 is used to elucidate the differences in factors controlling RHO-4 localization during vegetative growth versus asexual development. RHO-4 forms a ring at incipient vegetative septation sites that constricts with the formation of the septum toward the septal pore; RHO-4 persists around the septal pore after septum completion. During the formation of conidia, RHO-4 localizes to the primary septum but subsequently is relocalized to the cytoplasm after the placement of the secondary septum. Cytoplasmic localization and inactivation of RHO-4 are mediated by a direct physical interaction with RDI-1, a RHO guanosine nucleotide dissociation inhibitor. Inappropriate activation of the cyclic AMP-dependent protein kinase A pathway during vegetative growth causes mislocalization of RHO-4 away from septa to the cytoplasm, a process which was dependent upon RDI-1. An adenylate cyclase cr-1 mutant partially suppresses the aconidial defect of rho-4 mutants but only rarely suppresses the vegetative septation defect, indicating that conidial septation is negatively regulated by CR-1. These data highlight the differences in the regulation of septation during conidiation versus vegetative septation in filamentous fungi. PMID:17496127

  15. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor

    SciTech Connect

    Yogi, Alvaro; Callera, Glaucia E.; Mecawi, André S.; Batalhão, Marcelo E.; Carnio, Evelin C.; Antunes-Rodrigues, José; Queiroz, Regina H.; Touyz, Rhian M.; Tirapelli, Carlos R.

    2012-11-01

    Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin–angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective AT{sub 1} receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P)H oxidase‐mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT{sub 1}-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. -- Highlights: ► Acute ethanol intake stimulates RAS activity and vascular oxidative stress. ► RAS plays a role in acute ethanol-induced oxidative damage via AT{sub 1} receptor activation.

  16. Assessment of the effect of sphingosine kinase inhibitors on apoptosis,unfolded protein response and autophagy of T-cell acute lymphoblastic leukemia cells; indications for novel therapeutics.

    PubMed

    Evangelisti, Cecilia; Evangelisti, Camilla; Teti, Gabriella; Chiarini, Francesca; Falconi, Mirella; Melchionda, Fraia; Pession, Andrea; Bertaina, Alice; Locatelli, Franco; McCubrey, James A; Beak, Dong Jae; Bittman, Robert; Pyne, Susan; Pyne, Nigel J; Martelli, Alberto M

    2014-09-15

    Sphingosine 1-phosphate (S1P) is a bioactive lipid that is formed by the phosphorylation of sphingosine and catalysed by sphingosine kinase 1 (SK1) or sphingosine kinase 2 (SK2). Sphingosine kinases play a fundamental role in many signaling pathways associated with cancer, suggesting that proteins belonging to this signaling network represent potential therapeutic targets. Over the last years, many improvements have been made in the treatment of T-cell acute lymphoblastic leukemia (T-ALL); however, novel and less toxic therapies are still needed, especially for relapsing and chemo-resistant patients. Here, we analyzed the therapeutic potential of SKi and ROMe, a sphingosine kinase 1 and 2 inhibitor and SK2-selective inhibitor, respectively. While SKi induced apoptosis, ROMe initiated an autophagic cell death in our in vitro cell models. SKi treatment induced an increase in SK1 protein levels in Molt-4 cells, whereas it activated the endoplasmic reticulum (ER) stress/unfolded protein response (UPR) pathway in Jurkat and CEM-R cells as protective mechanisms in a sub-population of T-ALL cells. Interestingly, we observed a synergistic effect of SKi with the classical chemotherapeutic drug vincristine. In addition, we reported that SKi affected signaling cascades implicated in survival, proliferation and stress response of cells. These findings indicate that SK1 or SK2 represent potential targets for treating T-ALL. PMID:25226616

  17. T-LAK cell-originated protein kinase presents a novel therapeutic target in FLT3-ITD mutated acute myeloid leukemia

    PubMed Central

    Alachkar, Houda; Mutonga, Martin; Malnassy, Gregory; Park, Jae-Hyun; Fulton, Noreen; Woods, Alex; Meng, Liping; Kline, Justin; Raca, Gordana; Odenike, Olatoyosi; Takamatsu, Naofumi; Miyamoto, Takashi; Matsuo, Yo; Stock, Wendy; Nakamura, Yusuke

    2015-01-01

    Gain-of-function mutations of FLT3 (FLT3-ITD), comprises up to 30% of normal karyotype acute myeloid leukemia (AML) and is associated with an adverse prognosis. Current FLT3 kinase inhibitors have been tested extensively, but have not yet resulted in a survival benefit and novel therapies are awaited. Here we show that T-LAK cell-originated protein kinase (TOPK), a mitotic kinase highly expressed in and correlated with more aggressive phenotype in several types of cancer, is expressed in AML but not in normal CD34+ cells and that TOPK knockdown decreased cell viability and induced apoptosis. Treatment of AML cells with TOPK inhibitor (OTS514) resulted in a dose-dependent decrease in cell viability with lower IC50 in FLT3-mutated cells, including blasts obtained from patients relapsed after FLT3-inhibitor treatment. Using a MV4-11-engrafted mouse model, we found that mice treated with 7.5 mg/kg IV daily for 3 weeks survived significantly longer than vehicle treated mice (median survival 46 vs 29 days, P < 0.001). Importantly, we identified TOPK as a FLT3-ITD and CEBPA regulated kinase, and that modulating TOPK expression or activity resulted in significant decrease of FLT3 expression and CEBPA phosphorylation. Thus, targeting TOPK in FLT3-ITD AML represents a novel therapeutic approach for this adverse risk subset of AML. PMID:26450903

  18. AMPylation of Rho GTPases Subverts Multiple Host Signaling Processes*

    PubMed Central

    Woolery, Andrew R.; Yu, Xiaobo; LaBaer, Joshua; Orth, Kim

    2014-01-01

    Rho GTPases are frequent targets of virulence factors as they are keystone signaling molecules. Herein, we demonstrate that AMPylation of Rho GTPases by VopS is a multifaceted virulence mechanism that counters several host immunity strategies. Activation of NFκB, Erk, and JNK kinase signaling pathways were inhibited in a VopS-dependent manner during infection with Vibrio parahaemolyticus. Phosphorylation and degradation of IKBα were inhibited in the presence of VopS as was nuclear translocation of the NFκB subunit p65. AMPylation also prevented the generation of superoxide by the phagocytic NADPH oxidase complex, potentially by inhibiting the interaction of Rac and p67. Furthermore, the interaction of GTPases with the E3 ubiquitin ligases cIAP1 and XIAP was hindered, leading to decreased degradation of Rac and RhoA during infection. Finally, we screened for novel Rac1 interactions using a nucleic acid programmable protein array and discovered that Rac1 binds to the protein C1QA, a protein known to promote immune signaling in the cytosol. Interestingly, this interaction was disrupted by AMPylation. We conclude that AMPylation of Rho Family GTPases by VopS results in diverse inhibitory consequences during infection beyond the most obvious phenotype, the collapse of the actin cytoskeleton. PMID:25301945

  19. Odontogenic Ameloblast-associated Protein (ODAM) Mediates Junctional Epithelium Attachment to Teeth via Integrin-ODAM-Rho Guanine Nucleotide Exchange Factor 5 (ARHGEF5)-RhoA Signaling.

    PubMed

    Lee, Hye-Kyung; Ji, Suk; Park, Su-Jin; Choung, Han-Wool; Choi, Youngnim; Lee, Hyo-Jung; Park, Shin-Young; Park, Joo-Cheol

    2015-06-01

    Adhesion of the junctional epithelium (JE) to the tooth surface is crucial for maintaining periodontal health. Although odontogenic ameloblast-associated protein (ODAM) is expressed in the JE, its molecular functions remain unknown. We investigated ODAM function during JE development and regeneration and its functional significance in the initiation and progression of periodontitis and peri-implantitis. ODAM was expressed in the normal JE of healthy teeth but absent in the pathologic pocket epithelium of diseased periodontium. In periodontitis and peri-implantitis, ODAM was extruded from the JE following onset with JE attachment loss and detected in gingival crevicular fluid. ODAM induced RhoA activity and the expression of downstream factors, including ROCK (Rho-associated kinase), by interacting with Rho guanine nucleotide exchange factor 5 (ARHGEF5). ODAM-mediated RhoA signaling resulted in actin filament rearrangement. Reduced ODAM and RhoA expression in integrin β3- and β6-knockout mice revealed that cytoskeleton reorganization in the JE occurred via integrin-ODAM-ARHGEF5-RhoA signaling. Fibronectin and laminin activated RhoA signaling via the integrin-ODAM pathway. Finally, ODAM was re-expressed with RhoA in regenerating JE after gingivectomy in vivo. These results suggest that ODAM expression in the JE reflects a healthy periodontium and that JE adhesion to the tooth surface is regulated via fibronectin/laminin-integrin-ODAM-ARHGEF5-RhoA signaling. We also propose that ODAM could be used as a biomarker of periodontitis and peri-implantitis. PMID:25911094

  20. Odontogenic Ameloblast-associated Protein (ODAM) Mediates Junctional Epithelium Attachment to Teeth via Integrin-ODAM-Rho Guanine Nucleotide Exchange Factor 5 (ARHGEF5)-RhoA Signaling*

    PubMed Central

    Lee, Hye-Kyung; Ji, Suk; Park, Su-Jin; Choung, Han-Wool; Choi, Youngnim; Lee, Hyo-Jung; Park, Shin-Young; Park, Joo-Cheol

    2015-01-01

    Adhesion of the junctional epithelium (JE) to the tooth surface is crucial for maintaining periodontal health. Although odontogenic ameloblast-associated protein (ODAM) is expressed in the JE, its molecular functions remain unknown. We investigated ODAM function during JE development and regeneration and its functional significance in the initiation and progression of periodontitis and peri-implantitis. ODAM was expressed in the normal JE of healthy teeth but absent in the pathologic pocket epithelium of diseased periodontium. In periodontitis and peri-implantitis, ODAM was extruded from the JE following onset with JE attachment loss and detected in gingival crevicular fluid. ODAM induced RhoA activity and the expression of downstream factors, including ROCK (Rho-associated kinase), by interacting with Rho guanine nucleotide exchange factor 5 (ARHGEF5). ODAM-mediated RhoA signaling resulted in actin filament rearrangement. Reduced ODAM and RhoA expression in integrin β3- and β6-knockout mice revealed that cytoskeleton reorganization in the JE occurred via integrin-ODAM-ARHGEF5-RhoA signaling. Fibronectin and laminin activated RhoA signaling via the integrin-ODAM pathway. Finally, ODAM was re-expressed with RhoA in regenerating JE after gingivectomy in vivo. These results suggest that ODAM expression in the JE reflects a healthy periodontium and that JE adhesion to the tooth surface is regulated via fibronectin/laminin-integrin-ODAM-ARHGEF5-RhoA signaling. We also propose that ODAM could be used as a biomarker of periodontitis and peri-implantitis. PMID:25911094

  1. Kinase-interacting substrate screening is a novel method to identify kinase substrates

    PubMed Central

    Amano, Mutsuki; Hamaguchi, Tomonari; Shohag, Md. Hasanuzzaman; Kozawa, Kei; Kato, Katsuhiro; Zhang, Xinjian; Yura, Yoshimitsu; Matsuura, Yoshiharu; Kataoka, Chikako; Nishioka, Tomoki

    2015-01-01

    Protein kinases play pivotal roles in numerous cellular functions; however, the specific substrates of each protein kinase have not been fully elucidated. We have developed a novel method called kinase-interacting substrate screening (KISS). Using this method, 356 phosphorylation sites of 140 proteins were identified as candidate substrates for Rho-associated kinase (Rho-kinase/ROCK2), including known substrates. The KISS method was also applied to additional kinases, including PKA, MAPK1, CDK5, CaMK1, PAK7, PKN, LYN, and FYN, and a lot of candidate substrates and their phosphorylation sites were determined, most of which have not been reported previously. Among the candidate substrates for Rho-kinase, several functional clusters were identified, including the polarity-associated proteins, such as Scrib. We found that Scrib plays a crucial role in the regulation of subcellular contractility by assembling into a ternary complex with Rho-kinase and Shroom2 in a phosphorylation-dependent manner. We propose that the KISS method is a comprehensive and useful substrate screen for various kinases. PMID:26101221

  2. RhoA Regulates Peroxisome Association to Microtubules and the Actin Cytoskeleton

    PubMed Central

    Lay, Dorothee; Wiese, Sebastian; Meyer, Helmut E.; Warscheid, Bettina; Saffrich, Rainer; Peränen, Johan; Gorgas, Karin; Just, Wilhelm W.

    2010-01-01

    The current view of peroxisome inheritance provides for the formation of new peroxisomes by both budding from the endoplasmic reticulum and autonomous division. Here we investigate peroxisome-cytoskeleton interactions and show by proteomics, biochemical and immunofluorescence analyses that actin, non-muscle myosin IIA (NMM IIA), RhoA, Rho kinase II (ROCKII) and Rab8 associate with peroxisomes. Our data provide evidence that (i) RhoA in its inactive state, maintained for example by C. botulinum toxin exoenzyme C3, dissociates from peroxisomes enabling microtubule-based peroxisomal movements and (ii) dominant-active RhoA targets to peroxisomes, uncouples the organelles from microtubules and favors Rho kinase recruitment to peroxisomes. We suggest that ROCKII activates NMM IIA mediating local peroxisomal constrictions. Although our understanding of peroxisome-cytoskeleton interactions is still incomplete, a picture is emerging demonstrating alternate RhoA-dependent association of peroxisomes to the microtubular and actin cytoskeleton. Whereas association of peroxisomes to microtubules clearly serves bidirectional, long-range saltatory movements, peroxisome-acto-myosin interactions may support biogenetic functions balancing peroxisome size, shape, number, and clustering. PMID:21079737

  3. RhoA GTPase interacts with beta-catenin signaling in clinorotated osteoblasts

    PubMed Central

    Wan, Qiaoqiao; Cho, Eunhye; Yokota, Hiroki; Na, Sungsoo

    2014-01-01

    Bone is a dynamic tissue under constant remodeling in response to various signals including mechanical loading. A lack of proper mechanical loading induces disuse osteoporosis that reduces bone mass and structural integrity. β-catenin signaling together with a network of GTPases is known to play a primary role in load-driven bone formation, but little is known about potential interactions of β-catenin signaling and GTPases in bone loss. In this study, we addressed a question: Does unloading suppress an activation level of RhoA GTPase and β-catenin signaling in osteoblasts? If yes, what is the role of RhoA GTPase and actin filaments in osteoblasts in regulating β-catenin signaling? Using a fluorescence resonance energy transfer (FRET) technique with a biosensor for RhoA together with a fluorescent T-cell factor/lymphoid enhancer factor (TCF/LEF) reporter, we examined the effects of clinostat-driven simulated unloading. The results revealed that both RhoA activity and TCF/LEF activity were downregulated by unloading. Reduction in RhoA activity was correlated to a decrease in cytoskeletal organization of actin filaments. Inhibition of β-catenin signaling blocked unloading-induced RhoA suppression, and dominant negative RhoA inhibited TCF/LEF suppression. On the other hand, a constitutively active RhoA enhanced unloading-induced reduction of TCF/LEF activity. The TCF/LEF suppression by unloading was enhanced by co-culture with osteocytes, but it was independent on organization of actin filaments, myosin II activity, or a myosin light chain kinase. Collectively, the results suggest that β-catenin signaling is required for unloading-driven regulation of RhoA, and RhoA, but not actin cytoskeleton or intracellular tension, mediates the responsiveness of β-catenin signaling to unloading. PMID:23529802

  4. RhoA activation promotes transendothelial migration of monocytes via ROCK.

    PubMed

    Honing, Henk; van den Berg, Timo K; van der Pol, Susanne M A; Dijkstra, Christine D; van der Kammen, Rob A; Collard, John G; de Vries, Helga E

    2004-03-01

    Monocyte infiltration into inflamed tissue requires the initial arrest of the cells on the endothelium followed by firm adhesion and their subsequent migration. Migration of monocytes and other leukocytes is believed to involve a coordinated remodeling of the actin cytoskeleton. The small GTPases RhoA, Rac1, and Cdc42 are critical regulators of actin reorganization. In this study, we have investigated the role of Rho-like GTPases RhoA, Rac1, and Cdc42 in the adhesion and migration of monocytes across brain endothelial cells by expressing their constitutively active or dominant-negative constructs in NR8383 rat monocytic cells. Monocytes expressing the active form of Cdc42 show a reduced migration, whereas Rac1 expression did not affect adhesion or migration. In contrast, expression of the active form of RhoA in monocytes leads to a dramatic increase in their adhesion and migration across endothelial cells. The effect of RhoA was found to be mediated by its down-stream effector Rho kinase (ROCK), as pretreatment with the selective ROCK inhibitor Y-27632 prevented this enhanced adhesion and migration. These results demonstrate that RhoA activation in monocytes is sufficient to enhance adhesion and migration across monolayers of endothelial cells. PMID:14634067

  5. Acute Alcohol Intoxication-Induced Microvascular Leakage

    PubMed Central

    Doggett, Travis M.; Breslin, Jerome W.

    2014-01-01

    Background Alcohol intoxication can increase inflammation and worsen injury, yet the mechanisms involved are not clear. We investigated whether acute alcohol intoxication elevates microvascular permeability, and investigated potential signaling mechanisms in endothelial cells that may be involved. Methods Conscious rats received a 2.5 g/kg alcohol bolus via gastric catheters to produce acute intoxication. Microvascular leakage of intravenously administered FITC-albumin from the mesenteric microcirculation was assessed by intravital microscopy. Endothelial-specific mechanisms were studied using cultured endothelial cell monolayers. Transendothelial electrical resistance (TER) served as an index of barrier function, before and after treatment with alcohol or its metabolite acetaldehyde. Pharmacologic agents were used to test the roles of alcohol metabolism, oxidative stress, p38 mitogen-activated protein (MAP) kinase, myosin light chain kinase (MLCK), rho kinase (ROCK), and exchange protein activated by cAMP (Epac). VE-cadherin localization was investigated to assess junctional integrity. Rac1 and RhoA activation were assessed by ELISA assays. Results Alcohol significantly increased FITC-albumin extravasation from the mesenteric microcirculation. Alcohol also significantly decreased TER and disrupted VE-cadherin organization at junctions. Acetaldehyde significantly decreased TER, but inhibition of ADH or application of a superoxide dismutase mimetic failed to prevent alcohol-induced decreases in TER. Inhibition of p38 MAP kinase, but not MLCK or ROCK, significantly attenuated the alcohol-induced barrier dysfunction. Alcohol rapidly decreased GTP-bound Rac1 but not RhoA during the drop in TER. Activation of Epac increased TER, but did not prevent alcohol from decreasing TER. However, activation of Epac after initiation of alcohol-induced barrier dysfunction quickly resolved TER to baseline levels. Conclusions Our results suggest that alcohol intoxication increases

  6. Rational design of small molecule inhibitors targeting RhoA subfamily Rho GTPases

    PubMed Central

    Shang, Xun; Marchioni, Fillipo; Sipes, Nisha; Evelyn, Chris R.; Jerabek-Willemsen, Moran; Duhr, Stefan; Seibel, William; Wortman, Matthew; Zheng, Yi

    2012-01-01

    SUMMARY Rho GTPases have been implicated in diverse cellular functions and are potential therapeutic targets. By virtual screening, we have identified a Rho specific inhibitor, Rhosin. Rhosin contains two-aromatic rings tethered by a linker, and it binds to the surface area sandwiching Trp58 of RhoA with a submicromolar Kd and effectively inhibits GEF-catalyzed RhoA activation. In cells Rhosin specifically inhibited RhoA activity and RhoA-mediated cellular function without affecting Cdc42 or Rac1 signaling activities. By suppressing RhoA or RhoC activity Rhosin could inhibit mammary sphere formation by breast cancer cells, suppress invasion of mammary epithelial cells, and induce neurite outgrowth of PC12 cells in synergy with NGF. Thus, the rational designed RhoA subfamily specific small molecule inhibitor is useful for studying the physiological and pathologic roles of Rho GTPase. PMID:22726684

  7. Possible additional roles in mating for Ustilago maydis Rho1 and 14-3-3 homologues

    PubMed Central

    Pham, Cau D

    2010-01-01

    Both the Rho GTPases and 14-3-3 proteins each belong to ubiquitous families of proteins involved in a variety of cellular processes, including cytokinesis, cell polarity, cellular differentiation and apoptosis. In fungi, these components of signaling pathways are involved in cell cycle regulation, cytokinesis and virulence. We study cellular differentiation and pathogenesis for Ustilago maydis, the dimorphic fungal pathogen of maize. We have reported on the interactions of Pdc1, a U. maydis homologue of human 14-3-3ɛ, with Rho1, a small GTP binding protein; these proteins participate in cell polarity and filamentation pathways that include another small G protein, Rac1, and its effector PAK kinase, Cla4. Here we describe additional experiments that explore possible relationships of Pdc1 and Rho1 with another PAK-like kinase pathway and with the a matingtype locus. PMID:20539785

  8. 131I-MIBG targeting of neuroblastoma cells is acutely enhanced by KCl stimulation through the calcium/calmodulin-dependent kinase pathway.

    PubMed

    Chung, Hyun Woo; Park, Jin Won; Lee, Eun Jeong; Jung, Kyung-Ho; Paik, Jin-Young; Lee, Kyung-Han

    2013-01-01

    The efficacy of (131)I-metaiodobenzylguanidine (MIBG) therapy relies on norepinephrine transporter (NET) function. The ionic make-up of the extracellular fluid critically controls neuronal cell activity and can also affect substrate transport. In this study, we explored the effect of treatment with elevated KCl concentration on MIBG uptake in SK-N-SH neuroblastoma cells. KCl stimulation caused a rapid increase of (131)I-MIBG uptake in a manner that was calcium-dependent and accompanied by activation of calcium/calmodulin-dependent protein kinase (CaMK)II. The effect was completely abolished by KN93, an inhibitor of CaMKI, II, and IV. STO609, a selective inhibitor of CaMK kinase required for activation of CaMKI and IV, but not CaMKII, only modestly attenuated the response. The KCl effect was also completely abrogated by ML7, a selective inhibitor of myosin light chain kinase (MLCK). This restricted form of CaMK activates myosin, which is required for vesicle trafficking. Saturation kinetic analysis revealed KCl stimulation to increase maximal transport velocity without affecting substrate affinity. In conclusion, KCl stimulation rapidly upregulates NET function through the CaMK pathway via activation of CaMKII and MLCK. These findings allow a better understanding of how NET function is acutely modulated by the ionic environment, which in turn may ultimately help improve the efficacy of (131)I-MIBG therapy. PMID:23763646

  9. The novel tyrosine kinase inhibitor AKN-028 has significant antileukemic activity in cell lines and primary cultures of acute myeloid leukemia

    PubMed Central

    Eriksson, A; Hermanson, M; Wickström, M; Lindhagen, E; Ekholm, C; Jenmalm Jensen, A; Löthgren, A; Lehmann, F; Larsson, R; Parrow, V; Höglund, M

    2012-01-01

    Aberrantly expressed tyrosine kinases have emerged as promising targets for drug development in acute myeloid leukemia (AML). We report that AKN-028, a novel tyrosine kinase inhibitor (TKI), is a potent FMS-like receptor tyrosine kinase 3 (FLT3) inhibitor (IC50=6 nℳ), causing dose-dependent inhibition of FLT3 autophosphorylation. Inhibition of KIT autophosphorylation was shown in a human megakaryoblastic leukemia cell line overexpressing KIT. In a panel of 17 cell lines, AKN-028 showed cytotoxic activity in all five AML cell lines included. AKN-028 triggered apoptosis in MV4-11 by activation of caspase 3. In primary AML samples (n=15), AKN-028 induced a clear dose-dependent cytotoxic response (mean IC50 1 μℳ). However, no correlation between antileukemic activity and FLT3 mutation status, or to the quantitative expression of FLT3, was observed. Combination studies showed synergistic activity when cytarabine or daunorubicin was added simultaneously or 24 h before AKN-028. In mice, AKN-028 demonstrated high oral bioavailability and antileukemic effect in primary AML and MV4-11 cells, with no major toxicity observed in the experiment. In conclusion, AKN-028 is a novel TKI with significant preclinical antileukemic activity in AML. Possible sequence-dependent synergy with standard AML drugs and good oral bioavailability has made it a candidate drug for clinical trials (ongoing). PMID:22864397

  10. Ciliary neurotrophic factor prevents acute lipid-induced insulin resistance by attenuating ceramide accumulation and phosphorylation of c-Jun N-terminal kinase in peripheral tissues.

    PubMed

    Watt, Matthew J; Hevener, Andrea; Lancaster, Graeme I; Febbraio, Mark A

    2006-05-01

    Ciliary neurotrophic factor (CNTF) is a member of the gp130 receptor cytokine family recently identified as an antiobesity agent in rodents and humans by mechanisms that remain unclear. We investigated the impact of acute CNTF treatment on insulin action in the presence of lipid oversupply. To avoid confounding effects of long-term high-fat feeding or genetic manipulation on whole-body insulin sensitivity, we performed a 2-h Intralipid infusion (20% heparinized Intralipid) with or without recombinant CNTF pretreatment (Axokine 0.3 mg/kg), followed by a 2-h hyperinsulinemic-euglycemic clamp (12 mU/kg.min) in fasted, male Wistar rats. Acute Intralipid infusion increased plasma free fatty acid levels from 1.0 +/- 0.1 to 2.5 +/- 0.3 mM, which subsequently caused reductions in skeletal muscle (insulin-stimulated glucose disposal rate) and liver (hepatic glucose production) insulin sensitivity by 30 and 45%, respectively. CNTF pretreatment completely prevented the lipid-mediated reduction in insulin-stimulated glucose disposal rate and the blunted suppression of hepatic glucose production by insulin. Although lipid infusion increased triacylglycerol and ceramide accumulation and phosphorylation of mixed linage kinase 3 and c-Jun N-terminal kinase 1 in skeletal muscle, CNTF pretreatment prevented these lipid-induced effects. Alterations in hepatic and muscle insulin signal transduction as well as phosphorylation of c-Jun N-terminal kinase 1/2 paralleled alterations in insulin sensitivity. These data support the use of CNTF as a potential therapeutic means to combat lipid-induced insulin resistance. PMID:16396984

  11. A Novel Rho-Like Protein TbRHP Is Involved in Spindle Formation and Mitosis in Trypanosomes

    PubMed Central

    Abbasi, Kanwal; DuBois, Kelly N.; Dacks, Joel B.; Field, Mark C.

    2011-01-01

    Background In animals and fungi Rho subfamily small GTPases are involved in signal transduction, cytoskeletal function and cellular proliferation. These organisms typically possess multiple Rho paralogues and numerous downstream effectors, consistent with the highly complex contributions of Rho proteins to cellular physiology. By contrast, trypanosomatids have a much simpler Rho-signaling system, and the Trypanosoma brucei genome contains only a single divergent Rho-related gene, TbRHP (Tb927.10.6240). Further, only a single RhoGAP-like protein (Tb09.160.4180) is annotated, contrasting with the >70 Rho GAP proteins from Homo sapiens. We wished to establish the function(s) of TbRHP and if Tb09.160.4180 is a potential GAP for this protein. Methods/Findings TbRHP represents an evolutionarily restricted member of the Rho GTPase clade and is likely trypanosomatid restricted. TbRHP is expressed in both mammalian and insect dwelling stages of T. brucei and presents with a diffuse cytoplasmic location and is excluded from the nucleus. RNAi ablation of TbRHP results in major cell cycle defects and accumulation of multi-nucleated cells, coinciding with a loss of detectable mitotic spindles. Using yeast two hybrid analysis we find that TbRHP interacts with both Tb11.01.3180 (TbRACK), a homolog of Rho-kinase, and the sole trypanosome RhoGAP protein Tb09.160.4180, which is related to human OCRL. Conclusions Despite minimization of the Rho pathway, TbRHP retains an important role in spindle formation, and hence mitosis, in trypanosomes. TbRHP is a partner for TbRACK and an OCRL-related trypanosome Rho-GAP. PMID:22096505

  12. Deregulation of Rho GTPases in cancer

    PubMed Central

    Porter, Andrew P.; Papaioannou, Alexandra; Malliri, Angeliki

    2016-01-01

    ABSTRACT In vitro and in vivo studies and evidence from human tumors have long implicated Rho GTPase signaling in the formation and dissemination of a range of cancers. Recently next generation sequencing has identified direct mutations of Rho GTPases in human cancers. Moreover, the effects of ablating genes encoding Rho GTPases and their regulators in mouse models, or through pharmacological inhibition, strongly suggests that targeting Rho GTPase signaling could constitute an effective treatment. In this review we will explore the various ways in which Rho signaling can be deregulated in human cancers. PMID:27104658

  13. RhoE Inhibits 4E-BP1 Phosphorylation and eIF4E Function Impairing Cap-dependent Translation*

    PubMed Central

    Villalonga, Priam; de Mattos, Silvia Fernández; Ridley, Anne J.

    2009-01-01

    The Rho GTPase family member RhoE inhibits RhoA/ROCK signaling to promote actin stress fiber and focal adhesion disassembly. We have previously reported that RhoE also inhibits cell cycle progression and Ras-induced transformation, specifically preventing cyclin D1 translation. Here we investigate the molecular mechanisms underlying those observations. RhoE inhibits the phosphorylation of the translational repressor 4E-BP1 in response to extracellular stimuli. However, RhoE does not affect the activation of mTOR, the major kinase regulating 4E-BP1 phosphorylation, as indicated by the phosphorylation levels of the mTOR substrate S6K, the dynamics of mTOR/Raptor association, and the observation that RhoE, as opposed to rapamycin, does not impair cellular growth. Interestingly, RhoE prevents the release of the eukaryotic initiation factor eIF4E from 4E-BP1, inhibiting cap-dependent translation. Accordingly, RhoE also inhibits the expression and the transcriptional activity of the eIF4E target c-Myc. Consistent with its crucial role in cell proliferation, we show that eIF4E can rescue both cell cycle progression and Ras-induced transformation in RhoE-expressing cells, indicating that the inhibition of eIF4E function is critical to mediate the anti-proliferative effects of RhoE. PMID:19850923

  14. Rho GTPases and their effector proteins.

    PubMed Central

    Bishop, A L; Hall, A

    2000-01-01

    Rho GTPases are molecular switches that regulate many essential cellular processes, including actin dynamics, gene transcription, cell-cycle progression and cell adhesion. About 30 potential effector proteins have been identified that interact with members of the Rho family, but it is still unclear which of these are responsible for the diverse biological effects of Rho GTPases. This review will discuss how Rho GTPases physically interact with, and regulate the activity of, multiple effector proteins and how specific effector proteins contribute to cellular responses. To date most progress has been made in the cytoskeleton field, and several biochemical links have now been established between GTPases and the assembly of filamentous actin. The main focus of this review will be Rho, Rac and Cdc42, the three best characterized mammalian Rho GTPases, though the genetic analysis of Rho GTPases in lower eukaryotes is making increasingly important contributions to this field. PMID:10816416

  15. Arachidonic acid induction of Rho-mediated transendothelial migration in prostate cancer

    PubMed Central

    Brown, M; Roulson, J-A; Hart, C A; Tawadros, T; Clarke, N W

    2014-01-01

    Background: Bone metastases in prostate cancer (CaP) result in CaP-related morbidity/mortality. The omega-6 polyunsaturated fatty acid (PUFA) arachidonic acid (AA) and lipophilic statins affect metastasis-like behaviour in CaP cells, regulating the critical metastatic step of CaP migration to the bone marrow stroma. Methods: Microscopic analysis and measurement of adhesion and invasion of CaP cells through bone marrow endothelial cells (BMEC) was undertaken with AA stimulation and/or simvastatin (SIM) treatment. Amoeboid characteristics of PC-3, PC3-GFP and DU-145 were analysed by western blotting and Rho assays. Results: The CaP cell lines PC-3, PC3-GFP and DU-145 share the ability to migrate across a BMEC layer. Specific amoeboid inhibition decreased transendothelial migration (TEM). AA stimulates amoeboid characteristics, driven by Rho signalling. Selective knock-down of components of the Rho pathway (RhoA, RhoC, Rho-associated protein kinase 1 (ROCK1) and ROCK2) showed that Rho signalling is crucial to TEM. Functions of these components were analysed, regarding adhesion to BMEC, migration in 2D and the induction of the amoeboid phenotype by AA. TEM was reduced by SIM treatment of PC3-GFP and DU-145, which inhibited Rho pathway signalling. Conclusions: AA-induced TEM is mediated by the induction of a Rho-driven amoeboid phenotype. Inhibition of this cell migratory process may be an important therapeutic target in high-risk CaP. PMID:24595005

  16. The mechanisms and significance of up-regulation of RhoB expression by hypoxia and glucocorticoid in rat lung and A549 cells.

    PubMed

    Huang, Gao-Xiang; Pan, Xiao-Yu; Jin, Yi-Duo; Wang, Yan; Song, Xiao-Lian; Wang, Chang-Hui; Li, Yi-Dong; Lu, Jian

    2016-07-01

    Small guanosine triphosphate (GTP)-binding protein RhoB is an important stress sensor and contributes to the regulation of cytoskeletal organization, cell proliferation and survival. However, whether RhoB is involved in the hypoxic response and action of glucocorticoid (GC) is largely unknown. In this study, we investigated the effects of hypoxia or/and GC on the expression and activition of RhoB in the lung of rats and human A549 lung carcinoma cells, and further studied its mechanism and significance. We found that hypoxia and dexamethasone (Dex), a synethic GC, not only significantly increased the expression and activation of RhoB independently but also coregulated the expresion of RhoB in vitro and in vivo. Up-regulation of RhoB by hypoxia was in part through stabilizing the RhoB mRNA and protein. Inhibiting hypoxia-activated hypoxia-inducible transcription factor-1α (HIF-1α), c-Jun N-terminal kinase (JNK) or extracellular signal-regulated kinase (ERK) with their specific inhibitors significantly decreased hypoxia-induced RhoB expression, indicating that HIF-1α, JNK and ERK are involved in the up-regulation of RhoB in hypoxia. Furthermore, we found that knockdown of RhoB expression by RhoB siRNA not only significantly reduced hypoxia-enhanced cell migration and cell survival in hypoxia but also increased the sensitivity of cell to paclitaxel (PTX), a chemotherapeutic agent, and reduced Dex-enhanced resistance to PTX-chemotherapy in A549 cells. Taken together, the novel data revealed that hypoxia and Dex increased the expression and activation of RhoB, which is important for hypoxic adaptation and hypoxia-accelerated progression of lung cancer cells. RhoB also enhanced the resistance of cell to PTX-chemotherapy and mediated the pro-survival effect of Dex. PMID:26915688

  17. Direct interaction of insulin-like growth factor-1 receptor with leukemia-associated RhoGEF

    PubMed Central

    Taya, Shinichiro; Inagaki, Naoyuki; Sengiku, Hiroaki; Makino, Hiroshi; Iwamatsu, Akihiro; Urakawa, Itaru; Nagao, Kenji; Kataoka, Shiro; Kaibuchi, Kozo

    2001-01-01

    Insulin-like growth factor (IGF)-1 plays crucial roles in growth control and rearrangements of the cytoskeleton. IGF-1 binds to the IGF-1 receptor and thereby induces the autophosphorylation of this receptor at its tyrosine residues. The phosphorylation of the IGF-1 receptor is thought to initiate a cascade of events. Although various signaling molecules have been identified, they appear to interact with the tyrosine-phosphorylated IGF-1 receptor. Here, we identified leukemia-associated Rho guanine nucleotide exchange factor (GEF) (LARG), which contains the PSD-95/Dlg/ZO-1 (PDZ), regulator of G protein signaling (RGS), Dbl homology, and pleckstrin homology domains, as a nonphosphorylated IGF-1 receptor-interacting molecule. LARG formed a complex with the IGF-1 receptor in vivo, and the PDZ domain of LARG interacted directly with the COOH-terminal domain of IGF-1 receptor in vitro. LARG had an exchange activity for Rho in vitro and induced the formation of stress fibers in NIH 3T3 fibroblasts. When MDCKII epithelial cells were treated with IGF-1, Rho and its effector Rho-associated kinase (Rho-kinase) were activated and actin stress fibers were enhanced. Furthermore, the IGF-1–induced Rho-kinase activation and the enhancement of stress fibers were inhibited by ectopic expression of the PDZ and RGS domains of LARG. Taken together, these results indicate that IGF-1 activates the Rho/Rho-kinase pathway via a LARG/IGF-1 receptor complex and thereby regulates cytoskeletal rearrangements. PMID:11724822

  18. Cholecystokinin-Mediated RhoGDI Phosphorylation via PKCα Promotes both RhoA and Rac1 Signaling

    PubMed Central

    Sabbatini, Maria Eugenia; Williams, John A.

    2013-01-01

    RhoA and Rac1 have been implicated in the mechanism of CCK-induced amylase secretion from pancreatic acini. In all cell types studied to date, inactive Rho GTPases are present in the cytosol bound to the guanine nucleotide dissociation inhibitor RhoGDI. Here, we identified the switch mechanism regulating RhoGDI1-Rho GTPase dissociation and RhoA translocation upon CCK stimulation in pancreatic acini. We found that both Gα13 and PKC, independently, regulate CCK-induced RhoA translocation and that the PKC isoform involved is PKCα. Both RhoGDI1 and RhoGDI3, but not RhoGDI2, are expressed in pancreatic acini. Cytosolic RhoA and Rac1 are associated with RhoGDI1, and CCK-stimulated PKCα activation releases the complex. Overexpression of RhoGDI1, by binding RhoA, inhibits its activation, and thereby, CCK-induced apical amylase secretion. RhoA translocation is also inhibited by RhoGDI1. Inactive Rac1 influences CCK-induced RhoA activation by preventing RhoGDI1 from binding RhoA. By mutational analysis we found that CCK-induced PKCα phosphorylation on RhoGDI1 at Ser96 releases RhoA and Rac1 from RhoGDI1 to facilitate Rho GTPases signaling. PMID:23776598

  19. Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease

    PubMed Central

    Cook, Danielle R.; Rossman, Kent L.; Der, Channing J.

    2016-01-01

    The aberrant activity of Ras homologous (Rho) family small GTPases (20 human members) has been implicated in cancer and other human diseases. However, in contrast to the direct mutational activation of Ras found in cancer and developmental disorders, Rho GTPases are activated most commonly by indirect mechanisms in disease. One prevalent mechanism involves aberrant Rho activation via the deregulated expression and/or activity of Rho family guanine nucleotide exchange factors (RhoGEFs). RhoGEFs promote formation of the active GTP-bound state of Rho GTPases. The largest family of RhoGEFs is comprised of the Dbl family RhoGEFs with 70 human members. The multitude of RhoGEFs that activate a single Rho GTPase reflect the very specific role of each RhoGEF in controlling distinct signaling mechanisms involved in Rho activation. In this review, we summarize the role of Dbl RhoGEFs in development and disease, with a focus on Ect2, Tiam1, Vav and P-Rex1/2. PMID:24037532

  20. Multiple interactions of PRK1 with RhoA. Functional assignment of the Hr1 repeat motif.

    PubMed

    Flynn, P; Mellor, H; Palmer, R; Panayotou, G; Parker, P J

    1998-01-30

    PRK1 (PKN) is a serine/threonine kinase that has been shown to be activated by RhoA (Amano, M., Mukai, H., Ono, Y., Chihara, K., Matsui, T., Hamajima, Y., Okawa, K., Iwamatsu, A., and Kaibuchi, K. (1996) Science 271, 648-650). Detailed analysis of the PRK1 region involved in RhoA binding has revealed that two homologous sequences within the HR1 domain (HR1a and HR1b) both bind to RhoA; the third repeat within this domain, HR1cPRK1, does not bind RhoA. The related HR1 motif is also found to confer RhoA binding activity to the only other fully cloned member of this kinase family, PRK2. Furthermore, the predictive value of this motif is established for an HR1a sequence derived from a Caenorhabditis elegans open reading frame encoding a protein kinase of unknown function. Interestingly, the HR1aPRK1 and HR1bPRK1 subdomains are shown to display a distinctive nucleotide dependence for RhoA binding. HRIaPRK1 is entirely GTP-dependent, while HR1bPRK1 binds both GTP- and GDP-bound forms of RhoA. This distinction indicates that there are two sites of contact between RhoA and PRK1, one contact through a region that is conformationally dependent upon the nucleotide-bound state of RhoA and one that is not. Analysis of binding to Rho/Rac chimera provides evidence for a HR1aPRK1 but not HR1bPRK1 interaction in the central third of Rho. Additionally, it is observed that the V14RhoA mutant binds HR1a but does not bind HR1b. This distinct binding behavior corroborates the conclusion that there are independent contacts on RhoA for the HR1aPRK1 and HR1bPRK1 motifs. PMID:9446575

  1. Heparin inhibits Angiotensin II-induced vasoconstriction on isolated mouse mesenteric resistance arteries through Rho-A- and PKA-dependent pathways

    PubMed Central

    Xie-Zukauskas, Hui; Das, Jharna; Short, Billie Lou; Gutkind, J. Silvio; Ray, Patricio E.

    2013-01-01

    Heparin is commonly used to treat intravascular thrombosis in children undergoing extracorporeal membrane oxygenation or cardiopulmonary bypass. These clinical circumstances are associated with elevated plasma levels of angiotensin II (Ang II). However, the mechanisms by which heparin modulates vascular reactivity of Ang II remain unclear. We hypothesized that heparin may offset Ang II-induced vasoconstriction on mesenteric resistances arteries through modulating the Rho-A/Rho kinase pathway. Vascular contractility was studied using pressurized, resistance-sized mesenteric arteries from mice. Rho-A activation was measured by pull-down assay, and myosin light chain or PKA phosphorylation by immunoblotting. We found that heparin significantly attenuated vasoconstriction induced by Ang II but not that by KCl. The combined effect of Ang II with heparin was almost abolished by a specific Rho kinase inhibitor Y27632. Ang II stimulated Rho-A activation and myosin light chain phosphorylation, both responses were antagonized by heparin. Moreover, the inhibitory effect of heparin on Ang II-induced vasoconstriction was reversed by Rp-cAMPS (cAMP-dependent PKA inhibitor), blunted by ODQ (soluble guanylate cyclase inhibitor), and mimicked by a cell-permeable cGMP analogue, 8-Br-cGMP, but not by a cAMP analogue. PKC and Src kinase were not involved. We conclude that heparin inhibits Ang II-induced vasoconstriction through Rho-A/Rho kinase- and cGMP/PKA-dependent pathways. PMID:23268358

  2. The Src kinase Fyn is protective in acute chemical-induced colitis and promotes recovery from disease.

    PubMed

    Lopes, Fernando; Wang, Arthur; Smyth, David; Reyes, Jose-Luis; Doering, Axinia; Schenck, L Patrick; Beck, Paul; Waterhouse, Christopher; McKay, Derek M

    2015-06-01

    Despite progress in understanding enteric inflammation, current therapies, although effective in many patients with inflammatory bowel disease (IBD), have significant side-effects, and, in many patients, it is refractory to treatment. The Src kinase Fyn mediated IFN-γ-induced increased permeability in model epithelia, and so we hypothesized that inhibition of Fyn kinase would be anti-colitic. Mice [B6.129SF2/J wild-type (WT), Fyn KO, or chimeras] received 2.5% dextran sodium sulfate (DSS) or normal water for 10 d and were necropsied immediately or 3 d later. Gut permeability was assessed by FITC-dextran flux, colitis by macroscopic and histologic parameters, and immune cell status by cytokine production and CD4(+) T cell Foxp3 expression. Fyn KO mice consistently displayed significantly worse DSS-induced disease than WT, correlating with decreased IL-10 and increased IL-17 in splenocytes and the gut; Fyn KO mice failed to thrive after removal of the DSS water. Analysis of chimeric mice indicated that the increased sensitivity to DSS was due to the lack of Fyn kinase in hematopoietic, but not stromal, cells, in accordance with Fyn(+) T cell increases in WT mice exposed to DSS and Fyn KO mice having a reduced number of CD4(+)Foxp3(+) cells in baseline or colitic conditions and a reduced capacity to induce Foxp3 expression in vitro. Other experiments suggest that the colonic microbiota in Fyn KO mice is not preferentially colitogenic. Contrary to our expectation, the absence of Fyn kinase resulted in greater DSS-induced disease, and analysis of chimeric mice indicated that leukocyte Fyn kinase is beneficial in limiting colitis. PMID:25877924

  3. Targeting Rho-GTPases in immune cell migration and inflammation

    PubMed Central

    Biro, Maté; Munoz, Marcia A; Weninger, Wolfgang

    2014-01-01

    Leukocytes are unmatched migrators capable of traversing barriers and tissues of remarkably varied structural composition. An effective immune response relies on the ability of its constituent cells to infiltrate target sites. Yet, unwarranted mobilization of immune cells can lead to inflammatory diseases and tissue damage ranging in severity from mild to life-threatening. The efficacy and plasticity of leukocyte migration is driven by the precise spatiotemporal regulation of the actin cytoskeleton. The small GTPases of the Rho family (Rho-GTPases), and their immediate downstream effector kinases, are key regulators of cellular actomyosin dynamics and are therefore considered prime pharmacological targets for stemming leukocyte motility in inflammatory disorders. This review describes advances in the development of small-molecule inhibitors aimed at modulating the Rho-GTPase-centric regulatory pathways governing motility, many of which stem from studies of cancer invasiveness. These inhibitors promise the advent of novel treatment options with high selectivity and potency against immune-mediated pathologies. Linked Articles This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24 PMID:24571448

  4. Control of Polarized Growth by the Rho Family GTPase Rho4 in Budding Yeast: Requirement of the N-Terminal Extension of Rho4 and Regulation by the Rho GTPase-Activating Protein Bem2

    PubMed Central

    Gong, Ting; Liao, Yuan; He, Fei; Yang, Yang; Yang, Dan-Dan; Chen, Xiang-Dong

    2013-01-01

    In the budding yeast Saccharomyces cerevisiae, Rho4 GTPase partially plays a redundant role with Rho3 in the control of polarized growth, as deletion of RHO4 and RHO3 together, but not RHO4 alone, caused lethality and a loss of cell polarity at 30°C. Here, we show that overexpression of the constitutively active rho4Q131L mutant in an rdi1Δ strain caused a severe growth defect and generated large, round, unbudded cells, suggesting that an excess of Rho4 activity could block bud emergence. We also generated four temperature-sensitive rho4-Ts alleles in a rhorho4Δ strain. These mutants showed growth and morphological defects at 37°C. Interestingly, two rho4-Ts alleles contain mutations that cause amino acid substitutions in the N-terminal region of Rho4. Rho4 possesses a long N-terminal extension that is unique among the six Rho GTPases in the budding yeast but is common in Rho4 homologs in other yeasts and filamentous fungi. We show that the N-terminal extension plays an important role in Rho4 function since rhorho4Δ61 cells expressing truncated Rho4 lacking amino acids (aa) 1 to 61 exhibited morphological defects at 24°C and a growth defect at 37°C. Furthermore, we show that Rho4 interacts with Bem2, a Rho GTPase-activating protein (RhoGAP) for Cdc42 and Rho1, by yeast two-hybrid, bimolecular fluorescence complementation (BiFC), and glutathione S-transferase (GST) pulldown assays. Bem2 specifically interacts with the GTP-bound form of Rho4, and the interaction is mediated by its RhoGAP domain. Overexpression of BEM2 aggravates the defects of rhorho4 mutants. These results suggest that Bem2 might be a novel GAP for Rho4. PMID:23264647

  5. Viral vector-mediated downregulation of RhoA increases survival and axonal regeneration of retinal ganglion cells

    PubMed Central

    Koch, Jan Christoph; Tönges, Lars; Michel, Uwe; Bähr, Mathias; Lingor, Paul

    2014-01-01

    The Rho/ROCK pathway is a promising therapeutic target in neurodegenerative and neurotraumatic diseases. Pharmacological inhibition of various pathway members has been shown to promote neuronal regeneration and survival. However, because pharmacological inhibitors are inherently limited in their specificity, shRNA-mediated approaches can add more information on the function of each single kinase involved. Thus, we generated adeno-associated viral vectors (AAV) to specifically downregulate Ras homologous member A (RhoA) via shRNA. We found that specific knockdown of RhoA promoted neurite outgrowth of retinal ganglion cells (RGC) grown on the inhibitory substrate chondroitin sulfate proteoglycan (CSPG) as well as neurite regeneration of primary midbrain neurons (PMN) after scratch lesion. In the rat optic nerve crush (ONC) model in vivo, downregulation of RhoA significantly enhanced axonal regeneration compared to control. Moreover, survival of RGC transduced with AAV expressing RhoA-shRNA was substantially increased at 2 weeks after optic nerve axotomy. Compared to previous data using pharmacological inhibitors to target RhoA, its upstream regulator Nogo or its main downstream target ROCK, the specific effects of RhoA downregulation shown here were most pronounced in regard to promoting RGC survival but neurite outgrowth and axonal regeneration were also increased significantly. Taken together, we show here that specific knockdown of RhoA substantially increases neuronal survival after optic nerve axotomy and modestly increases neurite outgrowth in vitro and axonal regeneration after optic nerve crush. PMID:25249936

  6. A Point Mutation in p190A RhoGAP Affects Ciliogenesis and Leads to Glomerulocystic Kidney Defects

    PubMed Central

    Shafer, Maxwell E. R.; Aoudjit, Lamine; Hu, Di; Sharma, Richa; Tremblay, Mathieu; Ishii, Hidetaka; Marcotte, Michael; Stanga, Daniela; Tang, You Chi; Boualia, Sami Kamel; Nguyen, Alana H. T.; Takano, Tomoko; Lamarche-Vane, Nathalie; Vidal, Silvia; Bouchard, Maxime

    2016-01-01

    Rho family GTPases act as molecular switches regulating actin cytoskeleton dynamics. Attenuation of their signaling capacity is provided by GTPase-activating proteins (GAPs), including p190A, that promote the intrinsic GTPase activity of Rho proteins. In the current study we have performed a small-scale ENU mutagenesis screen and identified a novel loss of function allele of the p190A gene Arhgap35, which introduces a Leu1396 to Gln substitution in the GAP domain. This results in decreased GAP activity for the prototypical Rho-family members, RhoA and Rac1, likely due to disrupted ordering of the Rho binding surface. Consequently, Arhgap35-deficient animals exhibit hypoplastic and glomerulocystic kidneys. Investigation into the cystic phenotype shows that p190A is required for appropriate primary cilium formation in renal nephrons. P190A specifically localizes to the base of the cilia to permit axoneme elongation, which requires a functional GAP domain. Pharmacological manipulations further reveal that inhibition of either Rho kinase (ROCK) or F-actin polymerization is able to rescue the ciliogenesis defects observed upon loss of p190A activity. We propose a model in which p190A acts as a modulator of Rho GTPases in a localized area around the cilia to permit the dynamic actin rearrangement required for cilia elongation. Together, our results establish an unexpected link between Rho GTPase regulation, ciliogenesis and glomerulocystic kidney disease. PMID:26859289

  7. Rho1 GTPase and PKC Ortholog Pck1 Are Upstream Activators of the Cell Integrity MAPK Pathway in Fission Yeast

    PubMed Central

    Sánchez-Mir, Laura; Soto, Teresa; Franco, Alejandro; Madrid, Marisa; Viana, Raúl A.; Vicente, Jero; Gacto, Mariano; Pérez, Pilar; Cansado, José

    2014-01-01

    In the fission yeast Schizosaccharomyces pombe the cell integrity pathway (CIP) orchestrates multiple biological processes like cell wall maintenance and ionic homeostasis by fine tuning activation of MAPK Pmk1 in response to various environmental conditions. The small GTPase Rho2 positively regulates the CIP through protein kinase C ortholog Pck2. However, Pmk1 retains some function in mutants lacking either Rho2 or Pck2, suggesting the existence of additional upstream regulatory elements to modulate its activity depending on the nature of the environmental stimulus. The essential GTPase Rho1 is a candidate to control the activity of the CIP by acting upstream of Pck2, whereas Pck1, a second PKC ortholog, appears to negatively regulate Pmk1 activity. However, the exact regulatory nature of these two proteins within the CIP has remained elusive. By exhaustive characterization of strains expressing a hypomorphic Rho1 allele (rho1-596) in different genetic backgrounds we show that both Rho1 and Pck1 are positive upstream regulatory members of the CIP in addition to Rho2 and Pck2. In this new model Rho1 and Rho2 control Pmk1 basal activity during vegetative growth mainly through Pck2. Notably, whereas Rho2-Pck2 elicit Pmk1 activation in response to most environmental stimuli, Rho1 drives Pmk1 activation through either Pck2 or Pck1 exclusively in response to cell wall damage. Our study reveals the intricate and complex functional architecture of the upstream elements participating in this signaling pathway as compared to similar routes from other simple eukaryotic organisms. PMID:24498240

  8. Rho/MRTF-A-Induced Integrin Expression Regulates Angiogenesis in Differentiated Multipotent Mesenchymal Stem Cells

    PubMed Central

    Zhang, Rui; Wang, Nan; Zhang, Man; Zhang, Li-Nan; Guo, Zhi-Xia; Luo, Xue-Gang; Zhou, Hao; He, Hong-Peng; Zhang, Tong-Cun

    2015-01-01

    Mesenchymal stem cells (MSCs) are known to undergo endothelial differentiation in response to treatment with vascular endothelial growth factor (VEGF), but their angiogenic ability is poorly characterized. In the present study, we aimed to further investigate the role of Rho/MRTF-A in angiogenesis by MSCs and the effect of the Rho/MRTF-A pathway on the expression of integrins α1β1 and α5β1, which are known to mediate physiological and pathological angiogenesis. Our results showed that increased expression of α1, α5, and β1 was observed during angiogenesis of differentiated MSCs, and the Rho/MRTF-A signaling pathway was demonstrated to be involved in regulating the expression of integrins α1, α5, and β1. Luciferase reporter assay and ChIP assay determined that MRTF-A could bind to and transactivate the integrin α1 and α5 promoters. Treatment with the Rho inhibitor C3 transferase, the Rho-associated protein kinase (ROCK) inhibitor Y27632 or with shMRTF-A inhibited both the upregulation of α1, α5, and β1 as well as angiogenesis. Furthermore, in human umbilical vein endothelial cells (HUVECs), MRTF-A deletion led to marked reductions in cell migration and vessel network formation compared with the control. These data demonstrate that Rho/MRTF-A signaling is an important mediator that controls integrin gene expression during MSC-mediated angiogenic processes. PMID:25949242

  9. Elevated Intraocular Pressure Induces Rho GTPase Mediated Contractile Signaling in the Trabecular Meshwork

    PubMed Central

    Pattabiraman, Padmanabhan P; Inoue, Toshihiro; Rao, P. Vasantha

    2015-01-01

    Rho GTPase regulated contractile signaling in the trabecular meshwork (TM) has been shown to modulate aqueous humor (AH) outflow and intraocular pressure (IOP). To explore whether elevated IOP, a major risk factor for primary open angle glaucoma (POAG) influences Rho GTPase signaling in the TM, we recorded AH outflow in enucleated contralateral porcine eyes perfused for 4–5 hours at either 15 mm or 50 mm Hg pressure. After perfusion, TM tissue extracted from perfused eyes was evaluated for the activation status of Rho GTPase, myosin light chain (MLC), myosin phosphatase target substrate 1 (MYPT1), myristoylated alanine-rich C-kinase substrate (MARCKS) and paxillin. Eyes perfused at 50 mm Hg exhibited a significant decrease in AH outflow facility compared with those perfused at 15 mm Hg. Additionally, TM tissue from eyes perfused at 50 mm Hg revealed significantly increased levels of activated RhoA and phosphorylated MLC, MYPT1, MARCKS and paxillin compared to TM tissue derived from eyes perfused at 15 mm Hg. Taken together, these observations indicate that elevated IOP-induced activation of Rho GTPase-dependent contractile signaling in the TM is associated with increased resistance to AH outflow through the trabecular pathway, and demonstrate the sensitivity of Rho GTPase signaling to mechanical force in the AH outflow pathway. PMID:25956210

  10. Rho/ROCK signaling in motility and metastasis of gastric cancer

    PubMed Central

    Matsuoka, Tasuku; Yashiro, Masakazu

    2014-01-01

    Gastric cancer is one of the most frequent and lethal malignancies worldwide because of high frequency of metastasis. Tumor cell motility and invasion play fundamental roles in cancer metastasis. Recent studies have revealed that the Rho/Rho-associated protein kinases (ROCK) pathway plays a critical role in the regulation of cancer cell motility and invasion. In addition, the Rho/ROCK pathway plays important roles in invasion and metastasis on the basis of its predominant function of cell cytoskeletal regulation in gastric cancer. According to the current understanding of tumor motility, there are two modes of tumor cell movement: mesenchymal and amoeboid. In addition, cancer cell movement can be interchangeable between the mesenchymal and amoeboid movements under certain conditions. Control of cell motility through the actin cytoskeleton creates the potential for regulating tumor cell metastasis. In this review we discuss Rho GTPases and ROCK signaling and describe the mechanisms of Rho/ROCK activity with regard to motility and metastasis in gastric cancer. In addition, we provide an insight of the therapeutic potential of targeting the Rho/ROCK pathway. PMID:25320513

  11. WGEF activates Rho in the Wnt–PCP pathway and controls convergent extension in Xenopus gastrulation

    PubMed Central

    Tanegashima, Kosuke; Zhao, Hui; Dawid, Igor B

    2008-01-01

    The Wnt–PCP (planar cell polarity, PCP) pathway regulates cell polarity and convergent extension movements during axis formation in vertebrates by activation of Rho and Rac, leading to the re-organization of the actin cytoskeleton. Rho and Rac activation require guanine nucleotide-exchange factors (GEFs), but the identity of the GEF involved in Wnt–PCP-mediated convergent extension is unknown. Here we report the identification of the weak-similarity GEF (WGEF) gene by a microarray-based screen for notochord enriched genes, and show that WGEF is involved in Wnt-regulated convergent extension. Overexpression of WGEF activated RhoA and rescued the suppression of convergent extension by dominant-negative Wnt-11, whereas depletion of WGEF led to suppression of convergent extension that could be rescued by RhoA or Rho-associated kinase activation. WGEF protein preferentially localized at the plasma membrane, and Frizzled-7 induced colocalization of Dishevelled and WGEF. WGEF protein can bind to Dishevelled and Daam-1, and deletion of the Dishevelled-binding domain generates a hyperactive from of WGEF. These results indicate that WGEF is a component of the Wnt–PCP pathway that connects Dishevelled to Rho activation. PMID:18256687

  12. WGEF activates Rho in the Wnt-PCP pathway and controls convergent extension in Xenopus gastrulation.

    PubMed

    Tanegashima, Kosuke; Zhao, Hui; Dawid, Igor B

    2008-02-20

    The Wnt-PCP (planar cell polarity, PCP) pathway regulates cell polarity and convergent extension movements during axis formation in vertebrates by activation of Rho and Rac, leading to the re-organization of the actin cytoskeleton. Rho and Rac activation require guanine nucleotide-exchange factors (GEFs), but the identity of the GEF involved in Wnt-PCP-mediated convergent extension is unknown. Here we report the identification of the weak-similarity GEF (WGEF) gene by a microarray-based screen for notochord enriched genes, and show that WGEF is involved in Wnt-regulated convergent extension. Overexpression of WGEF activated RhoA and rescued the suppression of convergent extension by dominant-negative Wnt-11, whereas depletion of WGEF led to suppression of convergent extension that could be rescued by RhoA or Rho-associated kinase activation. WGEF protein preferentially localized at the plasma membrane, and Frizzled-7 induced colocalization of Dishevelled and WGEF. WGEF protein can bind to Dishevelled and Daam-1, and deletion of the Dishevelled-binding domain generates a hyperactive from of WGEF. These results indicate that WGEF is a component of the Wnt-PCP pathway that connects Dishevelled to Rho activation. PMID:18256687

  13. Plasma membrane restricted RhoGEF activity is sufficient for RhoA-mediated actin polymerization

    PubMed Central

    van Unen, Jakobus; Reinhard, Nathalie R.; Yin, Taofei; Wu, Yi I.; Postma, Marten; Gadella, Theodorus W.J.; Goedhart, Joachim

    2015-01-01

    The small GTPase RhoA is involved in cell morphology and migration. RhoA activity is tightly regulated in time and space and depends on guanine exchange factors (GEFs). However, the kinetics and subcellular localization of GEF activity towards RhoA are poorly defined. To study the mechanism underlying the spatiotemporal control of RhoA activity by GEFs, we performed single cell imaging with an improved FRET sensor reporting on the nucleotide loading state of RhoA. By employing the FRET sensor we show that a plasma membrane located RhoGEF, p63RhoGEF, can rapidly activate RhoA through endogenous GPCRs and that localized RhoA activity at the cell periphery correlates with actin polymerization. Moreover, synthetic recruitment of the catalytic domain derived from p63RhoGEF to the plasma membrane, but not to the Golgi apparatus, is sufficient to activate RhoA. The synthetic system enables local activation of endogenous RhoA and effectively induces actin polymerization and changes in cellular morphology. Together, our data demonstrate that GEF activity at the plasma membrane is sufficient for actin polymerization via local RhoA signaling. PMID:26435194

  14. Lipopolysaccharide-induced Lung Injury Involves the Nitration-mediated Activation of RhoA*

    PubMed Central

    Rafikov, Ruslan; Dimitropoulou, Christiana; Aggarwal, Saurabh; Kangath, Archana; Gross, Christine; Pardo, Daniel; Sharma, Shruti; Jezierska-Drutel, Agnieszka; Patel, Vijay; Snead, Connie; Lucas, Rudolf; Verin, Alexander; Fulton, David; Catravas, John D.; Black, Stephen M.

    2014-01-01

    Acute lung injury (ALI) is characterized by increased endothelial hyperpermeability. Protein nitration is involved in the endothelial barrier dysfunction in LPS-exposed mice. However, the nitrated proteins involved in this process have not been identified. The activation of the small GTPase RhoA is a critical event in the barrier disruption associated with LPS. Thus, in this study we evaluated the possible role of RhoA nitration in this process. Mass spectroscopy identified a single nitration site, located at Tyr34 in RhoA. Tyr34 is located within the switch I region adjacent to the nucleotide-binding site. Utilizing this structure, we developed a peptide designated NipR1 (nitration inhibitory peptide for RhoA 1) to shield Tyr34 against nitration. TAT-fused NipR1 attenuated RhoA nitration and barrier disruption in LPS-challenged human lung microvascular endothelial cells. Further, treatment of mice with NipR1 attenuated vessel leakage and inflammatory cell infiltration and preserved lung function in a mouse model of ALI. Molecular dynamics simulations suggested that the mechanism by which Tyr34 nitration stimulates RhoA activity was through a decrease in GDP binding to the protein caused by a conformational change within a region of Switch I, mimicking the conformational shift observed when RhoA is bound to a guanine nucleotide exchange factor. Stopped flow kinetic analysis was used to confirm this prediction. Thus, we have identified a new mechanism of nitration-mediated RhoA activation involved in LPS-mediated endothelial barrier dysfunction and show the potential utility of “shielding” peptides to prevent RhoA nitration in the management of ALI. PMID:24398689

  15. A Role for a CXCR2/Phosphatidylinositol 3-Kinase γ Signaling Axis in Acute and Chronic Vascular Permeability▿ †

    PubMed Central

    Gavard, Julie; Hou, Xu; Qu, Yi; Masedunskas, Andrius; Martin, Daniel; Weigert, Roberto; Li, Xuri; Gutkind, J. Silvio

    2009-01-01

    Most proangiogenic polypeptide growth factors and chemokines enhance vascular permeability, including vascular endothelial growth factor (VEGF), the main target for anti-angiogenic-based therapies, and interleukin-8 (IL-8), a potent proinflammatory mediator. Here, we show that in endothelial cells IL-8 initiates a signaling route that converges with that deployed by VEGF at the level of the small GTPase Rac1 and that both act through the p21-activated kinase to promote the phosphorylation and internalization of VE-cadherin. However, whereas VEGF activates Rac1 through Src-related kinases, IL-8 specifically signals to Rac1 through its cognate G protein-linked receptor, CXCR2, and the stimulation of the phosphatidylinositol 3-kinase γ (PI3Kγ) catalytic isoform, thereby providing a specific molecular targeted intervention in vascular permeability. These results prompted us to investigate the potential role of IL-8 signaling in a mouse model for retinal vascular hyperpermeability. Importantly, we observed that IL-8 is upregulated upon laser-induced retinal damage, which recapitulates enhanced vascularization, leakage, and inflammatory responses. Moreover, blockade of CXCR2 and PI3Kγ was able to limit neovascularization and choroidal edema, as well as macrophage infiltration, therefore contributing to reduce retinal damage. These findings indicate that the CXCR2 and PI3Kγ signaling pathway may represent a suitable target for the development of novel therapeutic strategies for human diseases characterized by vascular leakage. PMID:19255141

  16. Allogeneic Hematopoietic Stem Cell Transplantation in FLT3-ITD-Positive Acute Myelogenous Leukemia: The Role for FLT3 Tyrosine Kinase Inhibitors Post-Transplantation.

    PubMed

    Schiller, Gary J; Tuttle, Pamela; Desai, Pinkal

    2016-06-01

    In recent years, allogeneic hematopoietic stem cell transplantation (allo-HSCT) has become increasingly common in patients with acute myelogenous leukemia (AML) due to improved donor availability and the use of nonmyeloablative regimens. However, despite the potential clinical gains with allo-HSCT, the post-transplantation outcomes for many patients, especially those with high-risk disease, remain dismal. Patients with AML who have internal tandem duplication mutations in the tyrosine kinase receptor FLT3 (FLT3-ITD) face particularly poor outcomes, even after allo-HSCT, which appears to only partially mitigate the poor prognosis associated with this mutation. Experimental treatments to reduce the likelihood of relapse and improve survival following allo-HSCT include maintenance with FLT3-specific tyrosine kinase inhibitors (TKIs), several of which are currently being evaluated in clinical studies. Preliminary data and case reports suggest that FLT3 TKIs can be effective in the post-transplantation setting, particularly for patients with FLT3-ITD mutations. Improvements in donor matching, transplantation procedures, and supportive care have allowed a greater number of patients to undergo allo-HSCT than ever before. For these patients, it is essential to identify effective post-transplantation therapies to reduce the risk of relapse and improve disease-free survival. PMID:26785334

  17. The Src and c-Kit kinase inhibitor dasatinib enhances p53-mediated targeting of human acute myeloid leukemia stem cells by chemotherapeutic agents

    PubMed Central

    Dos Santos, Cedric; McDonald, Tinisha; Ho, Yin Wei; Liu, Hongjun; Lin, Allen; Forman, Stephen J.; Kuo, Ya-Huei

    2013-01-01

    The SRC family kinases (SFKs) and the receptor tyrosine kinase c-Kit are activated in human acute myeloid leukemia (AML) cells. We show here that the SFKs LYN, HCK, or FGR are overexpressed and activated in AML progenitor cells. Treatment with the SFK and c-KIT inhibitor dasatinib selectively inhibits human AML stem/progenitor cell growth in vitro. Importantly, dasatinib markedly increases the elimination of AML stem cells capable of engrafting immunodeficient mice by chemotherapeutic agents. In vivo dasatinib treatment enhances chemotherapy-induced targeting of primary murine AML stem cells capable of regenerating leukemia in secondary recipients. Our studies suggest that enhanced targeting of AML cells by the combination of dasatinib with daunorubicin may be related to inhibition of AKT-mediated human mouse double minute 2 homolog phosphorylation, resulting in enhanced p53 activity in AML cells. Combined treatment using dasatinib and chemotherapy provides a novel approach to increasing p53 activity and enhancing targeting of AML stem cells. PMID:23896410

  18. Substrate rigidity regulates Ca2+ oscillation via RhoA pathway in stem cells

    PubMed Central

    Kim, Tae-Jin; Seong, Jihye; Ouyang, Mingxing; Sun, Jie; Lu, Shaoying; Hong, Jun Pyu; Wang, Ning; Wang, Yingxiao

    2008-01-01

    Substrate rigidity plays crucial roles in regulating cellular functions, such as cell spreading, traction forces, and stem cell differentiation. However, it is not clear how substrate rigidity influences early cell signaling events such as calcium in living cells. Using highly-sensitive Ca2+ biosensors based on fluorescence resonance energy transfer (FRET), we investigated the molecular mechanism by which substrate rigidity affects calcium signaling in human mesenchymal stem cells (HMSCs). Spontaneous Ca2+ oscillations were observed inside the cytoplasm and the endoplasmic reticulum (ER) using the FRET biosensors targeted at subcellular locations in cells plated on rigid dishes. Lowering the substrate stiffness to 1 kPa significantly inhibited both the magnitudes and frequencies of the cytoplasmic Ca2+ oscillation in comparison to stiffer or rigid substrate. This Ca2+ oscillation was shown to be dependent on ROCK, a downstream effector molecule of RhoA, but independent of actin filaments, microtubules, myosin light chain kinase, or myosin activity. Lysophosphatidic acid, which activates RhoA, also inhibited the frequency of the Ca2+ oscillation. Consistently, either a constitutive active mutant of RhoA (RhoA-V14) or a dominant negative mutant of RhoA (RhoA-N19) inhibited the Ca2+ oscillation. Further experiments revealed that HMSCs cultured on gels with low elastic moduli displayed low RhoA activities. Therefore, our results demonstrate that RhoA and its downstream molecule ROCK may mediate the substrate rigidity-regulated Ca2+ oscillation, which determines the physiological functions of HMSCs. PMID:18844232

  19. Effects of phased joint intervention on Rho/ROCK expression levels in patients with portal hypertension

    PubMed Central

    Shi, Min; Wei, Jue; Meng, Wen-Ying; Wang, Na; Wang, Ting; Wang, Yu-Gang

    2016-01-01

    The current study investigated the effects of phased joint intervention on clinical efficacy and Rho/Rho-associated coil protein kinase (ROCK) expression in patients with portal hypertension complicated by esophageal variceal bleeding (EVB) and hypersplenism. Patients with portal hypertension (n=53) caused by liver cirrhosis complicated by EVB and hypersplenism treated with phased joint intervention were assessed, and portal hemodynamics, blood, liver function, complications, and rebleeding incidence were analyzed. Reverse transcription-quantitative polymerase chain reaction was used to measure Rho, ROCK1 and ROCK2 mRNA expression levels in peripheral blood mononuclear cells prior to and following phased joint intervention, and western blotting was employed to determine the protein expression levels of Rho, ROCK1, ROCK2, phosphorylated (p) myosin phosphatase target subunit 1 (MYPT1) and total-MYPT1. All patients underwent an emergency assessment of hemostasis with a 100% success rate. Varicose veins were alleviated, and portal hemodynamics and liver function improved following intervention. Furthermore, preoperative and postoperative expression levels of Rho, ROCK1 and ROCK2 mRNA were higher compared with the control group. Notably, the mRNA expression levels of Rho, ROCK1 and ROCK2 in the postoperative group were significantly lower when compared with the preoperative group. Protein expression levels of Rho, ROCK1, ROCK2 and pMYPT1 in the postoperative group were lower, as compared with the preoperative group. Concentration levels of transforming growth factor-β1, connective tissue growth factor and platelet-derived growth factor in peripheral blood were significantly reduced following phased joint intervention. Therefore, the present findings demonstrated that phased joint intervention is able to effectively treat EVB and hypersplenism, and improve liver function. The efficacy of phased joint intervention may be associated with its role in the regulation of the

  20. Synergistic cytotoxicity of sorafenib with busulfan and nucleoside analogs in human FMS-like tyrosine kinase 3 internal tandem duplications-positive acute myeloid leukemia cells.

    PubMed

    Song, Guiyun; Valdez, Benigno C; Li, Yang; Liu, Yan; Champlin, Richard E; Andersson, Borje S

    2014-11-01

    Clofarabine (Clo), fludarabine (Flu), and busulfan (Bu) are used in pretransplantation conditioning therapy for patients with myeloid leukemia. To further improve their efficacy in FMS-like tyrosine kinase 3 internal tandem duplications (FLT3-ITD)-positive acute myeloid leukemia (AML), we investigated their synergism with sorafenib (Sor). Exposure of FLT3-ITD-positive MV-4-11 and MOLM 13 cells to Bu+Clo+Flu+Sor resulted in synergistic cytotoxicity; no such synergism was observed in the FLT3-wild type THP-1 and KBM3/Bu250(6) cell lines. The drug synergism in MV-4-11 cells could be attributed to activation of DNA damage response, histone 3 modifications, inhibition of prosurvival kinases, and activation of apoptosis. Further, the phosphorylation of kinases, including FLT3, MAPK kinase (MEK), and AKT, was inhibited. The FLT3-ITD substrate STAT5 and its target gene PIM 2 product decreased when cells were exposed to Sor alone, Bu+Clo+Flu, and Bu+Clo+Flu+Sor. The level of the proapoptotic protein p53 upregulated modulator of apoptosis (PUMA) increased, whereas the level of prosurvival protein MCL-1 decreased when cells were exposed to Bu+Clo+Flu+Sor. The interactions of PUMA with MCL-1 and/or BCL-2 were enhanced when cells were exposed to Bu+Clo+Flu or Bu+Clo+Flu+Sor. The changes in the level of these proteins, which are involved in mitochondrial control of apoptosis, correlate with changes in mitochondrial membrane potential. Bu+Clo+Flu+Sor decreased mitochondrial membrane potential by 60% and caused leakage of cytochrome c, second mitochondria-derived activator of caspases (SMAC)/direct IAP Binding protein with low pI (DIABLO), and AIF from the mitochondria to the cytoplasm, caspase activation, and cell death, suggesting the activation of apoptosis. Analogous, synergistic cytotoxicity in response to Bu, Clo, Flu, and Sor was observed in mononuclear cells isolated from FLT3-ITD-positive AML patients. Although our previous studies were aimed at standardizing the

  1. Acute physical exercise reverses S-nitrosation of the insulin receptor, insulin receptor substrate 1 and protein kinase B/Akt in diet-induced obese Wistar rats

    PubMed Central

    Pauli, José R; Ropelle, Eduardo R; Cintra, Dennys E; Carvalho-Filho, Marco A; Moraes, Juliana C; De Souza, Cláudio T; Velloso, Lício A; Carvalheira, José B C; Saad, Mario J A

    2008-01-01

    Early evidence demonstrates that exogenous nitric oxide (NO) and the NO produced by inducible nitric oxide synthase (iNOS) can induce insulin resistance. Here, we investigated whether this insulin resistance, mediated by S-nitrosation of proteins involved in early steps of the insulin signal transduction pathway, could be reversed by acute physical exercise. Rats on a high-fat diet were subjected to swimming for two 3 h-long bouts, separated by a 45 min rest period. Two or 16 h after the exercise protocol the rats were killed and proteins from the insulin signalling pathway were analysed by immunoprecipitation and immunoblotting. We demonstrated that a high-fat diet led to an increase in the iNOS protein level and S-nitrosation of insulin receptor β (IRβ), insulin receptor substrate 1 (IRS1) and Akt. Interestingly, an acute bout of exercise reduced iNOS expression and S-nitrosation of proteins involved in the early steps of insulin action, and improved insulin sensitivity in diet-induced obesity rats. Furthermore, administration of GSNO (NO donor) prevents this improvement in insulin action and the use of an inhibitor of iNOS (l-N6-(1-iminoethyl)lysine; l-NIL) simulates the effects of exercise on insulin action, insulin signalling and S-nitrosation of IRβ, IRS1 and Akt. In summary, a single bout of exercise reverses insulin sensitivity in diet-induced obese rats by improving the insulin signalling pathway, in parallel with a decrease in iNOS expression and in the S-nitrosation of IR/IRS1/Akt. The decrease in iNOS protein expression in the muscle of diet-induced obese rats after an acute bout of exercise was accompanied by an increase in AMP-activated protein kinase (AMPK) activity. These results provide new insights into the mechanism by which exercise restores insulin sensitivity. PMID:17974582

  2. Rho/Rock cross-talks with transforming growth factor-β/Smad pathway participates in lung fibroblast-myofibroblast differentiation.

    PubMed

    Ji, Hong; Tang, Haiying; Lin, Hongli; Mao, Jingwei; Gao, Lili; Liu, Jia; Wu, Taihua

    2014-11-01

    The differentiation of fibroblasts, which are promoted by transforming growth factor-β (TGF-β)/Smad, is involved in the process of pulmonary fibrosis. The Rho/Rho-associated coiled-coil-forming protein kinase (Rock) pathway may regulate the fibroblast differentiation and myofibroblast expression of α-smooth muscle actin (α-SMA), however, the mechanism is not clear. The aim of the present study was to evaluate the role of Rho/Rock and TGF-β/Smad in TGF-β1-induced lung fibroblasts differentiation. Human embryonic lung fibroblasts were stimulated by TGF-β1, Y-27632 (inhibitor of Rho/Rock signaling) and staurosporine (inhibitor of TGF-β/Smad signaling). The α-SMA expression, cell cycle progression, content of the extracellular matrix (ECM) in cell culture supernatants and the expression of RhoA, RhoC, Rock1 and Smad2 were detected. The results demonstrated that α-SMA-positive cells significantly increased following TGF-β1 stimulation. Rho/Rock and TGF-β/Smad inhibitors suppressed TGF-β1-induced lung fibroblast differentiation. The inhibitors increased G0/G1 and decreased S and G2/M percentages. The concentrations of the ECM proteins in the supernatant were significantly increased by TGF-β1 stimulation, whereas they were decreased by inhibitor stimulation. RhoA, RhoC, Rock1, Smad2 and tissue inhibitor of metalloproteinase-1 were upregulated by TGF-β1 stimulation. The Rho/Rock inhibitor downregulated Smad2 expression and the TGF-β/Smad inhibitor downregulated RhoA, RhoC and Rock1 expression. Therefore, the Rho/Rock pathway and Smad signaling were involved in the process of lung fibroblasts transformation, induced by TGF-β1, to myofibroblasts. The two pathways may undergo cross-talk in the lung fibroblasts differentiation in vitro. PMID:25279146

  3. Salicylate acutely stimulates 5'-AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscles.

    PubMed

    Serizawa, Yasuhiro; Oshima, Rieko; Yoshida, Mitsuki; Sakon, Ichika; Kitani, Kazuto; Goto, Ayumi; Tsuda, Satoshi; Hayashi, Tatsuya

    2014-10-10

    Salicylate (SAL) has been recently implicated in the antidiabetic effect in humans. We assessed whether 5'-AMP-activated protein kinase (AMPK) in skeletal muscle is involved in the effect of SAL on glucose homeostasis. Rat fast-twitch epitrochlearis and slow-twitch soleus muscles were incubated in buffer containing SAL. Intracellular concentrations of SAL increased rapidly (<5 min) in both skeletal muscles, and the Thr(172) phosphorylation of the α subunit of AMPK increased in a dose- and time-dependent manner. SAL increased both AMPKα1 and AMPKα2 activities. These increases in enzyme activity were accompanied by an increase in the activity of 3-O-methyl-D-glucose transport, and decreases in ATP, phosphocreatine, and glycogen contents. SAL did not change the phosphorylation of insulin receptor signaling including insulin receptor substrate 1, Akt, and p70 ribosomal protein S6 kinase. These results suggest that SAL may be transported into skeletal muscle and may stimulate AMPK and glucose transport via energy deprivation in multiple muscle types. Skeletal muscle AMPK might be part of the mechanism responsible for the metabolic improvement induced by SAL. PMID:25256746

  4. Role of RhoA/ROCK-dependent actin contractility in the induction of tenascin-C by cyclic tensile strain.

    PubMed

    Sarasa-Renedo, Ana; Tunç-Civelek, Vildan; Chiquet, Matthias

    2006-05-01

    In chick embryo fibroblasts, the mRNA for extracellular matrix protein tenascin-C is induced 2-fold by cyclic strain (10%, 0.3 Hz, 6 h). This response is attenuated by inhibiting Rho-dependent kinase (ROCK). The RhoA/ROCK signaling pathway is primarily involved in actin dynamics. Here, we demonstrate its crucial importance in regulating tenascin-C expression. Cyclic strain stimulated RhoA activation and induced fibroblast contraction. Chemical activators of RhoA synergistically enhanced the effects of cyclic strain on cell contractility. Interestingly, tenascin-C mRNA levels perfectly matched the extent of RhoA/ROCK-mediated actin contraction. First, RhoA activation by thrombin, lysophosphatidic acid, or colchicine induced tenascin-C mRNA to a similar extent as strain. Second, RhoA activating drugs in combination with cyclic strain caused a super-induction (4- to 5-fold) of tenascin-C mRNA, which was again suppressed by ROCK inhibition. Third, disruption of the actin cytoskeleton with latrunculin A abolished induction of tenascin-C mRNA by chemical RhoA activators in combination with cyclic strain. Lastly, we found that myosin II activity is required for tenascin-C induction by cyclic strain. We conclude that RhoA/ROCK-controlled actin contractility has a mechanosensory function in fibroblasts that correlates directly with tenascin-C gene expression. Previous RhoA/ROCK activation, either by chemical or mechanical signals, might render fibroblasts more sensitive to external tensile stress, e.g., during wound healing. PMID:16448650

  5. Atorvastatin but not elocalcitol increases sildenafil responsiveness in spontaneously hypertensive rats by regulating the RhoA/ROCK pathway.

    PubMed

    Fibbi, Benedetta; Morelli, Annamaria; Marini, Mirca; Zhang, Xin-Hua; Mancina, Rosa; Vignozzi, Linda; Filippi, Sandra; Chavalmane, Aravinda; Silvestrini, Enrico; Colli, Enrico; Adorini, Luciano; Vannelli, Gabriella Barbara; Maggi, Mario

    2008-01-01

    Spontaneously hypertensive rats (SHR) are characterized by impaired erectile function and overactivity of the procontractile RhoA/Rho-associated, coiled-coil-containing protein kinase (RhoA/ROCK) pathway, as compared with their normotensive counterpart, Wistar-Kyoto rats. By measuring the intracavernous pressure:mean arterial pressure (ICP:MAP) ratio after electrostimulation of the cavernous nerve, we confirmed these findings and showed that responsiveness to sildenafil (25 mg/kg by oral gavage) also is hampered in SHR. A 2-week treatment with atorvastatin (5 and 30 mg/kg) improved the sildenafil-induced ICP:MAP increase and normalized RhoA and ROCK2 overexpression in SHR corpora cavernosa (CC). Conversely, other genes, neuronal nitric oxide synthase (NOS), endothelial NOS, and phosphodiesterase 5, were unaffected. In human fetal smooth muscle cells derived from CC (hfPSMC), atorvastatin inhibited RhoA membrane translocation and ROCK activity, as well as RhoA-dependent biologic functions like cell migration and cell proliferation. Atorvastatin's effect on migration was rescued in a dose-dependent manner by geranylgeranyl pyrophosphate, suggesting the involvement of RhoA geranylgeranylation. In hfPSMC, atorvastatin decreased the expression of RhoA-dependent genes such as ROCK2, desmin, alpha-smooth muscle actin, SM22alpha, and myocardin. In contrast to atorvastatin, elocalcitol, a vitamin D analog that also interferes with RhoA activation in SHR bladder, was unable to restore penile responsiveness to sildenafil. In conclusion, atorvastatin, but not elocalcitol, ameliorates sildenafil-induced penile erections in SHR, likely by interfering with RhoA/ROCK signaling within the penis. PMID:17699803

  6. RhoA mediates cyclooxygenase-2 signaling to disrupt the formation of adherens junctions and increase cell motility.

    PubMed

    Chang, Yu-Wen E; Marlin, Jerry W; Chance, Terry W; Jakobi, Rolf

    2006-12-15

    Cyclooxygenase-2 (COX-2) represents an important target for treatment and prevention of colorectal cancer. Although COX-2 signaling is implicated in promoting tumor cell growth and invasion, the molecular mechanisms that mediate these processes are largely unknown. In this study, we show that the RhoA pathway mediates COX-2 signaling to disrupt the formation of adherens junctions and increase cell motility. Disruption of adherens junctions promotes tumor cell invasion and metastasis and is often associated with tumor progression. We detected high levels of RhoA activity in HCA-7 colon carcinoma cells that constitutively express COX-2. Inhibition of COX-2 significantly reduced the levels of RhoA activity in HCA-7 cells, suggesting that constitutive expression of COX-2 stimulates RhoA activity. Interestingly, inhibition of COX-2 or silencing of COX-2 expression with small interfering RNA (siRNA) stimulated the formation of adherens junctions, concomitant with increased protein levels of E-cadherin and alpha-catenin. Furthermore, inhibition of RhoA or silencing of RhoA expression with siRNA increased the levels of E-cadherin and alpha-catenin. Inhibition of Rho kinases (ROCK), the RhoA effector proteins, also increased levels of E-cadherin and alpha-catenin and stimulated formation of adherens junctions. The motility of HCA-7 cells was significantly decreased when COX-2 or RhoA was inhibited. Therefore, our data reveal a novel molecular mechanism that links COX-2 signaling to disrupt the formation of adherens junctions; COX-2 stimulates the RhoA/ROCK pathway, which reduces levels of E-cadherin and alpha-catenin leading to disruption of adherens junction formation and increased motility. Understanding of COX-2 downstream signaling pathways that promote tumor progression is crucial for the development of novel therapeutic strategies. PMID:17178865

  7. RhoGDI3 and RhoG: Vesicular trafficking and interactions with the Sec3 Exocyst subunit.

    PubMed

    Morin, Annie; Cordelières, Fabrice P; Cherfils, Jacqueline; Olofsson, Birgitta

    2010-11-01

    RhoGDIs are negative regulators of small GTP-binding proteins of the Rho family, which have essential cellular functions in most aspects of actin-based morphology and motility processes. They extract Rho proteins from membranes, keep them in inactive rhoGDI/Rho complexes and eventually deliver them again to specific membranes in response to cellular signals. RhoGDI3, the most divergent member of the rhoGDI family, is well suited to document the underlying molecular mechanisms, since the active and inactive forms of its cellular target, RhoG, have well-separated subcellular localizations. In this study, we investigate trafficking structures and molecular interactions involved in rhoGDI3-mediated shuttling of RhoG between the Golgi and the plasma membrane.Bimolecular fluorescence complementation and acceptor-photobleaching FRET experiments suggest that rhoGDI3 and RhoG form complexes on Golgi and vesicular structures in mammalian cells. 4D-videomicroscopy confirms this localization, and show that RhoG/rhoGDI3-labelled structures are less dynamic than RhoG and rhoGDI3-labeled vesicles, consistent with the inhibitory function of rhoGDI3. Next, we identify the Exocyst subunit Sec3 as a candidate rhoGDI3 partner in cells. RhoGDI3 relocates a subcomplex of the Exocyst (Sec3 and Sec8) from the cytoplasm to the Golgi, while Sec6 is unaffected. Remarkably, Sec3 increases the level of GTP-bound endogenous RhoG, the RhoG-dependent induction of membrane ruffles, and the formation of intercellular tunneling nanotube-like protrusions.Altogether, our study identifies a novel link between vesicular traffic and the regulation of Rho proteins by rhoGDIs. It also suggests that components of the Exocyst machinery may be involved in RhoG functions, possibly regulated by rhoGDI3. PMID:21686268

  8. Protein Kinases and Addiction

    PubMed Central

    Lee, Anna M.; Messing, Robert O.

    2011-01-01

    Although drugs of abuse have different chemical structures and interact with different protein targets, all appear to usurp common neuronal systems that regulate reward and motivation. Addiction is a complex disease that is thought to involve drug-induced changes in synaptic plasticity due to alterations in cell signaling, gene transcription, and protein synthesis. Recent evidence suggests that drugs of abuse interact with and change a common network of signaling pathways that include a subset of specific protein kinases. The best studied of these kinases are reviewed here and include extracellular signal-regulated kinase, cAMP-dependent protein kinase, cyclin-dependent protein kinase 5, protein kinase C, calcium/calmodulin-dependent protein kinase II, and Fyn tyrosine kinase. These kinases have been implicated in various aspects of drug addiction including acute drug effects, drug self-administration, withdrawal, reinforcement, sensitization, and tolerance. Identifying protein kinase substrates and signaling pathways that contribute to the addicted state may provide novel approaches for new pharma-cotherapies to treat drug addiction. PMID:18991950

  9. Rho GTPase signalling in cell migration

    PubMed Central

    Ridley, Anne J

    2015-01-01

    Cells migrate in multiple different ways depending on their environment, which includes the extracellular matrix composition, interactions with other cells, and chemical stimuli. For all types of cell migration, Rho GTPases play a central role, although the relative contribution of each Rho GTPase depends on the environment and cell type. Here, I review recent advances in our understanding of how Rho GTPases contribute to different types of migration, comparing lamellipodium-driven versus bleb-driven migration modes. I also describe how cells migrate across the endothelium. In addition to Rho, Rac and Cdc42, which are well known to regulate migration, I discuss the roles of other less-well characterized members of the Rho family. PMID:26363959

  10. Regulating Rho GTPases and their regulators.

    PubMed

    Hodge, Richard G; Ridley, Anne J

    2016-08-01

    Rho GTPases regulate cytoskeletal and cell adhesion dynamics and thereby coordinate a wide range of cellular processes, including cell migration, cell polarity and cell cycle progression. Most Rho GTPases cycle between a GTP-bound active conformation and a GDP-bound inactive conformation to regulate their ability to activate effector proteins and to elicit cellular responses. However, it has become apparent that Rho GTPases are regulated by post-translational modifications and the formation of specific protein complexes, in addition to GTP-GDP cycling. The canonical regulators of Rho GTPases - guanine nucleotide exchange factors, GTPase-activating proteins and guanine nucleotide dissociation inhibitors - are regulated similarly, creating a complex network of interactions to determine the precise spatiotemporal activation of Rho GTPases. PMID:27301673

  11. Novel Rho/MRTF/SRF Inhibitors Block Matrix-stiffness and TGF-β–Induced Fibrogenesis in Human Colonic Myofibroblasts

    PubMed Central

    Johnson, Laura A.; Rodansky, Eva S.; Haak, Andrew J.; Larsen, Scott D.; Neubig, Richard R.; Higgins, Peter D. R.

    2016-01-01

    Background Ras homolog gene family, member A (RhoA)/Rho-associated coiled-coil forming protein kinase signaling is a key pathway in multiple types of solid organ fibrosis, including intestinal fibrosis. However, the pleiotropic effects of RhoA/Rho-associated coiled-coil forming protein kinase signaling have frustrated targeted drug discovery efforts. Recent recognition of the role of Rho-regulated gene transcription by serum response factor (SRF) and its transcriptional cofactor myocardin-related transcription factor A (MRTF-A) suggest a novel locus for pharmacological intervention. Methods Because RhoA signaling is mediated by both physical and biochemical stimuli, we examined whether pharmacological inhibition of RhoA or the downstream transcription pathway of MRTF-A/SRF could block intestinal fibrogenesis in 2 in vitro models. Results In this study, we demonstrate that inhibition of RhoA signaling blocks both matrix-stiffness and transforming growth factor beta–induced fibrogenesis in human colonic myofibroblasts. Repression of alpha-smooth muscle actin and collagen expression was associated with the inhibition of MRTF-A nuclear localization. CCG-1423, a first-generation Rho/MRTF/SRF pathway inhibitor, repressed fibrogenesis in both models, yet has unacceptable cytotoxicity. Novel second-generation inhibitors (CCG-100602 and CCG-203971) repressed both matrix-stiffness and transforming growth factor beta–mediated fibrogenesis as determined by protein and gene expression in a dose-dependent manner. Conclusions Targeting the Rho/MRTF/SRF mechanism with second-generation Rho/MRTF/SRF inhibitors may represent a novel approach to antifibrotic therapeutics. PMID:24280883

  12. RhoA GTPase Switch Controls Cx43-Hemichannel Activity through the Contractile System

    PubMed Central

    Hertens, Fréderic; Parys, Jan B.; Leybaert, Luc; Vereecke, Johan; Himpens, Bernard; Bultynck, Geert

    2012-01-01

    ATP-dependent paracrine signaling, mediated via the release of ATP through plasma membrane-embedded hemichannels of the connexin family, coordinates a synchronized response between neighboring cells. Connexin 43 (Cx43) hemichannels that are present in the plasma membrane need to be tightly regulated to ensure cell viability. In monolayers of bovine corneal endothelial cells (BCEC),Cx43-mediated ATP release is strongly inhibited when the cells are treated with inflammatory mediators, in particular thrombin and histamine. In this study we investigated the involvement of RhoA activation in the inhibition of hemichannel-mediated ATP release in BCEC. We found that RhoA activation occurs rapidly and transiently upon thrombin treatment of BCEC. The RhoA activity correlated with the onset of actomyosin contractility that is involved in the inhibition of Cx43 hemichannels. RhoA activation and inhibition of Cx43-hemichannel activity were both prevented by pre-treatment of the cells with C3-toxin as well as knock down of RhoA by siRNA. These findings provide evidence that RhoA activation is a key player in thrombin-induced inhibition of Cx43-hemichannel activity. This study demonstrates that RhoA GTPase activity is involved in the acute inhibition of ATP-dependent paracrine signaling, mediated by Cx43 hemichannels, in response to the inflammatory mediator thrombin. Therefore, RhoA appears to be an important molecular switch that controls Cx43 hemichannel openings and hemichannel-mediated ATP-dependent paracrine intercellular communication under (patho)physiological conditions of stress. PMID:22860057

  13. Regulation of plasticity and fibrogenic activity of trabecular meshwork cells by Rho GTPase signaling.

    PubMed

    Pattabiraman, Padmanabhan P; Maddala, Rupalatha; Rao, Ponugoti Vasantha

    2014-07-01

    Glaucoma, a prevalent blinding disease is commonly associated with increased intraocular pressure due to impaired aqueous humor (AH) drainage through the trabecular meshwork (TM). Although increased TM tissue contraction and stiffness in association with accumulation of extracellular matrix (ECM) are believed to be partly responsible for increased resistance to AH outflow, the extracellular cues and intracellular mechanisms regulating TM cell contraction and ECM production are not well defined. This study tested the hypothesis that sustained activation of Rho GTPase signaling induced by lysophosphatidic acid (LPA), TGF-β, and connective tissue growth factor (CTGF) influences TM cell plasticity and fibrogenic activity which may eventually impact resistance to AH outflow. Various experiments performed using human TM cells revealed that constitutively active RhoA (RhoAV14), TGF-β2, LPA, and CTGF significantly increase the levels and expression of Fibroblast Specific Protein-1 (FSP-1), α-smooth muscle actin (αSMA), collagen-1A1 and secretory total collagen, as determined by q-RT-PCR, immunofluorescence, immunoblot, flow cytometry and the Sircol assay. Significantly, these changes appear to be mediated by Serum Response Factor (SRF), myocardin-related transcription factor (MRTF-A), Slug, and Twist-1, which are transcriptional regulators known to control cell plasticity, myofibroblast generation/activation and fibrogenic activity. Additionally, the Rho kinase inhibitor-Y27632 and anti-fibrotic agent-pirfenidone were both found to suppress the TGF-β2-induced expression of αSMA, FSP-1, and collagen-1A1. Taken together, these observations demonstrate the significance of RhoA/Rho kinase signaling in regulation of TM cell plasticity, fibrogenic activity, and myofibroblast activation, events with potential implications for the pathobiology of elevated intraocular pressure in glaucoma patients. PMID:24318513

  14. Acute and chronic stress differentially regulate cyclin-dependent kinase 5 in mouse brain: implications to glucocorticoid actions and major depression

    PubMed Central

    Papadopoulou, A; Siamatras, T; Delgado-Morales, R; Amin, N D; Shukla, V; Zheng, Y-L; Pant, H C; Almeida, O F X; Kino, T

    2015-01-01

    Stress activates the hypothalamic–pituitary–adrenal axis, which in turn increases circulating glucocorticoid concentrations and stimulates the glucocorticoid receptor (GR). Chronically elevated glucocorticoids by repetitive exposure to stress are implicated in major depression and anxiety disorders. Cyclin-dependent kinase 5 (CDK5), a molecule essential for nervous system development, function and pathogenesis of neurodegenerative disorders, can modulate GR activity through phosphorylation. We examined potential contribution of CDK5 to stress response and pathophysiology of major depression. In mice, acute immobilized stress (AS) caused a biphasic effect on CDK5 activity, initially reducing but increasing afterwards in prefrontal cortex (PFC) and hippocampus (HIPPO), whereas chronic unpredictable stress (CS) strongly increased it in these brain areas, indicating that AS and CS differentially regulate this kinase activity in a brain region-specific fashion. GR phosphorylation contemporaneously followed the observed changes of CDK5 activity after AS, thus CDK5 may in part alter GR phosphorylation upon this stress. In the postmortem brains of subjects with major depression, CDK5 activity was elevated in Brodmann's area 25, but not in entire PFC and HIPPO. Messenger RNA expression of glucocorticoid-regulated/stress-related genes showed distinct expression profiles in several brain areas of these stressed mice or depressive subjects in which CDK5-mediated changes in GR phosphorylation may have some regulatory roles. Taken together, these results indicate that CDK5 is an integral component of stress response and major depression with regulatory means specific to different stressors, brain areas and diseases in part through changing phosphorylation of GR. PMID:26057048

  15. Renal Integrin-Linked Kinase Depletion Induces Kidney cGMP-Axis Upregulation: Consequences on Basal and Acutely Damaged Renal Function

    PubMed Central

    Cano-Peñalver, José Luis; Griera, Mercedes; García-Jerez, Andrea; Hatem-Vaquero, Marco; Ruiz-Torres, María Piedad; Rodríguez-Puyol, Diego; de Frutos, Sergio; Rodríguez-Puyol, Manuel

    2015-01-01

    Soluble guanylyl cyclase (sGC) is activated by nitric oxide (NO) and produces cGMP, which activates cGMP-dependent protein kinases (PKG) and is hydrolyzed by specific phosphodiesterases (PDE). The vasodilatory and cytoprotective capacity of cGMP-axis activation results in a therapeutic strategy for several pathologies. Integrin-linked kinase (ILK), a major scaffold protein between the extracellular matrix and intracellular signaling pathways, may modulate the expression and functionality of the cGMP-axis–related proteins. We introduce ILK as a novel modulator in renal homeostasis as well as a potential target for cisplatin (CIS)-induced acute kidney injury (AKI) improvement. We used an adult mice model of depletion of ILK (cKD-ILK), which showed basal increase of sGC and PKG expressions and activities in renal cortex when compared with wildtype (WT) littermates. Twenty-four h activation of sGC activation with NO enhanced the filtration rate in cKD-ILK. During AKI, cKD-ILK maintained the cGMP-axis upregulation with consequent filtration rates enhancement and ameliorated CIS-dependent tubular epithelial-to-mesenchymal transition and inflammation and markers. To emphasize the role of cGMP-axis upregulation due to ILK depletion, we modulated the cGMP axis under AKI in vivo and in renal cultured cells. A suboptimal dose of the PDE inhibitor ZAP enhanced the beneficial effects of the ILK depletion in AKI mice. On the other hand, CIS increased contractility-related events in cultured glomerular mesangial cells and necrosis rates in cultured tubular cells; ILK depletion protected the cells while sGC blockade with ODQ fully recovered the damage. PMID:26562149

  16. Bilobol inhibits the lipopolysaccharide-induced expression and distribution of RhoA in HepG2 human hepatocellular carcinoma cells

    PubMed Central

    XU, JIN; LI, YUEYING; YANG, XIAOMING; LIU, YALI; CHEN, YONGCHANG; CHEN, MIN

    2015-01-01

    Recent studies have revealed the localization of RhoA protein in the cell nucleus, in addition to its distribution in the cytosol and cell membrane. The results of previous studies by our group indicated that nuclear RhoA expression is increased, or RhoA is transported into the nucleus, when cells become cancerous or damaged. Furthermore, application of the anticancer agent Taxol appeared to reduce nuclear RhoA localization, indicating an association between the nuclear translocation of RhoA and tumor progression. Bilobol is a traditional Chinese medicine ingredient, however, its anticancer effect has remained unclear. The present study aimed to demonstrate the anticarcinogenic action of bilobol against hepatocellular carcinoma, in order to lay the foundations for subsequent research into the mechanisms underlying its anticancer effects. In the present study, HepG2 cells were treated with lipopolysaccharide (LPS), to induce inflammation, and/or bilobol. By performing an ELISA, it was observed that bilobol was able to suppress the inflammation induced by LPS. In addition, immunofluorescence and western blot analyses indicated that bilobol may reduce the expression of RhoA, suppress translocation of RhoA into the nucleus and inhibit the RhoA/Rho-associated protein kinase signaling pathway. In conclusion, the present study revealed the potential anticancer effects of bilobol. PMID:26622605

  17. p190RhoGAP can act to inhibit PDGF-induced gliomas in mice: a putative tumor suppressor encoded on human Chromosome 19q13.3

    PubMed Central

    Wolf, Rebecca M.; Draghi, Nicole; Liang, Xiquan; Dai, Chengkai; Uhrbom, Lene; Eklöf, Charlotta; Westermark, Bengt; Holland, Eric C.; Resh, Marilyn D.

    2003-01-01

    p190RhoGAP and Rho are key regulators of oligodendrocyte differentiation. The gene encoding p190RhoGAP is located at 19q13.3 of the human chromosome, a locus that is deleted in 50%–80% of oligodendrogliomas. Here we provide evidence that p190RhoGAP may suppress gliomagenesis by inducing a differentiated glial phenotype. Using a cell culture model of autocrine loop PDGF stimulation, we show that reduced Rho activity via p190RhoGAP overexpression or Rho kinase inhibition induced cellular process extension, a block in proliferation, and reduced expression of the neural precursor marker nestin. In vivo infection of mice with retrovirus expressing PDGF and the p190 GAP domain caused a decreased incidence of oligodendrogliomas compared with that observed with PDGF alone. Independent experiments revealed that the retroviral vector insertion site in 3 of 50 PDGF-induced gliomas was within the p190RhoGAP gene. This evidence strongly suggests that p190 regulates critical components of PDGF oncogenesis and can act as a tumor suppressor in PDGF-induced gliomas by down-regulating Rho activity. PMID:12600941

  18. Control of Homeostasis and Dendritic Cell Survival by the GTPase RhoA.

    PubMed

    Li, Shuai; Dislich, Bastian; Brakebusch, Cord H; Lichtenthaler, Stefan F; Brocker, Thomas

    2015-11-01

    Tissues accommodate defined numbers of dendritic cells (DCs) in highly specific niches where different intrinsic and environmental stimuli control DC life span and numbers. DC homeostasis in tissues is important, because experimental changes in DC numbers influence immunity and tolerance toward various immune catastrophes and inflammation. However, the precise molecular mechanisms regulating DC life span and homeostasis are unclear. We report that the GTPase RhoA controls homeostatic proliferation, cytokinesis, survival, and turnover of cDCs. Deletion of RhoA strongly decreased the numbers of CD11b(-)CD8(+) and CD11b(+)Esam(hi) DC subsets, whereas CD11b(+)Esam(lo) DCs were not affected in conditional RhoA-deficient mice. Proteome analyses revealed a defective prosurvival pathway via PI3K/protein kinase B (Akt1)/Bcl-2-associated death promoter in the absence of RhoA. Taken together, our findings identify RhoA as a central regulator of DC homeostasis, and its deletion decreases DC numbers below critical thresholds for immune protection and homeostasis, causing aberrant compensatory DC proliferation. PMID:26408665

  19. Atypical Rho GTPases of the RhoBTB Subfamily: Roles in Vesicle Trafficking and Tumorigenesis

    PubMed Central

    Ji, Wei; Rivero, Francisco

    2016-01-01

    RhoBTB proteins constitute a subfamily of atypical Rho GTPases represented in mammals by RhoBTB1, RhoBTB2, and RhoBTB3. Their characteristic feature is a carboxyl terminal extension that harbors two BTB domains capable of assembling cullin 3-dependent ubiquitin ligase complexes. The expression of all three RHOBTB genes has been found reduced or abolished in a variety of tumors. They are considered tumor suppressor genes and recent studies have strengthened their implication in tumorigenesis through regulation of the cell cycle and apoptosis. RhoBTB3 is also involved in retrograde transport from endosomes to the Golgi apparatus. One aspect that makes RhoBTB proteins atypical among the Rho GTPases is their proposed mechanism of activation. No specific guanine nucleotide exchange factors or GTPase activating proteins are known. Instead, RhoBTB might be activated through interaction with other proteins that relieve their auto-inhibited conformation and inactivated through auto-ubiquitination and destruction in the proteasome. In this review we discuss our current knowledge on the molecular mechanisms of action of RhoBTB proteins and the implications for tumorigenesis and other pathologic conditions. PMID:27314390

  20. T1rho and T2rho MRI in the evaluation of Parkinson's disease.

    PubMed

    Nestrasil, I; Michaeli, S; Liimatainen, T; Rydeen, C E; Kotz, C M; Nixon, J P; Hanson, T; Tuite, Paul J

    2010-06-01

    Prior work has shown that adiabatic T(1rho) and T(2rho) relaxation time constants may have sensitivity to cellular changes and the presence of iron, respectively, in Parkinson's disease (PD). Further understanding of these magnetic resonance imaging (MRI) methods and how they relate to measures of disease severity and progression in PD is needed. Using T(1rho) and T(2rho) on a 4T MRI scanner, we assessed the substantia nigra (SN) of nine non-demented moderately affected PD and ten gender- and age-matched control participants. When compared to controls, the SN of PD subjects had increased T(1rho) and reduced T(2rho). We also found a significant correlation between asymmetric motor features and asymmetry based on T(1rho). This study provides additional validation of T(1rho) and T(2rho) as a means to separate PD from control subjects, and T(1rho) may be a useful marker of asymmetry in PD. PMID:20058018

  1. Rho GTPase RhoJ is Associated with Gastric Cancer Progression and Metastasis

    PubMed Central

    Kim, Chan; Yang, Hannah; Park, Intae; Chon, Hong Jae; Kim, Joo Hoon; Kwon, Woo Sun; Lee, Won Suk; Kim, Tae Soo; Rha, Sun Young

    2016-01-01

    Rho GTPases play a pivotal role in tumor progression by regulating tumor cell migration and invasion. However, the role of Rho GTPases in gastric cancer (GC) remains unexplored. This study aimed to investigate the clinical implications of RhoJ, which is an uncharted member of Rho family. RhoJ expression in human GC cell lines and surgical specimens from GC patients were analyzed. Moreover, in vitro gain-of-function analysis was performed to evaluate the malignant phenotypes of RhoJ-overexpressing GC cells. The extent of RhoJ expression varied among GC cell lines and GC patients. YCC-9 cell line displayed the strongest expression, while YCC-10, -11, and -16 showed scant expressions. Of the 70 GC patients, 34 (48.6%) had RhoJ expression in their GC tissue, and patients with high RhoJ expression had more diffuse type GC (73.5% vs. 41.7%), were at more advanced stages (stage III, IV: 85.3% vs. 58.4%), and had more frequent metastasis (47.1% vs. 11.1%), denoting that RhoJ has a potential role in GC progression and metastasis. High RhoJ expression significantly correlated with poor overall survival and recurrence-free survival after surgical resection of gastric cancer. Finally, In vitro gain-of-function experiments showed 41.3% enhanced motility and 60.4% enhanced invasiveness in RhoJ-overexpressing GC cells compared to control, with negligible difference in cell proliferation. Collectively, high RhoJ expression is an independent negative prognostic factor for the survival outcome of GC and correlated with the increased cell motility and invasiveness. PMID:27471571

  2. Induction of human microsomal prostaglandin E synthase 1 by activated oncogene RhoA GTPase in A549 human epithelial cancer cells

    SciTech Connect

    Choi, Hye Jin; Lee, Dong-Hyung; Park, Seong-Hwan; Kim, Juil; Do, Kee Hun; An, Tae Jin; Ahn, Young Sup; Park, Chung Berm; Moon, Yuseok

    2011-09-30

    Highlights: {yields} As a target of oncogene RhoA-linked signal, a prostaglandin metabolism is assessed. {yields} RhoA activation increases PGE{sub 2} levels and its metabolic enzyme mPGES-1. {yields} RhoA-activated NF-{kappa}B and EGR-1 are positively involved in mPGES-1 induction. -- Abstract: Oncogenic RhoA GTPase has been investigated as a mediator of pro-inflammatory responses and aggressive carcinogenesis. Among the various targets of RhoA-linked signals, pro-inflammatory prostaglandin E{sub 2} (PGE{sub 2}), a major prostaglandin metabolite, was assessed in epithelial cancer cells. RhoA activation increased PGE{sub 2} levels and gene expression of the rate-limiting PGE{sub 2} producing enzymes, cyclooxygenase-2 and microsomal prostaglandin E synthase 1 (mPGES-1). In particular, human mPGES-1 was induced by RhoA via transcriptional activation in control and interleukin (IL)-1{beta}-activated cancer cells. To address the involvement of potent signaling pathways in RhoA-activated mPGES-1 induction, various signaling inhibitors were screened for their effects on mPGES-1 promoter activity. RhoA activation enhanced basal and IL-1{beta}-mediated phosphorylated nuclear factor-{kappa}B and extracellular signal-regulated kinase1/2 proteins, all of which were positively involved in RhoA-induced gene expression of mPGES-1. As one potent down-stream transcription factor of ERK1/2 signals, early growth response gene 1 product also mediated RhoA-induced gene expression of mPGES-1 by enhancing transcriptional activity. Since oncogene-triggered PGE{sub 2} production is a critical modulator of epithelial tumor cells, RhoA-associated mPGES-1 represents a promising chemo-preventive or therapeutic target for epithelial inflammation and its associated cancers.

  3. Treatment of therapy-refractory B-lineage acute lymphoblastic leukemia with an apoptosis-inducing CD19-directed tyrosine kinase inhibitor.

    PubMed

    Uckun, F M; Messinger, Y; Chen, C L; O'Neill, K; Myers, D E; Goldman, F; Hurvitz, C; Casper, J T; Levine, A

    1999-12-01

    Seven children and eight adults with CD19+ B-lineage acute lymphoblastic leukemia, as well as one adult with chronic lymphocytic leukemia, were treated with the CD19 receptor-directed tyrosine kinase inhibitor B43-Genistein. All patients had failed previous chemotherapy regimens, and six patients had relapsed after bone marrow transplantation. B43-Genistein was administered as a 1-hour i.v. infusion at 0.1-0.32 mg/kg/day dose levels for 10 consecutive days or 3 consecutive days weekly for a total of nine doses. B43-Genistein was well tolerated by all patients with no life-threatening side effects. There were six episodes of grade 2-3 fever, two of which were clearly drug related, one episode each of grade 3 myalgia, grade 2 sinus tachycardia, and grade 2 vascular leak syndrome. There was one durable complete remission and two transient responses. Pharmacokinetic analyses in 12 patients revealed a plasma half-life of 20 +/- 5 h, mean residence time of 24 +/- 5 h, and a systemic clearance rate of 20 +/- 3 ml/h/kg. Moderate levels of human antimouse antibody (HAMA) ranging from 20-87 ng/ml were detected in the day 28 blood samples from three of nine cases examined. Treatment of these three HAMA-positive patients with a second course of B43-Genistein did not yield measurable immunoconjugate levels in the plasma, indicating that the administered B43-Genistein molecules were rapidly cleared from circulation due to the HAMA. On the basis of its acceptable toxicity profile and its ability to elicit objective responses at nontoxic dose levels, B43-Genistein may provide the basis for an effective treatment strategy for B-lineage acute lymphoblastic leukemia patients who have failed standard therapy. PMID:10632319

  4. Distinctive G Protein-Dependent Signaling by Protease-Activated Receptor 2 (PAR2) in Smooth Muscle: Feedback Inhibition of RhoA by cAMP-Independent PKA

    PubMed Central

    Sriwai, Wimolpak; Mahavadi, Sunila; Al-Shboul, Othman; Grider, John R.; Murthy, Karnam S.

    2013-01-01

    We examined expression of protease-activated receptors 2 (PAR2) and characterized their signaling pathways in rabbit gastric muscle cells. The PAR2 activating peptide SLIGRL (PAR2-AP) stimulated Gq, G13, Gi1, PI hydrolysis, and Rho kinase activity, and inhibited cAMP formation. Stimulation of PI hydrolysis was partly inhibited in cells expressing PAR2 siRNA, Gaq or Gai minigene and in cells treated with pertussis toxin, and augmented by expression of dominant negative regulator of G protein signaling (RGS4(N88S)). Stimulation of Rho kinase activity was abolished by PAR-2 or Ga13 siRNA, and by Ga13 minigene. PAR2-AP induced a biphasic contraction; initial contraction was selectively blocked by the inhibitor of PI hydrolysis (U73122) or MLC kinase (ML-9), whereas sustained contraction was selectively blocked by the Rho kinase inhibitor (Y27632). PAR2-AP induced phosphorylation of MLC20, MYPT1 but not CPI-17. PAR2-AP also caused a decrease in the association of NF-kB and PKA catalytic subunit: the effect of PAR2-AP was blocked by PAR2 siRNA or phosphorylation-deficient RhoA (RhoA(S188A)). PAR2-AP-induced degradation of IkBa and activation of NF-kB were abolished by the blockade of RhoA activity by Clostridium botulinum C3 exoenzyme suggesting RhoA-dependent activation of NF-kB. PAR2-AP-stimulated Rho kinase activity was significantly augmented by the inhibitors of PKA (myristoylated PKI), IKK2 (IKKIV) or NF-kB (MG132), and in cells expressing dominant negative mutants of IKK (IKK(K44A), IkBa (IkBa (S32A/S36A)) or RhoA(S188A), suggesting feedback inhibition of Rho kinase activity via PKA derived from NF-kB pathway. PAR2-AP induced phosphorylation of RhoA and the phosphorylation was attenuated in cells expressing phosphorylation-deficient RhoA(S188A). Our results identified signaling pathways activated by PAR2 to mediate smooth muscle contraction and a novel pathway for feedback inhibition of PAR2-stimulated RhoA. The pathway involves activation of the NF-kB to release

  5. Aurora A kinase expression is increased in leukemia stem cells, and a selective Aurora A kinase inhibitor enhances Ara-C-induced apoptosis in acute myeloid leukemia stem cells

    PubMed Central

    Kim, Soo-Jeong; Jang, Ji Eun; Cheong, June-Won; Eom, Ju-In; Jeung, Hoi-Kyung; Kim, Yundeok; Hwang, Doh Yu

    2012-01-01

    Background The overexpression of Aurora A kinase (AurA) has been reported in various malignancies, including acute myeloid leukemia (AML). However, the expression of AurA and the effects of AurA inhibition in cancer stem cells are not yet fully understood. We investigated the expression and inhibition of AurA in AML stem cells (CD34+/CD38-). Methods Expression of AurA was investigated in cell lines (NB4 and KG1) that express high levels of CD34 and low levels of CD38. Primary AML cells were harvested from 8 patients. The expression of AurA and cell death induced by inhibition of AurA were analyzed in CD34+/CD38- cells. Results AurA was shown to be overexpressed in both primary AML cells and leukemia stem cells (LSCs) compared to normal hematopoietic stem cells. Inhibition of AurA plus cytarabine treatment in LSCs resulted in increased cytotoxicity compared to cytarabine treatment alone. Additional stimulation with granulocyte-colony stimulating factor (G-CSF) increased the cell death caused by AurA inhibition plus cytarabine treatment. Conclusion To our knowledge, this is the first report describing increased expression of AurA in LSCs. Our results suggest that selective AurA inhibition may be used to reduce LSCs, and this reduction may be enhanced by stimulation with G-CSF. Further exploration of relationship between nuclear factor kappa-B and AurA inhibition and the potential of AurA inhibition for use in leukemia treatment is needed. PMID:23071472

  6. HSP90 inhibition leads to degradation of the TYK2 kinase and apoptotic cell death in T-cell acute lymphoblastic leukemia

    PubMed Central

    Akahane, Koshi; Sanda, Takaomi; Mansour, Marc R.; Radimerski, Thomas; DeAngelo, Daniel J.; Weinstock, David M.; Look, A. Thomas

    2015-01-01

    We previously found that TYK2 tyrosine kinase signaling through its downstream effector phospho-STAT1 (p-STAT1) acts to upregulate BCL2, which in turn mediates aberrant survival of T-cell acute lymphoblastic leukemia (T-ALL) cells. Here we show that pharmacologic inhibition of heat shock protein 90 (HSP90) with a small-molecule inhibitor, NVP-AUY922 (AUY922), leads to rapid degradation of TYK2 and apoptosis in T-ALL cells. STAT1 protein levels were not affected by AUY922 treatment, but p-STAT1 (Tyr 701) levels rapidly became undetectable, consistent with a block in signaling downstream of TYK2. BCL2 expression was downregulated after AUY922 treatment, and although this effect was necessary for AUY922-induced apoptosis, it was not sufficient because many T-ALL cell lines were resistant to ABT-199, a specific inhibitor of BCL2. Unlike ABT-199, AUY922 also upregulated the proapoptotic proteins BIM and BAD, whose increased expression was required for AUY922-induced apoptosis. Thus, the potent cytotoxicity of AUY922 involves the synergistic combination of BCL2 downregulation coupled with upregulation of the proapoptotic proteins BIM and BAD. This two-pronged assault on the mitochondrial apoptotic machinery identifies HSP90 inhibitors as promising drugs for targeting the TYK2-mediated prosurvival signaling axis in T-ALL cells. PMID:26265185

  7. HSP90 inhibition leads to degradation of the TYK2 kinase and apoptotic cell death in T-cell acute lymphoblastic leukemia.

    PubMed

    Akahane, K; Sanda, T; Mansour, M R; Radimerski, T; DeAngelo, D J; Weinstock, D M; Look, A T

    2016-01-01

    We previously found that tyrosine kinase 2 (TYK2) signaling through its downstream effector phospho-STAT1 acts to upregulate BCL2, which in turn mediates aberrant survival of T-cell acute lymphoblastic leukemia (T-ALL) cells. Here we show that pharmacologic inhibition of heat shock protein 90 (HSP90) with a small-molecule inhibitor, NVP-AUY922 (AUY922), leads to rapid degradation of TYK2 and apoptosis in T-ALL cells. STAT1 protein levels were not affected by AUY922 treatment, but phospho-STAT1 (Tyr-701) levels rapidly became undetectable, consistent with a block in signaling downstream of TYK2. BCL2 expression was downregulated after AUY922 treatment, and although this effect was necessary for AUY922-induced apoptosis, it was not sufficient because many T-ALL cell lines were resistant to ABT-199, a specific inhibitor of BCL2. Unlike ABT-199, AUY922 also upregulated the proapoptotic proteins BIM and BAD, whose increased expression was required for AUY922-induced apoptosis. Thus, the potent cytotoxicity of AUY922 involves the synergistic combination of BCL2 downregulation coupled with upregulation of the proapoptotic proteins BIM and BAD. This two-pronged assault on the mitochondrial apoptotic machinery identifies HSP90 inhibitors as promising drugs for targeting the TYK2-mediated prosurvival signaling axis in T-ALL cells. PMID:26265185

  8. Interleukin 17A promotes pneumococcal clearance by recruiting neutrophils and inducing apoptosis through a p38 mitogen-activated protein kinase-dependent mechanism in acute otitis media.

    PubMed

    Wang, Wei; Zhou, Aie; Zhang, Xuemei; Xiang, Yun; Huang, Yifei; Wang, Lei; Zhang, Shuai; Liu, Yusi; Yin, Yibing; He, Yujuan

    2014-06-01

    Streptococcus pneumoniae is a Gram-positive and human-restricted pathogen colonizing the nasopharynx with an absence of clinical symptoms as well as a major pathogen causing otitis media (OM), one of the most common childhood infections. Upon bacterial infection, neutrophils are rapidly activated and recruited to the infected site, acting as the frontline defender against emerging microbial pathogens via different ways. Evidence shows that interleukin 17A (IL-17A), a neutrophil-inducing factor, plays important roles in the immune responses in several diseases. However, its function in response to S. pneumoniae OM remains unclear. In this study, the function of IL-17A in response to S. pneumoniae OM was examined using an in vivo model. We developed a model of acute OM (AOM) in C57BL/6 mice and found that neutrophils were the dominant immune cells that infiltrated to the middle ear cavity (MEC) and contributed to bacterial clearance. Using IL-17A knockout (KO) mice, we found that IL-17A boosted neutrophil recruitment to the MEC and afterwards induced apoptosis, which was identified to be conducive to bacterial clearance. In addition, our observation suggested that the p38 mitogen-activated protein kinase (MAPK) signaling pathway was involved in the recruitment and apoptosis of neutrophils mediated by IL-17A. These data support the conclusion that IL-17A contributes to the host immune response against S. pneumoniae by promoting neutrophil recruitment and apoptosis through the p38 MAPK signaling pathway. PMID:24664502

  9. A phase I trial of the aurora kinase inhibitor, ENMD-2076, in patients with relapsed or refractory acute myeloid leukemia or chronic myelomonocytic leukemia.

    PubMed

    Yee, Karen W L; Chen, Hsiao-Wei T; Hedley, David W; Chow, Sue; Brandwein, Joseph; Schuh, Andre C; Schimmer, Aaron D; Gupta, Vikas; Sanfelice, Deborah; Johnson, Tara; Le, Lisa W; Arnott, Jamie; Bray, Mark R; Sidor, Carolyn; Minden, Mark D

    2016-10-01

    ENMD-2076 is a novel, orally-active molecule that inhibits Aurora A kinase, as well as c-Kit, FLT3 and VEGFR2. A phase I study was conducted to determine the maximum tolerated dose (MTD), recommended phase 2 dose (RP2D) and toxicities of ENMD-2076 in patients with acute myeloid leukemia (AML) and chronic myelomonocytic leukemia (CMML). Patients received escalating doses of ENMD-2076 administered orally daily [225 mg (n = 7), 375 mg (n = 6), 325 mg (n = 9), or 275 mg (n = 5)]. Twenty-seven patients were treated (26 AML; 1 CMML-2). The most common non-hematological toxicities of any grade, regardless of association with drug, were fatigue, diarrhea, dysphonia, dyspnea, hypertension, constipation, and abdominal pain. Dose-limiting toxicities (DLTs) consisted of grade 3 fatigue, grade 3 typhilitis, grade 3 syncope and grade 3 QTc prolongation). Of the 16 evaluable patients, one patient achieved a complete remission with incomplete count recovery (CRi), three experienced a morphologic leukemia-free state (MLFS) with a major hematologic improvement in platelets (HI-P), and 5 other patients had a reduction in marrow blast percentage (i.e. 11-65 %). The RP2D in this patient population is 225 mg orally once daily. PMID:27406088

  10. Role of Genetic Polymorphisms of Deoxycytidine Kinase and Cytidine Deaminase to Predict Risk of Death in Children with Acute Myeloid Leukemia

    PubMed Central

    Medina-Sanson, Aurora; Ramírez-Pacheco, Arturo; Moreno-Guerrero, Silvia Selene; Dorantes-Acosta, Elisa María; Sánchez-Preza, Metzeri; Reyes-López, Alfonso

    2015-01-01

    Cytarabine is one of the most effective antineoplastic agents among those used for the treatment of acute myeloid leukemia. However, some patients develop resistance and/or severe side effects to the drug, which may interfere with the efficacy of the treatment. The polymorphisms of some Ara-C metabolizing enzymes seem to affect outcome and toxicity in AML patients receiving cytarabine. We conducted this study in a cohort of Mexican pediatric patients with AML to investigate whether the polymorphisms of the deoxycytidine kinase and cytidine deaminase enzymes are implicated in clinical response and toxicity. Bone marrow and/or peripheral blood samples obtained at diagnosis from 27 previously untreated pediatric patients with de novo AML were processed for genotyping and in vitro chemosensitivity assay, and we analyzed the impact of genotypes and in vitro sensitivity on disease outcome and toxicity. In the multivariate Cox regression analysis, we found that age at diagnosis, wild-type genotype of the CDA A79C polymorphism, and wild-type genotype of the dCK C360G polymorphism were the most significant prognostic factors for predicting the risk of death. PMID:26090398

  11. Actin-Mediated Gene Expression Depends on RhoA and Rac1 Signaling in Proximal Tubular Epithelial Cells

    PubMed Central

    Giehl, Klaudia; Keller, Christof; Muehlich, Susanne; Goppelt-Struebe, Margarete

    2015-01-01

    Morphological alterations of cells can lead to modulation of gene expression. An essential link is the MKL1-dependent activation of serum response factor (SRF), which translates changes in the ratio of G- and F-actin into mRNA transcription. SRF activation is only partially characterized in non-transformed epithelial cells. Therefore, the impact of GTPases of the Rho family and changes in F-actin structures were analyzed in renal proximal tubular epithelial cells. Activation of SRF signaling was compared to the regulation of a known MKL1/SRF target gene, connective tissue growth factor (CTGF). In the human proximal tubular cell line HKC-8 overexpression of two actin mutants either favoring or preventing the formation of F-actin fibers regulated SRF-mediated transcription as well as CTGF expression. Only overexpression of constitutively active RhoA activated SRF-dependent gene expression whereas no effect was detected upon overexpression of Rac1 mutants. To elucidate the functional role of Rho kinases as downstream mediators of RhoA, pharmacological inhibition and genetic inhibition by transient siRNA knock down were compared. Upon stimulation with lysophosphatidic acid (LPA) Rho kinase inhibitors partially suppressed SRF-mediated transcription, whereas interference with Rho kinase expression by siRNA reduced activation of SRF, but barely affected CTGF expression. Together with the partial inhibition of CTGF expression by the pharmacological inhibitors Y27432 and H1154, Rho kinases seem to be less important in mediating RhoA signaling related to CTGF expression in HKC-8 epithelial cells. Short term pharmacological inhibition of Rac1 activity by EHT1864 reduced SRF-dependent CTGF expression in HKC-8 cells, but was overcome by a stimulatory effect after prolonged incubation after 4-6 h. Similarly, human primary cells of proximal but not of distal tubular origin showed inhibitory as well as stimulatory effects of Rac1 inhibition. Thus, RhoA signaling activates MKL1-SRF

  12. Hyperinsulinemia, glucose intolerance, and dyslipidemia induced by acute inhibition of phosphoinositide 3-kinase signaling in the liver.

    PubMed

    Miyake, Kazuaki; Ogawa, Wataru; Matsumoto, Michihiro; Nakamura, Takehiro; Sakaue, Hiroshi; Kasuga, Masato

    2002-11-01

    The physiological relevance of phosphoinositide 3-kinase (PI 3-K) signaling in the liver to fuel homeostasis was investigated. Systemic infusion of an adenovirus encoding a dominant negative mutant of PI 3-K ((Delta)p85) resulted in liver-specific expression of this protein and in inhibition of the insulin-induced activation of PI 3-K in the liver within 3 days, without affecting insulin signaling in skeletal muscle. Hepatic expression of (Delta)p85 led to hyperinsulinemia and to a marked increase in blood glucose concentration in response to oral glucose intake. The increases in both glycogen and glucose 6-phosphate content, as well as in Akt and glycogen synthase activities in the liver, that were induced by glucose intake were markedly impaired in mice expressing (Delta)p85. Despite an upregulation of mRNAs for gluconeogenic enzymes apparent in the liver of these animals, the fasting blood glucose concentration was increased only slightly, and the serum concentrations of gluconeogenic precursors were reduced. However, administration of pyruvate, a substrate for gluconeogenesis, resulted in an exaggerated increase in blood glucose concentration. In the fasted state, the mass of adipose tissue of the mice was about 1.5 times that in control mice. The mice also exhibited marked decreases in the serum concentrations of FFAs and triglyceride and suppression of insulin-induced PI 3-K activation in adipose tissue, probably due to the associated hyperinsulinemia. PI 3-K activity in the liver is thus essential for normal carbohydrate and lipid metabolism in living animals. PMID:12438446

  13. Role of Rho small GTPases in meniscus cells.

    PubMed

    Kanazawa, Tomoko; Furumatsu, Takayuki; Matsumoto-Ogawa, Emi; Maehara, Ami; Ozaki, Toshifumi

    2014-11-01

    We previously reported that mechanical stretch regulates Sry-type HMG box (SOX) 9-dependent α1(II) collagen (COL2A1) expression in inner meniscus cells. This study examined the role of the small Rho guanosine 5' triphosphatase Rac1 and Rho-associated kinase (ROCK) in the regulation of stretch-induced SOX9 gene expression in cultured human inner meniscus cells. COL2A1 and SOX9 gene expression was assessed by real-time PCR after application of uni-axial cyclic tensile strain (CTS) in the presence or absence of ROCK and Rac1 inhibitors. The subcellular localization of SOX9 and the Rac1 effector cyclic AMP response element-binding protein (CREB), the phosphorylation state of SOX9, Rac1 activation, and the binding of CREB to the SOX9 promoter were assessed. CTS increased the expression of COL2A1 and SOX9, which was suppressed by inhibition of Rac1. ROCK inhibition enhanced COL2A1 and SOX9 gene expression in the absence of CTS. CTS stimulated the nuclear translocation and phosphorylation of SOX9, and increased Rac1 activation. CTS also increased the binding of CREB to the SOX9 promoter. The results suggest that mechanical stretch-dependent upregulation of SOX9 by CREB in inner meniscus cells depends on the antagonistic activities of ROCK and Rac1. PMID:25130858

  14. Search for the Decay B{sup 0} --> {rho}{sup 0} {rho}{sup 0}

    SciTech Connect

    Aubert, B

    2004-08-16

    The B{sup 0} --> {rho}{sup 0}{rho}{sup 0} decay mode is searched for in a data sample of about 227 million {Upsilon}(4S) --> B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric B factory at SLAC. No significant signal is observed, and an upper limit of 1.1x10{sup -6} (90% C.L.) on the branching fraction is set. Implications on the penguin contribution and constraints on the CKM angle {alpha} with B --> {rho}{rho} decays are discussed. All results are preliminary.

  15. Rho GTPase Recognition by C3 Exoenzyme Based on C3-RhoA Complex Structure.

    PubMed

    Toda, Akiyuki; Tsurumura, Toshiharu; Yoshida, Toru; Tsumori, Yayoi; Tsuge, Hideaki

    2015-08-01

    C3 exoenzyme is a mono-ADP-ribosyltransferase (ART) that catalyzes transfer of an ADP-ribose moiety from NAD(+) to Rho GTPases. C3 has long been used to study the diverse regulatory functions of Rho GTPases. How C3 recognizes its substrate and how ADP-ribosylation proceeds are still poorly understood. Crystal structures of C3-RhoA complex reveal that C3 recognizes RhoA via the switch I, switch II, and interswitch regions. In C3-RhoA(GTP) and C3-RhoA(GDP), switch I and II adopt the GDP and GTP conformations, respectively, which explains why C3 can ADP-ribosylate both nucleotide forms. Based on structural information, we successfully changed Cdc42 to an active substrate with combined mutations in the C3-Rho GTPase interface. Moreover, the structure reflects the close relationship among Gln-183 in the QXE motif (C3), a modified Asn-41 residue (RhoA) and NC1 of NAD(H), which suggests that C3 is the prototype ART. These structures show directly for the first time that the ARTT loop is the key to target protein recognition, and they also serve to bridge the gaps among independent studies of Rho GTPases and C3. PMID:26067270

  16. Photoproduction of the rho meson and its magnetic moments

    SciTech Connect

    Kaneko, Hiromi; Hosaka, Atsushi; Scholten, Olaf

    2011-10-21

    We study photoproduction of {rho} meson in a model of hidden local symmetry. We introduce the {rho} meson on a hidden gauge boson and phenomenological {rho} meson-nucleon Lagrangian is constructed respecting chiral symmetry. It turns out that the {sigma}-exchange interaction plays an important role in neutral {rho} meson photoproduction to reproduce the experimental cross sections. In charged {rho} meson photoproduction, the model takes into account the {rho} meson magnetic moments from the three-point vertex in the kinetic terms. We show that the magnetic moment of the charged {rho} meson has a significant effect on the total cross sections in proportion to the photon energies.

  17. Proteolytic systems and AMP-activated protein kinase are critical targets of acute myeloid leukemia therapeutic approaches

    PubMed Central

    Pereira, Olga; Sampaio-Marques, Belém; Paiva, Artur; Correia-Neves, Margarida; Castro, Isabel; Ludovico, Paula

    2015-01-01

    The therapeutic strategies against acute myeloid leukemia (AML) have hardly been modified over four decades. Although resulting in a favorable outcome in young patients, older individuals, the most affected population, do not respond adequately to therapy. Intriguingly, the mechanisms responsible for AML cells chemoresistance/susceptibility are still elusive. Mounting evidence has shed light on the relevance of proteolytic systems (autophagy and ubiquitin-proteasome system, UPS), as well as the AMPK pathway, in AML biology and treatment, but their exact role is still controversial. Herein, two AML cell lines (HL-60 and KG-1) were exposed to conventional chemotherapeutic agents (cytarabine and/or doxorubicin) to assess the relevance of autophagy and UPS on AML cells’ response to antileukemia drugs. Our results clearly showed that the antileukemia agents target both proteolytic systems and the AMPK pathway. Doxorubicin enhanced UPS activity while drugs’ combination blocked autophagy specifically on HL-60 cells. In contrast, KG-1 cells responded in a more subtle manner to the drugs tested consistent with the higher UPS activity of these cells. In addition, the data demonstrates that autophagy may play a protective role depending on AML subtype. Specific modulators of autophagy and UPS are, therefore, promising targets for combining with standard therapeutic interventions in some AML subtypes. PMID:25537507

  18. Aberrant DNA methylation and epigenetic inactivation of Eph receptor tyrosine kinases and ephrin ligands in acute lymphoblastic leukemia

    PubMed Central

    Kuang, Shao-Qing; Bai, Hao; Fang, Zhi-Hong; Lopez, Gonzalo; Yang, Hui; Tong, Weigang; Wang, Zack Z.

    2010-01-01

    Eph receptors and their ephrin ligands are involved in normal hematopoietic development and tumorigenesis. Using methylated CpG island amplification/DNA promoter microarray, we identified several EPH receptor and EPHRIN genes as potential hypermethylation targets in acute lymphoblastic leukemia (ALL). We subsequently studied the DNA methylation status of the Eph/ephrin family by bisulfite pyrosequencing. Hypermethylation of EPHA2, -A4, -A5, -A6, -A7, -A10, EPHB1, -B2, -B3, -B4, EFNA1, -A3, -A5, and EFNB1 and -B2 genes was detected in leukemia cell lines and primary ALL bone marrow samples. Expression analysis of EPHB4, EFNB2, and EFNA5 genes demonstrated that DNA methylation was associated with gene silencing. We cloned the promoter region of EPHB4 and demonstrated that promoter hypermethylation can result in EPHB4 transcriptional silencing. Restoration of EPHB4 expression by lentiviral transduction resulted in reduced proliferation and apoptotic cell death in Raji cells in which EPHB4 is methylated and silenced. Finally, we demonstrated that phosphorylated Akt is down-regulated in Raji cells transduced with EPHB4. These results suggest that epigenetic silencing by hypermethylation of EPH/EPHRIN family genes contributes to ALL pathogenesis and that EPHB4 can function as a tumor suppressor in ALL. PMID:20061560

  19. Noncanonical Myo9b-RhoGAP Accelerates RhoA GTP Hydrolysis by a Dual-Arginine-Finger Mechanism.

    PubMed

    Yi, Fengshuang; Kong, Ruirui; Ren, Jinqi; Zhu, Li; Lou, Jizhong; Wu, Jane Y; Feng, Wei

    2016-07-31

    The GTP hydrolysis activities of Rho GTPases are stimulated by GTPase-activating proteins (GAPs), which contain a RhoGAP domain equipped with a characteristic arginine finger and an auxiliary asparagine for catalysis. However, the auxiliary asparagine is missing in the RhoGAP domain of Myo9b (Myo9b-RhoGAP), a unique motorized RhoGAP that specifically targets RhoA for controlling cell motility. Here, we determined the structure of Myo9b-RhoGAP in complex with GDP-bound RhoA and magnesium fluoride. Unexpectedly, Myo9b-RhoGAP contains two arginine fingers at its catalytic site. The first arginine finger resembles the one within the canonical RhoGAP domains and inserts into the nucleotide-binding pocket of RhoA, whereas the second arginine finger anchors the Switch I loop of RhoA and interacts with the nucleotide, stabilizing the transition state of GTP hydrolysis and compensating for the lack of the asparagine. Mutating either of the two arginine fingers impaired the catalytic activity of Myo9b-RhoGAP and affected the Myo9b-mediated cell migration. Our data indicate that Myo9b-RhoGAP accelerates RhoA GTP hydrolysis by a previously unknown dual-arginine-finger mechanism, which may be shared by other noncanonical RhoGAP domains lacking the auxiliary asparagine. PMID:27363609

  20. Galunisertib (LY2157299), a transforming growth factor-β receptor I kinase inhibitor, attenuates acute pancreatitis in rats.

    PubMed

    Liu, X; Yu, M; Chen, Y; Zhang, J

    2016-08-01

    Galunisertib (LY2157299), a selective ATP-mimetic inhibitor of TGF-β receptor I (TGF-βRI), is the only known TGF-β pathway inhibitor. In the present study, we investigated the effect of galunisertib on taurocholate (TAC)-induced acute pancreatitis (AP) in rats, and the role of TGF-β and NF-κB signaling pathways. AP was induced by infusion of TAC into the pancreatic duct of Sprague-Dawley male rats (n=30). The rats (220±50 g) were administered galunisertib intragastrically [75 mg·kg-1·day-1 for 2 days (0 and 24 h)]. Serum IL-1β, IL-6, TNF-α, amylase (AMY), lipase (LIP), and myeloperoxidase (MPO) levels were measured by ELISA. NF-κB activity was detected by electrophoretic mobility shift assay (EMSA); NF-κBp65 and TGF-β1 proteins, as well as TGF-βRI and p-Smad2/3 proteins, were detected by western blot assay. Cell apoptosis was detected by TUNEL assay. H&E staining was used to evaluate the histopathological alterations of the pancreas. Galunisertib treatment attenuated the severity of AP and decreased the pancreatic histological score. In addition, number of apoptotic cells were significantly increased in the galunisertib-treated group (16.38±2.26) than in the AP group (8.14±1.27) and sham-operated group (1.82±0.73; P<0.05 and P<0.01, respectively). Galunisertib decreased the expression levels of TGF-βRI and p-Smad2/3 and inhibited NF-κB activation and p65 translocation compared with the sham-operated group. Furthermore, serum IL-1β, IL-6, TNF-α, AMY and LIP levels and tissue MPO activity were significantly decreased in the galunisertib-treated group. Our data demonstrate that galunisertib attenuates the severity of TAC-induced experimental AP in rats by inducing apoptosis in the pancreas, inhibiting the activation of TGF-β signals and NF-κB as well as the secretion of pro-inflammatory cytokines. PMID:27509307

  1. Galunisertib (LY2157299), a transforming growth factor-β receptor I kinase inhibitor, attenuates acute pancreatitis in rats

    PubMed Central

    Liu, X.; Yu, M.; Chen, Y.; Zhang, J.

    2016-01-01

    Galunisertib (LY2157299), a selective ATP-mimetic inhibitor of TGF-β receptor I (TGF-βRI), is the only known TGF-β pathway inhibitor. In the present study, we investigated the effect of galunisertib on taurocholate (TAC)-induced acute pancreatitis (AP) in rats, and the role of TGF-β and NF-κB signaling pathways. AP was induced by infusion of TAC into the pancreatic duct of Sprague-Dawley male rats (n=30). The rats (220±50 g) were administered galunisertib intragastrically [75 mg·kg-1·day-1 for 2 days (0 and 24 h)]. Serum IL-1β, IL-6, TNF-α, amylase (AMY), lipase (LIP), and myeloperoxidase (MPO) levels were measured by ELISA. NF-κB activity was detected by electrophoretic mobility shift assay (EMSA); NF-κBp65 and TGF-β1 proteins, as well as TGF-βRI and p-Smad2/3 proteins, were detected by western blot assay. Cell apoptosis was detected by TUNEL assay. H&E staining was used to evaluate the histopathological alterations of the pancreas. Galunisertib treatment attenuated the severity of AP and decreased the pancreatic histological score. In addition, number of apoptotic cells were significantly increased in the galunisertib-treated group (16.38±2.26) than in the AP group (8.14±1.27) and sham-operated group (1.82±0.73; P<0.05 and P<0.01, respectively). Galunisertib decreased the expression levels of TGF-βRI and p-Smad2/3 and inhibited NF-κB activation and p65 translocation compared with the sham-operated group. Furthermore, serum IL-1β, IL-6, TNF-α, AMY and LIP levels and tissue MPO activity were significantly decreased in the galunisertib-treated group. Our data demonstrate that galunisertib attenuates the severity of TAC-induced experimental AP in rats by inducing apoptosis in the pancreas, inhibiting the activation of TGF-β signals and NF-κB as well as the secretion of pro-inflammatory cytokines. PMID:27509307

  2. Oxidized LDL signals through Rho-GTPase to induce endothelial cell stiffening and promote capillary formation.

    PubMed

    Oh, Myung-Jin; Zhang, Chongxu; LeMaster, Elizabeth; Adamos, Crystal; Berdyshev, Evgeny; Bogachkov, Yedida; Kohler, Erin E; Baruah, Jugajyoti; Fang, Yun; Schraufnagel, Dean E; Wary, Kishore K; Levitan, Irena

    2016-05-01

    Endothelial biomechanics is emerging as a key factor in endothelial function. Here, we address the mechanisms of endothelial stiffening induced by oxidized LDL (oxLDL) and investigate the role of oxLDL in lumen formation. We show that oxLDL-induced endothelial stiffening is mediated by CD36-dependent activation of RhoA and its downstream target, Rho kinase (ROCK), via inhibition of myosin light-chain phosphatase (MLCP) and myosin light-chain (MLC)2 phosphorylation. The LC-MS/MS analysis identifies 7-ketocholesterol (7KC) as the major oxysterol in oxLDL. Similarly to oxLDL, 7KC induces RhoA activation, MLCP inhibition, and MLC2 phosphorylation resulting in endothelial stiffening. OxLDL also facilitates formation of endothelial branching networks in 3D collagen gels in vitro and induces increased formation of functional blood vessels in a Matrigel plug assay in vivo. Both effects are RhoA and ROCK dependent. An increase in lumen formation was also observed in response to pre-exposing the cells to 7KC, an oxysterol that induces endothelial stiffening, but not to 5α,6α epoxide that does not affect endothelial stiffness. Importantly, loading cells with cholesterol prevented oxLDL-induced RhoA activation and the downstream signaling cascade, and reversed oxLDL-induced lumen formation. In summary, we show that oxLDL-induced endothelial stiffening is mediated by the CD36/RhoA/ROCK/MLCP/MLC2 pathway and is associated with increased endothelial angiogenic activity. PMID:26989083

  3. TrkBT1 Induces Liver Metastasis of Pancreatic Cancer Cells by Sequestering Rho GDP Dissociation Inhibitor and Promoting RhoA Activation

    PubMed Central

    Li, Zhongkui; Chang, Zhe; Chiao, Lucia J.; Kang, Ya’an; Xia, Qianghua; Zhu, Cihui; Fleming, Jason B.; Evans, Douglas B.; Chiao, Paul J.

    2011-01-01

    Many genetic and molecular alterations, such as K-ras mutation and NF-κB activation, have been identified in pancreatic cancer. However, the mechanisms by which pancreatic cancer metastasizes still remain to be determined. Although we previously showed that the tropomyosin-related kinase B (TrkB) was significantly correlated with the development of liver metastasis, its function in pancreatic cancer metastasis remained unresolved. In the present study, we showed that overexpressed TrkB is an alternatively spliced transcript variant of TrkB (TrkBT1) with a unique COOH-terminal 12–amino acid sequence and is mainly localized in the cytoplasm. Our results showed that overexpression of Flag-tagged TrkBT1 but not a Flag-tagged TrkBT1 COOH-terminal deletion mutant (Flag-TrkBT1ΔC) in nonmetastatic pancreatic cancer cells enhanced cell proliferation, promoted formation of colonies in soft agar, stimulated tumor cell invasion, and induced liver metastasis in an orthotopic xenograft mouse model of pancreatic cancer. TrkBT1 interacted with Rho GDP dissociation inhibitor (GDI) in vivo, but Flag-TrkBT1ΔC did not. Furthermore, overexpression of Flag-TrkBT1 and knockdown of RhoGDI expression by RhoGDI short hairpin RNAs promoted RhoA activation, but Flag-TrkBT1ΔC overexpression did not. Therefore, our results showed that TrkBT1 overexpression induces liver metastasis of pancreatic cancer and uncovered a unique signaling mechanism by which TrkBT1 sequesters GDI and activates RhoA signaling. PMID:19773448

  4. Evidence for B- to rho0rho0 Decay and Implications for the CKM Angle alpha

    SciTech Connect

    Aubert, B.

    2007-01-03

    The authors search for the decays B{sup 0} {yields} {rho}{sup 0}{rho}{sup 0}, B{sup 0} {yields} {rho}{sup 0} f{sub 0}(980), and B{sup 0} {yields} f{sub 0}(980) f{sub 0}(980) in a sample of about 384 million {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at SLAC. They find evidence for B{sup 0} {yields} {rho}{sup 0}{rho}{sup 0} with 3.5{sigma} significance and measure the branching fraction {Beta} = (1.07 {+-} 0.33 {+-} 0.19) x 10{sup -6} and longitudinal polarization fraction f{sub L} = 0.87 {+-} 0.13 {+-} 0.04, where the first uncertainty is statistical, and the second is systematic. The uncertainty on the CKM unitarity angle {alpha} due to penguin contributions in B {yields} {rho}{rho} decays is 18{sup o} at the 1{sigma} level. They also set upper limits on the B{sup 0} {yields} {rho}{sup 0} f{sub 0}(980) and B{sup 0} {yields} f{sub 0}(980)f{sub 0}(980) decay rates.

  5. Inhibition of c-Jun N-terminal Kinase Signaling Pathway Alleviates Lipopolysaccharide-induced Acute Respiratory Distress Syndrome in Rats

    PubMed Central

    Lai, Jian-Bo; Qiu, Chun-Fang; Chen, Chuan-Xi; Chen, Min-Ying; Chen, Juan; Guan, Xiang-Dong; Ouyang, Bin

    2016-01-01

    Background: An acute respiratory distress syndrome (ARDS) is still one of the major challenges in critically ill patients. This study aimed to investigate the effect of inhibiting c-Jun N-terminal kinase (JNK) on ARDS in a lipopolysaccharide (LPS)-induced ARDS rat model. Methods: Thirty-six rats were randomized into three groups: control, LPS, and LPS + JNK inhibitor. Rats were sacrificed 8 h after LPS treatment. The lung edema was observed by measuring the wet-to-dry weight (W/D) ratio of the lung. The severity of pulmonary inflammation was observed by measuring myeloperoxidase (MPO) activity of lung tissue. Moreover, the neutrophils in bronchoalveolar lavage fluid (BALF) were counted to observe the airway inflammation. In addition, lung collagen accumulation was quantified by Sircol Collagen Assay. At the same time, the pulmonary histologic examination was performed, and lung injury score was achieved in all three groups. Results: MPO activity in lung tissue was found increased in rats treated with LPS comparing with that in control (1.26 ± 0.15 U in LPS vs. 0.77 ± 0.27 U in control, P < 0.05). Inhibiting JNK attenuated LPS-induced MPO activity upregulation (0.52 ± 0.12 U in LPS + JNK inhibitor vs. 1.26 ± 0.15 U in LPS, P < 0.05). Neutrophils in BALF were also found to be increased with LPS treatment, and inhibiting JNK attenuated LPS-induced neutrophils increase in BALF (255.0 ± 164.4 in LPS vs. 53 (44.5-103) in control vs. 127.0 ± 44.3 in LPS + JNK inhibitor, P < 0.05). At the same time, the lung injury score showed a reduction in LPS + JNK inhibitor group comparing with that in LPS group (13.42 ± 4.82 vs. 7.00 ± 1.83, P = 0.001). However, the lung W/D ratio and the collagen in BALF did not show any differences between LPS and LPS + JNK inhibitor group. Conclusions: Inhibiting JNK alleviated LPS-induced acute lung inflammation and had no effects on pulmonary edema and fibrosis. JNK inhibitor might be a potential therapeutic medication in ARDS, in the

  6. Apoptotic Efficacy of Etomoxir in Human Acute Myeloid Leukemia Cells. Cooperation with Arsenic Trioxide and Glycolytic Inhibitors, and Regulation by Oxidative Stress and Protein Kinase Activities

    PubMed Central

    Estañ, María Cristina; Calviño, Eva; Calvo, Susana; Guillén-Guío, Beatriz; Boyano-Adánez, María del Carmen; de Blas, Elena; Rial, Eduardo; Aller, Patricio

    2014-01-01

    Fatty acid synthesis and oxidation are frequently exacerbated in leukemia cells, and may therefore represent a target for therapeutic intervention. In this work we analyzed the apoptotic and chemo-sensitizing action of the fatty acid oxidation inhibitor etomoxir in human acute myeloid leukemia cells. Etomoxir caused negligible lethality at concentrations up to 100 µM, but efficaciously cooperated to cause apoptosis with the anti-leukemic agent arsenic trioxide (ATO, Trisenox), and with lower efficacy with other anti-tumour drugs (etoposide, cisplatin), in HL60 cells. Etomoxir-ATO cooperation was also observed in NB4 human acute promyelocytic cells, but not in normal (non-tumour) mitogen-stimulated human peripheral blood lymphocytes. Biochemical determinations in HL60 cells indicated that etomoxir (25–200 µM) dose-dependently inhibited mitochondrial respiration while slightly stimulating glycolysis, and only caused marginal alterations in total ATP content and adenine nucleotide pool distribution. In addition, etomoxir caused oxidative stress (increase in intracellular reactive oxygen species accumulation, decrease in reduced glutathione content), as well as pro-apoptotic LKB-1/AMPK pathway activation, all of which may in part explain the chemo-sensitizing capacity of the drug. Etomoxir also cooperated with glycolytic inhibitors (2-deoxy-D-glucose, lonidamine) to induce apoptosis in HL60 cells, but not in NB4 cells. The combined etomoxir plus 2-deoxy-D-glucose treatment did not increase oxidative stress, caused moderate decrease in net ATP content, increased the AMP/ATP ratio with concomitant drop in energy charge, and caused defensive Akt and ERK kinase activation. Apoptosis generation by etomoxir plus 2-deoxy-D-glucose was further increased by co-incubation with ATO, which is apparently explained by the capacity of ATO to attenuate Akt and ERK activation. In summary, co-treatment with etomoxir may represent an interesting strategy to increase the apoptotic

  7. Apoptotic efficacy of etomoxir in human acute myeloid leukemia cells. Cooperation with arsenic trioxide and glycolytic inhibitors, and regulation by oxidative stress and protein kinase activities.

    PubMed

    Estañ, María Cristina; Calviño, Eva; Calvo, Susana; Guillén-Guío, Beatriz; Boyano-Adánez, María Del Carmen; de Blas, Elena; Rial, Eduardo; Aller, Patricio

    2014-01-01

    Fatty acid synthesis and oxidation are frequently exacerbated in leukemia cells, and may therefore represent a target for therapeutic intervention. In this work we analyzed the apoptotic and chemo-sensitizing action of the fatty acid oxidation inhibitor etomoxir in human acute myeloid leukemia cells. Etomoxir caused negligible lethality at concentrations up to 100 µM, but efficaciously cooperated to cause apoptosis with the anti-leukemic agent arsenic trioxide (ATO, Trisenox), and with lower efficacy with other anti-tumour drugs (etoposide, cisplatin), in HL60 cells. Etomoxir-ATO cooperation was also observed in NB4 human acute promyelocytic cells, but not in normal (non-tumour) mitogen-stimulated human peripheral blood lymphocytes. Biochemical determinations in HL60 cells indicated that etomoxir (25-200 µM) dose-dependently inhibited mitochondrial respiration while slightly stimulating glycolysis, and only caused marginal alterations in total ATP content and adenine nucleotide pool distribution. In addition, etomoxir caused oxidative stress (increase in intracellular reactive oxygen species accumulation, decrease in reduced glutathione content), as well as pro-apoptotic LKB-1/AMPK pathway activation, all of which may in part explain the chemo-sensitizing capacity of the drug. Etomoxir also cooperated with glycolytic inhibitors (2-deoxy-D-glucose, lonidamine) to induce apoptosis in HL60 cells, but not in NB4 cells. The combined etomoxir plus 2-deoxy-D-glucose treatment did not increase oxidative stress, caused moderate decrease in net ATP content, increased the AMP/ATP ratio with concomitant drop in energy charge, and caused defensive Akt and ERK kinase activation. Apoptosis generation by etomoxir plus 2-deoxy-D-glucose was further increased by co-incubation with ATO, which is apparently explained by the capacity of ATO to attenuate Akt and ERK activation. In summary, co-treatment with etomoxir may represent an interesting strategy to increase the apoptotic

  8. Marked reduction of Na(+), K(+)-ATPase and creatine kinase activities induced by acute lysine administration in glutaryl-CoA dehydrogenase deficient mice.

    PubMed

    Amaral, Alexandre Umpierrez; Cecatto, Cristiane; Seminotti, Bianca; Zanatta, Ângela; Fernandes, Carolina Gonçalves; Busanello, Estela Natacha Brandt; Braga, Luisa Macedo; Ribeiro, César Augusto João; de Souza, Diogo Onofre Gomes; Woontner, Michael; Koeller, David M; Goodman, Stephen; Wajner, Moacir

    2012-09-01

    Glutaric acidemia type I (GA I) is an inherited neurometabolic disorder caused by a severe deficiency of the mitochondrial glutaryl-CoA dehydrogenase activity leading to accumulation of predominantly glutaric (GA) and 3-hydroxyglutaric (3HGA) acids in the brain and other tissues. Affected patients usually present with hypotonia and brain damage and acute encephalopathic episodes whose pathophysiology is not yet fully established. In this study we investigated important parameters of cellular bioenergetics in brain, heart and skeletal muscle from 15-day-old glutaryl-CoA dehydrogenase deficient mice (Gcdh(-/-)) submitted to a single intra-peritoneal injection of saline (Sal) or lysine (Lys - 8 μmol/g) as compared to wild type (WT) mice. We evaluated the activities of the respiratory chain complexes II, II-III and IV, α-ketoglutarate dehydrogenase (α-KGDH), creatine kinase (CK) and synaptic Na(+), K(+)-ATPase. No differences of all evaluated parameters were detected in the Gcdh(-/-) relatively to the WT mice injected at baseline (Sal). Furthermore, mild increases of the activities of some respiratory chain complexes (II-III and IV) were observed in heart and skeletal muscle of Gcdh(-/-) and WT mice after Lys administration. However, the most marked effects provoked by Lys administration were marked decreases of the activities of Na(+), K(+)-ATPase in brain and CK in brain and skeletal muscle of Gcdh(-/-) mice. In contrast, brain α-KGDH activity was not altered in WT and Gcdh(-/-) injected with Sal or Lys. Our results demonstrate that reduction of Na(+), K(+)-ATPase and CK activities may play an important role in the pathogenesis of the neurodegenerative changes in GA I. PMID:22578804

  9. Inhibition of glycogen synthase kinase 3β promotes autophagy to protect mice from acute liver failure mediated by peroxisome proliferator-activated receptor α

    PubMed Central

    Ren, F; Zhang, L; Zhang, X; Shi, H; Wen, T; Bai, L; Zheng, S; Chen, Y; Chen, D; Li, L; Duan, Z

    2016-01-01

    Our previous studies have demonstrated that inhibition of glycogen synthase kinase 3β (GSK3β) activity protects mice from acute liver failure (ALF), whereas its protective and regulatory mechanism remains elusive. Autophagy is a recently recognized rudimentary cellular response to inflammation and injury. The aim of the present study was to test the hypothesis that inhibition of GSK3β mediates autophagy to inhibit liver inflammation and protect against ALF. In ALF mice model induced by d-galactosamine (d-GalN) and lipopolysaccharide (LPS), autophagy was repressed compared with normal control, and d-GalN/LPS can directly induce autophagic flux in the progression of ALF mice. Autophagy activation by rapamycin protected against liver injury and its inhibition by 3-methyladenine (3-MA) or autophagy gene 7 (Atg7) small interfering RNA (siRNA) exacerbated liver injury. The protective effect of GSK3β inhibition on ALF mice model depending on the induction of autophagy, because that inhibition of GSK3β promoted autophagy in vitro and in vivo, and inhibition of autophagy reversed liver protection and inflammation of GSK3β inhibition. Furthermore, inhibition of GSK3β increased the expression of peroxisome proliferator-activated receptor α (PPARα), and the downregulated PPARα by siRNA decreased autophagy induced by GSK3β inhibition. More importantly, the expressions of autophagy-related gene and PPARα are significantly downregulated and the activity of GSK3β is significantly upregulated in liver of ALF patients with hepatitis B virus. Thus, we have demonstrated the new pathological mechanism of ALF that the increased GSK3β activity suppresses autophagy to promote the occurrence and development of ALF by inhibiting PPARα pathway. PMID:27010852

  10. FMS-Like Tyrosine Kinase 3 Ligand Treatment of Mice Aggravates Acute Lung Injury in Response to Streptococcus pneumoniae: Role of Pneumolysin

    PubMed Central

    Brumshagen, Christina; Maus, Regina; Bischof, Andrea; Ueberberg, Bianca; Bohling, Jennifer; Osterholzer, John J.; Ogunniyi, Abiodun D.; Paton, James C.; Welte, Tobias

    2012-01-01

    FMS-like tyrosine kinase-3 ligand (Flt3L) is a dendritic cell (DC) growth and differentiation factor with potential in antitumor therapies and antibacterial immunization strategies. However, the effect of systemic Flt3L treatment on lung-protective immunity against bacterial infection is incompletely defined. Here, we examined the impact of deficient (in Flt3L knockout [KO] mice), normal (in wild-type [WT] mice), or increased Flt3L availability (in WT mice pretreated with Flt3L for 3, 5, or 7 days) on lung DC subset profiles and lung-protective immunity against the major lung-tropic pathogen, Streptococcus pneumoniae. Although in Flt3L-deficient mice the numbers of DCs positive for CD11b (CD11bpos DCs) and for CD103 (CD103pos DCs) were diminished, lung permeability, a marker of injury, was unaltered in response to S. pneumoniae. In contrast, WT mice pretreated with Flt3L particularly responded with increased numbers of CD11bpos DCs and with less pronounced numbers of CD103pos DCs and impaired bacterial clearance and with increased lung permeability following S. pneumoniae challenge. Notably, infection of Flt3L-pretreated mice with S. pneumoniae lacking the pore-forming toxin, pneumolysin (PLY), resulted in substantially less lung CD11bpos DCs activation and reduced lung permeability. Collectively, this study establishes that Flt3L treatment enhances the accumulation of proinflammatory activated lung CD11bpos DCs which contribute to acute lung injury in response to PLY released by S. pneumoniae. PMID:23006850

  11. FilGAP and its close relatives: a mediator of Rho-Rac antagonism that regulates cell morphology and migration.

    PubMed

    Nakamura, Fumihiko

    2013-07-01

    Cell migration, phagocytosis and cytokinesis are mechanically intensive cellular processes that are mediated by the dynamic assembly and contractility of the actin cytoskeleton. GAPs (GTPase-activating proteins) control activities of the Rho family proteins including Cdc42, Rac1 and RhoA, which are prominent upstream regulators of the actin cytoskeleton. The present review concerns a class of Rho GAPs, FilGAP (ARHGAP24 gene product) and its close relatives (ARHGAP22 and AHRGAP25 gene products). FilGAP is a GAP for Rac1 and a binding partner of FLNa (filamin A), a widely expressed F-actin (filamentous actin)-cross-linking protein that binds many different proteins that are important in cell regulation. Phosphorylation of FilGAP serine/threonine residues and binding to FLNa modulate FilGAP's GAP activity and, as a result, its ability to regulate cell protrusion and spreading. FLNa binds to FilGAP at F-actin-enriched sites, such as at the leading edge of the cell where Rac1 activity is controlled to inhibit actin assembly. FilGAP then dissociates from FLNa in actin networks by myosin-dependent mechanical deformation of FLNa's FilGAP-binding site to relocate at the plasma membrane by binding to polyphosphoinositides. Since actomyosin contraction is activated downstream of RhoA-ROCK (Rho-kinase), RhoA activity regulates Rac1 through FilGAP by signalling to the force-generating system. FilGAP and the ARHGAP22 gene product also act as mediators between RhoA and Rac1 pathways, which lead to amoeboid and mesenchymal modes of cell movements respectively. Therefore FilGAP and its close relatives are key regulators that promote the reciprocal inhibitory relationship between RhoA and Rac1 in cell shape changes and the mesenchymal-amoeboid transition in tumour cells. PMID:23763313

  12. Abnormal Activation of RhoA/ROCK-I Signaling in Junctional Zone Smooth Muscle Cells of Patients With Adenomyosis.

    PubMed

    Wang, S; Duan, H; Zhang, Y; Sun, F Q

    2016-03-01

    Adenomyosis (ADS) is a common estrogen-dependent gynecological disease with unknown etiology. The RhoA/Rho-kinase (ROCK) signaling pathway is involved in various cellular functions, including migration, proliferation, and smooth muscle contraction. Here we examined the potential role of this pathway in junctional zone (JZ) contraction in women with and without ADS. We demonstrated that in the normal JZ, RhoA and ROCK-I messenger RNA (mRNA) and protein expression was significantly higher in the proliferative phase of the menstrual cycle than in the secretory phase. Expression of RhoA and ROCK-I in the JZ from women with ADS was significantly higher than in the control women and showed no significant differences across the menstrual cycle. Treatment of JZ smooth muscle cells (JZSMCs) with estrogen at 0, 1, 10, or 100 nmol/L for 24 hours resulted in increased expression of RhoA, ROCK-I, and myosin light-chain (MLC) phosphorylation (p-MLC) in a dose-dependent manner. In parallel to its effects on p-MLC, estrogen-mediated, dose-dependent contraction responses in JZSMCs. Estrogen-mediated contraction in the ADS group was significantly higher than in the controls and also showed no significant differences across the menstrual cycle. These effects were suppressed in the presence of ICI 182780 or Y27632, supporting an estrogen receptor-dependent and RhoA activation-dependent mechanism. Our results indicate that the level of RhoA and ROCK-I increases in patients with ADS and the cyclic change is lost. Estrogen may affect uterine JZ contraction of ADS by enhancing RhoA/ ROCK-I signaling. PMID:26335177

  13. α-TEA inhibits the growth and motility of human colon cancer cells via targeting RhoA/ROCK signaling

    PubMed Central

    Yao, Jialin; Gao, Peng; Xu, Yang; Li, Zhaozhu

    2016-01-01

    Colon or colorectal cancer is a common type of human cancer, which originates in the intestine crassum or the rectum. In the United States, colorectal cancer has one of the highest rates of cancer-related mortality. Investigating novel chemotherapeutic approaches is significant in the treatment of cancers, such as colorectal cancer. α-tocopherol ether-linked acetic acid (α-TEA) is a potent anticancer agent in multiple types of human cancer. However, its effect remains to be determined in colon cancer. In this study, HCT116 and SW480 human colon cancer cells were used to investigate the anticancer role of α-TEA. It was demonstrated that α-TEA inhibited cell proliferation, migration and invasion in colon cancer cells. Furthermore, it was shown that α-TEA downregulated the activity of RhoA and phosphorylated Rho-associated protein kinase (ROCK) substrate myosin light chain (MLC) using a pull-down assay and western blotting, respectively, implying that the RhoA/ROCK pathway is involved in α-TEA-mediated cell growth and motility inhibition. In order to confirm this hypothesis a RhoA inhibitor (clostridium botulinum C3 exoenzyme), a ROCK inhibitor (Y27632) and RhoA small interfering (si)RNA were applied to block RhoA/ROCK signaling. This resulted in the attenuation of MLC phosphorylation, and augmentation of α-TEA-mediated growth and motility inhibition in colon cancer cells. In conclusion, these results indicate that α-TEA inhibits growth and motility in colon cancer cells possibly by targeting RhoA/ROCK signaling. Moreover, combined with RhoA or ROCK inhibitors, α-TEA may exhibit a more effective inhibitory role in colon cancer. PMID:27432222

  14. α-TEA inhibits the growth and motility of human colon cancer cells via targeting RhoA/ROCK signaling.

    PubMed

    Yao, Jialin; Gao, Peng; Xu, Yang; Li, Zhaozhu

    2016-09-01

    Colon or colorectal cancer is a common type of human cancer, which originates in the intestine crassum or the rectum. In the United States, colorectal cancer has one of the highest rates of cancer‑related mortality. Investigating novel chemotherapeutic approaches is significant in the treatment of cancers, such as colorectal cancer. α-tocopherol ether-linked acetic acid (α-TEA) is a potent anticancer agent in multiple types of human cancer. However, its effect remains to be determined in colon cancer. In this study, HCT116 and SW480 human colon cancer cells were used to investigate the anticancer role of α-TEA. It was demonstrated that α-TEA inhibited cell proliferation, migration and invasion in colon cancer cells. Furthermore, it was shown that α-TEA downregulated the activity of RhoA and phosphorylated Rho-associated protein kinase (ROCK) substrate myosin light chain (MLC) using a pull-down assay and western blotting, respectively, implying that the RhoA/ROCK pathway is involved in α-TEA-mediated cell growth and motility inhibition. In order to confirm this hypothesis a RhoA inhibitor (clostridium botulinum C3 exoenzyme), a ROCK inhibitor (Y27632) and RhoA small interfering (si)RNA were applied to block RhoA/ROCK signaling. This resulted in the attenuation of MLC phosphorylation, and augmentation of α-TEA-mediated growth and motility inhibition in colon cancer cells. In conclusion, these results indicate that α-TEA inhibits growth and motility in colon cancer cells possibly by targeting RhoA/ROCK signaling. Moreover, combined with RhoA or ROCK inhibitors, α-TEA may exhibit a more effective inhibitory role in colon cancer. PMID:27432222

  15. Formins as effector proteins of Rho GTPases

    PubMed Central

    Kühn, Sonja; Geyer, Matthias

    2014-01-01

    Formin proteins were recognized as effectors of Rho GTPases some 15 years ago. They contribute to different cellular actin cytoskeleton structures by their ability to polymerize straight actin filaments at the barbed end. While not all formins necessarily interact with Rho GTPases, a subgroup of mammalian formins, termed Diaphanous-related formins or DRFs, were shown to be activated by small GTPases of the Rho superfamily. DRFs are autoinhibited in the resting state by an N- to C-terminal interaction that renders the central actin polymerization domain inactive. Upon the interaction with a GTP-bound Rho, Rac, or Cdc42 GTPase, the C-terminal autoregulation domain is displaced from its N-terminal recognition site and the formin becomes active to polymerize actin filaments. In this review we discuss the current knowledge on the structure, activation, and function of formin-GTPase interactions for the mammalian formin families Dia, Daam, FMNL, and FHOD. We describe both direct and indirect interactions of formins with GTPases, which lead to formin activation and cytoskeletal rearrangements. The multifaceted function of formins as effector proteins of Rho GTPases thus reflects the diversity of the actin cytoskeleton in cells. PMID:24914801

  16. Acute hyperglycemia induces rapid, reversible increases in glomerular permeability in nondiabetic rats.

    PubMed

    Axelsson, Josefin; Rippe, Anna; Rippe, Bengt

    2010-06-01

    This study was performed to investigate the impact of acute hyperglycemia (HG) on the permeability of the normal glomerular filtration barrier in vivo. In anesthetized Wistar rats (250-280 g), the left ureter was catheterized for urine collection, while simultaneously blood access was achieved. Rats received an intravenous (iv) infusion of either 1) hypertonic glucose to maintain blood glucose at 20-25 mM (G; n = 8); 2) hypertonic glucose as in 1) and a RhoA-kinase inhibitor (Y-27632; Rho-G; n = 8); 3) 20% mannitol (MANN; n = 7) or 4) hypertonic (12%) NaCl to maintain plasma crystalloid osmotic pressure (pi(cry)) at approximately 320-325 mosmol/l (NaCl; n = 8) or 5) physiological saline (SHAM; n = 8). FITC-Ficoll 70/400 was infused iv for at least 20 min before termination of the experiments, and plasma and urine were collected to determine the glomerular sieving coefficients (theta) for polydisperse Ficoll (molecular radius 15-80 A) by high-performance size-exclusion chromatography. In G there was a marked increase in for Ficoll(55-80A) at 20 min, which was completely reversible within 60 min and abrogated by a Rho-kinase (ROCK) inhibitor, while glomerular permeability remained unchanged in MANN and NaCl. In conclusion, acute HG caused rapid, reversible increases in for large Ficolls, not related to the concomitant hyperosmolarity, but sensitive to ROCK inhibition. The changes observed were consistent with the formation of an increased number of large pores in the glomerular filter. The sensitivity of the permeability changes to ROCK inhibition strongly indicates that the cytoskeleton of the cells in the glomerular barrier may be involved in these alterations. PMID:20237233

  17. KIF17 regulates RhoA-dependent actin remodeling at epithelial cell-cell adhesions.

    PubMed

    Acharya, Bipul R; Espenel, Cedric; Libanje, Fotine; Raingeaud, Joel; Morgan, Jessica; Jaulin, Fanny; Kreitzer, Geri

    2016-03-01

    The kinesin KIF17 localizes at microtubule plus-ends where it contributes to regulation of microtubule stabilization and epithelial polarization. We now show that KIF17 localizes at cell-cell adhesions and that KIF17 depletion inhibits accumulation of actin at the apical pole of cells grown in 3D organotypic cultures and alters the distribution of actin and E-cadherin in cells cultured in 2D on solid supports. Overexpression of full-length KIF17 constructs or truncation mutants containing the N-terminal motor domain resulted in accumulation of newly incorporated GFP-actin into junctional actin foci, cleared E-cadherin from cytoplasmic vesicles and stabilized cell-cell adhesions to challenge with calcium depletion. Expression of these KIF17 constructs also increased cellular levels of active RhoA, whereas active RhoA was diminished in KIF17-depleted cells. Inhibition of RhoA or its effector ROCK, or expression of LIMK1 kinase-dead or activated cofilin(S3A) inhibited KIF17-induced junctional actin accumulation. Interestingly, KIF17 activity toward actin depends on the motor domain but is independent of microtubule binding. Together, these data show that KIF17 can modify RhoA-GTPase signaling to influence junctional actin and the stability of the apical junctional complex of epithelial cells. PMID:26759174

  18. SNX9 promotes metastasis by enhancing cancer cell invasion via differential regulation of RhoGTPases

    PubMed Central

    Bendris, Nawal; Williams, Karla C.; Reis, Carlos R.; Welf, Erik S.; Chen, Ping-Hung; Lemmers, Bénédicte; Hahne, Michael; Leong, Hon Sing; Schmid, Sandra L.

    2016-01-01

    Despite current advances in cancer research, metastasis remains the leading factor in cancer-related deaths. Here we identify sorting nexin 9 (SNX9) as a new regulator of breast cancer metastasis. We detect an increase in SNX9 expression in human breast cancer metastases compared with primary tumors and demonstrate that SNX9 expression in MDA-MB-231 breast cancer cells is necessary to maintain their ability to metastasize in a chick embryo model. Conversely, SNX9 knockdown impairs this process. In vitro studies using several cancer cell lines derived from a variety of human tumors reveal a role for SNX9 in cell invasion and identify mechanisms responsible for this novel function. We show that SNX9 controls the activation of RhoA and Cdc42 GTPases and also regulates cell motility via the modulation of well-known molecules involved in metastasis, namely RhoA-ROCK and N-WASP. In addition, we find that SNX9 is required for RhoGTPase-dependent, clathrin-independent endocytosis, and in this capacity can functionally substitute to the bona fide Rho GAP, GTPase regulator associated with focal adhesion kinase (GRAF1). Taken together, our data establish novel roles for SNX9 as a multifunctional protein scaffold that regulates, and potentially coordinates, several cellular processes that together can enhance cancer cell metastasis. PMID:26960793

  19. Rac-1 and Raf-1 kinases, components of distinct signaling pathways, activate myotonic dystrophy protein kinase

    NASA Technical Reports Server (NTRS)

    Shimizu, M.; Wang, W.; Walch, E. T.; Dunne, P. W.; Epstein, H. F.

    2000-01-01

    Myotonic dystrophy protein kinase (DMPK) is a serine-threonine protein kinase encoded by the myotonic dystrophy (DM) locus on human chromosome 19q13.3. It is a close relative of other kinases that interact with members of the Rho family of small GTPases. We show here that the actin cytoskeleton-linked GTPase Rac-1 binds to DMPK, and coexpression of Rac-1 and DMPK activates its transphosphorylation activity in a GTP-sensitive manner. DMPK can also bind Raf-1 kinase, the Ras-activated molecule of the MAP kinase pathway. Purified Raf-1 kinase phosphorylates and activates DMPK. The interaction of DMPK with these distinct signals suggests that it may play a role as a nexus for cross-talk between their respective pathways and may partially explain the remarkable pleiotropy of DM.

  20. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS.

    PubMed

    Park, Yong Hwan; Wood, Geryl; Kastner, Daniel L; Chae, Jae Jin

    2016-08-01

    Mutations in the genes encoding pyrin and mevalonate kinase (MVK) cause distinct interleukin-1β (IL-1β)-mediated autoinflammatory diseases: familial Mediterranean fever (FMF) and hyperimmunoglobulinemia D syndrome (HIDS). Pyrin forms an inflammasome when mutant or in response to bacterial modification of the GTPase RhoA. We found that RhoA activated the serine-threonine kinases PKN1 and PKN2 that bind and phosphorylate pyrin. Phosphorylated pyrin bound to 14-3-3 proteins, regulatory proteins that in turn blocked the pyrin inflammasome. The binding of 14-3-3 and PKN proteins to FMF-associated mutant pyrin was substantially decreased, and the constitutive IL-1β release from peripheral blood mononuclear cells of patients with FMF or HIDS was attenuated by activation of PKN1 and PKN2. Defects in prenylation, seen in HIDS, led to RhoA inactivation and consequent pyrin inflammasome activation. These data suggest a previously unsuspected fundamental molecular connection between two seemingly distinct autoinflammatory disorders. PMID:27270401

  1. Diffractive {rho}0 production at COMPASS

    SciTech Connect

    D'Hose, N.

    2005-10-06

    Diffractive leptoproduction of {rho}0 mesons, {mu} + N {yields} {mu} + N + {rho} is measured at COMPASS at < W > = 10 GeV over a wide range of Q2, 0.01 < Q2 < 10 GeV2. Angular distributions allow to determine spin density matrix elements. Preliminary results from COMPASS 2002 data are presented. They are consistent with a substantial increase of R = {sigma}L/{sigma}T with Q2 and a weak violation of SCHC, in agreement with other high energy experiments.

  2. Approaches of targeting Rho GTPases in cancer drug discovery

    PubMed Central

    Lin, Yuan; Zheng, Yi

    2016-01-01

    Introduction Rho GTPases are master regulators of actomyosin structure and dynamics and play pivotal roles in a variety of cellular processes including cell morphology, gene transcription, cell cycle progression and cell adhesion. Because aberrant Rho GTPase signaling activities are widely associated with human cancer, key components of Rho GTPase signaling pathways have attracted increasing interest as potential therapeutic targets. Similar to Ras, Rho GTPases themselves were, until recently, deemed “undruggable” because of structure-function considerations. Several approaches to interfere with Rho GTPase signaling have been explored and show promise as new ways for tackling cancer cells. Areas covered This review focuses on the recent progress in targeting the signaling activities of three prototypical Rho GTPases, i.e. RhoA, Rac1, and Cdc42. The authors describe the involvement of these Rho GTPases, their key regulators and effectors in cancer. Furthermore, the authors discuss the current approaches for rationally targeting aberrant Rho GTPases along their signaling cascades, upstream and downstream of Rho GTPases and posttranslational modifications at a molecular level. Expert opinion To date, while no clinically effective drugs targeting Rho GTPase signaling for cancer treatment are available, tool compounds and lead drugs that pharmacologically inhibit Rho GTPase pathways have shown promise. Small molecule inhibitors targeting Rho GTPase signaling may add new treatment options for future precision cancer therapy, particularly in combination with other anti-cancer agents. PMID:26087073

  3. Structural and Mechanistic Insights into the Regulation of the Fundamental Rho Regulator RhoGDIα by Lysine Acetylation.

    PubMed

    Kuhlmann, Nora; Wroblowski, Sarah; Knyphausen, Philipp; de Boor, Susanne; Brenig, Julian; Zienert, Anke Y; Meyer-Teschendorf, Katrin; Praefcke, Gerrit J K; Nolte, Hendrik; Krüger, Marcus; Schacherl, Magdalena; Baumann, Ulrich; James, Leo C; Chin, Jason W; Lammers, Michael

    2016-03-11

    Rho proteins are small GTP/GDP-binding proteins primarily involved in cytoskeleton regulation. Their GTP/GDP cycle is often tightly connected to a membrane/cytosol cycle regulated by the Rho guanine nucleotide dissociation inhibitor α (RhoGDIα). RhoGDIα has been regarded as a housekeeping regulator essential to control homeostasis of Rho proteins. Recent proteomic screens showed that RhoGDIα is extensively lysine-acetylated. Here, we present the first comprehensive structural and mechanistic study to show how RhoGDIα function is regulated by lysine acetylation. We discover that lysine acetylation impairs Rho protein binding and increases guanine nucleotide exchange factor-catalyzed nucleotide exchange on RhoA, these two functions being prerequisites to constitute a bona fide GDI displacement factor. RhoGDIα acetylation interferes with Rho signaling, resulting in alteration of cellular filamentous actin. Finally, we discover that RhoGDIα is endogenously acetylated in mammalian cells, and we identify CBP, p300, and pCAF as RhoGDIα-acetyltransferases and Sirt2 and HDAC6 as specific deacetylases, showing the biological significance of this post-translational modification. PMID:26719334

  4. Paraxial protocadherin coordinates cell polarity during convergent extension via Rho A and JNK

    PubMed Central

    Unterseher, Frank; Hefele, Joerg A; Giehl, Klaudia; De Robertis, Eddy M; Wedlich, Doris; Schambony, Alexandra

    2004-01-01

    Convergent extension movements occur ubiquitously in animal development. This special type of cell movement is controlled by the Wnt/planar cell polarity (PCP) pathway. Here we show that Xenopus paraxial protocadherin (XPAPC) functionally interacts with the Wnt/PCP pathway in the control of convergence and extension (CE) movements in Xenopus laevis. XPAPC functions as a signalling molecule that coordinates cell polarity of the involuting mesoderm in mediolateral orientation and thus selectively promotes convergence in CE movements. XPAPC signals through the small GTPases Rho A and Rac 1 and c-jun N-terminal kinase (JNK). Loss of XPAPC function blocks Rho A-mediated JNK activation. Despite common downstream components, XPAPC and Wnt/PCP signalling are not redundant, and the activity of both, XPAPC and PCP signalling, is required to coordinate CE movements. PMID:15297873

  5. Differential regulation of phagosome maturation in macrophages and dendritic cells mediated by Rho GTPases and ezrin–radixin–moesin (ERM) proteins

    PubMed Central

    Erwig, Lars-Peter; McPhilips, Kathleen A.; Wynes, Murray W.; Ivetic, Alexander; Ridley, Anne J.; Henson, Peter M.

    2006-01-01

    Deletion of apoptotic cells from tissues involves their phagocytosis by macrophages, dendritic cells, and tissue cells. Although much attention has been focused on the participating ligands, receptors, and mechanisms of uptake, little is known of the disposition of the ingested cell within the phagosome. Here we show that uptake of apoptotic cells by macrophages or fibroblasts results in rapid phagosome maturation, whereas macrophage phagosomes containing Ig-opsonized target cells mature at a slower rate. The early maturation was shown to depend on activation of Rho acting through Rho kinase on ezrin–radixin–moesin proteins. Blockade of Rho signaling or inhibition of moesin both delayed maturation rates to those seen with opsonized targets. By contrast, phagosome maturation in dendritic cells was slower, similar between apoptotic and opsonized target cells, and unaffected by Rho inhibition. These observations have direct implications for the clearance of dying cells and the roles played by different phagocytes in antigen digestion and presentation. PMID:16908865

  6. Caspase-3 dependent nitrergic neuronal apoptosis following cavernous nerve injury is mediated via RhoA and ROCK activation in major pelvic ganglion.

    PubMed

    Hannan, Johanna L; Matsui, Hotaka; Sopko, Nikolai A; Liu, Xiaopu; Weyne, Emmanuel; Albersen, Maarten; Watson, Joseph W; Hoke, Ahmet; Burnett, Arthur L; Bivalacqua, Trinity J

    2016-01-01

    Axonal injury due to prostatectomy leads to Wallerian degeneration of the cavernous nerve (CN) and erectile dysfunction (ED). Return of potency is dependent on axonal regeneration and reinnervation of the penis. Following CN injury (CNI), RhoA and Rho-associated protein kinase (ROCK) increase in penile endothelial and smooth muscle cells. Previous studies indicate that nerve regeneration is hampered by activation of RhoA/ROCK pathway. We evaluated the role of RhoA/ROCK pathway in CN regulation following CNI using a validated rat model. CNI upregulated gene and protein expression of RhoA/ROCK and caspase-3 mediated apoptosis in the major pelvic ganglion (MPG). ROCK inhibitor (ROCK-I) prevented upregulation of RhoA/ROCK pathway as well as activation of caspase-3 in the MPG. Following CNI, there was decrease in the dimer to monomer ratio of neuronal nitric oxide synthase (nNOS) protein and lowered NOS activity in the MPG, which were prevented by ROCK-I. CNI lowered intracavernous pressure and impaired non-adrenergic non-cholinergic-mediated relaxation in the penis, consistent with ED. ROCK-I maintained the intracavernous pressure and non-adrenergic non-cholinergic-mediated relaxation in the penis following CNI. These results suggest that activation of RhoA/ROCK pathway mediates caspase-3 dependent apoptosis of nitrergic neurons in the MPG following CNI and that ROCK-I can prevent post-prostatectomy ED. PMID:27388816

  7. Cyclic AMP--dependent aggregation of Swiss 3T3 cells on a cellulose substratum (Cuprophan) and decreased cell membrane Rho A.

    PubMed

    Faucheux, N; Nagel, M D

    2002-06-01

    Cell surface integrin receptors and Rho family GTPases function together to mediate adhesion-dependent events in cells. We have shown that the attachment of Swiss 3T3 cells to a cellulose substratum (Cuprophan, CU) activates adenylyl cyclase, which catalyses cyclic AMP (cAMP) production. CU adsorbs vitronectin poorly, prevents cell spreading and causes cells to aggregate. By contrast, spread cells on polystyrene (PS) contain low cAMP concentrations. We have now investigated the shift between integrin signalling-Rho A and the cAMP pathway. CU did not support the formation of focal contacts and stress fibres. The plasma membranes of cells on CU had less Rho A than those of cells on PS. Also, blocking vitronectin (VN) or fibronectin (FN)-integrin receptors with echistatin, which activates cAMP production, decreased Rho A in the plasma membrane of cells attached to PS. But adsorption of VN or FN onto CU, which limits the production of the cAMP, increased the cell membrane Rho A. Adding an inhibitor of cAMP-dependent protein kinase PKA to the medium also increased the plasma membrane Rho A in aggregated cells attached to CU. These results highlight the importance of cAMP, generated by cell attachment to substratum, as a gating element in integrin-Rho A signalling. PMID:12013176

  8. Caspase-3 dependent nitrergic neuronal apoptosis following cavernous nerve injury is mediated via RhoA and ROCK activation in major pelvic ganglion

    PubMed Central

    Hannan, Johanna L.; Matsui, Hotaka; Sopko, Nikolai A.; Liu, Xiaopu; Weyne, Emmanuel; Albersen, Maarten; Watson, Joseph W.; Hoke, Ahmet; Burnett, Arthur L.; Bivalacqua, Trinity J.

    2016-01-01

    Axonal injury due to prostatectomy leads to Wallerian degeneration of the cavernous nerve (CN) and erectile dysfunction (ED). Return of potency is dependent on axonal regeneration an